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Heavner, Nathan D. (Ph.D., Applied Mathematics)

Building rank-revealing factorizations with randomization

Thesis directed by Prof. Per-Gunnar Martinsson

This thesis describes a set of randomized algorithms for computing rank revealing factorizations of

matrices. These algorithms are designed specifically to minimize the amount of data movement required,

which is essential to high practical performance on modern computing hardware. The work presented builds

on existing randomized algorithms for computing low-rank approximations to matrices, but essentially ex-

tends the range of applicability of these methods by allowing for the efficient decomposition of matrices of

any numerical rank, including full rank matrices. In contrast, existing methods worked well only when the

numerical rank was substantially smaller than the dimensions of the matrix.

The thesis describes algorithms for computing two of the most popular rank-revealing matrix decom-

positions: the column pivoted QR (CPQR) decomposition, and the so called UTV decomposition that factors

a given matrix A as A = UTV∗, where U and V have orthonormal columns and T is triangular. For each

algorithm, the thesis presents algorithms that are tailored for different computing environments, including

multicore shared memory processors, GPUs, distributed memory machines, and matrices that are stored on

hard drives (“out of core”).

The first chapter of the thesis consists of an introduction that provides context, reviews previous work

in the field, and summarizes the key contributions. Beside the introduction, the thesis contains six additional

chapters:

Chapter 2 introduces a fully blocked algorithm HQRRP for computing a QR factorization with col-

umn pivoting. The key to the full blocking of the algorithm lies in using randomized projections to create

a low dimensional sketch of the data, where multiple good pivot columns may be cheaply computed. Nu-

merical experiments show that HQRRP is several times faster than the classical algorithm for computing a

column pivoted QR on a multicore machine, and the acceleration factor increases with the number of cores.

Chapter 3 introduces randUTV, a randomized algorithm for computing a rank-revealing factorization



iv

of the form A = UTV∗, where U and V are orthogonal and T is upper triangular. RandUTV uses random-

ized methods to efficiently build U and V as approximations of the column and row spaces of A. The result

is an algorithm that reveals rank nearly as well as the SVD and costs at most as much as a column pivoted

QR.

Chapter 4 provides optimized implementations for shared and distributed memory architectures. For

shared memory, we show that formulating randUTV as an algorithm-by-blocks increases its efficiency in

parallel. The fifth chapter implements randUTV on the GPU and augments the algorithm with an over-

sampling technique to further increase the low rank approximation properties of the resulting factorization.

Chapter 6 implements both randUTV and HQRRP for use with matrices stored out of core. It is shown that

reorganizing HQRRP as a left-looking algorithm to reduce the number of writes to the drive is in the tested

cases necessary for the scalability of the algorithm when using spinning disk storage. Finally, chapter 7

discusses an alternative use for randUTV as a nuclear norm estimator and measures the acceleration gained

from trimming down the algorithm when only singular value estimates are required.
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Chapter 1

Introduction

Most traditional rank-revealing factorization algorithms were designed when communication costs

for scientific computing were negligible compared to the cost of floating point operations. As such, they

are not easily optimized for many modern scientific computing environments, which often rely heavily on

parallel computations. This thesis presents algorithms for computing rank-revealing factorizations which

are designed to operate efficiently in parallel environments. In this chapter, we present an overview of the

contributions of the thesis. We begin with context, discussing the problem we intend to solve and some

distinct challenges we work to address. A summary is then provided of previous work in the field as well as

recent innovations that have inspired our contributions. We finally provide brief descriptions of the methods

developed in the thesis, leaving thorough discussion and analysis for the following chapters.

1.1 Context

1.1.1 Rank-revealing factorizations

Given a matrix A ∈ Rm×n, it is often desirable to compute a matrix factorization

A = U T V∗,

m× n m×m m× n n× n
(1.1)
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where U and V are orthogonal and T is triangular, such that the factorization is rank-revealing. We will call

a matrix rank-revealing if, considering the partitioning of T

T→

T11 T12

T21 T22

 ,
where T11 is k × k for any 1 ≤ k ≤ min(m,n), we have that

• σk(A) ≈ σmin(T11) and

• σk+1(A) ≈ σmax(T22).

This informal definition is a slight generalization of the usual definitions of rank revealing decompositions

that appear in the literature, minor variations of which appear in, e.g. [27, 114, 24, 26]. The definition given

above is useful because it allows us to compare the quality of different rank-revealing factorizations. Given

two decompositions A = UTV∗ and A = WSX∗, we will say that the first factorization reveals rank better

than the second if

• ‖σk(A)− σmin(T11)‖ < ‖σk(A)− σmin(S11)‖ and

• ‖σk+1(A)− σmax(T22)‖ < ‖σk+1(A)− σmax(S22)‖.

Rank revealing factorizations are useful in solving problems such as least squares approximation [26, 25,

54, 80, 17, 56], rank estimation [24, 118, 116], low rank approximation [83, 42, 77, 31, 9], and subspace

tracking [16, 114], among others.

It is well known that the singular value decomposition is the optimal rank-revealing factorization in

the sense that for an SVD factorization A = UDV∗, by definition σk(A) = σmin(D11) and σk+1(A) =

σmax(D22). This decomposition is expensive to compute, though, and the traditional algorithms do not

easily parallelize well. Other options have been developed with varying strengths and weaknesses; this

research is summarized in Section 1.2.

Another well known rank-revealing factorization is the column pivoted QR factorization. This de-

composition does not reveal rank as well as the SVD, but unlike the SVD it can easily be used to compute
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partial factorizations. In traditional computing environments, it was also substantially faster than the SVD

due to requiring many fewer floating point operations.

1.1.2 Communication vs flops

Recent trends in technology development have altered goals in the design of algorithms for high-

performance computing. Classical algorithms focused on decreasing the floating point operation (flop)

count — and for good reason. In 1988, one flop took six times as long as the memory latency [32, Ch.

5], so performing floating point operations was the bottleneck in numerical computations. In recent years,

however, matters have changed dramatically.

For example, from 1988 to 2004, the floating-point performance of microprocessors improved by 59%

per year, whereas the bandwidth of DRAM chips increased 25% per year and DRAM latency increased by

only 5.5% per year. The disparity in growth between floating-point performance and bandwidth has led to

the development of processors with multilevel cache systems, which require locality and temporality of data

to achieve high efficiency. Furthermore, the relatively slow improvement of DRAM latency means that as

of 2004, one hundred flops could be performed in the time it took to access memory once [32, Ch. 5].

This reversal in efficiency for floating point operations vs latency and bandwidth means that even

in the case of a single processor, latency or bandwidth restrictions can often be the cause of bottlenecks

in numerical computations. The increasing demand for parallel computing architectures (caused by the

slowing in growth for even flop performance in recent years [53]) further heightens the need for good data

locality and temporality in applications. Thus, any reference to “communication cost” in this manuscript

refers to any cost incurred by the transfer of data, whether between external storage devices and RAM, two

processors working in parallel, or different levels of cache.

Many traditional linear algebra algorithms, with their primary focus of minimizing flops, do not take

full advantage of the available processing power of most modern computers. Significant acceleration of

traditional algorithms can be achieved by implementing revisions which reduce communication. This fact is

demonstrated in Figure 1.1. Observe in particular that this figure includes one algorithm that is significantly

faster than another in spite of incurring a higher asymptotic flop count than the competition.
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1.2 Previous work

In this section, we briefly review the previous work in rank-revealing matrix factorizations. Sec-

tion 1.2.1 reviews two of the most commonly used decompositions which reveals rank, and Section 1.2.2

discusses a lesser-known but highly relevant factorization. Finally, Section 1.2.3 briefly summarizes the

development of randomization as a key tool in linear algebra problem-solving.

1.2.1 Rank-revealing factorizations.

The singular value decomposition (SVD) is one of the two most widely used rank-revealing factor-

izations. It provides a wealth of information about the input matrix, including orthonormal bases for its

fundamental subspaces, singular values and vectors, and an easily invertible form. Most notably, by the

celebrated Eckart-Young-Mirsky Theorem [45, 98], it yields theoretically optimal low rank approximations.

Specifically, for an SVD UDV∗ of A, we have that

‖A−U(:, 1 : k)D(1 : k, 1 : k)(V(1 : k, :))∗‖ = min{‖A− B‖ : B has rank k}.

This high quality information comes at a price, however. The SVD is quite expensive to compute, often

prohibitively so.

Furthermore, the traditional algorithms for computing an SVD are challenging to implement well in

parallel computing environments. The computation is usually done in two stages. In the first stage, the input

matrix is reduced to bidiagonal form with a sequence of orthogonal transformations which must be applied

to the matrix serially. In the second stage, the matrix is fully reduced to diagonality with either a variant

of the iterative QR algorithm or the divide-and-conquer method, a recursive technique that uses the QR

algorithm at the base level [57, 122]. Available options for either stage are not amenable to parallelization.

The other widely used rank-revealing decomposition, the rank-revealing QR factorization (RRQR),

was developed as a response to the expense of computing an SVD. Appropriately, then, these are much faster

to compute than an SVD, but they do not reveal rank as well. Many algorithms for calculating an RRQR

have been developed [21, 55, 61, 51, 24], but the column pivoted QR (CPQR) of [21] has remained the most

popular standard for use in software. CPQR usually produces a factorization that reveals rank reasonably
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well, but it can in certain known cases give wildly suboptimal results [76]. It is also inherently limited in

its parallel performance in that the selection of pivot columns must be done one at a time, preventing the

algorithm from being fully blocked (see Section 1.3.1 for discussion on the value of blocked algorithms).

Quintana-Ortı́ et al. developed a partial work-around in [107], but the remaining inefficiency can be observed

in Figure 1.1. Note that the algorithms used for dgeqrf (unpivoted QR) and dgeqp3 (CPQR) have the

same asymptotic flop count (but dgeqp3 requires more flops overall). The main difference between the

two causing the difference in execution time, at least in the limit as n grows large, is that the first is fully

blocked while the second is not. Thus, dgeqp3 spends much more time in communication-related tasks.

1.2.2 Rank-revealing UTV factorizations.

Given an m× n matrix A, the so called “UTV decomposition” [116, p. 400] takes the form

A = U T V∗,

m× n m×m m× n n× n
(1.2)

where U and V are unitary matrices and T is a trapezoidal matrix. (In this work, we will typically assume

that m ≥ n, and seek a factorization with an upper triangular matrix T, but the techniques can with minor

modifications be applied to other cases as well.)

Because of the relative flexibility of the matrices U,T,V compared to QR and SVD, the UTV decom-

position is presented in the literature as a “compromise” between the SVD and RRQR, featuring desirable

properties of both. Standard UTV computation algorithms are faster than SVD and slower than RRQR, while

less accurate than SVD and more accurate than RRQR in terms of rank-revealing properties. Importantly,

there are efficient methods for updating a UTV factorization [114, 115, 6], which is a significant advantage

over an SVD. UTV also gives immediate access to estimations of orthonormal bases for all fundamental

subspaces [50], unlike the RRQR.

Most algorithms for computing rank revealing UTVs begin with a triangular factorization and then

use a post-processing step that improves the rank-revealing properties of the middle matrix [70]. See [115]

and [49] for representatives of this idea for high and low rank matrices, respectively. A survey of these



6

algorithms and their variations, along with discussions of efficient updating and downdating, can be found

in [50].

A randomized algorithm for computing a UTV was introduced by Demmel, Dumitriu, and Holtz in

[35]; we refer to this technique as DDHUTV in reference to the authors of [35]. The algorithm is simple

and fast. Since it does not incorporate information from the row space of A, though, DDHUTV leaves room

for improvement in the quality of its rank revelation. This is a design choice rather than a defect, since

the algorithm was designed to be used iteratively as part of a fast eigensolver. The DDHUTV algorithm

represents, an early use of the kind of randomized sampling techniques which are further explored in this

thesis.

1.2.3 Randomization in matrix factorizations.

Interest in randomized matrix factorization algorithms has grown rapidly in recent years. While minor

uses of randomization, such as choosing a random starting vector for iterative solvers, have been common

practice for some time, investigation of randomization for key roles in matrix algorithms began only recently.

See [130, 85, 69] for a survey of various applications of randomization in matrix approximation.

Utilization of randomization in matrix approximation has been enabled by some key developments in

subfields of random matrix theory. A particularly relevant development began in the study of randomized

embeddings when Johnson and Lindenstrauss published their celebrated paper [75], in which they showed

that random embeddings approximately preserve Euclidean geometry. Their result furthermore says that the

dimension of the embedding space required for a good approximation is dependent on the number of points

in the dataset rather than the original dimension of those points. Even better, this dependence itself is quite

weak – on the order of the logarithm of the number of points in the dataset. This result sparked the idea

that some previously intractable problems may become computationally feasible by first projecting the data

into a space of lower dimension and then solving the problem with the low-dimensional sketch of the data.

The algorithms discussed herein draw from this approach, using low-dimensional sketches to efficiently

determine row space information before returning to the original (high-dimensional) matrix to compute a

full factorization.
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Our work here uses randomized sampling to create a matrix approximation with reduced dimension.

To our knowledge, this idea first appeared in [101], where Papadimitriou et al. suggested projecting the

input matrix onto a random subspace, then compressing the original matrix onto the projection. Though this

method provided better accuracy than a competing randomized column selection method with similar error

bounds [52], it was less computationally efficient.

Sarlós [112] then argued that the cost of dimension reduction could be reduced by using structured

random maps, such as those introduced by Ailon and Chazelle in [1]. Though the initial work by Sarlós

did not produce algorithms which improved on classical methods, Woolfe et al. improved on the asymptotic

computational cost and applied the resulting refined techniques to scientific computation problems in [131].

See [82, 83] for related work.

The algorithms presented here rely heavily on the work by Martinsson-Rokhlin-Tygert in [90]. Their

paper shows that using a Gaussian transform matrix for dimension reduction works better than had been

previously realized. In particular, they show that oversampling in the range sampling step has a dramatic

effect on the quality of the resulting low-dimensional approximation, in both theory and practice. They also

demonstrate how dimension reduction through sampling can be used to compute an interpolative decompo-

sition of an input matrix, a problem closely associated with choosing a good pivoting matrix in a pivoted

QR decomposition.

A final relevant development is published in [111], where Rokhlin-Szlam-Tygert make use of a power

iteration in combination with dimension reduction to improve the quality of the low-dimensional approxi-

mation with not too much increase in computational cost. This idea led to an efficient method for large-scale

PCA, detailed in [68]. A power iteration modified to prevent loss of accuracy due accumulation in roundoff

error is given in [92, 69].

The recent interest in randomized techniques has led to the appearance of a number of survey papers,

including [69, 85, 130, 41]. A particularly accessible introduction can be found in [87] (with an arxiv version

at [87]).
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1.3 Reducing communication in matrix computations

In this section, we discuss two techniques of algorithm design that reduce communication costs in

linear algebra algorithms. Section 1.3.1 reviews blocked algorithms, while Section 1.3.2 discusses a more

recently developed method called algorithms-by-blocks.

1.3.1 Blocked algorithms

One way to decrease communication costs in linear algebra algorithms is to make use of blocking.

Many algorithms in this field, especially ones relating to computing matrix factorizations like QR, process

single columns of the input matrix at a time. With this idea, most of the operations are cast in terms of

matrix-vector operations and are therefore carried out in implementation by Level 2 Basic Linear Algebra

Subprogram (BLAS) [81, 19] routines. However, certain algorithms are amenable to the idea that several

columns of the input matrix, or one “block,” may be processed at once. In this case, the operations that were

matrix-vector in the single column case become matrix-matrix operations, implemented by Level 3 BLAS

routines. It is well known that Level 3 routines enable even single core processors to achieve far more flops

per second than Level 2 or Level 1 due largely to their much higher ratio of flops to memory accesses [38,

Section 1]. On multicore processors and GPUs, the acceleration achieved by Level 3 routines, in particular

matrix-matrix multiplication, is even more pronounced. Thus, blocked algorithms are generally faster than

their unblocked counterparts in practice, even though the asymptotic flop counts of the two are the same,

and despite the fact that sometimes the actual flop count of the blocked algorithm is actually higher.

1.3.2 Algorithms-by-blocks

Even blocked algorithms have limitations in communication efficiency, particularly in severely com-

munication restricted environments. The issue of concern is bottlenecks in data accessibility. For example,

even the fully blocked unpivoted QR factorization has a step that can only be efficiently executed by a single

processor (the factorization of the block of b columns). Whenever this step is executed, it leaves the other

cores idle, wasting processor power. When there are only a few cores, there is no great loss, but the time
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lost increases with the number of processors.

A solution, called algorithms-by-blocks, is presented in [106, 23]. Rather than aggregating operations

into Level-3 BLAS routines by processing multiple columns at once, an algorithms-by-blocks raises the

granularity of the data itself, then builds the desired algorithm as usual. Anything treated as an “element” of

the matrix is actually a submatrix, so each operation acts on two matrices and will thus naturally be expressed

as Level-3 BLAS when possible. The key benefit, though, lies in the elimination of synchronization points

enabled by this philosophy. When the inputs to operations consist only of small submatrices, there is greater

freedom in scheduling the operations. Thus, the load on multicore systems is far more balanced. In practice,

algorithms-by-blocks is implemented with a runtime system which keeps track of data dependencies and

schedules each operation to make efficient use of system resources.

1.4 Randomized SVD

One key algorithm developed in this thesis is an extension of the randomized SVD developed in [68].

In Section 1.4.1, we give an overview of the algorithm, and in Section 1.4.2 we consider how the techniques

of the randomized SVD may be used to build a rank-revealing full factorization.

1.4.1 Overview of the algorithm

Given an m× n input matrix A and a target rank k � min(m,n), the randomized SVD (RSVD) of

[68] efficiently computes an approximate factorization

A ≈ U D V∗,

m× n m× k k × k k × n
(1.3)

where U and V are orthonormal and D is diagonal. The algorithm may be summarized with just a few steps:

1. Compute an m × k orthonormal matrix Q such that QQ∗A ≈ A. Since QQ∗ is an orthogonal

projection, this item may also be phrased as, “compute an approximate orthonormal basis for the

column space of A.” This is the step requiring randomized projections, and the precise algorithm is

given below.
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2. Compute B = Q∗A. This multiplication is relatively inexpensive at O(mnk).

3. Compute the SVD of B to obtain B = ÛDV∗. Since B is short and wide, this step is relatively

cheap as well. We may accomplish it by performing an unpivoted QR factorization (O(nk2))

followed by an SVD for a k × k matrix (O(k3)) and a matrix multiplication to update the right

singular vectors (O(nk2)).

4. Compute U = QÛ. This step completes the estimate of the left singular values at a cost of

O(mk2).

Observe that once these steps are completed, we have

A ≈ QQ∗A = QB = (QÛ)DV∗ = UDV∗.

Step 1 contains the key to the novelty and efficiency of the algorithm. It was noted in [90] that if k

random samples of A are collected, the span of these samples is a good approximation for the column space

of A. Then Q may be obtained by orthonormalizing these random samples. This observation led to the

range finder basic described in Algorithm 1.

Algorithm 1 Q = range finder basic(A, k)
% Generate norm rand iid(m,n) returns a matrix of dimensions m× n whose entries are inde-
pendently
% drawn from the standard normal distribution.
% n(A) returns the number of columns of matrix A.

1: G = Generate norm rand iid(n(A), k)
2: Y = AG
3: [Q,∼] = qr(Y)

Several improvements to range finder basic drastically improve the reliability and accuracy

of the factorization produced by RSVD. These improvements are discussed below and incorporated into

Algorithm 2.

a. Oversampling. Based on properties of the random matrix G in range finder basic, it can

be shown that the approximation provided by Q can be improved by adding a few, say p, extra

samples of the column space. Doing so also dramatically decreases the probability of deviating
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substantially from the known error bound, making the use of randomization in the algorithm quite

safe. For details on the error bounds, see [68]. In practice, choosing p to be 5 or 10 is sufficient,

adding very little to the computational cost.

b. Power iteration. The approximate basis provided by Q from can be quite good but suffers in the

case of slow decay in the singular values of A. To remedy this, the sampling matrix can be altered

from A to (AA∗)qA for some small integer q. This has a similar effect to a power iteration scheme

for computing eigenvalues, aligning the samples more closely with singular vectors corresponding

to larger singular values of A.

c. Orthonormalization. In the case that item b above is used, loss of accuracy due to accumulation

in roundoff error becomes a concern. Specifically, the information in the samples from any singular

value of A less than ε2q+1
machine will be lost in floating-point arithmetic. To avoid this loss, we perform

the computation Y = (AA∗)qAG incrementally, orthonormalizing the columns of the intermediate

matrix in between each application of A or A∗.

Algorithm 2 Q = range finder(A, k)
% Generate norm rand iid(m,n) returns a matrix of dimensions m× n whose entries are inde-
pendently
% drawn from the standard normal distribution.
% n(A) returns the number of columns of matrix A.

1: G =Generate norm rand iid(n(A), k + p)
2: Y = AG
3: [Q,∼] = qr(Y)
4: for i = 1 to q do
5: Y = A∗Q
6: [Q,∼] = qr(Y)
7: Y = AQ
8: [Q,∼] = qr(Y)
9: end for

1.4.2 Extending the RSVD to compute full factorizations

The RSVD has found popularity in very recent years, probably due largely to its efficiency in parallel

environments. Nevertheless, the primary value of the method is seen in the case when the target rank
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k � min(m,n). If this is not the case, then the SVD step requires a computation on a matrix roughly

the same size as the original, so the multiplication of A by its approximate column space is just extra

work. A primary contribution of this thesis is therefore to present a full matrix factorization which uses

the concepts of randomized range finding from RSVD but which retains efficiency for any choice of k

(e.g. k = min(m,n)).

To build a full factorization, we use the range finder basic of Algorithm 2 to efficiently com-

pute subspace approximations in small blocks at a time. Once we have approximations of the column and

row space of the “unprocessed” block of A, we use Householder reflectors to rotate the “mass” of the block

to the upper left and satisfy some typical sparsity requirements. The use of Householder reflectors is an

important modification that ensures the aggregate cost of applying these rotations is O(n3). The result is a

full matrix rank revealing factorization A = UTV∗ that is fully blocked and casts most of its flops in terms

of matrix-matrix multiplies, making the algorithm efficient in parallel environments.

1.5 Contributions of this thesis

The scientific contributions of this thesis center on two new communication-efficient algorithms:

HQRRP and randUTV. The specific strengths of each are discussed in the following sections and are conve-

niently summarized by Figure 1.2. Particularly, HQRRP provides significant acceleration over the traditional

CPQR while resulting in similar approximation accuracies. randUTV yields factorizations that reveal rank

nearly as well as the SVD at speeds faster than CPQR.1 The work on these two algorithms is organized into

6 chapters, as follows:

Ch. 2: Householder QR Factorization With Randomization for Column Pivoting (HQRRP)

Ch. 3: randUTV: A blocked randomized algorithm for computing a rank-revealing UTV factorization

Ch. 4: Efficient algorithms for computing a rank-revealing UTV factorization on parallel computing ar-

chitectures

Ch. 5: Efficient algorithms for computing rank-revealing factorizations on a GPU
1 In almost all tested computing environments, for n & 5000.
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Ch. 6: Computing rank-revealing factorizations of matrices stored out-of-core

Ch. 7: Efficient nuclear norm approximation via the randomized UTV algorithm

In the remainder of this introduction, we briefly describe the main ideas behind each of the six

manuscripts.

1.5.1 “Householder QR Factorization With Randomization for Column Pivoting (HQRRP)”

The first algorithmic contribution, HQRRP (Householder QR factorization with Randomized Pivot-

ing), computes a rank-revealing QR factorization of an input matrix A. The algorithm is a solution to

the communication limitation of traditional CPQR discussed in Section 1.5.1. HQRRP finds multiple, say

b, pivot columns at a time by projecting columns of the input matrix into a low dimensional space and

(cheaply) finding b pivot columns there. In practice, this is accomplished by drawing a random Gaussian

matrix G ∈ Rb×m composed of i.i.d. entries that follow the standard normal distribution and computing the

projection Y = GA. Since random linear projections approximately preserve distances between vectors by

the Johnson-Lindenstrauss theorem, the permutation that brings b good pivot columns to the front of Y is

likely to bring b good pivot columns to the front of A. Thus, we may form HQRRP as a blocked algorithm,

finding b good pivot columns during each step and introducing zeros to these columns as necessary with

Householder vectors.

HQRRP importantly employs a downdating procedure when forming the sampling matrix Y during

each step. By choosing the random matrix G to be a rotation of the random matrix in the previous step,

we can obtain the new sampling matrix Y inexpensively. Thus, while HQRRP requires more flops than

unpivoted QR, factorization with Householder reflectors, the asymptotic flop count for the two are the same.

With its fully blocked approach, HQRRP provides an improvement on traditional CPQR. Extensive

numerical experiments show that the pivot columns selected by HQRRP are as good as those of CPQR, so

the factorizations from each algorithm provide low rank approximations of approximately the same quality.

In shared memory computing environments, HQRRP outperforms CPQR in speed, and the gap between the

two increases as the number of processor cores increases. This relationship is depicted in Figure 1.3.
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1.5.2 “randUTV: A blocked randomized algorithm for computing a rank-revealing UTV factor-

ization”

This chapter presents the second fundamental algorithm presented in this thesis, randUTV. This

algorithm provides orthogonal matrix factorizations that reveal rank nearly as well as the SVD at speeds that

rival, and often surpass, CPQR. It achieves this largely because it casts the bulk of its operations in terms of

matrix-matrix multiplication, which is exceptionally efficient in parallel computing environments.

Given an m×n matrix A, randUTV computes orthogonal matrices U and V upper triangular matrix

T such that A = UTV∗. T has the additional sparsity property that the b × b blocks on its main diagonal

are themselves diagonal.

randUTV builds the matrix T in blocks of b columns at a time. In each step, a local rotation matrix

V(i) is chosen to approximate the subspace spanned by the leading right singular vectors of an appropriate

submatrix of T. Such a matrix V(i) can be built efficiently using the range finder basic algorithm of

Section 1.4.1. The second rotation matrix U(i) can then be built in a manner mirroring the building of the Q

matrix in a traditional QR factorization, where V(i) takes the place of the pivoting matrix P . A final SVD

operation on a b× b submatrix of T updates U(i) and V(i), increasing the accuracy of the approximation of

the diagonal values of T to the singular values of A.

The value of randUTV is best seen in the experiments depicted in Figures 1.4, 1.5, and 1.6. In

Figures 1.4 and 1.5, observe that randUTV easily outperforms CPQR, even in the case of slow singular

value decay in A (a known difficulty for the range finder used by randUTV). Increasing the parameter

q (see Algorithm 2) improves the low rank approximations provided by the factorization even further, and

Figure 1.6 shows that the increase does not cost too much in extra computation time. Furthermore, Figure 1.6

shows that randUTV is comparable to CPQR even for single core. When the number of cores is increased,

randUTV is faster than CPQR starting around n = 5000, even for higher values of q.

Remark 1. The QLP algorithm in Figures 1.4 and 1.5 was introduced in [120, ?] and is included here as

a potential competitor to randUTV. While it may give factorizations that reveal rank slightly better than

randUTV with q = 0, QLP requires two column pivoted QR factorizations. It is therefore much slower than
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randUTV, and for q > 0 randUTV gives better low rank approximations as well.

1.5.3 “Efficient algorithms for computing a rank-revealing UTV factorization on parallel comput-

ing architectures”

In this chapter, efficient implementations of the randUTV algorithm are developed for both shared

and distributed memory architectures.

The optimized shared memory implementation re-formulates randUTV as an algorithm-by-blocks

(see Section 1.3.2). This change largely does not affect the actual operations that are performed, with the

exception that the unpivoted QR factorizations must be reorganized based on updating a QR factorization

that has already been computed. However, an algorithm-by-blocks allows greater flexibility in the order of

completion of tasks throughout randUTV. The acceleration achieved by reducing the number of synchro-

nization points is significant and increases with the number of cores used.

The distributed memory implementation explores the details of optimizing randUTV for this archi-

tecture. While the algorithm itself is not modified, the implementation requires careful consideration of

system communication and storage. We optimize for the architecture and perform scalability analysis for

randUTV and competing factorizations.

1.5.4 “Efficient algorithms for computing rank-revealing factorizations on a GPU”

The GPU implementation of randUTV in this chapter takes advantage of the extremely efficient per-

formance of matrix-matrix multiplication in that setting. It introduces modifications to randUTV which

incorporate the oversampling parameter p of range finder to further increase the rank revealing prop-

erties of the resulting factorization. The modified algorithm also makes use of a bootstrapping technique

wherein the extra samples of one step may be used in the following step, reducing the cost of using p > 0.

The resulting algorithm, which we call randUTV boosted, provides factorizations that reveal rank even

better than randUTV at a reasonable extra computation cost.
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1.5.5 “Adapting efficient rank-revealing factorization algorithms for matrices stored out of core”

This chapter implements both randUTV and HQRRP for matrices large enough that they must be

stored out of core. For HQRRP, we experiment with several options for managing communication and I/O,

including a “left-looking” algorithm variant which decreases the amount of time spent writing to the hard

drive. For randUTV, we re-write the method as an algorithm-by-blocks, to the effect that the I/O operations

required by the disk with the flops executed by the processor are largely overlapped. The HQRRP implemen-

tation is useful for partial factorizations when subset selection is in view. The randUTV implementation

performs quite well for full factorizations, costing just slightly more than when the matrix can be stored in

RAM.

1.5.6 “Efficient nuclear norm approximation via the randomized UTV algorithm”

randUTV has a secondary potential use as a nuclear norm estimator. The nuclear norm ‖ · ‖∞ of a

matrix A ∈ Rm×n is the sum of its singular values, i.e.

‖A‖∞ =

min(m,n)∑
i=1

σi(A).

The diagonal entries of the matrix T resulting from randUTV are good estimates of the singular values of

A. If just the singular values of A are desired, rather than the full factorization, then some of the work related

to building the V and U matrices may be cut out of the algorithm. One chapter of the thesis examines this

idea in more detail and reports on the accuracy of the singular value estimates as well as the acceleration

gained by trimming down randUTV for use as a nuclear norm estimator.
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Chapter 2

Householder QR Factorization With Randomization for Column Pivoting (HQRRP)

A fundamental problem when adding column pivoting to the Householder QR factorization is that

only about half of the computation can be cast in terms of high performing matrix-matrix multiplications,

which greatly limits the benefits that can be derived from so-called blocking of algorithms. This paper de-

scribes a technique for selecting groups of pivot vectors by means of randomized projections. It is demon-

strated that the asymptotic flop count for the proposed method is 2mn2 − (2/3)n3 for an m × n matrix,

identical to that of the best classical unblocked Householder QR factorization algorithm (with or without

pivoting). Experiments demonstrate acceleration in speed of close to an order of magnitude relative to the

GEQP3 function in LAPACK, when executed on a modern CPU with multiple cores. Further, experiments

demonstrate that the quality of the randomized pivot selection strategy is roughly the same as that of classi-

cal column pivoting. The described algorithm is made available under Open Source license and can be used

with LAPACK or libflame.

2.1 Introduction

The QR factorization is a staple of linear algebra, with applications ranging from Linear Least-

Squares solution of overdetermined systems to the identification of low rank approximation via the determi-

nation of an approximate orthonormal basis for the column space. Standard algorithms for computing the

QR factorization include Gram-Schmidt orthogonalization and those based on Householder transformations

(reflectors). When it is desirable for the QR factorization to also reveal the approximate rank of the original

matrix, it is important that the elements of the diagonal of R be ordered with larger elements in magnitude
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appearing earlier. In this case, column pivoting (swapping) is employed during the QR factorization, yield-

ing QR factorization with column pivoting (QRP). It is well-known that the Householder QR factorization

(HQR) yields columns of Q that are orthogonal to a high degree of precision, making these algorithms the

weapon of choice in many situations. Pivoting can be added to HQR to yield HQR with column pivoting

(HQRP). This topic is covered by standard texts on numerical linear algebra [57].

To achieve high performance for dense linear algebra algorithms, so-called blocked algorithms are

employed that cast most computation in terms of matrix-matrix operations supported by the widely used

level-3 Basic Linear Algebra Subprograms (BLAS) [38, 40] because such operations can be implemented to

achieve very high performance on modern processors via a combination of careful reuse of data in the caches

and low level implementation in terms of assembly code or intrinsic vector operations. Widely used current

implementations of the level-3 BLAS are based on techniques exposed by Goto [60, 59] and available in

open source libraries including the OpenBLAS [132] (a fork of the GotoBLAS) and BLIS [126], as well as

vendor implementions including AMD’s ACML [3], Intel’s MKL [73], and IBM’s ESSL [71] libraries.

The fundamental problem with the classical approach to HQRP is that only half of the computation

can be cast in terms of GEMM, as described in the paper [107] that underlies LAPACK’s geqp3 routine [4].

This means that blocking can only improve performance by, at best, a factor two, which is inherent from

the fact that it must be known how remaining columns will be updated in order to compute the 2-norms of

remaining columns. Bischof and Quintana-Ortı́ describe in a pair of papers [14, 13] an attempt to overcome

this problem by using so called “window pivoting” in combination with HQR. While much faster than

geqp3, this approach is more complicated than the method proposed in this paper and never made it into

LAPACK.

The present paper proposes to solve the problem by means of randomized projections. To describe

the idea, suppose that we seek to determine a set of b good pivot columns in an m × n matrix A. We then

draw a Gaussian random matrix G of size b×m and form a sampling matrix Y = GA. Then determine the

b pivot columns by executing QRP of the sampling matrix Y . Since Y is small compared to A, this task can

be executed very efficiently. (To be precise, one needs to perform a very slight amount of over-sampling,

see Section 2.3.1.) With this observation, it becomes easy to block the Householder QR factorization with
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Figure 2.1: Speedup of new blocked Householder QR factorization with randomized column pivoting
(HQRRP) relative to LAPACK’s faster routine (dgeqp3) on a 14-core Intel Xeon E5-2695 v3, see Sec-
tion 2.4.1 for details.

column pivoting. At each iteration of the blocked algorithm, we use the randomized sampling approach to

identify a set of b columns are that are then moved to the front of the actual matrix, at which point a regular
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step of HQR can be used to move the computation forward, optionally with additional column pivoting only

within a narrow panel of the matrix. Importantly, the sampling matrix can be cheaply downdated rather than

recomputed at each step, allowing the performance of the proposed algorithm to asymptotically approach

that of a standard blocked HQR implementation that does not pivot columns. Fig. 2.1 illustrates the dramatic

performance improvements that are realized.

