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Complex predicates that comprise of a noun and verb e.g. yaad kar ‘memory do; remember’

are a productive class of multi-words in Hindi. In this thesis, we examine the challenges of identi-

fication and representation for these complex predicates in Hindi. We design and implement their

representation in a lexical semantic resource as well as in lexicalized computational grammars.

As productive multi-word predicates, their accurate identification is a necessity for natural lan-

guage processing applications. We use a combination of linguistic and computational approaches

to address these challenges. We use these methods to demonstrate the semi-automatic creation

of subcategorization frames for Hindi and the development of classes for nominal predicates. Fi-

nally, we demonstrate how linguistic features and computational tools can be used in tandem to

automatically identify complex predicates from unseen text.
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Chapter 1

Introduction

1.1 Overview

The representation and identification of multi-word expressions has been one of the major

challenges for both linguistic representation and computational processing. Multi-words are very

broadly defined as “idiosyncratic interpretations that cross word boundaries or spaces” (Sag et al.,

2002). This definition assumes two criteria for multi-words, first that they have a special semantics

and second, that they span across one or more words in a sentence. Although there are a plethora

of multi-words in language (ranging from compounds to idioms), those multi-words that also occur

as predicates are especially relevant to this work.

Multi-word predicates are a particularly challenging subset of multi-word expressions. Al-

though they behave as a single predicating expression, they are composed of more than one lexical

unit. In the languages of South Asia, multi-word predicates, which are more commonly known as

complex predicates, are particularly pervasive (Masica, 1976). Consequently, complex predicates

have been a part of linguistic analyses and descriptive grammars for a long time (Bahl, 1974; Hook,

1974). The term ‘complex predicate’ is also a cover term for several sub-types of multi-word pred-

icates including morphological causatives, noun-verb complex predicates and verb-verb complex

predicates. In this thesis, we focus on noun-verb complex predicates in Hindi.
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1.2 Hindi

Hindi belongs to the Indo-Aryan branch of the Indo-Iranian languages. It is an SOV (verb-

final) language with relatively free word order. It is a split-ergative language, where the ergative

pattern is conditioned by the perfective tense on the verb. Usually, agents of transitive or ditran-

sitive verbs will get ergative case if the verb has perfective aspect (although there are intransitive

verbs e.g. chiinkh ‘sneeze’ that can appear with ergative case).

The rules for Hindi verbal agreement are also different from a language like English. For

instance, the verb will always agree with the highest nominative (null) marked argument, which

is not necessarily the syntactic subject. In simple verbs, in examples (1) and (2), the nominative

argument is the subject and the object respectively. In example (3), there is no nominative argument

available, thus the verb shows default agreement with third person, masculine, singular. In complex

predicates, the light verb can show agreement with the nominal (with some important exceptions),

provided no other argument in the sentence has nominative case (example (4)).

(1) lar.kii
girl.F.Sg.Nom

lar.ke=ko
boy.M.Sg=Acc

dekh-egii
see-fut.F.Sg

‘(The) girl will see (the) boy’

(2) lar.ke=ne
boy.M.Sg=Erg

capaat”i
bread.F.Sg.Nom

khaa-ii
eat-Perf.F.Sg

‘(The) boy ate (the) bread’

(3) lar.kii=ne
girl.F.Sg=Erg

aurat”=ko
woman.F.Sg=Acc

dekh-aa
see-Perf.M.Sg

‘(The) girl saw (the) woman’

(4) lar.kii=ne
girl.F.Sg=Erg

lar.ke=se
boy.M.Sg=Instr

nafrat”
hatred.F

k-ii
do-Perf.F.Sg

‘(The) girl hated (the) boy’

Hindi also regularly pro-drops arguments when they can be recovered from discourse or the

particular situational context. Example 5 shows a sentence without a subject argument.
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(5) Elided subject represented with *pro*:

*pro*
NULL

kit”aab
book.F.Sg

par.Rh-egii
read-Fut.F.Sg

‘(She) will read the book’.

The variety of Hindi used in this thesis is modern standard Hindi. At a few points in the

thesis, we also make reference to Urdu, especially with regard to the Lexical Functional Grammar

analysis for Urdu. We would like to note that Urdu and Hindi are syntactically very similar, but

have some differences in vocabulary—mainly with respect to nouns. Urdu contains nouns that are

of Persian and Arabic origin in contrast to Hindi, where the nouns are often of Sanskrit origin.

1.3 Noun-Verb Complex Predicates in Hindi

The term complex predicate can be defined as a “construction in which two or more predica-

tional elements each contribute to a joint predication”(Butt, 2010). In the case of Hindi, the two

predicational elements can be morphological (e.g. morphological causatives) or syntactic (noun-

verb or verb-verb complex predicates) in nature. Syntactic complex predicates consist of a verbal

element that combines with another pre-verbal element. In Hindi, the latter may include another

verb, an adjective, an adverb, a borrowed English verb or a noun. Examples 6-8 contrast the use

of a simple predicate de ‘give’ with its complex predicate usages.

(6) Simple predicate

raam=ne
Ram.M.Sg=Erg

mohan=ko
Mohan.M.Sg=Dat

kit”ab
book.F.Sg

d”-ii
give-Perf.F.Sg

‘Ram gave Mohan a book’

(7) Noun-Verb complex predicate

raam=ne
Ram.M.Sg=Erg

us
that

baat”=par
topic=loc

zor
pressure.M.Sg

d”i-yaa
give-Perf.M.Sg

‘Ram put an emphasis on that topic’
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(8) Verb-Verb complex predicate

raam=ne
Ram.M.Sg=Erg

mohan=ko
Mohan.M.Sg=acc

per.
tree.M.Sg

kaatne
cut.Inf

d”i-yaa
give-Perf.M.Sg

‘Ram let Mohan cut the tree’

In examples (7) and (8), verb de ‘give’ has depleted predicational power and requires an

additional preverbal element to complete the event description. Therefore, it is often referred to

as a light verb. Jespersen (1965) was the first to coin the term light verb with reference to English

constructions such as take a walk or give a sigh. An example such as (7) is a combination of a noun

and a light verb. In this work, we will use the abbreviation Noun-Verb Complex predicate (NVC)

to refer to examples such as 7. We prefer to use ‘noun-verb complex predicate’ rather than the

more ambiguous ‘light verb construction’ as the light verb may combine with either verb or noun

in Hindi (see examples 7 and 8). NVCs have also been termed as, ‘support verb’ or ‘conjunct verb’

constructions.

NVCs are found across languages e.g. Japanese, Korean, Persian as well as English. In

Hindi, NVCs are a productive class of multi-word predicates and present descriptive and theoretical

challenges to the linguist. From the point of view of computational linguistics, NVCs pose challenges

for lexical resource creation and require reliable diagnostic criteria to distinguish them from literal

i.e. non-NVC cases. A deeper understanding of NVCs will benefit both linguistic analysis and

computational applications. In the rest of the chapter, we examine some of these challenges in

detail and outline our approach towards them.

1.4 Productivity of NVCs in Hindi

NVCs form a large part of the lexicon in Hindi and are highly productive. In the Hindi

treebank (Palmer et al., 2009) (400,000 words), there are nearly 47,163 predicates, of which 37%

have been annotated as NVCs. In comparison, English NVCs are considerably fewer. Linguistic

analyses of Hindi NVCs are present in the literature from early work such as Kachru (1982) to more

recent work e.g. Mohanan (1994); Davison (2005); Ahmed and Butt (2011). Most of this work is
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based on NVC data from a small number of examples. Fewer studies have used corpora (although

Bahl (1974) represents an early corpus study).

One of the challenges of studying Hindi NVCs stems from a wide range of noun-light verb

combinations. Predicating nouns can combine with more than one light verb, resulting in potentially

many different NVC combinations. These combinations are not completely predictable, as it is

possible to find cases where a noun is incompatible with a particular light verb. In the examples

below, we find that certain combinations are ruled out as ungrammatical.

• bhaashan. ‘speech’ + kar ‘do’/ de ‘give’/*le ‘take’

• salaaha ‘advice’ + *kar ‘do’/de ‘give’ /le ‘take’

• dhamkii ‘threat’ + *kar ‘do’/de ‘give’ /*le ‘take’

There is a need to investigate the properties of NVCs on a larger scale by making use of

existing linguistic resources for Hindi. This would help us uncover generalizations or patterns that

could explain and possibly predict NVC cases. In particular, it would be useful to understand

the properties of nominal predicates further. We know that light verbs viz. do, give, make are a

relatively compact class of light verbs that appear cross-linguistically. However, the properties of

the nouns and their constraints on combination with light verbs are less well understood.

Nouns that appear as part of NVCs are also not as predictable as those found in in other

languages. For example, in English, NVCs such as make an offer, give a groan often combine a

nominalized form of an English verb e.g. offer or groan with a light verb. Consequently, a light

verb construction may be paraphrased by the verbal form of the noun in English e.g. gave a lecture

may be paraphrased by lectured. In contrast, nouns that occur as part of Hindi NVCs are very

rarely nominalizations of main verbs. An example of such an exceptional case is talaash kar ‘search

do; search’, where the noun also occurs as a main verb talaashnaa ‘to search’ (Davison, 2005).

Butt (2010) notes that light verbs in Hindi NVCs act as a verbalizers in order to create

new predicates and incorporate borrowed items into the language e.g. email kar ‘email do; email’.
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Therefore, NVCs are sometimes described as “a preferred way of augmenting the creative potential

of the language” (Kachru, 2006)[93]. It is not uncommon to find examples of borrowed words among

NVCs in other languages e.g. Korean complex predicates will borrow nouns of Chinese origin to

form NVCs (Han and Rambow, 2000).

The productivity of NVCs results in predicate types that are far more numerous than simple

verbs. Hindi has approximately 700 simple verbs, but potentially many more unique NVCs1. While

corpus data containing a range of NVCs was limited in availability earlier, in this thesis we take

advantage of the annotated Hindi Treebank for the study of NVCs.

1.5 Identification of NVCs

As the Hindi Treebank annotations are our primary source of information about NVCs, we

review their criteria to distinguish NVCs from other verb-argument combinations. NVCs appear

to lie on a continuum between literal noun and verb combinations and prototypical NVC cases.

Therefore, some linguistic diagnostic tests can predict a prototypical case of an NVC, but cannot

work as predicted for a borderline NVC case. An extensive review of linguistic diagnostic tests

from the existing literature was carried out before the annotation of NVCs in the Hindi Treebank.

Mohanan (1994), Bhattacharyya et al. (2007) and Ahmed et al. (2012) have explored linguistic tests

that are aimed at showing that the noun and light verb combinations form a complex predicate

rather than an ordinary predicate argument structure. Some of these include addition of accusative

case clitic, relativization and co-ordination.

Ahmed et al. (2012) describe the extra argument test for NVCs with transitive light verbs.

In contrast with simple transitive clauses where the noun does not contribute any additional ar-

guments, in an NVC the noun contributes an argument of its own. In the Hindi Treebank, the

criteria taken into account for annotating a case of an NVC is based mainly on the existence of an

extra argument. Examples such as 9 will not be annotated as NVCs in the Treebank as the noun

1http://verbs.colorado.edu/propbank/framesets-hindi/
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kaam ‘work’ does not contribute arguments of its own.

(9) raam=ne
Ram.M.Sg=Erg

kaam
work.M

ki-yaa
do-perf.M.Sg

‘Ram did his work’

As the extra argument test can only be applied to transitive complex predicates, other tests

such as the addition of the reflexive possessive apnaa-apna; ‘self-self’ are used for intransitive

complex predicates. In the following chapter, we review some of these tests in more detail.

1.5.1 Automatic Identification

Based on human disambiguation of NVC cases from non-NVC ones, it is possible to come up

with classifiers that carry out this task automatically for a large number of NVCs. Effective NVC

identification has been shown to improve parsing (Begum et al., 2011), word sense disambiguation

(Finlayson and Kulkarni, 2011) and machine translation (Pal et al., 2011). The linguistic diagnostic

features described in the earlier section need to be modified and used as features for automatic

identification. Previous work has underscored the importance of linguistic features in identifying

NVCs automatically, across languages (Tu and Roth, 2011; Vincze et al., 2011). NVC identification

can also be described in terms of disambiguating light and non-light usages of a verb. Therefore, an

effective NVC identification system should not only use the best combination of linguistic features,

but it should also be able to identify a range of light verb usages.

In Hindi, just as all full, lexical verbs exhibit differences in syntactic behaviour, all light

verbs are not alike. Most work has focused on the most frequently occurring light verb kar, but

there is some evidence that light verbs can be differentiated amongst themselves on the basis of the

semantic information that they contribute to the NVC. For example, light verbs kar ‘do’ and ho

‘be’ contribute less semantic information than light verbs like de ‘give’ or le ‘take’ (Ahmed, 2010).

Evaluation by light verb can reveal the robustness of the NVC identification system and can also

provide a linguistically motivated guideline for improvement.
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1.6 Challenges in Linguistic Representation

The representation of NVCs in grammars and linguistic resources can be a challenging task,

given the multi-component nature of these predicates as well as their productivity. Broadly, there

are two issues that need to be addressed. The first is related to the representation of multi-word

predicates in lexicalized grammars, and the second is about the pragmatic or implementational

aspects of linguistic resource creation.

1.6.1 Lexicalized Grammars

In the Hindi Treebank, NVCs are differentiated from ordinary arguments with the help of a

dependency label. One of the challenges is to investigate whether there are syntactic representations

apart from the more under-specified dependency representation that can capture the properties

of Hindi NVCs more thoroughly. Lexicalized grammar formalisms have been used successfully to

model NVCs (Abeillé, 1988; Han and Rambow, 2000; Müller, 2010; Ahmed et al., 2012). The earliest

analyses assume that the light verb inherits arguments from the nominal. Its only function is to

supply verbal case to the semantic arguments of the nominal and give up all its predicating power

(Grimshaw and Mester, 1988; Kearns, 1988). Such an analysis requires a transfer of arguments from

the nominal to the light verb. In a HPSG (Head-driven Phrase Structure Grammar) analysis of

Persian NVCs, a similar analysis is described, via the lexical entries of the light verb and nominal.

The noun is specified for all the arguments of the light verb and subsequently, the light verb

‘attracts’ the arguments of the noun (Müller, 2010).

Alternatively, it has also been proposed that the noun in the NVC behaves similarly to a verb

in a control construction (Huang, 1992). NVCs consist of a light verb in the matrix clause with a

nominal host as its complement. In comparison to the Grimshaw and Mester (1988) analysis, the

control analysis explains the problem of ‘transfer of arguments’ more easily. Nominal hosts act as

the head of a complement clause, without any expressed subject. The control approach, however,

does not take into account that complex predicates in Hindi are monoclausal rather than having
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an embedded, biclausal structure (Mohanan, 1997).

Finally, the work of Mohanan (1994); Alsina et al. (1997) and Butt (1995), focus on the

joint predication of noun and light verb, where both parts of the predication contribute their

meaning. Rather than view the light verb as a licenser of predication only, Butt (1993) views it

as a unique category that shares a lexical entry with its non-light form. It is resolved as light or

non-light depending upon the syntactic environment. When a verb is resolved as light, it supplies

additional aspectual or agentive information about the event, and the host provides additional

eventive meanings. These syntactic and semantic interactions with the host change the event

structure of the ordinary predicate into a complex predicate.

This review of previous work suggests that there are two broad trends with respect to the

representation of NVCs: one that considers the light verb as semantically empty, and one that does

not. With respect to the Hindi NVC, one of the challenges is to compare these contrasting views

in order to understand which approach might work best for the NVC.

1.6.2 Resource creation

A linguistic representation of NVCs must take into account the language specific properties

of NVCs. Cross-linguistically, NVCs have a few similarities but differ in a number of ways. In

Persian, there are only 250 simple verbs and almost all other predicates in use are NVCs (Sadeghi,

1993). In English, NVCs exist alongside other multi-word predicates like phrasal verbs as well as

simple verbs. In Hindi, NVCs are a highly productive predicative strategy, but this productivity is

confined to a small group of light verbs, specifically kar ‘do’ and ho ‘be’. In comparison, light verbs

like le ‘take’ or aa ‘come’ are limited with respect to their combinatorial possibilities. Therefore,

resource creation e.g. in Hindi WordNet (Bhattacharyya, 2010) tends to focus on the light verb

kar ‘do’ only.

For tasks like semantic role labelling, where every instance of a multi-word has to be annotated

with its appropriate roles, NVCs need to be listed out in order to obtain accurate annotations for

these cases at a sentential level. At the same time, maintaining consistency across annotations is
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often a difficult task, especially when there are many unique NVC cases in the data. At such times,

it is useful to have some over-arching generalizations about nouns that behave in a similar fashion.

In this way, nouns belonging to the same group or class can be analyzed consistently. Therefore,

the lexical resource creation problem must deal with both adequate coverage for the purpose of

building a useful resource, as well as generalizability in order to maintain consistency.

1.7 Approach

So far, we have identified empirical, representational and identification challenges with respect

to Hindi NVCs. In this thesis, our aim is to address these issues using a combination of linguistic

analysis and computational tools. Our approach makes use of the Hindi Treebank, consisting of

syntactic and semantic annotations (Palmer et al., 2009). This particular resource has 400,000

words and nearly a third of all the predicates in this Treebank are annotated as NVCs.

As a first step, we manually validate Treebank annotations of NVCs using linguistic diagnostic

tests. Following this, we examine the problem of lexical resource creation for NVCs. For the purpose

of semantic role annotation, we need to define semantic roles for every NVC in the Treebank in the

form of ‘frame files’. As the manual creation of these frame files is difficult due to the large number

of NVC combinations, we implement a semi-automatic method for generating semantic roles from

the informative dependency labels. The roles are then manually validated to result in semantic

frame definitions for nearly 1800 nominal predicates.

While this directly aids us in the annotation task, we also carry out an initial exploration

of noun classes for nominal predicates. This would help us in grouping together similar nouns

and improving consistency in annotation. We carry out a clustering analysis on the nouns in the

Hindi treebank using two linguistic features and use some of our results to improve coverage for a

Hindi/Urdu LFG grammar.

We continue our investigation of linguistic representation of NVCs in the next stage, where

we turn to two grammar formalisms: Tree Adjoining Grammar (TAG) and Lexical Functional

Grammar (LFG). While an analysis of NVCs already exists in LFG, we adapt a TAG analysis
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of NVCs for Hindi. We also compare the representation of NVCs in both formalisms to arrive

at a clearer understanding of the formalisms and the syntactic propertis of the NVC itself. An

additional motivation is the possibility of using the existing Treebank representation to extract a

TAG or LFG representation of NVCs, which can aid an NLP application like parsing.

Finally, we examine the challenges of identifying NVCs with accuracy by building an auto-

matic identification system that uses both linguistic and statistical features. Our model predicts

unseen NVCs with an accuracy of upto 88% on a within-genre test set and 86% on a test set from

a different genre. We utilize features based on our linguistic analysis and additionally evaluate

our system on individual light verbs. Our model shows some improvement with compared with

previous work on Hindi NVC identification.

We have shown that Hindi NVCs present a number of theoretical and empirical challenges for

the linguist. In the thesis, we have organized our approach in the following manner. In Chapter 2

we provide an overview of the language resources used in this thesis. Next, we describe our lexical

semantic representation for NVCs in Chapter 3 and the clustering technique for finding noun groups

in Chapter 4. The syntactic representation of NVCs using Lexical Functional Grammar and Tree-

Adjoining Grammar is examined in chapter 5. Finally, we discuss the results of the automatic

identification of NVCs in Chapter 6 and follow up with a conclusion and discussion about future

work.



Chapter 2

Language resources

In this chapter, we elaborate on some existing linguistic resources for Hindi, which we utilize

for the study of Hindi NVCs. These resources are used to obtain linguistic knowledge about complex

predicates. We will describe the structure and use of these resources in the following sections.

2.1 Hindi Treebank

The Hindi Treebank is a part of the Hindi and Urdu Treebank project. This is a multi-

dimensional and multi-layered resource creation effort for the Hindi and Urdu languages (Palmer

et al., 2009). It has two layers of annotation: dependency structure as well as lexical semantic

information. As a multi-dimensional treebank, it includes both dependency and phrase structure

representation (Bhatt et al., 2009) (Note that the dependency structure is manually annotated

while the phrase structure is derived from the dependency trees). Multi-layered implies that there

are different layers of representation: both syntax and lexical predicate argument structure are

represented in this Treebank (Bhatt et al., 2011).

The manual annotation in the treebank is done using a dependency grammar framework.

Rather than adopt a constituency based representation, where the sentence is first split into a noun

phrase and a verb phrase, the verb is represented as the head of the syntactic tree. Arguments

as well as adjuncts are its dependents. Languages like Hindi as well as Czech have adopted the

dependency approach (Mel’c̆uk, 1988; Bharati et al., 1995) to build Treebanks.

The Hindi Dependency Treebank (HDT) uses an annotation scheme based on Computational
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Paninian Grammar (CPG) (Begum et al., 2008). The Treebank consists of 400,000 words and is

primarily newswire text, with a small amount of conversational data taken from works of fiction.

The annotation represents syntactic dependencies in the form of modifier-modified relations. Most

often, these consist of a verbal head with arguments as its dependents. For example, Figure 2.1

shows Atif and kit”aab ‘book’ as dependents of the verb paRii ‘read.perf.f.sg’.

It is noteworthy that the dependency labels depict relations between chunks, which are “min-

imal phrases consisting of correlated, inseparable entities” (Bharati et al., 2006). They are not nec-

essarily individual words. In Figure 2.1, relations are depicted between a nominal chunk Atif=ne

‘Atif=Erg’ , with the verb paRii ‘read.perf’. Verbal chunks typically consist of the lexical verb

and its auxiliaries. The annotation of chunks also assumes that intra-chunk dependencies can be

extracted automatically (Husain et al., 2010) e.g. the head of the nominal chunk Atif in Atif=ne.

Besides dependency relations, the Hindi Dependency Treebank includes morphological, part-

of-speech and chunking information as well as dependency relations. These are represented in the

Shakti Standard Format (SSF; see (Bharati et al., 2007)).

aatif=ne kit”aab paR-ii
Atif=Erg book.fsg read-Perf.fsg

k1

k2

rel

Figure 2.1: Dependency tree for Atif=ne kit”aab paRii ‘Atif read a book’. The head is paRhii ‘read’,
with dependents k1 ‘karta’ and k2 ‘karma’

The labels k1 and k2 in Figure 2.1 are also known as karaka labels. The term karaka is

defined as “the role played by a participant in an action”. The dependency relation labels have

six karaka labels that represent core syntactic relations such as karta or k1 ‘locus of action’ karma

‘thing acted on’, k2. Non-karaka labels include rh ‘reason’ or k7t ‘time’.1 Most karaka labels can

only be understood in the context of a particular verb. For instance Atif and kitaab in Figure

1Although k7t is prefixed by ‘k’, it is not a karaka label
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2.1 are considered participants in the event of reading. On the other hand, non-karaka labels are

‘global’, i.e. their interpretation will usually not vary across predicates. These usually correspond

to adjuncts in the sentence. The tagset for dependency annotation also includes labels that indicate

‘modifier’ relations. For example, the relation between the nominal head and its modifying relative

clause is represented by the label nmod--relc. This label is interpreted as a noun modifier relation

of the type ‘relative clause’.

Finally, the tagset also includes labels for non-dependencies. These represent other types of

relations between two nodes in the dependency tree. The label pof, which is used for NVCs is one

such relation. The pof label indicates a part of unit. It shows that the pre-verbal element in a

complex predicate forms a unit with its verbal head. In all, the dependency tagset consists of about

43 labels (Bharati et al., 2006).

There are nearly 3000 unique NVCs in the treebanked corpus, which have been manually

annotated using the pof (part-of) label. The NVC consists of two predicating structures, but the

nominal is represented as a dependent of the light verb. However, the nominal can have its own

arguments. Thus, the argument span for complex predicates includes not only direct dependents

of the verb but also dependents of the noun (if any)(See also section (2.1.1)).

