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Nardini, John (Ph.D., Applied Mathematics)

Partial Di�erential Equation Models of Collective Migration During Wound Healing

Thesis directed by Prof. David M. Bortz

This dissertation is concerned with the derivation, analysis, and parameter inference of math-

ematical models of the collective migration of epithelial cells. During the wound healing process,

epidermal keratinocytes collectively migrate from the wound edge into the wound area as a means

to re-establish the outermost layer of skin. This migration into the wound is stimulated by the pres-

ence of epidermal growth factor. Accordingly, this dissertation focuses on the migratory response of

epidermal keratinocytes in response to this growth factor. Such studies will suggest suitable clinical

treatments to consider for chronic wounds and invasive cancers.

We begin with a study into the role of cell-cell adhesions on keratinocyte migration during

wound healing. We use an inverse problem methodology in combination with model validation to

show that cells use these connections to promote migration by pulling on their follower cells as they

migrate into the wound. We next derive a biochemically-structured version of Fisher's Equation

that provides a framework to study how patterns of biochemical activation in�uence migration

into the wound. We prove the existence of a self-similar traveling wave solution. In considering

a more complicated scenario where cell migration depends on biochemical activity levels, we show

numerically that the threshold parameter where all cells in the population become activated yields

the simulations that migrate farthest into the wound. Lastly, we consider the role of numerical error

on an inverse problem methodology. The numerical approximation of a cost function is dominated by

either numerical or experimental error in computations, which leads to di�erent rates of convergence

as numerical resolution increases. We use residual analysis to derive an autocorrelative statistical

model for cases where numerical error is the main source of error for �rst order schemes. This

autocorrelative statistical model can correct con�dence interval computation for these methods and

hence improve uncertainty quanti�cation.
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Chapter 1

Introduction

A population of cells is considered to undergo collective migration when neighboring cells move

coherently instead of autonomously. The mechanical and chemical signals underlying individual cell

migration both in vitro and in vivo are very well-studied, yet how these processes translate to the

collective migration of a population of cells is poorly understood [Ridley et al., 2003, Friedl, 2004].

Collective migration occurs in a wide variety of biological processes, including tissue repair [Maini

et al., 2004] and tumorigenesis [Anderson, 2005], so a better understanding of it is fundamental for

improving how we treat di�erent types of wounds and prevent the spread of invasive cancers [Friedl

and Gilmour, 2009, Pastar et al., 2014].

This thesis will focus on the collective migration of epithelial cells, which comprise the tissue that

lines organs of the body, although collective migration also arises in many other cell types [Stuelten

et al., 2018]. An illustrative example of collective migration occurs during the re-epithelialization

phase of wound healing, in which keratinocytes from the epidermis migrate into the wound area to

re-establish the outermost layer of skin [Clark and Henson, 1995]. The epidermal layer of skin is

a key component of the immune system, as it provides the main barrier that prevents pathogens

from entering the body, so re-epithelialization is a critical part of the wound healing process [Pastar

et al., 2014]. Failure of this process often lead to wounds that are prone to infection, which can

cause disastrous results that include death or amputation [Tsang et al., 2003].

The full wound healing process is generally split into three overlapping stages: in�ammation, re-

epithelialization, and tissue remodeling [Clark and Henson, 1995]. The in�ammatory phase of wound

healing consists of the skin's initial response to injury, in which monocytes and neutrophils enter
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the wound area. These cells will remove pathogens from the wound area, form �brin clots to seal

disrupted blood vessels, and remove any remaining cell debris [Werner and Grose, 2003]. When re-

epithelialization is ready to begin, these in�ammatory cells release growth factors such as epidermal

growth factor (EGF) and tumor necrosis factor (TNF) to attract epidermal keratinocytes into the

wound area. These cytokines and growth factors cause keratinocytes to di�erentiate from immobile

epithelial cells to highly migratory cells that collectively migrate into the wound [Pastar et al.,

2014]. These migratory keratinocytes show marked di�erences in their cytoskeleton and receptor

compositions due to activity along the mitogen-activated protein kinase (MAPK) pathways, which

are known to cause cells to increase motility in certain contexts [Seger and Krebs, 1995]. In healthy

tissue, these activated keratinocytes will migrate over the denuded area until they meet other cells

in the wound area. Once the epidermis has been re-established, the re-epithelialization phase of

wound healing is complete, and the tissue remodeling phase begins. Basal keratinocytes are again

stimulated by various growth factors (including EGF, heparin-binding (HB)-EGF, and transforming

growth factor (TGF)-α) but now di�erentiate into highly proliferative cells as a means to supply

cells to �ll in the wound [Pastar et al., 2014].

From above, we see that epidermal keratinocytes play many crucial roles during the wound

healing process. They are able to do so by properly responding to di�erent chemical and physical

cues and di�erentiating into the appropriate phenotypes. For example, these epithelial cells are

�rmly connected to their neighbors through physical connections called adherens junctions or cell-

cell adhesions. Such connections between cells hold them together in tissue to provide the barrier

function of the epidermis. During re-epithelialization, cells lose some of these cell-cell adhesions to

allow their entry into the wound site. But the amount of regulation is intricate, as the cells do

maintain some connections to their neighbors during this process [Clark and Henson, 1995, Perez-

Moreno et al., 2003]. Recent studies have shown these physical connections to be necessary for

some cellular processes to occur, such as migration during morphogenesis, but how cells use these

connections during wound healing is not well understood [Perez-Moreno et al., 2003].

Various growth factors such as EGF are crucial for regulating the re-epithelialization process

by causing keratinocytes to di�erentiate via activation of the MAPK signaling pathways. The

importance of these pathways is best exhibited during chronic wounds, which are de�ned as wounds

that never properly heal. This is often due to the failure of re-epithelialization, which may occur

2



because of the failure of EGF signaling in cells [Brem et al., 2007, Pastar et al., 2014]. Some

proposed therapies for chronic wounds have included treating the wounds topically with EGF,

but these methods have proved ine�ective in clinical trials [Tsang et al., 2003]. This therapy is

likely ine�ective because of a lack of keratinocyte sensitivity to EGF in chronic wounds [Falanga

et al., 1992], suggesting that e�ective therapies must focus on the bioavailability of keratinocytes

to EGF and other signaling chemicals. HB-EGF and insulin-like growth factor (IGF) are known

to act synergistically in vivo to promote keratinocyte proliferation, suggesting that treatment with

multiple growth factors may be an e�ective strategy to promote healthy re-epithelialization in

chronic wounds [Marikovsky et al., 1996]. We thus observe that understanding how cells respond to

these growth factors, as well as the e�ects of these growth factors on migration, will greatly enhance

future therapies for chronic wounds.

The most popular experimental protocol used to study collective migration currently is the two-

dimensional scratch assay. Such a protocol allows for the study of wound healing events without

using test animals [Monsuur et al., 2016]. In these experiments, a layer of cells is grown to con�uence

in a well plate, and then a signi�cant portion of the cells is removed (by pipette scratching, removal

of a boundary, etc.). Time-lapse microscopy is then used to track the remaining population as it

migrates into the denuded area over time [Justus et al., 2014]. These experiments have proved vital

in studying cells from many layers of the skin, including dermal �broblasts, endothelial cells that

line blood vessels, epidermal keratinocytes, and the interactions between dermal �broblasts and

epidermal keratinocytes [Monsuur et al., 2016]. Scratch assays have also proved successful in aiding

our understanding of cancer, as a previous study investigated the rates of di�usion and proliferation

of �broblasts and melanoma cells that were co-cultured [Haridas et al., 2017]. An alternative

experimental protocol to study cell migration during wound healing and cancer invasion includes

the human skin equivalent, in which a three dimensional matrix is grown from primary human

keratinocytes [McGovern et al., 2013]. This protocol is expensive, however, which has prevented its

wider use.

Recent experiments have focused on the in�uence of the MAPK signaling cascades on wound

healing. Experimental wounding assays of madine darby canine kidney cells (MDCKs) in [Matsub-

ayashi et al., 2004] yielded a transient pulse of extracellular signal-regulared kinase (ERK) 1/2 (a

speci�c MAPK protein) activity in the cell sheet that only lasted for a few minutes. This single
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pulse of activity was followed by a slow wave of activity that propagated from the wound margin to

submarginal cells over the course of several hours. The second wave was determined to be crucial

for regulating MDCK sheet migration. The authors of [Matsubayashi et al., 2004] proposed that

these fast and slow waves of ERK 1/2 activity could be caused by the production of reactive oxygen

species (ROS) and EGF, respectively. Similar experiments with �broblasts also demonstrated this

�rst transient wave of ERK 1/2 activity but not the following slow wave or resulting collective

sheet migration, demonstrating that the response to the wound is cell-type speci�c. The authors

of [Chapnick and Liu, 2014] found that human keratinocyte (HaCaT) cells exhibit ERK 1/2 activ-

ity primarily at the wound margin during similar experimental wound healing assays with a high

density in response to treatment with transforming growth factor-β (TGF-β). While these patterns

of biochemical activity are known to be crucial in regulating cell migration in various contexts, a

quantitative understanding of biochemical activation and its in�uence on cell population phenotype

is currently lacking.

Partial di�erential equation (PDE) models are now a vital tool in interpreting the mechanisms

underlying experimental data from scratch assay experiments [Thackham et al., 2008b]. For exam-

ple, previous mathematical models have been used to determine the rates of di�usion and prolif-

eration of mesothelial cells [Maini et al., 2004], the e�ect of cell density on the di�usive rates of

prostate cancer cells [Jin et al., 2016], and how wounds of di�erent shapes and sizes in�uence healing

rates [Arciero et al., 2013, 2011]. While PDE models have proved successful in describing collective

migration, most mathematical models are very simple and neglect the plethora of biological com-

plexity underlying how a group of cells can coherently migrate as one unit. This lack of complexity

has limited the ability of these models to interpret more complicated aspects of collective migration,

such as the e�ects of physical connections between cells or patterns of biochemical activity.

The goal of this dissertation is to develop and analyze mathematical models that describe some

of the relevant physical and chemical cues underlying the collective migration during epidermal

wound healing more realistically than previous models. Focus will also be given on how numerical

error in approximating a PDE solution propagates in a deterministic inverse problem methodology

that is commonly used to interpret experimental data. This will include the derivation of nonlin-

ear di�usion equations to interpret the in�uence of cell-cell adhesions on keratinocyte migration in

response to EGF treatment. We will also develop a framework to study biochemically-structured
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transport equations, in which di�erent patterns of biochemical activation in�uence transport into

the wound. These equations admit self-similar traveling wave solutions when the parameters are

independent of biochemical activation. For scenarios where the transport parameters depend on

biochemical activation, we derive a time-dependent equation that governs how the cell population

migrates in time and space in response to temporal biochemical patterns. This time-dependent

equation can be simulated numerically very quick and easily. We then study how error in numeri-

cally computing PDE models in�uences a common inverse problem methodology used to estimate

unknown parameters. In Section 1.1, we discuss some important previous models of cell migration.

In Section 1.2, we brie�y discuss the results from each chapter in this dissertation.

1.1 Previous Mathematical Models of Wound Healing

Mathematical models of wound healing have arisen in many di�erent forms over the past 25 years.

One of the most common types of equations that arise are reaction-di�usion equations, which are

written as:

∂u

∂t
= D∇2u+R(u),

where u ∈ Rn denote a vector of unknown quantities under consideration, D denotes a diago-

nal matrix representing the di�usive spread of the quantities, and R : Rn → Rn is an operator

representing how the di�erent quantities interact [Fife, 1979]. Such equations arise in a variety

of di�erent contexts, notably excitable media in neuroscience [Keener and Sneyd, 2009], species

migration in ecology [Hastings et al., 2005], and biology [Murray, 2002]. They admit a variety

of interesting mathematical behaviors and patterns, most notably pattern formation and traveling

waves solutions.

A traveling wave solution to a PDE is a solution that maintains a �xed pro�le over time and

moves in one direction at a constant speed. If x is one-dimensional, then a traveling wave solution

to a PDE is written as U(z) = u(x, t) where z = x− ct and U(z) denotes the traveling wave pro�le

[Murray, 2002]. Here c denotes the speed of the traveling wave solution. Notably, this change of

variable transforms a PDE into an ordinary di�erential equation (ODE) that de�nes the solution's

pro�le. The experimental data observed in wound healing experiments often moves into the wound

area at a constant speed, which has prompted the signi�cant study of traveling wave solutions to
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PDE models in the wound healing literature [Ai, 2008, Dale et al., 1994, Horstmann and Stevens,

2004, Landman et al., 2005, Li and Wang, 2011].

One of the earliest mathematical studies into epidermal wound healing is presented in [Sherratt

and Murray, 1990], in which di�erent stimuli for the enhanced rate of epidermal mitosis during

wound healing was considered. The stimulus considered includes the presence of some biochemical

activator or inhibitor of mitosis. The �nal model is written as

ut = D∇2u+ s(c) · u · (2− (u/K))− ku (1.1)

ct = Dc∇2c+ f(u)− λc.

where subscripts denote di�erentiation, u denotes a cell density in time and space, c denotes a

chemical concentration in time and space, the parameters D and Dc denote the rates of di�usion of

cells of chemical respectively, K is the unwounded cell density, and k and λ denote natural death

and decay terms for the cells and chemical, respectively. The function s(c) denotes chemical control

of mitosis, which the authors consider to be increasing or decreasing with c to represent an activator

or inhibitor of mitosis, respectively. The term f(u) denotes how cells produce the chemical. In the

two cases where the chemical either enhanced or inhibited the mitotic activity of cells, the authors

were able to �t the models to in vivo experimental data on radial wound closure from [van den

Brenk, 1956]. This suggests that biochemical regulation of mitosis is a crucial aspect of epidermal

wound healing.

Equation (1.1) was used to study corneal epithelial wound healing in [Dale et al., 1994]. This

study considered c(x, t) to denote the concentration of EGF, so this represents a scenario where the

chemical is an activator of mitosis. The authors also analyzed the speed and existence of traveling

wave solutions to the equation by deriving a complicated dispersion relation that can be solved

numerically. By doing so, the authors showed that their model had traveling wave solutions at a

speed that matched experimental data. Because traveling wave solutions to (1.1) exist when the

rate of di�usion is independent of EGF concentration, the authors also concluded that the e�ect of

EGF on cell migration is negligible in the corneal layer of the epidermis.

Fisher's Equation has also been widely used in the wound healing literature due to its simple
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nature [Cai et al., 2007, Jin et al., 2016, Maini et al., 2004]. Fisher's Equation is written as

ut = Duxx + λu
(

1− u

K

)
(1.2)

where u denotes a density of cells, D represents their di�usivity, λ represents the rate of prolifer-

ation, and K denotes the carrying capacity. Note that Equation (1.2) is a simpli�cation of (1.1).

R.A. Fisher introduced this equation in 1937 to model the advance of an advantageous gene in a

population [Fisher, 1937] and showed that Equation (1.2) has a positive and monotonic pro�le for

|c| ≥ 2
√
Dλ/K, which is biologically relevant when u(t, x) denotes a population of cells. Kolmogo-

ro� proved in 1937 that any solution to (1.2) with a compactly-supported initial condition (such as

a wound) will converge to this solution [Kolmogoro� et al., 1937]. Fisher's Equation was used to

interpret wound healing assays of mesothelial cells in [Maini et al., 2004]; since then, many varia-

tions of this equation have been considered in the math biology literature [Cheeseman et al., 2014,

Curtis and Bortz, 2012, Gourley, 2000, Hammond and Bortz, 2011, Johnston et al., 2015, Yahyaoui

et al., 2017].

Another important class of mathematical models from the wound healing literature include

chemotaxis equations, in which biological organisms move in response to a chemical gradient.

Chemotaxis equations where �rst considered in [Keller and Segel, 1971] to mimic the chemotac-

tic migration of bacteria. This equation is given by

bt = (µ(s)bx)x − (bχ(s)sx)x

st = −k(s)b+Dsxx,

where b denotes the concentration of bacteria, s denotes the chemoattractant chemical, µ is the rate

of bacterial di�usion, χ is the rate of chemotaxis, k is the rate of consumption of chemoattractant,

and D is the rate of chemoattractant di�usion. In this paper, criteria for the speed and existence

of traveling wave solutions were investigated. Since then, chemotaxis equations have been widely

used to model the movement of cells in response to chemicals, such as EGF [Ai et al., 2015, Hillen

and Painter, 2009, Landman et al., 2008, Simpson et al., 2006]. These equations again often lead

to traveling wave solutions and the hyperbolic nature of these equations can lead to solutions with
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discontinuous pro�les (as opposed to the parabolic Equation(1.1) ) [Landman et al., 2008, Newgreen

et al., 2003].

It should lastly be noted that the continuous PDE models considered above are approximations

to the true wound healing process, as any continuous model must assume that cells in the population

are in�nitely small, which is of course unrealistic. Due to increases in computing ability in recent

years, agent-based models of wound healing are becoming a more and more popular method to

study experiments [Johnston et al., 2012, 2014, 2016, Simpson et al., 2011]. In these models, a

�nite number of agents are used to represent the cells in a population. The migration of the whole

population is then governed by sets of rules for how each agent in the population can move and

produce more agents. For cells of small diameter, these rules governing cell migration can often be

approximated with continuum models. For example, in [Simpson et al., 2014], simple and realistic

rules are given that can be approximated by Fisher's Equation.

1.2 Dissertation Overview

When epithelial cells are migrating during tissue repair, they maintain physical cell-cell adhesions to

the nearest neighbors. As these cell-cell adhesions connect cells to the actin cytoskeletons of their

neighbors, these physical connections in�uence population-wide migration [Friedl and Gilmour,

2009, Clark and Henson, 1995]. For instance, the loss of these connections between cells that gives

tumorous epithelial cells their invasive phenotype and ability to develop into mesenchymal cells

during the epithelial-to-mesenchymal transition (EMT), a crucial process in tumorigenesis. This

rise in invasive capability allows the cancerous mesenchymal cells to invade local and distant areas

of the body [Hollier et al., 2009]. The observation that loss of physical connections gives rise to

invasiveness in cancer biology has caused several mathematical models of wound healing to assume

that these cell-cell adhesions also hinder healthy cell migration during wound healing [Anguige and

Schmeiser, 2009, Johnston et al., 2012, Mi et al., 2007]. In Chapter 2, we will investigate this

suspect hypothesis by deriving two nonlinear di�usion equation models with di�erent assumptions

on the main role of cell-cell adhesions during keratinocyte migration into the wound. The �rst

model assumes that cell-cell adhesions hinder migration into the wound, while the second model

assumes that cell-cell adhesions promote migration into the wound. We will �t both of these models
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to experimental data on the leading edge propagation of keratinocyte and observe that the latter

model can better �t experimental data. This observation prompted us to perform the same scratch

assay in keratinocyte populations with decreased levels of cell-cell adhesion expression. We show

that these new experiments are unable to maintain healthy rates of migration into the wound.

Leader and follower cells are known to exist in migrating cell populations, and leader cells are often

proposed to act by pulling follower cells into the wound with them [Chapnick and Liu, 2014]. To

the best of our knowledge, this is the �rst use of a mathematical model to demonstrate and quantify

this behavior.

While PDE models have proved crucial in interpreting wound healing experiments, they have not

yet been used to quantify the e�ects of biochemical activation on cell migration and proliferation. In

Chapter 3, we aim to bridge this gap by deriving and analyzing biochemically-structured reaction-

di�usion equations. This chapter will begin with an introduction to continuous stage-structured

equations and demonstrate how to solve them analytically using the method of characteristics. We

will then discuss the relevance of a biochemically-structured trait in the context of wound healing and

derive a biochemically-structured Fisher's Equation. All terms in the equation will be described

using terminology from [de Roos, 1996]. We will then show the existence of unique self-similar

traveling wave solutions to a simple version of this equation. For a more realistic equation, we

will derive a time-dependent version of Fisher's Equation (in time and space) to account for how

various patterns of biochemical activation in�uence the cell population's migration into the wound.

We will use numerical simulations to demonstrate the e�ects of di�erent patterns of biochemical

activation on cell migration into the wound. These simulations are aided by some analytical criteria

to deduce for which parameter values we will observe the cell population become activated. From

these simulations, we observe that a healthy combination of cell di�usion and proliferation is needed

for the cell population to migrate farthest into the wound, which occurs at the threshold value at

which all cells in the population become activated.

The PDE models used to interpret wound healing assays are often too complicated to solve with

a closed-form solution. Instead, numerical solutions to these models are typically used to �t their

approximations to the equation solution to experimental data. In Chapter 4, we take a numerical

analysis approach to investigate how numerical error in�uences an inverse problem methodology that

is commonly used in the sciences to estimate the parameters from a system under consideration.
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This is done on a simple hyperbolic advection equation, where numerical di�culties for simulating

discontinuous solutions are well documented [Thackham et al., 2008a]. We will show how numerical

solvers of di�erent orders cause the order of a numerical cost function to di�er in various scenarios.

We then demonstrate how residual analysis is altered when numerical error is the dominant form

of error, and we derive an autocorrelative statistical model to correct these residual terms for �rst

order methods. We also compute con�dence intervals to demonstrate how sensitive these are to the

numerical solvers and precision. We demonstrate that the autocorrelative statistical model is often

able to correct con�dence interval computation.

We �nish in Chapter 5 by discussing the relevance of this work to future clinical trials for chronic

wounds and discussing future work.
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Chapter 2

Modeling Keratinocyte Wound Healing

Dynamics: Cell-cell Adhesion Promotes

Sustained Collective migration1

Collective cellular migration is a critical component of many biological processes, including

embryo development [McLennan et al., 2015], tissue repair [Maini et al., 2004], and tumorigenesis

[Anderson, 2005]. A group of cells is considered to be migrating collectively when neighboring cells

adopt similar migration directions. In many cases of collective migration, neighboring cells are

physically linked through some form of cell-cell junction [Friedl and Gilmour, 2009]. The exact

role of these cell-cell junctions has not been identi�ed in this process, nor is it clear how temporal

regulation of these junctions may in�uence the migration behavior of a collectively migrating group

of cells. To date, cell-cell adhesion is believed to act as a component for cell-cell coupling during

epithelial migration [Ilina and Friedl, 2009], but has also been shown experimentally to a�ect cell

migration both positively [Geisbrecht and Montell, 2002, Hazan et al., 2000] and negatively [Friedl

and Gilmour, 2009, Hazan et al., 2000] in di�erent situations. However, the majority of previous

mathematical models of cell migration assume that cell-cell adhesion a�ects cell migration negatively

[Anderson, 2005, Anguige and Schmeiser, 2009, Johnston et al., 2012]. In this study, we investigate

the role of cell-cell adhesion during in vitro keratinocyte wound healing.

