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Whether driving a car, making critical medical decisions in the ER, answering questions in a

marketing survey, or selecting shots in a basketball game, people make decisions and actions that

are biased by the sequence of recent experience. These sequential effects are ubiquitous in human

behavior and have been demonstrated in a wide range of experimental paradigms. This dissertation

begins with a synthesis of the vast computational modeling landscape in this domain. Building

upon one of the core principles revealed in this synthesis, I explore how sequential effects in sim-

ple choice tasks reflect an individual’s attempt to optimize behavior in an ever-changing world.

A Bayesian model is proposed which asserts that humans are sensitive to multiple environmental

regularities and adapt their behavior according to expectations derived from these sensitivities.

Through analyses of two experiments that question how far into the past these sensitivities extend,

I demonstrate that events far in the past can exert an observable bias on behavior. This finding

is surprising given the prevailing perspective in the literature that sequential effects are relatively

ephemeral, fading after roughly 4-6 intervening events. To accommodate this new perspective,

a hierarchical generalization of the model is presented that allows for long-range sensitivities ex-

hibiting power decay. Given an expanded understanding of the mechanisms underlying sequential

effects, the final chapter focuses on how this understanding can be put to practical use. I address

sequential biases in judgment tasks and develop techniques for removing the biases from a sequence

of responses. By decontaminating the responses using a novel hierarchical Bayesian model that

exploits knowledge of sequential effects, a set of new responses is obtained that is more represen-

tative of the individual’s true opinions. For each question or stimulus that is judged, the goal is

to uncover what the individual would have responded in the absence of any sequential context.

Given the growing interest in collecting human judgments and using them to predict individual
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preferences (e.g., Netflix, Amazon), the ability to effectively decontaminate sequences of judgments

is of significant value because it produces more reflective estimates of an individual’s internal state

with fewer total judgments required.
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Chapter 1

Introduction

Our world is structured such that we experience a steady stream of sensations and continually

formulate decisions and actions in response to them. Understanding this input/output relationship

is the primary goal of psychology. In the laboratory, researchers often study this relationship by

exposing individuals to a collection of sensations, requiring them to take some action, and recording

properties of their behavior. A universal characteristic of these experiments is that behavior exhibits

variability, even across multiple presentations of the exact same sensations. Typically variability

is removed in experimental analyses by averaging across common trials. Rather than discarding it

with the blunt tool of the average, we relish behavioral variability in this work and use it to uncover

hidden aspects of cognition and to extract more reliable measurements of human behavior.

A large portion of behavioral variability can be attributed to the fact that human decisions

and actions are deeply influenced by the context of the moment. The study of sequential effects

recognizes this and aims to develop a more complete understanding of how behavior is modulated by

the current context (i.e., the sequence of sensations, decisions, and actions that precede the behavior

under scrutiny). In this dissertation, we investigate new theoretical perspectives on human behavior

through computational modeling of sequential effects. Furthermore, we turn the problem inside-out

and ask how a computational understanding of sequential effects can improve conclusions drawn

from sequentially contaminated data.

Sequential effects have long received attention in the experimental literature, though they are

acknowledged and addressed in only a small minority of studies. Despite the fact that sequential
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effects are often ignored, experimental evidence suggests that they are present in nearly all aspects

of cognition and are even ubiquitous across more rudimentary components of our nervous system,

such as motor control.

One early example of a sequential effect is the gambler’s fallacy identified by Jarvik (1951) in

which after a long sequence of repeated events, individuals have a bias towards expecting a reversal

of the sequence even if the events are independent and equally probable. This bias resulted in a

huge win by a casino in Monte Carlo one evening in August, 1913, when one of the roulette wheels

logged a remarkable 15 blacks in a row, sparking a rush of bets on red, and then continued to a

record streak of 26 consecutive blacks, breaking the bank of many individuals who kept doubling

down their bets believing that there was no possible chance the streak could continue.

Sequential effects have been demonstrated in a wide range of experimental paradigms, in-

cluding simple choice tasks (e.g., Bertelson, 1961; Hyman, 1953; Remington, 1969), probability

matching (e.g., Estes, 1957), absolute judgments (e.g., Garner, 1953; Ward and Lockheed, 1970),

magnitude estimation (e.g., Jesteadt, Luce, and Green, 1977; Ward, 1973), categorization (e.g.,

Petzold, 1981; Treisman and Williams, 1984), visual search (e.g., Chun and Jiang, 1998; Maljkovic

and Nakayama, 1994), and language production (Bock and Griffin, 2000).

Beyond these somewhat contrived laboratory tasks, sequential effects have been identified in

significant real world situations. For example, recent braking or acceleration actions of automobile

drivers can explain variability in response latencies of up to 100 ms, potentially the difference be-

tween a collision and a near miss (Doshi, Tran, Wilder, Mozer, and Trivedi, 2012). Professional

basketball players’ choices of shot location have been shown to depend directly on recent attempts

and successes (Neiman and Loewenstein, 2011). A bias of the recent past on decision-making has

been demonstrated in legal reasoning and jury evidence interpretation (e.g., Furnham, 1986; Hog-

arth and Einhorn, 1992), clinical assessments (Mumma and Wilson, 2006) and financial decisions

(e.g., Johnson and Tellis, 2005; Vlaev, Chater, and Stewart, 2007).

Furthermore, sequential effects are present in motor control (Scheidt, Dingwell, and Mussa-

Ivaldi, 2001) and pain sensation (Link, Kos, Wager, and Mozer, 2011), suggesting that dependencies
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on the recent past are not just a property of high-level cognition. In fact, other animals have been

shown to exhibit sequential dependencies. For example, rats adjust their behavior according to the

sequence of recent rewards (Gallistel, Mark, King, and Latham, 2001), the foraging behavior of

starlings is biased by recent experience (Cuthill, Kacelnik, Krebs, Haccou, and Iwasa, 1990), and

the flower choice of bumblebees seeking nectar is influenced by the few recent flower visits (Real,

1991).

In the following chapters, we explore sequential effects from a computational perspective.

This work begins with an overview of the literature in Chapter 2. Instead of just surveying the

many existing models of sequential effects, we synthesize and organize this broad field according to

several underlying computational principles. These computational principles serve as a springboard

into the novel research we present. In Chapter 3, we develop a Bayesian model that explains

response time in simple choice tasks by assuming that individuals are optimizing their behavior

in an environment that can be characterized by the sequence of recent stimulus values and an

abstraction where trials are encoded as a repetition or alternation of the previous trial. Building

on this perspective, in Chapter 4, we provide psychological evidence for the dissociation of sequential

effects driven by stimulus properties and those driven by a repetition/alternation abstraction of

the stimuli sequence. Chapter 5 presents a thorough investigation of the persistence of incidental

experience and reports the surprising finding that events far in the past can still exert an influence

on behavior. Generalizing a version of the model explored in Chapter 3, we offer a theoretical

justification for why the influence of incidental experience should be so persistent. In Chapter 6, we

study several methods for decontaminating or removing sequential effects from human judgments.

We present a novel hierarchical Bayesian model that produces a meaningful improvement in the

quality of what can be inferred from an individual’s sequence of contaminated judgments. Finally,

Chapter 7 recapitulates the contributions of this work and suggests potential directions for future

research.



Chapter 2

Computational Principles Underlying Models of Sequential Effects1

The diversity of situations where sequential effects arise has led to a proliferation of theoretical

models that seek to explain them. However, in many cases, researchers view these effects as a quirk

of their specific domain and account for them by making subtle tweaks to their domain specific

models in a way that obscures the common principles underlying sequential effects. Our goal

in this chapter is to survey the wide swath of theoretical and computational models and whittle

this disparate collection down to a few central explanations for why sequential effects occur. By

extracting the core principles from this scattered literature, we hope to clarify the role of sequential

effects in behavior and provide guidance for interpreting sequential effects across all domains.

In synthesizing these models, we find that in most cases, sequential effects can be understood

as an efficient solution to the challenges imposed by a dynamic environment under the constraints of

a limited cognitive architecture. This perspective highlights the importance of understanding and

recognizing sequential effects in cognition. Instead of taking the common view that these effects are

a suboptimal idiosyncrasy of the brain, we encourage researchers to explore how sequential effects

can further enrich our understanding of all aspects of behavior. For example, our analysis finds a

deep connection between sequential effects, adaptation, learning, memory, and the statistics of the

environment. In fact, sequential effects may be a manifestation of the brain’s attempt to keep up

with continually changing environmental conditions and may serve as the initial stage in developing

more complex adaptive behavior.
1 The synthesis and organization provided here was moulded out of many discussions with Michael Mozer and

Matt Jones.
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2.1 Neural Inertia

Most early explanations for sequential effects have a strong mechanistic feel, attributing

them to residual neural activity that yields a simple form of priming. The general idea is that

the previous trial or sequence of trials produces a residual trace of neural activity or an implicit

short-term memory that influences subsequent behavior. Figure 2.1 depicts a caricature of a neural

inertia model. In the early literature, residual neural activity is often associated with a facilitation

effect where performance is enhanced on repetition trials—where the current stimulus is the same

as the previous stimulus (Bertelson, 1961; Hyman, 1953). This priming is not just limited to the

relationship between the current and previous trial but can extend several trials into the past

with greater facilitation after a string of repetitions (Remington, 1969). This is closely linked to

the notion of expectancy in early theoretical accounts, where participants are assumed to adjust

behavior according to a loose implicit expectation about what will occur next formed from recent

experience. Falmagne (1965) presents an early formalization of this concept in a model for a multi-

choice reaction time task. Though presented via a slightly more complex mathematical framework,

the model essentially implements a decaying memory trace for each potential stimulus and predicts

response time (RT) for a given stimulus to be a function of an individual’s level of preparation,

defined as the strength of the trace for that stimulus. Typically, expectancy refers to a positive bias

towards recent experience. However, the effect can also be negative, as in Jarvik (1951), though the

gambler’s fallacy most likely results from explicit memory rather than implicit short-term memory.

The general theoretical perspective underlying these neural inertia accounts is that the cog-

nitive system has a built in expectation for successive events to be similar. In this way, sequential

effects can be viewed as a simple heuristic to improve performance in situations that do in fact

exhibit positive autocorrelation from one trial to the next.

Much of the subsequent theoretical work on choice RT tasks targets subtleties in the exper-

imental data such as how behavior changes with the response-stimulus interval (RSI), the stim-

ulus/response mappings, different baserate probabilities, sequential autocorrelation structure, the
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Figure 2.1: An example of neural inertia. If the level of bias affects behavior in some way, there
will be spillover of neural activity from previous trials that will yield sequential effects in behavior.

number of stimuli or choices, and effects of practice (Hale, 1969; Kirby, 1976; Laming, 1968; Soetens,

Deboeck, Boer, and Hueting, 1984; Soetens, Boer, and Hueting, 1985; Vervaeck and Boer, 1980).

The theories put forth appear diverse on the surface, with conflicting perspectives on the presence

and role of facilitation and expectancy. However, in most cases the sequential effects still result

from some form of residual neural activity occurring within the mechanisms proposed. Much of

the debate focuses not on whether neural inertia is present, but rather what is the time course of

decay and how the different mechanisms combine.

For example, Vervaeck and Boer (1980) explain sequential effects by a variable state of exci-

tation or inhibition of two processing pathways, one for each choice. When a pathway is used on

a trial, it experiences an increase in excitation that leads to faster responses when that pathway is

used on subsequent trials. Further, they propose that the state of the unused pathway is differen-

tially affected by repetitions and alternations in a way that depends on RSI and practice. Soetens

et al. (1985) conclude that facilitation and expectancy are completely different mechanisms that

predict different patterns of sequential effects. The extent to which each mechanism affects per-

formance depends importantly on experimental design, especially RSI and response compatibility.

The authors explain facilitation via rapidly decaying memory traces but are less clear as to how

expectancy is developed. It is suggested that expectancy loosely corresponds to the local impression

from a run of binary stimuli which could naturally be derived from a decaying short-term memory

of recent trials.
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A more recent class of models that seek to explain sequential effects is based on the leaky,

competing accumulator choice model of Usher and McClelland (2001). These models share the

common property that they supplement the accumulator model with additional traces that track

properties of the sequence and offset the decision dynamics from one trial to the next. Cho et al.

(2002) demonstrate that individuals maintain multiple biases relevant to different properties of the

sequence. These biases, which are implemented via simple decaying memory traces, preferentially

contribute to the accumulation rate of each decision unit in a way that depends in part on the

identity of the previous trial. A. D. Jones, Cho, Nystrom, Cohen, and Braver (2002) add conflict

monitoring to the model of Cho et al. to capture sequential effects in RT that can be attributed

to higher-level issues of cognitive control (e.g., speedup and slowdown as the properties of the task

change). The model is identical to Cho et al. except that an additional strategic priming bias

is added to the accumulation equation. Strategic priming is defined as an exponentially decaying

trace of conflict between competing decision units over past trials. Gao, Wong-Lin, Holmes, Simen,

and Cohen (2009) extend this model further to account for modulations due to varied RSI, but the

mechanisms of their model are still rooted in simple decaying memory traces.

Two models that are similar to the accumulator model of Usher and McClelland (2001) are

the random walk decision model of Laming (1968) and the diffusion model of Ratcliff, VanZandt,

and McKoon (1999). Sequential effects are addressed in the context of both of these models,

though neither makes strong claims about the specific mechanisms that drive the sequential effects.

Because no strong claim is made about sequential effects, it is not completely fair to classify them

under the neural inertia category. However, the most natural way to give a mechanistic explanation

of sequential effects in these models is to incorporate a bias variable that exhibits neural inertia

and affects the starting point of the random walk or diffusion process.

Laming’s (1968) random walk model for two-choice (and multi-choice) tasks proposes a de-

cision trace that follows a random walk through the decision space until it reaches one of the

absorbing boundaries, at which point the decision is made. The increments of the random walk

are driven by a segmented stream of input values independently sampled from a distribution that



8

is determined by the stimulus present. On average the random walk gravitates toward the cor-

rect response, but the variation in input values can slow the decision process or even lead to an

incorrect response. The model hypothesizes that the appropriate starting point for the random

walk is dependent upon the relative proportion of the two stimuli. However, Laming suggests that

sequential effects may arise because participants sub-optimally estimate the response probabilities

from the recent sequence. Such an estimate could easily be derived from a decaying memory trace

of previous trials and could be used to produce variations in the starting point of the random walk.

Ratcliff et al. (1999) proposes a diffusion model for decision processing that is in essence the

continuous-time counterpart to Laming’s (1968) random walk model. Ratcliff et al. demonstrates

that variability in drift rates and response boundaries are required for the model to produce se-

quential effects. However a theoretical explanation for what may cause this variability is not given,

though again, as suggested above, this variability could result from residual activity.

Though the choice RT domain has been one of the most active for studying sequential effects,

the concept of neural inertia has served to explain sequential effects in many other domains as

well. For example in the judgment literature, sequential effects such as response assimilation

have been explained as a bias driven by an implicit memory of recent events. In their judgment

model for absolute identification, Petrov and Anderson (2005) maintain a decaying memory trace

for each anchor or response that represents the degree of activation. The probability of selecting a

particular anchor on the next trial increases with the strength of its activation trace. Brown, Marley,

Donkin, and Heathcote (2008) capture sequential effects in their model of absolute identification

via a contrast effect resulting from residual activation in the perceptual scale and a decisional bias

towards recent stimuli resulting from residual activation present in the decision units of a ballistic

accumulator. In the visual search domain, Maljkovic and Nakayama (1994, 1996) propose that RT

is affected by priming of the attention-driving feature (color or spatial frequency) and the target

position implemented in a decaying short-term memory trace.
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2.2 Incremental Learning

Under the neural inertia explanation, the mechanisms responsible for sequential effects are

hardwired. Though this is a simple, efficient solution to improving performance when successive

events tend to be correlated, it offers no sensitivity to actual performance. An alternative per-

spective that suggests more engagement with the individual’s trial-to-trial performance portrays

sequential effects as a consequence of incremental learning processes. As individuals engage in a

stream of events, they incrementally adapt behavior in such a way as to reduce future errors or

increase future rewards. From this perspective, sequential effects are dependent upon the sequence

of stimuli and responses as in the neural inertia explanation. However, the effects also depend on

the appropriateness of past responses. The key property of these models is that the process of

long-term learning also indirectly produces short-term sequential effects. Figure 2.2 displays a sim-

ple network architecture in which incremental learning might be used to update weights following

each trial according to the error difference between the network output on a trial and the correct

response.

Figure 2.2: A simple model in which the predicted event at time n, En, depends on the previous
event and a constant cue. Following the trial, an error signal is obtained by computing the difference
between the predicted event outcome and the true outcome. This error signal is used to update
weights in an incremental fashion.

The connection between sequential effects and theories of incremental learning has long been

recognized. Statistical learning theory (Estes, 1950; Estes and Burke, 1953) hypothesizes a re-

sponse strategy where response probabilities are updated on a trial-to-trial basis according to the
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reinforcing events. Because response probabilities fluctuate with each trial presentation, this model

predicts simple sequential effects in event prediction paradigms (Estes, 1957; Estes and Straughan,

1954) and in probabilistic discrimination learning paradigms (Estes and Burke, 1955). Taking the

analysis a step further, N. H. Anderson (1959) derives relationships between parameters of simi-

lar incremental learning models and observable sequential effects demonstrating the importance of

sequential effects in understanding and testing general models of learning.

Incremental learning is also critical to classical conditioning theory in which the association

between a stimulus and an outcome strengthens in a way proportional to how unexpected the

outcome was given the stimulus (Rescorla and Wagner, 1972). In connectionist models, this corre-

sponds to a delta-learning rule or error-correction learning and is employed in several models for

categorization (e.g., Gluck and Bower, 1988; Kruschke, 1992; Nosofsky, Kruschke, and McKinley,

1992). These models focus on explaining the time course of learning during an experimental session

or even across sessions. However, because error-driven learning occurs on every trial, these models

naturally exhibit behavior that varies as a function of the sequence of recent stimuli. M. Jones and

Sieck (2003) demonstrate that this class of models accurately capture the positive recency effects

found in typical categorization experiments but that the models fail in producing the effects found

in experiments that manipulate the correlation between outcomes on successive trials. By expand-

ing the ALCOVE model of Kruschke (1992) to include an additional simple statistic that encodes

aggregate information about the recent sequence of trials, M. Jones and Sieck (2003) account for

the extra variation in the data that results from sequential autocorrelation.

In the motor control literature, movement error has been accounted for using an autoregres-

sive model that includes past errors. Scheidt et al. (2001) obtain better fits to human movement

error in a reaching task with artificially imposed forces by accounting for sequential effects in

the data via a regression model that includes current force, previous force, and previous error.

Similarly, Wong and Shelhamer (2011) account for the effect of the saccade errors in a repetitive

eye-movement task using a simple autoregressive moving average (ARMA) model, though they

give evidence for a longer-range learning process as well. Unlike in the connectionist models where
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weights are adjusted in accordance to the strength of the error signal, in these models, the next

behavior depends directly on the previous error. Still these models can be viewed as a coarse form

of incremental learning where behavior is continually adjusted according to recent performance,

not just recent experiences.

The concept of incremental learning is also embodied in reinforcement learning (Sutton and

Barto, 1998) where internal state/action pairs are updated after each experience according to the

reward associated with the experience. Because decisions are biased towards recently rewarded

actions, these models capture the types of sequential effects in which individuals tend to repeat

previously successful actions. For example, reinforcement learning models have been successfully

explained sequential effects in shot choice by basketball players (Neiman and Loewenstein, 2011)

and attention allocation in a visual cueing paradigm (Chukoskie, Snider, Mozer, Krauzlis, and

Sejnowski, 2013).

2.3 Prediction in a Dynamic Environment

Theories for incremental learning have been popular in part because they represent a simple

way for the brain to obtain approximate solutions to complex optimization problems under the

constraints of limited memory. Often, models based on incremental learning are proposed for these

reasons and the sequential effects they produce are viewed as an inconsequential byproduct of the

machinery. Similarly, under the neural inertia account, sequential effects are cast as a secondary

byproduct of cognitive mechanisms. Generally these mechanisms are portrayed as suboptimal

because they can lead to irrational behavior in certain settings. The classic example is a two-

alternative forced-choice (2AFC) task where there is no correlation between successive stimuli and

the stimuli occur with equal frequency. Participants who explicitly know that the stimuli are

completely random still exhibit a bias toward one stimulus or the other depending on the recent

history of trials (e.g., Cho et al., 2002). This has led many researchers to view sequential effects as

a cognitive deficiency. However, if successive events tend to be positively correlated—as seems to

be the case in the majority of real-world situations—sequential effects could reflect an intelligent
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means for adjusting behavior.

Rather than characterizing sequential effects as suboptimal, idiosyncratic behavior, an al-

ternative perspective that has recently gained traction in the literature explains sequential effects

as the reflection of a cognitive system designed to adapt to a dynamic environment (i.e., one in

which the properties or statistics regularly change). The models that embody this perspective typ-

ically begin with basic assumptions about how the statistics of the environment change and then

demonstrate that sequential effects result from optimal or approximately optimal behavior given

these assumptions. While the neural inertia and incremental learning explanations fall into the

implementation or algorithmic analysis levels of Marr (1982), the present explanation addresses

sequential effects from a computational level of analysis. Here we are less interested in the mech-

anisms that produce sequential effects and instead seek to understand their critical function or

purpose. Figure 2.3 gives a simple depiction of adaptation to the environment in a 2AFC task.
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Figure 2.3: An example of adaptation to the statistics of the environment. Here an individual is
assumed to maintain a probability distribution over the probability that the next trial will be a
repetition in a 2AFC task. After the sequence AARAAA, where R is a repetition and A is an
alternation, there is more density in the lower repetition probabilities. After two Rs, the densities
shift toward greater values, but with the final A, the distribution shifts back slightly. Statistics are
continually updated as trials occur and a bias is placed on more recent trials such that the model
will be flexible to changes in the environmental statistics.

The perspective that behavior reveals underlying assumptions of environmental nonstationar-

ity has been developed in the literature through the years. In considering the seemingly suboptimal



13

behavior of probability matching, where participants roughly match the frequency of their responses

to the outcome probabilities instead of always predicting the most probable response, Flood (1954)

suggested that this behavior is appropriate if the participants expect outcome probabilities to

change over time. Nissen and Bullemer (1987) propose that implicit learning of environmental

statistical regularities allows for more accurate prediction of events in the near future leading to

faster, potentially more accurate behavior. Further, J. R. Anderson and Schooler (1960) provided

an ecological justification for the functional property of memory decay by comparing it to the em-

pirical need probabilities for information in a variety of real-world domains. This sort of normative

argument—in which behavior is cast as optimal given a set of assumptions about the environment—

is compelling because it justifies aspects of cognition according to the contexts in which they are

meant to function. As M. Jones and Sieck (2003) pointed out, the domain of sequential effects in

decision-making was in need of such normatively inspired theories.

Recently there has been a proliferation of models that explicitly take this normative approach.

Yu and Cohen (2009) explain the classic RT pattern in 2AFC with their Dynamic Belief Model

(DBM). The fundamental assumption in the DBM is that the repetition probability in a sequence

of trials follows changepoint dynamics—i.e., the probability of the current stimulus/response being

the same as the previous is fixed for a period of time until it is randomly resampled. A rational

agent operating under these assumptions produces sequential effects that closely match human

data. In Chapter 3 (and in Wilder, Jones, and Mozer, 2010), we extend the DBM exhibiting a

better fit to experimental data under the assumption that sequences result from the combination of

the repetition probability component of DBM and a baserate stimulus probability also participant

to changepoint dynamics. Gokaydin, Ma-Wyatt, Navarro, and Perfors (2011) demonstrate that

only baserate probabilities need to be tracked to account for participant RTs in a 3AFC. Though

their model is not specifically based on normative principles about the change dynamics, the model

predictions are consistent with what would result from the baserate component in Wilder et al.

