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Thesis directed by Assistant Professor Debra Goldberg

Proteins in vivo are not completely rigid molecules, and mobilities within their structure play

a key role in protein function. We discuss a novel method for measuring two distinct types of protein

flexibility by comparing pairs of static protein structure coordinates. The measures focus on the

mobility of a subset of atoms in the protein known as the backbone, and they quantify mobility or

flexibility at the level of the amino acids (or residues), which are the basic constituents of proteins.

We validate our measures against a subset of proteins from the protein-protein docking benchmark,

and against a number of individual proteins known to have mobility or flexibility that is significant

to their function. We also demonstrate the applicability of our methodology to several important

biochemical topics including examples that apply to drug and enzyme design, and evaluation of

computational protein structure prediction. We conclude with an analysis of protein structural

and energetic terms showing which terms are associated with our flexibility measures, and may

therefore be useful within the context of protein modeling algorithms to predict the locality of

flexible regions.
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Chapter 1

Introduction

1.1 Background and Motivation

Proteins are ubiquitous macromolecules present in all living organisms. The structure of

proteins allows them to perform, independenntly or collaboratively, a plethora of biological functions

including (but not limited to) signaling, regulation, structural support, transportation and catalysis.

There are four distinct levels of protein structure and each structural level encompasses the previous

ones and is increasingly more complex. The primary level is composed of the sequence of amino

acids (often referred to as residues) and there are twenty unique amino acids in nature that comprise

the sequences of proteins. Secondary structures include local and non-local formations such as α-

helices and β-sheets. Tertiary structure is the full three-dimensional shape (or conformation) and is

represented by cartesian or internal (bond and angle) atomic coordinates. The quaternary structure

is comprised of more than one protein molecule in a bound complex. We are primarily interested

in changes to protein tertiary structure, but all structural levels are involved in this research.

The thermodynamic hypothesis of protein folding postulates that the native (tertiary) struc-

ture of a protein is the global minimum of free energy, determined only by its (primary) amino acid

sequence. This hypothesis is based on Christian Afinsen’s Nobel Prize winning discovery that a

denatured protein can spontaneously self-assemble into its native, biologically-active conformation

[2]. It follows that under the correct environmental conditions, a protein’s native state is a ther-

mostable, correctly-folded tertiary structure. The problem of finding the native state of a protein

from its amino acid sequence is the excedingly challenging protein folding problem. This research



2

does not involve the protein folding problem explicitly, but we address a related area of predicting

protein structural changes.

There are known exceptions to the thermodynamic hypothesis. For example, the inhibitor

protein serpin has more than one native state. This protein exists as an ensemble of conformers; the

native structure is believed to be a metastable, or long-lived intermediate, and its folding pathway

to thermostability sometimes results in an inactive but thermostable conformation [107]. This is an

example of a protein that adopts multiple conformations, and its lowest energy state is not always

the most biologically active. Other exceptions include prions, with a thermostable but misfolded

state that has been implicated in a number of diseases. In fact, there is a great deal of evidence

that many proteins adopt multiple conformations, especially in induced-fit binding to other proteins

[22]. These are not exceptions to the thermodynamic hypothesis because the proteins are influenced

by environmental conditions, but nonetheless, the concept of proteins adopting multiple different

shapes is extremely important. The study of the underlying differences in conformations of the same

protein is the essence of this work. We further motivate this topic by explaining its significance to

protein function and the applied fields of protein engineering and design.

Proteins are inherently flexible, and dynamic changes to their conformational shapes are fun-

damentally important for biological function. According to [103], “proteins are flexible and rapidly

fluctuating molecules whose structural mobilities have considerable functional significance”. Protein

dynamics can occur on a wide range of temporal and spatial time scales. This range encompasses

the smallest atomic fluctuations such as bond vibrations, on the order of femtoseconds to 10−11

seconds with spatial displacements of 0.01 to 1 Angstroms (Å), up to large domain or subunit

motions that can take seconds with displacements up to 10 Å [103]. Thus, understanding the full

function of a protein often requires not only a static, experimentally determined (native) structure,

but also information about the protein’s conformational changes. This crucial information about

proteins can be obtained through a number of experimental and computational techniques which

are described later in this chapter.

The original and ultimate goal for our research is to provide useful predictions about where
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proteins are flexible in order to improve computational design algorithms for protein engineering.

Protein engineering is the process of creating (de novo) proteins or modifiying existing proteins to

build new and useful ones, and stems from the field of protein design. Protein design encompasses

two distinct but interrelated components; the design of biological activity and the design of protein

structure [85]. The goal of rational protein design, one of the main strategies used for protein

engineering, is to predict the amino acid sequences that will fold to a specific protein structure.

This is inversely related to the protein folding problem, but sometimes both problems (protein

design and protein folding) are addressed simultaneously. An example is the exciting design of a

novel protein from a previously unknown fold, accomplished by optimizing both sequence design

and structure prediction [52]. Many protein design and engineering projects have already included

structure prediction by allowing for protein backbone flexibililty in their models and algorithms.

Our ultimate goal is to improve upon the efficiency and accuracy of these methods by providing

more information on the locality and extent of existing or modified protein backbone flexibility.

We review some of the recent breakthroughs in protein engineering, especially the field of

rational protein design, that have lead to increasing difficulty and complexity in the types of chal-

lenges that have been successfully addressed. Many of these breakthroughs have been achieved by

computational algorithms that address the dynamic nature of proteins, using a variety of techniques.

These techniques include the incorporatation of simulations of molecular dynamics to generate a

variety of starting configurations, or the introduction of variations directly into the structure of the

backbone during or prior to the design of a protein sequence. An exciting, improved design of a

300-fold or greater increase in specificity for the protein-protein interface of an immunity protein

complex was accomplished using an ensemble of starting conformations with variations in the back-

bone [44]. An elegant solution to the problem of designing a protein-binding peptide (the GoLoco

peptide - G-protein interface) was accomplished using a strategy of sequence design optimization

combined with backbone modeling [87]. In a final example, Amy Keating’s lab introduced back-

bone flexiblity into the design of an α-helical ligand to bind the antiapoptotic protein Bcl − xL

using normal mode analysis and successfully designed several new peptides that bind the native
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protein [33]. Each of these efforts highlight the benefit of including dynamic information in protein

engineering efforts.

The combination of protein design and structure prediction has been a successful strategy in a

number of protein engineering acccomplishments, including [87, 52], but requires an enormous cost

in computational complexitiy beyond that of just protein design. If we knew where the dynamic

regions existed, or which specific residues were flexible in the context of design, we could incorporate

backbone flexibility into the design in just those regions where it was needed. This is the original

motivation for our study. In later sections, we describe the existing software and explain why it

doesn’t solve this problem exactly. The main issue is that existing software is useful for detecting a

specific type of protein flexibility, and apriori, we don’t know what type of flexiblity we might need

to look for.

Our ultimate goal is to predict flexibility within the execution of a protein design algorithm.

Machine learning classification was proposed as a method to predict each residue of the protein

as either flexible or rigid. Input attributes to the model would naturally include how tightly

the residues were packed, and various computationally available energy terms could be used to

determine the protein backbone’s ability to change shape or move around, such as atomic attraction

or repulsion to other residues in the protein. However, a simple classifier is insufficient because

variations in flexibility are more accurately expressed as a continuum of values. Although the

ranking of the relative flexibility of the residues can be predicted using machine learning regression,

the remaining difficulty is in finding a source of input for the actual values of flexibility that we

were trying to predict. In other words, without existing data on residue level flexibility, there is

no way to implement a continuous machine learning model of flexibility. Our new method arose in

response to this dilemma of lacking accurate experimental data on flexiblity at the residue level.

Why is it difficult to find experimental data that expresses residue level flexibility? Nuclear

Magnetic Resonance (NMR) order parameters, which express the variation in NMR coordinate

files, are an obvious choice for experimental data. Unfortunately NMR data is limited in terms of

the size of the protein and resolution, or defined structural detail. In a comparison of structures
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from X-ray crystallography versus NMR structures as templates for computational design, Amy

Keating and colleagues found that overall, the X-ray structures were better templates for use

with the commonly used Rosetta modelling suite [89, 61]. Another possibility is the use of Root

Mean Square Fluctuation (RMSF) outputs from Molecular Dynamics (MD) simulations, but in

that case we would be predicting from a computational simulation not validated by experiment.

We discovered that there is not an existing method for analyzing flexibility from X-ray data on a

per-residue basis, and yet this is precisely what we need. Futhermore, a new method to analyze

residue-level flexibility from X-ray crystal coordinates of different protein conformations will be a

useful tool for other researchers.

Our algorithm provides an analysis of experimental data that can be used to infer the relative

per-residue amplitude of motion without the computational expense of computing energetics. We

focus on changes to the backbone resulting in movements within or between secondary structure

elements or larger domains while ignoring the very fast timescales corresponding to bond vibrations

evident as side chain motions, or hydrogen bond formation. Thus, the method is not intended to

replace other extremely valuable computational methodologies that provide either detailed simula-

tion data of movements (molecular dynamics) or an analysis of the ordered motions of an ensemble

of configurations such as normal mode analysis. Instead, by utilizing different measurements, we

can readily assess different types of movements.

1.2 Problem Description

We investigate the problem of identifying and quantifying the backbone flexiblity of a protein

at the residue level, limited to the comparison of pairs of X-ray crystal structures with differing

conformations (coordinates) for the same protein sequence. We also explore which protein structure

and sequence attributes are associated with backbone flexibility.
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1.3 Related Methods

1.3.1 Experimental methods used to detect protein flexibility

Numerous experimental techniques are available to investigate protein dynamics and flexibil-

ity. These techniques include:

• Time-resolved x-ray methods attempt to capture protein sructural changes in real time, but

this methodology has many practical limitations which prevent widespread usage [106].

• Fluorescence techniques such as fluorescence resonance energy transfer (FRET) [47], and

fluorescence correlation spectroscopy (FCS) can be applied small proteins [73].

• Hydrogen-deuterium exchange shows experimental evidence for enhanced flexibility in a

mesophilic protein versus its thermophilic homolog [77].

• Nuclear Magnetic Resonance (NMR) is used to compare flexibility in a mesophilic enzyme

versus a homologous thermophilic enzyme [38].

1.3.2 Computational methods to simulate or predict protein flexibility

• Molecular Dynamics (MD) simulations have been combined with biophysical data to gain

detailed mechanistic information, such as a more complete understanding of molecular

recognition dynamics in binding [38, 39, 57].

• MD alone can be used to probe dynamics, although significant computational resources are

required and there are limits to the size of macromolecule that can be considered [25].

• MD analysis has been used to predict NMR relaxation data [16] and classify proteins

according to mobility patterns [37].

• Normal mode analysis (NMA) computes the low frequency normal modes that are asso-

ciated with much of the movement of a protein, and the ElNémo Web Server identifies

normal modes for movement analysis [95].
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• Elastic network models are harmonic models based on a highly simplified energy function,

and have been shown to be useful in studying protein conformational changes [67].

• Hinge prediction:

(1) HingeProt uses elastic network models to predict hinges in a single protein structure

[28].

(2) StoneHinge uses a consensus of two complementary analyses of noncovalent bond

networks to predict hinges between domains of a single protein structure [48].

(3) DynDom uses two conformations to determine domains, hinge axes and hinge bending

residues [36].

(4) FIRST analyzes rigidity and flexibility in network graphs [100].

• TLS motion determination (TLSMD) analyzes a protein crystal structure for evidence of

flexibility, such as local or inter-domain motions [78].

1.4 Thesis Overview

We define some of the basic biochemical terms commonly used in the thesis at the end of this

chapter in §1.5. Chapter 2 describes a framework for characterizing protein flexiblity at the residue

level, and a method for scoring flexibility within the context of the new framework. Background for

each of the individual measurements is also provided. Chapter 3 validates the method by examining

the flexiblity scores of a collection of protein-protein docking benchmark data. We also validate

a number of proteins against the flexiblity described in the structure literature. Chapter 4 gives

several applications of the new method, and Chapter 5 examines correlations of our flexibility scores

with structural, sequence and energetic attributes. We conclude with a summary of contributations

and future work in Chapter 6.
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1.5 Definitions

• Amino Acid The basic constituent (monomer) of a protein (polypeptide), containing a

carboxyl and amino group. The R group, or side chain, differs for each of the 20 naturally

occurring amino acids.

• Backbone All atoms in the amino acids of the protein except for the R group atoms, or

side chains. This includes the amino group, the carboxyl group, and the central carbon, or

Cα atom.

• Dihedral Angle There are three different dihedral angles in the protein backbone, but

in this thesis only two are considered: the phi (φ) angle of rotation between the nitrogen

and Cα atoms in the backbone, and the psi (ψ) angle of rotation between the Cα and the

carbonyl carbon atoms in the backbone.

• Nuclear Magnetic Resonance (NMR) Spectroscopy An experimental technique that

reveals the three-dimensional structure of a protein in solution.

• Residue Another name for Amino Acid, used interchangably throughout the thesis.

• Secondary structure Regions of repetitive coiling (helices) or folding of the protein back-

bone due to hydrogen bonding between constituents of the backbone.

• X-ray crystallography The first method developed to determine the three dimensional

structure of a protein (or protein complex) in atomic detail. This experimental technique

still provides the clearest visualization of protein structures currently available [8].



Chapter 2

Movers and Shapers: Characterizing and Quantifying Backbone Flexibilty at

the Residue Level

2.1 Introduction

The primary goal of our new method is to provide a framework to characterize and quantify

the backbone flexibility found by comparing different conformations (or shapes) of experimental

protein structures. The enormous variety of protein conformational changes represented by com-

paring proteins crystalized under different conditions makes this a challenging endeavor. Specifying

and quantifying how protein backbones change in different circumstances and where they are more

or less flexible may lead to insights into protein function [38]. In the protein structure literature,

we’ve found that many of the observations concerning conformational flexibility are gleaned by

using analytical techniques which are similar to the measures we combine to calculate our flexibil-

ity scoring functions. Our method is both novel in the way we characterize and quantify residue

level flexibility in a single framework, and general in its applicability to many different types of

conformational changes.

We quantify residue level flexibility by analyzing both local and global differences in pro-

tein structures. More specifically, residues within regions that appear mobile with respect to the

remainder of the protein are characterized as movers exhibiting mobility, whereas those residues

within locally deformed areas of the protein are characterized as shapers exhibiting shape pliabil-

ity. Some degree of both characterizations can apply to the same residues. For example, when a

domain moves with respect to the rest of the protein but also exhibits smaller scale deformations
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within the domain then some residues may have relatively high levels of both mobility and shape

pliability. This can be seen clearly in the example of the characterizations of mobility and shape

pliability shown in Figure 2.1 A and B respectively. In part A, the high level of mobility of the top

right helix is demonstrated by the way its position changes with respect to the remainder of the

protein. The shape pliability in this case are hinges, or deformations to the shape of the backbone

enabling the mobility highlighted in A to occur, and the two regions of high shape pliability are

highlighted in Figure 2.1 B for the same conformations as shown in A. In part B the helix is not

highlighted because it doesn’t change shape when it moves away from the rest of the protein. All

figures containing protein structures, here and elsewhere in the thesis, were created using PyMol

[90], unless otherwise noted.

According to [40], the movement of a protein backbone segment in an ordered structure can

be classified as either an internal or external motion. These motions are fundamentally different;

an internal motion refers to a deformation of the segment itself and an external motion refers

to translational and rotational motion of the rigid segment. Because we are comparing static

structures and analyzing changes to the backbone without regard to underlying motions, we use

our own terminology to describe these changes based on differences in observable measurements

from experimental structures. We note that while shape pliability and mobility describe different

aspects of the measured changes, some regions may exhibit high levels of both. Therefore, the

measures for mobility and shape pliability are different but not exclusively so.

Using X-ray diffraction experimental data, the dynamic nature of a protein can be revealed by

comparing conformational differences between independent crystal structures of the same protein

[56]. We currently apply our method exclusively to this type of data. X-ray crystal structures

of different conformations show less variability than NMR structures, but provide more detailed

structural information [111, 101] . Figure 2.2 shows independent crystal structures for the protein

calmodulin; a classic example of a protein changing conformational shape upon binding to a peptide

[17]. Calmodulin plays a central role in intracellular calcium signaling such that after calcium is

sensed by the structure’s lobes, the extreme flexibility of the central helix enhances the likelihood
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Figure 2.1: Movers and Shapers: A. Movers: Mobility of the top right helix with respect to the
remainder of the protein in 2 different conformations of the protein CobU. Highly mobile residues
are highlighted in red and orange, with the remainder of the protein colored gray for contrast. B.
Shapers: Residues with extremely high shape pliability scores are highlighted red and orange in
the same 2 CobU conformations. The shape changes in B enable the large-scale movement in A.
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that a target peptide bound to one lobe will bind to the second lobe [94].