The idea to use randomized sampling to pick blocks of pivot vectors was first published by Martinsson

on ArXiv in May 2015 [93]. A very similar technique was published by Duersch and Gu in September

2015 [43], also on ArXiv. The observation that downdating of the sampling matrix enables the randomized

scheme to attain the same asymptotic flop count as classical HQRP was discovered independently by the two

groups and was first published in [43]. More broadly, the idea that one can select a subset of columns of a

matrix that forms a good approximate basis for the column space of the matrix by performing QRP on a small

matrix whose rows are random linear combinations of the rows of the original matrix was first described

in [90, Sec. 4.1] and later elaborated in [83, 69, 91]. This problem is closely related to the problem of

finding a set of columns of maximal spanning volume [64], and to the problem of finding so called CUR

and interpolative decompositions [128]. These ideas tie in to a larger literature on randomized techniques

for computing low-rank approximations of matrices that includes [52, 42, 85, 86].

This paper describes a practical implementation of the method proposed that can be incorporated in

libraries like LAPACK and libflame [124, 125]. Implementation details that are important for attaining

high practical performance are described to enable readers to reproduce and extend the ideas. The paper

provides a cost analysis that shows that asymptotically the number of floating point operations approaches

that of HQR without pivoting while most computation is cast in terms of matrix-matrix multiplication like

the corresponding blocked HQR without pivoting. It reports unprecedented performance for pivoted QR

factorization on current architectures and provides empirical quality results. Importantly, the implementation

is made available for use by the computational science community under an Open Source license. The

conclusion discusses how these results pave the way for future opportunities.

The paper is organized as follows: Section 2 lists some standard facts about Householder reflectors

and pivoted QR factorizations that we need in the presentation. Section 3 describes how the classical House-
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holder QR factorization algorithm can be blocked by using randomization in the pivot selection step. Section

4 reports the results from numerical experiments investigating the speed of the algorithm and the quality of

the pivoting selection strategy. Sections 5 summarizes the key results and discusses future work. Section 6

describes publicly available software that implements the techniques presented.

2.2 Householder QR Factorization

In this section, we briefly review the state-of-the art regarding Householder factorization based on

Householder transformations (HQR). Throughout, we use the FLAME notation for representing dense linear

algebra algorithms [104, 65].

2.2.1 Householder transformations (reflectors)

A standard topic in numerical linear algebra is the concept of a reflector, also known as a Householder

transformation [57]. The review in this subsection follows [74] in which a similar notation is also employed.

Given a nonzero vector u ∈ Cn, the matrix H(u) = I − 1
τ uu

H with τ = uHu
2 has the property that

it reflects a vector to which it is applied with respect to the subspace orthogonal to u. Given a vector x, the

vector u and scalar τ can be chosen so that H(u)x equals a multiple of e0, the first column of the identiy

matrix. Furthermore, u can be normalized so that its first element equals one.

In our discussions, given a vector x =

 χ1

x2

, the function


 ρ

u2

 , τ

 := Housev


 χ1

x2




computes the vector u =

 1

u2

 and τ = uHu
2 so that H(u)x = ρe0,

2.2.2 Unblocked Householder QR factorization

A standard unblocked algorithm for HQR of a given matrix A ∈ Cm×n, typeset using the FLAME

notation, is given in Fig. 2.2 (left). The body of the loop computes
 ρ11

u21

 , τ11

 := Housev


 α11

a21


 ,
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which overwrites a11 with ρ11 and a21 with u21, after which the remainder of A is updated by aT12

A22

 :=

I − 1

τ11

 1

u21


 1

u21


H

 aT12

A22

 .

Upon completion, the (Householder) vectors that define the Householder transformations have overwritten

the elements in which they introduced zeroes, and the upper triangular part ofA containsR. How the matrix

T fits into the picture will become clear next.

2.2.3 The UT transform: Accumulating Householder transformations

Given A ∈ Cn×b, let U contain the Householder vectors computed during the HQR of A. Let

us assume that H(ub−1) · · ·H(u1)H(u0)A = R. Then there exists an upper triangular matrix so that

I − UT−HUH = H(ub−1) · · ·H(u1)H(u0). The desired matrix T equals the strictly upper triangular

part of UHU with the diagonal elements equal to τ0, . . . , τb−1. The matrix T can be computed during the

unblocked HQR, as indicated in Fig. 2.2 (left). In [74], the transformation I − UT−1UH that equals the

accumulated Householder transformations is called the UT transform. The UT transform is conceptually

related to the more familiar WY transform [15] and compact WY transform [113], see [74] for details on

how the different representations relate to one another.

2.2.4 A blocked QR Householder factorization algorithm

A blocked algorithm for HQR that exploits the insights that resulted in the UT transform can now be

described as follows. Partition

A→

 A11 A12

A21 A22



where A11 is b × b. We can use the unblocked algorithm in Fig. 2.2 (left) to factor the panel

 A11

A21

,

creating matrix T11 as a side effect.
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Algorithm: [A, T ] := HQR UNB(A, T )

Partition A→
(
ATL ATR
ABL ABR

)
,

T →
(
TTL TTR

0 TBR

)
where ATL is 0× 0, TTL is 0× 0

while m(ATL) < m(A) do

Repartition(
ATL ATR
ABL ABR

)
→

A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
TTL TTR

0 TBR

)
→

 T00 t01 T02
0 τ11 tT12
0 0 T22


where α11 is 1× 1, τ11 is 1× 1[(
α11

a21

)
, τ11

]
:= Housev

(
α11

a21

)
wT12 := (aT12 + aH21A22)/τ11(
aT12
A22

)
:=

(
aT12 − wT12

A22 − a21wT12

)
t01 := (aT10)

H +AH20a21

Continue with(
ATL ATR
ABL ABR

)
←

A00 a01 A02

aT10 α11 aT12
A20 a21 A22

,

(
TTL TTR

0 TBR

)
←

 T00 t01 T02
0 τ11 tT12
0 0 T22


endwhile

Algorithm: [A, T ] := HQR BLK(A, T )

Partition A→
(
ATL ATR
ABL ABR

)
,

T →
(
TT
TB

)
where ATL is 0× 0, TT has 0 rows

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ATR
ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

,

(
TT
TB

)
→

 T0
T1
T2


where A11 is b × b, T1 has b

rows

[

(
A11

A21

)
, T1] :=

HQR UNB(

(
A11

A21

)
, T1)

W12 := T−H1 (UH11A12 + UH21A22)(
A12

A22

)
:=

(
A12 − U11W12

A22 − U21W12

)
Continue with(

ATL ATR
ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

,

(
TT
TB

)
←

 T0
T1
T2


endwhile

Figure 2.2: Left: Unblocked Householder transformation based QR factorization merged with the computa-
tion of T for the UT transform. Right: Blocked Householder transformation based QR factorization. In this
algorithm, U11 is the unit lower triangular matrix stored below the diagonal of A11 and U21 is stored in A21.

Now we need to also apply the UT transform to the rest of the columns: A12

A22

 :=

I −
 U11

U21

T−111

 U11

U21


H

H  A12

A22

 =

 A12 − U11W12

A22 − U21W12

 ,
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where W12 = T−H11 (UH11A12 + UH21A22). This motivates the blocked HQR algorithm in Fig. 2.2 (right)

which we will refer to as HQR BLK.

The benefit of the blocked algorithm is that it casts most computation in terms of the computations

UH21A22 (row panel times matrix multiply) and A22 − U21W12 (rank-b update). Such matrix-matrix multi-

plications can attain high performance by amortizing data movement between memory layers.

These insights form the basis for the LAPACK routine GEQRF (except that it uses a compact WY

transform instead of the UT transform).

2.2.5 Householder QR factorization with column pivoting

An unblocked (rank-revealing) Householder QR factorization with column pivoting (HQRP) swaps

the column of ABR with largest 2-norm with the first column of that matrix at the top of the loop body. As

a result, the diagonal elements of matrix R are ordered from largest to smallest in magnitude, which, for

example, allows the resulting QR factorization to be used to identify a high quality approximate low-rank

orthonormal basis for the column space ofA. (To be precise, column pivoted QR returns a high quality basis

in most cases but may produce strongly sub-optimal results in rare situations. For details, see [76, 64], and

the description of “Matrix 4” in Section 2.4.2.)

The fundamental problem with the best known algorithm for HQRP, which underlies LAPACK’s

routine geqp3, is that it only casts half of the computation in terms of matrix-matrix multiplication [107].

The unblocked algorithm called from the blocked algorithm operates on the entire “remaining matrix” (ABR

in the blocked algorithm), computes b more Householder transforms and b more rows of R, computes the

matrix W2, and returns the information about how columns were swapped. In the blocked algorithm itself,

only the updateA22−A21W2 remains to be performed. When only half the computation can be cast in terms

of matrix-matrix multiplication, the resulting blocked algorithm is only about twice as fast as the unblocked

algorithm.
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Algorithm: [A, T, s] := HQRP RANDOMIZED BLK(A, T, s, nb, p)

G := RAND IID(nb + p, n(A))
Y := GA

Partition A→
(
ATL ATR
ABL ABR

)
, T →

(
TT
TB

)
, s→

(
sT
sB

)
, Y →

(
YL YR

)
whereATL is 0× 0, TT has 0 rows, sT has 0 rows, YL has 0 columns

while m(ATL) < m(A) do

Determine block size b = min(nb, n(ABR))
Repartition(

ATL ATR
ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
TT
TB

)
→

 T0
T1
T2

 ,

(
sT
sB

)
→

 s0
s1
s2

 ,
(
YL YR

)
→
(
Y0 Y1 Y2

)
whereA11 is b× b, T1 has b rows, s1 has b rows, Y1 has b columns

s1 := DETERMINEPIVOTS(
(
Y1 Y2

)
, b)A01 A02

A11 A12

A21 A22

 := SWAPCOLS(s1,

A01 A02

A11 A12

A21 A22

)[(
A11

A21

)
, T1 , s

′
1

]
:= HQR P UNB(

(
A11

A21

)
, T1)

A01 := SWAPCOLS(s′1, A01)
s1 := UPDATEPIVOTINFO(s′1, s1)

W12 := T−H1 (UH11A12 + UH21A22)(
A12

A22

)
:=

(
A12 − U11W12

A22 − U21W12

)
(
Y1 Y2

)
:= SWAPCOLS(s1,

(
Y1 Y2

)
)

Y2 := Y2 −
(
G1 − (G1U11 +G2U21)T

−1
11 U11

H
)
R12.

Continue with(
ATL ATR
ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

,
(
TT
TB

)
←

 T0
T1
T2

 ,

(
sT
sB

)
←

 s0
s1
s2

 ,
(
YL YR

)
←
(
Y0 Y1 Y2

)
endwhile

Figure 2.3: Blocked Householder transformation based QR factorization with column pivoting based on
randomization. In this algorithm, U11 equals the unit lower triangiular matrix stored below the diagonal of
A11, U21 = A21, and R12 = A12. The steps highlighted in gray constitute the blocked QR factorization
without column pivoting from Fig. 2.2.
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2.3 Randomization to the Rescue

This section describes a computationally efficient technique for picking a selection of b columns from

a given n× n matrix A that form good choices for the first b pivots in a blocked HQRP algorithm. Observe

that this task is closely related to the problem of finding an index set s of length b such that the columns in

A(:, s) form a good approximate basis for the column space ofA. Another way of expressing this problem is

that we are looking for a collection of b columns whose spanning volume in Cn is close to maximal. To find

the absolutely optimal choice here is a hard problem [64], but luckily, for pivoting purposes it is sufficient

to find a choice that is “good enough.”

2.3.1 Randomized pivot selection

The strategy that we propose is simple. The idea is to perform classical QR factorization with column

pivoting (QRP) on a matrix Y that is much smaller than A, so that performing QRP with that matrix consti-

tutes a lower order cost. As a bonus, it may fit in fast cache memory. This smaller matrix can be constructed

by forming random linear combinations of the rows of A as follows:

1. Fix an over-sampling parameter p. Setting p = 5 or p = 10 are good choices.

2. Form a random matrix G of size (b + p) × n whose entries are drawn independently from a nor-

malized Gaussian distribution.

3. Form the (b+ p)× n sampling matrix Y = GA.

The sampling matrix Y has as many columns as A, but much fewer rows. Now execute b steps of a column

pivoted QR factorization to determine an integer vector with b elements that capture how columns need to

be pivoted:

s = DETERMINEPIVOTS(Y, b).

In other words, the columns Y (:, s) are good pivot columns for Y . Our claim is that due to the way Y is

constructed, the columns A(:, s) are then also good choices for pivot columns of A. This claim is supported

by extensive numerical experiments, some of which are given in Section 2.4.2. There is theory supporting
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the claim that these b columns form a good approximate basis for the column space of A, see, e.g. [69,

Sec. 5.2] and [83, 128], but it has not been directly proven that they form good choices as pivots in a QR

factorization. This should not be surprising given that it is known that even classical column pivoting can

result in poor choices [76]. Known algorithms that are provably good are all far more complex to implement

[64].

Notice that there are many choices of algorithms that can be employed to determine the pivots. For

example, since high numerical accuracy is not necessary, the classical Modified Gram-Schmidt (MGS)

algorithm with column pivoting is a simple yet effective choice.

The randomized strategy described here for determining a block of pivot vectors is inspired by a tech-

nique published in [90, Sec. 4.1] for computing a low-rank approximation to a matrix, and later elaborated

in [83, 69, 91].

Remark 2 (Choice of over-sampling parameter p). The reliability of the procedures described in this section

depends on the choice of the over-sampling parameter p. It is well understood how large p needs to be

in order to determine a high-quality approximate basis for the column space of A with extremely high

reliability: the choice p = 5 is very good, p = 10 is excellent, and p = b is almost always over-kill

[69]. The pivot selection problem is less well studied, but is more forgiving. (The choice of pivots does

not necessarily have to be particularly optimal.) Numerical experiments indicate that even setting p = 0

typically results in good choices. However, the choices p = 5 or p = 10 appear to be good generic values

that have resulted in excellent choices in every experiment we have run.

Remark 3 (Intuition of random projections). To understand why the pivot columns selected by processing

the small matrix Y also form good choices for the original matrixA, it might be helpful to observe that for a

Gaussian random matrixG of size `×n, it is the case that for any x ∈ Rn, we have E
[
‖Gx‖

]
= ‖x‖, where

E denotes expectation. Moreover, as the number of rows ` grows, the probability distribution of ‖Gx‖

concentrates tightly around its expected value, see, e.g., [130, Sec. 2.4] and the references therin. This

means that for any pair of indices i, j ∈ {1, 2, . . . , n} we have E
[
‖Y (:, i)−Y (:, j)‖

]
= ‖A(:, i)−A(:, j)‖.

This simple observation does not in any way provide a proof that the randomized strategy we propose works,
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but might help understand the underlying intuition.

2.3.2 Efficient downdating of the sampling matrix Y

For the QRP factorization algorithm, it is well known that one does not need to recompute the column

norms of the remainder matrix after each step. Instead, these can cheaply be downdated, as described, e.g.,

in [116, Ch.5, Sec. 2.1]. In terms of asymptotic flop counts, this observation makes the cost of pivoting

become a lower order term, and consequently both unpivoted and pivoted Householder QR algorithms have

the same leading order term (4/3)n3 in their asymptotic flop1 counts. In this section, we describe an

analogous technique for the randomized sampling strategy described in Section 2.3.1. This downdating

strategy was discovered by one of the authors; a closely related technique was discovered independently and

published to arXiv by Duersch and Gu [43] in September 2015.

First observe that if the randomized sampling technique described in Section 2.3.1 is used in the

obvious fashion, then each step of the iteration requires the generation of a Gaussian random matrix G and a

matrix-matrix multiply involving the remaining portion of A in the lower right corner to form the sampling

matrix Y . The number of flops required by the matrix-matrix multiplications add up to an O(n3) term.

However, it turns out to be possible to avoid computing a sampling matrix Y from scratch at every step. The

idea is that if we select the randomizing matrix G in a particular way in every step beyond the first, then the

corresponding sampling matrix Y can inexpensively be computed by downdating the sampling matrix from

the previous step.

To illustrate, suppose that we start with an n× n original matrix A = A(0). In the first blocked step,

we draw a (b+ p)× n randomizing matrix G(1) and form the (b+ p)× n sampling matrix

Y (1) = G(1)A(0). (2.1)

Using the information in Y (1), we identify the b pivot vectors and form the corresponding permutation

matrix P (1). Then the matrix Q(1) representing the b Householder reflectors dictated by the b pivot columns
1 We use the standard convention of counting one multiply and one add as one flop, regardless of whether a complex or real

operation is performed.
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is formed. Applying these transforms to the right and the left of A(0), we obtain the matrix

A(1) =
(
Q(1)

)∗
A(0)P (1). (2.2)

To select the pivots in the next step, we need to form a randomizing matrix G(2) and a sampling matrix Y (2)

that are related through

Y (2) = G(2)
(
A(1) −R(1)

)
, (2.3)

where R(1) holds the top b rows of A(1) so that

A(1) −R(1) =

A
(1)
11 A

(1)
12

 A
(1)
22

−
A

(1)
11 A

(1)
12

 

 =

  

 A
(1)
22

 .

The key idea is now to choose the randomizing matrix G(2) according to the formula

G(2) = G(1)Q(1). (2.4)

Inserting (2.4) into (2.3), we now find that the sampling matrix is

Y (2) = G(1)Q(1)
(
A(1) −R(1)

)
= {Use (2.2)} =

G(1)A(0)P (1) −G(1)Q(1)R(1) = {Use (2.1)} = Y (1)P (1) −G(1)Q(1)R(1). (2.5)

Evaluating formula (2.5) is inexpensive since the first term is a permutation of the columns of the sampling

matrix Y (1) and the second term is a product of thin matrices (recall that Q(1) is a product of b Householder

reflectors).

Remark 4. Since the probability distribution for Gaussian random matrices is invariant under unitary maps,

the formula (2.4) appears quite safe. After all, G(1) is Gaussian, and Q(1) is just a sequence of reflections,

so it might be tempting to conclude that the new randomizing matrix must be Gaussian too. However, the

matrix Q(1) unfortunately depends on the draw of G(1), so this argument does not work. Nevertheless, the

dependence of Q(1) on G(1) is very subtle since this Q(1) is dictated primarily by the directions of the good

pivot columns. Extensive practical experiments (see, e.g., Section 2.4.2) indicate that the pivoting strategy

described in this section based on downdating is just as good as the one that uses “pure” Gaussian matrices

that was described in Section 2.3.1.
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2.3.3 Detailed description of the downdating procedure

Having described the downdating procedure informally in Section 2.3.2, we in this section provide

a detailed description using the notation for HQR that we used in Section 2.2. First, let us assume that

one iteration of the blocked algorithm has completed, so that, at the bottom of the loop body, the matrix A

contains A11 A12

A21 A22

 =

U\R11 R12

U21 Â22 − U21W12

 .

Here Â denotes the original contents of AP1, where P1 captures how columns have been swapped so far.

Hence, cf. (2.2), I −
U11

U21

T−H11

U11

U21


H


︸ ︷︷ ︸(
Q1 Q2

)

 Â11 Â12

Â21 Â22

P1 =

R11 R12

0 A22



Now, let G̃2 be the next sampling matrix and Ỹ2 = G̃2A22. In order to show how this new sampling

matrix can be computed by downdating the last sampling matrix, consider that

(
Ỹ1 Ỹ2

)
=

(
G̃1 G̃2

) 0 0

0 A22


for some matrix G̃1 and that

(
G̃1 G̃2

) 0 0

0 A22

 =

(
G̃1 G̃2

)
R11 R12

0 A22

−
R11 R12

0 0




=

(
G̃1 G̃2

)R11 R12

0 A22

− ( G̃1 G̃2

)R11 R12

0 0



=

(
G̃1 G̃2

)(
Q1 Q2

)
ÂP1 −

(
G̃1 G̃2

)(
Q1 Q2

)(
Q1 Q2

)H R11 R12

0 0

 (2.6)

The choice of randomizing matrix analogous to (2.4) is now(
G̃1 G̃2

)
=

(
G1 G2

)(
Q1 Q2

)
. (2.7)
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Inserting the choice (2.7) into (2.6), we obtain

(
Ỹ1 Ỹ2

)
=

(
G1 G2

)
Â︸ ︷︷ ︸(

Y1 Y2

) P1 −
(
G1 G2

)I −
U11

U21

T−H11

U11

U21


H

H R11 R12

0 0

 .

Letting
(
Y 1 Y 2

)
=

(
Y1 Y2

)
P1 we conclude that

Ỹ2 = Y 2 −
(
G1 G2

)I −
U11

U21

T−111

U11

U21


H

R12

0



= Y 2 −
(
G1 G2

)
R12

0

−
U11

U21

T−111 U11
HR12


= Y 2 −

(
G1 − (G1U11 +G2U21)T

−1
11 U11

H
)
R12.

which can then be used to downdate the sampling matrix Y .

2.3.4 The blocked algorithm

In Fig. 2.3, we give the blocked algorithm that results when the randomized pivot selection strategy

described in Section 2.3.1 is combined with the downdating techniques described in Section 2.3.3. In that

figure, we use an unblocked HQR algorithm with column pivoting to factor the current column panel so that

the diagonal elements within blocks on the diagonal of R are ordered from largest to smallest in magnitude.

2.3.5 Asymptotic cost analysis

In analyzing the cost of the algorithm, we note that all steps in Fig. 2.3 highlighted in grey are part of

the blocked HQR algorithm, which is known to have a cost of approximately 4/3n3 flops. This leaves us to

discuss the overhead related to the other operations.

• G := RAND IID(b+ p, n(A))): Cost: ignored.

• Y := GA: Cost: 2(b+ p)n2 flops.



35

• s1 := DETERMINEPIVOTS(

(
Y1 Y2

)
, b): Cost: O(b(b+p)(n−kb)) flops during the kth iteration

of the blocked algorithm, for a total of O((b + p)n2) flops. (Recall that the factorization of this

matrix can stop after the first b columns have been identified.)

• · · · := SWAPCOLS(s1, · · · ): Cost: ignored.

• Y2 := Y2 −
(
G1 − (G1U11 +G2U21)T

−1
11 U11

H
)
R12: Aggregate cost: O((b+ p)n2).

Thus, the overhead is O((b+ p)n2) flops and the total cost is

4/3n3 +O((b+ p)n2) flops,

which, asymptotically, approaches 4/3n3 flops. An analogous analysis of the cost for factoring a rectangular

matrix shows that the asymptotic flop count is 2mn2 − 2
3n

3 whenever m ≥ n.

2.4 Experiments

This section describes the results from two sets of experiments. Section 2.4.1 compares the computa-

tional speed of the proposed scheme to existing state-of-the-art methods for computing column pivoted QR

factorizations. Section 2.4.2 investigates how well the proposed randomized technique works at selecting

pivot columns. Specifically, we investigate how well the rank-k truncated QR factorization approximates

the original matrix, and compare the results to those obtained by classical column pivoting.

2.4.1 Performance experiments

We have implemented the proposed HQRRP algorithm using the libflame [125, 124] library that

allows our implementations to closely resemble the algorithms as presented in the paper.

The implementation described is efficient, but is far from fully optimized. Our objective for now

is to demonstrate that HQRRP is competitive and worthy of future study. We return to this point in the

conclusion.

Platform details. All experiments reported in this article were performed on an Intel Xeon E5-2695 v3

(Haswell) processor (2.3 GHz), with 14 cores. In order to be able to show scalability results, the clock
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speed was throttled at 2.3 GHz, turning off so-called turbo boost. Each core can execute 16 double precision

floating point operations per cycle, meaning that the peak performance of one core is 36.8 GFLOPS (billions

of floating point operations per second). For comparison, on a single core, dgemm achieves around 33.6

GFLOPS. Other details of interest include that the OS used was Linux (Version 2.6.32-504.el6.x86 64), the

code was compiled with gcc (Version 4.4.7), dgeqrf and dgeqp3 were taken from LAPACK (Release

3.4.0), and the implementations were linked to BLAS from Intel’s MKL library (Version 11.2.3). Our

implemetations were coded with libflame (Release 11104).

Implementations. We report performance for five implementations:

dgeqrf. The implementation of blocked HQR that is part of the netlib implementation of LAPACK,

modified so that the block size can be controlled.

dgeqp3. The implementation of blocked HQRP that is part of the netlib implementation of LAPACK,

based on [107], modified so that the block size can be controlled.

HQRRPbasic. Our implementation of HQRRP that computes new matrices G and Y in every iteration.

This implementation deviates from the algorithm in Fig. 2.3 in that it also incorporates additional

column pivoting within the call to HQRRP UNB.

HQRRP. The implementation of HQRRP that downdates Y . (It also includes pivoting within HQRRP UNB).

dgeqpx. An implementation of HQRP with window pivoting [14, 13], briefly mentioned in the intro-

duction. This algorithm consists of two stages: The first stage is a QR with window pivoting. An

incremental condition estimator is employed to accept/reject the columns within a window. The

size of the window is about about twice the block size used by the algorithm to maintain locality. If

all the columns in the window are unacceptable, all of them are rejected and fresh ones are brought

into the window. The second stage is a postprocessing stage to validate the rank, that is, to check

that all good columns are in the front, and all the bad columns are in the rear. This step is required

because the window pivoting could fail to reveal the rank due to its shortsightedness (having only

checked the window and having employed a cheap to compute condition estimator.) Sometimes,
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some columns must be moved betweenR11 that has been computed and matricesR12 andR22, and

then retriangularization must be performed with Givens rotations.

In all cases, we used algorithmic block sizes of b = 64 and 128. While likely not optimal for all problem

sizes, these blocks sizes yield near best performance and, regardless, it allows us to easily compare and

contrast the performance of the different implementations.

Results. As is customary in these kinds of performance comparisons, we compute the achieved performance

as

4/3n3

time (in sec.)
× 10−9 GFLOPS.

Thus, even for the implementations that perform more computations, we only count the floating point oper-

ations performed by an unblocked HQR without pivoting.

Figure 2.4 reports performance on one and four cores. The single core performance is very encourag-

ing. Not only does HQRRP handily outperform dgeqp3 and to a lesser degree dgeqpx, but asymptotically

its performance approaches that of dgeqrf. For four cores, although the performance of all implemen-

tations asymptote much lower, the relative performance of the different implementations is consistent with

that observed when utilizing one core. As more cores are added to the computation, the absolute speed of

all algorithms tested drop substantially, but relatively speaking, the new algorithm HQRRP drops less than

its competitors, as shown in Figure 2.1.

The bottom line is that for all these algorithms, much research is needed to improve parallel perfor-

mance. We discuss this further in the conclusion.

2.4.2 Quality experiments

In this section, we describe the results of numerical experiments that were conducted to compare the

quality of the pivot choices made by our randomized algorithm HQRRP to those resulting from classical

column pivoting. Specifically, we compared how well partial factorizations reveal the numerical ranks of

four different test matrices:

• Matrix 1 (fast decay): This is an n×nmatrix of the formA = UDV ∗ where U and V are randomly
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drawn matrices with orthonormal columns (obtained by performing QR on a random Gaussian

matrix), and where D is diagonal with entries given by dj = β(j−1)/(n−1) with β = 10−5.

• Matrix 2 (S shaped decay): This matrix is built in the same manner as “Matrix 1”, but now the

diagonal entries of D are chosen to first hover around 1, then decay rapidly, and then level out at

10−6, as shown in Figure 2.6 (black line).

• Matrix 3 (Single Layer BIE): This matrix is the result of discretizing a Boundary Integral Equation

(BIE) defined on a smooth closed curve in the plane. To be precise, we discretized the so called

“single layer” operator associated with the Laplace equation using a 6th order quadrature rule de-

signed by Alpert [2]. This is a well-known ill-conditioned problem for which column pivoting is

essential in order to stably solve the corresponding linear system.

• Matrix 4 (Kahan): This is a variation of the “Kahan counter-example” [76] which is designed to

trip up classical column pivoting. The matrix is formed as A = SK where:

S =



1 0 0 0 · · ·

0 ζ 0 0 · · ·

0 0 ζ2 0 · · ·

0 0 0 ζ3 · · ·
...
...
...

...
. . .


and K =



1 −φ −φ −φ · · ·

0 1 −φ −φ · · ·

0 0 1 −φ · · ·

0 0 0 1 · · ·
...
...

...
...
. . .


for some positive parameters ζ and φ such that ζ2 + φ2 = 1. In our experiments, we chose

ζ = 0.99999.

For each test matrix, we computed QR factorizations

AP = QR (2.8)

using three different techniques:

• HQRP: The standard QR factorization qr built in to Matlab R2015a.



39

• HQRRPbasic: The randomized algorithm described in Figure 2.3, but without the updating strat-

egy for computing the sample matrix Y .

• HQRRP: The randomized algorithm described in Figure 2.3.

Our implementations of both HQRRPbasic and HQRRP deviate from what is shown in Figure 2.3 in that

they also incorporate column pivoting within the call to HQRRP UNB. In all experiments, we used test

matrices of size 4 000× 4 000, a block size of b = 100, and an over-sampling parameter of p = 5.

As a quality measure of the pivoting strategy, we computed the errors ek incurred when the factoriza-

tion is truncated to its first k components. To be precise, these residual errors are defined via

ek = ‖AP −Q(:, 1 : k)R(1 : k, :)‖ = ‖R((k + 1) : n, (k + 1) : n)‖. (2.9)

The results are shown in Figures 2.5 – 2.8, for the four different test matrices. The black lines in the

graphs show the theoretically minimal errors incurred by a rank-k approximation. These are provided by

the Eckart-Young theorem [45] which states that, with {σj}nj=1 denoting the singular values of A:

ek ≥ σk+1 when errors are measured in the spectral norm, and

ek ≥
(∑n

j=k+1 σj

)1/2
when errors are measured in the Frobenius norm.

We observe in all cases that the quality of the pivots chosen by the randomized method very closely

matches those resulting from classical column pivoting. The one exception is the Kahan counter-example

(“Matrix 4”), where the randomized algorithm performs much better. (The importance of the last point

should not be over-emphasized since this example is designed specifically to be adversarial for classical

column pivoting.)

When classical column pivoting is used, the factorization (2.8) produced has the property that the

diagonal entries of R are strictly decaying in magnitude

|R(1, 1)| ≥ |R(2, 2)| ≥ |R(3, 3)| ≥ · · ·

When the randomized pivoting strategies are used, this property is not enforced. To illustrate this point, we

show in Figure 2.9 the values of the diagonal entries obtained by the randomized strategies versus what is

obtained with classical column pivoting.
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2.5 Conclusions and future work

We have described the algorithm HQRRP which is a blocked version of Householder QR with column

pivoting. The main innovation compared to earlier work is that pivots are determined in groups using a

technique based on randomized projections. We demonstrated that the quality of the chosen pivots is for

practical purposes indistinguishable from traditional column pivoting (cf. Figures 2.5 – 2.7), and that the

dominant term in the asymptotic flop count equals that of non-pivoted QR. Importantly, we also demonstrate

through numerical experiments that HQRRP is very fast, in fact almost as fast as unpivoted HQR.

The technique described opens up several potential avenues for future research. The speed gains we

demonstrate on single core and shared memory multicore machines is due to the reduction in data movement.

Equivalently, data moved between memory layers is carefully amortized. We expect the technique described

to have an even more pronounced advantage over traditional column pivoted QR when implemented in more

severely communication constrained environments such as a matrix processed on a GPU or a distributed

memory parallel machine, or stored out-of-core.

The randomized sampling techniques we describe can also be used to construct very close to optimal

rank-revealing factorizations. To describe the idea, we note that a column pivoted QR factorization of a

given matrix A can be written as

A = QRP ∗, (2.10)

where Q is orthonormal, R is upper triangular, and P is a permutation matrix. In this manuscript, we

used randomized sampling to determine the permutation matrix P . It turns out that for a modest additional

cost, one can build a factorization that takes the form (2.10), but with both Q and P built as products of

Householder reflectors. This generalization allows us to bring R not only to upper triangular form, but very

close to being diagonal, with accurate approximations to the singular values of A on its diagonal. This

discovery was reported in [93], and is a subject of ongoing research.

How to scale the presented algorithm to very large numbers of cores is an open research question.

Techniques such as “compute ahead” will have to be employed to ensure that the factorization of the current

panel (A11 and A21) and downdate of Y do not start dominating the parts of the computation that can be
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cast in terms of GEMM.

2.6 Software

A number of implementations of the discussed algorithm are available under 3-clause (modified) BSD

license from:

https://github.com/flame/hqrrp

Included are implementations that directly link to LAPACK [4] as well as implementations that use the

libflame [104, 65] library. For those who use the LAPACK routine dgeqp3 routine, a plug compatible

routine dgeqp4 is provided.

A distributed memory implementation of the algorithm has been incorporated into the Elemental

software package by Jack Poulson et al [103], available at:

https://github.com/elemental/Elemental
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Figure 2.4: Performance of the various implementations. There is a substantial degradation in performance
from one core to four. However, what is important is that the relative performance of the different algorithms
remains essentially the same. This pattern continues as more cores are added, as shown in Figure 2.1.
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shows the results from traditional column pivoting, while the green and blue lines refer to the randomized
methods we propose. The black line indicates the theoretically minimal errors resulting from a rank-k partial
singular value decomposition.
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in Figure 2.5.
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Figure 2.7: Residual errors ek for “Matrix 3” (discretized boundary integral operator) as a function of the
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Chapter 3

randUTV: A blocked randomized algorithm for computing a rank-revealing UTV

factorization

A randomized algorithm for computing a so called UTV factorization efficiently is presented. Given

a matrix A, the algorithm “randUTV” computes a factorization A = UTV∗, where U and V have orthonor-

mal columns, and T is triangular (either upper or lower, whichever is preferred). The algorithm randUTV is

developed primarily to be a fast and easily parallelized alternative to algorithms for computing the Singular

Value Decomposition (SVD). randUTV provides accuracy very close to that of the SVD for problems such

as low-rank approximation, solving ill-conditioned linear systems, determining bases for various subspaces

associated with the matrix, etc. Moreover, randUTV produces highly accurate approximations to the sin-

gular values of A. Unlike the SVD, the randomized algorithm proposed builds a UTV factorization in an

incremental, single-stage, and non-iterative way, making it possible to halt the factorization process once a

specified tolerance has been met. Numerical experiments comparing the accuracy and speed of randUTV

to the SVD are presented. Other experiments also demonstrate that in comparison to column-pivoted QR,

which is another factorization that is often used as a relatively economic alternative to the SVD, randUTV

compares favorably in terms of speed while providing far higher accuracy.
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3.1 Introduction

3.1.1 Overview

Given an m× n matrix A, the so called “UTV decomposition” [116, p. 400] takes the form

A = U T V∗,

m× n m×m m× n n× n
(3.1)

where U and V are unitary matrices, and T is a triangular matrix (either lower or upper triangular). The UTV

decomposition can be viewed as a generalization of other standard factorizations such as, e.g., the Singular

Value Decomposition (SVD) or the Column Pivoted QR decomposition (CPQR). (To be precise, the SVD is

the special case where T is diagonal, and the CPQR is the special case where V is a permutation matrix.) The

additional flexibility inherent in the UTV decomposition enables the design of efficient updating procedures,

see [116, Ch. 5, Sec. 4] and [50, 119, 102]. In this manuscript, we describe a randomized algorithm we

call randUTV that exploits the additional flexibility provided by the UTV format to build a factorization

algorithm that combines some of the most desirable properties of standard algorithms for computing the

SVD and CPQR factorizations.