For example, in Figure 2.2 we have a complex predicate pratikshaa kar ‘waiting do’ ; ‘wait’.

The predicating noun pratikshaa ‘waiting’ has its own argument Ravi kii, indicated with the label

r6-k2. The treebank has two labels r6-k1 and r6-k2 that are specifically used for the arguments

of the predicating noun. However, in the Paninian framework, only those arguments of the nominal

that have a genitive post position are represented as its dependents (Kulkarni, 2011). For example,

Ravi in Figure 2.2 is followed by the genitive kii and is therefore represented as a dependent

of pratikshaa. Nominal arguments that occur with any other postposition are always shown as

dependents of the main verb.

The Hindi Treebank has annotated nouns, adjectives, borrowed words from English as well as

compounds and adverbs with the pof label. This has resulted in a large amount of annotated data

for NVCs. There are about 3015 unique combinations of these preverbal elements that combine
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raam ravii-kii prat”ikshaa kar-raha-thaa
Ram Ravi.GEN waiting do.prog.be

k1

r6-k2 pof

rel

Figure 2.2: Dependency tree for NVC pratikshaa ‘waiting’ kar ‘do’. The nominal predicate is linked
to the light verb with a pof label

with a light verb in the Hindi Treebank. As more than one light verb can occur with the same

pre-verbal host, we get 1884 cases if we count the pre-verbal host alone. Using part-of-speech

information, we find that the majority of the pre-verbal hosts are nouns while others are adjectives

and borrowed words from English.

POS Tokens Types

Noun 10, 425 1567
Adjective 5810 663
Borrowing (verbs) 143 65
Adverb 44 16

Table 2.1: Part-of-speech tags that occur with the pof label in the Hindi Treebank

In order to use the annotated Hindi Treebank data effectively, we had to filter out those

NVCs cases that were not relevant for our analyses. Therefore, even though the pof was marked,

we only took into consideration those constituents where the relation was marked between a head

noun and verb. We ignored adjective- light verb or adverb-light verb cases. However, we did accept

phrases containing borrowed English words, which are marked with the part of speech tag ‘BLK’

as they can form new NVCs in Hindi. In addition, we used the Hindi PropBank annotations as a

quality control on the Hindi Treebank pof annotation.

2.1.1 Underspecification of NVCs

For NVCs, apart from the use of a label pof, the Treebank does not distinguish nouns in an

NVC in any special way. The only place where there is a structural difference in the dependency
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tree is when the nominal has an argument with the genitive case. If we look at example 10, the

argument contributed by the nominal Mohan is marked with instrumental case. In 11, Mohan is

marked with genitive.

(10) raam=ne
Ram.M.Sg=Erg

mohan=se
Mohan.M.Sg-Inst

nafrat”
hatred.F

k-ii
do-Perf.F.S

‘Ram hated Mohan ’

(11) raam=ne
Ram.M.Sg=Erg

mohan=kii
Mohan.M-Sg=Gen

prashansaa
praise.F

k-ii
do-Perf.F.S

‘Ram praised Mohan ’

raam=ne mohan=se nafrat k-ii
Ram.M.Sg=Erg Mohan.M.Sg=Inst hatred.F do-Perf.F.Sg

k1

k2

pof

rel

Figure 2.3: Dependency tree for NVC nafrat ‘hatred’ kar ‘do’. The nominal’s argument is a
dependent of the light verb.

raam=ne mohan=kii prashansaa k-ii
Ram.M.Sg=Erg Mohan.M.Sg=Gen praise.F.Sg do-Perf.F.Sg

k1

r6-k2 pof

rel

Figure 2.4: Dependency tree for NVC prashansaa ‘praise’ kar ‘do’. The nominal’s argument is a
dependent of the nominal.

According to Computational Paninian Grammar (CPG) (Begum et al., 2008; Kulkarni, 2011),

nouns sanctioning genitive arguments are considered true verbal nouns. Therefore their arguments

are structurally dependent on the noun (Figure 2.4). If a nominal has non-genitive arguments, they

are depicted as dependents of the verb (Figure 2.3). While this distinction is useful for capturing

nominals that take genitive-marked arguments, the presence or absence of the genitive case alone
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may not distinguish true nominal predicates from others. First, the genitive postposition is am-

biguous with respect to arguments or adjuncts. For example, while a noun like prashansaa requires

a genitive marked argument, others such as charchaa ‘debate’ will take it optionally. Second, there

appears to be no reason why a noun like nafrat should not be considered a true predicate because

it takes an instrumental-marked argument rather than genitive. The postposition on the nominal’s

argument is a result of the lexical property of the nominal itself (Mohanan, 1997). We need other

evidence to motivate a structural difference in the dependency representation of the NVCs in Hindi.

(12) mantrii=ne
minister.M.Sg=Erg

patrakaaron=se
reporter.M.Pl=Inst

(chunaav=kii)
election.M.Sg=Gen

charchaa
discussion.F.Sg

k-ii
do-Perf.F.Sg

The minister had a discussion with the reporters (regarding the election)

2.2 Hindi PropBank

The Hindi PropBank (HPB) is concerned with the labeling of semantic roles. Semantic role

labelling is done on top of the dependency trees in the HDT (Hindi Dependency Treebank). This

task implies that the arguments for every predicate (including complex predicates) in the treebank

must be assigned semantic roles. Semantic roles are defined on a verb-by-verb basis and description

at the verb-specific level is fine-grained; e.g. a verb like hit will have ‘hitter’ and ‘hittee’. These

verb-specific roles are then grouped into broader categories using numbered arguments (ARG#).

Each verb can also have a set of modifiers not specific to the verb (ARGM*). The distinction

between numbered and non-numbered is quite similar to the broad division between karaka and

non-karaka labels in the HDT. The verbs in the PropBank are annotated with predicate-argument

structures and provide semantic role labels for each syntactic argument of a verb. Although these

were deliberately chosen to be generic and theory-neutral (e.g., ARG0, ARG1), they are intended

to consistently annotate the same semantic role across syntactic variations. For example, in both

the sentences John broke the window and The window broke, window is annotated as ARG1 and as

bearing the role of Patient. This reflects the fact that this argument bears the same semantic role
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in both cases, even though it is realized as the structural subject in one sentence and as the object

in the other. In the Pān. inian approach, the argument window in The window broke gets the same

label as John. This is the primary difference between PropBank’s approach to semantic role labels

and the Pān. inian approach to kāraka labels, which it otherwise resembles closely.

Later in this chapter, we also explore how this similarity may be used to expedite Prop-

Bank annotation in Section 2.3. Figure 2.5 shows the PropBank labels annotated on top of the

dependency tree.

aatif=ne kit”aab paR-ii
Atif=Erg book.F.Sg read-perf.F.Sg

k1 ; ARG0

k2 ; ARG1

rel

Figure 2.5: PropBank annotation for paR ‘read’, with dependents ARG0 and ARG1

The numbered arguments in PropBank correspond to ARG0-ARG3, including function tags

associated with ARG2 (e.g. ARG2-GOL). ARG0 and ARG1. For instance, ARG0 corresponds to the

agent, causer, or experiencer, whether it is realized as the subject of an active construction or as

the object of an adjunct (by phrase) of the corresponding passive. The objective is to capture

semantic similarities across syntactic variation. If we look at the example aatif-ne kitaab par. ii ‘Atif

read a book’ from the previous section, but this time annotated with semantic roles, we get the

multi-layered annotation found in Figure 2.5.

The Hindi PropBank currently consists of 24 labels including both numbered arguments and

modifiers (Table 2.2). The Hindi PropBank labels make certain distinctions that are not made in

some other language such as English, e.g. ARGA and ARGA-MNS mark the arguments of morphological

causatives in Hindi. The externalmost causer argument in case of multiple causers or the only causer

argument present in the sentence is annotated as ARGA. Any intermediate causers are annotated

with the ArgA MNS label (Bhatia et al., 2013). The preverb in complex predicate constructions

is annotated as ARGM-VLV for the verb-verb complex predicate and ARGM-PRX for the noun-verb
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complex predicates. The ARGM-PRX label is similar across other PropBanks in Chinese and Arabic

(Hwang et al., 2010).

Label Description

ARG0 agent, causer, experiencer
ARG1 patient, theme, undergoer
ARG2 beneficiary
ARG3 instrument

ARG2-ATR attribute ARG2-GOL goal
ARG2-LOC location ARG2-SOU source

ARG0-GOL causee as recipient
ARG0-MNS causee
ARGA-MNS secondary causer
ARGA causer

ARGM-VLV verb-verb construction
ARGM-PRX noun-verb construction

ARGM-ADV adverb ARGM-CAU cause
ARGM-DIR direction ARGM-DIS discourse
ARGM-EXT extent ARGM-LOC location
ARGM-MNR manner ARGM-MNS means
ARGM-MOD modal ARGM-NEG negation
ARGM-PRP purpose ARGM-TMP temporal

Table 2.2: Hindi PropBank labels.

The annotation process for Hindi PropBank takes place in two stages: the creation of frameset

files for individual verb types, and the annotation of predicate argument structures for each verb

instance. In Table 2.3 PropBank-style semantic roles are listed for the simple verb de;‘to give’. In

the table, the numbered arguments correspond to the ‘giver’, ‘thing given’ and ‘recipient’. Frame file

definitions are created manually and include role information as well as a unique roleset ID (de.01),

which is assigned to every sense of a verb. In addition, for Hindi the frame file also includes the

transitive and causative forms of the verb (if any). Thus, the frame file for de will include dilvaa

‘cause to give’. Although the forms are grouped under the same lemma form (e.g. de), in practice

each transitive or causative variant will have its own unique roleset id. In English PropBank for

instance, verb-particle constructions like open up are grouped under the same frameset open, but

have unique roleset ids.
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de.01 to give

Arg0 the giver
Arg1 thing given
Arg2 recipient

Table 2.3: A frame file

2.2.1 Manual validation of treebank NVC annotation

One of the challenges for PropBank annotation was validation of the pof label that was added

to identify NVCs in the Hindi Treebank. As PropBank annotation involves frame file creation as a

first step, the validation of NVCs was carried out at this stage. The process of frame file creation

is described in chapter 3. Frame files were checked for annotation errors, such as invalid light verbs

or inclusion of collocations. Certain borderline cases were further investigated using linguistic

diagnostic tests. The application of linguistic tests revealed that NVCs do not pass the diagnostic

tests in the same fashion.

We surveyed about 50 NVCs using seven linguistic diagnostic tests (We describe these in

the sections below) and scored them on the basis of the number of tests they were able to pass.

Table 2.4 shows these examples and the degree of variation with respect to their strength as a

prototypical NVC. If we examine this table, we find that some NVCs appear to form a constituent

that disallows syntactic modification of any kind. These are in the topmost row with a score of 7,

for example saamnaa ‘confrontation’. Other NVCs appear to fall somewhere along a cline that is

neither a totally prototypical NVC case, nor an ordinary predicate argument structure.

A similar analysis was carried out for the NVCs with ho ‘be’, using only five linguistic

diagnostic tests (as two of these can only be used for transitive NVCs). A similar pattern emerged,

where some NVC cases were more prototypical than others (Table 2.5).

This shows that it is difficult to narrow down a definitive set of diagnostic tests that are

the effective at identifying NVCs. The reasons for this are not yet clear, but our initial study

showed that this could be related to the frequency of the NVC cases. In the NVCs with kar ‘do’,

the ‘low-scoring’ i.e. less prototypical NVCs were more frequent in the corpus as opposed to the
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NVC strength Nominals with light verb kar
‘do’

7 saamnaa ‘confront’, apiil ‘ap-
peal’, prad”an ‘confer’, d”auraa;
‘tour’, mad”ad” ‘help’, samarthan
‘concur’

6 pushti ‘confirm’, prad”arshan dis-
play, prayas ‘effort’, hamla ‘at-
tack’, jãch ‘investigate’

5 mulaqaat” ‘meeting’, faislaa ‘deci-
sion’, koshish ‘effort’, ghoshan. aa
‘declaration’, baat”chiit” ‘chat’,
charchaa ‘discuss’, baat” ‘talk’,
virodh ‘objection’, shuru ‘begin’

4 d”aavaa ‘tour’, maang ‘demand’,
sviikaar ‘accept’

3 vichaar ‘think’, inkaar ‘refusal’

Table 2.4: NVC scored according to the number of diagnostic tests that are cleared. These form
predicates with kar ‘do’. The highest score is 7 and lowest 3.

NVC strength Nominals with light verb ho
‘be’

5 gathan ‘group’, nidhan death,
aayojan ‘organization’

4 maut” ‘death’, baithak ‘gathering’,
pushti ‘implementation’, gawahi
‘testimony’, baarish ‘rain’

3 shuru ‘begin’, shuruaat” ‘begin-
ning’, chori ‘theft’, prasaaran.
‘broadcast’, anuvaad” ‘transla-
tion’, abhyas ‘lesson’, amal ‘im-
plement’

2 charcha ‘discussion’, nuksaan
‘destruction’, asar ‘effect’,
zaruurat” ‘need’, faayd”a ‘advan-
tage’

1 vruddhi ‘increase’, sunvaai ‘hear-
ing’, anubhuut”i ‘perception’

Table 2.5: NVCs with ho ‘be’ scored according to the number of diagnostic tests that are cleared.
The highest score is 5 and the lowest is 0. Tests for transitive NVCs do not apply to ho
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‘high-scoring’ NVCs (e.g. with a score greater than 5). Perhaps the NVCs lower on the scale are

less tightly bound with the light verb and are ambiguous between an true NVC and an ordinary

verb-argument usage in the language.

In the following subsections, we survey some of the diagnostic tests described by Mohanan

(1994), Bhattacharyya et al. (2007) and Ahmed et al. (2012). We used these tests in our survey of

NVC diagnostics described above. The ‘extra argument’ test was described in the previous chapter,

therefore we list only six other diagnostic tests below. These tests show that the noun and light

verb combinations form a complex predicate rather than an ordinary predicate argument structure.

This implies that the noun and light verb are part of a constituent and the nominal does not have

all the properties of an ordinary NP.

2.2.1.1 Apnaa-Apnaa test

The pronoun apnaa ‘self’ is a reflexive possessive that can be used with nominals that are

not part of a complex predicate. If apnaa-apnaa can be added to the nominal, then it is not an

NVC but an ordinary noun. In the example (13), apnaa-apnaa is added to the NVC chorii ‘theft’

hu-ii ‘be-Perf.F.Sg’. As it is infelicitous, the noun and verb combination form a true NVC. Unlike

the extra argument test (described in Chapter 1, section 1.5), this test can be used for intransitive

NVCs.

(13) *apni
self

apni
self

corii
theft.F.Sg

hu-ii
be-Perf.F.Sg

‘* Our own theft took place’

In example (13), the nominal ‘chorii’; theft in the complex predicate ‘chorii honaa’; theft

happen; cannot have apnaa-apnaa as its modifier.

2.2.1.2 Wh-question test

If the noun forms a lexical category (rather than a regular NP), then a wh-word may not be

substituted for it directly. Wh-interrogatives are formed with the wh-word in situ in Hindi. The



23

simple predicate example in (14) can be made interrogative by adding the form kisne ‘who-Erg’ in

Example 15.

(14) mohan=ne
MohanM.Sg=Erg

ninaa=ko
Nina.F.Sg=Acc

kit”aab
book.F.Sg

d”-ii
give-Perf.F.Sg

‘Mohan gave the book to Nina’

(15) kis=ne
who-Erg

Ninaa=ko
Nina=Acc

kit”aab
book.F.Sg

d”-ii?
give-Perf.F.Sg

‘Who gave the book to Nina?’

In the case of complex predicates, the nominal hosts cannot be replaced by a Wh-question

word like kyaa ‘what’ like example 17, where ‘kyaa’ replaces bharosaa ‘trust’ in the complex pred-

icate bharosaa kar ‘trust do; to trust (someone)’. Therefore, (17) cannot be an acceptable inter-

rogative version of (16).

(16) ravi=ne
Ravi.M.Sg=Erg

mohan=par
Mohan.M.Sg=loc

bharosaa
reliance.M.Sg

ki-yaa
do-Perf.M.Sg

‘Ravi relied on Mohan’

(17) *ravi=ne
Ravi.M.Sg=Erg

mohan=par
Mohan.M.Sg=loc

kyaa
what

ki-yaa?
do-Perf.M.Sg

‘*What did Ravi do on Mohan?’

2.2.1.3 The nominal host cannot be relativized

Example 18 shows the application of the relativization test, proposed by Mohanan (1997).

When the nominal is modified by the relative clause headed by jo the sentence is ungrammatical.

This means that yaad kii is a true NVC because yaad cannot be relativized independently of the

light verb.

(18) *vah
that

yaad
memory

jo
that

mohan=ki
Mohan.M.Sg=Gen

raam=ne
Ram.M.Sg=Erg

kii
story.F.Sg

...
that .F.Sg do-perf.F.Sg

it

‘(*)The story of Mohan that Ram remembered’
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2.2.1.4 Addition of accusative case

The accusative marker test was proposed in Bhattacharyya et al. (2007) and it can be used

with transitive light verbs such as kar ‘do’. It is applied by adding the accusative marker to the

nominal in the NV complex predicate. The accusative case, normally seen on the object noun

should not appear on a nominal which is part of the complex predicate. If it does, one should

assume that the NV does not form a complex predicate. In example 19, the nominal ‘bharosaa’ (in

boldface) cannot get the accusative marker ‘ko’. This example is ungrammatical.

(19) *usne
he.erg

raam
Raam

par
loc

us
that

bharose ko
trust

kiyaa
acc

jo..
do when.. ’

‘(Intended meaning) He placed that trust in Raam when..’

2.2.1.5 No Demonstrative modifier on nominal

If the nominal in the complex predicate is modified by a demonstrative like yaha; this, then

it is an ordinary NVC rather than a complex predicate.

(20) raam=ne
Ram.M.Sg=Erg

bharosaa
trust.M.Sg

yaha
this

ki-yaa
do-Perf.M.Sg

kii..
that

‘(*)Ram did this trust that.. ’

In the example 20, the nominal bharosaa cannot be modified by the demonstrative yaha.

2.2.1.6 Adjectival modification of the nominal

Mohanan (1997) describes the adjectival modification test, where predicating nominals cannot

be modified by adjectives such as ek ‘one’. This test is not a very strong diagnostic as we found

many predicating nouns that would allow modification by an adjective.

(21) *mohan=ne
Mohan.M.Sg=Erg

raam=ko
Ram.M.Sg=Dat

ek
one

khabar
news.F.Sg

ki-ii
do-Perf.F.Sg

‘*Mohan gave a news to Ram’

In Example 21, khabar cannot be modified by the numeral ek.
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2.3 Karaka Labels and PropBank Mapping

PropBank annotation has been carried out in Chinese, Arabic and Korean besides English.

For all of these languages, PropBank annotation is done on Penn Treebank style phrase structure

(Xue and Palmer, 2003; Palmer et al., 2008). On the other hand, for Hindi, annotation is carried

out on top of dependency trees. This representation has some advantages for a task such as

PropBank. First, arguments of the verb are marked explicitly as dependents, and this makes the

task of argument identification easier as compared to phrase structure. Second, the Hindi Treebank

(HDT) provides a rich set of dependency relation labels. This facilitates mappings between syntactic

dependents and semantic arguments. Previous work has demonstrated that the English PropBank

tagset is quite similar to English dependency trees annotated with the Paninian labels (Vaidya

et al., 2009).

As mentioned earlier, both numbered arguments and karaka labels are meaningful in the

context of a particular verb, i.e. these are verb specific labels. In this respect, numbered arguments

ARG0-ARG3 and karaka labels k1-7 are quite similar but there is an important exception. For

example, HDT treats the following sentences similarly, whereas PropBank does not:

• The boy broke the vase.

• The window broke.

The boy and the window are both considered k1 for HDT, whereas HPB labels the boy as ARG0 and

The window as ARG1. The window is not considered a primary causer as the verb is unaccusative

for Propbank. For HDT, unaccusative verbs are not treated differently. This is an important

distinction that needs to be considered while carrying out the mapping. k1 is thus ambiguous

between ARG0 and ARG1. Also, HDT makes a distinction between experiencer subjects of certain

verbs, labeling them as k4a. As Hindi PropBank (HPB) does not make such a distinction, k4a maps

to ARG0.2 The ARG0 and ARG1 mapping would be accurate only when we make use of specific verb

2We recently revised the analysis for Experiencer subjects and now have ARG0-GOL instead of ARG0. This was

not implemented when the mapping experiments were carried out
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information. We reproduce in Table 2.6 the mapping between dependency labels and PropBank

found in Vaidya et al. (2011). In contrast to the numbered argument mapping which is complex for

ARG0, the non-numbered arguments are relatively straightforward. The mapping for non-numbered

or ‘modifier’ arguments may be found in Table 2.7.

PropBank label HDT label

Arg0 k1 (karta); k4a (experiencer)
Arg1 k2 (karma); k1
Arg2 k4 (beneficiary)
Arg2-ATR k1s (attribute)
Arg2-SOU k5 (source)
Arg2-GOL k2p (goal)
Arg3 k3 (instrument)

ArgC mk1 (causer)
ArgA pk1 (secondary causer)

Table 2.6: Numbered argument mappings. Note that the ARGC label mapping represented an
earlier analysis of causatives in Hindi PropBank. This label is no longer part of the current tagset,
but it is retained here as it formed the basis of our experiments in Vaidya et al. (2011).

For the remaining arguments i.e. non-numbered arguments and non-karaka labels, we get a

one-to-one mapping based on the definitions of these labels alone. We do not have a verb-specific

resource for these cases as these represent the adjuncts in the sentence. In contrast to the verb

specific or local semantic roles like the numbered arguments, non-numbered arguments are global

semantic roles (Vaidya and Husain, 2011). Despite this one-to-one correspondence, in practice

these labels are far harder to identify automatically. This is because in annotation practice the

interpretation of definitions like ‘cause’ or ‘purpose’ tends to differ, hence the Treebank data for

these labels can be quite noisy.

2.3.1 Mapping Rules: Experiments

This section describes the result of experiments that implemented the dependency to Prop-

Bank mapping using a small corpus of treebanked and PropBanked data (Vaidya et al., 2011). The

goal was to determine the extent to which the mapping could expedite the process of PropBank

annotation. Our corpus consisted of simple predicates as well as complex predicates.
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PropBank label HDT label

ArgM-ADV sent-adv (epistemic adv)
ArgM-CAU rh (cause/reason)
ArgM-DIR rd (direction)
ArgM-DIS rad (discourse)
ArgM-LOC k7p (location)
ArgM-MNR adv (manner adv)
ArgM-PRP rt (purpose)
ArgM-TMP k7t (time)

Table 2.7: Modifier mappings.

As a first step, we carried out argument identification (i.e. identifying candidate phrases

for annotation) followed by argument classification (selecting the correct PropBank label for the

argument). Argument identification was easy, given the dependency treebank. For each verbal pred-

icate, we considered all syntactic dependents of the predicate as its semantic arguments. Argument

identification was done with high precision as both PropBank and HDT follow the same principles

for identifying syntactic dependents and semantic role labels for a verb. Argument classification

was done by using two types of rules:

• Empirically-derived rules, generated by measuring frequency of dependency features in

association with semantic roles in a small annotated corpus.