During the re-epithelialization phase of wound healing in mammalian skin, the migration of both

�broblasts and keratinocytes is required to reestablish the physically disrupted barrier between the

organism and the surrounding environment [Clark and Henson, 1995]. In this process, collective

1This chapter has been published in Nardini et al. [2016].
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Figure 2.1: Mean leading edge propagation of mock (black dashed line in blue strip) and EGF
(black line in red strip) experiments between 0 and 35 hours. Our leading edge computation �nds
where the normalized cell sheet pro�le reaches a certain value and is discussed in Section 2.1.3. The
value used in this �gure is 0.3. The total height of the colored strips correspond to two standard
deviations of the leading edge data over time.

migration of layers of keratinocytes that are physically linked through adherens junctions allows

for the completion of wound healing and reformation of the epidermis [Ilina and Friedl, 2009].

Adherens junctions are composed of E-cadherin, α- and β- catenin, and are bound to the actin

cytoskeleton through the adaptor protein vinculin, which binds α-catenin to �lamentous actin [Friedl

and Gilmour, 2009, Haley and Gullick, 2008, Juliano, 2002]. Thus, adherens junctions serve as a

bond between both the plasma membranes and actin cytoskeletons of adjacent cells.

Our experimental system of arti�cially constructed sheets of spontaneously immortalized human

keratinocyte (HaCaT) cells (described previously in [Chapnick and Liu, 2014]) exhibits many simi-

larities to in vivo keratinocyte behavior. These sheets of physically connected cells migrate into a

wound area in response to epidermal growth factor (EGF) treatment in the same way that multiple

layers of keratinocyte layers migrate during in vivo wound healing. Whereas �broblasts secrete

EGFR ligands in vivo [Werner et al., 2007], addition of exogenous EGF allows us to stimulate this

keratinocyte migration into the wound. The stimulatory e�ect of EGF treatment on cell migration

in this system is demonstrated in Figure 2.1, where we have displayed the leading edge propagation

of untreated (denoted as mock) and EGF-treated keratinocyte sheets. The EGF-treated cell sheets
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migrate more than three times as far as the mock cell sheets after 35 hours.

A plethora of recent quantitative studies have analyzed in vitro wounding assays to investigate

aspects of collective cell migration for various cell types [Arciero et al., 2011, 2013, Cai et al.,

2007, Landman et al., 2007, Posta and Chou, 2010, Poujade et al., 2007, Simpson et al., 2014].

For example, the continuum model developed in [Arciero et al., 2011] investigated how wound area,

shape, and aspect ratio in�uence gap wound healing as a means to improve predicted wound healing

times in intestinal enterocyte cells [Arciero et al., 2013]. In this current study, we investigate the role

of cell-cell adhesion on collective cell migration during in vitro wound healing assays of keratinocyte

cell sheets. To do so, we develop and compare two competing mathematical models to describe

how cell sheets migrate into the wound. Both models are nonlinear di�usion equations based on

assumptions of how cell-cell adhesion in�uences the space �lling response of cells to a wound. Our

�rst model (Model H) assumes cell-cell adhesion hinders migration into the wound through a drag

force, while the other model (Model P) assumes cell-cell adhesion promotes this migration with a

pulling force. We simulate both models with time-dependent rates of cell-cell adhesion to accurately

�t the leading edge propagation of experiments from our model system. Model P is more robust than

Model H to changes in the de�nition of the leading edge, so we determine it to be an appropriate

model of keratinocyte migration during wound healing. We also show that it can reliably predict

leading edge propagation from our experimental system.

Performing the same experimental protocol on cell sheets with decreased α-catenin expression

demonstrates that cell sheets with weakened cell-cell junctions initially enter the wound area rapidly

but do not display collective migration and are unable to maintain migration into the wound. Intact

adherens junctions thus allow the cell sheet to sustain the wound healing response for long periods

of time through collective migration. The agreement between sheet migration behavior in wild-type

sheets and model P simulations, in addition to the inability of cell sheets with decreased α-catenin

expression to maintain migration, leads us to conclude that cell pulling, which is mediated by cell-cell

adhesion, promotes sustained collective migration during wound healing.

In Section 2.1, we present our two model derivations based on di�erent assumptions for the role

of cell-cell adhesion on cell migration. In Section 2.2, we demonstrate how both models can �t

experimental leading edge propagation data, but that Model P is robust to changes in the leading

edge de�nition. We then use keratinocyte sheets with decreased α-catenin expression to demonstrate
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that cell-cell adhesion is needed to maintain a sustained wound healing response. We discuss our

conclusions in Section 2.3 and discuss the implications of these results as well as plans for future

work in Section 2.4.

2.1 Model Development

To investigate the role of cell-cell adhesion on wound healing, we develop two contrasting models

in Section 2.1.1. Model H assumes that cell drag hinders migration, while Model P assumes that

cell pull promotes migration. In Section 2.1.2, we discuss the data collection procedure. In Section

2.1.3, we discuss our parameter estimation method.

2.1.1 Nonlinear Di�usion Models

Let u(t, x) denote the normalized cellular sheet density at location x and time t. We �rst discretize

our solution domain with a uniform grid for both time and space, i.e., we set xi = xmin + i∆x, i =

0, ...,M − 1 and tj = j∆t, j = 0, ..., N − 1, where M and N denote the number of spatial and time

points used, respectively. We simplify notation by writing the cell density at a �xed location over

time as ui = u(t, xi).

Similar to [Anguige and Schmeiser, 2009], we �rst de�ne discrete transition rates for our two

models and then derive their continuum limits. The transition rate, denoted τ+
i , is the rate at which

ui (the cell density at location xi) will move forward to the location xi+1. Both models incorporate

two terms in their transition rates that denote space-�lling migration into the wound and the e�ect

of cell-cell adhesion on this migration. For Model H, in which cell-cell adhesion hinders migration,

we denote the transition rate τ+
i,H as:

τ+
i,H =

D(1− ui+1)(1− αui−1)

∆x2
(2.1)

where D denotes the rate of cell di�usion and the �rst term (1 − ui+1) represents space-�lling

migration of the cell sheet (i.e., the cell density will migrate towards lower density areas). The

parameter α denotes the rate of cell-cell adhesion, and thus the second term (1−αui−1) in Equation

(2.1) represents the neighboring density in the direction opposite migration decreasing the transition

rate. In this scenario, strong physical connections to other cells will hinder cell migration, as the

added weight of other cells provides a drag force that impedes migration into the wound. The
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transition rates τ+
i−1,H , τ

−
i,H , and τ

−
i+1,H are all de�ned analogously in Table 1 in the appendix (τ−i

denotes the transition rate of ui moving from position xi to xi−1).

We similarly de�ne τ+
i,P for model P, in which cell-cell adhesion promotes migration, as:

τ+
i,P =

D(1− ui+1)(1 + αui+1)

∆x2
(2.2)

where the �rst term again denotes space-�lling migration, and the second term denotes cells located

in the direction of migration increasing the transition rate. In this scenario, strong physical con-

nections to other cells will promote migration as cells are pulled forward with the cells migrating in

front of them. The transition rates τ+
i−1,P , τ

−
i,P , and τ

−
i+1,P are also given in Table 1 in the appendix.

Given these transition probabilities, we derive the continuum limit by setting the time derivative

of ui equal to the �ux into and out of xi by:

dui
dt

= τ+
i−1ui−1 + τ−i+1ui+1 − (τ+

i + τ−i )ui (2.3)

and taking the limit as ∆x→ 0+. We follow the steps of Anguige and Schmeiser [2009] and derive

the continuum limit for Model H as

ut = ((D + 3γ(u− 2/3)2 − 4/3γ)ux)x (2.4)

where γ = Dα represents our new rate of cell-cell adhesion. We note that backwards di�usion may

occur with Equation (2.4) if 4γ > 3D and address this further in Section 2.1.3. In the appendix,

we derive the continuum limit for Model P to be

ut = ((D + γu2)ux)x (2.5)

where again γ = Dα. This di�usion term is always positive, so there is no potential for backwards

di�usion to occur.

Adherens junctions change dynamically in response to a cell's environmental cues, such as

the presence of EGF and wound induction [Friedl and Gilmour, 2009]. We will investigate time-

dependent rates of cell-cell adhesion (denoted as Γ(t)) in response to EGF treatment, as previous
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studies have suggested using time-dependent parameters for modeling cell migration in response to

EGF treatment [Johnston et al., 2015]. Because the cell sheets transition from stationary to highly

motile after wound induction and EGF treatment, we consider decreasing Γ(t) terms for Model H,

as a decrease in cell drag should allow the cell sheet to increase its rate of migration. Similarly, we

consider increasing Γ(t) terms for Model P. We write our �nal mathematical models as:

ut = ((D + 3Γ(t)(u− 2/3)2 − 4/3Γ(t))ux)x (Model H) (2.6)

and

ut = ((D + Γ(t)u2)ux)x, (Model P) (2.7)

and we will present the terms considered for Γ(t) in Section 2.2.1. We note that cell proliferation is

negligible in our experimental system, as demonstrated in the appendix, so terms for proliferation

have not been included in our model. We brie�y review the two models, along with their terms and

assumptions in Table 2.1. A list of all parameters used throughout this study is also given in Table

2.2.

Model features H P

Cell-cell adhesion Hinders migration Promotes migration

Treatment mock EGF mock EGF

Γ(t) γ1 γ1 + γ2(1− t/tfinal) γ1 γ1 + γ2t/tfinal
Equation (2.4) (2.6) (2.5) (2.7)

Table 2.1: Summary of equations and assumptions relating to Models H and P.

Parameter Description (units)

D Baseline rate of di�usion
(
microns2/hr

)
γ1 Baseline cell-cell adhesion rate between adjacent cells

(
microns2/hr

)
γ2 Response of the rate of cell-cell adhesion to EGF treatment

(
microns2/hr2

)
Table 2.2: List of parameters for the two models. Note that the �t values for di�erent simulations
are given in Tables 2.3 and 2.5.

If w is the site of the wound, we use an indicator function for our initial condition that is set

equal to 1 for x < w and 0 for x > w. This initial condition represents a high density behind the

wound and no initial cell density in the wound area. Note that in experimental videos, we only
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observe a 3.24 mm×3.24 mm �eld of view, whereas the experimental domain is actually 7 mm long

and 5 mm wide. We accordingly use zero Neumann boundary conditions 4.86 mm behind and in

front of the �eld of view to simulate no �ux conditions at the walls of the well plate.

2.1.2 Description of experiments

In vitro wound healing experiments, as previously described in Chapnick and Liu [2014], begin with

the growth of a con�uent monolayer of cells to a density of about 4,000 cells/mm2 in a well plate.

After 24 hours, half of the cell population on one side of the well plate is manually removed with a

pipette tip. EGF-treated populations are globally treated with a concentration of 100 nM of EGF.

An ImageXpress MicroXL high throughput wide-�eld �uorescence microscope was used to image the

cell populations every 20 minutes for 48 hours. We performed both mock and EGF experiments in

triplicate2. In Section 2.2.3, we perform the same protocol in triplicate on a cell line with decreased

α-catenin expression using RNAi.

2.1.3 Parameter Estimation

In order to �t our model simulations to data on wound healing, we will use an inverse problem

procedure to estimate the parameter vector ~q = [D, γ1, γ2]T for both models for mock and EGF

data. We do so by comparing the locations of the leading edge for both the experimental data

and model simulations, as has been done in previous quantitative wound healing studies [Johnston

et al., 2014, 2015, Maini et al., 2004, Treloar et al., 2014]. In the literature, there are many di�erent

de�nitions of the leading edge [Chapnick and Liu, 2014, Johnston et al., 2014, Maini et al., 2004].

Similar to [Maini et al., 2004], we denote the leading edge as where the sheet pro�le reaches a certain

value. In Figure 2.2, we have included some typical video snapshots along with their resulting data

pro�le and leading edge designation. To calculate the data pro�le, we sum over the vertical axis

for each image matrix and then normalize by the largest density in the population over each time

step. We then calculate the leading edge by �nding the location where the leading edge density

is equal to some value, β, and denote its location over time as `βdata(t). In Figure 2.2, we display

this calculation for β = 0.3 but will consider β = 0.1, 0.2, 0.3 throughout this study. Note that the

2Such an experiment in response to EGF treatment is given in the left frame of Video 1 in the supplementary
material.
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Figure 2.2: Experimental snap shots (top row) of the experiment at t = 0 and 20 hours and their
resulting data pro�les (bottom row), whose calculation is described in the text. The dashed lines
against the snapshots denote the calculated leading edge location, and the thin lines denote one
sample standard deviation. Note that there is no standard deviation at t = 0 because the leading
edge for all experiments starts at 0. The dots depicted against the data pro�les in the bottom row
denote the calculated value for `0.3data(t).

cell sheets move right as a coherent whole even through the leading edge is not completely vertical.

Given a model simulation u(t, x), we calculate the leading edge for a relative density of β in a similar

manner by approximating the location x̃ such that u(t, x̃) = β. We denote the leading edge of a

model simulation resulting from a vector of parameter values ~q by `βmodel(t, ~q).

As a means to estimate the true ~q using our models, we will implement an inverse problem in

which we minimize a cost function between the model and data leading edge locations. In this work,

we will use the cost function given by an ordinary least squares estimate:

J(~q) =
N∑
j=1

|`βmodel(tj , ~q)− `
β
data(tj)|

2,

where {tj}Nj=1 are the time points sampled and N is the number of time points considered. Note
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Figure 2.3: Example of �tting the leading edge propagation of a model simulation (blue curve) to
experimental leading edge propagation data (red dots) over time. Model P has been used here for
illustration. The blue shaded region denotes where we compare the model to the data.

that the experiment is performed for 48 hours, but we only compare the model to data between

10-35 hours for EGF experiments because there is an initial lag period before cell migration, and

some leading edges run o� the �eld of view after 35 hours. For mock experiments, we compare the

models and data after t = 20 hours, because there is a longer initial lag period and cells do not run

o� the �eld of view. For example, in Figure 2.3 the blue rectangle depicts when we compare the

model and data for the cost function. To �nd the q̂ estimate that minimizes the cost function, we

use the Nelder-Mead algorithm as implemented in MATLAB's fminsearch command. For Model H

simulations, we use a barrier function to restrict 4D > 3(γ1 +γ2) to ensure that backwards di�usion

does not occur (as mentioned in Section 2.1.1).

2.2 Results

We now investigate the performances of Models H and P in describing keratinocyte migration during

wound healing. We determine the form of the time-dependent rate of cell-cell adhesion, Γ(t), for

mock and EGF experiments in Section 2.2.1 and then �t `βmodel(t, ~q) to `
β
data(t) for EGF experiments

for β = 0.1, 0.2, 0.3 with Models H and P to investigate how the models respond to changes in β.

Model P is more robust than Model H to changes in the leading edge de�nition, so we declare it

a more appropriate model. We demonstrate the predictive capability of Model P in Section 2.2.2.
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Figure 2.4: Fitting the model leading edge propagation to mean experimental leading edge propa-
gation data. The red region denotes a 95% con�dence interval for the experimental data, the green
dashed line denotes the leading edge propagation of Model H, and the solid blue line denotes the
leading edge propagation of Model P. A constant rate of cell-cell adhesion is used in both model
simulations shown.

β
Model H parameters Model P parameters

D (µm2/hr) γ1 (µm2/hr) D (µm2/hr) γ1 (µm2/hr)

0.2 32300± 600 21300± 400 10.8± 0.2 20000± 3300

Table 2.3: Mock q̂ = [D̂,γ̂1]T estimate table when �tting `0.2model(t, ~q) to `
0.2
data(t) for Models H and P.

Estimates are calculated by �tting the models to the mean leading edge distance traveled and the
standard deviation is calculated from the standard deviation of the three estimates used to �t the
individual data sets.

Inspired by the results of Section 2.2.1, we perform the same experimental assay (as described in

Section 2.1.2) on cell sheets with decreased α-catenin expression in Section 2.2.3 and observe that

these sheets are unable to mediate a sustained wound healing response without intact adherens

junctions.

2.2.1 Parameter estimation

Models H and P can both accurately �t `0.2data(t) for mock data with a constant rate of cell-cell

adhesion (Γ(t) ≡ γ1), as depicted in Figure 2.4. We used the parameter estimation method outlined

in Section 2.1.3 to obtain the estimate values q̂ = [D̂, γ̂1]T for these simulations. The resulting

estimate values for both models are depicted in Table 2.3. Note that the two models use very

di�erent simulations to achieve these similar leading edge locations: Model H uses large D̂ and γ̂1

estimates while Model P uses a large γ̂1 estimate and a very small D̂ estimate.
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Because adherens junctions are dynamically changing in response to their environment, we

consider four simple terms for the rate of cell-cell adhesion over time in response to EGF treatment:

constant, linear, quadratic, and square root. The exact forms for each are given in Table 2.4. Note

that the Γ(t) terms we consider for model H decrease with time whereas the Γ(t) terms for model P

increase with time, as these match the assumptions discussed in Section 2.1.1. Best-�t simulations

for Models H and P to `0.2data(t) using these four di�erent Γ(t) terms are depicted in Figure 2.5. As

opposed to mock data, both models are unable to match the leading edge propagation data with a

constant rate of cell-cell adhesion, as they overestimate the experimental leading edge location from

t = 10−25 hours, and then underestimate the leading edge location afterwards. The linear term for

Γ(t) appears to be a suitable candidate, as both model �ts stay within the 95% con�dence interval

of the data for the majority of the experiment. This linear cell-cell adhesion term may be indicative

of cells constantly increasing or decreasing their surface display of adherens junctions over time in

response to EGF treatment. One of the two models fails to �t the experimental data well with the

quadratic or square root terms, so we decide to further investigate the two models with a linear rate

of cell-cell adhesion throughout the rest of this study.

Γ(t) Model H Model P

constant γ1 γ1

linear γ1 + γ2(1− t/tfinal) γ1 + γ2t/tfinal
quadratic γ1 + γ2(1− t/tfinal)2 γ1 + γ2(t/tfinal)

2

square root γ1 + γ2(1− t/tfinal)1/2 γ1 + γ2(t/tfinal)
1/2

Table 2.4: Di�erent terms considered for the time-dependent rate of cell-cell adhesion, Γ(t), when
�tting Models H and P to experimental EGF data. The parameter γ1 denotes a baseline rate of
cell-cell adhesion, where γ2 denotes the response of the rate of cell-cell adhesion to EGF treatment.
Models H and P are �t to experimental EGF data using all four terms in Figure 2.5.

In Figure 2.6, we depict best-�t `βmodel(t, q̂) simulations for Models H and P with a linear term for

Γ(t) to mean leading edge propagation data, `βdata(t), for β = 0.1, 0.2, and 0.3. While both models

can �t `0.2data(t) very well, we observe that model H overestimates `0.1data(t) from t = 15 to 25 hours

and fails to accurately match `0.3data(t) after t = 20 hours. Model P provides an excellent match to

`0.3data(t), but underestimates `0.1data(t) after t = 30 hours. We present the best-�t parameter estimates

q̂ = [D̂, γ̂1, γ̂2]T when �tting to `βdata(t) with a linear Γ(t) term in Table 2.5 for β = 0.1, 0.2, 0.3.

We observe a wide range of q̂ estimates needed for Model H to �t `0.1data(t), `
0.2
data(t), and `

0.3
data(t) in

comparison to Model P. For Model H, D̂ varies 347%, γ̂1 varies 160%, and γ̂2 varies 882%. For
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Figure 2.5: Determining a suitable form for the time-dependent rate of cell-cell adhesion, Γ(t), by
�tting `0.2model(t, ~q) to `

0.2
data(t). We plot the best-�t simulations, `0.2model(t, q̂), for Models H and P with

di�erent rates of cell-cell adhesion in each frame. The four rates of cell-cell adhesion considered
are constant (top left), linear (top right), square root (bottom left), and quadratic (bottom right).
Each term is given in Table 2.4. The red region in each �gure denotes a 95% con�dence interval
for the experimental data, the green dashed line denotes the leading edge propagation of Model H,
and the solid blue line denotes the leading edge propagation of Model P.
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Figure 2.6: Best �ts of `βmodel(t, ~q) to `
β
data(t) for β = 0.1 (top left), 0.2 (top right), and 0.3 (bottom

left) when using a linear term for Γ(t) for Model H (green dashed line) and Model P (solid blue
line). The red shaded region denotes a 95% con�dence region for the experimental data.

Model P, D̂ varies 146%, γ̂1 varies 165%, and γ̂2 varies 30%. Model H estimates thus appear more

sensitive to changes in the leading edge de�nition than Model P estimates. We also note that

both models use di�erent types of simulations to �t the experimental data, as Model H yields large

estimate values for D̂, γ̂1, and γ̂2 whereas Model P uses small estimate values for D̂ and γ̂1 and large

estimate values for γ̂2. These di�erences in the parameter estimates prompted us to investigate the

model pro�les that led to these simulations.

We depict the three model pro�les that best �t `βmodel(t, ~q) to `βdata(t) for β = 0.1, 0.2, 0.3 for

Models H and P against experimental snapshots over time in Figures 2.7 and 2.8, respectively.

Model H exhibits rapid expansion into the wound, which is likely due to its high D̂ estimate values.
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β
Model H Model P

D̂ γ̂1 γ̂2 D̂ γ̂1 γ̂2

0.1 32400± 1100 13100± 200 10300± 700 6.5± 13 40± 300 152600± 22500

0.2 73100± 2700 20500± 600 32900± 1500 16± 4 50± 1500 169900± 9400

0.3 144800± 9800 7900± 700 100700± 1100 13± 2 20± 400 198900± 12600

% change 347% 160% 882% 146% 165% 30%

Table 2.5: EGF q̂ = [D̂,γ̂1,γ̂2]T estimate table when �tting `βmodel(t, ~q) to `
β
data(t) for Models H and

P for β = 0.1, 0.2, 0.3. Estimates are calculated by �tting the models to the mean leading edge
distance traveled and the standard deviation is calculated from the sample standard deviation of
the three estimates used to �t the individual data sets.

This rapid expansion causes Model H to predict a high cell density in areas that are empty in the

experimental snapshot when �tting to `0.3data(t) (such as at x = 1000 microns when t = 25 hours)

and to predict a low cell density in areas that appear con�uent when �tting to `0.1data(t) (such as at

x = 0 when t = 25 hours). Contrast Model H's rapid expansion into the wound with the limited

local expansion of Model P's pro�le in Figure 2.8. Model P maintains a sharp front that propagates

into the wound as a coherent unit over time. The sharp front allows Model P to qualitatively

predict high and low density areas of the cell sheet well, and its pro�le simulations do not change

signi�cantly when �tting between `0.1data(t), `
0.2
data(t), or `

0.3
data(t).

Due to Model P's robustness to di�erent leading edge de�nitions and its ability to qualita-

tively match experimental cell sheets, we suggest that Model P is a suitable model for keratinocyte

migration during wound healing.