(2010) if it were extended to a three choice task. Though the assumption of abrupt changepoint

dynamics has been adopted in these models, it is equally feasible that the environmental statistics
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change gradually according to random walk dynamics instead. In many cases, these two differ-

ent assumptions predict the same pattern of sequential effects though there should be testable

differences. In several multiple cue probability learning experiments where the cue-criterion is

nonstationarity, Speekenbrink and Shanks (2010) demonstrate that participants adapt predictions

to both gradually changing dynamics and abrupt changepoint dynamics. The authors find some

success in modeling the data using a Bayesian linear filter model which essentially uses a Kalman

filter to track a random walk in cue criteria, but the model does not conclusively perform better

than other existing models suitable for the domain.

In addition to estimating simple sequence statistics like the baserate and repetition proba-

bility, individuals have been shown to change behavior according to more abstract properties of

the sequence. For example, in difficulty manipulations that intermix easy tasks with similar hard

tasks, participants’ RT and accuracy vary depending on the difficulty of recent trials (Taylor and

Lupker, 2010). M. Mozer, Kinoshita, and Shettel (2007) propose that these sequential effects arise

because individuals estimate task difficulty from recent experience. The model modulates perfor-

mance on the current trial by taking a weighted average between a current accuracy trace and a

historical accuracy trace in a hidden Markov model that is a generalization of a basic accumulation

model. M. Jones, Mozer, and Kinoshita (2009) explain the same data with a rationally motivated

model founded on the assumption that participants use the recent history to estimate the drift

rate for the correct response—i.e., task difficulty—in a multi-response diffusion model. In a study

of difficulty manipulation in a categorization task, Brown and Steyvers (2005) use a changepoint

detection model to capture the shift in participant behavior that occurs when there is a shift in

the discriminability of the two categories (i.e., how much overlap there is between the continuous

stimuli from each category). Steyvers and Brown (2006) take the changepoint detection hypothesis

a step further in an experiment where participants predicted the next item in a sequence generated

using changepoint dynamics. The authors show that participants’ behavior corresponded closely

to a Bayesian optimal model performing changepoint inference, though it was necessary to param-

eterize the model sub-optimally to reproduce individual participant’s tendency to over or under
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react to real changes. Interestingly, the ability for tracking environmental changepoints seems to

be fundamental for most animals—even rats have been shown to perform close to Bayesian optimal

detection of changes in reward rates (Gallistel et al., 2001).

The difficulty manipulations described above require the individual to monitor the properties

of the task. Participants are not told when the difficulty changes and may not even be explicitly

aware of the changes, but their behavior reveals that they are tracking task difficulty. In a similar

paradigm that studies cognitive control, participants are given several different tasks to perform

and are explicitly aware of task switches. Even still, sequential effects are commonly found in trials

following task switches because participants are not able to change their behavior instantaneously

and confuse the previously relevant strategy with the appropriate strategy for the current task.

Reynolds and Mozer (2009) take a similar normative approach toward explaining this sort of cog-

nitive control. Specifically, they obtain close fits to human data in a task-switching paradigm by

modeling control as a dynamical inference process over the current task. Essentially they char-

acterize cognitive control as an adaptive process that anticipates and responds to changes in the

constraints of the environment.

The current explanation of sequential effects as adaptation to changing environmental statis-

tics is not completely at odds with the previous two explanations. In fact, neural inertia and

incremental learning can be viewed as implementation- and algorithmic-level solutions to the com-

putational level problem of adapting to a dynamic environment. Yu and Cohen (2009) demonstrate

that the DBM is well approximated by an exponentially decaying sum of past trials. This expo-

nentially decaying sum could be implemented in the brain via exponentially decaying residual

activation. Incremental learning methods also produce a similar exponentially decaying depen-

dence on past trials. It may well be that our cognitive system is designed to be flexible to a

dynamic environment, but lacking the ability to represent the complete statistics of the environ-

ment and compute the correct behavior given those statistics, the brain resorts to simpler solutions

to produce behavior that is still flexible and adaptive. Nonetheless, the computational perspective

that sequential effects reflect an attempt to optimally adapt to changing statistics offers important
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guidance in understanding why sequential effects are so ubiquitous in behavior.

2.4 Sensitivity Adjustment

There is a class of models, mostly in the judgment domain, that address sequential effects

from a different angle. These models share the common property that sequential effects result from

continual adjustments made to the sensitivity of perceptual and decisional processing. Though

sensitivity adjustment can be viewed as a form of adaptation—i.e., the sensitivity is being adjusted

in a way that is more appropriate for the type of events likely to occur—this perspective has

different implications for how sequential effects manifest.

Perhaps the most familiar example of sensitivity adjustment is found in the visual system’s

high sensitivity to changes in intensity across a broad range of luminance levels. To achieve this

sensitivity, many adaptive adjustments occur within the visual pathway as the illumination con-

ditions of the environment change (Ver-Hoeve, 2007). In the judgment domain, a classic theory

of sensitivity adjustment is the range-frequency model of Parducci (1965). The model assumes

two principles that combine to direct how the range of categories is used. The range principle

assumes category boundaries that depend only on the extreme stimulus values and the number

of categories. The frequency principle assumes that each category is used for a fixed proportion

of the judgments. Whereas the range principle is independent of the stimulus distribution (apart

from the extreme values), the frequency principle hypothesizes that the category boundaries shift

according to the stimulus distribution. Though sequential effects are not the focus of the model, the

frequency principle naturally implies the presence of sequential effects due to changes in sensitivity

across the range under the assumption that the boundaries depend more strongly on the recent

stimulus distribution because of memory constraints. Figure 2.4 provides a simplified example how

the sensitivity to three different categories might shift after several trials in a categorization task.

From an adaptation perspective, as suggested by Treisman and Williams (1984), the fre-

quency principle serves to maximize the information transmitted by category responses given the

current environmental statistics. Similarly, Wainwright (1999) proposes that adaptation in the vi-
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sual system is driven by the goal to maximize information transmission. At a computational level

of analysis, sequential effects that result from range adjustment can be understood as a strategy

designed to improve the efficiency of perceptual and decisional processing. Maximizing the infor-

mation transmitted is one such way in which this efficiency can be improved. Another way to

improve efficiency of processing is to incorporate sensitivities to statistics of which types of events

are more likely.
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Figure 2.4: Shifts in category boundaries following a sequence of stimuli. After two presentations
of category B, the sensitivity or preference for category B increases. However, with presentations
of an A and a C on the subsequent trials, the sensitivity to B decreases again.

Treisman and Williams (1984) build both of these properties into their model for binary cate-

gorization. They capture short-term shifts in category boundaries using two competing components—

a tracking system and a stabilizing system—the second of which closely parallels the frequency

principle. The tracking system moves boundaries such that recently used categories correspond to

a larger range of stimuli. The authors motivate this strategy with the observation that the external

world changes: if an object has recently been detected then it is more likely to be detected in the

near future, and thus the boundary for detection should be lowered to be less restrictive. The

fault in the tracking system is that following a series of positive detections, the boundary could

be set so low that all discrimination is lost. The stabilizing system counteracts this force by shift-

ing the boundaries such that each category is used with roughly equal probability, i.e., following
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the frequency principle. In contrast to Parducci (1965), both components of the Treisman and

Williams (1984) model adjust sensitivity in response to environmental properties. Advocating the

adaptive properties of sensitivity adjustment, Treisman and Williams make the strong claim that

“sequential dependencies arise from and reflect the operation of a system that attempts to place

criteria at those positions that are optimal at any given moment and to keep them there, and that

this same system is at work in all the tasks in which dependencies have been observed.” (Treisman

and Williams, 1984, p. 93)

Instead of categorizing a stimulus according to a set of boundaries, judgments can be mod-

eled via a set of prototypes to which the stimulus is compared (e.g., Petrov and Anderson, 2005;

Smith and Minda, 1998). A shift in the prototype locations can be mapped to an equivalent shift

in criteria. However, when feedback is given, prototype locations are defined completely by the

preceding stimulus/feedback pairs and thus shifts of the type produced by the frequency principle

cannot be produced unless there is a concomitant shift in the feedback distribution. Nonetheless,

prototype models have successfully accounted for sequential effects in a variety of identification and

categorization experiments. Petrov and Anderson (2005) compute a selection probability for each

category as a function of the similarity between the stimulus and the prototype (or anchor as they

refer to it) and a category bias that depends on recent usage of the category. The selected anchor

shifts after every trial to incorporate the new stimulus value in a way that discounts the previous

anchor location exponentially. In this way, the sensitivity of decisional processing is continuously

being adjusted to fit the stimulus/response mapping appropriate for the environment. In the ab-

sence of feedback, the model has the additional benefit that it adjusts the prototypes to produce

balanced category responses under skewed stimulus/response distributions in a way consistent with

the Parducci’s frequency principle.

One criticism of criterion and prototype models is that they require a fairly large working

memory when the set of potential responses or categories is large. Relative judgment theories

present a popular alternative that avoids these memory constraints. The basic premise of relative

judgment models is that people use the stimulus/response/feedback of the previous trial as a ba-
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sis for assessing the current stimulus. The sensitivity of processing is continually being adjusted

according to the previous stimulus and how it compares to the current stimulus. In some cases, rel-

ative judgment strategies also propose trial-to-trial adjustments in the scaling parameter that map

a psychophysical difference between stimuli onto the decisional range. In these models, sequential

effects generally occur because judgments are based on the memory or perception of the previous

stimulus which is often inaccurate because of contamination due to stimuli farther in the past.

Though originally proposed to explain behavior in a magnitude estimation task, where con-

tinuous response values are assigned to the stimuli, relative judgment theories are equally applicable

to behavior in absolute identification and categorization tasks. Luce and Green (1974) proposed

that responses are chosen such that the ratio of the current response to the previous response is

proportional to the ratio of the internal representations of the current stimulus and an unfaithful

representation of the previous stimulus. The key assumption in the model that produces sequential

effects is that the representation of the stimulus from the previous trial is not equal to the stimulus

value used to generate the response on the previous trial—i.e., the act of responding to a stimulus

changes the representation of the stimulus. DeCarlo and Cross (1990) generalize the response ratio

hypothesis by modeling the response as a transformation of the stimulus sensation that depends on

a weighted combination of the ratio of the previous stimulus and response and the ratio of a fixed

reference stimulus and response. Responses are also affected by an autocorrelated error process.

Furthermore, the model assumes that the perception of a stimulus is affected by the context of

previous stimuli in such a way that can produce response assimilation or contrast effects depending

on parameterization.

Stewart, Brown, and Chater (2005) present a relative judgment model for absolute identifica-

tion that pushes the relative judgment concept further by assuming that the fundamental currency

for perception and decision is the stimulus difference rather than just the pure stimulus. From this

perspective, all processing is inherently relative because it depends on the relationship between the

previous stimulus and the current stimulus. In their model, this difference probabilistically maps

to a response above or below the previous feedback depending on the sign of the difference. The
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mapping depends on a fixed scaling parameter and a fixed variance noise signal that is distributed

over the potential responses. The model also assumes that the stimulus difference on the current

trial is confused with or contaminated by the differences on previous trials. This is similar to the

context that affects stimulus perception in DeCarlo and Cross (1990), and is primarily responsible

for the sequential effects produced by the model because it leads to a contamination in the range of

processing (see Appendix A for a derivation that illustrates the similarity between Stewart, Chater,

and Brown, 2005 and DeCarlo and Cross, 1990).

In addition to shifting the range of processing, relative judgment strategies also impose strong

constraints on the range that is relevant for the current trial (e.g., if the current stimulus is per-

ceived as larger than the previous one, only responses greater than the previous feedback will be

considered). These constraints generate a shift in sensitivity across the decisional range. Petzold

and Haubensak (2001) propose another relative judgment model that places even more constraints

on the acceptable response range. In their model, the current stimulus is judged relative to the

two previous stimuli and the extreme ends of the range which are assumed to be stored in memory.

The appropriate range of potential responses is bounded above and below the current stimulus by

the ends of the spectrum or the recent stimuli depending on how the current stimulus compares to

the previous two. For example, if the bounds of the range are 1 and 10, the previous two stimuli

were 5 and 7, and the current stimulus is perceived smaller than both the previous two, then the

range of responses will be 1 to 5. Once the sub-range is determined, the response is selected based

on the ratio of the difference between the stimulus and an endpoint and the difference between the

sub-range endpoints. The model produces sequential effects because the response depends both on

the similarity between the current stimulus and the previous stimuli and the relative location of

the stimuli.

The aforementioned models place a greater emphasis on explaining sequential effects that

result from adjustments made to sensitivities in decisional processing. However, adjustments made

to the perceptual sensitivity can also result in sequential effects. In some cases, it is difficult

to separate perceptual from decisional effects because stimuli and responses are confounded in
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most experiments. Jesteadt et al. (1977) further develop the response ratio hypothesis of Luce

and Green (1974) and explore the weights of the previous stimulus and response in a regression

analysis. They obtain a positive coefficient for the previous response, suggesting assimilation to

the previous response, and a negative coefficient for the previous stimulus, suggesting stimulus

contrast. This result opens the possibility that perceptual and decisional effects may compete

with each other. However, DeCarlo and Cross (1990) have shown that caution must be taken

when analyzing the coefficients in a regression equation because different theoretical perspectives

lead to different interpretations of the parameters. Nonetheless, perceptual contrast appears to be

present in many judgment tasks. Petzold (1981) base their model for categorization on perceptual

contrast and a guessing strategy that produces assimilation to the previous response. The model

proposes that the trace of the previous stimulus serves as an internal standard for judgment. Helson

(1964) has suggested that encoding stimuli using such a relative strategy may serve to expand the

representational range of a finite neural system and that perceptual contrast effects may be a

consequence of this relative strategy.

Recently, stronger evidence has been provided for perceptual contrast in categorization and

identification paradigms via experimental designs that avoid the confound between stimuli and

responses (M. Jones, 2009; M. Jones, Love, and Maddox, 2006; M. Jones and Sieck, 2003). By

imposing overlapping probabilistic categories or identification labels, it is possible to isolate the

effect of the previous stimulus on behavior by considering all trials where the previous feedback

label is inconsistent with the previous stimulus. (M. Jones et al., 2006) propose a mathematical

model for quantifying the perceptual contrast in experimental data. Though the model does not

take a strong theoretical stance, the perceptual component is consistent with the relative judgment

model of DeCarlo and Cross (1990) in which the perceptual range used to assess the current stimulus

is skewed by the context of stimuli that were recently presented.

The observation that sequential effects result from adjustments in both perceptual sensitivity

and decisional sensitivity suggests a greater level of complexity in the experimental data and implies

that greater care must be taken in assessing models of sequential effects. Specifically, models that
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attempt to capture the aggregate sequential effects present in the data may be misguided because

they fail to recognize the possibility that the effects are produced by multiple mechanisms operating

in concert. Recognizing this division also opens the door for interpreting sequential effects via

multiple high-level explanations that play out in different stages of the processing. In fact, this is

the stance presented in (M. Jones et al., 2006) and (M. Jones, 2009) in which sequential effects are

explained as arising from perceptual sensitivity adjustment combined with the notion of decisional

generalization. This notion of generalization is the final high-level explanation we present for

sequential effects.

2.5 Generalization

In classical conditioning, stimulus generalization refers to the tendency for the conditioned

stimulus to evoke similar responses after the response has been conditioned and for similar stimuli

to evoke similar responses. The degree to which knowledge about one stimulus will generalize to

another stimulus has been shown to depend on the similarity between them, with the probability

of generalization decreasing exponentially with psychological distance (Shepard, 1957, 1987). In

judgment tasks, where participants categorize, identify, or make estimates about a stimulus and

are conditioned through feedback, stimulus generalization can have a significant impact on be-

havior. Typically, stimulus/response associations are assumed to be relatively constant following

a learning period. However, if generalization has a greater dependence on recently conditioned

stimulus/response pairs, we would observe sequential effects in the data. Typically, generalization

produces an assimilation effect where the response for the current stimulus is biased towards re-

cent responses to similar stimuli. Though when recent stimuli are highly dissimilar to the current

stimulus, there is some evidence that the effect is contrastive (M. Jones et al., 2006). Figure 2.5

portrays a simple generalization process in action.

The concept of generalization is strongly embodied in exemplar models (e.g., Medin and

Schaffer, 1978; Nosofsky, 1986) in which decisions result from direct comparisons between the

current stimulus and previous stimuli. In their simplest form, exemplar models do not produce
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Figure 2.5: Generalization to past trials. Here previous trials are stored in memory and used as
exemplars for three classes. A new stimulus, St, is compared to the exemplars and the class label
chosen corresponds to the exemplar that best generalizes to the current stimulus.
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sequential effects because stimuli that occurred far in the past have an equal affect on behavior

as recent stimuli. However, when the models are modified so that more recent exemplars have

a greater likelihood of being recalled or a stronger memory trace, the current response is biased

toward recent responses (Nosofsky et al., 1992; Nosofsky and Palmeri, 1997). Prototype models

(e.g., Petrov and Anderson, 2005; Smith and Minda, 1998) are also consistent with the concept

of generalization if the role of prototypes matches the role of exemplars above (i.e., judgments

are based on the degree to which the different prototypes generalize to the current stimulus). For

example, in Petrov and Anderson’s (2005) absolute identification model, an anchor (prototype)

selection process essentially measures how well each anchor location generalizes to the current

stimulus and probabilistically chooses a response. In fact, the prototypes themselves represent a

slightly different form of generalization in which knowledge from the collection of past experiences

is generalized into a single representative for the class. As new experiences are encountered, they

are continually integrated into the anchor estimates in a way that places more weight on recent

experiences and consequently results in sequential dependencies similar to those in the exemplar

models.

Recent models of category learning have taken an even stronger stance on the relationship

between generalization and sequential dependencies (M. Jones, 2009; M. Jones et al., 2006; M. Jones

and Sieck, 2003). M. Jones et al. (2006) demonstrate the dependence of decisional recency on

similarity and posit that the effect is a direct byproduct of generalization. Furthermore, they

present a mathematical model for quantifying the strength of generalization by measuring the

decisional recency effect. M. Jones (2009) expands these ideas in a model for absolute identification

based on the assertion that decisional processes are modulated by similarity-based generalization.

In this model, generalization is implemented using reinforcement learning—an incremental learning

strategy discussed above. In fact, reinforcement learning is deeply tied to generalization throughout

the conditioning literature. Here the computational-level explanation for the sequential effects is

that generalization of recent experience affects behavior. However, this perspective is compatible

with an algorithmic-level explanation that posits incremental learning processes.
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Generalizing in a way that is biased towards recent experience can also be viewed as an

adaptive strategy. M. Jones et al. (2006) suggest that this sort of generalization is well suited for

a changing environment. Similarly, Petrov and Anderson (2005) hint that the continual updating

of anchor locations helps maintain their utility as the environmental statistics shift

2.6 Discussion

We have argued that the broad, diverse literature on sequential effects can be unified un-

der a small set of theoretical accounts for their existence. Rather than viewing these effects as

idiosyncratic behavioral modulations unique to each different domain of study, sequential effects

can be thought of as reflecting a few high-level computational goals of the cognitive system. This

integration brings coherence to sequential effects phenomena and serves researchers in interpreting

sequential effects in a way that is consistent and unified across the myriad domains in which they

occur.

In our first computational-level explanation, we understand sequential effects by taking the

perspective that individuals are trying to form expectations about what stimulus will occur next.

Further, we hypothesize that the individuals assume that the environment is changing and thus base

these expectations on the sequence of previous stimuli with greater weight placed on recent stimuli.

The models that embody this perspective begin with assumptions about the environment and then

show that behavior is optimal or near optimal given these assumptions. This perspective naturally

extends to the real world where individuals are continually inundated with a barrage of sensations

and are required to produce appropriate actions. By preparing ourselves for the situations that are

likely to occur next, we can improve the efficiency of our behavior. If expectations are formed with

greater emphasis placed on recent experience, our behavior will be more adaptive to the frequent

changes in the statistics that govern our environment.

The second computational-level explanation for sequential effects characterizes them as re-

sulting from adjustments made to the sensitivity of perceptual and decisional processing. Rather

than forming direct expectations about what events might occur next, here individuals change how
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they process stimuli according to the stimuli and responses recently experienced. These adjust-

ments can be interpreted as a way to improve the efficiency of stimulus processing and response

formulation, for example, maximizing the information transmitted by responses, expanding the

representational range, or leveraging knowledge about the likelihood of different events.

In our third computational-level explanation, we cast sequential effects as a consequence of

generalization. Generalization refers to the process of applying previous knowledge or experience

to the current situation. For example, in a judgment study, one may generalize their knowledge

with past stimulus/response pairs to form a judgment for the current stimulus. If individuals have

a stronger preference to generalize using more recent experiences, sequential effects will appear in

the behavioral data. Typically generalization is dependent on the similarity between the current

stimulus and the generalizing stimulus. This same dependence on similarity is found in some

sequential effects studies, further supporting the presence of generalization.

In addition to the three computational-level explanations for sequential effects, we observed

two lower-level explanations present in a broad collection of theoretical accounts. In many models,

sequential effects are explained as the result of neural inertia in the cognitive system. The basic

priming that results from these mechanisms can explain many types of sequential effects. However,

because it is a simple implementation-level account, this explanation fails to provide strong claims

about the underlying purpose of sequential effects. Similarly, sequential effects have been explained

at an algorithmic level as arising from incremental learning processes in the brain. Again sequential

effects are accounted for mechanistically, but there is no strong theoretical stance on why they occur.

There is still value in these lower-level explanations for sequential effects because in most cases they

are consistent with the three primary computational-level explanations we propose. Though it is

important to understand how sequential effects are produced by actual mechanisms in the brain

and algorithmic processes, we believe there is significant utility in understanding and classifying

sequential effects at a computational level because this level strongly addresses the questions of

why sequential effects occur and why they are important.

Other salient distinctions can be made between models of sequential effects that are inter-
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esting and informative. However, we have avoided addressing these up to this point so as to not

muddle our categorization. For example, many models differ in the duration of memory of past

experience and the persistence of the sequential effects. The majority of models posit that se-

quential effects are very short lived. However, some recent models propose that implicit memory

of the past can last over a longer duration or across many intervening events thus resulting in

temporally extended sequential effects. Exemplar models are the extreme example of long-lasting

memories—i.e., in theory all events are remembered forever. Though, as mentioned earlier, to

produce sequential effects, these models must place greater weight on recent trials. Typically, the

weights decay exponentially and rapidly go to zero resulting in only short-lasting sequential effects,

but a weighting that falls off more slowly would reasonably produce longer-lasting effects. Petrov

and Anderson (2005) capture sequential effects in their model in part by maintaining an activation

level for each anchor that increases the availability of that anchor on future trials. The activation

of an anchor roughly exhibits power function decay dependent on the time elapsed since past uses

of that anchor. With its characteristic heavy tail, power function decay results in a longer-lasting

memory of the sequence of responses or anchors selected. Wong and Shelhamer (2011) similarly

propose power function decay over past trials and demonstrate correlations in behavior that extend

out to almost 100 intervening trials. In Chapter 5, we offer further evidence for longer-lasting

sequential effects in a 2AFC task and a motor control task. Building upon theories that assume

a dynamic environment, we propose the Hierarchical Dynamic Belief Model (HDBM) that relaxes

unnatural assumptions in the DBM and results in an integration of past trials that more closely

resembles a power function weighting.

