
Limits of model selection, link prediction,

and community detection

by

A. Ghasemian

M.S., University of Tehran, 2009

M.S. University of Colorado, Boulder, 2014

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2019

This thesis entitled:
Limits of model selection, link prediction,

and community detection
written by A. Ghasemian

has been approved for the Department of Computer Science

Prof. Aaron Clauset

Prof. Cristopher Moore

Prof. Aram Galstyan

Prof. Paul Constantine

Prof. Daniel Larremore

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Ghasemian, A. (Ph.D., Computer Science)

Limits of model selection, link prediction,

and community detection

Thesis directed by Prof. Aaron Clauset

Relational data has become increasingly ubiquitous nowadays. Networks are very rich tools

in graph theory, which represent real world interactions through a simple abstract graph, including

nodes and edges. Network analysis and modeling has gained extremely wide attentions from the

researchers in various disciplines, such as computer science, social science, biology, economics,

electrical engineering, and physics. Network analysis is the study of the network topology to

answer a variety of application-based questions regarding the original real world problem. For

example in social network analysis the questions are related to how people interact with each other

in online social networks, or in collaboration networks, how diseases propagate or how information

flows through a network, or how to control a disease or food outbreak. In electric networks like

power grids or in internet networks, the questions can be related to vulnerability assessment of

the networks to be prepared for power outage or internet blackout. In biological network analysis,

the questions are related to how different diseases are related to each other, which can be useful

in discovering new symptoms of diseases and producing and developing new medicines. It appears

clearly that the reason of the importance of this interdisciplinary area of science, is due to its

widespread applications which involves scientists and researchers with a variety of background and

interests.

Although networks are much simpler compared to the original complex systems, the inter-

actions among the nodes in the real-world network may seem random, and capturing patterns on

these entities is not trivial. There are tremendous questions about inference on networks, which

makes this topic very attractive for researchers in the field. In this dissertation we answer some of

the questions regarding this topic in two lines of study: one focused on experimental analyses and

iv

one focused on theoretical limitations.

In Chapter 2 we look at community detection, a common graph mining task in network

inference, which seeks an unsupervised decomposition of a network into groups based on statistical

regularities in network connectivity. Although many such algorithms exist, community detection’s

No Free Lunch theorem implies that no algorithm can be optimal across all inputs. However, little is

known in practice about how different algorithms over or underfit to real networks, or how to reliably

assess such behavior across algorithms. We present a broad investigation of over and underfitting

across 16 state-of-the-art community detection algorithms applied to a novel benchmark corpus of

572 structurally diverse real-world networks. We find that (i) algorithms vary widely in the number

and composition of communities they find, given the same input; (ii) algorithms can be clustered

into distinct high-level groups based on similarities of their outputs on real-world networks; (iii)

algorithmic differences induce wide variation in accuracy on link-based learning tasks; and, (iv) no

algorithm is always the best at such tasks across all inputs. Finally, we quantify each algorithm’s

overall tendency to over or underfit to network data using a theoretically principled diagnostic, and

discuss the implications for future advances in community detection.

In Chapter 3 we investigate link prediction problem, another important inference task in

complex networks with a wide variety of applications. As we observed in Chapter 2, the community

detection algorithmic differences induce wide variation in accuracy on link prediction tasks. On the

other hand, many link prediction techniques exist in literature and still there is lack of methodology

to analyze and compare these techniques. In Chapter 3, we provide a methodological overview

of link prediction techniques and present new results on optimal link prediction and on transfer

learning for link prediction. In the former, we investigate whether there is an optimal capacity of link

prediction that a meta-learning algorithm can reach using a supervised information fusion approach.

We categorize the link prediction methods in three groups of model based, supervised feature-

based, and embedding techniques. Among the model based techniques, we study 11 link prediction

methods originated from 11 community detection algorithms studied in Chapter 2. First, we study

the optimal link prediction problem on synthetic data generated by several well-known generative

v

models. We compute analytically the optimal link prediction performance for these models and

compare the performance achieved by each algorithm with these limits. Then using a data-driven

approach, we use real data to address these same questions on real world networks. We consider

several paradigms to gain the advantages of different link prediction methods in order to approach

optimality. The goal is to have almost the best predictive performance by learning and fusing the

best performance of each link prediction algorithm in a supervised learning framework. Regarding

the transfer learning on link prediction, we analyze domain adaptation (a specific problem in

transfer learning) in the link prediction problem. We study these questions empirically using the

572 real-world networks in the CommunityFitNet corpus, from different domains.

In Chapter 4, we start to study some theoretical limits on dynamic networks. Many real

world networks are dynamic in nature, and their evolving structure can be represented as a se-

quence of graphs. The detection of communities within a dynamic network is a common means for

obtaining a coarse-grained view of a complex system and for investigating its underlying processes.

While a number of methods have been proposed in the machine learning and physics literatures,

we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when

communities can be detected. In the theoretical part of this dissertation, we study the fundamental

limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of

detectability for a dynamic stochastic block model, where nodes change their community member-

ships over time, but edges are generated independently at each time step. Using the cavity method,

we derive a precise detectability threshold as a function of the rate of change and the strength of

the communities. Below this sharp threshold, we claim no efficient algorithm can identify the com-

munities better than chance. We then propose two algorithms that are optimal in the sense that

they succeed all the way down to this threshold. The first uses belief propagation (BP), which gives

asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on

linearizing the BP equations. These results extend our understanding of the limits of community

detection in an important direction, and introduce new mathematical tools for similar extensions

to networks with other types of auxiliary information.

vi

In many real dynamic networks, there is an additional characteristic of link persistency mean-

ing that edges in the temporal networks tend to appear or disappear gradually, rather than suddenly.

In Chapter 5, we add link persistency as a new model constraint to our community detection prob-

lem in dynamic networks. The main issue in adding link persistency to the model is creating many

short loops, which can complicate convergence of the BP equations. Generally, the BP equations

are exact in two scenarios: strong interactions between the nodes in a tree like network as explored

before, and for many weak interactions between the nodes as in the quantum belief propagation

formulation in quantum many-body systems. This new setting can be helpful, when we model our

temporal network as a static network, with the whole history of types of each node instead of a sim-

ple temporal-spatial graph as used in Chapter 4. Here, history means the whole trajectory of types

that one node takes during all possible times. In this new setting, which we call a spatio-historical

graph, we consider an exponential number of states for each node. There are several constraints

that can help control the complexity of this model; for example by limiting the number of times

each node can change its type along its history. Using this model, we introduce a message passing

algorithm to infer the communities, and apply several approximations to reduce its time complexity.

We use a Naive Bayes message passing approach, a variational Bayes scenario and their stochastic

variants. Based on the initial promising results, we found the model very successful, however the

time complexity of this model prevented us from exploring further. In another attempt to overcome

this problem, we study the link persistency using the previous spatiotemporal setting in Chapter 4,

ignoring the possible convergence issues near phase transitions. Using this model, we investigate

detectability limits, showing improvement of detectability in regions with larger contrast between

inner cluster link persistency versus outer cluster link persistency.

In the final Chapter, key takeaways and potential future directions of research, opened up by

the results described here, are discussed.

Dedication

Dedicated to my wonderful parents, Rokhsareh and Mousa, my lovely wife Homa, and my

sister and brother, Mahtab and Ali. Special thanks to Homa for supporting me through these

years.

viii

Acknowledgements

Personally, I would like to thank my advisor, Aaron Clauset for his great advice and helping

me through my graduate school experience and for his always encouraging words during these years.

I would like to thank all my collaborators: Cristopher Moore, Pan Zhang, Leto Peel, Homa Hos-

seinmardi, and Aram Galstyan for their valuable comments. I would like to thank the Clauset Lab

especially Chris Aicher, Abbie Jacobs, Nora Connor, Allie Morgan, Lauren Shoemaker, and Sam

Way who helped me during my PhD in Boulder. I like to acknowledge the BioFrontiers Computing

Core at the University of Colorado Boulder for providing High Performance Computing resources

(NIH 1S10OD012300) supported by BioFrontiers IT. The Financial support for my research was

provided in part by Grant No. IIS-1452718 from the National Science Foundation.

ix

Contents

Chapter

1 Introduction 1

2 Evaluating Overfit and Underfit in

Models of Network Community Structure1 16

2.1 Methods and Materials . 19

2.2 Number of Communities in Theory and Practice . 24

2.2.1 In Theory . 24

2.2.2 In Practice . 25

2.3 Quantifying algorithm similarity . 28

2.4 Evaluating Community Structure Quality . 30

2.4.1 Model-specific Link Prediction and Description 32

2.4.2 Discussion of Results . 42

2.5 Conclusion . 47

3 Near Optimal Link Prediction and

Transfer Learning in Link Prediction 50

3.1 Methods and Materials . 55

3.1.1 Model-based Methods . 56

3.1.2 Supervised Feature-based Methods . 58

3.1.3 Node Embedding based Methods . 60

x

3.1.4 Supervised Stacked Generalization . 61

3.2 Numerical Experiments . 63

3.2.1 Results . 64

3.3 Discussion of Results . 77

3.4 Conclusion . 80

4 Detectability Thresholds and Optimal Algorithms for

Community Structure in Dynamic Networks2 83

4.1 A Dynamic Stochastic Block Model . 86

4.2 The Generalized Detectability Threshold . 87

4.3 Bayesian Inference and Belief Propagation . 89

4.4 Spectral Clustering . 93

4.5 Numerical Experiments . 96

4.6 Conclusion . 98

5 Community Detection in Temporal Networks

with Link Persistency 101

5.1 Community and Link Persistency in Spatiotemporal Graph 104

5.1.1 Spatiotemporal Message Passing Equations with Link Persistency 104

5.2 Notation . 106

5.3 Community and Link Persistency in Spatio-historical Graph 106

5.4 Computational Complexity . 115

5.4.1 Bayesian Naive Bayes . 115

5.4.2 Variational Mean Field . 117

5.4.3 Stochastic Belief Propagation [139] . 119

5.4.4 Two Different BP Formulations . 121

5.4.5 Stochastic Naive Bayes . 122

5.4.6 Some Other Approximations . 124

xi

5.5 Simulations . 125

5.6 Conclusion . 127

6 Conclusion and Future Work 130

Bibliography 135

Appendix

A Appendix to Chapter 2 148

A.1 Performance On Bipartite versus Non-Bipartite Networks 148

A.2 Performance Under a Common Score Function . 149

A.2.1 Results . 151

A.3 Other Representations of Link Prediction and Link Description 153

A.4 Scoring Function . 155

A.4.1 B-NR (SBM), B-NR (DC-SBM), B-HKK, cICL-HKK, and S-NB 155

A.4.2 Q, Q-MR, Q-MP, Infomap, MDL (SBM), and MDL (DC-SBM) 156

A.5 Model Selection Approaches . 157

B Appendix to Chapter 3 165

B.1 Generative Process for Synthetic Networks . 165

B.1.1 Generating Process . 166

B.2 Optimal Performance of Link Prediction in Synthetic Networks 168

B.2.1 Optimal AUC for ER . 169

B.2.2 Optimal AUC for DC-ER . 169

B.2.3 Optimal AUC for SBM . 169

B.2.4 Optimal AUC for DC-SBM . 172

xii

Tables

Table

2.1 Abbreviations and descriptions of 16 community detection methods. 21

2.2 Summary of results for 16 algorithms (Table 2.1) on the number of communities k

(Fig. 2.2b), the algorithm group the output is most similar to (Fig. 2.3), benchmark

performance on link prediction (Fig. 2.4a) and link description (Fig. 2.4b), and an

overall assessment of its tendency to over- or under-fit. 41

3.1 Abbreviations and descriptions of 11 community detection methods. 57

3.2 Average performance of the link prediction algorithms over 572 networks in Com-

munityFitNet corpus and 45 synthetic networks generated via SBM, and its degree

corrected variant using power-law and Weibull degree distributions. 66

3.3 Domain based link supervised learning performance: precision/recall (AUC). Each

block shows the results in one of the categories of (i) one domain heldout (last row

excluding the last cell), (ii) all leave one domain held-out (last column excluding

the last cell), (iii) one domain train, another domain heldout, (iv) one domain train,

same domain heldout, and finally (v) random domain train and holdout (bottom

right cell). The rows at each block are representing the results for (from top to

bottom) 1. supervised embedding feature-based, 2. supervised explicit topological

feature-based, 3. stacking of scores from community detection methods, 4. stacking

of scores and explicit topological features, and 5. stacking of scores, topological and

embedding features. The results in bold are the best results for each experiment. . . 75

xiii

A.1 The summary statistics of CommunityFitNet corpus in each domain for bipartite ver-

sus non-bipartite networks. The numbers show (number of non-bipartite)/(number

of bipartite) networks. 149

xiv

Figures

Figure

1.1 Different algorithms have different performances on the same input. Some algorithms

overfit (find too many clusters), some algorithms underfit (find too few clusters),

some algorithms well-fit (find correct clusters), and some algorithms uneven-fit to

the network data (find many clusters at some part and few clusters at other parts of

given network). 5

1.2 Meta-learning: several examples of classification combination techniques (a, b, and

c are related to ensemble methods and d is related to stacked generalization). 9

1.3 A schematic representation of a temporal network. The dynamic community detec-

tion algorithm infer the labels of each node existing in the network. At each snapshot

just partial interaction events will be observed between the nodes. Dynamic commu-

nity detection develop models to decode this partial information and infer the label

of each node in the whole age of the network. 11

1.4 A schematic representation of a temporal network with link persistency. The inten-

sity of each edge shows the lasting time of the corresponding edge in the evolution

of the network. The less intensity of the edge the more duration the edge existed in

the network. 15

xv

2.1 Average degree versus number of nodes for the corpus of 572 real-world networks

studied here. Networks were drawn from the Index of Complex Networks (ICON) [45],

and include social, biological, economic, technological, information, and transporta-

tion graphs. 23

2.2 The average number of inferred communities, for 16 state-of-the-art methods (see

Table 2.1) applied to 572 real-world networks from diverse domains, versus the (a)

number of nodes N , with a theoretical prediction of
√
N , or (b) number of edges M ,

with a theoretical prediction of
√
M . 24

2.3 A clustering of community detection algorithms into distinct high-level groups based

on the similarities of their outputs on real-world networks. (a) The mean adjusted

mutual information (AMI) between each pair of methods for communities they re-

covered on each network in the CommunityFitNet corpus. Rows and columns have

been ordered according to the results of a hierarchical clustering of the AMI matrix,

after applying a Gaussian kernel with parameter σ2 = 0.3. (b) Density plots show-

ing the distribution of the number of inferred communities k for groups of similar

algorithms. 29

2.4 Benchmark performance curves using model-specific score functions for (a) link pre-

diction and (b) link description tasks. Each curve shows the mean AUC for a different

community detection method across 572 real-world networks for a given fraction α

of observed edges in a network. 37

2.5 A heatmap showing the fraction of networks in the CommunityFitNet corpus on

which a particular algorithm produced the best performance on the link prediction

task, for different levels of subsampling α. The two best overall methods (MDL

DC-SBM and B-NR SBM) in Fig. 2.4a are not always the best, and every algorithm

is the best for some combination of network and α. Here, any algorithm with an

AUC performance within 0.05 of the maximum observed AUC, for that network and

α choice, is also considered to be “best”. 45

xvi

2.6 Separate benchmark performance curves using model-specific score functions for the

link prediction (test) task for networks drawn from (a) biological (34%), (b) social

(22%), (c) economic (21%), (d) technological (12%), (e) transportation (7%), and (f)

information (4%) domains of origin in the CommunityFitNet corpus. As in Fig. 2.4a,

each curve shows the mean AUC for a different community detection method, for a

given fraction α of observed edges in a network. 46

3.1 Link prediction methods are categorized into three groups of model-based, supervised

feature-based, and node embedding techniques. 56

3.2 Average AUC on 572 real-world networks in CommunityFitNet corpus for different

link prediction supervised learnings versus number of edges. 67

xvii

3.3 (a) The average AUC when holding out 20% of edges for predictions in a synthetic

setting with: (1) the fuzziness of the communities, ranging from low, intermediate,

high ε̃ = mout/min (min and mout are number of edges inside and outside clusters); (2)

the degree distribution of the nodes, being Poisson, Weibull, or power law; and, (3)

the number of planted communities in the generative model, ranging from k=1 to 32

groups. The dashed line represents the analytically derived optimal AUC for these

models. We include 11 methods based on the state-of-the-art community detection

algorithms considered in Chapter 2, along with two modern network embedding

methods, and 29 structural features. When ε̃ → 0, these upper bounds are tights

and are consistent with the analytic computation in Section B.1. (b) The AUC

comparison of link prediction algorithms on the whole CommunityFitNet corpus

(See Chapter 2) including 572 real-world networks and categorized based on network

domains. Across settings, the stacking approach, which uses supervised learning to

combine features from all three methods classes, is nearly always the best, all methods

perform well on social networks, the supervised methods are generally better than

any unsupervised method, and based on the nearly-optimal behavior on synthetic

networks, the modest performance on non-social networks may indicate that there

are fundamental limits to predicting missing links in these settings. 72

3.4 Feature importance when trained on domain x. The top 10 most important features

when training on each domain. 78

4.1 A schematic representation of belief propagation messages (see Eqs. (4.5) and (4.6))

being passed along spatial and temporal edges in the spatiotemporal graph. 91

xviii

4.2 Overlap as a function of ε for different values of η (given in the legend). For each η,

the critical value of ε for T = 40 is shown as a vertical line in the lower panel, and

the hatched area shows the region of detectability for static networks [55, 56]. Each

data point is the average of 100 instances, with n = 512, T = 40, k = 2 groups, and

average degree c = 16. 95

4.3 The overlap for (top) belief propagation and (bottom) our spectral algorithm. The

detectability transition in Eq. (4.10) for T =∞ is shown as a solid line. The dashed

curve shows the detectability transition for T = 40; the magenta curve shows the

transition for T = ∞. Each point shows the average over 100 dynamic networks

generated by our model with n = 512, T = 40, k = 2 groups, and average degree

c = 16. The overlap here is calculated by averaging the maximum overlap at each

time slot over all permutations. This maximization step implies that the expected

overlap in the undetectable region is O(n−1/2), and this produces a small deviation

away from overlap = 0 in our numerical experiments. 97

4.4 The convergence time of belief propagation diverges as we approach the transition.

This heat map shows the number of iterations it takes BP to converge to a fixed

point, with the same parameters as in Fig. 4.3. As before, the dashed curve shows

the detectability transition for T = 40, and the magenta curve shows the transition

for T =∞. 99

5.1 A schematic representation of static temporal graph with history of the communities,

which we call it a spatio-historical graph. 103

5.2 State Diagram: Markov process of edge generation. 112

5.3 A schematic representation of belief propagation messages [see Eq. 5.39] being passed

along spatial edges in the spatio-historical graph. 114

5.4 A tree network with node i in the center and nodes j in its neighborhood (red shaded)

and nodes ` in non-neighborhood of node i (green shaded). 118

xix

5.5 Beliefs on different states. 124

5.6 The overlap for belief propagation equations for DSBM with link persistency using

spatiotemporal graph. The detectability transition in Eq. (4.10) for T =∞ is shown

as a solid line (see Chapter 4). Each point shows the results over a dynamic network

generated by a DSBM with link persistency with n = 100, T = 100, k = 2 groups,

and average degree c̄ = 8. The top left plot is the overlap related to a dynamic

network without link persistency. The red line shows increasing link persistency for

inner cluster links (links inside clusters) in the first row and then increasing the link

persistency for outer cluster links (links between the clusters) in the second row. . . 128

A.1 Separate benchmark performance curves using model-specific score functions for link

prediction and link description tasks for networks drawn from (top) non-bipartite

(73%), (bottom) bipartite (27%) networks of origin in the CommunityFitNet corpus.

As in Fig. 4a, each curve shows the mean AUC for a different community detection

method, for a given fraction α of observed edges in a network. 150

A.2 Separate benchmark performance curves using model-specific score functions for the

link prediction (test) task for non-bipartite networks drawn from (a) biological (35%),

(b) social (30%), (c) economic (3%), (d) technological (17%), (e) transportation

(10%), and (f) information (5%) domains of origin in the CommunityFitNet corpus.

As in Fig. 4a, each curve shows the mean AUC for a different community detection

method, for a given fraction α of observed edges in a network. 151

A.3 The maximum number of inferred communities, for 16 state-of-the-art methods (see

Table 1) applied to 572 real-world networks from diverse domains, versus the (a)

number of nodes N , with a theoretical prediction of
√
N , or (b) number of edges M ,

with a theoretical prediction of
√
M . 153

xx

A.4 Benchmark performance curves using a SBM-based score function for (a) link predic-

tion and (b) link description tasks. Each curve shows the mean AUC for a different

community detection method across 572 real-world networks for a given fraction α

of observed edges in a network. 154

A.5 A parametric plot showing link prediction versus link description performance, with

α parameterizing the trajectory of each line. 154

A.6 Computation of (a) link prediction versus (b,c,d) link description in non-probabilistic

score function methods of Q, Q-MR, Q-MP, Infomap, MDL (SBM), and MDL (DC-SBM).

(a) Consider the current network as the reference, once add a link in the location of

the missing link, and once add a link in the location of the non-link and see whose

contribution is larger to compute the AUC, (b) consider the current network as the

reference, once add a link in the location of the link and once add a link to the loca-

tion of the non-link and see whose contribution is larger in the objective function to

compute the AUC, (c) consider the current network as the reference, once remove a

link from the location of the link and once add a link in the location of the non-link

to see whose contribution is larger to compute the AUC, and (d) remove the link

and consider it as the reference, once add a link in the location of the removed link,

and once add a link in the location of the non-link to see whose contribution is larger

to compute the AUC. 158

A.7 Comparison of link description (train) benchmark performance curves for non-probabilistic

score function methods of Q, Q-MR, Q-MP, Infomap, MDL (SBM), and MDL (DC-SBM)

using method (b) versus method (c) in comparing contribution of observed links ver-

sus non-observed links in link description. 159

Chapter 1

Introduction

Recently, much attention has been paid on the analysis of networks as models of complex

systems. Different problems in various fields of study can be modeled as networks. To show

the ubiquitous nature of these complex mathematical tools, it is enough to mention that these

entities are inspired by various theories in science such as graph theory, statistical physics, data

mining, biology, information technology, power networks, and social science to model any relational

data problem in real-world systems via a unified framework. This unification makes this field of

science very broad and powerful in analyzing different problems under the name of network science.

Networks are constructed from vertices and edges representing the actors or entities and ties or

interactions, respectively. Examples are numerous, but here is a brief indicative list of real-world

networks: social networks with vertices as individuals and edges as social interactions, information

networks like citation networks with vertices as scientific papers and edges as citation relations

between papers, and biological networks like a food web with vertices as species and edges as

predator-prey relationships or like gene interaction networks with nodes as a set of genes and edges

as functional relationships among them.

Network analysis is the study of the network topology to answer a variety of questions re-

garding the structure, dynamics, or function of a complex system. For example in social network

analysis the questions are related to how people interact with each other in online social networks

or in collaboration networks, how diseases propagate or how information flows through a network,

how to control a disease or food outbreak, or in electric networks like power grids or in internet

2

networks, the questions can be related to vulnerability assessment of the networks to be prepared

for power outage or internet blackout, or in biological network analysis, the questions are related to

how different diseases are related to each other which can be useful in discovering new symptoms

of diseases and producing and developing new medicines. It appears clearly that the reason of the

importance of this interdisciplinary area of science, is due to its widespread applications, which

involves scientists and researchers with a variety of background and interests.

Although networks are much simpler compared to the original complex systems, the inter-

actions among the nodes in the real-world network may seem random, and capturing patterns on

these entities is not trivial. There are many interesting questions about inference on networks,

which makes this topic very attractive for researchers in the field of network science. In this dis-

sertation we answer some of the questions regarding this topic in two lines of study: one focused

on experimental analyses and one focused on theoretical limitations.

A common graph mining task is community detection, which seeks an unsupervised de-

composition of a network into groups, based on statistical regularities in network connectivity.

Community detection is closely related to an old problem in computer science, which dates back

to 1960s, called graph partitioning. Graph partitioning is the problem of dividing a network into a

given non-overlapping groups of vertices with the minimum number of edges between the groups.

The main difference between community detection and graph partitioning is regarding the fact that

in community detection the number of groups are not given [132]. Also based on a more general

definition of community detection, communities are defined based on functional community i.e. the

nodes are clustered into groups that connect to the rest of the network in similar ways [155, 125].

Therefore, in community detection we are not looking for just the assortative communities, but for

similar functional nodes as communities which also include the disassortative groups. Interestingly

in 1927, Stuart Rice in Ref. [159] studied small political bodies, based on their similar patterns

in voting, which is related to this modern definition. However, traditionally, similar to graph par-

titioning, communities are defined as groups of vertices with large number of interactions inside

the clusters versus outside the clusters. As one of the first attempts in community detection, the

3

authors in Ref. [184] studied work groups in a government agency [63]. The authors defined a work

group as a set of individuals whose relationships were with each other and not with the members

of other groups. For more details on this problem see the survey by Fortunato [63].

The significance of community detection can be illustrated by its vast applications. To name a

few, we recall its central role in improving the performance of recommendation systems, enhancing

the business opportunities, efficiently storing the graph data, its usage in routing and path searches,

analyzing and modeling the hierarchical systems [63]. Due to broad interest across disciplines

in clustering networks, many approaches for community detection now exist [156, 63]. Despite

great interest, however, there have been relatively few broad comparative studies or systematic

evaluations of different methods in practical settings [90, 99] and little is known about the degree

to which different methods perform well on different classes of networks in practice. As a result,

it is unclear which community detection algorithm should be applied to which kind of data or for

which kind of downstream task, or how to decide which results are more or less useful when different

algorithms produce different results on the same input [65].

This situation is worsened by two recently proved theorems for community detection [147].

The No Free Lunch (NFL) theorem for community detection implies that no method can be optimal

on all inputs, and therefore each method will tend to overfit (finding too many clusters) on some

networks and underfit (finding too few or the wrong clusters) on others (see Fig. 1.1). The “no

ground truth” theorem states that there is no bijection between network structure and “ground

truth” communities, which implies that no algorithm can always recover the correct ground truth

on every network [147], even probabilistically. Hence, relatively little is known about how over-

and under-fitting behavior varies by algorithm and input. Past evaluations offer little general

guidance, and a new approach to evaluating and comparing community detection algorithms is

needed. Community detection algorithms are used in many problems from recommender systems

to causal inference in more advanced scientific phenomenon. Sometimes practitioners used these

tools blindly which is a bad practice. Knowing which community detection algorithms are useful

in what kind of network data is a very broad prescription that shed new lights into designing new

4

algorithms appropriate for clustering different type of networks.

In the first experimental part of our study, in Chapter 2, we present a broad investigation of

over and underfitting across 16 state-of-the-art community detection algorithms applied to a novel

benchmark corpus of 572 structurally diverse real-world networks. Researchers usually apply their

proposed community detection algorithm on a limited number of networks, mostly social networks

(almost the same networks on every other paper), and conclude the generalizability of their method

by comparing the inferred labels with the metadata available on those networks. Two serious issues

on this bad practice are (i) based on No Free Lunch theorem [147], the algorithm evaluations

based on comparing against a partition defined by node metadata do not provide generalizable or

interpretable results, (ii) based on the same theorem, since no algorithm is optimal on every kind of

networks, good performance on limited number of networks can not validate the generalizability of

the method. On the other hand studying the model selection on synthetic data is not particularly

insightful since the generative processes on real data are not known and the artificial generative

models are of interest with simplification. To study the overfitting and underfitting on real data

we need a more empirical study to reflect the output of community detection algorithms on reality.

Here, by comparing the community detection algorithms on 572 networks chosen from variety

of domains (biological, social, economic, technological, and transportation) and by using some

tasks that depend only on network’s connectivity, we reveal this generalizability in a systematic

way. We find that (i) algorithms vary widely in the number and composition of communities they

find, given the same input; (ii) algorithms can be clustered into distinct high-level groups based

on similarities of their outputs on real-world networks; (iii) algorithmic differences induce wide

variation in accuracy on link-based learning tasks; and, (iv) no algorithm is always the best at such

tasks across all inputs. Finally, we quantify each algorithm’s overall tendency to over or underfit

to network data using a theoretically principled diagnostic, and discuss the implications for future

advances in community detection.

Real networks are usually incomplete, with many missing edges, for example, the existence

of the edges in many biological networks like protein-protein or gene-gene interactions is best de-

5

overfittingunderfitting

well-fitting

uneven-fitting

Figure 1.1: Different algorithms have different performances on the same input. Some algorithms
overfit (find too many clusters), some algorithms underfit (find too few clusters), some algorithms
well-fit (find correct clusters), and some algorithms uneven-fit to the network data (find many
clusters at some part and few clusters at other parts of given network).

6

termined via costly experiments, which makes our knowledge of these networks limited [118]. Link

prediction is another important inference task in complex networks with a wide variety of appli-

cation. For example, link prediction can be used in the reconstruction of networks, the evaluation

of network evolving mechanism, the classification of partially labeled networks, spam mail de-

tection, recommendation systems, protein-protein interaction prediction, expert detection, disease

prediction, privacy control in social networks, and for distinguishing research areas of scientific

publications [173, 118]. Most link prediction techniques are based on some scoring function [116]

which ranks the potential missing links. In Chapter 2, we found that algorithmic differences be-

tween community detection methods induce wide variation in accuracy for link prediction tasks.

On the other hand, many link prediction techniques exist in literature and still, there is lack of a

methodology to analyze and compare these techniques.

Building on the results of Chapter 2, in Chapter 3, we provide a methodological overview

of link prediction techniques. We categorize the link prediction methods into three groups: model

based, supervised feature-based, and embedding techniques. Almost most of the link prediction

techniques belong to one of these three categories. Model based link prediction methods rank the

non-observed links using some scoring rules based on some topological features or using more ad-

vanced rules to build a score like scores coming from a community detection algorithm to distinguish

the missing links from the non-links. Among the model based techniques, we leverage the same

community detection algorithms used in Chapter 2. The supervised feature-based methods are

utilizing the topological features derived in a manual phase to identify missing links in a supervised

framework. Most conventional approaches in link prediction are unsupervised, or perhaps better

say semi-supervised link prediction techniques. However, designing link prediction in a more super-

vised way may improve the results in several ways, because (i) link prediction is a highly imbalanced

classification task, and (ii) most of the scoring functions in unsupervised approaches only look at

partial information of the network structure. Generally speaking, supervised techniques outperform

unsupervised approaches by capturing better and more patterns from high-dimensional data. In

Chapter 3, we investigate their use applied to a variety of features derived from the topology of the

7

network. More recently, the embedding techniques and deep graph models have drawn significant

attention among researchers to automate the cumbersome feature engineering process in supervised

link prediction techniques by projecting a graph into a low-dimensional feature space, which can

be employed in a variety of applications like link prediction. Also, in Chapter 3, we investigate the

development of two fundamental problems in link prediction: optimal link prediction methods and

transfer learning approaches for link prediction.

In the optimal link prediction problem, we investigate if there is an optimal capacity of link

prediction that an optimal algorithm can reach using a supervised information fusion approach. We

begin to comprehend how much information of the network topology regarding the link prediction

task can be retrieved through different algorithms of link prediction and which kind of algorithms

can have better generalized predictability on this task. Specifically, we consider several meta-

learning paradigms to combine different link prediction methods to make better predictions.

The meta-learning is dated back to 1970s in a seminal paper by Rice in Ref. [158, 113]. Meta-

learning is accumulating and adaptation of experiences from several learning tasks, called base-

learners, to learn the cons and pros of each one in a higher level of understanding [113, 181]. Each

one of aforementioned link prediction algorithms have their pros and cons and their performance

varies based on the network domain and the topology of the observed network. These diversities in

link prediction are a potential advantage if we can combine different methods to yield a better link

prediction algorithm. There are many classifier combination or meta-learning or ensemble methods

that can address this problem (see Fig. 1.2). We use supervised stacked generalization [185], a

machine learning technique for combining lower-level weak classification models. We investigate

whether there is an optimal performance at link prediction that an algorithm can reach. First, we

study the optimal link prediction problem on synthetic data created by two well-known generative

models of stochastic block model and its degree corrected variant using power-law and Weibull

degree distributions. Specifically, we compute analytically the optimal link prediction performance

for these models and then compare the performance achieved by each one of these major classes

of algorithm with these limits. Then using a data-driven approach, we investigate the prediction

8

performance of the aforementioned three categories on a large corpus of real-world networks. Our

goal here is to obtain nearly perfect predictive performance by learning how to combine the best

performance of each link prediction algorithm using a supervised learning framework.

It is worth highlighting that the reason our choice of meta-learning is supervised is due to

the flexibility of supervised methods in learning and generalizability. In fact, since we are looking

for an optimal solution in link prediction, by supervised learning we can add lots of topological

features in order to saturate the learning process. The purpose of this flexibility is due to the fact

that the generative model of a real-world network is not necessarily known to us. To reach the

optimal link prediction, we would like to capture all the information, not only the part covered

by the model. On the other hand, the topological features are very helpful in real networks since

they are not model based and we need to use the topological features to compensate these hidden

structures planted inside the network by a hidden generative model.

The success of data mining techniques in many knowledge engineering areas like classification

are owed to two main reasons, (i) large amount of labeled data available in some applications,

(ii) the training and test data are drawn from the same feature space and the same distribution.

However, in many applications the data sampling is very expensive and time consuming, then using

knowledge transfer or transfer learning has attracted much attention recently [143]. On the other

hand our current knowledge in many network domains are limited due to the costly laboratorial

experiments such as in food webs and metabolic networks [118]. On the other hand, the network

data in some other types like social networks are easily accessible and available. Therefore, the

knowledge transfer in machine learning can be used to take advantage of more frequent types to

train generalizable models to be used in downstream prediction tasks on other types. In Chapter 3,

we analyze the transfer learning on link prediction. We analyze domain adaptation (a specific

problem in transfer learning) in the link prediction problem. We study questions regarding what

happens if we train a link prediction algorithm on social network to learn the biological networks,

what features are more important in training in one domain, and how we can improve the results.

We answer these questions empirically using the 572 real-world networks in the CommunityFitNet

9

single model

bagging (parallel) boosting (sequential)

algorithm K

algorithm 2

algorithm 1

stacking

single
parallel

sequential

ba c d

Figure 1.2: Meta-learning: several examples of classification combination techniques (a, b, and c
are related to ensemble methods and d is related to stacked generalization).

corpus coming from different domains.

In the second half of this dissertation, we focus on analytical and numerical investigations

of the theoretical limits of inference in dynamic community detection. Dynamic networks are

the networks whose nodes and edges evolve over time as opposed to static networks, which have a

static topology [88]. Fig. 1.3 is a schematic for time evolving networks. In literature, these networks

have different names such as temporal or time-evolving networks [87], depending on the context.

For example, the term “dynamic networks” terminology is sometimes used to refere to multilayer

networks, like the multilayer network of public transportation. Regardless of these differences,

most networks in nature are dynamic in some way [88]. Emerging work on temporal networks

is based on the necessity of considering the utility of information in time for more complicated

tasks, and the potential of using the huge amount of dynamic data produced by online social

networks. In other settings, the term “evolving networks” usually represented a sequence of static

networks [42, 23, 68, 102, 129, 187].

One main question would be then when we should model our problem as temporal network.

Conventionally, the networks are modeled in a static graph by aggregating the temporal links as

weighted graphs. This technique can sometimes be useful for modeling a network, but not all of the

time. For example, in a time series of events, what is the interevent time distribution? By aggre-

10

gating the snapshots we can lose important patterns in study of temporal networks. For instance,

consider groups of nodes that belong to different communities at different times. Aggregating these

nodes over time will tend to merge these communities and the underlying structure of the network

at any time is not reflected in this merged network. Therefore, losing time information may cause

an error in our inferences about its large scale organization. Also to study a dynamic process on

time evolving networks, sometimes we can model the time evolving networks as static networks. In

general, when the temporal edges and temporal activities change much slower than the dynamic

process, we can consider the temporal networks as static. But if the network changes faster than

the time scale of dynamic system, then we should include time in our modeling process [87]. On

the other hand, many properties of static networks do not exist anymore in dynamic networks. For

example, dynamic networks do not have transitive properties like static ones. As a result, most

of the dynamic process problems are more complicated in temporal networks, for example disease

contagion or information diffusion are influenced by temporal structure of edge activities.