3.1.2 Where randUTV fits in the pantheon of matrix factorization algorithms

The algorithm we describe is designed primarily to serve as a competitive alternative to the col-

umn pivoted QR factorization for applications such as detecting the numerical rank of a matrix, solving

ill-conditioned linear systems, computing least-squares solutions to linear systems with rectangular or nu-

merically rank-deficient coefficient matrices, etc. The optimal factorization to use for many of these tasks is

the SVD, but the CPQR remains popular since it is faster to compute, and has a crucial advantage in that the

factorization can be halted once a specified tolerance has been met.

We argue that randUTV outperforms CPQR in almost every regard. It does a much better job than

CPQR of revealing the rank-structure of the underlying matrix, which makes it a better tool for revealing the

numerical rank, and for solving ill-conditioned linear systems. It is often faster to compute than the CPQR,

and parallelizes better as the number of cores is increased. Finally, it shares the key advantage of the CPQR
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Figure 3.1: Solid lines show the acceleration of randUTV with the parameter choice q = 1 (cf. Section
3.4.3) compared to Intel’s MKL SVD (dgesdd). Dashed lines show the analogous acceleration of CPQR
over SVD.

that the factorization can be halted once a specified tolerance has beet met.

The reason for the computational efficiency of randUTV is that it can (unlike the CPQR) be blocked,

and can be implemented so that the vast majority of flops are spent in dongarra1990set operations, rather

than in BLAS2 operations. We will demonstrate that this leads to high performance on a single core, and

excellent performance as the number of cores is increased. We provide detailed numerical experiments in

Section 3.6.1, but the key findings are summarized in Figure 3.1. We see that randUTV is much faster than

state-of-the-art functions for computing the SVD, and that it is often faster than the CPQR, in particular as

the number of cores increases. Since randUTV can be blocked, it is also very well suited for implementation

on distributed memory machines, for matrices stored out-of-core, etc.

Remark 5 (randUTV as an alternative to the SVD). The method we propose is sufficiently accurate that it

can sometimes be used as an economical method for computing an approximate singular value decomposi-

tion. The numerical experiments in Section 3.6.2 indicate that the matrix T often approximates the diagonal

matrix D in the SVD to two or three digits of accuracy or more. This level of accuracy is often sufficient

for purposes of data analysis, and we believe that randUTV provides an excellent alternative to the SVD

for applications such as, e.g., Principal Component Analysis (PCA). However, there of course remain many

applications where computing the SVD using existing methodologies remains the superior choice, including



50

situations where the actual singular values are required to high accuracy, where the singular values of the

matrix decay very slowly, or simply situations where the matrix is small enough that computing the full SVD

is very fast.

Remark 6 (Where CPQR is better than randUTV). Our numerical experiments indicate that for small

matrices, our implementation of randUTV is at the current level of optimization slower than the best im-

plementations of LAPACK’s dgeqp3 function [107] (see also Figure 3.1). Moreover, the CPQR provides

important information about how to pick subsets of the columns of a matrix to use as a basis for its column

space. This makes the CPQR an important component in algorithms for computing so called interpolatory

and CUR decompositions [94, 128].

3.1.3 A randomized algorithm for computing the UTV decomposition

The algorithm we propose is blocked for computational efficiency. For concreteness, let us assume

that m ≥ n, and that an upper triangular factor T is sought. With b a block size, randUTV proceeds through

dn/be steps, where at the i’th step the i’th block of b columns of A is driven to upper triangular form, as

illustrated in Figure 3.2.

In the first iteration, randUTV uses a randomized subspace iteration inspired by [111, 69] to build

two sets of b orthonormal vectors that approximately span the spaces spanned by the b dominant left and

right singular vectors of A, respectively. These basis vectors form the first b columns of two unitary “trans-

formation matrices” U(1) and V(1). We use these to build a new matrix

A(1) =
(
U(1)

)∗
A V(1)

that has a blocked structure as follows:

A(1) =

A
(1)
11 A

(1)
12

0 A
(1)
22

 = .

In other words, the top left b× b block is diagonal, and the bottom left block is zero. Ideally, we would want

the top right block to also be zero, and this is what we would obtain if we used the exact left and right singular
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vectors in the transformation. The randomized sampling does not exactly identify the correct subspaces, but

it does to high enough accuracy that the elements in the top right block have very small moduli. For purposes

of low-rank approximation, such a format strikes an attractive balance between computational efficiency and

close to optimal accuracy. We will demonstrate that ‖A(1)
22 ‖ ≈ inf{‖A − B‖ : B has rank b}, and that the

diagonal entries of A
(1)
11 form accurate approximations to the first b singular values of A.

Once the first step has been completed, the second step applies the same procedure to the remaining

block A
(1)
22 , which has size (m−b)×(n−b), and then continues in the same fashion to process all remaining

blocks.

3.1.4 Relationship to earlier work

The UTV factorization was introduced and popularized by G.W. Stewart in a sequence of papers,

including [114, 115, 119, 120], and the text book chapter [116, p. 400]. Among these, [120] is of particular

relevance as it discusses explicitly how the UTV decomposition can be used for low-rank approximation and

for finding approximations to the singular values of a matrix; in Section 3.6.2 we compare the accuracy of the

method in [120] to the accuracy of randUTV. Of relevance here is also [96], which describes deterministic

iterative methods for driving a triangular matrix towards diagonality. Another path towards better rank

revelation and more accurate rank estimation is described in [49]. A key advantage of the UTV factorization

is the ease with which it can be updated, as discussed in, e.g., [7, 6, 102]. Implementation aspects are

discussed in [50].

The work presented here relies crucially on previous work on randomized subspace iteration for

approximating the linear spaces spanned by groups of singular vectors, including [111, 69, 91, 90, 68]. This

prior body of literature focused on the task of computing partial factorizations of matrices. More recently,

it was observed [93, 88, 44] that analogous techniques can be utilized to accelerate methods for computing

full factorizations such as the CPQR. The gain in speed is attained from blocking of the algorithms and

the use of dongarra1990set, rather than by reducing the asymptotic flop count. Our work is also related to a

randomized algorithm for computing a UTV decomposition described in Section 5 of [35]. The algorithm in

[35] relies on the observation that if an n×n matrix V is drawn from a Haar distribution, then the unpivoted
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QR factorization of AV is with high probability “rank-revealing” in a certain sense. This algorithm is

conceptually very similar to randUTV for the special case where no over-sampling is done, and no steps of

power iteration are taken. This means that the algorithm of [35] does not provide a path to improve upon a

factorization beyond what the most basic randomized sampling produces, which limits it usefulness in many

practical application. (Numerical results in Section 3.6.2 illustrate that the use of power iteration is often

imperative.)

3.1.5 Outline of the paper

Section 3.2 introduces notation, and lists some relevant existing results that we need. Section 3.3

provides a high-level description of the proposed algorithm. Section 3.4 describes in detail how to drive

one block of columns to upper triangular form, which forms one step of the blocked algorithm. Section 3.5

describes the whole multistep algorithm, discusses some implementation issues, and provides an estimate of

the asymptotic flop count. Section 3.6 gives the results of several numerical experiments that illustrate the

speed and accuracy of the proposed method. Section 3.7 describes availability of software.

3.2 Preliminaries

This section introduces our notation, and reviews some established techniques that will be needed.

The material in Sections 3.2.1–3.2.4 is described in any standard text on numerical linear algebra (e.g. [57,

116, 122]). The material in Section 3.2.5 on randomized algorithms is described in further detail in the

survey [69] and the lecture notes [87].

3.2.1 Basic notation

Throughout this manuscript, we measure vectors in Rn using their Euclidean norm. The default

norm for matrices will be the corresponding operator norm ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}, although we

will sometimes also use the Frobenius norm ‖A‖Fro =
(∑

i,j |A(i, j)|2
)1/2. We use the notation of Golub

and Van Loan [57] to specify submatrices: If B is an m × n matrix, and I = [i1, i2, . . . , ik] and J =

[j1, j2, . . . , j`] are index vectors, then B(I, J) denotes the corresponding k × ` submatrix. We let B(I, :)
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denote the matrix B(I, [1, 2, . . . , n]), and define B(:, J) analogously. In denotes the n× n identity matrix,

and 0m,n is the m× n zero matrix. The transpose of B is denoted by B∗, and we say that an m× n matrix

U is orthonormal if its columns are orthonormal, so that U∗U = In. A square orthonormal matrix is said to

be unitary.

3.2.2 The Singular Value Decomposition (SVD)

Let A be an m× n matrix and set r = min(m,n). Then the SVD of A takes the form

A = U D V∗,

m× n m× r r × r r × n
(3.2)

where matrices U and V are orthonormal, and D is diagonal. We have U =
[
u1 u2 . . . ur

]
, V =[

v1 v2 . . . vr
]
, and D = diag(σ1, σ2, . . . , σr), where {uj}rj=1 and {vj}rj=1 are the left and right sin-

gular vectors of A, respectively, and {σj}rj=1 are the singular values of A. The singular values are ordered

so that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.

A principal advantage of the SVD is that it furnishes an explicit solution to the low rank approximation

problem. To be precise, for k = 1, 2, . . . , r let us define the rank-k matrix

Ak = U(:, 1 : k) D(1 : k, 1 : k) V(:, 1 : k)∗ =
k∑
j=1

σj uj v∗j .

Then, the Eckart-Young theorem asserts that

‖A− Ak‖ = inf{‖A− B‖ : B has rank k}.

A disadvantage of the SVD is that the cost to compute the full SVD is O(n3) for a square matrix, and

O(mnr) for a rectangular matrix, with large pre-factors. Moreover, standard techniques for computing the

SVD are challenging to parallelize, and cannot readily be modified to compute partial factorizations.
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3.2.3 The Column Pivoted QR (CPQR) decomposition

Let A be an m × n matrix and set r = min(m,n). Then, the CPQR decomposition of A takes the

form

A = Q R P∗,

m× n m× r r × n n× n
(3.3)

where Q is orthonormal, R is upper triangular, and P is a permutation matrix. The permutation matrix P is

typically chosen to ensure monotonic decay in magnitude of the diagonal entries of R so that |R(1, 1)| ≥

|R(2, 2)| ≥ |R(3, 3)| ≥ · · · . The factorization (3.3) is commonly computed using the Householder QR

algorithm [57, Sec. 5.2], which is exceptionally stable.

An advantage of the CPQR is that it is computed via an incremental algorithm that can be halted

to produce a partial factorization once any given tolerance has been met. A disadvantage is that it is not

ideal for low-rank approximation. In the typical case, the error incurred is noticeably worse than what you

get from the SVD but usually not disastrously so. However, there exist matrices for which CPQR leads to

very suboptimal approximation errors [76]. Specialized pivoting strategies have been developed that can

in some circumstances improve the low-rank approximation property, resulting in so called “rank-revealing

QR factorizations” [24, 64].

The classical column pivoted Householder QR factorization algorithm drives the matrix A to upper

triangular form via a sequence of r− 1 rank-one updates and column pivotings. Due to the column pivoting

performed after each update, it is difficult to block, making it hard to achieve high computational efficiency

on modern processors [40]. It has recently been demonstrated that randomized methods can be used to

resolve this difficulty [93, 88, 44]. However, we do not yet have rigorous theory backing up such randomized

techniques, and they have not yet been incorporated into standard software packages.

3.2.4 Efficient factorizations of tall and thin matrices

The algorithms proposed in this manuscript rely crucially on the fact that factorizations of “tall and

thin” matrices can be computed efficiently. To be precise, suppose that we are given a matrix B of size
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m× b, where m� b, and that we seek to compute an unpivoted QR factorization

B = Q R,

m× b m×m m× b
(3.4)

where Q is unitary, and R is upper triangular. When the Householder QR factorization procedure is used to

compute the factorization (3.4), the matrix Q is formed as a product of b so called “Householder reflectors”

[57, Sec. 5.2], and can be written in the form

Q = I + W Y,

m×m m×m m× b b×m
(3.5)

for some matrices W and Y that can be readily computed given the b Householder vectors that are formed in

the QR factorization procedure [15, 113, 74]. As a consequence, we need only O(mb) elements to store Q,

and we can apply Q to an m×n matrix using ∼ 2mnb flops. In this manuscript, the different typeface in Q

is used as a reminder that this is a matrix that can be stored and applied efficiently, without being explicitely

built.

Next, suppose that we seek to compute the SVD of the tall and thin matrix B. This can be done

efficiently in a two-step procedure, where the first step is to compute the unpivoted QR factorization (3.4).

Let Rsmall denote the top b× b block of R so that

R =

 Rsmall

0m−b,b

 . (3.6)

Then, compute the SVD of Rsmall to obtain the factorization

Rsmall = Usmall Dsmall V∗small.

b× b b× b b× b b× b
(3.7)

Combining (3.4), (3.6), and (3.7), we obtain the factorization

B = Q

Usmall 0

0 Im−b


 Dsmall

0m−b,b

 V∗small,

m× b m×m m×m m× b b× b

(3.8)
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which we recognize as a singular value decomposition of B. Observe that the cost of computing this factor-

ization is O(mb2), and that only O(mb) stored elements are required, despite the fact that the matrix of left

singular vectors is ostensibly an m×m dense matrix.

Remark 7. We mentioned in Section 3.2.3 that it is challenging to achieve high performance when imple-

menting column pivoted QR on modern processors. In contrast, unpivoted QR is highly efficient, since this

algorithm can readily be blocked (see, e.g., Figures 4.1 and 4.2 in [88]).

3.2.5 Randomized power iterations

This section summarizes key results of [111, 69, 87] on randomized algorithms for constructing sets

of orthonormal vectors that approximately span the row or column spaces of a given matrix. To be precise,

let A be an m×n matrix, let b be an integer such that 1 ≤ b < min(m,n), and suppose that we seek to find

an n× b orthonormal matrix Q such that

‖A− AQQ∗‖ ≈ inf{‖A− B‖ : B has rank b}.

Informally, the columns of Q should approximately span the same space as the dominant b right singular

vectors of A. This is a task that is very well suited for subspace iteration (see [36, Sec. 4.4.3] and [8]), in

particular when the starting matrix is a Gaussian random matrix [111, 69]. With q a (small) integer denoting

the number of steps taken in the power iteration, the following algorithm leads to close to optimal results:

1. Draw a Gaussian random matrix G of size m× b.

2. Form a “sampling matrix” Y of size n× b via Y =
(
A∗A

)q
A∗G.

3. Orthonormalize the columns of Y to form the matrix Q.

Observe that in step (2), the matrix Y is computed via alternating application of A∗ and A to a tall thin

matrix with b columns. In some situations, orthonormalization is required between applications to avoid

loss of accuracy due to floating point arithmetic. In [111, 69] it is demonstrated that by using a Gaussian

random matrix as the starting point, it is often sufficient to take just a few steps of power iteration, say q = 1

or 2, or even q = 0.
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Remark 8 (Over-sampling). In the analysis of power iteration with a Gaussian random matrix as the start-

ing point, it is common to draw a few “extra” samples. In other words, one picks a small integer p repre-

senting the amount of over-sampling done, say p = 5 or p = 10, and starts with a Gaussian matrix of size

m× (b+ p). This results in an orthonormal matrix Q of size n× (b+ p). Then, with probability almost 1,

the error ‖A−AQQ∗‖ is close to the minimal error in rank-b approximation in both spectral and Frobenius

norm [69, Sec. 10]. When no over-sampling is used, one risks losing some accuracy in the last couple of

modes of the singular value decomposition. However, our experience shows that in the context of the present

article, this loss is hardly noticeable.

Remark 9 (RSVD). The randomized range finder described in this section is simply the first stage in the two-

stage “Randomized SVD (RSVD)” procedure for computing an approximate rank-b SVD of a given matrix

A of size m × n. To wit, suppose that we have used the randomized range finder to build an orthonormal

matrix Q of size n× b such that A = AQQ∗ + E, for some some error matrix E. Then, we can compute an

approximate factorization

A = U D V∗ + E,

m× n m× b b× b b× n m× n
(3.9)

where U and V are orthonormal, and D is diagonal, via the following steps (which together form the

“second stage” of RSVD): (1) Set B = AQ so that AQQ∗ = BQ∗. (2) Compute a full SVD of the small

matrix B so that

B = U D V̂
∗
.

m× b m× b b× b b× b
(3.10)

(3) Set V = QV̂. Observe that these last three steps are exact up to floating point arithmetic, so the error in

(3.9) is exactly the same as the error in the range finder alone: E = A− AQQ∗ = A−UDV∗.

3.3 An overview of the randomized UTV factorization algorithm

This section describes at a high level the overall template of the algorithm randUTV that given an

m × n matrix A computes its UTV decomposition (3.1). For simplicity, we assume that m ≥ n, that an

upper triangular middle factor T is sought, and that we work with a block size b that evenly divides n so that
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the matrix A can be partitioned into s blocks of b columns each; in other words, we assume that n = sb.

The algorithm randUTV iterates over s steps, where at the i’th step the i’th block of b columns is driven to

upper triangular form via the application of unitary transformations from the left and the right. A cartoon of

the process is given in Figure 3.2.

A(0) = A A(1) = (U(1))∗A(0)V(1)

A(2) = (U(2))∗A(1)V(2) A(3) = (U(3))∗A(2)V(3)

1) 2)

3) 4)

Figure 3.2: Cartoon illustrating the process by which a given matrix A is driven to block upper triangular
form, with most of the mass concentrated into the diagonal entries. With A(0) = A, we form a sequence of
matrices A(i) = (U(i))∗A(i−1)V(i) by applying unitary matrices U(i) and V(i) from the left and the right.
Each U(i) and V(i) consists predominantly of a product of b Householder reflectors, where b is the block
size. Black blocks represent non-zero entries. Grey blocks represent entries that are not necessarily zero,
but are small in magnitude.

To be slightly more precise, we build at the i’th step unitary matrices U(i) and V(i) of sizes m ×m

and n× n, respectively, such that

U = U(1)U(2) · · ·U(s), and V = V(1)V(2) · · ·V(s).

Using these matrices, we drive A towards upper triangular form through a sequence of transformations

A(0) = A,

A(i) =
(
U(i)

)∗
A(i−1) V(i), i = 1, 2, 3, . . . , s,

T = A(s).
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The objective at step i is to transform the i’th diagonal block to diagonal form, to zero out all blocks

beneath the i’th diagonal block, and to make all blocks to the right of the i’th diagonal block as small in

magnitude as possible.

Each matrix U(i) and V(i) consists predominantly of a product of b Householder reflectors. To be

precise, each such matrix is a product of b Householder reflectors, but with the i’th block of b columns

right-multiplied by a small b× b unitary matrix.

The next two sections provide additional details. Section 3.4 describes exactly how to build the

transformation matrices U(1) and V(1) that are needed in the first step of the iteration. Then, Section 3.5

shows how to apply the techniques described in Section 3.4 repeatedly to build the full factorization.

3.4 A randomized algorithm for finding a pair of transformation matrices for the first

step

3.4.1 Objectives for the construction

In this section, we describe a randomized algorithm for finding unitary matrices U and V that execute

the first step of the process outlined in Section 3.3, and illustrated in Figure 3.2. To avoid notational clutter,

we simplify the notation slightly, describing what we consider a basic single step of the process. Given an

m× n matrix A and a block size b, we seek two orthonormal matrices U and V of sizes m×m and n× n,

respectively, such that the matrix

T = U∗AV (3.11)

has a diagonal leading b × b block, and the entries beneath this block are all zeroed out. In Section 3.3, we

referred to the matrices U and V as U(1) and V(1), respectively, and T as A(1).

To make the discussion precise, let us partition U and V so that

U =
[
U1 | U2

]
, and V =

[
V1 | V2

]
, (3.12)

where U1 and V1 each contain b columns. Then, set Tij = U∗iAVj for i, j = 1, 2 so that

U∗AV =

T11 T12

T21 T22

 . (3.13)
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Our objective is now to build matrices U and V that accomplish the following:

1. T11 is diagonal, with entries that closely approximate the leading b singular values of A.

2. T21 = 0.

3. T12 has small magnitude.

4. The norm of T22 should be close to optimally small, so that ‖T22‖ ≈ inf{‖A−C‖ : C has rank b}.

The purpose of condition (iv) is to minimize the error in the rank-b approximation to A, cf. Section 3.5.3.

3.4.2 A theoretically ideal choice of transformation matrices

Suppose that we could somehow find two matrices U and V whose first b columns exactly span the

subspaces spanned by the dominant left and right singular vectors, respectively. Finding such matrices is of

course computationally hard, but if we could build them, then we would get the optimal result that

2. T21 = 0.

3. T12 = 0.

4. ‖T22‖ = σb+1 = min{‖A− C‖ : matrix C has rank b}.

Enforcing condition (i) is then very easy, since the dominant b× b block is now disconnected from the rest

of the matrix. Simply executing a full SVD of this small b× b block, and then updating U and V will do the

job.

3.4.3 A randomized technique for approximating the span of the dominant singular vectors

Inspired by the observation in Section 3.4.2 that a theoretically ideal right transformation matrix V

is a matrix whose b first columns span the space spanned by the dominant b right singular vectors of A, we

use the randomized power iteration described in Section 3.2.5 to execute this task. We let q denote a small

integer specifying how many steps of power iteration we take. Typically, q = 0, 1, 2 are good choices. Then,
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take the following steps: (1) Draw a Gaussian random matrix G of size m × b. (2) Compute a sampling

matrix Y =
(
A∗A

)q
A∗G of size n× b. (3) Perform an unpivoted Householder QR factorization of Y so that

Y = V R.

n× b n× n n× b

Observe that V will be a product of b Householder reflectors, and that the first b columns of V will form

an orthonormal basis for the space spanned by the columns of Y. In consequence, the first b columns of V

form an orthonormal basis for a space that approximately spans the space spanned by the b dominant right

singular vectors of A. (The font used for V is a reminder that it is a product of Householder reflectors, which

is exploited when it is stored and operated upon, cf. Section 3.2.4.)

3.4.4 Construction of the left transformation matrix

The process for finding the left transformation matrix U is deterministic, and will exactly transform

the first b columns of AV into a diagonal matrix. Observe that with V the unitary matrix constructed using

the procedure in Section 3.4.3, we have the identity.

A = AVV∗ =
[
AV1 | AV2

]
V∗, (3.14)

where the partitioning V = [V1 V2] is such that V1 holds the first b columns of V. We now perform a full

SVD on the matrix AV1, which is of size m× b so that

AV1 = U D V∗small.

m× b m×m m× b b× b
(3.15)

Inserting (3.15) into (3.14) we obtain the identity

A =
[
UDV∗small | AV2

]
V∗. (3.16)

Factor out U in (3.16) to the left to get

A = U
[
DV∗small | U∗AV2

]
V∗.
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Finally, factor out Vsmall to the right to yield the factorization

A = U
[
D | U∗AV2

]︸ ︷︷ ︸
=T

V∗, with V = V

Vsmall 0

0 In−b

 . (3.17)

Equation (3.17) is the factorization A = UTV∗ that we seek, with

T =

T11 T12

T21 T22

 =

D(1 : b, 1 : b) U∗1AV2

0 U∗2AV2

 .
Remark 10. As we saw in (3.17), the right transformation matrix V consists of a product V of bHouseholder

reflectors, with the first b columns rotated by a small unitary matrix Vsmall. We will next demonstrate that the

left transformation matrix U can be built in such a way that it can be written in an entirely analogous form.

Simply observe that the matrix AV1 in (3.15) is a tall thin matrix, so that the SVD in (3.15) can efficiently

be computed by first performing an unpivoted QR factorization of AV1 to yield a factorization

AV1 = U

R11

0

 ,
m× b m×m m× b

where R11 is of size b × b, and U is a product of b Householder reflectors, cf. Section 3.2.4. Then, perform

an SVD of R11 to obtain

R11 = Usmall Dsmall V∗small.

b× b b× b b× b b× b
The factorization (3.15) then becomes

AV1 = U

Dsmall

0

 V∗small,

m× b m×m m× b b× b

with U = U

Usmall 0

0 I

 . (3.18)

We see that the expression for U in (3.18) is exactly analogous to the expression for V in (3.17).

3.4.5 Summary of the construction of transformation matrices

Even though the derivation of the transformation matrices got slightly long, the final algorithm is

simple. It can be written down precisely with just a few lines of Matlab code, as shown in the right panel in
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Figure 3.3 (the single step process described in this section is the subroutine stepUTV).

function [U,T,V] = randUTV(A,b,q)
T = A;
U = eye(size(A,1));
V = eye(size(A,2));
for i = 1:ceil(size(A,2)/b)

I1 = 1:(b*(i-1));
I2 = (b*(i-1)+1):size(A,1);
J2 = (b*(i-1)+1):size(A,2);
if (length(J2) > b)

[UU,TT,VV] = stepUTV(T(I2,J2),b,q);
else

[UU,TT,VV] = svd(T(I2,J2));
end
U(:,I2) = U(:,I2)*UU;
V(:,J2) = V(:,J2)*VV;
T(I2,J2) = TT;
T(I1,J2) = T(I1,J2)*VV;

end
return

function [U,T,V] = stepUTV(A,b,q)
G = randn(size(A,1),b);
Y = A’*G;
for i = 1:q
Y = A’*(A*Y);

end
[V,˜] = qr(Y);
[U,D,W] = svd(A*V(:,1:b));
T = [D,U’*A*V(:,(b+1):end)];
V(:,1:b) = V(:,1:b)*W;

return

Figure 3.3: Matlab code for the algorithm randUTV that given an m × n matrix A computes its UTV
factorization A = UTV∗, cf. (3.1). The input parameters b and q reflect the block size and the number of
steps of power iteration, respectively. This code is simplistic in that products of Householder reflectors are
stored simply as dense matrices, making the overall complexity O(n4); it also assumes that m ≥ n. An
efficient implementation is described in Figure 3.4.

3.5 The algorithm randUTV

In this section, we describe the algorithm randUTV that given an m × n matrix A computes a UTV

factorization of the form (3.1). For concreteness, we assume that m ≥ n and that we seek to build an upper

triangular middle matrix T. The modifications required for the other cases are straight-forward. Section

3.5.1 describes the most basic version of the scheme, Section 3.5.2 describes a computationally efficient

version, and Section 3.5.4 provides a calculation of the asymptotic flop count of the resulting algorithm.

3.5.1 A simplistic algorithm

The algorithm randUTV is obtained by applying the single-step algorithm described in Section 3.4

repeatedly, to drive A to upper triangular form one block of b columns at a time. We recall that a cartoon
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of the process is shown in Figure 3.2. At the start of the process, we create three arrays that hold the output

matrices T, U, and V, and initialize them by setting

T = A, U = Im, V = In.

In the first step of the iteration, we use the single-step technique described in Section 3.4 to create two

unitary “left and right transformation matrices” U(1) and V(1) and then update T, U, and V accordingly:

T← (U(1))∗TV(1), U← UU(1), V← VV(1).

This leaves us with a matrix T whose b leading columns are upper triangular (like matrix A(1) in Figure 3.2).

For the second step, we build transformation matrices U(2) and V(2) by applying the single-step algorithm

described in Section 3.4 to the remainder matrix T((b + 1) : m, (b + 1) : n), and then updating T, U, and

V accordingly.

The process then continues to drive one block of b columns at a time to upper triangular form. With

s = dn/be denoting the total number of steps, we find that after s − 1 steps, all that remains to process is

the bottom right block of T (cf. the matrix A(2) in Figure 3.2). This block consists of b columns if n is a

multiple of the block size, and is otherwise even thinner. For this last block, we obtain the final left and right

transformation matrices U(s) and V(s) by computing a full singular value decomposition of the remaining

matrix T(((s − 1)b + 1) : m, ((s − 1)b + 1) : n), and updating the matrices T, U, and V accordingly. (In

the cartoon in Figure 3.2, we have s = 3, and the matrices U(3) and V(3) are built by computing a full SVD

of a dense matrix of size 2s× s.)

We call the algorithm described in this section randUTV. It can be coded using just a few lines of

Matlab code, as illustrated in Figure 3.3. In this simplistic version, all unitary matrices are represented as

dense matrices, which makes the overall complexity O(n4) for an n× n matrix.

3.5.2 A computationally efficient version

In this section, we describe how the basic version of randUTV, as given in Figure 3.3, can be turned

into a highly efficient procedure via three simple modifications. The resulting algorithm is summarized in
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Figure 3.4. We note that the two versions of randUTV described in Figures 3.3 and 3.4 are mathematically

equivalent; if they were to be executed in exact arithmetic, their outputs would be identical.

The first modification is that all operations on the matrix T and on the unitary matrices U and V

should be carried out “in place” to not unnecessarily move any data. To be precise, using the notation in

Section 3.4, we generate at each iteration four unitary matrices U, V, Usmall, and Vsmall. As soon as such a

matrix is generated, it is immediately applied to T, and then used to update either U or V.

Second, we exploit that the two “large” unitary transforms U and V both consist of products of b

Householder reflectors. We generate them by computing unpivoted Householder QR factorizations of tall

and thin matrices, using a subroutine that outputs simply the b Householder vectors. Then, U and V can

both be stored and applied efficiently, as described in Section 3.2.4.

The third and final modification pertains to the situation where the input matrix A is non-square.

In this case, the full SVD that is computed in the last step involves a rectangular matrix. When A is tall

(m > n), we find at this step that J3 is empty, so the matrix to be processed is T([I2, I3], J2). When

computing the SVD of this matrix, we use the efficient version described in Remark 10, which outputs a

factorization in which Usmall consists in part of a product of Householder reflectors. (In this situation Usmall

is in fact not necessarily “small,” but it can be stored and applied efficiently.)

Remark 11 (The case m < n). In a situation where the matrix has fewer rows than columns, but we still

seek an upper triangular matrix T, randUTV proceeds exactly as described for the first s − 1 steps. In the

final step, we now find that I3 is empty, but J3 is not, and so we need to compute the SVD of the “fat”

matrix T(I2, [J2, J3]). We do this in a manner entirely analogous to how we handle a “tall” matrix, by first

performing an unpivoted QR factorization of the rows of T(I2, [J2, J3]). In this situation it is the matrix of

right singular vectors at the last step that consists in part of a product of Householder reflectors.

3.5.3 Connection between RSVD and randUTV

The proposed algorithm randUTV is directly inspired by the Randomized SVD (RSVD) algorithm

described in Remark 9 (as originally described in [90, 83, 111] and later elaborated in [91, 69]). In this sec-
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[U, T, V] = randUTV ( A, b, q)
% Initialize output variables:
T = A; U = Im; V = In;

for i = 1 : min(dm/be, dn/be) do
% Create partitions 1 : m = [I1, I2, I3] and 1 : n = [J1, J2, J3] so that (I2, J2) points to the “active” block

that is to be diagonalized:
I1 = 1 : (b(i− 1)); I2 = (b(i− 1) + 1) : min(bi,m); I3 = (bi+ 1) : m;
J1 = 1 : (b(i− 1)); J2 = (b(i− 1) + 1) : min(bi, n); J3 = (bi+ 1) : n;

if (I3 and J3 are both nonempty) then
% Generate the sampling matrix Y whose columns approximately span the space spanned by the b dominant

right singular vectors of the matrix X = T([I2, I3], [J2, J3]). We do this via randomized sampling, setting
Y =

(
X∗X

)q
X∗G where G is a Gaussian random matrix with b columns.

G = randn(m− b(i− 1), b)
Y = T([I2, I3], [J2, J3])∗G
for j = 1 : q do

Y = T([I2, I3], [J2, J3])∗
(
T([I2, I3], [J2, J3])Y

)
.

end for

% Build a unitary matrix V whose first b columns form an orthonormal basis for the columns of Y. Then,
apply the transformations. (We exploit that V is a product of b Householder reflectors, cf. Section 3.2.4.)

[V,∼] = qr(Y)
T(:, [J2, J3]) = T(:, [J2, J3])V
V(:, [J2, J3]) = V(:, [J2, J3])V

% Build a unitary matrix U whose first b columns form an orthonormal basis for the columns of
T([I2, I3], J2). Then,

apply the transformations. (We exploit that U is a product of b Householder reflectors, cf. Section 3.2.4.)
[U,R] = qr(T([I2, I3], J2))
U(:, [I2, I3]) = U(:, [I2, I3])U
T([I2, I3], J3) = U∗T([I2, I3], J3)
T(I3, J2) = 0

% Perform the local SVD that diagonalizes the active diagonal block. Then, apply the transformations.
[Usmall,Dsmall,Vsmall] = svd(R(1 : b, 1 : b))
T(I2, J2) = Dsmall

T(I2, J3) = U∗
smallT(I2, J3)

U(:, I2) = U(:, I2)Usmall

T(I1, J2) = T(I1, J2)Vsmall

V(:, J2) = V(:, J2)Vsmall

else

% Perform the local SVD that diagonalizes the last diagonal block. Then, apply the transformations. If
either I3 or J3 is long, this should be done economically, cf. Section 3.5.2.

[Usmall,Dsmall,Vsmall] = svd(T([I2, I3], [J2, J3]))
U(:, [I2, I3]) = U(:, [I2, I3])Usmall

V(:, [J2, J3]) = V(:, [J2, J3])Vsmall

T([I2, I3], [J2, J3]) = Dsmall

T(I1, [J2, J3]) = T(I1, [J2, J3])Vsmall

end if
end for
return

Figure 3.4: The algorithm randUTV that given an m × n matrix A computes the UTV factorization A =
UTV∗, cf. (3.1). The input parameters b and q reflect the block size and the number of steps of power
iteration, respectively.



67

tion, we explore this connection in more detail, and demonstrate that the low-rank approximation error that

results from the “single-step” UTV-factorization described in Section 3.4 is identical to the error produced

by the RSVD (with a twist). This means that the detailed error analysis that is available for the RSVD (see,

e.g., [129, 62, 69]) immediately applies to the procedure described here. To be precise:

Theorem 1. Let A be an m×n matrix, let b be an integer denoting step size such that 1 ≤ b < min(m,n),

and let q denote a non-negative integer. Let G denote them×b Gaussian matrix drawn in Section 3.4.3, and

let U, T, and V be the factors in the factorization A = UTV∗ built in Sections 3.4.3 and 3.4.4, partitioned

as in (3.12) and (3.13).