B factors from X-ray diffraction data or order parameters from NMR structures are also

used to obtain protein structure flexibility information. B factors (also known as temperature or

Debye-Waller factors) are a measure of atomic displacement due to both static disorder (where

substates present in solution are trapped in the crystal and may induce modeling errors) as well as

the actual atomic motion, or dynamic disorder [38]. Therefore, using B factors to represent only

the amplitude of atomic fluctuations can be misleading. Our goal is to define a continuous measure

of backbone flexibility similar to the B factor (or NMR order parameter), but representing only

the amplitude of the atomic fluctuations found by comparing x-ray crystal structures of different

conformations of the same protein.

2.2 Methods

2.2.1 Overview of Measurement Calculations

Three types of measurements are used in computing per residue mobility and shape pliability

scores. Below is a brief overview of these measurements, and the subsequent sections we provide

more details.

(1) Cα Distances from our Superpositioning by Secondary Structure elements (S3)

algorithm. The minimum distance obtained between Cα atoms for each corresponding pair

of residues is computed by superpositioning the pair of the conformations as a whole, and

recursively superpositioning down to the level of individual secondary structure elements,

as necessary, to improve the structural alignment. This calculation does not necessarily

find a continuous alignment; instead it optimizes the alignment of individual elements of

secondary structure, such as α-helices and β-strands. This measure is used in computing

mobility or shape pliability scores, depending on the relative magnitude of the per residue

distance measured.

(2) Intramolecular distance calculations. Intramolecular distances are computed over
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Figure 2.2: X-ray crystal structures of the protein calmodulin bound to calcium: A. Calmodulin
without a peptide is dumb-bell shaped, with similar lobes (or hands) connected by a central α-helix
and B. Calmodulin when bound to a peptide (central unattached gray helix) differs significantly
from the unbound structure in the central α-helix, while the lobes differ only slightly (1CDL)
[17, 68]. Each lobe contains 3 α-helices and 2 loops binding calcium (shown as small green dots).The
two structures are colored using a rainbow spectrum with the same colors for corresponding helices
and loops to highlight the similarities.
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the Cα atoms for each conformation, and the corresponding per residue differences of the

distances are calculated. The percentage of differences pertaining to each residue and above

a certain threshold is called the Difference Distance Matrix Percentage (DDMP). DDMP

is used in computing the per residue mobility scores.

(3) Dihedral angle differences. Comparisons of dihedral angles measuring differences in

the phi (φ) and psi (ψ) backbone dihedral angles for corresponding residues are computed,

and the measurement for the dihedral angle difference is the maximum of the per residue φ

or ψ angle difference. The computation of backbone dihedral angle changes can highlight

important shape pliabilities that may not be visible using superpositioning alone, hence

this measure is extremely important in the computation of shape pliability.

2.2.2 Superpositioning

2.2.2.1 Background

Many protein design and structure prediction articles use superpositioning to reveal the

functional movements of proteins in different environments or with different binding partners. An

example of this is the recent study of estrogen receptors, which are the main targets of estrogens

and biomarkers for certain types of breast cancer [63]. The structures of the ligand binding domain

of an estrogen receptor (ER) in complex with 3 different ligands were superimposed to display the

differences in the ER movements responding to the different ligands. The information gleaned by

this superpositioning may aid the design of novel ligands useful in treating or diagnosing diseases

associated with estrogen receptors.

Superpositioning two (or more) structural conformations to minimize rotational and trans-

lational differences, and computing the resulting root-mean-square deviation (RMSD) measured

by comparing the locations of the corresponding Cα (or all) atoms is a commonly used approach

to evaluating structural differences. Two different types of superpositioning methods include rigid

superpositioning algorithms such as [98, 24, 62, 66, 75] that do not allow the structures to change
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shape, and flexible superpositioning algorithms [110, 93] that change the shape of one of the struc-

tures to find a superposition with lower RMSD. Structural similarity results from superpositioning

are used for purposes of structure prediction, fold classification or database searching for structural

homology; information about the proteins as a whole. In contrast, the purpose of our analysis is to

compare the individual corresponding residues of conformational pairs of proteins to determine pro-

tein flexibility at the residue level. We have implemented our own superpositioning algorithm called

”Superpositioning by Secondary Structure elements” (S3) which gives a more accurate per-residue

level comparison than existing superpositioning algorithms.

We experimented with a number of different superpositioning algorithms before implementing

our own. The Theseus superposition algorithm [97, 98] uses maximum likelihood instead of least

squares to find the optimal translation and rotation. For proteins that are somewhat rigid, the The-

seus algorithm tends to find more accurate solutions by differentially weighting structural regions

and correcting for proximal atomic correlations. For molecules that undergo large conformational

changes, however, a superposition algorithm such as FATCAT [110] that allows modifications to

one of the protein structures finds lower RMSD solutions. FATCAT superpositioning takes into

account the flexibility of the molecule by adding twists between aligned fragment pairs (AFPs),

with the simultaneous goals of optimizing the alignment and minimizing the number of twists [110].

For many cases, the FATCAT superpositioning results demonstrate that unaligned regions of

the protein match what is known to be flexible. However, in some cases involving larger motions,

the unaligned portions don’t always match precisely what is known to be flexible. An example of

a FATCAT alignment of the receptor protein (uPAR) from a protein-protein complex is shown

to illustrate the problem we found when attempting to use this (incredibly valuable) tool to find

flexibility. We show the alignment between bound and unbound comformations for one domain

(DI) of the 3-domain receptor, to focus on the distances to the Cα atoms obtained by the FATCAT

alignment. In Figure 2.3 the FATCAT alignment is shown with the 2 aligned conformations colored

in green and magenta. In the reference for the uPAR structure, two hairpin turns in domain DI

are described as extremely flexible, with the labelled residues inside the hairpins, Glu34 and Leu61,
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having RMSD’s of 6.4Å and 5.1Å respectively [4]. Figure 2.3 demonstrates that the FATCAT

alignment results for the flexible hairpin turns are far apart in the superposition, as expected. But

most of the other turns in the FATCAT alignment are also far apart. Herein lies the problem of

trying to discriminate highly flexible from less flexible residues without falsely specifying that all

turns in the protein are highly flexible.

The flexible hairpin turns described in [4] are located at residues 34-36 and 59-62, and these

residues have green boxes around them in the measurements reported in Figures 2.4 and 2.5. The

column under the heading ”Fatcat” reports the Cα distances measured from the FATCAT alignment

displayed in 2.3. There are a number of regions with reported distances > 2Å, including residues

1-24 (excluding residue 8), 32-36, 43-50, 59-62 and 72-77. In fact, the residues in region 1-24 have

higher Cα distances than those in 59-62, although 59-62 is the region described as the flexible

hairpin in [4].

Occasionally, a display of superimposed structures is divided up into domains to clearly

demonstrate which parts of the protein have changed, because it is not feasible to display a single

superimposed image showing disparate changes. For example, the receptor protein uPAR was

superimposed by its three domains separately in the discussion of structural changes from unbound

to bound conformations [4]. As an additional example, the crystal structure conformations for

the human S100A6 calcium sensor protein (known to be overexpressed in certain tumor cells) are

shown in [76] and the first 2 helices are superimposed in a separate figure from the remaining

2 helices. The figures from [76] motivated the development of the Superpostion by Secondary

Structure elements (S3) algorithm, because existing superpositioning algorithms didn’t explicitly

provide the same information about flexibility as the manually created figures and measurements

of the distinct protein regions described in the structure paper. The analysis of mobility and shape

pliability for the residues of the calcium sensor protein are discussed later in §3.3.2.

After an alignment between Cα atoms in the respective structures has been determined, a

superpositioning algorithm determines the translation and rotation that best relates the two sets

of Cα atoms [32]. Within the context of this thesis, the sequence alignment is trivial because we
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Figure 2.3: FATCAT [110] alignment of the bound versus unbound conformations of a single
domain, isolated from the alignment of the full three-domain receptor protein (uPAR) of a protein-
protein complex. The gold colored hairpin turns are highlighted in the figure because they are highly
flexible (and contain the 2 identified residues), with relatively large RMSD’s for the Cα atoms of
residues Leu61 and Glu34 specifically noted in [4].
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Figure 2.4: Measurements for comparing bound and unbound protein uPAR domain DI . Residue
comparisons within the green rectangle are highly flexible, and located within a hairpin turn [4].
See Figure 2.5 for column heading definitions.
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Figure 2.5: Continuation of Measurements for uPAR domain DI , the green rectangle highlights the
second extrememly flexible hairpin turn described in [4]. Column headings: The 2 PDB files (PDB1
and PDB2) with residues (RESID), differences in the φ (D phi) and ψ dihedral angles (D psi), the
Distance Distance Matrix Percentage (DDMP), S3 Cα distance (Sˆ3) , the FATCAT Cα distance
(Fatcat), shape pliability (Shape) and mobility (Mobil) scores, and the secondary structure for each
residue (Sˆ2) , see §5.2 for secondary structure definitions.
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focus only on conformations with the same sequence. A simple objective for superpositioning is to

minimize the squared distances between the corresponding Cα atoms of the two structures. The

optimal translation is the vector that relates the repective controid (i.e. average over all points) of

each structure. The classic solution to finding the optimal rotation vector is the Kabsch algorithm

[45, 32] using singular value decomposition (SVD). Given protein structures X and Y which have

been translated by their respective centroids, a covariance matrix C = XTY is computed. The

SVD of C = UΣV T is calculated (with computational complexity O(N3) [23]) such that the

columns of U are the eigenvectors of CCT , the columns of V are the eigenvectors of CTC and Σ

is a diagonal matrix containing the square roots of the non-zero eigenvalues (i.e. singular values)

of both CCT or CTC. The optimal rotation matrix R = V DUT , such that D =
( 1 0 0
0 1 0
0 0 d

)
and

d = sign(determinant(C))× 1.0.

2.2.2.2 S3 Method

When analyzing a pair of protein conformations by using simple structural alignment tools

from environments such as PyMOL [90], if the intact rigid structures don’t align well, it is natural

to align just one or two secondary structure elements first. Using this concept, we superposition

secondary structure elements when bigger fragments of the protein don’t align well. We use the

Define Secondary Structure of Proteins algorithm (DSSP) [46] to define the individual secondary

structure elements that correspond between the two structures. Instead of introducing twists into

one of the structures, as is done in FATCAT [110], we calculate the minimum Cα distances that

result from partial superpositioning. We don’t create a continuous superimposed structure because

we are only interested in the minimum Cα distances used in describing the relative flexiblity of the

individual residues of the protein.

Algorithm 1 superpositions the two structures using the standard Singular Value Decompo-

sition (SVD) algorithm within the DistancesFromSuperposition function, and if the RMSD is

within the cutoff (1Å) then the algorithm is complete. Otherwise, it finds a single midpoint of the

reference structure that’s not within a secondary structure element (SSE), or 2 “midoints” if there
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is a SSE at the midpoint, and computes the translation and rotation of the optimal superposition

and checks the resulting RMSD recursively for each side. If the midpoint was within a long enough

SSE, it superpositions the residues of that SSE as well. At each superpositioning, we update the

Cα distances to be the minimum distance seen so far. Figure 2.6 shows specifically the S3 iterations

of applying Algorithm 1 (the S3 algorithm) to the S100 calcium sensor protein.

There are faster and more robust methods for solving the superposition problem, but our S3

implementation uses the classic approach because we are mainly superpositioning small subsets of

the coordinates where the efficiency of these small superpositions is not an issue. The details of

finding the miniminum Cα distance using the SVD algorithm are given in Function Distances-

FromSuperposition.

The difference between the Cα distances found by S3 versus those found by FATCAT for the

example of the receptor protein uPAR discussed previously can be seen under the column headings

S3 and Fatcat in Figures 2.4 and 2.5. Notably, the flexible hairpin residues in the green boxes have

the highest S3 Cα distances, and are the only residues with S3 Cα distances > 1.5Å. This example

is typical of the types of differences we see in the two different alignment algorithms.

2.2.3 Difference Distance Matrix Percentages

In [82] the intramolecular distances between 2 structures are compared without requiring

superpositioning, resulting in an O(N2) triangular difference matrix (DM), where N is the number

of residues in each protein. Differences obtained from subtracting the DM’s of 2 structures results

in a Difference Distance Matrix (DDM). In [82] an RMSDD is computed to measure the overall

similarity of the 2 structures based on their respective difference distance entries and furthermore,

elements of DDM’s for comparing independently determined crystal structures of the same protein

were characterized as “large” outside the range of -1 to 1Å.

Because we are interested in per residue flexibility measures, we summarize the percentage

of values outside of the range of -1 to 1Å from the DDM for each residue, and assign each a

Difference Distance Matrix Percentage (DDMP) value. In a protein with two extremely different
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Algorithm 1: Superposition by Secondary Structure Elements (S3)

Input : X,Y arrays of 3 dimensional coordinates of the Cα atoms for 2 sequence-aligned
structures

Output: MinCαDist vector of the min Cα distance for each sequence-aligned residue from
X and Y

1 MinSubDomainLength ←− 8
2 RMSDCutoff ←− 1.0
3 First ←− 1
4 Last ←− N ; (N=Number of aligned residues)

5 RMSD,MinCαDist ←− DistancesFromSuperposition (First,Last,X,Y)

6 if RMSD > RMSDCutoff and (Last - First) > (2 × MinSubDomainLength) then
7 ToExploreList ←− ∅; (List of SubDomains specified by (First, Last) residues)
8 AppendToExploreList (First,Last)
9 SSEList ←− List of (First, Last) residues for aligned Secondary Structure Elements

defined using DSSP [?] (e.g. α-helices and β-strands) with length ≥ 4 residues
10 while ToExploreList 6= ∅ do
11 First,Last ←− GetSubdomainFromList (ToExploreList)
12 MidPt1,Midpt2 ←− FindMidPoints (First,Last,SSEList); if the midpoint is within

a SSE then set MidPt1 and Midpt2 to flank the SSE otherwise MidPt1 =
Midpt2 = the midpoint between First and Last

13 if MidPt1 - First > MinSubDomainLength then
14 RMSD,MinCαDist ←− DistancesFromSuperposition (First,MidPt1,X,Y)
15 if RMSD > RMSDCutoff and (MidPt1 - First) > (2 × MinSubDomainLength)

then
16 AppendToExploreList (First,MidPt1)

17 if Last - Midpt2 > MinSubDomainLength then
18 RMSD,MinCαDist ←− DistancesFromSuperposition (Midpt2,Last,X,Y)
19 if RMSD > RMSDCutoff and (Last - Midpt2) > (2 × MinSubDomainLength)

then
20 AppendToExploreList (Midpt2,Last)

21 if (Midpt2 - MidPt1) > MinSubDomainLength then
22 RMSD,MinCαDist ←− DistancesFromSuperposition (MidPt1,Midpt2,X,Y)

23 return MinCαDist
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Figure 2.6: S3 partial superpositioning of the S100 calcium sensor with boxes around matching
secondary structure elements between the 2 conformations. Below, iterations of S3 partial super-
positioning are shown with resulting RMSD.
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Function DistancesFromSuperposition(Begin,End,X, Y )

Input : Begin and End are the positions of the subdomain to be superpositioned, and X and Y
are the entire Cα coordinate arrays (with size N × 3 ) used in the distance computation

Output: RMSD is the Root Mean Squared Deviation value of the subdomain superpositioning,
and MinCαDist vector is updated to contain the minimum distance between
sequence-aligned residues from all superpositioning operations.

1 XDOM ←− X[Begin : End]
2 YDOM ←− Y [Begin : End]

3 Cen(XDOMorYDOM )3i=1 ←− (

3∑
i=1

End∑
j=Begin

XorY [i, j])/(End− Begin); Compute centroids

4 XDOM ←− XDOM −Cen(XDOM ); YDOM ←− YDOM −Cen(YDOM ); Translate both subdomains
so its centroid corresponds with the origin of the coordinate system

5 C ←− (XDOM )TYDOM ; Compute a covariance matrix
6 UΣV T ←− SVD(C); Calculate the Singular Value Decomposition (SVD) of the covariance

matrix C

7 d←− sign(det(C)); D ←−
( 1 0 0
0 1 0
0 0 d

)
8 Rot←− V DUT ; The optimal least squares rotation matrix.