Another distinction between models is the degree of abstraction used for representing trials

or events. The simplest representation is the actual trial identity (e.g., a specific digit between 1

and 6 as in Falmagne, 1965; or light 2 and light 3 in Remington, 1969). Alternatively, trials can be

represented in how they relate to the previous trial. This is most sensible in 2AFC tasks where each

trial is either a repetition or an alternation (e.g., Hale, 1969, studies the effect of runs of repetitions

and alternations). Depending on which abstraction is used in the analysis, the pattern of sequential
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effects can appear very different. Cho et al. (2002) demonstrate the value of considering multiple

abstractions by modeling sequential effects via the combination of a mechanism that tracks the

actual trial identities and a mechanism that tracks the repetition/alternation sequence. Even more

complex abstractions can be responsible for sequential effects as in models that capture dynamic

changes in task difficulty (e.g., Jones et al., 2009; Mozer et al., 2007). There is less evidence of

representational abstraction influencing the type of effects observed in judgment studies. However,

Stewart et al. (2005) propose that the currency used in processing a stimulus is its difference relative

to the previous trial rather than its pure psychophysical magnitude. Perhaps there are other levels

of abstract representations that influence effects in judgment tasks, but have yet gone unnoticed.

For example, how might task difficulty modulations change the sequential effects observed in an

identification or categorization task? Brown and Steyvers (2005) suggest that there will be an

effect, but they only consider changes in difficulty that occur across blocks of trials, not within

blocks.

The difference between the neural inertia explanation and the incremental learning explana-

tion hints at another distinction that can be made between models. Unlike in the neural inertia

account where only the sequence of previous trials affects behavior, with incremental learning,

modulations in behavior are based on both the sequence of past trials and the individual’s perfor-

mance on those trials. This distinction can be cast as a difference between unsupervised learning

and supervised learning strategies. Models that utilize unsupervised learning learn from the envi-

ronment without feedback. Neural inertia and short-term priming models have this characteristic

as do the more complex models that perform Bayesian inference over the environmental statistics

assuming nonstationarity. Supervised learning is present in incremental learning models and can

be present in generalization models that utilize reinforcement learning (e.g., Jones, 2009). Most

models in the sensitivity adjustment explanation category can be viewed as unsupervised learning

models (e.g., the tracking and stabilizing systems in Treisman and Williams, 1984, are unsuper-

vised). Nonetheless, it is feasible that adjustments to sensitivity could be made in a supervised

manor.
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Sequential effects have been attributed to another factor that we have not yet discussed.

Specifically, correlations in successive responses can arise from latent variables in the cognitive

system that influence behavior but change over longer timescales. For example, in a task where

the participant simply presses a button each time a single stimulus appears, it is likely that the

participant’s attention will slowly drift throughout the experiment resulting in nearby trials to

have similar characteristics (i.e., faster when attention is high and slower when attention is low).

In the motor control literature, Kording, Tenenbaum, and Shadmehr (2007) propose a model that

uses a Kalman filter to capture the influence on behavior of multiple latent variables which drift

at varying timescales. Similarly, DeCarlo and Cross (1990) incorporate an autocorrelated error

process into their model for sequential effects in judgement. The authors explicitly discuss how

this error process can capture the effects of slowly drifting latent variables. Gilden, Thornton,

and Mallon (1995) have demonstrated the presence of 1/f noise in many aspects of cognition (i.e.,

long-range correlations in behavior that result from some property of the internal state). Though

this type of response autocorrelation is often classified as a sequential effect, it not consistent with

other types of sequential effects because behavior is not modulated by the exact sequence of recent

trials. Nonetheless, it is important to identify this response autocorrelation and be aware of how

it can change the appearance of other sequential effects.

In this chapter, we have demonstrated the widespread presence of sequential effects in cog-

nition and the lack of organization that exists in the large collection of models that seek to explain

these effects. Our goal has been to introduce a theoretical framework that synthesizes this dis-

parate literature and highlights a few high-level principles that explain sequential effects across

all domains of cognition. In the process, we have observed that most sequential effects reflect an

adaptive process in the brain. This is most evident in our first computational-level explanation

in which sequential effects result from the attempt to form expectations of future events under

the assumptions of a dynamic environment. By studying sequential effects through the lens of the

models that fall in this category, it is possible to expose what individuals are adapting to and how

they go about that adaptation. In the other two computational-level explanations, an adaptive
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process is suggested, but the claims about the specifics of adaptation are weaker. However, by

founding these sorts of models more directly on normative principles regarding adaptation to the

environment, it may be possible to learn more about the dynamics of cognitive adaptation. We

believe this synthesis will provide a useful framework for understanding sequential effects in all

domains. We encourage researchers to pay closer attention to sequential effects and give greater

consideration to what insight these effects might offer with respect to the role of adaptation in their

specific domain.



Chapter 3

Sequential Effects Reflect Parallel

Learning of Multiple Environmental Regularities1

The synthesis in Chapter 2, presents a compelling argument for the perspective that sequen-

tial effects reflect an individual’s attempt to optimally adapt to a dynamic environment. One

classic domain where this account is successful is in two-alternative forced-choice (2AFC) tasks

(e.g, Jentzsch and Sommer, 2002; Hale, 1969; Soetens et al., 1985; Cho et al., 2002). Specifically,

the Dynamic Belief Model (DBM) (Yu and Cohen, 2009) explains sequential effects in 2AFC tasks

as a rational consequence of a dynamic internal representation that tracks the repetition rate of

the trial sequence and predicts whether the upcoming trial will be a repetition or an alternation

of the previous trial. However, experimental results suggest that stimulus baserates also influence

sequential effects. In this chapter, we propose a model that learns both baserates and repetition

rates, each according to the basic principles of the DBM but under a unified inferential framework.

3.1 Background

In 2AFC tasks, participants are shown one of two different stimuli, which we denote as X and

Y, and are instructed to respond as quickly as possible by mapping the stimulus to a corresponding

response, say pressing the left button for X and the right button for Y. Response time (RT) is

recorded, and the task is repeated several hundred or thousand times. To measure sequential

effects, the RT is conditioned on the recent trial history. (In 2AFC tasks, stimuli and responses are
1 Most of this chapter is an adaptation of the published work of Wilder, Jones, and Mozer (2010)
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confounded; as a result, it is common to refer to the ’trial’ instead of the ’stimulus’ or ’response’.

In this chapter, ’trial’ will be synonymous with the stimulus-response pair.) Consider a sequence

such as XY Y XX, where the rightmost symbol is the current trial (X), and the symbols to the

left are successively earlier trials. Such a four-back trial history can be represented in a manner

that focuses not on the trial identities, but on whether trials are repeated or alternated. With

R and A denoting repetitions and alternations, respectively, the trial sequence XY Y XX can be

encoded as ARAR. Note that this R/A encoding collapses across isomorphic sequences XY Y XX

and Y XXY Y .

The small blue circles in Figure 3.1a show the RTs from Cho et al. (2002) conditioned on the

recent trial history. Along the abscissa in Figure 3.1a are all four-back sequence histories ordered

according to the R/A encoding. The left half of the graph represents cases where the current trial

is a repetition of the previous, and the right half represents cases where the current trial is an

alternation. The general pattern we see in the data is a triangular shape that can be understood by

comparing the two extreme points on each half, RRRR vs. AAAR and RRRA vs. AAAA. It seems

logical that the response to the current trial in RRRR will be significantly faster than in AAAR

(RTRRRR < RTAAAR) because in the RRRR case, the current trial matches the expectation built

up over the past few trials whereas in the AAAR case, the current trial violates the expectation

of an alternation. The same argument applies to RRRA vs. AAAA, leading to the intuition that

RTRRRA > RTAAAA. The trial histories are ordered along the abscissa so that the left half is

monotonically increasing and the right half is monotonically decreasing following the same line of

intuition, i.e., many recent repetitions to many recent alternations.

3.2 Toward A Rational Model Of Sequential Effects

Many models have been proposed to capture sequential effects in 2AFC (e.g., Laming, 1969;

Soetens, Boer, and Hueting, 1985; Cho et al., 2002). Other models have interpreted sequential

effects as adaptation to the statistical structure of a dynamic environment (e.g., M. Jones and

Sieck, 2003; M. Mozer, Kinoshita, and Shettel, 2007). In this same vein, with the DBM, Yu and
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Figure 3.1: a) DBM fit to the behavioral data from Cho et al. (2002). Predictions within each of
the four groups are monotonically increasing or decreasing. Thus the model is unable to account
for the two circled relationships. This fit accounts for 95.8% of the variance in the data. (p0 =
Beta(2.6155, 2.4547), α = 0.4899) b) The fit to the same data obtained from DBM2 in which
probability estimates are derived from both first-degree and second-degree trial statistics. 99.2%
of the data variance is explained by this fit. (α = 0.3427, w = 0.4763)
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γ t-1 γ t

Figure 3.2: Three graphical models that capture sequential dependencies. a) Dynamic Belief Model
(DBM) of Yu and Cohen (2009). b) A reformulation of DBM in which the output variable, St, is
the actual stimulus identity instead of the repetition/alternation representation used in DBM. c)
Our proposed Dynamic Belief Mixture Model (DBM2). Models are explained in more detail in the
text.

Cohen (2009) have suggested a rational explanation for sequential effects such as those observed in

Cho et al. (2002). The key contribution of their work is that it provides a rational justification for

sequential effects that have been previously viewed as resulting from low-level brain mechanisms

such as residual neural activation.

The DBM describes performance in 2AFC tasks as Bayesian inference over whether the next

trial in the sequence will be a repetition or an alternation of the previous trial, conditioned on the

trial history. If Rt is the Bernoulli random variable that denotes whether trial t is a repetition

(Rt = 1) or alternation (Rt = 0) of the previous trial, DBM determines P (Rt|~Rt−1), where ~Rt−1

denotes the trial sequence preceding trial t, i.e., ~Rt−1 = (R1, R2, ..., Rt−1).

DBM assumes a generative model, shown in Figure 3.2a, in which Rt = 1 with probability

γt and Rt = 0 with probability 1 − γt. The random variable γt describes a characteristic of the

environment. According to the generative model, the environment is nonstationary and γt can

either retain the same value as on trial t − 1 or it can change. Specifically, Ct denotes whether

the environment has changed between t − 1 and t (Ct = 1) or not (Ct = 0). Ct is a Bernoulli

random variable with success probability α. If the environment does not change, γt = γt−1. If the

environment changes, γt is drawn from a prior distribution, which we refer to as the reset prior

denoted by p0(γ) ∼ Beta(a, b).
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Before each trial t of a 2AFC task, DBM computes the probability of the upcoming stimulus

conditioned on the trial history. The model assumes that the perceptual and motor system is tuned

based on this expectation, so that RT will be a linearly decreasing function of the probability

assigned to the event that actually occurs, i.e. of P (Rt = R|~Rt−1) on repetition trials and of

P (Rt = A|~Rt−1) = 1 - P (Rt = R|~Rt−1) on alternation trials.

The red plusses in Figure 3.1 show DBM’s fit to the data from Cho et al. (2002). DBM

has five free parameters that were optimized to fit the data. The parameters are: the change

probability, α; the imaginary counts of the reset prior, a and b; and two additional parameters to

map model probabilities to RTs via an affine transform.

3.2.1 Intuiting DBM Predictions

Another contribution of Yu and Cohen (2009) is the mathematical demonstration that DBM

is approximately equivalent to an exponential filter over trial histories. That is, the probability

that the current stimulus is a repetition is a weighted sum of past observations, with repetitions

being scored as 1 and alternations as 0, and with weights decaying exponentially as a function

of lag. The exponential filter gives insight into how DBM probabilities will vary as a function

of trial history. Consider two 4-back trial histories: an alternation followed by two repetitions

(ARR−) and two alternations followed by a repetition (AAR−), where the − indicates that the

current trial type is unknown. An exponential filter predicts that ARR− will always create a

stronger expectation for an R on the current trial than AAR− will, because the former includes

an additional past repetition. Thus, if the current trial is in fact a repetition, the model predicts

a faster RT for ARR− compared to AAR− (i.e., RTARRR < RTAARR). Conversely, if the current

trial is an alternation, the model predicts RTARRA > RTAARA. Similarly, if two sequences with

the same number of Rs and As are compared, for example RAR− and ARR−, the model predicts

RTRARR > RTARRR and RTRARA < RTARRA because more recent trials have a stronger influence.

Comparing the exponential filter predictions for adjacent sequences in Figure 3.1 yields the

expectation that the RTs will be monotonically increasing in the left two groups of four and mono-
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tonically decreasing in the two right groups. The data are divided into groups of 4 because the

relationships between histories like AARR and RRAR depend on the specific parameters of the

exponential filter, which determine whether one recent A will outweigh two earlier As. It is clear

in Figure 3.1 that the DBM predictions follow this pattern.

3.2.2 What’s Missing in DBM

DBM offers an impressive fit to the overall pattern of the behavioral data. Circled in Fig-

ure 3.1, however, we see two significant pairs of sequence histories for which the monotonicity

prediction does not hold. These are reliable aspects of the data and are not measurement error.

Consider the circle on the left, in which RTARAR > RTRAAR for the human data. Because DBM

functions approximately as an exponential filter, and the repetition in the trial history is more

recent for ARAR than for RAAR, DBM predicts RTARAR < RTRAAR. An exponential filter, and

thus DBM, is unable to account for this deviation in the data.

To understand this mismatch, we consider an alternative representation of the trial history:

the first-degree sequence, i.e., the sequence of actual stimulus values. The two R/A sequences

ARAR and RAAR correspond to stimulus sequences XY Y XX and XXYXX. If we consider an

exponential filter on the actual stimulus sequence, we obtain the opposite prediction from that

of DBM: RTXY Y XX > RTXXYXX because there are more recent occurrences of X in the latter

sequence. The other circled data in Figure 3.1a correspond to an analogous situation. Again,

DBM also makes a prediction inconsistent with the data, that RTARAA > RTRAAA, whereas an

exponential filter on stimulus values predicts the opposite outcome—RTXY Y XY < RTXXYXY . Of

course this analysis leads to predictions for other pairs of points where DBM is consistent with the

data and a stimulus based exponential filter is inconsistent. Nevertheless, the variations in the data

suggest that more importance should be given to the actual stimulus values.

In general, we can divide the sequential effects observed in the data into two classes: first- and

second-degree effects. First-degree sequential effects result from the priming of specific stimulus or

response values. We refer to this as a first-degree effect because it depends only on the stimulus
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values rather than a higher-degree representation such as the repetition/alternation nature of a

trial. These effects correspond to the estimation of the baserate of each stimulus or response value.

They are observed in a wide range of experimental paradigms and are referred to as stimulus

priming or response priming. The effects captured by DBM, i.e. the triangular pattern in RT data,

can be thought of as a second-degree effect because it reflects learning of the correlation structure

between the current trial and the previous trial. In second-degree effects, the actual stimulus value

is irrelevant and all that matters is whether the stimulus was a repetition of the previous trial. As

DBM proposes, these effects essentially arise from an attempt to estimate the repetition rate of the

sequence.

DBM naturally produces second-degree sequential effects because it abstracts over the stim-

ulus level of description: observations in the model are R and A instead of the actual stimuli X

and Y . Because of this abstraction, DBM is inherently unable to exhibit first-degree effects. To

gain an understanding of how first-degree effects could be integrated into this type of Bayesian

framework, we reformulate the DBM architecture. Figure 3.2b shows an equivalent depiction of

DBM in which the generative process on trial t produces the actual stimulus value, denoted St. St

is conditioned on both the repetition probability, γt, and the previous stimulus value, St−1. Under

this formulation, St = St−1 with probability γt, and St equals the opposite of St−1 (i.e., XY or

Y X) with probability 1− γt.

An additional benefit of this reformulated architecture is that it can represent first-degree

effects if we switch the meaning of γ. In particular, we can treat γ as the probability of the stimulus

taking on a specific value (X or Y ) instead of the probability of a repetition. St is then simply a

draw from a Bernoulli process with rate γ. Note that for modeling a first-degree effect with this

architecture, the conditional dependence of St on St−1 becomes unnecessary. The nonstationarity

of the environment, as represented by the change variable C, behaves in the same way regardless

of whether we use the model to represent first- or second-degree structure.
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3.3 Dynamic Belief Mixture Model (DBM2)

The complex contributions of first- and second-degree effects to the full pattern of observed

sequential effects suggest the need for a model with more explanatory power than DBM. It seems

clear that individuals are performing a more sophisticated inference about the statistics of the

environment than proposed by DBM. We have shown that the DBM architecture can be reformu-

lated to generate first-degree effects by having it infer the baserate instead of the repetition rate of

the sequence, but the empirical data suggest both mechanisms are present simultaneously. Thus

the challenge is to merge these two effects into one model that performs joint inference over both

environmental statistics.

Here we propose a Bayesian model that captures both first- and second-degree effects, building

on the basic principles of DBM. According to this new model, which we call the Dynamic Belief

Mixture Model (DBM2), the learner assumes that the stimulus on a given trial is probabilistically

affected by two factors: the random variable φ, which represents the sequence baserate, and the

random variable γ, which represents the repetition rate. The combination of these two factors

is governed by a mixture weight w that represents the relative weight of the φ component. As in

DBM, the environment is assumed to be nonstationary, meaning that on each trial, with probability

α, φ and γ are jointly resampled from the reset prior, p0(φ, γ), which is uniform over [0, 1]2. Figure

3.2c shows the graphical architecture for this model. This architecture is an extension of our

reformulation of the DBM architecture in Figure 3.2b. Importantly, the observed variable, S, is

the actual stimulus value instead of the repetition/alternation representation used in DBM. This

architecture allows for explicit representation of the baserate, through the direct influence of φt on

the physical stimulus value St, as well as representation of the repetition rate through the joint

influence of γt and the previous stimulus St−1 on St. Formally, we express the probability of St

given φ, γ, and St−1 as shown in Equation 3.1.
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P (St = X|φt, γt, St−1 = X) = wφt + (1− w)γt

P (St = X|φt, γt, St−1 = Y ) = wφt + (1− w)(1− γt)
(3.1)

DBM2 operates by maintaining the iterative prior over φ and γ, p(φt, γt|~St−1). After each

observation, the joint posterior, p(φt, γt|~St), is computed using Bayes’ Rule from the iterative prior

and the likelihood of the most recent observation, as shown in Equation 3.2.

p(φt, γt|~St) ∝ P (St|φt, γt, St−1)p(φt, γt|~St−1). (3.2)

The iterative prior for the next trial is then a mixture of the posterior from the current trial,

weighted by 1− α, and the reset prior, weighted by α (the probability of change in φ and γ).

p(φt+1, γt+1|~St) = (1− α)p(φt, γt|~St) + αp0(φt+1, γt+1). (3.3)

The model generates predictions, P (St|~St−1), by integrating Equation 3.1 over the iterative

prior on φt and γt. In our simulations, we maintain a discrete approximation to the continuous

joint iterative prior with the interval [0,1] divided into 100 equally spaced sections. Expectations

are computed by summing over the discrete probability mass function.

Figure 3.1b shows that DBM2 provides an excellent fit to the Cho et al. data, explaining

the combination of both first- and second-degree effects. To account for the overall advantage

of repetition trials over alternation trials in the data, a repetition bias had to be built into the

reset prior in DBM. In DBM2, the first-degree component naturally introduces an advantage for

repetition trials. This occurs because the estimate of φt is shifted toward the value of the previous

stimulus, St−1, thus leading to a greater expectation that the same value will appear on the current

trial. This fact eliminates the need for a nonuniform reset prior in DBM2. We use a uniform reset

prior in all DBM2 simulations, thus allowing the model to operate with only four free parameters:

α, w, and the two parameters for the affine transform from model probabilities to RTs.

The nonuniform reset prior in DBM allows it to be biased either for repetition or alternation.

This flexibility is important in a model, because different experiments show different biases, and
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the biases are difficult to predict. For example, the Jentzsch and Sommer experiment showed

little bias, but a replication we performed—with the same stimuli and same responses—obtained a

strong alternation bias. It is our hunch that the bias should not be cast as part of the computational

theory (specifically, the prior); rather, the bias reflects attentional and perceptual mechanisms at

play, which can introduce varying degrees of an alternation bias. Specifically, four classic effects have

been reported in the literature that make it difficult for individuals to process the same stimulus

two times in a row at a short lag: attentional blink Raymond, Shapiro, and Arnell (1992), inhibition

of return Posner and Cohen (1984), repetition blindness Kanwisher (1987), and the Ranschburg

effect Jahnke (1969). For example, with repetition blindness, processing of an item is impaired if it

occurs within 500 ms of another instance of the same item in a rapid serial stream; this condition

is often satisfied with 2AFC. In support of our view that fast-acting secondary mechanisms are at

play in 2AFC, Jentzsch and Sommer (Experiment 2) found that using a very short lag between

each response and the next stimulus modulated sequential effects in a difficult-to-interpret manner.

Explaining this finding via a rational theory would be challenging. To allow for various patterns of

bias across experiments, we introduced an additional parameter to our model, an offset specifically

for repetition trials, which can serve as a means of removing the influence of the effects listed above.

This parameter plays much the same role as DBM’s priors. Although it is not as elegant, we believe

it is more correct, because the bias should be considered as part of the neural implementation, not

the computational theory.

3.4 Other Tests of DBM2

With its ability to represent both first- and second-degree effects, DBM2 offers a robust model

for a range of sequential effects. In Figure 3.3a, we see that DBM2 provides a close fit to the data

from Experiment 1 of Jentzsch and Sommer (2002). The general design of this 2AFC task is similar

to the design in Cho et al. (2002) though some details vary. Notably we see a slight advantage on

alternation trials, as opposed to the repetition bias seen in Cho et al.

Surprisingly, DBM2 is able to account for the sequential effects in other binary decision tasks
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Figure 3.3: DBM2 fits for the behavioral data from a) Jentzsch and Sommer (2002) Experiment
1 which accounts for 96.5% of the data variance (α = 0.2828, w = 0.3950) and b) Maloney et al.
(2005) Experiment 1 which accounts for 97.7% of the data variance. (α = 0.0283, w = 0.3591)
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that do not fit into the 2AFC paradigm. In Experiment 1 of Maloney et al. (2005), participants

observed an apparant rotation of two points on a circle and reported whether the direction of

rotation was positive (P) or negative (N)—i.e., clockwise or counterclockwise rotation respectively.

The stimuli were constructed so that the direction of motion was ambiguous, but a particular

variable related to the angle of motion could be manipulated to make participants more likely to

perceive one direction or the other. Psychophysical techniques were used to estimate the Point

of Subjective Indifference (PSI), the angle at which the observer was equally likely to make either

response. PSI measures the participant’s bias toward perceiving a positive as opposed to a negative

rotation. Maloney et. al. found that this bias in perceiving rotation was influenced by the recent

trial history. Figure 3.3b shows the data for this experiment rearranged to be consistent with the

R/A orderings used elsewhere (the sequences on the abscissa show the physical stimulus values,

ending with Trial t− 1). The bias, conditioned on the 4-back trial history, follows a similar pattern

to that seen with RTs in Cho et al. (2002) and Jentzsch and Sommer (2002).

In modeling Experiment 1, we assumed that PSI reflects the participant’s probabilistic expec-

tation about the upcoming stimulus. Before each trial, we computed the model’s probability that

the next stimulus would be P, and then converted this probability to the PSI bias measure using

an affine transform similar to our RT transform. Figure 3.3b shows the close fit DBM2 obtains for

the experimental data.

To assess the value of DBM2, we also fit DBM to these two experiments. Table 3.1 shows the

comparison between DBM and DBM2 for both datasets as well as Cho et al. The percentage of

variance explained by the models is used as a measure for comparison. Across all three experiments,

DBM2 captures a greater proportion of the variance in the data.

Table 3.1: A comparison between the % of data variance explained by DBM and DBM2.

Cho Jentzsch 1 Maloney 1
DBM 95.8 95.5 96.1
DBM2 99.2 96.5 97.7
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3.5 Discussion

Sequential effects reflect updating of environmental statistics under the assumption of a non-

stationary environment. These statistics can be of various sorts, from simple first-degree statistics

concerning the frequency of different stimuli and responses to higher-degree statistics concerning

temporal patterns such as repetitions and alternations. Clearly, these various statistics need to be

integrated to predict future environmental states, and DBM2 suggests a generative model for this

combination that is consistent with behavioral data.