To understand the large-scale structure of the growth and emergence of temporal networks,

we need more appropriate tools and measures, just as for static networks. Refer to [87, 89] for

more information. In addition to simple measures like path distance or centrality measures, more

advanced procedures like generative or epidemic models on these networks [87, 89] are needed.

Here, we focus on analyzing the behavior of temporal or dynamic extension of community detection

methods.

Commonly, communities are defined as groups of vertices with more interactions (edges)

within the groups than between them. The edges inside/between clusters are called intraclus-

ter/intercluster edges. This classical view of communities is borrowed from social networks, where

real social groups are people who have more interaction with each other than outside the communi-

ties. In the modern parlance of networks, we call these communities assortative. As we mentioned

earlier, a more general definition considers communities as a group of entities that behave in simi-

lar ways to the rest of the network. These kinds of communities are called functional communities

which consider the similar structural functionality of the vertices and group them based on this

11

Figure 1.3: A schematic representation of a temporal network. The dynamic community detection
algorithm infer the labels of each node existing in the network. At each snapshot just partial
interaction events will be observed between the nodes. Dynamic community detection develop
models to decode this partial information and infer the label of each node in the whole age of the
network.

12

behavior. For example, in food web networks a set of predators form a functional group since they

eat similar preys. This more general definition can cover assortative and disassortative communi-

ties, as well as a mixture of them. Many approaches in community detection only address finding

assortative communities and can not be extended to handle disassortative cases because of the

limitation of their models.

A comprehensive survey of community detection for static networks can be found in [63].

Although most real networks are dynamic, traditional methods in community detection are appli-

cable only to static networks, meaning that dynamic interactions must be averaged/aggregated to

produce one network. This naive approach for dynamic networks tends to degrade the performance

of community detection, as it eliminates temporal information that capture the evolution of com-

munities [142]. We can have growth or contraction, merging or splitting and birth and death of

communities along the time. In most real-world settings, community membership correlates over

time, meaning that membership in adjacent snapshots is not an iid drawn from some underlying

distribution. To enforce these correlations, community detection approaches may use the informa-

tion from previous snapshots to find communities in subsequent snapshots. This technique is called

temporal smoothness, introduced by Chakrabarti [35].

Recent interest in community detection in dynamic networks has led to a variety of new tech-

niques for the automatic detection of dynamic communities. These techniques include methods

based on quality functions, like variants of multilayer methods along with temporal modularity

maximization [129, 20, 22], on information theoretic measures like minimum description length and

entropy in [174] and [164] respectively, on percolation theory in physics [59], on some dynamic pro-

cess like label propagation [186], on spectral clustering [40, 138] or on non-negative matrix or tensor

factorization [68], alongside some tricks utilizing low rank approximations [176] and probabilistic

models [191, 187, 102, 189, 78] or on statistical physics techniques [55]. See Refs. [4, 79, 15] for

reviews.

The detection of communities within a dynamic network is a common means for obtaining

a coarse-grained view of a complex system and for investigating its underlying processes. While a

13

number of methods have been proposed in the machine learning and physics literature, we typically

lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when

communities can be detected. In the second half of this dissertation, we study the theoretical limits

of community detection in dynamic networks in two settings. Specifically, in Chapter 4 we analyze

the limits of detectability for a simple dynamic stochastic block model, where nodes change their

community memberships over time, but edges are generated independently at each time step. Using

the cavity method, we derive a precise detectability threshold as a function of the rate of change and

the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm

can identify the communities better than chance. We then propose two algorithms that are optimal

in the sense that they succeed all the way down to this threshold. The first uses belief propagation

(BP), which gives asymptotically optimal accuracy, and the second is a fast spectral clustering

algorithm, based on linearizing the BP equations. These results extend our understanding of the

limits of community detection in an important direction, and introduce new mathematical tools for

similar extensions to networks with other types of auxiliary information.

Many real networks have an additional characteristic of link persistency meaning that edges

in the temporal networks tend to appear or disappear gradually, rather than suddenly (see Fig. 1.4).

In Chapter 5, we add this property as a new constraint to the community detection analysis for

dynamic networks. The main difficulty in adding link persistency to the model is that it creates

many short loops, which can cause convergence issues in the BP equations. Generally, the BP

equations are exact in two scenarios. The first is for strong interactions between the nodes in a

tree like network as we exploited in Chapter 4. The second is for many weak interactions between

the nodes, as in the quantum belief propagation formulation in quantum many-body systems [112].

This second setting is helpful when we model our temporal network as a static network, but with

the whole historical trajectory of types of each node instead of using the temporal-spatial graph

of Chapter 4. Here, history means the whole trajectory of types that one node takes during all

possible times. In this setting, which we call such a graph a spatio-historical graph, and we consider

the exponential number of states for each node in our inferential analysis. We then exploit several

14

constraints to mitigate the complexity of this model; for example we limit the number of times

each node can change its type along its history. Using this model, we introduce a new message

passing algorithm to infer the dynamic communities, and apply several approximation to reduce

the time complexity. We derive a Naive Bayes message passing approach, a variational Bayes

scenario and their stochastic variants. Based on the initial promising results, we found the model

very successful, however the time complexity of this model prevented us from exploring further. In

another attempt to overcome this problem, we study this problem using the previous spatiotemporal

setting in Chapter 4, ignoring the possible convergence issues near phase transitions. Using this

model, we investigate detectability limits, showing improvement of detectability in regions with

larger contrast between inner cluster link persistency versus outer cluster link persistency.

Finally in Chapter 6, we conclude this dissertation with a brief discussion on the results and

key takeaways of our study and point to potential future directions of research, opened up by the

results described here.

15

Figure 1.4: A schematic representation of a temporal network with link persistency. The intensity
of each edge shows the lasting time of the corresponding edge in the evolution of the network. The
less intensity of the edge the more duration the edge existed in the network.

Chapter 2

Evaluating Overfit and Underfit in

Models of Network Community Structure1

Networks are an increasingly important and common kind of data, arising in social, tech-

nological, communication, and biological settings. One of the most common data mining tasks in

network analysis and modeling is to coarse-grain the network, which is typically called community

detection. This task is similar to clustering, in that we seek a lower-dimensional description of a

network by identifying statistical regularities or patterns in connections among groups of nodes.

Fundamentally, community detection searches for a partition of the nodes that optimizes an objec-

tive function of the induced clustering of the network.

Due to broad interest across disciplines in clustering networks, many approaches for commu-

nity detection now exist [156, 63, 152], and these can be broadly categorized into either probabilistic

methods or non-probabilistic methods. Graphical models, like the popular stochastic block model

(SBM) [86], typically fall in the former category, while popular methods like modularity maxi-

mization [135] fall in the latter. Across these general categories, methods can also be divided into

roughly six groups: Bayesian and regularized likelihood approaches [85, 190, 51], spectral and em-

bedding techniques [106, 166, 110], modularity methods [135], information theoretic approaches

such as Infomap [163], statistical hypothesis tests [183], and cross-validation methods [36, 98].

Despite great interest, however, there have been relatively few broad comparative studies or

systematic evaluations of different methods in practical settings [90, 110, 99] and little is known
1 The first version of this chapter is in arXiv:1802.10582 [69].

17

about the degree to which different methods perform well on different classes of networks in practice.

As a result, it is unclear which community detection algorithm should be applied to which kind of

data or for which kind of downstream task, or how to decide which results are more or less useful

when different algorithms produce different results on the same input [65].

This situation is worsened by two recently proved theorems for community detection [147].

The No Free Lunch (NFL) theorem for community detection implies that no method can be optimal

on all inputs, and hence every method must make a tradeoff between better performance on some

kinds of inputs for worse performance on others. For example, an algorithm must choose a number

of communities k to describe a given network, and the way it makes this decision embodies an

implicit tradeoff that could lead to overfitting (finding too many clusters) on some networks and

underfitting (finding too few or the wrong clusters) on others.

The “no ground truth” theorem states that there is no bijection between network structure

and “ground truth” communities, which implies that no algorithm can always recover the correct

ground truth on every network [147], even probabilistically. Together, these theorems have broad

implications for measuring the efficacy of community detection algorithms. In the most popular

evaluation scheme, a partition defined by node metadata or node labels is treated as if it were

“ground truth”, e.g., ethnicity in a high-school social network or cellular function in a protein

interaction network, and accuracy on its recovery is compared across algorithms. However, the

NFL and “no ground truth” theorems imply that such comparisons are misleading at best, as

performance differences are confounded by implicit algorithmic tradeoffs across inputs [147]. Hence,

relatively little is known about how over- and under-fitting behavior varies by algorithm and input,

past evaluations offer little general guidance, and a new approach to evaluating and comparing

community detection algorithms is needed.

Here, we present a broad and comprehensive comparison of the performance of 16 state-of-

the-art community detection methods and we evaluate the degree to and circumstances under which

they under- or over-fit to network data. We evaluate these methods using a novel corpus of 572 real-

world networks from many scientific domains, which constitutes a realistic and structurally diverse

18

benchmark for evaluating and comparing the practical performance of algorithms. We characterize

each algorithm’s performance (i) relative to general theoretical constraints, (ii) on the practical task

of link prediction (a kind of cross-validation for network data), and (iii) on a new task we call link

description. The tradeoff between these two tasks is analogous to the classic bias-variance tradeoff

in statistics and machine learning, adapted to a network setting in which pairwise interactions

violate independence assumptions.

In both link description and link prediction, some fraction of a network’s observed edges are

removed before communities are detected, much like dividing a data set into training and test sets

for cross validation. We then score how well the identified communities (and any corresponding

model parameters the method returns) predict the existence of either the remaining observed edges

(link description) or the removed edges (link prediction). By design, no algorithm can be perfectly

accurate at both tasks, and the relative performance becomes diagnostic of a method’s tendency

to overfit or underfit to data. Hence, as in a non-relational learning setting, a method can be said

to overfit to the data if its accuracy is high on the training data but low for the test data, and it

can be said to underfit if its accuracy is low on both training and test data.

Our results show that (i) algorithms vary widely both in the number of communities they

find and in their corresponding composition, given the same input, (ii) algorithms can be clustered

into distinct high-level groups based on similarities of their outputs on real-world networks, (iii) al-

gorithmic differences induce wide variation in accuracy on link-based learning tasks, and (iv) no

algorithm is always the best at such tasks across all inputs. Finally, we introduce and apply a

diagnostic that uses the performance on link prediction and link description to evaluate a method’s

general tendency to under- or over-fitting in practice.

Our results demonstrate that many methods make uncontrolled tradeoffs that lead to over-

fitting on real data. Across methods, Bayesian and regularized likelihood methods based on SBM

tend to perform best, and a minimum description length (MDL) approach to regularization [148]

provides the best general learning algorithm. On some real-world networks and in specific settings,

other approaches perform better, which illustrates the NFL’s relevance for community detection in

19

practice. That is, although the SBM with MDL regularization may be a good general algorithm

for community detection, specialized algorithms can perform better when applied to their preferred

inputs.

2.1 Methods and Materials

Despite well-regarded survey articles [156, 63, 152] there are relatively few comparative studies

for model selection techniques in community detection [192, 84, 90, 110, 99, 50] and most of these

consider only a small number of methods using synthetic data (also called “planted partitions”) or

select only a small number of real-world networks, e.g., the Zachary karate club network, a network

of political blogs, a dolphin social network, or the NCAA 2000 schedule network. The narrow scope

of such comparative studies has been due in part to the non-trivial nature both of implementing or

obtaining working code for competing methods, and of applying them to a large and representative

sample of real-world network data sets.

For example, Ref. [110] compared several spectral approaches using planted partition net-

works and five small well-studied real-world networks. In contrast, Ref. [99] carried out a broader

comparative analysis of the number of clusters found by six different algorithms. The authors

also introduce a generalized message passing approach for modularity maximization [193] in which

they either use modularity values directly or use leave-one-out cross-validation [98] to infer the

number of clusters. These methods were only evaluated on planted partition models and a small

number of real-world networks. Ref. [50] proposed a multi-fold cross-validation technique similar

to Refs. [36, 84] and compared results with other cross-validation techniques using synthetic data.

Recently, Ref. [178] showed that model selection techniques based on cross-validation are not al-

ways consistent with the most parsimonious model and in some cases can lead to overfitting. None

of these studies compares methods on a realistically diverse set of networks, or provides general

guidance on evaluating over- and under-fitting outcomes in community detection.

In general, community detection algorithms can be categorized into two general settings.

The first group encompasses probabilistic models, which use the principled method of statistical

20

inference to find communities. Many of these are variants on the popular stochastic block model

(SBM). Under this probabilistic generative model for a graph G = (V,E) with the size N := |V |,

a latent variable denoting the node’s community label gi ∈ {1, ..., k}, with prior distribution qa

(a ∈ {1, ..., k}), is assigned to each node i ∈ V . Each pair of nodes i, j ∈ V × V is connected

independently with probability pgi,gj . In the sparse case, where M := |E| = O(N), the resulting

network is locally tree-like and the number of edges between groups is Poisson distributed. However,

a Poisson degree distribution does not match the heavy-tailed pattern observed in most real-world

networks, and hence the standard SBM tends to find partitions that correlate with node degrees.

The degree-corrected stochastic block model (DC-SBM) [97] corrects this behavior by introducing

a parameter θi for each node i and an identifiability constraint on θ. In this model, each edge (i, j)

exists independently with probability pgi,gjθiθj . The aforementioned planted partition model for

synthetic networks can simply be a special case of the SBM with k communities, when pgi,gj = pin

if gi = gj and pout if gi 6= gj [48].

This first group of methods includes a variety of regularization approaches for choosing the

number of communities, e.g., those based on penalized likelihood scores [51, 47], various Bayesian

techniques including marginalization [136, 190], cross-validation methods with probabilistic mod-

els [98, 99], compression approaches like MDL [148], and explicit model comparison such as likeli-

hood ratio tests (LRT) [183].

The second group of algorithms encompasses non-probabilistic score functions. This group

is more varied, and contains methods such as modularity maximization and its variants [135, 193],

which maximizes the difference between the observed number of edges within groups and the number

expected under a random graph with the same degree sequence; the map equation (Infomap) [163],

which uses a two-level compression of the trajectories of random walkers to identify groups; and,

various spectral techniques [106, 110], which seek a low-rank approximation of a noisy but roughly

block-structured adjacency matrix, among others.

Methods in both groups can differ by whether the number of communities k is chosen explic-

itly, as a parameter, or implicitly, either by an assumption embedded within the algorithm or by a

21

Table 2.1: Abbreviations and descriptions of 16 community detection methods.
Abbreviation Ref. Description
Q [135] Modularity, Newman-Girvan
Q-MR [133] Modularity, Newman’s multiresolution
Q-MP [193] Modularity, message passing
Q-GMP [99] Modularity, generalized message passing with CV-LOO

as model selection
B-NR (SBM) [136] Bayesian, Newman and Reinert
B-NR (DC-SBM) [136] Bayesian, Newman and Reinert
B-HKK (SBM) [81] Bayesian, Hayashi, Konishi and Kawamoto
cICL-HKK (SBM) [81] Corrected integrated classification likelihood
Infomap [163] Map equation
MDL (SBM) [148] Minimum description length
MDL (DC-SBM) [148] Minimum description length
S-NB [106] Spectral with non-backtracking matrix
S-cBHm [110] Spectral with Bethe Hessian, version m
S-cBHa [110] Spectral with Bethe Hessian, version a
AMOS [37] Statistical test using spectral clustering
LRT-WB (DC-SBM) [183] Likelihood ratio test

method of model complexity control. In fact, the distinction between explicit and implicit choices

can be subtle as evidenced by a recently discovered equivalence between one form of modularity

maximization (traditionally viewed as choosing k implicitly) and one type of SBM (which typi-

cally makes an explicit choice) [133]. For the interested reader, a brief survey of model selection

techniques for community detection is presented in Appendix A.5.

In this study, a central aim is to develop and apply a principled statistical method to evaluate

and compare the degree to which different community detection algorithms under- or over-fit to

data. Toward this end, we compare the results of a large number of algorithms in order to illustrate

the different kinds of behaviors that emerge, and to ensure that our results have good generality.

For this evaluation, we selected a set of 16 representative and state-of-the-art approaches that spans

both general groups of algorithms (see Table 2.1). This set of algorithms is substantially larger

and more methodologically diverse than any previous comparative study of community detection

methods and covers a broad variety of approaches. To be included, an algorithm must have had

22

reasonably good computational complexity, generally good performance, and an available software

implementation. Because no complete list of community detection algorithms and available im-

plementations exists, candidate algorithms were identified manually from the literature, with an

emphasis on methodological diversity in addition to the above criteria.

From information theoretic approaches we selected MDL [148] and Infomap [163]. From

the regularized likelihood approaches, we selected the corrected integrated classification likeli-

hood (cICL-HKK) [81]. From among the Bayesian methods Newman and Reinert’s Bayesian

(B-NR) [136] and Hayashi, Konishi and Kawamoto’s Bayesian (B-HKK) [81] are selected. From

among the modularity based approaches, we selected Newman’s multiresolution modularity (Q-MR)

[133], the classic Newman-Girvan modularity (Q) [135] (both fitted using the Louvain method [26]),

the Zhang-Moore message passing modularity (Q-MP) [193], and the Kawamoto-Kabashima gener-

alized message passing modularity algorithm (Q-GMP) [99]. (We consider a cross-validation tech-

nique called leave-one-out (CV-LOO) [98] to be the model selection criterion of Q-GMP.) From

the spectral methods, we selected the non-backtracking (S-NB) [106] and Bethe Hessian [166, 110]

approaches. For the latter method, we include two versions, S-cBHa and S-cBHm [110], which

are corrected versions of the method proposed in Ref. [166]. From among the more traditional

statistical methods, we selected AMOS [37] and a likelihood ratio test (LRT-WB) [183].

Examples of algorithms that were not selected under the criteria listed above include the

infinite relational model (IRM) [100], a nonparametric Bayesian extension of SBM, along with

a variant designed to specifically detect assortative communities [126], the order statistics local

optimization method (OSLOM) [108], which finds clusters via a local optimization of a significance

score, and a method based on semidefinite programming [124]. Two related classes of algorithms

that we do not consider are those that return either hierarchical [167, 43, 165, 149] or mixed-

membership communities [9]. Instead, we focus on traditional community detection algorithms,

which take a simple graph as input and return a “hard” partitioning of the vertices. As a result,

hierarchical decompositions or mixed membership outputs are not directly comparable, without

additional assumptions.

23

us airport

high school

malaria

 macaque
neocortex

email

Figure 2.1: Average degree versus number of nodes for the corpus of 572 real-world networks studied
here. Networks were drawn from the Index of Complex Networks (ICON) [45], and include social,
biological, economic, technological, information, and transportation graphs.

As a technical comment, we note that the particular outputs of some algorithms depend on

the choice of a prior distribution, as in the Bayesian approaches, or on some details of the imple-

mentation. For example, the MDL and Bayesian integrated likelihood methods are mathematically

equivalent for the same prior [152], but can produce different outputs with different priors and

implementations (see below). However, the qualitative results of our evaluations are not affected

by these differences. Finally, we note that the link prediction task is carried out using the learned

models themselves, rather than using sampling methods, which improves comparability despite

such differences.

To evaluate and compare the behavior of these community detection algorithms in a practical

setting, we introduce and exploit the “CommunityFitNet corpus,” a novel data set2 containing 572

real-world networks drawn from the Index of Complex Networks (ICON) [45]. The CommunityFit-

Net corpus spans a variety of network sizes and structures, with 22% social, 21% economic, 34%

biological, 12% technological, 4% information, and 7% transportation graphs (Fig. 2.1). Within

it, the mean degree of a network is roughly independent of network size, making this a corpus of

sparse graphs. In our analysis, we treat each graph as being simple, meaning we ignore the edge
2 Available at https://github.com/AGhasemian/CommunityFitNet.

https://github.com/AGhasemian/CommunityFitNet

24

101 102 103

number of nodes, N

100

101

102

av
er

ag
e

nu
m

be
r o

f b
lo

ck
s,

k
(a)

101 102 103

number of edges, M

100

101

102

(b)
N (a) , M (b)

Q
Q-MR
Q-MP
Q-GMP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB
S-cBHm
S-cBHa
AMOS
LRT-WB (DC-SBM)

Figure 2.2: The average number of inferred communities, for 16 state-of-the-art methods (see
Table 2.1) applied to 572 real-world networks from diverse domains, versus the (a) number of nodes
N , with a theoretical prediction of

√
N , or (b) number of edges M , with a theoretical prediction

of
√
M .

weights and directions. If a graph is not connected, we consider only its largest component.

2.2 Number of Communities in Theory and Practice

2.2.1 In Theory

A key factor in whether some community detection method is over- or under-fitting to a net-

work is its selection of the number of clusters or communities k for the network. In the community

detection literature, most of the consistency theorems, which provide guarantees on the fraction

of mislabeled nodes, apply to dense networks only. For example, Ref. [41], proposes that the frac-

tion of misclassified nodes converges in probability to zero under maximum likelihood fitting, when

the number of clusters grows no faster than O(
√
N) and when the average degree grows at least

poly-logarithmically in N .

However, most real-world networks are sparse [114, 95], including all networks in the Commu-

nityFitNet corpus (Fig. 2.1), meaning results for dense networks are inapplicable. For sparse net-

works, several lines of mathematical study argue that the maximum number of detectable clusters is

O(
√
N), explicitly [148, 153, 39] or implicitly as an assumption in a consistency theorem [13, 38, 12].

25

For example, in the planted k-partition, the expected number of recoverable clusters grows

like O(
√
N) [13, 38]. (For convex optimization on the planted k-partition model, a tighter O(logN)

bound on the number of clusters has also been claimed [8], although this result is not rigorous.)

This theoretical limit is remarkably similar to the well-known resolution limit in modularity [64],

which shows that modularity maximization will fail to find communities with sizes smaller than

O(
√
M). Hence, the expected number of modularity communities in a sparse graph is also O(

√
M).

An argument from compression leads to a similar bound on k [148, 153]. Specifically, the model

complexity of a stochastic block model is Θ(k2), which under a minimum description length analysis

predicts that k = Θ(
√
M). This statement can also be generalized to regularized likelihood and

Bayesian methods. Although none of these analyses is fully rigorous, they do point to a similar

theoretical prediction: the number of recoverable communities in a real sparse network should

grow like O(
√
N). Different algorithms, of course, may have different constants of proportionality

or different sub-asymptotic behaviors. In our evaluations, we use a constant of 1 as a common

reference point.

As a technical comment, we note that the maximum number of clusters found is not the same

as the number of identifiable clusters under the information-theoretic limit to detectability [55]. For

example, as a result of a resolution limit, an algorithm might merge two clusters, but still infer

the remaining clusters correctly. In other words, the network’s communities exist in the detectable

regime but the output has lost some resolution.

2.2.2 In Practice

We applied our set of 16 community detection methods to the 572 real-world networks in the

CommunityFitNet corpus. For methods with free parameters, values were set as suggested in their

source papers. We then binned networks by their size N or M and for each method plotted the

average (Fig. 2.2) and maximum number (Fig. A.3) of inferred communities as a function of the

number of nodes N and edges M .

In both figures, solid lines show the theoretically predicted trends of
√
N and

√
M . Two

26

immediate conclusions are that (i) the actual behavior of different algorithms on the same input is

highly variable, often growing non-monotonically with network size and with some methods finding

10 times as many communities as others, but (ii) overall, the number of communities found does

seem to grow with the number of edges, and perhaps even roughly like the
√
M pattern predicted

by different theoretical analyses (Section 2.2.1). Furthermore, the empirical trends are somewhat

more clean when we consider the number of communities k versus the number of edgesM (Fig. 2.2b

and Fig. A.3b; see Appendix), suggesting that the mean degree of a network impacts the behavior

of most algorithms.

From this perspective, algorithms visually cluster into two groups, one of which finds roughly

2-3 times as many communities as the other. The former group contains the methods of Q, Q-

MR, Infomap, LRT-WB and AMOS, all of which find substantially more clusters than methods in

the latter group, which includes B-NR, B-HKK, cICL-HKK, MDL, spectral methods, Q-MP and

Q-GMP. In fact, first group of methods often return many more clusters than we would expect

theoretically, which suggests the possibility of consistent overfitting. As a small aside, we note

that the expected number of communities found by Q-MR and Q are different, because they are

known to have different resolution limits [107]. More generally, the aforementioned groups, and their

tendency to find greater or fewer communities aligns with our dichotomy of non-probabilistic (more

communities) versus probabilistic (fewer communities) approaches. Additionally, we note that the

AMOS method failed to converge on just over half of the networks in the CommunityFitNet corpus,

returning an arbitrary maximum value instead of k. Because of this behavior, we excluded AMOS

from all subsequent analysis.

In Ref. [99], the authors show empirically that Infomap and the Louvain method for mod-

ularity maximization tends to overfit the number of clusters planted in synthetic networks with

weak community structure. The results shown here on our large corpus of real-world networks are

consistent with these previous results, indicating that both modularity and Infomap tend to find

substantially more communities compared to other methods. Figure A.3, shows more clearly that

the maximum number of clusters detected by Q-MR and Infomap are nearly identical. Further-

27

more, these methods find the same average number of clusters over 572 networks (Fig. 2.2). This

behavior has not previously been noted, and suggests that Q-MR and Infomap may have the same

or very similar resolution limits.

In general, algorithms with similar formulations or that are based on similar approaches show

similar behavior in how k varies with M . For instance, beyond Q-MR and Infomap’s similarity,

we also find that MDL, various regularized likelihood methods, and the Bayesian approaches find

similar numbers of communities. Spectral methods appear to behave similarly, on average (Fig. 2.2),

to the Bayesian approaches. However, spectral approaches do seem to overfit for large network sizes,

by finding a maximum number of communities that exceeds theoretical predictions, in contrast to

the Bayesian approaches.

Looking more closely at similar methods, we observe small differences in the number of

clusters k they return as a function of network size N , which must be related to differences in their

implicit assumptions. For example B-HKK, B-NR and cICL-HKK often agree on the number of

communities for networks with a smaller number of edges, but they disagree for networks with a

larger number of edges (Fig. 2.2). Due to a more exact Laplace approximation with higher order

terms, B-HKK penalizes the number of clusters more than B-NR and cICL-HKK, which limits the

model space of B-HKK to smaller models that correspond to fewer communities. This tradeoff is a

natural one, as approaches that penalize a model for greater complexity, like in B-HKK, are intended

to reduce the likelihood of overfitting, which can in turn increase the likelihood of underfitting.

Returning to the Q-MR method, we inspect its results more carefully to gain some insight

into whether it is overfitting or not. Ref. [133] proves that Q-MR is mathematically equivalent

to a DC-SBM method on a k-planted partition space of models. The Q-MR algorithm works

implicitly like a likelihood-maximization algorithm, except that it chooses its resolution parameter,

which sets k, by iterating between the Q and DC-SBM formulations of the model. Evidently,

this approach does not limit model complexity as much as a regularized likelihood and tends to

settle on a resolution parameter that produces a very large number of communities. This behavior

highlights the difficulty of characterizing the underlying tradeoffs that drive over- or under-fitting

28

in non-probabilistic methods. We leave a thorough exploration of such questions for future work.

The variation across these 16 methods of the average and maximum number of communities

found, provides suggestive evidence that some methods are more prone to over- or under-fitting than

others, in practice. The broad variability of detected communities by different methods applied to

the same input is troubling, as there is no accepted procedure for deciding which output is more

or less useful.

2.3 Quantifying algorithm similarity

Although algorithms can be divided into groups based on their general approach, e.g., prob-

abilistic and non-probabilistic methods (see Section 3), such conceptual divisions may not reflect

practical differences when applied to real data. Instead, a data-driven clustering of algorithms can

be obtained by comparing the inferred labels of different methods applied to a large and consis-

tent set of real-world networks. That is, we can use our structurally diverse corpus to empirically

identify groups of algorithms that produce similar kinds of community structure across different

data sets. (We note that this kind of comparative analysis has previously been employed to better

characterize the behavior of different time series methods [66].) We quantify algorithm similarity

by computing the mean adjusted mutual information (AMI) [182] between each pair of methods

for the communities they recover on each network in the CommunityFitNet corpus. We then apply

a standard hierarchical clustering algorithm to the resulting matrix of pairwise similarities in al-

gorithm output (Fig. 2.3a). Using the unadjusted or normalized mutual information (NMI) yields

precisely the same clustering results, indicating that these results are not driven by differences in

the sizes of the inferred communities, which are broadly distributed (Fig. 2.3b).

The derived clustering of algorithms shows that there is, indeed, a major practical difference

in the composition of communities found by probabilistic versus non-probabilistic methods. In fact,

methods based on probabilistic models typically find communities that are more similar to those

produced by other probabilistic methods, than to those of any non-probabilistic method, and vice

versa. This high-level dichotomy indicates a fairly strong division in the underlying assumptions of

29

Figure 2.3: A clustering of community detection algorithms into distinct high-level groups based
on the similarities of their outputs on real-world networks. (a) The mean adjusted mutual in-
formation (AMI) between each pair of methods for communities they recovered on each network
in the CommunityFitNet corpus. Rows and columns have been ordered according to the results
of a hierarchical clustering of the AMI matrix, after applying a Gaussian kernel with parameter
σ2 = 0.3. (b) Density plots showing the distribution of the number of inferred communities k for
groups of similar algorithms.

30

these two classes of algorithms.

The non-probabilistic methods group further subdivides into subgroups of spectral algorithms

(S-cBHa, S-NB, and S-cBHm), consensus-based modularity algorithms (Q-MP and Q-GMP), tra-

ditional statistical methods (AMOS and LRT-WB), and finally other non-probabilistic methods

(including Infomap, Q, and Q-MR). The fact that algorithms themselves cluster together in the

kind of outputs they produce has substantial practical implications for any application that depends

on the particular composition of a network clustering. It also highlights the subtle impact that

different classes of underlying assumptions can ultimately have on the behavior of these algorithms

when applied to real-world data.

2.4 Evaluating Community Structure Quality

To evaluate and compare the quality of the inferred clusters for a particular network, we need

a task that depends only on a network’s connectivity and that can reveal when a method is over- or

under-fitting these data. (Recall that the NFL and “no ground truth” theorems of Ref. [147] imply

that a comparison based on node metadata cannot be reliable.) For relational data, a common

approach uses a kind of network cross-validation technique, called link prediction [118], in which

some fraction of the observed edges in a network are “held out" during the model-fitting stage, and

their likelihood estimated under the fitted model.

We note, however, that there is as yet neither a consensus about how to design such a task

optimally nor a theoretical understanding of its relationship to model fit. For example, it was

recently shown that selecting the most parsimonious probabilistic model in community detection,

by maximizing model posterior probability, can correlate with selecting the model with highest

link prediction accuracy [178]. However, these same results show that it is possible to construct

networks, i.e., adversarially, in which the most plausible model (in the sense of posterior proba-

bility) is not the most predictive one, and hence improving predictive performance can also lead

to overfitting. Furthermore, the theoretical implications are unknown for distinct approaches to

construct a held-out data set from a single network, for example, holding out a uniformly random

31

subset of edges or all edges attached to a uniformly random subset of nodes. Although there are

strong theoretical results for cross-validation and model selection for non-relational data, whether

these results extend to networks is unclear as relational data may violate standard independence

assumptions. Theoretical progress on this subject would be a valuable direction of future research.

Here, we introduce an evaluation scheme based on a pairing of two complementary network

learning tasks: a link prediction task, described above and in Box 1, and a new task we call link

description, described below and in Box 2. The goal of these tasks is to characterize the behavior

of methods in general, i.e., a method’s general tendency to over- or under-fit across many real

networks, rather than to evaluate the quality of a fit to any particular network. A key feature

of this scheme is that a method cannot be perfect at both tasks, and each method’s tradeoff in

performance across them creates a diagnostic to evaluate the method’s tendency to over- or under-fit

real data.

In our evaluation, each method uses a score function to estimate the likelihood that a par-

ticular pair of nodes ij should be connected. Most algorithms optimize some underlying objective

function in order to sort among different community partitions. In our main evaluation, we use

model-specific score functions, which are based on the method’s own objective function. This choice

ensures that each method makes estimates that are aligned with its underlying assumptions about

what makes good communities. We also compare these model-specific results with those derived

from a SBM-based scoring function in Appendix A.2. This comparison to a fixed reference point

allows us to better distinguish between poor generalizability being caused by a low-quality score

function and the selection of a low-quality partition or set of communities.

32
2.4.1 Model-specific Link Prediction and Description

2.4.1.1 Link prediction

When a graph G = (V,E) has been sampled to produce some G′ = (V,E′), where E′ ⊂ E,

the goal of link prediction is to accurately distinguish missing links (true positives) from non-edges

(true negatives) within the set of unobserved connections ij ∈ V × V rE′. Link prediction is thus

a binary classification task and its general accuracy can be quantified by the area under the ROC

curve (AUC).

For our evaluation, we parameterize this classification accuracy by α ∈ (0, 1), which deter-

mines the fraction of edges “observed” (equivalently, the density of sampled edges) in G′ = (V,E′),

where |E′| = α|E| is a uniformly random subset of edges in the original graph G. For a given

method f , its AUC as a function of α, which we call an “accuracy curve,” shows how f performs

across a wide variety of such sampled graphs, ranging from when very few edges are observed

(α→ 0) to when only a few edges are missing (α→ 1).

Each network G in our corpus produces one such accuracy curve, and we obtain a single

“benchmark performance curve” for each method by computing the mean AUC at each value of

α, across curves produced by the networks in the CommunityFitNet corpus. When computing the

AUC, we break ties in the scoring function uniformly at random. Box 1 describes the link prediction

task in detail.

In this setting, the AUC is preferred over precision-recall because we are interested in the

general performance of these classifiers, rather than their performance under any specific predic-

tion setting. Evaluating other measures of accuracy is beyond the scope of this study. Comparing

benchmark performance curves across community detection methods quantifies their relative gen-

eralizability and predictiveness, and allows us to assess the quality of choice each method makes

for the number of clusters it found in Section 2.2.2.

In our link prediction and link description evaluations, we exclude S-cBHa and S-cBHm

because they produce very similar results to the S-NB method, LRT-WB because of its high com-

putational complexity, and AMOS and Q-GMP because of convergence issues. All other methods

33

Box 1: Link Prediction Benchmark
• Let G be a corpus of networks, each defined as a graph G = (V,E).

• For each G ∈ G, define a “sampled graph” as G′ = (V,E′), where E′ ⊂ E, and

|E′| = α|E| for α ∈ (0, 1) is a uniformly random edge subset.

• Let f denote a community detection method.

• Let sij ∈ R denote a score function specific to f that assigns a numerical value to

each potential missing link ij ∈ V × V r E′, with ties broken uniformly at random.

• Define the accuracy of f , applied to G′ and measured by s, as the AUC on distin-

guishing missing links (true positives) ij ∈ E r E′ from non-edges (true negatives)

ij ∈ V × V r E.

• Define the link prediction “accuracy curve” to be the AUC of f on a set of G′, for

0 < α < 1.

• Define the link prediction “benchmark performance curve” of f to be the mean AUC

of f over all G′ ∈ G at each α.

are included.

We now define a model-specific score function for each method (see Appendix for more

details). Each score function uses the corresponding method f to define a model-specific function

sij that estimates the likelihood that a pair of nodes ij should be connected. For probabilistic

methods, the natural choice of score function is simply the posterior probability the model assigns

to a pair i, j. For non-probabilistic methods, we constructed score functions that reflected the

underlying assumptions of the corresponding method, without introducing many additional or

uncontrolled assumptions.

For regularized likelihood/Bayesian approaches of the SBM (cICL-HKK, B-NR and B-HKK),

34

we follow the same scoring rule as in Ref. [75]. Specifically, the score sij assigned to an unobserved

edge between nodes i and j, for (i, j) /∈ E′ with community assignments of gi and gj , respectively,

is given by sij =
`gi,gj + 1
rgi,gj + 2, where `gi,gj is the number of edges in the observed network G′ between

the groups gi and gj and rgi,gj is the maximum possible number of links between the groups gi and

gj . For DC-SBM we define sij = θiθj`gi,gj , where θi is the normalized degree of node i with respect

to total degree of its type as the maximum likelihood estimation of this parameter. For all the Q

methods, Infomap, and MDL we define the scores as the contribution that the added unobserved

edge would make to their corresponding partition score functions. For the Q methods, we compute

the increase in the modularity score due to the added unobserved edge, while for Infomap and MDL

we compute the decrease of their objective functions. For each of these methods, the contribution

of each pair of nodes is computed under the partition obtained prior to adding the candidate pair

as an edge.