1. Let Y =
(
A∗A

)q
A∗G denote a sampling matrix, and let Q denote an n × b orthonormal matrix

whose columns form a basis for the column space of Y. Then, the error ‖A − AQQ∗‖ precisely

equals the error incurred by the RSVD with q steps of power iteration, as analyzed in [69, Sec. 10].

It holds that

‖A− AQQ∗‖ = ‖A−U1T11V∗1‖ =

∥∥∥∥∥∥∥
T12

T22


∥∥∥∥∥∥∥ . (3.19)

2. Let Z = AY =
(
AA∗

)q+1
G denote a sampling matrix, and let W denote an m × b orthonormal

matrix whose columns form a basis for the column space of Z. If the rank of A is at least b, then

‖A−WW∗A‖ = ‖A−U1

(
T11V∗1 + T12V∗2

)
‖ = ‖T22‖ . (3.20)

We observe that the term ‖A−WW∗A‖ that arises in part (b) can informally be said to be the error

resulting from RSVD with “q + 1/2” steps of power iteration. This conforms with what one might have

optimistically hoped for, given that the RSVD involves 2q+2 applications of either A or A∗ to thin matrices

with b columns, and randUTV involves 2q + 3 such operations at each step (2q + 1 applications in building

Y, and then the computations of AV and U∗A, which are in practice applications of A to thin matrices due

to the identity (3.5)).
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Proof. The proofs for the two parts rest on the fact that A can be decomposed as follows:

A = UTV∗ =
[
U1 U2

] T11 T12

0 T22


V∗1

V∗2

 = U1T11V∗1 + U1T12V∗2 + U2T22V∗2, (3.21)

where U1 and V1 have b columns each, and T11 is of size b× b. With the identity (3.21) in hand, the claims

in (a) follow once we have established that the orthogonal projection QQ∗ equals the projection V1V∗1. The

claims in (b) follow once we establish that WW∗ = U1U∗1.

(a) Observe that the matrix Q is by construction identical to the matrix V1 built in Sections 3.4.3 and

3.4.4. Since V1 = V1V∗small, we find that QQ∗ = V1V∗1 =
(
V1V∗small

)(
V1V∗small

)∗
= V1

(
V∗smallVsmall

)
V∗1.

Since V∗smallVsmall = Ib, it follows that QQ∗ = V1V∗1. Then

AQQ∗ = AV1V∗1 = {Use (3.21) and that V∗2V1 = 0 and V∗1V1 = I.} = U1T11V∗1. (3.22)

The first identity in (3.19) follows immediately from (3.22). The second identity holds since (3.21) implies

that A−U1T11V∗1 = U1T12V∗2 + U2T22V∗2 = U

T12

T22

V∗2, with U unitary and V2 orthonormal.

(b) We will first prove that with probability 1, the twom×bmatrices AV1 and Z have the same column

spaces. To this end, note that since V1 is obtained by performing an unpivoted QR factorization of the matrix

Y defined in (a), we know that V1R = Y for some b× b upper triangular matrix R. The assumption that A

has rank at least b implies that R is invertible with probability 1. Consequently, AV1 = AYR−1 = ZR−1,

since Z = AY. Since right multiplication by an invertible matrix does not change the column space of a

matrix, the claim follows.

Since AV1 and Z have the same column spaces, it follows from the definition of U that U1U∗1 =

WW∗. Since U1 = U1Usmall where Usmall is unitary, we see that U1U∗1 = U1U∗1. Consequently,

WW∗A = U1U∗1A = {Use (3.21).} = U1T11V∗1 + U1T12V∗2 ,

which establishes the first identity in (3.20). The second identity holds since (3.21) implies that A −

U1(T11V∗1 + T12V∗2) = U2T22V∗2, with U2 and V2 orthonormal.



69

Remark 12 (Oversampling). We recall that the accuracy of randUTV depends on how well the space

col(V1) aligns with the space spanned by the b dominant right singular vectors of A. If these two spaces

were to match exactly, then the truncated UTV factorization would achieve perfectly optimal accuracy. One

way to improve the alignment is to increase the power parameter q. A second way to make the two spaces

align better is to use oversampling, as described in Remark 8. With p an over-sampling parameter (say

p = 5 or p = 10), we would draw a Gaussian random matrix G of size m × (b + p), and then compute an

“extended” sampling matrix Y′ =
(
A∗A

)q
A∗G of size n× (b+ p). The n× b sampling matrix Y we would

use to compute V would then be formed by the b dominant left singular vectors of Y′. Oversampling in this

fashion does improve the accuracy, but in our experience, the additional computational cost is not worth it.

Incorporating over-sampling would also introduce an additional tuning parameter p, which is in many ways

undesirable.

3.5.4 Theoretical cost of randUTV

Now we analyze the theoretical cost of the implementation of randUTV, and we compare it to those

of CPQR and SVD.

The theoretical cost of the CPQR factorization and the unpivoted QR factorization of an m × n

matrix is: 2mn2 − 2n3/3 flops, when no orthonormal matrices are required. Although the theoretical cost

of both the pivoted and the unpivoted QR is the same, other factors should be considered, being the most

important one the quality of flops. In modern architectures, flops performed inside BLAS-3 operations can

be about 5–10 times faster than flops performed inside BLAS-1 and BLAS-2 operations, since BLAS-3 is

CPU-bound whereas BLAS-1 and BLAS-2 are memory-bound. Hence, the unpivoted QR factorization in

high-performance libraries such as [4] can be much faster because most of the flops are performed inside

BLAS-3 operations, whereas only half of the flops in the best implementations of CPQR (dgeqp3) [107]

in [4] are performed inside BLAS-3 operations. In addition, this low performance of CPQR can even be

smaller because of the appearance of catastrophic cancellations during the computations. The appearance

of just one catastrophic cancellation will stop the building of a block Householder reflector before all of it

has been built. This sudden stop forces the algorithm to work on smaller block sizes, which are suboptimal,
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and hence performances are even lower.

The SVD usually comprises two steps: the reduction to bidiagonal form, and then the reduction from

bidiagonal to diagonal form. The first step is a direct step, whereas the second step is an iterative one. The

theoretical cost of the reduction to bidiagonal form of an m × n matrix is: 4mn2 − 4n3/3 flops, when

no singular vectors are needed. If m � n, the cost can be reduced to: 2mn2 + 2n3 flops by performing

first a QR factorization. The cost of the reduction to diagonal form depends on the number of iterations,

which is unknown a priori, but it is usually small when no singular vectors are built. On the one hand, in the

bidiagonalization a large share of the flops are performed inside the not-so-efficient BLAS-1 and BLAS-2

operations. Therefore, no high performances are obtained in the reduction to bidiagonal form. On the other

hand, the reduction to diagonal form uses just BLAS-1 operations. These operations are memory-bound,

and in addition they cannot be efficiently parallelized within BLAS, which might reduce performances on

multicore machines. In conclusion, usual implementations of the SVD will render low performances on

both single-core architectures and multicore architectures.

The theoretical cost of the randUTV factorization of anm×nmatrix is: (5+2q)mn2−(3+2q)n3/3

flops, when no orthonormal matrices are required, and q steps of power iteration are applied. If q = 0, the

theoretical cost of randUTV is three times as high as the theoretical cost of CPQR; if q = 1, it is four times

as high; and if q = 2, it is five times as high. Although randUTV seems computationally more expensive

than CPQR, the quality of flops should be considered. The share of BLAS-1 and BLAS-2 flops in randUTV

is very small: BLAS-1 and BLAS-2 flops are only employed inside the CPQR factorization of the sampling

matrix Y, the QR factorization of the current column block, and the SVD of the diagonal block. As these

operations only apply to blocks of dimensions n × b, m × b, and b × b, respectively, the total amount

of these types of flops is negligible, and therefore most of the flops performed in randUTV are BLAS-3

flops. Hence, the algorithm for computing the randUTV will be much faster than what the theoretical cost

predicts. In conclusion, this heavy use of BLAS-3 operations will render good performances on single-core

architectures, multicore architectures, GPUs, and distributed-memory architectures.
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3.6 Numerical results

3.6.1 Computational speed

In this section, we investigate the speed of the proposed algorithm randUTV, and compare it to the

speeds of highly optimized methods for computing the SVD and the column pivoted QR (CPQR) factoriza-

tion.

All experiments reported in this article were performed on an Intel Xeon E5-2670 processor at 2.6

GHz, with 16 cores and 64 GiB of RAM. Other details of interest include that the OS used was Linux

(Version 2.6.32-431.el6.x86 64), and the code was compiled with gcc (Version 4.4.7). Main routines for

computing the SVD (dgesvd and dgesdd) and the CPQR (dgeqp3) were taken from Intel’s MKL library

(Version 11.1.3) since this library usually delivers much higher performances than Netlib’s LAPACK codes.

Our implementations were coded with libflame [125, 124] (Release 11104).

Each of the three algorithms we tested (randUTV, SVD, CPQR) was applied to double-precision real

matrices of size n× n. We report the following times:

Tsvd The time in seconds for the LAPACK functions dgesvd and dgesdd from Intel’s MKL.

Tcpqr The time in seconds for the LAPACK function dgeqp3 from Intel’s MKL.

TrandUTV The time in seconds for our implementation of randUTV.

For the purpose of a fair comparison, the three implementations were linked to the BLAS library from Intel’s

MKL. In all cases, we used an algorithmic block size of b = 64. While likely not optimal for all problem

sizes, this block size yields near best performance and, regardless, it allows us to easily compare and contrast

the performance of the different implementations.

Table 3.1 shows the measured computational times when executed on 1, 8, and 16 cores, respectively.

In these experiments, all orthonormal matrices (U and V for SVD and UTV, and Q for CPQR) are explicitly

formed. This slightly favors CPQR since only one orthonormal matrix is required. The corresponding

numbers obtained when orthonormal matrices are not built are given in an appendix of [89]. To better

illustrate the relative performance of the various techniques, we plot in Figure 3.5 the computational times
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measured divided by n3. Since all techniques under consideration have asymptotic complexity O(n3) when

applied to an n × n matrix, these graphs better reveal the computational efficiency. (We plot time divided

by n3 rather than the more commonly reported “normalized Gigaflops” since the algorithms we compare

have different scaling factors multiplying the dominant n3-term in the asymptotic flop count.) Figure 3.5

also shows the timings we measured when the orthonormal matrices were not formed.

The results in Figure 3.5 lead us to make several observations: (1) The algorithm randUTV is deci-

sively faster than the SVD in almost all cases (the exceptions involve the situation where no unitary matrices

are sought, and the input matrix is small). (2) Comparing the speeds of CPQR and randUTV, when both

methods are executed on a single core, CPQR is similar when no orthonormal matrices are built or slightly

faster when orthonormal matrices are built (because in this case randUTV must build two matrices). (3) As

the matrix size grows, and as the number of cores increases, randUTV gains an edge on CPQR in terms of

speed.

3.6.2 Errors

In this section, we describe the results of the numerical experiments that were conducted to investigate

how good randUTV is at computing an accurate rank-k approximation to a given matrix. Specifically, we

compared how well partial factorizations reveal the numerical ranks of four different test matrices:

• Matrix 1 (Fast Decay): This is an n×nmatrix of the form A = UDV∗ where U and V are randomly

drawn matrices with orthonormal columns (obtained by performing an unpivoted QR factorization

on a random Gaussian matrix), and where D is diagonal with entries given by dj = β(j−1)/(n−1)

with β = 10−5.

• Matrix 2 (S-shaped Decay): This matrix is built in the same manner as “Matrix 1”, but now the

diagonal entries of D are chosen to first hover around 1, then decay rapidly, and then level out at

10−2, as shown in Figure 3.7 (black line).

• Matrix 3 (Gap): This matrix is built in the same manner as “Matrix 1”, but now there is a sudden

drop in magnitudes of the singular values so that σ151 = 0.1σ150. Specifically, D(j, j) = 1/j for
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Computational times when executed on a single core
n Tsvd Tcpqr TrandUTV

dgesvd dgesdd q = 0 q = 1 q = 2

500 1.93e-01 1.24e-01 3.78e-02 8.43e-02 9.37e-02 1.03e-01
1000 1.22e+00 7.82e-01 2.62e-01 5.08e-01 5.74e-01 6.45e-01
2000 9.04e+00 5.88e+00 2.18e+00 3.58e+00 4.09e+00 4.61e+00
3000 2.98e+01 2.00e+01 7.59e+00 1.14e+01 1.31e+01 1.50e+01
4000 7.02e+01 4.70e+01 1.80e+01 2.71e+01 3.13e+01 3.56e+01
5000 1.35e+02 9.04e+01 3.48e+01 5.07e+01 5.90e+01 6.74e+01
6000 2.29e+02 1.54e+02 5.95e+01 8.74e+01 1.01e+02 1.16e+02
8000 5.47e+02 3.68e+02 1.43e+02 2.10e+02 2.45e+02 2.81e+02

10000 1.03e+03 6.98e+02 2.74e+02 3.95e+02 4.61e+02 5.26e+02

Computational times when executed on 8 cores
n Tsvd Tcpqr TrandUTV

dgesvd dgesdd q = 0 q = 1 q = 2

500 1.12e-01 7.70e-02 2.32e-02 5.36e-02 5.64e-02 5.92e-02
1000 5.27e-01 3.23e-01 1.02e-01 2.18e-01 2.35e-01 2.51e-01
2000 2.63e+00 1.57e+00 4.92e-01 1.14e+00 1.24e+00 1.33e+00
3000 8.23e+00 5.04e+00 2.36e+00 2.92e+00 3.25e+00 3.56e+00
4000 1.94e+01 1.34e+01 6.45e+00 5.92e+00 6.57e+00 7.28e+00
5000 3.79e+01 2.71e+01 1.28e+01 1.01e+01 1.13e+01 1.25e+01
6000 6.46e+01 4.82e+01 2.24e+01 1.62e+01 1.84e+01 2.05e+01
8000 1.55e+02 1.21e+02 5.37e+01 3.70e+01 4.20e+01 4.70e+01

10000 2.90e+02 2.29e+02 1.01e+02 6.48e+01 7.43e+01 8.39e+01

Computational times when executed on 16 cores
n Tsvd Tcpqr TrandUTV

dgesvd dgesdd q = 0 q = 1 q = 2

500 1.08e-01 7.74e-02 2.32e-02 5.83e-02 6.14e-02 6.44e-02
1000 4.69e-01 3.03e-01 9.06e-02 2.24e-01 2.38e-01 2.52e-01
2000 2.26e+00 1.33e+00 4.09e-01 9.51e-01 1.02e+00 1.09e+00
3000 7.05e+00 4.34e+00 2.16e+00 2.34e+00 2.57e+00 2.81e+00
4000 1.73e+01 1.21e+01 6.08e+00 4.62e+00 5.10e+00 5.57e+00
5000 3.34e+01 2.48e+01 1.22e+01 7.54e+00 8.31e+00 9.09e+00
6000 5.86e+01 4.47e+01 2.15e+01 1.24e+01 1.38e+01 1.52e+01
8000 1.38e+02 1.12e+02 5.15e+01 2.72e+01 3.02e+01 3.32e+01

10000 2.62e+02 2.14e+02 9.70e+01 4.57e+01 5.12e+01 5.68e+01

Table 3.1: Computational times of different factorizations when executed on one core (top), 8 cores (middle),
and 16 cores (bottom). All orthonormal matrices are built explicitly.
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Figure 3.5: Computational cost (the lower, the better performances) of randUTV compared to the cost of
the LAPACK drivers dgesvd and dgesdd (SVD), and dgeqp3 (CPQR). The algorithms were applied
to double-precision real matrices of size n × n. The measured computational time divided by n3 is plotted
against n (e.g. the red lines are Tsvd/n3.) The three rows of plots correspond to executing on 1, 8, and 16
cores, respectively.
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j ≤ 150, and D(j, j) = 0.1/j for j > 150.

• Matrix 4 (BIE): This matrix is the result of discretizing a Boundary Integral Equation (BIE) defined

on a smooth closed curve in the plane. To be precise, we discretized the so called “single layer”

operator associated with the Laplace equation using a 6th order quadrature rule designed by Alpert

[2]. This operator is well-known to be ill-conditioned, which necessitates the use of a rank-revealing

factorization in order to solve the corresponding linear system in as stable a manner as possible.

For each test matrix, we computed the error

ek = ‖A− Ak‖ (3.23)

where Ak is the rank-k approximation resulting from either of the three techniques discussed in this article:

SVD: Ak = Aoptimal
k = U(:, 1 : k) D(1 : k, 1 : k) V(:, 1 : k)∗, (3.24)

CPQR: Ak = Q(:, 1 : k) R(1 : k, :) P∗, (3.25)

randUTV: Ak = U(:, 1 : k) T(1 : k, :) V∗. (3.26)

For randUTV, we ran the experiment with zero, one, and two steps of power iteration (q = 0, 1, 2). In

addition to the direct errors defined by (3.23), we also calculated the relative errors, as defined via

erelativek = 100%× ‖A− Ak‖
‖A− Aoptimal

k ‖
. (3.27)

The results are shown in Figures 3.6, 3.7, 3.8, and 3.9. The figures also report the errors resulting from a

UTV factorization that G.W. Stewart proposed in [120], precisely for purposes of low-rank approximation

and estimation of singular values. To be precise, Stewart builds a factorization A = ULV∗ where U and

V are orthonormal, and L is lower triangular. The procedure is to first compute a CPQR factorization of A

so that A = Q1R1P∗1. Then compute a CPQR of the transpose of the upper triangular matrix R1 so that

R∗1 = Q2L∗P∗2. Finally, set U = Q1P2 and V = P1Q2. The rank-k approximation is then

QLP: Ak = U L(:, 1 : k) V(:, 1 : k)∗. (3.28)
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Based on the errors shown in Figures 3.6–3.9, we make several empirical observations: (1) randUTV

is much better than CPQR at computing low-rank approximations. Even when no power iteration (q = 0)

is used, errors from randUTV are substantially smaller. When one or two steps of power iteration are taken

(q = 1 or q = 2), the errors become close to optimal in all cases studied. (2) For the matrix with a

gap in its singular values (cf. Figure 3.8), randUTV performs remarkably well in that both σ150 and σ151

are approximated to high accuracy. (3) The relative errors resulting from randUTV are consistently small,

and much more reliably small than those resulting from CPQR. (4) Comparing the “QLP” factorization of

Stewart [120] to randUTV, we see that Stewart’s algorithm results in errors that are similar to those resulting

from randUTV with q = 0. As soon as the power parameter is increased, randUTV tends to perform better.

(We observe that in terms of speed, Stewart’s QLP algorithm relies on two CPQR factorizations, which

makes it much slower than randUTV.)

All error results shown in this section refer to errors measured in the spectral norm. The effects of

including over-sampling in the algorithm, as described in Remark 12, is illustrated in numerical experiments

given in an appendix in [89]. These experiments show that over-sampling does improve the error, but also

that the improvement is almost imperceptible. For most applications, over-sampling is in our experience not

worth the additional effort.

Remark 13 (Is randUTV rank-revealing?). While we do not have rigorous proofs that randUTV is rank-

revealing, the numerical experiments in this section strongly indicate that it is, in the sense that a truncated

UTV factorization approximates a given matrix to nearly optimal accuracy (in particular when a small

number of steps of power iteration is used). We did not formally investigate whether randUTV is “strongly

rank-revealing” in the sense of [64], but the numerical experiments certainly indicate that it does very well

in this regard.

3.6.3 Concentration of mass to the diagonal

In this section, we investigate our claim that randUTV produces a matrix T whose diagonal entries

are close approximations to the singular values of the given matrix. (We recall that in the factorization
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Figure 3.6: Rank-k approximation errors for the matrix “Fast Decay” (see Section 3.6.2) of size 4000×4000.
The block size was b = 100. Left: Absolute errors in spectral norm. The black line marks the theoretically
minimal errors. Right: Relative errors, as defined by (3.27).
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Figure 3.7: Rank-k approximation errors for the matrix “S-shaped decay” (see Section 3.6.2) of size 4000×
4000. The block size was b = 100. Left: Absolute errors in spectral norm. The black line marks the
theoretically minimal errors. Right: Relative errors, as defined by (3.27).
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Figure 3.8: Rank-k approximation errors for the matrix “Gap” (see Section 3.6.2) of size 4000× 4000. The
block size was b = 100. Left: Absolute errors in spectral norm. The black line marks the theoretically
minimal errors. (Observe that we zoomed in on the area around the gap.) Right: Relative errors, as defined
by (3.27).



80

0 1000 2000 3000

k

10
-3

10
-2

10
-1

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

QLP

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000

k

0

50

100

150

200

1
0
0
%

 x
 |
|A

-A
k
||
 /
 |
|A

-A
ko
p
ti
m

a
l ||

Relative spectral norm errors in percent

Figure 3.9: Rank-k approximation errors for the matrix “BIE” (see Section 3.6.2) of size 4000× 4000. The
block size was b = 100. Left: Absolute errors in spectral norm. The black line marks the theoretically
minimal errors. Right: Relative errors, as defined by (3.27).
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A = UTV∗, the matrix T is upper triangular, but with the entries above the diagonal very small in magnitude

which forces the diagonal entries to approach the corresponding singular values.) Figure 3.10 shows the

results for the four different test matrices described in Section 3.6.2, again for matrices of size 4 000×4 000.

For reference, we also show the diagonal entries of the “R-factor” in a CPQR, and the diagonal entries of

the “L-factor” in Stewart’s QLP factorization [120]. We see that both Stewart’s and our algorithm results in

far better results than plain CPQR. randUTV roughly matches the accuracy of the QLP when q = 0, and

does better as q is increased to one or two. (We recall that randUTV is much faster than the QLP method.)

3.7 Availability of code

Implementations of the discussed algorithm are available under 3-clause (modified) BSD license

from:

https://github.com/flame/randutv

This repository includes two different implementations: one to be used with the LAPACK library [4], and

the other one to be used with the libFLAME [104, 65] library.

3.8 Concluding remarks and future work

We have described a randomized algorithm we call “randUTV” for computing an economical alterna-

tive to the Singular Value Decomposition (SVD) of a matrix. The new method is much faster than classical

algorithms for computing the SVD (cf. Section 3.6.1), and provides accuracy that is very close to optimal

for tasks such as low rank approximation, or subspace identification (cf. Section 3.6.2). The new algorithm

is blocked and executes well on modern communication-constrained hardware. It is incremental and can be

used to compute partial factorizations.

Compared to the column pivoted QR factorization, which is commonly used as an economical alter-

native to the SVD for low rank approximation, randUTV is similar or better in terms of speed in modern

architectures and much more accurate. Compared to methods designed specifically for low rank approxima-

tion such as the strongly rank-revealing QR factorizations [64], the QLP factorization [120], etc., randUTV
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Figure 3.10: The results shown here illustrate how well randUTV approximates the singular values of four
different matrices of size 4000 × 4000. For reference, we also include the diagonal values of the middle
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provides similar or better accuracy, and is much faster.

The new method can also be viewed as an alternative to existing randomized methods for low rank

approximation, as described in [69, 83, 91]. These methods excel when the numerical rank k of a matrix is

much smaller than the matrix dimensions m and n. Moreover, the methods of [69, 83, 91] work best when

the user has some rough idea of what k is in advance (although these requirements were relaxed substantially

in [95]). In contrast, randUTV provides high speed for any rank, and does not need any a priori information

about the numerical rank.

In this manuscript, we focused on the case of multicore CPUs with shared memory. We expect that the

relative advantages of randUTV will be even more pronounced in more several communication-constrained

environments such as GPUs, distributed memory parallel computers, or factorizations of matrices stored out

of core. Work on variations of the method modified for such environments is currently under way.

Acknowledgements: The research reported was supported by DARPA, under the contract N66001-

13-1-4050, and by the NSF, under the awards DMS-1407340 and DMS-1620472.



Chapter 4

Efficient algorithms for computing a rank-revealing UTV factorization on parallel

computing architectures

The randomized singular value decomposition (RSVD) uses results from random linear algebra to

efficiently build an approximate singular value decomposition of a matrix. The randUTV algorithm of

Martinsson et al. builds on the ideas of the RSVD to produce a full factorization that provides low-rank

approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-

efficient operations like matrix-matrix multiplication and unpivoted QR factorizations, it is faster than com-

peting rank-revealing factorization methods like column pivoted QR in most high performance computa-

tional settings. In this article, optimized randUTV implementations are presented for both shared mem-

ory and distributed memory computing environments. For shared memory, randUTV is reconfigured as

an algorithm-by-blocks, eliminating bottlenecks from data synchronization points to achieve acceleration

over the standard “blocked algorithm” approach. The distributed memory implementation is based on the

ScaLAPACK library. The performances of our new codes compares favorably with competing factorizations

available on both shared memory and distributed memory architectures.

4.1 Introduction.

4.1.1 Overview.

Computational linear algebra faces significant challenges as high performance computing moves fur-

ther away from the serial into the parallel. Classical algorithms were designed to minimize the number of

floating point operations, and do not always lead to optimal performance on modern communication-bound
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architectures. The obstacle is particularly apparent in the area of rank-revealing matrix factorizations. Tra-

ditional techniques based on column pivoted QR factorizations or Krylov methods tend to be challenging to

parallelize well, as they are most naturally viewed as a sequence of matrix-vector operations.

In this paper, we describe techniques for efficiently implementing a randomized algorithm for com-

puting a so-called rank-revealing UTV decomposition [89]. Given an input matrix A of size m × n, the

objective is to compute a factorization

A = U T V ∗,

m× n m×m m× n n× n
(4.1)

where the middle factor T is upper triangular (or upper trapezoidal in the case m < n) and the left and right

factors U, V have orthonormal columns. The factorization is rank-revealing in the sense that

‖A− U(:, 1 : k)T (1 : k, :)V ∗‖ ≈ inf{‖A−B‖ : B has rank k}. (4.2)

The resulting factorization has entries above the diagonal in T that are very small in modulus, and in practice

the diagonal entries of T are often excellent approximations to the singular values of A. A factorization of

this type is useful for solving tasks such as low-rank approximation, for determined basis to approximations

to the fundamental subspaces of A, for solving ill-conditioned or over/under-determined linear systems in a

least-square sense, and for estimating the singular values of A.

The randomized UTV algorithm randUTV that we implement has several characteristics that in many

environments make it preferable to classical rank-revealing factorizations like column pivoted QR (CPQR)

and the singular value decomposition (SVD):

• It consistently produces matrix factors which yield low-rank approximations with accuracy com-

parable to the SVD. The particular use of randomization in the algorithm is essentially risk free.

The reliability of the method is supported by theoretical analysis, as well as extensive numerical

experiments.

• It casts most of its operations in terms of matrix-matrix multiplications, which are highly efficient

in parallel computing environments. It was demonstrated in [89] that an straightforward blocked
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implementation of randUTV executes faster than even highly optimized implementations of CPQR

in symmetric multiprocessing systems. In this manuscript, we present an implementation that im-

proves on the performances in [89] for SMP and obtain similar findings for distributed memory

architectures.

• It processes the input matrix in sets of multiple columns, so it can be stopped part way through the

factorization process if it is found that a requested tolerance has been met. If k columns end up

having been computed, only O(mnk) flops will have been expended.

In this manuscript, we present two efficient implementations of the randUTV algorithm: one for

shared memory, and one for distributed memory. We first discuss the notation and some key mathematical

tools that will be used throughout the paper in Section 4.2. In Section 4.3, we familiarize the reader with

the randUTV algorithm that was recently described in [89]. Sections 4.4 and 4.5 describe the shared and

distributed memory implementations that form the main contribution of this manuscript. In Section 4.6,

we present numerical results that compare our implementations to highly optimized implementations of

competing factorizations.

4.2 Preliminaries.

We use the notation A ∈ Rm×n to specify that A is an m×n matrix with real entries. An orthogonal

matrix is a square matrix whose column vectors each have unit norm and are pairwise orthogonal. σi(A)

represents the i-th singular value of A, and inf(A) = min
i
{σi(A)}. The default norm ‖ · ‖ is the spectral

norm. We also use the standard matrix indexing notation A(c : d, e : f) to denote the submatrix of A

consisting of the entries in the c-th through d-th rows of the e-th through f -th columns.

4.2.1 The Singular Value Decomposition (SVD)

Let A ∈ Rm×n and p = min(m,n). Then, the singular value decomposition (SVD) of A is given by

A = U Σ V ∗,

m× n m×m m× n n× n
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where U and V are orthogonal and Σ is diagonal. We may also speak of the economic SVD of A, given by

A = U Σ V ∗,

m× n m× p p× p p× n

in which case U and V are not orthogonal (because they are not square) but their columns remain orthonor-

mal.

A singular value decomposition exists for any real matrix and is “somewhat” unique.1 The diagonal

elements σi of Σ are thus called the singular values of A and satisfy σ1 ≥ σ2 ≥ . . . ≥ σi ≥ 0, i =

1, 2, . . . , p. The columns ui and vi of U and V are called the left and right singular vectors, respectively, of

A.

A key fact about the SVD is that it provides theoretically optimal rank-k approximations toA. Specif-

ically, the famous Eckart-Young-Mirsky Theorem [45, 98] states that given the SVD of a matrix A as de-

scribed above and a fixed 1 ≤ k ≤ p, we have that

‖A− U(:, 1 : k)Σ(1 : k, 1 : k)(V (:, 1 : k))∗‖ = inf{‖A−B‖ : B has rank k}.

A corollary of this result is that the subspace spanned by the leading k left and right singular vectors of

A provides the optimal rank-k approximations to the column and row space, respectively, of A. That is to

say, if QQ∗ is the projection operator onto the subspace spanned by the left singular vectors of A, where

Q ∈ Rm×k, and x ∈ Col(A), then

‖x−QQ∗x‖ = inf{‖x−Bx‖ : B has rank k}.

The right singular vectors of A and the row space of A have the analogous result.

4.2.2 The QR decomposition

Given a matrix A ∈ Rm×n, let p = min(m,n). A QR decomposition of A is given by

A = Q R,

m× n m×m m× n
1 For more details on the properties of the SVD, see, e.g. [57, 122, 116].
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where Q is orthogonal and R is upper triangular. If m > n, then any QR can be reduced to the “economic”

QR

A = Q R.

m× n m× n n× n

The standard algorithm for computing a QR factorization relies on Householder reflectors. We shall

call this algorithm “HQR” in this article and refer the reader once again to textbooks such as [57, 122, 116]

for a complete discussion. For this article, it is only necessary to note that the outputs of HQR are the

following: an upper triangular matrix R of the QR factorization, and a unit lower triangular matrix V ∈

Rm×p and a vector v ∈ Rp that can be used to build or to apply Q (see Section 4.2.3). In this article, we

make critical use of the fact that for m > n, the leading p columns of Q form an orthonormal basis for the

column space of A.

4.2.3 Compact WY representation of collections of Householder reflectors.

Consider a matrix A ∈ Rn×n, and let Hi ∈ Rn×n, i = 1, . . . , b be Householder transformations. As

a Householder transformation has the following structure: Hi = I−τiviv∗i , applying it to a matrixA requires

a matrix-vector product and a rank-1 update. If allHi are applied one after another, the computation requires

O(bn2) flops overall because of the special structure of the Householder transformations. Both operations

are matrix-vector based, and therefore they do not render high performances on modern architectures.

If several Householder transformations must be applied, the product H = HbHb−1 · · ·H2H1 may be

expressed in the form

H = I −WTW ∗,

where W ∈ Rn×b is lower trapezoidal and T ∈ Rb×b is upper triangular. This formation of the product of

Householder matrices is called the compact WY representation [113]. If the Householder transformations

used to form each Hi are known, matrices W and T of the compact WY are inexpensive to compute. The

above expression can be used to build the product HA:

HA = A−WTW ∗A.
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In this case, the cost is about the same, but only matrix-matrix operations are employed. Since on modern

architectures matrix-matrix operations are usually much more efficient that matrix-vector operations, this

approach will render higher performances. Recall that one flop (floating-point operation) in a matrix-matrix

operation can be executed much (several times) faster than a flop in a matrix-vector operation.

4.3 The UTV factorization.

In this section, we discuss the rank-revealing UTV matrix factorization, establishing its usefulness in

computational linear algebra and reviewing efficient algorithms for its computation. In Section 4.3.1, we

review the classical UTV matrix decomposition, summarizing its benefits over other standard decomposi-

tions like column-pivoted QR and the SVD. In Section 4.3.2, we summarize recent work [89] that proposes

a randomized blocked algorithm for computing this factorization.

4.3.1 The classical UTV factorization.

Let A ∈ Rm×n and set p = min(m,n). A UTV decomposition of A is any factorization of the form

A = U T V ∗,

m× n m×m m× n n× n
(4.3)

where T is trapezoidal and U and V are both orthogonal. T will always be upper trapezoidal in this paper. It

is often desirable to compute a rank-revealing UTV (RRUTV) decomposition. For any 1 ≤ k ≤ p, consider

the partitioning of T

T →

 T11 T12

T21 T22

 , (4.4)

where T11 is k × k. We say a UTV factorization is rank-revealing if

1. σmin(T11) ≈ σk(A),

2. σmax(T12) ≈ σk+1(A).

The flexibility of the factors in a UTV decomposition renders certain advantages over other canonical

forms like CPQR and SVD (note that each of these are specific examples of UTV factorizations). Since
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the right factor in CPQR is restricted to a permutation matrix, UTV has more freedom to provide better

low-rank and subspace approximations. Also, since UTV does not have the SVD’s restriction of diagonality

on the middle factor, the UTV is less expensive to compute and has more efficient methods for updating and

downdating (see, e.g. [114, 115, 6, 46, 102]).

4.3.2 The randUTV algorithm.

In [89], a new algorithm called randUTV was proposed for computing an RRUTV factorization.

randUTV is designed to parallelize well, enhancing the RRUTV’s viability as a competitor to both CPQR

and the SVD for a wide class of problem types. It yields low-rank approximations comparable to the SVD

at computational speeds that match, and in many cases outperform both CPQR and SVD. Unlike classical

methods for building SVDs and RRUTVs, randUTV processes the input matrix by sets of b columns at one

time and may therefore be stopped early (after processing k columns) to incur an overall cost of O(mnk).

The driving idea behind the structure of the randUTV algorithm is to build the middle factor T with

a right-looking approach, that is, in each iteration multiple columns of T (a column block) are obtained

simultaneously and only the right part of T is accessed. To illustrate, consider an input matrix A ∈ Rm×n,

and let p = min(m,n). A block size parameter b with 1 ≤ b ≤ p must be chosen before randUTV begins.

For simplicity, assume b divides p evenly. The algorithm begins by initializing T (0) := A. Then, the bulk of

the work is done in a loop requiring p
b steps. In the i-th step, a new matrix T (i+1) is computed with

T (i+1) := (U (i))∗T (i)V (i),

for some orthogonal matrices U (i) and V (i). U (i) and V (i) are chosen such that:

• the leading ib columns of T (i+1) are upper triangular with b × b diagonal blocks on the main

diagonal.