Another model has attempted to simultaneously explain the detailed pattern of sequential

effects in 2AFC, and in doing so, to accomodate first- and second-degree sequential effects, even

though the model did not explicitly name them as such. Cho et al. (2002) presented a leaky,

stochastic, nonlinear accumulator model of decision making based on Usher and McClelland (2001).

Accumulator activation is biased by detectors that observe baserates and alternations in the se-

quence. Although this model explains the patterns of data, it was impossible to determine whether

the fit came about through the accumulator dynamics, the representation of environment statistics,

or some interaction between them. DBM2 suggests that the structure of the environment itself is

sufficient to explain sequential effects, without recourse to internal processing mechanisms.



Chapter 4

Dissociating the Two Components of DBM2 in the Brain1

The Dynamic Belief Mixture Model (DBM2)—developed in the previous chapter—proposes

that individuals in binary choice tasks track both the baserate and the repetition rate of the

sequence. On the surface, this may seem an unnecessary addition of complexity to the model.

However, in this chapter we present a strong argument for the inclusion of both components through

varied experimental analyses. Furthermore, we suggest that the origin of two components can be

dissociated, with first-degree sensitivities predominantly a characteristic of the response system and

second-degree sensitivities a characteristic of perceptual processing.

4.1 EEG Evidence for First- and Second-degree Predictions

One such line of evidence for the psychological separability of the two mechanisms of DBM2

comes from Jentzsch and Sommer (2002), who used electroencephalogram (EEG) recordings to

provide additional insight into the mechanisms involved in the 2AFC task. The EEG was used

to record participants’ lateralized readiness potential (LRP) during performance of the task. LRP

essentially provides a way to identify the moment of response selection—a negative spike in the

LRP signal in motor cortex reflects initiation of a response command in the corresponding hand.

Jentzsch and Sommer present two different ways of analyzing the LRP data: stimulus-locked LRP

(S-LRP) and response-locked LRP (LRP-R). The S-LRP interval measures the time from stimulus

onset to response activation on each trial. The LRP-R interval measures the time elapsed between
1 Part of this chapter is adapted from the published work of Wilder, Jones, and Mozer (2010). The movement

studies result from a collaboration with Alaa A. Ahmed.
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response activation and the actual response. Together, these two measures provide a way to divide

the total response time (RT) into a perceptual-processing stage and a response-execution stage.

Interestingly, the S-LRP and LRP-R data exhibit different patterns of sequential effects when

conditioned on the 4-back trial histories, as shown in Figure 4.1. DBM2 offers a natural explanation

for the different patterns observed in the two stages of processing, because they align well with the

division between first- and second-degree sequential effects. In the S-LRP data, the pattern is

predominantly second-degree, i.e. RT on repetition trials increases as more alternations appear in

the recent history, and RT on alternation trials shows the opposite dependence. In contrast, the

LRP-R results exhibit an effect that is mostly first-degree (which could be easily seen if the histories

were reordered under an X/Y representation). Thus we can model the LRP data by extracting the

separate contributions of φ and γ in Equation 3.1. We use the γ component (i.e., the second term

on the RHS of Eq. 3.1) to predict the S-LRP results and the φ component (i.e., the first term on

the RHS of Eq. 3.1) to predict the LRP-R results. This decomposition is consistent with the model

of overall RT, because the sum of these components provides the model’s RT prediction, just as

the sum of the S-LRP and LRP-R measures equals the participant’s actual RT (up to an additive

constant explained below).

Figure 4.1 shows the model fits to the LRP data. The parameters of the model were con-

strained to be the same as those used for fitting the behavioral results shown in Figure 3.3a. To

convert the probabilities in DBM2 to durations, we used the same scaling factor used to fit the

behavioral data but allowed for new offsets for the R and A groups for both S-LRP and LRP-R.

The offset terms need to be free because the difference in procedures for estimating S-LRP and

LRP-R (i.e., aligning trials on the stimulus vs. the response) allows the sum of S-LRP and LRP-R

to differ from total RT by an additive constant related to the random variability in RT across trials.

Other than these offset terms, the fits to the LRP measures constitute parameter-free predictions

of EEG data from behavioral data.
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Figure 4.1: DBM2 fits to the S-LRP (a) and LRP-R (b) results of Jentzsch and Sommer (2002)
Experiment 1. Model parameters are the same as those used for the behavioral fit shown in
Figure 3.3a, except for offset parameters. DBM2 explains 73.4% of the variance in the S-LRP data
and 87.0% of the variance in the LRP-R data.

4.2 Eliminating First-degree Effects

Evidence for the dissociation of first- and second-degree effects has also been found in be-

havioral data. In the second experiment reported in Maloney et al. (2005),2 participants only

responded on every fourth trial. The goal of this manipulation was to test whether the sequential

effect occurred in the absence of prior responses. Each ambiguous test stimulus followed three

stimuli for which the direction of rotation was unambiguous and to which the participant made no

response. The responses to the test stimuli were grouped according to the 3-back stimulus history,

and a PSI value was computed for each of the eight histories to measure a participant’s bias toward

perceiving positive (P) vs. negative (N) rotation. The results are shown in Figure 4.2. As in

Figure 3.3b, the histories on the abscissa show the physical stimulus values, ending with Trial t−1,

and the arrangement of these histories is consistent with the R/A orderings used elsewhere in this

chapter and the previous chapter.

The DBM2 explanation for Jentzsch and Sommer’s EEG results indicates that first-degree

sequential effects arise in response processing and second-degree effects arise in stimulus processing.
2 See Chapter 3 for an explanation of the general experimental setup.



47

N bias

neutral

P bias

PS
I

N
N

N

PN
N

PP
N

N
PN PP

P

N
PP

N
N

P

PN
P

Maloney 2
DBM2

Figure 4.2: Behavioral results and DBM2 fits for Experiment 2 of Maloney et al. (2005). When
responses are only given every fourth trial, the sequential effects pattern becomes dominated by
second-degree effects.The model fit explains 91.9% of the variance in the data (α = 0.0283, w = 0).

Therefore, the model predicts that, in the absence of prior responses, sequential effects will follow a

pure second-degree pattern. The results of Maloney et al.’s Experiment 2 confirm this prediction.

Just as in the S-LRP data of Jentzsch and Sommer (2002), the first-degree effects have mostly

disappeared, and the data are well explained by a pure second-degree effect (i.e., a stronger bias

for alternation when there are more alternations in the history, and vice versa). We simulated this

experiment with DBM2 using the same value of the change parameter (α) from the fit of Maloney

et al.’s Experiment 1. Additionally, we set the mixture parameter, w, to 0, which removes the

first-degree component of the model. For this experiment we used different affine transformation

values than in Experiment 1 because the modifications in the experimental design led to a generally

weaker sequential effect, which we speculate to have been due to lesser engagement by participants

when fewer responses were needed. Figure 4.2 shows the fit obtained by DBM2, which explains

91.9% data variance. Again this is essentially a parameter-free fit of the data.



48

4.3 Manipulating First- and Second-degree Effects in Motor Control3

In the second experiment of Maloney et al. (2005), first-degree effects were eliminated by

removing a large portion of responses. But is it possible to eliminate second-degree sequential

effects by removing the perceptual aspect of a task? Though it seems challenging to remove the

stimulus from an experiment, we posited that it may be possible within the domain of motor control.

Specifically, by replacing a visual stimulus with a force “stimulus” that acts on the response system,

sequential effects could result without providing any additional perceptual information.

In a series of three motor control experiments with a sequential structure similar to 2AFC,

we manipulated the relative amounts of first- and second-degree effects by changing the design

according to our hypothesis that first-degree effects are due to response processing and second-

degree effects are due to perceptual processing. In all experiments, participants held the handle of

a robotic manipulandum (Figure 4.3a) and made out-and-back movements from a home circle to

a target circle—displayed on the monitor above. In Experiment 1, participants received no visual

stimulus but experienced a perturbation force perpendicular to their direction of movement. In

Experiment 3, participants were given a visual stimulus identifying the direction they should move

the handle of the manipulandum and no forces were applied during the movement. Experiment

2 was designed to be a combination of 1 and 3. Participants made out-and-back movements that

were perturbed by forces, but on each trial, a 100% reliable visual cue was given for the direction

of the perturbation force.

4.3.1 Methods for Experiments 1, 2, and 3

Participants

Fifty-eight right-handed young adults participated for monetary compensation—20 in Exper-

iment 1, and 19 in each of Experiments 2 and 3. Participants gave informed consent in accordance

with the University of Colorado’s Institutional Review Board.
3 The experiments presented in this section represent a close collaboration with Alaa A. Ahmed and were all run

in her lab.
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trajectories for Experiment 1 from blue dot to green dot for different sequences of right (R) and left
(L) perturbations (current trial at right end of label). As hypothesized, sequential dependencies
here result from the history of right and left forces rather than the repetition/alternation sequences.
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Stimuli and Apparatus

Participants sat in a chair with full back support and made horizontal planar reaching move-

ments while grasping the handle of a robotic arm (Interactive Motion Technologies, Shoulder-Elbow

Robot 2). The handle position, handle velocity, and robot-generated force were recorded at 20 Hz.

For Experiments 1 and 2, the task involved making rapid 15cm out-and-back movements along

the midline of the transverse plane. Visual feedback of a cursor representing hand position and the

home and target circles was presented on an LCD screen in front of the participants (Figure 4.3a).

Once participants had centered the cursor within the home circle, the target appeared, and an

audio cue signaled the trial onset. On each trial, a perturbing force was applied perpendicular to

the desired direction of movement. The force increased linearly as a function of distance from the

home circle over the first 5cm (1 N/cm) and remained fixed at 5N for the remaining 10cm. No

forces were applied on the return. Participants received warning messages if trial duration exceeded

1.4 seconds. For Experiment 1, there was no other visual information. However, for Experiment

2, at the onset of the trial, an arrow that indicated the direction of the perturbation force was

displayed on the computer monitor. For Experiment 3, two circles always appeared on the upper

half of the screen, one to the right and one to the left. Before a trial began, the participant had to

keep the cursor within the home circle. At the trial onset, an arrow appeared pointing to the right

or to the left and the participant was instructed to move to the correct circle and then back to the

home circle. No forces were present at any point during this experiment, i.e., the manipulandum

was used purely for recording the participants’ trajectories.

Procedure

For Experiment 1, two versions of the task were run, identical except for the control of the

stimulus sequences, with 10 participants each. In version 1, 10 introductory null trials with no forces

were followed by 490 force trials with the force direction randomly selected with equal probability.

Participants were given a 30 second break after every 100 trials. In version 2, participants completed

a total of 1106 trials with 10 introductory null trials and 30 second rests every 137 trials. The 9

trials following each rest were excluded from analyses. Local stimulus histories of right and left
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trials were controlled to a depth of 9 trials so that each of the 512 (29) trial sequences occurred

exactly twice. Because there were no interactions between versions 1 and 2, data from the two

versions are collapsed in the analyses. For Experiments 2 and 3, the sequences for all subjects were

designed according to the same constraints in version 2 of Experiment 1 (of course for experiment

3, the sequences dictated arrow directions rather than perturbation forces). In all analyses, the

deflection measures for right and left trials were normalized—for each participant—to have the

same mean and standard deviation, thus eliminating imbalances due to structural constraints of

the arm.

4.3.2 Results

Individual trial movement trajectories in Experiment 1 were affected by the recent trial

sequence: participants compensated for the current perturbation more accurately when it was

consistent with the recency-weighted sequence of prior perturbations (Figure 4.3b). Consistent

with our hypothesis, the sequential effects appeared to be predominantly first-degree as shown by

the ordering in Figure 4.3b which is by actual stimulus value right (R) or left (L) force, not the

repetition/alternation sequence. Sequential effects were also found in the movement trajectories of

Experiments 2 and 3. For the purpose of analysis, the accuracy of the trajectory on a given trial

was quantified as the maximum horizontal deviation of the trajectory from the desired straight-line

path (which was vertical in Experiments 1 and 2 and diagonal in Experiment 3). However, other

deflection measures—e.g., initial angle, mean deviation, area under deflection curve—gave similar

results.

To assess the amount of first- and second-degree effects in the data from the three experiments,

it is useful to study lag profiles derived from the data. The lag profile isolates the effect of the trial

` trials in the past by computing the difference between mean RT when the current trial does not

match the lag-` trial (we call this a mismatch) and mean RT when those trials do match. If the

trials are encoded by the actual stimulus value, a first-degree lag profile is obtained and if they are

encoded using repetitions and alternations, a second-degree lag profile is obtained. In general, non-
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zeros values in the lag profile indicate the presence of a first- or second-degree effect. However, there

are a few caveats: 1) the first-degree lag 1 value may be non-zero because of a general repetition

or alternation bias that does not extend father back than one trial; and 2) the first-degree lag 2

value is always the same as the second-degree lag 1 value in a 2AFC design because the sequences

that produce a first-degree match at lag 2 (i.e., XXX, XYX, YXY, YYY) exactly correspond to

those that produce a lag 1 second degree match (i.e, RR, AA, AA, RR). Because of caveat #1, we

are careful to interpret the lag 1 value on the first-degree lag profile and because of caveat #2 we

must recognize that the first-degree lag 2 value and the second-degree lag 1 value cannot be used

to distinguish the type of effect present because they are completely confounded.
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Figure 4.4: a) First-degree lag profiles for the three movement experiments. b) Second-degree lag
profiles for the experiments. The error bars display the standard error across participants.

Figure 4.4a and 4.4b depict the first- and second-degree lag profiles (respectively) for the

three experiments. Experiment 1 shows a strong first-degree sequential effect that appears to

extend many trials back but exhibits no second-degree effect (i.e., all lags—other than lag 1 which

we must ignore—are within a standard error of zero). The opposite result is obtained in Experiment

3, with a non-existent or very weak first-degree effect and a strong second-degree effect that appears

to extend at least five trials into the past. The lag profiles for Experiment 2 reside in the middle

with a strong first-degree effect and marginal second-degree effect. It is not surprising that the

first-degree effect is still dominant in this experiment because the perturbation force was much
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more salient than the arrow cue and exerted an effect on movement throughout the whole trial. In

fact, in our experimental design, the arrow cue was not as visually salient as it could have been.

We posit that with a stronger visual cue, we might elicit an even greater second-degree sequential

effect. Nonetheless, these three experiments demonstrate nicely the trade-off between first- and

second-degree effects and their relationship to the response and perceptual processing systems.

The lag profiles in Figure 4.4 are computed using the maximum deviation from a straight

line trajectory throughout the trial. While this single measure makes it easy to assess the nature

of the sequential effects at a glance, it discards a large amount of the trajectory data. To visualize

how the sequential effects evolve on average throughout the course of a trial, each lag value is

traced as a function of the distance traveled along the y-axis for the first-degree (Figure 4.5) and

second-degree (Figure 4.6) lag profiles. The lag values are computed by differencing the average

match and mismatch deviations in the x-axis for the given y. In the figures, the brightest blue line

represents the lag 1 value and the colors fade to red which is lag 8. It should be noted that all trial

sequences were adjusted to all begin at the origin to make latter points along the trajectory more

comparable. Before translating the trajectories, we verified that there were no reliable sequential

effects in the starting position. Because of this adjustment, all lag values are zero for the y position

that corresponds to the home circle (left end of plots).

In the first-degree lag profiles for Experiment 1 and 2 in Figure 4.5, the magnitude of the

match/mismatch difference grows throughout the trial. This is not surprising given that the per-

turbation force is pushing the hand farther from the straight line all the way until the target is

reached. Nonetheless, the sequential effect is apparent from early in the trial. The first-degree

lag profile for Experiment 3 confirms the lack of a first-degree effect throughout the whole trial

with the only two non-zero lines corresponding to lag 1 and 2 which cannot be used to confirm a

first-degree effect. The lag 1 line in this plot is still of interest as it suggests that error is smaller

for alternations than for repetitions early in a trial. However, the effect disappears or perhaps even

reverses by the end of a trial.

In the second-degree lag profiles for Experiment 3 in Figure 4.6, a consistent second-degree
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effect is shown throughout the course of a trial. The effect appears largest in the early half of the

trial, likely due to the fact that the trajectory is corrected as the participant nears the target. The

lag lines for Experiment 1 and 2 are more difficult to interpret because the second-degree effect is

small or negligible. Despite this, the lines for Experiment 2 show a more consistent gradient from

blue to red than the lines for Experiment 1 suggesting that a second-degree pattern is more reliable

across the duration of the trial. It is reasonable to expect a second-degree effect that is strong

at the start of Experiment 2—when the visual stimulus is strong and the perturbation force is

weak—that fades away as the perturbation force produces an overriding first-degree effect. Though

this is not revealed in the data, it is possible that a more salient visual stimulus might elicit such

an effect. More sensitive tests would likely be needed to test this hypothesis as the current analysis

only provides a crude depiction of the time course of the effects.

These three experiments were designed as a behavioral validation of the dissociation between

first- and second-degree effects. Just as in Experiment 2 of Maloney et al. (2005) where first-degree

effects are eliminated by removing responses, we show with Experiment 1 that second-degree effects

can be eliminated by removing perceptual aspects of the task. Though a force is still a perceptual

event, we view it as qualitatively different than a visual or auditory stimulus because it acts directly

on the response system. To verify that the observed first-degree effects did not just result from

changing the experimental paradigm, we demonstrate that second-degree effects arise in a motor

control task with visual stimuli. Furthermore, with Experiment 2, we demonstrate that it is possible

to manipulate the relative amounts of first- and second-degree effects by balancing the strength of

perceptual stimuli with the factors that affect the response system.

4.4 Are Two Components Sufficient?

Having presented strong evidence for the combination of first- and second-degree effects in

simple choice tasks, we now ask if these two components are sufficient for capturing variability in

behavior. On the surface it may appear that two component models such as DBM2 do very well—

e.g., in the previous chapter, DBM2 explained 99.2%, 96.5%, and 97.7% of the variance across
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the three experiments studied. However, there is a dirty secret in this method of reporting model

performance that has been prevalent in the sequential effects literature. The models are fit to

the mean RTs for the 16 different 4-back trial contexts. Because each point represents an average

across many trials with the same sequential context, it is possible that a huge amount of behavioral

variability is being averaged away. Ideally, models should predict an RT for each trial conditioned

on the sequence that precedes the trial. When this approach is taken, the percent of trial-to-

trial variability that is explained by the model becomes shockingly low. When a two-component

model with exponential decay4 was fit to the trail-to-trial data from Jentzsch and Sommer (2002)

Experiment 1, the variance accounted for averaged across ten participants was a meager 12.35%.

Figure 4.7 depicts the often large per-trial residual RT values produced when the two-component

model was fit to RTs from one representative participant.
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Figure 4.7: Residual response time (RT) for a representative participant in Jentzsch and Sommer
(2002) Experiment 1. The residuals correspond to a simple two-component model fit to the trial-
to-trial RT data. Red and blue dots represent the actual stimulus type on the trial (above or below
fixation line).

With roughly 87.5% of behavioral variability still unaccounted for, there is a lot of room

for improvement with 2AFC models. Though it is possible that a large portion of this variability

is truly random, independent white noise, some of this variability should be explainable. For
4 This provides a very close approximation to DBM2 and is used in this analysis for simplicity.
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example, it may be that individuals drift through different levels of attention during the course

of the experiment. When they are particularly attentive, RTs may be faster than when they are

more distracted. There are many other possible explanations that can be devised to explain this

variability.

With the hopes of accounting for a larger portion of the variability, we developed an extension

of the two-component model that included a latent state variable that could represent something

like attention. We adapted the two-component model to fit the general Kalman filter framework

by creating a three-dimensional state space that includes a first-degree bias, a second-degree bias,

and a latent state. See Appendix B for the full mathematical specification of the model. The

model yields a significant improvement in variability explained over the simple two-component

exponential model (15.02% compared to 12.35%). A reasonable portion of this improvement can

be attributed to the latent state as the Kalman model with only two dimensions explained 13.46%

of the variance. Although the Kalman filter model offers an improvement, there remains a large

amount of unexplained variability in the trial-to-trial data.

4.5 Discussion

In this chapter we have provided strong evidence for the dissociation of the two components

in DBM2. Our approach highlights the power of modeling simultaneously at the levels of rational

analysis and psychological mechanism. The details of the behavioral data (i.e. the systematic

discrepancies from DBM) point to an improved rational analysis and an elaborated generative

model (DBM2) that is grounded in both first- and second-degree sequential statistics. In turn,

the conceptual organization of the new rational model suggest a psychological architecture (i.e.,

separate representation of baserates and repetition rates) that was borne out in further data. The

details of these latter findings now turn back to further inform the rational model. Specifically, the

fits to Jentzsch and Sommer’s EEG data and to Maloney et al.’s intermittent-response experiment

suggest that the statistics individuals track are differentially tied to the stimuli and responses in

the task. That is, rather than learning statistics of the abstract trial sequence, individuals learn
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the baserates (i.e., marginal probabilities) of responses and the repetition rates (i.e., transition

probabilities) of stimulus sequences. Furthermore, with an understanding of this division, we were

able to design a series of three experiments that manipulated the level of first- and second-degree

effects present.

Though the theoretical perspective of DBM2 combined with the experimental results pre-

sented in this chapter increase our understanding of the sources of variability in 2AFC tasks, there

is still much to be understood about human behavior in these tasks. We demonstrate that by repre-

senting latent states such as attention, even more variability in RT can be explained. It is possible

that the Kalman filter framework we developed could be improved more by adding multiple latent

variables and perhaps representing multiple timescales of decay. However, it is likely that other

insights will be needed uncover the full nature of behavioral variability in 2AFC. In either case, we

will not accept the tenet that the remaining 85% of the variability is unexplainable noise.



Chapter 5

The Persistent Impact of Incidental Experience1

A common characteristic of the sequential effects models presented thus far is that the weight-

ing over the sequence of past trials decays exponentially. From this perspective, sequential effects

are viewed as rapidly decaying perturbations of behavior with no long-term consequences. In this

chapter, we challenge this traditional perspective in a new study designed to probe the impact of

more distant experience and through a reanalysis of Experiment 1 in the previous chapter.

Sequential dependencies arise naturally from psychological and neurobiological models of in-

cremental learning, including error correction methods (Rescorla and Wagner, 1972), reinforcement

learning (Sutton and Barto, 1998) and Hebbian learning (Hebb, 1949). These models yield an ex-

ponentially discounted influence of past trials, which explains the inverted-V pattern common to

many 2AFC experiments (as in Figure 5.1a). Similarly, models from optimal control theory for

tracking nonstationary environments, such as the Kalman filter (Kalman, 1960), also produce ex-

ponential decay. These models are all appealing because the past trial history is captured by a

single state variable (or sufficient statistic) that can be maintained and updated from trial to trial.

Models that produce exponential decay of past trials predict sequential dependencies to

operate only on short timescales. Moreover, analyses of sequential dependencies have focused

on the short timescale, and the design of experiments has not been well suited to measuring longer-

range effects. However, several studies hint at the possibility that a single experience can have

an influence on behavior persisting minutes (e.g., Link, Kos, Wager, and Mozer, 2011; Wong
1 This chapter is an adapted version of the work by Wilder, Jones, Ahmed, Curran, and Mozer (2013) accepted

for publication in Psychonomic Bulletin and Review.
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and Shelhamer, 2011) or even a day (Ward and Lockheed, 1970), consistent with an alternative

theoretical perspective in which each experience is stored in long-term memory, and behavior is

guided by the cumulative impact of these memories (e.g., Kasif, Salzberg, Waltz, Rachlin, and Aha,

1998; Stanfill and Waltz, 1986).