2.2.2 Fitting and predicting of individual data sets

We perform a type of cross validation as a means to demonstrate the predictive capacity of Model

P. We do so by �tting `βmodel(t, ~q) from Model P simulations to `βdata(t) for each data replicate and

use these individual best-�t simulations to predict the other data replicate. The three leading edge

replicates for `0.2data(t) are depicted in the top left frame of Figure 2.9. Because the data sets begin

their wound healing response at di�erent times, we predict a data set from a �t simulation by

aligning their leading edge locations at t = 15 hours (after all data sets have started migrating).

In the top right frame of Figure 2.9, we show the best-�t Model P simulation to `0.2data(t) for

data set 1, and in the the bottom rows, we demonstrate how this simulation can accurately predict

`0.2data(t) for data sets 2 and 3. We observe similar results after �tting to the other data sets and after

24



D
a
ta

 s
n
a
p
s
h
o
t

EGF model against snapshot, time = 12 hours

−1500 −1000 −500 0 500 1000

−1500 −1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

Distance (microns)

R
e
la

ti
v
e
 d

e
n
s
it
y

 

 

u = 0.1
u = 0.2
u = 0.3

Fit to 0.1

Fit to 0.2

Fit to 0.3

D
a

ta
 s

n
a

p
s
h

o
t

EGF model against snapshot, time = 19 hours

−1500 −1000 −500 0 500 1000

−1500 −1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

u = 0.1
u = 0.2
u = 0.3

Distance (microns)

R
e

la
ti
v
e

 d
e

n
s
it
y

D
a

ta
 s

n
a

p
s
h

o
t

EGF model against snapshot, time = 25 hours

−1500 −1000 −500 0 500 1000

−1500 −1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

u = 0.1
u = 0.2
u = 0.3

Distance (microns)

R
e

la
ti
v
e

 d
e

n
s
it
y

D
a

ta
 s

n
a

p
s
h

o
t

EGF model against snapshot, time = 32 hours

−1500 −1000 −500 0 500 1000

−1500 −1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

u = 0.1
u = 0.2
u = 0.3

Distance (microns)

R
e

la
ti
v
e

 d
e

n
s
it
y

Figure 2.7: Model H simulations against experimental snapshots. The bottom frame de-
picts Pro�le plots of Model H that have been �t to `βdata(t) for data set 3 when β =
0.1 (blue), 0.2 (green), 0.3 (black). The calculated value for `0.2data(t) is depicted against the experi-
mental snap shot with a dashed black line and the solid thin lines denote one standard deviation of
the data. Against the model pro�le, we've depicted the lines u = 0.1, 0.2, 0.3 for easy identi�cation
of the model leading edge location. The black dots denote the experimental leading edge locations.
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Figure 2.8: Model P simulations against experimental snapshots. The bottom frames de-
picts Pro�le plots of Model P that have been �t to `βdata(t) for data set 3 whenβ =
0.1 (blue), 0.2 (green), 0.3 (black). The calculated value for `0.2data(t) is depicted against the experi-
mental snap shot with a dashed black line and the solid thin lines denote one standard deviation of
the data. Against the model pro�le, we've depicted the lines u = 0.1, 0.2, 0.3 for easy identi�cation
of the model leading edge location. The black dots denote the experimental leading edge locations.
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Figure 2.9: Using Model P �ts to individual data sets to predict independent data sets. In the top
left frame, we depicted experimental data for three replicates of wild type cell sheets in response to
EGF treatment. In the top right frame, we �t Model P to data set 1. In two bottom frames, we
use this Model P �t to predict the other two data sets by aligning the model simulation and data
at t = 15 hours. Leading edge computation here was done for β = 0.2. Examples for β = 0.1 and
0.3 are given in the appendix.
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�tting to and then predicting `0.1data(t) and `
0.3
data(t). Examples of �ts and predictions to `0.1data(t) and

`0.3data(t) are given in the appendix. We thus see that �t Model P simulations can reliably predict

independent data sets given their leading edge location at t = 15 hours.

2.2.3 Decreasing cell-cell adhesion levels with RNA interference

We now investigate how wound healing is a�ected in a cell sheet with reduced cell-cell adhesion

expression by performing RNA interference for α-catenin, a critical cell-cell adhesion protein [Friedl

and Gilmour, 2009, Haley and Gullick, 2008]. We denote these experiments as sh α-catenin cell

sheets3 and perform the same experimental protocol described in Section 2.1.2 in triplicate, in

which a scratch wound is created with a pipette tip, and the sheet is treated with EGF to stimulate

migration. We depict one sh α-catenin sheet against a wild type sheet in Video 1 of the supple-

mentary material and observe that the leading edge of both experiments move at a similar rate.

As another measure of wound healing, however, we consider an �area of cell invasion,� and de�ne a

wound healing ratio by:

wound healing ratio =
# cells in area of cell invasion

con�uent cell count
. (2.8)

The area of cell invasion is de�ned by the rectangle whose height spans from the initial leading edge

location to 1200 µm into the wound and whose width is de�ned by the �eld of view. We count the

number of cells that enter this area of invasion over time using imageJ's FindMaxima function. To

calculate the con�uent cell count, we again use the FindMaxima function in a rectangle of the same

size in the back of the sheet and use the largest cell count found in this region over the course of

the experiment. This value does not change signi�cantly between experiments. For an analogous

wound healing ratio for model simulations, we calculate
∫ 1200

0 u(t, x)dx over time using Simpson's

rule, where x ∈ [0, 1200] denotes a location in the area of invasion, and normalize this calculation

by its �nal time point. This calculation measures the total cell mass in the area of invasion over

time.

The experimental wound healing ratios over time are depicted for wild type and sh α-catenin cell

sheets in Figure 2.10 with a 95% con�dence interval of the wound closure ratio depicted in the blue

3The sh denotes treatment with short hairpin (sh) RNA used for RNA interference.
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Figure 2.10: Comparing wild type and sh α-catenin cell sheet wound healing. Top : We compare
experimental wound closure ratios in the area of invasion (shaded regions) for wild type and sh
α-catenin cell sheets using Equation 2.8. The mean experimental ratio values are given in the black
and dashed lines for wild type and sh α-catenin sheets, respectively. The blue solid line denotes the
wound healing ratio for the best-�t Model P simulation to `0.2data(t). Bottom: We use the Path�nder
software to display the individual cell trajectories of randomly picked cells in from experimental
replicates after t = 35 hours. For each trajectory, an x indicates the cell's initial location, and a
triangle indicates the cell's �nal location.
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and green shaded regions, respectively. The experimental sh α-catenin cell sheets initially migrate

vigorously into the wound but are unable to maintain this response. The constantly-increasing wild

type cell sheet wound healing ratio passes the sh α-catenin sheet wound healing ratio around t = 30

hours. We also depict the model wound healing ratio in the solid blue line in Figure 2.10 from the

best-�t model P simulation to `0.2data(t), which recapitulates the constantly-increasing experimental

wound healing ratio well. Note that both wild type ratios have an elbow around t = 35 hours, which

we expect to see because cells at the leading edge begin moving past the area of invasion.

In Video 1 of the supplementary material, The sh α-catenin sheets appear to stop migrating

into the wound around t = 35 hours, as demonstrated in the bottom frame of Figure 2.10, where we

used the Path�nder software to track individual cell trajectories after t = 35 hours in a thin slice

of the area of invasion [Chapnick et al., 2013].The sh α-catenin sheets show only modest migration

towards the wound, especially for cells located farther back in the cell sheet (between x = 0 and 300

microns). This lack of forward migration causes the wound healing ratio to decrease after t = 35

hours, as cells near the leading edge leave the area of invasion, but few cells in the back of the

sheet migrate into the area of invasion. Compare this to the wild type sheets, which continue to

migrate towards the wound for the entire 48 hours, even as cells move past the area of invasion. We

thus observe that cell sheets with decreased α-catenin expression initially migrate into the wound

e�ciently but are unable to sustain a proper wound healing response.

2.3 Conclusions

In this study, we have developed two mathematical models for the migration of keratinocyte

cell sheets during wound healing in response to EGF treatment. These two models are used to

investigate the role of cell-cell adhesion on in vitro keratinocyte wound healing assays. Model H

assumes that cell-cell adhesion hinders migration during wound healing due to a drag force, whereas

Model P assumes that cell-cell adhesion promotes migration with a pulling force. Neither model is

able to match experiment EGF-treated data with a constant rate of cell-cell adhesion, but adjusting

the rate of cell-cell adhesion to be linear with time allows both models to �t the data well. In its

best-�t simulations, Model H exhibits rapid initial expansion into the wound, whereas Model P

has a sharp front that propagates into the wound. Model P maintains consistent q̂ = [D̂, γ̂1, γ̂2]T
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estimates and pro�le shapes for di�erent leading edge de�nitions, while Model H varies drastically

in both of these aspects. We accordingly propose that Model P appropriately describes keratinocyte

migration during wound healing assays, suggesting that keratinocytes use cell-cell adhesion to pull

other cells forward during wound healing. The sharp pro�le front of Model P suggest that cell

junctions may also hold cells together to limit drastic changes in density throughout the cell sheet.

We perform the same experimental protocol with HaCaT cell sheets with decreased α-catenin

expression. These sheets display initially high migration into the wound, but this e�cient migration

response can not be maintained without intact adherens junctions. The experimental wild type cell

sheets exhibit constant collective migration into the wound over the entire course of the experiment.

We thus conclude that cell-cell adhesion acts to hold cells in close proximity to allow migrating cells

to pull their neighboring cells into the wound during in vitro keratinocyte wound healing assays.

2.4 Future Work

The positive e�ect of EGF on wound repair is well documented [Clark and Henson, 1995, Dale et al.,

1994, Martin, 1997], however, topical EGF treatment has had only moderate e�ects in clinical wound

repair trials [Berlanga et al., 1998, Tsang et al., 2003]. E�ective clinical treatment of chronic wounds

(such as foot ulcers in diabetic patients) with EGF will require a thorough understanding of its role

during wound healing [Tsang et al., 2003]. The knowledge that cell-cell adhesions promote migration

through cell pulling may guide future investigations in determining methods to increase the duration

and speed of cell migration during wound repair. Such endeavors will aid in developing treatments

to shorten the time needed for re-epithelialization to occur or cause chronic wounds to heal.

The simple nature of our �rst investigation into the e�ects of EGF treatment on wound healing in

keratinocytes leaves ample opportunities for future studies. We note that all experiments considered

in this study have the same high cell density (4000 cells/mm2) and EGF concentration treatment

(10 nM). Recent studies have used various forms of Fisher's equation (initially used to model the

propagation of an advantageous gene [Fisher, 1937]) to analyze the e�ects of cell density and EGF

concentration on invasion of the prostate cancer PC-3 cell line [Jin et al., 2016, Johnston et al., 2015].

In [Jin et al., 2016], the authors found that a linear cell di�usion term in response to cell density was

suitable for less sensitive parameter estimation than a constant di�usion term. Our assumptions on

cell-cell adhesion for Model P led to a quadratic cell di�usion term that increases with cell density
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and yields consistent parameter estimates based on di�erent leading edge de�nitions.

While this study provides insight into re-epithalialization, future work should also investigate

other phases of wound healing such as in�ammation and tissue remodeling. In�ammation is the

body's innate response to injury while tissue remodeling occurs mostly after re-epithelialization to

restore dermal integrity [Clark and Henson, 1995]. Tissue remodeling involves the interaction of sev-

eral di�erent cell types, such as macrophages and �broblasts, and various cytokines and chemokines

[Clark and Henson, 1995]. Such studies would necessitate further work into the complicated interac-

tions of �broblasts with the extracellular matrix (ECM), as �broblasts synthesize and deposit ECM

during migration, but the ECM also a�ects �broblast migration and ECM production [Werner et al.,

2007]. There is a vast literature on continuum models of haptotaxis, chemotaxis, and mechanotaxis

to inform and guide such studies [Olsen et al., 1997, Othmer and Hillen, 2002, Thackham et al.,

2008a].

From the accuracy of Model P, and the time-dependent rate of cell-cell adhesion needed to �t ex-

perimental data, we propose that cell-cell adhesion strength increases over time during keratinocyte

wound healing. Future studies may also investigate the biochemical mechanisms that in�uence

this time-dependent cell-cell adhesion strength. For example, the mitogen-activated protein kinase

(MAPK) signaling cascade is downstream of EGFR and known to stimulate cell migration [Chap-

nick and Liu, 2014, Huang et al., 2004]. In [Posta and Chou, 2010], the propagation of EGF ligand,

reactive oxygen species, and EGF's intracellular protease (which is directly linked to activation of

the MAPK signaling cascade) was modeled in madine darby canine kidney cells, though cell migra-

tion was neglected. Some recent computational studies have modeled molecular signaling processes

during in�ammation with kinetic and agent based models and found macrophage �ux to be a key

regulator of the in�ammatory response [Nagaraja et al., 2014, 2015, Ziraldo et al., 2015]. The

cytokines tumor necrosis factor-α and transforming growth factor-β (both of whose receptors are

upstream of MAPK) were determined to be reliable predictors of the the development of chronic

in�ammation. Incorporating our cell migration model with this signal propagation model and ob-

servations on in�ammation may help elucidate the interaction between the MAPK signaling cascade

and cell migration.
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Chapter 3

Investigation of a Structured Fisher's

Equation with Applications in

Biochemistry1

Traveling wave solutions to partial di�erential equations (PDEs) are often used to study the

collective migration of a population of cells during wound healing [Cai et al., 2007, Denman et al.,

2006, Landman et al., 2005, 2007], tumorigenesis [Kuang et al., 2015], and angiogenesis [Pettet

et al., 1996, Sherratt and Chaplain, 2001]. R.A. Fisher introduced what is now referred to as

Fisher's Equation in 1937 to model the advance of an advantageous gene in a population [Fisher,

1937]. Since then, it has been used extensively in math biology literature to model the migration

of a two-dimensional monolayer of cells during experimental wound healing assays [Cai et al., 2007,

Jin et al., 2016, Maini et al., 2004].

Fisher's Equation is written as

ut = Duxx + λu
(

1− u

K

)
(3.1)

with subscripts denoting di�erentiation with respect to that variable and u = u(t, x) representing

a population of cells over time t at spatial location x. The �rst term on the right hand side of

(3.1) represents di�usion in space with rate of di�usion, D, and the second term represents logistic

growth of the population with proliferation rate, λ, and carrying capacity, K. As shown in [Murray,

1This chapter has been accepted for publication in the SIAM Journal on Applied Mathematics.
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2002, § 11.2], (3.1) admits traveling wave solutions of the form

u(t, x) = U(z), z = x− ct

where c denotes the speed of the traveling wave solution and U(z) denotes the traveling wave pro�le.

Traveling wave solutions to (3.1) thus maintain a constant pro�le, U(z), over time that moves

leftward if c < 0 or rightward if c > 0 with speed |c|. It is also shown that (3.1) has a positive and

monotonic pro�le for |c| ≥ 2
√
Dλ, which is biologically relevant when u(t, x) denotes a population

of cells. Kolmogoro� proved in 1937 that any solution to (3.1) with a compactly-supported initial

condition will converge to a traveling wave solution with wavespeed c = 2
√
Dλ [Kolmogoro� et al.,

1937]. See [Murray, 1977, § 5.4] for a proof of this. There is also a wide literature on studies into

extensions of Fisher's Equation, such as Fisher's Equation coupled with chemotaxis Ai et al. [2015],

Landman et al. [2005], time-dependent rates of proliferation and di�usion [Hammond and Bortz,

2011], and space-dependent rates of di�usion [Curtis and Bortz, 2012].

Continuously-structured population models, or PDE models with independent variables to dis-

tinguish individuals by some continuously-varying properties, were �rst investigated via age-structured

models in the early 20th century [McKendrick, 1927, Sharpe and Lotka, 1911]. The 1970s saw a

revival in structured population modeling after the introduction of methods to investigate nonlinear

structured population models [Gurtin and Maccamy, 1974], which led to our current understanding

of semigroup theory for linear and nonlinear operators on Banach spaces [Webb, 2008]. Recent math

biology studies have used structured equations in various contexts. Several studies have proved the

existence of traveling wave solutions to structured population models [Ducrot, 2011, Ducrot and Ma-

gal, 2009, Gourley et al., 2007, So et al., 2001]. The authors of [Domschke et al., 2017] developed a

spatio-temporal-structured framework to describe the molecular binding process for cell membranes

and connected it with cell population dynamics to investigate several examples of cancer invasion.

Another study used an independent variable representing subcellular β-catenin concentration to in-

vestigate how signaling mutations can cause intestinal crypts to invade healthy neighboring crypts

[Murray et al., 2010]. An age-structured equation has also been used to describe demographic data

for Daphnia magna, a species of water �ea [Rutter et al., 2017a].

Recent biological research has focused on the in�uence of biochemical signaling pathways on the
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migration of a population of cells during wound healing. Particular emphasis has been placed on

the mitogen-activated protein kinase (MAPK) signaling cascade, which elicits interesting patterns

of activation and migration in response to di�erent types of cytokines and growth factors in various

cell lines [Chapnick and Liu, 2014, Matsubayashi et al., 2004]. For example, experimental wounding

assays of madine darby canine kidney cells (MDCKs) in [Matsubayashi et al., 2004] yielded a

transient pulse of ERK 1/2 (a speci�c MAPK protein) activity in the cell sheet that only lasted

for a few minutes. This pulse of activity was followed by a slow wave of activity that propagated

from the wound margin to submarginal cells over the course of several hours. The second wave

was determined to be crucial for regulating MDCK sheet migration. The authors of [Matsubayashi

et al., 2004] proposed that these fast and slow waves of ERK 1/2 activity could be caused by

the production of reactive oxygen species (ROS) and epidermal growth factor (EGF), respectively.

Similar experiments with �broblasts also demonstrated this �rst transient wave of ERK 1/2 activity,

but not the following slow wave. The authors of [Chapnick and Liu, 2014] found that human

keratinocyte (HaCaT) cells exhibit ERK 1/2 activity primarily at the wound margin during similar

experimental wound healing assays with a high density in response to treatment with transforming

growth factor-β (TGF-β).

In this study, we detail an approach to investigate a continuously-structured extension of Fisher's

Equation that is motivated by the above experimental observations. Previous structured population

models (with the exception of [Domschke et al., 2017]) have been restricted to traits that primarily

increase over time, such as age or size, but our analysis allows for both activation and deactivation

along the biochemical activity dimension.

In Section 3.1, we develop our structured population model and devote Section 3.2 to a review

of relevant material from size-structured population models. We demonstrate the existence of self-

similar traveling wave solutions to the model in Section 3.3. In Section 3.4, we study a more realistic

version of our model where migration and proliferation of the population depend on MAPK activity

levels. We derive two criteria for the cell population to activate and use numerical simulations to

demonstrate that the cell population is most sensitive to parameter changes when only part of the

cell population is activated. Some simulations also migrate furthest at the threshold between part

of the population activating and all of the population activating. We make �nal conclusions and
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discuss future work in Section 3.5.

3.1 Model Development

We model a cell population during migrating into a wound, u(t, x,m), by

u : [0,∞)× Rn × [m0,m1]→ R

where t denotes time, x denotes spatial location, and m denotes activation along a biochemical

signaling pathway with minimum and maximum levels m0 and m1, respectively. As a �rst pass, we

assume that any cells of the same MAPK activity level will activate identically over time in the same

environment. This assumption allows us to model the activation distribution of the population over

time deterministically by considering how cells of all possible MAPK activity levels activate and

deactivate over time. We note that biochemical signaling is an inherently heterogeneous process,

so our approach would bene�t from a further investigation with stochastic di�erential equations.

While cell migration is realistically a three-dimensional process, two-dimensional scratch assays are

currently the most common experiments used to study cell migration during wound healing or cancer

invasion [Chapnick and Liu, 2014, Haridas et al., 2017, Johnston et al., 2016]. For ease of analysis

and numerical computation, we will use n = 1 here for one-dimensional migration. Note that one-

dimensional equations have been used frequently to interpret two-dimensional scratch assays [Cai

et al., 2007, Jin et al., 2016, Mi et al., 2007, Nardini et al., 2016], and the results here extend to

two or three dimensions [Hastings et al., 2005].

As discussed in [de Roos, 1996], crucial aspects of a structured population model include the

individual state, the environmental state, external forcing factors, and feedback functions. The in-

dividual state is a dimension used to distinguish between individuals of a population and is typically

based on physiological properties such as age or size. As activation of biochemical signaling path-

ways in�uences cell migration through di�usive and proliferative properties of cells, we incorporate

the biochemical activity dimension, m, as an individual state for our model.

The environmental state of a population is the external factors that in�uence individual behav-

ior. Recall that external cytokines and growth factors, such as ROS, TGF-β, and EGF, in�uence

activation of the MAPK signaling cascade and promote migration during wound healing. The cell
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population will not directly a�ect the level of external growth factor in this work, so an external

forcing factor will be used to represent treatment with these chemicals here. The external chemical

concentration at time t will be denoted by s(t), and the activation response of cells to this chemical

will be given by the function f(s).

A feedback function included in our work will be the inhibition of individual cell proliferation in

response to a con�uent density. As proliferation is hindered by contact inhibition, we introduce a

new variable,

w(t, x) :=

∫ m1

m0

u(t, x,m)dm (3.2)

to represent the population of cells at time t and spatial location x. Proliferation of the population

will accordingly vanish as w(t, x) approaches the carrying capacity, K.

Our model, which we term as a structured Fisher's Equation, is given by the PDE model

ut + (f(s(t))g(m)u)m︸ ︷︷ ︸
activation

= D(m)uxx︸ ︷︷ ︸
diffusion

+λ(m)u

(
1− w(t, x)

K

)
︸ ︷︷ ︸

population growth

(3.3)

w(t, x) =

∫ m1

m0

u(t, x,m)dm

u(t = 0, x,m) = φ1(m)φ2(x)

u(t, x,m = m1) = 0

w(t,−∞) = K w(t, x = +∞) = 0

The function g(m) ∈ C1 ([m0,m1]) denotes the rate of biochemical activation in the population,

s(t) ∈ L∞(R+) denotes the external chemical concentration in the population, f(s) ∈ L1
loc(0,∞)

denotes the activation response of cells to the level of signaling factor present, D(m) and λ(m)

denote biochemically-dependent rates of cell di�usion and proliferation, and φ1(m)φ2(x) denotes

the initial condition of u. We assume a separable initial condition for simplicity. The spatial

boundary conditions specify that the cell density has a con�uent density at x = −∞ and an empty

wound space at x = +∞.We use a no �ux boundary condition at m = m1 so that cells cannot pass

this boundary. In the remainder of this study, we will write f(s(t)) as f(t) for simplicity, though we

note that this function will di�er between cell lines that respond di�erently to the same chemical
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during wound healing2.

The solution space of (3.3), D, is de�ned with inspiration from [Webb, 2008] and Volpert et al.