• using the partitioning in Equation 4.4 to define T (i)
11 and T (i)

22 , we have σmin(T
(i)
11 ) ≈ σk(A) and

σmax(T
(i)
22 ) ≈ σk+1(A) for 1 ≤ k ≤ ib.

• T (i)
11 (k, k) ≈ σk(A) for 1 ≤ k ≤ ib.
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after 0 steps: after 1 step: after 2 steps:
T (0) := A T (1) := (U (0))∗T (0)V (0) T (2) := (U (1))∗T (1)V (1)

Figure 4.1: An illustration of the sparsity pattern followed by the first three T (i) for randUTV if n =
12, b = 3. randUTV continues until the entirety of T (i) is upper trapezoidal.

An example of the sparsity patterns for each T (i) is shown in Figure 4.1.

Once T (i) is upper triangular, U and V can then be built with

V := V (0)V (1) · · ·V (p/b−1)

and

U := U (0)U (1) · · ·U (p/b−1).

In practice, V (i) and U (i) are constructed in two separate stages and applied to T (i) at different points

in the algorithm. We will henceforth refer to these matrices as V (i)
α , U

(i)
α and V (i)

β , U
(i)
β for the first and

second stages, respectively. Also, just one T matrix is stored, whose contents are overwritten with the new

T (i+1) at each step. Similarly, in case the matrices U and V are required to be formed, only one matrix U

and one matrix V would be stored. The outline for randUTV is therefore the following:

1. Initialize T := A, V := I, U := I .

2. for i = 0, 1, . . . , b/p− 1:

i. Build V (i)
α .

ii. Update T and V : T ← TV
(i)
α , V ← V V

(i)
α .

iii. Build U (i)
α .

iv. Update T and U : T ← (U
(i)
α )∗T, U ← UU

(i)
α .
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v. Build V (i)
β and U (i)

β simultaneously.

vi. Update T , V , and U : T ← (U
(i)
β )∗TV

(i)
β , V ← V V

(i)
β , U ← UU

(i)
β .

A matlab code for an easily readable (but inefficient) implementation of randUTV is given in Figure

4.2.

4.3.2.1 Building V (i)
α .

V
(i)
α is constructed to maximize the rank-revealing properties of the final factorization. Specifically,

consider the partitioning at step i of matrices T and V (i)
α

T →

 T11 T12

T21 T22

 , V (i)
α →

 I 0

0 (V
(i)
α )22

 ,

where the top left block of each partition is ib× ib. Then V (i)
α is constructed such that the leading b columns

of (V
(i)
α )22 form an orthonormal approximate basis for the leading b right singular vectors of T22. An

efficient method for such a construction has been developed recently (see, e.g. [111, 69, 90, 91]) using ideas

in random matrix theory. V (i)
α is built as follows:

1. Draw a thin Gaussian random matrix G(i) ∈ R(m−ib)×b.

2. Compute Y (i) := (T ∗22T22)
q (T22)

∗G(i) for some small integer q.

3. Perform an unpivoted QR factorization on Y (i) to obtain an orthogonal Q(i) and upper triangular

R(i) such that Y (i) = Q(i)R(i).

4. Set (V
(i)
α )22 := Q(i).

The parameter q, often called the “power iteration” parameter, determines the accuracy of the approximate

basis found in (V
(i)
α )22. Thus, raising q improves the rank-revealing properties of the resulting factorization

but also increases the computational cost. For more details, see, e.g. [69].
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4.3.2.2 Building U (i)
α .

U
(i)
α is constructed to satisfy both the rank-revealing and upper triangular requirements of the RRUTV.

First, we partition U (i)
α

U (i)
α →

 I 0

0 (U
(i)
α )22

 .

To obtain (U
(i)
α )22 such that ((U

(i)
α )22)

∗T22(:, 1 : b) is upper triangular, we may compute the unpivoted QR

factorization of T22(:, 1 : b) to obtain W (i), S(i) such that T22(:, 1 : b) = W (i)S(i). Next, observe that

when the building of U (i)
α occurs, the range of the leading b columns of T22 is approximately the same as

that of the leading b left singular vectors of T22. Therefore, the W (i) from the unpivoted QR factorization

also forms an orthonormal approximate basis for the leading b left singular vectors of T22, so W (i) is an

approximately optimal choice of matrix from a rank-revealing perspective. Thus we let (U
(i)
α )22 := W (i).

4.3.2.3 Building V (i)
β and U (i)

β .

V
(i)
β and U (i)

β introduce more sparsity into T at low computational cost, pushing it closer to diago-

nality and thus decreasing |T (k, k) − σk(A)| for k = 1, . . . , (i + 1)b. They are computed simultaneously

by calculating the SVD of T22(1 : b, 1 : b) to obtain U (i)
SV D, V

(i)
SV D, D

(i)
SV D such that T22(1 : b, 1 : b) =

U
(i)
SV DD

(i)
SV D(V

(i)
SV D)∗. Then we set

V
(i)
β :=


I 0 0

0 V
(i)
SV D 0

0 0 I

 , U
(i)
β :=


I 0 0

0 U
(i)
SV D 0

0 0 I

 .

Following the update step T → (U
(i)
β )∗TV

(i)
β , T22(1 : b, 1 : b) is diagonal.

4.4 Efficient shared memory randUTV implementation.

Since the shared memory multicore computing architecture is ubiquitous in modern computing, it is

therefore a prime candidate for an efficiently designed implementation of the randUTV algorithm presented



94
function [U,T,V] = randUTV(A,b,q)

T = A;
U = eye(size(A,1));
V = eye(size(A,2));
for i = 1:ceil(size(A,2)/b)

I1 = 1:(b*(i-1));
I2 = (b*(i-1)+1):size(A,1);
J2 = (b*(i-1)+1):size(A,2);
if (length(J2) > b)

[UU,TT,VV] = stepUTV(T(I2,J2),b,q);
else

[UU,TT,VV] = svd(T(I2,J2));
end
U(:,I2) = U(:,I2)*UU;
V(:,J2) = V(:,J2)*VV;
T(I2,J2) = TT;
T(I1,J2) = T(I1,J2)*VV;

end
return

function [U,T,V] = stepUTV(A,b,q)
G = randn(size(A,1),b);
Y = A’*G;
for i = 1:q
Y = A’*(A*Y);

end
[V,˜] = qr(Y);
[U,D,W] = svd(A*V(:,1:b));
T = [D,U’*A*...

V(:,(b+1):end)];
V(:,1:b) = V(:,1:b)*W;

return

Figure 4.2: Matlab code for the algorithm randUTV that given an m × n matrix A computes its UTV
factorization A = UTV ∗. The input parameters b and q reflect the block size and the number of steps of
power iteration, respectively. This code is simplistic in that products of Householder reflectors are stored
simply as dense matrices, making the overall complexity O(n4). (Adapted from Figure 3 of [89].)

in Section 4.3.2. Martinsson et al. [89] provided an efficient blocked implementation of the randUTV

factorization that was faster than competing rank-revealing factorizations, such as SVD and CPQR.

Blocked implementations for solving linear algebra problems are usually efficient since they are based

on matrix-matrix operations. The ratio of flops to memory accesses in vector-vector operations and matrix-

vector operations is usually very low: O(1) (O(n) flops to O(n) memory accesses, and O(n2) flops to

O(n2) memory accesses, respectively). Performances are low on these types of operations since the memory

becomes a significant bottleneck with such a low ratio. In contrast, the ratio of flops to memory accesses in

matrix-matrix operations is much higher: O(n) (O(n3) flops to O(n2) memory accesses). This increased

ratio provides much higher performances on modern computers since they require many flops per memory

access.

As usual in many linear algebra codes, this blocked implementation of randUTV kept all the paral-

lelism inside the BLAS library. However, the performances of implementations based on a parallel BLAS
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are becoming increasingly inefficient as the number of cores increases in modern computers [106].

In Section 4.4.1, we discuss a scheme called algorithms-by-blocks for designing highly efficient algo-

rithms on architectures with multiple/many cores. Section 4.4.2 explores the application of algorithms-by-

blocks to randUTV. Finally, Sections 4.4.3 and 4.4.4 familiarize the reader with software used to implement

algorithms-by-blocks and a runtime system to schedule the various matrix operations, respectively.

4.4.1 Algorithms-by-blocks: an overview.

randUTV is efficient in parallel computing environments mainly because it can be blocked easily.

That is, it drives multiple columns of the input matrix A to upper triangular form in each iteration of its

main loop. The design allows most of the operations to be cast in terms of the Level 3 BLAS (matrix-matrix

operations), and more specifically in xgemm operations (matrix-matrix products). As vendor-provided and

open-source multithreaded implementations of the Level 3 BLAS are highly efficient and close to the peak

speed, randUTV renders high performances. Thus, a blocked implementation of randUTV relying largely

on standard calls to parallel LAPACK and parallel BLAS was found to be faster than the highly optimized

MKL CPQR implementation for a shared memory system, despite randUTV having a much higher flop

count than the CPQR algorithm [89].

However, the benefits of pushing all parallelism into multithreaded implementations of the BLAS li-

brary are limited. Most high-performance blocked algorithms for computing factorizations (such as Cholesky,

QR, LU, etc.) involve at least one task in each iteration that works on very little data, and therefore its par-

allelization does not render high performances. These tasks usually involve the processing of blocks with

at least one small dimension b, where b is typically chosen to be 32 or 64, usually much smaller than the

matrix dimensions. For instance, in the blocked Cholesky factorization this performance-limited task is the

computation of the Cholesky factorization of the diagonal block, whereas in the blocked QR and LU factor-

izations this performance-limited part is the computation of the factorization of the current column block.

Thus, since these tasks form a synchronization point, all but one core are left idle during these computations.

For only four or five total cores, time lost is minimal. As the number of available cores increases, though,

significant inefficiency builds up. The randUTV factorization is also affected by this problem, since each
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iteration contains three tasks of this type: the QR factorization of matrix Y , the QR factorization of the

current column block of T , and the SVD of the diagonal block of T .

We are therefore led to seek a technique other than blocking to obtain higher performances, although

we will not abandon the strategy of casting most operations in terms of the Level 3 BLAS. The key lies

in changing the method with which we aggregate multiple lower level BLAS flops into a single Level 3

BLAS operation. Blocked algorithms do this by raising the granularity of the algorithm’s main loop. In

randUTV, for instance, multiple columns of the input are typically processed in one iteration of the main

loop. Processing one column at a time would require matrix-vector operations (Level 2 BLAS) in each

iteration, but processing multiple columns at a time aggregates these into much more efficient matrix-matrix

operations (Level 3 BLAS).

The alternative approach, called algorithms-by-blocks, is to instead raise the granularity of the data.

With this method, the algorithm may be designed as if only scalar elements of the input are dealt with at one

time. Then, the algorithm is transformed into Level 3 BLAS by conceiving of each scalar as a submatrix or

block of size b×b. Each scalar operation turns into a matrix-matrix operation, and operations in the algorithm

will, at the finest level of detail, operate on usually a few (between one and four, but usually two or three)

b× b blocks. Each operation on a few blocks is called a task. This arrangement allows more flexibility than

blocking in ordering the operations, eliminating the bottleneck caused by the synchronization points in the

blocking method. The performance benefits obtained by the algorithm-by-blocks approach with respect to

the approach based on blocked algorithms for linear algebra problems on shared-memory architectures are

usually significant [106, 22].

An algorithm-by-blocks for computing the randUTV requires that the QR factorization performed

inside it works also on b× b blocks. In order to design this internal QR factorization process such that each

unit of work requires only b × b submatrices, the algoritm-by-blocks for computing the QR factorization

must employ an algorithm based on updating an existing QR factorization. We shall refer to this algorithm

as QR AB. We consider only the part of QR AB that makes the first column of blocks upper triangular, since

that is all that is required for randUTV AB. This work can be conceptualized as occurring in an iteration

with a fixed number of steps or tasks.
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Figure 4.3 shows this process for a 9 × 9 matrix with block size 3. In this figure, the continuous

lines show the 3 × 3 blocks involved in the current task, ‘•’ represents a non-modified element by the

current task, ‘?’ represents a modified element by the current task, and ‘·’ represents a nullified element

by the current task. The nullified elements are shown because, as usual, they store information about the

Householder transformations that will be later used to apply these transformations. The first task, called

Compute QR, computes the QR factorization of the leading dense block A00. The second task, called Ap-

ply left Qt of dense QR, applies the Householder transformations obtained in the previous task (and stored

in A00) to block A01. The third task performs the same operation onto A02. The fourth task is the annhil-

iation of block A10, which is called Compute QR of td QR (where ‘td‘ means triangular-dense). The fifth

task, called Apply left Qt of td QR, applies the transformations of the previous task to blocks A01 and A11.

The sixth task performs the same operation onto A02 and A12. Analogously, the seventh, eighth, and ninth

tasks perform the same as tasks fourth, fifth, and sixth to the first and third row of blocks. By taking advan-

tage of the zeros present in the factorizations for each iteration, a well-implemented QR AB costs essentially

no more flops than the traditional blocked unpivoted QR. The algorithm is described in greater detail in

[106, 105, 22].

4.4.2 Algorithms-by-blocks for randUTV

An algorithm-by-blocks for randUTV, which we will call randUTV AB, performs mostly the same

operations as the original. The key difference is that the operations’ new representations allow greater

flexibility in the order of completion. We will discuss in some detail how this plays out in the first step of

the algorithm. First, choose a block size b (in practice, b = 128 or 256 works well). For simplicity, assume

b divides both m and n evenly. Recall that at the beginning of randUTV, T is initialized with T := A.
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? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(1) After Compute QR( A00 )

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(2) After Apply left Qt of Den-
se QR( A00, A01 )

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(3) After Apply left Qt of Den-
se QR( A00, A02 )

? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(4) After Compute td QR( A00,
A10 )

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(5) After Apply left Qt of td QR(
A00, A10, A01, A11 )

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

(6) After Apply left Qt of td QR(
A00, A10, A02, A12 )

? ? ? • • • • • •
· ? ? • • • • • •
· · ? • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •

(7) After Compute td QR( A00,
A20 )

• • • ? ? ? • • •
· • • ? ? ? • • •
· · • ? ? ? • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · ? ? ? • • •
· · · ? ? ? • • •
· · · ? ? ? • • •

(8) After Apply left Qt of td QR(
A00, A20, A01, A21 )

• • • • • • ? ? ?
· • • • • • ? ? ?
· · • • • • ? ? ?
· · · • • • • • •
· · · • • • • • •
· · · • • • • • •
· · · • • • ? ? ?
· · · • • • ? ? ?
· · · • • • ? ? ?

(9) After Apply left Qt of td QR(
A00, A20, A02, A22 )

Figure 4.3: An illustration of the first tasks peformed by an algorithm-by-blocks for computing the QR fac-
torization. The ‘•’ symbol represents a non-modified element by the current task, ‘?’ represents a modified
element by the current task, and ‘·’ represents a nullified element by the current task (they are shown because
they store information about the Householder transformations that will be later used to apply them). The
continuous lines surround the blocks involved in the current task.
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Consider a partitioning of the matrix T

T →



T11 T12 · · · T1N

T21 T22 · · · T2N
...

...
. . .

...

TM1 TM2 · · · TMN


,

where each submatrix or block Tij is b × b, N = n/b, and M = m/b. Note that the rest of matrices (G,

Y , U , and V ) must also be accordingly partitioned. The submatrices Tij (and those of the rest of matrices)

are treated as the fundamental unit of data in the algorithm, so that each operation is expressed only in these

terms. For the first step of the algorithm, for instance:

1. Constructing V (0): The first step, Y (0) = (T ∗T )qT ∗G(0), is broken into several tasks that each

calculate the product of two blocks. In the simplified case where q = 0, we have M ×N products

of two blocks. The second step, the QR factorization of Y (0), uses an algorithm based on the

idea of updating a QR factorization when more rows are added to the input matrix. Thus, the

decomposition of each Y (0)
i is computed separately, and the resulting upper triangular factor R(0)

is updated after each step. See, e.g. [67, 105, 106] for details on this approach to QR factorization.

2. Constructing U (0): This step requires an unpivoted QR factorization of the same size as Y (0), so

same update-based algorithm used for Y (0) is used again here.

3. Computing SVD of T11: This step is the same in randUTV and randUTV AB. In both cases, T11

is interacted with as a single unit.

4. Updating T : The rest of randUTV AB involves the updating of T , i.e. the computations T ←

TV (0) and T ← (U (0))∗T . The computations are broken down into separate stages such that the

updating of each Tij is a different task.

4.4.3 The FLAME abstraction for implementing algorithm-by-blocks.

A nontrivial obstacle to implementing an algorithm-by-blocks is the issue of programmability. Using

the traditional approach of calls to a LAPACK implementation for the computational steps, keeping track of
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indexing quickly becomes complicated and error-prone.

The FLAME (Formal Linear Algebra Methods Environment) project [65, 72] is one solution to this

issue. FLAME is a framework for designing linear algebraic algorithms that departs from the traditional

index-based-loop methodology. Instead, the input matrix is interacted with as a collection of submatrices,

basing its loops on re-partitionings of the input.

The FLAME API [12] for the C language codifies these ideas, enabling a user of the API to code high

performance implementations of linear algebra algorithms at a high level of abstraction. Furthermore, the

methodology of the FLAME framework makes it a natural fit for use with an algorithm-by-blocks. Thus,

the actual code for the implementation of randUTV AB looks very similar to the written version of the

algorithm given in Figure 4.4.

4.4.4 Scheduling the operations for an algorithm-by-blocks.

The runtime system called SuperMatrix [22] exposes and takes advantage of parallelism in randUTV

AB. To understand how SuperMatrix schedules and executes suboperations, consider the problem of factor-

izing a matrix of 2× 2 blocks

A←

A00 A01

A10 A11

 ,

where each block is of size b× b. We will consider the case where the power iteration parameter q = 0 for

simplicity.

Execution of the program proceeds in two phases: the analysis stage and the execution stage. In

the first stage, instead of executing the code sequentially, the runtime builds a list of tasks recording the

dependency information associated with each operation and placing it in a queue. An example of the queue

built up by the runtime for randUTV AB for the case that A ∈ Rn×n and the block size is b = n/2 is given

in Figure 4.5.

In the second stage, the scheduler/dispatcher stage, the tasks in the queue are dynamically scheduled

and executed. Each task is executed as soon as its input data becomes available and a core is free to complete

the work. Figure 4.6 illustrates the execution of the first half of randUTV AB for a matrix A ∈ Rn×n with
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Algorithm: [U, T, V ] := RANDUTV AB(A, q, nb)

V := EYE(n(A), n(A))
U := EYE(m(A),m(A))

Partition A→
(
ATL ATR
ABL ABR

)
, V →

(
VL VR

)
, U →

(
UL UR

)
whereATL is 0× 0, VL has 0 columns, UL has 0 columns

while m(ATL) < m(A) do

Determine block size b = min(nb, n(ABR))
Repartition(

ATL ATR
ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22

,(
VL VR

)
→
(
V0 V1 V2

)
,
(
UL UR

)
→
(
U0 U1 U2

)
whereA11 is b× b, V1 has b rows, U1 has b rows

G := GENERATE IID STDNORM MATRIX(m(A)−m(A00), nb)

Y :=

((
A11 A12

A21 A22

)∗(
A11 A12

A21 A22

))q (
A11 A12

A21 A22

)∗
G

[Y, TV ] := UNPIVOTED QR(Y )(
A11 A12

A21 A22

)
:=

(
A11 A12

A21 A22

)
−
(
A11 A12

A21 A22

)
WV TVW

∗
V(

V1 V2
)

:=
(
V1 V2

)
−
(
V1 V2

)
WV TVW

∗
V

[

(
A11

A21

)
, TU ] := UNPIVOTED QR

((
A11

A21

))
(
A12

A22

)
:=

(
A12

A22

)
−W ∗UT ∗UWU

(
A12

A22

)
(
U1 U2

)
:=
(
U1 U2

)
−
(
U1 U2

)
WUTUW

∗
U

[A11, USV D, VSV D] := SVD(A11)
A01 := A01VSV D
A12 := U∗SV DA12

V1 := V1VSV D
U1 := U1USV D

Continue with(
ATL ATR
ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22

,(
VL VR

)
←
(
V0 V1 V2

)
,
(
UL UR

)
←
(
U0 U1 U2

)
endwhile

Figure 4.4: The randUTV algorithm adapted for algorithms-by-blocks written with the FLAME
methodology/notation. In this algorithm, WV and WU are the unit lower trapezoidal matrices

stored below the diagonal of Y and
(
A11

A21

)
, respectively.
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block size b = n/2.

4.5 Efficient distributed memory randUTV implementation.

Distributed memory computing architectures are commonly used for solving large problems as they

extend both memory and processing power over single systems. In this section, we discuss an efficient im-

plementation of randUTV for distributed memory. In Section 4.5.1, we discuss the algorithmic overview

and present the software used in the implementation. Section 4.5.2 familiarizes the reader with ScaLA-

PACK’s structure and software dependencies. In Section 4.5.3 we review ScaLAPACK’s data distribution

scheme, and in Section 4.5.4 we describe how the building blocks of randUTV operate in the distributed

memory environment.

4.5.1 Overview of implementation.

The distributed memory implementation of randUTV uses the standard blocked algorithm of [89]

rather than the algorithm-by-blocks (as discussed in Section 4.4.2) since this methodology usually does not

render high performances on distributed memory machines. Like in some other factorizations (QR, SVD,

etc.), when applying randUTV to a matrix with m� n, it is best to perform an unpivoted QR factorization

first and then perform the randUTV factorization on the resulting square triangular factor. This method is

usually applied in other architectures such as shared memory.

The ScaLAPACK software library [18, 28, 30] was used in the presented implementation. This library

provides much of the functionality of LAPACK for distributed memory environments. It hides most of the

communication details from the developer with an object-based API, where each matrix’s object information

is passed to library routines. This design choice enhances the programmability of the library, enabling codes

to be written similarly to a standard LAPACK implementation. However, as it is implemented in Fortran-77,

its object orientation is not perfect and the programming effort is larger.
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Operation Operands
In In/Out

Generate normal random G0

Generate normal random G1

Gemm tn oz: C = A∗B A00 G0 Y0
Gemm tn oz: C = A∗B A01 G0 Y1
Gemm tn oo: C = C +A∗B A10 G1 Y0
Gemm tn oo: C = C +A∗B A11 G1 Y1
Comp dense QR Y0, S0
Copy Y0 E0

Comp td QR Y0, Y1, S1
Apply right Q of dense QR E0 S0 A00

Apply right Q of dense QR E0 S0 A10

Apply right Q td QR Y1 S1 A00, A01

Apply right Q td QR Y1 S1 A10, A11

Comp dense QR A00, X0

Copy A00 D0

Comp td QR A00, A10, X1

Apply left Qt of dense QR D0 X0 A01

Apply left Qt of td QR A10 X1 A01, A11

Keep upper triang A00

Set to zero A10

Svd of block A00, P0, Q0

Gemm abta: A = B∗A P0 A01

Svd of block A11, P0, Q0

Gemm aabt: A = AB∗ Q0 A01

Figure 4.5: A list of the operations queued up by the runtime during the analyzer stage in the simplified
case that the block size is b = n/2. The “In” column specifies pieces of required input data. The “In/Out”
column specifies required pieces of data that will be altered upon completion of the operation. At run time,
the operations may be completed in any order that does not violate the data dependencies encoded in the
table.



104

Operation Operands
In In/Out

Generate normal random G0 X
Generate normal random G1 X
Gemm tn oz: C = A∗B A00 X G0 Y0 X
Gemm tn oz: C = A∗B A01 X G0 Y1 X
Gemm tn oo: C = C +A∗B A10 X G1 Y0
Gemm tn oo: C = C +A∗B A11 X G1 Y1
Comp dense QR Y0, S0 X
Copy Y0 E0 X
Comp td QR Y0, Y1, S1 X
Apply right Q of dense QR E0 S0 A00 X
Apply right Q of dense QR E0 S0 A10 X
Apply right Q td QR Y1 S1 A00, A01 X
Apply right Q td QR Y1 S1 A10, A11 X

(1) First half of the original table

Operands
In In/Out

A00 X G0 X Y0 X
A01 X G0 X Y1 X
A10 X G1 X Y0
A11 X G1 X Y1

Y0, S0 X
Y0 E0 X

Y0, Y1, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X
(2) After second operation

Operands
In In/Out

A10 X G1 X Y0 X
A11 X G1 X Y1 X

Y0, S0 X
Y0 E0 X

Y0, Y1, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X
(3) After fourth operation

Operands
In In/Out

Y0 X, S0 X
Y0 E0 X

Y0, Y1 X, S1 X
E0 S0 A00 X
E0 S0 A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X

(4) After sixth operation

Operands
In In/Out

Y0 X E0 X
Y0, Y1 X, S1 X

E0 S0 X A00 X
E0 S0 X A10 X
Y1 S1 A00, A01 X
Y1 S1 A10, A11 X
(5) After seventh operation

Figure 4.6: An illustration of the execution order of the first seven steps of the first half of randUTV AB
for an n × n matrix using the SuperMatrix runtime system when the block size is n/2. A check mark ‘X’
indicates the value is available. The execution order may change depending on the number of available cores
in the system.
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4.5.2 Software dependencies.

ScaLAPACK (scalable LAPACK) was designed to be portable to a variety of computing distributed

memory architectures and relies on only two external libraries (since PBLAS is considered an internal

module). The first one is the sequential BLAS (Basic Linear Algebra Subroutines) [81, 39, 37], provid-

ing specifications for the most common operations involving vectors and matrices. The second one is the

BLACS (Basic Linear Algebra Communication Subroutines), which, as the name suggests, is a specification

for common matrix and vector communication tasks [5].

The PBLAS library is a key module inside ScaLAPACK. It comprises most of BLAS routines re-

written for use in distributed memory environments. This library is written using a combination of the

sequential BLAS library and the BLACS library. Just as the BLAS library contains the primary building

blocks for LAPACK routines, the PBLAS library contains the foundation for the routines in ScaLAPACK.

The diagram in Figure 4.7 illustrates the dependencies of the ScaLAPACK modules. The PBLAS library

serves a dual purpose in the library. First, because the PBLAS library mirrors the sequential BLAS in

function, the top level of code in main ScaLAPACK routines look largely the same as the corresponding

LAPACK routines. Second, the PBLAS library adds a layer of flexibility to the code regarding the mapping

of operations. Traditionally, one process is assigned to each core during execution, but with a parallel BLAS

implementation, a combination of processes and threads may be used. This adjustability gives more options

when mapping processes onto cores just before the program execution starts.

4.5.3 ScaLAPACK data distribution scheme.

The strategy for storing data in a distributed memory computation has a significant impact on the

communication cost and load balance during computation. All ScaLAPACK routines assume the so-called

“block-cyclic distribution” scheme [29]. Since it involves several user-defined parameters, understanding

this method is vital to building an efficient implementation.

The block-cyclic distribution scheme involves four parameters. The first two, mb and nb, define the

block size, i.e. the dimensions of the submatrices used as the fundamental unit for communication among
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Figure 4.7: The dependencies of the modules of ScaLAPACK. A solid line means the dependence occurs in
the main routines (drivers), and a dashed line means the dependence only occurs in auxiliary routines.

processes. Despite this flexibility, nearly all the main routines usually employ mb = nb for the purpose of

simplicity. The last two parameters, typically called P and Q, determine the shape of the logical process

grid.

To understand which elements of the input matrix A are stored in which process, we may visualize

the matrix as being partitioned into “tiles.” In the simple case where mBP and nbQ divide m and n,

respectively, every tile is of uniform size. Each tile is composed of P × Q blocks, each of size mb × nb.

Finally, every process is assigned a position on the tile grid. The block in that position on every tile is stored

in the corresponding process. For example, the block in the (0, 0) spot in each tile belongs with the first

process P0, the block in the (0, 1) spot in each tile belongs to the second process P1, and so on. An example

is given in Figure 4.8 to demonstrate this.

4.5.4 Building blocks of randUTV

In this section we examine further the randUTV algorithm in order to understand which portions

of the computation are most expensive (when no orthonormal matrices are built) and how these portions

perform in the distributed memory environment. Judging by numbers of flops required, the three portions

of the computation that take the most time are the following:
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Partition A into blocks; each
small square is a 4×4 submatrix

Group blocks into tiles

P0 P0

P0 P0

Assign blocks in every (0, 0)
tile position to processor P0

P0

P0 P0

P0P1

P1 P1

P1P2

P2 P2

P2

P3

P3 P3

P3P4

P4 P4

P4P5

P5 P5

P5

Assign remaining tile positions
(i, j) to remaining processors

Figure 4.8: A depiction of the block-cyclic data distribution method for a matrix A with m = 16, n = 24.
The parameters for this distribution are mb = 4, nb = 4, P = 2, Q = 3. Each tile is a grid of P ×Q blocks.

1. applying V (i), stage α to A,

2. applying U (i), stage α to A,

3. building Y .

To determine the fundamental operations involved in items i and ii, first recall that V (i) and U (i) are

both formed from a Householder reduction on matrices with b columns to upper trapezoidal form. As such,

we may express them in the so-called compact WY form (see Section 4.2.3) as

V (i) = I −W (i)
V T

(i)
V (W

(i)
V )∗,

U (i) = I −W (i)
U T

(i)
U (W

(i)
U )∗,

where T (i)
V , T

(i)
U ∈ Rb×b are upper triangular, and W (i)

V ∈ Rn×b and W (i)
U ∈ Rm×b are lower trapezoidal.

Thus the computations AV (i) and (U (i))∗A each require three matrix-matrix multiplications where one
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dimension of the multiplication is small (recall b � n). Note that the first computation (AV (i)) is more

expensive than the second one ((U (i))∗A) because the first one processes all the rows of A (the right part of

A), whereas the second one only processes some rows of A (the bottom right part of A).

It is now evident that items i and ii use primarily xgemm and xtrmm from the BLAS. Furthermore,

item iii is strictly a series of xgemm operations, so we see that matrix-matrix multiplications form the

dominant cost within randUTV.

xgemm for distributed memory, which in the PBLAS library is titled pxgemm, is well-suited for

efficiency in this environment. In the reference implementation of PBLAS, pxgemm may execute one of

three different algorithms for matrix multiplication:

1. pxgemmAB: The outer-product algorithm is used; matrix C remains in place.

2. pxgemmBC: The inner-product algorithm is used; matrix A remains in place.

3. pxgemmAC: The inner-product algorithm is used; matrix B remains in place.

xgemm chooses among the algorithms by estimating the communication cost for each, depending on matrix

dimensions and parameters of the storage scheme. The inherent flexibility of the matrix-matrix multiply

enables good pxgemm implementations to overlap the communication with the processing of flops. Thus,

randUTV for distributed memory obtains better speedups when more cores are added than competing im-

plementations of SVD and CPQR algorithms for distributed memory.

4.6 Performance analysis

In this section, we investigate the speed of our new implementations of the algorithm for computing

the randUTV factorization, and compare it to the speeds of highly optimized methods for computing the

SVD and the column pivoted QR (CPQR) factorization. In all the experiments double-precision real matrices

were processed.

To fairly compare the different implementations being assessed, the flop count or the usual flop rate

could not be employed since the computation of the SVD, the CPQR, and the randUTV factorizations re-

quire a very different number of flops (the dominant n3-term in the asymptotic flop count is very different).
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Absolute computational times are not shown either since they vary greatly because of the large range of

matrix dimensions employed in the experiments. Therefore, scaled computational times (absolute compu-

tational times divided by n3) are employed. Hence, the lower the scaled computational times, the better the

performances are. Since all the implementations being assessed have asymptotic complexity O(n3) when

applied to an n × n matrix, these graphs better reveal the computational efficiency. Those scaled times are

multiplied by a constant (usually 1010) to make the figures in the vertical axis more readable.

Although most of the plots show scaled computational times, a few plots show speedups. The speedup

is usually computed as the quotient of the time obtained by the serial implementation (on one core) and the

time obtained by the parallel implementation (on many cores). Thus, this concept communicates how many

times faster the parallel implementation is compared to the serial one. Hence, the higher the speedups, the

better the performances of the parallel implementation are. This measure is usually very useful in checking

the scalability of an implementation. Note that in this type of plots every implementation compares against

itself on one core.

4.6.1 Computational speed on shared-memory architectures

The computer used in the experiments on shared-memory architectures was based on Intel processors.

It featured two Intel Xeonr CPUs E5-2695 v3 (2.30 GHz), with 28 cores and 128 GiB of RAM in total. In

this computer the so-called Turbo Boost mode of the two CPUs was turned off in our experiments.

Its OS was GNU/Linux (Version 2.6.32-504.el6.x86 64). GCC compiler (version 6.3.0 20170516)

was used. Intel(R) Math Kernel Library (MKL) Version 2018.0.1 Product Build 20171007 for Intel(R)

64 architecture was employed since LAPACK routines from this library usually deliver much higher per-

formances than LAPACK routines from the Netlib repository. When using routines of MKL’s LAPACK,

optimal block sizes determined by that software were employed.

In a few experiments, in addition to MKL’s LAPACK routines, we also assessed Netlib’s LAPACK

3.4.0 routines. In this case, the NETLIB term is used. When using routines of Netlib’s LAPACK, several

block sizes were employed and best results were reported. For the purpose of a fair comparison, these

routines from Netlib were linked to the BLAS library from MKL.
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All the matrices used in the experiments were randomly generated. Similar results were obtained on

other types of matrices, such as those generated with the following singular values: σi = 1, 1 ≤ i < n, σp =

2 · 10−12, and random orthonormal transformations.

Unless explicitely stated otherwise, all the experiments employed the 28 cores in the computer.

The following implementations were assessed in the experiments of this subsection:

• MKL SVD: The routine called dgesvd from MKL’s LAPACK was used to compute the Singular

Value Decomposition.

• NETLIB SVD: Same as the previous one, but the code for computing the SVD from Netlib’s LA-

PACK was employed, instead of MKL’s.

• MKL SDD: The routine called dgesdd from MKL’s LAPACK was used to compute the Singular

Value Decomposition. Unlike the previous SVD, this one uses the divide-and-conquer approach.

This code is usually faster, but it requires a much larger auxiliary workspace when the orthonor-

mal matrices are built (about four additional matrices of the same dimension as the matrix being

factorized).

• NETLIB SDD: Same as the previous one, but the code for computing the SVD with the divide-and-

conquer approach from Netlib’s LAPACK was employed, instead of MKL’s.

• MKL CPQR: The routine called dgeqp3 from MKL’s LAPACK was used to compute the column-

pivoting QR factorization.