Instead of an exponential discounting of the past, long-term memory is typically character-

ized as following a “power law of forgetting” (J. R. Anderson et al., 1960; Rubin and Wenzel, 1996;

Wixted and Carpenter, 2007; Wixted and Ebbeson, 1997). Power functions are qualitatively dif-

ferent from exponential functions because they can produce a single curve that exhibits both rapid

decay of the most recent trials (a strong short-term recency effect) and slow decay of far-back trials

(a long-range residual effect). With exponential decay, long-term effects are vanishingly small, at

least with decay rates in the range needed to explain short-term recency.

Our investigation explored the persistence of incidental experience, both in terms of the scope

of its influence and the nature of its decay. We began by reanalyzing trial-to-trial data from a typical

2AFC experiment (Jentzsch and Sommer, 2002). We compared two models of sequential effects

that assume that participants form an expectation for the next trial using an average of previous

trials that is weighted either exponentially or according to a power function (see Appendix C for

mathematical details of our modeling approach).2 Response time (RT) was predicted to be fast

when the expectation matched the actual trial and slow when it did not. Throughout the chapter,

each model was fit to the specific trial history of individual participants by minimizing the mean

squared error across all trials. Both models had a single theoretically relevant free parameter for

determining the relative weighting of past trials.

The analysis used in previous investigations, in which RTs are conditioned on the four-back

sequence (Figure 5.1a) , does not gauge the persistence of experience or facilitate discrimination of

the two models. Thus, to examine the influence of past trials more closely, we studied how model

fits vary as a function of the number of past trials used to form each expectation (the context
2 The model we use here is purely a single degree model (second-degree for analyzing the new experimental data

and first-degree for reanalyzing the data from Experiment 1 in the previous chapter). We felt it was reasonable to
make this simplification because in both cases effects due to one of the degrees dominated the other.
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Figure 5.1: Reanalysis of a representative sequential effects study (Jentzsch and Sommer, 2002,
Expt. 1) a) Mean RTs for current trial type—repetition (R) or alternation (A)—as a function of
sequence history (current trial at top of label). Error bars here and elsewhere for behavioral data
indicate standard error. Exponential (red) and power (blue) models—with full context horizon—fit
to per-participant trial-to-trial data and averaged across participants. b) Accumulative prediction
error (R2) as a function of context horizon. Error bars indicate standard error of R2 difference
between models (Loftus and Masson, 1994), thus aiding in comparing models but not horizons.
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horizon). Out-of-sample fits were obtained for each context horizon by iteratively computing a

prediction for each trial using a model that was fit to the preceding trials and constrained to

have the desired context horizon. All models have one free parameter regardless of horizon size.

Accumulative prediction error (Wagenmakers, Grunwald, and Steyvers, 2006) is computed from the

out-of-sample fits (Figure 5.1b). For an error measure, we use the coefficient of determination (R2)

which is derived from the sum of squared residuals error measure recommended in Wagenmakers

et al. (2006). Increasing the horizon beyond four trials back yields reliable improvements in

fit: across models that use 4 to 1024 past trials, there is a significant main effect of horizon on

R2 (F(8,72)=3.28, p=.003), but despite the appearance of a better fit for the power model, the

interaction between horizon and model was not reliable (F(8,72)=1.033, p=.42).

The Jentzsch and Sommer (2002) study was limited because higher-order sequence statistics

were not controlled—introducing an additional source of variability—and because distinguishing

predictions of the two models is difficult when sequences have no structure. The latter point is due

to the fact that, when the two trial types—repetition and alternation—occur with equal probability,

their influence tends to cancel out, regardless of how strongly individual trials are weighted.

5.1 Autocorrelation in the Sequence Structure

We therefore conducted a 2AFC study with a biased sequence structure in two opposing

conditions, one in which 2/3 of the trials were repetitions of the preceding trial and one in which

2/3 of the trials were alternations of the preceding trial—positive and negative autocorrelation,

respectively.

5.1.1 Methods for Experiment 4

Participants

Twenty-eight young adults (age 21.5 ± 2.9 yrs, 9 female, 19 male) participated for monetary

compensation. Each participant performed two sessions, one each in the Positive and Negative

conditions. Sessions were spaced by 2-7 days, and order was counterbalanced between participants.
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One participant was removed from the analysis because of an error recording responses during

one block. Participants gave informed consent in accordance with the University of Colorado’s

Institutional Review Board.

Stimuli and Apparatus

The participant’s task was to respond to the location of a white dot, 5 mm in diameter,

presented 11 mm above or 12 mm below a 4 mm horizontal white fixation line visible throughout the

task. Responses were made using a button box, oriented vertically so as to be spatially compatible

with target locations. The left and right index fingers were assigned to the two buttons, with

the assignment counterbalanced across participants and fixed across sessions for each participant.

Stimulus duration was 100 ms. A 700 ms response-to-stimulus interval followed each response.

Reaction time was recorded at 1000 HZ.

Procedure

Each session consisted of 3402 experimental trials divided into 14 blocks of 243 trials. Within

each block, local stimulus histories were controlled to a depth of six trials, and the frequency of

each of the 64 (26) different trial sequences was exactly as dictated by the repetition rate for the

condition (1/3 and 2/3 for the Negative and Positive conditions, respectively). The actual stimulus

identities (above or below the fixation line) were equally probable. Participants were given rest

breaks roughly every 116 trials, and additional practice and post-rest contextual lead-in trials were

inserted into the sequence for a total of 3744 trials.

5.1.2 Results

As expected, RTs were modulated by the short-term context (Figure 5.2a). However, behavior

also depended on the autocorrelation structure: RTs for repetition trials (left side of Figure 5.2a)

were faster in the positive condition than the negative condition and vice versa for alternation

trials. The difference due to autocorrelation structure when conditioned on the immediate context

indicates that the influence of the past extends beyond four trials back. Although one cannot

determine how far back from Figure 5.2a, a preference for the power model emerges when fits to
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the per-participant trial-to-trial data are aggregated according to the four-back sequence history.

R2 between model and data across the 32 histories (16 in each condition) was greater for the

power model for 25 of the 27 participants (mean R2 across participants: .798 vs. .730; paired

t-test, t(26)=7.45, p<.001). R2 values reported for the means of the four-back sequence histories

are higher than those for the individual trial data—e.g., Figure 5.1a—because some sources of

variability are averaged out.

Support for a long-range sequential effect is obtained by examining the accumulative pre-

diction error values for the two models with varied context horizons (Figure 5.2b). There is a

significant main effect of horizon (F(8,208)=85.1, p<.001) and an interaction between model type

and horizon (F(7,182)=62.3, p<.001). The exponential model fit improves reliably as more trials

are included out to 32 trials (comparing 32 vs. 16, t(26)=4.12, p=.0003) but no further (1024 vs.

32, t(26)=0.36, p=.72). In contrast, the power model fit improves out to 1024 trials (1024 vs. 512,

t(26)=2.84, p=.0086). Behavior in this task is clearly affected by a long history of prior experience.

Further support for power over exponential decay is obtained by studying the lag profile

derived from the data, plotted on a log-log scale in Figure 5.2c. Because the exponential and power

models both predict a lag profile that matches the decay function, this analysis offers another

means of differentiating the models. The empirical lag profile appears linear in log-log coordinates

suggesting power decay. We fit individual participant lag profiles to both power and exponential

functions and obtained a better fit for the power function (mean R2 across participants: .878 vs.

.855; t(26)=2.17, p=.039).

Even though both the power and exponential functions have a single free parameter, one could

argue that the power function fits better because it has more flexibility. To rule out this possibility,

we compare out-of-sample fits using leave-one-out cross validation. The power fit is consistently

better than the exponential fit across lags and across participants: mean absolute deviation between

the empirical and predicted lag values is smaller for the power function (F(1,26)=10.47, p=.003).

For 9 of the 10 lags, the mean absolute deviation is smaller for the power function. Furthermore,

we compared fits for individual participants using an extension of the likelihood ratio test that is
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Figure 5.2: Results for Experiment 4. a) Mean RTs for positive and negative autocorrelation con-
ditions as a function of sequence history. Exponential and power modelswith full context horizonfit
to per-participant trial-to-trial data and averaged across participants. b) Accumulative prediction
error (R2) as a function of horizon. Error bars as in Figure 5.1. c) Lag profile averaged across
conditions and participants in log-log coordinates. Mean of exponential and power function fits to
per-participant lag profiles. d) Histogram of the log-likelihood ratios for individual participant fits
(negative supports power model and positive supports exponential model). Significance determined
by the Vuong’s closeness test.
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appropriate for non-nested models (Vuong, 1989). Figure 5.2d histograms the log-likelihood ratios

across participants. A preference for the power model is evidenced by both the larger number of

significantly negative ratios according to the Vuong test (11 blue vs. 3 red boxes) and the larger

total number of negative ratios (18 vs. 9).
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Figure 5.3: Difference in mean RT for repetition and alternation trials by block (234 trials) for
each autocorrelation condition. Red line corresponds to the exponential model fit and the blue line
corresponds to the power model fit.

If incidental experience has a long-lasting influence, a cumulative effect of trial statistics

across the entire course of the experiment might be observable. Figure 5.3 reveals a preference for

repetitions in the positive condition that increases as the experiment progresses, and a preference

for alternations in the negative condition. When superimposed over Figure 5.3, predictions derived

from power model fits capture the long-range effect of condition. In contrast, the trajectory from

the exponential model fits is roughly flat because the model cannot benefit from integrating beyond

about 64 past trials.

The power model is appealing because it is capable of explaining effects across a range of

timescales, from the variation due to the immediate four-back context to the bias that grows over

the hour-long duration of the sequence in each autocorrelation condition.
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5.2 Persistent Sequential Dependencies in Motor Control

Although we have argued for a unified explanation of short- and long-term adaptation via the

power model, there is an alternative, though somewhat less parsimonious, possibility that the two

timescales reflect distinct mechanisms. For instance, in Experiment 4, sequence structure might

have been detected by participants, leading to explicit learning and deliberate biasing of behavior.

We thus aimed to strengthen our account by demonstrating the persistence of incidental experience

in the absence of sequential structural regularity.

However, as our reanalysis of the Jentzsch and Sommer (2002) data revealed, it was difficult

to uncover long-range effects when the sequence history was balanced and response latency was

the dependent variable. We conjectured that response latency may not be a terribly sensitive

measure because speedy responses are a secondary consideration in the performance of 2AFC;

responding correctly is the participants’ primary goal. Consequently, RTs may be more susceptible

to perturbation by task-unrelated factors. A task whose behavioral measures are better aligned

with the participants’ primary goals might be more effective in exposing a persistent influence of

incidental experience, despite the previously described cancellation of far-back effects that results

from balanced sequences.

Given the success in Experiments 1 through 3 in eliciting sequential effects in movement

trajectories—which are a more direct measure of behavior because they reflect planning processes—

it seemed suitable to explore the the depth of sequential effects in the motor control domain. Long-

term motor adaptation has been observed when systematic and consistent perturbations were ap-

plied to the control system (e.g., Hoppand and Fuchs, 2004; Robinson, Sotedjo, and Noto, 2006;

Shadmehr and Mussa-Ivaldi, 1994). Some support for the persistent influence of incidental experi-

ence is found in an eye movement task in which error-based adaptation was observed extending back

nearly one hundred trials and decaying according to a power function (Wong and Shelhamer, 2011).

However, in this task, correlations could be attributed to endogenous variation rather than exoge-

nous effects of the target sequence because target timing and position were completely predictable
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on every trial. Though ignored in many motor control studies, short-term sequential dependencies

have been demonstrated in reaching tasks where straight-line arm movements were disrupted by

variable perpendicular perturbation forces (Fine and Thoroughman, 2006; Scheidt et al., 2001).

In examining the lag profiles from Experiments 1 through 3 (Figure 4.4), Experiment 1

displayed the most consistent sequential effect. Moreover, further back lags appeared to be non-

zero suggesting a more persistence effect. For these reason, we examined the data from Experiment

1 using the methods developed above.

5.2.1 Results

The persistence of past experience is revealed by analyzing accumulative prediction error as

a function of context horizon (Figure 5.4a). We find support for the hypothesis that sequential

effects extend back more than 32 trials (one-tailed t-test for 64 vs. 32, exponential: t(19)=1.93,

p=.035; power: t(19)=1.86, p=.040). Because the exponential and power models differ primarily

in the weights they assign to far-back trials, we expected that the balanced sequences in this

experiment would make it difficult to compare the two models directly. Despite this limitation,

evidence for power decay over exponential decay is found in the near linear trend of the lag profile

in log-log coordinates (Figure 5.4b). Per-participant fits to the lag profile values are reliably better

for a power function than an exponential function (mean R2 across participants: .891 vs. .835;

t(19)=4.98, p<.001).

Using leave-one-out cross validation, the power fit is significantly better than the exponential

fit across lags and across participants: mean absolute deviation between the empirical and pre-

dicted lag values is smaller for the power function (F(1,19)=15.26, p=.001). Additionally, for 9 of

the 10 lags, the mean absolute deviation is smaller for the power function. Figure 5.4d shows a

strong preference for the power model according to Vuong’s closeness test (Vuong, 1989) with more

significantly negative log-likelihood ratios (12 blue vs. 0 red) and a larger total number of negative

ratios (17 vs. 3).
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Figure 5.4: a) Accumulative prediction error (R2) as a function of context horizon. Error bars as in
Figure 5.1. b) The lag profile in log-log coordinates with mean exponential and power function fits.
d) Histogram of the log-likelihood ratios for individual participant fits (negative supports power
model and positive supports exponential model). Significance determined by the Vuong’s closeness
test.
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5.3 A Normative Account of Long-Range Effects

Many theoretical accounts characterize sequential dependencies as a by-product of adaptation

to the statistical structure of a dynamic environment (e.g., DBM2 in Chapter 3, Jones and Sieck,

2003; Mozer, Kinoshita, and Shettel, 2007; Yu and Cohen, 2009). These accounts suppose that

statistics of the environment are tracked over time—statistics such as relative stimulus frequency

or the magnitude and direction of perturbing forces. The statistics represent not only a summary

of the past, but an expectation for the future, facilitating tuning of perceptuo-motor control to

perform optimally in the anticipated environment.

If environments have temporal nonstationarity, more recent experience is most indicative of

what an individual will experience next. Specific theoretical formulations lead to specific charac-

terizations of how past experiences should optimally be combined to predict future events. Yu

and Cohen’s (2009) Dynamic Belief Model (DBM) explains sequential effects as a consequence of

optimal Bayesian inference in an environment whose characteristics are stationary for an interval

of time until they are redrawn from a reset distribution at abrupt changepoints distributed in time

according to a Bernoulli process. The DBM assumptions lead to predictions about behavior that

are consistent with an exponentially decaying lag profile. Consequently, the model fails to produce

long-range effects of experience.

We propose an extension of the DBM, called the Hierarchical Dynamic Belief Model or HDBM

(Figure 5.5a), that yields roughly a power function lag profile and consequently outperforms the

DBM when fit to the entire experimental data in one pass (Figure 5.5b; Experiment 4: t(26)=7.69,

p<.0001, Experiment 1: t(19)=3.87, p=.0010).3 The HDBM relaxes a seemingly unnatural

assumption in the DBM: that environmental statistics have a time-invariant probability of change.

For example, it would seem that the dynamics of change during a four-hour plane flight are not

the same as those during the half hour it takes to deplane, walk through the terminal, collect bags,

catch a taxi, and check into a hotel. The HDBM avoids this restrictive assumption by taking a
3 We define HDBM as an extension of DBM as a proof of concept. However, it would be easy to integrate the two

components of DBM2 into the HDBM framework.
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hierarchical Bayesian approach in which the underlying generative model is a non-homogeneous

Bernoulli process, i.e., a process with a fluctuating changepoint probability that is driven by a

separate Markov process (see Appendix C for the full model specification). Because the HDBM

models a spectrum of environments—ranging from rapidly changing to stable—its expectations of

the future reflect strong short-term recency as well as long-range dependencies.
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Figure 5.5: a) The graphical model for the Hierarchical Dynamic Belief Model (HDBM). xt is the
trial type at time t, γt is the parameter of the Bernoulli process generating xt, and αt is the change
probability. The original DBM (Yu and Cohen, 2009) consists of only the black part of the graph,
with α constant. b) Comparison of model performance for Experiment 4 and 1. Error bars for
the power and exponential models—and similarly for the HDBM and DBM models—represent the
standard error of the R2 difference between the two models across participants.

The success of the HDBM in fitting the data suggests a normative explanation for the long-

range influence of incidental experience on behavior. Under the assumptions of the HDBM, the

mind optimally adapts to a complex dynamic environment in which even seemingly irrelevant

experiences that occur far in the past offer predictive information about upcoming environmental

states and task demands. Specifically, the expected relevance of a past experience to the current

moment falls off according to an approximate power function.

As previously mentioned, human forgetting of explicit (declarative) knowledge in long-term

memory is often characterized in terms of power decay. This decay function has been cast as
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rational via the observation that in diverse domains—newspaper articles, parental speech, and

electronic mail—the empirical probability of needing access to a specific piece of information is

well fit by a power function of time (Anderson and Schooler, 1991). The present analyses of the

DBM and HDBM indicate that this observation is not well explained by nonstationarity with a

fixed change probability, but that introducing variable change rates offers the basis for a normative

explanation. Thus power decay serves as an informative connection between sequential effects,

long-term memory, and the statistical structure of the environment.

5.4 Discussion

Contrary to the prevailing assumption that variations in experience produce only fleeting

perturbations in behavior, we have argued that incidental priming yields enduring modulations

of behavior. Modeling indicates that past experience is integrated to anticipate the future using

a weighting that is strongly recency based but also has a heavy tail, consistent with power but

not exponential discounting. Power discounting can be characterized as optimal adaptation to the

statistics of an environment with second-order nonstationarity.

To perform optimal prediction in nonstationary environments with changepoint dynamics,

the complete history of experience must be maintained (Adams and MacKay, 2006). Consequently,

our results are consistent with the perspective that as individuals interact with their world, they

continually log their experiences, forming a library of memory traces that is called on to adapt

behavior to an environment that can change on timescales ranging from seconds to months. Alter-

natively, a good approximation to optimal prediction can be achieved by combining across several

exponentially decaying sequence statistics that span a range of timescales (e.g., Kording et al., 2007;

M. C. Mozer, Pashler, Cepeda, Lindsey, and Vul, 2009; Sikstrom, 1999, 2002; Staddon, Chelaru, and

Higa, 2002; Wixted, 2007). Indeed, Mozer et al. (2009) and Murre and Chessa (2011) demonstrate

mathematically that power functions emerge when an infinite collection of exponential functions

are averaged together assuming certain constraints on the distribution of decay rates. Our work

suggests the necessity of combining across multiple timescales ranging from just a few trials to
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hundreds of trials to the entire duration of the experiment. The presence of power decay, regardless

of the precise mechanisms that produce it, suggests that sequential dependencies in rapid deci-

sion making are best understood as a memory phenomenon akin to human long-term declarative

memory rather than as a byproduct of short-term incremental learning.

The perspective that sequential effects reflect memory storage and updating offers a novel

interpretation of the continual and often long-range (Gilden et al., 1995) fluctuations observed in

human behavior and cognition. Far from being internal noise in the system, trial-to-trial variability

in choice, response latency, and movement reflect an adaptive process in which individuals exploit

their extensive experience to respond optimally to a dynamic world.



Chapter 6

Decontaminating Human Judgments1

The work presented thus far primarily seeks to explain sequential effects in response time

and other simple measures of trial performance. As we saw in Chapter 2 that provided an overview

of sequential effects and a synthesis of theoretical perspectives, recent context has also been shown

to bias actual responses in magnitude estimation, absolute identification, and categorization tasks.

Beyond simple experimental tasks, sequential effects have been shown to contaminate judgments in

domains such as legal reasoning and jury evidence interpretation (e.g., Furnham, 1986; Hogarth and

Einhorn, 1992), clinical assessments (Mumma and Wilson, 2006), and financial decisions (Johnson

and Tellis, 2005; Vlaev et al. 2007).

Given the widespread prevalence of sequential effects in judgments, it is natural to question

how these effects bias conclusions that are drawn from these judgments. In an experimental en-

vironment, items are often judged many times and biases due to sequential effects are removed

through averaging. However, in many situations there may only be one or two judgments per

item and averaging may be inadequate. Consider for example a marketing research company that

is assessing 20 potential additions to Pepsi’s beverage lineup. This company will enlist a large

number of people to taste-test the different concoctions and rate each one. Even with the presen-

tation order randomized across individuals, we expect significant sequential effects in the ratings

of each individual that could be large enough to skew the final outcome of the study. To avoid

this undesired consequence, the company could have the individuals rate each item multiple times.
1 The work described in this chapter represents a collaboration with Michael Mozer and Matt Jones.
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Unfortunately, such an approach would likely increase the cost of the study significantly.

As an alternative to collecting more data and averaging over it, it would be valuable to

leverage our knowledge of sequential effects to remove the biases from a sequence of judgments. In

decontaminating the ratings of individuals, we seek to extract the pure responses that they would

have given in the absence on any sequential context. By using decontaminated judgments instead

of traditional averages, we expect greater fidelity in the outcome of the survey or experiment and

less time, effort, and cost in obtaining the data. In this chapter we seek to explore methods of

decontamination and assess their value in varying experimental contexts. With a growing interest

in collecting human judgments and using them to predict individual preferences (e.g., Netflix,

Amazon), the ability to effectively decontaminate sequences of judgments has the potential to be

of great value.

6.1 Problem Formulation

The primary goal of any decontamination method is to infer from the sequences of responses

a latent impression for each item judged. We use the term impression to represent the internal

state of an individual, though the term sensation might be more appropriate in a purely perceptual

judgment task and the term evaluation might be preferred in domains requiring high-level cognitive

processing. In this work, we assume that the stimulus-to-impression mapping is veridical and that

contamination due to sequential effects occurs in the impression-to-response mapping. Thus the

impression reflects an individual’s pure reaction to the stimulus. One might argue that sequential

effects can also contaminate the perceptual process in a way that renders the concept of a fixed

impression to a stimulus meaningless. However, most practical judgment tasks are administered

with the goal of determining an individual’s raw internal impression of an item. Because this

process is dependent on the existence of fixed impressions, we carry this assumption into our

decontamination methods.

Without decontamination, the natural method for obtaining a participant’s impression for

a given item is to average across all responses they have given for that item. We refer to this
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approach at the Response Mean (RM) model and use it as a baseline for comparison when assessing

decontamination algorithms. Naturally, the estimated impressions will be more accurate as the

number of repetitions of each item grows. However, in many real-world situations, there is a

significant cost in obtaining extra judgments. Thus the goal of decontamination is to uncover

impressions that are strongly representative of an individual’s internal state with the fewest number

of repeated judgments.

6.2 A Linear Sequential Effects Model

In the preceding chapters, we have developed models that seek to provide a rational expla-

nation for sequential effects. From a theoretical perspective, these models contribute significantly

to our understanding of how and why humans modulate their behavior according to recent experi-

ence. These models provide a computational-level explanation, but there are no doubt mechanistic

models that produce the same behavior. From a practical perspective with the challenge of decon-

tamination at hand, we want to employ a model that is flexible enough to capture the majority of

different sequential effects that occur and are less concerned about the theoretical implications of

the model we choose.

In the domain of simple choice tasks, we have modeled response time as depending on the

sequential structure of the preceding stimuli. The rational models we have developed are well

approximated by a weighted sum over past stimuli and/or the repetition/alternation encoding

of the past stimuli. In domains where there are more than two choices, there is less support

for including the repetition/alternation encoding as it is not as well defined (Gokaydin et al.,

2011). Thus we might be tempted to consider a simple model that includes a weighting of past

stimuli. However, these models are used to predict an individual’s response time, whereas in a

decontamination application, predictions of the individual’s actual responses are desired.