Tran←− Cen(XDOM )− (Cen(YDOM · Rot)
9 (YDOM )′ ←− (YDOM · Rot) + Tran

10 RMSD←−
√

(
∑N

i=1(XDOM )i − (YDOM )′)i)2/N

11 Y ′ = (Y · Rot) + Tran
12 for j ←− 1toN do
13 MinCαDist[j]←−Minimum(MinCαDist[j], Distance(Y ′[j], X[j])

14 return RMSD,MinCαDist
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conformations, the DDMP values tend to range from .5 to 1.0, with the more mobile subregions

exhibiting relatively higher values.

In Figures 2.4 and 2.5 residues 33-35 and 59-62 exhibit the highest relative DDMP measures

compared to the remainder of the domain, and these are close to the exact regions of the flexible

hairpin turns described earlier [4]. Because there are somewhat larger, but local, changes in the

other two domains (not reported here), we see that the DDMP measures throughout the domain

reflect the movements in the other domains. In this case, there isn’t a large-scale domain movement

as seen in other proteins, where everything changes relative to everything else, as seen in the

calmodulin measurements in Figure 2.7.

2.2.4 Dihedral angle differences

Dihedral angles describe the angle of rotation along the line of intersection of two planes,

and can be computed from the coordinates of 4 contiguous (backbone) atoms such that the first

three atoms define one plane and the last 3 atoms define the second. Considering the 3 bond

vectors formed by the 4 contiguous atoms, the dihedral angle can also be described as the angle of

rotation about the vector in the middle. Looking down on the middle vector, the dihedral angle

describes the angular distance observed between the first and third vectors. The backbone dihedral

angles of proteins are known as phi (φ), involving the backbone atoms C ′ −N −Cα −C ′′, psi (ψ),

involving the backbone atoms N − Cα − C ′ − N and omega (ω), involving the backbone atoms

Cα − C ′ − N − Cα). The planarity of the peptide bond usually restricts ω to be either 180◦; the

typical trans case, or 0◦; the cis case, with the cis case occuring much less frequently. We include

∆φ and ∆ψ (the differences of corresponding φ and ψ dihedral angles from 2 conformations) in our

analysis but ignore ∆ω, since the likelihood of a nonzero ∆ω value is small.

Comparisons of dihedral angles measure differences in the φ and ψ backbone dihedral angles

of NMR structures are computed in [113] and others measure differences between psuedo-dihedral

angles of every 4 Cα atoms [39, 31]. The computation of backbone dihedral angle changes can

highlight important regions with high shape pliabilities that may not be visible using superposi-
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tioning alone. Because each psuedo-dihedral angle involves the inclusion of neighboring residues,

we focus only on the individual φ and ψ dihedral angle differences involving the Cα atom for each

(computationally feasible) residue to obtain a per residue value used in computing shape pliability

scores.

In [74], a method called dihedral angle transition (DTA) characterizes the effects of large

dihedral angle changes, including those changes described as ∆φ and ∆ψ above. Large-scale tran-

sitions to the backbone of protein fragments are defined as ∆’s ≥ 120◦, or the sum of φ and ψ

∆’s per residue ≥ 120◦ during comparisons of structural pairs of proteins. Our scoring functions,

described below, do not classify the dihedral ∆’s as large or small, but the range of changes in the

highest bin of shape pliability scores include those with values similar to the large-scale transitional

changes in DTA.

In Figures 2.4 and 2.5 residues 34-36 and 59-60 have relatively high ∆φ or ∆ψ measures, and

these residues are all found within the hairpin turns described in [4] as flexible. In this running

example, we see that the three measurements from alignment, intermolecular distances and dihe-

dral angles all indicate increased flexibility, and thus influence both shape pliability and mobility,

described in more detail in the next section. Often, high levels involving both characterizations of

backbone changes are found in the most extremely flexible regions. On the other hand, there are

a number of examples discussed in Chapters three and four demonstrating that one of the charac-

terizations plays a much greater role in quantifying the flexibility of the backbone in a particular

region or domain.

We considered taking the average of the ∆φ and ∆ψ per residue for our shape pliability score

instead of the maximum over the pair of dihedral angle changes per residue, but this resulted in

too much “smoothing” over the high dihedral angle differences. Especially in cases (which are not

uncommon) where there is a pair of dihedral angles differences such that a high ∆ψ of one residue

is immediately followed by a high ∆φ in the next residue, averaging over the ∆φ and ∆ψ of each

residue tends to diminish the relative spikes of the observed high ∆’s. For example, in Figure 2.4,

the the high shape pliability score for residue 36 would be greatly diminimished if the ∆φ and ∆ψ
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were averaged, instead of using just the maximum high value of the ∆φ. And in Figure 2.5, all of

the high shape pliability scores for the flexible loop of residues 59-62 would be greatly diminished.

The advantage of using the maximum ∆ over the average was especially evident in studying the

hinges of adenlyate kinase compared to what was found in the literature; as presented in Table 4.4.

2.2.5 Scoring Functions for Mobility and Shape Pliability

Our scoring functions apply to individual residues, and are scaled so that the values for

shape pliability and mobility scores range between 0 and 100, with higher scores indicative of the

respective flexiblity. The scores are based on the premise that shape pliability or local changes

to the structure involve both changes to dihedral angles and distances between the Cα atoms of

residues that don’t superimpose exactly, but are within a specified tolerance or cutoff parameter

(using our S3 algorithm described above). When the distances from superpositioning are greater

than our cutoff distance (typically set to 1.5 Angstroms), then we assume the residues are involved

in mobility. Mobility can also be high when the percentage of difference distances from the DDM

( i.e. the DDMP value) is high. There are many possible calculations for combining individual

measurements into a scoring function, and the following simple function is designed to emphasize

any evidence of flexibility:

(1) foreach residue compute:

• S3
SCALED ←− Scaling Factor1 × Cα distance computed from Algorithm 1.

• ∆φψSCALED ←− Scaling Factor2 × (max(∆φ,∆ψ))

• DDMP (Distance Distance matrix percentage).

(2) if S3
SCALED < Cutoff then

Shape Pliability ←− max(S3
SCALED,∆φψSCALED)

else Shape Pliability ←− ∆φψSCALED

(3) if S3
SCALED ≥ Cutoff then

Mobility ←− max(S3
SCALED, DDMP )

else Mobility ←− DDMP
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We demonstrate the combination of individual measurements into shape pliability and mo-

bility scores in Figure 2.7. In observing the Calmodulin measurements (left column of Figure 2.7)

and scores (right column of Figure 2.7) the mobility scores reflect mainly the DDMP measures,

which have similar values of near 50% throughout, because all residues have moved with respect to

each other. The peak near residue 75 is increased in value (over the DDMP measurements) due to

the S3 distances in that region. The shape pliability scores reflect mainly the φ/ψ maximum deltas

in this particular protein, and the shape of the shape pliability score graph is almost identical to

that of the Max Phi/Psi Delta measurements.

2.3 Discussion and Summary

Our shape pliability involves changes in dihedral angles and sometime subtle differences in Cα

structural alignments. This allows us to locate different flexible regions than other computational

methods find, and is perhaps advantageous. Having both mobility and shape pliability scores within

the same framework allows us measure flexibility for a wide variety of proteins, as will be shown in

Chapter 3.

Future improvements (which are not included in the thesis) to S3 might replace the least

squares optimization with maximum likelihood or another more efficient superpositioning, such as

quaternions [21]. In the future we might also consider a generalization to find Cα distances for

homologous proteins. This would require an alignment step first, followed by the superpositioning,

and might also require modifications to S3.
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Figure 2.7: Calmodulin measurements (left column) and flexibility scores (right column).



Chapter 3

Method Validation

3.1 Introduction

The new method described in detail in Chapter 2 is a novel way of characterizing protein

backbone flexibility that was developed to fill the void for accessing flexibility information at the

residue level. This information is required for protein structural flexibility prediction and also

for understanding the variations in x-ray crystal structures of different conformations of the same

protein. However, because this method is novel, there are no comparable methods to validate the

residue level scores we obtain. We therefore approach validation in two ways: 1) by comparing

our results to a sufficiently large database of proteins with documented flexibilities pertaining to

the problem of protein-protein docking and 2) by examining flexibilities of 10 indiviual protein

pairs and comparing our findings to the descriptions of conformational differences in the structure

literature. Both approaches have some limitations but this strategy avoids the pitfalls of validating

a computational method with other computational methods that don’t provide the same type of

flexibility information.

The protein-protein docking benchmark [27, 42] provides a database of protein complexes

and their constituent monomers. The benchmark classifies the complexes according to the per-

ceived difficulty for docking, such that the more flexible the interface, or specifically, the more

the monomers have changed at the interface upon being bound in the complex, the more difficult

the docking problem is. Thus, the dateset contains a set of proteins such that the apo (unbound)

monomer conformations can be compared to the same proteins bound in complex, and furthermore,
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each protein complex is classified by the the residue flexibility at the interface. We selected a subset

of proteins from the benchmark to see how our measures of flexibility compare to the categories of

flexiblity in the benchmark. We present the comparisons in §3.2.

In §3.3 we present an analysis of pairs of selected protein conformations using coordinates

obtained from the Protein Data Bank (PDB) [9]. In contrast to the docking benchmark section

which focuses on classes of flexiblity and average flexibility measurements pertaining to each protein

or classification of docking difficulty, this second analysis validates the method at the residue level.

The proteins were chosen from the [27, 42] databases to cover a range of different motions and

protein sizes. The specific examples provided here are cases where the literature describes the

flexibility found in different conformations of the protein, so that we can compare these published

descriptions with our findings. We also selected PDB files (and chains) that were specifically

mentioned in the literature, when possible, to more precisely match the residues in the descriptions

and to our corresponding flexibility scores.

3.2 Validation for Categories from the Docking Benchmark

The protein-protein docking benchmark 4.0 consists of 176 complexes of high-resolution, non-

redundant structures with their unbound constituents [42]. The complexes are classified by rigid,

medium or difficult and the benchmark is expressly useful for development and assessment of com-

putational protein-protein docking methods. The classifications are given based on the Root Mean

Squared Distances (RMSD) in the positions of all interface residue Cα atoms after superpositioning

the bound and unbound monomers; called the I -RMSD . Interface residues have Cα atoms within a

cutoff distance of 5Å between bound proteins in the complex. These residues are used to calculate

fnon-nat which is the fraction of non-native contacts of the superposed unbound structures divided

by the total number of contacts in the complex interface [69]. The three classifications are:

(1) Rigid: I -RMSD ≤ 1.5Å and fnon-nat ≤ 0.4

(2) Medium: [I -RMSD ≤ 2.2Å] or [I -RMSD ≤ 1.5Å and fnon-nat > 0.4]
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(3) Difficult: I -RMSD > 2.2Å

3.2.1 Categories of Docking

We selected a subset of protein complexes from the benchmark consisting of complexes made

up of only two constituent proteins where at least one of the bound proteins could be compared

to its unbound monomer. The two requirments for selecting the unbound monomers were: 1.)

structure was obtained by X-ray diffraction and 2.) the PDB files for the bound and unbound

conformations were amenable to analysis by our method. The subset of bound/unbound protein

conformation pairs were categorized by their classification in the docking benchmark and contain

roughly equivalent numbers of the three categories: 22 Flexible, 31 Medium and 28 Rigid. “Flex-

ible” is synonomous with the “Difficult” category defined above, because the difficult complexes

have more flexible interfaces. Interface residues for the complexes were calculated using Rosetta

[61] using a cutoff distance of 5.5Å instead of the 5.0Å cutoff used by the benchmark which may

result in our comparisons having a higher number of residues considered to be on the interface of

the complex.

We examine the trends in shape pliability and mobility for each of the docking benchmark

classifications. In Figures 3.1 and 3.2, we look at the whole population of residues or interface

residues distinguished by classification of rigid, medium or flexible without regard to individual

proteins. The scores on the x-axes reflect shape pliability or mobility from less flexible to more,

whereas the y-axes give the percentage of that score seen in the subset of residues or interface

residues of the three classifications. The trends for the Mobility graphs (right side) show a higher

percentage of less mobile residues with the Rigid Interface than with the Flexible Interface, and

likewise, a higher percentage of very mobile residues (80-100 bins) in the Flexible versus Rigid

Interfaces. The Medium Interface residues seem to fall somewhere in the middle, as expected.

On the other hand, the Shape Pliability graphs (left side) do not show these expected trends.

The mobility scores are computed using distance measures, whereas shape pliability scores also

involve dihedral angle calculations. The docking benchmark uses only distance measurements in
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the calculations of I -RMSD and fnon-nat contacts. Therefore, we could expect a discrepancy between

shape pliability measurements and classifications of interface residues, and in fact, that is what we

see in Figures 3.1 and 3.2.

In Table 3.1, we calculate the means and medians for mobility and shape pliability over

the protein monomer scores for each protein conformation pair analyzed in the dataset. We then

summarize over the set of means and medians to get the distribution statistics displayed in the

table. Again, we see the expected trends for mobility scores across the three categories; that is,

increasingly higher means and medians as the docking difficulty increases. The exception is in the

minimum values (row 1) for each set of means or medians, but because this is a single value it is

probably not statistically significant. We also see this trend in the shape pliability means, but not

for the medians, and the minimum values in the first row again do not follow the expected trend.

The discrepancy in the shape pliability trends compared to what would be expected for the medians

are also likely to be a factor of the dihedral angle calculations, as discussed above for Figures 3.1

and 3.2 .

3.2.2 Docking categories for Individual Protein Monomers

Ideally, the average flexibility over all the interface residues per protein would correlate with

the docking classification of the associated complex such that rigid complexes would have lower in-

terface flexibility scores, difficult complexes would have higher flexibility scores and medium would,

of course, fall somewhere in the middle. In Figure 3.3 we see a large spread for all classifications, ir-

respecive of the number of residues compared. The reasons that the docking classifications and our

average flexibility measurements may be in contrast are the following: 1) the I -RMSD and fnon-nat

contacts that underly docking benchmark categories are based on the interface of complexes and

our measurements are based on each separate bond monomer of the complex compared to its un-

bound equivalen. If both sides of the complex interface display an equal amount of flexibility, then

this problem is avoided, but otherwise the flexibility measurements versus the docking benchmark

calculations do not necessarily correlate. 2.) the docking calculations are based solely on distance
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Figure 3.1: Each graph shows either the mobility (A) or shape pliability (B) score percentages
within 5 score divisions for all the residues in each classified protein . The three interface classifi-
cation: rigid, medium, and flexible (difficult), are obtained from the protein classifications in the
Docking Benchmark [42]

.

Table 3.1: Summary of the means and medians of mobility scores and shape pliability scores over
all interface residues for each protein monomer with the specified docking classification.

Mobility Means Mobility Medians

Rigid Medium Flexible Rigid Medium Flexible

Min 0.05 2.71 1.03 0.00 1.06 0.42

1st Q. 2.97 12.74 17.82 1.10 6.75 6.00

Mean 8.08 25.62 36.07 3.02 11.49 29.54

Med. 11.40 25.96 33.11 6.08 18.09 26.78

3rd Q. 17.05 36.56 48.45 9.23 27.01 39.59

Max 31.91 62.09 66.10 29.50 66.12 69.38

Shape Pliability Means Shape Pliability Medians

Rigid Medium Flexible Rigid Medium Flexible

Min 12.44 10.51 11.01 10.46 6.77 9.99

1st Q. 19.71 21.06 22.24 15.00 14.90 13.64

Mean 21.91 26.92 29.43 18.44 19.31 18.96

Med 24.72 28.60 31.38 18.86 20.40 25.45

3rd Q. 27.99 35.43 40.16 21.29 24.43 30.04

Max 45.97 52.15 71.37 31.98 43.06 83.15
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Figure 3.2: Each graph shows either the mobility (A) or shape pliability (B) score percent-
ages within 5 score divisions for all the interface residues. The three interface classification: rigid,
medium, and flexible (difficult), are obtained from the protein classifications in the Docking Bench-
mark [42]

.
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calculations, and our shape pliability measurements also include torsion angle differences which

may not coincide with the distance differences. 3.) each complex and its interface is given a single

categorical discription (rigid, medium or difficult), whereas our calculations measure two distinct

types of flexibility. Because the spread of average flexibilities in Figure 3.3 does not correlate well

with the docking categories, we further investigate a few of the outliers below.