• RANDUTV PBLAS (randUTV with parallel BLAS): This is the traditional implementation for

computing the randUTV factorization that relies on the parallel BLAS to take advantage of all the

cores in the system. The parallel BLAS library from MKL was employed with these codes for

the purpose of a fair comparison. Our implementations were coded with libflame [125, 124]

(Release 11104).

• RANDUTV AB (randUTV with Algorithm-by-Blocks): This is the new implementation for com-

puting the randUTV factorization by scheduling all the tasks to be computed in parallel, and
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then executing them with serial BLAS. The serial BLAS library from MKL was employed with

these new codes for the purpose of a fair comparison. Our implementations were coded with

libflame [125, 124] (Release 11104).

• MKL QR: The routine called dgeqrf from MKL’s LAPACK was used to compute the QR fac-

torization. Although this routine does not reveal the rank, it was included in some experiments as a

performance reference for the others.

For every experiment, two plots are shown. The left plot shows the performances when no orthonor-

mal matrices are computed. In this case, just the singular values are computed for the SVD, just the upper

triangular factor R is computed for the CPQR and the QR, and just the upper triangular factor T is com-

puted for the randUTV. In contrast, the right plot shows the performances when all orthonormal matrices

are explicitly formed in addition to the singular values (SVD), the upper triangular matrix R (CPQR), or the

upper triangular matrix T (randUTV). In this case, matrices U and V are computed for the SVD and the

randUTV, and matrix Q is computed for the CPQR and the QR. The right plot slightly favors CPQR and QR

since only one orthonormal matrix is formed.
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Figure 4.9: Performances of randUTV implementations versus block size on matrices of dimension 14000×
14000.

Figure 4.9 shows the scaled computational times obtained by both implementations for computing the

randUTV factorization (RANDUTV PBLAS and RANDUTV AB) on several block sizes when processing
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matrices of dimension 14000 × 14000. The aim of these two plots is to determine the optimal block sizes.

The other factorizations (SVD and CPQR) are not shown since in those cases we used the optimal block

sizes determined by Intel’s software. Optimal block sizes were around 128 for RANDUTV PBLAS; on the

other hand, optimal block sizes were around 384 for RANDUTV AB.
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Figure 4.10: Performances versus matrix dimensions for SVD implementations for both Netlib and MKL
libraries.

Figure 4.10 compares the performances of four implementations for computing the SVD factoriza-

tion: MKL SVD (usual SVD from the MKL library), MKL SDD (divide-and-conquer SVD from the MKL

library), NETLIB SVD (usual SVD from the Netlib library), and NETLIB SDD (divide-and-conquer SVD

from the Netlib library). Performances are shown with respect to matrix dimensions. Block sizes similar to

those in the previous figure were used for Netlib’s routines and the best results were reported. When no or-

thonormal matrices are computed, both the traditional SVD and the divide-and-conquer SVD render similar

performances for this matrix type. In this case, MKL routines are up to 14.1 times as fast as Netlib’s routines.

When orthonormal matrices are computed, the traditional SVD is much slower than the divide-and-conquer

SVD. In this case, the MKL SVD routine is up to 24.4 times as fast as the NETLIB SVD, and the MKL

SDD routine is up to 3.4 times as fast as the NETLIB SDD. As can be seen, MKL’s codes for computing

the SVD are up to more than one order of magnitude faster than Netlib’s codes, thus showing the great

performances achieved by Intel. This is a remarkable achievement for so complex codes. Outperforming

these highly optimized codes can be really a difficult task.
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Figure 4.11: Performances versus matrix dimensions for randUTV implementations.

Figure 4.11 compares the performances of both implementations of randUTV (RANDUTV PBLAS

and RANDUTV AB) as a function of matrix dimensions. In both implementations, several block sizes were

tested (see above), and best results were reported. When no orthonormal matrices are built, RANDUTV AB

is between 1.7 (q = 0) and 2.4 (q = 2) times as fast as RANDUTV PBLAS for the largest matrix size.

When orthonormal matrices are built, RANDUTV AB is between 1.4 (q = 0) and 1.8 (q = 2) times as fast

as RANDUTV PBLAS for the largest matrix size.
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Figure 4.12: Performances versus matrix dimensions for the best implementations.

Figure 4.12 shows the performances of the best implementations as a function of the matrix dimen-

sions. When no orthonormal matrices are built, RANDUTV AB is between 1.4 (q = 0) and 0.9 (q = 2)

times as fast as MKL SDD for the largest matrix size. When orthonormal matrices are built, RANDUTV
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AB is between 5.1 (q = 0) and 3.9 (q = 2) times as fast as MKL SDD for the largest matrix size. Recall

that in this last case, in addition to being slower, MKL SDD requires a much larger auxiliary workspace

than RANDUTV AB (about four times as large). The speeds of RANDUTV AB, MKL SVD and MKL

SDD are so remarkable that they are even much faster than MKL CPQR, a factorization that requires much

fewer flops.
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Figure 4.13: Speedups versus number of cores for the best implementations on matrices of dimension
14000× 14000.

Figure 4.13 shows the speedups obtained by the best implementations on matrices of dimension

14000× 14000. Recall that in this plot every implementation compares against itself on one core. When no

orthonormal matrices are built, RANDUTV AB achieves a speedup between 15.6 (q = 0) and 15.8 (q = 2)

on 28 cores. When orthonormal matrices are built, RANDUTV AB achieves a speedup of 16.8 on 28 cores.

In both cases, its efficiency (speedup divided by the number of cores) is higher than 50 %.

The speedups of MKL SVD and MKL SDD are much lower than those of the RANDUTV AB when

no orthonormal matrices are built, and a bit lower when orthonormal matrices are built. The speedups of

MKL CPQR are usually much lower than those of the other factorizations in both cases, thus not being

scalable at all. As can be seen, the speedups of RANDUTV AB are similar (left plot) or even higher (right

plot) that those of the QR factorization. To conclude this analysis, the scalability of RANDUTV AB is

similar to those of the QR factorization, and much higher than the rest of the implementations.

In conclusion, RANDUTV AB is the clear winner over competing factorization methods in terms
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of raw speed when orthonormal matrices are required and the matrix is not too small (n & 4000). In

terms of scalability, RANDUTV AB outperforms the competition as well. Also, the algorithm-by-blocks

implementation gives noticeable speedup over the blocked PBLAS version. That RandUTV AB can compete

with MKL SVD at all in terms of speed is remarkable, given the large effort usually invested by Intel on

its sofware. This is evidenced by the fact that the MKL CPQR is left in the dust by both MKL SVD and

RANDUTV AB, each of which costs far more flops than MKL CPQR. The scalability results of RANDUTV

AB and its excellent timings evince its potential as a high performance tool in shared memory computing.

4.6.2 Computational speed on distributed-memory architectures

The experiments on distributed-memory architectures reported in this subsection were performed on

a cluster of HP computers. Each node of the cluster contained two Intel Xeonr CPU X5560 processors at

2.8 GHz, with 12 cores and 48 GiB of RAM in total. The nodes were connected with an Infiniband 4X QDR

network. This network is capable of supporting 40 Gb/s signaling rate, with a peak data rate of 32 Gb/s in

each direction.

Its OS was GNU/Linux (Version 3.10.0-514.21.1.el7.x86 64). Intel’s ifort compiler (Version

12.0.0 20101006) was employed. LAPACK and ScaLAPACK routines were taken from the Intel(R) Math

Kernel Library (MKL) Version 10.3.0 Product Build 20100927 for Intel(R) 64 architecture, since this li-

brary usually delivers much higher performances than LAPACK and ScaLAPACK codes from the Netlib

repository.

All the matrices used in these experiments were randomly generated since they are much faster to be

generated, and the cluster was being heavily loaded by other users.

The following implementations were assessed in the experiments of this subsection:

• SCALAPACK SVD: The routine called pdgesvd from MKL’s ScaLAPACK is used to compute

the Singular Value Decomposition (SVD).

• SCALAPACK CPQR: The routine called pdgeqpf from MKL’s ScaLAPACK is used to compute

the column-pivoted QR factorization.
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• PLIC CPQR: The routine called pdgeqp3 from the PLiC library (Parallel Library for Con-

trol) [11] is used to compute the column-pivoted QR factorization by using BLAS-3. This source

code was linked to the ScaLAPACK library from MKL for the purpose of a fair comparison.

• RANDUTV: A new implementation for computing the randUTV factorization based on the ScaLA-

PACK infrastructure and library. This source code was linked to the ScaLAPACK library from

MKL for the purpose of a fair comparison.

• SCALAPACK QR: The routine called dgeqrf from MKL’s ScaLAPACK is used to compute

the QR factorization. Although this routine does not reveal the rank, it was included in some

experiments as a reference for the others.

Like in the previous subsection on shared-memory architectures, for every experiment two plots are

shown. The left plot shows the performances when no orthonormal matrices are computed (the codes com-

pute just the singular values for the SVD, the upper triangular matrix R for the CPQR and the QR fac-

torizations, and the upper triangular matrix T for the randUTV factorization). The right plot shows the

performances when, in addition to those, all orthonormal matrices are explicitly formed (matrices U and V

for SVD and randUTV, and matrix Q for QR and CPQR). Recall that the right plot slightly favors CPQR

and QR since only one orthonormal matrix is built.
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Figure 4.14: Performances versus block size on 96 cores arranged as a 6× 16 mesh.

Figure 4.14 shows the performances of all the implementations described above on several block sizes
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when using 96 cores arranged as a 6× 16 mesh on matrices of dimension 25600× 25600. As can be seen,

most implementations perform slightly better on small block sizes, such as 32 and 64, the only exception

being PLiC CPQR, which performs a bit better on large block sizes when no orthonormal matrices are built.

Figure 4.15 shows the performances of all the implementations for many topologies on matrices of

dimension 20480× 20480. The top row shows the results on one node (12 cores), the second row shows the

results on two nodes (24 cores), the third row shows the results on four nodes (48 cores), and the fourth row

shows the results on eight nodes (96 cores). As can be seen, best topologies are usually p× q with p slightly

smaller than q.

Figure 4.16 shows the performances versus matrix dimensions on two different number of cores: 48

cores arranged as 4 × 12 (top row) and 96 cores arranged as 6 × 16 (bottom row). On the largest matrix

dimension on 48 cores, when no orthonormal matrices are built, randUTV is between 5.4 (q = 0) and 2.8

(q = 2) times as fast as the SVD, whereas when orthonormal matrices are built, randUTV is between 6.6

(q = 0) and 4.3 (q = 2) times as fast as the SVD. On the largest matrix dimension on 96 cores, when no

orthonormal matrices are built, randUTV is between 3.4 (q = 0) and 1.8 (q = 2) times as fast as the SVD,

whereas when orthonormal matrices are built, randUTV is between 6.7 (q = 0) and 4.5 (q = 2) times as fast

as the SVD. On medium and large matrices, performances of ScaLAPACK CPQR are much lower than those

of randUTV, whereas performances of PLiC CPQR are more similar to those of randUTV. Nevertheless,

recall that the precision of CPQR is usually much smaller than that of randUTV.

In distributed-memory applications the traditional approach creates one process per core. However,

creating fewer processes and then a corresponding number of threads per process can improve performances

in some cases. Obviously, the product of the number of processes and the number of threads per process

must be equal to the total number of cores. The advantage of this approach is that the creation of fewer

processes reduces the communication cost, which is usually the main bottleneck in distributed-memory

applications. In the case of linear algebra applications, creating and using several threads per process can

be easily achieved by employing shared-memory parallel LAPACK and BLAS libraries. Nevertheless, great

care must be taken to ensure a proper pinning of processes to cores, since otherwise performances drop

markedly. This was achieved by using the -genv I MPI PIN DOMAIN socket flag when executing
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the mpirun/mpiexec command in the machine used in the experiments.

Figure 4.17 shows the scaled timings of the factorizations of matrices of dimension 25600 × 25600

on 96 cores when using several configurations with different numbers of threads per process. These plots

include the results on a complete set of topologies to isolate the effect of the increased number of threads. As

usual, the left three plots show performances when no orthonormal matrices are built, whereas the right three

plots show performances when orthonormal matrices are built. The top row shows performances when one

process per core (96 processes) and then one thread per process are created (96× 1 = 96). The second row

shows performances when one process per two cores (48 processes) and then two threads per process are

created (48× 2 = 96). The third row shows performances when one process per three cores (32 processes)

and then three threads per process are created (32 × 3 = 96). As can be seen, the SVD only increases

performances when orthonormal matrices are created, whereas randUTV increases performances in both

cases (both with and without orthonormal matrices).

No ON matrices ON matrices
Threads per process Threads per process

Factorization 1 2 3 1 2 3
SVD 393.9 644.0 645.3 1494.1 1336.4 1318.0
randUTV q = 0 117.0 102.7 112.2 214.2 192.3 203.7
randUTV q = 1 168.6 142.5 160.1 272.1 232.3 251.4
randUTV q = 2 216.7 180.4 207.8 327.5 271.7 298.7

Table 4.1: Best timings in seconds of several topologies with 96 cores on matrices of dimension 25600 ×
25600 considering several number of threads per process.

Table 4.1 shows the best timings (in seconds) for several topologies with 96 cores so a finer detail

comparison can be achieved. Matrices being factorized are 25600× 25600. As can be seen, SVD increases

performances 13 % when orthonormal matrices are built, whereas randUTV with q = 2 improves perfor-

mances 20 % in both cases. Performances usually increase when using two threads per process, but they

remain similar or drop when using more than two threads per process.

Figure 4.18 shows the speedups obtained by all the implementations on matrices of dimension 20480×

20480. Recall that in this plot every implementation compares against itself on one core. The best topologies
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have been selected for the following number of cores: 3× 4 for 12 cores, 6× 4 for 24 cores, 4× 12 for 48

cores, and 6×16 for 96 cores. When no orthonormal matrices are built, speedups of randUTV on the largest

number of cores (96) are between 47.1 (q = 0) and 43.3 (q = 2). When orthonormal matrices are built,

speedups of randUTV on the largest number of cores (96) are between 49.3 (q = 0) and 44.7 (q = 2). In

both cases, the efficiency is close to 50 %. When no orthonormal matrices are built, speedups of randUTV

are a bit lower than those of QR factorization; when orthonormal matrices are built, speedups of randUTV

are a bit higher than those of QR factorization. In both cases, the speedups of randUTV are much higher

than those obtained by the SVD and the CPQR factorization, thus showing the great scalability potential of

this factorization.

In conclusion, randUTV is significantly faster than the available distributed memory implementations

of SVD. It also matches the best CPQR implementation tested. randUTV is known to reveal rank far better

than CPQR [89], so just matching the latter in terms of speed equates to a major gain in information at no

additional computational cost. Furthermore, randUTV is faster than even CPQR in the case that orthonormal

matrices are required. We finally observe that the potential for scalability of randUTV is a clear step above

competing implementations for rank-revealing factorizations in distributed memory.

Acknowledgements: The work of P.G. Martinsson was supported by the Office of Naval Research

(grant N00014-18-1-2354) and by the National Science Foundation (grant DMS-1620472).



120

12x1 6x2 4x3 3x4 2x6
1x12

Meshes with 12 cores

0

1

2

3

4
10

^1
0 

* t
 / 

n^
3 

(lo
we

r i
s b

et
te

r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

12x1 6x2 4x3 3x4 2x6
1x12

Meshes with 12 cores

0

2

4

6

8

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

24x1
12x2 8x3 6x4 4x6 3x8

2x12
1x24

Meshes with 24 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

24x1
12x2 8x3 6x4 4x6 3x8

2x12
1x24

Meshes with 24 cores

0

1

2

3

4

5

6

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 48 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x1
24x2

16x3
12x4 8x6 6x8

4x12
3x16

2x24
1x48

Meshes with 48 cores

0

1

2

3

4

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores

0.0

0.1

0.2

0.3

0.4

0.5

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh without ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

48x2
32x3

24x4
16x6

12x8
8x12

6x16
4x24

3x32
2x48

Meshes with 96 cores

0.0

0.5

1.0

1.5

2.0

10
^1

0 
* t

 / 
n^

3 
(lo

we
r i

s b
et

te
r)

Scaled time vs mesh with ON matrices
ScaLAPACK SVD
ScaLAPACK CPQR
PLiC CPQR
randUTV q=0
randUTV q=1
randUTV q=2
ScaLAPACK QR

Figure 4.15: Performances on several topologies on matrices of dimension 20480× 20480.
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Figure 4.16: Performances versus matrix dimensions on two different number of cores. The top row shows
results on 48 cores arranged as 4× 12; the bottom row shows results on 96 cores arranged as 6× 16.
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Figure 4.17: Performances on several topologies on matrices of dimension 25600× 25600.
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Figure 4.18: Speedups versus number of cores for all the implementations on matrices of dimension 20480×
20480.



Chapter 5

Efficient algorithms for computing rank-revealing factorizations on a GPU

Standard rank-revealing factorizations such as the singular value decomposition and column pivoted

QR factorization are challenging to implement efficiently on a GPU. A major difficulty in this regard is the

inability of standard algorithms to cast most operations in terms of the Level-3 BLAS. This paper presents

two alternative algorithms for computing a rank-revealing factorization of the form A = UTV∗, where U

and V are orthogonal and T is upper trapezoidal. Both algorithms use randomized projection techniques

to cast most of the flops in terms of matrix-matrix multiplication, which is exceptionally efficient on the

GPU. Numerical experiments illustrate that these algorithms achieve an order of magnitude acceleration

over finely tuned GPU implementations of the SVD while providing low rank approximation errors close to

that of the SVD.

5.1 Introduction

5.1.1 Rank-revealing factorizations

Given an m × n matrix A, it is often desirable to compute a factorization of A that uncovers some

of its fundamental properties. One such factorization, the rank-revealing factorization, is characterized as

follows. Consider a matrix factorization

A = U R V∗.

m× n m×m m× n n× n
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If R is partitioned as

R =

R11 R12

R21 R22

 ,
where R11 is k × k for some 1 ≤ k ≤ min(m,n), we will call the factorization rank-revealing if it satisfies

the following conditions:

1. σmin(R11) ≈ σk(A).

2. σmax(R22) ≈ σk+1(A).

This informal definition is a slight generalization of the usual definitions of rank revealing decompositions

that appear in the literature, minor variations of which appear in, e.g. [27, 114, 24, 26]. Rank revealing

factorizations are useful in solving problems such as least squares approximation [26, 25, 54, 80, 17, 56],

rank estimation [24, 118, 116], low rank approximation [83, 42, 77, 31, 9], and subspace tracking [16, 114],

among others.

Perhaps the two most commonly known and used rank revealing factorizations are the column pivoted

QR decomposition (CPQR) and the singular value decomposition (SVD).1 The SVD provides the theoret-

ically optimal rank revealing decomposition, in that for an SVD A = UDV∗, we have σmin(D(1 : k, 1 :

k)) = σi(A) and σmax(D(k+ 1 : m, k+ 1 : n)) = σk+1(A) for all 1 ≤ k ≤ min(m,n). The SVD has high

computational cost, however, and for large problems or iterative algorithms requiring such a computation

during each step, this cost is often prohibitive. In this case, one can turn to the CPQR, which is faster to

compute than the SVD but does not reveal rank as well.

A third choice is the rank revealing UTV factorization (RRUTV) [114, 119, 89, 49, 6]. An RRUTV

can be thought of as a compromise between the SVD and CPQR that is better at revealing the numerical

rank than the CPQR, and faster to compute than the SVD. Traditional algorithms for computing an RRUTV

have been deterministic and guarantee revealing the rank of a matrix up to a user-defined tolerance. It is not

used as widely as the aforementioned SVD and CPQR, though, except in a few settings such as subspace

tracking.
1 See Sections 5.2.3 and 5.2.2, respectively, for a brief overview of these factorizations.
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5.1.2 Challenges of implementing the SVD and the CPQR on a GPU

As focus in high performance computing has shifted towards parallel environments, the use of GPUs

to perform scientific computations has gained popularity and success [100, 84, 20]. The power of the GPU

lies in its ability to execute many tasks in parallel extremely efficiently, and software tools have rapidly

developed to allow developers to make full use of its capabilities. Algorithm design, however, is just as im-

portant. Classical algorithms for computing both the SVD and CPQR, still in use today, were designed with

a heavier emphasis on reducing the number of floating point operations (flops) than on running efficiently

on parallel systems. Thus, it is difficult for either factorization to maximally leverage the computing power

of a GPU.

For CPQR, the limitations of the parallelism are well understood, at least relative to comparable ma-

trix computations. The most popular algorithm for computing a CPQR uses Householder transformations

and chooses the pivot columns by selecting the column with the largest norm. We will refer to this algorithm

as HQRCP. See Section 5.2.3 for a brief overview of HQRCP, or, e.g. [21, 54] for a thorough description.

Given a sequence of matrix operations, it is well known that an appropriate implementation using Level-3

BLAS, or matrix-matrix, operations will run more efficiently on modern processors than an optimal imple-

mentation using Level-2 or Level-1 BLAS [19]. This is largely due to the greater potential for the Level-3

BLAS to make more efficient use of memory caching in the processor. HQRCP as written originally in [54]

uses no higher than Level-2 BLAS. Quintana-Ortı́ et al. developed HQRCP further in [107], casting about

half of the flops in terms of Level-3 BLAS kernels. Additional improvement in this area, though, is difficult

to find for this algorithm, as the process of selecting pivot columns inherently prevents full parallelization.

The situation for the SVD is even more bleak. It is usually computed in two stages. The first is a

reduction to bidiagonal form via, e.g. Householder reflectors. Only about half the flops in this computation

can be cast in terms of the Level-3 BLAS, similarly (and for similar reasons) to HQRCP. The second stage

is the computation of the SVD of the bidiagonal matrix. This is usually done with either an iterative al-

gorithm (a variant of the QR algorithm) or a recursive algorithm (divide-and-conquer) which reverts to the

QR algorithm at the base layer. See [122, 57, 33, 63] for details. The recursive option inherently resists
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parallelization, and the current widely-used implementations of the QR approach are cast in terms of an

operation that behaves like a Level-2 BLAS.2

5.1.3 Proposed algorithms

In this paper, we present two randomized algorithms for computing an RRUTV. Both algorithms are

designed to run efficiently on GPUs in that the majority of their flops are cast in terms of matrix-matrix

multiplication. We show through extensive numerical experiments in Section 5.5 that each reveals rank

nearly as well as the SVD but often costs less than HQRCP to compute on a GPU. For matrices with

uncertain or high rank, then, these algorithms warrant strong consideration for this computing environment.

The first algorithm POWERURV, discussed in Section 5.3, was first introduced in the tech report [58].

POWERURV is built on another randomized RRUTV algorithm developed by Demmel et al. in [35], adding

better rank revelation at a tolerable increase in computational cost. The algorithm itself is quite simple,

capable of description with just a few lines of code. The simplicity of its implementation is a significant

asset to developers, and it has just one input parameter, whose effect on the resulting calculation can easily

be understood.

The second algorithm, RANDUTV, was first presented in [89]. RANDUTV is a blocked algorithm,

meaning it operates largely inside a loop, “processing” multiple columns of the input matrix during each

iteration. Specifically, for an input matrix A ∈ Rm×n with m ≥ n,3 a block size b is chosen, and the bulk

of RANDUTV’s work occurs in a loop of p = dn/be steps. During step i, orthogonal matrices U(i) and

V(i) are computed which approximate singular vector subspaces of a relevant block of T(i−1). Then, T(i) is

formed with

T(i) := (U(i))∗T(i−1)V(i).

The leading ib columns of T(i) are upper triangular (see Figure 5.1 for an illustration of the sparsity pattern),

so we say that RANDUTV drives A to upper triangular form b columns at a time. After the final step in the
2 The QR algorithm can be cast in terms of Level-3 BLAS, but for reasons not discussed here, this approach has not yet been

adopted in most software. See [127] for details.
3 if m < n, we may simply factorize the transpose and take the transpose of the result.
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loop, we obtain the final T, U, and V factors with

T := T(p),

U := U(1)U(2) · · ·U(p),

V := V(1)V(2) · · ·V(p).

See Section 5.4 for the full algorithm. A major strength of RANDUTV is that it may be adaptively stopped

at any point in the computation, for instance when the singular value estimates on the diagonal of the T(i)

matrices drop below a certain threshold. If stopped early, the algorithm incurs only a cost of O(mnk) for

an m × n input matrix. Each matrix U(i) and V(i) is computed using techniques similar to that of the

randomized SVD [69], which spends most of its flops in matrix multiplication and therefore makes efficient

use of GPU capabilities.

In this paper, we propose several modifications to the RANDUTV algorithm given in [89]. These

changes are made with the titular computing environment in mind, knowing that matrix-matrix multipli-

cation is far more efficient on a GPU than unpivoted QR, RANDUTV’s other building block. The revised

algorithm enhances the rank revealing properties of the resulting RRUTV factorization while keeping the

computational cost relatively low.

Remark 14 (RAM limitations). In this manuscript, we restrict attention to the case where all the data used

in the computation fits in RAM on the GPU, which somewhat limits the size of matrices that can be handled.

(For instance, in the numerical experiments reported in Section 5.5, the largest problem size we could handle

involved matrices of size about 15 000 × 15 000.) The techniques can be modified to allow larger matrices

to be handled and for multiple GPUs to be deployed, but we leave this extension for future work.

5.1.4 Outline of paper

In Section 5.2, we review previous work in rank-revealing factorizations, discussing competing meth-

ods as well as previous work in randomized linear algebra that is foundational for the methods presented in

this article. Section 5.3 presents the first algorithmic contribution of this article, POWERURV. In Section

5.4, we discuss and build on the recently developed RANDUTV algorithm, culminating in a modification
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of the algorithm RANDUTV BOOSTED with greater potential for low rank estimation. Finally, Section 5.5

presents numerical experiments which demonstrate the computational efficiency of POWERURV and RAN-

DUTV BOOSTED as well as their effectiveness in low rank estimation.

5.2 Preliminaries

5.2.1 Basic notation

In this manuscript, we write A ∈ Rm×n to denote a real-valued matrix with m rows and n columns,

and A(i, j) refers to the element in the i-th row and j-th column of A. The indexing notation A(i : j, k : l)

is used to reference the submatrix of A consisting of the entries in the i-th through j-th rows of the k-th

through l-th columns. σi(A) is the i-th singular value of A, and A∗ is the transpose. An orthonormal matrix

is a matrix whose columns have unit norm and are pairwise orthogonal, and an orthogonal matrix is a square

orthonormal matrix. The default norm ‖ · ‖ is the spectral norm.

5.2.2 The Singular Value Decomposition (SVD)

Let A ∈ Rm×n and p = min(m,n). Then the singular value decomposition (SVD) of A [57, 122,

116] is given by

A = U Σ V∗,

m× n m×m m× n n× n

where U and V are orthogonal and Σ is diagonal. When m 6= n, we may also speak of the economic SVD

of A, given by

A = U Σ V∗,

m× n m× p p× p p× n

in which case either U or V is orthonormal instead of orthogonal. The diagonal elements {σi}pi=1 of Σ are

the singular values of A and satisfy σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. The columns ui and vi of U and V are called

the left and right singular vectors, respectively, of A. Importantly, the SVD provides theoretically optimal

rank-k approximations to A. Specifically, the Eckart-Young-Mirsky Theorem [45, 98] states that given the
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SVD of a matrix A and a fixed k ∈ {1, 2, . . . , p}, we have that

‖A−U(:, 1 : k)Σ(1 : k, 1 : k)(V(:, 1 : k))∗‖ = inf{‖A− B‖ : B has rank k}.

5.2.3 The Column Pivoted QR (CPQR) decomposition

Given a matrix A ∈ Rm×n, a column pivoted QR decomposition (CPQR) is given by

A = Q R P∗,

m× n m×m m× n n× n

where Q is orthogonal, R is upper triangular, and P is a permutation matrix. If m > n, then any CPQR can

be reduced to the “economic” CPQR

A = Q R P∗.

m× n m× n n× n n× n

The details of the most popular algorithm for computing such a factorization, called HQRCP hereafter, are

not essential to this article, but they may be explored by the reader in, e.g. [24, 57, 122, 116].

The rank-k approximations Q(:, 1 : k)R(1 : k, 1 : k)(P(:, 1 : k))∗ provided by HQRCP are usually

reasonable, though in some cases they can be alarmingly suboptimal [76]. These cases are rare, particularly

in practice, and HQRCP is so much faster than computing an SVD that HQRCP is used ubiquitously for

low rank approximation.

The special case when P = I is called a(n) (unpivoted) QR decomposition. The standard algorithm

for computing a QR factorization relies on Householder reflectors. We shall call this algorithm as HQR in

this article and refer the reader once again to textbooks such as [57, 122, 116] for a complete discussion.

For this article, it is only necessary to note that the outputs of HQR are the matrix R of the QR factorization

and a unit lower triangular matrix V ∈ Rm×p that can be used to build Q. QR decompositions have no

rank revealing properties, but in this article we make critical use of the fact that the leading p columns of

Q form an orthonormal basis for the column space of A. The lack of the pivoting matrix P also allows

the standard algorithm for computing a QR decomposition to rely more heavily on the level-3 BLAS than

HQRCP, translating to better performance in parallel environments.
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5.2.4 Efficiently applying products of Householder vectors to a matrix

Consider a matrix A ∈ Rn×n and a block size b such that 1 ≤ b ≤ n. Suppose that we have

determined b Householder matrices H such that

H∗bH
∗
b−1 · · ·H∗1A(:, 1 : b)

is upper trapezoidal. We have that

Hi = I− 2viv
∗
i , 1 ≤ i ≤ b,

where vi is the Householder vector associated with the transformation. Then the matrix H = H1H2 · · ·Hb

can be represented as

H = I− VTV∗,

where T ∈ Rb×b is upper triangular and V ∈ Rn×b is lower trapezoidal with columns containing the vi

[113]. The form I − VTV∗ of H is called the compact-WY representation of a product of Householder

reflectors. This representation reduces the storage requirement of H from O(n2) to O(nb + b2). More

importantly, when applying the matrices to A, the compact-WY form recasts the matrix-vector operations

at the core of

HbHb−1 · · ·H1A = (I− 2vbv
∗
b)(I− 2vb−1v∗b−1) · · · (I− 2v1v∗1)A

into matrix-matrix multiplications as in

HA = (I− VTV∗)A.

Taking full advantage of this representation is crucial for efficiently building factorizations on a GPU.

5.2.5 The UTV decomposition

Consider a matrix A ∈ Rm×n. A factorization

A = U T V∗.

m× n m×m m× n n× n
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where U and V are orthogonal and T is upper trapezoidal is called a UTV factorization. Note that the SVD

and CPQR are technically both examples of UTV factorizations. In the literature, however, a decomposition

is generally given the UTV designation only if that is its most specific label; we will continue this practice

in the current article. Thus, it is implied that T is upper trapezoidal but not diagonal, and V is orthogonal

but not a permutation.

The flexibility of the factors of a UTV decomposition allow it to act as a compromise between the

SVD and CPQR in that it is not too expensive to compute but can reveal rank quite well. A rank-revealing

UTV can also be updated and downdated easily; see [116, Ch. 5, Sec. 4] and [50, 102, 114] for details.

5.2.6 The randomized singular value decomposition

The randomized SVD (RSVD) [69] provides an approximate SVD of a matrix with low rank. Specif-

ically, given a matrix A ∈ Rm×n with rank k � min(m,n), the RSVD produces orthonormal matrices

U ∈ Rm×k and V ∈ Rn×k and diagonal matrix D ∈ Rk×k such that

A ≈ UDV∗.

The key to the algorithm is efficiently computing an orthonormal basis Q ∈ Rm×k for the column space of

A. This can be accomplished using randomized projections. An extremely simple way of building Q is the

following:

1. Draw a matrix G ∈ Rn×k with i.i.d. entries drawn from the standard normal distribution.

2. Compute Y = AG.

3. Calculate an orthonormal basis Q for Col(Y) via, e.g. HQR.

This method will yield a reasonably good approximation to the column space of A. However, for certain

matrices, particularly when the decay in singular values is slow, an improved approximation will be desired.

We may improve the approximation provided by Q in two ways:

(i) Oversampling: We may interpret Y as k different random projections onto the column space of

A. As shown in [69], the approximation of Col(Y) to Col(A) may be improved by gathering a few,
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say p, extra projections. In practice p = 5 or p = 10 is sufficient, adding very little additional

computational cost to the algorithm. Using a small amount of oversampling also improves the

expected error bounds and vastly decreases the probability of deviating from those bounds. Thus,

this technique makes the uses of randomization in the algorithm safe and reliable.

(ii) Power iteration: We may replace the sampling matrix A with (AA∗)qA for q ∈ N, a matrix with

the same column space as A but whose singular values are (σi(A))2q+1. The contributions of sin-

gular vectors that correspond to smaller singular values will be diminished using this new sampling

matrix, thus increasing the alignment of Col(Y) with the optimal approximation of Col(A). In

practice, choosing q to be 0, 1 or 2 gives excellent results. When using a power iteration scheme,

numerical linear dependence of the samples becomes a concern since the information will be lost

from singular vectors corresponding to singular values less than ε2q+1
machine. To stabilize the algorithm,

we build Y incrementally, orthonormalizing the columns of the intermediate matrix in between

applications of A and A∗.

These ideas are combined to produce the RANGE FINDER method of Algorithm 3.

Algorithm 3 Q = RANGE FINDER(A, k, p)
1: G =GENERATE NORM RAND IID(n(A), k + p)
2: Y = AG
3: [Q,∼] = HQR(Y)
4: for i = 1: q do
5: Y = A∗Q
6: [Q,∼] = HQR(Y)
7: Y = AQ
8: [Q,∼] = HQR(Y)
9: end for

Once Q is built, the rest of the RSVD algorithm uses only the standard techniques of matrix multipli-

cation, unpivoted QR factorization, and an SVD on a matrix of small dimensions. The full RSVD algorithm

is given in Algorithm 4.

Observe that once Q is found, we have that A ≈ QQ∗A. Therefore

A ≈ QQ∗A = (QÛ)DV∗ = UDV∗.
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Algorithm 4 [U,D,V] = RSVD(A, k)

1: Q =RANGE FINDER(A, k)
2: B = Q∗A
3: [Û,D,V] = SVD(B)
4: U = QÛ

Also note that though the SVD step of B may look expensive, it can be done quite inexpensively. We may

first perform an unpivoted QR factorization (O(nk2)) followed by an SVD for a k × k matrix (O(k3)) and

a matrix multiplication to update the right singular vectors (O(nk2)).