Fortunately there is a rich literature on judgment models (some of which has been reviewed

in Chapter 2). One common finding across the models is that the previous sequence of stimuli and

responses both exert a bias on the current response. We define a general model of sequential depen-
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dencies in judgments that draws inspiration from the model presented in DeCarlo and Cross (1990).

DeCarlo and Cross (1990) define the current response as a weighted sum of the current stimulus

and previous stimuli and responses. The weights in DeCarlo and Cross (1990) are constrained by

theoretical assumptions, but for the purpose of decontamination, we remove these constraints. For

a history length h, we model the response on trial t as

Rt = I(St) +
h∑
j=1

βjI(St−j) +
h∑
k=1

βh+kRt−k, (6.1)

with weights, β ∈ R2h, that can take on any values. Because the stimulus values, S, are often

unknown in more complex judgment tasks, we use instead the impression triggered by the stimulus,

I(S). This model is mechanistically consistent with many judgment models in the literature.

However, it is incapable of capturing nonlinearities such as memory based anchoring (Petrov and

Anderson, 2005), capacity limitation (Stewart et al., 2005), and generalization that depends on the

similarity between successive items (Jones et al., 2006). Despite these limitations, we expect this

model to provide a reasonable foundation for the decontamination methods we will explore.

6.3 Supervised Decontamination

As an initial foray into decontamination, we (M. C. Mozer et al., 2010) explored decontam-

inating judgments in a simple gap detection task where participants judge the distance between

two points as one of 10 possible lengths. In this absolute identification task, there were exactly 10

stimuli, and feedback was only given for the first 10 trials. Participants performed a total of 180

judgments with each item appearing exactly 18 times, and items were blocked in groups of 10 trials

with all items appearing in each block. We explored a collection of models designed to infer the

impression2 on each trial from the response on that trial and the preceding responses and impres-

sions. The space of models included the cartesian product of three model types (regression, lookup,

and hybrid) and three inference techniques (CRF, simple, oracle). The regression model simply

expressed the current stimulus as a linear combination of current and previous responses and the
2 The term sensation was used in M. C. Mozer et al. (2010) instead of impression, though for consistency in this

context, we use the term impression.
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previous impressions (similar to Equation 6.1). The lookup model consisted of a table of impression

values conditioned on the current response and previous responses and impressions. The hybrid

model combined these two methods to complement the regression model with the non-linearities

encoded in the lookup table. Inference over the set of unknown impressions was performed using a

linear-chain conditional random field (CRF) with one of the three model types built into the CRF.

Two other inference methods, simple and oracle, were implemented for the purpose of comparison.

The simple method removed all impression terms from the regression and lookup tables such that

performing inference was reduced to solving a simple least-squares regression problem. Similarly,

the oracle method assumed that the previous impressions were known thus also reducing inference

to solving a regression problem (i.e., the previous impressions are set to be the actual gap distances

(1-10) on the previous trials). The oracle method was used to achieve an upper bound on model

performance if the previous impressions are inferred perfectly. However, it is not a valid method on

its own because it assumes knowledge of the impressions which are unknown in the decontamination

problem.

The models were trained via a supervised procedure using the known ground-truth impres-

sions for a subset of the participants. Performance was assessed by computing the root mean

squared error (RMSE) between the ground-truth impressions and the model-estimated impressions

over the set of validation participants (i.e., those not used in training) for 100 different splits of the

data. The CRF method of inference outperformed the simple method and achieved results closer to

the oracle method. The hybrid model type offered the least RMSE of the three model types. Over-

all, the decontamination method resulted in an RMSE improvement of about 20% over the baseline

model, however, roughly 15% of that improvement can be attributed to simple decompression in

the response scale and debiasing of individual response tendencies.

6.4 Unsupervised Decontamination

Though the methods developed in Mozer et al. (2010) successfully recovered impressions

closer to the ground-truth values, the approach is significantly limited by its dependence on ground-
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truth data for training. In most real-world applications, ground truth data is unobtainable or may

not even exist. For example, in a movie rating task, an individual’s impression for a given movie

will likely differ from the impressions of others because of personal preferences. Though in theory

it is possible to obtain ground-truth data by averaging over many repetitions of a given item, this

can be very costly and the data may not apply to other individuals.

A more practical approach to decontamination is to treat the problem as an unsupervised

learning problem (i.e., infer the true impression for each item using only the responses given by the

participant, perhaps with multiple repetitions of each item). M. C. Mozer, Link, and Pashler (2011)

present a method for decontamination in this spirit called the Iterated Impression Inference (I3)

algorithm. The I3 algorithm is founded on a simple regression model where the current response

is given by Equation 6.1. Because the dependent variable is the current response, the regression

problem is unsupervised in the sense that ground-truth impressions need not be known. This differs

from the regression approach in Mozer et al. (2010) where the dependent variable was the current

impression. Of course the unknown impressions still exist in the model and thus must be inferred in

some way. As the name suggests, the I3 algorithm takes an iterative approach and can be described

via the following simple steps:

(1) Initialize the impressions to the RM solution.

(2) Solve the least-squares regression problem for the weights.

(3) Fix the weights to the maximum likelihood solution and rearrange the regression problem
so that the impressions are the unknown values.

(4) Solve for the impressions in this new regression problem with a regularizer that ensures
that the values do not drift far from the RM solution.

(5) With these new impressions, go back to step 2.

Because mean squared error (MSE) is strictly non-increasing in steps 2 and 4, the algorithm is

guaranteed to converge on a local optimum in the search space. The algorithm is terminated when

MSE on the training data converges (i.e., when the change in MSE within epsilon of zero).

The preferred approach for evaluating any decontamination method is to compare the inferred

impressions to the true impressions. However, when the true impressions are unknown, which is
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often the case, an alternative is to use the inferred impressions to predict future responses. In

the RM model, this amounts to computing the mean response for each item across the training

data for a participant and using those values as the predicted responses in the test set. With a

sequential effects model like I3, impressions are again inferred from the training data, but the whole

model is used to predict the responses in the test set—rather than just the raw inferred impression

values—because we expect those responses also to be contaminated by sequential effects.

I3 is used to decontaminate the judgments from three different experiments: the gap detection

task evaluated in Mozer et al. (2010) and two new judgment tasks involving rating movie posters

and judging moral actions. We explain these experiments in more detail because they will also be

used to evaluate the model presented in this chapter.3 In the movie rating task, 120 participants

rated 50 different movie posters on a 1-10 scale, where 1 means “would never watch this movie” and

10 means “can’t wait to see it” (see Figure 6.1 for example movie posters). The rating task should

not be confused with the more typical rating task of indicating enjoyment for a previously viewed

film; this sort of task might be used by film marketers who attempt to design advertisements to

have broad appeal. The participants rated each movie poster four times for a total of 200 judgments

throughout the experiment. For the moral judgment experiment, 50 participants rated 25 different

actions on a moral scale from 1 (not bad at all) to 10 (extremely bad). Again, each action was

rated 4 different times for a total of 100 judgments. In both experiments, trials were blocked such

that all items were rated before the next repetition.

Figure 6.1: Several examples of movie posters rated in the movie experiment. For each item
participants would rate how interested they would be in watching the film on a scale from 1 to 10.

3 Comprehensive details of the experiments can be found in Mozer et al. (2011).
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Mozer et al. (2011) report a significant percent reduction in MSE for I3 over the RM model

(roughly 5% in the movie ratings and 4.5% in the morality judgments). For the gap detection task,

the MSE for the inferred impressions compared to the ground-truth data was roughly 10% lower for

I3 than RM when the model was trained on a small number of trials containing in the range of two

to four repetitions per item. The difference between the two models decreased as more repetitions

of each item were included in training.

6.5 Judging Appropriate Tax Rates

To supplement the gap detection, movie rating, and morality judgment experiments described

above, we conducted a new judgment experiment to further validate the decontamination methods

presented in this chapter. The experiment, described below, asked participants to assign appropri-

ate tax rates to different scenarios in which money is acquired.

6.5.1 Methods for Tax Experiment4

Participants

One hundred participants were enlisted using Mechanical Turk and were given a small amount

of monetary compensation. Each participant answered 64 questions in one continuous session. The

experiment was approved by the University of Colorado’s Institutional Review Board.

Stimuli and Apparatus

Participants responded to 64 questions regarding appropriate tax rates for a specific situation

by selecting a percentage value between 0 and 100. For example, “Mary inherited $100,000 from

her grandmother this year. What percent of this amount should she pay in tax?” Participants were

given instructions at the beginning of the task to choose a value between 0 and 100 on the sliding

bar that appeared below the question. Each response was followed by a short delay and then the

next question until the experiment terminated.

Procedure
4 I am indebted to Robert Lindsey for programming and running this experiment on Mechanical Turk.
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Eight unique question types were used in the experiment with two different dollar amounts.

Thus there were 16 different questions each repeated four times for a total of 64 questions. The

questions were divided into four blocks such that all questions appeared before the next repeat. The

sequences were controlled to avoid the same question type appearing twice within five consecutive

trials. Participants were divided into two conditions. In the first condition, the sliding bar was

fixed to lock into percentages at 5% increments. In the second condition, the sliding bar was set to

allow continuous responses between 0 and 100. The goal of this manipulation was to test whether

finer resolution in the response scale improves the ability to decontaminate the responses. However,

this manipulation did not offer any improvement in the decontamination process, so we collapse

across conditions in the analyses that follow.

6.6 Bayesian Impression Inference (BI2)

Though I3 offers an improvement over the baseline RM model, there are two main constraints

that hinder its performance. First, the weights are constrained to be the same for all participants.

This corresponds to the psychological assumption that all individuals weight their recent experience

in exactly the same way. Second, the impressions for each item are assumed to be independent

(both within participants and across participants). Under this assumption, there are no similarities

across items and the preferences of one individual are completely unrelated to the preferences of

all other individuals. Of course this is unrealistic; for example in the domain of movie ratings,

similar movies are likely to induce similar impressions and a group of individuals might have highly

correlated impressions because the individuals have similar taste in movies.

When mapped onto a Bayesian framework, the I3 model roughly corresponds to the graphical

model depicted in Figure 6.2. Using the sequential effects model in Equation 6.1 as a foundation

for the Bayesian model, the response on trial t is defined to have the following distribution,

Rt ∼ N(I(St) +
h∑
j=1

βjI(St−j) +
h∑
k=1

βh+kRt−k, σ
2
R).
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Figure 6.2: A Bayesian model that matches the assumptions and structure of I3. See text for a
description of architecture and variables.
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The variables β and σ2
R, which are shared across all participants, are distributed as follows:

β ∼ N(µβ,Λβ) and σ2
R ∼ IG(αR, ωR),

with µβ, Λβ, αR, and ωR fixed to produce relatively uninformative Normal and Inverse Gamma

(IG) priors which are the standard priors used in Bayesian linear regression. The impression for

each participant and item is distributed as

I ∼ N(µP,I , σ2),

with µP,I given by the RM solution from the training data and σ2 shared for all participants and

items. Using the RM solution as the mean of the prior is equivalent to the regularization in I3

that keeps the impressions from straying too far from the RM solution (with σ2 closely related to

the ridge parameter in ridge regression). Using the training data to set the prior is unconventional

because priors generally represent information believed before any data is viewed. This constraint

will be removed in the models we develop but is included here to recreate I3 as closely as possible

in a Bayesian framework.

From a Bayesian perspective, it is somewhat straightforward how to relax the limiting con-

straints of I3. First, we desire each individual to have a unique set of weights over past trials. In

the graphical model, this is accomplished by moving the β random variable into the participants

plate. This yields a form of Bayesian linear regression where the weights are constrained by a

prior which in this context represents information about how a population of individuals tends to

weight previous trials. Similarly, it is reasonable to assume that the variance of the response noise

(σ2
R) varies from one participant to the next, so this random variable can also be moved into the

participants plate.

One challenge with moving the weights into the participants panel is that the mean and

covariance of the prior over these weights needs to be specified. This prior is important because it

encodes information about how sequential effects manifest in populations of participants. Though

the mean and covariance could be fit to the data, we take the more principled approach of adding
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a hierarchical prior over the weights prior. This hyperprior can have very loose constraints and

essentially allows the model to learn the appropriate mean and covariance for the prior over the

weights.

On the impression side, it is less obvious how to modify the model to be sensitive to corre-

lations across items and participants. One potential solution is inspired by Item Response Theory

(IRT) which in the unidimensional case posits that each item is characterized by difficulty and

each individual is characterized by ability (Lord, 1980). In the graphical model, there is a contri-

bution value for each item (CI) and participant (CP ) that are summed to form the mean of the

prior for each participant/item impression. The variance of the prior (σ2) remains fixed across all

participants and items. This model is depicted in Figure 6.3a, though it is shown with the added

complexity of hierarchical priors that will be explained shortly.

a)
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Figure 6.3: The graphical models for the IRT and MDS versions of BI2. See text for a description
of the architecture and variables.

One limitation of the IRT approach is that each item contribution is the same for all par-

ticipants (i.e., there is no notion of item preference that varies across participants). It would be

preferable to have a prior for each participant/item pair that captures individual preferences. The
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research on multidimensional scaling (MDS) (Torgerson, 1958) and factor analysis (Gorsuch, 1983)

provide guidance for an alternative characterization of the priors over impressions. In MDS, items

are represented in a higher dimensional space in such a way that distances between items, as de-

fined by similarity, are preserved. When determining the prior over the impression for a specific

participant/item pair, the latent multidimensional representation for the item can be scaled by the

individual’s preferences over the latent dimensions or factors. The graphical model correspond-

ing to this approach, Figure 6.3b, contains an item-specific variable (F ∈ Rd) representing the

d-dimensional factors and a participant-specific set of weights over the factor space (W ∈ Rd). The

mean of the prior over the impression for a given participant/item pair is given by the inner product

of the corresponding F and W.

A hierarchical approach is also applied on the impression side of the model by placing a

hyperprior over the priors for the item contribution and participant contribution in the IRT version

or the priors for the factors and weights in the MDS version. Though we could have also placed

hyperpriors over the variance variables, we kept these priors fixed and parameterized them to allow

for a wide range of reasonable variances. We call this full model Bayesian Impression Inference

(BI2) and refer to the two versions using the acronyms IRT and MDS. The full graphical models

for these two versions are depicted in Figure 6.3.

6.6.1 Mathematical Specification of BI2

The foundation of both the IRT and MDS versions of BI2 remains Equation 6.1 that expresses

the current response as a function of the current impression, the previous impressions, and the

previous responses,

Rt ∼ N(I(St) +
h∑
j=1

βjI(St−j) +
h∑
k=1

βh+kRt−k, σ
2
R).

However, the β values are now assumed to be different for each participant but drawn from a

Normal prior distribution shared across participants, with the prior distribution itself drawn from

a Normal Wishart (NW) hyperprior which is the conjugate prior for the multivariate normal and
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provides a sensible prior that can be parameterized to be relatively uninformative:5

β ∼ N(µβ,Λ−1
β )

(µβ,Λβ) ∼ NW(ηβ, κβ, νβ,Vβ).

The variance of response noise (σ2
R) and the variance of the impression priors (σ2) are defined to

be drawn from Inverse Gamma priors which again are chosen because of conjugacy,

σ2
R ∼ IG(αR, ωR) and σ2 ∼ IG(α, ω).

The preceding specification applies to both the IRT and MDS versions of the model as they share

the same assumptions about sequential effects but differ with respect to how they treat impressions.

In the IRT version, the prior over the impression for a specific participant/item pair (indexed

as P, I) is as follows:

IP,I ∼ N(CP + CI , σ
2).

The contribution terms CP and CI each have their own Normal prior and these two priors share a

common Normal Inverse-Gamma (NIG) hyperprior which is the univariate version of the Normal

Wishart prior used as the hyper prior over the weights:

CP ∼ N(µP , σ2
P )

CI ∼ N(µI , σ2
I )

(µP , σ2
P ) and (µI , σ2

I ) ∼ NIG(ηC , κC , αC , ωC).

The MDS version of BI2 uses the following prior over the impression for a participant/item

pair:

IP,I ∼ N(F ·WT , σ2).

F and W each have a d-dimensional Normal prior which in turn has its own conjugate Normal

Wishart hyperprior:

F ∼ N(µF ,Λ−1
F )

5 Throughout this specification, we parameterize the Normal distribution and the Normal Wishart using a precision
matrix (inverse covariance matrix) instead of the covariance matrix because it simplifies derivations.
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W ∼ N(µW ,Λ−1
W )

(µF ,ΛF ) ∼ NW(ηF , κF , νF ,VF )

(µW ,ΛW ) ∼ NW(ηW , κW , νW ,VW ).

6.7 Simulation Details

BI2 was evaluated across the four experiments and compared to I3 and RM. Before present-

ing results, it is necessary to explain how inference was carried out in BI2, how the model was

parameterized, and what methods were used for evaluating model performance.

6.7.1 Inference in BI2

Given the mathematical specification for the two versions of the model, it is possible to

express the posterior distribution of each variable conditioned on the other variables in the model

as a well known distribution (see Appendix D for these derivations). For this reason, we used

Gibbs sampling to perform inference in the model. The shaded variables in the graphical model—

including the sequence of responses and the hyperparameters—are treated as observed variables,

and the goal is to infer the distribution of all other variables in the model. From the perspective

of decontamination, the inferred impressions (I) are of greatest interest. However, because we will

assess the model by predicting response sequences in the test data, we are also interested in the

β values inferred for each participant. After running Gibbs sampling, we have many samples for

β and the impressions. In theory it is desirable to take the mode of these samples which is the

maximum a posterior (MAP) estimate. However, for convenience and because we have no reason to

believe these distributions are multi-modal, we obtain our final estimate for β and the impressions

by computing the mean of the samples.

6.7.2 Model Parameterization

Apart from the model parameters displayed in the graphical model, there are several other

parameters required in the simulation. An important model parameter is h, the number of previous
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impressions and responses used in the regression model. In all our simulations, cross validation was

used to find the best fitting h and regularization parameter for the I3 algorithm, for each set

of experimental data.6 These parameters were used to obtain the I3 fits which are used for

comparison. The best fitting h value for each experiment was carried over to BI2. The values of

h for the different experiments were 13 for the movie poster ratings, 7 for the morality judgments,

18 for the gap detection, and 5 for the tax questions. These values appear to be related to the

amount of data available to constrain the model (200, 100, 180, and 64 trials respectively). For

the MDS version of BI2, we defined the dimension (d) of the factor space to be four. This was

arbitrarily chosen to allow a flexible representation without increasing the model complexity too

much. However, model performance was not very sensitive to this parameter. For Gibbs sampling,

we used 2000 iterations with a burn-in of 100 iterations and thinned the samples to every 10th

iteration. These values were selected by visualizing the dynamics of the model across iterations

and observing roughly how long it took for the effect of initialization to vanish and how much

correlation there was between successive iterations. Model performance was not greatly affected

by other choices for these values. Finally, the hyperparameters for the model were chosen to yield

very general, uninformative priors. The goal was to place as few constraints as possible in the

hyperpriors so that the priors were free to find the most appropriate values given the training data.

Appendix D presents a more specific description of each hyperparameter and the value assigned to

it for the simulation.

6.7.3 Evaluation

For each experiment, the sequence of trials were divided into a training and test set. The

divisions were made at the block level to control the number of repetitions of each item in the two

sets. For example, in the movie experiment where there are four blocks of 50 trials, the training

set might consist of trials 1-100 and the test set would then include trials 101-200. Gibbs sampling
6 The cross validation procedure used the first two blocks in the movie and gap experiments and the first three

blocks in the moral and tax experiments as the training set. The last 25 trials of the training set were used for
validation in the movie and moral experiment; the last 30 were used for validation in the gap experiment; and the
last 16 were used in the tax experiment.
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was run on the training data to estimate β and the impressions for each participant. These values

were then used to predict responses according to the model. Mean squared error (MSE) was

computed to quantify how closely the predicted responses for each participant matched their actual

responses. Overall model performance for an experiment was defined as the average MSE across

all participants.

For most of the analyses, four different training/test divisions were used. Furthermore, each

division was repeated four times to reduce some of the variability in the Gibbs sampling procedure.

Thus the final MSE values reported for each experiment represent the average across 16 different

runs of the model. For the movie data and the gap experiment, the training and test data were

split so that each set contained half of the trials. Because there were fewer trials in the morality

judgment and tax experiments, the training set consisted of three blocks of data and the test set

consisted of one block. It should be noted that the training/test division serves as a means for

evaluating the model and that in an applied setting, all of the data would be used to train the

model.

Because the sequential effects model embedded in I3 and BI2 includes h previous trials, the

first h trials in the experiment are excluded from the training or test set (depending on which set

includes the first trials). However, the trials are used in the sequence history of the subsequent

trials. At the overlap of the training and test sets, h trials from the end of the first set are used

for the sequence contexts of the trials that follow. For example, if h = 9 and trials 1-100 are used

in testing and trials 101-200 are used for training, judgments for trials 1-9 will not be predicted

directly and will only appear in the contexts for trials 10-18. Additionally, trials 92-100 will be used

as lead-in trials for the beginning of the training set. Though this overlap may appear to unfairly

improve performance on the test set, the actual information provided by these lead-in trials is

minimal because the judgments for those trials do not end up as target values in the training

regression equations.
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6.8 Decontamination Results

As outlined earlier in this chapter, the primary goal of decontamination is to obtain more

representative estimates of an individual’s true impressions to the judged items with fewer total

judgments required. The representativeness of the BI2 inferred impressions will be evaluated in

comparison to the RM model and I3 by studying MSE for the different models on the test data.

The efficiency of the model, which can be defined as the relative improvement in MSE for a fixed

number of judgments or as the reduction in judgments necessary to achieve a fixed MSE, will be

examined by evaluating the model across a range of training set sizes.

Figure 6.4a displays the percent improvement in MSE over the baseline RM model for I3 and

the two versions of BI2 across the four experiments. The MSE values (Table 6.1) were obtained

by averaging across the 16 runs of the experiment (four repetitions of each of four training/test

splits). Thus the values represent prediction performance equally balanced across all responses

made in the experiment. It may seem strange to consider a training/test division that has non-

continuous blocks, for example, training the model on blocks 2 and 4 and testing on blocks 1 and 3.

For the sake of completeness and to alleviate this concern, Figure 6.4b displays the percent MSE

improvement when the models are trained on the first two or three experimental blocks and tested

on the last two or one blocks—recall that half the data was used for testing in the movie and gap

experiments because there were more trials, but only one block was used for testing in the moral

and tax experiments. For all the experiments, the models produce a meaningful improvement over

the baseline RM model. Further, BI2 yields a consistent improvement over I3. Because the MDS

version of BI2 appears to offer a slight improvement over the IRT version, we will use this version

in the rest of the analyses and simply refer to is as BI2.

Though the BI2 model appears superior to both I3 and RM in Figure 6.4, the results may

not tell the whole story because the training set includes at least two blocks. In many real-world

situations, it is impractical or costly to repeat every item even just twice. Ideally, decontamination

would be performed on a data set where each of the N items are judged exactly once. However, the
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Figure 6.4: The percent improvement of mean squared error (MSE) over the baseline RM model for
I3 and two versions of BI2 across the four experiments. a) Error was averaged over four repetitions
of four different splits of the data into training and test sets. b) Error averaged across 4 repetitions
of only the split that uses the first portion of the data for training and the last portion for testing.

Table 6.1: Mean squared error (MSE) for the RM, I3, and BI2 models across the full set of responses
given for each experiment.

Movie Moral Gap Tax
RM 1.3590 0.6673 0.7534 0.5082
I3 1.3264 0.6372 0.6671 0.4511
BI2 IRT 1.2466 0.6356 0.6434 0.3996
BI2 MDS 1.2449 0.6316 0.6303 0.3897
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models developed here would be underconstrained with only N judgments because there N + 2h

unknowns in the regression equation. If h is relatively small, it may take only a few extra judgments

to constrain the models. To test the efficiency of BI2 and I3, we reduce the flexibility of the models

by setting h to 2. This makes it possible to compare the performance of the model with just four

repeated items. To further reduce the model complexity of BI2, the dimensionality of the latent

factors (d) is reduced from four to two. MSE is computed for the models trained with the first

block of trials plus the subsequent 4 to 48 trials at intervals of two trials (a maximum of 32 extra

trials are used in the tax experiment to avoid incorporating the test data in the training data).