[1994, § 1.1]. If we let Z denote the space of bounded and twice continuously di�erentiable functions

on R, then we de�ne

D :=

{
u(t, x,m)

∣∣∣∣∫ m1

m0

u(t, x,m)dm ∈ Z
}
,

i.e., u(t, x,m) ∈ D if w(t, x) ∈ Z for all t > 0. We note that
∫m1

m0
φ(x,m)dm need only be bounded

and piecewise continuous with a �nite number of discontinuities [Volpert et al., 1994]. If φ(x,m) is

not su�ciently smooth in m, we obtain generalized solutions of (3.3) [Webb, 2008].

In Section 3.3, we will investigate (3.3) with constant rates of di�usion and proliferation (i.e.,

D(m) = D,λ(m) = λ) and f(t) = 1. By substituting

u∗ =
m1 −m0

K
u, t∗ = λt, f∗(t∗) = f(t∗/λ)

x∗ = x
√
λ/D, m∗ = (m−m0)/(m1 −m0),

g∗(m∗) =
g(m∗(m1 −m0) +m0)

λ · (m1 −m0)
,

w∗ =

∫ 1

0
u∗(t∗, x∗,m∗)dm∗ (3.4)

and dropping asterisks for simplicity, (3.3) can be non-dimensionalized to

ut + (f(t)g(m)u)m︸ ︷︷ ︸
activation

= uxx︸︷︷︸
diffusion

+u

(
1−

∫ 1

0
u(t, x,m)dm

)
︸ ︷︷ ︸

population growth

(3.5)

w(t, x) =

∫ 1

0
u(t, x,m)dm

u(t = 0, x,m) = φ1(m)φ2(x)

u(t, x,m = 1) = 0

w(t, x = −∞) = 1 w(t, x = +∞) = 0.

In Section 3.4, we will consider the full model (3.3) when the rates of cellular di�usion and pro-

liferation are piece-wise constant functions of m and numerically investigate how di�erent functions

for f(t) lead to increased and decreased levels of population migration. These rates of di�usion and

2Note that an extension for modeling the dynamics governing s(t) will be considered in a future study.
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proliferation are given by

D(m) :=

 D1 m ∈Minact

D2 m ∈Mact

, λ(m) :=

 λ1 m ∈Minact

λ2 m ∈Mact

(3.6)

for Minact := [m0,Mcrit) and Mact := [mcrit,m1]. We can perform the same normalization as (3.4)

but now use

x∗ = x
√
λ1/D1, t∗ = λ1t

f∗(t∗) = f(t∗/λ1)

in which case (3.3) becomes

ut + (f(t)g(m)u)m = D̃(m)uxx + λ̃(m)u
(

1− w

K

)
(3.7)

w =

∫ m1

m0

u(t, x,m)dm

u(t = 0, x,m) = φ1(m)φ2(x)

u(t, x,m = m1) = 0

w(t, x = +∞) = 0 w(t, x = −∞) = 1.

with

D̃(m) :=

 1 m ∈Minact

D̄ m ∈Mact

, λ̃(m) :=

 1 m ∈Minact

λ̄ m ∈Mact.
(3.8)

3.2 Background Material from Size-Structured Population Model-

ing

Before investigating the existence of traveling-wave solutions to (3.5), it is useful to review some key

topics used to solve size-structured population models, as discussed in [Webb, 2008]. These topics

will be useful in analyzing (3.3) in later sections. A reader who is familiar with using the method of

characteristics to solve size-structured population models may brie�y skim over this section to pick

up on the notation used throughout our study.
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As an example, we consider the size-structured model given by

ut + (g(y)u)y = Au (3.9)

u(t = 0, y) = φ(y)

where u = u(t, y) : [0,∞)×[y0, y1]→ R denotes the size distribution over y of a population at time t,

y0 and y1 denote the minimum and maximum population sizes respectively, and g(y) ∈ C1(([y, y1])

denotes the physical growth rate3 of individuals of size y. In this section, we will work in the Banach

space X = L1(([y, y1]→ R) and assume A ∈ B(X), the space of bounded and linear operators on X.

The method of characteristics will facilitate solving (3.9).

The goal of this section is to discuss techniques that can be used to solve (3.9) analytically, and

provide an example problem to provide insight. In Section 3.2.1, we discuss the functions σ(y; y)

and σ−1(t; y), which will prove useful in solving (3.9). In Section 3.2.2, we discuss how to solve

(3.9) along the characteristic curve y = σ−1(t; y). In Section 3.2.3, we discuss how to obtain the

�nal solution form.

3.2.1 The characteristic curves

For a �xed size y ∈ [y0, y1], the function

σ(y; y) :=

∫ y

y

1

g(y′)
dy′ (3.10)

provides the time it takes for an individual to grow from the �xed size y to arbitrary size y. If g(y)

is positive and uniformly continuous on [y0, y1], then σ(y; y) is invertible [Webb, 2008]. We denote

its inverse function, σ−1(t; y), as the size curve, which represents the size of an individual over time

that starts at size y at time t = 0. For instance, if an individual has size y at t = 0, then that

individual will have size σ−1(t1; y) at time t = t1. Some helpful properties of the growth curve are

that σ−1(0; y) = y and

d

dt
σ−1(t; y) = g(σ−1(t; y)). (3.11)

3Note that in this section, g(y) denotes a growth rate with respect to size, y, whereas throughout the rest of our
study, g(m) denotes an activation rate with respect to biochemical activity, m.
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See Section A.6 in the appendix for the derivation of (3.11).

As an example problem, consider g(y) = (1− y)/2, y0 = 0, y1 = 1. Then we can compute

σ(y; y) = 2 log

(
1− y

1− y

)
σ−1(t; y) = 1− (1− y)e−t/2.

We depict plots of σ(y; y) in Figure 3.1(a) and σ−1(t; y) in Figure 3.1(b). Note that σ(0.4; y =

0) ≈ 1, so it takes an individual of size zero about 1 time unit to reach a size of 0.4. Conversely,

σ−1(1; y = 0) ≈ 0.4, so an individual that begins with a size of zero will be close to size 0.4 after 1

time unit. These computations are con�rmed in Figure 3.1.

3.2.2 Solving along characteristic curves

In order to solve (3.9) with the method of characteristics, we set y = σ−1(t; y) to de�ne the variable

v(t; y) as

v(t; y) := u(t, y = σ−1(t; y)). (3.12)

As shown in Section A.7 of the appendix, substitution of (3.12) into (3.9) yields the characteristic

equation

vt = −g′(σ−1(t; y))v +Av, (3.13)

where primes denote di�erentiation with respect to y. This characteristic equation has size y at

time t = 0 and can be solved explicitly as4

v(t; y) =
g(y)

g(σ−1(t; y))
eAtφ(y). (3.14)

Returning to our example from Section 3.2.1, if we set A = 0, then we can compute the solution

4To derive this, use separation of variables and with the help of (3.11) note that
∫ t
0
g′(σ−1(τ ; y))dτ =

ln[g(σ−1(t; y))/g(y)].
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Figure 3.1: Solving (3.9) analytically for g(y) = (1 − y)/2, A = 0, and φ(y) = e−(y−0.1)2/.16. (a)
Plots of t = σ(y; y) for y = 0, 0.2, 0.4, and 0.6. (b) Plots of y = σ−1(t; ) for = 0, 0.2, 0.4, and 0.6.
(c) Plots of v(t; y) for y = 0, 0.2, 0.4, 0.6. The curves in the (t, y)-plane denote y = σ−1(t; y).
(d) Log-scale plot of u(t, y). The dashed line denotes the minimum level of
support over time.
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to (3.9) along y = σ−1(t; y) as

v(t; y) =
(1− y)/2

(1− y)e−t/2/2
φ(y)

= et/2φ(y).

Some three-dimensional plots of v(t; y) are depicted in Figure 3.1(c). We depict σ−1(t; y) in the

(t, y)-plane below these curves to emphasize that we are solving (3.9) along the curves y = σ−1(t; y).

3.2.3 Final Solution Form

As (3.14) provides the solution to (3.9) along the arbitrary characteristic curve with initial size y,

we use it to solve the whole equation with the substitution y = σ−1(−t, y), in which we �nd

u(t, y) =


g(σ−1(−t,y))

g(y) eAtφ(σ−1(−t, y)) σ−1(t; y0) ≤ y ≤ y1

0 y0 ≤ y < σ−1(t; y0).
(3.15)

If φ(y) /∈ C1(y0, y1), then (3.15) is viewed as a generalized solution to (3.9). Note that a piecewise

form is needed for (3.15) because we do not begin with any individuals below the minimum size, y0,

and thus the minimum possible size at time t is given by σ−1(t; y0). If the population is assumed

to give birth to individuals of size y0 over time, then the appropriate renewal equation representing

population birth would replace the zero term in the piecewise function (see [Banks and Tran, 2009,

§ 9.5] for an example in size-structured populations and [Gourley et al., 2007] for an example in

age-structured populations).

Completing our example, we can compute the �nal solution to (3.9) when g(y) = (1− y)/2 as

u(t, y) =


et/2φ(1− (1− y)et/2) 1− e−t/2 ≤ y ≤ 1

0 y < 1− e−t/2
. (3.16)

A contour of this solution is depicted in Figure 3.1(d). Note that the dashed line denotes y = 1−e−t,

so u(t, y) = 0 for all points below this curve.
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3.3 Existence of TravelingWave Solutions to the Structured Fisher's

Equation and Other Transport Equations

In this section, we aim to prove the existence of unique self-similar traveling wave solutions to (3.5),
as summarized in Theorem 1. We do so with techniques described in the previous section.

Note that in this section, g(m) is a function of biochemical activity level, and the characteristic

curves, which will be given by

h(t;m) := σ−1(F (t);m) (3.17)

for F (t) :=
∫ t

0 f(t′)dt′, will compute the activity level of an individual over time that starts at level

m at time t = 0. We will thus now refer to these as the activation curves.

We now state the main theorem:

Theorem 1. Equation (3.5) admits unique self-similar traveling wave solutions of the form

u(t, x,m) =

{
g(σ−1(−F (t);m))

g(m) W (z)φ1(σ−1(−F (t);m)), h(t; 0) ≤ m < 1

0 otherwise
, (3.18)

for z = x− ct, c ≥ 2, φ(m) :=φ(x = −∞,m), and W (z) denoting the traveling wave pro�le to the

classical Fisher's Equation.

In Section 3.2.3, we plot a numerical solution to (3.5) to demonstrate the equation's behavior

and how it relates to (3.18). We prove Theorem 1 in Section 3.3.2. We then comment on how this

theorem can be extended to general reaction-di�usion and chemotaxis equations in Section 3.3.3.
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Figure 3.2: Solutions to (3.5) with f(t) = βeγt − 1, g(m) = αm(1 − m) at t = 0, 5,and 10 for
α = 1, β = 3, γ = −1/4. In each frame, the grayscale contour depicts the numerical simulation of
u(t, x,m) along, the red pro�le is a plot of p(t,m) to denote the activation pro�le at time t, and
the blue pro�le is the result of numerical integration of u(t, x,m) along the m dimension to depict
w(t, x).
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3.3.1 Numerical Simulation of (3.5)

In Figure 3.2, we depict a numerical simulation of (3.5) with f(t) = βeγt, g(m) = αm(1−m). Note

that these terms will be explained in Section 3.4.4. For numerical implementation, we use a standard

central di�erence scheme along the x-dimension, an upwind scheme with �ux limiters (similar to

those described in [Thackham et al., 2008a]) along the m dimension, and a Crank-Nicholson scheme

to integrate along time. We discretized each independent variable of a uniform grid with step sizes

of ∆x = 0.2,∆m = 0.00625,∆t = 10−3.

In each frame of Figure 3.2, the grayscale contour denotes the numerical simulation of u(t, x,m)

along x and m for t = 0, 5,or 10. The blue pro�le under the contour is the result of numerical

integration of u(t, x,m) along the m dimension to depict w(t, x). To the left of the contour in red,

we plot the activation pro�le along m, p(t,m), which has the exact form

p(t,m) =


g(σ−1(−F (t),m))

g(m) φ1(σ−1(−F (t),m)) h(t;m0) ≤ m ≤ m1

0 m0 ≤ m < h(t;m0).
(3.19)

Note that (3.19) is similar to (3.18) but is missing the W (z) term.

In Figure 3.2, we observe that the cell population initially activates because f(t) > 0, so the

cell population moves up the m−dimension, as observed at t = 5. f(t) soon becomes negative, in

which case the cell population will begin to deactivate and move down the m-dimension, which is

observed at t = 10. If we continued plotting u(t, x,m) at later time points, we would observe the

whole contour approaching m = 0 as the population continues to deactivate. Meanwhile, along the

spatial domain we see the cell population moving to the right at a constant speed, as we would

expect from the W (z) term from (3.18). Note that there is numerical error in this simulation due

to numerical di�usion along the m dimension, which is unavoidable but can be decreased with �ner

values of ∆m during computation.
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3.3.2 Proof of Theorem 1

Proof. After taking the time derivative of w(t, x), which was de�ned in (3.2), we can rewrite (3.5)

as a system of two coupled PDEs5:

ut + (f(t)g(m)u)m = uxx + u(1− w)

wt = wxx + w(1− w). (3.20)

We next set up the characteristic equation for u by setting m = h(t;m) for a �xed value of m ,

which gives

v(t, x;m) := u(t, x,m = h(t;m)). (3.21)

Substituting (3.21) into (3.20) provides our characteristic equation

vt = vxx + v[1− w − f(t)g′(h(t;m))]

wt = wxx + w(1− w), (3.22)

a time-dependent system of two coupled PDEs in time and space. Note that the bottom equation

for (3.22) is Fisher's Equation, which has positive monotonic traveling wave solutions for any speed

c ≥ 2 (see [Murray, 2002, § 11.2]).

We next aim to derive traveling wave solutions to (3.22). From our knowledge of size-structured

population models from Section 3.2, we intuit the ansatz of a self-similar traveling wave solution,

which we write as

v(t, x;m) =
g(m)

h(t;m)
V (z), z = x− ct (3.23)

w(t, x) = W (z).

In this ansatz, V (z) will de�ne a traveling wave pro�le for v and g(m)
h(t;m) will provide the height of

5Note that either g(m0) = 0 or u(t,m = m0, x) = 0 for t > 0, so that the activation term drops out when
integrating over m for w.
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the function over time. With the aid of the chain rule, we observe that:

vt(t, x;m) = −f(t)g′(h(t;m))g(m)

g(h(t;m))
V − c g(m)

g(h(t;m))
Vz

vxx(t, x;m) =
g(m)

h(t;m)
Vzz,

where subscripts denote di�erentiation with respect to t, x, or z and primes denote di�erentiation

with respect to m. Substituting (3.23) into (3.22) reduces it to the autonomous system

−cVz = Vzz + V (1−W )

−cWz = Wzz +W (1−W ). (3.24)

The existence of a traveling wave solution can now be proven by showing the existence of bounded

solutions to (3.24) with the properties

(V, Vz,W,Wz)(−∞) = (φ1(m), 0, 1, 0), (V, Vz,W,Wz)(∞) = (0, 0, 0, 0). (3.25)

We note that the equations for W are independent of V and are the system of di�erential equations

that yield the traveling wave pro�le for Fisher's equation [Murray, 2002]. We thus have that

W (−∞) = 1,Wz(−∞) = W (∞) = Wz(∞) = 0 are already satis�ed for c ≥ 2. For a �xed value of

c, call this solution Wc. We then observe by substitution that φ1(m)Wc satis�es the equations for

V . We now have that (3.18) is a solution to (3.5).

We now show that (φ1(m)Wc(z),Wc(z))
T is the unique solution (for c �xed) of (3.24) and (3.25)

as follows. Let V,W be solutions to (3.24). We can then multiply the �rst equation of (3.24) by W

and the second by V and subtract the two solutions to �nd

−cVzW + cV Wz = VzzW − VWzz = (VzW − VWz)z .

The above gives that

VzW − VWz = ke−cz
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and boundedness of V, Vz,W, and Wz ensures that k = 0. Because W > 0, we �nd that

(
V

W

)
z

= 0,

which suggests that

V = φ1(m)W

is the unique solution to the upper portion of (3.24).

3.3.3 Note on the generality of results

We have focused on Fisher's Equation in this work due to its applicability to the math biology

literature and cell migration in particular. The methods provided in Section 3.3.2 for the existence

of a unique self-similar traveling wave solution are also applicable for a wide variety of structured

transport equations, including reaction-di�usion and chemotaxis equations. For example, consider

the nondimensionalized structured reaction-di�usion equation given by

ut + (f(t)g(m)u)m = uxx + uR(w) (3.26)

wt = wxx + wR(w). (3.27)

We have the following corollary:

Corollary 1.1. Suppose R(w) ∈ C1(R) has a single value, wl > 0, such that R(wl) = 0 or two

values, 0 < w1
l < w2

l , such that R(w1
l ) = R(w2

l ) = 0 and d/dw(wr(w)) > 0 at w = w1
l . Then (3.26)

will have the unique self-similar traveling wave solution given by

u(t, x,m) =


g(σ−1(−F (t),m))

g(m) Wc(z)φ(σ−1(−F (t),m)), h(t; 0) ≤ m < 1

0 otherwise
(3.28)

where Wc(z) is a traveling wave solution with speed c for (3.27).

Proof. Note that the given conditions for R(w) are su�cient for the existence of a traveling wave

solution for w(t, x), which we will write as Wc(z) [Fife, 1979, § 4.4]. The speed of this solution, c,

will depend on the form of R(w) and possibly the initial condition for w(t, x).
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We may then assume the characteristic equation v(t, x;m) := u(t, x,m = h(t,m)) takes the

form

v(t, x;m) =
g(m)

h(t,m)
V (z)

and w(t, x) = W (z). This yields the autonomous system of ordinary di�erential equations

−cVz = Vzz + V R(W )

−cWz = Wzz +WR(W ),

from which we observe that V = φ1(m)Wc and W = Wc will provide a solution to this system.

The proof of uniqueness of this solution is identical to the proof of uniqueness of the solution

for (3.24). This proves the existence of unique self-similar traveling wave solutions to structured

reaction di�usion equation given by (3.26).

Note that the form of the reaction-di�usion equation given in (3.27) is general and well studied.

If R is given by R(w) = a(w − 1)(α− w) for constants a > 0 and α ∈ (0, 1), then (3.27) represents

the bistable equation. A traveling wave solution then exists for a unique speed, c, which we will

write as Wc(z) [Keener and Sneyd, 2009]. Corollary 1 now guarantees that (3.26) will have the

unique self-similar traveling wave solution given by (3.28).

The same method could also be applied to a structured chemotaxis equation given by

ut + (f(t)g(m)u)m = −(usx)x + αu(1− w) (3.29)

wt = −(wsx)x + αw(1− w) (3.30)

st = bs(1− s)− ws.

Here, u = u(t, x,m) now denotes a cell density simultaneously activating along the biochemical

pathway, m, and migrating up the gradient of some chemoattractant s = s(t, x), and w(t, x) =∫
u(t, x,m)dm denotes the cell density in time and space. Conditions for the existence of smooth-

and discontinuous-fronted traveling wave solutions for (3.30), denoted as Wc(z), are provided in

[Newgreen et al., 2003]. From the same proof methods detailed above, our results now also guarantee
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the existence of a unique self-similar traveling wave solution to (3.29) when Wc(z) has in�nite

support.

3.4 Structured Fisher's Equation with MAPK-dependent Pheno-

type

We now study a version of Fisher's Equation where cellular migration and proliferation depend on

biochemical activity, m, as described by (3.7). Various cell lines have reduced rates of proliferation

and increased migration in response to MAPK activation [Chapnick and Liu, 2014, Clark and

Henson, 1995, Matsubayashi et al., 2004], so we let m denote activity along the MAPK signaling

cascade in this section. We consider a model with two subpopulations: one with a high rate of

di�usion in response to MAPK activation and the other with a high rate of proliferation when

MAPK levels are low. MAPK activation will depend on an external forcing factor to represent the

presence of an extracellular signaling chemical, such as ROS, TGF-β, or EGF. While the method of

characteristics is not applicable to spatial activation patterning here due to the parabolic nature of

(3.3) in space, we can investigate temporal patterns of activation and deactivation. We will exhibit

simple scenarios that give rise to three ubiquitous patterns of biochemical activity: 1.) a sustained

wave of activation, 2.) a single pulse of activation, and 3.) periodic pulses of activation.

Before describing these examples, we �rst introduce some tools to facilitate our study of (3.7). We

will detail some activation criteria in Section 3.4.2, and discuss numerical issues and the derivation

of a time-dependent averaged Fisher's Equation in Section 3.4.3 before illustrating the di�erent

activation patterns and their e�ects on migration in Section 3.4.4.

3.4.1 Model Description

Recall that the biochemically-dependent structured Fisher's Equation is given by (3.7). Given some

mcrit ∈ (0, 1), we de�ne two subsets of [0, 1] as Minact := [0,mcrit),Mact := [mcrit, 1], and the rates

of di�usion and proliferation by (3.8) for D̄ > 1 and λ̄ < 1 Hence for m ∈ Minact, the population

is termed as inactive and primarily proliferates whereas for m ∈Mact, the population is termed as

active and primarily di�uses.

We let supp(φ1(m)) = [mmin,mmax] for mmax < mcrit and assume that
∫ 1

0 φ1(m)dm = 1

51



so φ1(m) represents a probability density function for the initial distribution of cells in m. We

accordingly denote

Φ1(m) :=


0 m ≤ 0∫m

m0
φ1(m′)dm′ 0 < m ≤ 1

1 1 < m

as the cumulative distribution function for φ1(m).

3.4.2 Activation Criteria

To facilitate future numerical simulations, we will derive a condition for a cell population with

an initial condition contained in Minact to enter Mact. Note that to do so, we can ask when the

characteristic curve for the maximum level of initial support will reach the threshold value, mcrit.

This implies that the solution will enter the active population if h(t;mmax) > mcrit, which is

analogous to

F (t) > σ(mcrit;mmax) (3.31)

for some values of t. By standard calculus arguments, (3.31) will occur if

F (tmax) > σ(mcrit;mmax) (3.32)

where the maximum for F (t) occurs at t = tmax. We denote (3.32) as the activation criterion for

(3.7). By the same argument, for the entire population to enter Mact at some point, then we can

derive the entire activation criterion as

F (tmax) > σ(mcrit;mmin). (3.33)

3.4.3 Numerical Simulation Issues and Derivation of an Averaged time-dependent

Fisher's Equation

We depict the u = 1 isocline for a numerical simulation of (3.7) in Figure 3.3 with g(m) = αm(1−m),

f(t) = β sin(γt), α = 1/2, β = 1, and γ = 1.615. These terms will be explained in Example 3 below.