5.3 The POWERURV algorithm.

The POWERURV algorithm is a slight variation of a randomized algorithm proposed by Demmel et

al. [35] for computing a rank-revealing URV factorization of a given matrix. The modification we pro-

pose makes the method far more accurate in revealing the numerical rank, at only a marginal increase in

computational time in a GPU environment. POWERURV is remarkably simple to implement. In Section

5.3.1, we review previously published work from Demmel et al. which forms the conceptual foundation of

POWERURV. Section 5.3 lays out the basic version of the POWERURV algorithm, and Section 5.3.3 dis-

cusses an adjustment to the algorithm in Section 5.3 necessary for maintaining the rank-revealing properties

of the factorization.

5.3.1 A randomized algorithm for computing a UTV factorization proposed by Demmel, Du-

mitriu, and Holtz

In [35], Demmel et al. give a randomized algorithm RURV (randomized URV) for computing a rank

revealing factorization of a matrix. The algorithm can be written quite simply as follows:

1. Generate a matrix B ∈ Rn×n whose entries are independent, identically distributed standard Gaus-

sian variables, i.e. bij ∼ N (0, 1).

2. Compute the unpivoted QR factorization of B to obtain V,RB such that B = VRB .

3. Compute Â = AV∗.
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4. Perform an unpivoted QR factorization on Â to obtain U,R such that Â = UR.

Note that after step (4), we have

AV∗ = UR ⇒ A = URV,

a URV decomposition of A. With high probability, this factorization satisfies the rank-revealing properties

(a) σmin(R(1 : r, 1 : r)) ≈ σr(A), and

(b) if σr+1(A) � σr(A) and R(1 : r, 1 : r) is not too ill-conditioned, then σmax(R(r + 1 : n, r + 1 :

n)) ≈ σr+1(A).

A key advantage of this algorithm is its simplicity. Since it relies only on unpivoted QR and matrix mul-

tiplication computations, it can easily be shown to be stable (see [35] for the proof). Furthermore, both of

these operations are relatively well-suited for parallel computing environments like GPUs. Since they are

extremely common building blocks for problems involving matrices, highly optimized implementations for

both are readily available. Thus, a highly effective implementation of RURV may be quickly assembled by

a non-expert.

Demmel et al. find a use for RURV as a fundamental component of a fast, stable solution to the

eigenvalue problem. For this application, RURV is used iteratively, so not much is required of the accuracy

of the rank-revealing aspect of the resulting factorization. For other problems types such as low rank ap-

proximation, though, the output of RURV is markedly suboptimal. This is because the matrix V, used as a

sort of “pre-conditioner,” does not incorporate any information from the row of space of the input A. This

observation leads to the key idea of the powerURV algorithm, discussed in Section 5.3.

5.3.2 powerURV: A randomized algorithm enhanced by power iterations

The powerURV algorithm is inspired by the RURV of Section 5.3.1 combined with the observation

that the optimal matrix V to use for rank revealing purposes is the matrix whose columns are the right

singular vectors of the input matrix A. If such a V were used, then the columns of Â = AV would be the

left singular vectors of A scaled by its singular values. Thus finding the right singular vectors of A yields
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theoretically optimal low rank approximations. This subproblem is also as difficult as computing the SVD

of A, though, so we settle for choosing V as an efficiently computed approximation to the right singular

vectors of A.

A technique for efficiently computing a good approximation to the row space of A is used in the

previously discussed randomized SVD (see Section 5.2.6). Computation of V consists of three steps:

1. Generate a matrix G ∈ Rn×n whose entries are independent, identically distributed standard Gaus-

sian variables, i.e. gij ∼ N (0, 1).

2. Sample the row space of A by calculating Y = (A∗A)qG, where q is some small non-negative

integer.

3. Compute an orthonormal basis for the column space of Y with an unpivoted QR decomposition,

obtaining an orthogonal matrix V and upper triangular matrix S such that Y = VS.

The matrix Y can be thought of as a random projection onto the row space of A. Specifically, the

columns of Y are random linear combinations of the columns of (A∗A)qA∗. To examine the effect of q on

the accuracy of the approximation provided by V, let the SVD of A be given by A = QDX∗. Then we have

(A∗A)q = XD2qX∗.

Therefore, the larger the value of q, the faster the singular value decay of the sampled matrix, and the

lesser the contribution of smaller, noisier singular values to the columns of Y. Therefore, choosing q to be

large increases the quality of the low rank approximations at the cost of increasing the number of matrix

multiplications required. In practice, choosing q = 0, 1, or 2 produces high quality approximations while

maintaining good computational efficiency.

The complete instruction set for powerURV is given in Algorithm 5.

5.3.3 Maintaining orthonormality numerically

Unfortunately, Algorithm 5 is vulnerable to accumulation of roundoff errors. In particular, the

columns of Y will lose the information provided by singular vectors with corresponding singular value
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Algorithm 5 [U,R,V] = POWERURV(A, n)

1: G =GENERATE NORM RAND IID(n, n)
2: Y = (A∗A)qA∗G
3: [V,S] = HQR(Y)
4: Â = AV
5: [U,R] = HQR(Â)

smaller than ε1/(2q+1)
mach . This problem can be remedied by orthonormalizing the columns of the sampling

matrix in between each application of A or A∗. The result, Algorithm 6, yields precisely the same result

as Algorithm 5 when executed in exact arithmetic. Algorithm 6 is also more computationally expensive,

requiring 2q + 1 more unpivoted QR factorizations. In the absence of prior knowledge of the spectrum of

A, however, the orthonormalization is required to reliably obtain a high quality rank revealing factorization.

Algorithm 6 [U,R,V] = POWERURV STABLE(A, n)
1: G =GENERATE NORM RAND IID(n, n)
2: Y = A∗G
3: [V,S] = HQR(Y)
4: for i = 1: q do
5: Y = AV
6: [V,S] = HQR(Y)
7: Y = A∗V
8: [V,S] = HQR(Y)
9: end for

10: Â = AV
11: [U,R] = HQR(Y)

5.3.4 Relationship with RSVD

The POWERURV algorithm is closely connected with the standard randomized singular value de-

composition algorithm (RSVD). To describe the connection, let us briefly review the steps in the RSVD. Let

A ∈ Rm×n with m ≥ n. Given an integer ` < n, the RSVD builds an approximation to a truncated SVD

via the following steps: a random matrix (typically Gaussian) Grsvd ∈ Rn×` is drawn and the product

Yrsvd = (AA∗)qAGrsvd ∈ Rm×`, (5.1)

is evaluated. The columns Yrsvd are orthogonalized via an unpivoted QR factorization

Yrsvd = QrsvdRrsvd. (5.2)
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In other words, the columns of the m × ` matrix Qrsvd form an orthogonal basis for the range of Yrsvd.

Next, a deterministic SVD of Q∗rsvdA is computed to obtain

Q∗rsvdA = WrsvdΣrsvd(Vrsvd)∗, (5.3)

where Wrsvd ∈ R`×` is orthogonal, where Vrsvd ∈ Rn×` is orthonormal, and Σrsvd ∈ R`×` is diagonal

with non-negative entries. The final step is to define the m× ` matrix

Ursvd = QrsvdWrsvd. (5.4)

The end result is an approximate singular value decomposition

A ≈ UrsvdΣrsvdV∗rsvd.

To compare this process with POWERURV, we may summarize POWERURV with two steps. First,

the QR factorization of (AA∗)qG:

(AA∗)qG = VZ. (5.5)

Second, the QR factorization of AV:

AV = UR. (5.6)

The key claim in this section is that the first ` columns of the matrix U resulting form powerURV

have exactly the same approximation accuracy as the columns of the matrix Ursvd resulting from the RSVD,

provided that the same random matrix is used. To be precise, we have:

Lemma: Let A be an m × n matrix, let ` be a positive integer such that ` < min(m,n), let q be

a positive integer, and let G be a matrix of size n × n. Let A = URV∗ be the factorization resulting

from the powerURV algorithm, as defined by (5.5) and (5.6) and using G as the starting point. Let A ≈

UrsvdΣrsvdV∗rsvd be the approximate factorization resulting from RSVD, as defined by (5.1)– (5.4)), starting

with Grsvd = G(:, 1 : `). Suppose that the rank of (AA∗)qAGrsvd is no lower than the rank of A (this holds

with probability 1 when Grsvd is Gaussian). Then

U(:, 1 : `)U(:, 1 : `)∗A = UrsvdU∗rsvdA.
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Proof. We can without loss of accuracy assume that the matrix A has rank at least `. (If it is rank de-

ficient, then the proof we give will apply for a modified `′ = rank(A), and it is easy to see that adding

additional columns to the basis matrices will make no difference since in this case U(:, 1 : `)U(:, 1 : `)∗A =

UrsvdU∗rsvdA = A.)

We will prove that Ran(U(:, `)) = Ran(Ursvd), which immediately implies that the projectors U(:, 1 :

`)U(:, 1 : `)∗ and UrsvdU∗rsvd are identical. Let us first observe that restricting (5.5) to the first ` columns,

we obtain

(A∗A)qGrsvd = V(:, 1 : `)Z(1 : `, 1 : `). (5.7)

We can then connect Yrsvd and U(:, 1 : `) via a simple computation

Yrsvd
(5.1)
= (AA∗)qAGrsvd

= A(A∗A)qGrsvd

(5.7)
= AV(:, 1 : `)Z(1 : `, 1 : `)

(5.6)
= U(:, 1 : `)R(1 : `, 1 : `)Z(1 : `, 1 : `).

(5.8)

Next we link Ursvd and Yrsvd via

Ursvd
(5.4)
= QrsvdWrsvd

(5.2)
= YrsvdR−1rsvdWrsvd. (5.9)

Combining (5.8) and (5.9), we find that

Ursvd = U(:, 1 : `)R(1 : `, 1 : `)Z(1 : `, 1 : `)R−1rsvdWrsvd. (5.10)

The rank assumption implies that the ` × ` matrix R(1 : `, 1 : `)Z(1 : `, 1 : `)R−1rsvdWrsvd is non-singular,

which establishes that the matrices Ursvd and U(:, 1 : `) have the same range.

The equivalency established in the Lemma between RSVD and POWERURV allows for much of the

theory for analyzing the RSVD in [69] to directly apply to the powerURV algorithm.

It is important to note that while there is a close connection between RSVD and POWERURV, the

RSVD is able to attain substantially higher overall accuracy than powerURV since it can take advantage

of one additional application of A. (To wit, RSVD requires 2q + 2 applications of either A or A∗, while
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POWERURV requires only 2q + 1.) This additional application makes the first k columns of Ursvd a much

better basis than the first k columns of U, as long as k does not get close to `. (One might say that the matrix

Wrsvd rearranges the columns inside Qrsvd to make the leading columns much better aligned with the

corresponding singular vectors.) An additional way that the RSVD benefits from the additional application

of A is that the columns of Vrsvd end up being a far more accurate basis for the row space of A than the

columns of the matrix V resulting from the powerURV. This was of course expected since for q = 0, the

matrix V incorporates no information from A at all.

5.4 The RANDUTV algorithm.

RANDUTV is a blocked algorithm for computing a rank revealing UTV decomposition of a matrix.

It is tailored to run particularly efficiently on the GPU due to the fact that the bulk of its flops are cast in

terms of matrix-matrix multiplication. Throughout this section, A ∈ Rm×n is the input matrix. Without

loss of generality, we assume m ≥ n (if m < n, we may operate on A∗ instead). The block size b is a

user-defined parameter which in practice is usually a number such as 128 or 256. For simplicity, we assume

in this section that b divides n evenly.

In Section 5.4.1, we present the RANDUTV algorithm of [89]. Then, Sections 5.4.2 and 5.4.3 present

methods of modifying RANDUTV to enhance the rank-revealing properties of the resulting factorization.

Finally, in Section 5.4.4 we combine these methods with a bootstrapping technique to reduce the cost of

adding them to the algorithm, resulting in the revised algorithm RANDUTV BOOSTED.

5.4.1 The RANDUTV algorithm for computing a UTV decomposition

Given an input matrix A ∈ Rm×n, randUTV calculates a UTV factorization of A that is rank revealing

with high probability. The algorithm performs the bulk of its work in a loop that executes n/b iterations. In

the i-th iteration, a matrix T(i) is formed by the computation

T(i) := (U(i))∗T(i−1)V(i), (5.11)
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after 0 steps: after 1 step: after 2 steps:
T(0) := A T(1) := (U(1))∗T(0)V(1) T(2) := (U(2))∗T(1)V(2)

Figure 5.1: An illustration of the sparsity pattern followed by the first three T(i) for RANDUTV if n =
12, b = 3. RANDUTV continues until the entirety of T(i) is upper triangular. This figure was adapted from
[95].

where U(i) and V(i) are orthogonal matrices chosen to effect the desired sparsity and rank revealing prop-

erties of the final factorization. Similarly to other blocked factorization algorithms, the i-th step is meant to

“process” a set of b columns of T(i−1), so that after step i, T(i) satisfies the following sparsity requirements:

• T(i)(:, 1 : ib) is upper triangular, and

• the b× b blocks on the main diagonal of T(i)(:, 1 : ib) are themselves diagonal.

After the n/b-th iteration, T := T(n/b) is upper triangular, and the factorization is complete. The sparsity

pattern followed by the T(i) matrices is demonstrated in Figure 5.1. When the U and V matrices are desired,

they can be built with the computations

U := U(1)U(2) · · ·U(n/b),

V := V(1)V(2) · · ·V(n/b).

In practice, the T(i), U(i) and V(i) are not stored separately to save memory. Instead, the space for T,

U, and V is allocated at the beginning of randUTV, and at iteration i each is updated with

T← (U(i))∗TV(i),

V← VV(i),

U← UU(i),

where U(i) and V(i) may be discarded or overwritten after the iteration completes.



142

5.4.1.1 Optimal choices for U(i) and V(i).

To motivate the process of building U(i) and V(i), consider the first step of randUTV. We begin by

initializing T := A and creating a helpful partition

T =

T11 T12

T21 T22

 ,
where T11 is b× b. The goal is to construct V(1) and U(1) such that, after the update T← (U(1))∗TV(1),

1. T11 is upper triangular,

2. T21 = 0,

3. σmin(T11) ≈ σb(A),

4. σmax(T22) ≈ σb+1(A),

5. T11(k, k) ≈ σk(A), k = 1, 2, . . . , b.

Items (1) and (2) in the list are basic requirements for any UTV factorization, and the rest of the items relate

to the decomposition’s rank revealing properties.

The key observation is that if V(1) and U(1) were orthogonal matrices whose leading b columns

spanned the same subspace as the leading b right and left singular vectors, respectively, of A, items (2)-(4)

in the previous list would be satisfied perfectly. Items (1) and (5) could then be satisfied with an inexpensive

post-processing step: compute the SVD of T11 and update V(1) and U(1) accordingly.4 However, deter-

mining the singular vector subspaces is as difficult as computing a partial SVD of A. We therefore content

ourselves with the goal of building V(1) and U(1) such that the leading b columns are approximations of the

subspace spanned by the leading b right and left singular subspaces, respectively, of A.

5.4.1.2 Building V(i) and U(i).

To maintain simplicity in matrix dimensions, we will continue the thought of Section 5.4.1.1 of con-

sidering only the transformations in the first step, U(1) and V(1). Thanks to the observation of Section
4 Recall that T11 is b× b, where b � n, so this SVD is relatively cheap. See Remark 15 for details.
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5.4.1.1, our goal for building V(1) is to compute an orthogonal matrix such that the leading b columns of

V(1) span approximately the same subspace as the leading b right singular vectors of A. We can achieve this

goal efficiently by borrowing a key technique of the randomized SVD discussed in Section 5.2.6. Specifi-

cally, we build V(1) as follows:

1. Generate a matrix G ∈ Rn×b whose entries are independent, identically distributed standard Gaus-

sian variables, i.e. gij ∼ N (0, 1).

2. Sample the row space of A by calculating Y = (A∗A)qA∗G, where q is some small non-negative

integer.

3. Compute an orthonormal basis for the column space of Y with an unpivoted QR decomposition,

obtaining an orthogonal matrix V(1) and upper triangular matrix S such that Y = V(1)SV .

Once V(1) is built, the path to U(1) becomes clear after one observation. If the leading b columns

of V(1) span exactly the same subspace as the leading b right singular vectors of A, then the leading b

columns of AV(1) span exactly the same subspace as the leading b left singular vectors of A. Therefore,

after computing V(1), we build U(1) as follows:

1. Perform the matrix multiplication B = AV(1).

2. Compute an orthonormal basis for the column space of B with an unpivoted QR decomposition to

obtain U(1) and SU such that B = U(1)SU .

5.4.1.3 Putting it all together.

We are now ready to combine the ideas of Sections 5.4.1.1 and 5.4.1.2 to write the basic version

of randUTV. This is Algorithm 7, adapted from [95]. Note that we have omitted some details important to

allowing the algorithm to run efficiently, such as fast application of the transformation matrices U(i) and V(i)

to the T(i) matrices. For a more in-depth discussion, see [95]. The result of randUTV is a decomposition

A = UTV∗ such that

• T is upper triangular, and the b× b blocks on its main diagonal are themselves diagonal,
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• U and V are orthogonal.

• ‖A− U(:, 1 : k)T(1 : k, 1 : k) (V(:, 1 : k)))∗‖ ≈ σk+1(A), k = 1, . . . , n. That is, the error in the

low rank approximations provided by U,T,V are close to optimal.

• T(i, i) ≈ σi(A), i = 1, . . . , n.

5.4.2 Using oversampling in the RANDUTV algorithm

In randUTV, the computation of matrix V(i) is modeled after the approximation of a matrix’s column

space in the randomized SVD discussed in Section 5.2.6. Just as the randomized SVD uses an oversampling

parameter p to improve the probability that the column space approximation succeeds, we may add a similar

parameter p to the construction of V(i) in Algorithm 7 to improve the rank revealing properties of the

resulting factorization.

To do so, we first change the size of the random matrix G from m× b to m× (b+ p) (we once again

consider only the building of V(1) to simplify matrix dimensions). This effectively increases the number

of times we sample the column space of A by p, providing a “correction” to the information in the first b

samples.

Next, we must modify how we obtain the orthonormal vectors that form V(1). Recall that the first

b columns of V(1) must contain the approximation to the leading b right singular vectors of A. If we

merely orthonormalized the columns of Y with HQR again, the first b columns of V(1) would only contain

information from the first b columns of Y. We must therefore choose a method for building V(1) such that

its first b columns contain a good approximation of the column space of Y. The following approaches use

two of the most common rank revealing factorizations to solve this subproblem:

a) Perform b steps of HQRCP on Y to obtain the factorization Y = V(1)SV P∗, where SV (1 : b, :) is

upper triangular and P is a permutation matrix. The approximation provided by V(1)(:, 1 : b) to the

column space of Y in this case will be suboptimal.

b) Perform an SVD on Y to obtain the factorization Y = WDX∗. Then W(:, 1 : b) contains the
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Algorithm 7 [U,T,V] = RANDUTV BASIC(A,b,q)
1: T = A; U = Im; V = In;
2: for i = 1: min(dm/b, e, dn/be) do
3: I1 = 1 : (b(i− 1)); I2 = (b(i− 1) + 1) : min(bi,m); I3 = (bi+ 1) : m;
4: J1 = 1 : (b(i− 1)); J2 = (b(i− 1) + 1) : min(bi, n); J3 = (bi+ 1) : n;
5: if (I3 and J3 are both nonempty) then
6: G = GENERATE NORM RAND IID(m− b(i− 1), b)
7: Y = T([I2, I3], [J2, J3])

∗G
8: for j = 1 : q do
9: Y = T([I2, I3], [J2, J3])

∗(T([I2, I3], [J2, J3])Y)
10: end for
11: [Vl,∼] = HQR(Y)
12: T(:, [J2, J3]) = T(:, [J2, J3])Vl

13: V(:, [J2, J3]) = V(:, [J2, J3])Vl

14:

15: [Ul,R] = HQR(T([I2, I3], J2))
16: U(:, [I2, I3]) = U(:, [I2, I3])Ul

17: T([I2, I3], J3) = U∗l T([I2, I3], J3)
18: T(I3, J2) = ZEROS(m− bi, b)
19:

20: [Usmall,Dsmall,Vsmall] = SVD(R(1 : b, 1 : b))
21: T(I2, J2) = Dsmall
22: T(I2, J3) = U∗smallT(I2, J3)
23: U(:, I2) = U(:, I2)Usmall
24: T(I1, J2) = T(I1, J2)Vsmall
25: V(:, J2) = V(:, J2)Vsmall
26: else
27: [Usmall,Dsmall,Vsmall] = SVD(T([I2, I3], [J2, J3]))
28: U(:, [I2, I3]) = U(:, [I2, I3])Usmall
29: V(:, [J2, J3]) = V(:, [J2, J3])Vsmall
30: T([I2, I3], [J2, J3]) = Dsmall
31: T([I1, [J2, J3]) = T(I1, [J2, J3])Vsmall
32: end if
33: end for
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optimal rank-b approximation of the column space of Y. However, this method requires one more

step since V(1) must be represented as a product of Householder vectors in order to compute AV(1)

in the following step of randUTV. After computing the SVD, therefore, we must perform HQR on

W(:, 1 : b), resulting in W(:, 1 : b) = V(1)SW . This method yields the optimal approximation of

V(1)(:, 1 : b) to the subspace of Y.

Though method b) provides better approximations, method a) is more efficient. The only additional

computational expense for a) is that of adding pivoting HQR, which is relatively inexpensive for thin ma-

trices like Y. As discussed in Remark 15, method b) requires an HQR of size n × b + p, an SVD of size

b+ p× b+ p, and an HQR of size n× b. While the SVD is small and therefore quite cheap, the first HQR

is an extra expense which is nontrivial when aggregated across every iteration in randUTV. This extra cost

is addressed and mitigated in Section 5.4.4.

Remark 15. The SVD of method b) above may look expensive at first glance. However, recall that Y is of

size n× (b+ p), where n� b+ p. For tall, thin matrices like this, the economic SVD may be inexpensively

computed as follows:

1. Obtain an economic QR of Y, yielding Y = QR; Q ∈ Rn×b+p,R ∈ Rb+p×b+p.

2. Compute SVD of R to obtain R = ÛDV∗; Û,D,V ∈ Rb+p×b+p.

3. Compute U = QÛ.

After these steps, the result is

Y = QR = (QÛ)DV∗ = UDV∗,

the economic SVD of Y.

5.4.3 Orthonormalization to enhance accuracy

For subspace iteration techniques like the one used to build V(i), the stability of the iteration is often

a concern. As mentioned in Section 5.3.3, the information from any singular values less than ε1/(2q+1)
mach

will be lost unless an orthonormalization procedure is used during intermediate steps of the computation
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Y = (A∗A)q A∗G. For randUTV, only b singular vectors are in view in each iteration, so orthonormalization

is not required as often as it is for powerURV.

However, if oversampling is used (i.e. p > 0), performing one orthonormalization before the final

application of A∗ markedly benefits the approximation of the column space of Y to the desired singular

vector subspace. Numerical experiments show that this improvement occurs even when the sampling matrix

is not in danger of loss of information from roundoff error. Instead, we may intuitively consider that using

orthonormal columns to sample A∗ ensures that the “extra” p columns of Y contain information not already

accounted for in the first b columns.

5.4.4 Reducing the cost of oversampling and orthonormalization

Adding oversampling to RANDUTV BASIC, as discussed in Sections 5.4.2 and 5.4.3, adds noticeable

cost to the algorithm. First, it requires a costlier method of building V(i). Second, it increases the dimension

of the random matrix G, increasing the cost of all the operations involving G and, therefore, Y. By reusing

information from a previous iteration, however, we can essentially eliminate the cost of the second item.

To demonstrate, consider the state of randUTV for input matrix A ∈ Rm×n with q = 2, p = b after

one step of the main iteration. Let Aq = (A∗A)qA∗ denote the sampling matrix for power iteration. At this

point, we have computed and stored the following relevant matrices:

• Y(1) ∈ Rn×(b+p): The matrix containing random samples of the row space of A, computed with

Y(1) = AqG
(1), where G(1) is a random matrix.

• W(1) ∈ Rn×(b+p): The matrix whose columns are the left singular vectors of Y(1).

• V(1) ∈ Rn×n: The right transformation in the main step of randUTV, computed with

[V(1),∼] = HQR(W(1)(:, 1 : b)).

• U(1) ∈ Rm×m: The left transformation in the main step of randUTV, computed with [U(1),∼] =

HQR(AV(1)).

• T ∈ Rm×n: The matrix being driven to upper triangular form. At this stage in the algorithm,
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T = (U(1))∗AV(1).

Finally, consider the partitions

W(1) =

[
W

(1)
1 W

(1)
2

]
,

V(1) =

[
V

(1)
1 V

(1)
2

]
,

U(1) =

[
U

(1)
1 U

(1)
2

]
,

T =

T11 T12

T21 T22

 ,

where W
(1)
1 is n× b, V

(1)
1 and U(1) are n× b, and T11 is b× b.

In the second iteration of randUTV, the first step is to approximate the subspace spanned by the

column space of T∗22 with RANGE FINDER (Algorithm 3 with p = 0, and orthonormalization is usually not

required). Since T = (U(1))∗TV(1), we have

T∗22 = (V
(1)
2 )∗A∗U

(1)
2 .

Therefore, the subspace we must approximate is the column space of A∗ after being mapped into the span of

the columns of (V
(1)
2 )∗ by matrix multiplication. Next, we make the observation that, just as W

(1)
1 approxi-

mates the subspace spanned by the leading b right singular vectors of A, the columns of W
(1)
2 approximate

the subspace spanned by the leading b through p-th right singular vectors of A. Thus, (V
(1)
2 )∗W

(1)
2 is an

approximation of the column space of A∗ after being mapped into Span((V
(1)
2 )∗). This multiplication in-

volving two small matrix dimensions is much cheaper than carrying out the full power iteration process.

Putting it all together, on every iteration of randUTV after the first, we build the sampling matrix Y(i)

in two stages. First, we build Y(i)(:, 1 : b) with the standard RANGE FINDER described in Section 3 (with

p = 0, and orthonormalization, again, is usually not required). Second, we build compute Y(i)(:, (b + 1) :

(b + p)) by reusing the samples from the last iteration with Y(i)(:, (b + 1) : (b + p)) = (V(i−1))∗W(i−1)(:

, (b + 1) : (b + p)). The complete algorithm, adjusted to improve upon the low rank estimation properties

RANDUTV BASIC, is given in 8.
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Algorithm 8 [U,T,V] = RANDUTV BOOSTED(A,b,q,p)

1: T = A; U = Im; V = In;
2: for i = 1:min(dm/b, e, dn/be) do
3: I1 = 1 : (b(i− 1)); I2 = (b(i− 1) + 1) : min(bi,m); I3 = (bi+ 1) : m;
4: J1 = 1 : (b(i− 1)); J2 = (b(i− 1) + 1) : min(bi, n); J3 = (bi+ 1) : n;
5: if (I3 and J3 are both nonempty) then
6: if (i == 1) then
7: G = GENERATE NORM RAND IID(m− b(i− 1), b+ p)
8: else
9: G = GENERATE NORM RAND IID(m− b(i− 1), b)

10: end if
11: Y(:, 1 : b) = T([I2, I3], [J2, J3])

∗G
12: for j = 1 : q do
13: if j < q then
14: Y(:, 1 : b) = T([I2, I3], [J2, J3])

∗(T([I2, I3], [J2, J3])Y)
15: else
16: Y(:, 1 : b) = T([I2, I3], [J2, J3])Y(:, 1 : b)
17: Y(:, 1 : b) = Y(:, 1 : b)−Wnext(:, (b+ 1) : (b+ p))Wnext(:, (b+ 1) : (b+ p))∗Y(:, 1 : b)
18: [Y(:, 1 : b),∼] = HQR(Y(:, 1 : b))
19: Y(:, (b+ 1) : (b+ p)) = Wnext(:, (b+ 1) : (b+ p))
20: Y = T([I2, I3], [J2, J3])

∗Y
21: end if
22: end for
23: [WV ,DV ,XV ] = SVD(Y)
24: [Vl, ] = HQR(WV (:, 1 : b))
25: T(:, [J2, J3]) = T(:, [J2, J3])Vl

26: V(:, [J2, J3]) = V(:, [J2, J3])Vl

27: Wnext = V∗l WV (:, (b+ 1) : (b+ p))
28:

29: [Ul,R] = HQR(T([I2, I3], J2))
30: U(:, [I2, I3]) = U(:, [I2, I3])Ul

31: T([I2, I3], J3) = U∗l T([I2, I3, J3])
32: T(I3, J2) = ZEROS(m− bi, b)
33:

34: [Usmall,Dsmall,Vsmall] = SVD(R(1 : b, 1 : b))
35: T(I2, J2) = Dsmall
36: T(I2, J3) = U∗smallT(I2, J3)
37: U(:, I2) = U(:, I2)Usmall
38: T(I1, J2) = T(I1, J2)Vsmall
39: V(:, J2) = V(:, J2)Vsmall
40: else
41: [Usmall,Dsmall,Vsmall] = SVD(T([I2, I3], [J2, J3]))
42: U(:, [I2, I3]) = U(:, [I2, I3])Usmall
43: V(:, [J2, J3]) = V(:, [J2, J3])Vsmall
44: T([I2, I3], [J2, J3]) = Dsmall
45: T([I1, [J2, J3]) = T(I1, [J2, J3])Vsmall
46: end if
47: end for



150

5.5 Numerical results

Experiments in this article were performed on an NVIDIA Tesla K40c graphics card (2880 cores).

The code makes extensive use of the MAGMA (Version 2.2.0) library linked with Intel’s MKL (Version

2017.0.3). It was compiled with the NVIDIA compiler NVCC (Version 8.0.61) on the Linux OS (4.15.0-45-

generic.x86 64).

5.5.1 Computational speed

In this section, we investigate the speed of RANDUTV on the GPU and compare it to highly optimized

implementations of competing rank-revealing factorizations for the GPU. In Figures 5.2 and 5.3, every

factorization is completed on a random matrix A with entries drawn independently from the standard normal

distribution. We compare the following times (all in seconds):

• Tsvd: The time to compute the SVD of A using the MAGMA routine MAGMA DGESDD, where all

orthogonal matrices are calculated. The code is linked with the MKL implementation of the BLAS.

• Tcpqr: The time to execute HQRCP for A using the MAGMA routine MAGMA DGEQP3, where the

orthogonal matrix Q is calculated. The code is linked with the MKL implementation of the BLAS.

• TrandUTV: The time to execute RANDUTV for A for varying parameter choices, described in the

figure captions. The code uses the MAGMA library linked with the MKL implementation of the

BLAS.

• TpowerURV: The time to execute POWERURV for A for varying parameter choices, described in the

figure captions. The code uses the MAGMA library linked with the MKL implementation of the

BLAS.

In each plot, we divide the given time by n3 to make the asymptotic relationships between each experiment

more clear.

We observe in Figure 5.2 that RANDUTV BASIC handily outperforms the competition in terms of

speed. The cost of increasing the parameter q is also quite small due to the high efficiency of matrix
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Figure 5.2: Computation times for RANDUTV plotted against the computation time for HQRCP and the
SVD on the GPU. Left: The most basic, fastest RANDUTV BASIC algorithm (p = 0). The block size was
b = 128. Right: The accuracy-enhanced RANDUTV BOOSTED with b = 128, p = b.

multiplication on the GPU. We see that it takes parameters of p = b, q = 4 of the highly rank-revealing

RANDUTV BOOSTED before the execution time even matches HQRCP. Finally, observe that the distance

between the lines for RANDUTV BOOSTED with q = 4, p = b and q = 2, p = b is less than the distance

between the lines for q = 0, p = b and q = 2, p = b. This difference is representative of the savings gained

with bootstrapping technique whereby extra samples from one iteration are carried over to the next iteration.

5.5.2 Approximation error

In this section, we compare the errors in the low rank approximations produced by RANDUTV

BOOSTED and competing rank-revealing factorizations. Each rank-revealing factorization in this section

produces a decomposition

A = URV∗,

where U and V are orthogonal and R is upper triangular. Given this factorization, a natural rank-k approxi-

mation to A is

Ak = U(:, 1 : k)R(1 : k, :)V∗.

For each of the factorizations that we study, we evaluated the spectral norm errors

ek = ‖A− Ak‖
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Figure 5.3: Computation times for the POWERURV computed on the GPU. These times are plotted against
the computation time for HQRCP and the SVD on the GPU.

as a function of k. Specifically, the factorization techniques that we investigated were:

1. DGESDD: One of two common algorithms for computing an SVD.

2. DGEQP3: The HQRCP algorithm for computing a rank-revealing QR factorization.

3. RANDUTV BASIC: The original RANDUTV algorithm introduced in [89], with no rank-revealing

enhancement from oversampling or orthonormalization.

4. RANDUTV BOOSTED: The RANDUTV algorithm developed in this article, modified to benefit

maximally from oversampling (p > 0).

We also examine the relative error in the approximations produced by the factorizations

‖A− Ak‖
‖A− Aoptimal

k ‖
,

where Aoptimal
k is the Ak produced by the SVD.

We compare the errors for several input matrices A:

• Fast decay: This matrix is generated by first creating random orthogonal matrices U and V by

performing unpivoted QR factorizations on two random matrices with i.i.d entries drawn according
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to the standard normal distribution. Then, Afast is computed with Afast = UDV∗, where D is a

diagonal matrix with diagonal entries dii = β(i−1)/(n−1), where β = 10−5.

• S-shaped decay: This matrix is generated in the same manner as “fast decay,” but the diagonal

entries are chosen to first hover around 1, then quickly decay before leveling out at 10−2, as shown

in Figure 5.5.

• BIE: This matrix is the result of discretizing a Boundary Integral Equation (BIE) defined on a

smooth closed curve in the plane. To be precise, we discretized the so called “single layer” operator

associated with the Laplace equation using a sixth order quadrature rule designed by Alpert [2].

This operator is well-known to be ill-conditioned, which necessitates the use of a rank-revealing

factorization in order to solve the corresponding linear system in as stable a manner as possible.

From these experiments, we make a few observations. First, when there is fast singular value decay in

A, RANDUTV BOOSTED provides a significant boost in low-rank approximations over RANDUTV BASIC.

It also succeeds in decreasing the variance across approximations for different values of k. Second, RAN-

DUTV BOOSTED still provides noticeable correction to RANDUTV BASIC when there is slow singular

decay in A, though the difference is not as pronounced in the relative error measurement.
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Figure 5.4: Errors in low rank approximation for the matrix “fast decay” with n = 400. For the RANDUTV
factorizations, the block size was b = 50.
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Figure 5.5: Errors in low rank approximation for the matrix “S-shaped decay” with n = 400. For the
RANDUTV factorizations, the block size was b = 50.
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Figure 5.6: Errors in low rank approximation for the matrix “BIE” with n = 400. For the RANDUTV
factorizations, the block size was b = 50.