First, we analyze the two highest average scores from the rigid category. In Table 3.2 we

see that the flexibility scores are very high for the monomer 2CGA B compared to 1CGI E. We

also notice that the I -RMSD for the complex is 2.02. This complex seems to be miscategorized,

as the cutoff for rigid complexes is I -RMSD ≤ 1.5Å. The second rigid monomer outlier 1BR9 A

compared to complex 1GXD A:C, with I -RMSD = 1.39, is within specification but has the second

highest I -RMSD value in the set of rigid category complexes. After further visual examination

(using pymol [90]) of the 21 interface residues and their superpositioning from unbound monomer

to bound protein in the complex, the average score of 29.9 is representative of the visible differences

in the relative positions. Perhaps the average score of somewhere near 30 is the upper bound for a

rigid protein monomer, and this second ”outlier” is within the range of normal rigid scores.

The 4 difficult category monomers with the lowest mobility averages were easier to validate.

The outlier average flexibilities for the four are 1) 3DNI=1.14, 2)1ZM8=4.54, 3) 1ILR=10.1 and 4)

1KWM=12.78. In 1) 3DNI compared to complex 1ATN D, the other monomer from the interface

is an NMR structure so it wasn’t compared, but 3DNI superposes onto 1ATN D with almost no

differences. For outlier 2) 1ZM8 compared to bound monomer of complex 2O3B A, again there

are no visible differences, and the comparison for the other half of the complex, namely 2O3B:B

compared to unbound monomer 1J57 A exhibits all of the variation but was not analyzed using our

measurements due to PDB issues. In 3) 1ILR 1, the comparison to complex 1IRA YX shows a large

domain movement for the other binding partner, but very little variation in the 1ILR:1 comparision

to 1IRA X. And for the final outlier examined, 4) 1KWM, the situation is that the other binding

partner is again an NMR structure so the comparison has not been performed. For the monomer

1KWM A compared to the bound conformation in the complex of 1ZLI A, the overall comparison
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involves many residues without coordinates in 1KWM A, but the interface residue coordinates are

present and do not appear to vary significantly from those in the complex. In conclusion, it appears

that for the classification of these four ”flexible” protein monomers with low average shape pliability

and mobility scores, the partners of the complexes exhibit most of the flexibility, and these are all

cases where only one half of the docking interface is flexible.
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Figure 3.3: The mobility and shape pliability scores per residue are averaged, and the mean flex-
ibility of all the interface residues per monomer is plotted against the total number of residues
compared for the monomer. The three interface classifications: rigid, medium, and flexible (diffi-
cult), are obtained from the protein classifications in the Docking Benchmark [42].
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Table 3.2: Table of the I -RMSD per rigid complex ([42]) and the means for mobility and shape
pliability scores calculated over all interface residues for the monomer-bound protein conformation
comparisons.

Complex I-RMSD PDBID1 I-Mob. I-SP PDBID2 I-Mob. I-SP
RIGID (28) Mean Mean Mean Mean

1KXQ H:A 0.72 1KXQ H 1PPI 8.0 21.3

1AVX A:B 0.47 1QQU A 1.8 19.7 1BA7 B

1AY7 A:B 0.54 1RGH B 2.0 17.5 1A19 B 2.6 23.8

1BVN P:T 0.87 1PIG 20.9 33.7 1HOE

1CGI E:I 2.02 2CGA B 31.9 43.9 1HPT 22.4 33.2

1D6R A:I 1.14 2TGT 3.4 19.3 1K9B A 8.1 30.6

1DFJ E:I 1.02 9RSA B 6.0 25.9 2BNH 26.0 19.7

1E6E A:B 1.33 1E1N A 10.1 15.0 1CJE D 13.9 22.5

1EAW A:B 0.54 1EAX A 0.8 15.2 9PTI 1.9 20.9

1EWY A:C 0.80 1GJR A 13.5 27.1 1CZP A 23.6 46.0

1F34 A:B 0.93 4PEP 12.0 21.7 1F32 A 13.9 26.4

1FLE E:I 1.02 9EST A 3.0 20.2 2REL A(4)

1GL1 A:I 1.21 1K2I 1 2.8 13.8 1PMC A(6)

1GXD A:C 1.39 1CK7 A 1BR9 A 30.6 39.5

1JTG B:A 0.49 3GMU B 6.4 22.2 1ZG4 A

1MAH A:F 0.61 1J06 B 1FSC 7.8 32.5

1OC0 A:B 1.00 1B3K A 15.8 21.4 2JQ8 A(4)

1OPH A:B 1.21 1QLP A 22.9 25.0 1UTQ A 0.1 12.4

1TMQ A:B 0.86 1JAE 6.9 20.8 1B1U A
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Table 3.3: Table of the I -RMSD per medium complex ([42]) and the means for mobility and shape
pliability scores calculated over all interface residues for the monomer-bound protein conformation
comparisons.

Complex I-RMSD PDBID1 I-Mob. I-SP PDBID2 I-Mob. I-SP
MEDIUM (31) Mean Mean Mean Mean

1ACB E:I 2.26 2CGA B 27.0 35.7 1EGL

1JIW P:I 2.07 1AKL A 7.5 15.1 2RN4 A(1)

1M10 A:B 2.10 1AUQ 6.6 30.4 1M0Z B 24.0 29.0

1NW9 B:A 1.97 1JXQ A 2OPY A 7.8 22.4

1GRN A:B 1.22 1A4R A 25.6 26.8 1RGP

1HE8 B:A 0.92 821P 14.1 29.9 1E8Z A 26.8 32.4

1I2M A:B 2.12 1QG4 A 55.9 36.4 1A12 A 5.3 10.5

1LFD B:A 1.79 5P21 A 1LXD A 30.3 40.8

1MQ8 A:B 1.76 1IAM A 14.0 26.9 1MQ9 A 29.3 35.1

1R6Q A:C 1.67 1R6C X 17.8 20.8 2W9R A

1WQ1 R:G * 1.16 6Q21 D 35.1 50.1 1WER 15.0 29.3

1XQS A:C 1.77 1XQR A 38.7 21.3 1S3X A 2.7 18.8

1ZM4 A:B 2.11 1N0V C 62.1 23.6 1XK9 A 8.1 25.4

2H7V A:C 1.63 1MH1 2H7O A 21.1 23.5

2HRK A:B 2.03 2HRA A 10.6 17.8 2HQT A 12.7 16.9

2J7P A:D 1.93 1NG1 A 55.7 41.5 2IYL D 44.3 31.2

2NZ8 A:B 2.13 1MH1 47.9 41.7 1NTY A 35.6 20.5

2OZA B:A 1.89 3HEC A 3FYK X 43.6 52.1

2Z0E A:B 2.15 2D1I A 12.8 18.2 1V49 A(1)

3CPH G:A 2.12 3CPI G 29.0 23.5 1G16 A 37.1 38.8
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Table 3.4: Table of the I -RMSD per difficult complex ([42]) and the means for mobility and shape
pliability scores calculated over all interface residues for the monomer-bound protein conformation
comparisons.

Complex I-RMSD PDBID1 I-Mob. I-SP PDBID2 I-Mob. I-SP
DIFFICULT (22) Mean Mean Mean Mean

1F6M A:C 4.90 1CL0 A 2TIR A 15.0 29.6

1FQ1 A:B 3.41 1B39 A 47.1 71.4 1FPZ F 21.6 29.4

1ZLI A:B 2.53 1KWM A 10.6 17.2 2JTO A(6)

2O3B A:B 3.13 1ZM8 A 3.4 12.8 1J57 A

1ATN A:D 3.28 1IJJ B 3DNI 1.0 15.0

1BKD R:S 2.86 1CTQ A 49.7 71.4 2II0 A 38.5 11.0

1H1V A:G 6.62 1IJJ B 1D0N B 58.2 22.3

1IBR A:B 2.54 1QG4 A 36.3 31.3 1F59 A 38.8 22.2

1IRA Y:X 8.38 1G0Y R 1ILR 1 8.7 23.4

1JK9 B:A 2.51 1QUP A 31.8 22.8 2JCW A 19.6 23.8

1R8S A:E 3.73 1HUR A 66.1 52.9 1R8M E 35.9 29.5

1Y64 A:B 4.69 2FXU A 17.1 49.5 1UX5 A 48.9 44.7

2I9B E:A 3.79 1YWH A 49.3 38.7 2I9A A 46.0 37.6

2OT3 B:A 2.79 1YZU A 54.8 45.1 1TXU A 29.4 19.3
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3.3 Validation of flexibiliy scores for selected protein conformations

We apply our method to the comparison of pairs of X-ray crystal structures with the same

sequence (or with minor mutations) for validation purposes. We have prepared the PDB coordinates

by eliminating alternate location data for our results such that we always using the coordinates

for Location “A”. We left the residue numbering intact, and screen out cases where the sequence

numbering for the 2 conformations in question does not agree. In the future, we can implement

the renumbering, but because PDB files contain so much variability, this requires a very careful

analysis and thorough testing.

Table 3.5 contains the list of selected proteins, their PDB codes and the motion described

by [27] or [42]. The majority of the set of selected proteins have been studied extensively in the

literature, either because they are functionally or commercially important or representative of a

significant conformational change. During the process of verifying the analysis of conformational

differences found between 2 distinct PDB structure files, some PDB files were specifically selected

for analysis due to the discovery of references that made the same or similar comparisons for the

protein in question.

For all cases presented, we analyze the mobility and shape pliability and present scores based

on spectrum colors of the binned scores shown in Figure:3.4 A. See the previous chapter for a

complete description of the measurements used to compute mobility and shape pliability scores.

The heatmap colors display more flexbility and higher scores toward the red end of the spectrum,

and conversely more rigidity at the blue end. In our discussions of individual proteins, we compare

the flexibility found in our measurements with references for the structures. The references fre-

quently describe the importance of the high mobility measurements relating to function, whereas

the residues with high shape pliability scores found by our analysis are mentioned much less of-

ten. The shape pliability measurements, while perhaps more difficult to verify than the mobility

measurements, are equally important in characterizing backbone flexibility. Furthermore, because

shape pliability is more local in nature, the residues demonstrating high shape pliability may ulti-



43

Table 3.5: Proteins analyzed and compared to literature (articles cited within the text descriptions
to follow.) The true positive rate (TP) measures the sensitivity of the residues we score with high
mobility or shape pliablity compared to residues described as flexible in the literature, whereas the
true negative rate (TN) measures the specificity of the residues that scored lower in mobility and
shape pliability compared to the remainder of residues not mentioned as flexible in the literature.
All shape pliable and mobile residues with scores ≥ 50.0 are classified as positive for flexibility in
calculating the TP and TN rates. For proteins with large domain movements, TP and TN are
recalculated with a cutoff ≥ 65.0 and printed in blue below the original ≥ 50.0 rates.

ID Protein Name Motion∗ PDB1 PDB2 N † TP TN

1 CobU Sheer 1CBU:A 1C9K:B 180 24/29 (83%) 149/151 (99%)
(Frag.)

2 S100 Calcium Sheer 1K9P:A 1K9K:A 87 47/47 (100%) 35/40 (87%)
sensor (Frag.)

3 HIV-1 Hinge 1RPI:A 3PHV:A 99 8/20 (40%) 71/79 (90%)
Protease (Frag.)

4 β-Lacto- Hinge 1BEB:A 1B0O:A 156 20/22 (91%) 132/134 (98%)
globulin (Frag.)

5 Che Y Unclass. 3CHY:A 1CYN:A 126 9/15 (60%) 108/111 (97%)
(Frag.)

6 Cytochrome Sheer 1BU7:B 1JPZ:A 455 53/61 (87%) 373/394 (95%)
P450BM-3 (Dom.)

7 Adenylate Hinge 1AKE:A 4AKE:A 214 68/68 (100%) 80/146 (55%)
Kinase (Dom.) 66/68 (97%) 127/146 (87%)

8 Calmodulin Hinge 1CLL:A 1CDL:A 141 4/4 (100%) 44/137 ( 32%)
(Dom.) 4/4 (100%) 135/137 (99%)

9 G-Protein Refold 1BOF:A 1KJY:A 299 20/33 (60%) 257/266 (97%)
αi1 subunit (Part.)

10 Gelsolin Flex. 1H1V:G 1D0N:B 327 130/130 (100%) 39/197(20%)
(Actin) Int. 126/130 (97%) 167/197 (85%)

∗ Motion for Proteins 1-9 described in [27], Protein 10 classified in [42]. † N is the number of
residues compared and excludes missing residues from either PDB.
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mately be amenable to prediction, whereas mobility may be much more difficult to predict. The

analysis in Chapter 5 of both types of flexibility and how they correlate to structural and energetic

terms lends credence to these ideas.

We also present sequence diagrams (generated with TEXshade [6]) shaded by shape pliability

and mobility using the same spectrum colors shown in Figure 3.4 A. Secondary stucture elements

as defined by DSSP [46] (described in §5.2) of the two conformations compared are given above the

shaded sequences, and the symbols used are defined in Figure 3.4 B. Major differences in secondary

structure elements between the two conformations are usually mentioned within the literature

descriptions, and also tend to have higher shape pliability scores.

3.3.1 Protein 1: CobU

The flexibility of CobU was presented in the previous chapter in Figure 2.1 to illustrate the

concepts of mobility versus shape pliability. The CobU protein is an enzyme with dual functions

(adenosylcobinamide kinase/adenosylcobinamide phosphate guanlyltransferase) and it occurs as a

homotrimer assuming a pinwheel shape [99]. In the discussion of the structure of CobU complexed

with GMP (PDB coordinate file 1C9K) compared to apo (uncomplexed) CobU (PDB 1CBU), the

largest movement is at α-helix 2 (residues 33-48), with unwinding and rewinding at the the helix

ends [99] . This is in agreement with the high mobility scores at helix 2, and the shape pliability at

the helix 2 ends, as evident in the sequence Figure 3.5 C. [99] also describes weak electron density

and conformation flexibility in the loops at residues 58-60 and 94-97. Similarly, we see higher shape

pliability scores at residues 58, 96 and in the short 3-10 helix at residue Glu 100. There is also high

shape pliability at residue 71, which is not confirmed as a flexible region in [99]. The movement of

helix 2 is readily apparent in Figure 3.5 A. and the flexiblity at the helix ends in Figure 3.5 B.

3.3.2 Protein 2: S100A6 Calcium Sensor

The S100A6 calcium sensor protein is a member of the S100 family of Ca2+ binding proteins.

Modified levels of expression of S100 family members may be complicit in Altheimer’s disease,
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Figure 3.4: Colors and Symbols used in the structure and sequence figures. A. The spectrum of
heatmap colors are used for coloring sequence and structure figures, and gray represents residues
with no coordinates present for at least one of the PDB coordinate files. The same scoring range is
used for mobility and shape pliability scores. B. Secondary structure elements are defined for each
PDB file using DSSP [46], and given symbolic representations in sequence figures, located above
the sequences which are shaded by their shape pliability and mobility scores.
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Figure 3.5: Protein 1 CobU Mobility and Shape Pliability: A. Structure comparison for the
protein CobU from 1CBU(A) and 1CDK(B) colored by mobility, B. Structure comparison for CobU
from 1CBU(A) (right) and 1CDK(B) (left) colored by shape pliability. C. Sequence comparison
for Cobu from 1CBU(A) and 1CDK(A) colored by shape pliability (top) and mobility (bottom).
Secondary structure elements are displayed above the sequences and described in Figure 3.4 B.
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cancer and rheumatoid arthritus and more specifically, S100A6 has been found in complex with

another S100 family member in human melanoma cells [88]. We compare the structures of the

Ca2+-free (PDB 1K9P) and Ca2+-bound (PDB 1K9K) S100A6 calcium sensor states and discuss

our findings compared to the reported conformational changes in [76].

The S100 family of proteins are hetero or homodimeric in structure and the monomers consist

of 2 EF hand motifs defined as α-helix loop α-helix [88]. The N-terminal EF hand consists of helices

I and II and the loop between them, and conversely, the C-terminal EF hand contains helices III

and IV. The two Ca2+ binding loops link the helices in each of the EF hands.

According to [76], a major difference between the Ca2+ bound and apo structures for the

S100A6 sensor is the “dramatic reorientation” of helix III, which has both hydrophobic and hy-

drophilic side chains. After superimposing the 2 structures, the largest Cα deviations were reported

to be in the Ca2+ binding loops, helices II and III with the linker between them, and the C-terminal

end of helix IV [76]. These major differences affect residues 31-66 and 80-90.

Using our measurements, Figure 3.6 (C)(D) & (E) shows helix III, the linker between helix II

and III, the linker between helix III and IV, and the C-terminal end as having the highest mobility

scores; similar to the reported deviations. [76] describes Tyr84 as the beginning of the unwinding

of helix IV, whereas our shape pliability scores indicate residue Asn85 as the largest contributer to

the unwinding. Other areas of high shape pliability include the linkers between helices II and III

and between helices III and IV. Our results confirm that these areas of shape pliability contribute

to the extreme mobility of helix III.