The numerical scheme is the same as that described in Section 3.3.1, except ∆m = 0.025 here. From
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(a) (b)

Figure 3.3: Two views of the isocline for u = 1 from a numerical simulation of (3.7) with g(m) =
αm(1 −m) and f(t) = β sin(γt) for α = 0.5, β = 1, γ = 1.615, D̄ = 100, λ̄ = 1/100, and an initial
condition of φ1(m) = 10/3I[.05,0.35](m) and φ2(x) = I[x≤5](x). The numerical scheme is discussed
in Section 3.4.3 and the step sizes used are ∆m = 1/80,∆x = 1/5,∆t = 10−3. From (3.32), the
simulation should not cross the m = mcrit plane, which is given by the red plane. We see in frame
(a) that the simulation does cross the m = mcrit plane due to numerical di�usion, which causes the
high rate of di�usion along x seen in frame (b).

(3.32), we see that this simulation should not enter the active population with an initial condition

of φ1(m) = 10/3I[.05,0.35](m), where IM (m) denotes an indicator function with support for m ∈ M .

In Figure 3.3, however, we observe that the numerical simulation does enter the active population,

which causes a signi�cant portion of the population to incorrectly di�use into the wound at a high

rate.

Numerical simulations of advection-driven processes have been described as an �embarrassingly

di�cult� task, and one such problem is the presence of numerical di�usion [Leonard, 1991, Thackham

et al., 2008a]. Numerical di�usion along the m-dimension is hard to avoid and here causes a portion

of the cell population to enter the active population in situations where the it should not. Numerical

di�usion can be reduced with a �ner grid, but this can lead to excessively long computation times.

With the aid of the activation curves given by (3.17), however, we can track progression of cells in

the m-dimension analytically and avoid the problems caused by numerical di�usion completely.

To avoid the problems caused by numerical di�usion, we derive a time-dependent Fisher's Equa-

tion for w(t, x) in the appendix that represents the average behavior along m with time-dependent
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di�usion and proliferation terms. This equation is given by

wt = D(t)wxx + λ(t)w(1− w), (3.34)

w(t = 0, x) = φ2(x)

w(t, x = −∞) = 1 w(t, x =∞) = 0

where

D(t) = D̄ + (1− D̄)Φ1(ψ(t))

λ(t) = λ̄+ (1− λ̄)Φ1(ψ(t))

for ψ(t) = σ−1 (−F (t);mcrit) denoting the threshold value in m that separates the active and

inactive regions.

3.4.4 Three biologically-motivated examples

We next consider three examples of (3.7) that pertain to common patterns of biochemical activity

during wound healing. We will use numerical simulations of (3.34) to investigate how di�erent

patterns of activation and deactivation over time a�ect the averaged cell population pro�le. We

will also investigate how the pro�le changes when crossing the activation and entire activation

thresholds derived in (3.32) and (3.33). In each example, we �x mcrit = 0.5, D̄ = 100, λ̄ = 1/100,

φ1(m) = 10/3I[.05,0.25](m), φ2(x) = I(−∞,5](x) and g(m) = αm(1 − m), and use a di�erent terms

for f(t) to mimic di�erent biological situations. The choice for g(m) ensures that the distribution

along m stays between m = 0 and m = 1. The method of lines is used to compute (3.34), with a

standard central di�erence discretization scheme in space and MATLAB's ode45 command is used

for time integration.

Example 1: Single Sustained MAPK activation wave: f(t) = 1

In this example, we consider a case where we observe the entire cell population approach a level of

m = 1 over time. Such a scenario may represent the sustained wave of ERK 1/2 activity observed

in MDCK cells from [Matsubayashi et al., 2004]. We use f(t) = 1 to observe this behavior. We
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Figure 3.4: The analytical solution for the activation pro�le, p(t,m), for Example 1 for α = 0.5,
and φ1(m) = I(0.05,0.35)(m). The solid black curves denote h(t;m) for m = 0.05, 0.15, and 0.35 and
the dashed line denotes m = mcrit. Note that a log scale is used along p for visual ease.

provide the functions for σ(m;m), h(t;m), and ψ(t) that result from this choice of terms in the

appendix.

In Figure 3.4, we plot (3.19) to depict an example activation pro�le, p(t,m), over time to show

the activation behavior of the population. As expected, we observe all of p(t,m) converging to

m = 1. We include some speci�c plots of the activation curves, h(t;m), for this example. Note that

the density changes along these curves by the height function g(σ−1(−F (t),m))
g(m) , which is equivalent to

the height function of the self-similar traveling wave ansatz made in (3.23).

In Figure 3.5(a), we depict a numerical simulation of w(t, x) over time using (3.34). The Regions

denoted as �P� and �D� denote when the population is primarily proliferating (Φ1(ψ(t)) > 1/2) or

di�using (Φ1(ψ(t)) ≤ 1/2) over time. The pro�le maintains a high cell density but limited migration

into the wound during the proliferative phase and then migrates into the wound quickly during the

di�usive phase but can not maintain a high cell density throughout the population. In Figure

3.5(b), we investigate how the numerical simulation pro�le of w(t = 40, x) changes as α varies

from α = 0 to α = 0.2. In the region denoted �No activation�, the entire population is still in the

inactive population at t = 40 and thus does not progress far into the wound or change with α. The

population is split between the active and inactive populations at t = 40 for simulations in the region

denoted �Activation.� The pro�les here are very sensitive to increasing values of α, as they migrate

further into the wound while maintaining a high density near x = 0. Simulations from the region

denoted as �Entire Activation� are entirely in the active population by t = 40. As α increases, these
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Figure 3.5: Numerical simulations of the averaged time-dependent Fisher's equation for Example 1.
In (a), we depict a simulation of w(t, x) over time for α = 0.05. The letters �P� and �D� denote when
the population is primarily proliferating or di�using, respectively. In (b), we depict how the pro�le
for w(t = 40, x) changes for various values of α. The descriptions �No Activation�, �Activation�, and
�Entire Activation� denote values of α for which the population is entirely in the inactive population,
split between the active and inactive populations, or entirely in the active population at t = 40,
respectively.

simulations do not migrate much further into the wound but do have decreasing densities at x = 0.

These results suggest that a combination of proliferation and di�usion must be used to maximize

population migration while maintaining a high cellular density behind the population front. The

optimal combination for a far-moving front with a con�uent density appears to occur at the entire

activation threshold.

Example 2: Single pulse of MAPK activation: f(t) = βeγt − 1

We now detail an example that exhibits a pulse of activation in the m dimension, which may

represent the transient wave of ERK 1/2 activation observed in MDCK cells in [Matsubayashi

et al., 2004]. The authors of [Posta and Chou, 2010] proposed that this wave may be caused by

the rapid production of ROS in response to the wound, followed by its quick decay or consumption

by cells. We now let f(t) = βeγt − 1. This forcing function arises if ROS is present but decaying

exponentially over time and modeled by s(t) = βeγt, β > 0, γ < 0 and cells activate linearly in

response to the presence of ROS but have a baseline level of deactivation, which may be given by

f(s) = s − 1. We provide the functions for σ(m;m), h(t;m), and ψ(t) that result from this choice

of terms in the appendix, as well as the activation criteria.

In Figure 3.6, we use (3.19) to depict the activation pro�le, p(t,m), over time to show the
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Figure 3.6: The analytical solution for the activation pro�le, p(t,m), for Example 2 for α = 0.5, β =
3, γ = −1/4 and φ1(m) = I(0.05,0.35)(m). The solid black curves denote h(t;m) for m = 0.05, 0.15,
and 0.35 and the dashed line denotes m = mcrit. Note that a log scale is used along p for visual
ease.

activation behavior of the population. We also include some speci�c plots of the activation curves,

h(t;m), which show a pulse of MAPK activity in the population that starts decreasing around t = 5.

Note that h(t; 0.35) crosses the m = mcrit line but h(t; 0.05) does not, so (3.32) is satis�ed for this

parameter set (the population becomes activated) but (3.33) is not (the entire population does not

become activated).

In Figure 3.7(a), we depict a numerical simulation of (3.34) for this example. The population

quickly transitions to a di�using stage due to the pulse of MAPK activation and shows the smaller

densities (u approximately less than 0.2) migrating into the wound rapidly while the density behind

the population front drops. As the pulse of MAPK activation ends and the population transitions

back to a proliferating phenotype, the populations restores a high density behind the cell front and

begins to develop a traveling wave pro�le, as suggested by the parallel contour lines. In Figure

3.7(b), we investigate how the numerical solution pro�le for w(t = 30, x) changes as β varies from

β = 2 to β = 9 while keeping all other parameters �xed. We observe that the pro�le is the same

for all inactive simulations as (3.32) is not satis�ed. As β increases past the activation threshold,

the pro�le shows increased rates of migration into the wound. After passing the entire activation

threshold (3.33), the pro�le continues to migrate further as β increases, but appears less sensitive

to β. This increased migration is likely due to the population spending more time in the active

population for larger values of β. Note that for all simulations shown, the pulse of MAPK activation

has �nished by t = 30.
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Figure 3.7: Numerical simulations of the averaged time-dependent Fisher's equation for Example
2. In (a), we depict a simulation of w(t, x) over time for α = 1, β = 8, γ = −1. Regions denoted
with a �P� or �D� denote when the population is primarily proliferating or di�using, respectively.
In (b), we depict how the pro�le for w(t = 30, x) changes for various values of β. The descriptions
�No activation�, �Activation�, and �Entire Activation� denote values of β for which the population
is entirely in the inactive population, split between the active and inactive populations, or entirely
in the active population at t = tmax.

Example 3: Periodic pulses of MAPK activation: f(t) = β sin(2πt/γ)

As a last example, we exhibit a scenario with periodic waves of activity. Such behavior was observed

in some of the experiments performed in [Zi et al., 2011], in which cell cultures of the HaCaT cell

line were periodically treated with TGF-β to investigate how periodic treatment with TGF-β a�ects

activation of the SMAD pathway (the canonical pathway for TGF-β, which also in�uences cell

proliferation and migration). We let f(t) = β sin(2πt/γ), β, γ > 0, which occurs if the concentration

of TGF-β over time is given by s(t) = 1 + sin(2πt/γ), and cells activate linearly in response to s

and have a baseline rate of deactivation, given by f(s) = β(s− 1). Note that f(t) has frequency γ.

We provide the functions for σ(m;m), h(t;m), and ψ(t) that result from this choice of terms in the

appendix, as well as the activation criteria.

In Figure 3.8, we use (3.19) to depict the activation pro�le, p(t,m), over time to show the

activation behavior of the population. We also include some speci�c plots of the activation curves

h(t;m), which demonstrate periodic waves of activation along m. Note that h(t; 0.05) crosses the

m = mcrit line, so (3.33) is satis�ed, and the entire population becomes activated at some points

during the simulation.

In Figure 3.9(a), we depict a numerical simulation of (3.34) for this example. The population
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Figure 3.8: The analytical solution for the activation pro�le, p(t,m), for Example 3 for α = 1/2, β =
4, γ = 1 and φ1(m) = I(0.05,0.35)(m). The solid black curves denote h(t;m) for m = 0.05, 0.15, and
0.35 and the dashed line denotes m = mcrit. Note that a log scale is used along p for visual ease.

phenotype has a period of 4π, and we see that the lower densities migrate into the wound most during

the di�usive stages, whereas all densities appear to migrate into the wound at similar speeds during

the proliferative stages. In Figure 3.9(b), we investigate how the pro�le for w(t = 40, x) changes as

γ varies between γ = 0 and γ = 37 while keeping all other parameters �xed. All �No Activation�

pro�les appear the same because (3.32) is not satis�ed. As γ increases past this threshold, more of

the population becomes activated during the simulation, culminating in a maximum propagation

of the population at the entire activation threshold given by (3.33). As γ increases above this

threshold, the population tends to migrate less far, although the population does migrate far for

γ near 33. In the �Entire Activation� Region, the population appears to spend too much time in

the active population and di�uses excessively with limited proliferation. These simulations lead to

shallow pro�les that do not migrate far into the wound.

3.5 Discussion and Future work

We investigate a structured Fisher's Equation that incorporates an added dimension for biochemical

activity that in�uences population migration and proliferation. The method of characteristics proves

to be a useful way to track the progression along the population activity dimension over time. We

prove the existence of a unique self-similar traveling wave solution to the equation when di�usion

and proliferation do not depend on MAPK activity. The height function of the self-similar traveling

wave ansatz along characteristic curves is demonstrated in Figures 3.4, 3.6, and 3.8. These methods
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Figure 3.9: Numerical simulations of the averaged time-dependent Fisher's equation for Example 3.
In (a), we depict a simulation of w(t, x) over time for α = 0.5, β = 1, and
γ = 4π. Regions denoted with a �P� or �D� denote when the population is primarily proliferating
or di�using, respectively. In (b), we depict w(t = 40, x) for various values of γ. The descriptions
�No activation�, �Activation�, and �Entire Activation� denote values of γ for which the population
is entirely in the inactive population, split between the active and inactive populations, or entirely
in the active population at t = tmax.

are also applicable to structured reaction-di�usion and chemotaxis equations.

Activation of the MAPK signaling cascade is known to in�uence collective migration during

woung healing through cellular migration and proliferation properties. For this reason, we also

consider a structured PDE model in which the rates of cellular di�usion and proliferation depend

on the levels of MAPK activation in the population. We derive two activation criteria for the

model to establish conditions under which the population will become activated during simulations.

As numerical simulations of the structured equation are prone to error via numerical di�usion,

we derive a time-dependent PDE equation in time and space to represent the average population

behavior along the biochemical activity dimension. Using this time-dependent equation, we exhibit

three simple examples that demonstrate biologically relevant activation patterns and their e�ects on

population migration: a sustained wave of activity, a pulse of activity, and periodic pulses of activity.

We �nd that the population tends to migrate farthest while maintaining a high cell density at the

entire activation threshold value, given by (3.33), for the sustained wave and periodic pulse patterns

of activation. The single pulse case continues migrating further into the wound after passing the

entire activation threshold but appears less sensitive after doing so.

A natural next step for this analysis is to use a structured population model of this sort in

combination with biological data to thoroughly investigate the e�ects of MAPK activation and
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deactivation on cell migration and proliferation during wound healing. Previous mathematical

models have focused on either collective migration during wound healing assays in response to

EGF treatment (while neglecting the MAPK signaling cascade) [Johnston et al., 2015, Nardini

et al., 2016] or MAPK propagation during wound healing assays (while neglecting cell migration)

[Posta and Chou, 2010]. To the best of our knowledge, no mathematical models have been able

to reliably couple signal propagation and its e�ect on cell migration during wound healing. The

examples detailed in this work intentionally used the simplest terms possible as a means to focus

on the underlying mathematical aspects. With a separate in-depth study into the biochemistry

underlying the MAPK signaling cascade and its relation with various cytokines or growth factors,

more complicated and biologically relevant terms for g(m), f(s), and s(t) can be determined to help

elucidate the e�ects of MAPK activation on cell migration during wound healing.

As various pathways become activated and cross-talk during wound healing to in�uence mi-

gration [Guo and Wang, 2009], future studies could also investigate a population structured along

multiple signaling pathways, u(t, x, ~m) for the vector ~m = (m1,m2, . . . ,mn)T . Because the cell

population also produces cytokines and growth factors for paracrine and autocrine signaling during

wound healing, these models would also bene�t from variables representing ROS, TGF-β, EGF, etc.

While the main motivation for this study is epidermal wound healing, there are potential appli-

cations in other areas of biology. Fisher's equation has also been used to study population dynamics

in ecology and epidemiology [Ai and Huang, 2005, Hastings et al., 2005, Shigesada and Kawasaki,

1997]. Our framework could be extended to a case where an environmental e�ect, such as seasonal

forcing, impacts species migration or susceptibility of individuals to disease. The results presented

here may thus aid in a plethora of mathematical biology studies.
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Chapter 4

The In�uence of Numerical Error on an

Inverse Problem Methodology1

4.1 Introduction

Partial Di�erential Equations (PDEs) are frequently used to study various scienti�c systems. Due

to their complicated nature, deriving analytical solutions is frequently di�cult or impossible, so

scientists must frequently use numerical methods to approximate their solutions. Numerical error

is inevitable in these approximations, but any useful numerical method will have a predetermined

error structure. How numerical approximation error in�uences various aspects of scienti�c studies,

such as parameter estimation routines and con�dence interval computation, is an interesting and

poorly-understood question [Banks and Fitzpatrick, 1990, Xue et al., 2010].

In [Ackleh and Thibodeaux, 2008], the authors consider an advection-driven model of erythy-

ropoiesis, an important step in red blood cell development. The authors show that an inverse

problem is asymptotically well-posed as the numerical step size used for grid computation, h, ap-

proaches zero if an upwind numerical method is used to approximate the equation.. In practice, we

cannot let h approach zero but must instead choose a �nite value for h to estimate the parameters.

Furthermore, advection equations like those used in [Ackleh and Thibodeaux, 2008] are known to

cause a multitude of numerical issues [Leonard, 1991]. For instance, numerical di�usion or unstable

oscillations occur for many numerical schemes, especially when the true solution is discontinuous

[Randall J. Leveque, 1992, Thackham et al., 2008a]. Upwind methods for advection-dominated

equations are popular because they can avoid spurious oscillations by satisfying certain monotonic-

1This chapter is being prepared for a publication.
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ity constraints, such as the Courant-Friedrichs-Lewy (CFL) Condition [LeVeque, 2007]. Upwind

methods cause their own trouble, however, as they can lead to large amounts of numerical di�u-

sion near points of discontinuity, which is disadvantageous for studying systems with discontinuous

solutions.

In this study, we will use a simple advection equation to demonstrate how various numerical �nite

di�erence methods can be used to approximate an analytic solution and estimate the true parameter

estimate values. We begin in Section 4.2 by introducing some preliminary information, including

the equation under consideration and its analytic solution, the inverse problem methodology, and

the numerical methods used in this study. In Section 4.3, we introduce a numerical cost function

that is used in the inverse problem computations and discuss its asymptotic properties in terms of

both data and numerical precision. In Section 4.4, we discuss our results in using various numerical

methods on di�erent-precision numerical grids to estimate parameters from various data sets. We

use residual analysis in Section 4.5 to infer how an autocorrelation statistical method can be used

to quantify numerical error in the inverse problem for �rst order numerical approximations and how

it improves con�dence interval computation. Based on these results, we provide some suggestions

for practitioners in Section 4.6 to ensure the results of their inverse problem routines are as reliable

as possible. We make concluding remarks and discuss future work in Section 4.7.

4.2 Mathematical Preliminaries

In this section, we outline some necessary information regarding our inverse problem methodology.

In particular, we discuss the advection equation and choice of parameterization in Section 2.1, how

we generate arti�cial data for this study in Section 2.2, the numerical scheme used are discussed in

Section 2.3, and we conclude with our numerical cost function used to compare numerical simulations

to data in Section 2.4.
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4.2.1 Model Equation

We will consider the advection equation given by

ut + (g(x|θ)u)x = 0, u = u(t, x) (4.1)

u(t = 0, x) = φ(x)

x ∈ X, t ∈ T , θ ∈ Q

where g(x|θ) is a spatially-dependent advection rate with parameter vector θ from the parameter

space Q, φ(x) is the initial condition, and u(t, x|θ) denotes the quantity of interest at time t from

the time domain, T , and spatial location x from the spatial domain, X. Throughout this chapter,

we let X = [0, 1] and T = [0, 10]. We will suppress the dependence of g(x) and u(t, x) on θ when

this dependence is unnecessary throughout this document.

The method of characteristics can be used to show the analytical solution to Equation (4.1) of

u0(t, x) =


g(σ−1(−t, x))

g(x)
φ(σ−1(−t, x)) σ−1(t, 0) ≤ x ≤ 1

0 o.w.

(4.2)

where σ−1(t, x) is the characteristic curve that satis�es

∂

∂t
σ−1(t, x) = g

(
σ−1(t, x)

)
, σ−1(t = 0, x) = x.

See [Webb, 2008] for more information and [Nardini and Bortz, 2018] for an illuminating application.

If g(x) > 0 and g′(x) > 0, then Equation (4.1) could be used to mimic a cell population that is

chemotaxing over time, in which cells at the wound edge move faster and faster [Keller and Segel,

1971]. For this reason, we choose

g(x) = α β
√
x, α, β > 0

for x > 0 and for (α, β) ∈ Q = R2. The choice of g(x) above yields the characteristic curves

σ−1(t, x) =
[
α(1− 1/β)t+ x1−1/β

]β/(β−1)
.

We will consider two initial conditions to test their in�uence on numerical convergence and the
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inverse problem. We will denote the �rst initial condition as Gaussian, which is given by

φ1(x) = e−(x−0.2/
√
.005)2 (4.3)

and the second initial condition as a front, which is given by

φ2(x) =


5 x ≤ 0.2

0 otherwise.

(4.4)

We will focus on the main results for φ(x) = φ2(x) in the main body of this document, but most of

the corresponding results when φ(x) = φ1(x) will be given throughout the appendix. We will make

note of how the results change between these two initial conditions.

4.2.2 Arti�cial Data Generation

We will consider various arti�cial data sets to from Equation (4.1). These data sets will be generated

by adding Gaussian noise to the analytical solution

Yi,j = u0(ti, xj |θ0) + Ei,j , Ei,j ∼ N (0, η2), i = 1, ..,M j = 1, .., N. (4.5)

using the uniform grids:

ti =

{
10(i− 1)

M

}M
i=0

, xj =

{
j − 1

N

}N
j=0

for θ0 ∈ Q. Note that this is a very simple form of data generation, and others could have been used,

including multiplicative noise (see Banks and Tran [2009, § 3.2]). Changing the way we generate this

model would also require changing the cost function that we use in Equation 4.6. We will generate

several data sets for both initial conditions given by Equations (4.3) and (4.4). To investigate the

in�uence of data error and number of data points on the inverse problem, we will choose various

values of N and η to generate these di�erent data sets. M will be �xed at 6 for simplicity for all

cases. We choose θ0 = (0.3, 0.4)T for data sets where φ(x) = φ1(x) and θ0 = (0.3, 0.5)T for data

sets where φ(x) = φ2(x). An example data sets is depicted for η = 0.1, N = 11 in Figure 4.1.
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Figure 4.1: Arti�cial data from Equations (4.1) and (4.5) for η = 0.1, N = 10 φ(x) = φ2(x). Dots
denote the arti�cial data and the solid lines denote the analytical solution given by Equation (4.2).
Red plots denote t = 0,green plots denote t = 2, blue plots denote t = 4, cyan plots denote t = 6,
black plots denote t = 8, and magenta plots denote t = 10.

4.2.3 Numerical Methods

We will consider four commonly-used �nite di�erence schemes to simulate Equation (4.1). These

four schemes are the upwind, Lax-Wendro�, Beam-Warming methods, and the upwind method with

�ux limiters. The �rst three methods are discussed and presented in the popular monograph by

Leveque [LeVeque, 2007], and the �nal method is discussed in [Randall J. Leveque, 1992, §16.2]. We

will denote u(t, x|h, θ) : T ×X × R×Q→ RMN as the numerical approximation to equation (4.1)

that has been computed with a spatial step size of h for parameter set θ and then interpolated to

the grid used for data comparison.2 We will also denote u0(t, x|θ) : [T,X]→ RMN as the analytical

solution evaluated at the grid points chosen for data comparison throughout this document.