There is no commonly accepted link prediction approach for spectral clustering algorithms

that is independent of metadata. Although there are some non-linear embedding methods for link

prediction like node2vec [74], here we focus on linear decomposition techniques. For spectral clus-

tering, we introduce and use a new link prediction technique based on eigenvalue decomposition.

Let the adjacency matrix of the observed graph G′ be denoted by A′. This matrix can be decom-

posed as A′ = V ΛV T , where V = [v1v2 . . . vN] with vi as ith eigenvector of matrix A′ and matrix

Λ = diag[λ1, λ2, . . . , λN] is the diagonal matrix of eigenvalues of A′, where λ1 ≥ λ2 ≥ . . . ≥ λN .

To define a new scoring function, we use a low-rank matrix approximation of A′ using the k

largest eigenvalues and their corresponding eigenvectors, i.e., we let:

Â′ = [v1v2 . . . vk]diag[λ1, λ2, . . . , λk][v1v2 . . . vk]T ,

where k can be inferred using a model selection spectral algorithm. The spectral method scoring

rule sij assigned to an unobserved edge between nodes i and j, for (i, j) /∈ E′, is the corresponding

entry value in low-rank approximation. We note that alternative constructions exist for a spectral

scoring function that meets the aforementioned criteria. For instance, one could use the low-rank

approximation via the non-backtracking matrix itself, but such a function would be quite non-

35

trivial. On the other hand, the SBM-based and model-specific performance comparison given in

Appendix A.2 indicates that the score function we use for this algorithm (S-NB) performs well and

it is not itself the cause of this algorithm’s observed poor performance. Exploring the broader space

of scoring functions for spectral or other methods remains an interesting direction for future work.

The performance of each method is assessed by numerically computing its benchmark per-

formance curve, using the 572 real-world networks in the CommunityFitNet corpus. Exactly cal-

culating a single accuracy curve for a sparse graph G takes Ω(N2) time, which is prohibitive for

large networks. However, each AUC in a curve may be accurately estimated using Monte Carlo,

because the AUC is mathematically equivalent to the probability that a uniformly random true

positive is assigned a higher score than a uniformly random true negative. In all of our experiments,

an accuracy of ±0.01 is sufficient to distinguish performance curves, requiring 10,000 Monte Carlo

samples.

Community detection methods that are prone to overfitting (underfitting) will tend to find

more (fewer) communities in a network than is optimal. Hence, the induced partition of the

adjacency matrix into within- and between-group blocks will over- (under-) or under- (under-)

estimate the optimal block densities. This behavior will tend to produce lower AUC scores for

the prediction of uniformly held-out pairs in the corresponding evaluation set. That is, a lower

benchmark performance curve indicates a greater general tendency to over- or under-fit on real-

world networks.

2.4.1.2 Link description

The goal of link description is to accurately distinguish observed edges E′ (true positives)

and observed non-edges V × V r E′ (true negatives) within the set of all pairs ij ∈ V × V . That

is, link description asks how well a method learns an observed network, and it is also a binary

classification task.

As in link prediction, we parameterize the sampled graph G′ by the fraction α of observed

edges from the original graph G. And, we use the same scoring functions to evaluate an algorithm’s

36

Box 2: Link Description Benchmark
• Let G be a corpus of networks, each defined as a graph G = (V,E).

• For each G ∈ G, define a “sampled graph” as G′ = (V,E′), where E′ ⊂ E, and

|E′| = α|E| for α ∈ (0, 1) is a uniformly random edge subset.

• Let f denote a community detection method.

• Let sij ∈ R denote a score function specific to f that assigns a numerical value to

each potential edge ij ∈ V × V , with ties broken uniformly at random.

• Define the accuracy of f , applied to G′ and measured by s, as the AUC on distinguish-

ing observed edges (true positives) ij ∈ E′ from observed non-edges (true negatives)

ij ∈ V × V r E′.

• Define the link description “accuracy curve” to be the AUC of f on a set of G′, for

0 < α < 1.

• Define the link description “benchmark performance curve” of f to be the mean AUC

of f over all G′ ∈ G at each α.

accuracy at learning to distinguish edges from non-edges. Then, using the networks in the Com-

munityFitNet corpus, we obtain a benchmark performance curve for each method. Box 2 describes

the link description task in detail.

Crucially, an algorithm cannot perform perfectly at both the link prediction and the link

description tasks. If an algorithm finds a very good partition for distinguishing between observed

edges and observed non-edges (link description), this partition must assign low scores to all of

the observed non-edges. This fact implies that the same partition cannot also be very good for

distinguishing between non-edges and missing edges (link prediction), as it must assign low scores

to both. The link prediction and description tasks thus force an algorithmic tradeoff, similar to a

bias-variance tradeoff, and the joint behavior of a method across the two tasks provides a means

37

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.5

0.6

0.7

0.8

0.9
AU

C
(a) link prediction (test)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.2

0.4

0.6

0.8

1.0

AU
C

(b) link description (train)
Q
Q-MR
Q-MP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB

Figure 2.4: Benchmark performance curves using model-specific score functions for (a) link predic-
tion and (b) link description tasks. Each curve shows the mean AUC for a different community
detection method across 572 real-world networks for a given fraction α of observed edges in a
network.

to evaluate a tendency to over- or under-fit to real data.

2.4.1.3 Results

The benchmark performance curves generally exhibit reasonable behavior: across the Com-

munityFitNet corpus networks, methods generally tend to improve their performance on both link

prediction and link description tasks as the fraction of sampled edges varies from very low to very

high (Fig. 2.4), with some exceptions. For our purposes, we are specifically interested in the relative

differences between the curves, which sheds new light on the degree to which methods tend to over-

or under-fit on network data.

In link prediction (Fig. 2.4a), the low curves for Q methods reinforce our previous suggestion

that these algorithms exhibit poor generalizability. Their performance is particularly poor when

the edge density in the observed network is very low, e.g., when more than two-thirds of the edges

are missing (α < 0.3) for Q-MR and Q. This behavior aligns well with the evidence in Section 2.2.2

that these methods tend to over-partition the network, finding many more communities than is

optimal.

We also find that Q and Q-MR exhibit nearly identical benchmark performance curves for

38

link prediction. Although Q has a larger resolution limit, which leads to fewer inferred clusters, our

results suggest that Q still finds more communities than is optimal, especially compared to other

methods. Evidently, these two methods tend to misinterpret noisy connectivity within communities

as indicating the presence of substructure deserving of additional fitting, and they do this in a

similar way, leading to similar numbers of communities and very similar link prediction curves. This

behavior may reflect the common assumptions of these methods that communities are assortative

(edges mainly within groups) and that the between-group edge densities are uniform. If this

assumption is not reflected in the input network’s actual large-scale structure, these methods can

overfit the number of communities (Fig. 2.2 and Fig. A.3; see Appendix), subdividing larger groups

to find a partition with the preferred structure.

The best benchmark performance curves for link prediction are produced by Bayesian meth-

ods (B-NR (SBM), B-HKK, and cICL-HKK) and MDL methods (both DC-SBM and SBM). And

the SBM methods generally outperform the DC-SBM methods, except for the DC-SBM with MDL

regularization, which yields the best overall benchmark curve for nearly every value of α.

Such a difference is surprising since the number of inferred clusters for both Bayesian and

regularized-likelihood methods is nearly identical (Fig. 2.2a,b), and the precise composition of the

clusters is very similar (Fig. 2.3). However, these methods use different score functions to estimate

the likelihood of a missing edge, and evidently, those based on more general rules perform better at

link prediction. For instance, B-NR (SBM) assigns the same scores to the links inside each cluster,

whereas B-NR (DC-SBM) assigns higher scores to the links connected to high degree nodes. In

B-NR, the emphasis on modeling node degrees by the DC-SBM score function leads to worse

performance. In contrast, the MDL technique, while based on the same underlying probabilistic

network model, assigns higher scores to edges that produce a better compression of the input data

(shorter description length). Hence, the MDL score function prefers adjacencies that decrease the

model entropy without increasing model complexity, meaning that it predicts missing links in places

with better community structure. The MDL approach to controlling model complexity, particularly

in the DC-SBM score function, is more restrictive than most Bayesian approaches, but it evidently

39

leads to more accurate link prediction (Fig. 2.4a).

The benchmark performance curves for Infomap, spectral clustering (S-NB), and B-NR (DC-

SBM) are similar, especially for modest or larger values of α, and are close to the middle of the

range across algorithms. Furthermore, we find that the curves of B-HKK (SBM) and cICL-HKK

(SBM) are similar to, but lower than B-NR (SBM). There are two possibilities for this behavior:

(i) the number of inferred clusters is inaccurate, or (ii) these methods perform poorly at link

prediction. Because the score functions of B-HKK (SBM), cICL-HKK (SBM), and B-NR (SBM)

are similar, the lower link prediction benchmark performance is more likely caused by a low-quality

set of inferred clusters, due to over- or under-fitting.

The benchmark results for link description (Fig. 2.4b) show that B-HKK (SBM) and cICL-

HKK (SBM) perform relatively poorly compared to most other methods, which suggests that they

must tend to under-fit on networks. This behavior is likely driven by their larger penalty terms,

e.g., compared to methods like B-NR (SBM), which will favor finding a smaller number of clusters

in practice (Fig. 2.2). This behavior will tend to aid in link prediction at the expense of link

description. We note that Ref. [81] introduced a better approximation for B-HKK (SBM)’s penalty

terms, which might suggest that the method would find more optimal partitions in theory. However,

our results show that this is not the case in practice, and instead this method illustrates a tradeoff

in which a greater penalty for model complexity, by over-shrinking or over-smoothing the model

space, can lead to poor performance in practical settings.

The best benchmark performance for link description is given by Infomap first, followed by

the Bayesian technique B-NR (DC-SBM), and by modularity Q and Q-MR, all of which exhibit

only middling performance curves for link prediction. This behavior suggests that all of these

methods tend to overfit on networks. Others are better at link prediction compared to their

relative performance at link description (MDL (DC-SBM), B-NR (SBM), cICL-HKK, and B-HKK),

suggesting that these methods tend to well-fit on networks. And, some methods perform poorly

on both tasks, such as Q-MP. These comparisons illustrate the intended tradeoff in our diagnostic

between the link prediction and link description tasks, and provide a useful contrast for evaluating

40

the practical implications of different kinds of underlying algorithmic assumptions.

The relative performance of Q, Q-MR, and Infomap versus other methods on these tasks

provides an opportunity to understand how an algorithm’s assumptions can drive over- and under-

fitting in practice. By definition, the partitions found by Infomap and modularity-based methods

like Q and Q-MR will tend to have highly assortative communities and a uniformly low density

of edges between communities. Such a partition must perform poorly at modeling the few edges

between these clusters; hence, as the density of these edges increases with α, these methods’ link

description performance must tend to decrease. In contrast, nearly all other methods generally

perform better at link description as more edges are sampled, except for B-NR (DC-SBM), whose

performance is relatively independent of α. As a group, the probabilistic methods have the flexibility

to model different rates of between-group connectivity, but this behavior requires sufficient observed

connectivity in order to estimate the corresponding densities. As a result, these models are less data

efficient than are modularity and spectral methods at describing the observed structure, especially

in the sparsely-sampled regime (low α).

The exception to this interpretation is Q-MP, which exhibits a poor performance on both

tasks (Fig. 2.4a,b). These tendencies can be understood in light of the relatively small number of

communities Q-MP tends to find (Fig. 2.2 and Fig. A.3; see Appendix), which suggests that it tends

to substantially under-fit to the data. In fact, Q-MP uses a consensus of many high-modularity

partitions in order to explicitly avoid overfitting to spurious communities. Evidently, this strategy

tends to find far fewer communities than is optimal for either link description or link prediction. The

Q-GMP method may perform better, as it controls the bias-variance tradeoff through a learning

phase on its parameters. Due to poor convergence behavior with this method, however, we leave

this line of investigation for future work.

Figure A.5 (see Appendix) provides a complementary representation of these results, via a

parametric plot (parameterized by α), showing accuracy on link prediction as a function of accuracy

on link description. The path each method traces through this space illustrates its average tradeoff

between prediction and description, as a function of the relative sparsity of the training set. This

41

Ta
bl
e
2.
2:

Su
m
m
ar
y
of

re
su
lts

fo
r1

6
al
go

rit
hm

s(
Ta

bl
e
2.
1)

on
th
e
nu

m
be

ro
fc

om
m
un

iti
es
k
(F

ig
.2

.2
b)
,t
he

al
go

rit
hm

gr
ou

p
th
e
ou

tp
ut

is
m
os
ts

im
ila

rt
o
(F

ig
.2

.3
),
be

nc
hm

ar
k
pe

rfo
rm

an
ce

on
lin

k
pr
ed

ic
tio

n
(F

ig
.2

.4
a)

an
d
lin

k
de

sc
rip

tio
n
(F

ig
.2

.4
b)
,a

nd
an

ov
er
al
la

ss
es
sm

en
t

of
its

te
nd

en
cy

to
ov
er
-o

r
un

de
r-
fit
.

N
um

be
r
of

Pa
rt
iti
on

Li
nk

Pr
ed

ic
tio

n
Li
nk

D
es
cr
ip
tio

n
A
lg
or
ith

m
C
om

m
un

iti
es
,k

Ty
pe

Be
nc
hm

ar
k

Be
nc
hm

ar
k

O
ve
ra
ll
Fi
t

Q
la
rg
er

no
n-
pr
ob

ab
al
ist

ic
po

or
go

od
ov
er

fit
s

Q
-M

R
la
rg
er

no
n-
pr
ob

ab
al
ist

ic
po

or
go

od
ov
er

fit
s

Q
-M

P
sm

al
le
r

sp
ec
tr
al
/

no
n-

pr
ob

ab
al
ist

ic
po

or
po

or
un

de
r
fit
s

Q
-G

M
P

sm
al
le
r

sp
ec
tr
al
/

no
n-

pr
ob

ab
al
ist

ic
—

–
—

–
in
co
nc

lu
siv

e

B-
N
R

(S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
ve
ry

go
od

m
od

er
at
e

we
ll-
fit
te
d

B-
N
R

(D
C
-S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
m
od

er
at
e

ve
ry

go
od

ov
er

fit
s,

m
od

es
tly

B-
H
K
K

(S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
go

od
m
od

er
at
e

un
de

r
fit
s,

m
od

es
tly

cI
C
L-
H
K
K

(S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
go

od
m
od

er
at
e

un
de

r
fit
s,

m
od

es
tly

In
fo
m
ap

la
rg
er

no
n-
pr
ob

ab
al
ist

ic
m
od

er
at
e

m
od

er
at
e

ov
er

fit
s

M
D
L
(S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
go

od
po

or
un

de
r
fit
s

M
D
L
(D

C
-S
BM

)
sm

al
le
r

pr
ob

ab
al
ist

ic
ve
ry

go
od

m
od

er
at
e

we
ll-
fit
te
d

S-
N
B

sm
al
le
r

sp
ec
tr
al

m
od

er
at
e

m
od

er
at
e

un
ev
en

fit
s

S-
cB

H
m

sm
al
le
r

sp
ec
tr
al

—
–

—
–

in
co
nc

lu
siv

e
S-
cB

H
a

sm
al
le
r

sp
ec
tr
al

—
–

—
–

in
co
nc

lu
siv

e
A
M
O
S

la
rg
er

no
n-
pr
ob

ab
al
ist

ic
—

–
—

–
in
co
nc

lu
siv

e
LR

T
-W

B
(D

C
-S
BM

)
la
rg
er

no
n-
pr
ob

ab
al
ist

ic
—

–
—

–
in
co
nc

lu
siv

e

42

Box 3: Behavior of Community Detection methods

Well-fitted link prediction: good

link description: poor

e.g., MDL and B-NR

Overfitted link prediction: poor

link description: good

e.g., Q, Q-MR, and Infomap

Underfitted link prediction: poor

link description: poor

e.g., B-HKK and Q-MP

Uneven overfits on some classes of inputs

underfits on others

e.g., spectral methods

parametric space may also be partitioned into three regions that align with the evaluation criteria

of Box 3, so that these regions correspond to good or poor performance on the two tasks (with

good performance both being excluded).

The results in this section reveals substantial evidence that most methods tend to over- or

under-fit to networks, to some degree. However, poor performance at either task could also be the

result of a poor pairing of a particular score function with the particular communities an algorithm

finds. A valuable check on our above results is to test the performance of the identified communities

under a common score function. The results of this experiment are available in Appendix A.2.

2.4.2 Discussion of Results

One consequence of the No Free Lunch and “no ground truth” theorems for community

detection [147] is that algorithm evaluations based on comparing against a partition defined by

43

node metadata do not provide generalizable or interpretable results. As a result, relatively little is

known about the degree to which different algorithms over- or under-fit on or across different kinds

of inputs.

The pair of link-based tasks introduced here defines a tradeoff much like a bias-variance trade-

off, in which an algorithm can either excel at learning the observed network (link description) or at

learning to predict missing edges (link prediction), but not both. Link description thus represents

a kind of in-sample learning evaluation, and an algorithm with a high benchmark performance

curve on this task tends to correctly learn where edges do and do not appear in a given network.

In contrast, link prediction presents a kind of out-of-sample learning evaluation, and an algorithm

with a high performance curve on this task must do worse at link description in order to identify

which observed non-edges are most likely to be missing links. The relative performance on these

two tasks provides a qualitative diagnostic for the degree to which an algorithm tends to over- or

under-fit when applied to real-world networks. Box 3 provides simple guidelines for assessing this

tendency for any particular method.

Our evaluation and comparison of 11 state-of-the-art algorithms under these two tasks using

the CommunityFitNet corpus of 572 structurally diverse networks provides new insights. We sum-

marize our findings in Table 2.2, describing the number of communities an algorithm tends to find,

the group of algorithms its output partitions tend to be most similar to, and its performance on

link prediction and description. We also provide an overall qualitative assessment of the algorithm’s

practical behavior, following the rubrics in Box 3. In particular, we find dramatic differences in

accuracy on both tasks across algorithms. Generally, we find that probabilistic methods perform

well at link prediction and adequately at link description, indicating that they tend to produce

relatively well-fitted communities.

In contrast, we find that methods based on modularity maximization (Q and Q-MR) and

Infomap tend to overfit on real-world networks, performing poorly at link prediction but well at

link description. In contrast, some methods, such as Q-MP tend to underfit on real-world data,

performing poorly, or at best moderately, on both tasks. In previous work on a more limited num-

44

ber of networks, Ref. [99] concluded that modularity-based spectral community detection tends to

underfit, while non-backtracking spectral community detection (S-NB, here) tends to overfit. Our

results on 572 networks, however, show that spectral methods such as S-NB are more uneven, tend-

ing to underfit in some circumstances and overfit in others. Given the broad popularity of spectral

techniques in community detection, this particular result indicates that more careful evaluations

of spectral techniques in practical settings are likely warranted, and their general accuracy should

not be assumed.

It is worth highlighting that in some settings, an approach like Infomap or Q that is bet-

ter at link description than at link prediction may be preferred, as overfitting is controlled in a

post-processing step outside the algorithm itself. Similarly, some methods, such as Infomap, are

more readily adaptable to different kinds of input data and research questions. Articulating and

formalizing such qualitative methodological tradeoffs are an important direction for future work.

The best overall methods are MDL (DC-SBM) and B-NR (SBM). However, their better

performance is not universal across the CommunityFitNet corpus, and other algorithms perform

better at link prediction on some networks in the corpus than do either of these methods. In fact,

we find that every algorithm is the best link prediction algorithm for some combination of network

and level of subsampling α (Fig. 2.5). In other words, no algorithm is always worse at the link

prediction task than every other algorithm, even if there are some algorithms that are on average

better than some other algorithms. This variability in the best algorithm for particular networks

aligns with the main implication of the No Free Lunch theorem [147], and illustrates the misleading

nature of using evaluations over a small set of real-world networks to support claims that this or

that algorithm is generally superior. Our findings demonstrate that such claims are likely incorrect,

and that superiority is context specific, precisely as the No Free Lunch theorem would predict.

Reinforcing this point, we also find that algorithm performance on the link prediction task

varies considerably depending on the type of network, i.e., whether the network is drawn from a so-

cial, biological, economic, technological, transportation, or information domain (Fig. 2.6). Remark-

ably, nearly all methods perform similarly well on social networks, which may reflect the tendency

45

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
fraction of observed edges ()

Q

Q-MR

Q-MP

B-NR (SBM)

B-NR (DC-SBM)

B-HKK (SBM)

cICL-HKK (SBM)

Infomap

MDL (SBM)

MDL (DC-SBM)

S-NB 0.0

0.1

0.2

0.3

0.4

0.5

Figure 2.5: A heatmap showing the fraction of networks in the CommunityFitNet corpus on which
a particular algorithm produced the best performance on the link prediction task, for different levels
of subsampling α. The two best overall methods (MDL DC-SBM and B-NR SBM) in Fig. 2.4a
are not always the best, and every algorithm is the best for some combination of network and α.
Here, any algorithm with an AUC performance within 0.05 of the maximum observed AUC, for
that network and α choice, is also considered to be “best”.

for social networks to exhibit simple assortative mixing patterns—communities with many more

edges within them than between them—that are well-captured by every algorithm. In contrast,

networks from other domains present more variable results, sometimes markedly so. Technological

networks produce more modest performance across all algorithms, but with more cross-algorithm

variability than observed in social networks, and both performance and variability are greater still

for information and biological networks. The greatest variability is seen for economic, information,

and biological networks, which suggests the presence of structural patterns not well-captured by

the poor-performing algorithms.

A thorough exploration of the reasons that some algorithms perform more poorly in some

domains than others would be a valuable direction for future work. One candidate explanation

comes from the prevalence or presence of disassortative communities—communities defined more

by the absence of their interconnections than their presence—in networks. Many community de-

tection algorithms are designed primarily to find assortative communities, and hence the presence

of disassortative patterns may cause overfitting in their output. To test this simple hypothesis, we

46

Figure 2.6: Separate benchmark performance curves using model-specific score functions for the link
prediction (test) task for networks drawn from (a) biological (34%), (b) social (22%), (c) economic
(21%), (d) technological (12%), (e) transportation (7%), and (f) information (4%) domains of origin
in the CommunityFitNet corpus. As in Fig. 2.4a, each curve shows the mean AUC for a different
community detection method, for a given fraction α of observed edges in a network.

47

separated our results into two classes, depending on whether they came from a bipartite network,

and hence one that is naturally disassortative, or a non-bipartite network. These results, given in

Appendix A.1, show that algorithms exhibit the same qualitative patterns of overfitting and un-

derfitting for both classes. We look forward to a deeper investigation of the origins of this behavior

in future work.

2.5 Conclusion

Community detection algorithms aim to solve the common problem of finding a lower-

dimensional description of a complex network by identifying statistical regularities or patterns

in connections among nodes. However, no algorithm can solve this problem optimally across all

inputs [147], which produces a natural need to characterize the actual performance of different algo-

rithms across different kinds of realistic inputs. Here, we have provided this characterization, for 16

state-of-the-art community detection algorithms applied to a large and structurally diverse corpus

of real-world networks. The results shed considerable light on the broad diversity of behavior that

these algorithms exhibit when applied to a consistent and realistic benchmark.

For instance, nearly all algorithms appear to find a number of communities that scales like

O(
√
M). At the same time, however, algorithms can differ by more than an order of magnitude

in precisely how many communities they find within the same network (Fig. 2.2). And, non-

probabilistic approaches typically find more communities than probabilistic approaches. Comparing

the precise composition of the identified communities across algorithms indicates that algorithms

with similar underlying assumptions tend to produce similar kinds of communities—so much so

that we can cluster algorithms based on their outputs (Fig. 2.3), with spectral techniques finding

communities that are more similar to those found by other spectral techniques than to communities

found by any other methods, and similarly for probabilistic methods and for non-probabilistic

methods. This behavior would seem to indicate that different sets of reasonable assumptions about

how to specify and find communities tend to drive real differences in the composition of the output.

That is, different assumptions reflect different underlying tradeoffs, precisely as predicted by the

48

No Free Lunch theorem.

Different algorithms also present wide variation in their tendency to over- or under-fit on real

networks (Fig. 2.4), and the link prediction/description tasks we introduced provide a principled

means by which to characterize this algorithmic tendency. Here also we find broad diversity across

algorithms, with some algorithms, like MDL (DC-SBM) and B-NR (SBM) performing the best

on average on link prediction and well enough on link description. However, we also find that

these algorithms are not always the best at these tasks, and other algorithms can be better on

specific networks (Fig. 2.5). This latter point is cautionary, as it suggests that comparative studies

of community detection algorithms, which often rely on a relatively small number of networks by

which to assess algorithm performance, are unlikely to provide generalizable results. The results

of many previously published studies may need to be reevaluated in this light, and future studies

may find the link prediction and link description tradeoff to be a useful measure of algorithm

performance.

Beyond these insights into the algorithms themselves, the CommunityFitNet corpus of net-

works has several potential uses, e.g., it can be used as a standardized reference set for comparing

community detection methods. To facilitate this use case, both the corpus dataset and the derived

partitions for each member network by each of the algorithms evaluated here is available online for

reuse. To compare a new algorithm with those in our evaluation set, a researcher can simply run

the new algorithm on the corpus, and then identify which reference algorithm has the most similar

behavior, e.g., in the average number of communities found (Fig. 2.2) or the composition of the

communities obtained (Fig. 2.3). Similarly, a researcher could quickly identify specific networks

for which their algorithm provides superior performance, as well as compare that performance on

average across a structurally diverse set of real-world networks. We expect that the availability of

the CommunityFitNet corpus and the corresponding results of running a large number of state-

of-the-art algorithms on it will facilitate many new and interesting advances in developing and

understanding community detection algorithms.

Our results also open up several new directions of research in community detection. For

49

instance, it would be valuable to investigate the possibility that a method, when applied to a

single network, might over-partition some parts but under-partition other parts—an idea that

could be studied using appropriate cross-validation on different parts of networks. Similarly, a

theoretical understanding of what algorithmic features tend to lead to over- or under- or uneven-

fitting outcomes for community detection would shed new light on how to control the underlying

tradeoffs that lead to more general or more specific behavior. These tradeoffs must exist [147], and

we find broad empirical evidence for them across our results here, but there is as yet no theoretical

framework for understanding what they are or how to design around them for specific network

analysis or modeling tasks.3

3 Acknowledgments—The authors thank Tiago Peixoto, Leto Peel, Daniel Larremore, and Martin Rosvall for
helpful conversations, and acknowledge the BioFrontiers Computing Core at the University of Colorado Boulder for
providing High Performance Computing resources (NIH 1S10OD012300) supported by BioFrontiers IT. The authors
also thank Mark Newman, Rachel Wang, Peter Bickel, Can Le, Elizaveta Levina, Tatsuro Kawamoto, Kohei Hayashi,
Pin-Yu Chen, and Etienne Côme for sharing software implementations. The authors thank Ellen Tucker for help with
network data sets from ICON. Financial support for this research was provided in part by Grant No. IIS-1452718
(AG, AC) from the National Science Foundation.

Chapter 3

Near Optimal Link Prediction and

Transfer Learning in Link Prediction

Many complex systems can be represented through networks, where individuals and their

pairwise relations are denoted by nodes and edges, respectively. Real networks are usually incom-

plete, with many missing edges, for a variety of reasons; for example, the existence of the edges

in many biological networks like protein-protein or gene-gene interactions must be examined via

costly experiments, which can mean our knowledge of these networks is limited [118], or edges in

social or information networks, must be sampled. Link prediction is a common task in network

analysis and is a core part of, e.g., recommendation systems, biological productions, and counter

terrorism effects. Identifying these missing interactions can be very crucial for analysis or models of

dynamics, which can be very sensitive to missing edges. For example, community detection results

can be changed via the incomplete networks [31], and many network features like the clustering

coefficient or the diameter are sensitive to missing edges.

Most link prediction techniques are based on some scoring function [116] to rank the potential

links and via computing a proper threshold, propose the top k links as the missing edges or future

edges, depending on the application. Some of the most common link prediction methods define

these scoring functions through a topological feature in the networks, such as the number of common

neighbors or the degree product of a pair of nodes. These unsupervised rankings can be generalized

to more advanced scoring rules by defining them in a more complex procedure. A second common

approach uses probabilistic models, such as those used to find communities like the SBM. As a

51

result, community detection methods can be a good approach in link prediction, as we saw in

Chapter 2.

Recall from Chapter 2 that we found that, different community detection algorithms will

over- or under-fit on different networks, finding more, fewer, or just different communities than

is optimal. These variations also impact these methods’ link prediction techniques performance

because variations in number and quality of communities they find for a given input will have a

wide variation in accuracy on link prediction tasks.

Community detection methods, however, are also an unsupervised or, at best a semi-supervised,

link prediction technique. In this Chapter, we instead approach link prediction as a supervised task.

This approach has several advantages since (i) link prediction is a highly imbalanced classification

task because the number of positive examples is O(N) and the number of negative examples is

O(N2) in a sparse network that is the domain we study in this chapter, and (ii) the scoring func-

tions in unsupervised approaches only look at specific aspects of the network structure, which may

or may not be correlated with the true pattern of missing edges. On the other hand supervised

techniques can account for both of these deficiencies because of their capacity to learn from data

what matters most [117, 10]. Therefore, the supervised link prediction techniques can outper-

form traditional approaches by extracting more information from the networks using a variety of

topological features existing in the network.

A third approach to link prediction that has drawn significant attention recently is node

embedding methods. These methods project the nodes of a network into a low-dimensional latent

space, which aims to locally preserve the node neighborhoods. These techniques can be catego-

rized based on their learning approach [77]: matrix factorization like GraRep [34] and HOPE [141],

random walk statistics like DeepWalk [154], and its generalization node2vec [74], graph convolu-

tional networks like the variational graph auto encoder [103]. The learning phase for this group of

methods can be done in a supervised or unsupervised way.

Comparative studies of link prediction algorithms usually rely on a relatively small number

of networks to assess algorithm performance, and only compare a small number of methods. The

52

results of Chapter 2, however, suggest that different algorithms exhibit a wide diversity of per-

formance, depending on the network domain and level of subsampling. Moreover, good methods

on average can be beaten by specific methods on specific networks. In this Chapter, we exploit

these diversities in link prediction by combining different methods in a meta-learning framework,

to construct nearly optimal link prediction algorithm.

There are many classifier combination methods that can address this problem. Some well

known methods are so called ensemble methods, such as bagging [28], boosting [168], and random

forests [29]. These methods train several base classifiers by (i) using random samples, (ii) choosing

training samples sequentially with respect to the errors at previous iterations, and (iii) using random

features, respectively. Stacked generalization [185] is a powerful meta-learning technique that uses a

second level classification to combine a set of base classifiers, i.e., the outputs of the base classifiers

are fed into a higher level classifier that learns the positives and negatives of each base model.

The difference between stacked generalization and ensemble techniques is in the base classifiers,

which are given and fixed in stacked generalization. Most of the previous meta-learning approaches

in link prediction use ensemble methods like bagging [10, 117] and a few use boosting [46]. Also

recently in Ref. [60] the authors propose a bagging approach to scale up link prediction by dividing

the data to bootstrap samples and solving each part with latent factor models. In Ref. [115]

the authors use Gradient Boosting Decision Tree for feature extraction to derive better feature

sets from the initial graph features. Among Bayesian solutions for this problem, Bayesian model

averaging [58] used to be known as the optimal solution under the correct model space and prior

distribution, but Ref. [123] showed this approach is not a Bayesian combination method and indeed

is a Bayesian model selection method. Crucially, these methods can all be viewed as a generalization

of a simple majority voting algorithm. In majority voting, all classes are uniformly combined, while

in Bayesian model averaging methods, the classification outputs are combined proportional to the

posterior probability of each class. Another Bayesian combination framework, called the Bayesian

classifier combination, is a generalization of stacked generalization that uses graphical models as

higher level models [101].

53

Across the literature, link prediction is carried out in two different settings, (i) temporal:

predicting potential future links in an evolving network, (ii) static: identifying missing links in a

static network. In this chapter, we focus on two questions on link prediction in static networks, but

we note that some of these results may also apply to temporal networks, a correction we leave for

future work. We study the problem of optimal link prediction and of transferring link prediction

expertise from one domain to another.

In the first line of study, we consider several paradigms to gain the advantages of different

link prediction methods to construct a better link prediction algorithm. The goal is to have a

better predictive performance by learning and fusing the best performance of each link prediction

algorithm under a supervised learning framework. To achieve this goal, we use supervised stacked

generalization, a machine learning technique that learns a high-level classification model, by com-

bining lower-level models. We investigate the optimality of link prediction using this supervised

approach, and make a novel estimate of how much information about a network’s topology for

link prediction can be retrieved through different algorithms and which algorithms have better

generalized predictability on this task.

First we study this problem on synthetic data created by several well-known generative

models. To this end, we generate synthetic networks using model of stochastic block model (SBM).

To compensate for the heterogeneity of the degrees occurring in real data, the extension of this

model is considered in our analysis: the degree corrected stochastic block model (DC-SBM). For

synthetic networks, we compute analytically the optimal link prediction performance for these

models and compare the performance achieved by each algorithm with these limits. Then using a

large corpus of real-world networks, we characterize these algorithms real-world performances and

argue that our meta-learning algorithm is likely nearly optimal.

The success of data mining techniques in many knowledge engineering areas like classification

is derived from two main reasons: (i) large amounts of labeled data available in some applications,

and (ii) the training and test data are drawn from the same feature space and the same distribution.

In applications for which data is expensive and time consuming to obtain, knowledge transfer or

54

transfer learning can be an alternative solution [143]. Transfer learning on networks is a fairly

new topic and the transfer learning for link prediction between different types of networks remains

unsolved. In Ref. [33], the authors try to solve the data sparsity problem in link prediction by

modeling a collection of link prediction tasks from multiple heterogeneous domains (between users

and different types of items) using a collective link prediction formulation. To remedy the sparsity

in the data, they propose a nonparametric Bayesian framework for collective link prediction to

transfer the shared knowledge among similar tasks by exploring the correlation between these link

prediction tasks and use the similarity between them to boost the link prediction in recommender

systems.

However, the use of transfer learning can be complicated if the distribution of features in the

source and target domains are not the same. In this case, for the training phase to generalize to

unseen data, the researcher has to transfer features of both domains to a common representation.

Representation learning, aka feature learning, is one approach to addressing this requirement, and

within this area, much interest has focused on embedding techniques. Most deep graph models or

node embedding techniques aim to represent nodes in a common vector space. However, a large

number of previous studies are transductive representation learning and do not naturally generalize

to unseen data [154, 74, 34, 103]. More recently, researchers try to develop inductive representations

that generate embeddings for previously unseen data. In Ref. [6], the authors introduced the notion

of attributed random walks to generalize the existing random walk embedding techniques for both

transductive and inductive learning. The authors in Ref. [162], introduced DeepGL, a multi-layer

hierarchical graph representation that captures deep node and edge features, appropriate for across-

network transfer learning tasks.

Recently, Convolutional neural networks (CNNs) have been used over arbitrarily structured

graphs and have been used to extract meaningful patterns in high-dimensional datasets. Although

the first attempts proposed in the Fourier domain are graph based, which leads to poor generaliz-

ability, defining convolution directly on the graphs makes them appropriate for settings like transfer

learning. In Ref. [76], the authors propose GraphSAGE, a low dimensional embedding representa-

55

tion, that can generate embeddings for unseen data. In another work [180], a novel neural network

architecture, called graph attention networks (GATs), is proposed to address generalizability issue

and make the method appropriate for both inductive and transductive prediction tasks.