3.3.3 Protein 3: HIV-1 Protease

In §4.2, the highlights of the findings for HIV-1 protease are described in detail. Here we

note that the discussion of [65] in comparing Multi Drug Resistant (MDR) HIV-1 protease (1RPI)

to the wildtype (3PHV) mentions specific differences for residues 7, 50, 80, and the ”flaps”, which

typically include the region of residues 43-59. Also mentioned in the discussion is the fact that their

comparison yields very different results when comparing the dimers (1.84 Å) versus the individual



48

Figure 3.6: Protein 2 S100 calcium sensor Ca2+ free: A & C (1K9P:A) and bound to Ca2+: B
& D (1K9A:A). A & B are colored by shape pliability, C & D are colored by mobility. The 4 helices
are labelled consecutively from the N to C terminus. The top lines of E are secondary structure
definitions [46] and the bottom lines are shaded by the per residue shape pliability and mobility
scores. Residues shaded gray have missing coordinates in the PDB file.
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monomers (1.18 Å) as is done for our measurements. Our flexibility findings include residues 16,

21, 27, 40, 48-53, 60-61, 64,7 9-80 and 95. The low sensivity score (40 %) is directly related to

comparing individual monomers instead of the dimers, however, our further research showed some

interesting findings using our flexibility scores to compare these monomers. Images for this protein

are included with the discussion in 4.2.

3.3.4 Protein 4: β-lactoglobulin

β-Lactoglobulin is a commercially important whey protein present in the milks of many

species, including all ruminants [50]. It is a member of the lipocalin family of proteins, and normally

exists as a dimer. The monomers each consist of 8 β-strands forming a β-Barrel and the protein

binds hydrophobic ligands, although its biological function is still unclear [50]. More specifically,

the central cavity is called the calyx, and the β-barrel made up of 4 β-strands (A-D) forming

one sheet, and a second sheet formed from strands E-H. We compare β-Lactoglobulin bound to

palmitate (PDB 1B0O:A) [109] with its unbound form (PDB 1BEB) [14]. .

Access to the binding cavity, or calyx, is accomplished by the repositioning of Glu89 and the

EF loop [109], which is in agreement with the highest mobility scores in Figure 3.7:E and Table

3.6. Additionally, [109] describes the GH loop as highly flexible. We measure a great deal of shape

pliability for the GH loop residues (positions 109 to 117) but only residues Ser110 and Glu115

measure mobility. Another crystal structure determined during the same timeframe as 1BO0 for

β-Lactoglobulin bound to 12-Bromododecanoic acid is described in [80], and this reference mentions

mobility in loops CD (residues 61 to 65) and EF. This agrees with our measurements of high shape

pliability in residues 61-65 and high mobility in residues 63 and 64. In [14], which is a reference

for the determination of the unbound structure (1BEB); the authors also describes loop CD as a

mobile surface loop, and missing coordinates for residues 1-4 and 161-162.

The high shape pliability scores we find in residues 33-34 may be explained by the strain in

the structure described in [14] between the nitrogen of Ala34 and the δ oxygen of Asp33. We find

similar shape pliability (crankshaft type) motion in residues 38-39, also in the AB loop, with no
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definitive explanation in the structure references.

3.3.5 Protein 5: Che Y

The structure of magnesium bound Che Y was determined and compared in [7] (PDB 1CHN)

with the previously determined wildtype Che Y [104] (PDB 3CHY). According to [7], Che Y

functions as a response regulator within a system of bacterial chemotactic signal transduction. The

system responds to changes in environmental chemical concentrations by alterations in swimming

behavior such as tumbling versus smooth swimming. Magnesium binding in Che Y protein is

required for its autokinase and autophosphitase activities, and also causes significant conformational

changes.

We analyzed the differences in Mg2+ bound Che Y versus the unbound structure resulting

in Figure 3.8 (A) and (B) showing the unbound and bound conformations respectively and colored

by shape pliability and (C) and (D) likewise colored by mobility. Figure 3.8 (E) clearly shows that

the fourth alpha-helix and the loop preceding exhibit the largest amount of mobility and shape

pliability, and this is in agreement with the largest backbone conformational changes discussed in

[7]. [7] also specifically mentions small backbone Cα∆’s at residues 87,109 and 110 (all ¡ 1 |AA)

and dihedral angle differences for residues 12 and 13. Except for residue 12, these small backbone

changes are consistent with our analysis. We find higher mobility (and shape pliability) at the N-

terminus, as well as slighly higher shape pliability at residues 37,44,45 and the C terminus. These

residues are not mentioned specifically in [7], but the missing coordinates for residues 2 and 3 (in

1CHN) may be indicative of disorder at the N terminus. Also, [104] describes the backbone regions

with the highest temperature factors as the two termini and the loops following α-helices 2 and

3. This is consistent with the flexibilities we see at both terminii, although we don’t observe any

flexibility in the loop regions with high temperature factors.
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Figure 3.7: Protein 4 β-Lactoglobulin: A & C: unbound (1BEB:A) and B & D: bound to
palmitate (1B0O:A). A & B are colored by shape pliability; C & D are colored by mobility; (E)
Sequences with secondary structure for 1BEB and 1B0O above; sequence shading indicates shape
pliability scores (top) and mobility scores (bottom).
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Table 3.6: Protein 4 β-Lactoglobulin: Measurements for residues exhibiting a high degree of
shape pliability or mobility comparing PDB structures 1BEB:A versus 1B0O:A.

ResID High High S3 ∆ Phi ∆ Psi DDMP SS Ave. Rel.
Shape Mobility Dist (Å) (Deg.) (Deg.) ASA
Pliability

ASP33
√

0.46 -21.30 -175.11 0.07 S S 0.64

ALA34
√

0.15 171.73 -30.63 0.10 S S 0.45

PRO38
√

0.58 -22.67 -170.92 0.11 T T 0.50

LEU39
√

0.54 -160.78 -28.49 0.06 T T 0.12

GLU62
√

0.61 17.89 151.07 0.11 - - 0.42

ASN63
√ √

1.71 -161.24 91.05 0.32 S S 0.93

GLY64
√ √

2.38 -44.96 -81.76 0.44 S S 0.68

GLU65
√

1.50 94.50 15.51 0.32 S S 0.66

ASP85
√ √

1.60 -53.11 39.06 0.44 E S 0.74

ALA86
√ √

0.62 -61.69 -30.32 0.79 E S 0.41

LEU87
√ √

1.67 130.63 -97.63 0.87 T T 0.55

ASN88
√

1.54 -29.53 -18.60 0.81 T T 0.74

GLU89
√ √

2.10 -136.27 84.81 0.84 E - 0.30

ASN90
√

0.56 -53.46 -128.30 0.15 E E 0.21

SER110
√ √

1.68 27.67 -155.07 0.21 T S 0.34

ALA111
√

1.26 -137.60 -22.34 0.15 T S 0.89

PRO113
√

0.03 9.36 77.54 0.09 G T 0.33

GLN115
√

0.53 -34.69 52.75 0.19 G T 0.51

SER116
√

0.81 -0.88 -128.17 0.15 T S 0.14

LEU117
√

0.27 84.28 3.08 0.05 - E 0.05
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Figure 3.8: Protein 5 Che Y protein (A) unbound (3CHY:A) and (B) bound to magnesium
(1CHN:A) andcolored by shape pliability; (C) unbound and (D) bound to magnesium and colored
by mobility; (E) Sequences with secondary structure for 3CHY:A and 1CHN:A above; shading
around sequence letters indicate shape pliability scores (top) and mobility scores (bottom).
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3.3.6 Protein 6: Cytochrome P450BM-3

The cytochrome P450 superfamily of heme proteins catalyzes the monooxygenation (enrich-

ment with oxygen) of organic molecules and is found in all eukaryotes, most prokaryotes, and

Archaea. This superfamily has been intensely studied because the biologically important P450 re-

actions include drug metabolism and fatty acid metabolism [91]. Cytochrome P450BM-3 is a fatty

acid monooxygenase from the prokaryotic species Bacillus megaterium, but is similar in structure

and function to eukaryotic P450’s [35].

We analyze the structure of the heme domain of P450BM-3 in complex with N-palmitoylglycine

(pdb 1JPZ:B) compared to the substrate-free heme domain (PDB 1BU7:B). The B chains were se-

lected for comparison because Haines and colleagues found the largest structural differences in the

B molecules between the substrate bound and free molecules, and this comparison is discussed in

the structure determination paper for the substrate bound complex [35]. According to [35] the

largest conformational changes are located in the “lid” domain consisting of helices F (residues

172-187), G (residues 199-226) and the loop between them. As demonstrated in figures 3.9 and

3.10, our analysis finds a great deal of mobility and some shape pliability in this region. In addition

we find flexibility (both mobility and some shape pliability) in the loops that surrounding this

region and while these residues are not specifically mentioned as flexible, the loop after helix G

shows significant displacement in a figure depicting P450BM-3 movement in [35]. According to [35],

other isolated areas of flexibility are located mainly in solvent exposed turns between secondary

structures. Additionally, a clam shell movement to trap solvent molecules is described as involving

the previously mentioned lid domain, the B’-helix (residues 73-82) and the amino-terminal area.

Our measurements show agreement here, although the flexibilities for the B’-helix are not sub-

stantial. [35] describes changes to the conformation of the I-helix due to the addition of a water

molecule between residues 263-267 within the I-helix, and these flexibilities are in agreement with

our measureements (especially residues 265-266). The high shape pliability scores at residues 436-

437 are due to large changes in the dihedral angles of ∆ψ436 and ∆φ437, in addition to the Cα atom
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measurements for our S3 method showing that these residues do not closely superimpose. However,

the region containing these highly shape pliable residues (including residues 436 and 437) is not

mentioned in the P450BM-3 structure papers referenced in the PDB [35, 91] for 1JPZ or 1BU7.

3.3.7 Protein 7: Adenylate Kinase

Adenlylate kinases are abundant and functionally important in providing energy for the

numerous cellular reactions involving ATP, ADP or AMP [72]. The specificity of the enzyme’s

function is accomplished by two domains closing tightly over their bound substrates. The binding

domains include AMPbd, the AMP-binding domain (residues 30-59), and the INSERT domain

(residues 122-159) which binds ATP [71]. The core of the protein consists of five strands forming

a β-sheet, surrounded by α-helices.

We compare PDB coordinates 1AKE [71] adenylate kinase from Escherichia coli which has

been ligated with a two-substrate-mimicking inhibitor (P 1, P 5−bis(adenosine−5′−)pentoaphospate)

to the unligated adenlylate kinase also from Escherichia coli (4AKE) [72]. The classic comparison

of these two adenylate kinase structures demonstrates how substrate binding leads to large domain

movements. Our mobility measurements confirm the obvious large domain movement, and high-

light movement in other much smaller regions as well. Following AMPbd, the α-helix occupying

residues 60-73 shows a moderate amount of mobility, and we measure even greater mobility for

residues 10-13 and 175-177. The shape pliability scores and mobility scores more accurately reflect

the flexible residues described in [72] when we look at scores ≥ 65 (i.e. those residues colored

orange and red in Figure 3.11) instead of 50. In Figure 3.12 we can see how the DDMP scores are

high for much of the protein because so much is mobile, but the 2 largest regions of high DDMP

scores occur at substrate binding domains ADPbd and INSERT.

3.3.8 Protein 8: Calmodulin

Calmodulin is a highly promiscuous protein and its structural flexibility allows it to bind

to over 300 different target proteins in the cell [105]. The ubiquitious 148-residue protein binds
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Figure 3.9: Protein 6 Cytochrome P450BM-3 (A) unbound (1BU7:B) and (B) bound to
substrate N palmitoylglycine (1JPZ:B) colored by shape pliability; (C) 1JPZ:B in bold and 1BU7:B
transparent, superimposed (using Pymol) and colored by mobility.
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Figure 3.10: Cytochrome P450BM-3 Sequences with secondary structure for 1BU7:B and
1JPZ:A above; shading around sequence letters indicate shape pliability scores (top) and mobility
scores (bottom).
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Figure 3.11: Protein 7 Adenylate Kinase Sequences with secondary structure for 1AKE:A and
4AKE:A above; shading around sequence letters indicate shape pliability scores (top) and mobility
scores (bottom).
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Figure 3.12: Protein 7 Adenylate Kinase DDMP measurements for 1AKE:A and 4AKE:A with
the flexible domains indicated.
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calcium and its involvement in many calcium dependent signaling pathways is coincident with its

regulation of the activities of a wide variety of proteins including protein kinases, calcium pumps

and proteins involved in cell motility [43]. Its structure and flexibility has been highly studied,

and in Chapter 2 we display its structural complexity in Figure 2.2 as an example of how different

two conformations of the same protein can appear. When studying the flexibility of calmodulin

by analyzing its mobility and shape pliaiblity scores, what we find fascinating is that the large

structural differences between the two conformations previously displayed can be explained mainly

by 4 residues with extremely high shape pliability scores.

We compare calcium bound calmodulin (1CLL) [17] with calcium bound calmodulin which

is also bound to a peptide (1CDL) [68]. These structures were solved in the same laboratory so

their discussion of the conformational changes between the two structures relates directly to our

comparison. As we described in Chapter 2, calmodulin when bound to a peptide differs significantly

from the structure without a peptide in the central α-helix, while the lobes differ only slightly.

Calmodulin without a peptide is dumb-bell shaped, with similar lobes (or hands) connected by a

central α-helix. Each lobe contains 3 α-helices and 2 loops binding Ca2+ The large conformational

change in calmodulin upon peptide binding is mainly due to changes in the dihedral angles of 4

residues (73-77) in the central α-helix [17, 68]. Therefore, it is not surprising that we find very high

shape pliability scores for those 4 residues. This is clearly demonstrated in Figure 3.13. We also

see a couple of extra residues with high flexiblity that are not mentioned in the articles, but these

are of far less importance to the large conformational change.

3.3.9 Protein 9: G-protein Gα subunit

Research in enhancing the affinity between G-Protein Gα subunit and GoLoco peptides [12]

provided some of the original motivation for this entire investigation of protein flexibility. Hence, we

include the comparison between the uncomplexed Gαi1 ·GDP ·Mg2+ protein conformation (1BOF)

and the complex consisting of Gαi1 ·GDP bound to the GoLoco region of G-protein RGS14 (1KJY)

[49]. The GoLoco peptide binding is described as altering 4 conformationally flexible switches (I-
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Figure 3.13: Protein 8 Calmodulin A. Mobility of calmodulin bound to calcium and a pep-
tide (left, 1CDL) versus calmodulin bound to calcium without a peptide (right, 1CLL). B. Same
conformations as A, colored by shape pliability. C. The sequences of the 2 conformations colored
by shape pliability (top) and mobility (bottom). The secondary structure is depicted on top of
the sequences, and the break in the central helix at residues 74-77 coincides with the high shape
pliability (colored red) of those residues.
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IV) consisting of residues 177-187, 199-219, 231-242 and 111-119 respectively [49, 70]. We find

flexibility in all 4 switch regions but do not match the residues exactly. In Figure 3.14, we can

see that switches II and III contain residues that are mainly disordered (colored gray, with weak

electron density) in 1BOF, and we don’t always find high flexiblity in the residues adjacent to the

disordered regions. On the other hand, residues in switch I and IV appear to be very flexible by

our metrics. We also find flexibility at the N-term and C-term regions adjacent to the disordered

terminii of Gαi1 · GDP ·Mg2+. Furthermore, we find flexibility at residues 147,149 and 150, and

although these are not described as flexible, they are important contact residues in binding of the

GoLoco peptide [49].

3.3.10 Protein 10: Gelsolin docked with Actin

Gelsolin binds with the protein actin, forming a complex that is involved in important cell

functions such as cell movement, cytokinesis and apoptosis, but the activation of Gelsolin requires

calcium. Gelsolin consists of six domains (G1-G6) which are similar in structure, and elevated

calcium levels produce large shifts in the relative positioning of the six domains, which in turn

allows gelsolin to bind to actin [18]. We compare the crystal structure of domains G4-G6 bound to

calcium and actin (1H1V) [18] with calcium-free gelsolin (1D0N) [15]. The constituent residues for

the 6 domains are given as S1-S6 in [15], and we show these in Figure 3.16, depicting S4-S6 with

colored arrows. In later citations, the domains of gelsolin are referred to as G1-G6, and the labels

in Figure 3.15 use this later notation because our figure is comparable to one in [86].