A common practice in numerical analysis is to compute the order of convergence of a numerical

method. Guided by [LeVeque, 2007], we de�ne the error for a numerical scheme as

E(h) = ‖u(ti, xj |h, θ)− u0(ti, xj |θ)‖1,

where ‖ · ‖1 denotes the 1-norm in RMN . We then estimate the order of the scheme by �tting a

line to the natural log of the error, ln(E(~h)) against ln(~h), where ~h denotes the vector of step sizes

2 Note that the interpolation order is chosen larger than the numerical error so that this step does not in�uence
convergence rates.
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h used to compute each u(x, t|θ, h). The slope of these lines gives the order of convergence, and we

denote this numerical order of convergence as p throughout this document.

The upwind method is �rst order accurate, meaning that ‖u(t, x|h, θ) − ũ0(t, x|θ)‖1 = O(h1)

when u0(t, x) is continuous and ‖·‖1 denotes the 1-norm for vectors in RMN . The Lax-Wendro� and

beam warming method are second order accurate so that ‖u(t, x|h, θ) − u0(t, x|θ)‖1 = O(h2) with

these methods. The upwind and beam warming methods use one-sided derivative approximations

from the direction where information is coming from, which generally makes them more accurate

than their respective same-order method when computing advection equations.

While these schemes are often referred to as �rst- or second-order accurate, this is only true when

the analytical solution, u0(t, x), is continuous with respect to x. The order for these schemes can be

computed when u0(t, x) is discontinous using the theory of modi�ed equations, which is described

in [Randall J. Leveque, 1992, § 11], and the relevant results are presented in this and the following

paragraph. The upwind methods is order 1/2, and the Lax-Wendro� and Beam-Warming methods

are order 2/3 when u0(t, x) is discontinuous. The modi�ed equation for a numerical scheme is

derived by adding the local truncation error from the numerical method to the original PDE model.

So when a numerical method is �rst (second) order accurate for the PDE model under consideration,

it will be second (third) order accurate for the modi�ed equation.

The modi�ed equations for the �rst order upwind and Lax-Friedrichs methods can be computed

as the advection-di�usion equation

ut + (g(x)u)x = D(h, x)uxx, D(h, x) = O(h)

so we can expect error from these methods to be di�usive. The modi�ed equations for the second

order Lax-Wendro� and Beam-Warming methods can be computed as the advection-dispersion

equation

ut + (g(x)u)x = µ(h, x)uxxx, µ(h, x) = O(h2)

so we can expect error from these methods to be dispersive as modes with di�erent wave numbers

propagate forward at di�erent speeds.

Flux limiters are another popular method to simulate advection equations with sharp-fronts
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[Sweby, 1984, Thackham et al., 2008a]. When �ux limiters are used, the spatial gradients near

each computational point are estimated before computation. Flux limiters with an upwind scheme

make computations approximately second-order accurate near smooth spatial points and �rst order

accurate near points of discontinuity. These scheme thus prevents spurious oscillations near the

discontinuity, and instead allows for some numerical di�usion in this region. In this chapter, we will

use the Van-Leer �ux limiter [Randall J. Leveque, 1992].

In Table 4.2, we depict the calculated values of p for φ(x) = φ2(x) and θ = θ0, and see that

our calculated numerical rate of convergence for the upwind scheme is consistent with the theory

(close to 1/2), but the order for the Lax-Wendfro� and Beam-Warming schemes are smaller and

larger than expected, respectively (p is calculated as 0.4737 for Lax-Wendfro� and 0.7876 for Beam-

Warming, when theory suggests these both should be 2/3). The upwind scheme with �ux limiters

has a calculated numerical order of convergence of 0.9570. We show in Table 2 in the appendix that

the calculated rates of numerical order of convergence for φ(x) = φ1(x) are consistent with theory

for continuous solutions. We also calculate that the upwind scheme with �ux limiters has an order

of convergence of 0.9183 in this case.

4.2.4 Inverse problem

For a given data set {yi,j}j=1,..,N
i=1,..,M , and step size, h, we estimate the parameter set, θ̂M,N

OLS (h) ∈ Q,

that minimizes the cost functional for M spatial and N temporal data points given by

JM,N (h, θ) :=
1

MN

M∑
i=1

N∑
j=1

(yi,j − u(ti, xj |h, θ))2. (4.6)

We refer the reader interested in more details about inverse problems to [Banks and Fitzpatrick,

1990, Banks and Tran, 2009, Banks et al., 2014]. The proofs regarding the consistency of θ̂M,N
OLS (h)

as an estimator for θ0 = (α0, β0), the true parameter values, require one to work on a compact

parameter space, Qad ⊂ Q, so we choose Qad = [0, 10]2 in this chapter. For each h, we also

use temporal step size k = λh, λ = 1/2 to ensure numerical stability. We use MATLAB's built-

in command fmincon to perform numerical optimization. We will perform this optimization on

every data set for values of h given by h =
1

10

1

2i
, i = 0, 1, .., 6 to obtain θ̂M,N

OLS (h). We will also

perform the inverse problem for multiple data sets with multiple numbers of data points and data
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error levels. For φ(x) = φ1(x), we consider data sets for N = 11, 31, or 51 and η = 0, 10−4, 5 ×

10−4, 10−3, 10−2, 5×10−2, 10−1, or 2×10−1. For φ(x) = φ2(x), we consider data sets for N = 11, 31,

or 51 and η = 0, 10−1, 1.5× 10−1, 2× 10−1, 3× 10−1, 5× 10−1, or 1.

4.3 Inverse Problem Theory

In this Section, we will discuss asymptotic theories of the inverse problem as data increases (M,N →

∞) and as numerical resolution increase (h → 0). In Section 4.3.1, we discuss some of the theory

regarding θ̂M,N
OLS (h), and in Section 4.3.2, we discuss the asymptotic theory regarding JM,N

OLS (h, θ).

We introduce some useful notational conveniences here. Throughout this section,u0(ti, xj) de-

notes the analytical solution at the point (ti, xj),

~u0(t, x) = [u0(t1, x1), ..., u0(t1, xN ), u0(t2, x1), ..., u0(t2, x1N ), ..., u0(tM , xN )]T denotes the MN ×

1vector of the analytical solution at all data points (ti, xj)
j=1,...,N
i=1,..,M . Similarly, u(ti, xj |h) denotes

a numerical approximation at the point (ti, xj) and ~u(t, x|h) denotes the MN × 1 vector of the

numerical approximation at the data points. The terms u0(t, x) and u(t, x|h) denote the function

de�ned on T × X. The vector ∇~u0(t, x) is the MN × 2 matrix of the gradient of the analytical

solution with respect to θ (also known as the sensitivity equations). The sensitivity equation at a

point is denoted as∇u0(ti, xj). The same notation is used for the numerical approximations, where

∇~u(t, x|h) is an MN × 2 matrix, and ∇u(ti, xj |h) denotes the sensitivity equation at one point.

The vector ~ε denotes the MN × 1 vector of realizations of Gaussian error terms, and εi,j denotes

one realization at location (ti, xj). The vector ~y denotes the MN × 1 vector of data points.

4.3.1 Theory on θ̂M,N
OLS (h)

Before discussing the convergence of the numerical cost function, JM,N (h, θ0), it is useful to discuss

the asymptotic properties of the OLS parameter estimator, θ̂M,N
OLS (h). In [Banks and Fitzpatrick,

1990], it is shown that this is a consistent estimator, meaning that as M,N →∞ and h→ 0, then

θ̂M,N
OLS (h) → θ0 almost surely. It is also useful to discuss the known properties of the distribution

of the estimator as M,N get asymptotically large and h asymptotically small. These asymptotic

properties are widely discussed in the absence of numerical error and are derived in [Seber and

Wild, 1988, § 12]. The most important result being that as M,N → ∞, this estimator becomes
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asymptotically normally distributed as

θ̂M,N
OLS ∼ N (θ0, η

2C), C = (∇~u0(t, x|θ0)T∇~u0(t, x|θ0))−1. (4.7)

Note that the normality of the error terms, εi,j , is not needed for this asymptotic result, so long as

their mean is zero, their variance is �nite, and u0(t, x|θ) is su�ciently smooth with respect to θ.

In Section A.12 in the appendix, we show some of the main steps to show Equation (4.7), as

well as similar steps to show that

θ̂M,N
OLS (h) ∼ N (θ0, η

2Ch), |Ch − C| = O(hp)

where we thus see that the entries of the covariance matrix of θ̂M,N
OLS (h) are order p convergent to

the entries of the true covariance matrix.3 Note that Ch is the inverse of a positive-de�nite matrix,

so Ch is also positive de�nite. We will denote its Cholesky decomposition as Ch = RThRh.

4.3.2 Convergence of JM,N(h, θ)

The cost function from Equation (4.6) is commonly used in inverse problem methodologies [Banks

and Tran, 2009]. This cost functional was investigated in-depth in [Banks and Fitzpatrick, 1990],

where it was shown as a consistent estimator as h → 0 and M,N → ∞ under some reasonable

assumptions, meaning that θ̂M,N
OLS (h) → θ0 as M,N → ∞ and h → 0. In this section, we discuss

the asymptotic properties of this function as h→ 0 and M,N →∞ to elucidate the analysis from

future sections.

3It is important to note that this does not imply that Ch is close in the norm-sense to the inverse of a matrix close
to the matrix ∇~u0(t, x|θ0)T∇~u0(t, x|θ0) [Higham, 1996].
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Asymptotic Properties (h→ 0) Asymptotic Properties (M,N →∞)

A - Converges in distribution to N (η2,
2η2

MN
)

B
Random variable with mean η2/MN

Converges to J∗(θ)
variance unknown

C Converges to 0 with order O(hp)
Converges to∫

(u0(t, x|θ)− u(t, x|h, θ))2dν(t)dχ(x),

D
Random variable with mean 0

Converges to 0 by LLN
variance will converge with order O(h2p)

E Converges to 0 with order O(hp) converges to 0 by LLN

F

Random variable with mean 0

Converges to 0 by LLN
variance converges to

η2∇~u0(θ0)T
(
∇~u0(θ0)T∇~u0(θ0)

)−1∇~u0(θ0)
with order O(h2p)

Table 4.1: Asymptotic limits for the six terms comprising the numerical cost function given by
equation (4.6). A �-� indicates that this term is independent of the limiting variable.

Observe that (omitting indices and independent variables for simplicity)

JM,N (h, θ) =
1

MN

∑
[u0(θ0) + E − u(h, θ) + u0(θ)− u0(θ)]2 (4.8)

=
1

MN

∑
E2 +

1

MN

∑
[u0(θ0)− u0(θ)]2 +

1

MN

∑
[u0(θ)− u(h, θ)]2

+
2

MN

∑
E(u0(θ0)− u0(θ)) +

2

MN

∑
E(u0(θ)− u(h, θ))

+
2

MN

∑
[(u0(θ)− u(h, θ))(u0(θ0)− u0(θ))]

=: A+B + C +D + E + F

We thus observe that the numerical cost function can be broken down into six separate terms.

We will now discuss how we can expect these six terms to act asymptotically (as h → 0 and/or

M,N → ∞). The asymptotic limits for the terms A through F are summarized in Table 4.1. The

explanations for these limits are provided in the appendix in Section A.13.

4.4 Inverse Problem Results

4.4.1 Behavior of Numerical Cost Function

In Figure 4.2, we depict log-log plots of JM,N (h, θ̂M,N
OLS ) for various values of h for an initial condition

of φ(x) = φ2(x). Here, we observe that the cost function appears to converge for larger values of
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h before �attening as h becomes smaller and JM,N (h, θ̂MN
OLS(h)) approaches η2. This suggests that

numerical error dominates over experimental error from the data until JM,N (h, θ̂MN
OLS(h)) reaches

η2. Once JM,N (h, θ̂MN
OLS(h)) approaches η2, it appears that term A from Equation (4.8) is the

dominant term, so now experimental error is the dominant term. We depict the log-log plots of

JM,N (h, θ̂M,N
OLS ) for all data sets considered in the appendix in Figure 5 for φ(x) = φ1(x) and in

Figure 7 for φ(x) = φ2(x). These �gures support the observation that JM,N (h, θ̂M,N
OLS ) is dominated

by numerical error when it converges and experimental error when it �attens.

In Figures 4.2, we observe that JM,N (h, θ̂M,N
OLS (h)) converges faster for the second order Lax-

Wendro� and Beam-Warming methods than the �rst order upwind methods. The numerical method

used can thus signi�cantly in�uences the convergence rate of the numerical cost function. We

also observe that the upwind scheme with �ux limiters can signi�cantly improve computation of

JM,N (h, θ̂M,N
OLS (h)), where this can often outperform the two second order schemes. This is interest-

ing, because this is technically a �rst order scheme, but not surprising because �ux limiters have

been proposed previously as suitable methods to simulate discontinuous solutions [Thackham et al.,

2008a].

In Figure 4.3 we depict plots of ‖θ̂M,N
OLS (h) − θ0‖2 against h for φ(x) = φ2(x). The Upwind

auto method will be discussed in Section 4.5.1. Interestingly, θ̂M,N
OLS (h) can signi�cantly improve,

even when JM,N (h, θ̂M,N
OLS (h)) appears �at. For example, when η2 = 0.04, N = 30 we see that

JM,N (h, θ̂M,N
OLS (h)) does not change with h for the four methods, but θ̂M,N

OLS (h) in general improves

for this data set as h decreases for all of these methods. We also observe that it is hard to predict

which scheme will estimate θ0 best. For example, the Beam-Warming scheme tends to do the best

overall for all methods considered, but it is outperformed by the upwind scheme with �ux limiters

when N = 11 and η2 = 0 or by the upwind scheme when η2 = 1 and N = 30. We depict plots of

‖θ̂M,N
OLS (h) − θ0‖2 for all data sets considered in the appendix in Figure 6 for φ(x) = φ1(x) and in

Figure 8 for φ(x) = φ2(x). These �gures show that the Beam-Warming and Lax-Wendro� schemes

typically do best for φ(x) = φ1(x) and that con�rm that the best method is hard to predict for

φ(x) = φ2(x).
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Figure 4.2: Plots of J(h, θ̂) for the four schemes considered for various values of h with φ(x) = φ2(x).
We depict the results for N = 11 or 30 and η = 0, 0.04, or 1.
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Figure 4.3: Plots of ‖θ0 − θ̂M,N
OLS (h)‖2 for the four schemes considered for various values of h with

φ(x) = φ2(x). We depict the results for N = 11 or 30 and η = 0, 0.04, or 1.
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Numerical Method p
pJ

N
η

0 2× 10−1 1

Upwind 0.5839
11 0.517 0.208 -0.002
30 0.612 0.226 0.040

Lax-Wendro� 0.4737
11 0.966 0.490 -0.011
30 0.878 0.387 0.062

Beam-Warming .7876
11 0.785 0.367 0.000
30 0.987 0.441 0.040

Upwind FL .9570
11 1.285 0.409 -0.020
30 1.338 0.505 0.037

Table 4.2: Order estimates for the numerical cost function when φ(x) = φ2(x) and the various
schemes are used to estimate θ0.

4.4.2 Order Estimates

In the previous section, we observed that the numerical cost function appeared to converge at

di�erent rates depending on the scheme being used. In this section, we estimate the order of the

numerical cost function by �tting the best-�t line between log
(
JM,N (~h, θ̂M,N

OLS (h))
)
and log(~h).

The slope of these lines will provide the order of the numerical cost function, and we will denote

this statistical order of convergence as pJ throughout this document. Note that we use values of

h where log
(
JM,N (h, θ̂)

)
has not yet �attened out when computing the order (for example, for

φ(x) = φ2(x), N = 30, η2 = 0.04, we use the four coarsest points to compute the order for the

upwind scheme with �ux limiters). We present the results for φ(x) = φ2(x) in Table 4.2. We

observe that pJ is about the same as p for the upwind and Beam-Warming schemes and double the

value of pJ for the Lax-Wendro� Scheme when η2 = 0 and φ(x) = φ2(x). There is no apparent

pattern between pJ and p for the upwind scheme with �ux limiters. In the appendix, we depict the

values for pJ for all data sets considered for φ(x) = φ1(x) in Table 2 and for φ(x) = φ2(x) in Table

3. For the continuous solutions when φ(x) = φ1(x), we observe that pJ is often double the value

of p. The order tends to decrease as η increases for both continuous and discontinuous solutions,

eventually reaching zero when experimental error dominates numerical error.

In Figures 4.4 and 4.5, we depict the components A-F against JM,N
OLS (h, θ̂M,N

OLs (h)) for some data

set when φ(x) = φ2(x) and the upwind or Lax-Wendro� schemes are used for computation. Here we

observe why pJ/p di�ers for these schemes. For the upwind scheme, that JM,N
OLS (h, θ̂M,N

OLs (h)) appears

to follow the order 2p term C for smaller values of h until JM,N
OLS (h, θ̂M,N

OLs (h)) approaches the value
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Figure 4.4: Plots of JM,N
OLS (h, θ̂M,N

OLS (h)) with components A-F when the upwind method is used for
various data sets for φ(x) = φ2(x).

of A and then �attens. For larger values of h, the order p terms B and F are all signi�cant, which

likely causes pJ ≈ p. For the Lax-Wendro� scheme, the order 2p term C tends to dominate the

numerical cost function as h decreases until it �attens out at the A terms. Terms C and F appear

insigni�cant to the cost function with this scheme, as they are often an order of magnitude below

JM,N
OLS (h, θ̂M,N

OLs (h)), which causes pj ≈ 2p.

Surprisingly, all terms B,C, and F appear to converge at order 2p for φ(x) = φ1(x), which is

why pJ ≈ 2p. For the Beam-Warming method with φ(x) = φ2(x), we observe that the order p terms

C and F are signi�cant, which likely makes pJ ≈ p for this scheme.

4.4.3 Numerical Simulation Pro�les

In Figure 4.6, we depict plots of u(t, x|h, θ̂M,N
OLS (h)) against numerical data for the four schemes

considered when φ(x) = φ2(x). These plots con�rm the results discussed in Section 4.2.3 regarding

modi�ed equations: the �rst order schemes are di�usive, which prevents them from accurately

matching the data, and the second order methods are dispersive. The Lax-Wendro� method is

excessively dispersive, as it displays many small oscillations but still �ts the general trend of the

data. These spurious oscillations likely explain the somewhat unpredictable θ̂M,N
OLS (h) estimates for

this method from Figure 8; these oscillations likely cause problems for the scheme to accurately

match the data near θ0, and the oscillations that occur at farther away points may happen to better

75



10
-3

10
-2

10
-1

10
-4

10
-2

10
0

JB

C
F

10
-3

10
-2

10
-1

10
-4

10
-2

10
0

JA

BC

D

E

F

10
-3

10
-2

10
-1

10
-4

10
-2

10
0

JA

B

CD

E

F

10
-3

10
-2

10
-1

10
-4

10
-2

10
0

J

B

C

F

10
-3

10
-2

10
-1

10
-4

10
-2

10
0

JA

B

C

D

E

F

10
-3

10
-2

10
-1

10
-4

10
-2

10
0 JA

BC

D

EF

J

A

B

C

D

E

F

Figure 4.5: Plots of JM,N
OLS (h, θ̂M,N

OLS (h)) with components A-F when the Lax-Wendro� method is
used for various data sets for φ(x) = φ2(x).

match the data points. In general, as h → 0, a subsequence of θ̂M,N
OLS (h) appears to converge to

θ0 with the Lax-Wendro� method. The Beam-Warming method gives the most accurate pro�le

simulation of these four, but it still becomes negative just after the front. The upwind method with

�ux limiters provides the most realistic pro�le, as it maintains a sharp front, but also maintains a

nonnegative pro�le.

4.5 Residual Analysis and Con�dence Intervals

4.5.1 Residual Analysis

Residuals can provide insight into the underlying statistical nature of the data and model under

consideration [Banks et al., 2012]. Here we attempt to use residual analysis to ascertain how

numerical error propagates in the inverse problem. We de�ne the residual at time ti and spatial

location xj as

ri,j = u(ti, xj |h, θ̂)− yij .

By minimizing the OLS cost function in Equation (4.6), we are implicitly assuming that each

residual value is independent all other residuals. We depict the residuals for the upwind method,

along with the model simulation, in Figure 4.7 for h = 1/(10 · 23) for η = 0.1. We see in this �gure
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Figure 4.6: Numerical solution pro�les (solid lines) plotted against arti�cial data (dots) for the �ve
schemes considered when φ(x) = φ2(x) for two di�erent step sizes.

that the residuals are clearly not independent of the neighboring points. The residuals are highest

near the front and appear very correlated with the neighboring residual values. This type of error

is expected when computing the discontinuous solution with a �rst order method, as we know from

Section 4.2.3 that the main source of error will be di�usive. The correlation between neighboring

data points indicates that an autocorrelative statistical model may be suitable in capturing the

numerical error underlying the inverse problem when using a �rst order method to solve Equation

(4.1).

To quantify the level of autocorrelated error that arises from numerical di�usion, we incorporate

the �rst order autocorrelation assumption from [Seber and Wild, 1988, § 6], in which we assume

that the residuals at the �xed time ti satisfy

ri1 = ε1

ri2 = γiri1 + ε2

ri3 = γiri2 + ε3

...

riN = γiriN−1 + εN (4.9)
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Figure 4.7: Plots of ri,j (dots) against simulations of u(x, t|h, θ̂) for the upwind method with h =
0.00625 with η = 0.1.

for εi
i.i.d.∼ N (0, η2). The correlation between two spatial points may thus be written as

corr(rij , rik) = γ
|j−k|
i

where γi is the autocorrelation constant at each time point, ti. This assumption gives that

Var(ε) = η2V,

where Vjk = γ
|j−k|
i . We can then compute the inverse of V as

V −1 =
1

1− γ2
i



1 −γi 0 . . . 0

−γi 1 + γ2
i −γi 0

0 −γi
. . .

. . .
...

...
. . . 1 + γ2

i −γi

0 0 . . . −γi 1


= RTR
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for

R =
1√

1− γ2
i



√
1− γ2

i 0 0 . . . 0

−γi 1 0 0

0 −γi
. . .

. . .
...

...
. . . 1 0

0 0 . . . −γi 1


.

By combining Equations (4.5) and (4.9), we thus see that

R(yi,j − u(ti, xj |h, θ0))
i.i.d.∼ ηN (0, 1) (4.10)

when u(t, x|h, θ) is used to approximate u0(t, x|θ) and adds numerical di�usion error in the process.