Chapter 6

Computing rank-revealing factorizations of matrices stored out-of-core

It is often necessary to compute a rank revealing factorization of a matrix that is so large that it must

be stored on a slow memory device such as a solid state or spinning hard drive. For a matrix stored in

RAM, there are several well-established techniques to choose from, including computing a full singular

value decomposition (SVD), Krylov techniques, and column pivoted QR (CPQR). However, none of these

techniques are easily implemented when the matrix is stored out-of-core, as they typically are made up of

a sequence of matrix-vector operators, which necessitates reading (and sometimes writing) large amounts

of data at each step. This chapter demonstrates how randomization can be used to compute rank-revealing

matrix factorizations by processing large blocks of the matrix at a time, which reduces the amount of data

movement required. Techniques are presented for reorganizing randomized rank-revealing factorizations

methods as either a left-looking algorithm or as an algorithm-by-blocks, which further reduces communi-

cations. Numerical experiments demonstrate that the new methods allow factorizations of matrices whose

size make them inaccessible to classical deterministic methods.

6.1 Introduction

Consider an m× n matrix A that is so large it must be stored on an external memory device such as

a spinning or solid disk drive. Often, a matrix decomposition

A = U R V∗,

m× n m×m m× n n× n
(6.1)
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may be desired. For any k with 1 ≤ k ≤ min(m,n), there is a natural rank-k approximation associated with

the factorization, specifically Ak = U(:, 1 : k)R(1 : k, :)V∗. In many scenarios, obtaining a decomposition

such that ‖A−Ak‖ is small is vital. Problems which make use of such a factorization include rank-deficient

and total least squares problems [80, 56, 123, 80], subset selection [97], and matrix approximation [45, 85],

among others. The goal of minimizing ‖A−Ak‖ is closely related to the idea of obtaining a rank-revealing

factorization. While the definition of what constitutes a “rank-revealing factorization” varies slightly in the

literature [27, 114, 24, 26], a recurring theme is that the approximation errors ‖A− Ak‖ should be close to

their theoretically minimal values in some sense. Therefore, in this chapter we will take a factorization that

“is rank-revealing” and that “provides good rank-k approximations” to mean the same thing. The lack of

specificity in our use of the term “rank-revealing” will also allow us to make comparisons. We will say that

one factorization reveals rank better than another if it provides rank-k approximations with lower error than

its competitor.

There are several well established options for computing a rank-revealing factorization. If a full fac-

torization is required, the singular value decomposition (SVD) and QR decomposition with column pivoting

(CPQR) are two popular options. The SVD provides theoretically optimal low rank approximations but can

be prohibitively expensive to compute. The CPQR usually reveals rank reasonably well (see, e.g. [76] for

a notable exception) and requires much less work than the SVD to compute. Neither factorization is easily

implemented when the matrix is stored out-of-core, however. The traditional algorithms for computing each

require mostly matrix-vector operations, which in turn necessitates many reads, and sometimes writes, to

and from the main matrix in external memory. See, e.g. [122, 57, 78] for information on standard algo-

rithms for computing the SVD, and [54, 116, 107] for information on the most common CPQR algorithm

and its restriction to matrix-vector operations.

A truncated SVD algorithm that is effective for out-of-core matrices was introduced in [68]. This

technique, however, only yields a partial factorization, and it requires that an upper bound for the target rank

k is known in advance. Other software efforts in implementing matrix factorizations using external storage

include the POOCLAPACK [67, 110, 66] and SOLAR [121] libraries, as well as an out-of-core extension

to ScaLAPACK [18] that, while described in a published paper [34], does not appear in the current version
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of the library. Even for these libraries, factorization routines are apparently limited to unpivoted QR and

LU decompositions. To our knowledge, there are currently no widely used software options for computing

a full rank-revealing factorization out-of-core, nor even publications describing an implementation.

This article describes two implementations for obtaining rank-revealing factorizations of matrices

stored out-of-core. The first, HQRRP left is based on the HQRRP algorithm of [88], which uses ran-

domization techniques to build a fully blocked column pivoted QR factorization. HQRRP relies largely on

matrix-matrix operations, reducing the number of reads and writes that must occur between external memory

and RAM. HQRRP left further reduces the number of write operations required by reimagining HQRRP

as a left-looking algorithm. Numerical experiments reveal that this reduction in writing time is critical to

the algorithm’s performance, particularly when the data is stored on a spinning disk.

The second contribution of this article is an out-of-core implementation of the randUTV algorithm of

[89], which uses randomization to build a rank-revealing UTV factorization (see, e.g. [119, 114] for a good

introduction to this factorization). The out-of-core implementation, randUTV AB, modifies randUTV in

such a way as to achieve overlap of the communication and floating point operations. The result, demon-

strated with numerical experiments, is that randUTV AB suffers only a small extra cost by storing the

matrix in external memory.

6.1.1 Outline of paper

In Section 6.2, we discuss the first out-of-core factorization, a rank-revealing QR factorization HQRRP

which can be stopped early to yield a partial decomposition. Section 6.3 explores an out-of-core implemen-

tation of randUTV, an efficient algorithm for obtaining a rank-revealing orthogonal matrix decomposition.

Finally, in Section 6.4 we present numerical experiments which demonstrate the performance of both algo-

rithms.

6.2 Partial rank-revealing QR factorization

In this section, we develop an out-of-core implementation of a rank-revealing column pivoted QR

factorization. In section 6.2.1, we review a fully blocked algorithm for computing a column pivoted QR
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factorization, HQRRP. In Section 6.2.3, we discuss modifications of HQRRP which enhance its efficiency

when the matrix is stored out-of-core.

6.2.1 Overview of HQRRP

Consider an input matrix A ∈ Rm×n, and assume m ≥ n. HQRRP [88] is a blocked algorithm for

computing a column-pivoted QR factorization

A = Q R P∗,

m× n m×m m× n n× n

where Q is orthogonal, R is upper trapezoidal, and P is a permutation matrix.

The bulk of the algorithm’s work is executed in a loop with dn/be, where 1 ≤ b ≤ n is the block size

parameter. For notational simplicity, we assume that b divides n evenly for the remaining discussion, so that

dn/be = p for some p ∈ N. At the start HQRRP are the initializations

R(0) = A, Q(0) = I, P(0) = I.

During iteration i, matrices Q(i) and P(i) are constructed such that for

R(i) = (Q(i))∗R(i−1)P(i),

R(i)(:, 1 : ib) is upper trapezoidal. After p steps, R(p) is upper trapezoidal, and the final factorization can be

written as

R = R(p)

P = P(0)P(1) · · ·P(p)

Q = Q(0)Q(1) · · ·Q(p).

6.2.2 Choosing the orthogonal matrices

At step i of HQRRP, consider the partitioning of R(i)

R(i) →

R
(i)
11 R

(i)
12

R
(i)
11 R

(i)
22

 ,
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where R(i) is ib× ib. The goal of choosing the permutation matrix P(i) is to find b columns of R
(i−1)
22 with a

large spanning volume, in the sense that the spanning volume is close to maximal. Finding the best selection

of b columns is currently impossible without trying every combination, but we can find a good selection by

projecting the columns of R
(i−1)
22 into a lower dimensional space and cheaply finding b good pivot columns

there. The steps for computing P(i) are thus as follows:

1. Draw a random matrix G(i) ∈ Rb×m−ib, with i.i.d. entries drawn from the standard normal distri-

bution.

2. Compute Y(i) = G(i)R
(i−1)
22 .

3. Compute b steps of the traditional CPQR of Y(i) to obtain Y(i)P
(i)
22 = WtrashStrash.

4. Set

P(i) =

 I 0

0 P
(i)
22

 .
This method for selecting multiple pivot columns has shown itself effective and reliable, consistently pro-

ducing factorizations that reveal rank as well as traditional CPQR [88].

Remark 16. There is an alternate “downdating” method for computing Y(i) during each step that reduces

the asymptotic flop count of the HQRRP algorithm. With this technique HQRRP has the same asymptotic

flop count as unpivoted QR factorization (though the actual flop count of HQRRP is unavoidably higher);

the reader may see [88] for details. This downdating method will not be used in this article’s primary

implementation, however, as the communication restrictions imposed by the storage of very large matrices

make the basic method of this section more practical.

Once P(i) has been computed, Q(i) is built with well-established techniques:

1. Perform unpivoted QR factorization on A
(i−1)
22 P22(:, 1 : b) to obtain

A
(i−1)
22 P22 = Q

(i)
22A

(i)
22 (:, 1 : b).
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2. Set

Q(i) =

 I 0

0 Q
(i)
22

 .
6.2.3 Executing HQRRP out of core

The HQRRP can be executed for a matrix stored out of core without many modifications. The only

requirement is that any time A is altered, the relevant portion of A must be read off the hard drive and written

back out after operated on. While this is simple in concept, however, the associated communication cost is

high. Writing to hard drives, especially drives with spinning disks, is much more expensive than reading

from them. It is therefore helpful to reorganize HQRRP as a left-looking algorithm [109, 110, 121, 79]. Left-

looking algorithms differ from their traditional right-looking counterparts in that they work with just the

left part of the matrix during each iteration, updating a single block of columns with the information from

all previous orthogonal transformations. Left-looking algorithms, then, require only O(n2) writes, whereas

right-looking algorithms typically require O(n3) writes.

A left-looking variant of HQRRP, which we shall call HQRRP left, operates as follows. Just as with

the original (right-looking) algorithm described in Section 6.2.1, we consider an input matrix A ∈ Rm×n

with m ≥ n and choose a block size b with 1 ≤ b ≤ n. We again assume that n/b = p ∈ N for notational

simplicity. We then make initializations

R(0) = A, Q(0) = I, P(0) = I.

We also perform the work in a loop with p iterations, just as before. The difference in the left-looking variant

lies in the structure of R(i). At step i, the matrix R(i−1) is partitioned as

R(i−1) →
[

R
(i−1)
1 R

(i−1)
2 R

(i−1)
3

]
,

where R
(i−1)
1 ∈ Rm×ib and R

(i−1)
2 ∈ Rm×b. Then, the following steps are performed:

1. Form the matrix P(i) with the method described in 6.2.2.

2. Apply the permutation of P
(i)
22 with

R
(i)
P =

[
R
(i−1)
2 R

(i−1)
3

]
P
(i)
22 .
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3. Update R
(i)
P (:, 1 : b) with the information of the previous Qk transformations:

R
(i)
PQ = (Q(i−1))∗ · · · (Q(1))∗(Q(0))∗R

(i)
P .

4. Build Q(i) by computing the unpivoted QR factorization of R
(i)
P (:, 1 : b), obtaining

R
(i)
PQ = Q(i)R

(i)
2 .

5. Set

R(i) =

[
R
(i−1)
1 R

(i)
2 R

(i)
P (:, b+ 1 : n)

]
.

Observe that in this algorithm, at most 2b columns of the matrix R(i−1) are altered at each step. In

practice, each R(i−1) is overwritten with R(i), and so the algorithm requiresO(mp) writes to the hard drive.

Remark 17. HQRRP left is not a completely left-looking algorithm, since the lower-right portion of R(i)

must be updated with the information from each Q(k) at each step in order to build Y(i). We simply do not

write these results to the drive at each step. As a result, there is an asymptotic increase in the number of both

reads and flops performed by HQRRP left as compared to HQRRP. Performance testing indicates that the

“left-looking” variant still performs better than the original for large matrix sizes due to the high cost of

writing to the drive.

6.3 Full rank-revealing orthogonal factorization

In this section, we develop an efficient implementation of a rank-revealing orthogonal decomposition

for a matrix stored out-of-core. In Section 6.3.1, we review an efficient algorithm called randUTV for

building such a decomposition when the matrices are stored in main memory. In Section 6.3.2, we discuss

some modifications of randUTV which optimize its efficiency in the out-of-core setting.
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6.3.1 Overview of randUTV

Let A ∈ Rm×n withm ≤ n. The algorithm randUTV [89] builds a rank-revealing UTV factorization

of A, that is, a decomposition

A = U T V∗

m× n m×m m× n n× n

such that U and V are orthogonal and T is upper triangular. randUTV is blocked, so it proceeds by choosing

a block size parameter b with 1 ≤ b ≤ n and performing its work inside a loop with dn/be iterations. For

ease of notation, we again assume that n/b = p ∈ N. At the beginning, we initialize,

T(0) = A, U(0) = I, V(0) = I.

For the matrix T(i), we will use the partitioning

T(i) →

T
(i)
11 T

(i)
12

T
(i)
21 T

(i)
22

 ,
where T

(i)
11 is ib× ib. At iteration i, for i = 1, . . . , p, we form matrices T(i),U(i) and V(i) as follows:

1. Construct an orthogonal matrix V̂
(i)

22 such that its leading b columns span approximately the same

subspace as the leading b right singular vectors of T
(i−1)
22 .

2. Compute the unpivoted QR factorization of T(i−1)V̂
(i)

22 (:, 1 : b) to obtain

T(i−1)V̂
(i)

22 (:, 1 : b) = Û
(i)

22S.

3. Compute the SVD of
(

Û
(i)

22 (:, 1 : b)
)∗

T(i−1)V̂
(i)

22 (:, 1 : b), yielding

(
Û

(i)

22 (:, 1 : b)
)∗

T(i−1)V̂
(i)

22 (:, 1 : b) = USVDDV∗SVD.

4. Calculate V(i) with

V(i) =

 I 0

0 V̂
(i)

22




I 0 0

0 VSVD 0

0 0 I


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5. Calculate U(i) with

U(i) =

 I 0

0 Û
(i)

22




I 0 0

0 USVD 0

0 0 I


6. Calculate T(i) with

T(i) = (U(i))∗T(i−1)V(i).

Once all dp/be iterations have completed, we may compute the final factors with

T = T(p),

U = U(0)U(1) · · ·U(p),

V = V(0)V(1) · · ·V(p).

This leaves only the question of how the matrix V̂
(i)

22 is formed in step 1 above. The method, inspired from

work in randomized linear algebra including [111, 69, 90], is the following:

1. Draw a random matrix G(i) ∈ Rm−ib×b, with i.i.d. entries drawn from the standard normal distri-

bution.

2. Compute the unpivoted QR factorization of ((T
(i−1)
22 )∗T

(i−1)
22 )q(T

(i−1)
22 )∗G, where q is some small

nonnegative integer, typically less than three. The result is

((T
(i−1)
22 )∗T

(i−1)
22 )q(T

(i−1)
22 )∗G = V̂

(i)

22Rtrash.

This simple algorithm has been demonstrated to consistently provide high quality subspace approximations

to the space spanned by the leading b right singular vectors of T
(i−1)
22 . It is largely for this reason that

randUTV reveals rank comparably to the SVD. For details on randUTV, see [89].

6.3.2 Executing randUTV out of core

For matrices so large they do not fit in RAM, randUTV requires significant management of I/O tasks.

If the orthogonal matrices U and V are required, then these must be stored out of core as well. To implement
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randUTV efficiently under these constraints, it is helpful to reorganize the algorithm as an algorithm-by-

blocks. Like a blocked algorithm, an algorithm-by-blocks seeks to cast most of the flops in a factorization

in terms of the level-3 BLAS. It does so, however, in a way that reduces data synchronization points relative

to a blocked algorithm counterpart. This gives an algorithm-by-blocks greater flexibility when scheduling

operations to make more efficient use of computing resources.

To redesign randUTV as an algorithm-by-blocks, we begin by considering an unblocked version

of the algorithm, that is, randUTV with b = 1. We then raise the granularity of the data, considering the

matrix A ∈ Rm×n into submatrices Aij of sizemb×nb with 1 < mb, nb < min(m,n). Then, the unblocked

algorithm is re-written with this new conception of A. Any operation must interact with complete blocks Aij

of A at a time. Additionally, in order to decrease data synchronization points, just one block of any matrix

should be altered during any one operation. The resulting algorithm is randUTV as an algorithm-by-blocks,

referred to hereafter as randUTV AB.

randUTV AB largely performs the same arithmetic operations as randUTV, with the exception that

every unpivoted QR factorization must be computed in multiple steps with a scheme based on updating an

existing QR factorization (see [67, 105] for details). The key difference is that randUTV AB has much

more flexibility in the ordering of the execution of the operations. The implementation of randUTV AB

is largely accomplished through a runtime system which keeps track of data dependencies and schedules

operations during the execution phase. For out of core computations, our experiments showed the best

results when the hard drive had only one active read/write request at a time. Thus, the runtime system

prioritized reading/writing one block of the stored matrix at a time and devoting processor power from every

core to operating on one block at a time. By overlapping floating point operations with I/O, randUTV AB

can be executed with cost similar to randUTV with the matrix stored in RAM. See Chapter 4 for more

detail on algorithms-by-blocks, its implementation, and randUTV as an algorithm-by-blocks.

6.4 Numerical results

In this section, we present the experiments demonstrating the scalability and computational costs

of implementations of HQRRP and randUTV AB for matrices stored out of core. In Section 6.4.1, we
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compare several implementations of HQRRP with different strategies for handling the I/O. In Section 6.4.2,

we examine computational cost of an implementation of randUTV.

6.4.1 Partial CPQR factorization with HQRRP

The machine used for these experiments had four DIMM memory chips with 16 GB of DDR4 memory

each. The CPU was an Intel rCore TMi7-6700K (4.00 GHz) with four cores. Experiments were run on two

different hard drives. One was a Toshiba P300 HDD with 3 TB of memory and 7200 RPM; the other was

a Samsung V-NAND SSD 950 Pro with 512 GB of memory. The code was compiled with gcc (version

5.4.0) and linked with the Intel rMKL library (Version 2017.0.3).

The computational cost of three different implementations of HQRRP for matrices stored out of core

were tested.

• Algorithm 1 – In place: This implementation did not carry out physical permutations on the

columns of A but instead applied the permutation information during each I/O task. In other words,

the routine returns RP∗ rather than R. As a result, no more data than necessary is transferred to and

from the hard drive, but many reads occur from noncontiguous locations in the drive.

• Algorithm 2 – Physical pivoting: Permutations are physically performed during the computation,

so that upon completion R is stored in the hard drive. This implementation reads and writes more

data than the “in place” version, but the data transfer mostly occurs in contiguous portions of

memory.

• Algorithm 3 – Left-looking: An implementation of a left-looking version of HQRRP, outlined in

Section 6.2.3. This version requires onlyO(n2) write operations, but the total number of operations

(including reading, writing, and flops) is asymptotically higher than the “in place” and “physical

pivoting” implementations.

Two key observations can be made of the results of testing depicted in Figure 6.1. First, the number

of writes required by the implementation has a dramatic effect on its performance, especially when the
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matrix is stored on a hard disk drive. Algorithms 2 and 3, while performing reasonably well on the SSD,

did not even scale correctly on the HDD, or at the very least did not reach asymptotic behavior as early as

the SSD experiments. Algorithm 3, which requires O(n2) write operations rather than O(n3), outperforms

the right-looking alternatives on both hard drives for large matrices. Second, the best-performing algorithm

takes roughly 3 times longer than the predicted performance for an in-core factorization of a matrix of the

same size on the SSD. On the HDD, it takes about 5.4 times longer. This suggests that there is substantial

room for further improvement in computational speeds.



169

0 5 10 15

n 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 [
s
] 
/ 
n

2

10
-7Partial Factorization Times, k=500, b=250

In Core

In place, SSD

In place, HDD

Physical pivoting, SSD

Physical pivoting, HDD

Left-looking, SSD

Left-looking, HDD

0 5 10 15

n 10
4

0

1

2

3

4

5

T
im

e
 [
s
] 
/ 
n

2

10
-7Partial Factorization Times, k=1000, b=250

In Core

In place, SSD

In place, HDD

Physical pivoting, SSD

Physical pivoting, HDD

Left-looking, SSD

Left-looking, HDD

Figure 6.1: A comparison of the computational cost for three different algorithms for computing a partial
CPQR when the matrix may be too large to fit in RAM. In the top figure, 1000 columns of the input matrix
were processed. In the bottom figure, 500 columns were processed. The block size b in each case was 250.
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6.4.2 Full factorization with randUTV

The experiments reported in this subsection were performed on an HP computer. The computer

contained two Intel Xeonr CPU X5560 processors at 2.8 GHz, with 12 cores and 48 GiB of RAM in total.

Its OS was GNU/Linux (Version 3.10.0-514.21.1.el7.x86 64). Intel?s icc compiler (Version 12.0.0

20101006) was employed. LAPACK routines were taken from the Intel(R) Math Kernel Library (MKL)

Version 10.3.0 Product Build 20100927 for Intel(R) 64 architecture, since this library usually delivers much

higher performances than LAPACK and ScaLAPACK codes from the Netlib repository. Our implementa-

tions were coded with libflame (Release 11104).

We compare computational costs of implementations for several rank-revealing factorizations:

• In-core SVD, CPQR, QR: The highly optimized implementations from the Intel MKL of com-

monly used matrix factorizations. Note that QR is not a rank-revealing factorization, and therefore

does not provide as much information as any of the others.

• In-core randUTV: The implementation of randUTV AB for matrices stored in-core which was

discussed in Chapter 4 of this thesis.

• Out-of-core QR: The implementation in [105] of unpivoted QR factorization for a matrix stored

out-of-core.

• Out-of-core randUTV: The implementation of the algorithm summarized in Section 6.3.

We note that the OOC randUTV is nearly as fast as the predicted performance for the in-core imple-

mentation on a matrix of the same size (considering “predicted performance” to be a reasonable extrapola-

tion of the in-core randUTV curve). This means that the I/O has been largely overlapped with the required

floating point operations, and therefore the cost associated with storing the matrix in main memory is small.

Not only is randUTV AB closer to unpivoted QR than CPQR or SVD in terms of speed, but the out-of-core

implementation is close to optimal relative to its in-core counterpart.
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Chapter 7

Efficient nuclear norm approximation via the randomized UTV algorithm

The recently introduced algorithm randUTV provides a highly efficient technique for computing

accurate approximations to all the singular values of a given matrix A. The original version of randUTV

was designed to compute a full factorization of the matrix in the form A = UTV∗ where U and V are

orthogonal matrices, and T is upper triangular. The estimates to the singular values of A appear along the

diagonal of T. This manuscript describes how the randUTV algorithm can be modified when the only

quantity of interest being sought is the vector of approximate singular values. The resulting method is

particularly effective for computing the nuclear norm of A, or more generally, other Schatten-p norms. The

report also describes how to compute an estimate of the errors incurred, at essentially negligible cost.

7.1 Overview

This note describes an efficient algorithm for computing an accurate estimate for the nuclear norm

‖ · ‖∗ of a given matrix A ∈ Rm×n. The nuclear norm has recently found uses in numerical optimization,

beginning with the introduction by Fazel et al. in [47, 48] of its use as an effective heuristic for solving the

rank minimization problem

minimize rank X

subject to X ∈ C

where X ∈ Rm×n is the decision variable and C is some given convex constraint set. Recht et al. later

proved in [108] that in certain cases, minimizing the nuclear norm also yields the theoretical solution to the
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corresponding rank minimization problem, solidifying the validity of the heuristic. The algorithm discussed

in this note, randNN, may be used in a line search to choose the step size for nuclear norm minimization

algorithms such as projected subgradient methods [108] or mirror descent [99, 10].

The recently proposed algorithm randUTV [89] is designed to compute, given a matrix A ∈ Rm×n,

a factorization of the form

A = U T V∗.

m× n m×m m× n n× n
(7.1)

In (7.1), the matrices U and V are orthogonal, T is upper triangular, and the diagonal entries of T are

good approximations to the singular values of A. This note describes a modified version of randUTV

which is of particular use in the sub-problem of conducting a line search during nuclear norm minimization.

Specifically, we re-derive the randUTV algorithm from the perspective of nuclear norm estimation. In this

case, since only the singular value estimates for A, rather than the entire matrix factorization, are desired,

several steps of randUTV may be omitted or modified to yield randNN, which sees modest acceleration

over randUTV and major acceleration over a full (SVD) computation of the singular values. We also

mention a rough upper bound on the accuracy of the computed singular values that may computed as a part

of randNN at very little extra cost from the middle matrix T.

The structure of this note is as follows. In Section 7.2, we review the notation used throughout the

remainder. We derive the algorithm randNN in 7.3, and in 7.4 we discuss an error bound for the resulting

approximations to the singular values. Finally, Section 7.5 contains numerical experiments exploring the

accuracy of the singular values estimated by randNN and the performance of the algorithm compared to

the industry standard.

7.2 Preliminaries

In this note, we use the notation A ∈ Rm×n to denote a matrix A of dimensionm×nwith real entries.

Ai,j denotes the i,jth entry of A. We use the notation of Golub and Van Loan [57] to specify submatrices:

If A is an m × n matrix, and I = [i1, i2, . . . , ik] and J = [j1, j2, . . . , j`] are index vectors, then A(I, J)

denotes the corresponding k× ` submatrix. We let A(I, :) denote the matrix A(I, [1, 2, . . . , n]), and define
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A(:, J) analogously. The transpose of a matrix A is denoted A∗, and we use σi(A) to reference the ith

leading singular value of A.

We measure matrices with either the spectral norm ‖ ·‖, nuclear norm ‖ ·‖∗, or Frobenius norm ‖ ·‖F ,

with definitions given by

‖A‖ = sup
‖x‖=1

‖Ax‖2 = σ1(A), ‖A‖∗ =

min(m,n)∑
i=1

σi(A), ‖A‖F =

 m∑
i=1

n∑
j=1

A2
i,j

1/2

(where ‖ · ‖2 is the Euclidean 2-norm for vectors in Rn).

7.3 Description of the algorithm

7.3.1 Approach

Consider a matrix A ∈ Rm×n. Now partition A as

b

 A11 A12


A = m− b A21 A22

b n− b

.

The construction of the algorithm will be guided by several fundamental observations:

• If A12 = 0 and A21 = 0, then ‖A‖∗ = ‖A11‖∗ + ‖A22‖∗.

• Multiplying A by an orthogonal matrix does not change the nuclear norm.

• Consider the matrix Ã = U∗AV, where U and V are orthogonal matrices whose first b columns

span the same space as the leading b left and right singular vectors of A, respectively. Then giving

Ã the same partition as A, we have Ã12 = 0 and Ã21 = 0. For this reason, we will call such a U

and V the “optimal” rotation matrices for the problem.

These remarks lay out a path for estimating ‖A‖∗. We will choose b to be a relatively small block

size, say 50 or 100, and will compute an orthonormal matrices U and V whose first b columns approximately

span the same space as the respective leading b left and right singular vectors of A. We will then form
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A(1) = U∗AV, after which we will have A
(1)
21 = 0 and ‖A(1)

12 ‖ is small. At this point, we may estimate

the norm by finding the norms of the small A
(1)
11 block and the large A

(1)
22 block separately. ‖A(1)

11 ‖∗ may be

computed efficiently with an SVD computation, and we may recursively apply our strategy for A to A
(1)
22 to

estimate its norm.

7.3.2 Computing the right orthogonal transformation

At this point in the derivation, the most pressing question is how to find U and V that satisfy the

aforementioned conditions. We first consider the construction of V, at which point U will easily follow.

Recent work in randomized subspace iteration, discussed in papers including [69, 111, 131, 68], enables the

efficient computation of the desired V.

In particular, consider a sampling matrix Y = A∗G, where G is an m × b Gaussian random ma-

trix. Then with high probability, the column space of Y often aligns closely to the subspace spanned by

the leading b right singular vectors of A. As discussed in [111, 69], in certain situations when the decay

of singular values of A makes the alignment suboptimal, then using Y = (A∗A)qA∗G instead provides

considerable correction, where q is some small nonnegative integer. Typically, q = 0, 1, 2 suffices to obtain

a close-to-optimal approximation to the desired subspace.

Thus, the following steps compute a matrix V whose columns span approximately the same subspace

as the leading b right singular vectors of A:

• Draw an n× b random Gaussian matrix G.

• Compute Y = (A∗A)qA∗G for some small nonnegative integer q.

• Compute an orthonormal basis for the column space of Y with a QR factorization using House-

holder reflectors to obtain Y = VR.

7.3.3 Computing the left orthogonal transformation

To compute U, we first note that if our computed V were optimal, then the first b columns of AV

would be composed exclusively of linear combinations of the leading b left singular vectors of A. Thus,
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to form U, we may simply compute an orthonormal basis for the first b columns of AV via Householder

reflectors to obtain AV(:, 1 : b) = UR.

Remark 18. In applications, the input matrix A is often rank-deficient, with numerical rank k determined

by the k for which σi(A) is less than some specified tolerance for k < i ≤ n. In the case where k � n,

randNN may be sped up substantially by terminating the algorithm once the estimated singular values drop

below some user-defined threshold.

function ss = randNN(A,b,q)
m = size(A,1); n = size(A,2);
ss = zeros(n,1);
T = A;
for i=1:ceil(n/b)

I1 = (b*(i-1)+1):min((b*i),n);
I2 = (b*i+1):m;
J1 = (b*(i-1)+1):min((b*i),n);
J2 = (b*i+1):n;
if isempty(J2) == 0

T_work = T([I1 I2],[J1 J2]);
[TT,ss_part] = step_nn(T_work,b,q);
ss(I1) = ss_part;
T([I1 I2],[J1 J2]) = TT;

else
ss_part = svd(T(I1,J1));
ss(I1) = ss_part;

end
end

return

function [T,ss] = step_nn(A,b,q)
G = randn(size(A,1),b);
Y = A’*G;
for i=1:q
Y = A’*(A*Y);

end
[V,˜] = qr(Y);
T = A*V;
[U,R] = qr(T(:,1:b));
T(:,1:b) = R;
T(:,(b+1):end) = U’* ...

T(:,(b+1):end);
ss = svd(R);

return

Figure 7.1: Matlab code for the algorithm randNN that, given an m× n matrix A, computes estimates for
each of its singular values. The input parameters b and q reflect the block size and the number of steps of
power iteration, respectively. This code is simplistic in that it does not store or apply the transformation
matrices U and V efficiently as products of Householder vectors. It also does not apply a stopping criterion
to terminate the algorithm if the estimated singular values become small, nor does it compute the error bound
discussed in Section 7.4.

7.4 Error bounds

In this section, we make note of an error bound for the accuracy of the estimated singular values

resulting from the randNN algorithm.
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First, note that after applying dn/be left and right rotation matrices to A as described in 7.3, we are

left with an upper triangular matrix which we shall call T whose mass is concentrated in blocks of size b× b

along its diagonal. Therefore, let Td be the block diagonal matrix consisting of the b × b main diagonal

blocks of T, and let Tu be the upper triangular matrix defined by the relation

T = Td + Tu.

Observe that the estimated singular values of A in our algorithm consist precisely of the computed singular

values of Td. Next, since A and T only differ by orthogonal transforms, we have that ‖A‖∗ = ‖T‖∗, and

more specifically, σi(A) = σi(T) for i = 1, 2, . . . ,min(m,n). Thus an error bound given in [117] and [98]

states that √√√√min(m,n)∑
i=1

(
σi(A)− σi(Td)

)2 ≤ ‖Tu‖F . (7.2)

Since the calculation of ‖Tu‖F is O(n2), this bound may be calculated at negligible relative cost as

part of randNN, serving as an assurance of the estimation’s validity.

7.5 Numerical experiments

7.5.1 Computational speed

In this section, we investigate the speed of the proposed algorithm randNN and compare it to the

speed of an exact computation of the singular values using LAPACK’s highly optimized dgesvd.

All experiments reported in this note were performed on an Intel Core i7-6700K processor (4.0 GHz)

with 4 cores. In order to be able to show scalability results, the clock speed was throttled at 4.0 GHz, turning

off so-called turbo boost. Other details of interest include that the OS used was Ubuntu (Version 16.04.2),

and the code was compiled with Intel’s icc (Version 17.0.4.196). Main routines for computing the singular

values (dgesvd) were taken from Intel’s MKL library (Version 2017.0.3). Standard BLAS routines used

in our implementation of randNN were also taken from the Intel MKL library.

Each of the three algorithms we tested (randNN,randUTV,SVD) was applied to double-precision

real matrices of size n× n. We report the following times:
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Figure 7.2: Computational speed of randNN compared to the speeds of the LAPACK routine dgesvd and
the recently introduced randUTV [89]. The algorithms were applied to double-precision real matrices of
size n× n.

• Tsvd. The time in seconds for the LAPACK function dgesvd from Intel’s MKL, where the orthog-

onal matrices U and V in the SVD were not built.

• TrandUTV. The time in seconds for the function randUTV described in [89]. The authors’ original

implementation was used, and the orthogonal matrices U and V in the UTV decomposition were

not built.

• TrandNN. The time in seconds for our implementation of randNN.

In all cases, we used a block size of b = 64. While likely not optimal for all problem sizes, this

block size yields near best performance and allows us to easily compare and contrast the performance of the

different implementations.

As expected, Figure 7.2 shows that both randUTV and randNN are markedly faster than LAPACK’s

dgesvd, even in the single case. When more cores are added to the computation, the gain in speed is even

more dramatic, hi-lighting the fact that the SVD algorithm is not designed to make efficient use of parallel

computing architectures. Finally the increase in speed from randUTV to randNN is modest, but in a line

search setting where the nuclear norm must be computed many times, this saving can add up over the course

of the solution of the rank minimization problem.
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7.5.2 Errors

In this section, we report the results of numerical experiments that were conducted to test the accuracy

of the approximation to the singular values provided by randNN. Specifically, we compare the estimated

singular values to the true singular values of two different test matrices:

• Matrix 1 (S shaped decay): This is an n × n matrix of the form A = UDV∗ where U and V

are randomly drawn matrices with orthonormal columns (obtained by performing QR on a random

Gaussian matrix), and where the diagonal entries of D are chosen to first hover around 1, then decay

rapidly, and then level out at 10−6, as shown in Figure 7.3 (black line) on the left.

• Matrix 2 (Single Layer BIE): This matrix is the result of discretizing a Boundary Integral Equation

(BIE) defined on a smooth closed curve in the plane. To be precise, we discretized the so called

“single layer” operator associated with the Laplace equation using a 6th order quadrature rule de-

signed by Alpert [2]. This is a well-known ill-conditioned problem for which column pivoting is

essential in order to stably solve the corresponding linear system.

In each case, a matrix size of m = n = 5000 was used with a “power iteration parameter” (see

Section 7.3.2) of q = 2 and a block size of b = 64.

For each test matrix, we plot both the estimated and true singular values themselves and the relative

error of the estimates

|σi(A)− σi(Td)|
|σi(A)| , i = 1, 2, . . . ,min(m,n).

7.6 Availability of code

An implementation of the discussed algorithm is available under 3-clause (modified) BSD license

from:

https://github.com/nheavner/nn code
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Figure 7.3: Errors for the test matrices described in Section 7.5.2. Left: “Matrix 1,” the matrix artificially to
have the singular value decay pattern shown here. Right: “Matrix 2,” a matrix resulting from the discretiza-
tion of of Boundary Integral Equation.
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