Conformational differences between unbound Gelsolin and Gelsolin in complex with actin

[18, 86] include a positional rearrangement of G6 relative to G4 and G5. This is shown by our

high mobility scores (orange and red) for G6 in Figure 3.15. Other flexibilities [18] include the

structurally variable regions going into G4 and G6, namely residues 394-412 and 620-639, as well

as the C-terminal region following G6.
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Figure 3.14: Protein 9 G-protein Gα Subunit : The sequences of 1KJY:A and 1BOF:A colored
by shape pliability (top) and mobility (bottom), and gray colored residues are missing coordinates
in one or both of the PDB files. Magenta-colored dashed arrows below the sequences indicate
residues within flexible switches (I-IV) [70].
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Figure 3.15: Protein 10 Gelsolin without Calcium and with Calcium docked to protein actin. A:
apo Gelsolin (1D0N:G) and B: Gelsolin complexed with calcium and actin (1H1V:B), labeled with
domains G4-G6 [86] and colored by mobility. C & D: Same conformations and domains as A and
B respectively, colored by shape pliability. The main regions of shape pliability are found in loops
throughout and the helix of G6. [86].
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Figure 3.16: Protein 10 Gelsolin without Calcium and with Calcium docked to protein actin:
The sequences of 1H1V:B and 1D0N:G colored by shape pliability(top) and mobility(bottom), with
colored arrows below indicating the domains S4-S6, defined with their respective residue content
in [15].
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3.4 Discussion and Summary

For the validation using the docking benchmark, we compared individual protein monomers

to the categories defined by complexes in the database. In the future, our measurements obtained

by comparing conformational pairs may be used to predict the flexibility of individual proteins.

We have learned from this validation that it may be important to select the single conformation

that best represents the measured flexibility for use in a prediction algorithm. For the docking

examples, this might be the unbound, rather than the bound conformation.

Mobility and shape pliability scores are continuous measures of flexiblity. The True Positive

(TP) and True Negative (TN) rates use a threshold for shape pliability and mobility to be considered

positive or negative. In reality, the scores are a continuum such that close scores exhibit similar

flexibility regardless of whether they are above or below the cutoff. These rates were used as a way

to measure how well the scoring functions compare to the literature, but they don’t represent this

measurement perfectly. The stories behind the comparisons of the conformations for each protein

give a better account of how our measurements compare to what was reported in the literature.



Chapter 4

Applications

4.1 Introduction

In this chapter, we apply the method described in Chapter 2 to three different areas. The

first two topics concern biochemistry issues that our method has allowed us to explore, and these

originated from our in-depth exploration of protein conformations during the validation phase.

These topics go well beyond the computer science and are included because of their relevance

to drug design, in the first case, and enzyme engineering, with potential applications to biofuel

production in the second. The third topic is an application to protein structure prediction that

only begins to scratch the surface of the possible research in that area. Protein structure prediction

and the related protein folding problem remains one of the outstanding challenges in molecular

biology today and our method may aid researchers in this area by providing insights about the

quality of their predictions.

The biochemistry involved in the first application, which is related to drug design, involves

allostery. Allosteric regulation is defined as “the binding of a regulatory molecule to a protein at one

site that affects the function of the protein at a different site” [83], where the word allostery comes

from the Greek words allos for “other” and stereos meaning “solid or “three dimensional”. The

interaction between the separated sites depends on a conformational change in the protein caused

by binding to the allosteric site [1]. It follows that allosteric inhibition prevents a reaction from

occuring such that binding to the allosteric site causes a conformational change to the active site

that prevents the normal binding interaction from taking place. We include Figure 4.1, modified
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from a public domain image, to illustrate these concepts.

The second application with biochemical implications is enzyme engineering. In particular,

thermostable enzymes are extremely desirable in a number of industries, including biofuel pro-

duction, because thermostability allows proteins to be exposed to the high temperatures found in

industrial settings without denaturing [26]. Thermodynamic stability is defined by the enzymes

free energy of stabilization and by its melting temperature Tm, the temperature at which 50%

of the protein is unfolded. Organisms that have adapted to high temperature environments have

enzymes that display higher levels of thermostability than their homologues from organisms exist-

ing in cooler environments [102]. The current hypothesis, with support from experimental data,

is that enzymes from organisms surviving at the highest temperature ranges are more rigid than

their homologues from species living at cooler temperatures, and that rigidity is a prerequisite for

high protein thermostability [102].

The final application area involves protein structure prediction. We use data from the 9th

Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure

Prediction (CASP9), an experiment that took place during the summer of 2010. The stated goal of

CASP is “to obtain an in-depth and objective assessment of our current abilities and inabilities in

the area of protein structure prediction” [30]. During the prediction season, target proteins whose

coordinates have been recently determined but not yet published are released to the predictors with

a time limit on predictions. At the close of the prediction season, assessors for different categories of

prediction determine the relative quality of all the predictions for each target. In July 2012, during

the prediction season for CASP10, one of the assessors and I discussed some of the difficulties

associated with assessing the relative quality of the numerous predictions received for each target

protein. The goal of this application of our methodology is to develop a tool to help the CASP

assessors. This present work is informative to predictors in terms of “where they got it wrong”,

assuming not too much is wrong. The qualitative comparison over all predictions for a particular

target is future work.
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Figure 4.1: A reaction regulated by an allosteric activator is shown in A and the allosteric inhibition
of the same reaction is shown in B. The conformational change to the active site by the binding of
the allosteric inhibitor prevents the substrate from binding.
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4.2 Allostery in HIV-1 protease

The protease protein in the human immunodeficiency virus (HIV) is crucial to the life cycle

of the virus, and consequently has been a primary target for drug development in fighting the virus.

[11]. HIV-1 protease is a homo-dimer (formed by two identical protein monomers) with flap regions

(residues 43-59) at the top of each monomer controlling entry into the active-site pocket. The flap

tips (residues 49-53) are known to be extremely flexible [11].

Our analysis of this protein examines the differences found in conformations from a study of a

multi-drug resistant (MDR) HIV-1 protease derived from a patient failing inhibitor-based therapies

(PDB 1RPI) with the wildtype (WT) protease (PDB 3PHV). The mutations in the MDR protease

are at sequence positions 10, 25, 36, 46, 54, 62, 63, 71, 82, 84 and 90 [65].

Our validation results in Chapter 3 for this comparison showed low specificity (40 %) be-

cause we compared only one monomer of the protease dimer, whereas the comparable flexibililties

described in [65] result from comparing changes to distances in the dimer. The PDB coordinates

for the WT protease we used in our comparison included only the single monomer, but the MDR

protease PDB file includes coordinates for both monomers. We include the additional monomer

in Figure 4.2 A and B (colored gray) to help visualize the dimer perspective and specifically, the

active site cavity formed by the two monomers. Figure 4.2 shows mobility measurements between

the superimposed MDR protease (bold colored) and the wildtype protease (somewhat transparent)

in A and the shape pliability measurements for the MDR protease in B. The sequence differences

between the MDR protease (1RPI, top) and the wildtype protease (3PHV, bottom) in C. are shaded

by shape pliability (top) and mobility (bottom) scores. The measurements for the highest shape

pliability and mobility scores are given in Table 4.1.

According to the study of MDR HIV-1 protease by Logsdon and colleagues [65], resistance of

existing therapeutics to HIV-1 protease are believed to be caused by the expansion of the active site

cavity disrupting inhibitor binding affinity. The active site cavity can be seen in figures 4.2 A. and

B. as the large space between the 2 monomers, just below the flexible flap tips at the top and center
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Figure 4.2: Multiple Drug Resistant (MDR) HIV-1 protease (1RPI:A) is bold and superimposed on
the (more transparent) wildtype (3PHV:A), colored by A. mobility and B. shape pliability, with no
WT protease. Both figures include the other monomer from the MDR HIV-1 protease (1RPI:B) in
gray, so that the active cavity located just below the flexible flap tips (at the top and center for both
images) can be readily seen. In C. the sequences 1RPI (top) and 3PHV (bottom) are shown with
shading around sequence letters indicate shape pliability scores (top) and mobility scores (bottom).
Above the sequence, the secondary structure elements are drawn with symbols described previously,
and subtle differences in secondary structure between the mutated and wildtype proteins are visible.
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Table 4.1: HIV-1 Protease: Measurements for residues exhibiting a high degree of shape pliability
or mobility comparing PDB structures 1RPI:A (MDR) versus 3PHV:A (WT).

ResID High High S3 ∆ Phi ∆ Psi DDMP SS Ave. Rel.
Shape Mobility Dist (Å) (Deg.) (Deg.) ASA
Pliability

GLN7
√

0.51 48.54 33.27 0.06 S S 0.65

GLY40
√ √

1.52 -63.65 14.76 0.73 S S 0.74

GLY48
√

1.40 -112.21 69.00 0.28 E - 0.68

GLY49
√ √

2.39 -37.78 -147.64 0.63 E S 0.39

ILE50
√ √

1.54 -130.19 35.24 0.62 T S 1.00

GLY51
√

1.24 -31.76 37.20 0.60 T S 1.00

GLY52
√ √

1.91 38.61 -73.67 0.82 E - 0.39

PHE53
√

0.90 -56.64 82.47 0.25 E - 0.76

ASP60
√

0.14 5.28 -166.76 0.14 E S 0.47

GLN61
√

0.45 -179.01 7.88 0.14 E S 0.79

ILE64
√

0.84 -64.08 14.80 0.22 E E 0.02

VAL71
√

0.25 32.81 45.59 0.06 E E 0.10

THR80
√

0.91 -58.48 -28.67 0.21 - - 0.29
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of each figure. Specifically, residues mentioned that are involved in this expansion (within the first

monomer of the homodimer) are 50, 80, and residues near position 7. Both Table 4.1 and Figure 4.2

show high shape pliability for all 3 residues mentioned as involved in the expansion of the active site

cavity, with residue 50 (located in the flap tip) also containing a high mobility score. Additionally, a

decrease in the sizes of amino acid sidechains for mutations in positions 82 and 84 changes the active

site, but these are not found in our analysis because we focus only on backbone measurements.

However, in the review article of [11], molecular dynamics simulations have identified flexible regions

of the protease such as the fulcrum(residues 11-21), the flap tips (residues 49-53), the flap elbow

(residues 38-42) and the cantilever (residues 64-74). Furthermore, they note that several of the

”compensatory mutations” for restoring catalytic activity in drug resistant mutants are found in or

near regions of above-average mobility. These observations essentially validate all of the remaining

residues that we find to have high shape pliability or mobility scores, with the exception of residues

60 and 61, which are close to the mutations at positions 62 and 63.

Although residues 60 and 61 have very high shape pliability scores, they exhibit almost no

mobility. This is because the large dihedral angle change in the ψ angle of residue 60 is compensated

for by the similarly large φ angle change of residue 61, and thus these large dihedral angle changes

do not significantly effect the overall backbone positioning. This type of motion (often referred

to as a crankshaft motion [29]) is rarely highlighted in structure references because the change to

the respective Cα positions is minimal. We observe high shape pliability score for these residues

because the change to the backbone involves a peptide plane shift, and in turn, the position of the

carbonyl oxygen rotates by 180 degrees.

A proposed mechanism for drug design using allosteric inhibitors instead of inhibitors targeted

to the active site is decribed in [41] . In [58], the crystal structure for a fully open MDR protease

conformation is believed to be stabilized in the open position by crystal contacts for each flap tip

buried between the fulcrum and elbow regions of a symmetry related neighber, with residues 39,

41, 60, 61 and 72 enclosing the tip. As in [41], [58] notes that this may provide experimental

evidence for a proposed allosteric inhibition. The allosteric inhibitoin could prevent the substrate
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from entering the active site cavity by targeting the flexibility that allows the protease to change

conformations between fully opened (to the active site cavity), partially closed, and closed. Based

on our measurements and the proposed allosteric inhibition, the planar flexibility we observe at

residues 60 and 61 perhaps plays a role in the flexibility that enables conformational change, and

provides further evidence that allosteric inhibition at this location could potentially be useful in

resolving this particular set of resistance issues for drugs targeting HIV-1 protease.

4.3 Analysis of Mesophilic and Thermophilic Adenlylate Kinase

The large-scale motion of Adenlyate Kinase (Adk) has been studied in a number of different

species using a variety of experimental and computational methods. The dynamics and catalysis of

Adk have been compared in mesophilic E. coli and thermophilic Aquifex aeolicus [108, 39] because

these homologs have very similar structures but different rates of catalysis. Thermophiles exist in

higher temperature environments than mesophiles, and thus the proteins of hyperthermophilic and

thermophilic species are inherently more thermostable than their mesophilic homologs. The work of

Bae and colleagues [3] compares thermal stabilities of modifed Adenylate Kinase (Adk) sequences,

with mutations constructed by combining portions of different sequences from a mesophile and

thermophile. The selection of residues to mutate is based on flexibility characteristics, and their

ability to design more stable variants of the mesophilic Adk that retained their catalytic activity is

especially exciting from a protein engineering viewpoint. In this section, we examine the hypothesis

that the more thermostable Adenylate Kinase (thermoAdk) is also more rigid than its mesophilic

counterpart (mesoAdk).

We study the flexibilities of Adk from mesophilic E. coli and thermophilic Aquifex aeolicus

by examining differences in mesophilic coordinate files for the apo (4AKE) and bound (1AKE)

conformations compared to the differences found in thermophilic conformations; apo (2RH5) and

bound (2RGX). In both cases, the apo (unligated) form is the open state, whereas the more closed

structure is bound to an inhibitor which mimics the binding of both AMP and ATP at different

sites. More specifically, the structure of Adk is comprised of 3 domains; AMP, LID and CORE.
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The AMP and LID are widely distanced in the apo structures but are in much closer proximity

in the bound structures. The CORE domain consists of all residues not in AMP or LID, and is

generally more static than the other 2 domains. The large-scale motion of AMP and LID for both

species is apparent in the higher average mobility scores shown in Table 4.2 for AMP and LID

domains versus the CORE domain. The more local shape pliability score averages do not vary

much between domains. The images in Figure 4.3 C and D show the orange and red highlighted

domains (indicative of the high mobility scores) in very different positions on the left (open) and

right (closed) sides for mesoAdk and thermoAdk respectively. The same images also capture the

similarities for the gross movements between mesoAdk and thermoAdk.

Table 4.2: Adenylate Kinase: meso and thermo mobility and shape Pliability mean, median and
minimum/maximum scores per domain. The 2 highly mobile domains AMP and LID show much
higher mean and median mobility scores than the less mobile CORE. There is not very much
variability in the shape pliability scores of the 3 domains.

MesoAdk ThermoAdk

Mobility Mean Median Min/Max Mean Median Min/Max

AMP 76.8 76.17 50.0/99.7 74.6 74.0 55.5/85.6

LID 75.8 76.17 69.2/78.0 73.8 76.7 48.5/ 82.2

CORE 50.2 48.1 31.3/81.8 47.4 43.6 27.7/89.1

Shape Pliability Mean Median Min/Max Mean Median Min/Max

AMP 30.1 22.0 4.5/100.0 21.6 24.4 7.5/43.3

LID 23.5 16.3 4.8/82.6 21.2 20.25 4.3/40.0

CORE 22.3 21.35 3.1/62.1 18.9 14.0 1.6/100.0

Residues with relatively high mobility scores are typically located in regions of well-documented

motion in other proteins. This is clearly the case for the motion of the AMP and LID domains,

where highly mobile residues cover these domains in both species as seen in Table 4.3. Overall

mobility similarities between the Adk structures of the 2 different species are apparent in Figure

4.3. The graphs in Figure 4.3 (A and B) demonstrate the same regions of high mobility scores

in the AMP and LID domains, and the p-loop. In the structural images in Figure 4.3 (C and

D) , the extremely mobile LID and AMP regions can be seen as completely separate in the apo
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structures and then much closer in distance in the bound structures. However, because our mo-

bility scores represent differences in measurements of intramolecular distances or superpositioning

distances found by comparing x-ray crystal stuctures, high mobility scores are not restricted to

large domain motions, and are also found in smaller regions such as certain loop regions between

secondary structure elements. For example, the P-loop is a binding motif (GXXGXGK) found

in both meso and thermo Adk’s where ATP phosphates are partially bound [92]. Table4.3 shows

higher scoring mobility residues within the P-loop of mesoAdk. The P-loop in thermoAdk con-

tains one additional proline residue, which may be the reason it is both less mobile and less shape

pliable in thermoAdk than MesoAdk. Likewise, hinge 8 also shows less flexibility in thermoADK

than mesoADK. α-helix-7 splits into two halves to form a loop in the middle in the bound form

of mesoAdk, but not thermoAdk. ThermoAdk, on the other hand, shows higher mobility in the

residues within hinge 4, which is the area described by Müller and colleagues as one of the coun-

terweights that change flexibility in the apo versus bound forms of mesoAdk [72]. The differences

between meso and thermo Adk’s are even more striking in the shape pliabilities scores, and we

discuss this next.