As a general task, link prediction is ubiquitous, but especially important in network domains

where knowledge of interactions is limited due to costly laboratory experiments or field observations

as in food webs, protein-protein interaction networks, metabolic networks [118], drug-target inter-

actions [119], or RNA-protein interactions [91], to name a few. Even in social networks, however,

network structure is often sampled, and predicting missing links can help complete our knowledge

of their true connectivity. Learning to transfer knowledge from more data-rich networks to the

more cost-intensive domains would improve our use of scarce resources and facilitate better testing

of scientific hypothesis in these domains. In the second part of this chapter, we analyze domain

adaptation (a specific problem in transfer learning) in link prediction problem using the Commu-

nityFitNet corpus, introduced in Chapter 2, including the 572 real-world networks from different

domains.

3.1 Methods and Materials

Here, we study the link prediction methods in three groups of model-based, supervised

feature-based, and embedding techniques as depicted in Fig. 3.1. Although the diversity of these

different approaches over different networks make their performance vulnerable to network type,

actually utilizing these differences can make a better prediction. In the following, we first explain

each approach separately and then propose a supervised technique to combine these link prediction

algorithms. The goal of the combination method would be to have a better predictive performance

by learning and fusing the best performance of each link prediction algorithm in a supervised

framework.

56

G

zi z j

Aij

N N

M
N d

dim 1

dim 2

dim k

Figure 3.1: Link prediction methods are categorized into three groups of model-based, supervised
feature-based, and node embedding techniques.

3.1.1 Model-based Methods

Almost all link prediction algorithms define a score function on pairs of nodes in the network

to reflect the tendency of their being connected. Common link prediction methods define this

function through topological features, like Katz centrality, Jaccard’s coefficient, Adamic-Adar index,

and preferential attachment, which assign larger scores to pair of nodes with smaller short paths,

larger number of common neighbors, larger number of rare common neighbors, and larger degree

nodes, respectively. These score functions are intended to assign higher scores to missing links

than to non-links [116], and are a kind of unsupervised technique. More advanced model-based

techniques are also now commonly used, e.g., those based on probabilistic generative models for

community detection as we saw in Chapter 2. In this chapter, we again study 11 link prediction

methods, derived from the 11 state-of-the-art community detection algorithms listed in Table 3.1,

57

Table 3.1: Abbreviations and descriptions of 11 community detection methods.

Abbreviation Ref. Description
Q [135] Modularity, Newman-Girvan
Q-MR [133] Modularity, Newman’s multiresolution
Q-MP [193] Modularity, message passing
B-NR (SBM) [136] Bayesian, Newman and Reinert
B-NR (DC-SBM) [136] Bayesian, Newman and Reinert
B-HKK (SBM) [81] Bayesian, Hayashi, Konishi and Kawamoto
cICL-HKK (SBM) [81] Corrected integrated classification likelihood
Infomap [163] Map equation
MDL (SBM) [148] Minimum description length
MDL (DC-SBM) [148] Minimum description length
S-NB [106] Spectral with non-backtracking matrix

in addition to other methods.

To define the link prediction task for each community detection algorithm more formally, we

consider a graph G = (V,E) that has been sampled to produce G′ = (V,E′), where E′ ⊂ E. The

goal of link prediction is to accurately distinguish missing links (true positives) from non-edges

(true negatives) within the set of unobserved connections ij ∈ V × V rE′. Link prediction is thus

a binary classification task and an algorithm’s general accuracy on this task can be quantified by

the area under the ROC curve (AUC). Additionally, because positive and negative class labels are

highly imbalanced in this task, and our interest is in the general performance of these classifiers,

we report precision and recall for the minority class (missing links) as well as the AUC.

As in Chapter 2, we employ the model-specific score function for each community detection

method. Each score function uses the corresponding method f to define a model-specific function

sij that estimates the likelihood that a pair of unconnected nodes i, j should be connected. For

probabilistic methods, the natural choice of score function is simply the posterior probability the

model assigns to a pair i, j. For non-probabilistic methods, the score function is constructed

to reflect the underlying assumptions of the corresponding method, without introducing many

additional or uncontrolled assumptions. We refer the reader to Chapter 2 for more detail.

58

3.1.2 Supervised Feature-based Methods

Link prediction can also be performed through supervised learning on topological features

directly. However, supervised learning in networks is non-trivial, because relational data inherently

violates the independence assumption that is typically the basis of these approaches. Before going

into detail of how this violation is mitigated, we will first briefly describe the 29 topological features

we used in the supervised feature-based algorithms.

In this supervised link prediction learning setting, the features should be defined for pairs

of nodes. We considered three types of such topological features. The first are global topological

features, which quantify various network-level statistics and are inherited by each pair of nodes

in a given network. These features include the number of nodes (N), number of observed edges

(OE), average degree (AD), variance of degree distribution (VD), network diameter (ND), network

transitivity (NT), and average clustering coefficient (ACC) [116, 11, 49]. These global features

capture the network’s sparsity, size, etc., and are included to provide context for other predictors

in a given network. Also these features help a supervised algorithm learn which other predictors to

use, e.g., a large VD implies that the degree product feature would be useful, while a low VD would

imply the opposite, and a large ACC suggests that the assortative community detection approaches

like modularity based methods are helpful, while a low ACC proposes using the Bayesian methods.

The second group are explicit pairwise features defined for each pair of nodes i, j. These

features include the number of common neighbors (CN), shortest path (SP), cosine similarity (CS),

degree assortativity (DA), personalized page rank (PPR), preferential attachment (PA), Jaccard’s

coefficient (JC), Adamic/Adar index (AA), resource allocation index (RA), Katz index (KI), entry

i, j in low rank approximation using the singular value decomposition (LRA), and the dot product of

the low rank approximations for each pair of nodes i, j (dLRA) [116, 11, 49]. Some commonly used

pairwise features are excluded, e.g. edge betweenness centrality, due to their large computational

complexity.

Finally, the third group of features are based on combinations of node-level statistics. These

59

features include the local clustering coefficient (LCC), average neighbor degree (AND), shortest-

path betweenness centrality (SPBC), closeness centrality (CC), degree centrality (DC), eigenvector

centrality (EC), Katz centrality (KC), local number of triangles (LNT), Page rank (PR), and load

centrality (LC) [116, 11, 49].

Also included in this group are implicit feature vectors defined on pair of nodes i, j, obtained

from two state of the art embedding techniques, DeepWalk (emb-DeepWalk) [154] –a special case of

node2vec (emb-node2vec) [74]– and the variational graph auto encoder (emb-vgae) [103], explained

briefly in Section 3.1.3. The node embedding techniques typically project the nodes of a network

into a low dimensional latent space that represents the graph structure. These node embedded

vectors can be used to produce edge embedded vectors in another latent space that represents

edge similarities, using linear algebra. For example the node embedded vectors vi and vj can

be embedded into a new vector using a Hadamard product or a simple inner product [77]. We

use the same projections of Ref. [154, 74, 103] to produce these implicit topological features. For

emb-DeepWalk, and emb-gvae, we use a Hadamard product and an inner product, respectively.

We then use a standard random forest algorithm for the supervised feature-based experiments,

and assess the learning process with two different feature sets: (i) the explicit topological features,

and (ii) the implicit topological features obtained from the embedding techniques.

3.1.2.1 Supervised Link Prediction

The notion of supervised learning in link prediction is somewhat ill-defined since by removing

some edges in an existing network we can only create missing links, which are positive examples

under supervised learning, but the same process cannot create negative examples for learning. Past

work on supervised link prediction have made specific assumptions to circumvent this training data

problem. For example in Ref. [10], the authors predict missing links in a collaboration network.

They partition the links in two non-overlapping time frames and perform cross validation on missing

links in the training set. In [49], the authors used supervised link prediction to separate the

real edges from spurious ones in a given set of 8950 edges sampled from Flickr. Ref. [5] uses

60

supervised link prediction on Twitter data and defines positive and negative examples in training

as the appearance, or not, of links at the end of training time frame, respectively. The authors

in Ref. [117] considered a supervised link prediction for settings in which the ground truth on the

training set is available. These various assumptions are not generally applicable to all networks.

Here, we introduce a general framework to evaluate and compare different supervised link prediction

methods on a large set of networks, which solves this negative example problem.

Assume we are given a sampled network G′ = (V,E′), where | E′ |= α | E | is a uniformly

random subset of edges in the original graph G = (V,E), and we are asked to train a supervised

link prediction method. As is, G presents no positive or negative examples of missing links. We

can create the missing links using sampling from the links and remove 1− α′ fraction of the links,

where α′ is an arbitrary fraction of |E′|, the links that we keep in the network, and all the non-

links at this step will be considered as negative examples. Considering the non-links as negative

examples can be justified in two ways. First, if we have a temporal network all the future edges

were non-edges at some point. Therefore, considering the non-links as negative examples is a valid

choice in temporal networks. More generally, since most real networks are sparse, considering the

non-links as negative examples creates only a small number of negative examples in the train set

which are in fact positive examples in the test set. Although these edges are not true negative

examples, their sparsity in the training set will induce only a small bias in the learning, which is

likely compensated for by the improved generalizability of this learning approach.

3.1.3 Node Embedding based Methods

A link prediction approach that has drawn significant attention recently is graph embedding

methods. Graph embedding is a technique that attempts to automate the feature engineering step

of machine learning with graphs by projecting the nodes of a network into a low-dimensional latent

space, which aims to locally preserve the node neighborhoods. After projecting a network into an

embedded space, a link prediction algorithm can be defined using a score function such as L2 norm

among the embedded vectors to rank the potential edges inside a network. For instance, inspiring

61

by the skip-gram model [122], Ref. [154] develops an algorithm under the name of DeepWalk to

encode a representation of nodes using a stream of rigid random walks. Ref. [74] then generalizes

this idea in an algorithm under the name of node2vec by parameterizing the depth and breadth

of the walk to learn a continuous feature representation of each node, which can be used in link

prediction. Similarly, the variational graph auto encoder [103] uses a graph convolutional network

(GCN) to embed nodes and a simple inner product to embed edges [104].

Although there exists other dimensionality reduction techniques like PCA and IsoMap that

can also be used as an embedding approach for link prediction, they suffer from computational and

statistical performance drawbacks [74]. Also, these methods are not flexible in capturing all kinds

of similarities among the nodes inside a network. Recent advances in graph embedding have this

flexibility to capture a diverse type of similarities among the nodes using a parameterized inference

model. For example node2vec can capture different types of similarities such as homophily or

structural roles among the nodes inside a network using a 2nd order random walk.

Among different embedding techniques, we embed the edges in a graph into 128 dimensions

using DeepWalk. Also we use the variational graph auto-encoder to embed every edge in a graph

into a one dimension embedded feature. We use a supervised and an unsupervised link prediction

method for DeepWalk and variational graph auto-encoder, respectively, as explained in original

papers to predict the missing links versus non-links for each one of these feature representational

approaches. Also we combine the embedded features resulted from these graph embedding algo-

rithms with structural and community detection features in a supervised model stacking to study

how much information we can achieve using these embedded features.

3.1.4 Supervised Stacked Generalization

Our goal in developing more accurate link prediction methods is to learn to combine in-

dividual link prediction algorithms in a way that their combination is strictly better than any

component predictor. There are many general approaches to ensemble or meta-learning. The older

combination methods, many of which are still popular, use Bayesian fusion to combine the results,

62

while more recent approaches apply stacked generalization or ensemble methods such as bagging

and boosting [57, 170]. Here, we focus on stacked generalization [185] and leave investigating other

methods for future work.

Stacked generalization, originally proposed for non-relational data with independent data

points, aims to minimize the generalization error of a set of learners. In the original approach, the

two training levels can be summarized as follows. Given a dataset D = {(y`, x`), ` ∈ {1, ..., L}},

where x` is the feature vector of the `-th example and y` is its label, randomly split D into J “folds”

appropriate for J-fold cross validation. Each fold j contributes once as a test set Dj and the rest

contributes once as a training set D−j = D r Dj . For each base classifier r, where r ∈ {1, ..., R},

called a level-0 generalizer, we fit it to the jth fold in the training set D−j to build a modelM−jr ,

called a level-0 model. Now for each data point x` in the jth test set, we employ these level-0

modelsM−jr to predict the output zr`. The new data set DCV = {(y`, z1`, ..., zR`), ` ∈ {1, ..., L}}, is

now prepared for the next training level, called a level-1 generalizer. In the second training phase,

an algorithm learns a new model from this data, denoted as M̃. Now, we again train the base

classifiers using the whole data D, noted as Mr, we complete the training phase and the models

are ready to classify a new data point x. The new data point will first be fed into the trained base

classifiers Mr and then the output of these level-0 models will construct the input for the next

level model M̃.

In our network setting the classifiers in the first level are unsupervised, and therefore, we

change the stacked generalization algorithm as follows. For a given network G = (V,E), we sample

the edges uniformly and construct the observed network G′ = (V,E′), where | E |= α | E | (α = 0.8

in our experiments). Here, we use only the uniform edge-removal model and leave the analysis of

any non-uniform edge removal model for future work. The removed edges E \E′ are considered as

heldout data in the link prediction task. Then, in order to train a model, we remove 1−α′ (α′ = 0.8

in our experiments) of the edges as our positive examples and take all non-edges in the observed

network G′ as negative examples. As mentioned earlier, although this procedure makes the negative

samples noisy, since the networks are sparse, it introduces a negligible error to the model, which

63

should not affect the model performance. In our setting, the unsupervised classifiers in the first

level are our level-0 models, and we use the scores coming from these link prediction techniques as

our meta features. The second training phase is conducted through supervised learning with 5-fold

cross validation on the training set. We use a random forest as our supervised learning algorithm

and assess the learning process with three different feature sets: (i) the meta features (scores) alone,

(ii) the meta features (scores) and the explicit topological features together, (iii) the meta features

(scores), the explicit topological features, and the embedded features obtained from emb-DeepWalk

and emb-vgae.

3.2 Numerical Experiments

We study link prediction in two different settings to answer different questions regarding the

performance of link prediction on real networks. The first we call network based link supervised

learning and the second we call domain based link supervised learning.

Network based link supervised learning is related to the traditional link prediction problem

on a given network. In this section, we investigate how close each algorithm’s performance comes to

the optimal limit of link prediction on a network. We first study this problem on synthetic networks,

where the upper limit of performance can be calculated analytically or numerically. Specifically,

we consider synthetic networks generated using the stochastic block model (SBM) and its degree

corrected variant using power-law and Weibull degree distributions. Details of these probabilistic

generative models are provided in Section B.1. By planting structure into the generated synthetic

networks, we may characterize how different algorithms perform in different kinds of large-scale

and small-scale structure.

Domain based link supervised learning is a kind of transfer learning task. In this section, we

investigate how models trained in one domain like social networks perform when applied to other

domains, and how these trained models can be automatically adapted to new domains like biological

networks. To this end, we perform supervised learning experiments in five different scenarios: (i)

one domain heldout: we holdout networks from one domain and train on networks from other

64

domains, (ii) all but one domain heldout: train on networks from one domain and test on the rest,

(iii) one domain train, another domain heldout: train on one domain and test on one other domain,

(iv) one domain train, same domain heldout: holdout some networks from one domain and train on

other networks on the same domain, and finally (v) random domain train and holdout: randomly

holdout some networks and train on the rest networks, with no condition on domain type.

3.2.1 Results

To evaluate and compare the behavior of link prediction algorithms on these problems in

a practical setting, we exploit the CommunityFitNet corpus, introduced in Chapter 2, a network

dataset containing 572 real-world networks drawn from the Index of Complex Networks (ICON) [45].

For the experiments described in this Chapter, the original networks in the CommunityFitNet

corpus are changed to simple graphs, in which the edge weights and directions, if they exist in the

original network, are ignored. We also note that if an original graph is not connected, the corpus

includes only its largest component. For methods with free parameters, values were set as suggested

in the source papers. For network-based supervised learning, the sampling rate parameters are set

to α = α′ = 0.8 and for domain holdout experiments, the sampling rate α is set to α = 0.8. All

experiments are performed using 5-fold cross validation on the training set and the results are

reported on the heldout data.

The performance of each method in both tasks is assessed by numerically computing its AUC,

precision, and recall, using the 572 real-world networks in the CommunityFitNet corpus [69]. The

CommunityFitNet corpus spans a variety of network sizes and structures, with 22% social, 21%

economic, 34% biological, 12% technological, 4% information, and 7% transportation graphs (see

Fig. 2.1). Exactly calculating AUC, precision, and recall for a sparse graph G takes Ω(N2) time,

which is prohibitive for large networks. However, as explained in Chapter 2, each AUC in a curve

may be accurately estimated using Monte Carlo, because the AUC is mathematically equivalent to

the probability that a uniformly random true positive is assigned a higher score than a uniformly

random true negative. In all of our experiments, an accuracy of ±0.01 is sufficient to distinguish

65

performance curves, requiring 10,000 Monte Carlo samples. It is worthwhile to state that the recall

is not affected by this sampling size since the number of true positives in our network data is smaller

than 10000 (at most around 3000; see Fig 2.1), while the precision is affected by this sampling size.

An alternation is to report the performance based on recall or true positive rate, aka sensitivity,

and true negative rate, aka specificity, which removes this sampling size bias since both are not

affected by sampling size.

3.2.1.1 Results for Network based Link Supervised Learning

In Chapter 2, we observed the model-based link prediction methods with poor link prediction

and poor link description performances tend to underfit (find a smaller number of communities),

while those community detection algorithms with poor link prediction and good link description

performances tend to overfit (find a larger number of communities). Most community detection

algorithms assign better scores to missing links inside the clusters they find. Therefore, finding a

larger number of denser communities (overfitting) leads to a better recall of the position of observed

links, but poorer performance on guessing the position of missing links. Underfitting leads to poor

performance on both tasks. As a result, these differences in community detection algorithms lead

to a wide variation in their performance on link prediction tasks.

For network based link supervised learning, the average AUC, precision, and recall, obtained

from applying community detection algorithms on synthetic networks and 572 real-world networks

in CommunityFitNet corpus, are presented in Table 3.2. On average these algorithms’ performances

on real-world networks are quite similar, and these real-world performance scores are close to their

performances on synthetic networks.

Among the model-based link prediction methods, probabilistic methods like MDL (DC-SBM)

and B-NR (SBM) have higher generalizability as seen in Chapter 2. In particular, the MDL

technique assigns higher scores to edges that produce a better compression of the input data (shorter

description length), meaning that the MDL score function prefers adjacencies that decrease the

model entropy without increasing model complexity. This behavior tends to predict missing links

66

Table 3.2: Average performance of the link prediction algorithms over 572 networks in Commu-
nityFitNet corpus and 45 synthetic networks generated via SBM, and its degree corrected variant
using power-law and Weibull degree distributions.

synthetic real
Model AUC Precision Recall AUC Precision Recall
Q 0.69 0.11 0.66 0.69 0.13 0.66
Q-MR 0.67 0.11 0.66 0.66 0.12 0.63
Q-MP 0.70 0.10 0.66 0.64 0.09 0.59
B-NR (SBM) 0.79 0.14 0.67 0.8 0.13 0.63
B-NR (DC-SBM) 0.76 0.16 0.70 0.69 0.12 0.6
cICL-HKK (SBM) 0.79 0.15 0.62 0.78 0.14 0.55
B-HKK (SBM) 0.76 0.13 0.54 0.76 0.10 0.49
Infomap 0.79 0.16 0.74 0.72 0.11 0.67
MDL (SBM) 0.80 0.16 0.65 0.78 0.14 0.55
MDL (DC-SBM) 0.81 0.15 0.76 0.84 0.13 0.77
S-NB 0.75 0.14 0.68 0.69 0.11 0.65
naive recall upper
bound

0.84 0.06 0.98 0.87 0.04 1.0

majority vote 0.84 0.20 0.73 0.87 0.19 0.71
embedding feat. 0.74 0.26 0.28 0.74 0.27 0.28
topological feat. 0.81 0.38 0.39 0.85 0.41 0.43
score feat. 0.80 0.46 0.32 0.83 0.38 0.29
topological+score
feat.

0.82 0.46 0.35 0.86 0.46 0.35

all feat. 0.82 0.40 0.38 0.83 0.40 0.38
emb-DeepWalk 0.68 0.14 0.35 0.63 0.16 0.42
emb-vgae 0.70 0.05 0.72 0.68 0.05 0.68
mean ± SD 0.77±0.05 0.2±0.12 0.6±0.18 0.76±0.08 0.18±0.12 0.57±0.17

67

102 103

number of edges, M

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

topological feat.
score feat.
topological+score feat.
all feat.

embedding feat.
emb-vgae
emb-DeepWalk
majority vote

Figure 3.2: Average AUC on 572 real-world networks in CommunityFitNet corpus for different link
prediction supervised learnings versus number of edges.

in places with more certain community structure, which leads to more accurate link prediction. The

probabilistic methods based on the SBM have the flexibility to model different rates of between-

group connectivity, while heuristic methods like modularity do not, which tends to improve the

average performance of the probabilistic methods. This better average performance on real data,

however, is not universal across the CommunityFitNet corpus, and other algorithms perform better

than either of these two methods at link prediction on some networks in the corpus.

Comparing the AUC, precision, and recall scores, we find that embedding techniques for both

synthetic and real networks show poor performance compared to community detection methods (see

Table 3.2). We note that the link prediction performance of emb-DeepWalk could potentially be

improved by parameterizing the random walk in this algorithm as suggested in Ref. [74]. However,

finding the best parameters for each network using cross validation would add substantial compu-

tational cost. The poor performance of these techniques for link prediction suggests that they are

overfitting to the training data, a hypothesis that could be tested in future work using the approach

68

explained in Chapter 2.

The simplest approach for combining the outputs of these link prediction algorithms is via

the majority vote algorithm. This algorithm classifies a query pair i, j as an edge/non-edge, if it

is identified as an edge/non-edge by a strict majority of the components, in this case at least 6

algorithms out of 11. The results, presented in Table 3.2, show that majority vote improves the

AUC significantly. High recall shows many missing links (minority class) are identified correctly,

while the low precision shows many non-edges are labeled falsely as true edges. Past work indicates

that a majority voting algorithm is one of the best unsupervised combination approaches when

the algorithms are independent, which is often not the case in reality. For example in the case of

a large number of poor classifiers with correlated errors and a limited number of good classifiers,

majority vote is not capable of improving the estimation. One solution to this problem is to model

the dependency among the base classifiers as proposed in Ref. [101].

A naive upper bound for recall in link prediction is simply found by assigning the positive

class to a query if at least one of the algorithms classifies the query as an edge. The high recall of

this naive algorithm shows every single missing link is identified by at least one of our algorithms,

however, it comes at the cost of low precision, by mislabeling many non-edges as missing links (see

Table 3.2).

In Fig. 3.2, we binned networks by their sizes M (number of edges) and plotted the aver-

age AUC of embedding techniques and the aforementioned combination methods in Table 3.2 as

a function of the number of edges M . The results show the unsupervised majority vote, and the

supervised model stacking techniques fed by community detection scores and topological features

(score feat. and topological±score feat. in Fig. 3.2), are among the best overall combination methods

on average for each network size M . However, adding embedding features to the stacked general-

ization algorithm (all feat. in Fig. 3.2) deteriorates the performance significantly, which is possibly

due to the fact that emb-DeepWalk and emb-vgae are not appropriate for inductive learning [76].

The two worst link prediction techniques in this figure are emb-DeepWalk and emb-vgae, which

suggests that they may be strongly overfitting the observed data. Although supervised learning

69

using the embedding features (embedding feat. in Fig. 3.2) leads to better performance compared

to their direct embedding link prediction algorithms, this approach still exhibits worse performance

compared to the supervised technique using topological features. This is not surprising since for

example the random walk in embedding techniques such as emb-DeepWalk or emb-node2vec is

localized by some specific values in their parameter set. Therefore, they cannot convey all the

information available in the structural features. A possible solution to this problem could be to

incorporate embedding vectors from a different parameter set. We leave this direction of work for

future study.

The AUC performance of each link prediction algorithm for synthetic networks generated

using SBM, and its degree corrected variant using power-law and Weibull degree distributions are

provided in Fig. 3.3. When the generating process is known exactly, we can directly calculate either

analytically or numerically the upper bound on the AUC, and we use this to benchmark how well

these methods are doing relative to that limit. We can approximate the AUC as the probability of

a true edge score be higher than a true non-edge score as

AUC = P (tes > tnes). (3.1)

We will compute the upper bounds for each region, using Monte Carlo (100000 samples) via the

Eq. 3.1. These limits are upper bounds since no community detection method can find the true

labels when ε increases [55]. When ε→ 0, the upper bounds are tight since we have this guarantee

to find the true labels. The numerically computed values are presented in Fig. 3.3. The details of

generating process can be found in Section B.1. We have generated 45 networks when holding out

20% of edges in a synthetic setting with: (1) the fuzziness of the communities, ranging from low,

intermediate, high ε̃ = mout/min (min and mout are number of edges inside and outside clusters),

which presents a range of networks spanning the easily detectable, moderately detectable, and

detectable-but-hard community detection regimes for the SBM [1]; (2) the degree distribution of

the nodes, being Poisson, Weibull, or power law; and, (3) the number of planted communities in the

generative model, ranging from k=1 to 32 groups. The black dashed lines represent the analytically

70

derived optimal AUC for these models (see Section B.1).

Here, by comparing the performance of link prediction algorithms with these optimal values,

we motivate the importance of synthetic data in our analysis. These figures show that in dense

clusters (low ε̃ in Fig. 3.3), all methods perform well, and close to the optimal performance and for

sparser clusters the gap between the algorithms’ AUC and the optimal AUC increases. Particularly,

in dense planted partition models using the SBM (low ε̃), all methods perform well, and close to

the optimal with some exceptions. For example, Q with k = 2 and B-HKK with k = 16 and k = 32

have lower AUC scores. It is worth recalling that the optimal AUC values computed in Fig. 3.3

are upper bounds since it is assumed that the community detection algorithms can find the true

labels. Since the performance of community detection algorithms is better in denser regime due to

the abundant data available there, we expect tighter upper bounds in this regime. For moderate

detectable regime in SBM (moderate ε̃), the gap between the algorithms’ AUC and the optimal

AUC increases, but still supervised stacking models using scores and topological features have the

best performances. In this regime, several link prediction methods perform poorly. For example,

embedding techniques, and supervised learning with topological features only or embedding features

only are among the worst link prediction algorithms. With increasing ε̃ at some point, near the

phase transition for community detection, AUC scores decreases significantly compared to optimal

AUC and for different number of clusters ranging from k=2 to 32, the maximum AUC reached by

link prediction algorithms is around 0.6. Also interestingly some of the best overall link prediction

algorithms like MDL (DC-SBM), have the worst AUC performance in this regime (around 0.5)

which contradicts the natural expectation produced by the results in Chapter 2. The overall

behavior here shows combining these individual classifiers substantially improves link prediction

accuracy. Another observation is related to the average AUC of Q, Q-MR, and Infomap, which are

around 0.5 for k = 2 and k = 4. However, their performances get better for k = 16 and k = 32. The

reason can be explained through our generative process. The generated networks with SBM have a

fixed average degree c = 8. Although these algorithms generally overfit to data (Chapter 2), as the

number of clusters increases while holding the average degree fixed, cluster density increases, which

71

makes it easier for these algorithms to find the clusters, yielding improved performance.Studying

the performance of community detection algorithms in networks with increasing number of clusters

is interesting. While some of these questions have been answered in Chapter 2, we leave it for

future work. One research direction to study this problem is by creating synthetic data using

generative models like SBM and DC-SBM and comparing their results with observations coming

from the real-world networks. Another interesting observation is near the transition for community

detection from detectable to undetectable, where MDL (DC-SBM) loses its detectability sooner

compared to algorithms like modularity (see Fig. 3.3).

The AUC performances of link prediction algorithms for synthetic networks generated by

the DC-SBM using Weibull and power-law degree distributions are higher compared to synthetic

networks generated via SBM. This illustrates that the degree distribution itself is very useful in link

prediction, under the uniform edge-removal model. Similar as before, in degree corrected models,

the dense-sparse cluster transition deteriorates the AUC performance, although to a lesser extent

than for the SBM. This behavior suggests that topological features in heterogeneous networks can

be highly predictive of missing links, and it would be reasonable to expect this utility to carry

over to real-world networks. On the other hand, in the dense-sparse transition, the gap between

the best and worst algorithms’ performances is larger, and stacking models of weak classifiers

becomes more helpful. For networks generated using SBM with k = 1 (Erdős-Rényi (ER)), none

of the algorithms perform better than chance which is expected as there are no edge correlations

to exploit. However, the results for applying them to a degree-corrected variant (DC-ER) indicate

that topological features do capture useful information in these more heterogeneous networks.

Based on the results for synthetic data, supervised stacking of community detection based

link prediction algorithms performs close to the optimal AUC and adding 29 structural and 129

embedding features to the stacking models increases the AUC only slightly, indicating that little

additional information is contained in these features that is not already captured by the others,

and the observed performance is likely close to the practical upper bound. This gap is very small

for dense clusters, while for sparse clusters, it seems likely that no algorithm can do better than the

72

(b) real-world networks(a) synthetic networks

A
U

C
A

U
C

A
U

C

A
U

C
A

U
C

A
U

C
(572)

(124)
(122)

(192)
(71)

(22)

(41)

model-based

embedding techniques

supervised models

theoretical upper bound on AUC

Figure 3.3: (a) The average AUC when holding out 20% of edges for predictions in a synthetic set-
ting with: (1) the fuzziness of the communities, ranging from low, intermediate, high ε̃ = mout/min

(min and mout are number of edges inside and outside clusters); (2) the degree distribution of the
nodes, being Poisson, Weibull, or power law; and, (3) the number of planted communities in the
generative model, ranging from k=1 to 32 groups. The dashed line represents the analytically
derived optimal AUC for these models. We include 11 methods based on the state-of-the-art com-
munity detection algorithms considered in Chapter 2, along with two modern network embedding
methods, and 29 structural features. When ε̃→ 0, these upper bounds are tights and are consistent
with the analytic computation in Section B.1. (b) The AUC comparison of link prediction algo-
rithms on the whole CommunityFitNet corpus (See Chapter 2) including 572 real-world networks
and categorized based on network domains. Across settings, the stacking approach, which uses
supervised learning to combine features from all three methods classes, is nearly always the best,
all methods perform well on social networks, the supervised methods are generally better than any
unsupervised method, and based on the nearly-optimal behavior on synthetic networks, the modest
performance on non-social networks may indicate that there are fundamental limits to predicting
missing links in these settings.

73

stacked generalization with scores plus features. We expect that this is also true on real data and

the results for real data in Fig. 3.3 are aligned with our expectation. For real data, the gap cannot

be identified since we can not compute the optimal link prediction directly. However, the average

AUCs over 572 networks are very large, and we expect a small gap between these performances

and the optimal AUCs. On average the best results for real data belong to stacking models of com-

munity detection based link prediction algorithms with or without topological and/or embedding

features and also supervised learning using topological features. The difference in performances

of these models is very small, suggesting a saturation close to some optimal value for real data.

Via an unsupervised combination learning process, the majority vote shows very promising results,

perhaps due to uncorrelated errors across different community detection methods. Therefore, with

only using the scores as the output of community detection methods, we also achieve very good

performance on average.

It is worth noting the relation between the link prediction and community detection algo-

rithms in our argument regarding the optimality of stacking methods. We know that based on the

recent results of existing phase transitions for community detection methods, if a given network is

generated by SBM, then no algorithm can find the communities in the statistically undetectable

regime. Therefore, based on the results of synthetic data, if no algorithm can find the communi-

ties, then no algorithm can have smaller gap compared to a model-based approach using SBM like

BNR-SBM or an efficient combination method like stacked generalization with scores plus struc-

tural features. Also it is worthwhile to state that for synthetic generated networks using SBM, the

topological features do not help to improve the performance due to the homogeneous clusters in

the network. In practice, when we do not know the exact generative process, we can add these

topological and embedding features in order to compensate for unknown model misspecification

errors within the community detection methods.Indeed, to reach the optimal link prediction, we

would like to capture all the information in the data through a supervised combination framework,

not only some parts covered by the model. Therefore, adding the structural features can help us

to achieve this goal.

74

3.2.1.2 Results on Domain based Link Supervised Learning

In the domain based link supervised learning, we remove some networks as heldout data and

train the supervised algorithms on the training set using 5-fold cross validation and test the trained

model on the heldout set. The results of (i) one domain heldout, (ii) all but one domain heldout,

(iii) one domain train, another domain heldout, (iv) one domain train, same domain heldout, and

finally (v) random domain train and holdout are provided in Table 3.3. Here, we do not consider

the domain itself as a feature in our supervised framework. Adding this feature can help in two

experiments, i.e., in all but one domain heldout, and random domain train and holdout.

Based on the results from the one domain heldout, we observe that training on all domains

except than one domain has worse results compared to training on one domain and test on all

domains, which is counter-intuitive since we have fewer networks in the train set for the latter. The

best results in one domain heldout are obtained by feeding the stacked generalization using the

community detection scores plus the topological features, which is also true for all but one domain

heldout. Random domain train and holdout shows better performance compared to all but one

domain heldout, which can be explained as we have better generalizability by seeing examples from

different domains.

In Table 3.3, the AUC performances on the diagonal experiments, i.e., on one domain train

same domain heldout, are better compared to the off-diagonal experiments, i.e., on one domain

train another domain heldout. The reason is simply because of the fact that the distribution of the

training and the test set are almost the same over the diagonal experiments. However, this is not

true for training on a subset of information networks and testing on other information networks

due to limited number of information networks in our dataset. An important question in transfer

learning settings is how we can improve the performance in off-diagonal settings. A full investigation

of this challenge is beyond the scope of this chapter and we leave it for future work.

The results of non-social domain train, social domain heldout in Table 3.3 shows that the AUC

performances are surprisingly high. The top 10 most important features for all domain holdout

75

Ta
bl
e
3.
3:

D
om

ai
n
ba

se
d
lin

k
su
pe

rv
ise

d
le
ar
ni
ng

pe
rfo

rm
an

ce
:
pr
ec
isi
on

/r
ec
al
l(

A
U
C
).

Ea
ch

bl
oc
k
sh
ow

s
th
er

es
ul
ts

in
on

eo
ft
he

ca
te
go

rie
so

f(
i)
on

ed
om

ai
n
he

ld
ou

t(
la
st

ro
w
ex
cl
ud

in
g
th
el
as
tc

el
l),

(ii
)a

ll
le
av
eo

ne
do

m
ai
n
he

ld
-o
ut

(la
st

co
lu
m
n
ex
cl
ud

in
g
th
e
la
st

ce
ll)
,(

iii
)
on

e
do

m
ai
n
tr
ai
n,

an
ot
he

r
do

m
ai
n
he

ld
ou

t,
(iv

)
on

ed
om

ai
n
tr
ai
n,

sa
m
ed

om
ai
n
he

ld
ou

t,
an

d
fin

al
ly

(v
)r

an
do

m
do

m
ai
n
tr
ai
n
an

d
ho

ld
ou

t(
bo

tt
om

rig
ht

ce
ll)
.

T
he

ro
w
sa

te
ac
h
bl
oc
k
ar
er

ep
re
se
nt
in
g
th
er

es
ul
ts

fo
r(

fro
m

to
p
to

bo
tt
om

)1
.s

up
er
vi
se
d
em

be
dd

in
g
fe
at
ur
e-

ba
se
d,

2.
su
pe

rv
ise

d
ex
pl
ic
it

to
po

lo
gi
ca
l
fe
at
ur
e-
ba

se
d,

3.
st
ac
ki
ng

of
sc
or
es

fro
m

co
m
m
un

ity
de

te
ct
io
n

m
et
ho

ds
,4

.
st
ac
ki
ng

of
sc
or
es

an
d
ex
pl
ic
it

to
po

lo
gi
ca
lf
ea
tu
re
s,

an
d
5.

st
ac
ki
ng

of
sc
or
es
,t

op
ol
og

ic
al

an
d

em
be

dd
in
g
fe
at
ur
es
.
T
he

re
su
lts

in
bo

ld
ar
e
th
e
be

st
re
su
lts

fo
r
ea
ch

ex
pe

rim
en
t.

P
P

P
P

P
P

tr
ai

n
te

st
so

ci
al

bi
ol

og
ic

al
ec

on
om

ic
te

ch
no

lo
gi

ca
l

in
fo

rm
at

io
n

tr
an

sp
or

ta
ti

on

te
st

ed
on

al
l

ex
ce

pt
th

an
tr

ai
n

do
m

ai
n

so
ci

al
0.