Note that we perform this autocorrelation statistical model for every time point ti considered in

the inverse problem. From Figure 4.7, we also notice that the residuals at a �xed time point appear

to have two separate autocorrelated models occurring: one before the point of discontinuity and

one occurring after the point of discontinuity. For this reason, we split the set of residuals at time ti

into two regions: residuals that occur before the point of discontinuity and points that occur after

the point of discontinuity and then perform two separate autocorrelation models on both of them.

To estimate θ0 and quantify numerical error with an autocorrelation model, we perform the

following two-stage estimation routine for a data set with a given step size, h (taken from [Seber

and Wild, 1988, § 6.2.3]):

1. Fit the model by �nding the estimator, θ̂M,N
OLS (h), that minimizes Equation (4.6).

2. Compute the corresponding OLS residuals, rij , and estimate γi with the formulaa

γi =

∑n−1
j=1 rijrij+1∑n−1

j=2 r
2
ij

.

3. Now �t the model by �nd the estimator, θ̂M,N
auto (h), that minimizes

JM,N
auto (h, θ) =

1

MN
~rTV −1~r.

aRecall that in practice, we do this estimation for each i and for points before, and after the discontinuity, so a

more realistic labeling may be γbeforei and γafteri .

We performed this autocorrelation optimization method for the upwind method and depict
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Figure 4.8: Plots of modi�ed residuals (dots) for the upwind method with h = 0.00625 with η = 0.1.

the resulting autocorrelative residuals, R~r, in Figure 4.8. Here we see that the modi�ed residuals

appear more independent and identically distributed than the OLS residuals, suggesting that the

autocorrelation method is capable of accurately quantifying how numerical error propagates in the

inverse problem. We only showed the results for one data set here, but others show similar results.

The goal of using the autocorrelative statistical model is not only to improve residuals but to

improve estimation of θ0. In Figure 8 , we depict ‖θ̂M,N
auto (h)− θ0‖2 for all data sets considered using

the upwind scheme. Here we see that θ̂M,N
auto (h) is signi�cantly improved over θ̂M,N

OLS (h) for η2 ≤ 0.0225

and larger values of h. The improvement is marginal (and sometimes worse) for larger error values

with the exception of η2 = 0.25 when N = 30. This observation suggests that when numerical error

overrides experimental error when η2 ≤ 0.0225, so that the autocorrelation scheme can facilitate

estimation of θ0. For larger values of η, it appears that experimental error dominates numerical

error, so estimation cannot be improved with the autocorrelation estimation routine.

4.5.2 Con�dence Interval Computation

If for some matrix, Q, we assume that the residuals satisfy (Q~r)i
i.i.d.∼ N (0, η2), and let the parameter

estimator θ̂M,N (h) be de�ned as

θ̂M,N (h) = arg minθ~r
TQTQ~r,
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then asymptotically as M,N →∞,

θ̂M,N (h) ∼ Nkθ(θ0, H
M,N
0 ) ≈ Nkθ

(
θ0, η

2
[
(Q∇~u0(θ0))T (Q∇~u0(θ0))

]−1
)
,

where kθ denotes the number of parameters being estimated. See [Banks and Tran, 2009, Banks

et al., 2014, Burnham et al., 2002] and [Seber and Wild, 1988] for more details. Observe that Q = I

when minimizing the OLS cost function and Q = R when minimizing the autocorrelation cost

function described in the previous section. From this, we can show that the (1− a)100% con�dence

interval for the kth component of θ0 is given by the interval

θ̂M,N
k ± SEk(θ̂M,N )tMN−kθ

1−1−a/2 (4.11)

where

SEk(θ̂) =

√
η̂2Ĥkk(θ̂),

Ĥ(θ̂) =
[
(Q∇~u0(θ0))T (Q∇~u0(θ0))

]−1
, η̂2 =

1

MN − kθ
rTQTQr

and tn1−a/2 is the value such that P (T ≥ tn1−a/2) = a/2 for T sampled from the student's t distribution

with n degrees of freedom.

In Figure 4.9, we depict 95% OLS con�dence intervals when φ(x) = φ2(x) for some data sets.

We observe that with more data points, the con�dence interval width gets smaller and we have

a harder time enclosing θ0. We depict the 95% OLS con�dence intervals for the Beam-Warming

method in Figure 4.10, and observe that the con�dence intervals can capture θ0 well for N = 11,

but do struggle for N = 30. Note that these con�dence intervals are close to θ0, yet their widths

are very small. All schemes appear to get very close to θ0 as h→ 0, but they do struggle to capture

it in the con�dence intervals for all data sets. This is especially true for N = 51.

The �ux limiters can improve the upwind scheme in almost all data sets where N = 10. This

scheme can even outperform the second order Beam-Warming method for larger values of h.

Figure 4.11 depicts the calculated 95% con�dence intervals for θ = (α, β)T when φ(x) = φ2(x)

when using the autocorrelative statistical model from Section 4.5.1 with the upwind method. Almost

all computed intervals for contain θ0 regardless of h, whereas the upwind method struggled to have
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Figure 4.9: 95% autocorrelative con�dence intervals for θ = (α, β)T using Equation (4.11) with an
upwind scheme and φ(x) is a discontinuous front. The asterisk denotes θ0.

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Figure 4.10: 95% con�dence intervals for θ = (α, β)T using Equation (4.11) with a Beam-Warming
scheme and φ(x) is a discontinuous front. The asterisk denotes θ0.
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Figure 4.11: 95% autocorrelative con�dence intervals for θ = (α, β)T using Equation (4.11) with an
upwind scheme and φ(x) is a discontinuous front. The asterisk denotes θ0.

the coarser grids contain θ0 using the OLS cost function. In general, the method can signi�cantly

improve con�dence interval computation for the upwind scheme. The method continues to struggle

for N = 51, however.

4.6 Suggestions for practitioners

Based on the previous results, we suggest some strategies for practitioners to improve their inverse

problem methodogies.

If a practitioner is concerned with minimizing JM,N
OLs (h, θ̂M,N

OLS (h)) (and hence inferring the level

of experimental error i in their calculation), he or she can ensure they have reached the minimum

value by performing the inverse problem discussed here for multiple values of grid size. If the

computed cost function appears to still be converging for smaller choice of h, then they can believe

that numerical error is the dominant term in their computation. The practicioner can do better in

�nding the minimum value of JM,N
OLs (h, θ̂M,N

OLS (h)) by continuing the process with �ner values of h,

if possible. If the order of the numerical cost function appears to be zero (which can be con�rmed

by �nding the best-�t line to ln
(
JM,N
OLs (~h, θ̂M,N

OLS (~h))
)
against ln(~h)), then the practitioner can be
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con�dent that experimental error is the dominant term of the cost function. They thus have likely

found a good estimate for η2, assuming M,N are large.

There are a variety of di�erent numerical schemes that a practitioner can use for their simula-

tions. As we observed in Figure 4.3, these di�erent numerical schemes can lead to better or worse

parameter estimate values, which are important for properly understanding the system under con-

sideration. To ensure the best possible parameter estimation, the practitioner should generate an

arti�cial data set with the same number of data points and the estimate of the minimum value of

the numerical cost function. With this data set, then use all numerical schemes being considered to

determine which method can best estimate parameters. This one should be used to �t experimental

data from the system. If an analytical solution is not available for data generation, then a very �ne

grid could be used to generate a simulation close to the true solution.

Lastly, we saw with the autocorrelation method with the upwind scheme could correct residual

values and in turn, parameter estimation and con�dence interval computation. Practitioners should

actively plot their residuals for any inverse problem implementation and make any e�ort possible

to modify their statistical model accordingly. Di�erent types of statistical models are discussed in

length in [Seber and Wild, 1988].

4.7 Discussion and Future Work

Numerical approximations for advection-dominated processes are a known challenge in the sciences

[Leonard, 1991, Thackham et al., 2008a], and the e�ects of numerical error on an inverse problem

have not been investigated thoroughly. In this document, we �t various numerical schemes with

di�erent precision numerical grids to arti�cial data with varying numbers of data points and error

levels. We use a numerical cost function in a similar vein to that in [Banks and Fitzpatrick, 1990] to

show that this cost function will converge at twice the order of the numerical scheme when u0(t, x)

is continuous and at the same order of the numerical scheme when u0(t, x) is discontinuous for

smaller noise levels. In general, the second order methods outperform the �rst order methods, as

expected, but the �rst order methods can be signi�cantly improved with the introduction of �ux

limiters. We also demonstrate an autocorrelative statistical model than be used to quantify the

amount of numerical error introduced by �rst order methods and improve parameter estimation
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Figure 4.12: Plots of ri,j (dots) against simulations of u(x, t|h, θ̂) for the Lax-Wendro� method with
h = 0.0015625 with η = 0.

results. Con�dence interval computations suggest that one should be mindful of the scheme and

precision used when solving an inverse problem, as di�erent numerical methods perform di�erently

for di�erent noise levels and numbers of data points.

There are some aspects of this study that we have left for future work. In Figure 4.12, we depict

the OLS residuals when �tting the Lax-Wendro� method to the arti�cial data when φ(x) = φ2(x).

Recall that the modi�ed equation for this second order method is dispersive, so the leading error

terms are composed of high-frequency modes from the initial condition propagating at di�erent

speeds. This set of residuals shows patterns that would be much more di�cult to quantify than

those presented in Section 4.5.1 and warrants its own future work for a careful analysis into how

their numerical error is in�uencing parameter estimation here.
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Chapter 5

Conclusions

5.1 the Importance in Understanding Wound Healing Experiments

A thorough understanding of the physical and chemical cues underlying the collective migration of

cells during wound healing experiments promises to inform how we treat several harmful diseases.

Areas of particular relevance are the clinical treatment of nonhealing wounds and our understanding

of cancer progression. In both of these processes, changes to the phenotype of healthy epithelial

cells contributes to disease persistence and progression.

Chronic wounds are a signi�cant burden to the US health care system, with wound care compris-

ing an estimated 4% of total healthcare costs, and an estimated 6.5 million individuals with chronic

wounds in the US in 2009 de Smet et al. [2017]. As chronic wounds can be caused by diabetes, the

increasing prevalence of diabetes makes these number likely to rise [Thackham et al., 2008b]. There

are several hallmarks of chronic wounds, such as hyperproliferation and the presence of nuclei in the

upper epidermal layers of skin [Brem et al., 2007, Usui et al., 2008]. In healthy tissue, keratinocyte

proliferation stops and nuclei disappear before reaching these upper layers. These alterations to

the behavior of skin cells in the epidermis cause the re-epithelialization process of wound healing to

fail, which leaves patients prone to harmful infections. There are several proposed treatments for

helping heal chronic wounds, including topical treatment of HB-EGF [Tsang et al., 2003], provid-

ing supplemental oxygen to the wound area de Smet et al. [2017], and non-contact low frequency

ultrasound therapy [Wiegand et al., 2017]. The failure of these methods to reliably cause chronic

wounds to heal indicates we have a de�cient understanding of the wound healing process and the
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e�ects of these di�erent therapies on cell behavior.

Cancer is most harmful when tumors are able to spread to new areas of the body [Kim and

Choi, 2010]. This harmful spread of cells can result from di�erent physical and chemical cues to

either healthy or cancerous cells. For example, carcinomas gain their invasive phenotype through

the epithelial-to-mesenchymal transition (EMT), in which healthy epithelial cells become cancerous,

lose cell-to-cell contacts to their neighbors, and then gain mesenchymal phenotypes and invade new

areas of the body [Friedl and Gilmour, 2009]. This spread of cells is the main cause of death in

many di�erent cancers, including melanoma and breast cancer [Garbe et al., 2011, Hollier et al.,

2009]. Signaling through the EGF-receptor and the MAPK signaling cascade are also fundamental

in stimulating EMT to proceed [Chapnick et al., 2011], and sustained activation of the MAPK

signaling cascade likely causes the highly invasive nature of cancer cells [Kim and Choi, 2010].

Paracrine signaling is also fundamental to cancer biology, as di�usible cytokines and growth factors

have been shown experimentally to give melanoma cells their invasive capability in skin Flach et al.

[2011]. Understanding these physical and chemical cues that underly cancer progression will thus

aid in how we can prevent its harmful spread.

Studying the chemical and physical cues underlying cell migration during healthy wound healing

will provide insight into how abuse or disruption of these systems gives rise to cancer progression

and chronic wounds. Mathematical models have proven a fundamental tool in recent years for

studying cancer progression and how to enhance wound healing [Anderson, 2005, Arciero et al.,

2013, Denman et al., 2006, Kuang et al., 2015, Rutter et al., 2017b].

5.2 Applications of this Dissertation

This dissertation focused on the derivation and analysis of mathematical models to better under-

stand keratinocyte wound healing assays. Though we have focused on keratinocytes, the methods

also apply to cells from other epithelial tissue. These improvements include models that incorporate

the e�ects of cell-cell adhesions on the migration of cell populations over time, a framework to in-

clude the e�ects of biochemical patterns of activation on population phenotype, and a study into the

e�ects of numerical error on an inverse problem methodology. These results all have the potential to

aid our understanding of collective migration and suggest successful treatments for chronic wounds
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and cancer progression.

In Chapter 2, we demonstrated the importance of cell-cell interactions on wound healing. If cell-

cell adhesion levels are increased to promote cell migration in response to EGF treatment during

healthy wound healing, then future chronic wound therapies may similarly target increases in cell-

cell interactions to promote migration. The loss of cell-cell interactions has recently been implicated

to cause hyperproliferation of keratinocytes, which is also a problem in chronic wounds [Bunker,

2017]. We thus suggest that targeting an increase in cell-cell interactions in chronic wounds may

reduce hyperproliferation and stimulate population-wide migration to increase the success rate of

re-epithelialization. But the amount of growth factor to supply to the chronic wounds is important,

as too small of a concentration will have little e�ect on cell phenotype, whereas too much may cause

excessive migration rates or other o�-target e�ects. The introduction of biochemically-structured

reaction-di�usion equations in Chapter 3 thus serves as a useful framework to quantify how di�erent

patterns of activation in�uence how a population migrates into the wound. For example, when cells

are di�using and proliferating in response to topical EGF treatment, Figure 3.9 suggests that cells

migrate most at the entire activation threshold (given by Equation (3.33)). Such an observation

could guide future treatment frequency schedules for the treatment of chronic wounds. Determining

reliable D(m), λ(m), and g(m) terms would need to be estimated from experiments before such

a challenge is feasible, however. The results from Chapter 4 will ensure that we understand how

numerical error in our computations in�uences the decisions we may make when attempting to

estimate these terms.

The EMT process begins with the loss of cell-cell adhesions between epithelial cells in tissue

[Friedl and Gilmour, 2009]. It is this loss of adhesions that gives these now mesenchymal cells

their invasive phenotype, which suggests that Model H from Chapter 2 may be a reliable model for

cancer progression. Notice in Figure 2.7 that Model H yields low cell densities very far away from

the rest of the cell population (similar to the few cells that migrated very quickly into the wound

experimentally in response to sh α-catenin in this same chapter). As excessive EGF signaling can

cause the invasion of cancer cells, a biochemically-structured equation may be able to capture this

phenomena. This equation could be used to study how a long pulse of MAPK activation allows

a cell to detach from its tissue and invade a new area. Once the cell is in its new environment,

it will need a new cue (or lack of regulation) to begin proliferating in an uncontrolled manner.
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Understanding how biochemical patterns and the resulting rates of migration lead to this invasion

of new areas may allow us to develop therapies to prevent the harmful spread of tumors.

The use of numerical mathematical models to better understand experiments requires under-

standing the e�ects of numerical error on model inference. This is why the results of Chapter 4

are important, as we developed a criteria to determine when numerical or experimental error are

the dominant form of error in a numerically-computed cost function. This chapter will also provide

researchers with the ability to understand how reliable their parameter estimate values are based

o� �nite di�erence methods with di�erent-sized grids. The autocorrelation scheme used to quantify

numerical error also allows researchers a way to improve their parameter estimates and better quan-

tify error in their computation if �rst order methods are needed for computation. Understanding

the nature of the numerical cost function on coarse grids also provides researchers the ability to

make some inference from more complicated models that cannot be simulated with very �ne grids

due to computational expenses.

There are still a variety of aspects of wound healing that are untouched by mathematical models.

While a signi�cant portion of this dissertation has focused on the response of a cell population

to growth factor, this growth factor is supplied by another cell population in vivo. For example,

macrophages often supply the EGF that promotes re-epithelialization [Pastar et al., 2014], and there

is signi�cant chemical interaction between keratinocytes and dermal �broblasts during the wound

healing process [Lu et al., 2013, Werner et al., 2007, Witte and Kao, 2005]. There is a signi�cant

literature on competition between species in the mathematical ecology literature [Shigesada and

Kawasaki, 1997], but cooperation has received less focus. Future mathematical models should

focus on the paracrine interactions between two or more cell populations to understand supply of

chemical, as well as how it in�uences transitions from one stage of wound healing to another [Clark

and Henson, 1995].

Part of the di�culty in causing chronic wounds to heal lies in their change in phenotype from

healthy tissue. This suggests that mathematical models should also focus on the change in phenotype

observed between healthy and diseased tissue if we are to understand how to treat chronic wounds.

This must include the hyperproliferation, decreased migration, and decrease of bioavailability in

response to growth factors that are observed in chronic wounds if we are use the resulting models

to develop more e�ective treatments [Pastar et al., 2014].
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Appendix

A.1 Cell sheets do not proliferate while migrating

In Figure 1, we display our quantitative results of cellular proliferation during sheet migration.

Sheets of HaCaT cells were labeled with Edu between t=24 and t=36 hrs post wound formation.

Proliferating cells that incorporate EdU into their DNA were stained using the Click-IT EdU �u-

orescence labeling kit (ThermoFisher, C10337) and labeled and total cells were quanti�ed by cell

counting in selected regions using ImageJ. Although EGF is a potent stimulator of sheet migration

between t=24 and 36 hrs, there is little di�erence between the quanti�ed proliferation of Mock (A)

and EGF (B) stimulated sheets, which display an average percent proliferation per hour below 1%

of the population. We do note that there is a spatial distribution of proliferation in both cases,

where a low level of proliferation is concentrated towards the region in close proximity to the wound.

A.2 Derivation of Model P

For our second model, we assume that cell-cell adhesions promote migration as leader cells pull the

cells behind them forward and denote it as Model P. In this scenario, the upregulation of cell-cell

adhesionpromotes migration. We now denote the forward transition rate τ+
i of cell density ui as

τ+
i,P =

D(1− ui+1)(1 + α̂ui+1)

∆x2
, (1)

where the �rst term again represent space �lling, but the second term in Equation (1) represents our

second assumption in which cells located in the direction of migration (denoted ui+1) promote this

space �lling movement towards the wound by pulling on the cells behind them. We note again that
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Figure 1: Quantitative results of cellular proliferation during sheet migration.

τ+
i−1,P , τ

−
i,P , and τ

−
i+1,P are all de�ned analogously in Table 1. Substituting the transition probability

from Equation (1) into Equation (2.3) yields

ut =
1

∆x2
(D(1− ui)(1 + α̂ui)ui−1 +D(1− ui)(1 + α̂ui)ui+1 −D((1− ui+1)(1 + α̂ui+1)+

D(1− ui−1)(1 + α̂ui−1))ui) (2)

=
D

∆x2

(
ui−1 + α̂u2

i−1ui − α̂ui−1u
2
i + ui+1 − 2ui − α̂u2

iui+1 + α̂uiu
2
i+1

)
= D

ui−1 − 2ui + ui+1

∆x2
+ α

u2
i−1ui − ui−1u

2
i − u2

iui+1 + uiu
2
i+1

∆x2
, (3)

where we can recognize the �rst term on the right hand side as the standard central di�erence

approximation to the second derivative and we have set α = Dα̂. For the second term on the right

hand side, we can simplify using Taylor series approximations as: ui+1 ≈ ui + ∆x · u′i + ∆x2/2 ·

u′′i , ui−1 ≈ ui − ∆x · u′i + ∆x2/2 · u′′i , where primes denote a spatial derivative term. Substituting
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these terms into the second term on the right hand side of Equation (3) reveals

ut = D
ui−1 − 2ui + ui+1

∆x2
+α

2∆x2ui(u
′
i)

2 + u2
iu
′′
i ∆x

2 +O(∆x4)

∆x2

= Du′′i + α(2ui(u
′
i)

2 + u2
iu
′′
i ) +O(∆x2)

= Du′′i + α(u2
iu
′
i)
′ +O(∆x2)

resulting in the dimensionless continuum limit to be

ut = ((D + γu2)ux)x, (Model P) (4)

where D and γ again denote the rates of cell di�usion and cell-cell adhesion, respectively.

A.3 Fitting and Predicting individual data sets

In Figures 2 and 3, we depict the individual calculated experimental leading edges `0.1data(t) and

`0.3data(t)) for EGF experiments in the top left frames, along with the ability of both models to �t

and predict this data using the parameter estimation method outlined in Section 2.2.2. In the top

right of these �gures, we demonstrate best-�t simulations of both models to one data set and in the

the bottom rows, we demonstrate how this simulation can be used to accurately predict the leading

edge locations of the other data sets. While we have only shown �ts to one data set for both mock

and EGF data, we see similar results after �tting to all three EGF data sets.

A.4 Numerical implementation

Note that for numerical implementation, we use a method of lines approach implemented with

MATLAB's ode15s command for time integration. For spatial discretization, we use the second

order scheme for convection-di�usion equations (without convection in our case) from Kurganov

and Tadmor [2000] given by

u̇j(t) =
Pj+1/2(t)− Pj−1/2(t)

∆x
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Figure 2: Fits and predictions for a leading edge density of 0.1.
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Figure 3: Fits and predictions for a leading edge density of 0.3.

112



where Pj+1/2(t) is an approximation to the di�usive �ux, given by

Pj+1/2(t) =
1

2

[
Q

(
uj(t),

uj+1(t)− uj(t)
∆x

)
+Q

(
uj+1(t),

uj+1(t)− uj(t)
∆x

)]

where Q(u, ux) denotes the cellular di�usion rate.

A.5 Table of transition probabilities

Model H Model P

τ+
i D(1− ui+1)(1− αui−1)/∆x2 D(1− ui+1)(1 + αui+1)/∆x2

τ−i D(1− ui−1)(1− αui+1)/∆x2 D(1− ui−1)(1 + αui−1)/∆x2

τ+
i−1 D(1− ui)(1− αui−2)/∆x2 D(1− ui)(1 + αui)/∆x

2

τ−i+1 D(1− ui)(1− αui+2)/∆x2 D(1− ui)(1 + αui)/∆x
2

Table 1: Table of transition probabilities, as discussed in Section 2.1.1 as a means to develop
Models H and P. The transition rates for Model H denote cells in the direction opposite migration
hindering migration through cell-cell adhesion, while the transition rates for Model P denote cells
in the direction of migration promoting it through cell-cell adhesion.