Table 4.3: Comparing highly mobile residues in mesoAdk and thermoAdk to reported features in
the literature. H4 and H8 are two of the eight hinge regions that have been compared between
mesoAdk and thermoAdk in [39].

MesoAdk ThermoAdk

High Max High Max Feature
Mobility Mobility Mobility Mobility (Residues)
Residues Residue Residues Residue

(Score) (Score)

10-13 G10 (81.3) 10 G10 (72.3) P-loop (7-13) [92]

32-59 D51 (99.7) 32-60 G56 (85.6) AMP: (30-59) [92]

78 R78 (76.3) 70-73,76 G76 (89.0) H4: (M:71-81, T:71-78) [39]

118-162 Q160 (81.8) 119-156 R120( 82.7) LID: (M:122-159,T:123-152) [92, 39]

176-177 A176 (77.6) H8: (M:172-178, T:166-172) [39]

Shape pliability includes but is not limited to hinges, however, the hinge regions have been



77

Figure 4.3: ADK Mobility. A and B plot the mobility scores for the residues of MesoAdk and
ThermoAdk respectively. C: apo (left) versus bound (right) mesoAdk, colored by mobility scores,
and likewise D: apo(left) versus bound (right) thermoAdk.
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extensively studied in comparing meso and thermo Adk. In [39] 8 hinges and a kink region are

described for MesoAdk and compared to similar regions found in ThermoAdk. Our method for

scoring shape pliability is based on φ and ψ dihedral angle differences and Cα distances computed

by our S3 algorithm, whereas [39] compares a completely different set of angles. Table 4.4 compares

the high shape pliability scores of residues using our scoring technique with those described in [39],

and highlights (in bold) the highest shape pliability scores. [39] mentions that in NMR experiments,

higher order parameters (i.e. atoms with more rigidity) were found for thermoAdk hinges than

in mesoAdk. Furthermore, four hinges (2, 3, 4 and 7) contain the amino acid Proline in thermo

but not meso, and aromatic ring stacking interactions near hinges 4 and 5 in thermo may also

rigidify. We find the highest shape pliability scores for mesoAdk in H2 and H7, as well as in loop

between β5 and β6 within the LID domain. In contrast, the single shape pliability score spike in

thermoAdk occurs in hinge 4, although this is one of the hinges containing a PRO that is believed to

rigidify it in comparison to mesoAdk without the PRO. Interestingly, this particular hinge region is

a counterweight described by [72], and also has high mobility scores. These findings are illustrated

in Figure 4.4 showing graphs A and B of the shape pliability scores of mesoAdk and thermoAdk

respectively, with the high peaks circled and numbered, and then displayed in the partial structure

images C, D, and E of the AMP, CORE and LID domains respectively.

The general conclusions of this section comparing flexibilities in mesoAdk and thermoAdk

are the following:

(1) The mobilities of the Adk’s from the 2 species are quite similar, as expected.

(2) The eight hinges described by [39] are all found in or near regions of relatively high-scoring

shape pliability residues by using a lower cutoff value (35.0 instead of 50.0) for shape

pliability residues of interest. This is consistent with the values of the angular differences

for hinges in [39]. However, in [39], there is no comparable discussion of the relative

flexibilities of the hinges that we highlight in the analysis of our measurements.

(3) There are more very high shape pliability regions in mesoAdk (3) than in thermoAdk (1).
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Table 4.4: Adenylate Kinase: Shape Pliability versus Hinges for MesoAdk and ThermoAdk confor-
mations.

MesoAdk ThermoAdk

High Max Hinge High Max Hinge
Shape Shape Residues [39] Shape Shape Residues [39]
Pliability Pliability Pliability Pliability
Residues (Score) Residues (Score)

10-12 G10 (40.4) 10 G10 (41.4)

25-26 F26 (43.9)

29 I29 (35.0) H1:29-31 30 S30 (35.5) H1:28-31

37 A37(37.2)

41-43; G42 (89.5) H2:42-50 54 E54(43.3) H2:49-51
45-46 L45,G46 (100.0)

56 G56 (41.6) H3:59-61 61 D61 (44.3) H3:59-62

64 I64 (48.2)

67 L67 (36.4) 67 L67 (42.5)

73-75,77 Q74 (46.2) H4:71-81 72-77 H75,G76 (100.0) H4:71-78
79-80 D79 (42.3)

H5:110 114 D114 (40.4) H5:111-114

Kink:115-116

120-123 R123 (48.3) H6:120 121 L121 (39.0) H6:120-122

128-129 P128 (82.7) 129 E129 (38.6)

158-160 D159 ( 69.4) H7:157-161 155 P155 (40.0) H7:151-155

178 L178 (38.4) H8:172-178 165-166 R166 (41.4) H8:166-172

203 A203 (37.7)

214 G214 (46.8)
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Figure 4.4: ADK Shape Pliability. A and B show the Shape Pliability scores for mesoAdk and
thermoAdk respectively. C: mesoAdk AMP domains (residues 30-59) with the highest scoring peak
(1) from A, D shows LID domains (residues 122-159) from mesoAdk structures with the remaining
high shape pliability peaks (2) and (3) from A. E: CORE domain (residues 60-122) of thermoAdk
with the highest shape pliability peak(4) from B.
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Perhaps this provides evidence that thermoAdk is more rigid than mesoAdk, as theory

would suggest.

(4) The locations of the high shape pliability regions in the enzymes of the two different species

are also quite different. The high shape pliability regions in mesoAdk suggest locations

where mutations could be applied to rigidify the protein, but there is no evidence that we

are aware of in the research to date suggesting mutations at these locations or their effect

on catalysis.
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4.4 Protein Structure Prediction Error Analysis

The CASP experiment is a biennial event, with the prediction season occurring during the

summer of every other year. The website [30] reports on all targets with predictions, ranks and

the native structure PDB code for each. The ranking is done primarily using a measure called the

GlobalDistanceTest TotalScore (GDT TS), which is a measure of the similarity between two protein

structures with identical sequences. It is defined as (GDT P1+GDT P2+GDT P4+GDT P8)/4

where each GTD Pn denotes the percent of residues under a distance cutoff ≤ nÅ. For each CASP

experiment, the GDT TS is computed for each prediction compared to the coordinates of the native

structure published in the PDB.

Our flexibility measurements and the shape pliability and mobility scores are based on com-

parisons between different conformations of a protein with the same or very similar sequences. We

also measure differences and similarities between the two structures, and describe these differences

in terms of flexibility. But the measurements could also be representative of the errors found in

predicting the structure. Mobility is representative of the global error in positioning the parts of

the protein relative to the remainder, and could be thought of the error in the global fold. Shape

pliability represents changes to individual, local elements of the protein, and could be thought of

as the error in the local (secondary structure elements) shape.

We applied our scoring functions to a very small number of predictions to demonstrate the

feasibility of using our method in error analysis. Here, we highlight our finding with a single target,

and two predictions of very different quality. The native structure is an α/β protein shown in Figure

4.5 A and is colored by spectrum over the various secondary structure elements, as is customary

when comparing CASP structure predictions.

Figure 4.5 B and E are colored using the same scheme, which highlights the fact that the

predicted strucure of B is very close to the native structure and E is not. In fact, Figure 4.5 B,

C, and D all represent the same prediction submitted by the group “Foldit”, a group comprised

of expert players at using the online game of the same name [20]. This prediction had the highest
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GDT TS score (70.48) over all predictions for this target. The biggest error in the prediction is

the helix colored red in both Figures C and D, and does not appear at all in the native structure

in A. The other areas colored yellow and orange in these two figures represent more subtle errors

in the prediction and locate residues that have smaller differences in the backbone from the native

structure.

In stark contrast, the prediction shown in the bottom row, Figures 4.5 E, F and G had rank

129, with GDT TS score 16.43. The fold has little resemblance to the native fold, and the mobility

scores in Figure 4.5 G. are all at the high end of the mobility spectrum. The shape pliability scores

reprented in F show some rigidity, or smaller differences, because by predicting almost all helices,

a few of them happened to be close to the correct postitions. The scores for this prediction are less

useful in identifying which residues have errors in their backbone positioning because there is so

little signal for the S3 alignment and DDMP distance comparisons.

To summarize, this application of our method is particularly effective in highlighting specific

errors for predictions with structures close to that of the target protein, although not as illuminating

in cases where the predicted structures do not resemble the target protein. The next phase is to

combine the scores for mobility and shape pliabiliy in some way to produce a single score, and

compare our ranking of predictions to those given by GDT TS.

4.5 Discussion and Summary

In the first two applications of our method, shape pliability scores pointed out flexibilities

that were not highlighted in the literature, but may have biochemical significance.

In the third application, the visualization of the differences for good structure predictions

can give insights into where the prediction is more or less successful, and pehaps lead to a better

understanding of the relative merits of different structure predictions and structure prediction

algorithms.
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Figure 4.5: CASP9 target T0581 showing the native structure in A compared to the prediction
with the highest GDT TS score for that target (B, C, D) and a prediction without much accuracy
(E, F, G). Specifically, T0581 D1 is shown as: A: the native structure for T0581 with secondary
structure elements colored by specturm, B: spectrum colored T0581 prediction 170 1, C: T0581
prediction 170 1, colored by shape pliability scores, D: T0581 prediction 170 1 colored by mobility
scores, E: Prediction 20 1, spectrum colored, F: Prediction 20 colored by Shape Pliability, and G:
Prediction 20 1 colored by mobility.



Chapter 5

Analysis of Backbone Flexibility

5.1 Introduction

The previous chapters describe two characterizations of residue-level protein backbone flexi-

bility we find implicit in protein conformational differences. These characterizations involve global

mobility of the residues with respect to the whole structure, and shape pliability of the local back-

bone structure. Now, we ask the question: “Are there attributes of the structure and sequence of a

single protein conformation that correlate to the flexibilities described in the previous chapters?”.

The goal of this analysis is to determine which, if any, of these investigated attributes could be

used to predict backbone flexibility using only local information. This type of information would

be useful in the context of protein design or other protein modeling algorithms where locality of

flexible residues is important. We assess the hypothesis that atomic crowding or lack-of-crowding

is associated with backbone flexibility. We investigate which specific chemical or energetic inter-

actions correlate to flexibility, and use the scores from our mobility and shape pliability scoring

functions to examine these questions.

In chapter 3, we used the protein-protein docking benchmark [27, 42] to validate our method

of scoring mobility and shape pliability by comparing the interface residues of bound and unbound

monomers. In this chapter, we use the same benchmark proteins but focus on the scores for all

residues in the comparisons, not just those residues found on the interface. This provides a collection

of over 17,000 residues from the comparisons of 81 protein monomers. Unless otherwise specified,

all statistics apply to the collection of residues as a whole, and not to the individual proteins or
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docking categories described in §3.2.

We investigate the correlation of energetic terms to flexibility using the full atom energy or

scoring function from the Rosetta molecular modeling suite of programs [61]. The Rosetta energy

terms are empirically derived from analyzing observed geometries of protein structures from the

PDB [19], and historically, were developed to predict protein structure for an ab initio (meaning

from “first principles”) protein structure prediction algorithm. The all-atom scoring function is

comprised of weighted individual terms that are primarily knowledge-based potentials, with their

underlying function based on Newtonian physics-based energy terms similar to those found in other

force fields such as CHARMM [13] or Amber [79]. We use the Rosetta energy scoring functions

for this analysis because our findings are mainly targeted to researchers in the areas of protein and

interface design and protein-protein docking, many of whom use Rosetta for their research.

5.2 Methods

Scoring functions for shape pliability and mobility were described in detail in §2.2.5, and we

use the same parameters for scoring as previously described.

Spearman rank correlation is used to estimate a rank-based measure of association between

two variables without any assumption regarding the underlying normality of the distributions of the

variables [54, 10]. The implementation of this correlation test in [96] computes the corresponding

p-values using an asymptotic t approximation. The correlaton coefficient value is given as ρ.

Secondary structure classifications per residue were obtained by using the “Dictionary of

protein Secondary Structure Program” or DSSP [46]. The DSSP program calculates hydrogen

bonds and classifies residues by the hydrogen bonding patterns found. The residue classification

of a Helix, (Beta) Sheet or Loop is based on the following DSSP characterizations of the hydrogen

bonding patterns:

• Helix: The hydrogen bonding of residues in the sequence that are 3, 4, and 5 residues

apart are given the DSSP symbols G, H and I for participation in a 310, α or π helix,
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respectively.

• Sheet: a single pair β−sheet hydrogen bonding forms a beta bridge (B) and extended

strand hydrogen bonding is symbolized by E.

• Loop: All characterizations of residues not included in Helix or Sheet classifications. These

include DSSP symbols T, S, and blank for the hydrogen bonded (T)urn, (S) for a bend

region of high curvature (non hydrogen bonded) and otherwise unclassified as blank or

space.

By modifying the Rosetta++ suite of programs [61], we obtained neighboring atom counts

used in the structural analysis, as follows:

• All atom neighbors: For each residue we compute the all atom count by comparing the

distance from each residue atom to to all other atoms in the structure, and counting the

atoms in all other residues within a cutoff distance of 5Å. We also add to that the number

of hetero atoms from the PDB within the cutoff distance. Hetero atoms included are metals

such as calcium and magnesium and atoms from small compounds such as ATP, but not

included are the additional water molecules found in the PDB model coordinate files.

• Aromatic neighbors: For each residue, we count the residues such as Phe, Tyr or Trp

that have an atom neighboring that residue.

• Nonpolar neighbors: For each residue, we count the residues that are nonpolar but not

aromatic, including residues such as Ala,Cys,Gly,Ile,Leu,Met,Pro, and Val that have an

atom neighboring that residue.

• Uncharged Polar neighbors: Same as aromatic neighbors counts but for residues His,

Aln, Gln, Ser and Thr.

• Charged Polar neighbors: Same as aromatic neighbor counts but for residues Asp, Glu,

Lys and Arg.
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We obtained per-residue energy values for each term by reading the PDB coordinate files into

the Rosetta++ suite of programs, and simply reporting the Rosetta full-atom energy per-residue

calculation.

For all the graphs created in this chapter, we used the R language and environment for

statistical computing [96].

5.3 Analysis

Our analysis consists of three broad classes of attributes: structural, energetic and sequence

terms. The structural analysis of individual monomers includes the secondary structure classifica-

tion of each residue, the number of atomic neighbors per residue and the number of neighboring

residues for specific chemical types for each conformation. The energetic analysis contains the per-

residue energy terms from the Rosetta scoring function [61] applied to each protein conformation,

and the sequence analysis correlates properties of amino acid types relative to average mobility and

shape pliability per type of residue.

5.3.1 Structural analysis

The question of which sequence and structural features distinguish rigid and flexible binding

sites in protein-ligand interactions was addressed by Gunasekaran and Nussinov, and surprisingly,

contact density between residues was not a structural feature that was associated with flexibility

although specific types of interactions did modulate conformational changes [34]. An earlier study

found that packing density values in protein structures varied approximately linearly with respect

to solvent accessibility levels [5] and a later study concluded that residue flexibility is strongly influ-

enced by relative solvent accessibility when flexibility is quantified by B factors [112]. This seems

to present contradictory conclusions concerning whether or not there is an association between

residue density and flexibility. In this section, we explore the correlation between residue den-

sity and flexibility, different types of chemical contact neighbors and the association of secondary

structure classifications with shape pliability and mobility.
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5.3.1.1 Secondary Structure

Each residue is classified according to secondary structure as defined by the DSSP, described

in §5.2. Figure 5.1 shows a photograph of a drawing by Jane Richardson of a protein using rib-

bon diagrams (invented by Richardson) to display secondary structure elements [84]. The figure

is labelled to illustrate a beta sheet, helices and loop regions in a protein. We compare the mea-

surements for shape pliability and mobility to the residue classifications of Sheet, Helix and Loop

in Table 5.1. The percentages for the most rigid bin for both mobility and shape pliability (0-20)

has the highest percentages of residues for all secondary structure classifications. Looking at the

highly flexible ranges (60-80 and 80-100), the highest percentages are for Loop mobility and shape

pliability, whereas the lowest percentages appear in the helix shape pliability scores. The structure

of helices and sheets are rigidified by hydrogen bonds, whereas loop regions do not tend to have the

same rigidifying force, and hence, are more flexible. Shape pliability is a local measure, and helices

are stabilized by hydrogen bonding to other residues 3, 4 or 5 apart in sequence, also a local force.