60
/0

.9
2

(0
.9

8)
0.

97
/0

.9
6

(1
.0

0
)

0.
76

/0
.8

6
(0

.9
9)

0.
97

/0
.9

6
(1

.0
0

)
0.

96
/0

.8
7

(1
.0

0
)

0.
13

/0
.2

5
(0

.7
5)

0.
57

/0
.0

9
(0

.8
2)

0.
35

/0
.2

0
(0

.8
1)

0.
64

/0
.0

6
(0

.8
3

)
0.

52
/0

.0
7

(0
.8

2)

0.
09

/0
.0

8
(0

.7
3)

0.
67

/0
.0

2
(0

.6
8)

0.
12

/0
.0

4
(0

.8
0)

0.
79

/0
.0

2
(0

.8
5

)
0.

64
/0

.0
2

(0
.6

8)

0.
11

/0
.1

7
(0

.6
9)

0.
45

/0
.0

3
(0

.7
2)

0.
27

/0
.1

7
(0

.7
5

)
0.

56
/0

.0
2

(0
.7

6)
0.

35
/0

.0
3

(0
.7

2)

0.
09

/0
.1

8
(0

.6
7)

0.
68

/0
.1

5
(0

.8
5)

0.
43

/0
.2

4
(0

.8
5)

0.
76

/0
.1

3
(0

.8
7

)
0.

71
/0

.1
6

(0
.8

3)

0.
28

/0
.2

3
(0

.7
7)

0.
78

/0
.0

7
(0

.8
2)

0.
43

/0
.2

2
(0

.8
3

)
0.

80
/0

.0
6

(0
.8

2)
0.

75
/0

.0
8

(0
.7

9)

0.
13

/0
.1

8
(0

.7
4)

0.
61

/0
.0

6
(0

.7
6)

0.
29

/0
.1

5
(0

.8
1)

0.
69

/0
.0

4
(0

.8
2

)
0.

56
/0

.0
6

(0
.7

7)

bi
ol

og
ic

al
0.

73
/0

.2
3

(0
.9

8)
0.

92
/0

.8
7

(1
.0

0
)

0.
75

/0
.7

3
(0

.9
6)

0.
90

/0
.7

7
(0

.9
9)

0.
91

/0
.8

8
(0

.9
9)

0.
09

/0
.2

5
(0

.7
3)

0.
50

/0
.5

9
(0

.9
4

)
0.

51
/0

.4
1

(0
.8

8)
0.

63
/0

.4
7

(0
.9

3
)

0.
40

/0
.3

8
(0

.8
9)

0.
12

/0
.1

0
(0

.7
4)

0.
44

/0
.0

4
(0

.8
6)

0.
32

/0
.0

5
(0

.8
)

0.
39

/0
.0

4
(0

.8
8

)
0.

32
/0

.0
6

(0
.8

6)

0.
19

/0
.1

8
(0

.7
0)

0.
37

/0
.1

4
(0

.8
0)

0.
31

/0
.2

8
(0

.7
9)

0.
44

/0
.2

0
(0

.8
3

)
0.

39
/0

.2
1

(0
.8

0)

0.
20

/0
.2

6
(0

.7
3)

0.
59

/0
.3

0
(0

.9
1)

0.
41

/0
.3

0
(0

.8
9)

0.
65

/0
.3

1
(0

.9
2

)
0.

64
/0

.3
5

(0
.9

1)

0.
32

/0
.1

4
(0

.7
7)

0.
60

/0
.2

3
(0

.8
3)

0.
55

/0
.2

5
(0

.8
3)

0.
68

/0
.2

3
(0

.8
8

)
0.

64
/0

.2
7

(0
.8

5)

0.
31

/0
.1

8
(0

.8
4)

0.
81

/0
.4

7
(0

.9
3)

0.
63

/0
.4

3
(0

.8
9)

0.
81

/0
.4

3
(0

.9
4

)
0.

78
/0

.5
0

(0
.9

3)

ec
on

om
ic

0.
79

/0
.5

5
(0

.9
8)

0.
98

/0
.4

0
(0

.9
9

)
0.

83
/0

.4
6

(0
.9

6)
0.

95
/0

.2
0

(0
.9

9
)

0.
95

/0
.0

8
(0

.9
9

)

0.
14

/0
.1

4
(0

.7
2)

0.
34

/0
.0

3
(0

.8
1)

0.
50

/0
.1

3
(0

.8
3)

0.
57

/0
.0

4
(0

.8
4

)
0.

14
/0

.0
3

(0
.7

5)

0.
13

/0
.4

4
(0

.7
8)

0.
31

/0
.6

4
(0

.9
4

)
0.

20
/0

.6
0

(0
.9

2)
0.

30
/0

.6
0

(0
.9

4
)

0.
30

/0
.6

1
(0

.9
2)

0.
10

/0
.1

2
(0

.6
8)

0.
19

/0
.0

1
(0

.7
5)

0.
60

/0
.0

9
(0

.8
0

)
0.

69
/0

.0
1

(0
.7

8)
0.

13
/0

.0
1

(0
.7

1)

0.
17

/0
.1

6
(0

.6
7)

0.
51

/0
.0

3
(0

.8
6)

0.
69

/0
.0

7
(0

.8
7

)
0.

80
/0

.0
3

(0
.8

7
)

0.
31

/0
.0

2
(0

.8
6)

0.
16

/0
.1

4
(0

.7
5)

0.
37

/0
.0

3
(0

.7
5)

0.
65

/0
.0

8
(0

.8
2

)
0.

67
/0

.0
3

(0
.8

0)
0.

15
/0

.0
4

(0
.6

8)

0.
38

/0
.3

3
(0

.8
4)

0.
87

/0
.2

0
(0

.9
0)

0.
74

/0
.2

7
(0

.8
9)

0.
87

/0
.1

1
(0

.9
1

)
0.

39
/0

.0
5

(0
.8

8)

te
ch

no
lo

gi
ca

l
0.

80
/0

.4
2

(0
.9

8)
0.

95
/0

.0
3

(0
.9

9
)

0.
72

/0
.7

3
(0

.9
7)

0.
86

/0
.3

8
(0

.9
9

)
0.

72
/0

.0
8

(0
.9

8)

0.
11

/0
.2

1
(0

.7
4)

0.
35

/0
.1

2
(0

.8
4)

0.
25

/0
.3

8
(0

.8
4)

0.
43

/0
.2

5
(0

.8
9

)
0.

33
/0

.2
7

(0
.8

6)

0.
06

/0
.2

2
(0

.7
3)

0.
04

/0
.0

5
(0

.6
0)

0.
20

/0
.0

4
(0

.8
0)

0.
44

/0
.0

5
(0

.8
5

)
0.

04
/0

.2
4

(0
.7

0)

0.
12

/0
.0

6
(0

.6
7)

0.
37

/0
.3

3
(0

.8
5)

0.
25

/0
.3

4
(0

.8
2)

0.
35

/0
.3

9
(0

.8
6)

0.
30

/0
.4

3
(0

.8
8

)

0.
16

/0
.1

3
(0

.7
0)

0.
57

/0
.1

3
(0

.8
5)

0.
42

/0
.3

0
(0

.8
8)

0.
67

/0
.2

5
(0

.9
1

)
0.

45
/0

.2
2

(0
.8

7)

0.
20

/0
.1

6
(0

.7
6)

0.
46

/0
.2

0
(0

.8
4)

0.
43

/0
.2

8
(0

.8
2)

0.
51

/0
.2

5
(0

.8
8

)
0.

34
/0

.3
5

(0
.8

7)

0.
18

/0
.2

2
(0

.8
4)

0.
19

/0
.0

7
(0

.8
5)

0.
48

/0
.4

3
(0

.8
8)

0.
64

/0
.2

6
(0

.9
2

)
0.

14
/0

.1
6

(0
.8

7)

in
fo

rm
at

io
n

0.
42

/0
.9

5
(0

.9
7)

0.
53

/0
.9

6
(0

.9
8)

0.
50

/0
.9

1
(0

.9
8)

0.
59

/0
.9

6
(0

.9
9

)
0.

52
/0

.9
7

(0
.9

9
)

0.
09

/0
.4

6
(0

.7
3)

0.
34

/0
.3

9
(0

.8
7)

0.
22

/0
.5

1
(0

.8
5)

0.
38

/0
.4

2
(0

.9
)

0.
23

/0
.4

1
(0

.8
6)

0.
06

/0
.4

0
(0

.7
2)

0.
29

/0
.0

6
(0

.7
8)

0.
09

/0
.2

1
(0

.8
4)

0.
29

/0
.2

3
(0

.8
9

)
0.

14
/0

.0
9

(0
.7

7)

0.
07

/0
.4

5
(0

.7
2)

0.
26

/0
.2

9
(0

.8
1)

0.
19

/0
.3

7
(0

.8
0)

0.
37

/0
.2

9
(0

.8
5

)
0.

43
/0

.2
0

(0
.8

0)

0.
08

/0
.6

5
(0

.7
9)

0.
32

/0
.3

9
(0

.8
3)

0.
31

/0
.3

8
(0

.8
1)

0.
34

/0
.4

4
(0

.8
4

)
0.

33
/0

.3
5

(0
.8

4
)

0.
16

/0
.5

2
(0

.7
8)

0.
49

/0
.3

4
(0

.8
4)

0.
31

/0
.5

2
(0

.8
6)

0.
54

/0
.3

9
(0

.8
9

)
0.

48
/0

.3
4

(0
.8

4)

0.
14

/0
.6

5
(0

.8
4)

0.
49

/0
.4

2
(0

.8
7)

0.
21

/0
.6

8
(0

.9
1)

0.
54

/0
.5

4
(0

.9
3

)
0.

44
/0

.4
7

(0
.8

7)

tr
an

sp
or

ta
ti

on
0.

60
/0

.9
0

(0
.9

8)
0.

90
/0

.6
9

(0
.9

9
)

0.
52

/0
.8

9
(0

.9
8)

0.
80

/0
.8

3
(0

.9
9

)
0.

73
/0

.8
3

(0
.9

9
)

0.
13

/0
.3

5
(0

.7
6)

0.
41

/0
.2

0
(0

.8
6)

0.
24

/0
.4

6
(0

.8
5)

0.
44

/0
.2

8
(0

.8
9

)
0.

27
/0

.4
1

(0
.8

6)

0.
06

/0
.1

7
(0

.7
3)

0.
12

/0
.0

9
(0

.7
2)

0.
17

/0
.0

9
(0

.8
4)

0.
27

/0
.2

1
(0

.8
8

)
0.

03
/0

.0
9

(0
.6

6)

0.
11

/0
.2

9
(0

.7
1)

0.
36

/0
.1

2
(0

.8
1)

0.
21

/0
.3

4
(0

.8
2)

0.
36

/0
.2

3
(0

.8
4

)
0.

22
/0

.3
0

(0
.7

8)

0.
15

/0
.3

7
(0

.7
4)

0.
61

/0
.5

0
(0

.8
9)

0.
33

/0
.5

3
(0

.9
0)

0.
46

/0
.6

1
(0

.9
2

)
0.

44
/0

.5
6

(0
.8

8)

0.
39

/0
.2

6
(0

.7
9)

0.
18

/0
.1

2
(0

.8
3)

0.
08

/0
.1

4
(0

.8
3)

0.
19

/0
.0

9
(0

.8
7)

0.
42

/0
.4

6
(0

.9
0

)

0.
24

/0
.5

3
(0

.8
5)

0.
63

/0
.3

7
(0

.9
0)

0.
39

/0
.5

2
(0

.9
1)

0.
65

/0
.4

6
(0

.9
3

)
0.

35
/0

.4
9

(0
.8

7)

tr
ai

ne
d

on
al

l
ex

ce
pt

th
an

te
st

do
m

ai
n

0.
64

/0
.8

1
(0

.9
8)

0.
91

/0
.8

9
(0

.9
9

)
0.

72
/0

.7
7

(0
.9

8)
0.

86
/0

.8
5

(0
.9

9
)

0.
82

/0
.9

3
(0

.9
9

)

0.
14

/0
.2

9
(0

.7
6)

0.
58

/0
.2

0
(0

.8
7)

0.
35

/0
.3

1
(0

.8
6)

0.
59

/0
.2

4
(0

.9
0

)
0.

54
/0

.2
4

(0
.8

9)

0.
08

/0
.2

1
(0

.7
5)

0.
19

/0
.0

5
(0

.7
6)

0.
25

/0
.0

5
(0

.8
4)

0.
58

/0
.0

3
(0

.8
8

)
0.

37
/0

.0
5

(0
.7

3)

0.
12

/0
.3

0
(0

.7
0)

0.
44

/0
.1

5
(0

.8
3)

0.
34

/0
.2

4
(0

.8
2)

0.
49

/0
.2

1
(0

.8
5

)
0.

46
/0

.2
2

(0
.8

2)

0.
17

/0
.3

9
(0

.7
3)

0.
68

/0
.4

7
(0

.9
2)

0.
49

/0
.2

8
(0

.8
9)

0.
64

/0
.4

0
(0

.9
3

)
0.

67
/0

.4
8

(0
.9

3
)

0.
23

/0
.3

4
(0

.7
7)

0.
67

/0
.2

7
(0

.8
8)

0.
54

/0
.2

5
(0

.8
6)

0.
70

/0
.2

6
(0

.9
0

)
0.

70
/0

.3
0

(0
.8

7)

0.
16

/0
.7

2
(0

.8
8)

0.
68

/0
.7

0
(0

.9
6)

0.
54

/0
.6

0
(0

.9
4)

0.
70

/0
.7

0
(0

.9
7

)
0.

64
/0

.6
5

(0
.9

6)

76

experiments are provided in Fig. 3.4. The results show that the most important features in social

networks are topological features, which explains the good performance of one domain heldout for

social networks.

In social networks, the structure of a network is very homogeneous with denser clusters

compared to non-social networks, and hence the topological features are very informative. Being

able to transfer information about such topological features from every other domain helps to boost

the link prediction. For example, social networks exhibit a tendency known as triadic closure, i.e.,

pairs of nodes with a large number of common neighbors have a high probability to connect. This

pattern is captured by the JC and CN topological features, which are among the most important

such features for social networks (see Fig. 3.4). Although this property plays a key role in social

networks, this is not the case for biological networks [105]. The authors in Ref. [105] have shown

that the larger the Jaccard similarity, the lower the probability of interaction between the two

proteins. From a protein-structure perspective, if two proteins have many common neighbors, they

are more likely to have the same type of interaction interface, which reduces the probability of their

own interaction. Ref. [105] suggests instead that the number of paths of length 3 plays a more

important role in a connection between two proteins existing, rather than paths of length 2, as in

social networks.

The important features in supervised link prediction frameworks for biological, technological,

and information domains are mostly among the scores of community detection algorithms and more

importantly for these networks the topological features are less distinguishing. In transportation

networks, community detection scores are among the most important features. However, PPR

(personalized page rank) and SP (shortest path) have also high feature importance. Economic

networks benefit from both scores of the community detection methods and topological features

more equally.

Our current knowledge in many network domains is limited due to the costly laboratory

experiments such as in food webs, protein-protein interaction networks, and metabolic networks

from biological networks. Given more available network data in some other domains, domain

77

adaptation in link prediction problem is very desirable. For example a simple algorithm to boost

transfer link prediction learning can be as follows. First, we learn the most important features

for each experiment of training in one domain x and testing on another domain y. Using the

more important features in training on domain y, we force our model to learn these features when

training on domain x (by removing less important features). However, this is a challenging task

and a key ingredient for success in transfer learning is to transfer properly the features from the

source domain into the target domain, which requires transferring features to a common feature

space. In our evaluations in this section, most of the features are normalized, like the scoring values

for the probabilistic community detection methods that are in the common space of [0, 1]. We leave

a thorough investigation of this study for transfer link prediction learning as future work.

3.3 Discussion of Results

The results for network based link supervised learning show that for synthetic networks with

denser clusters, i.e., when ε̃ is small, we have a better link prediction. For networks with more

sparse clusters, we observe a predictability transition for link prediction that seems similar to the

detectable-undetectable phase transition for community detection. This is not surprising since in

our experimental design we remove α% of the links uniformly at random to construct the observed

graphs. If the communities are identifiable with this uniform edge removal, then all edges inside the

clusters will have the same scores for link predictions under community detection methods as they

would have without any edge removal. Therefore, as long as the communities are identifiable, the

AUC of these approaches should not depend sensitively on α. Hence, link prediction accuracy in

networks with communities should be bounded by the detectability phase transition in community

detection.

There are different approaches to assess the optimality of link prediction algorithms. One

possibility is using information theoretic measures such as mutual information. The idea is to

compute the mutual information between the structural features in our data and the true labels.

The main challenge for this computation is due to the continuity of most features, which makes

78

AND
SP

BC
CC
CN
CS
LC
PR
PP

R
PA
SP

dLR
A

JC
RA
AA

N
OE B-HKK cIC

L-H
KK Inf

om
ap

MDL (
DCSB

M)
MDL (

SB
M)

Q
Q-M

P
Q-M

R
B-NR (S

BM)

0.
00

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0
so

cia
l

bi
ol

og
ica

l
ec

on
om

ic
te

ch
no

lo
gi

ca
l

in
fo

rm
at

io
n

tra
ns

po
rta

tio
n

Fi
gu

re
3.
4:

Fe
at
ur
e
im

po
rt
an

ce
w
he

n
tr
ai
ne

d
on

do
m
ai
n
x.

T
he

to
p
10

m
os
t
im

po
rt
an

t
fe
at
ur
es

w
he

n
tr
ai
ni
ng

on
ea
ch

do
m
ai
n.

79

the calculation of mutual information very inaccurate and subjective because of the quantization

process. However, this can be a worthwhile direction for future studies.

Here, we indirectly approached this problem by studying synthetic data generated by well-

studied models of SBM and its degree corrected variant using power-law and Weibull degree dis-

tributions and a variety of parameters. Using these probabilistic generative models, we planted

different numbers of clusters at different levels of detectability in order to investigate the degree

to which degree distributions and detectability behavior influenced link prediction performance for

different methods. The results show that in denser regimes we have a smaller gap between the algo-

rithms’ performances and the optimal performance, when the true labels and generating process is

known. However, in practice, depending on the region we use these algorithms, their performances

diverge from these optimal values. For example, in our synthetic networks with different levels of

detectability, we observed that the better the detectability, the narrower the gap.

The AUC performances of link prediction algorithms over the networks generated using SBM

with k = 1 (Erdős-Rényi (ER)), show that almost all methods have similar performances as random

guessing. This is along with our expectation, since in ER networks no useful information for link

prediction algorithms is planted. A slight divergence from these expectations can be either due

to the noise or the illusory communities found by some community detection methods such as

modularity as a result of overfitting [193]. The small amount degree-based of information contained

in ER networks (due to the heterogeneity of the degrees in practice) can be still exploited by

combination algorithms such as stacked generalization of the topological plus the score features

and supervised feature-based approach with explicit topological features.

In this chapter, we explored a supervised combination method for link prediction task. We

expected that the AUC performance would improve using the supervised learning framework, since

(i) link prediction is a highly imbalanced classification task, and (ii) most of the scoring functions in

unsupervised approaches only look at partial information of the network structure, while supervised

approaches provide the opportunity of adding informative features. We explained in Section 3.1.2.1

that the supervised link prediction is not trivial and we need some preprocessing to construct the

80

positive examples and negative examples. An alternative solution to supervised stacking is an

unsupervised stacking method like stacked generalization [171]. This approach combined many

different methods, including community detection algorithms, topological features, and network

embedding algorithms, as well as a simple majority voting method. The majority vote algorithm

showed very promising results which suggest that the different component algorithms make suffi-

ciently uncorrelated errors that simple voting can do well. A more principled way to combine link

prediction algorithms in an unsupervised framework is by learning the best combination weights

using approaches like Bayesian combination methods [101], which we leave for future work.

In our second line of study in this chapter, we analyzed transfer link prediction learning for

different network domains. Through this analysis, we aimed to address the question of whether

it is possible to learn to predict links in one domain and then transfer that knowledge to predict

links in a different domain. This kind of transfer learning approach could be broadly useful as the

number of example networks is highly imbalanced across domains, and a good transfer learning

solution would enable us to exploit the more example-rich domains to make better predictions in

domains where examples are costly to obtain, e.g., in molecular networks. Based on the results

in domain holdout experiment, we observed when the data is limited we can gain better results

by training over networks from other domains. However, this was not true for domains such as

biological networks where we had more training examples. One key ingredient in transfer learning

is transferring features to a common space to be accessible for the target domain as well as the

source domain. To this end, we normalized our features automatically in the range of [0, 1] that is

a naive solution, and better solutions may improve our findings.

3.4 Conclusion

In this chapter, we have studied two important questions of optimal link prediction and

transfer link prediction learning. We studied the link prediction methods in three groups of model-

based methods originated from 11 state-of-the-art community detection algorithms, supervised

feature-based, and embedding techniques. Based on the results in Chapter 2 and the recent No

81

Free Lunch theorem for community detection methods [147], no method can be optimal on all

inputs, which makes the performance of the corresponding link prediction methods vary widely

in accuracy. This diversity in the performances of the model-based link prediction algorithms

along with similar diversities in other link prediction methods such as embedding techniques and

supervised feature-based algorithms makes them attractive for classification combination methods.

Among different combination methods, we chose stacked generalization, a powerful method in

combining several fixed base classifiers. The results are provided for synthetic data besides the 572

real-world networks from a variety of domains in CommunityFitNet corpus.

Synthetic networks for our analysis have been generated using SBM, and its degree corrected

variant (DC-SBM) using Weibull and power law degree distributions, for which optimal AUC

performances can be calculated exactly. Comparing the performances of link prediction algorithms

with the optimal values in synthetic networks equipped us with important insights to generalize

our argument to real data. In our analysis in Section 3.2.1.1, by assessing the performances of link

prediction algorithms on synthetic networks, a better understanding of factors impacting the results

on real networks was obtained. Based on the results from synthetic data we found that (i) some parts

of the information planted in the model can be captured using an appropriate model depending

on the detectability region the network belongs to—since the appropriate model is not known

beforehand for real-world networks, the best strategy is learning it through a combination technique

like stacking, and (ii) the heterogeneity inside the data that can not be captured through the model

can often be obtained using the structural features provided in supervised learning. Using the

relation between the community detection and link prediction, we can assure that from (i) and (ii),

the supervised stacking link prediction approach is optimal in the sense that it exploits all available

information, under the constraint that any algorithm could recover the planted community structure

that generated the edges (although the undetectability of such structure is proved only for k = 2

communities, it is conjectured to extend to k > 2 and to networks with other degree distributions).

Therefore, we expected that our results using stacking models of community detection methods

besides the structural features are optimal for link prediction in synthetic and real-world networks.

82

The general framework of supervised stacking link prediction can be easily extended to include

additional models or features for the task, as they are developed in the future, suggesting that link

prediction is largely now a “solved” problem, to the extent that current models capture empirical

network structures.

In another line of study, we investigate transfer link prediction learning on different domains

of network knowledge. Given the lack of networks sampled in some domains, due to the costly

laboratory experiments, and the availability of network data in other domains, transfer learning

is a promising approach to maximally learn from the available data. Interestingly, we found that

networks on some domains like social networks can be trained using any other domains. Our

findings suggest that because social networks have homogeneous structure, the most important

features for supervised learning come from the general topological features which also appear in

networks of other domains. In another interesting observation, we realized in other domains the

most important features are from the scores in community detection algorithms, and coupling these

meta features with the topological features is very helpful for link prediction in these domains. 1

1 Acknowledgments—The authors thank David Wolpert and Brendan Tracey for helpful conversations, and ac-
knowledge the BioFrontiers Computing Core at the University of Colorado Boulder for providing High Performance
Computing resources (NIH 1S10OD012300) supported by BioFrontiers IT. Financial support for this research was
provided in part by Grant No. IIS-1452718 (AmirG, AC) from the National Science Foundation.

Chapter 4

Detectability Thresholds and Optimal Algorithms for

Community Structure in Dynamic Networks1

Many complex systems can be represented as networks, that is, as a set of elements char-

acterized by pairwise interactions. Examples of networks are plentiful, and include friendships or

communication in a social network, regulatory interactions among genes, transportation between

cities, and hyperlinks between documents or websites. Furthermore, many, perhaps even most,

of these networks are dynamic in nature, and their evolving structure is often represented as a

sequence of graphs [42, 23, 68, 102, 129, 161, 187, 196].

A common step in analyzing the structure of such networks is the detection of communities,

in which we seek to divide a network into groups of nodes that play similar structural roles. A

good division should provide a structural coarse-graining of the network, revealing the large-scale

structure of the system. In the simple case of static networks, we now have rigorous methods for

accomplishing this task, using Bayesian techniques and probabilistic generative models [71, 80, 85,

97, 7, 55, 56]. Importantly, we also have a precise mathematical understanding of when they can or

cannot succeed [55, 128]. However, real-world networks are rarely simple, and are often accompanied

by auxiliary data, such as weights on edges [175] or metadata on nodes [130, 144, 145, 194, 134].

Extending the rigorous results for static networks to these richer graph structures remains an

important direction of study. Here, we focus on the question of dynamic networks, in which each

nodes’ connections may change over time.
1 This chapter is published in Physical Review X 6, no. 3 (2016): 031005 [70].

84

Community detection in dynamic networks inherits many of the challenges of static networks,

including learning the number of communities, their sizes and node membership, and the pattern

of connections among communities, e.g., assortative or disassortative (or, in physical terms, ferro-

or antiferromagnetic). However, it also poses new challenges, as both the network topology and

the community memberships may evolve over time.

Community detection in dynamic networks has a long history, and a number of techniques

have been previously developed. For instance, there are variants of multilayer or temporal modu-

larity maximization [129, 20, 22], non-negative matrix or tensor factorization [3, 61, 68, 161, 196],

minimum description length [174, 164], and probabilistic models [191, 187, 102, 189, 78, 150, 179].

Refs. [4, 79] provide more comprehensive reviews of this work. Approaches for detecting commu-

nities in multiplex networks are also relevant [72, 137, 172, 92, 54, 53, 177, 67, 73, 21], as dynamic

networks are a special case of multiplex networks, in which the layers are organized in a linear

sequence. However, despite these varied efforts, we have lacked up to now a theoretical under-

standing of the optimality of these techniques, when or how they tend to fail, or whether there are

fundamental limits to detecting community structure in dynamic networks.

Here, we answer these questions by deriving a precise threshold on the detectability of com-

munities in dynamic networks, whose location depends only on the rate of change of the community

structure and on its strength. Below this sharp threshold, we claim no efficient algorithm can re-

cover the true communities better than chance. Furthermore, we give two algorithms that are

optimal in the sense that they succeed all the way down to this threshold. These results general-

ize the theoretical insights of [55, 56] for community detection in static networks to the dynamic

setting, in which detectability depends on both spatial and temporal coupling between nodes. The

mathematical tools we use to obtain these results are also general, and could be used to obtain

similar extensions to networks with other types of auxiliary information.

Our approach exploits the powerful tools of probabilistic generative models and Bayesian

inference, which we use to study the limits of the community detection problem using the cavity

method of statistical physics. We begin with the well-known stochastic block model [86, 140], a

85

generative model for static networks with community structure. We note that there are several

dynamic variants of this model [78, 191, 189] and its mixed-membership version [187], and the

variant that we analyze here is a special case of some of these models. Specifically, we mathemati-

cally study a model in which nodes change their community membership over time according to a

Markov process, and edges are generated independently at each time step. As a result, the network

of connections between nodes at different times is locally treelike.

In many real-world systems, edge occurrence can correlate across time [42]. In this case,

however, our model can still be applied if the edges have a time scale that is short relative to the

time windows over which the interactions are aggregated, which returns us to a setting in which the

dynamic network will be locally treelike. For instance, consider a network of phone calls or emails

where the autocorrelation time governing conversations (or sequences of successive calls) is on the

order of days, but where each network snapshot aggregates these calls over a month. In this case,

belief-propagation algorithms, like the ones we develop here, are often asymptotically optimal,

and we may use the cavity method to compute the detectability threshold exactly. While our

results are not mathematically rigorous, we believe that they can be made so using the techniques

of [128, 127, 120, 27].

Finally, we give two principled and efficient algorithms for detecting communities in real

dynamic networks. The first algorithm uses belief propagation (BP) to pass messages between

neighbors both within a network at a particular time and between consecutive networks in order

to integrate information over the network’s time series in an optimal way. We then linearize BP

to obtain a second spectral algorithm, based on a dynamical version of the non-backtracking ma-

trix [106, 27]. Through numerical experiments, we confirm our theoretical calculations by showing

that these algorithms accurately recover the true community structure in dynamic networks all the

way down to the generalized detectability threshold.

86

4.1 A Dynamic Stochastic Block Model

The stochastic block model (SBM) is a classic model of community structure in static net-

works [86, 140]. To obtain a theoretical understanding of detectability in dynamic networks, we use

a variant of the SBM in which the community labels of nodes change over time, but where edges are

independent conditioned on these labels. This particular model is also a special case of several mod-

els previously introduced for community detection in dynamic networks [102, 189, 78, 191, 187].

A crucial feature of the variant we study is that it captures the dynamic behavior of changing

community labels but is analytically tractable.

Our model generates a dynamic sequence of graphs G(t) = (V,E(t)) with 1 ≤ t ≤ T . There

are |V | = n nodes divided into k groups. Each graph has its own group assignment, represented

by an n-dimensional vector of labels {gi(t) ∈ {1, . . . , k} | i ∈ V }. To generate this sequence, we

start by drawing gi(1) from a prior distribution, where each node has initial probability qr of being

in community 1 ≤ r ≤ k. In successive steps t > 1, each node updates its label according to a

transition matrix τ , moving to group r from group s with probability τrs. Finally, the edges E(t)

are generated independently for each t according to a k×k matrix p, connecting each pair of nodes

i, j at time t with probability pgi(t),gj(t). The likelihood of the graph sequence is then

P ({G(t)}, {g(t)} | p, q, τ) = P (g(1))
T∏
t=2

P (g(t) | g(t− 1))

×
T∏
t=1

 ∏
(i,j)∈E(t)

pgi(t),gj(t)
∏

(i,j)/∈E(t)

(
1− pgi(t),gj(t)

) ,
and

P (g(1)) =
∏
i

qgi(1)

P (g(t) | g(t− 1)) =
∏
i

τgi(t),gi(t−1) .

In our analysis, we focus on a uniform initial prior qr = 1/k and the popular special case

where prs = cin/n if r = s and cout/n if r 6= s for constants cin, cout. The average degree of each

graph is then c = (cin + (k − 1)cout)/k. For simplicity, we will also assume the transition matrix

87

τ has a special form, where the node keeps its label with probability η, and chooses a uniformly

random label with probability 1− η. In that case,

τ = η1 + (1− η)J
k
, (4.1)

where 1 is the identity matrix and J is the all-1s matrix.

4.2 The Generalized Detectability Threshold

In this context, the community detection task consists of recovering the labels {gi(t)} given

the parameters p, q, η and the sequence of graphs {G(t)}. We now consider under what conditions

we can perform this task better than chance. For static networks, previous work has shown that

there exists a phase transition below which no algorithm can succeed [55, 56]; for the case k = 2,

this is now known rigorously [128]. This threshold occurs at a critical value of cin − cout which

depends on the average degree, namely |cin − cout| = k
√
c.

In a dynamic network where community memberships change slowly, we can learn more about

a network and its large-scale structure by integrating its edges over time. Summing G(t) to form

a single graph yields a more dense network, in which case we would expect to be able to detect its

community structure whenever cin− cout 6= 0. On the other hand, if node labels at successive steps

are uncorrelated, we can do no better than to treat each graph in G(t) separately as a static graph.

We thus expect the community detection threshold in dynamic networks to interpolate between its

static value at η = 0 and zero at η = 1.

To facilitate our analysis, we define a spatiotemporal graph with Tn vertices i(t), one for

each node at each time step. In addition to the “spatial” edges (i(t), j(t)) ∈ E(t) for each t, we

add “temporal” edges (i(t), i(t± 1)) connecting each node with its time-adjacent copies. Since the

spatial edges E(t) are independent and sparse, short loops in this spatiotemporal graph are rare,

implying that it is locally treelike.

Now consider the neighborhood of a particular node i(t). Moving outward in space and time,

there is a tree with i(t) as its root: each node in this tree has “children” consisting of its spatial

88

and temporal neighbors. Using the cavity method, we can think of inference as a reconstruction

problem on this tree, where each child’s label is transmitted, with some noise, to its parent. As

stated above, we assume that node labels are copied along temporal edges with probability η and

replaced with uniformly random labels with probability 1 − η. Similarly, since each edge in E(t)

exists with probability cin/n if the labels are the same, and with probability cout/n otherwise,

Bayes’ rule implies that labels are copied along a spatial edge with probability

λ = cin − cout
kc

,

and replaced with a random label with probability 1 − λ. Thus we can think of the labels on

spatial and temporal edges as following a Markov process with stochastic transition matrices σ and

τ respectively, where

σ = np

kc
= λ1 + (1− λ)J

k
(4.2)

and τ is given by Eq. (4.1).

We now consider the question of whether information from distant leaves on this tree is

transmitted to the root. The tree is generated by a two-type branching process: following a temporal

edge leads to a node with one temporal child, while following a spatial edge leads to a node with

two temporal children, and in both cases the number of spatial children is Poisson-distributed

with mean c. The transition matrix describing the expected number of children of each type is

then

c c

2 1

. On the other hand, besides the trivial eigenvalue 1 corresponding to the uniform

distribution, the eigenvalues of the transition matrices σ and τ are λ and η respectively. Results

of [96] then imply that the detectability transition occurs when the largest eigenvalue of the matrixcλ2 cλ2

2η2 η2

 crosses unity. This yields

cλ2 = 1− η2

1 + η2 or |cin − cout| = k

√
c

1− η2

1 + η2 , (4.3)

which ranges from the static threshold k
√
c when η = 0 to zero when η = 1, as expected.

89

The expression of Eq. (4.3) holds in the limit T → ∞. We can compute the correspond-

ing finite-time threshold for a fixed T by diagonalizing a (3T − 2)-dimensional matrix, where we

have a branching process with states corresponding to moving along spatial, forward-temporal, or

backward-temporal edges at each time step. In particular, the threshold then ranges from the static

value for η = 0 to |cin − cout| = k
√
c/T for η = 1.

In spin glass theory, this type of threshold is called the Almeida-Thouless line [52]; in prob-

ability and information theory, it is known as the Kesten-Stigum bound or the robust recon-

struction threshold [96]. In the static case it has been shown rigorously for k = 2 that below this

point community detection is information-theoretically impossible [128]. For k > 4 groups (and

k = 4 in the disassortative or antiferromagnetic case cin− cout < 0) it was first conjectured [55, 56],

and later proved [2, 16], that there is an additional region below the threshold where community de-

tection is information-theoretically possible, but exponentially hard, so that no efficient algorithm

can do better than chance. We make the same claims for the dynamic case.

4.3 Bayesian Inference and Belief Propagation

Given an observed graph sequence G(t), we wish to infer the posterior distribution of group

assignments {g(t)}. For fixed p, q, and η, Bayes’ rule gives us

P ({g(t)} | {E(t)}) = P ({E(t)}, {g(t)})∑
{g′(t)} P ({E(t)}, {g′(t)}) . (4.4)

We are especially interested in the one-point marginals of this distribution, i.e., the probability

distribution of gi(t) for each node i at each step t. We denote this as

µir(t) = P (gi(t) = r | {E(t)})

=
∑
{g(t)}

P ({g(t)} | {E(t)}) δgi(t),r .

As always, computing the denominator in Eq. (4.4) is difficult, as it is a sum over kTn

terms. In physical terms, this quantity is a partition function and thus we do not expect to be

able to compute P ({g(t)} | {E(t)}, p, η) exactly. However, we can approximate it with variational

90

methods. Since the spatiotemporal graph is locally treelike, we can make a Bethe approximation,

corresponding to the cavity method in physics or belief propagation in machine learning. This allows

us to approximate the marginals and the free energy of the model in an efficient and asymptotically

optimal way.

In belief propagation, vertices send their neighbors “messages” consisting of estimates of

their marginal distributions. Each vertex updates its message to each of its neighbors, based on

the message it receives from its other neighbors. It does this using Bayes’ rule, assuming that its

neighbors are independent of each other (conditioned on that vertex’s state). We then update the

messages until they reach a fixed point.