• Linguistic-mapping rules, derived from our linguistic intuitions described earlier (section

2.3)

2.3.1.1 Empirically-derived rules

The empirically derived rules relied on a corpus of annotated data. We used a subset of

the Hindi Dependency Treebank that was used in the ICON’10 contest (Husain et al., 2010). Our

corpus contained about 32,300 word tokens and 2,005 verb predicates, in which 546 were complex

predicates. Each verb predicate was annotated with a verb sense specified in its corresponding

frameset file. Note that at this stage, we had annotated complex predicates without nominal frame

file information. This annotation was only for experimental purposes, therefore we annotated all
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the arguments of the light verb, with the nominal getting the default label ARGM-PRX. While this

does not reflect our procedure for NVC annotation (which does take into account the nominal’s

frame file), it does demonstrate that the mapping can be applied to both types of predicates. At

that stage, there were only 160 frameset files created for the verbal predicates. All verbal predicates

(including complex predicates) were annotated with PropBank labels. A total of 5,375 arguments

were annotated.

This corpus formed the basis for extracting various features. Three kinds of features were used

for the generation of empirically-derived rules: predicate id, predicate’s voice type, and argument’s

dependency label. Predicate id is either the lemma or the roleset id of the predicate. Predicate

lemmas are already provided in the Treebank. When we used roleset ids, we assumed that sense

annotations were already done. PropBank includes annotations of verb sense, called roleset id, that

differentiates each verb predicate with different senses (Palmer et al., 2005). A verb predicate can

form several argument structures with respect to different senses. Using roleset ids, we generated

more fine-grained rules that are specific to those senses.

A predicate’s voice type is either ‘active’ or ‘passive’, also provided in the Treebank. There

were not many instances of passive construction in our current data, which made it difficult to

generate rules general enough for future data. However, even with the small amount of training

instances, we found some advantage to using the voice feature in our experiments. Finally, an

argument’s dependency label is the dependency label of an identified argument with respect to its

predicate. These rules were formulated as a function rule such that:

rule(id, v, drel) = arg max iP (pbreli)

where P (pbreli) is a probability of the predicted PropBank label pbreli , given a tuple of features

(id, v, drel). The probability is measured by estimating a maximum likelihood of each PropBank

label being associated with the feature tuple. For example, a feature tuple (run, active, k1) can be

associated with two PropBank labels, ARG0 and ARG1, with counts of 8 and 2, respectively. In this

case, the maximum likelihoods of ARG0 and ARG1 being associated with the feature tuple is 0.8 and
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0.2; thus rule(run, active, k1) = ARG0.

Since we do not want to apply rules with low confidence, we set a threshold to P (pbrel) so

that predictions with low probabilities can be filtered out. Finding the right threshold is a task

of handling the precision/recall trade-off. 3 For our experiments, we ran 10-fold cross-validation

to find the best threshold for our case. In general, the higher the threshold, the higher and lower

the precision and recall become, respectively. Figure 2.6 shows comparisons between precision and

recall with respect to different thresholds. Notice that the threshold of 1.0, meaning that using

only rules with 100% confidence, does not give the highest precision. We decided to stick with a

threshold of 0.93.
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Figure 2.6: Accuracies with respect to different thresholds. P, R, and F1 stand for precisions,
recalls, and F1-scores.

2.3.1.2 Linguistic Mapping rules

Mapping rules are applied to arguments that the empirically-derived rules cannot classify.

These rules capture general correlations between syntactic and semantic arguments for each pred-

3We calculate precision by using the following formula, where TP stands for true positives and FP stands for false

positives: Precision = TP/TP + FP . Precision tells us about the proportion of cases that were correctly identified.

Recall is calculated by finding out the total number of true positives and dividing them by the total number of

elements that actually belong to the positive class i.e. Recall = TP/TP + FN , where FN = false negatives. The F1

score is calculated by the harmonic mean of Precision and Recall. F1 = 2∗ (Precision∗Recall)/(Precision+Recall)
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Roleset Usage Rule

A.01 to come
k1 → ARG1

k2p → ARG2-GOL

A.03 to arrive
k1 → ARG1

k2p → ARG2-GOL

k5 → ARG2-SOU

Table 2.8: Rules for the predicate ‘A (come)’.

icate and are helpful for predicates not seen in training data. The numbered argument mappings

are directly entered into the PropBank frameset files manually by the frameset file creators. This

serves as a useful resource for our mapping experiments, but the files include mappings for num-

bered arguments only. Table 2.8 shows mappings for the predicate ‘A (come)’, specified in the

frameset file, ‘A-v.xml’. For example, the predicate ‘A’ has two verb senses and each sense specifies

a different set of rules. For instance, the first rule of A.01 maps a syntactic dependent with the

dependency label k1 to a semantic argument with the semantic label ARG1.

2.3.2 Evaluation

Since there is a relatively small size of data, we do not make a separate set for evaluation.

Instead, we run 10-fold cross-validation to evaluate our rule-based system.

Table 2.9 shows accuracies achieved by the system. We achieve the best result when the

linguistic mapping rules from section 2.3.1.2 are applied after the empirically derived rules (section

2.3.1.1). The mapping rules improve the recall of numbered arguments (ARGN) significantly, but

result in a slight decrease in their precision.

Dist. P R F1

ALL 100.00 89.80 55.28 68.44

ARGN 54.12 91.87 72.36 80.96
ARGM 45.88 85.31 35.14 49.77

ARGN w/o LM 93.63 58.76 72.21

Table 2.9: Labeling accuracies achieved by both rules. We set our threshold at 0.93. The ARGN and
ARGM rows show statistics of all numbered arguments and modifiers combined, respectively. The
‘ARGN w/o LM’ row shows accuracies of ARGN achieved by only the empirically derived rules.
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The precision and recall results for ARG0 and ARG1, are better than expected, despite the

complexity of the mapping. This is because they occur most often in the corpus, so enough rules

are extracted to be useful. The other numbered arguments are more closely related to particular

classes of verbs (e.g. motion verbs for ARG2-GOL, LOC). The mapping for all numbered arguments

improves overall with the addition of linguistically motivated rules. We would expect the modifiers

to map independently of the verb, but experiments showed that the presence of the verb enhanced

overall performance. Although Table 2.7 expects a one-to-one mapping of modifiers (according to

definition), it does not happen in practice.

We observe that the coarse or fine grained interpretation of labels plays an important role

in both frameworks. For example, in PropBank the mapping rule for ARGM-ADV performs poorly

because it is used for a variety of sentential modifiers, including conditional clauses and it can map

to as many as four HDT labels. On the other hand, PropBank makes a distinction between means

and causes using ARGM-CAU and ARGM-MNS. HDT chooses not to make such distinctions.

Our comparison of the HDT labels with PropBank is beneficial for the annotation process

for Hindi. Accurate mapping can speed up annotation and can possibly make the labelling more

consistent and accurate. At the same time, the mapping to semantic roles will be useful for other

tasks such as the creation of frame files for non-verbal predicates.

2.4 Other Resources

Apart from the Hindi Treebank and PropBank, we also utilized other corpora and semantic

resources for Hindi. We utilized mainly web-based corpora as the size of the Hindi Treebank is

relatively small.
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2.4.1 Web-based corpora

The Hindi Wikipedia, 4 was used to create a corpus consisting of 10 million words. This corpus

was downloaded and processed using the WikiExtractor 5and the LXML libraries in Python. The

second was the BBC Hindi corpus, scraped from web, consisting of about 7 million words. We

POS-tagged this corpus using the freely available tagger described in Reddy and Sharoff (2011).

In order to compute statistical features such as log-likelihood, we made use of a larger 60

million word Hindi web corpus, distributed under the Sketch Engine license (Kilgarriff et al., 2010).

This corpus is includes Hindi Wikipedia and web text and was also POS-tagged.

2.4.2 Hindi WordNet

Hindi WordNet consists of 82,000 words organized in 33900 synsets (Bhattacharyya, 2010).

We utilize the Hindi WordNet in order to look up semantic relations for the nominals that occur as

part of NVCs. Semantic relations such as hypernymy and hyponymy can be useful to understand the

semantic category of a nominal. The Hindi WordNet also specifies approximately 170 ontological

categories for each synset. These consist of a tuple such as Abstract, Inanimate,Noun or Cognition,

Abstract, Inanimate, Noun. The ontological category describes a property in descending order of

generality. In most of our experiments we utilized the first property specified in the tuple e.g.

Abstract or Cognition.

4http://dumps.wikimedia.org/hiwiki

5http://medialab.di.unipi.it/wiki/Wikipedia Extractor



Chapter 3

Lexical Resource Representation

3.1 Lexical Resources

While there are only around 700 unique simple verbs in Hindi, there are many more complex

predicates in the language. Representing these cases in a lexical resource can be challenging, not

only because of their high frequency, but also because new NVCs can be coined easily and quickly.

NVC representation in resources like dictionaries, valency lexicons, WordNets and computational

grammars requires an understanding of their lexical and syntactic behaviour. To some extent, this

has been addressed for NVCs (and other multi-words) in English (Sag et al., 2002; Copestake et al.,

2002). For Hindi as well, there has been some recent work on the representation of NVCs (Hwang

et al., 2010; Ahmed et al., 2012). The number of NVCs in Hindi far exceed those in English,

therefore the lexical representation challenge is at a larger scale.

3.2 Representing NVCs in PropBank

The annotation of NVCs in corpora implies that every instance of an NVC needs to be

manually identified and labelled. In the Hindi Treebank, the identification of NVCs has already

been carried out. The Hindi PropBank (HPB) is concerned with the labeling of semantic roles.

Semantic role labelling is done on top of the dependency trees in the Hindi Dependency Treebank.

This task implies that the arguments for every predicate (including complex predicates) in the

treebank must be assigned semantic roles. Semantic roles are defined on a verb-by-verb basis

and description at the verb-specific level is fine-grained (For more details on Hindi PropBank and
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Treebank, including the tagset, see Chapter 2).

An NVC such as pratikshaa kar ‘waiting do; wait’ in the Treebank is already identified with

the pof label as shown in Figure 3.1. Its arguments will be annotated with PropBank labels as

shown in Figure 3.1.

Ram Ravi-kii pratikshaa kar-raha-thaa
Ram Ravi.GEN waiting do.prog.be

k1 ; ARG0

r6-k2; ARG1 pof; ARGM-PRX

rel

Figure 3.1: Dependency tree for NVC pratikshaa ‘waiting’ kar ‘do’. The nominal predicate is linked
to the light verb with a pof label. PropBank annotation is shown on top of the dependency labels.

Before this annotation is carried out, PropBank subcategorization frames or ‘frame files’ need

to be defined for each instance of an NVC. PropBank annotation creates frame files for the nominals,

which also contain information about the light verb that combines with them. For PropBanking

in particular, similar lexical resources for nominal predicates have been created for English and

Arabic (Hwang et al., 2010). When building the frame files, we more or less followed a ‘listing’

approach, where every NVC that appeared in the treebank was defined with an individual roleset

in a frame. This provided full coverage, along with semantic role information for each instance of

the NVC in the Treebank. The following section describes the design of the nominal frame files to

create this lexical resource.

3.3 Nominal frame files

In order to create the nominal frame files for Hindi PropBank, we considered every occurrence

of a nominal in an NVC with a given light verb. We can compare example (22) with example (23)

below:

(22) raam=ne
Ram.M.Sg=Erg

cycle=kii
cycle.F.Sg=Gen

chorii
theft

k-ii
do-Perf.F.Sg

‘Ram stole a bicycle’
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(23) aaj
Today

cycle=kii
cycle.F.Sg=Gen

chorii
theft

hu-ii
be.Part-Perf.F.Sg

‘Today a bicycle was stolen’

In example 22 we get an agentive subject with the light verb kar ‘do’. However, when it is

replaced by the unaccusative ho ‘become’ in Example 23, then the resulting clause has a theme

argument as its subject. Note that the nominal chorii in both examples remains the same. From

the point of view of PropBank annotation, the NVC chorii kii will have both ARG0 and ARG1, but

chorii huii will only have ARG1 for its single argument cycle. Hence, the frame file for a given

nominal must make reference to the type of light verb that occurs with it. As both noun and light

verb contribute to the semantic roles of their arguments, we require linguistic knowledge about

both parts of the NVC. The semantic roles for the nominal need to specify the co-occurring light

verb and the nominal’s argument roles must also be captured. Table 3.1 describes the desired

representation for a nominal frame file.

Frame file for chorii-n(oun)

chorii.01: theft-n light verb: kar ‘do;
to steal’

Arg0 person who steals
Arg1 thing stolen
chorii.02 : theft-n light verb: ho

‘be/become; to get
stolen’

Arg1 thing stolen

Table 3.1: Frame file for predicate noun chorii ‘theft’ with two frequently occurring light verbs ho
and kar. If other light verbs are found to occur, they are added as additional rolesets as chorii.03,
chorii.04 and so on.

This frame file shows the representation of a nominal chorii ‘theft’ that can occur in combi-

nation with a light verb kar ‘do’ or ho ‘happen’. For each combination, we derive a different set

of PropBank roles: agent and patient for chorii.01 and theme for chorii.02. Note that the nomi-

nal’s frame actually contains the roles for the combination of nominal and light verb, and not the

nominal alone.
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Nominal frame files such as these have already been defined for English PropBank.1 However,

for English, many nominals in NVCs are in fact nominalizations of full verbs, which makes it far

easier to derive their frame files (e.g. walk in take a walk is a noun derived from a full verb).

In fact, in the most current representation of PropBank frame files for English, verbs and their

nominalizations are unified into a single frame (Bonial et al., 2014).

For Hindi, most nouns in NVCs are not nominalizations, hence a correspondence with the

verbal frames is not an obvious solution. In Hindi, as NVCs are highly productive, with nearly

3000 unique types of NVCs in a 400,000 word corpus, the process of manual frame file creation can

be very time consuming. As frame file creation is a pre-requisite for annotation, we need to have

a different strategy for defining semantic roles for NVCs- one that reduces manual effort and also

incorporates linguistic knowledge from other existing resources.

Therefore, as a first step, we decided to partially automate the process of frame file creation.

A linguistic mapping between the dependency karaka labels in the Treebank and PropBank labels

is the basis for deriving semantic roles for nominals in Hindi. The automatically generated semantic

roles will be used to create frame files for annotation. This method reduces the effort required for

manual creation of these files and accurately predicts semantic roles for almost two thirds of the

unique nominal-verb combinations, with around 20% partial predictions, giving us a total of 87%

useful predictions. For the implementation, we use linguistic resources in the form of syntactic

dependency labels from the treebank as well as existing frame files for simple verbs2 in Hindi

(Vaidya et al., 2013).

3.3.1 Generating semantic roles

This section describes a novel method for generating PropBank semantic roles for each com-

plex predicate in the corpus. The Hindi Treebank has already identified NVC cases by using a

special label pof or ‘part-of’. We use the label given by the Treebank as a means of extracting the

1http://verbs.colorado.edu/propbank/framesets-noun/

2http://verbs.colorado.edu/propbank/framesets-hindi/
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NVC cases. Once this extraction step is complete, we have a set of nominals and a corresponding

list of light verbs that occur with them.

We use two resources to derive linguistic knowledge about the NVC: PropBank frame files

for simple verbs in Hindi and the Hindi Treebank, annotated with dependency labels.

3.3.1.1 Mapping from the Hindi Treebank

The Hindi Treebank is used as a source of argument structure information for the NVCs. We

first extract all the dependency karaka label combinations that occur with a unique instance of an

NVC. For example, the NVC chorii karnaa ‘theft do’ ; steal can occur with a set of karaka labels

such as k1 karta (actor), k2 (locus of action), k7t temporal modifier. Of these, only k1 and k2 are

argument labels, whereas k7t is an adjunct. Therefore, k7t gets filtered out. Every instance of

chorii karnaa is used to calculate the most frequently occurring combination of labels that occur

with it. As a result, we get a tuple consisting of chorii karnaa, a set of karaka argument labels

that occur with it and a count of the number of times that NVC has occurred in the corpus. E.g.

(“chorii karnaa”, k1:k2, 12)

The karaka labels are then mapped onto PropBank labels following the procedure described

in chapter 2.

3.3.1.2 Mapping from Verb frames

Our second resource consists of PropBank frames for full Hindi verbs. Every light verb that

occurs in Hindi is also used as a full verb, e.g. de ‘give’ may be used both as a ‘full’ verb as well as

a ‘light’ verb. As a full verb, it has a frame file in Hindi PropBank. The set of roles in the full verb

frame is used to generate a “canonical” verb frame for the each light verb. The argument structure

of the light verb will change when combined with a nominal, which contributes its own arguments.

However, as a default, the canonical argument structure list captures the fact that most kar ‘do’

light verbs are likely to occur with the roles ARG0 and ARG1 respectively or that ho‘become’, an

unaccusative verb, occurs with only ARG1.
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3.3.1.3 Procedure

Our procedure integrates the two resources described above. First, the tuple consisting of

karaka labels for a particular NVC is mapped to PropBank labels. But many NVC cases occur

just once in the corpus and the karaka label tuple may not be very reliable. Hence, the likelihood

that the mapped tuple accurately depicts the correct semantic frame is not very high. Secondly,

Hindi can drop arguments in a sentence e.g., (vo) kitaab paRegaa; ‘(He) will read the book’ (see

also section 1.2). These are not inserted by the dependency annotation (Bhatia et al., 2010) and

are not easy to discover automatically (Vaidya et al., 2012). We cannot afford to ignore any of the

low frequency cases as each NVC in the corpus must be annotated with semantic roles. In order

to get reasonable predictions for each NVC, we use a simple rule. We carry out a mapping from

karaka to PropBank labels only if the NVC occurs at least 30 times in the corpus. If the NVC

occurs fewer than 30 times, then we use the “canonical” verb list.

3.4 Manual correction of NVC annotations

The automatic method described in the previous section generated 1942 nominal frame files.

In order to evaluate their accuracy, we opted for manual checking of the automatically generated

frames. The frame files were checked by three linguists and the checking focused on the validity

of the semantic roles. The linguists also indicated whether annotation errors or duplicates were

present. While the Hindi Treebank made use of the Extra argument diagnostic to annotate the pof

label, there were several annotations that were ordinary noun-verb combinations. This was either

due to the fact that the verb in the NVC did not appear to be a true light verb e.g. kaha ‘say or

bigar ‘spoil’. Or, the noun and light verb were collocations rather than NVCs e.g. chaapa maara

‘stamp hit; to stamp’. For such borderline cases, the linguists applied some of the diagnostics

described in chapter 2, section 2.2.1. If they were not NVCs, these were marked as ‘Errors’ during

frame file validation.
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3.4.1 Evaluation

The automatic method described in the previous section generated 1942 nominal frame files.

After manual checking of these cases (as described in chapter 2), the total number of frame files

stood at 1884. These frame files consisted of 3015 rolesets i.e. individual combinations of a nominal

with a light verb (see Table 3.1). The original automatically generated rolesets were compared with

their hand corrected counterparts (i.e. manually checked ‘gold’ rolesets) and evaluated for accuracy.

We used three parameters to compare the gold rolesets with the automatically generated ones: a

full match, partial match and no match. Table 3.2 shows the results derived from each resource

(Section 3) and the total accuracy.

Type of Match Full Partial None Errors
Karaka Mapping 25 31 4 0
Verbal Frames 1929 642 249 143
Totals 1954 673 245 143

% Overall 65 22 8 5

Table 3.2: Automatic mapping results, total frames=3015

The results show that almost two thirds of the semantic roles are guessed correctly by the

automatic method, with an additional 22% partial predictions, giving us a total of 87% useful

predictions. Only 8% show no match at all between the automatically generated labels and the

gold labels. The ‘Errors’ column indicates cases that are not NVCs and have been filtered out

during manual validation.

When we compare the contribution of the karaka labels with the verb frames, we find that

the verb frames contribute to the majority of the full matches. The karaka mapping contributes

relatively less as only 62 NVC types occur more than 30 times in the corpus. If we reduce our

frequency requirement from of 30 to 5, the accuracy drops by 5%. The bulk of the cases are thus

derived from the simple verb frames. We think that the detailed information in the verb frames,

such as unaccusativity, contributes towards generating the correct frame files.

It is interesting to observe that nearly 65% accuracy can be achieved from the verbal infor-

mation alone. The treebank has two light verbs that occur with high frequency i.e. kar ‘do’ and
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Light verb Full (%) None (%) Total

Uses*

kar‘do’ 64 8 1038
ho ‘be/become’ 81 3 549

de ‘give’ 55 34 157
A ‘come’ 31 42 36

Table 3.3: Light verbs ‘do’ and ‘be/become’ vs. ‘give’ and ‘come’. *The unique total light verb
usages in the corpus

ho ‘become’. These combine with a variety of nominals but perform more consistently than light

verbs such as de ‘give’ or A ‘come’. The light verb kar adds intentionality to the NVC, but appears

less often with a set of semantic roles that are quite different from its original ‘full’ verb usage. In

comparison, the light verbs such as de ‘give’ show far more variation, and as seen from Table 3.3,

will match with automatically derived frames to a lesser extent. The set of nominals that occur in

combination with kar usually seem to require only a doer and a thing done.

3.5 Discussion

The outcome of the NVC semantic role generation is the availability of gold standard frame

files for around 3000 NVCs in Hindi. In addition, our frame file generation process acts as a quality

control on the pof annotation of the Hindi Treebank. The frame files are being used for semantic

role annotation. During annotation, a given instance of an NVC is annotated by referring to the

semantic roles listed in the frame file. While annotation is greatly helped by the presence of the

frame files, there are still several practical difficulties during the annotation process.

As both noun and light verb must be taken into consideration, the process of argument iden-

tification (i.e. distinguishing between arguments and adjuncts) is more challenging. Consequently,

argument labelling as well becomes more difficult. While on one hand, the frame file supplies se-

mantic roles, it would be more helpful to have semantic information at a more abstract level e.g.

with respect to membership with a class or group of nouns. This will make the process of argument

identification more consistent- as we would expect a particular group of nouns to project similar

semantic roles. Subsequently, this would also be more helpful for training automatic semantic role
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labellers. As there are many individual instances of NVCs, learning semantic roles associated with

a single NVC will encounter the problem of data sparsity. But using information about noun groups

might make this process less dependent on individual training instances.

This is also one of the main questions with respect to lexical representation i.e. a choice

between a simple listing approach vs. a more generalizable and predictive approach. On one hand,

the simple listing of NVCs is sometimes unavoidable (as seen in Section 3.2), but this also suffers

from a “lexical proliferation problem” (Sag et al., 2002). For example, frequently-occurring NVCs

would usually be captured in a list, but this list would not take into account generalizable linguistic

properties. In the following chapter, we make an exploratory attempt to discover noun groups or

templates for NVCs.



Chapter 4

Finding Predicative Noun Groups

4.1 Introduction

We discussed the creation of nominal frame files in the previous chapter. While the creation

of individual frames for every noun and light verb combination is useful for annotation, in practice

it is still a difficult task to distinguish between arguments and adjuncts. Therefore, it is useful

to have as a reference some over-arching generalizations that predict similar semantic roles and

arguments for a given group of nouns. In other words, a notion of noun classes for predicative

nouns would help in generating more consistent annotations.

Levin (1993)’s classic work on verb classes is based on the idea that “particular syntactic

properties are associated with verbs of a certain semantic type” Levin (1993)[5]. English verb

classes that have been developed on the basis of this idea have been converted and extended into

VerbNet (Kipper et al., 2008), which has been widely used as a computational resource for tasks

such as semantic role labelling (Swier and Stevenson, 2004) to natural language generation (Habash

et al., 2003). English FrameNet (Baker et al., 1998) is a resource that defines frames or similar

conceptual structures for lexical items, such as predicative nouns. For Hindi, such resources are

unavailable and moreover, developing them would require manual effort and linguistic expertise.

In this chapter, we will examine whether it might be possible to arrive at some semantic

patterns for Hindi nouns using a simple clustering algorithm that uses linguistic features. While

our results are still preliminary, we have made use of the resulting noun classes as a feature for

identifying NVCs in corpora (see Chapter 6). At the end of this chapter, we describe our strategy
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for using noun classes to expand the lexicon in a computational grammar (Sulger and Vaidya,

2014).