A.6 Properties of the characteristic curves

If we assume that g is positive and uniformly continuous, then σ−1(t; y) exists and satis�es the

following:

d

dt
σ−1(t; y) = g(σ−1(t; y)), σ−1(0; y) = y. (5)

To derive (5), see that

y(t) = σ−1(t; y)

⇒ σ(y(t); y) = t

⇒ d

dt

(
σ(y(t); y)

)
=

d

dy
σ(y(t); s)

dy

dt
= 1

⇒ 1

g(y(t))

dy

dt
= 1

⇒ dy

dt
= g(y(t))

⇒ d

dt
σ−1(t; y) = g(σ−1(t; y)).
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and for the initial condition,

σ(y, y) = 0

⇒ σ−1(0, y) = y.

A.7 Derivation of (3.13)

In (3.12), we de�ned

v(t; y) := u(t, y = σ−1(t; y)).

Taking the derivative of v(t; y) with respect to time, we �nd with the aid of the chain rule:

d

dt
v(t; y) =

∂

∂t
u(t, y = σ−1(t; y)) +

∂

∂y
u(t, y = σ−1(t; y)) · d

dt
σ−1(t; y)

= − ∂

∂y

[
g
(
σ−1(t; y)

)
u
(
t, y = σ−1(t; y)

)]
+ Au

(
t, y = σ−1(t; y)

)
+ g

(
σ−1(t; y)

) ∂
∂y
u
(
t, y = σ−1(t; y)

)
= −g′(σ−1(t; y))v(t; y) +Av(t; y).

A.8 Derivation of the time-dependent Fisher's Equation

To investigate the averaged cell population behavior along m over time, we integrate (3.7) over m

to �nd

wt(t, x) = (D1wxx + λ1w(1− w)) I[Minact](m)

+ (D2wxx + λ2w(1− w)) I[Mact](m). (6)

An explicit form for (6) thus requires determining how much of the population is in the active and

inactive populations over time. This is determined with the activation curves by calculating

h(t;m) < mcrit ⇐⇒ F (t) < σ(mcrit;m)

⇐⇒ m < σ−1 (−F (t);mcrit) =: ψ(t). (7)
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Thus, m = σ−1(−F (t);m) maps the distribution along m at time t back to the initial distribution,

φ1(m), and ψ(t) denotes the threshold value in m between the active and inactive populations

over time. Φ1(ψ(t)) thus denotes the portion of the population in the inactive population, and

1− Φ1(ψ(t)) denotes the portion in the active population over time.

We thus derive a nonautonomous PDE for w, which we will term the averaged nonautonomous

Fisher's Equation, as:

wt = D(t)wxx + λ(t)w(1− w),

w(t = 0, x) = φ2(x)

w(t, x = −∞) = 1 w(t, x =∞) = 0

where

D(t) = D2 + (D1 −D2)Φ1(ψ(t))

λ(t) = λ2 + (λ1 − λ2)Φ1(ψ(t)).

A.9 Activation terms and criteria from Section 3.4

Recall that in each example, we set mcrit = 0.5, D1 = 0.01, D2 = 1, λ1 = .25, λ2 = 0.0025, φ1(m) =

10/3I[.05,0.25](m), φ2(x) = I(−∞,5](x) and g(m) = αm(1−m).

A.9.1 Example 1

Using (3.10), (7), and f(t) = 1, we compute

σ(m;m) =
1

α
log

(
m

1−m
1−m
m

)
; m,m ∈ (0, 1)

h(t;m) = σ−1(t;m) = m
(
(1−m)e−αt +m

)−1

ψ(t) =
(
1 + eαt

)−1

These functions demonstrate that the distribution along m is always activating along m but never

reaches the m = 1 line, as σ(m;m) → ∞ as m → 1− for any m ∈ (0, 1). The entire population
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(excluding m = 0) approaches m = 1 asymptotically, however, as limt→∞ σ
−1(t;m) = 1.

A.9.2 Example 2

For f(t) = βeγt − 1, we compute

σ(m;m) =
1

α
log

(
m

1−m
1−m
m

)
; m,m ∈ (0, 1)

h(t;m) = m

(
m+ (1−m) exp

[
αt− αβ

γ
(exp(γt)− 1)

])−1

ψ(t) =

(
1 + exp

[
−αt+

αβ

γ
(exp(γt)− 1)

])−1

.

Using (3.32), we determine our activation criterion for this example as

1− β + log β

γ
>

1

α
log

(
mcrit

1−mcrit

1−mmax

mmax

)
.

If we �x γ = −1, α = 1,mcrit = 0.5,mmax = 0.35, and mmin = 0.05, we �nd that the above

inequality is satis�ed for β approximately greater than 2.55. This may represent a scenario in which

we know the decay rate of the ROS through γ, the activation rate of the MAPK signaling cascade

through α, the MAPK activation distribution before ROS release with mmin and mmax, and the

activation threshold with mcrit. The values of β denote the concentration of released ROS, which

should be at least 2.55 to see the population activate. We similarly �nd that the entire population

will activate at some time for β > 5.68.

A.9.3 Example 3

For f(t) = β sin(γt), we compute

σ(m;m) =
1

α
log

(
m

1−m
1−m
m

)
; m,m ∈ (0, 1)

h(t;m) = m

(
m+ (1−m) exp

[
αβ

γ
(cos(γt)− 1)

])−1

ψ(t) =

(
1 + exp

[
αβ

γ
(1− cos(γt))

])−1

.
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Figure 4: Arti�cial data from Equations (4.1) and (4.5) for η = 0.1, N = 10 and φ(x) = φ1(x). Dots
denote the arti�cial data and the solid lines denote the analytical solution given by Equation (4.2).
Red plots denote t = 0,green plots denote t = 2, blue plots denote t = 4, cyan plots denote t = 6,
black plots denote t = 8, and magenta plots denote t = 10.

The activation criterion (3.32) can be solved as

2β

γ
>

1

α
log

(
mcrit

1−mcrit

1−mmax

mmax

)
.

We thus calculate that if we �x β = 1, α = 1/2,mmax = 0.35,mmin = 0.05, and mcrit = 0.5, then

the activation criterion (3.32) is satis�ed for γ < 1.615 and the entire activation criterion (3.33) is

satis�ed for γ < 0.34. These estimates would tell us how frequently signaling factor treatment is

needed to see di�erent patterns of activation in the population.

A.10 Results for φ(x) = φ1(x)

In Figure 4, we depict plots of arti�cially generated data when φ(x) = φ1(x). In Table 2, we depict

the computed statistical orders of convergence for the numerical cost function when φ(x) = φ1(x)

for all data sets considered. In Figure 5, we depict plots of the numerical cost function for all

data sets and numerical schemes considered when φ(x) = φ1(x). In Figure 6, we depict plots of

‖θ̂M,N
OLS (h)− θ0‖2 for all data sets and numerical schemes considered when φ(x) = φ1(x).
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Method p
pJ

N
η

0 10−4 5× 10−4 10−3 10−2 5× 10−2 10−1

UW 0.924
11 1.678 1.669 1.630 1.545 0.030 0.002 0.001
31 1.882 1.869 1.881 1.670 0.173 0.005 0.002
51 1.889 1.884 1.839 1.728 0.135 0.022 -0.003

LW 1.946
11 3.498 3.481 3.879 3.596 0.199 0.041 0.013
31 3.768 3.746 3.900 3.580 0.225 0.037 0.012
51 3.830 3.782 3.945 3.617 0.206 0.019 0.008

BW 1.838
11 2.760 2.762 2.533 2.510 0.141 0.007 0.000
31 3.198 3.186 2.962 2.867 0.271 0.002 0.002
51 3.235 3.227 2.960 2.903 0.242 0.030 -0.004

UW FL 0.918
11 2.201 2.208 2.043 1.888 0.145 0.017 0.002
31 2.599 2.598 2.456 2.167 0.196 0.003 0.000
51 2.663 2.659 2.485 2.141 0.165 0.020 -0.003

Table 2: Full list of results for order estimation when φ(x) = φ1(x). �UW� denotes the upwind
method, �LW� denotes the Lax-Wendro� method, �BW� denotes the Beam-Warming method, and
�UW FL� denotes the upwind method with �ux limiters.

Method p
pJ

N
η

0 10−1 1.5× 10−1 2× 10−1 3× 10−1 5× 10−1 1

UW 0.584
11 0.517 0.357 0.237 0.208 0.128 0.078 -0.002
31 0.612 0.393 0.309 0.226 0.156 0.089 0.040
51 0.556 0.438 0.336 0.255 0.180 0.086 0.032

LW 0.474
11 0.966 0.826 0.573 0.490 0.263 0.176 -0.011
31 0.878 0.601 0.498 0.387 0.257 0.222 0.062
51 0.825 0.620 0.520 0.414 0.364 0.246 0.044

BW .7878
11 0.785 0.516 0.441 0.367 0.195 0.173 0.000
31 0.987 0.651 0.562 0.441 0.311 0.162 0.040
51 0.896 0.706 0.611 0.491 0.327 0.216 0.025

UW FL .957
11 1.285 0.756 0.512 0.409 0.275 0.145 -0.020
31 1.338 0.824 0.642 0.505 0.295 0.155 0.037
51 1.293 0.869 0.686 0.533 0.332 0.148 0.016

Table 3: Full list of results for order estimation when φ(x) = φ2(x). �UW� denotes the upwind
method, �LW� denotes the Lax-Wendro� method, �BW� denotes the Beam-Warming method, and
�UW FL� denotes the upwind method with �ux limiters.
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A.11 Extra Results for φ(x) = φ2(x)

In Table 3, we depict the computed statistical orders of convergence for the numerical cost function

when φ(x) = φ2(x) for all data sets considered. In Figure 7, we depict plots of the numerical

cost function for all data sets and numerical schemes considered when φ(x) = φ2(x). In Figure

8, we depict plots of ‖θ̂M,N
OLS (h) − θ0‖2 for all data sets and numerical schemes considered when

φ(x) = φ2(x).

A.12 Theory on θ̂M,N
OLS (h)

Consider

θ̂M,N
OLS (h) = arg min

θ∈Qad
JM,N (h, θ).

In the standard theory, where numerical error is negligible, we have that as M,N →∞,

θ̂M,N
OLS ≈ N (θ0, σ

2C−1), C = ∇u(θ0)T∇u(θ0). (8)

This can be shown as follows from [Seber and Wild, 1988]:

near θ0,

u(θ) ≈ u(θ0) +∇u(θ0)[θ − θ0],

so

J(θ) = ‖~y − ~u(t, x|θ)‖2

≈ ‖~y − ~u(t, x|θ0)−∇~u(t, x|θ0)[θ − θ0]‖2

= ‖~z −∇~u(θ0)β‖2, (9)

a linear model in ~z = ~ε and β = θ − θ0. Accordingly, we see that the value of β that will minimize

the �nal part Equation (9) will be

β = [∇~u(t, x|θ0)T∇~u(t, x|θ0)]−1∇~u(t, x|θ0)~z,
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so in the asymptotic limit as M,N →∞, and θ̂M,N
OLS approaches θ0,

θ̂M,N
OLS − θ0 ≈ [∇~u(t, x|θ0)T∇~u(t, x|θ0)]−1∇~u(t, x|θ0)~ε, (10)

a linear combination of normal random variables. so θ̂M,N
OLS is itself normally distributed. We see it

has mean value θ0.

Becase cov(AX + a) = Acov(X)AT , we can also calculate that

cov(θ̂) = [∇u(θ0)T∇u(θ0)]−1∇u(θ0)T η2[[∇u(θ0)T∇u(θ0)]−1∇u(θ0)T ]T

= η2∇u(θ0)−1∇u(θ0)−T∇u(θ0)T∇u(θ0)∇u(θ0)−1∇u(θ0)−T

= η2∇u(θ0)−1∇u(θ0)−T

= η2[∇u(θ0)T∇u(θ0)]−1.

This proves Equation (8).

Now we consider the case where our numerical computation has a numerical order of convergence,

p. In this case, when θ is near θ0,

~u(t, x|h, θ) ≈ ~u(t, x|h, θ0) +∇~u(t, x|h, θ0)[θ − θ0]

≈ ~u0(t, x|θ0) +O(hp) + [∇~u0(t, x|θ0) +O(hp)][θ − θ0].

So we see that our numerical cost function takes the form

J(h, θ) = ‖~y − u(t, x|h, θ)‖2

= ‖~y − ~u0(t, x|θ0)−O(hp)− [∇~u0(t, x|θ0) +O(hp)][θ − θ0]‖ 2

≈ ‖~y − ~u0(t, x|θ0)− [∇~u0(t, x|θ0) +O(hp)][θ − θ0]‖ 2

= ‖~z − [∇~u0(t, x|θ0) +O(hp)]β‖2

which has minimizer

β̂ =
(
XT
hXh

)−1
Xh~z (11)
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where Xh = ∇~u0(t, x|θ0) +O(hp). So, once θ̂M,N
OLS (h) is close to θ0,

θ̂M,N
OLS (h) ≈ N (θ0, η

2(XT
hXh)−1).

In general, we cannot say much about the inverse of (XT
hXh) in regard to ∇u(θ0)T∇u(θ0). However,

note that |XT
hXh| = |(∇u(θ0))T +OT (hp))(∇u(θ0))+O(hp))| = |∇u(θ0)T∇u(θ0)+O(hp)∇u(θ0))+

O(h2p)| ≈ |∇u(θ0)T∇u(θ0) + O(hp)∇u(θ0))|, meaning that we are perturbing each components of

∇u(θ0)T∇u(θ0) with a relative error on the order of hp. Then one can show

|(∇u(θ0)T∇u(θ0))−1 − (XT
hXh)−1| ≤ O(hp)|(∇u(θ0)T∇u(θ0))−1||∇u(θ0)T∇u(θ0)||(∇u(θ0)T∇u(θ0))−1|

+O(h2p),

see [Higham, 1996, § 13.1] for details. Thus, the entries of the covariance matrix of θ̂M,N
OLS (h) should

be within O(hp) of the entries of the true covariance matrix for θ̂M,N
OLS .

Also note that if XT
hXh is invertible, then it is a positive de�nite matrix. In this case, (XT

hXh)−1

is also positive de�nite.

A.13 Convergence of the terms of JM,N
OLS (h, θ)

Here we discuss the asymptotic properties of JM,N
OLS (h, θ). We begin with the limits as h → 0 in

Section A.14 and as M,N →∞ in A.14.

For brevity, we denote θ̂M,N
OLS (h) as θ̂ for the rest of this section. Following the footsteps of

this previous study, we present here some assumptions that must be made for the estimator to be

consistent and to facilitate our analysis.

(A1) There exists �nite measures χ and ν such that

1

MN

M∑
i=1

N∑
j=1

u0(ti, xj |θ)→
∫
X

∫
T
u0(t, x|θ)dν(t)dχ(x)

and

1

MN

M∑
i=1

N∑
j=1

u(ti, xj |h, θ)→
∫
X

∫
T
u(t, x|h, θ)dν(t)dχ(x)
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for all θ ∈ Qad as M,N →∞, independent of h.

(A2) The functional

J∗(θ) =

∫
X

∫
T

(u0(t, x|θ0)− u0(t, x|θ))2dν(t)dχ(x)

has a unique minimizer in Qad at θ0.

(A3) The numerical method used is order p accurate, so that

M∑
i=1

N∑
j=1

[u0(ti, xj |θ)− u(ti, xj |h, θ)] ≈ Khp

for some positive value, p, for all compact subsets of Q. Furthermore, for every h, u(x, t|h, θ) :

Qad → L1(T ×X) is continuous.

Note that [Banks and Fitzpatrick, 1990] includes more assumptions than those listed here that are

already satis�ed by Equations (4.1) or (4.5) and that assumption (A3) is a slight modi�cation of

assumption (A5) in [Banks and Fitzpatrick, 1990]. Assumption (A3) will only be valid in practice

when h is chosen small enough [LeVeque, 2007].

A.14 Limits as h→ 0

Term A is independent of h.

For Term B as h→ 0, and θ̂ approaches θ0 (assuming that there are many data points used for

this to occur). We can Taylor expand about θ0 and �nd

B(θ̂) ≈ 1

MN

M,N∑
i,j=1

[∇u0(ti, xj |θ0)[θ̂ − θ0]]2,
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We thus observe that B has expectation

E[B(θ̂)] =
1

MN

M,N∑
i,j=1

E
([
∇u0(ti, xj |θ0)[θ̂ − θ0]

]2
)

=
1

MN

M,N∑
i,j=1

[
var
(
∇u0(ti, xj |θ0)[θ̂ − θ0]

)
+ E

(
∇u0(ti, xj |θ0)[θ̂ − θ0]

)2
]

=
1

MN

M,N∑
i,j=1

∇u0(ti, xj |θ0)Tvar
(
θ̂ − θ0

)
∇u0(ti, xj |θ0)

=
η2

MN

M,N∑
i,j=1

∇u0(ti, xj |θ0)TCh∇u0(ti, xj |θ0)

=
η2

MN
∇~u0(t, x|θ0)TCh∇~u0(t, x|θ0)

which as h→ 0 will approach

η2

MN
∇~u0(t, x|θ0)T

(
∇~u0(t, x|θ0)T∇~u0(t, x|θ0)

)−1∇~u0(t, x|θ0)

with order of convergence O(hp). The variance of this random variable is di�cult to compute

explicitly.

The third term is given by

C :=
1

MN

M,N∑
i,j=1

[u0(ti, xj |θ)− u(ti, xj |h, θ)]2,

which may also be written in terms of the Euclidean-vector norm, from where we can then use

equivalence of norms to show its order as 2p as h→0 using (A3)

C =
1

MN
‖u0(ti, xj |θ)− u(ti, xj |h, θ)‖22

≤ K

MN
‖u0(ti, xj |θ)− u(ti, xj |h, θ)‖21 ≈

K1

MN
h2p.

We can also investigate the asymptotic properties ash → 0 as follows. We begin with a Taylor
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expansion about θ0 :

D(θ̂) ≈ 2

MN

M,N∑
i,j=1

εi,j(−∇u0(ti, xj |θ0)(θ̂ − θ0)).

We note that this is the sum of the product of two dependent random variables, so we use Equation

(11) from the appendix and see

D(θ̂) ≈ −2

MN

M,N∑
i,j=1

εi,j(∇u0(ti, xj |θ0)Ch(∇~u0(t, x|θ0) +O(hp))T~ε.

=
−2

MN
~εT∇~u0(t, x|θ0)TCh(∇~u0(t, x|θ0) +O(hp))T~ε

=
−2

MN
tr
(
∇~u0(t, x|θ0)TCh(∇~u0(t, x|θ0) +O(hp))T~ε~εT

)
=
−2

MN

M,N∑
i,j=1

∇u0(ti, xj |θ0)TCh(∇u0(ti, xj |θ0) +O(hp))T ε2i,j

where tr(·) denotes the trace function for a matrix. The exact distribution of D as h → 0 is thus

hard to ascertain because we are not summing identical random variables, however, we can deduce

that the mean of D is zero, and the variance will be on the order of O(h2p). We thus conclude that

this term should be negligible as h→ 0.

On the other hand, for M,N �nite,

|E|2 ≤ 4

M2N2

M,N∑
i,j=1

|εi,j |2
M,N∑

i,j=1

|(u0(xi, tjθ)− u(xi, tj |h, θ))|2
 as h→ 0

≤ K

M,N∑
i,j=1

|(u0(xi, tjθ)− u(xi, tj |h, θ))|


≈ O(hp)

where the �rst inequality is by the Cauchy-Schwarz Inequality, the second intequality is by the

equivalence of �nite-dimensional norms, and the �nal approximaiton is by assumption (A3).

The �nal term is written as

F :=
2

MN

M,N∑
i,j=1

[(u0(xi, tj |θ)− u(xi, tj |h, θ)) (u0(xi, tj |θ0)− u0(xi, tj |θ))] .
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By Taylor expanding, we can approximate this at θ̂ as

F (θ̂) ≈ 2

MN

M,N∑
i,j=1

[
(u0(xi, tj |θ0)− u(xi, tj |h, θ0))

(
∇u0(xi, tj |θ0)[θ̂ − θ0]

)]
,

where the second term in the �rst part of the product has been neglected because it has zero

expectation and a higher order variance than the remaining term. We next use the Cauchy-Schwartz

Inequality to deduce

∣∣∣F (θ̂)
∣∣∣ . 2

MN
‖u0(xi, tj |θ0)− u(xi, tj |h, θ0)‖2

∥∥∥∇u0(xi, tj |θ0)[θ̂ − θ0]
∥∥∥

2

≤ K 2

MN
‖u0(xi, tj |θ0)− u(xi, tj |h, θ0)‖1

∥∥∥∇u0(xi, tj |θ0)[θ̂ − θ0]
∥∥∥

1

= O(hp)
∥∥∥∇u0(xi, tj |θ0)[θ̂ − θ0]

∥∥∥
1

where the term
M,N∑
i,j=1

∇u0(xi, tj |θ0)[θ̂ − θ0]

has mean zero and variance

η2∇~u0(t, x|θ0)TCh∇~u0(t, x|θ0).

We accordingly suggest that Term F should have mean 0 and a variance that converges with order

O(h2p) to η2∇~u0(t, x|θ0)T
(
∇~u0(t, x|θ0)T∇~u0(t, x|θ0)

)−1∇~u0(t, x|θ0).

Limits as M,N →∞

Note that ε2i,j is distributed as η2 times a degree-1 chi-squared random variable. We thus observe

that A is distributed as η2/MN times a degree-MN chi-squared random variable, which has mean

η2 and variance 2η4/MN. By the classical Central Limit Theorem,

√
MN(A− η2)

D−→ N (0, 2η2)

as M,N →∞, where
D−→ denotes convergence in distribution.

Term B is the sum of the di�erence of the true solution squared when computed at θ0 and θ . If we
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assume that the sampling points {(xi, tj)}j=1,..,N
i=1,..,M are chosen properly to �cover� the spatio-temporal

domain1 then

B :=
1

MN

M,N∑
i,j=1

[u0(ti, xj |θ0)− u0(ti, xj |θ)]2 → J∗(θ).

as M,N →∞ by (A1).

The best we can say about C as M,N →∞ is that

C →
∫

(u0(t, x|θ)− u(t, x|h, θ))2dν(t)dχ(x),

but there is not much more to say about this term.

The fourth term is written as

D :=
2

MN

M,N∑
i,j=1

εi,j(u0(ti, xj |θ0)− u0(ti, xj |θ)).

We can bound the second term in the series, so D will go to zero as M,N →∞ by the LLN.

The same logic can be used to show that for h �xed, the �fth term,

E :=
2

MN

M,N∑
i,j=1

εi,j(u0(ti, xjθ)− u(xi, tj |h, θ))

will go to zero as M,N →∞ by LLN, so long as the CFL condition is satis�ed so that u(xi, tj |h, θ)

is bounded.

For the sixth term, F , we can use the LLN to show that this term will converge to zero as

M,N →∞.

1see [Banks and Fitzpatrick, 1990] for details.
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