In our dynamic setting, we have two kinds of messages, passing along the spatial and temporal

edges of the spatiotemporal graphs (Fig. 4.1). We denote the spatial messages µi→jr (t): this is i’s

estimate, sent to j, of the probability that i belongs to group r at time t. Similarly, the temporal

message µi(t)→i(t±1)
r is i’s estimate of this probability sent to its past and future selves.

For general values of the connection probabilities prs and the transition matrix τ , the update

equation for the spatial messages is

µi→jr (t)

= 1
Zi→j(t)

(∑
s

τrsµ
i(t−1)→i(t)
s

)(∑
s

τsrµ
i(t+1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)
6̀=j

∑
s

crsµ
`→i
s (t)

∏
`:(i,`)/∈E(t)

`6=j

∑
s

(1− prs)µ`→is (t) , (4.5)

and the update equation for the temporal messages is

µi(t)→i(t+1)
r = 1

Zi(t)→i(t+1)

(∑
s

τrsµ
i(t−1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)

∑
s

crsµ
`→i
s (t)

∏
`:(i,`)/∈E(t)

∑
s

(1− prs)µ`→is (t) , (4.6)

where Zi→j(t) and Zi(t)→i(t±1) are normalization factors, and similarly for µi(t)→i(t−1)
r with τ trans-

posed. Finally, once the messages reach a fixed point, we compute the marginals at each vertex by

91

t +1

t

t 1

μgi

i(t 1) i(t)

μgi

i(t) i(t 1)

μgi

i(t+1) i(t)

μgi

i(t) i(t+1)

Figure 4.1: A schematic representation of belief propagation messages (see Eqs. (4.5) and (4.6))
being passed along spatial and temporal edges in the spatiotemporal graph.

taking all its incoming messages into account,

µir(t) = 1
Zi(t)

(∑
s

τrsµ
i(t−1)→i(t)
s

)(∑
s

τsrµ
i(t+1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)

∑
s

crsµ
`→i
s (t)

∏
`:(i,`)/∈E(t)

∑
s

(1− prs)µ`→is (t) . (4.7)

Of course, when t = 1 or t = T , we remove the term corresponding to the temporal edge coming

from outside the domain of t.

In the update equations given here, we have O(Tn2) messages, with spatial messages between

both neighboring and non-neighboring pairs of nodes. As in [55, 56, 7], in the sparse case prs = crs/n

we can approximate the effect of non-neighboring pairs with an external field, so that we only need

to keep track of O(Tn) messages between nodes and their spatiotemporal neighbors. This amounts

to writing ∏
`

∑
s

(1− prs)µ`→is (t) = e−hr(t)

where

hr(t) = 1
n

∑
`

∑
s

crsµ
`→i
s (t) . (4.8)

92

Furthermore, in our special case where τ and σ are given by Eqs. (4.1) and (4.2), we have

∑
s

τrsµ
i(t−1)→i(t)
s = ηµi(t−1)→i(t)

r + 1− η
k∑

s

τsrµ
i(t+1)→i(t)
s = ηµi(t+1)→i(t)

r + 1− η
k∑

s

crsµ
`→i
s (t) = λµ`→ir (t) + 1− λ

k
.

As in [55, 56], the BP equations have a trivial fixed point where all the messages are uniform:

µi→j(t) = µi(t)→i(t±1) = 1/k for all i, j, and t. The Kesten-Stigum transition computed above is

precisely where this fixed point becomes unstable. Below the transition, BP converges to the trivial

fixed point, all marginals are uniform, and the algorithm performs no better than chance.

However, above this transition, the trivial fixed point is unstable, and BP converges to a non-

trivial fixed point. If the network is generated by our model and we know the correct parameters,

we expect this non-trivial fixed point to give an asymptotically correct estimate of the marginals

Eq. (4.7) up to a permutation of the groups. In physical terms, we are on the Nishimori line, so

there is no static replica symmetry breaking and no spin glass phase [93]. Then, if we assign each

node its most-likely label at each time, setting ĝi(t) = argmaxrµir(t), this assignment maximizes

the fraction of correct labels. Thus our BP algorithm succeeds all the way down to the detectability

threshold given by Eq. (4.3), and is asymptotically optimal in terms of its accuracy. We expect

that this can be made rigorous, at least in the case k = 2, using the techniques of [128, 127, 120].

For k ≤ 3, the detectability transition is second-order, with the optimal accuracy going to

zero continuously at the transition. In analogy with the static block model [55, 56] we believe that

for k > 4 (or k ≥ 4 for the disassortative case) the detectability transition becomes first-order.

Then there is an additional regime where there are at least two competing fixed points, the trivial

one and an accurate one, both of which are locally stable. However, the basin of attraction of the

accurate fixed point is exponentially small, so that BP with random initial messages will almost

always converge to the trivial fixed point. In this regime, community detection is information-

theoretically possible, but it would require exponential time to search the space of possible fixed

93

points. Physically, there is a free energy barrier between the trivial fixed point, which corresponds

to a paramagnetic phase, and the accurate fixed point, which corresponds to a ferromagnetic one.

4.4 Spectral Clustering

In dense networks, a common approach to detecting communities is spectral clustering, which

is accomplished by examining the eigenvectors of either the adjacency or Laplacian matrix. In

sparse networks, approach fails strictly above the detectability threshold [192, 106]. However, it

is known that this difficulty can be circumvented, in static networks, by using a non-backtracking

matrix or Hashimoto operator [106, 27], which prevents localization of the eigenvectors to the high-

degree vertices. Here, we extend these techniques to derive a spectral algorithm for sparse dynamic

networks.

The idea is simply to linearize the BP update equations around the trivial fixed point de-

scribed above, expanding all the messages to first order around 1/k. In the static case, this lin-

earization yields the non-backtracking matrix. Its 2nd through kth eigenvectors are correlated with

the true community structure all the way down to the detectability transition [106, 27], so that we

can label nodes using a clustering technique in Rk−1 such as the k-means algorithm.

For the dynamic block model, linearizing the BP update equations around the trivial fixed

point gives a 2km×2km matrix, where m is the total number of edges in the spatiotemporal graph.

Analogous to [106], this is the tensor product of a k × k matrix with a 2m × 2m matrix, which

we can simplify further by writing it in terms of the total incoming and outgoing messages at each

vertex. This gives a 4nT × 4nT matrix,

B =



λAspatial −λ1 λAspatial 0

λ(Dspatial − 1) 0 λDspatial 0

ηAtemp 0 ηAtemp −η1

ηDtemp 0 η(Dtemp − 1) 0


. (4.9)

Here 1 denotes the nT -dimensional identity matrix; Atemp is the adjacency matrix of temporal

edges; Dtemp is the diagonal matrix of temporal degrees; Aspatial is the adjacency matrix of spatial

94

edges; and Dspatial is the diagonal matrix of spatial degrees. That is,

Atemp
(u,t),(v,t′) = δuv(δt,t′+1 + δt,t′−1)

Dtemp
(u,t),(u,t) =


2 if 1 < t < T

1 if t = 1 or t = T

Aspatial
(u,t),(v,t′) =

⊕
t

A(t) =


1 if t = t′ and (u, v) ∈ E(t)

0 otherwise

Dspatial
(u,t),(u,t) =

⊕
t

D(t) =
∑
v

Au,v(t)

where the symbol ⊕ denotes the matrix direct sum (diagonal concatenation). The terms λAspatial

and ηAtemp in Eq. (4.9) correspond to attenuation of the messages along the spatial and temporal

edges by the second eigenvalues of σ and τ respectively. The terms −1 correspond to the non-

backtracking nature of belief propagation, and are known in physics as Onsager reaction terms.

This analysis gives us a spectral algorithm for dynamic networks. We form the spatiotemporal

graph, construct the matrix B, compute the k − 1 eigenvectors with the largest eigenvalue (in

absolute value), and finally perform k-means clustering on the resulting n vectors in Rk−1. In the

case k = 2, we can simply label nodes according to the sign of the second eigenvector to separate

nodes into two communities.

As in the static case [106], the instability of the trivial fixed point corresponds exactly to

where the community-correlated eigenvectors emerge from the bulk of B’s spectrum in the complex

plane. Thus we claim that, while it is somewhat less accurate than belief propagation, this spectral

algorithm is optimal in the sense that it works all the way down to the dynamical detectability

transition. Finally, we also expect that this result can be made rigorous, as [27] did for the static

case.

95

Figure 4.2: Overlap as a function of ε for different values of η (given in the legend). For each η, the
critical value of ε for T = 40 is shown as a vertical line in the lower panel, and the hatched area
shows the region of detectability for static networks [55, 56]. Each data point is the average of 100
instances, with n = 512, T = 40, k = 2 groups, and average degree c = 16.

96

4.5 Numerical Experiments

To verify our claims of the detectability transition in dynamic networks and the accuracy of

our algorithms, we conduct the following numerical experiment. Using the dynamic block model,

we generate a number of dynamic networks with various rates of change and various strengths of

community structure. We then use the BP and spectral algorithms to infer the group assignments,

assuming that the true parameters are available to the algorithm, and measure their accuracy

against the known underlying structure.

Following past work, we parametrize the strength of the community structure by ε = cout/cin.

For ε = 0 nodes only connect to others in the same group, while for ε = 1 the network at each time

is an Erdős-Rényi random graph with no community structure. In terms of ε, the detectability

transition in Eq. (4.3) occurs at

λ = 1− ε
1 + (k − 1)ε = 1√

c

√
1− η2

1 + η2 . (4.10)

In our experiments, we explore networks in the (ε, η) plane, while keeping the average degree c

fixed.

We measure the accuracy of the inferred labels by the overlap between the true assignment

g∗ and the inferred one ĝ. This is the fraction of nodes labeled correctly, averaged over all nodes

and all times, normalized so that it is 1 if ĝ = g∗ and 0 if ĝ is uniformly random. (To break the

permutation symmetry, we maximize over all k! permutations of the groups.) In Figure 4.2 we

show the overlap obtained by BP for dynamic networks as a function of ε for several choices of η,

with n = 512, T = 40, k = 2 and c = 16. For each η, the critical value of ε for T = 40 is shown as a

vertical line in the lower panel. As predicted, the critical ε increases with η; we found numerically

that the finite-size effects scale as n−1/2, typical of phase transitions in infinite-dimensional systems.

Figure 4.3 shows the overlap throughout the (ε, η)-plane, using both BP and our spectral

algorithm, again for k = 2 and c = 16. The dashed curve shows the detectability transition for

T = 40; note that close to η = 1 it diverges from the transition for T =∞, which is shown as the

magenta curve. While BP achieves a higher overlap throughout the (ε, η)-plane, both algorithms

97

0

0.2

0.4

0.6

0.8

1

η

0.2 0.4 0.6 0.8 1
ε

0

0.2

0.4

0.6

0.8

1

η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: The overlap for (top) belief propagation and (bottom) our spectral algorithm. The
detectability transition in Eq. (4.10) for T = ∞ is shown as a solid line. The dashed curve shows
the detectability transition for T = 40; the magenta curve shows the transition for T = ∞. Each
point shows the average over 100 dynamic networks generated by our model with n = 512, T = 40,
k = 2 groups, and average degree c = 16. The overlap here is calculated by averaging the maximum
overlap at each time slot over all permutations. This maximization step implies that the expected
overlap in the undetectable region is O(n−1/2), and this produces a small deviation away from
overlap = 0 in our numerical experiments.

98

achieve a large overlap when ε is small or η is large, i.e., when the community structure is strong

or when the group memberships change slowly. As we approach the critical curve, both algorithms

undergo a second-order transition, with their accuracy going to zero continuously. (As stated

above, for some larger values of k we expect this transition to become first-order, with the accuracy

jumping to zero discontinuously.) Moreover, Figure 4.4 shows that the convergence time of BP,

i.e., the number of times we need to iterate the update equations to reach a fixed point, diverges

near the critical curve.

4.6 Conclusion

Although we now have a rigorous theoretical understanding of the strengths, weaknesses, and

limits of community detection in static networks, comparable theoretical insights for networks with

more general structures have been lacking. Here, we derived a mathematically precise understanding

of the limits of detectability for communities in dynamic networks, under a model in which group

memberships are correlated over time but where the edges at each time are generated independently.

Using the cavity method, we generalized the static-case detectability limit to depend on both

the strength of the communities and on the rate at which community membership changes over

time. Because this model is an analytically tractable special case of several previously published

models, we expect qualitatively similar behavior to occur within more elaborate models of dynamic

networks, including those where the edges at successive times are correlated as we will develop it

in Chapter 5.

Our two efficient algorithms for detecting communities in dynamic networks, one based on

belief propagation and one on spectral clustering, are optimal in the sense that they succeed all

the way down to the detectability threshold. Furthermore, the belief propagation algorithm is

asymptotically optimal in terms of its accuracy, implying that no algorithm can perform better at

detecting communities in dynamic networks in which edges are generated independently at each

time step.

99

0.2 0.4 0.6 0.8 1
ε

0

0.2

0.4

0.6

0.8

1

η

40

80

120

160

≥200

Figure 4.4: The convergence time of belief propagation diverges as we approach the transition.
This heat map shows the number of iterations it takes BP to converge to a fixed point, with the
same parameters as in Fig. 4.3. As before, the dashed curve shows the detectability transition for
T = 40, and the magenta curve shows the transition for T =∞.

100

We believe that all of our results can be made rigorous, at least for two groups, using the

methods of [128, 127, 120, 27]. We also note that the mathematical tools we introduced to obtain

our results for dynamic networks are quite general, and could be used to obtain similar results for

other, more general types of networks. Examples of such future directions include the case where

the matrix p of connection probabilities changes over time (a situation similar to change-point

detection in networks [146]), or where edges are persistent across time [42], or where networks have

edge weights [7] or additional metadata on the nodes [144, 145, 194, 134]. The latter represents a

particularly interesting case, as recent numerical results by Newman and Clauset [134] suggest that

metadata on the nodes may also serve to shift the location of the detectability threshold in static

networks.2

2 Acknowledgments—The authors thank Elchanan Mossel and Andrey Lokhov for helpful conversations, and
acknowledge the BioFrontiers Computing Core at the University of Colorado Boulder for providing High Performance
Computing resources (NIH 1S10OD012300) supported by BioFrontiers IT. This work was supported in part by Grant
No. IIS-1452718 (AG, AC) from the National Science Foundation, Grant #FA9550-12-1-0432 from the U.S. Air Force
Office of Scientific Research (AFOSR) and the Defense Advanced Research Projects Agency (DARPA) (LP), contract
W911NF-12-R-0012 from the Army Research Office (ARO) (CM), and the John Templeton Foundation (PZ, CM).
AG and PZ are joint first authors, with the remaining authors appearing alphabetically.

Chapter 5

Community Detection in Temporal Networks

with Link Persistency

Dynamic networks can be modeled in different ways depending on the application. Conven-

tionally, the dynamic networks are modeled as a static graph by aggregating the temporal links as

weighted graphs. This approach is particularly beneficial when the rate of change in a temporal

network is lower than our observation rate, then the snapshots are correlated and we can use an ag-

gregation approach. However, in long observation, we may lose valuable information. On the other

hand, we can not model these snapshots independently since they are correlated. In Chapter 4,

we considered dynamic networks with community persistency, while many real dynamic networks

show also link persistency, e.g., friendship networks and collaboration networks have this property.

Even if this is not the constraint of the application, it can be the constraint of our sampling. For

example, if the rate of observation is much higher than the rate of disappearance, again we have

link persistency in a temporal network.

A few researchers have previously studied this model in dynamic networks. Xu in Ref. [188],

has proposed a model named the stochastic block transition model for dynamic networks. He

suggested controlling the appearance and reappearance of the edges through two block transition

matrices. He also studied the inference of this model using a combination of an extended Kalman

filter and a local search algorithm. Under a Bayesian framework in Ref. [157], Rastelli fitted this

stochastic block transition model to several synthetic and real network datasets. He used a greedy

optimization procedure to maximize the exact integrated completed likelihood. Zhang et al. in

102

Ref. [195] has generalized three static models of classic Erdős-Rényi (ER), configuration model,

and stochastic block model (SBM) to time-varying networks using some parameters to control the

community and link persistency and proposed efficient algorithms for fitting these dynamic models

to network data. In Ref. [19], the authors have studied the inference of a dynamic variant of

SBM with both community and link persistency in the model, using an expectation-maximization

algorithm. The authors in Ref. [14] have studied a similar model and proposed inferring the labels by

first applying an arbitrary inference algorithm appropriate for inference in SBM to each snapshot

separately, and then unified these inferences by taking into account permutations and possible

errors, to get a single estimate of community memberships. They also used maximum likelihood

estimation to infer the parameters of the model.

In this chapter, we continue studying the theoretical limits in dynamic networks, but now

impose the link persistency. Similar to Chapter 4, we model each snapshot using the stochastic block

model (SBM) and model the evolution of communities via a first order Markov chain. Furthermore,

we consider the evolution of the edges by adding another first order Markov chain into the model.

For the first attempt of inference in this chapter, we extend our model-based inference algorithm

using BP equations on spatiotemporal graph (see Fig. 4.1) for this new model with link persistency.

By doing that, we assume the short loops generated due to the link persistency, do not cause

substantial convergence problem for our BP equations. However, it is possible that this assumption

is not valid around the phase transition regime. Therefore, we also approach this problem via a

method inspired by quantum many-body systems [112]. We consider a static network with the

whole path of communities for each node as its state (see Fig. 5.1). We name this graph as spatio-

historical in analogy with our previous terminology. Through this modeling, we again have a

tree-like network and therefore, we can use BP equations for inference. In the following, first, we

explain the new formulation for spatiotemporal graph in Section 5.1. To simplify our formulation

in spatio-historical framework, some notation is suggested in Section 5.2. In Section 5.3, we change

the previous BP equations based on our new framework of spatio-historical graph.

103

i

j

Aki

k

Aij

gk

gi

g j

21 T

gi(1) gi(2) gi(T)

Figure 5.1: A schematic representation of static temporal graph with history of the communities,
which we call it a spatio-historical graph.

104

5.1 Community and Link Persistency in Spatiotemporal Graph

Although the beleif propagation algorithm is optimal for inference on tree-structured graph-

ical models, it is also applied to general loopy networks [94]. On loopy networks, the BP equations

may not converge, and if they do the inference is an approximate. However, in practice these

approximations are good. Here, as the first solution for inference in dynamic netowrks with link

presistency, we derive the BP equations for the new model and ignore these convergence issues.

5.1.1 Spatiotemporal Message Passing Equations with Link Persistency

By adding the link persistency to the model presented in Chapter 4, the equations are changed

as

P ({E(t)}, {g(t)}) = P ({g(t)})P ({E(t)} | {g(t)}) (5.1)

P ({E(t)} | {g(t)}) = P ({E(1)} | {g(1)})
T∏
t=2

P ({E(t)} | {g(t)}, {E(t− 1)}) (5.2)

=
∏
i<j

P (Aij(1) | gi(1), gj(1))
T∏
t=2

∏
i<j

P (Aij(t) | gi(t), gj(t), Aij(t− 1)) (5.3)

P ({g(t)}) = P (g(1))
T∏
t=2

P (g(t) | g(t− 1)) , (5.4)

where we have

P (Aij(t) = a |gi(t) = r, gj(t) = s,Aij(t− 1) = b) = (γrs)ab (5.5)

P (Aij(1) |gi(1), gj(1)) = p
Aij(1)
gi(1),gj(1)(1− pgi(1),gj(1))1−Aij(1) (5.6)

P (g(t) | g(t− 1)) =
∏
i

τgi(t),gi(t−1) (5.7)

=
∏
i

(
ηδgi(t),gi(t−1) + (1− η)qgi(t)

)
1 ≤ t ≤ T (5.8)

P (g(1)) =
∏
i

qgi(1) . (5.9)

To have the link persistency in this model, we parameterize the probability of interactions P (Aij(t) =

a | gi(t) = r, gj(t) = s,Aij(t− 1) = b) by (γrs)ab. We have 4 possibilities of appearance, disappear-

ance, reappearance, and still no appearance of an edge as follows:

105

P (Aij(t) = a |gi(t) = r, gj(t) = s,Aij(t− 1) = b) = (γrs)ab =



(γrs)00
still no appearance
of an edge

(γrs)01 appearance of an edge

(γrs)10 disappearance of an edge

(γrs)11 reappearance of an edge

.

(5.10)

Bayesian inference and Belief Propagation Analogous to Chapter 4, the posterior

distribution of group assignments {g(t)} can be formulated as Eq. 4.4 and the marginal distribution

of gi(t) for each node i at each time step t can be computed via this equation. However, as

before, we use the belief propagation algorithm to make the equations tractable. (In the new belief

propagation equations the link persistency constraint is added — prs and 1 − prs is substituted

with (γrs)Ai,`(t−1),1 and (γrs)Ai,`(t−1),0 if there is or there is not an edge between i and ` at time

step t, respectively). In the new BP equations, the update equation for the spatial messages is

µi→jr (t)

= 1
Zi→j(t)

(∑
s

τrsµ
i(t−1)→i(t)
s

)(∑
s

τsrµ
i(t+1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)
6̀=j

∑
s

(γrs)Ai,`(t−1),1µ
`→i
s (t)

∏
`:(i,`)/∈E(t)

`6=j

∑
s

(γrs)Ai,`(t−1),0µ
`→i
s (t) , (5.11)

and the update equation for the temporal messages is

µi(t)→i(t+1)
r = 1

Zi(t)→i(t+1)

(∑
s

τrsµ
i(t−1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)

∑
s

(γrs)Ai,`(t−1),1µ
`→i
s (t)

∏
`:(i,`)/∈E(t)

∑
s

(γrs)Ai,`(t−1),0µ
`→i
s (t) , (5.12)

where Zi→j(t) and Zi(t)→i(t±1) are normalization factors, and similarly for µi(t)→i(t−1)
r with τ trans-

posed. The schematic of this message passing algorithm can be summarized as in Fig. 4.1.

Finally, once the messages reach a fixed point, we compute the marginals at each vertex by

106

taking all its incoming messages into account,

µir(t) = 1
Zi(t)

(∑
s

τrsµ
i(t−1)→i(t)
s

)(∑
s

τsrµ
i(t+1)→i(t)
s

)

×
∏

`:(i,`)∈E(t)

∑
s

(γrs)Ai,`(t−1),1µ
`→i
s (t)

∏
`:(i,`)/∈E(t)

∑
s

(γrs)Ai,`(t−1),0µ
`→i
s (t) . (5.13)

5.2 Notation

For the interest of simplification, in the rest of this chapter, we change the notation and

vectorize the sequence of objects in our formulation. The sequence of graphs G(t), 1 ≤ t ≤

T in the new modeling is notated with a vector of graphs as ~G = [G(T) G(T − 1) . . . G(1)]T .

Also our previous notation G(t) = (V,E(t)), 1 ≤ t ≤ T is changed as ~G = (V, ~E), where ~E =

[E(T) E(T − 1) . . . E(1)]T . The history of community membership of node i is notated by ~gi =

[gi(T) gi(T − 1) . . . gi(1)]T , and the history of edges between a pair of nodes i and j i.e. (i, j)

is shown by ~Aij = [Aij(T) Aij(T − 1) . . . Aij(1)]T . As we will see in the following sections, this

notation is very helpful. Utilizing this notation in BP equations helps us to derive different BP

algorithms simply by first deriving the equations for a static network and generalizing the equations

to dynamic networks.

5.3 Community and Link Persistency in Spatio-historical Graph

Using our new notation, the difference between the new model with link persistency and the

model in Chapter 4 without link persistency appears in the probability of interactions P (~Aki | ~gi, ~gk)

(see Eqs. 5.39 and 5.43). To be concrete, the likelihood of the model of temporal networks with

107

link persistency can be written as follows:

P (~E,~g) = P (~g)P (~E |~g) (5.14)

P (~E |~g) = P ({E(1)} | {g(1)})
T∏
t=2

P ({E(t)} | {g(t)}, {E(t− 1)}) (5.15)

=
∏
i<j

P (Aij(1) | gi(1), gj(1))
T∏
t=2

∏
i<j

P (Aij(t) | gi(t), gj(t), Aij(t− 1)) (5.16)

P (~g) = P (g(1))
T∏
t=1

P (g(t) | g(t− 1)) , (5.17)

where we have

P (Aij(t) = a |gi(t) = r, gj(t) = s,Aij(t− 1) = b) = (γrs)ab (5.18)

P (Aij(1) |gi(1), gj(1)) = p
Aij(1)
gi(1),gj(1)(1− pgi(1),gj(1))1−Aij(1) (5.19)

P (g(t) | g(t− 1)) =
∏
i

τgi(t),gi(t−1) (5.20)

=
∏
i

(
ηδgi(t),gi(t−1) + (1− η)qgi(t)

)
1 ≤ t ≤ T (5.21)

P (g(1)) =
∏
i

qgi(1) . (5.22)

As shown in Eq. 5.10, for having the link persistency in our model, we parameterized the probability

of interactions P (Aij(t) = a | gi(t) = r, gj(t) = s,Aij(t− 1) = b) by (γrs)ab.

Now the question is how to compute these parameters (γrs)ab for our dynamic SBM model.

These probabilities are related to the birth–death process of edges in the model. We write down

these parameters as a function of birth and death rates similarly as Zhang et al. [195]. The authors

show if the rates of adding and removing edges at successive snapshots between two nodes i and j

with communities r and s, are λrs and µrs, respectively, then we have the following equation for

pk, the probability that a node pair has k edges at time t,

pk(t+ dt) = pk(t)(1− kµrsdt− λrsdt) + pk+1(t)(k + 1)µrsdt+ pk−1(t)λrsdt, (5.23)

where the following master equation can be derived from it,

dpk
dt

= λrspk−1(t) + (k + 1)µrspk+1(t)− (λrs + kµrs)pk(t) . (5.24)

108

Here, if we have binary constraint on the number of edges for each pair of nodes, this equation can

be simplified as following:

dp1
dt

= −dp0
dt

= λrsp0(t)− µrsp1(t) . (5.25)

Using z-transform, the general solution of this equation is as

g(z, t) = e
λrs(z−1)
µrs f((z − 1)e−µrst), (5.26)

where f(x) is any once-differentiable function of its argument satisfying f(0) = 1. Since asymptoti-

cally g(z, t)→ e
λrs(z−1)
µrs , i.e., the z-transform of the probability distribution (when t→∞) is similar

to a Poisson distribution with mean λrs
µrs

, then taking
λgi(t),gj(t)
µgi(t),gj(t)

= pgi(t),gj(t) makes the stationary

state of this model equivalent to a SBM as desired. Then each snapshot is generated by adding

and removing the edge (i, j) with the rate of λgi(t),gj(t) and µgi(t),gj(t). The probability of these

transitions can be computed using the expansion of z-transform as follows.

Let us assume at t = 0, we have an edge between i and j with communities r and s,

respectively. We have g(z, 0) = ∑
k pk(0)zk = z, and therefore we have f(z − 1) = e

−λrs(z−1)
µrs z.

Also we have g(z, 1) = e
λrs(z−1)
µrs e

−λrs(z−1)e−µrs
µrs ((z − 1)e−µrs + 1) = e

βrsλrs(z−1)
µrs ((z − 1)e−µrs + 1) 1 .

By expansion of g(z, 1), we find the transition probabilities of p1→0 and p1→1. Therefore, we have

p1→0 = p0(1) = (1− e−µrs)e−
βrsλrs
µrs = βrse−

βrsλrs
µrs , and p1→1 = p1(1) = e−

βrsλrs
µrs (e−µrs + βrsλrs

µrs
(1−

e−µrs)) = (1− βrs + β2
rsλrs
µrs

)e−
βrsλrs
µrs .

Using a similar argument, p0→0 and p0→1 can be computed. Let us assume at t = 0,

we do not have any edge between i and j with communities r and s, respectively. We have

g(z, 0) = ∑
k pk(0)zk = 1, and therefore we have f(z − 1) = e

−λrs(z−1)
µrs . Also we have g(z, 1) =

e
λ(z−1)
µ e

−λ(z−1)e−µ
µ = e

βrsλrs(z−1)
µrs . By expansion of g(z, 1), we will find the transition probabil-

ities of p0→0 and p0→1. Therefore, by this expansion, we get p0→0 = p0(1) = e−
βrsλrs
µrs , and

p0→1 = p1(1) = βrsλrs
µrs

e−
βrsλrs
µrs .

The first snapshot is generated using the SBM and the successive snapshots can be generated

as P (Aij(t) = a | gi(t) = r, gj(t) = s,Aij(t − 1) = b), where it can be summarized as Eq. 5.10. In
1 βrs = 1 − e−µrs ≈ µrs is the probability of disappearance of an existing edge when the rate of removing is µ.

109

the following, we summarize the probability of interactions γrs as a function of parameters in our

dynamic stochastic block model (DSBM). We have

P (Aij(t) = a | gi(t) = r, gj(t) = s,Aij(t− 1) = b) = (γrs)ab

=



p0→0 = (γrs)00 = e−βrsprs = 1− βrsprs
still no appearance of an edge
(a=0,b=0)

p0→1 = (γrs)01 = βrsprse
−βrsprs = βrsprs

appearance of an edge
(a=1,b=0)

p1→0 = (γrs)10 = βrse
−βrsprs = βrs(1− βrsprs)

disappearance of an edge
(a=0,b=1)

p1→1 = (γrs)11 = (1− βrs)e−βrsprs = (1− βrs)(1− βrsprs)
reappearance of an edge
(a=1,b=1)

.

(5.27)

Continuous process of generating the network and the state transition diagram

In this section we derive the transition probabilities using a simpler approach via the state transition

diagram. The continuous process of generation of the edges between two nodes i and j with

communities r and s, respectively, can be explained using Eq. 5.25, as illustrated in Fig. 5.2. The

transition probabilities of adding and removing edges can be computed by solving these differential

equations with two initial conditions of p0(0) = 1 or p1(0) = 0 and p0(0) = 0 or p1(0) = 1. The

general solution of these differential equations can be written as

p0(t) = µrs
λrs + µrs

− ce−(λrs+µrs)t , (5.28)

p1(t) = λrs
λrs + µrs

− ce−(λrs+µrs)t . (5.29)

Let us first compute p0→0 (p0→1). Since there is no edge at t = 0, we have p0(0) = 1

(p1(0) = 0). Therefore, the solution using this initial condition is as follows:

p0(t) = µrs
λrs + µrs

+ λrs
λrs + µrs

e−(λrs+µrs)t , (5.30)(
p1(t) = λrs

λrs + µrs

(
1− e−(λrs+µrs)t

))
. (5.31)

110

Then we have

p0→0 = p0(1) = 1− λrs
λrs + µrs

(
1− e−(λrs+µrs)

)
≈ 1− λrs = 1− µrsprs ≈ 1− βrsprs , (5.32)

p0→1 = p1(1) = λrs
λrs + µrs

(
1− e−(λrs+µrs)

)
≈ λrs = µrsprs ≈ βrsprs . (5.33)

Similarly, for p1→0 (p1→1), using initial condition of p0(0) = 0 (p1(0) = 1), the solution is as

following:

p0(t) = µrs
λrs + µrs

(
1− e−(λrs+µrs)t

)
, (5.34)(

p1(t) = λrs
λrs + µrs

+ µrs
λrs + µrs

e−(λrs+µrs)t
)
. (5.35)

Therefore, the transition probabilities of p1→0 and p1→1 can be computed as

p1→0 = p0(1) = µrs
λrs + µrs

(
1− e−(λrs+µrs)

)
≈ µrs ≈ βrs (5.36)

p1→1 = p1(1) = 1− µrs
λrs + µrs

(
1− e−(λrs+µrs)

)
≈ 1− µrs ≈ 1− βrs . (5.37)

These equations can also be computed simply using the state transition diagram in Fig. 5.2. In

111

order to compute p1→0, p1→1, p0→0 and p0→1, we can write

p0→0 =
∞∑
i=0

Pr{entering state 1 i times and then return to state 0}

= 1− λrs +
∞∑
i=1

(λrsµrs)i

≈ 1− λrs ≈ 1− βrsprs ,

p0→1 =
∞∑
i=1

Pr{all possible transitions from state 0 to 1}

=
∞∑
i=1

λirsµ
i−1
rs

= λrs
1− λrsµrs

≈ λrs ≈ βrsprs ,

p1→0 =
∞∑
i=1

Pr{all possible transitions from state 1 to 0}

=
∞∑
i=1

µirsλ
i−1
rs

= µrs
1− λrsµrs

≈ µrs ≈ βrs ,

p1→1 =
∞∑
i=0

Pr{entering state 0 i times and then return to state 1}

= 1− µrs +
∞∑
i=1

(λrsµrs)i

≈ 1− µrs ≈ 1− βrs .

Now we briefly summarize the dynamic network generative process with link persistency.

• (i). The first snapshot is generated using SBM parameters. Type of each node at t = 1

is drawn from a prior probability q1 = P (g(1)). Then edges are drawn from some initial

mixing probabilities, i.e., for each pair of nodes (i, j), we connect them with probability

pgi(1),gj(1) and do not connect them with probability 1− pgi(1),gj(1).

• (ii). For the next snapshots, we generate communities using a similar Markov chain as in

Chapter 4, i.e., P (gi(t) | gi(t− 1)) = τgi(t),gi(t−1) = ηδgi(t−1),gi(t) + (1− η)qgi(t).

• (iii). After generating communities of nodes in current snapshot, knowing the information

112

rsdt1 rsdt

μrsdt

1 μrsdt

0 1

μrs =
μin μout

μout μin
rs =

μin pin μout pout

μout pout μin pin

Figure 5.2: State Diagram: Markov process of edge generation.

113

related to the location of edges and non-edges in the previous snapshot and the community

of the nodes in the current snapshot, the new edges can be drawn with the probabilities

p0→0, p0→1, p1→0, and p1→1.

• (iv). repeat (ii) and (iii) iteratively until wiring the whole network.

Bayesian inference and Belief Propagation The posterior distribution can be written as

P (~g | ~E) = P (~E,~g)∑
~g′P (~E,~g′)

. (5.38)

The nodal marginals of this distribution can be written as before. Then we have

µi~r = P (~gi = ~r | ~E)

=
∑
~g

P (~g | ~E) δ~gi,~r .

The belief propagation in this model is as following:

µi→j~gi
= q~gi
Zi→j

∏
k 6=j

∑
~gk

µk→i~gk
P (~Aki | ~gi, ~gk) , (5.39)

where Zi→j is normalization factor, q~gi is the prior on the communities and can be written similar

to the previous section as

q~gi = P (~gi) = P (gi(1))
T∏
t=2

P (gi(t) | gi(t− 1)) (5.40)

= P (gi(1))
T∏
t=2

τgi(t),gi(t−1) (5.41)

= P (g(1))
T∏
t=2

(
ηδgi(t),gi(t−1) + (1− η)qgi(t)

)
, (5.42)

and the probability of interactions can be written as

P (~Aki |~gi, ~gk)

= P (Aik(1) | gi(1), gk(1))
T∏
t=2

P (Aik(t) | gi(t), gk(t), Aik(t− 1)) . (5.43)

The schematic of this message passing algorithm can be summarized as in Fig. 5.3. The message

114

i

j

Aki

μgk

k i
k

Aij
μgi

i j

21 T

gi(1) gi(2) gi(T)

Figure 5.3: A schematic representation of belief propagation messages [see Eq. 5.39] being passed
along spatial edges in the spatio-historical graph.

115

going from i to j at time t can be computed by marginalizing µi→j~gi
as

µi→jgi (t) =
∑

~gi:gi(t)=gi

µi→j~gi
. (5.44)

Finally, after convergence of the messages, we can compute the marginals at each vertex by

taking all incoming messages into account,

µi~gi = q~gi
Zi

∏
k

∑
~gk

µk→i~gk
P (~Aki | ~gi, ~gk) . (5.45)

The marginal distribution of the node type i at time t can be computed by summing over all the

states with the common state of node i at time t as follows,

µigi(t) =
∑

~gi:gi(t)=gi

µi~gi . (5.46)

5.4 Computational Complexity

The computational complexity of BP equations are quadratic in the state dimension. The

computational complexity of Eq. 5.39 is n2n2
states, where n and nstates are the number of nodes

and the dimension of states, respectively. Even if we compute P (~Aki | ~gi, ~gk) offline, the space

complexity of this four dimensional tensor would be n2n2
states that is infeasible. In this section,

we first derive a Bayesian naive Bayes algorithm besides a variational mean field formulation for

our model and then we utilize the Stochastic Belief Propagation [139] to reduce the computational

complexity of these equations.