4.2 Previous Work

Linguistic generalizations about Hindi NVCs have not been studied very well, but some recent

studies have addressed this problem. Ahmed and Butt (2011) use manual methods and linguistic

introspection and Butt et al. (2012) have used a combination of manual and statistical methods.

Ahmed and Butt (2011) have suggested that the combinatory possibilities of N-V combina-

tions are in part governed by the lexical semantic compatibility of the noun with the verb. Similar

observations have been made for English (Barrett and Davis, 2003; North, 2005). Ahmed and Butt

(2011) look at the light verbs kar ‘do’, ho ‘be’, hu- ‘become’ and identify three classes of nouns

based on co-occurrence patters. The first consists of psychological nouns such as yaad ‘memory’

that occur with all three light verbs. The examples shown in 24-26 represent the class that is

compatible with all of the light verbs surveyed.

(24) nadya=ne
Nadya.F.Sg=Erg

kahaani
story.F.Sg

yaad
memory.F.Sg

k-ii
do-Perf.F.Sg

‘Nadya remembered a/the story (agentively).’ (lit. ‘Nadya did memory of a/the story.’)

(25) nadya=ko
Nadya.F.Sg-Dat

kahaani
story.F.Sg

yaad
memory.F.Sg

hE
be.Pres.3.Sg

‘Nadya remembers/knows a/the story.’ (lit. ‘At Nadya is memory of a/the story.’)

(26) nadya=ko
Nadya.F.Sg-Dat

kahaani
story.F.Sg

yaad
memory.F.Sg

hu-ii
be.Part-Perf.F.Sg

‘Nadya came to remember a/the story.’ (lit. ‘The memory of a/the story came to Nadya.’)

Other NVC classes may only be compatible with a subset of light verbs. The second and third

classes consist of nouns that are classified as more or less agentive in nature- based on their capacity

to form CPs with hu- ‘become’. For example, the noun tamir ‘construction’ is only compatible with

the light verb kar ‘do’ but disallows hu- ‘become’ (examples 27 and 28).
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(27) bilaal=ne
Bilal.M.Sg-Erg

makaan
house.M.Sg

taamir
construction.F.Sg

ki-yaa
do-Perf.M.Sg

‘Bilal built a/the house.’

(28) *bilaal=ko
Bilal.M.Sg-Dat

makaan
house.M.Sg

taamir
construction.F.Sg

hE/hu-aa
be.Pres.3.Sg/be.Part-Perf.M.Sg

‘Bilal built a/the house.’

This work clearly shows that compatibility with a light verb can be an important feature

to identify an NVC class. Based on the combinatorial possibility and acceptability with the light

verb, it is possible to identify groups of nouns with similar properties.

In a follow-up paper, Butt et al. (2012) attempted to identify these classes of Urdu N-V CPs

automatically. However, one of the drawbacks of their method was the use of an untagged corpus,

which required extensive filtering in order to separate the light and non-light instances of these

verbs. After filtering out the irrelevant combinations, by making use of a visualization tool, they

found that most nouns were either psychological nouns (and occurred with all three light verbs) or

nouns that were highly agentive and disallowed hu- ‘become’. This study took into consideration

the three light verbs from the Ahmed and Butt (2011) study.

A recent study on Persian NVCs (which are similar in many ways to Hindi) uses distributional

vector-space methods to find similar nouns (Taslimipoor et al., 2012). It showed that verb vectors

are a very useful indicator of noun similarity. The reported results are significantly better using

the light verb dimension; Taslimipoor et al. (2012) state that this affirms their original intuition

that a verb-based vector space model can better capture similarities across NVC.

We will draw upon the results of the papers described above to motivate this present work.

The classes identified by Ahmed and Butt (2011) seem promising, but the corpus work was done

manually, and the total size of their data set is limited to 45 nouns. In constructing the noun

classes, we take a different route in that we try to expand the search space by using an external,
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manually-crafted resource (i.e. the Hindi Treebank) and a larger set of light verbs to come up with

more substantial noun groups.

4.3 Noun Clustering

In our experiment, the aim is to use a clustering algorithm, specifically, k -means to explore

similarities between groups of nouns. We limit our study to those nouns that are annotated as

NVCs in the Treebank. This is advantageous because we know that we are only looking at those

noun and verb combinations that are NVCs.

4.3.1 Data

The Hindi portion of the Hindi and Urdu Treebank (Bhatt et al., 2009) includes NVCs that

have been manually tagged with the dependency label pof (which stands for “part of”). The

pof label is used for adjectives and adverbs as well as nouns. We extracted pof cases that were

nouns only. We extracted an initial list of around 504 high frequency nouns after removing spelling

variations and annotation errors. For our study, we chose a list of frequently occurring light verbs

(shown below). We then used the treebank to extract the co-occurrence patterns of each noun

against the light verbs in this list and calculated their relative frequencies as attributes for each

noun.

(29) ho ‘be’, kar ‘do’, de ‘give’, le ‘take’, rakh ‘put’, lag ‘attach’, a ‘come’

In addition, we also looked for the ontological node description for each of these nouns in Hindi

WordNet (Bhattacharyya, 2010). For example, the noun varsha ‘rain’ has the ontological node

description as ‘Natural State,State,Noun’. WordNet contains around 170 unique ontological node

descriptions for every synset. If a noun belongs to a particular synset, we chose the topmost node as

our attribute e.g. for varsha ‘rain’, this would be ‘Natural State’. For some nouns, this ontological

information was not present, so the initial list of 504 nouns was reduced to 464 nouns. In future

work, the ontological nodes can be added manually for the missing nouns. In all, the 464 nouns were
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associated with 46 unique ontological categories. A complete list of the 46 ontological categories

can be found in appendix A.

4.3.2 Gold classes

We would like to compare the automatically found noun groups to a set of gold classes that

describe an ideal partitioning of this data. We found that it was not an easy task to determine

these gold classes and we explored several possibilities. First, we utilized WordNet relations such

as co-hyponymy and hypernymy, following a study on Dutch nouns (Van de Cruys, 2006). We

used these relations to create gold classes for nouns, but this resulted in many false classes. Next,

we translated Hindi nouns to English, and then mapped them to English VerbNet classes via the

English unified frames (Bonial et al., 2014). But this method also failed, due to the difficulty in

translating nouns into English. Finally, we opted to create gold standard classes by making use

of the manually validated noun frames that were described in chapter 3. If nouns project similar

semantic roles, then we might surmise that they are also semantically similar in some way. The

manually validated noun frames are a resource that can be used as a basis for comparing the

automatically discovered noun groups. For example if Noun1 and Noun2 both contain the roles

ARG0 and ARG1 in their frame file, then we can say that these nouns are likely to be similar.

Note that PropBank labels are generally quite coarse-grained and they usually mark pro-

totypical agents and patients. More detailed roles viz. Agent, Patient, Theme etc. might give

us narrower semantic classes. In addition, the frames themselves are limited in that they do not

contain every possible semantic role combination that can be found for these nouns. However,

unless one is able to handcraft a resource with precisely such a goal, the frames are the next best

alternative.

Therefore, for each of the 464 nouns in our training data, we prepared gold classes using

PropBank semantic frames. Table 4.1 shows these classes derived from the frame files, the number

of nouns that occurred in each class and an example.

Each noun class consists of a label set e.g. A0A1 corresponds to the fact that this group of
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Class Label Explanation Count Example
A0A1 Occurs with Arg0, Arg1 141 prashansaa ‘praise’
A0A1A2 Occurs with Arg0,Arg1, Arg2 27 puraskaar ‘award’
A1 A0A1 Occurs with Arg1 and Arg0,Arg1 119 virodha ‘protest’
A0A1 A0A1A2 Occurs with Arg0,Arg1 and Arg0,Arg1,Arg2 48 prastaava ‘proposition’
A0 Occurs only with Arg0 11 snaana ‘bath’
A0A2LOCSOU Occurs with Arg0 and Arg2-Location or Arg2-Source 17 rishvata ‘bribe’
A1 Occurs only with Arg1 39 maut ‘death’
A1 A0A1 A0A1A2 Occurs with Arg1 and Arg0,Arg1 and Arg0,Arg1,Arg2 34 vishvaas ‘trust’
Misc Occurs with a mixed number and type of label 19 bachata ‘savings’
A1 A0A1A2 Occurs with Arg1 and Arg0,Arg1,Arg2 9 parichay ‘introduction’

Table 4.1: Gold classes for 464 nouns extracted from PropBank Noun frames

nouns occurs with the labels Arg0 and Arg1 in their frameset. A class label like A0A1 A0A1A2 shows

that nouns occur with two label sets viz Arg0 and Arg1 as well as Arg0,Arg1 and Arg2. In this way,

we found 9 clear classes of labels using the framesets and one ‘Miscellaneous’ class, which contained

nouns that did not correspond to any one particular set of labels. Most of the nouns in the study

occurred in framesets with the label set A0A1. Label sets such as these were also used for deriving

a verb classification for the Chinese Treebank (Xue and Kulick, 2003).

4.3.3 Noun Clustering using Weka

Clustering algorithms are used to partition data into groups or clusters. Manning and Schütze

(1999) describe two uses for these algorithms viz. exploratory data analysis and forming general-

izations. For the Hindi nouns, we are interested in both these objectives. For this experiment we

chose to use the k-means clustering algorithm (MacQueen, 1967) as it is usually the first to be used

on a data set that is relatively unexplored.

The k-means algorithm works at partitioning the observations in the training set into k

clusters, so as to minimize the within cluster sum of squared errors (WCSS). When k-means is

implemented, it usually consists of an assignment step, where each observation in the data is

assigned to a particular cluster. This assignment is determined by whether the cluster’s centroid

and the observation have the lowest within cluster sum of squared error. Post assignment, the next

step is to calculate new centroids and each compare each observation to the new centroids. These
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steps are iterated until every observation is as close as possible to its centroid.

K-means is quite sensitive to its initial random assignment of observations to clusters. The

random assignments also imply that centroids of these clusters will not be the same each time the

algorithm is run. This is why, it is necessary to run k -means many times (i.e. over a large number of

iterations). Based on the actual implementation of k -means, we may also require the first cluster’s

centroids or ‘seeds’ to be specified and often the results are also quite sensitive to this seed value.

In comparison to other clustering algorithms, k -means carries out hard clustering. This

implies that a given observation can belong to only one cluster at any given time. This has some

disadvantages for linguistic data that may sometimes belong to multiple groups.

In our experiment we made use of the Weka implementation of k -means (Hall et al., 2009).

While the initialization process is still random, we make use of the k-means++ initialization pa-

rameter provided by the tool. This ensured that initialization is based on specific probabilities for

the initial centers and reduces the chance of getting very different results every time the algorithm

is run. Other parameters such as the size of k need to be specified beforehand for the k-means

algorithm. The size of k denotes the number of required clusters/partitions in the data, which must

be supplied beforehand.

Simple k-means tries to minimize the sum of squared errors in order to converge. However,

there are variations of k-means, which can use measures other than the sum of squared errors.

Schulte im Walde and Brew (2002)’s experiments utilized distance measures such as skew divergence

and information radius, in a variation of k-means. Such measures may be more suited to language

data and can be used for further experiments with Hindi nouns.

In our training file, each noun is assigned an ID as well as a list of attributes viz. the relative

frequencies of the seven light verbs described earlier and the ontological description. The ontological

category is a nominal attribute whereas the relative frequencies are numerical attributes. When

Weka is given a categorial (or nominal) attribute like the ontological category, it will consider the

distance between two nominal values as zero if they are exactly the same, and 1 if they differ.

We experimented with using binary features instead of the categorial feature for the ontological
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category, but they did not result in any improvement in performance.

4.3.4 Cluster Evaluation

We ran the k -means implementation of Weka several times over our data using different

values for k, specifically, k = 2 − 15. In order to identify the optimum value of k, we used the

total of the within cluster sum of squared errors (WCSS) which is provided in the Weka output.

As we get closer to the optimum value of k, the compactness of the automatically found clusters

increases, causing a sudden drop in the WCSS for each cluster. In contrast, those values that are

larger than the optimum value of k will not result any substantial change in WCSS (although there

will be a gradual decrease). This gradual decrease indicates that the clusters are not getting any

more compact. If we plot the WCSS against the size of k, then we can look for a sudden drop in

WCSS, followed by a gradual decrease. That point is likely to be the ideal value of k for the data.

Using WCSS, we were able to identify the optimum value of k=4 for the training data with

two features viz. the ontological property and relative frequencies of light verb (Figure 4.1). Using

relative frequency only, we found the best k value as 5 (Figure 4.2).

Once we have identified the optimum value of k, we also calculated the precision, recall

and F-measure for these clusters. This was done by creating a contingency table, which tabulates

the number of nouns found in each cluster against their gold classes. In Table 4.2, we show the

performance for the ontological feature and relative frequency together and relative frequency by

itself. The F1 score of the combined feature is slightly better than the relative frequency feature

alone. The ontological feature helps in the slight improvement of recall as compared to the precision.

Size of k Precision Recall F-measure

Onto+RelFreq 4 36.51 54.54 43.82

RelFreq 5 36.32 49.47 41.88

Table 4.2: Precision, Recall and F-measure for each feature group

If we look at the cluster-specific performance for each of these features, we find that regardless

of the features, there are three classes that k -means can identify more accurately. For other classes,
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Figure 4.1: Within cluster sum of squared errors plotted against the size of K. The ‘knee’ at k = 4
shows that the cluster size of 4 is likely to be the ideal size for this data.
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Figure 4.2: Within cluster sum of squared errors for the relative frequency feature plotted against
the size of K. The ‘knee’ at k = 5 shows that the cluster size of 5 is likely to be the ideal size for
this data.
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it finds that these features are not helpful or give very poor results. This is because light verbs ho

‘be’, kar ‘do’ and de ‘give’ can occur with a very large number of nouns in the data.

Table 4.3 shows that there were the three classes A1, A0A1 and A0A1 A1 that were identified

accurately. For each of these three classes, the light verb centroids are ho ‘be’, kar ‘do’ and kar

and ho together.

If we look more closely at the clusters for these classes, we find that they contain nouns

with somewhat more distinctive properties. For instance, class A1 consists of nouns that have

the ontological property ‘Cognition’ or ‘Mental State’. The class A0A1 describes nouns with the

property ‘Physical, Action,Abstract,Inanimate’ and in A0A1 A1, we find nouns with the property

‘Action,Abstract,Inanimate’. The former property is a subtype of the latter, showing that the A0A1

class consists of nouns that are more eventive than A0A1 A1.

Gold class Onto+RelFreq Properties (Centroids)

Precision Recall F1

A1 32.97 79.48 46.6 State, ho ‘be’

A0A1 46.10 50.35 48.13 Physical, kar ‘do’

A0A1 A1 41.07 47.89 44.21 Action, kar ‘do’, ho ‘be’

A0A1 A0A1A2 25.97 41.66 31.99 Communication, de ‘give’

Table 4.3: Class-to-cluster evaluation for the combined features- ontology and relative frequency
(k=4)

The A0A1 A1 class has the light verbs ho and kar as its prominent centroids. For example,

nouns like sahayoga ‘help’ have the property ‘Action, Abstract, Inanimate’ and can alternate fre-

quently between either kar ‘do’ or ho ‘be’. Thus, the same noun occurs with either light verb to

result in a change in the number of arguments. It is interesting to observe that this alternation is

captured by the eventive property of the nouns. We discuss these nouns in more detail in Chapter

5.

At the same time, this eventivity is differentiated from the class A0A1 alone, where nouns like

khoja ‘discovery’ appear with the label ‘Physical, Action, Abstract, Inanimate’. These are nouns

that describe an event that is more highly agentive in nature. On the other hand, nouns such as



53

pareshaani ‘discomposure’ appear with the label ‘Cognition, Abstract, Inanimate’ in the class A1.

These nouns are primarily stative.

For the remaining cluster, the performance is not as good. The A0A1 A0A1A2 cluster has

as its centroid the light verb de ‘give’. This cluster contains several nouns with the ontological

property of ‘Communication’ e.g. nouns such as vachana ‘promise’ or dhamakii ‘threat’. These are

the prototypical examples that describe a communicating event. The fact that de ‘give’ appears

with more than one label set points to the fact that the light verb de ‘give’ is quite variable cross-

linguistically, e.g. in English, it is possible to find a number of NVCs with varying semantic roles

e.g. give a sigh, give a speech or give an explanation. Nouns occurring with de ‘give’ show a greater

variation in their semantic roles and are harder to cluster more accurately (See also, Table 3.3 in

chapter 3). The noun clusters nevertheless give us an indication of the salient semantic properties

of each group. The k-means algorithm is able to replicate the linguistic generalizations found in

(Ahmed and Butt, 2011) over a larger set of predicating nominals. This confirms that eventivity

vs. stativity and agentivity vs. experience of the action are determiners of semantic classes among

nouns.

4.4 Noun Groups in Hindi/Urdu Grammar Development

In this section we demonstrate how the nominal classes described in the previous section can

be utilized in a computational grammar. We look at the Hindi/Urdu ParGram Grammar, which

is part of a larger international research effort, the ParGram (Parallel Grammars) project (Butt

et al., 1999, 2002; Butt and King, 2007). All of the grammars in the ParGram project are couched

within the Lexical Functional Grammar framework and are implemented using the development

platform XLE (Crouch et al., 2012a). The grammars are developed manually and not via learning

methods, which allows for a theoretically sound analysis that is also efficient from a computational

point of view. The Hindi/Urdu ParGram Grammar aims at covering both Hindi and Urdu, which

is a design decision that suggests itself due to the many structural conformities of the two languages

(Butt et al., 2002).
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One weakness of the grammar is its currently relatively small lexicon, compared to other

ParGram grammars. Adding to the lexicon is a critical step in extending the grammar coverage.

This is even more true for NVCs due to the high frequency of such constructions in running text.

Thus, we see the Hindi/Urdu ParGram Grammar as an ideal test bed for developing a lexical

resource of Hindi nouns.

The implementation of a computational grammar for a language that makes heavy use of

NVCs calls for two requirements. First, the lexical items taking part in NVC formation need to be

present in the lexicon of the grammar; and second, the grammar needs to be engineered in a way

that represents the correct linguistic generalizations. Any approach that is short of either of these

requirements will result either in loss in coverage or overgeneration of the grammar. Therefore,

knowledge about the combinatorial possibilities of NVCs will help in defining lexicon entries and

templates in a more compact manner.

Our clustering experiments have shown that nouns appear with several different distributions,

often with one dominant light verb, but also with the possibility of occurring with one or two other

light verbs. The clusters do not represent absolute certainties about NVCs, but report tendencies

of occurrences. For example, a predicating nominal from the list of 504 nouns may be assigned to

the gold class A0A1. In that case, it is most likely to occur with light verbs kar ‘do’ (as this is the

cluster centroid in Table 4.3). It is probably less likely to occur with any of the other light verbs

in our study e.g. ho ‘be’ or aa ‘come’.

We will discuss how such tendencies of occurrences can be integrated into the LFG gram-

mar via the construction of templates. These templates can be augmented to model the relevant

linguistic generalizations in terms of constraints inspired by optimality theory (OT, Prince and

Smolensky (2004)). A serious evaluation of the effect on the grammar of adding in this lexical

resource is planned for future work.
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4.4.1 Templates in XLE

In XLE, grammar writers can define templates in a special section of the grammar that can be

called from the lexicon. Templates allow generalizations to be captured and, if necessary, changes

to be made only once, namely to the template itself (Butt et al., 1999; Dalrymple et al., 2004).

Consider the template in 30, which models intransitive verbs in English; these are represented in

LFG terms as predicates that apply to a single grammatical function, a subject. The lexical entry

in 31 for the English intransitive verb laugh calls up the INTRANS template; the argument supplied

to the template is substituted for the P(redicate) value inside the template definition.

(30) INTRANS(P) = (^ PRED) = ’ P<(^ SUBJ)>’

@NOPASS.

(31) laugh V @(INTRANS laugh).

In ParGram grammars, the lexicons are generally organized so that each verb subcategoriza-

tion frame corresponds to a different template. Similarly, templates can be defined to encode a

given set of generalizations about how certain groups of nouns combine with different light verbs.

Consider the NVCs in (32) and (33). The noun istemaal ‘use’ forms part of the cluster dominated

by kar ‘do’ and thus occurs most frequently with kar ‘do’ as well as ho ‘be’.

(32) nadya=ne
Nadya.F.Sg=Erg

chamach=kaa
spoon.M.Sg=Gen

istemaal
use.M.Sg

ki-yaa
do-Perf.M.Sg

‘Nadya used a spoon’

(33) chamach=kaa
spoon.M.Sg=Gen

istemaal
use.M.Sg

hu-aa
be-Perf.M.Sg

‘A spoon was used.’

The lexical entry of the noun istemaal ‘use’ is given in (34).1 The entry points to the template

NVGROUP2 which is defined as in (35). This version of the template constrains the verbal type of

1The transliteration scheme employed in the Hindi/Urdu ParGram Grammar is described in Malik et al. (2010).
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the overall predication to be a CP either with the light verb do ‘give’ or the light verb ho ‘be’, or

to not be a CP at all.

(34) istemAl NOUN-S XLE (^ PRED) = ‘istemAl<(^ OBJ)>’

@NVGROUP2.

(35) NVGROUP2 = { (^ VTYPE COMPLEX-PRED-FORM) =c kar

|(^ VTYPE COMPLEX-PRED-FORM) =c ho

| ∼ (^ VTYPE COMPLEX-PRED-FORM)}

4.4.2 Preferred CPs

The template in (35), however, misses out on the fact that for all the groups identified, there

are N-V combinations that are more productive (and thus more likely to be CP constructions) than

other combinations (which are more likely to be non-CP constructions, e.g., plain objects). In XLE,

grammar developers can model statistical generalizations using special marks that were inspired

by Optimality Theory (Prince and Smolensky, 2004). On top of the classical constraint system of

existing LFG grammars, (formulated in terms of feature constraints stated on the f-structure), a

separate projection, o-structure, determines a preference ranking on the set of analyses for a given

input sentence. A relative ranking is specified for the constraints that appear in the o-projection,

and this ranking serves to determine the winner among the competing candidates. The constraints

are also referred to as OT marks and are overlaid on the existing grammar (Frank et al., 1998).

OT marks can be added in the appropriate place in the grammar to punish or prefer a certain

analysis. For example, (36) states that Mark1 is a member of the optimality projection. The order of

preference of a sequence of OT marks can be specified in the configuration section of the grammar;

an example preference ordering is given in (37). Here, the list given in OPTIMALITYORDER shows the

relative importance of the marks. In this case Mark5 is the most important, and Mark1 is the least

important. Marks that have a + in front of them are preference marks. The more preference marks

that an analysis has, the better. All other marks are dispreference marks (the fewer, the better).



57

(36) ... Mark1 $ o::* ...

(37) OPTIMALITYORDER Mark5 Mark4 Mark3 +Mark2 +Mark1.

Given the relative ordering of light verb tendencies in our noun groups, we can augment the

templates with OT marks that represent such tendencies. The noun template in (35) is changed

in two ways. First, all the light verbs are included; second, each disjunct is extended by two OT

marks that represent the statistical likelihood of this particular combination forming a CP or not.2

The ordering of the marks is shown in (39), where the mark cp-dispref is most severely punished,

and the mark +cp-pref is most strongly preferred. With an ordering like this, a CP analysis for

(32) is preferred, while a compositional analysis is dispreferred by XLE; the inverse will apply to

istemaal lag, which is not a CP.

(38) NVGROUP2 = { { (^ VTYPE COMPLEX-PRED-FORM) =c kar

cp-pref $ ::*

| ∼ (^ VTYPE COMPLEX-PRED-FORM)

non-cp-dispref $ ::* }

...

|(^ VTYPE COMPLEX-PRED-FORM) =c lag}.

cp-dispref $ o::*

| ∼ (^ VTYPE COMPLEX-PRED-FORM)

non-cp-pref $ ::* } }.

(39) OPTIMALITYORDER cp-dispref non-cp-dispref +cp-pref +non-cp-pref.