The test data consists of the last 2 blocks for the movie and gap experiments and the last block

in the moral and tax experiments (i.e., the same as used in Figure 6.4b). When MSE is computed

as a function of the number of extra judgments, BI2 shows an impressive reduction in MSE in

comparison to I3 and RM (Figure 6.5). Each datapoint in the figures represents the average MSE

across 4 repetitions of model training.

The disparity in MSE is greatest with roughly 8 to 12 extra judgments and decreases as more

judgments are added. This decrease is evident in Figure 6.6a which plots the percent reduction

in MSE of BI2 compared to RM—the size of the reduction decreases as more items are repeated.

When only a small number of extra judgments are added, the percent improvement is dramatic

ranging from roughly 10% to 30%. This reduction is likely attributed to the BI2 model’s ability to

incorporate meaningful cross-participant constraints—a characteristic that is valuable in the real

world because it is more common to have many participants but few repetitions of items. For the

moral judgment experiment, Figure 6.5b highlights the value of BI2 over I3 which is less apparent

in Figure 6.4b. However, Figure 6.5b reveals another attribute worth studying—the steep slope

in MSE for all three models. The slope of the MSE curves hints at the value of adding more

judgments, with steeper curves implying greater value. A natural question to ask when studying

these plots is how many extra judgments are needed for the RM model to achieve the same MSE

as BI2 (i.e., what is the benefit of BI2 in terms of the number of judgments it saves). This can

be quantified roughly by averaging the horizontal distance between each point on the red curves
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Figure 6.5: An analysis of how extra judgments improve the model MSE on the test data. Here
the training set includes the first presentation of each item plus 4 to 48 extra judgments. Adding
trials yields a reduction of error in all cases, but BI2 (red line) has significantly lower MSE for each
number of extra trials included across the four experiments: a) movie, b) moral, c) gap, and d)
tax. The dashed gray lines in the figures indicate the points at which the full set of items has been
repeated and depends on the total number of items used in each experiment (there were 50 items
in the movie study and thus the far right side of the graph corresponds to almost 1 full repetition).
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and the corresponding point on the black curves with the same MSE in Figure 6.5.7 The average

number of extra judgments required by RM to match BI2 ranges from about 8 to 40 (Figure 6.6b).

As shown in Figure 6.6c, these differences can correspond to relatively large differences in terms of

proportion of dataset size.

One might question why percent improvement is much greater in the gap and tax experi-

ments. For each experiment there is a plausible explanation for why BI2 would yield such a large

improvement. In the tax experiment, there was high variability in the quality of the responses pro-

vided by the participants. Some participant appeared to produce response patterns (e.g., response

autocorrelation or bias toward using a very small range) that BI2 was able to capture and use to

improve response predictions. Indeed, when we post-processed the experimental data to remove

suspect participants, the percent improvement decreased though BI2 still fared best (for the full

collection of training/test splits and repetitions, I3 MSE was 5.22% lower than RM and BI2 MSE

was 7.46% lower than RM). In the gap detection task, all participants are evaluating the exact same

stimuli which will induce the same impressions for all participants given the assumption that the

stimulus-to-impression mapping is veridical. Thus there is significant value to be gained by sharing

information across participants—exactly what BI2 was designed to do. This same characteristic

also leads to large improvements in how well the BI2 impression match the ground-truth data as

compared to I3 and RM. After applying an affine transformation to match the inferred impressions

to the whole range—which is done because some participants do not use the full range—ground-

truth MSE for the BI2 impressions is roughly 50% lower than the RM model whereas I3 only yields

a marginal improvement.8 It is difficult to say what the value of this result is given that the model

is particularly tuned to the experimental environment (i.e., it is sensitive to properties of the items

that are consistent across participants). Ground-truth data would be more useful as a means to

evaluate BI2 if it contained items with impressions that varied across individuals. However, such

data would be difficult to obtain because it would require averaging over many judgments for each
7 Of course this is only done when there exists a matching MSE point on the black curve.
8 The improvement varies depending on the size of the training set. The improvement reported was obtained

when training on half the data and testing on the other half.
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Figure 6.6: a) The percent improvement in MSE of BI2 over the RM model as a function of the
number of extra trials included in training. b) The mean number of extra trials needed in the RM
model to match the MSE of BI2 for each experiment. c) The same graph as in b) but plotted
in terms of the proportion of repeated items (1 corresponds to 1 repetition of each item in the
dataset).
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item across various sequential contexts.

Apart from comparisons to ground-truth data and computing error for response predictions,

there are other ways to evaluate the quality of the inferred impressions. For the movie poster

ratings in Mozer et al. (2011), the genres of the 50 movies are known (10 from each of 5 genres)

but are not used in training. Because individuals are likely to have genre preferences, we expect

that impressions to movie posters within a genre should be similar.9 Mozer et al. (2011) quantify

this concept by computing the ratio of within genre variance to between genre variance for each

participant’s set of impressions. When trained with all 200 responses, the variance ratio is 8.5861

for the RM model; 8.3887 for the I3, which is a 2.30% improvement over RM; and 7.4756 for

BI2, which is a 12.93% improvement over RM (both of these improvements are significant across

participants using a sign test: p= 0.033 and p< 0.001 respectively). A similar approach is taken for

the morality judgments. Mozer et al. (2011) hypothesize that actions should receive similar ratings

across participants because of cultural norms. Interrater agreement is measured as the ratio of the

variance of ratings to an item over participants to the variance of mean ratings over items. For

RM, I3, and BI2 this ratio is 0.6923, 0.6882, and 0.6242, respectively, which correspond to a 0.59%

improvement for I3 and a 9.84% improvement for BI2 (this improvement is significant across items

according to a sign test for BI2 (p< 0.001) but not for I3). For both of these analyses, all four

blocks are used to train the models. For the morality judgments, we should be wary of using this

method of evaluation because BI2 may have an implicit bias toward increasing interrater agreement

as a consequence of the priors over the impressions.

A similar approach can also be applied to the tax experiment. Recall that each question

type was repeated twice with two different dollar amounts that differed by a factor of ten. At the

onset of the experiment, we hypothesized that individuals would exhibit a graduated tax scale that

depended on the amount of money under question. If this were the case, we would expect the

ratio between the responses given for the two dollar amounts to be similar across the 8 question
9 Remember that participants are rating their desire to see a particular movie based on the poster so we do not

need to worry as much that actual quality of movies within a genre may vary greatly.
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types. To evaluate the inferred impressions, we determine the graduated rate for the 8 questions

and compute the ratio of within participant graduated rate variance to the variance of mean per-

participant graduated rates. For the RM model, this ratio is 3.018. I3 results in a ratio of 2.7148

which is a 10.05% decrease, and BI2 yields a ratio of 1.4589 for a 51.66% decrease. Again the

improvement for BI2 is so large because the model likely captures the abnormal behavior of some

participants. If we remove questionable participants, we get 5.51% and 23.80% improvement for I3

and BI2 respectively.

In formulating BI2, changes were made to the treatment of the β values and the impressions.

But which of these changes is responsible for the improved performance of the model? To answer

this question, four versions of the model were trained and evaluated: 1) the Bayesian replication

of I3 as shown in Figure 6.2; 2) the Bayesian I3 with β treated as in BI2; 3) the Bayesian I3

with impressions treated as in BI2; and 4) the full BI2 model. Figure 6.7a displays the percent

improvement in MSE of these four versions over the RM model across the four experiments. For

all but the movie experiment, most of the gain is achieved by incorporating the MDS priors over

the impressions. Changing the way β is treated in the model is most beneficial in the movie

experiment, but offers a marginal improvement in the tax experiment. Further, the combination of

the two treatments in the full BI2 model yields a greater than additive improvement for the movie

and tax experiment. It is not surprising that adding more informative priors over impressions

results in all of the improvement for the moral and gap experiments. In these two experiments, we

expect there to be strong consistency between impressions for each item across individuals because

of societal norms in morality judgments and constant gap sizes in the gap experiment. Naturally

the MDS component of BI2 will represent and leverage this consistency. We suspect that the value

of the two components will be more balanced in domains where impressions vary greatly from one

individual to the next, as suggested by the movie experiment.

Even though the impression side of the model appears to produce the most improvement

in these experiments, it should be noted that impression inference is still heavily reliant on the

sequential effects encoded in the model. This is a consequence of the fact that the regression
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Figure 6.7: An analysis of the value of the treatment of weights and impressions in BI2. a) Percent
improvement in MSE over RM for 4 versions of the model. The first bar represents the Bayesian
version of I3. The second bar is the Bayesian version of I3 with per-participant weights that share
a prior. The third bar is the Bayesian version of I3 but with an MDS prior over the impressions.
The fourth bar is the complete BI2 model. b) An illustration of the importance of sequential
effects in the model. BI2 with no history (light gray) and a randomly scrambled trial sequence
(middle gray) is compared to the full BI2 model. Additionally, the dark gray bar demonstrates
that the improvement of BI2 over RM is not just obtained by using the sequential context to
predict responses. The improvement over RM is small for response predictions that are obtained
from BI2 model with impressions clamped to the RM solution.
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equations relevant for solving for the impression of a given item include not only the trials where

that item was the displayed item, but also trials where that item was in the recent history.10

The importance of sequential effects is best displayed by removing the sequential effects from the

model (i.e., setting h to 0) and comparing the results to the full model. When sequential effects are

removed from the model, MSE is only slightly better than the baseline RM model (lightest gray bar

in Figure 6.7b). The importance of the recent history can also be demonstrated by leaving the BI2

model unchanged but scrambling the sequence ordering in the training and test sets (middle gray

bar). The fact that performance is roughly equivalent to the RM model verifies that the trial history

included in the model does not capture some other property of the data that is independent of the

sequential ordering. The larger improvement in the tax experiment for these two tests confirms

our suspicion that the model was capturing other regularities in the data beyond sequential effects.

Nonetheless, adding sequential effects to the model still produces a dramatic improvement in this

experiment.

In most of the analyses presented above, the models under scrutiny are compared to the RM

predictions which have no dependence on sequential context. Our claim is that the performance of

BI2 is better because the inferred impressions are more reliable. However, it is possible that the

improvement is simply a consequence of using the sequential context when predicting responses in

the test data and does not reflect better inferred impressions. To dispel this possibility, the BI2

model was run with the impressions clamped to the RM solution (i.e., response predictions were

produced using the RM impressions but incorporating sequential context). Performance was only

slightly better than the RM model without sequential context (dark gray bar in Figure 6.7b). For

the gap experiment, the RM impressions appear to be closer in quality to the BI2 impressions. This

is not surprising given that the training data for this experiment included nine repetitions of each

item which allows for most of the sequential biases to be averaged out of the RM impressions.
10 This is a rather technical point that we do not expect the reader to completely understand given the model

description above. However, the derivation for the impressions in Appendix D should help clarify this.
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6.9 Discussion

In this chapter we have addressed the practical issue of how to deal with sequential effects

that arise in contexts where they are undesirable. Specifically, we have examined how to improve

the quality of human judgments in tasks where the sequential context biases the observed responses.

Across a range of experiments in different domains, our Bayesian Impression Inference (BI2) model

yields a dramatic improvement of 6-24% over the default approach in which a participant’s responses

for each item are simply averaged. Furthermore, BI2 produces a more representative estimate of an

individual’s internal state with fewer required judgments—an attribute that can be of great value

in domains where it is expensive to collect many judgments.

Whether analyzing ratings for products on Amazon, restaurants on Yelp, movies on Netflix,

hotels on TripAdvisor or studying traditional surveys meant to assess the marketability of a given

set of products or perhaps just gauge something mundane such as which sports teams people like

most, BI2 has the potential to significantly improve the reliability of the conclusions drawn from

these data. For example, if the 8% improvement in the movie poster rating task transferred to pure

movie ratings, the BI2 model may have produced a meaningful boost in performance for those in

the $1,000,000 Netflix contest vying to achieve the prized 10% improvement in predicting individual

movie preferences. It is also possible that the techniques developed here could be easily packaged

into the online survey products offered by companies like SurveyMonkey or SurveyGizmo.

One beneficial attribute of BI2 is that it requires very little customization for different do-

mains. The only parameter that varies across experiments in our study is the length of the trial

history included in the sequential effects model. As the history grows, the model becomes more

flexible and has a higher risk of overfitting the training data. In our simulations, we chose history

lengths that were roughly proportional to the number of judgements available for training. It is

likely that this single free parameter could be removed from the model by adding a simple rule that

determines the length of history as a function of data size.

Beyond the domain of online ratings and surveys, decontamination techniques such as BI2



103

might prove useful in general experimental analyses. For example, in estimating psychophysical

functions, decontamination could be used to remove the sequential effects known to occur in the

response sequences to obtain more accurate function estimates. It is even possible that decontami-

nation could replace the ubiquitous use of averaging in many experimental data analyses. In most

typical psychological experiments, multiple responses to a given item are collected and averaged to

eliminate noise. However, if some of the noise is the result of sequential biases, using a decontam-

ination method will yield better estimates of the true desired responses than pure averaging, as

shown by the consistent improvement of BI2 over RM in this work. The potential improvement to

be gained by using decontamination on the data is directly related to the number of repetitions of

each item. As more repetitions are collected, the utility of decontamination over averaging declines.

A more thorough investigation of the value of decontamination in this domain would of course need

to be performed before adopting these methods in real experimental analyses. Nonetheless, this is

an interesting avenue for future exploration.

In the current work, BI2 performs well even when only minimal extra judgments are provided.

Although this is a big improvement over previously developed decontamination models, it still falls

short of the optimal scenario in which only one judgment per item is required. In BI2, several extra

judgments are needed to constrain the regression model for each individual (though not shown in

our results, performance deteriorated significantly and inferred impressions were less stable when

fewer that 4 extra judgments were added). However, it seems possible to modify BI2 in such a way

that imposes greater constraints on the weights and impressions of each individual. For example,

instead of assuming that every individual has unique regression weights, the model could assign

the same regression weights to groups of individuals that exhibit similar sequential dependencies.

Alternatively, an individual’s sequence of judgments could be randomly supplemented with extra

judgments from other individuals—perhaps ones that have similar preferences or response behavior.

Randomizing this process and repeating many times could add the necessary constraints needed

to make quality impression inferences without adding too much noise. The ultimate goal is to

eliminate the need for extra judgments by extracting useful information from the collection of



104

individuals who performed the task.

It is clear that methods of decontaminating human responses have the potential to be bene-

ficial in a wide range of domains. We have developed a sophisticated decontamination model that

uses a Bayesian framework to capture regularities in the sequential dependencies and impressions

across collections of individuals and judged items. Though there is potential for improvements to

BI2, the model as it stands can be readily applied to improve the fidelity of human judgments in

many situations.



Chapter 7

Major Contributions and Future Directions

The primary contribution of this work is two-fold. On the theoretical side, through nor-

mative modeling and experimental investigation, we elucidate computational principles underlying

sequential effects and cognitive mechanisms that produce them. Furthermore, we reveal a persis-

tence of incidental experience that challenges the widely held perspective that sequential effects are

ephemeral behavioral perturbations with no long-term consequences. Beyond theory, we demon-

strate that knowledge of sequential effects can be leveraged in real-world problems to extract more

reliable characterizations of individual preferences from sequences of judgments.

In the Dynamic Belief Mixture Model and the Hierarchical Dynamic Belief Model, sequential

effects reflect adaptation in a dynamic environment that is characterized by multiple variables and

exhibits nonstationary change dynamics. Through a novel experimental study and a reanalysis

of existing behavioral and electrophysiological data, we confirm that individuals are sensitive to

multiple environmental regularities and substantiate a cognitive dissociation of these sensitivities

with the response system exhibiting sequential effects that result from direct properties of the

stimuli and the perceptual system exhibiting effects that result from abstractions of the stimulus

sequence. Taken as a whole, our modeling of sequential effects in 2AFC illustrates the value of

seeking a normative explanation of the phenomena rooted in adaptation and considering a collection

of components that may all contribute to the complex effects observed.

In our investigation of the persistence of incidental experience, we demonstrate that future

events are anticipated by integrating over past experience using a weighting that is strongly recency
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based but also has a heavy tail, consistent with power but not exponential discounting. The presence

of power decay suggests that it may be more informative to interpret sequential effects in decision

making as reflecting memory processes rather than short-term incremental learning.

Expanding upon the nascent field of decontamination, we proposed a novel hierarchical

Bayesian model that effectively removes sequential biases in judgments to obtain more representa-

tive estimates of an individual’s internal state. Decontamination methods are rife for exploration

and our model serves as a solid foundation for future inquiries. In fact we have identified several

avenues of exploration in this realm. Specifically, it is still an open problem to perform decontam-

ination on datasets with no repeated judgments. In our methods, we evaluate the effectiveness of

decontamination by assessing prediction error on a held-out data set. However, this is not fea-

sible in environments where individuals make a single judgment per item. Nonetheless, it would

be of great value to be able to assess the efficacy of a decontamination method in each judgment

domain to which it is applied. Developing validation approaches that leverage a large participant

pool rather than multiple judgments per item would significantly increase the practical utility of

decontamination. Another interesting avenue of investigation similar to decontamination involves

developing methods for determining sequence orderings that minimize or maximize sequential ef-

fects. This concept could be taken one step further by trying to adapt the presentation order an

individual is experiencing to account for sequential effects and reduce the sequential biases present

in the summary data at the end of the experiment. A technique such as this could be used to

obtain more representative judgements with fewer questions asked and could perhaps be tailored

to continue repeating items until the estimated biases are below a specific threshold.

The trial-by-trial modeling introduced in Chapter 4 highlighted a large amount of variability

in human behavior that is unexplained by current models. An intriguing, though bold, goal for

the future is to explain away all the variability in response times in 2AFC. No doubt, much of

this variability is unexplainable random noise, but with only about 15% of the variability currently

explained, it is possible that we might still be able to account for another 50% or more. There are

several promising directions that could pay off. Using the large quantity of EEG data recording
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during some 2AFC studies, it may be possible to obtain a better characterization of the internal

state from moment to moment that results in better predictions of response time. Alternatively,

exploring more complex mechanisms that include within-trial time dynamics could be fruitful.

We have considered implementing a cascading diffusion process that captures—with fine-grained

resolution—the dynamics of the multiple components that combine to influence behavior.

In the realm of rational models, it would be interesting to investigate the utility of the general

HDBM changepoint framework in environments that are more complex than 2AFC. In the original

DBM work of Yu and Cohen (2009) and our HDBM, the changepoint dynamics are applied to an

underlying model that is encoded with a single variable. In our DBM2, we demonstrate the dynam-

ics applied to a model for an environment that includes two states (a baserate probability and a

repetition rate). However, in both cases these are extremely simplistic environmental models that

are completely disconnected from any realistic model for a non-laboratory environment. Nonethe-

less, the math of the HDBM suggests that the changepoint dynamics may be easily generalized to

any underlying model. Perhaps the framework could offer more insights when applied to real-world

or real-world-like situations where the environment is much more complex. Along the same lines,

we have performed a derivation that suggests that the DBM is a specific instantiation of a more

general, continuous-time model in which changepoints occur according to a Poisson process instead

of a Bernoulli process with a prior distribution that is characterized by a gamma distribution in-

stead of the beta distribution in DBM. It could be informative to investigate this model more,

testing it on experiments with widely varying inter-trial intervals, and exploring how to map the

HDBM generalization of the DBM into the continuous-time domain.
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Appendix A

Comparing DeCarlo and Cross (1990) and Stewart, Brown, and Chater (2005)

In studying the absolute identification model of Stewart, Brown, and Chater (2005), which

will be referred to as SBC, I observed a close similarity to the general magnitude estimation model

presented in DeCarlo and Cross (1990), which will be referred to as DC. Because someone some-

where might just be interested in this, I have included my derivations in this appendix.

To begin the comparison, I will first make a note about the notation of the two models. In

SBC, Rt represents the response at time t which is a ranking on the ranking scale (note: I’ll use t

to index time instead of n as in SBC). In DC, Rt corresponds to a magnitude response rather than

a ranking response. I will use Mt to reference this magnitude and use Rt as used in SBC. Similarly,

St refers to the stimulus ranking in SBC and the stimulus magnitude in DC. Following the lead

of SBC, I will use Xt to reference the stimulus magnitude and use St for the stimulus ranking.

SBC points out that the magnitude and ranking have a logarithmic relationship in most absolute

identification experiments. We will be more explicit about the form of this relationship soon.

The SBC model expresses the ranking response random variable, Rt, as a function of the

previous feedback, Ft−1, the perceptual difference between the current and previous stimulus (con-

taminated by previous differences), Dc
t , and a random quantity, ρZ:

Rt = Ft−1 + (1/κ)Dc
t + ρZ,

where Dc
t = A

t−2∑
τ=0

ατ ln(Xt−τ/Xt−τ−1) and SBC’s λ is replaced with κ to avoid confusion later. For
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sake of the derivation, we will at first assume α2 = 0, α3 = 0, . . . ,1 which yields the equation:

Rt = Ft−1 + (A/κ)(α0 lnXt − α0 lnXt−1 + α1 lnXt−1 − α1 lnXt−2) + ρZ.

In SBC, the magnitude of a stimulus, Xt, is related to the ranking, St, by the equation Xt = I0r
St ,

where I0 is the smallest stimulus magnitude and r is the geometric scaling factor. Given this

relationship, we can translate the response ranking, Rt, to a response magnitude value, Mt, as

follows:

Mt = I0r
Rt

ln Mt = ln I0 + Rt ln r

Rt = (1/ ln r)(ln Mt − ln I0).

Without access to explicit feedback, we replace Ft−1 in the model with Rt−1 (using the actual

response, not the random variable). Performing this substitution and writing the equation in terms

of magnitudes instead of rankings, we get:

(1/ ln r)(ln Mt − ln I0) =

(1/ ln r)(lnMt−1 − ln I0) + (A/κ)(α0 lnXt − α0 lnXt−1 + α1 lnXt−1 − α1 lnXt−2) + ρZ

ln Mt = lnMt−1 + η(α0 lnXt − α0 lnXt−1 + α1 lnXt−1 − α1 lnXt−2) + ρ ln rZ,

with η = (A ln r)/κ. The derivation continues with

ln Mt = lnMt−1 + ηα0 lnXt + η(α1 − α0) lnXt−1 − ηα1 lnXt−2 + ρ ln rZ.

After substituting β = ηα0 and λγ = ηα1, we have:

ln Mt = lnMt−1 + β lnXt + (λγ − β) lnXt−1 − λγ lnXt−2 + ρ ln rZ.

The equation above is quite similar to the DC model (Equation 17a in their work), which is

as follows (using the new notation for magnitudes):

ln Mt = λ lnMt−1 + β lnXt + (γ − λβ) lnXt−1 − λγ lnXt−2 + ut +K,

1 The derivation should hold if we relax this assumption, however, there will be many more terms to track.



118

where ut is independent gaussian noise and K is a constant intercept. In the SBC model, the noise

term, ρ ln rZ, is constrained more than ut such that the current response cannot be pushed below

(or above) the previous response/feedback depending on whether the current perception is greater

than (or less than) the previous perception. The other main differences here are that there is no

coefficient for the previous response term and the one-back stimulus is constrained in a slightly

different way.

The DC model is based upon two theoretical assumptions: (1) the current perception is

obtained via Steven’s law according to Ψt = Xβ
t C

γδt where C is the context that affects the

representation and δt represents error in perception/memory, and (2) the judgement process is

affected by immediate context and long-term context (i.e. Mt = Ψt(Mt−1/Ψt−1)λ(M0/Ψ0)1−λµt,

where µt is judgement error and 0 ≤ λ ≤ 1). These two theoretical assumptions lead to DC

Equation 17a when C = Xt−1/Xt or more simply C = Xt−1 (which is what they actually use for

the derivation).