5.4.1 Bayesian Naive Bayes

The goal in community detection is to find the marginal probability of membership of each

node and this can be done using naive Bayes, assuming the type of neighbors are independent,

given the topology of the network (observed edges). This can be explained through the following

derivation in a tree (see Fig. 5.4). (For simplicity, we derive the equations for a static network,

116

and using the vectorized notation we simply generalize the equations to the dynamic networks with

link persistency.) The probability of community membership of each node given the topology of a

network can be written as

P (gi | A) = µigi =
∑

{gj},{g`}
P (gi, {gj}, {g`} | A) , (5.47)

where js are node’s indices in neighborhood of node i and `s are non-neighbors of node i and A is the

whole network observation and can be decomposed as A = {Aij : j ∈ N (i)} ∪ {A \Aij : j ∈ N (i)}.

Then Eq. 5.47 can be written as

µigi =
∑

{gj},{g`}
P (gi, {gj}, {g`} | A)

(1)=
∑
{gj}

P (gi, {gj} | {Aij : j ∈ N (i)}, {A \Aij : j ∈ N (i)})

(2)=
∑
{gj}

P ({gj} | A)× P (gi | {gj}, {Aij : j ∈ N (i)})

(3)= qgi

∏
j∈N (i)

∑
gj P (gj | A)P (Aij | gi, gj)

Z({gj}) ,
∑
g′i
qg′i
∏
j∈N (i) P (Aij | gj , g′i)

(4)
∝ qgi

∏
j∈N (i)

∑
gj

µjgjP (Aij | gi, gj) , (5.48)

where `s are nodes’ indices in the subtree connected to node i through node j (non-neighbors) and

{g`}s are the type of these nodes. In the derivation above, (1) is because of (i) decomposition of A,

and (ii) marginalizing over type of non-neighbors, i.e., {g`}, (2) is because of (i) the chain rule in

probability, and (ii) in the second term in RHS, the condition over {A \Aij : j ∈ N (i)} is dropped

because of independence, (3) is because of (i) the independence assumption in naive Bayes, and (ii)

using the Bayes rule since we can write:

P (gi | {gj}, {Aij : j ∈ N (i)}) = qgiP ({Aij : j ∈ N (i)} | {gj}, gi)
P ({Aij : j ∈ N (i)} | {gj})

= qgi

∏
j∈N (i) P (Aij | gj , gi)∑

g′i
P ({Aij : j ∈ N (i)}, g′i | {gj})

= qgi

∏
j∈N (i) P (Aij | gj , gi)∑

g′i
qg′i
∏
j∈N (i) P (Aij | gj , g′i)

= qgi

∏
j∈N (i) P (Aij | gj , gi)

Z({gj})
, (5.49)

117

where we have used∑{gj}∏j∈N (i)(.) = ∏
j∈N (i)

∑
gj (.), and finally (4) comes from (i) the definition,

and also (ii) dropping the dependency of Z to gj . The dynamic version of this algorithm can simply

derived as follows:

µi~gi ∝ q~gi
∏

j∈N (i)

∑
~gj

µj~gjP (~Aij | ~gi, ~gj) . (5.50)

5.4.2 Variational Mean Field

As another solution to reduce the complexity of BP equations, we formulate the variational

mean field equations for our DSBM with link persistency. Again for simplicity, we derive the

equations for a static network using SBM. Generalizing the equations to DSBM, using the vectorized

notation, is straightforward as we see at the end of this section. The likelihood function of SBM

for a static network can be written as

P (G, {g} | θ) = ΠiqgiΠi,jp
Aij
gi,gj (1− pgi,gj)1−Aij .

Therefore, the Hamiltonian can be defined as

H({gi} | G, θ) = −
∑
i

ln qgi︸ ︷︷ ︸
hi(gi)

−
∑
i,j

Aij ln pgi,gj + (1−Aij) ln(1− pgi,gj︸ ︷︷ ︸
Jij(gi,gj)

) ,

by utilizing the Boltzmann distribution as P (G, {g} | θ) = −E({g})
T

, where E = −∑i hi(gi) −∑
ij Jij(gi, gj). We will approximate this distribution noted as p using the mean field approximation

via the trial probability of p̃ = Πibi(gi). The mean field approximation to the Gibbs free energy

can be written as GMF = 〈E〉p̃ − Sp̃, which is also called the variational mean filed free energy.

The variational mean field free energy, via the Lagrangian optimization method after adding the

constraint∑i bi = 1, can be used to approximate the original probability distribution p and compute

the approximated marginals bi as follows. The Lagrangian L can be written as

L = −
∑
ij

∑
gi,gj

Jij(gi, gj)bi(gi)bj(gj)−
∑
i

∑
gi

hi(gi)bi(gi) + T
∑
i

∑
gi

bi(gi) ln bi(gi) +
∑
i

λi(bi(gi)− 1) .

118

ij

Figure 5.4: A tree network with node i in the center and nodes j in its neighborhood (red shaded)
and nodes ` in non-neighborhood of node i (green shaded).

119

By differentiating the Lagrangian L with respect to the beliefs bi we have

bi(gi) = qgi
Zi

Πj∈N (i)Πgip

bj(gj)
T

gi,gj Πj /∈N (i)Πgi(1− pgi,gj)
bj(gj)
T .

In the spatio-historical formulation, we can write these equations by substituting pgi,gj and

1− pgi,gj with P (~Aji | ~gi, ~gj) as follows:

bi(~gi) = q~gi
Zi

ΠjΠ~giP (~Aji | ~gi, ~gj)
bj(~gj)
T . (5.51)

5.4.3 Stochastic Belief Propagation [139]

As it is mentioned before, the computational complexity of BP message updating for a graph-

ical model with state dimension of nstates is quadratic in nstates and this is very crucial in our setting,

since the state dimension in spatio-historical framework is 2T for a temporal network with T snap-

shots. To accelerate the BP equations, we use the approach explained in [139]. Again the equations

are explained for a static network and their generalization to the DSBM are straightforward.

The message passing update equation can be written in two formulations, which in the next

section we will show these formulations are equivalent. The message passing update equation, we

have used in this dissertation, is as Eq. 5.52 that its non-vectorized version can be written as

µi→jgi =
qgi
∏
k\j
∑
gk
pgi,gkµ

k→i
gk

Zi→j
. (5.52)

Noorshams et al. in Ref. [139] used another formulation of message passing to derive a stochastic

version of belief propagation algorithm. Here, since we want to apply the stochastic belief propa-

gation to naive Bayes that needs message updates according to Eq. 5.52, we derive the stochastic

belief propagation based on this formulation. Noorshams et al. in Ref. [139], used the message

passing update equation as

µi→jgj =
∑
gi pgi,gjqgi

∏
k∈N (i)\j µ

k→i
gi∑

g′i,g
′
j
pg′i,g

′
j
qg′i
∏
k∈N (i)\j µ

k→i
g′i

. (5.53)

120

The µi→jgj can be interpreted as the message that node i sends to node j regarding what is the

probability of node j being at type gj (ignoring the rest of nodes connected to node j). Now by

defining two variables Γ(gi, gj) ,
pgi,gj∑
g′
j
pgi,g′j

(Γgi,gj is the column-wise normalized version of pgi,gj)

and βgi , qgi
∑
gj pgi,gj , we have βgi · Γgi,gj = qgipgi,gj . This helps us to write Eq. 5.53 as follows:

µi→jgj =
∑
gi βgiΓgi,gj

∏
k∈N (i)\j µ

k→i
gi∑

g′i,g
′
j
βg′iΓg′i,g′j

∏
k∈N (i)\j µ

k→i
g′i

=
∑
gi βgiΓgi,gj

∏
k∈N (i)\j µ

k→i
gi∑

g′i
βg′i
∑
g′j

Γg′i,g′j
∏
k∈N (i)\j µ

k→i
g′i

=
∑
gi βgiΓgi,gj

∏
k∈N (i)\j µ

k→i
gi∑

g′i
βg′i
∏
k∈N (i)\j µ

k→i
g′i

=
∑
gi

Γgi,gj
βgi
∏
k∈N (i)\j µ

k→i
gi∑

g′i
βg′i
∏
k∈N (i)\j µ

k→i
g′i

:= Bv , (5.54)

where B = Γᵀ (traspose of Γ) is the matrix with entries Bij = Γji and v is the vector with i-th

entry as
βgi
∏
k∈N (i)\j µ

k→i
gi∑

g′
i
βg′
i

∏
k∈N (i)\j µ

k→i
g′
i

. The last two lines in Eq. 5.54 can be interpreted as the expectation

over suitably normalized columns of the mixing matrix pgi,gj . Here, the probability distribution

depends on incoming messages and changes at each iteration. This equation as explained in [139]

leads naturally to a stochastic BP (SBP) variant. As the authors explained in Ref. [139], instead of

computing the full expectation at each round with Θ(n2
states) computational cost, the SBP variant

picks a single column with corresponding probabilities and performs a randomized update. Each

one of these messages can be performed in Θ(nstates) time, which is less costly by an order of

magnitude. This is still expensive for our problem since nstates = 2T . However, since in practice the

number of switching times is limited, say 3 or 4, this complexity reduces to polynomial as n3
states

or n4
states that is still intractable for large networks.

Summary of the SBP algorithm:

• Initialize the message vectors,

• for each iteration t ∈ {0, 1, 2, 3, ...}, and for each directed edge (j ← i) ∈ E:

121

∗ compute the product of the incoming messages M j←i
gi (t) = ∏

k∈N (i)\j µ
k→i
gi ,

∗ pick a random index in r(t+1) ∈ {1, 2, 3, ..., d} according to the probability distribution

pj←i(r(t+ 1)) = βgi=r(t+1)M
j←i
gi=r(t+1)(t), (5.55)

∗ for a given step size λ(t), update the messages as

µi→j(t+ 1) = (1− λ(t))µi→j(t) + λ(t)ΓTij(ti = gi, :) . (5.56)

After convergence, the marginal messages will be computed as

µigi ∝ qgi
∏

k∈N (i)
µk→igi . (5.57)

5.4.4 Two Different BP Formulations

In this section, we explain two different BP formulations and their relations. In the first

formulation inspired by computer science literature, we update the message that node i sends to

node j, which is related to the probability of how node i thinks about the type of node j. Intuitively,

in this perspective, the probability of interaction between nodes i and j should be hidden in this

message. On the other hand, in a BP formulation coming from physics perspective, the message

from node i to node j is the probability of how node i thinks about itself, ignoring node j. In this

formulation, i should ignore the interaction with node j. Therefore, these two formulations can be

related through this intuition.

More specifically, the message update equation coming from computer science is as following:

µ̃i→jgj =
∑
gi pgi,gjqgi

∏
k∈N (i)\j µ̃

k→i
gi

Zi→j
. (5.58)

The message that node i sends to node j is related to what node i thinks about its neighbor j.

This knowledge comes from the other neighbors. By multiplying the thoughts of other neighbors

regarding node i (their judgments), except than node j, node i learns its likelihood of type gi and

122

by multiplying it with the prior qgi , it understands the posterior of its type gi. Now if node i

multiply this posterior with the probability of interaction between itself and node j for different

possible labels and sum over all these possibilities, it can learn the community distribution of its

neighbor j.

Looking at the BP formulation coming from physics, we have

µi→jgi =
qgi
∏
k\j
∑
gk
pgi,gkµ

k→i
gk

Zi→j
. (5.59)

Based on this formulation, the message that node i sends to node j is related to what node i

thinks about itself. This knowledge comes from other neighbors. By multiplying the thoughts of

all other neighbors, except than node j, about themselves and multiplying those thoughts with the

probability of interaction between them and node i and summing over all possibilities of their types,

node i understands its likelihood of type gi and by multiplying it with the prior qgi , it understands

the posterior of its type gi. Therefore, µi→jgi is actually the posterior of node i being at type gi,

ignoring node j.

Comparing these two formulations, it can be observed that µ̃i→jgj = ∑
gi pgi,gjµ

i→j
gi . If we

define Ψ ,
[
pgi,gj

]
, then in a matrix notation, this relation can be shown as µ̃i→j = ΨTµi→j or

µi→j = (ΨT)−1
µ̃i→j . Now using these results, we find the stochastic version of the naive Bayes

algorithm.

5.4.5 Stochastic Naive Bayes

As it is shown in Section 5.4.1, the naive Bayes message updates are as Eq. 5.48. To derive

the stochastic version of these updates, let us define a message µ̃igj as what node i thinks about

node j, which leads to the following formulation for µ̃igj (see Section 5.4.4),

µ̃igj =
∑
gi pgi,gjqgi

∏
k∈N (i)\j µ̃

k
gi

Zi
. (5.60)

Based on the results in Section 5.4.4, we know µ̃i = ΨTµi. The stochastic belief propagation for

this new formulation can be summarized as follows.

123

Summary of the SNB algorithm for µ̃:

• Initialize the message vectors µ̃igj ,

• For each iteration t ∈ {0, 1, 2, 3, ...}, and for each pair of nodes (i, j):

∗ compute the product of the possible messages M i
gi(t) = ∏

k∈N (i)\j µ̃
k
gi ,

∗ pick a random index in r(t+1) ∈ {1, 2, 3, ..., d} according to the probability distribution

pi(r(t+ 1)) = βgi=r(t+1)M
i
gi=r(t+1)(t), (5.61)

∗ For a given step size λ(t), update the messages as

µ̃i(t+ 1) = (1− λ(t))µ̃i(t) + λ(t)ΓTij(ti = gi, :) . (5.62)

Therefore, using these results and the results from the previous section, we have the following

stochastic belief propagation for our naive Bayes formulation:

Summary of the SNB:

• Initialize the message vectors µ̃igj ,

• for each iteration t ∈ {0, 1, 2, 3, ...}, and for each pair of nodes (i, j):

∗ compute the product of the possible messages M i
gi(t) = ∏

k∈N (i)\j µ̃
k
gi ,

∗ pick a random index in r(t+1) ∈ {1, 2, 3, ..., d} according to the probability distribution

pi(r(t+ 1)) = βgi=r(t+1)M
i
gi=r(t+1)(t), (5.63)

∗ for a given step size λ(t), update the messages as

ΨTµi(t+ 1) = (1− λ(t))ΨTµi(t) + λ(t)ΓTij(ti = gi, :) , (5.64)

or in another term:

µi(t+ 1) = (1− λ(t))µi(t) + λ(t)(ΨT)−1ΓTij(ti = gi, :) . (5.65)

124

states

ve
rti

ce
s

Figure 5.5: Beliefs on different states.

5.4.6 Some Other Approximations

There are some other techniques to reduce the time complexity of algorithms introduced

in this section. In below we briefly explain some of these techniques. However, reducing the

time complexity of these algorithms is beyond the scope of this chapter and we leave it for future

work.

5.4.6.1 Approximations Using Sparse State Probabilities

Fig. 5.5 shows the probability of states for each node computed using a naive Bayes algorithm

on a network with 50 nodes and 10 snapshots. Most of the beliefs i.e. probability of different states

have very small values. Therefore, it seems that we do not need to compute the probability of

these many states. Therefore, to reduce the complexity of the naive Bayes message passing, we can

generalize the stochastic version of belief propagation by sampling the most important states. We

sample based on the probabilities of these beliefs, or some relevant probability, to only update the

most important states.

125

5.4.6.2 Non-edge Approximation

Here we apply similar tricks as proposed in [55] for computing the contribution of non-edge

messages. Looking at Eqs. 5.39 and 5.45, the edges and non-edges are not treated separately.

However, we can still use similar trick to reduce the complexity. Here, we define two nodes i and

j are non-neighbors, if they are not connected at any snapshots. Then, by neglecting O(1
n

) terms,

Eq. 5.39 can be written as

µi→j~gi
= q~gi
Zi→j

∏
` 6=j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)

= q~gi
Zi→j

∏
`:∀t,`/∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)

 ∏
`:∃t,`∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)


= q~gi
Zi→j

∏
`:∀t,`/∈N (i)\j

∑
~g`

µ`→i~g`
(1− pgi(0),gj(0))

T∏
t=1

(1− βgi(t)gj(t)pgi(t)gj(t))


×

∏
`:∃t,`∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)


≈

q~gi
Zi→j

∏
`:∀t,`/∈N (i)\j

∑
~g`

µ`→i~g`
(1− pgi(0),gj(0) −

T∑
t=1

βgi(t)gj(t)pgi(t)gj(t))


×

∏
`:∃t,`∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)


= q~gi
Zi→j

∏
`:∀t,`/∈N (i)\j

(1−
∑
~g`

µ`→i~g`

T∑
t=0

βgi(t)gj(t)pgi(t)gj(t))


×

∏
`:∃t,`∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)


≈

q~gi
Zi→j

[
e−
∑

`

∑
~g`
µ`→i
~g`

∑T

t=0 βgi(t)gj(t)pgi(t)gj(t)
] ∏
`:∃t,`∈N (i)\j

∑
~g`

µ`→i~g`
P (~A`i | ~gi, ~g`)

 . (5.66)

Also Eq. 5.45 can be written using this approximation similarly.

5.5 Simulations

In practice, nodes change their community membership a limited number of times. Taking

advantage of this property, we reduce the search space by limiting the number of switching times.

126

First, we present some initial results using our BP algorithms proposed in previous sections. Then

we present some results regarding the detectability limits of our new model using the method

explained in Section 5.1.

In the first part of simulations, we generate a synthetic network using a temporal planted

partition model with link persistency. We use the inference algorithm in Chapter 4 as a baseline

and we apply our other proposed approaches and compare their results with the baseline. The

synthetic network is generated using the generative process explained in section 5.3. The number

of nodes, average degree, number of clusters, and number of snapshots are n = 32, c̄ = 8, K = 2,

and T = 20, respectively. Also we take η = 0.8, ε = 0.1, and µ =

 0.1 0.75

0.75 0.1

 . The mixing

matrix using ε and c̄ can be computed as p =

 0.45 0.045

0.045 0.45

 . The results for each one of the

proposed algorithms are given in the following.

Naive Bayes with link persistency in the model

• accuracy of the labels inferred: 0.99

• overlap: 0.98

• NMI (normalized mutual information): 0.93

Spatio-historical BP with link persistency in the model

• accuracy of the labels inferred: 0.97

• overlap: 0.94

• NMI (normalized mutual information): 0.8

spatiotemporal BP with link persistency

• accuracy of the labels inferred: 0.94

• overlap: 0.94

127

• NMI (normalized mutual information): 0.81

spatiotemporal without link persistency

• accuracy of the labels inferred: 0.88

• overlap: 0.88

• NMI (normalized mutual information): 0.68

Due to the high complexity of methods based on the spatio-historical framework (naive Bayes and

regular message passing), here we just tested the algorithms on small networks. Based on the

initial results, we found that these algorithms are performing well, however, the time complexity

of these algorithms on spatio-historical framework prevented us from fully exploring more details

about detectability limits.

For investigating the detectability limits, we use the method explained in Section 5.1.1 (BP

on spatiotemporal graph), ignoring the possible convergence issues near phase transition. Using

this method, we investigate detectability limits, showing improvement of detectability in regions

with a larger contrast between inner cluster link persistency versus outer cluster link persistency.

The results are presented in Fig. 5.6. The solid line shows the detectability transition for DSBM

without link persistency (see Chpter 4). As explained before µ is the probability of disappearance

of the edges. For large µ i.e. when the links are not persistent, the detectability limit is similar to

our results in Chapter 4 (the top left figure). Interestingly, by increasing the link persistency for

inner cluster links, when the distance between µin and µout increases the detectability improves.

However, the detectability decreases when the link persistency for outer cluster edges increases and

reaches around the link persistency for inner cluster edges.

5.6 Conclusion

In this chapter, we extended our work in Chapter 4 for the dynamic community structure

processes when the edges in the network have persistency constraint. As the first inference solution

128

Fi
gu

re
5.
6:

T
he

ov
er
la
p
fo
r
be

lie
fp

ro
pa

ga
tio

n
eq
ua

tio
ns

fo
r
D
SB

M
w
ith

lin
k
pe

rs
ist

en
cy

us
in
g
sp
at
io
te
m
po

ra
lg

ra
ph

.
T
he

de
te
ct
ab

ili
ty

tr
an

sit
io
n
in

Eq
.(
4.
10

)f
or
T

=
∞

is
sh
ow

n
as

a
so
lid

lin
e
(s
ee

C
ha

pt
er

4)
.E

ac
h
po

in
ts

ho
w
st

he
re
su
lts

ov
er

a
dy

na
m
ic

ne
tw

or
k
ge
ne

ra
te
d

by
a
D
SB

M
w
ith

lin
k
pe

rs
ist

en
cy

w
ith

n
=

10
0,
T

=
10

0,
k

=
2
gr
ou

ps
,a

nd
av
er
ag

e
de

gr
ee
c̄

=
8.

T
he

to
p
le
ft

pl
ot

is
th
e
ov
er
la
p
re
la
te
d

to
a
dy

na
m
ic

ne
tw

or
k
w
ith

ou
tl
in
k
pe

rs
ist

en
cy
.
T
he

re
d
lin

e
sh
ow

s
in
cr
ea
sin

g
lin

k
pe

rs
ist

en
cy

fo
ri
nn

er
cl
us
te
rl
in
ks

(li
nk

s
in
sid

e
cl
us
te
rs
)

in
th
e
fir
st

ro
w

an
d
th
en

in
cr
ea
sin

g
th
e
lin

k
pe

rs
ist

en
cy

fo
r
ou

te
r
cl
us
te
r
lin

ks
(li
nk

s
be

tw
ee
n
th
e
cl
us
te
rs
)
in

th
e
se
co
nd

ro
w
.

129

to this problem, we changed our BP equations in Chapter 4 using our new model and ignored the

convergence issues that the temporal correlations can cause. Using this model, we investigated the

detectability limits, showing improvement of detectability in regions with a larger contrast between

inner cluster link persistency versus outer cluster link persistency. However, it is possible that

the regions of detectability affect the convergence of BP equations and near transition, the BP

convergence can have some issues using this formulation.

Next, we proposed a spatio-historical framework instead of a spatiotemporal one, to alleviate

the convergence issues coming from the short loops in DSBM with link persistency. We approached

the inference problem in three different formulations of Bayesian naive Bayes, Variational mean

field, and stochastic belief propagation of naive Bayes. However, these algorithms suffer from large

memory space complexity regarding the offline computation of P (~A`i | ~gi, ~g`). As a naive solution,

by computing these values online without storing this huge 4-dimensional tensor, we can reduce the

space complexity at the cost of time complexity that recalls the time–memory trade-off in computer

science [83] and is not the most efficient way to deal with this problem. In our setting, since the

number of states increases exponentially in time, most of our provided solutions are restricted to

applications with short times or applications with a limited number of switching times. This makes

the complexity polynomial, however, is not tractable for large networks.

Therefore, we suggested using an extended version of stochastic belief propagation to update

the most important states for each node independently to decrease the complexity of this problem.

Based on the similarity of our formulation with the formulation in quantum many-body systems,

this issue can be solved using other well-known techniques coming from the quantum theory. To

solve this problem in a more general form, we can approximate the messages using the matrix

product as in Ref. [18]. A further investigation on reducing the time complexity of algorithms

using spatio-historical framework is left for future work.

Chapter 6

Conclusion and Future Work

In this dissertation, we presented several topics in network inference. We started with an

empirical study regarding the overfitting and underfitting in network community structure and

finished this dissertation with some theoretical study on community detection. In the following, we

will enumerate several conclusions and future works from this dissertation.

In chapter 2, in an empirical study on 572 real-world networks, we showed that among com-

munity detection algorithms, no algorithm could solve this problem optimally across all inputs as

proved previously [147], which necessitates a natural need to characterize the actual performance of

different algorithms across different kinds of realistic inputs. Therefore, we provided this character-

ization, for 16 state-of-the-art community detection algorithms applied to a large and structurally

diverse corpus of real-world networks. The results shed considerable light on the broad diversity of

behavior that these algorithms exhibit when applied to a consistent and realistic benchmark. We

observed that different algorithms also present wide variation in their tendency to over- or under-

fit on real networks (Fig. 2.4), and the link prediction/description tasks we introduced provide a

principled means to characterize this algorithmic tendency. We also discussed that the generaliz-

ability of the results of many previously published studies in community detection may need to

be reevaluated due to their limited study on a relatively small number of networks. This study

has the potential of continuation, since it proposes new tools in model selection on networks and

establishes new link-based definitions to explain overfitting and underfitting on networks in a more

systematic way. Here, we can formulate the overfitting and underfitting on networks using these

131

link-based learning tasks to understand the relationship between these tasks and the model fit.

Also, the CommunityFitNet corpus of networks has several potential uses, e.g., it can be used as a

standardized reference set for comparing community detection methods. To facilitate this use case,

both the corpus dataset and the derived partitions, for each network, by each algorithm evaluated

in this study is available online for reuse. To compare a new algorithm with those in our evaluation

set, a researcher can simply run the new algorithm on the corpus, and then identify which refer-

ence algorithm has the most similar behavior, e.g., in the average number of communities found

(Fig. 2.2) or the composition of the communities obtained (Fig. 2.3). Similarly, researchers could

quickly identify specific networks for which their algorithm provides superior performance, as well

as compare the performance on average across a structurally diverse set of real-world networks. We

expect the availability of the CommunityFitNet corpus, and the corresponding results of running a

large number of state-of-the-art algorithms on it, will facilitate many new and interesting advances

in developing and understanding community detection algorithms.

This work can be extended in the future in a number of directions. First, our definitions and

the proposed algorithm can be developed more formally to define the overfitting and underfitting

on networks. As we have shown in Chapter 2, our proposed diagnostic method for the algorithm

performances, using the tradeoff between the link prediction/link description, is analog with test

error/training error in the traditional machine learning. Therefore, this analogy can accelerate to

develop the theory of overfitting and underfitting in networks. Second, our dataset can be used to

learn and analyze the algorithm deficiencies. Third, the learned features in algorithm deficiency can

be used to design new algorithms by penalizing them via the features which cause these deficiencies.

And finally, our results also open up several new directions of research in community detection. For

instance, it would be valuable to investigate the possibility that a method, when applied to a single

network, might over-partition some parts but under-partition other parts—an idea that could be

studied using appropriate cross-validation on different parts of networks.

In Chapter 3, we studied two questions on link prediction: the optimal link prediction and

the transfer link prediction learning. We studied the link prediction methods in three groups

132

of model-based methods, supervised feature-based, and embedding techniques. As model-based

methods, we studied 11 link prediction methods, derived from the 11 state-of-the-art community

detection algorithms in Chapter 2. In the optimal link prediction experiment, we exploited the

diversities in the performances of these link prediction algorithms by their combination, to improve

their predictability. Among different combination methods, we chose stacked generalization, a

powerful method in combining several fixed base classifiers. The results are provided for synthetic

data besides the 572 real-world networks from a variety of domains in CommunityFitNet corpus.

For synthetic networks, we computed the optimal performance of link prediction task, and by

comparing the performances of link prediction algorithms with these optimal values, we motivated

the importance of synthetic data in our analysis and generalized our argument to real data.

There are different approaches to assess the optimality of link prediction algorithms. One

possibility is using information theoretic measures such as mutual information. The idea is to

compute the mutual information between features and true labels to measure the maximum per-

formance in a supervised framework. One challenge here is due to the continuity of most features,

which makes the computation of the mutual information very inaccurate and subjective because of

the quantization process. However, this can be a worthwhile direction for future studies. Another

interesting future work would be an unsupervised combination approach to combine the link pre-

diction algorithms. To this end, we used the most straightforward solution of majority voting. This

simple approach shows promising results due to the uncorrelated error among our different algo-

rithms. One future direction would be learning the best combination weights for an unsupervised

framework using principled approaches like Bayesian combination methods [101].

In another line of study, we investigate the transfer link prediction learning on different do-

mains of network knowledge. Noting the lack of sufficient network data sampled in some domains

due to the costly laboratory experiments and the availability of network data in other domains,

we studied the domain adaptation in link prediction problem. Interestingly, we found that net-

works on some domains like social networks can be trained using any other domains. Our findings

suggest that because social networks have homogeneous structure, the most important features for

133

supervised learning come from the general topological features which also appear in networks of

other domains. In another interesting observation, we realized in other domains the most important

features are from the scores in community detection algorithms, and coupling these meta features

with the topological features is constructive for link prediction in these domains. Our approach in

utilizing topological features besides scoring features coming from community detection algorithms

can be justified due to the hidden patterns placed in real networks originated from the undiscov-

ered generative models, which can not be explained with a standard model. One key ingredient

for success in transfer learning is to transfer properly the features from the source domain into the

target domain, which requires transferring features to a common feature space. In this chapter, we

normalized the features in the range of [0, 1] as a naive solution for trasferring features and possibly

a better solution can improve the results.

In Chapter 4, we started to investigate the theoretical understanding of strengths, weaknesses,

and limits of community detection in dynamic networks. We derived a mathematically precise

understanding of the limits of detectability for communities in dynamic networks, under a dynamic

stochastic block model in which group memberships are correlated over time, but the edges at each

time are generated independently. Because this model is an analytically tractable special case of

several previously proposed models, we expect qualitatively similar behavior to occur within more

elaborate models of dynamic networks. We also developed two efficient algorithms for detecting

communities in dynamic networks, one based on belief propagation and one on spectral clustering,

both optimal in the sense that they succeed all the way down to the detectability threshold.

We believe that all of our results can be made rigorous, at least for two groups, using the

methods proposed in [128, 127, 120, 27]. We should note that the mathematical tools we introduced

to obtain our results for dynamic networks are quite general, and can be used to obtain similar

results for other, more general types of networks. Examples of such future directions include the

case where the matrix p of connection probabilities changes over time (a situation similar to change-

point detection in networks [146]), the edges are persistent across time [42] (see Chapter 5), the

networks have edge weights [7] or additional metadata on the nodes [144, 145, 194, 134]. The latter

134

represents a particularly interesting case, as recent numerical results by Newman and Clauset [134]

suggest that metadata on the nodes may also serve to shift the location of the detectability threshold

in static networks.

In Chapter 5, we extended the results in Chapter 4 to a dynamic community structure

process when edges in the network have persistency constraint. As the first inference solution

to this setting, we changed our BP equations in Chapter 4 using our new model by ignoring

convergence issues that temporal correlations can cause. Using this model, we have shown the

improvement of detectability limits in regions with a larger contrast between inner cluster link

persistency versus outer cluster link persistency. An unanswered question here is whether regions

of detectability impact the convergence of BP equations. We expect that near phase transition, the

convergence is possibly an issue and the boundaries are affected by that. However, we leave this

line of investigation for future work.

Next, we proposed a spatio-historical framework instead of spatiotemporal model, to be able

to use BP equations similar to static networks. This new model alleviates the convergence issue of

BP equations created by short loops in dynamic networks with link persistency. However, the pro-

posed algorithms of Bayesian naive Bayes, Variational mean field, and stochastic belief propagation,

all suffer from a large complexity regarding the computation of P (~A`i | ~gi, ~g`), since the number of

states increases exponentially in time. Then for this setting, most of our provided solutions under

spatio-historical framework are restricted to applications with short times or with a limited number

of switching times. These limitations make a polynomiral complexity, however, are not tractable

for large networks. Based on the similarity of our formulation with the formulation in quantum

many-body systems, this issue can be solved using other well-known techniques coming from the

quantum theory. For example as a possible option to solve this problem, we can approximate the

messages using the matrix product as in Ref. [18], which is an interesting alternative solution to

this problem as future work.

Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments.
preprint arXiv:1703.10146, 2017.

[2] Emmanuel Abbe and Colin Sandon. Detection in the Stochastic Block Model with Mul-
tiple Clusters: Proof of the Achievability Conjectures, Acyclic BP, and the Information-
Computation Gap. preprint arXiv:1512.09080, 2015.

[3] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. Link Prediction on Evolving Data
Using Matrix and Tensor Factorizations. In Proceedings of the ICDM’09 Workshop on Large
Scale Data Mining Theory and Applications, LDMTA’09, pages 262–269. IEEE, 2009.

[4] Charu Aggarwal and Karthik Subbian. Evolutionary Network Analysis: A Survey. Comput.
Surv., 47(1):10, 2014.

[5] Cherry Ahmed, Abeer ElKorany, and Reem Bahgat. A supervised learning approach to link
prediction in twitter. Social Network Analysis and Mining, 6(1):24, 2016.

[6] Nesreen K Ahmed, Ryan A Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong, Theodore L
Willke, and Hoda Eldardiry. A framework for generalizing graph-based representation learn-
ing methods. preprint arXiv:1709.04596, 2017.

[7] Christopher Aicher, Abigail Z Jacobs, and Aaron Clauset. Learning Latent Block Structure
in Weighted Networks. J. Complex Netw., 3(2):221–248, 2015.

[8] Nir Ailon, Yudong Chen, and Huan Xu. Iterative and active graph clustering using trace
norm minimization without cluster size constraints. J. Mach. Learn. Res., 16:455–490, 2015.

[9] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership
stochastic blockmodels. J. Mach. Learn. Res., 9(Sep):1981–2014, 2008.

[10] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. Link prediction
using supervised learning. In SDM06: workshop on link analysis, counter-terrorism and
security, 2006.

[11] Mohammad Al Hasan and Mohammed J Zaki. A survey of link prediction in social networks.
In Social network data analytics, pages 243–275. Springer, 2011.

[12] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a
random graph. Rand. Struct. Alg., 13(3-4):457–466, 1998.

136

[13] Brendan PW Ames. Guaranteed clustering and biclustering via semidefinite programming.
Math. Prog., 147(1-2):429–465, 2014.

[14] Mehrnaz Amjadi and Theja Tulabandhula. Block-structure based time-series models for graph
sequences. preprint arXiv:1804.08796, 2018.

[15] Thomas Aynaud, Eric Fleury, Jean-Loup Guillaume, and Qinna Wang. Communities in
evolving networks: Definitions, detection, and analysis techniques. In Dynamics On and Of
Complex Networks, Volume 2, pages 159–200. Springer, 2013.

[16] Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-Theoretic
Thresholds for Community Detection in Sparse Networks. In Proceedings of the 29th
Conference on Learning Theory, 2016. to appear.

[17] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[18] Thomas Barthel, Caterina De Bacco, and Silvio Franz. Matrix product algorithm for stochas-
tic dynamics on networks applied to nonequilibrium glauber dynamics. Phys. Rev. E,
97(1):010104, 2018.

[19] Paolo Barucca, Fabrizio Lillo, Piero Mazzarisi, and Daniele Tantari. Disentangling group and
link persistence in dynamic stochastic block models. preprint arXiv:1701.05804, 2017.

[20] Danielle S Bassett, Mason A Porter, Nicholas F Wymbs, Scott T Grafton, Jean M Carlson,
and Peter J Mucha. Robust Detection of Dynamic Community Structure in Networks. Chaos,
23(1):013142, 2013.

[21] GJ Baxter, SN Dorogovtsev, AV Goltsev, and JFF Mendes. Avalanche Collapse of Interde-
pendent Networks. Phys. Rev. Lett., 109(24):248701, 2012.

[22] Marya Bazzi, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn, and Sam D
Howison. Community Detection in Temporal Multilayer Networks, with an Application to
Correlation Networks. Multiscale Model. Simul., 14(1):1–41, 2016.

[23] Tanya Berger-Wolf, Chayant Tantipathananandh, and David Kempe. Dynamic Commu-
nity Identification. In Link Mining: Models, Algorithms, and Applications, pages 307–336.
Springer, 2010.

[24] Peter J Bickel and Purnamrita Sarkar. Hypothesis testing for automated community detection
in networks. J. R. Stat. Soc. Series B Stat. Methodol., 78(1):253–273, 2016.

[25] Christophe Biernacki, Gilles Celeux, and Gérard Govaert. Assessing a mixture model for
clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell.,
22(7):719–725, 2000.

[26] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. J. Stat. Mech. Theor. Exp., 2008(10):P10008,
2008.