Note that since OT orderings represent statistical tendencies rather than absolute constraints,

they cannot be used to rule out certain combinations as ungrammatical. Thus, while being dis-

preferred, the non-CP analysis for istemaal lag will still show up in XLE output. This is in fact

2For space reasons, only the disjuncts for de ‘give’ as well as lag ‘attach’ are shown.
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a welcome feature, since CP formation seems to happen on a continuum of constructions — a

theoretical assertion that requires more work, certainly.

4.5 Discussion

In this chapter, we have investigated the creation of noun classes for predicative nouns that

participate in NVC formation. The primary motivation for this work arose out of a lack of linguistic

generalizations for these nouns in Hindi. Our clustering experiments showed that linguistic features

such as co-occurrence with a particular light verb can predict about 4 out of the 10 gold classes

with some accuracy. While the clustering results do capture some broad tendencies with the noun

groupings, they miss certain alternations as well. For example, the clustering results show that

psychological or stative nouns appear more often with ho ‘be’ alone. However, it is also true that

nouns such as vichaar ‘thought’ are mental state or psychological state nouns that can occur with

both kar and ho. This pattern is the opposite of the one described above, but was not clear enough

to be found automatically.

We also demonstrated the creation of noun templates for the Hindi/Urdu LFG grammar as

a potential application of our clustering result. We take advantage of the fact that the lexicons in

LFG are organized such that each verb subcategorization frame corresponds to a different template

(e.g. transitive or intransitive). Similarly, templates can be defined to encode a given set of

generalizations about how certain groups of nouns combine with different light verbs. In Sulger

and Vaidya (2014) we described the design of a noun template consisting of an ordered list of light

verbs. The template describes the likelihood of that noun forming a valid NVC with a particular

light verb. If a given noun and light verb combination occurs more frequently in the corpus, we

prefer an NVC analysis. If it occurs rarely, the grammar will parse the sentence as a simple noun

object and verb combination.

In terms of future work, there are a number of possible directions. The inclusion of more

morphosyntactic features such as the postpositions on the NVC’s arguments may help in identify-

ing classes more accurately. The semantic information from ontological categories in WordNet is



59

partially useful, but perhaps more abstract semantic information is required. Another important

possibility is the construction of hand crafted noun classes for a smaller number of nouns (e.g. 50),

which may be used as a benchmark. Then, the PropBank ‘label sets’ can themselves be used as

features. We would also like to experiment with clustering algorithms other than k-means that

might be able to take into account light verbs that occur with low frequency.



Chapter 5

Lexicalized Grammars and NVCs

5.1 Representation of NVCs

In the previous chapter, we described a method of integrating valid NVC combinations into

a computational grammar viz. ParGram based on the Lexical Functional Grammar (LFG) frame-

work. In this chapter,we focus instead on the syntactic representation of the NVCs themselves using

lexicalized grammars. Although NVCs have been given a structural representation in the Hindi

and Urdu Dependency Treebank, this is underspecified (See chapter 2, section 2.1). The Treebank

uses the single label pof to distinguish predicating pre-verbal elements from ordinary arguments.

Apart from this distinction, the nominal itself is not distinguished in any other way. While it may

be possible to modify the dependency analysis to capture its syntactic properties fully, we chose to

follow a different route.

We explore lexicalized grammars, which contain ‘deep’ or linguistically precise characteri-

zations of phenomena like NVCs. Examples of such grammars are Lexical Functional Grammar

(LFG), Tree-Adjoining Grammar (TAG) and Head driven Phrase Structure Grammar (HPSG).

An additional attractive feature of these grammars is that they are computationally tractable and

can be used to provide automatic parses for a given language. For Hindi, we are also interested in

comparing the analyses given by using one or more of the lexicalized grammars. There are existing

theoretical accounts of Hindi NVCs in the literature (Mohanan, 1997; Davison, 2005; Bhatt, 2008),

but these have not been compared (either across languages or formalisms).

The Hindi NVC presents two challenges with respect to syntactic representation: first, both
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noun and light verb are predicating elements and contribute arguments to the NVC, resulting

in a complex argument structure. Second, the nominal element in the Hindi NVC can act as a

predicating element as well as an argument of the light verb simultaneously.

Within the LFG framework itself, an analysis for the representation of NVCs has already

been worked out (Ahmed et al., 2012). We will describe this approach and then compare it with

an existing analysis for NVCs in Tree-Adjoining Grammar (TAG) (Han and Rambow, 2000). We

then discuss which of these two analyses may be the most appropriate for the Hindi NVC data.

Our analysis is parallel to two recent proposals to extract a lexicalized LFG and TAG grammar

respectively from the Hindi Treebank (Hautli et al., 2012; Bhatt et al., 2012). While we do not

implement such a grammar extraction, the present work can inform such a task in the future (See

also (Xia, 1999)).

We will begin this chapter with a brief overview of the NVC data. The existing literature on

NVCs points towards two separate approaches for NVC representation viz. noun-centric and verb-

centric approaches. These depend on the importance given to either the noun or the verb component

in an NVC. Following this, we describe an existing verb-centric approach in Lexical Functional

Grammar (LFG) and compare it with a noun-centric analysis in Tree-Adjoining Grammar (TAG).

We then compare the two approaches for Hindi and present our conclusions.

5.2 Data

Predicating nominals in NVCs can combine with a range of light verbs as seen in Chapter

4. In this chapter, however, we look at a subset of these nominals that can combine with only

two light verbs. Specifically, we make use of the noun classifications presented in Ahmed and Butt

(2011) and Mohanan (1997) to focus on a group of nominals that alternate with kar ‘do’ and ho

‘be’.
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5.2.1 Alternation with kar and ho

The light verbs kar ‘do’ and ho ‘be’ are the most commonly occurring light verbs in Hindi.

They can combine with a range of nouns to form NVCs. In chapter 4, we examined the noun clas-

sification in Ahmed and Butt (2011). Their classification criteria consist of syntactic combinatorial

possibilities with light verbs kar ‘do’, hu- ‘become’ and hE ‘be’ (The forms hu- ‘become’ and hE

‘be’ are the eventive and stative forms of the light verb ho ‘be’ respectively). Three noun classes

are described in Ahmed and Butt (2011), based on the combinatorial criteria described above. The

first class consists of psychological nouns like shaq ‘suspicion’, which combine with all three forms

as shown in (40), (42) and (41).

(40) raam=ne
Ram.M.Sg=Erg

mohan=par
Mohan.M.Sg=Loc

shaq
distrust.m

ki-yaa
do-Perf.M.Sg

‘Ram distrusted Mohan’

(41) ram=ko
Ram.M.Sg=Dat

mohan=par
Mohan.M.Sg=Loc

shaq
distrust.M

hu-aa
be.Part-Perf.M.Sg

‘Ram came to be distrustful of Mohan/experienced distrust of Mohan’

(42) ram=ko
Ram.M.Sg=dat

mohan=par
Mohan.M.Sg=loc

shaq
distrust.m

hE
be.Pres.M.Sg

‘Ram is distrustful of Mohan’

Yet another class of nouns (class ‘B’), in (43) can combine with kar but these nouns do not

alternate with a dative subject as seen in (44). Compare this with the psychological noun shaq in

example (41). Class B nouns can combine with hu- but not hE. When they combin with hu-, they

have a pre-supposed agentive subject (45). The example in (45) is a case where combination with

hu- has an intransitivizing effect. Such nouns may also be found cross-linguistically. For example,

in English, a similar alternation structure may be found in bring to light vs. come to light (Claridge,

2000). Here, two light verbs bring and come are used to express either a causative or inchoative

reading. In Persian, kardan ‘make or do’ and ŝodan ‘become’ alternate with the same noun in a

manner similar (although not identical) to Hindi. In this chapter, we focus mainly on nouns from
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Class ‘B’ like t”areef ‘praise’ that show this alternation.

(43) logon=ne
people.M=Erg

pust”ak=kii
book.F=Gen

t”areef
praise.F

k-ii
do-Perf.F

‘People praised the book ’

(44) *logon=ko
people.M=Dat

pust”ak=kii
book.F.Sg=Gen

t”areef
praise.F

hu-ii/hE
be.Part-Perf.F.Sg/be.Pres.3.Sg

‘*People experienced the book’s praise ’

(45) pust”ak=kii
book.F.Sg=Gen

t”areef
praise.F

hu-ii/*hE
be.Part-Perf.F.Sg/be.Pres

‘The book was praised’

The final third class of nouns (Class ‘C’) combines with kar ‘do’ and hE ‘be’ but not with

hu- ‘become’. Hindi also has nouns like baarish ‘rain’ that combine only with the light verb hu-, in

(46) and not with kar ‘do’, but we do not focus on these nouns in this chapter.

(46) aaj
today

raat
night.F

baarish
rain.F

hu-ii
be.Part-Perf.F.Sg

‘It rained tonight’

5.2.2 Agreement

In addition to classifying nouns based on combinatorial possibilties, Mohanan (1997) also

points out another division among the predicating nominals in NVCs. She shows that a class of

nominals such as yaad ‘memory’ or istemaal ‘use’ can optionally take non-subject arguments with

nominative or accusative case. When this occurs, the light verb will not agree with the predicating

nominal (see 47). When the same noun, however, takes non-subject arguments with genitive case

in (48), the light verb agrees with the nominal.

(47) Light verb does not agree with nominal
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sitaa=ne
Sitaa.F.Sg=Erg

mohan=ko
Mohan.M.Sg=Acc

yaad
memory.F

ki-yaa.
do-Perf.M.Sg

‘Sita remembered Mohan ’

(48) Light verb agrees with the nominal

sitaa=ne
Sitaa.F.Sg-Erg

mohan=kii
Mohan.M.Sg=Gen

yaad
memory.F

k-ii.
do-Perf.F.Sg

‘Sita remembered Mohan ’

Nouns showing this type of optional agreement also differ from nominals (such as t”areef

‘praise’) with respect to sentential negation, gapping and passivization Mohanan (1997). (We refer

the reader to the tests shown in Mohanan (1997), and do not repeat them here). This split among

NVCs also points to another property of the syntactic behaviour of NVCs. The light verbs in (48)

or (43) will agree with the nouns, which in turn act as predicating elements as well as arguments

simultaneously. On the other hand, the noun yaad in (47) will not be an argument of the light

verb.

Davison (2005) describes a list of around 20 nouns that behave like yaad. In the Hindi

Treebank, we performed a search for all NVC cases with kar, which had an accusative-marked

object argument. We found about 100 such nouns, which include examples such as kshamaa

‘forgiveness’ as well as several borrowed nouns such as design, phone and blackmail. The accusative

marker ko is understood to be a marker of specificity or animacy when it occurs in a transitive

verb with an ergative subject (Bhatt and Anagnostopoulou, 1996). Accordingly, the examples in

the Treebank are also in a discourse context where the object argument refers to a specific thing

or person.

From the point of view of syntactic description, we now need to consider two specific phe-

nomena with respect to Hindi NVCs : first, the representation of argument structure as a result of

alternation with two light verbs and second, the phenomenon of the light verb that can optionally
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agree with the predicating nominal. With these facts in mind, we now look at an existing analysis

of the NVC in the Lexical Functional Grammar framework.

5.3 LFG analysis of NVCs

The work of Mohanan (1994); Alsina et al. (1997) and Butt (1995) has focused on the joint

predication of noun and light verb in an NVC, where both parts of the predication contribute their

meaning. Butt (1993) views the light verb as a unique category that shares a lexical entry with its

non-light form. It is resolved as light or non-light depending upon the syntactic environment. When

a verb is resolved as light, it supplies additional aspectual or agentive information about the event,

and the host provides additional eventive meanings. These syntactic and semantic interactions with

the host change the event structure of the ordinary predicate into a complex predicate.

The status of the light verb differentiates the analysis in Lexical Functional Grammar (LFG)

from analyses such as Grimshaw and Mester (1988); Kearns (1988). They assume that the light verb

inherits arguments from the nominal and its only function is to supply verbal case to the semantic

arguments of the nominal. In effect, the light verb has to give up all its predicating power. LFG

considers the light verb as a non-empty element which contributes a specific lexical meaning to the

NVC. For example, the light verb may signal forcefulness, volitionality or surprise (Hook, 1974).

Butt (1993) amasses cross-linguistic evidence to show that a light verb forms a syntactic class that

is quite separate from an auxiliary or simple predicate. Moreover, light verbs are diachronically

stable, having co-existed with their ‘full’ verb counterparts for a long period of time (Butt and

Lahiri, 2013).

Therefore, the LFG analysis considers the light verb and its pre-verbal element as co-

predicators in a single clause (Butt, 1993, 1995). The mechanism that is used to capture the process

of co-predication exploits the levels of representation that are available in LFG. Syntactic repre-

sentation is factored apart into two (or more) levels of representation that will also interact with

each other. Most commonly, these appear as f(unctional)-structure and c(onstituent)-structure.

F-structure represents predicate argument relations in terms of grammatical functions such as sub-
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ject and object. C-structure on the other hand models the linear order of words and hierarchical

relations between constituents.

In addition, the f-structure can be related to an additional level (or projection) known as

a-structure, which describes predicate-argument structure in terms of thematic roles (Bresnan and

Zaenen, 1990). The a-structure has been used to model complex predicates in Urdu (Butt, 1995;

Butt et al., 2008). Example 49, reproduced from Butt et al. (2008) shows an example of an NVC

in Urdu, which has a borrowed English nominal pinch and a light verb kar ‘do’.

(49) bacce=ne
child.M.Sg=Erg

haathi
elephant.M.Sg

pinch
pinch

ki-yaa
do-Perf.M.Sg

‘The child pinched a/an elephant.’

Butt et al. (2008) describe the a-structures for the co-predicators pinch and kar in Figure

5.1. The %Pred shows that the argument structure of the light verb is incomplete. The nominal’s

argument structure will be substituted here resulting in a merger of the two argument structures.

The two agent arguments are identified as the same, following a process of argument identification.

The merger results in a composite argument structure which can be mapped further to grammatical

relations such as subject and object at f-structure via Linking Theory (Butt, 2006).

DO <agent %Pred >

PINCH <agent, theme >

Figure 5.1: a-structures for ‘do’ and ‘pinch’ describe the two pieces of the NVC preceding the
process of Argument Merger.

The notion of the light verb as co-predicator is also implemented in the corresponding com-

putational grammar for Urdu (Butt and King, 2002). However, rather than posit a different level

of representation (such as a-structure described above), the computational analysis stays at the

level of f-structure. In order to compose the argument structure from the two co-predicators, a
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Restriction Operator is used to manipulate the f-structure(Butt et al., 2003). This may be

shown with an example from Butt et al. (2003) in Figure 5.2, which shows a simple f-structure for

the lexical item ‘Nadya’.
PRED ‘Nadya’

PERS 3

NUM sg

CASE erg


PRED ‘Nadya’

PERS 3

NUM sg



Figure 5.2: The restriction operator has the ability to restrict out information e.g. the CASE
feature from the attribute-value matrix (AVM) for the lexical item ‘Nadya’. (↑/CASE) gives us
the restricted second AVM in this figure.

The ability to restrict certain features allows the manipulation of the f-structure of predicate

subcategorization frames. It also helps to capture certain other properties of complex predicates,

such as stacking. Complex predicates can be stacked such that a noun verb complex predicate can

occur inside a verb-verb complex predicate (Example 50 adds a verb verb complex predicate to an

NVC).

(50) nadya=ne
nadya.F.Sg=erg

haathi=ko
elephant.M.Sg=acc

pinch
pinch

kar
do

li-yaa
take-perf.M.Sg

‘Nadya pinched the elephant (completely)’

In such cases, f-structures for each predicate are composed, taking into consideration any

restricted features. Therefore, the computational analysis is able to model the productive nature

of the NVC in Urdu, while maintaining the core ideas from the theoretical account.

In the Urdu ParGram grammar (Butt and King, 2002), complex predicates have been im-

plemented in the form of a ‘dependency bank’, which allows the representation of phenomena like

NVCs in a theory-independent format. Therefore, while the NVC representation has a theoretical

model of co-predication within a-structure in LFG, in the computational grammar this is imple-

mented in a more theory-neutral format (i.e the triples format (Crouch et al., 2012b)).

With this general description of the LFG analysis, we now turn to the specific Hindi examples.
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In section 5.2, we discussed a class of nouns (class ‘B’), which alternate with kar ‘do’ and hu-

‘happen’. Second, we also discussed the number and gender agreement of the light verb with the

predicating nominal. In the LFG analysis, a sentence like (51) gets a final f-structure like 5.3

(Ahmed et al., 2012). Recall that the nominal yaad ‘memory’ is one of those nominals that can

optionally take either accusative or nominative marked non-subject arguments. In example 51,

the nominative argument is sabaq ‘lesson’ and the light verb shows default masculine, singular

agreement (rather than showing agreement with the feminine yaad).

(51) nad”ia=ne
Nadia.F.Sg=Erg

sabaq=ko
lesson.M.Sg=Acc

yaad
memory.F

ki-ya
do-perf.M.Sg

‘Nadya remembered the lesson’

The f-structure in Figure 5.3 also shows the light verb kar and nominal yaad as co-predicators.

The PRED feature shows the composed argument structure from the f-structures of nominal and light

verb. Light verb kar subcategorizes for the agentive argument and another PRED viz. yaad. The

nominal yaad itself takes a theme argument sabaq.1 These have now been merged at the top level

PRED.

Note that the SBCG or Sign-Based Construction Grammar approach is worth mentioning

here as it is quite similar to the LFG analysis of the NVC (Hoffmann and Trousdale, 2013). For

an example like (51), the light verb kar would have two arguments; agent and action (compare

these to the LFG agent and PRED). The nominal yaad would also contain two arguments (agent

and undergoer). The co-instantiation construction would equate the semantic indices of the two

highest-ranking arguments from the two lists. Light verbs like kar would belong to the lexical

class construction of co-instantiation (along with other transitive light verbs). The inchoative

counterpart ho ‘be’ would not belong to this class, but take a single argument of its own.

1Note that while kar contains another predicate, the NVC and light verb are not examples of control structures

such as John tried to leave. Butt (1995) shows that participial adverbials can only be controlled by the subject

argument. This shows that there cannot be an embedded argument contributed by the preverbal element in the

complex predicate.



69

In addition, the composed f-structure shows how features in the nominal’s f-structure have

been restricted. For example, we know that the light verb kar contributes an agentive argument.

In order to code this lexical information, the feature LEX-SEM is used.The LEX-SEM feature is used

to distinguish light verbs such as kar ‘do’ and de ‘give’ that require agentive arguments from those

like paR ‘fall’, which do not. Further, the feature VTYPE on the nominal must be shown as complex

rather than simple. Both features LEX-SEM and VTYPE are therefore restricted in the f-structure of

the nominal so that they may be overwritten by the light verb.

Ahmed et al. (2012) also describe the case of bahas kar ‘debate do; to argue’ (52). In contrast

to (51), the light verb agrees with the noun bahas and it appears in this f-structure as its object.

At the same time, in Figure 5.4, the light verb kar is a co-predicator with bahas. The light verb’s

argument structure includes both the subject meNdak ‘frog’ and the nominal host bahas ‘debate’.

The only argument of bahas ‘debate’ is the oblique argument bicchU ‘scorpion’, post restriction.

(52) meNdak=ne
frog.M.Sg=Erg

bicchu=se
scorpion.M.Sg=Inst

bahas
debate.F.Sg

kii
do.Perf.F.S

‘The frog argued with the scorpion.’

The individual feature structures for bahas ‘debate’ and kar ‘do’ are shown in Figure 5.5.

The light verb’s subcategorization frame includes the subject and an additional empty slot for

the nominal predicate. In Figure 5.4, these are combined to form a single predicate. Note that

the CHECK features are used to ensure the well-formedness of the grammar. Others such as VTYPE

and TNS-ASP are self-explanatory. Ahmed et al. (2012)’s analysis does not describe the case of

the same nominal alternating with the light verb hu- ‘be’ as in example 53. On the other hand,

Ahmed and Butt (2011) mention that examples such as (53) are ‘resultative state meanings’, which

probably implies that such cases are not considered NVCs in the LFG analysis and hence they are

not described in the ParGram analysis.

(53) bicchu-se
scorpion.M-Inst

bahas
debate.F.Sg

hu-ii
be-Perf.F.S

‘There was a debate with the scorpion; A debate with a scorpion happened’
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

PRED ‘kar

〈
[‘nAdiyah’] , ‘yaad

〈
[‘sabaq’]

〉
’

〉
’

SUBJ



PRED ‘nAdiyAh’

NTYPE

NSEM

[
PROPER

[
PROPER-TYPE name

]]
NSYN proper


SEM-PROP

[
SPECIFIC +

]
CASE erg, GEND fem, NUM sg , PERS 3



OBJ



PRED ‘sabaq’

CHECK
[
NMORPH obl

]
NTYPE

NSEM
[
COMMON count

]
NSYN COMMON


SEMPROP

[
SPECIFIC+

]
CASE acc, GEND masc, NUM sg, PERS 3


LEX-SEM

[
AGENTIVE +

]
TNS-ASP

[
ASPECT perf

MOOD indicative

]
VTYPE

[
COMPLEX-PRED nv

]
CLAUSE-TYPE decl, PASSIVE -


Figure 5.3: F-structure for the sentence Nadya=ne sabaq=ko yaad kiyaa



PRED ‘kar’

〈[
2:meNdak

]
, ‘bahas

〈
63:biccHU

〉
’

〉
’

SUBJ 2
[
PRED ‘meNdak’

]
OBJ

[
PRED ‘bahas’

]
OBL 63

[
PRED ‘biccHU’

]


Figure 5.4: Final (abbreviated) F-structure for the NVC bahas kar ‘debate do’.Note that bahas
acts simultaneously as a co-predicator and argument of the light verb
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

PRED ‘kar
〈

[SUBJ], [-1]
〉
’

SUBJ
[
CASE erg

]
OBJ

[
GEND fem, NUM sg

]
CHECK

 VMORPH
[

VTYPE infl
]

RESTRICTED - , VFORM perf


LEX-SEM

[
AGENTIVE +

]
TNS-ASP

[
ASPECT perf

]
VTYPE

[
COMPLEX-PRED-FORM kar

]
PASSIVE -




PRED ‘bahas

〈
-OBL

〉
’

NTYPE

NSEM
[
COMMON count

]
NSYN common


GEND fem, NUM sg



Figure 5.5: F-structures for the light verb kar ‘do’ and the predicating nominal bahas ‘debate’
respectively
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To summarize, the LFG analysis of NVCs is rooted in the f-structures of the lexical items.

Both noun and light verb are presented as co-predicators, whose argument structures are merged in

the final f-structure of the sentence. Moreover, the c-structure is factored apart from the f-structure,

which gives the analysis some advantage with respect to syntactic flexibility. For example, the

XLE implementation of the Urdu LFG grammar can parse meNdak-ne bahas kii bicchu-se ‘frog-erg

debate did scorpion-with; The frog debated with the scorpion ’. 2

The LFG analysis also models the difference between nouns like yaad ‘memory’ and bahas

‘debate’ via their lexical entries. Nominals like yaad ‘memory’ do not act as arguments as well

as co-predicators like bahas ‘debate’. Hence, their f-structures do not include a lexical entry for

OBJ like bahas. At the same time, both noun and light verb are represented as predicates in the

sentence.

5.4 Two approaches to NVC analyses

Two predicating elements that result in a single predication is a challenge for prevailing

syntactic theories. When the verb alone is the main predicator in a sentence, all other elements are

arguments or modifiers. If, however, there are two predicating elements, the argument structure

is more complex. The linguistic literature on NVC representation shows two main divisions in the

representation of NVCs.