Given the similarity between SBC and DC, it would be interesting to show that the SBC

model also emerges from these two theoretical assumptions, perhaps with a slightly different context,

C, and ignoring the different treatment of noise.



Appendix B

A Kalman Filter Two-Component Sequential Effects Model

The Kalman filter sequential effects model will be parameterized by first- and second-degree

decay rates λ1 and λ2, w ∈ [0, 1] which is the relative weight of the first-degree component, and α

and β which are the transformation parameters that map from the prediction space to actual RT

values.1 Given RT R(k) on trial k, it is convenient to define an observation

z(k) = (R(k)− β)/α.

Let s(k) ∈ {−1, 1} be the stimulus type on trial k and note that s(k) · s(k − 1) is 1 for repetitions

and -1 for alternations and thus serves as the second-degree encoding. Define the hidden state as

x(k) = {x(k)
1 , x

(k)
2 , x

(k)
3 }

T ,

with x
(k)
1 the first-degree bias on trial k, x(k)

2 the second-degree bias on trial k, and x
(k)
3 the the

latent state (e.g., attention) on trial k which results in a positive on negative bias on RT. Consider

the trial-dependent observation matrix on trial k,

H(k) =
[
w · s(k) (1− w) · s(k) · s(k − 1) 1

]
with a first-degree weight of w and a second-degree weight of 1−w. According to the Kalman filter

model, the observation z(k) is given by the following equation:

z(k) = H(k)x(k) + v(k),

1 Actually, we used three transformation parameters to allow for an alternation bias which is commonly found in
these sorts of experiments. However, it will be simpler to explain the model with two transformation parameters.
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with v(k) ∼ N(0, R) where in this case R is a scalar variance. The state transition matrix F is given

by

F =


λ1 0 0

0 λ2 0

0 0 1


and serves the purpose of decaying the state estimates. To include the current trial into the state

estimate, we use the control-input model B, which is applied to the control variable u(k):

u(k) = {s(k), s(k) · s(k − 1), 0}T

B =


1− λ1 0 0

0 1− λ2 0

0 0 0

 .
With these variables, we can then express the state update equation as

x(k) = Fx(k−1) +Bu(k) + wk,

with process noise wk ∼ N(0, Q). Q is chosen to be diagonal with the first two entries equal

and the third entry corresponding to variance in the latent (attention) state (the two values that

parameterize Q are considered as extra model parameters to be set in the model optimization

process).

With the model defined as such, inference in the Kalman filter follows by applying the predict

and update phases iteratively over the trials. We begin with a state estimate x̂(0|0) = {0, 0, 0}T

and an estimate, P (0|0), for the error covariance matrix which represents state accuracy given by

P (0|0) =


0.5 0 0

0 0.5 0

0 0 0.5

 .

The predict phase includes updating these two values according to the following equations:

x̂(k|k−1) = F x̂(k−1|k−1) +Bu(k−1)
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P (k|k−1) = FP (k−1|k−1)F T +Q.

For the update equations, we have

ỹ(k) = z(k) −H(k)x̂(k|k−1)

S(k) = H(k)P (k|k−1)H(k)T +R

K(k) = P (k|k−1)H(k)T (1/S(k))

x̂(k|k) = x̂(k|k−1) +K(k)ỹ(k)

P (k|k) = (I −K(k)H(k))P (k|k−1).

RT for trial k is predicted using the state estimate x̂(k|k−1) that has integrated past RTs and

the trial sequence including the current trial, and is given by

R̂(k) = H(k)x̂(k|k−1)α+ β.



Appendix C

Model Specifications for Long-lasting Sequential Effects

Here we provide a formal description of the models used to assess the depth of sequential

effects in Chapter 5. Two simple models are first presented that model sequential effects as an

exponential or power function weighting of past trials. This is followed by a recap of the Dynamic

Belief Model (DBM) presented in Yu and Cohen (2009) and the formal specification of our gen-

eralization, the Hierarchical Dynamic Belief Model (HDBM). Note that the notation used here is

slightly different than what is used in Chapter 3, though we tried to maintain some consistency

between DBM parameters. The most important change is that φ has a different meaning here than

it does in the context of the DBM2 model.

C.1 Modeling Details

The models form an expectation for trial t based on a weighting of past trials, w(`) for trial

t− `, and yield a quantity φt reflecting the match between expectation and actual outcome:

φt = xt

min(t−1,T )∑
`=1

w(`)xt−`,

where w(`) = λ` and w(`) = (1+`)κ for the exponential and power models, respectively, xt ∈ {−1, 1}

denotes the binary type of trial t (repetition versus alternation for Experiment 4, left versus right

for Experiment 1), and T is the context horizon.

To fit data, φt is converted to a response time (RT) or movement error via an affine transfor-

mation. In both experiments, an additive offset was incorporated in the transformation of repetition
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trials to allow for a default bias towards repetitions or alternations commonly observed in 2AFC

studies. Transformation and model parameters were fit to each subject separately to minimize the

mean squared error across individual trial predictions for the entire sequence of trials and were

constrained to be equal for the two conditions of Experiment 4.

C.2 HDBM Mathematical Specification

The Dynamic Belief Model (DBM) assumes that individuals maintain a distribution over a

single environmental statistic, γt, that represents the probability of a repetition vs. alternation

(Experiment 4) or left vs. right (Experiment 1). The value of γt is inferred from the sequence

history, xt−1, subject to the constraints of a fixed change probability, α. The expectation match, φt,

is defined to be P (xt|xt−1, α) which is given by E[γt|xt−1] when xt is a repetition and 1−E[γt|xt−1]

when xt is an alternation. The posterior distribution over γt is iteratively updated:

p(γt|xt−1, α) = (1− α)p(γt−1|xt−1, α) + αpγ , with

p(γt−1|xt−1, α) ∝ P (xt−1|γt−1)p(γt−1|xt−2, α),

where pγ is the standard uniform. (See Yu and Cohen, 2009, for more details).

In the Hierarchical Dynamic Belief Model (HDBM), instead of assuming a fixed change

probability α, we define αt as a time-varying change probability subject to the same dynamics that

govern γt in the DBM. Specifically, with probability η, called the ’meta change probability’, αt will

be redrawn from a Beta resampling distribution, pα, and with probability 1 − η, αt will remain

unchanged. In the HDBM, φt is defined as P (xt|xt−1):

P (xt|xt−1) =
∫ 1

0
P (xt|xt−1, a)p(αt = a|xt−1) da,

where P (xt|xt−1, a) is the DBM probability for the fixed changepoint a. The posterior distribution

over αt is recomputed iteratively:

p(αt = a|xt−1) = (1− η)p(αt−1 = a|xt−1) + η pα(αt = a), with
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p(αt−1 = a|xt−1) ∝ P (xt−1|xt−2, a)p(αt−1 = a|xt−2).

The HDBM has three free parameters: the meta-change probability and two parameters for the

resampling distribution pα.



Appendix D

BI2 Derivations and Parameterization

D.1 Deriving Conditional Probabilities in BI2

To perform Gibbs sampling, the standard approach is to clamp the values of all variables but

one and then resample the value for the unclamped variable conditioned on all of the other clamped

variables. To implement this method, it must be possible to express the conditional distribution

for all random variables in a common form that is easy to sample from. Using other Markov Chain

Monte Carlo (MCMC) techniques, t is possible to possible to sample from variables that do not have

a clean conditional distribution, but this requires much longer run time. Fortunately, by choosing

the appropriate prior, in most cases to be conjugate, we have made it relatively straightforward to

derive all of the conditional distributions.

D.1.1 Conditional Distribution over β

The problem of specifying the conditional distribution for β given all the other random vari-

ables is essentially the problem addressed by Bayesian linear regression (BLR). In most derivations

of BLR, the random variable β depends on the variance of the noise. In our problem formulation,

we have removed this dependence because it seems unnatural to assume that the weight an individ-

ual assigns to past trials is somehow dependent on the random noise they make in responding. The

derivation we present here is for one participant, but it applies to all participants and the sampling

of the β values for each participant can be performed independently because they are conditionally

independent given the prior parameters µβ and Λβ.
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To simplify the derivation and to map onto the BLR framework, we define Y as the T x 1

vector of responses across the trials for a given participant. X is defined as the T x K matrix with

response and impression histories for each trial. T is the total number of trials and K = 2h with

h the number of previous trials included in the model. The coefficient for the current impression

is fixed to be 1 so this term actually gets wrapped into Y in the implementation. The values of I

are implicitly coded into X via the indexing variables Sh and St.

The goal is to find the distribution form and parameters for p(β|Y,X, µβ,Λβ, σ2
R). By Bayes

rule we have:

p(β|Y,X, µβ,Λβ, σ2
R) ∝ p(Y |β,X, µβ,Λβ, σ2

R)p(β|µβ,Λβ).

Inserting the equations for these probabilities (and shortening p(β|Y,X, µβ,Λβ, σ2
R) to p(β|∗)), we

have the following derivation:

p(β|∗) ∝ exp
{
− 1

2σ2
R

(Y −Xβ)T (Y −Xβ)
}

exp
{

1
2σ2

R

(β − µβ)Tσ2
RΛβ(β − µβ)

}

p(β|∗) ∝ exp
{
− 1

2σ2
R

[
(Y −Xβ)T (Y −Xβ) + (β − µβ)Tσ2

RΛβ(β − µβ)
]}

p(β|∗) ∝ exp
{
− 1

2σ2
R

[
βTXTY − Y TXβ + βTXTXβ + βTσ2

RΛββ − βTσ2
RΛβµβ − µTβσ2

RΛββ
]}

p(β|∗) ∝ exp
{
− 1

2σ2
R

[
βT (XTX + σ2

RΛβ)β − βT (XTY + σ2
RΛβµβ)− (XTY + σ2

RΛβµβ)Tβ
]}

.

Note that when the binomials were expanded, some of the terms disappeared because they are

constant with respect to β. In the current from, the terms inside the exponential are close to being

the square of a binomial so we will complete the square. First we will make a tricky substitution

to clean up the expression and set up the terms that will help us define the final conditional

distribution. Let Λ̃β = XTX+σ2
RΛβ and µ̃β = Λ̃−1

β (XTY +σ2
RΛβµβ). Substituting and completing

the square we have

p(β|∗) ∝ exp
{
− 1

2σ2
R

[
βT Λ̃ββ − βT Λ̃βµ̃β − µ̃Tβ Λ̃ββ + µ̃Tβ Λ̃βµ̃β − µ̃Tβ Λ̃βµ̃β

]}

p(β|∗) ∝ exp
{
− 1

2σ2
R

[
(β − µ̃β)T Λ̃β(β − µ̃β)

]}
.
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Finally we recognize this as the kernel for the multivariate normal distribution with mean µ̃β and

precision matrix Λ̃β/σ2
R. Thus we have

p(β|Y,X, µβ,Λβ, σ2
R) ∼ N(µ̃β, σ2

RΛ̃−1
β ).

D.1.2 Conditional Distribution over µβ and Λβ

The hyperparameters µβ and Λβ are shared across participants so their conditional distribu-

tion will depend on the sampled β values for all participants. For J participants, consider β∗ =

{β1, β2, . . ., βJ} to be J independent samples from the prior over β. The prior over µβ and Λβ is

the Normal Wishart (NW) distribution, with parameters ηβ, κβ, νβ and Vβ, which is conjugate to

the multivariate normal distribution with unknown mean and precision matrix. From conjugacy,

the posterior distribution over Λ given the J samples is as follows:

p(µβ,Λβ|β∗) ∼ NW

(
κβηβ + nβ̄∗

κβ + n
, κβ + n, νβ + n,

(
V −1
β + C +

κβn

κβ + n
D

)−1
)
,

with β̄∗ the sample mean, C =
J∑
j=1

(βj − β̄∗)(βj − β̄∗)T , and D = (β̄∗ − µβ)(β̄∗ − µβ)T .

D.1.3 Conditional Distribution over σ2
R

Recall that a different value of σ2
R is used for each participant. The following update equation

applies for each participant using their specific trial history. We define X and Y as in the derivation

for β. The prior of σ2
R is chosen to be Inverse Gamma with parameters αR and ωR and the likelihood

of Y is given σ2
R, X, and β is normal according to the regression equation. The parameters for the

posterior are given by:

p(σ2
R|Y,X, β, αR, ωR) ∝ p(Y |σ2

R, X, β)p(σ2
R|αR, ωR)

p(σ2
R|Y,X, β, αR, ωR) ∝ (σ2

R)−n/2 exp
{
− 1

2σ2
R

(Y −Xβ)T (Y −Xβ)
}

(σ2
R)−αR−1 exp

{
−ωR
σ2
R

}

p(σ2
R|Y,X, β, αR, ωR) ∝ (σ2

R)−(αR+n/2)−1 exp

{
−
ωR + 1

2(Y −Xβ)T (Y −Xβ)
σ2
R

}
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p(σ2
R|Y,X, β, αR, ωR) ∼ IG

(
αR + n/2, ωR +

1
2

(Y −Xβ)T (Y −Xβ)
)
.

Here n is the number of trials predicted for the participant. This is equivalent to treating the

regression residuals as normally distributed variables with mean 0 and variance σ2
R and using the

conjugate prior for a normal random variable with known mean and unknown variance.

D.1.4 Conditional Distribution over elements of I

In this situation, we want to fix the impressions for all items but one, Ii, and find the

conditional distribution over Ii. For convenience, we will redefine X and Y here. Let X be a n x 1

matrix that contains the combined weight that was given to Ii on trial t over a total of n trials. In

cases where item i was the displayed item on trial t, the corresponding entry in the tth row of X will

be 1. If instead on trial t the item i appeared in the past h trials, then the tth row of X will contain

the weight assigned to Ii on that trial. When the item was not the current item or in the history,

the entry in X is 0. The inference of impressions in the model is improved considerably by the

fact that we are setting up a regression equation where the impressions are constrained by not only

trials where they appear but also trials where they are in the recent history. Let Y be a modified

output with the tth row given by Rt −

I(St) +
h∑
j=1

βjI(St−j) +
h∑
k=1

βh+kRt−k

, with I(Sk) = 0

if Sk is item i (i.e., do not include the terms we are trying to solve for). There are two versions of

the model that we will derive in the following sections. However, for either version, we can assume

that there is some mean for the prior of the impression for the given participant/item pair which

we will denote µi (we drop the P for participant because the updates will be done independently

for each participant. Also, do not confuse this with the µI in the prior of the item contribution in

the IRT version of the model). The prior also has fixed variance σ2 not to be confused with the

response variance, σ2
R, which will also appear in this derivation. The likelihood is given by:

p(Y |Ii, X, σ2
R) ∝ exp

{
− 1

2σ2
R

(Y −XIi)T (Y −XIi)
}
.

The posterior is given by:

p(Ii|Y,X, σ2
R, µi, σ

2) ∝ p(Y |Ii, X, σ2
R)p(Ii|, µi, σ2)
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p(Ii|Y,X, σ2
R, µi, σ

2) ∝ exp
{
− 1

2σ2
R

(Y −XIi)T (Y −XIi)
}

exp
{
− 1

2σ2
(Ii − µi)2

}
p(Ii|Y,X, σ2

R, µi, σ
2) ∝ exp

{
− 1

2σ2
R

[
(Y −XIi)T (Y −XIi) +

σ2
R

σ2
(Ii − µi)2

]}
.

At this point we recognize that the derivation is taking the same path as the derivation for β which

it should since it is analogous. If these terms are multiplied, the substitution is performed, and the

square is completed, then the new form of the normal will be recognizable. The substitution is

1
σ̃2

= XTX +
σ2
R

σ2
and µ̃i = σ̃2(XTY +

σ2
R

σ2
µi).

The final posterior is given by

p(Ii|Y,X, σ2
R, µi, σ

2) ∼ N
(
µ̃i, σ

2
Rσ̃

2
)
.

D.1.5 Conditional Distribution over σ2

The derivation here is similar to the one for σ2
R except with different residuals. With M items

each with a different impression, IP,I , with prior mean, µP,I , for the J participants, the residuals

are IP,I − µP,I of which there are M · J (we incorporate the P, I subscript here because we are

computing across participants). Define I∗ to be the set of all IP,I and µ∗ the same for µP,I . With

the Inverse Gamma distribution as the conjugate prior with parameters α and ω, the posterior

distribution is given by:

p(σ2|I∗, µ∗, α, ω) ∼ IG

(
α+

MJ

2
, ω +

1
2

J∑
P=1

M∑
I=1

(IP,I − µP,I)2

)
.

D.1.6 Posterior Distributions for the IRT Impression Priors

The posterior conditional distributions are relatively simple for the IRT model as they are

easily derived through conjugacy. Given the impressions for a specific item, m, across all partici-

pants, IP ∗,m, the participant contributions for all participants, C∗P , and the impression variance, σ2,

we have J observations, o∗m = {(I1,m−C(1)
P ), (I2,m−C(2)

P ), . . . , (IJ,m−C(J)
P )} that are normally dis-

tributed with unknown mean C(m)
I and variance σ2. With the normal prior over C(m)

I defined with
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mean µI and variance σ2
I , the posterior distribution for C(m)

I is easily obtained through conjugacy:

p(C(m)
I |o∗m, σ2, µI , σ

2
I ) ∼ N

(
σ̃2
I

[
µI
σ2
I

+
Om
σ2

]
, σ̃2

I

)

with Om =
J∑
j=1

o(j)
m and σ̃2

I =
(

1
σ2

I
+ J

σ2

)−1
. This distribution is used to sample each item contri-

bution.

The distribution for contribution for participant j, C(j)
P , is obtained analogously:

p(C(j)
P |o

∗
j , σ

2, µP , σ
2
P ) ∼ N

(
σ̃2
P

[
µP
σ2
P

+
Oj
σ2

]
, σ̃2

P

)

with o∗j = {(Ij,1 − C(1)
I ), (Ij,2 − C(2)

I ), . . . , (Ij,M − C(M)
I )}, Oj =

M∑
m=1

o
(m)
j , and σ̃2

P =
(

1
σ2

P
+ M

σ2

)−1
.

The normal prior over CI given C∗I and the parameters for the Normal Inverse-Gamma (NIG)

hyperprior is updated through conjugacy:

p(µI , σ2
I |C∗I , ηC , κC , αC , ωC) ∼ NIG

(
κCηC + JC̄∗I
κC + J

, κC + J, αC +
J

2
, ωC + LI +DI

)

with sample mean C̄∗I , LI = 1
2

M∑
m=1

(C(m)
I − C̄∗I )2, and DI = κCJ

κC+J
(C̄∗

I−ηC)2

2 . Similarly, for the prior

over CP the distribution is:

p(µP , σ2
P |C∗P , ηC , κC , αC , ωC) ∼ NIG

(
κCηC +MC̄∗P
κC +M

,κC +M,αC +
M

2
, ωC + LP +DP

)

with sample mean C̄∗P , LP = 1
2

J∑
j=1

(C(j)
P − C̄

∗
P )2, and DP = κCM

κC+M
(C̄∗

P−ηC)2

2 .

D.1.7 Posterior Distributions for the MDS Impression Priors

In the MDS version of the model, the key to determining the posterior distributions is to

realize that the item factors, F , and the participant weights, W , are analogous to the β and I

terms. When one of the two is known, solving for the other becomes a Bayesian linear regression

problem. Let Xm be a J x d matrix with each row corresponding to the weights for a specific

participant and let Ym be a J x 1 vector containing the impressions given for item m across all

participant. The posterior distribution over the factors for item m, F (m), is given by:

p(F (m)|IP ∗,m,W, σ
2, µF ,ΛF ) ∼ N

(
µ̃F , σ2Λ̃−1

F

)
,
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with Λ̃F = XT
mXm + σ2ΛF and µ̃F = Λ̃−1

F (XT
mYm + σ2ΛFµTF ).

Similarly, for the posterior distribution over the weights for participant j, W (j), we define Xj

to be an M x d matrix with each row corresponding to the factors for a specific item and Yj to be

an M x 1 vector containing the impressions given for participant j across all items. The posterior

is then:

p(W (j)|IP ∗,j , F, σ
2, µW ,ΛW ) ∼ N

(
µ̃W , σ2Λ̃−1

W

)
,

with Λ̃W = XT
j Xj + σ2ΛW and µ̃W = Λ̃−1

W (XT
j Yj + σ2ΛWµTW ).

Finally the posterior for the priors over F and W are obtained in the same way as for the

priors for CI and CP except that each prior has its own Normal Wishart hyperprior. The posterior

for the prior over F is given by:

p(µF ,ΛF |F ∗) ∼ NW

(
κF ηF + JF̄ ∗

κF + J
, κF + J, νF + J,

(
V −1
F + CF +

κFJ

κF + J
DF

)−1
)
,

with F̄ ∗ the sample mean, CF =
J∑
j=1

(Fj − F̄ ∗)(Fj − F̄ ∗)T , and DF = (F̄ ∗ − µF )(F̄ ∗ − µF )T . The

posterior for the prior over W is given by:

p(µW ,ΛW |W ∗) ∼ NW

(
κW ηW +MW̄ ∗

κW +M
,κW +M,νW +M,

(
V −1
W + CW +

κWM

κW +M
DW

)−1
)
,

with W̄ ∗ the sample mean, CW =
M∑
m=1

(Wm − W̄ ∗)(Wm − W̄ ∗)T , andDW = (W̄ ∗−µW )(W̄ ∗−µW )T .

D.2 Setting the Hyperparameters

Though there are many hyperparameters to the model, we set their values to produce general

priors that have little influence on the model fit. In what follows, we describe the meaning of the

parameters and the values used for them in our simulations.

For the parameters that affect the means of the hyperpriors (ηβ, κβ, and ηC , and κC for IRT

or ηF , κF , ηW , and κW for MDS) the means, η values, were chosen to be 0 for the weights and

factors, and 2.75 for each contributing component in the IRT model. Furthermore, these means

were weighted by 0.0001 which essentially results in the prior being overwhelmed by the data in
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the posterior mean estimate (i.e., the κ values were 0.0001). For the regression variance, σ2
R, the

prior was chosen to have a shape of 2 and a mean of 1 (αR is the shape and ωR is related to the

mean). For the prior over variance in impressions, α and ω, the shape is 2 and the mean is 2. The

mean is slightly larger than for response noise because this represents variability across the range of

impressions as opposed to pure noise (i.e., it allows for more of the range to be used, and it allows

MDS and IRT to not be that accurate). This provides a reasonable density over the range of most

likely errors (i.e., on average, the noise will be no more than +/- 1 rating 68% of the time). These

values are also used for convenience with the hyperpriors over the item and participant contribution

priors in the IRT model (αC and ωC). For the MDS model, the covariance of the factor prior, VF ,

was chosen to have the identity as its mean and the covariance of the factor weights prior, VW ,

was chosen to have a mean with 0.01 along the diagonal and zeros elsewhere. However, these two

values were given the minimum weight possible (νF = νW = d, the dimension of the factor space)

so that the prior information is overwhelmed by the data in the posterior because the number of

observations is much greater than d.

The only parameter choice that seems to have a meaningful affect on the model performance

is the precision matrix, Vβ, and the count associated with it, νβ, for the Normal Wishart prior over

the prior for the regression weights. Vβ was chosen such that the covariance matrix for the prior

over the regression weights, Λβ, was relatively small in order to enforce the constraint that weights

are similar across participants. Vβ was set such that its inverse, a covariance matrix, had 0.001

along the diagonal and negative correlations between response and impression term corresponding

to the same trial in the past (this was something we observed in the weights and it is logical because

the two terms should balance each other). The count, νβ, was chosen to be as small as possible so

that the data could still override the influence of Vβ.