For this reason, one could expect the helix shape pliaiblity percentage in the higher score range

(60-100) to be lower than the corresponding mobility percentage and for the sheet classification

where the hydrogen bonds may connect non-local strands, and this is indeed what is seen.

Table 5.1: Each residue is defined by its secondary structure in the protein, and we report the
percentage of residue shape pliability snd mobility scores within each range of flexibility (defined
by increments of scores of 20) for each secondary structure classification.

Score Sheet Helix Loop
Ranges Mobility Shape Pliability Mobility Shape Pliability Mobility Shape Pliability

0-20 73.1 68.8 59.1 70.6 64.2 53.5

20-40 15.7 22.5 26.4 23.5 17.7 27.6

40-60 6.04 4.29 9.5 3.21 8.06 6.85

60-80 3.31 1.73 3.44 1.14 5.41 3.06

80-100 1.8 2.75 1.56 1.55 4.67 9.03
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Figure 5.1: Photograph of a 1980 pen and ink hand drawing by Jane Richardson [84], inventor of
the Ribbon Diagram. The labels were added for helices, loop regions and beta sheets to show the
secondary structure classifications.
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5.3.1.2 Neighboring Atom Counts

Using a Spearman rank correlation, we compare the total number of neighboring stoms

and number of different chemical types of neighboring atoms with the per-residue shape pliability

and mobility scores. Table 5.2 shows that the all atom counts are inversely correlated to shape

pliability with a correlation of -.31 (p < 10−15). This is shown in Figure 5.2 for shape pliability score

percentages in ranges colored by bins with divisions of 20. The mobility scores show less correlation,

and are shown in Figure A.1 in Appendix A. The full atom counts include a few proteins with very

high numbers of atomic neighbors (in the 80-100 range) because we include hetero atoms, described

in our full atom counting in §5.2. The graphs present percentages for each flexibility bin, because

if this were used in the context of a prediction algorithm, we would most likely bin the data in a

manner similar to what is shown here. The actual counts show the frequency of different numbers

of neighbors, but this is less relevant than the percentage comparison between the bins of different

flexibilities versus the ranges of neighbors counts. We also show similar graphs for the percentages

of nonpolar residue neighbors and aromatic residues neighbors in Figures 5.3 and 5.4 repectively.

The respective mobility graphs are again shown in Appendix A, because the correlations are not

as strong as those for shape pliability percentages.

Table 5.2: Spearman correlation ρ and P-values for associating shape pliability and mobility with
neighboring atom counts.

Neighboring Atom (Residue) Counts Shape Pliability Mobility
ρ P value ρ P value

All atoms -.31 < 2.2e− 16 -.12 < 2.2e− 16

Polar residues (Cα atoms) -.09 < 2.2e− 16 -.026 0.0001869

Nonpolar residues (Cα atoms) -0.28 < 2.2e− 16 -0.12 < 2.2e− 16

Aromatic residues (Cα atoms) -0.19 < 2.2e− 16 -0.16 < 2.2e− 16

The answer to the question regarding the association of residue density with flexibility is not

completely clear from this analysis. The correlations are stronger for shape pliability than mobility,
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across the board. This is reasonable in that neighborhood density and shape pliability are both

local phenomena, whereas the global flexibility of the mobility scores is not. The p values show

confidence that there is close to zero possiblity that the associations are occurring due to random

chance, but the correlation coefficients are weak. Perhaps the best evidence that this correlation

is signficant is in the graphs, which show that the highest ranges of shape pliability values (scores

of 60-100) clearly have higher percentages of the total at the densities (for all chemical types) with

the fewest neighbors.
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Figure 5.2: This graph shows the shape pliability score percentages for the total number of atomic
neighbors per residue, measured by distance cutoff of 5Å from the residue’s Cα atom.
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Figure 5.3: This graph shows shape pliability score percentages for ranges of the number of nonpolar
residue neighbors per residue.
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Figure 5.4: This graph shows shape pliability score percentages for ranges of the number of aromatic
residue neighbors per residue.
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5.3.2 Analysis of Rosetta Energy Terms

We examine the Rosetta energy and scoring function terms that are related to how well

the protein is packed [60], because there is not an explicit scoring function term in Rosetta for

measuring flexibility. These terms include the following:

• Epair: pairwise electrostatic term derived from statistics over proteins in the PDB; favors
salt bridges, or interactions between atoms with opposite charges.

• Eatr: Lennard Jones attractive force; rewards close contacts.

• Erep: Lennard Jones repulsive force; penalizes contacts that are too close.

• Esol: Lazaridis-Karplus solvation energy models water implicitly and penalizes the burial
of polar atoms [59].

• SASApack: measures the quality of packing by penalizing voids that are too small to
accomodate a water molecule; compares the measurement to expected packing observed in
structures in the PDB. Negative values are favorable and indicate that this residue is more
tightly packed than what is found on average in the PDB [64].

• Ehbnd: an orientation dependent hydrogen bonding potential for long and short range
hydrogen bonding [51]; we ignore sidechain-sidechain hydrogen bond energy, but include
all backbone hydrogen bond related energies.

Table 5.3: Spearman correlation ρ and P-values for associating shape pliability and mobility with
Rosetta energy terms.

Energy Term Shape Pliability Mobility
ρ P value ρ P value

Electrostatic -0.009 0.21 -.001 0.87

LJ attractive 0.30 < 2.2e− 16 0.13 < 2.2e− 16

LJ repulsive .04 4.074e-10 .10 < 2.2e− 16

Solvation -.15 < 2.2e− 16 -.07 < 2.2e− 16

SASA-pack .07 < 2.2e− 16 .07 < 2.2e− 16

Hydrogen bond .28 < 2.2e− 16 .11 < 2.2e− 16

In Table 5.3, the highest correlation for the energetic terms are for the Lennard Jones at-

tractive force and the hydrogen bond energy, both related to shape pliability. These correlations
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are also visible in Figures 5.5 and 5.6. The solvation energy term has the next highest correlation,

and from Figure 5.7 we see that this correlation is less evident. It does not seem surprising that

the Eatr and Ehbnd forces are associated with rigidity, at least locally, in the structures. Both

terms reward well-formed close contacts that are likely rigidifying, as we have already seen in the

secondary structure and atomic density correlations in §5.3.1. The solvation energy term is also

related to local packing and its correlation to shape pliability is expected.

The structural data from the PDB are representative of overall low energy, native structures

and the Erep term is not significant here. It doesn’t mean that this term isn’t relevant to flexi-

bility, but only that it isn’t a factor in the structures we are analyzing. Likewise, SASApack is a

very useful term for protein structure prediction, where candidate structures may lack the good

packing qualities inherent in crystal structures, but in our data the native structures analyzed are

presumably well-packed. The surprising result, however, is the lack of any correlation of flexibility

to the electrostatic Epair term. According to [53], salt bridges appear to constrain flexibility and

motion and are rarely found across regions that are joined by flexible hinges. This anomaly in the

correlation results requires further investigation.
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Figure 5.5: This graph shows shape pliability score percentages for ranges of Eatr per residue.
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Figure 5.6: This graph shows shape pliability score percentages for ranges of hydrogen bond energy
per residue.
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Figure 5.7: This graph shows shape pliability score percentages for ranges of values of Lazaridis-
Karplus solvation energy [59] per residue.
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5.3.3 Sequence analysis

Protein sequences and instrinsic disorder (at the extreme end of protein flexibility) have been

extensively studied [81], and sequence data have been used for prediction of motion in protein-

protein interactions [40]. We are foremost interested in the predictive qualities of protein structural

data, but sequence information has been shown to play a decisive role in flexibility and therefore

must be considered within the context of this analysis.

We looked at 2 different indices related to the characteristics of particular residues. Table

5.4 reports molecular weights and hydropathicity per residue. The hydropathicity index goes from

-4.5 for the extremely hydrophilic (water loving) to 4.5 for extremely hydrophobic. Charged polar

residues are the most hydrophilic because the charged atoms seek neutralization in water, whereas

hydrophobic atoms are nonpolar and typically locate in the protein core away from the aqueous

solution surrounding the surface. The Spearman correlation of these indices to shape pliability

and mobility is shown in Table 5.5. Hydropathicity shows higher correlation to mobility and shape

pliability than any of the structural or energetic terms, but the p values are not as persuasive

because here we are looking at only 20 data points each.

For the molecular weight index, Glycine (GLY) has the lowest weight ( 75 g/mol ) and Tryp-

tophan (TRP) is highest (204 g/mol). Both shape pliability and mobility have higher percentages

of flexible glycines and rigid trptophan’s, but the correspondance between weight and flexibility is

not linear between the endpoints. This is visible in Figure 5.10, with the TRP and GLY residues

circled because their mean shape pliability is almost perfectly inversely correlated to molecular

weight.

For the hydropathicity index, the shape pliability score percents show somewhat more flex-

ibility when hydrophilic and less when hydrophobic, with some huge exceptions like Glycine and

Trytophan, which correlate better to molecular weight than hydropathicity. Again, the data points

for these residues are circled in Figure 5.9. The highest correlation is evident in the mean mo-

bility versus hydropathicity correlation coefficient from Table 5.4, and this correlation is shown
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graphically in Figure 5.8.

In Figure 5.11, we look at the shape pliability percentages for each bin as shown in previous

sections, but now with regard to residue type. Glycine (GLY) residues have much higher percentage

(9.5%) of very high shape pliability (80-100) than all others, with the next closest Aspartic Acid

(ASP) at 6.5%). Glycine has no heavy atoms in its sidechain so the backbone can be sampled

in many positions without clashing with other sidechain atoms. Phenylalanine (PHE), Trptophan

(TRP), and Valine (VAL) have higher percentages of low shape pliability (0-20) than the remainder,

whereas for mobility (not shown), the largest precentage of rigid scores (0-20) are for Tryptophan

(TRP) and Cysteine (CYS), and no single residue stands out as having a higher percentage of high

mobility scores.

5.4 Discussion and Summary

The attibutes that show correlation to flexibility could be useful in predicting the backbone

flexibility for a single protein conformation, and the prediction, in turn, could be used within the

context of molecular modeling algorithms such as protein design or protein-protein docking to guide

sampling and monitor changes in structural flexibility. Even with weak correlations, using a kernel

to train and test a machine learning prediction method will combine the input attributes of each

residue, and the weak correlations may still be useful in that context. We used Rosetta because

of its successes in the research areas of protein and interface design; these are algorithms where

prediction of flexibility could be useful for selecting specific mutations to explore.
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Table 5.4: For each amino acid residue, the molecular weight and hydropathicity index [55] is
shown.

AA Mol. weight (g/mol) Hydropathicity Index Mean Mobility Mean Shape Pliablity

ALA (A) 89.00 1.80 18.00 21.50

ARG (R) 174.00 -4.50 20.94 23.45

ASN (N) 132.00 -3.50 16.99 22.83

ASP (D) 133.00 -3.50 19.64 25.01

CYS (C) 121.00 2.50 14.86 20.08

GLN (Q) 146.00 -3.50 18.77 21.71

GLU (E) 147.00 -3.50 23.17 24.14

GLY (G) 75.00 -0.40 19.06 27.40

HIS (H) 155.00 -3.20 21.13 23.43

ILE (I) 131.00 4.50 17.16 18.34

LEU (L) 131.00 3.80 17.40 18.58

LYS (K) 146.00 -3.90 21.33 23.31

MET (M) 149.00 1.90 19.47 21.58

PHE (F) 165.00 2.80 16.79 18.60

PRO (P) 115.00 -1.60 19.90 21.49

SER (S) 105.00 -0.80 17.61 24.74

THR (T) 119.00 -0.70 19.09 23.57

TRP (W) 204.00 -0.90 14.17 17.40

TYR (Y) 181.00 -1.30 16.80 20.34

VAL (V) 117.00 4.20 16.51 17.81

Table 5.5: Mobility and shape pliability averages per residue type related to hydrophathicity and
molecular weight.

AA Index Mean Shape Pliability Mean Mobility
ρ P value ρ P value

Hydropathicity -0.583 0.007 -0.611 0.004

Molecular weight 0.029 0.902 -0.187 0.429
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Figure 5.8: Mean residue type mobility versus hydropathicity
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Figure 5.9: Mean residue type shape pliability versus hydropathicity
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Figure 5.10: Mean residue type shape pliability versus molecular weight
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Figure 5.11: Shape pliability score percentages for the 20 naturally occurring residues in proteins.



Chapter 6

Conclusion

6.1 Thesis Contributions

• We designed and implemented a new algorithm to align proteins by secondary structure

elements and minimize distances between corresponding residues when secondary structure

elements align closely. The goal of this algorithm is to find distances between corresponding

aligned residues that relate to flexiblity, such that rigid regions of the protein align more

closely than flexible regions. The comparison to an existing method known to handle

flexibility in its alignment shows the differences in how the methods produce measurements

for specific residues that are known to be flexible versus those that are less flexible.

• We defined a characterization of protein backbone flexibility as two distinct types of flexi-

blity with per-residue scoring functions for each.

• We validated the scoring methods over a wide variety of protein conformational changes,

showing the generality and accuracy of the method.

• We applied the flexibility scoring functions to three important, disparate research areas.

These include two biochemisty areas pertaining to drug and enzyme design, and a third

application to error analysis in protein structure predictions.

• We analyzed the correlation of our flexibility scores to structural, energetic and sequence

attributes that may influence (or predict) flexibility.
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6.2 Future Directions

• The development of an evaluation method for protein structure prediction based on our two

flexibility scoring functions may be useful for assessing the quality and ranking of protein

structure predictions.

• The implementation of a machine learning prediction method for prediction of shape plia-

bility, using the attributes that appeared to have some correlation in Chapter 5, could be

used to predict local flexibility in individual protein structures.

• The correlation of evolution to residue flexiblity will provide information in the likelihood

of mutation in rigid or flexible residues of protein structures.

• The generalization of the scoring functions to handle comparisons of more than two struc-

tures could apply to NMR coordinate files with multiple conformations, populations of

more than two x-ray crystal conformations, or modeling algorithms with multiple sample

points containing different backbone coordinates for a particular protein structure.
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Walter, Stefan Becker, Jens Meiler, Helmut Grubmüller, Christian Griesinger, and Bert L.
de Groot. Recognition dynamics up to microseconds revealed from an rdc-derived ubiquitin
ensemble in solution. Science, 320(13):1471–1475, 2008.

[58] Melinda Layten, Viktor Hornak, and Carlos Simmerling. The open structure of a multi-
drug-resistant HIV-1 protease is stabilized by crystal packing contacts. J Am Chem Soc,
128:13360–13361, 2006.

[59] Themis Lazaridis and Martin Karplus. Effective energy functions for proteins in solution.
Proteins, 35:133–152, 1999.

[60] Andrew Leaver-Fay, Glenn L. Butterfoss, Jack Snoeyink, and Brian Kuhlman. Maintaining
solvent accessible surface area under rotamer substitution for protein design. Journal of
Computational Chemistry, 28(8):1336–1341, 2007.

[61] Andrew Leaver-Fay, Michael Tyka, Steven M. Lewis, Oliver F. Lange, James Thompson, Ron
Jacak, Kristian Kaufman, P. Douglas Renfrew, Colin A. Smith, Will Sheffler, Ian W. Davis,
Seth Cooper, Adrien Treuille andDaniel J. Mandell, Florian Richter, Yih-En Andrew Ban,
Sarel J. Fleishman, Jacob E. Corn, David E. Kim, Sergey Lyskov, Monica Berrondo, Stuart
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Appendix A

Supplementary Information

We supply a number of figures for comparing mobility scores versus different attributes of

the structure or energy of the protein. These figures are described in Chapter 5, and have weaker

correlations than the correlation figures (for shape pliability) depicted within the chapter.
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Figure A.1: Mobility score percentages for the total number of atomic neighbors per residue,
measured by distance cutoff of 5Å from the residue’s Cα atom.
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Figure A.2: Mobility score percentages for the ranges of the number of aromatic residue neighbors
per residue.
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Figure A.3: Mobility score percentages for the ranges of the number of nonpolar residue neighbors
per residue.
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Figure A.4: Mobility score percentages for the ranges of the number of nonpolar neighbors per
residue.
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Figure A.5: Mobility score percentages for the ranges of hydrogen bond energy per residue.