The first approach described in the preceding section on LFG describes the noun and verb as

co-predicators i.e. both noun and light verb contribute arguments. The second approach considers

the noun in the NVC as the primary predicating element, where the light verb only assigns case

to the verbal case-marked arguments in the sentence.A third approach also exists, where noun

and light verb are concatenated together as a multi-word expression and together, they license

the arguments in the sentence. While the first two options are worth exploring, we discard the

third option for two reasons: first, the NVC is highly productive in Hindi, which would imply that

2However, it was unable to parse meNdak-ne bahas bicchu-se kii ‘frog-erg debate scorpion-with did; ‘The frog

argued with the scorpion” i.e. when the nominal is separated from the light verb.
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there will be individual representations for each noun and light verb combination in the grammar.

Second, there is evidence that the NVC forms a phrasal category in the syntax (Mohanan, 1997;

Davison, 2005). This means that individual components of the NVC may be moved away from each

other, emphatic particles or negation may intervene and the noun component may be independently

modified by an adjective. Therefore, the multi-word option would not be the best approach here.

Figure 5.6 shows the two options for composing the argument structure for an NVC like

t”areef kar ‘praise do; praise’. The solid lines in the figures indicate the predicate-argument relation

whereas the dotted lines show us how the separate argument structures were composed. In the

noun-centric analysis, the light verb and nominal’s argument structures are composed, but the

verb contributes no arguments of its own. For the verb-centric analysis, the light verb contributes

the argument logon, whereas the nominal contributes pustak.

The noun-centric analysis has been described in earlier work by Grimshaw and Mester (1988)

and also more recently in the framework of Tree-Adjoining Grammar. Han and Rambow (2000)

(henceforth HR) have analyzed the Sino-Korean complex predicate, which consists of a light verb

ha or hata ‘do’ and a noun of Chinese origin. HR’s analysis of the Korean NVC assumes that the

nominal in the NVC is the true predicate and has the full array of syntactic arguments. The light

verb on the other hand contributes no semantic information nor does it have any arguments of its

own.

In the following section, we first extend a noun-centric analysis for Korean to Hindi NVCs

(Vaidya et al., 2014). We then compare this analysis with the one already described in LFG to

understand which approach might work better for Hindi NVC representation.

5.5 Lexicalized Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) is a formal tree-rewriting system that is used to describe

the syntax of natural languages (Joshi and Schabes, 1997). The basic structure of a TAG grammar

is an elementary tree, which is a fragment of a phrase structure tree labelled with both terminal

and non-terminal nodes. The elementary trees are combined by the operations of substitution
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Noun-centric analysis → tareef

logon-ne (people-Erg)
pustak-kii (book-Gen)

kii (do.perf)

Verb-centric analysis → kii

logon-ne tareef

pustak-kii

Figure 5.6: Derivation graphs showing two options for the analysis of logon ne pust”ak kii t”areef kiii
‘People praised the book’. The LVC is tareef kii.
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(where a terminal node is replaced with a new tree) or adjunction (where an internal node is split

to add a new tree).

The elementary trees in TAG can be enriched with feature structures (Vijay-Shanker and

Joshi, 1988). These can capture linguistic descriptions in a more precise manner and also capture

adjunction constraints. TAG with feature structures is also known as FTAG (Feature-structure

based TAG). A TAG can also be lexicalized i.e., an elementary tree has a lexical item as one of

its terminal nodes. Lexicalized TAG enhanced with feature structures is known as Lexicalized

Feature-based Tree-Adjoining Grammar (LF-TAG). This has been used for developing computa-

tional grammars for English (XTAG-Group, 2001), French (Abeillé and Candito, 2000) and Korean

(Han et al., 2000). In our analysis, we will also use LF-TAG, but we will refer to it as LTAG for

convenience.

Figure 5.7 shows the basic steps for composing elementary trees containing feature structures.

Each node has a top and a bottom feature structure. Features can be shared among nodes in an

elementary tree. In the tree for the verb running, the variable 1 is used to show that the verb must

share the same features as the subject NP.

The tree for running is an initial tree with a single terminal for its argument noun phrase

(NP). The tree for is, on the other hand, is a special type of elementary tree called the auxiliary

tree. It has a foot node (marked with an asterisk), which is identical to its root node. The

auxiliary tree will adjoin into the tree for running at the VP node only. The top and bottom

feature structures for mode at the VP node for running, have different values (ind icative and

gerundive), and they cannot unify. This captures an adjunction constraint for obligatory adjunction

and requires adjunction to take place at this node only.

During adjunction, the top feature structure at VPr in the auxiliary tree (for is) will unify

with the top of the adjunction site (VP). The bottom feature structure at VPr in the auxiliary tree

will unify with the bottom of the adjunction site. During substitution, the top node in the tree for

Jill unifies with the node at NP in the initial tree for running.

This results in the second tree in Figure 5.7, post the operations of substitution and adjunc-
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S

VP

[
agr= 1 mode=ind

]
[
mode=ger

]
V

running

NP
[
agr= 1

]

NP
[][
agr=[pers=3 num=sg]

]
N

Jill

VPr

[
agr= 2 mode= 3

]
VPf *

[
mode=ger

]
V

[
mode= 3 ind

]
[
agr= 2 [pers=3 num=sg]

]
is

After substitution
and adjunction:

S

VP

[
agr= 1 mode=ind

]
[
agr= 2 mode= 3

]
VP

[
mode=ger

]
[
mode=ger

]
V

running

V

[
mode= 3 ind

]
[
agr= 2 [pers=3 num=sg]

]
is

NP

[
agr= 1

]
[
agr=[pers=3 num=sg]

]
Jill

After top-bottom
unification:

S

VP

[
agr= 1 [pers=3 num=sg]

mode=ind

]

VP
[
mode=ger

]
V

running

V
[
agr= 1 mode=ind

]
is

NP
[
agr= 1

]
Jill

Figure 5.7: LTAG showing feature structures and constraints on adjunction (Example adapted
from Kallmeyer and Osswald (2013)). The topmost trees show the operations of substitution
(solid line) and adjunction (dashed line). Following these operations, we get a complete sentence
‘Jill is running’. After both top and bottom nodes unify, the derivation is complete.
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tion. In a final derivation step, top and bottom feature structures at each node will unify, to give

the final derived tree with a single feature structure at each node. The resulting tree is called a

derived tree.

An important characteristic of lexicalized elementary trees is their correspondence with the

lexical item’s predicate-argument structure. This has sometimes been formalized as the PACP

(Predicate-Argument Co-occurrence Principle), which states that the elementary tree is the minimal

syntactic structure that includes a leaf node for each of its realized arguments (Frank, 2002). The

PACP restricts the structure of the elementary trees such that they may not be drawn arbitrarily.

At the same time, lexicalized TAGs will often have the same lexical item realized as the anchor of

varying syntactic realizations. For example a verb such as run will anchor a different elementary

tree for its passive or interrogative variant.

5.5.1 Elementary trees for the Hindi NVC

In this section, we will adapt the Han and Rambow (2000) analysis of the Sino-Korean

complex predicate for Hindi nominal predicates. In order to adapt the analysis to Hindi, we had to

take into consideration the nominal’s alternation with kar ‘do’ and ho ‘be’. Additionally, we would

also like to model the difference between nominals such as tareef ‘praise’ and yaad ‘memory’ with

respect to the agreement facts (See 47).

Han and Rambow have proposed separate trees for the nominal and light verb. The ele-

mentary tree of the nominal is an an initial tree, and as it is considered the true predicate, it

also chooses a syntactic structure that will realize all its arguments. The light verb on the other

hand is represented as an auxiliary tree, therefore it is an adjunct to the nominals basic structure.

However, as it is a predicate, it is also a special type of auxiliary tree viz., a predicative auxiliary

tree (Abeillé and Rambow, 2000).

We also assume, following Han and Rambow that each node is specified with the feature CAT

which has values like V or N, but the [CAT=N] feature on the noun is not realized unless the light

verb composes with the elementary tree of the nominal. In addition, because the nominal is not a
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verb, it has the feature TENSE=- i.e., it is not tensed.

The elementary tree for the nominal contains the full array of arguments for the NVC. In the

LTAG framework, it is therefore a type of initial tree anchored by the nominal. The arguments of

the NVC will be substituted into the tree in Figure (5.8).

XP0

[
cat=v tense=+ perf=+[1] agt=+[2]

]
[
cat=v tense=+ perf=[3] agt=[4]

]

XP1

[
cat=v tense=+ perf=[3] agt=[4] agr=[11]

]
[
cat=[18] tense=- nagr=+ case=[13] agr=fsg[11]

]

XP2

[
cat=[18] tense=- nagr=+ case=[13] agr=fsg

]
[
cat=[19] tense=- nagr=+ case=[14] agr=fsg

]

X

[
cat=[19] tense=- nagr=+ case=[14] agr=fsg

]
[
cat=[20] tense=- nagr=+ case=[15] agr=fsg

]

tareef

NP2 ↓
[

case=gen

cat=n

]
NP1 ↓

[
case=erg cat=n

perf=+[1] agt=+[2]

]

Figure 5.8: Tree for nominal tareef ‘praise’ (agentive), as seen in logon ne pustak kii tareef kii
“People praised the book”. The feature clash at XP1 is marked with a box.

In order to model the light verb kar ‘do’ in Example 43, we will construct an auxiliary tree

with feature structures, anchored at kar ‘do’. Figure 5.9 shows such an elementary tree. The light

verb kar is inflected for person, number, and gender as well as tense and aspect. In this particular

example, it is tensed, feminine, singular and has perfective aspect; therefore it appears as kii.

In Figure 5.9, the XPr (root) node and its right-branching daughters are [CAT=V] with linguistic

information about gender, number, tense and aspect. The feature AGT=+ (agentive) at the top node

implies that this auxiliary tree needs to unify with an initial tree that is also [AGT=+]. The XPf

(foot) node has [TENSE=-] and [CAT=N], which will enable it to adjoin into the elementary tree of a

nominal. The CASE value is specified as NOM (nominative) as the light verb will assign nominative

case to the noun.
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XPr

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

VP

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

V

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

kii

XPf

[
cat=n tense=- assign-case=nom

]
[]

Figure 5.9: Elementary tree for light verb kar ‘do’ inflected as kii ‘do.fem.sing.perf’
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The position of the arguments in the initial tree of the nominal roughly follows the con-

figuration described in Bhatt et al. (2013)[p. 59], where the first position is the ergative-marked

argument and is found in a transitive sentence 3 (but only if the property [PERF=+] is also present).

The first position in Figure 5.8 has the features for [PERF=+] and [AGT=+] as a consequence of hav-

ing [CASE=ERG]. The agentive argument shares the values for PERF and AGT with the S node. This

ensures that the light verb that adjoins into this tree will match the PERF and AGT values in NP1 .

5.5.2 The nominal as an argument of the light verb

The light verb agrees in number and gender with the predicative nominal tareef. Therefore, it

behaves as a predicating element and an argument simultaneously. In order to capture this syntactic

property of the nominal predicate, our analysis takes advantage of the feature structures in LTAG.

Additionally, we also manipulate the site of adjunction of the light verb in order to differentiate

between nominals like tareef ‘praise’ and the non-agreeing nominals such as yaad ‘memory’

We model this using the NAGR feature in Figure 5.8. The value for NAGR is positive as the

light verb shows agreement with the nominal tareef for this example. Other arguments at NP1 and

NP2 will not have an AGR feature unless they have nominative (null) case. When NAGR is positive,

AGR gets its features from the nominal and these are passed up to the place of adjunction. When

the light verb’s agreement with the noun is not possible, e.g. if a higher nominative argument is

available, the AGR feature will be populated by that argument.4

The feature clash at XP1 between [TENSE=+] vs. [TENSE=-] shows us that the derivation of

the tree is not yet complete. It forces adjunction to take place at this node because of the obligatory

adjunction constraint in TAG. Post adjunction of the light verb, the XP1 node is spliced into two

subtrees, each dominated by CAT=N and CAT=V respectively (Figure 5.10). The NP2 argument has

3Although ergative case can also be found in intransitive verbs that express volition e.g. chiink ‘sneeze’ or cillaa

‘scream’. Intransitive NVCs with kar ‘do’ such as snaan kar will have elementary trees with the first position only,

but this needs to be worked out further
4The agreement rule in Hindi also implies that more than one elementary tree will need to be proposed to account

for the variation in the case realizations.
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XP0

[
cat=v tense=+ perf=+ agt=+

]
[
cat=v tense=+ perf=+ agt=+

]

XP1

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

VP

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

V

[
cat=v tense=+ perf=+ agt=+ agr=fsg

]
[
cat=v tense=+ perf=+ agt=+ agr=fsg

]

kii

XPf

[
cat=n tense=-

case=nom nagr=+

]
[
cat=n tense=-

case=nom nagr=+

]

X

[
cat=n tense=-

case=nom nagr=+

]
[
cat=n tense=-

case=nom nagr=+

]

tareef

NP2

[
case=gen cat=n

]
[
case=gen cat=n

]

pustak-kii

NP1

[
case=erg cat=n

perf=+ agt=+

]
[
case=erg cat=n

perf=+ agt=+

]

logon-ne

Figure 5.10: Post adjunction of the light verb’s auxiliary tree into the initial tree tareef ‘praise’ at
XP2, we get the complete argument structure. Substitution at the nodes NP1 and NP2 gives us
logon-ne pustak-kii tareef kii ‘People praised the book’

genitive case, hence the node with CAT=N node dominates it. The light verb also assigns nominative

case to the predicative nominal tareef ‘praise’. If an NVC occurs with a non-subject argument

that has non-nominal case (e.g. instrumental or locative, see example (52) for reference) then the

elementary tree for those nouns will be slightly different. For such nouns, the site of adjunction will

be below the non-subject argument, such that the CAT=V node dominates it (rather than CAT=N).

5.5.2.1 Exceptional nominals

Nominals such as yaad ‘memory’ form part of an exceptional class, where the light verb

does not agree with the nominal (See 47). The light verb does not assign nominative case to the

predicating noun yaad (Davison, 2005). In such cases, the value of NAGR is negative and adjunction

into the tree of the nominal takes place at X (Figure 5.11). Recall that nouns such as yaad

can optionally assign genitive case to the non-subject argument. However, when they do not (as

shown in the tree in Figure 5.11), the nominal’s sub-tree will not have arguments of its own. By

manipulating the site of adjunction, we show that cases such as yaad can also be described by using

the NAGR feature.
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XP0

[
cat=v tense=+ perf=+[1] agt=+[2]

]
[
cat=v tense=+ perf=[3] agt=[4]

]

XP1

[
cat=v tense=+ perf=[3] agt=[4] agr=[11]

]
[
cat=v tense=+ perf=[5] agt=6[]

]

XP2

[
cat=v tense=+ perf=[5] agt=[6]

]
[
cat=v tense=+ perf=[7] agt=[8]

]

X

[
cat=v tense=+ perf=[7] agt=[8]

]
[
cat=[20] tense=- nagr=- case=[15] agr=def/msg

]

yaad

NP2 ↓
[

case=acc

cat=n

]
NP1 ↓

[
case=erg cat=n

perf=+[1] agt=+[2]

]

Figure 5.11: Tree for nominal yaad ‘memory’ (agentive), as seen in Ram=ne Mohan=ko yaad kiyaa
“Ram remembered Mohan”. The feature clash at X is marked with a box.
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5.5.3 Alternation with kar and ho

The same noun tareef ‘praise’ may combine with the light verb ho (example 45). In that

case, non-agentive tareef will choose an elementary tree such as Figure 5.12. This elementary tree

appears without an agentive argument, hence NP1 will have the feature AGT=-. Figure 5.12 shows

that the site of adjunction into tareef ‘praise’ (non-agentive) is at XP1 . As the nominal is the only

nominative argument , the light verb will agree with tareef (therefore NAGR=+).

XP1

[
cat=v tense=+perf=[3] agt=-[4] agr=[11]

]
[
cat=[18] tense=- nagr=+ case=[14] agr=fsg[11]

]

XP2

[
cat=[18] tense=- nagr=+ case=[14] agr=fsg

]
[
cat=[19] tense=- nagr=+ case=[15] agr=fsg

]

X

[
cat=[19] tense=- nagr=+ case=[15] agr=fsg

]
[
cat=[20] tense=- nagr=+ case=[16] agr=fsg

]

tareef

NP1 ↓
[
cat=n case=gen agt=-[4]

]

Figure 5.12: Tree for nominal tareef (non agentive) as seen in pustak-kii tareef huii ‘(the) book was
praised’. The feature clash this time is at XP1 and is marked with a box.

The tree for non-agentive tareef will always combine with a light verb that is AGT=-, in this

case ho ‘be’. In contrast with kar ‘do’, the auxiliary tree of the light verb ho ‘be’ will have [AGT=-].

The agent is implicit in the event described by this verb, and could have been shown in this tree

as an empty category, but the presence of the feature AGT=- itself is illustrative of this fact.

5.6 Verb-centric vs. Noun-centric approaches

In section 5.3 and 5.5, we described two distinct analyses of the Hindi NVC using LFG

and TAG. These analyses differ with respect to the representation of the light verb: in LFG, the

light verb is a co-predicator (verb-centric analysis) whereas in TAG, it has no arguments of its

own (noun-centric). Beginning from this broad distinction, we delve into a few other points of

comparison in this section.
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The first difference is based on the particular properties of the formalism used to represent

NVCs. The LFG analysis requires a separate special operation to ‘restrict out’ i.e. prune and then

merge the argument structures of the light verb. This is because any co-predication analysis will

require argument merger i.e. linking or identification of corresponding arguments in two distinct

argument structures to form a composite argument structure. In TAG, on the other hand, no special

provision needs to be made in the analysis as the two argument structures are combined via the

adjunction operation in the formalism. On the other hand, it is necessary to posit a large number

of elementary trees for the nominal in TAG in order to capture all the syntactic alternations as

well as differences in case realizations. As the elementary tree of the light verb does not contribute

arguments of its own, separate elementary trees need to be posited for any alternations that can

change the number and type of arguments in the NVC. TAGs in other languages, such as the English

XTAG grammar are also known to have separate elementary trees for verbal alternations such as

active and passive. Eventually, this increases the number of elementary trees in the grammar,

hence the problem is not restricted to Hindi. Within the TAG framework itself, there have been

attempts to reduce the number of elementary trees by using tree families, where all the syntactic

alternations for a particular subcategorization frame are gathered together (Abeillé and Rambow,

2000).

The other point of comparison is with respect to the predicate-argument structures of noun

and light verb. It is quite clear that the nominal contributes the non-subject argument in the

sentence. For instance, in (55), the noun zor ‘pressure’ has a locative marked argument of its own

(us baat par ‘on that topic’), which is not available with the simple predicate give in (54).

(54) Ram=ne
Ram.M.Sg=Erg

Mohan=ko
Mohan.M.Sg=Dat

kitaab
book.F

d-ii
give.prf.F.sg

‘Ram gave Mohan a book’

(55) Ram=ne
Ram.M.Sg=Erg

us
that

baat=par
topic.M.Sg=Loc

zor
pressure.M

diyaa
give.prf.M.sg

‘Ram emphasized that topic’
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It can be argued that the NVC’s subject argument is also contributed by the nominal. If we

look at the data from Korean NVCs, we might find additional insights about the behaviour of the

NVC’s subject argument. Korean also has a light verb like kar, e.g. 56, which can occur with two

arguments John and Tom (Choi and Wechsler, 2001). These are understood as being selected by

the Sino-Korean noun tayhwa ‘talk’ because they occur independently with the noun in example

57. In Hindi, the noun baat cannot take two genitive marked arguments, but can form a noun

phrase with the two arguments of the NVC (see examples 59 and 58).

(56) john-i
John-Nom

Tom-kwa
Tom-with

tayhwa-lul
talk-Acc

ha-yess-ta
do-past-Dec

‘John talked with Tom’

(57) John-uy
John-Gen

Mary-wa-uy
Mary-with-Gen

tayhwa
talk

‘John’s talk with Mary’

(58) john=ne
John.M-Erg

mary=se
Mary.F-Inst

baat
talk.F

kii
do.perf.F.sg

‘John talked with Mary’

(59) john=se
John.M=Inst

mary=kii
Mary.F=Gen

baat
talk.F.Sg

‘John’s talk with Mary’

Therefore, one may argue that the nominal predicates that participate in thekar and ho

alternation can subcategorize for two arguments. In that case, the representation of the elementary

tree in Figure 5.8 is plausible. In the alternation with ho, the agentive argument is present (or

assumed) but unexpressed. However, the key difference is the fact that in TAG, there is no argument

identification i.e. even if the nominal subcategorizes for the agentive argument, it is not identified

with the agentive argument of the light verb. The light verb is simply assumed to contribute

nothing at all to the argument structure.

The other major point of difference is with respect to the alternation with the light verb

ho for nominals like tareef. The LFG analysis maintains that these are resultative state readings,
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and most likely are not NVCs. In the TAG analysis, it is maintained that the alternation with

ho (or hu-) ‘be’ provides a useful lexical alternative to an alternative syntactic structure (such

as a passive). The alternation of the light verb ho ‘be’ and kar ‘do’ is moreover a characteristic

of a certain group of nominals only (not all can show this alternation e.g., intizar ‘waiting’ from

the class ‘C’ type). Therefore, tareef ho ‘praise happen’ is analyzed as a light verb construction.

The kar and hu- alternation is also a highly productive one as nearly 265 unique nouns in the

Hindi Treebank show this alternation. These nouns constitute about 15% of all the annotated

NVCs in the Treebank. Therefore, we do not consider this alternation as being a resultative state

construction but an NVC.

A final point of comparison is with respect to the category of the nominal. In LFG, the

predicating nominal is understood as a noun, whereas the TAG analysis assumes an under-specified

category. The feature-values for CAT in the tree are used instead, and they are not fixed. This feature

of the analysis is carried over from the Korean light verb analysis and helps in distinguishing the

particular properties of the nominal as well as its syntactic status (as an agreeing or non agreeing

type of nominal). The CAT feature, as well as the site of adjunction changes. The under-specification

analysis was initially proposed for the nouns of Chinese origin that participate in forming Korean

NVCs. Although the noun in the Hindi NVC is not necessarily a borrowed noun (although this is

possible, see 49), one can argue that the nominal is not a regular NP i.e. it is a lexical category that

forms a constituent with the light verb. Other analyses have also proposed that the predicating

nominal is a type of mixed category analysis (Manning, 1993; Choi and Wechsler, 2001).

While both analyses can capture the NVC properties, the advantage of either might depend

upon a given end use. While the TAG analysis relies on a large number of elementary trees and only

one simple operation to combine them, it also suffers from a lack of generalization. In effect, for

every alternation of the nominal with a light verb, a new elementary tree will have to be specified.

If we were to choose a noun-centric design like TAG, however, it may be easier to link the nominal

elementary trees with the nominal predicate frames described in Chapter 3. In TAG terms, this

helps to determine how many substitution nodes must be created for a head in a TAG initial trees.
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Elementary trees for adjuncts are created by converting subtrees of adjuncts and their heads into

auxiliary trees with a foot node.

These elementary trees can play a useful role in extracting a TAG grammar from the Hindi

Treebank Bhatt and Xia (2012). Elementary trees extracted from existing noun frames will elim-

inate an extra rule-writing step to extract predicate heads and their arguments from the Hindi

Treebank. According to the mechanism described in Bhatt and Xia (2012), e-tree based rules

are used to automatically elementary trees from the Hindi Treebank. Instead, it would be pos-

sible to utilize hand-corrected frame files for elementary tree generation. These, in conjunction

with phrase-structure conversion rules could be used to extract TAG grammars from the Hindi

Treebank.

The LFG analysis, on the other hand has a verb-centric approach that is more suited to the

language facts for Hindi. In Butt (1995); Butt and Geuder (2001); Butt (1993), the status of the

light verb has been described as a unique category that is distinct from that of an auxiliary or main

verb. Specifically, light verbs have been shown to contribute a very specific linguistic meaning to

a complex predicate, ranging from forcefulness to surprise or volitionality. Therefore, they cannot

be represented as a meaning-less licenser of predication.

At the same time, the LFG analysis relies on argument identification (i.e. coindexing the

subject argument of the light verb with that of the noun), followed by argument merger. The

constraints of the LTAG formalism do not allow for an operation such as argument merger to

take place. Such an operation necessitates the merging of two subcategorization lists, which is not

possible within the elementary tree formalism in TAG. This implies that a modified TAG formalism

may be required if such an operation were to take place. At the same time, an alternate ‘verb-

centric’ analysis is possible, where elementary trees can be designed in a manner where the light

verb contributes a single subject argument, and the nominal the non-subject argument. We have

explored such an analysis in appendix B.

Finally, the issue of word order differences, where noun and light verb may be scrambled

away from each other has not been addressed satisfactorily in either analyses. In TAG, this would
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invariably result in an increase in elementary trees or require the use of a modified TAG formalism

(Rambow and Lee, 2007). The XLE grammar in LFG could not parse a sentence when noun and

light verb were scrambled away from each other. This problem remains to be explored for future

work.

5.7 Discussion

In the beginning of the chapter, we outlined two challenges with respect to the syntactic

representation of NVCs. The first of these, i.e. argument composition has been described in detail

with respect to the noun-centric and verb-centric analyses in this chapter. The second challenge

where the nominal simultaneously acts as a predicating element and as an argument of the light

verb has been described using the f-structures for LFG and the feature strutures (i.e. the NAGR

feature for TAG.

The design and creation of a lexicon is therefore crucial to develop a linguistically motivated

analysis for NVCs. The representation of a productive phenomenon like complex predicates in

lexicalized grammars is an important step in this direction. If we wish to capture the nuances of

the NVC’s argument structure, then the descriptive framework of lexicalized grammars can be used

to provide a sound linguistic analysis as well as a computational implementation. Also relevant to

the creation of the NVC lexicon is the decision to include or exclude certain phenomena (e.g the ho

alternation in LFG) or whether to adopt a verb-centric or noun centric approach. The advantages

and disadvantages of either approach have been discussed in detail in the previous section. A

verb-centric approach has the advantage of capturing the linguistic facts for Hindi, but requires a

formalism that can allow for an argument merger to take place. A noun-centric analysis for Hindi

on the other hand can be of use in a grammar extraction experiment but lacks generalization.

Either could be used or implemented, depending upon the end goal.

A secondary challenge with respect to lexicalized grammars, is to scale up the lexicon such

that it can be used for computational applications. We described one such attempt for NVCs in

Chapter 4. Such efforts are useful in order to utilize lexical grammars in computational applications.
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Alternatively, it may be possible to use the informative lexicons of lexicalized grammars as features

for a particular application. In a recent grammar extraction experiment for Hindi, a CCG lexicon

was extracted from the Hindi Treebank. This was then used to extract informative lexical features

to improve the performance of a Hindi dependency parser (Ambati et al., 2013).

There are several productive avenues that may be explored for future work. The first of

these is with respect to implementing the NVC analysis for a large number of nouns in a lexi-

calized grammar framework (LFG or TAG). Second, is the potential to utilize these grammatical

representations for improving applications such as parsing or semantic role labelling. Finally, phe-

nomena like NVCs, with their two predicating elements challenge the architecture of the formalisms

themselves and hence are a good test case for comparison across frameworks.



Chapter 6

Automatic Identification of NVCs

6.1 Introduction

The identification of NVCs is part of the larger problem of multi-word expression identifi-

cation. The inability to accurately identify multi-word expressions is an impediment to effective

Natural Language Processing (NLP). For instance, in the English Resource grammar, poor coverage

of multi-word expressions was the cause of several parsing errors (Baldwin et al., 2004). Accurate

detection of multi-words improves applications such as word sense disambiguation (Finlayson and

Kulkarni, 2011) and machine translation (Pal et al., 2011). As Hindi NVCs are highly productive,

identification of these expressions is necessary for more effective NLP applications.

In this chapter, we present our study on the automatic identification of NVCs in Hindi. We

train a supervised classifier to identify NVCs based on the annotated Treebank data. This classifier

is tested against a held-out set of NVCs and its performance is evaluated on these unseen test

examples. We will first describe some relevant background literature on automatic identification of

NVCs and following this, we describe our own experiments.

6.2 Previous Work

In the computational literature, common approaches towards the detection of multi-words

such as NVCs include association measures, linguistic heuristics and other methods such as paral-

lel corpora. Statistical association measures compute lexical associations between pairs of words.

Knowledge intensive methods make use of linguistic knowledge in the form of resources (e.g. the-
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sauri, dictionaries), heuristics or rules. A combination of one or more of these approaches is also

possible.

6.2.1 Use of Association Measures

The use of a particular association measures depends upon the type of multi-word, the size of

the corpora and its domain (Evert and Krenn, 2005). The pre-processing stage and the threshold

used for excluding low-frequency multi-words also affect the type of association measure used. In

the literature, log-likelihood (Dunning, 1993) has been used for detecting Hindi compound nouns

(Kunchukuttan and Damani, 2008), mutual information (Church et al., 1991) has been used to

detect English complex predicates (a.k.a. light verb constructions) (Fazly, 2007) and the t-score

has been applied to German PP-verb pairs (Krenn, 2000).

In order to use lexical association measures, pairs of multi-word candidates are extracted

from large corpora (This extraction step may require pre-processing of the corpus with syntactic

or morphological information). These are then annotated with scores from a particular association

measure (e.g. log-likelihood or χ2). The candidates with the highest scores are then inspected

by a human expert or compared with existing gold standard lists for those multi-words. Before

association measures are used, the candidate multi-words may also be ranked by frequency, as the

most frequently occurring cases are usually good indicators of their multi-word status. Association

measures are language and type-independent, i.e. they may apply to any language or any type of

multi-word expression.

Ramisch et al. (2008)’s compared the language-independent association measures with lan-

guage and type dependent approaches to multi-word detection. While they found association

measures such as mutual information to be quite useful, they contrasted their performance with

a linguistic measure termed “Entropy of Permutation and Insertion”. This took into account the

syntactic variants of an expression, and their results showed an improvement in the performance

for the English phrasal verbs dataset. They concluded that while association measures are indeed

useful, they need to be tuned towards the particular characteristics of the type of multi-word.
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6.2.2 Use of Linguistic Knowledge

Linguistic knowledge in the form of dictionaries, thesauri and linguistic rules is used directly

or formulated into a linguistic measure for the detection of multi-words. This knowledge is adapted

towards the particular type of multi-word i.e. whether it is a phrasal verb, a complex predicate or

a compound. These measures also take into account the peculiarities of the language that is being

studied.

Vincze et al. (2011) compared the automatic detection of noun-noun compounds with NVCs.

They found that the effect of syntactic information (such as dependency arc labels) is negligible for

detecting compounds but drastically improves the performance in the case of NVCs. This shows

that NVCs are a good test case for integrating statistical measures with linguistic information.

In English, complex predicates are more commonly termed as light verb constructions or

support verb constructions (As we are referring to the same phenomenon, we will continue to use

the term ‘complex predicate’). Tan et al. (2006) have used a number of linguistic features to identify

light verbs in English. They build on the work of Grefenstette and Teufel (1995) and Stevenson et al.

(2004), who used features such as the morpho-syntactic similarity between nominal predicates and

their verbal counterparts or the presence on indefinite determiners before the nominal predicate.

Tan et al. (2006) also make use of linguistic resources such as a list of light verbs that

frequently occur in a complex predicate in English. Cross-linguistically, the same set of light verbs

(such as make, give, do/have) tend to occur in a complex predicate. Additionally, in English,

the noun in a complex predicate is very often the nominalized form of a verb. E.g. take a walk

contains the nominalization walk, which also occurs as a full verb. This property is exploited in a

feature that looks at the frequency of the nominalization and its full verb counterpart, i.e. walk(v)

and walk(n). If both tend to occur with the same frequency, then it is likely that the particular

noun-verb candidate is a complex predicate. Using these features, Tan et al. use a random forest

classifier to achieve an F1-score of about 0.68 on the Wall Street Journal corpus of English.

Tu and Roth (2011) look at both statistical and linguistic contexts to detect English complex
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predicates. Among their local linguistic features, they utilize bigram information about the nominal

head and light verb, the nouns themselves and the Levin verb class members of deverbal nouns.

They achieve almost similar results using purely linguistic or purely statistical features - an accuracy

of about 0.86. However, they also find that the linguistic features are more robust for minimal pairs

where surface features are exactly the same, but only one of the pair is a true complex predicate.

They also observe that mutual information and the noun-verb bigram feature give the system the

greatest boost. In a more recent study, Chen et al. (2015) have described an improvement over

Tu and Roth (2011)’s performance by using lexical features from WordNet, as well as word sense

information. Using the Tu and Roth (2011) testset, they report a 0.89 F-score for English NVCs.

Author/Feature Tan et al’06 (Eng) Tu and Roth’11 (Eng) Begum et al’11 (Hin)

Deverbal noun Y Y

Noun semantics Y Y Y

Light verb list Y Y Y

Presence post-posn Y

Presence determiner Y Y

Collocational measure Y Y

Table 6.1: Commonly used linguistic features for English and Hindi NVC detection.

Begum et al. (2011) have achieved an accuracy of around 0.85 for identification of Hindi

complex predicates. In their approach,they use a Maximum Entropy classifier (Ratnaparkhi, 1998)

with mostly linguistic features. Similar to English, they use the set of light verbs and the nouns

themselves. Rather than check for the presence of the determiner (like English), they check for the

presence of postpositions and demonstratives, which preferentially do not occur with a Hindi com-

plex predicate. Like Tu and Roth, they use the verb-object bigram and the noun class information

from Hindi WordNet (Narayan et al., 2002).

Table 6.1 summarizes some of the important linguistic features used by each of the supervised

learning approaches described above. There are a few similarities in the linguistic features used,

but each approach also tunes the features to the language in question, whether English or Hindi.

Each approach also uses a parsed corpus and a lexical resource such as WordNet or VerbNet.



94

6.2.3 Other Methods

Apart from using linguistic or statistical measures with supervised learning, other methods

such as parallel corpora have been used to extract multiwords. These methods are popular because

a resource-rich language (like English) can be used to project linguistic information onto another

language. Mukerjee et al. (2006) described the use of parallel corpora to detect Hindi complex

predicates. English and Hindi data was automatically aligned and then POS (part of speech)

tags were projected from English to Hindi. If the projected English tag was a verb and its Hindi

correspondent was a noun or adjective, then they checked whether the word immediately following

the noun was a light verb. If this was the case, the Hindi counterpart was tagged as a complex

predicate. This idea was based on the intuition that a complex predicate in Hindi is likely to

correspond to a single verb in English. A drawback of this method was the need for hand-correction

of all the automatic alignments for better performance (this was mainly because of the quality of

the parallel corpora). Sinha (2009) also used a similar method but with a lexicon of light verbs in

Hindi and their translations in English.

6.3 NVC detection for Hindi

The previous work on NVCs demonstrates that the task of identification of NVCs in general

has received a fair amount of attention. In this respect, our proposal to build an automatic classi-

fication system for NVCs describes a few more contributions. To begin with, we use our classifier

in tandem with the insights gained from linguistic analysis of NVCs. We would like to explore

whether the linguistic analysis lends itself to being encoded in the form of features. We also look

more closely at some of the language-specific challenges for identifying NVCs. Additionally, we

compare our model to Begum et al. (2011) with our features and demonstrate an improvement in

performance.

In this section, we will first explore our data selection method, followed by a description of the

candidate selection process. We use the manually annotated POF label as our source of knowledge
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about the NVC. We describe the automatic classifier and our features. Finally we evaluate our

performance using two test sets from different genres.

6.3.1 Data

The Hindi Treebank consists of news text, with a small sub-part consisting of conversational

data, taken from fiction. The Treebank also provides Training and Testing splits for the news

subsection. We decided to utilize the training/testing splits provided by the Treebank for our

experiments.

The Treebank uses the POF label to annotate adjectives, adverbs as well as nouns. For our

study, we chose to focus on nouns only, leaving out adjectives or other categories. We also focused on

only the top 20 most frequently occurring light verbs in the corpus, which accounted for 90% of the

cases annotated in the Treebank. These light verbs include the following: kar ‘do’, ho ‘be/happen’,

de ‘give’, hE ‘be’, raha ‘stay’, aa ‘come’, karaa/karvaa ‘cause to do’, lagaa ‘touch/feel’, jataa

‘convey’, le ‘take’, banaa ‘make’, rakh ‘keep’, chal ‘go’, uthaa ‘rise’, daala ‘put’, laDa ‘fight’, lag

‘seem’, ban ‘become’, maar ‘hit’. Each of these light verbs also appear as ‘full’ verbs i.e. they can

also appear without a nominal predicate.

Predicate counts in the Hindi Treebank

All Predicates NVCs NVC in this study

Tokens 47163 16564 15057

Table 6.2: Nominal Predicates included in this study

Table 6.2 shows the distribution of the NVCs in the data and in this study. The reason for

leaving out NVCs that did not occur with the top 20 light verbs was the possibility of increased

annotation errors for these cases. Adjectives and adverbs were not included as we did not consider

their properties as the primary focus of this work.

The distribution of the 20 light verbs in our training data is shown in Figure 6.1. It is

apparent from this bar plot that the frequency of kar ‘do’ is the greatest, followed by ho, ‘be’ and

de ‘give’. The light verb kar ‘do’ has many more positive cases of NVCs as compared to negative
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or ‘full’ usages. For other light verbs such as de, the distribution is more even and with other light

verbs, there are far more ‘full’ usages of these verbs as compared to light. This distribution of light

verbs makes the overall detection of these verbs more challenging.

6.3.2 Candidate Selection

Our aim was to select positive and negative instances of NVCs in the Hindi parse trees. In

the Treebank, the predicative noun is a dependent of the light verb and in the majority of the

cases, both noun and light verb occur next to each other in the sentence. The noun and light verb

can be scrambled away from each other, but we found this to be fairly rare in the Treebank NVC

examples. Therefore, we chose candidates based on proximity- e.g. if a phrase annotated as an NP

occurred next to a verb phrase containing a light verb, this was taken to be a candidate for NVC

identification. If the predicative noun were to be scrambled away from the light verb, our system

would not recognize it. The case of syntactically flexible NVCs needs to be taken up in future work.

Apart from NP phrases, we also accepted phrases annotated as ‘BLK’, which indicated that

the noun was borrowed from English. Such nouns often occur as part of NVCs, as complex predi-

cation is used to introduce new words into the language.

6.3.3 Classifier

Our experiment is focused on the identification of NVCs in the Treebank. We use the LIBSVM

implementation of a support vector machine classifier with a linear kernel for training as well as

testing (Chang and Lin, 2011). We also utilized LIBSVM tools for scaling the data as well as for

carrying out five fold cross validation during the development stage. The linear kernel requires the

cost parameter c to be specified during the training stage. We utilized a c value 1 (default) for this

data.

The training and testing instances consisted of positive and negative classes of NVCs. Table

6.3 shows the numbers of positive and negative labels in the training and testing data. Our training

data was balanced in order to include a more or less similar number of NVCs and non-NVCs. We
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did not change the test data.

Our two test sets were drawn from different genres. The news test set is from the testing

portion of the Hindi Treebank. The second test set consists of sentences taken from literary crit-

icism.This data is not from the Treebank, but taken from the ICON 2009 Shared task for Hindi

parsing (Husain, 2009). We also included this dataset to compare the performance of our model

with Begum et al. (2011),

It is noticeable that the news test set consists of a higher proportion of non-NVCs. This

is in accordance with our earlier observations, where only 40% of the predicates are annotated as

complex predicates. The literary criticism test data shows a similar trend, the non-NVCs occur

with at a higher frequency as compared to NVCs.

We built two kinds of models using this classifier. The first of these was a combined model,

where all twenty light verbs described in section 6.3.1 were tested against their non-light verb coun-

terparts. The second type of model consisted of a separate classifier for the three most frequently

occurring light verbs kar ‘do’, ho ‘be’ and de ‘give’. We used the same training data for both types

of models.

Training (Hin Treebank)
Test (News)
Hin Treebank

Test (Literary)
ICON Data

NVC 9097 777 1008

Non-NVC 8993 857 1583

Table 6.3: Instances of NVCs and non-NVCs in the training and test datasets.

6.3.4 Features

NVC identification requires us to distinguish predicative noun usages from non-predicative

ones. A non-predicative usage would be similar to an ordinary argument but a predicative usage

would allow for combination with a particular light verb. There is no clear set of diagnostics that can

be used to distinguish NVCs from non-NVCs. Bhattacharyya et al. (2007) discuss some diagnostic

properties e.g the absence of postpositions after nouns that occur as part of NVCs. We include
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some of those diagnostic criteria in this work and we also introduce some new features. While some

of the morpho-syntactic evidence for NVC detection (e.g. postpostion information) can be very

useful, it is not always available in a reliable manner. We need to include other information as well.

The usefulness of the lexical item feature has been mentioned earlier for NVC identification

in English, therefore we include lexical information for both noun and light verb. Additionally, we

also utilize collocational features using two association measures. Finally, we also include semantic

features that describe the properties of predicative nominals.

Thus, the features used for identification of NVCs can be grouped into roughly four categories

viz. lexical, morphosyntactic, collocational and semantic. Table 6.4 shows the set of features used

for identifying NVC cases in the Treebank. We introduced feature number 4 and 8 based on our

study of NVCs in Chapter 6 and Chapter 4. The remaining features have been used before to

identify NVCs either in English or Hindi.

Type No Feature Description (Count)

Lexical
1 Verb lemma (Baseline) Feaure ID (20)
2 Noun Feature ID (2613)

Morpho-syntactic
3 Postposition after noun Binary

4
Arguments of eventive noun
(eventive nouns have an ‘extra’ argument)

Binary

Collocational
5 Log-likelihood value Numerical, converted to binary
6 Pointwise Mutual Information value Numerical,converted to binary

Semantic
7 Ontological category of noun Feature ID (79)
8 Acceptability of noun with a given light verb Binary

Table 6.4: Features used for NVC detection

Lexical features

Lexical features are based on the intuition that predicative nouns and light verbs already

found in training data are likely to be found in unseen data as well. We decided to use the verb

lemma feature as our baseline. The verb and noun lexical features were represented as unique

features i.e. each of the 20 light verbs had a feature id associated with it. Similarly, for nouns,

each noun that occurred in the data was associated with a feature id. In Begum et al. (2011)’s

experiments, lexical features alone resulted in nearly 81% accuracy. We expect to find a similar
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effect for this feature in our data.

Morpho-syntactic features

We have two morpho-syntactic features viz. the postposition and extra argument feature.

The first of these is based on the linguistic knowledge that a noun, which is part of an NVC cannot

occur with a postposition. Example (60) shows that addition of a postposition after the noun in

an NVC is ungrammatical. However, this postposition is correct for an ordinary argument NP in

(61). A morpho-syntactic feature such as the presence of the postposition (we specifically look for

genitive, locative or instrumental postpositions) is easy to extract from the Hindi Treebank using

part-of-speech tags for postpositions and demonstrative pronouns.

(60) logõ=ne
People.M.Pl=Erg

pustak=kii
book.F.Sg-gen

tareef=*ko
praise.F-*acc

ki-yaa
do-Perf.M.Sg

*People praised the book

(61) samir=ne
Samir.M.Sg=Erg

us
that

seb=ko
apple.M.Sg=Acc

khaa-yaa
eat-Perf.M.sg

‘Samir ate that apple’

The ‘presence of extra arguments’ feature looks for certain postpositions that indicate whether

a nominal has introduced an argument of its own (apart from itself and the subject, which is intro-

duced by the verb). Extraction of these features is facilitated by the dependency tree information.

(62) pulis=ne
police=Erg

logon=par
people=loc

hamlaa
attack.M.Sg

ki-yaa
do-Perf.M.Sg

‘(The) Police attacked the people’

(63) samir=ne
samir.M.Sg=Erg

mohan=se
Mohan.M.Sg=instr

nafrat
hatred.F

k-ii
do-perf.F.Sg

‘Samir hated Mohan’

(64) samir=ne
Samir.M.Sg-Erg

ghadii=kii
watch.F.Sg-gen

chorii
theft.F

k-ii
do-Perf.F

‘Samir stole the watch’
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Examples 62-64 illustrate the cases where an extra argument, with either genitive, accusative

or locative case 1 is introduced by the nominal. We also experimented with using other part-of-

speech features here- such as the presence of proper nouns (the NNP tag in the Treebank), but

they were not useful, perhaps because they did not occur so often in the data. We also tried using

the NN tag itself as a feature, but it was not very informative.

Collocational features

Collocational features are based on the idea that a particular noun and light verb combination

is likelier to occur together rather than separately. In other words, we want to know whether a

noun and verb are occurring together more often than chance. We decided to use the log-likelihood

ratio that is known to be useful for sparse data (Manning and Schütze, 1999). In addition, we also

chose to use pointwise mutual information (PMI), which has been used successfully for English

NVC detection (Tu and Roth, 2011; Fazly, 2007).

In order to collect our counts for the collocational features, we had to make use of a larger

corpus than the Treebank. We made use of Corpus Factory for Hindi consisting of 60 million words

of web text, including Hindi Wikipedia (Kilgarriff et al., 2010). This corpus was tagged with part

of speech information and proximate noun and verb combinations were extracted from it. We then

made use of the N-gram statistical toolkit (Pedersen et al., 2011) in order to calculate the values

for log-likelihood and pointwise mutual information.

These values were then converted to binary features. For log-likelihood, this was done using

a table of critical values to decide whether the ratio was significant. Accordingly, it got the binary

feature 0 or 1. In the case of PMI, we checked whether its value was greater than or less than 0

for a given noun and verb candidate. If it was greater, then the noun-verb pair was likely to be a

better collocation.

Semantic features

The semantic features help us distinguish predicative nouns from their non-predicative coun-

1The locative and instrumental case might be ambiguous between an argument and adjunct
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terparts. This was based on the idea that there are particular distinguishing semantic properties

for predicative nouns e.g. many are eventive nouns rather than nouns describing artifacts or objects

We used Hindi WordNet (Bhattacharyya, 2010) to look up feature 7 (the ontological feature). We

first looked for the the synsets for a given noun candidate. If a synset for this noun existed, we ex-

tracted its ontological feature for the first sense of that noun. The ontological feature corresponded

to properties such as Abstract, Inanimate, Noun or Object, Inanimate, Noun etc. Each of these

were coded in the manner of lexical features i.e. a unique feature id for a particular ontological

property.

The second semantic feature was the acceptability feature,which was designed based on

the experiments in Chapter 4. We associated each of the 20 light verbs with the ontological

property of the noun that was likely to occur with it. E.g. kar was associated with Physi-

cal Action Abstract Inanimate, de ‘give’ with Communication Action Abstract Inanimate etc. If

a noun occurred with the ontological property that was associated with a particular light verb, it

was marked positively for this feature. We had 20 unique feature ids for the acceptability property.

6.4 Evaluation

We trained our model on the eight features described above and evaluated them against the

two test sets that we described earlier. We decided to make use of the verb lemma as our baseline

feature. In addition to the evaluation on NVC and non-NVCs as a whole, we also evaluated our

performance over individual light verbs in the news set. A detailed description of the results for

each of these sets is described below.

6.4.1 Results: News testset

The set of eight features described earlier were used to create a model that was evaluated

against the News test set. Table 6.5 shows the Precision, Recall and F1 score for our model.

The verb lemma gave us a fairly high baseline, but addition of other features did improve the

performance. When we break down the relative contribution of each feature, in Table 6.6, we find
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that the noun’s lexical feature makes the most contribution towards the results. Other linguistic

features improve the performance slightly more. The usefulness of the lexical feature has also been

described in Tu and Roth (2011). As both the training and test sets are drawn from the same

distribution, similar nouns will tend to occur in both sets.

Precision Recall F1

NVC 86.80 90.60 88.66

Non-NVC 91.13 87.51 89.28

Accuracy 88.98

Verb lemma Baseline 80.59

Table 6.5: Results for the news dataset from the Hindi Treebank

Feature combination Accuracy Diff
Baseline (verb lemma) 80.59

Lexical 87.33 +.6.74
Lexical+Morphosyntactic 88.31 + 1.02
Lexical+Morph+Collocational 88.98 + 0.67
Lexical+Morph+Coll+Semantic 88.98 -

Table 6.6: Relative contribution of features for News dataset

We also decided to evaluate this model’s performance on the individual light verbs in our

data. We calculated the precision, recall and F1 score for each light verb that occurred in the test

set. The results are described in Table 6.7. We find that the combined model (i.e. the model for

all light verbs) is effective for certain light verbs, specifically, kar ‘do’ and le ‘take’. However, the

performance is not as effective for other light verbs, noticeably, de. The model is unable to detect

NVCs when the light verbs are very infrequent e.g. verbs such as raha ‘stay’ or banaa ‘make’.

These numbers also show that despite the very high baseline for a light verb like kar ‘do’,

the linguistic features result in some improvement.

It is possible that light verbs other than kar and ho have properties that are quite different,

therefore the same set of features are not useful for their identification. In order to check whether

the performance for these individual light verbs might improve after addition of a different set of

linguistic features, we decided to create individual models for the light verbs de ‘give’ and ho ‘be’.
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Individual LVs Counts Precision Recall F1 Baseline Accuracy

kar ‘do’ 546 96.31 98.80 97.54 92.12 95.42

ho ‘be’ 191 75.25 72.27 73.73 47.12 72.77

de ‘give’ 205 59.37 69.51 64.04 60.00 68.78

le ‘take’ 88 53.84 53.84 53.84 85.2 86.36

lagaa ‘touch’ 48 66.66 84.21 74.41 60.41 77.08

jataa ‘convey’ 15 77.77 63.63 70.00 26.67 60.00

Table 6.7: Precision, Recall and F1 for individual light verbs in the news test set.

6.4.2 Individual models

The eight features described in Table 6.4 that were used in our combined model were not as

effective for certain light verbs. We decided to experiment with creating individual models for two

light verbs de ‘give’ and ho ‘be’. We used the same training and test data, but a different set of

features for these two light verbs.

In order to improve the performance, we introduced two new morpho-syntactic features and

one new collocational value. The first feature was the presence of a demonstrative pronoun before

the noun. This indicates that it is not an NVC, but an ordinary argument. We detect this using

the part of speech tag for such pronouns. The second morphosyntactic feature was based on the

dependency tree structure. If a noun is represented with a dependent, it is likely to be a predicative

noun. This feature overlaps with the ‘extra argument’ feature, but takes into account additional

parse tree information about the predicative nature of the noun. (Figure 6.2).

kar-rahaa-tha

pratikshaa

Ravi-kii

Ram

Figure 6.2: Tree for Ram Ravi-kii pratikshaa kar rahaa thaa ‘Ram was waiting for Ravi’. The NVC
is pratikshaa kar and the noun pratikshaa has a dependent

In addition to the morpho-syntactic features, we also utilized the LVC collocational value

introduced in (Fazly and Stevenson, 2007). This has three factors- the relative frequency of a
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noun N in the corpus, the probability with which a noun forms an LVC with any verb and the

probability of forming an LVC with the given verb only. We calculated this using the Treebank

knowledge about NVCs.

LV C(N,V ) = Pr(N,LV,LV C) = Pr(N)Pr(LV C|N)Pr(LV |N,LV C)

Using these additional features, we created an individual model for the light verbs ho ‘be’

and de ‘give’. Table 6.8 shows the performance of these individual models with more customized

features. The individual models for de ‘give’ and ho ‘be’ show an improvement over the combined

model with a different feature set. For ho, we enhanced the original eight features with the two

morphosyntactic features.

We found that including semantic features for the light verb de ‘give’ actually resulted in a

decrease in performance. The individual model for de ‘give’ consisted of morphosyntactic, colloca-

tional and lexical features only. We think this could be because the light verb de ‘give’ has specific

semantic properties that are not captured by the semantic features we used for the combined model.

LV Model Precision Recall F1 Baseline Accuracy

ho Combined 75.25 72.27 73.73 47.12 72.77

Individual 85.22 72.25 79.36 47.12 79.58

de Combined 59.37 69.51 64.04 60.00 68.78

Individual 69.41 71.95 70.65 60.00 76.10

Table 6.8: Comparing the performance of individual models with the combined model for de ‘give’
and ho ‘be’

6.4.3 Results: Literary criticism

We also tested our combined model on a test set drawn from a different genre as compared to

the training set. On the literary criticism test set, we obtained an accuracy of 86.41% (Table 6.9).

Here, the lexical feature contributed to a much lesser extent as compared to the previous dataset

as the nouns in the test set are from a different distribution. Therefore, the baseline accuracy

based on the verb lemma feature is also lower. We also compared the performance of the classifier

in this section with the study in Begum et al. (2011). In their study, a smaller training set from
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the Hindi Treebank was used as a training set. Similar to our study, the twenty most frequently

occurring light verbs made up the candidate NVCs. The test data was taken from a different genre,

i.e literary non-fiction. We report some improvement over the accuracy in Begum et al. (2011),

who used the same test set.2

The recall for the NVC cases is not as high as the News dataset, hence we notice a drop in

the F1 score for the NVC cases. On the other hand, the precision and recall for the non-NVC cases

is as good as the results from the news dataset.

Precision Recall F1

NVC 86.66 76.98 81.5

Non-NVC 86.31 92.41 89.2

Accuracy 86.41

Begum et. al. (2011) 85.28

Verb lemma Baseline 76.76

Table 6.9: Results for the literary criticism dataset from the shared task. We compare our result
to the accuracy reported in (Begum et al., 2011)

If we look at the relative contribution of each feature in table 6.10, we can see that linguistic

features can help in improving the performance when the test set is from a different genre. The

relative contribution from the lexical feature is also lower as compared to the news test set.

Feature combination Accuracy Diff
Baseline (verb lemma) 76.76

Lexical (noun lemma) 82.09 +5.33
Lexical+Morphosyntactic 83.94 +1.85
Lexical+Morph+Collocational 85.48 +1.54
Lexical+Morph+Collocational+Semantic 86.41 +0.93

Table 6.10: Relative contribution of features for literary criticism dataset

6.5 Error Analysis

In order to carry out a detailed error analysis, we focused on the number of unseen nouns

that the classifier was able to predict accurately. As expected, the news testset had a fewer number

2Begum et. al. do not report precision, recall and F1 scores for their experiment.
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of unseen nouns as compared to the literary testset. The classifier was able to predict about 86%

of the unseen nouns correctly in both the literary and news test sets. In the literary testset, the

majority of the errors were related to the prediction of the correct NVC cases—the classifier was

better at correctly predicting those unseen nouns that were not NVCs. Some unseen NVCs in the

literary testset were rare and the statistical or semantic features were not able to capture them.

In such cases, the morpho syntactic features were able to predict the non-NVC cases with better

success.

In the news test set, the classifier was about as good at predicting NVCs as well as non-NVCs

among the unseen nouns. At the same time, a number of already seen nouns in the news test set

were also not classified correctly. Some of these cases showed a more exceptional syntactic pattern

e.g. some of these were non-finite light verbs such as gerunds, or were cases where the light verb

had no dependent other than the predicating nominal. But apart from these cases, there was no

over-arching pattern that could describe why nouns that were already seen in the training data

could not be correctly identified in the test data.

News Testset Literary Testset

Unseen
Nouns

Seen
Nouns

Unseen
Nouns

Seen
Nouns

Correctly Predicted 156 1298 528 1711

Incorrectly Predicted 24 156 84 268

Total 180 1454 612 1979

Table 6.11: Unseen nouns in News and Literary criticism testsets

6.6 Discussion

The identification of Hindi NVCs appears easy enough at first because of the high perfor-

mance of the lexical features. Almost all previous work describes the usefulness of this feature.

However, if we evaluate the data by light verb, we find that there is variation in the performance

across individual light verbs. This points towards the fact that the combined model for NVCs is

not necessarily robust across the board. For light verbs that have markedly different linguistic
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properties, or those light verbs that occur with low frequency, the combined model is not useful.

For such cases, individual models are more useful, provided there is enough training data.

To the best of our knowledge, previous evaluation criteria do not examine the performance of

a combined model for NVCs against individual light verbs. In Hindi, such an evaluation is necessary

because of the peculiarities of the light verb distributions and the difference in their properties. For

example, we find that semantic features in the combined model are not sufficient to capture the

peculiarities of the light verb de ‘give’.

This work also gives us an insight into the way a better NVC identification system might be

designed. Such a system might use varying strategies for identification depending upon the light

verb that occurs in an NVC. We could make use of individual models to identify high frequency

NVCs with better accuracy. For low frequency cases, collocational features can be applied and

finally, lexical features alone can be used to capture any NVC cases that were not identified by

any other strategy. Such a system should result in an improved performance in a linguistically

motivated manner.



Chapter 7

Conclusion and Future Work

7.1 Summary and Contributions

The work presented for Hindi NVCs is a step forward towards understanding this phenomena

in an empirical setting. We began our research into NVCs with the Hindi Treebank, where nearly

37% of the predicates are annotated as NVCs. The productivity of NVCs and the challenges with

respect to their linguistic representation and accurate identification are addressed in this thesis.

In the first part of this work, we described the semi-automatic creation of semantic frames

for NVCs (Vaidya et al., 2013). These specify the subcategorization information for NVCs in terms

of PropBank style semantic roles. This work is based on a detailed study of the mapping between

the dependency labels in the Hindi Treebank and the PropBank semantic roles (Vaidya et al., 2011;

Vaidya and Husain, 2011). Our mapping rules can identify almost two thirds of the semantic roles

for NVCs correctly, which reduces the manual effort required to create these frames.

The large number of NVC combinations also raise problems with respect to consistency in

annotation and representation in a lexical resource. The discovery of generalizations among nouns

is useful in predicting similar semantic frames for a given group of nouns. In chapter 4, we described

the use of a clustering algorithm to find similarity among nouns using two features. These results,

though preliminary are useful directions for future work. We also showed how the results of such

noun class groupings can be used to extend the lexicon for computational grammars (Sulger and

Vaidya, 2014).

We continued our exploration of lexicalized grammars by comparing the representation of
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NVCs in two frameworks viz., Lexical Functional Grammar (LFG) and Lexicalized Tree-Adjoining

Grammar (TAG). This comparison highlights the differences between the two formalisms and the

mechanism required to capture the syntactic properties of two light verbs kar ‘do’ and ho ‘be’.

While the LFG analysis captures the co-predicating properties of noun and light verb, the TAG

analysis is can be used to extract elementary trees from the Treebank.

The final part of the thesis uses the insights gained about NVC properties in order to au-

tomatically identify these cases in the Treebank. We use a suite of eight features which identify

NVCs across two genres. In addition, we also demonstrate that the use of individual models for

a particular light verb can be used to identify NVCs with greater accuracy. This procedure also

takes into account the peculiarities in the distribution of these light verbs in corpora.

We summarize our contributions to the study of NVCs below:

Development of semantic frames for Hindi NVCs Our method resulted in the cre-

ation of 1884 frame files for nearly 3000 unique combinations of noun and light verb. These frames

are already in use for semantic role annotation of NVCs.

A Tree-adjoining grammar representation for a sub-class of Hindi NVCs

We modelled the linguistic properties of the Hindi NVC using Lexicalized Tree-adjoining

grammar (LTAG). We use LTAG to describe the particular properties of NVCs using feature struc-

tures in LTAG. Additonally, we compare our analysis to an existing Lexical Functional Grammar

analysis in (Ahmed et al., 2012). Our work contributes towards a theoretical understanding of

NVCs in computational formalisms and can be used in future experiments on grammar extraction

out of Treebanks.

Automatic identification of NVCs in corpora

We have built and evaluated a system for the automatic identification of NVCs. We have

demonstrated the usefulness of our linguistic features and additionally, we have shown that features

tuned to individual light verbs can improve the performance. Our system performs comparably

with respect to previous work on NVC identification.

Mapping between Hindi Treebank and PropBank
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We have developed a rule based system for mapping between the Hindi Treebank and Prop-

Bank labels, which can be used to improve tasks such as semantic role labelling and semi-automatic

annotation of roles for Hindi.

Exploration of noun class detection for predicative nominals

We examined the contribution of two linguistic properties for discovering noun classes using

a clustering algorithm. We also proposed a new evaluation measure based on PropBank semantic

labels. Additionally, we described a procedure for integrating noun classes into Lexical Functional

Grammar, using noun templates.

7.2 Future Work

In terms of future work, there are several promising areas that can be explored in more detail.

The first of these involves more primary research on the properties of predicating nominals. As

noted earlier, there are several exceptional predicating nominals that can optionally take accusative

case marked arguments. A more detailed study of such nominals is required in order to uncover

possible reasons for this exceptional behaviour. A psycholinguistic approach may be adopted to

compare these nominals with other predicating nominals along semantic or discourse dimensions.

We also looked at the representation of NVCs in lexicalized grammars, and in particular we

described the representation of NVCs using specialized templates. Another productive area of work

might be to look at the design of such templates in other unification-based grammars such as HPSG

or Sign-based Construction grammar.

For the automatic identification of NVCs, we described the performance of the model on

individual light verbs. We also showed that the application of light verb specific features improved

classifier performance. Therefore, it would be useful to understand whether models trained on each

of the individual twenty light verbs might be used, as opposed to a single combined model. It may

also be useful to use test sets from a number of different genres to check the robustness of the

identification system.

The identification of true NVC cases themselves is still a challenging task. In chapter 2, we
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described a gradient among NVCs. NVCs range from the most prototypical cases to the least, based

on their performance on various diagnostic tests. It is worth exploring whether NVC annotation

could be made similarly fine-grained for lexical resources. NVCs themselves could be annotated

with more graded labels, reflecting the degree of compositionality between noun and light verb.

Therefore, there is potential for further research on NVCs at a primary level i.e. linguistic

description, at the level of grammar engineering as well as in linguistically motivated NLP appli-

cations. For languages like Hindi, as well as other languages in South Asia, the NVC phenomenon

cannot be ignored whilst working in any of the three areas described above. Given the productivity

of NVCs, using a combination of linguistic and computational approaches is likely to yield the best

results.
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Appendix A

Ontological categories from Hindi WordNet used for noun classification

(1) Abstract,Inanimate,Noun

(2) Action,Abstract,Inanimate,Noun

(3) Adverb

(4) Anatomical,Object,Inanimate,Noun

(5) Art,Abstract,Inanimate,Noun

(6) Artifact,Object,Inanimate,Noun

(7) Cognition,Abstract,Inanimate,Noun

(8) Communication,Action,Abstract,Inanimate,Noun

(9) Edible,Object,Inanimate,Noun

(10) Event,Inanimate,Noun

(11) Fatal Event,Event,Inanimate,Noun

(12) Group,Noun

(13) Mammal,Fauna,Animate,Noun

(14) Mental State,State,Noun
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(15) Natural Event,Event,Inanimate,Noun

(16) Natural Object,Object,Inanimate,Noun

(17) Object,Inanimate,Noun

(18) Occupation,Action,Abstract,Inanimate,Noun

(19) Part of,Noun

(20) Perception,Abstract,Inanimate,Noun

(21) Period,Time,Abstract,Inanimate,Noun

(22) Person,Mammal,Fauna,Animate,Noun

(23) Physical,Action,Abstract,Inanimate,Noun

(24) Physical Place,Place,Inanimate,Noun

(25) Physical Process,Process,Noun

(26) Physiological State,State,Noun

(27) Place,Adverb

(28) Place,Inanimate,Noun

(29) PlannedEvent,Event,Inanimate,Noun

(30) Process,Noun

(31) Psychological Feature,Abstract,Inanimate,Noun

(32) Qualitative,Descriptive,Adjective

(33) Quality,Abstract,Inanimate,Noun

(34) Quantitative,Descriptive,Adjective
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(35) Relational,Adjective

(36) STY,Art,Abstract,Inanimate,Noun

(37) Shape,Descriptive,Adjective

(38) Social,Action,Abstract,Inanimate,Noun

(39) State,Noun

(40) Stative,Descriptive,Adjective

(41) Time,Abstract,Inanimate,Noun

(42) Verb of Action,Verb

(43) Action,Descriptive,Adjective

(44) Concept,Abstract,Inanimate,Noun

(45) Information,Abstract,Inanimate,Noun

(46) Physical State,State,Noun

(47) Possession,Abstract,Inanimate,Noun

(48) Property,Abstract,Inanimate,Noun



Appendix B

‘Verb-centric’ analysis in TAG

In this section, we explore a verb-centric analysis in the LTAG framework. This analysis,

captures a more equitable distribution of arguments within the NVC (c.f. Figure 5.6). According

to this view, both noun and light verb contribute their arguments to the LVC. In this analysis,

the light verb is depicted as an initial tree, and the nominal as an auxiliary tree. The nominal

adjoins into the light verb’s tree, in a mirror-image of the analysis presented before.The light verb

has an incomplete argument structure, which requires adjunction of the nominal. A nominal that

alternates between two light verbs will have a single tree that will adjoin into the appropriate light

verb’s initial tree.

For convenience, we repeat the two examples for the NVC tareef kar in 65 and 66. In the

verb-centric analysis, the light verb kar ‘do’ will have its own agentive argument, whereas the light

verb ho ‘be’ will not have arguments of its own. The nominal tareef ‘praise’ will have its own

argument ‘pustak’. (Note that the genitive kii and inflected form of kar ‘do’ as kii (fem.sg) have

no relation with each other)

(65) pustak-kii
book.F-Gen

tareef
praise.F

huii.
be.Perf.F

‘The book got praised’

(66) logon-ne
people.M-Erg

pustak-kii
book.F-Gen

tareef
praise.F

kii.
do.Perf.F.Pl

‘People praised the book ’
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S

[
mode=vfull perf=+[1] agt=+[2] agr=fsg

]
[
mode=vfull perf=+ agt=+ agr=fsg

]

VP

[
mode=vfull perf=+ agt=+ agr=fsg

]
[

mode=vlight perf=+ agt=+ agr=fsg

assign-case=nom nagr=+

]

V

[
mode=vlight perf=+ agt=+ agr=fsg

assign-case=nom nagr=+

]
[

mode=vlight perf=+ agt=+ agr=fsg

assign-case=nom nagr=+

]

kii

NPv ↓
[

case=erg cat=n

perf=+[1] agt=+[2]

]

Figure B.1: The elementary tree for the light verb kar ‘do’, which is an initial tree

VPr

[
mode=vfull perf=+ agt=+/- agr=[13]

]
[]

VPf ∗
[][

mode=vlight perf=+ agt=+/- agr=[11] nagr=+

assign-case=[8]

]
NP

[
nagr=+ agr=fsg[13] case=[8]

]
[
nagr=+ agr=fsg case=[9]

]

N

[
nagr=+ agr=fsg case=[9 ]

]
[
nagr=+ agr=fsg case=[10]

]

tareef

NPn ↓
[
case=gen

]
[]

Figure B.2: The elementary tree for the nominal tareef, which is an auxiliary tree
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Figure B.2 and Figure B.1 depart from the original TAG analysis in a few ways - first the

light verb is an initial tree which forms a syntactic predication structure. However, as compared

to other ‘full’ verbs, the light verb requires another predicating element to complete its argument

structure. The feature MODE captures this incompleteness. We assume that the S node is always

specified for MODE=vfull but at VP, the bottom feature structure is MODE=vlight (Figure B.1).

For the light verb ho ‘be’, the analysis will be similar in that there will be no agentive argument

supplied by ho ‘be’. The initial tree for ho will also force adjunction at its VP node.

It might seem plausible at first to propose an analysis of substitution into the light verb’s tree

at NPn in figure B.1. However, this analysis is not preferable as we will not be able to differentiate

between light and ‘full’ kar ‘do’ (see also Figure ??). The feature clash that forces adjunction at

the VP node tells us that a second predicate is required to complete the argument structure (and

not only an argument NP).

The feature clash will allow the tree for the nominal tareef ‘praise’ in Figure B.2 to adjoin

at VP. This tree is an auxiliary tree, with its root and foot nodes as VP. It can combine with a

tree having either positive or negative features for AGT. For examples like 65 and 66, there will

be a single elementary tree representing praise. The CASE feature at the NP node in Figure B.2

consists of variables that are not yet specified for their value. They will get CASE as nominative post

adjunction into the verb’s initial tree. Other features in the tree are familiar from the noun-centric

analysis: NAGR=+ as the light verb shows agreement with praise, PERF captures the fact that the

verb is perfective and the subject has ergative case.

Post adjunction, the feature clash at VP on the light verb’s tree will be resolved and the

appropriate AGR features will be unified. This tree is shown in Figure B.3. At VPf , the auxiliary

tree’s bottom feature structure (Fig B.2) unifies with the initial tree’s bottom feature structure

(Fig B.1). Similarly, the top feature structure of the auxiliary tree at VPr unifies with the top

feature structure of the initial tree. After this step, there are no remaining feature clashes in the

tree. Therefore, a final step of unification of features at each node will take place and this is shown

in Figure B.4. The nominal praise gets nominative case from the light verb and the arguments
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logon-ne and pustak-kii will substitute into NPv and NPn respectively.

The light verb ho ‘be”s initial tree will not have arguments of its own. At its VP node, we

will model a similar feature clash between the light and full feature values, which will force the

adjunction of praise into the tree. Note, that the design of the elementary tree for ho may not

always appear without arguments. If, for instance we wish to model the argument composition for

an example such as 41, then ho will appear with a experiencer-case marked argument. We will

prevent adjunction of praise into such a tree by the addition of a feature denoting the semantic

type of noun. E.g. we know that only psychological nouns will result in an experiencer case marked

subject with ho (but not abstract action nouns such as praise).
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S

[
mode=vfull perf=+ agt=+ agr=fsg

]
[
mode=vfull perf=+ agt=+ agr=fsg

]

VPr

[
mode=vfull perf=+ agt=+ agr=fsg]

]
[
mode=vfull perf=+ agt=+ agr=[13]

]

VPf

[
mode=vlight perf=+ agt=+/-

agr=[11] assign-case=[8] nagr=+

]
[

mode=vlight perf=+ agt=+

agr=fsg assign-case=nom nagr=+

]

V

[
mode=vlight perf=+ agt=+

agr=fsg assign-case=nom nagr=+

]
[

mode=vlight perf=+ agt=+

agr=fsg assign-case=nom nagr=+

]

kii

NP

[
nagr=+ agr=fsg[13] case=[8]

]
[
nagr=+ agr=fsg case=[9]

]

N

[
nagr=+ agr=fsg case=[9 ]

]
[
nagr=+ agr=fsg case=[10]

]

tareef

NP↓
[
case=gen

]
[]

NP↓
[

case=erg cat=n

perf=+[1] agt=+[2]

]

Figure B.3: After adjunction of the nominal into the light verb’s elementary tree, we get a composed
structure for tareef kii

S
[
mode=vfull perf=+ agt=+

]

VPr

[
mode=vfull perf=+ agt=+ agr=fsg]

]

VPf

[
mode=vlight perf=+ agt=+

agr=fsg assign-case=nom nagr=+

]

V

[
mode=vlight perf=+ agt=+

agr=fsg assign-case=nom nagr=+

]

kii

NP
[
nagr=+ agr=fsg case=nom

]

N
[
nagr=+ agr=fsg case=nom

]

tareef

NP
[
case=gen

]

pustak-kii

NP

[
case=erg cat=n

perf=+ agt=+ agr=fsg

]

logon-ne

Figure B.4: After the final step of top and bottom unification of features at each node, we get the
final composed tree shown above.