137

[27] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-Backtracking Spectrum
of Random Graphs: Community Detection and Non-Regular Ramanujan Graphs. In
Proceedings of the 56th Annual Symposium on the Foundations of Computer Science, pages
1347–1357. IEEE, 2015.

[28] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[29] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[30] Anna D Broido and Aaron Clauset. Scale-free networks are rare. arXiv:1801.03400, 2018.

[31] Matthew Burgess, Eytan Adar, and Michael Cafarella. Link-prediction enhanced consensus
clustering for complex networks. PloS one, 11(5):e0153384, 2016.

[32] Hongyun Cai, Vincent W Zheng, and Kevin Chang. A comprehensive survey of graph em-
bedding: problems, techniques and applications. IEEE Transactions on Knowledge and Data
Engineering, 2018.

[33] Bin Cao, Nathan N Liu, and Qiang Yang. Transfer learning for collective link prediction
in multiple heterogenous domains. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 159–166. Citeseer, 2010.

[34] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with
global structural information. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pages 891–900. ACM, 2015.

[35] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering. In
Proceedings of the 12th ACM SIGKDD International Conf. on Knowledge Discovery and
Data Mining, pages 554–560. ACM, 2006.

[36] Kehui Chen and Jing Lei. Network cross-validation for determining the number of commu-
nities in network data. J. Am. Stat. Assoc., 0(0):1–11, 2017.

[37] Pin-Yu Chen and Alfred O Hero. Phase transitions and a model order selection criterion for
spectral graph clustering. arXiv:1604.03159, 2016.

[38] Yudong Chen, Sujay Sanghavi, and Huan Xu. Improved graph clustering. IEEE Trans. Inf.
Theory, 60(10):6440–6455, 2014.

[39] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and
submatrix localization with a growing number of clusters and submatrices. J. Mach. Learn.
Res., 17(27):1–57, 2016.

[40] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L Tseng. Evolutionary spectral
clustering by incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD
International Conf. on Knowledge Discovery and Data Mining, pages 153–162. ACM, 2007.

[41] David S Choi, Patrick J Wolfe, and Edoardo M Airoldi. Stochastic blockmodels with a
growing number of classes. Biometrika, page asr053, 2012.

[42] Aaron Clauset and Nathan Eagle. Persistence and Periodicity in a Dynamic Proximity Net-
work. In Proceedings of the DIMACS Workshop on Computational Methods for Dynamic
Interaction Networks, 2007. arxiv:1211.7343.

138

[43] Aaron Clauset, Cristopher Moore, and Mark E. J. Newman. Hierarchical structure and the
prediction of missing links in networks. Nature, 453:98–101, 2008.

[44] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

[45] Aaron Clauset, Ellen Tucker, and Matthias Sainz. The Colorado Index of Complex Networks.
https://icon.colorado.edu/, 2016.

[46] Prakash Mandayam Comar, Pang-Ning Tan, and Anil K Jain. Linkboost: A novel cost-
sensitive boosting framework for community-level network link prediction. In Data Mining
(ICDM), 2011 IEEE 11th International Conference on, pages 131–140. IEEE, 2011.

[47] Etienne Côme and Pierre Latouche. Model selection and clustering in stochastic block models
based on the exact integrated complete data likelihood. Stat. Model., 15(6):564–589, 2015.

[48] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the planted par-
tition model. Rand. Struct. Alg., 18(2):116–140, 2001.

[49] William Cukierski, Benjamin Hamner, and Bo Yang. Graph-based features for supervised
link prediction. In Neural Networks (IJCNN), The 2011 International Joint Conference on,
pages 1237–1244. IEEE, 2011.

[50] Beau Dabbs and Brian Junker. Comparison of cross-validation methods for stochastic block
models. arXiv:1605.03000, 2016.

[51] J-J Daudin, Franck Picard, and Stéphane Robin. A mixture model for random graphs. Stat.
Comput., 18(2):173–183, 2008.

[52] J. R. L. de Almeida and D. J. Thouless. Stability of the Sherrington-Kirkpatrick Solution of
a Spin Glass Model. J. Phys. A: Math. Gen., 11:983, 1978.

[53] Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall. Identifying
Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Inter-
connected Systems. Phys. Rev. X, 5(1):011027, 2015.

[54] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yamir Moreno,
Mason A Porter, Sergio Gómez, and Alex Arenas. Mathematical Formulation of Multilayer
Networks. Phys. Rev. X, 3(4):041022, 2013.

[55] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applica-
tions. Phys. Rev. E, 84(6):066106, 2011.

[56] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Inference
and Phase Transitions in the Detection of Modules in Sparse Networks. Phys. Rev. Lett.,
107(6):065701, 2011.

[57] Thomas Dietterich. Ensemble methods in machine learning. Multiple Classifier Systems,
pages 1–15, 2000.

https://icon.colorado.edu/

139

[58] Pedro Domingos. Bayesian averaging of classifiers and the overfitting problem. In Proceedings
of the Seventeenth International Conference on Machine Learning (ICML-00), pages 223–230,
2000.

[59] Dongsheng Duan, Yuhua Li, Ruixuan Li, and Zhengding Lu. Incremental k-clique clustering
in dynamic social networks. Artificial Intelligence Review, 38(2):129–147, 2012.

[60] Liang Duan, Shuai Ma, Charu Aggarwal, Tiejun Ma, and Jinpeng Huai. An ensemble
approach to link prediction. IEEE Transactions on Knowledge and Data Engineering,
29(11):2402–2416, 2017.

[61] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal Link Prediction Using
Matrix and Tensor Factorizations. ACM Transactions on Knowledge Discovery from Data,
5(2):10, 2011.

[62] Alcides Viamontes Esquivel and Martin Rosvall. Compression of flow can reveal overlapping-
module organization in networks. Phys. Rev. X, 1(2):021025, 2011.

[63] Santo Fortunato. Community detection in graphs. Phys. Rep., 486(3):75–174, 2010.

[64] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proc. Natl.
Acad. Sci. USA, 104(1):36–41, 2007.

[65] Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Phys.
Rep., 659:1–44, 2016.

[66] Ben D Fulcher, Max A Little, and Nick S Jones. Highly comparative time-series analysis: the
empirical structure of time series and their methods. J. Royal Soc. Interface, 10(83):20130048,
2013.

[67] Lazaros K Gallos, Diego Rybski, Fredrik Liljeros, Shlomo Havlin, and Hernán A Makse. How
People Interact in Evolving Online Affiliation Networks. Phys. Rev. X, 2(3):031014, 2012.

[68] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the Community Structure and
Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach.
PloS ONE, 9(1):e86028, 2014.

[69] Amir Ghasemian, Homa Hosseinmardi, and Aaron Clauset. Evaluating overfit and underfit
in models of network community structure. preprint arXiv:1802.10582, 2018.

[70] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel. Detectability
thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev.
X, 6(3):031005, 2016.

[71] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi. A Survey
of Statistical Network Models. Foundations and Trends in Machine Learning, 2(2):129–233,
2010.

[72] Sergio Gómez, Albert Díaz-Guilera, Jesus Gómez-Gardeñes, Conrad J Pérez-Vicente, Yamir
Moreno, and Alex Arenas. Diffusion Dynamics on Multiplex Networks. Phys. Rev. Lett.,
110(2):028701, 2013.

140

[73] Clara Granell, Sergio Gómez, and Alex Arenas. Dynamical Interplay between Awareness and
Epidemic Spreading in Multiplex Networks. Phys. Rev. Lett., 111(12):128701, 2013.

[74] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 855–864. ACM, 2016.

[75] Roger Guimerà and Marta Sales-Pardo. Missing and spurious interactions and the recon-
struction of complex networks. Proc. Natl. Acad. Sci. USA, 106(52):22073–22078, 2009.

[76] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[77] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. preprint arXiv:1709.05584, 2017.

[78] Qiuyi Han, Kevin S Xu, and Edoardo M Airoldi. Consistent Estimation of Dynamic and
Multi-Layer Networks. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

[79] Tanja Hartmann, Andrea Kappes, and Dorothea Wagner. Clustering Evolving Networks.
preprint arXiv:1401.3516, 2014.

[80] Matthew B Hastings. Community Detection as an Inference Problem. Phys. Rev. E,
74:035102, 2006.

[81] Kohei Hayashi, Takuya Konishi, and Tatsuro Kawamoto. A tractable fully Bayesian method
for the stochastic block model. arXiv:1602.02256, 2016.

[82] Kohei Hayashi, Shin-ichi Maeda, and Ryohei Fujimaki. Rebuilding factorized information
criterion: Asymptotically accurate marginal likelihood. In Int. Conf. on Mach. Learn., 2015.

[83] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information
Theory, 26(4):401–406, 1980.

[84] Peter Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. In
Adv. Neural Info. Proc. Sys., pages 657–664, 2008.

[85] Jake M Hofman and Chris H Wiggins. Bayesian Approach to Network Modularity. Phys.
Rev. Lett., 100(25):258701, 2008.

[86] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic Blockmodels:
First Steps. Soc. Networks, 5(2):109–137, 1983.

[87] Petter Holme. Modern temporal network theory: a colloquium. The European Phys. J. B,
88(9):1–30, 2015.

[88] Petter Holme and Jari Saramäki. Temporal networks. Phys. Rep., 519(3):97–125, 2012.

[89] Petter Holme and Jari Saramäki. Temporal networks. Springer, 2013.

[90] Darko Hric, Richard K. Darst, and Santo Fortunato. Community detection in networks:
Structural communities versus ground truth. Phys. Rev. E, 90:062805, 2014.

141

[91] Huan Hu, Chunyu Zhu, Haixin Ai, Li Zhang, Jian Zhao, Qi Zhao, and Hongsheng Liu.
Lpi-etslp: lncrna–protein interaction prediction using eigenvalue transformation-based semi-
supervised link prediction. Molecular BioSystems, 13(9):1781–1787, 2017.

[92] Yanqing Hu, Shlomo Havlin, and Hernán A Makse. Conditions for Viral Influence Spreading
through Multiplex Correlated Social Networks. Phys. Rev. X, 4(2):021031, 2014.

[93] Yukito Iba. The Nishimori Line and Bayesian Statistics. J. Phys. A: Math. Gen., 32(21):3875–
3888, 1999.

[94] Alexander T Ihler, W Fisher John III, and Alan S Willsky. Loopy belief propagation: Conver-
gence and effects of message errors. Journal of Machine Learning Research, 6(May):905–936,
2005.

[95] Abigail Z Jacobs, Samuel F Way, Johan Ugander, and Aaron Clauset. Assembling theface-
book: Using heterogeneity to understand online social network assembly. In Proceedings of
the ACM Web Science Conference, page 18. ACM, 2015.

[96] Svante Janson and Elchanan Mossel. Robust Reconstruction on Trees Is Determined by the
Second Eigenvalue. Ann. Probab., 32(3):2630–2649, 2004.

[97] Brian Karrer and Mark E. J. Newman. Stochastic Blockmodels and Community Structure
in Networks. Phys. Rev. E, 83(1):016107, 2011.

[98] Tatsuro Kawamoto and Yoshiyuki Kabashima. Cross-validation estimate of the number of
clusters in a network. Sci. Rep., 7, 2017.

[99] Tatsuro Kawamoto and Yoshiyuki Kabashima. Comparative analysis on the selection of
number of clusters in community detection. Phys. Rev. E, 97(2):022315, 2018.

[100] Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and Naonori
Ueda. Learning systems of concepts with an infinite relational model. In AAAI Conf. on
Artificial Intelligence, pages 381–388, 2006.

[101] Hyun-Chul Kim and Zoubin Ghahramani. Bayesian classifier combination. In Artificial
Intelligence and Statistics, pages 619–627, 2012.

[102] Myunghwan Kim and Jure Leskovec. Nonparametric Multi-Group Membership Model for
Dynamic Networks. In C. Burges, editor, Advances in Neural Information Processing Systems
26, pages 1385–1393. Curran Associates, Inc., 2013.

[103] Thomas N Kipf and Max Welling. Variational graph auto-encoders. preprint
arXiv:1611.07308, 2016.

[104] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proceedings of International Conference on Learning Representations, 2017.

[105] István A Kovács, Katja Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach,
Wenting Bian, Dae-Kyum Kim, Nishka Kishore, Tong Hao, et al. Network-based prediction
of protein interactions. bioRxiv, page 275529, 2018.

142

[106] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zde-
borová, and Pan Zhang. Spectral Redemption in Clustering Sparse Networks. Proc. Natl.
Acad. Sci., 110(52):20935–20940, 2013.

[107] Jussi M Kumpula, Jari Saramäki, Kimmo Kaski, and János Kertész. Limited resolution in
complex network community detection with Potts model approach. Eur. Phys. J. B, 56(1):41–
45, 2007.

[108] Andrea Lancichinetti, Filippo Radicchi, José J Ramasco, and Santo Fortunato. Finding
statistically significant communities in networks. PloS one, 6(4):e18961, 2011.

[109] Pierre Latouche, Etienne Birmele, and Christophe Ambroise. Variational bayesian inference
and complexity control for stochastic block models. Statistical Modelling, 12(1):93–115, 2012.

[110] Can M Le and Elizaveta Levina. Estimating the number of communities in networks by
spectral methods. arXiv:1507.00827, 2015.

[111] Jing Lei et al. A goodness-of-fit test for stochastic block models. Ann. Stat., 44(1):401–424,
2016.

[112] Matthew S Leifer and David Poulin. Quantum graphical models and belief propagation.
Annals of Physics, 323(8):1899–1946, 2008.

[113] Christiane Lemke, Marcin Budka, and Bogdan Gabrys. Metalearning: a survey of trends and
technologies. Artificial intelligence review, 44(1):117–130, 2015.

[114] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical prop-
erties of community structure in large social and information networks. In Proceedings of the
17th International Conference on World Wide Web, pages 695–704. ACM, 2008.

[115] Taisong Li, Jing Wang, Manshu Tu, Yan Zhang, and Yonghong Yan. Enhancing link predic-
tion using gradient boosting features. In International Conference on Intelligent Computing,
pages 81–92. Springer, 2016.

[116] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
journal of the Association for Information Science and Technology, 58(7):1019–1031, 2007.

[117] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. New perspectives and methods
in link prediction. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 243–252. ACM, 2010.

[118] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A:
statistical mechanics and its applications, 390(6):1150–1170, 2011.

[119] Yiding Lu, Yufan Guo, and Anna Korhonen. Link prediction in drug-target interactions
network using similarity indices. BMC bioinformatics, 18(1):39, 2017.

[120] Laurent Massoulié. Community Detection Thresholds and the Weak Ramanujan Property.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’14,
pages 694–703. ACM, 2014.

143

[121] Aaron F McDaid, Thomas Brendan Murphy, Nial Friel, and Neil J Hurley. Improved bayesian
inference for the stochastic block model with application to large networks. Computational
Statistics & Data Analysis, 60:12–31, 2013.

[122] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[123] Thomas P Minka. Bayesian model averaging is not model combination. pages 1–2, 2000.
MIT Media Lab note. Available electronically at https://tminka.github.io/papers/bma.html.

[124] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs and
their application to community detection. In Proceedings of the forty-eighth annual ACM
Symposium on Theory of Computing, pages 814–827. ACM, 2016.

[125] Cristopher Moore, Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier, and Terran Lane. Ac-
tive learning for node classification in assortative and disassortative networks. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 841–849. ACM, 2011.

[126] Morten Mørup and Mikkel N Schmidt. Bayesian community detection. Neural computation,
24(9):2434–2456, 2012.

[127] Elchanan Mossel, Joe Neeman, and Allan Sly. Belief Propagation, Robust Reconstruction
and Optimal Recovery of Block Models. In Proceedings of the 27th Conference on Learning
Theory, pages 356–370, 2014.

[128] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and Estimation in the Planted
Partition Model. Probab. Theory Related Fields, 162(3):431–461, 2015.

[129] Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-Pekka On-
nela. Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science,
328(5980):876–878, 2010.

[130] Mark E. J. Newman. Mixing Patterns in Networks. Phys. Rev. E, 67(2):026126, 2003.

[131] Mark E. J. Newman. Modularity and community structure in networks. Proc. Natl. Acad.
Sci. USA, 103(23):8577–8582, 2006.

[132] Mark E. J. Newman. Networks: An Introduction. OUP Oxford, 2010.

[133] Mark E. J. Newman. Community detection in networks: Modularity optimization and max-
imum likelihood are equivalent. arXiv:1606.02319, 2016.

[134] Mark E. J. Newman and Aaron Clauset. Structure and Inference in Annotated Networks.
Nat. Commun., 2016.

[135] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69(2):026113, 2004.

[136] Mark E. J. Newman and Gesine Reinert. Estimating the number of communities in a network.
Phys. Rev. Lett., 117(7):078301, 2016.

144

[137] Vincenzo Nicosia, Ginestra Bianconi, Vito Latora, and Marc Barthelemy. Growing Multiplex
Networks. Phys. Rev. Lett., 111(5):058701, 2013.

[138] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S Huang. Incremental spectral
clustering by efficiently updating the eigen-system. Pattern Recognition, 43(1):113–127, 2010.

[139] Nima Noorshams and Martin J Wainwright. Stochastic belief propagation: A low-complexity
alternative to the sum-product algorithm. EEE Trans. Inf. Theory, 59(4):1981–2000, 2013.

[140] Krzysztof Nowicki and Tom A B Snijders. Estimation and Prediction for Stochastic Block-
structures. J. Amer. Statist. Assoc., 96(455):1077–1087, 2001.

[141] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitiv-
ity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1105–1114. ACM, 2016.

[142] Gergely Palla, Albert-László Barabási, and Tamás Vicsek. Quantifying social group evolution.
Nature, 446(7136):664, 2007.

[143] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[144] Leto Peel. Topological Feature Based Classification. In Proceedings of the 14th International
Conference on Information Fusion (FUSION), pages 1–8. IEEE, 2011.

[145] Leto Peel. Supervised Blockmodelling. In ECML/PKDD Workshop on Collective Learning
and Inference on Structured Data, 2012. preprint arXiv:1209.5561.

[146] Leto Peel and Aaron Clauset. Detecting Change Points in the Large-Scale Structure of Evolv-
ing Networks. In Proceedings of the 29th International Conference on Artificial Intelligence
(AAAI), pages 2914–2920, 2015.

[147] Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground truth about metadata and
community detection in networks. Sci. Adv., 3(5):e1602548, 2017.

[148] Tiago P Peixoto. Parsimonious module inference in large networks. Phys. Rev. Lett.,
110(14):148701, 2013.

[149] Tiago P Peixoto. Hierarchical block structures and high-resolution model selection in large
networks. Phys. Rev. X, 4(1):011047, 2014.

[150] Tiago P Peixoto. Inferring the mesoscale structure of layered, edge-valued, and time-varying
networks. Phys. Rev. E, 92(4):042807, 2015.

[151] Tiago P Peixoto. Model selection and hypothesis testing for large-scale network models with
overlapping groups. Phys. Rev. X, 5(1):011033, 2015.

[152] Tiago P Peixoto. Bayesian stochastic blockmodeling. arXiv:1705.10225, 2017.

[153] Tiago P Peixoto. Nonparametric bayesian inference of the microcanonical stochastic block
model. Phys. Rev. E, 95(1):012317, 2017.

145

[154] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 701–710. ACM, 2014.

[155] Stefan Pinkert, Jörg Schultz, and Jörg Reichardt. Protein interaction networks—more than
mere modules. PLoS computational biology, 6(1):e1000659, 2010.

[156] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Communities in networks.
Notices of the American Mathematical Society, 56(9):1082–1097, 1164–1166, 2009.

[157] Riccardo Rastelli. Exact integrated completed likelihood maximisation in a stochastic block
transition model for dynamic networks. preprint arXiv:1710.03551, 2017.

[158] John R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages
65–118. Elsevier, 1976.

[159] Stuart A Rice. The identification of blocs in small political bodies. American Political Science
Review, 21(3):619–627, 1927.

[160] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[161] R Rossi, B Gallagher, J Neville, and K Henderson. Modeling Temporal Behavior in Large Net-
works: A Dynamic Mixed-Membership Model. Technical Report LLNL-TR-514271, Lawrence
Livermore Natl. Lab., 2011.

[162] Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed. Deep inductive network representation
learning. In Proc. Int. Conf. on World Wide Web, pages 953–960. ACM, 2018.

[163] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal
community structure. Proc. Natl. Acad. Sci. USA, 105(4):1118–1123, 2008.

[164] Martin Rosvall and Carl T Bergstrom. Mapping Change in Large Networks. PloS ONE,
5(1):e8694, 2010.

[165] Martin Rosvall and Carl T Bergstrom. Multilevel compression of random walks on networks
reveals hierarchical organization in large integrated systems. PloS ONE, 6(4):e18209, 2011.

[166] Alaa Saade, Florent Krzakala, and Lenka Zdeborová. Spectral clustering of graphs with the
Bethe Hessian. In Adv. Neural Info. Proc. Sys., pages 406–414, 2014.

[167] Marta Sales-Pardo, Roger Guimerá, André A. Moreira, and Luís A. Nunes Amaral. Extracting
the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA, 104:15224–
15229, 2007.

[168] Robert E Schapire. A brief introduction to boosting. In Proceedings of the 16th international
joint conference on Artificial intelligence-Volume 2, pages 1401–1406. Morgan Kaufmann
Publishers Inc., 1999.

[169] Gideon Schwarz et al. Estimating the dimension of a model. Ann. Stat., 6(2):461–464, 1978.

[170] Martin Sewell. Ensemble learning. RN, 11(02), 2008.

146

[171] Padhraic Smyth and David Wolpert. Stacked density estimation. In Advances in Neural
Information Processing Systems, pages 668–674, 1998.

[172] Albert Solé-Ribalta, Sergio Gómez, and Alex Arenas. Congestion Induced by the Structure
of Multiplex Networks. Phys. Rev. Lett., 116(10):108701, 2016.

[173] Virinchi Srinivas and Pabitra Mitra. Applications of link prediction. In Link Prediction in
Social Networks, pages 57–61. Springer, 2016.

[174] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S Yu. GraphScope:
Parameter-Free Mining of Large Time-Evolving Graphs. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’07, pages
687–696. ACM, 2007.

[175] Andrew C Thomas and Joseph K Blitzstein. Valued Ties Tell Fewer Lies: Why Not to
Dichotomize Network Edges with Thresholds. preprint arXiv:1101.0788, 2011.

[176] Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S Yu, and Christos Faloutsos.
Colibri: fast mining of large static and dynamic graphs. In Proceedings of the 14th ACM
SIGKDD International Conf. on Knowledge Discovery and Data Mining, pages 686–694.
ACM, 2008.

[177] Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza. Analytical Computation
of the Epidemic Threshold on Temporal Networks. Phys. Rev. X, 5(2):021005, 2015.

[178] Toni Vallés-Catalá, Tiago P. Peixoto, Roger Guimerà, and Marta Sales-Pardo. On the con-
sistency between model selection and link prediction in networks. arXiv:1705.07967, 2017.

[179] Toni Vallès-Catallà, Francesco A Massucci, Roger Guimerà, and Marta Sales-Pardo. Multi-
layer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks. Phys.
Rev. X, 6(1):011036, 2016.

[180] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018.

[181] Ricardo Vilalta, Christophe Giraud-Carrier, and Pavel Brazdil. Meta-learning-concepts and
techniques. In Data mining and knowledge discovery handbook, pages 717–731. Springer,
2009.

[182] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance. J.
Mach. Learn. Res., 11(Oct):2837–2854, 2010.

[183] YX Rachel Wang, Peter J Bickel, et al. Likelihood-based model selection for stochastic block
models. Ann. Stat., 45(2):500–528, 2017.

[184] Robert S Weiss and Eugene Jacobson. A method for the analysis of the structure of complex
organizations. American Sociological Review, 20(6):661–668, 1955.

[185] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

147

[186] Jierui Xie, Mingming Chen, and Boleslaw K Szymanski. Labelrankt: Incremental community
detection in dynamic networks via label propagation. In Proceedings of the Workshop on
Dynamic Networks Management and Mining, pages 25–32. ACM, 2013.

[187] Eric P Xing, Wenjie Fu, and Le Song. A State-Space Mixed Membership Blockmodel for
Dynamic Network Tomography. Ann. Appl. Stat., 4(2):535–566, 2010.

[188] Kevin Xu. Stochastic block transition models for dynamic networks. In Artificial Intelligence
and Statistics, pages 1079–1087, 2015.

[189] Kevin S Xu and Alfred O Hero. Dynamic Stochastic Blockmodels for Time-Evolving Social
Networks. IEEE J. Selected Topics in Signal Processing, 8(4):552–562, 2014.

[190] Xiaoran Yan. Bayesian model selection of stochastic block models. In IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 323–328. IEEE, 2016.

[191] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. A Bayesian Ap-
proach Toward Finding Communities and Their Evolutions in Dynamic Social Networks. In
Proceedings of the SIAM International Conference on Data Mining, SDM’09, pages 990–1001.
SIAM, 2009.

[192] Pan Zhang, Florent Krzakala, Jörg Reichardt, and Lenka Zdeborová. Comparative Study
for Inference of Hidden Classes in Stochastic Block Models. J. Stat. Mech.: Theor. Exp.,
2012(12):P12021, 2012.

[193] Pan Zhang and Cristopher Moore. Scalable detection of statistically significant communi-
ties and hierarchies, using message passing for modularity. Proc. Natl. Acad. Sci. USA,
111(51):18144–18149, 2014.

[194] Pan Zhang, Cristopher Moore, and Lenka Zdeborová. Phase transitions in semisupervised
clustering of sparse networks. Phys. Rev. E, 90(5):052802, 2014.

[195] Xiao Zhang, Cristopher Moore, and Mark E.J. Newman. Random graph models for dynamic
networks. Eur. Phys. J. B, 90(10):200, 2017.

[196] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. Scalable link pre-
diction in dynamic networks via non-negative matrix factorization. preprint arXiv:1411.3675,
2014.

Appendix A

Appendix to Chapter 2

A.1 Performance On Bipartite versus Non-Bipartite Networks

In this section, the networks are categorized into two groups of bipartite networks and non-

bipartite networks to understand how this characteristic affects the performance among our set

of community detection algorithms. The summary statistics of the CommunityFitNet corpus for

these two groups of networks are provided for different domains in Table A.1. The main goal of this

section is to explore whether the bipartite networks cause overfitting in algorithms like Infomap and

modularity variants like Q and Q-MR. Fig. A.1 presents the link prediction and link description

for each category. Similar patterns of overfitting and underfitting can still be seen in non-bipartite

networks. An interesting pattern is revealed by comparing MDL (DC-SBM) and B-NR (SBM):

B-NR (SBM) has partially better performance on bipartite networks compared to MDL (DC-SBM).

In contrast, the performance of MDL (DC-SBM) is slightly better in non-bipartite networks.

Although the link prediction of non-bipartite networks seems to be less variable, this is

because almost all social networks are non-bipartite causing the average to follow the trend in this

group. However, as mentioned earlier, the same patterns of overfitting and underfitting can be seen

in the corpus of non-bipartite networks. This behavior is revealed when we look at the domain

separated figure of link prediction for non-bipartite networks, Fig. A.2.

As it can be seen from Fig. A.2, the overfitting still exists in the methods of modularity

and Infomap for technological, biological, and transportation networks. Also Q and Q-MR overfits

for economic and information networks. The MDL (DC-SBM) is almost the best algorithms in all

149

Table A.1: The summary statistics of CommunityFitNet corpus in each domain for bipartite ver-
sus non-bipartite networks. The numbers show (number of non-bipartite)/(number of bipartite)
networks.

Social Economic Biological Technological Information Transportation Total
123/1 11/111 147/45 71/0 22/0 41/0 415/157

domains for non-bipartite networks, especially in transportation networks. B-NR (SBM) is also one

of the best compared to other algorithms. Generally Infomap has better predictive performance

compared to Q and Q-MR for biological, economic, technological, and information networks. How-

ever, Q and Q-MR has better link prediction in transportation networks when the edge density in

the observed network is high enough (α > 0.5). The spectral method and B-NR (DC-SBM) are

among the best methods for non-bipartite economic networks, while they behave almost as poorly

as random guessing on average for mixed of bipartite and non-bipartite economic networks.

A.2 Performance Under a Common Score Function

Comparing link prediction and link description benchmark performance curves of 11 state-

of-the-art community detection methods reveals substantial evidence that most methods tend to

over- or under-fit to networks, to some degree. However, poor performance at either task could

also be the result of a poor pairing of a particular score function with the particular communities

an algorithm finds.

A valuable check on our above results is to test the performance of the identified communities

under a common score function. This experiment thus serves to remove differences in the way the

various scoring functions utilize the same partition structure. Specifically, we repeat both link

prediction and description evaluation tasks, using the community partitions identified by each of

the 11 algorithms for each network in the corpus, and then applying the SBM score function from

Section 5.1 to construct the benchmark performance curves. Although any score function could be

used as such a reference point, the SBM score function has the attractive property that it yielded

150

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AU

C
(a) link prediction (test) (non-bipartite) (b) link description (train) (non-bipartite)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

(c) link prediction (test) (bipartite)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

(d) link description (train) (bipartite)
Q
Q-MR
Q-MP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB

Figure A.1: Separate benchmark performance curves using model-specific score functions for link
prediction and link description tasks for networks drawn from (top) non-bipartite (73%), (bottom)
bipartite (27%) networks of origin in the CommunityFitNet corpus. As in Fig. 4a, each curve shows
the mean AUC for a different community detection method, for a given fraction α of observed edges
in a network.

high general performance for link prediction. This comparison also can be helpful as a sanity check

to see if the proposed score functions are good choices for link prediction to test the generalizability

performance of the community detection methods. For example, if the algorithm does poorly under

its own score function, but well under the SBM score function, then it implies that its own score

function is the cause of its poor performance. However, for most of these choices, the chosen score

function is the reasonable choice corresponding to the community detection algorithm.

151

Figure A.2: Separate benchmark performance curves using model-specific score functions for the
link prediction (test) task for non-bipartite networks drawn from (a) biological (35%), (b) social
(30%), (c) economic (3%), (d) technological (17%), (e) transportation (10%), and (f) information
(5%) domains of origin in the CommunityFitNet corpus. As in Fig. 4a, each curve shows the mean
AUC for a different community detection method, for a given fraction α of observed edges in a
network.

A.2.1 Results

The relative ordering of the benchmark performance curves under the common score function

for the link prediction and description evaluations (Fig. A.4) differs in interesting ways from that

of the model-specific evaluation (Fig. 4). We note that the performance curves for the SBM-based

methods are unchanged as their score function is the same in both settings.

In link prediction, the previous performance gap between the B-NR (DC-SBM) and B-NR

(SBM) methods is much smaller, which shows that the poor performance of B-NR (DC-SBM) in

Section 5.1 is due to its score function. The B-NR is now the best overall method by a sizable margin

152

and the MDL (DC-SBM) method that produced the best model-specific results for link prediction,

performs substantially worse under the SBM-based score function on both tasks. Of course, SBM-

based methods should produce communities that exhibit better performance under an SBM-based

score function than would other methods. But the DC-SBM in particular was originally designed

to find more reasonable communities than the SBM, by preventing the model from fitting mainly to

the network’s degree structure [97]. The worse performance by the DC-SBM communities on link

prediction in this setting indicates these methods’ allowance of a lower entropy in the inferred block

structure acts to over-regularize the communities from the perspective of the SBM. Furthermore,

unlike the SBM score function, the MDL (DC-SBM) score function (used in Fig. 4) depends on the

model complexity, the inclusion of which evidently serves to improve link predictions at all values

of α. However, link prediction using the inferred communities alone appears to be a slightly unfair

evaluation of the DC-SBM (also suggested by Ref. [7]).

Turning to other methods, recall that Infomap and Q-MR found similar numbers of com-

munities and had similar accuracies in the model-specific link prediction task (Fig. 4). Under the

common SBM-based score function, we find that Infomap, Q-MR, and Q exhibit nearly identical

performance on both link prediction and description tasks. In light of our previous discussion of

the tendency of modularity-based methods to overfit, this similarity, which must derive from these

methods all identifying similar community structures in networks, provides additional evidence that

all three methods tend to overfit real data.

Finally, the S-NB method shows unusual behavior: in link prediction, its performance is simi-

lar under both score functions; and, in link description, its performance under its own model-specific

score function is replaced with a non-monotonic performance curve, which is better at lower values

of α than at higher values. The behavior at smaller values of α, when the sampled networks are rel-

atively more sparse, is consistent with a tendency for S-NB to under-fit in this regime, in agreement

with past results that suggest that spectral methods tend to under-fit when communities are unbal-

anced [110]. However, the change at larger values of α indicates that, as more edges are sampled,

this spectral technique qualitatively changes in its behavior. Recall that the maximum number of

153

101 102 103

number of nodes, N

100

101

102

m
ax

im
um

 n
um

be
r o

f b
lo

ck
s,

k
(a)

101 102 103

number of edges, M

100

101

102

(b)
N (a) , M (b)

Q
Q-MR
Q-MP
Q-GMP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB
S-cBHm
S-cBHa
AMOS
LRT-WB (DC-SBM)

Figure A.3: The maximum number of inferred communities, for 16 state-of-the-art methods (see
Table 1) applied to 572 real-world networks from diverse domains, versus the (a) number of nodes
N , with a theoretical prediction of

√
N , or (b) number of edges M , with a theoretical prediction

of
√
M .

clusters inferred by spectral methods for large networks exceeds the theoretical bound (Fig. A.3),

which indicates a tendency to overfit. Hence, the relatively worse performance at larger values of

α on both tasks suggests that spectral techniques behave differently across different settings, over-

fitting in large sparse networks, underfitting when communities are unbalanced, and “well-fitting”

when communities are balanced. An algorithm that exhibits this kind of context-dependent behav-

ior is deemed to exhibit an “uneven” fit. Excluding the non-monotonic performance curve of link

description for S-NB, the general comparison between SBM-based and model specific performance

shows that the proposed score function for this algorithm is a reasonable choice and is not the

reason for the observed poor performance of this algorithm.

A.3 Other Representations of Link Prediction and Link Description

As described in the main text, the larger/smaller number of clusters a community detection

algorithm finds is consistent with the formal definitions of overfitting/underfitting in non-relational

data. The link prediction and link description definitions are conceptually similar to prediction

154

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.5

0.6

0.7

0.8
AU

C
(a) link prediction (test)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

(b) link description (train)
Q
Q-MR
Q-MP
B-NR (SBM)
B-NR (DC-SBM)
B-HKK (SBM)
cICL-HKK (SBM)
Infomap
MDL (SBM)
MDL (DC-SBM)
S-NB

Figure A.4: Benchmark performance curves using a SBM-based score function for (a) link prediction
and (b) link description tasks. Each curve shows the mean AUC for a different community detection
method across 572 real-world networks for a given fraction α of observed edges in a network.

Figure A.5: A parametric plot showing link prediction versus link description performance, with α
parameterizing the trajectory of each line.

on the test set and training set, respectively. This relationship recalls the bias-variance tradeoff in

traditional machine learning, where increasing the model complexity decreases the training error

and increases the test error. The link prediction and link description performance curves are very

similar to these plots where the model complexity is replaced with the number and composition of

communities found.

Another useful representation for these tasks is by combining them in a parametric plot with

155

parameter α. In Fig. A.5, we divided the performance space into three different regions that roughly

correspond to good-poor, poor-good, and poor-poor (link prediction-link description) performance.

As shown in Box 3, these regions correspond to well-fitted, overfitted, and underfitted behaviors of

community detection algorithms, respectively.

A.4 Scoring Function

In this section, for reproducibility of our results, we will explain in detail the scoring func-

tions we used. Also we will explain additional details of the link prediction and link description

procedures for these algorithms. For running time considerations, as mentioned in the main text,

we approximate the AUC via the Monte Carlo sampling.

A.4.1 B-NR (SBM), B-NR (DC-SBM), B-HKK, cICL-HKK, and S-NB

This group of methods have the characteristic that the value assigned to each pair of nodes

doesn’t depend on the existence of the link. The natural score function for each pair of nodes

defined for the probabilistic methods (B-NR (SBM), B-NR (DC-SBM), B-HKK, and cICL-HKK)

is the probability of the existence of the corresponding query edge [75]. For spectral clustering

S-NB, as explained in Section 5.1, a new score function based on eigenvalue decomposition is

constructed. The proposed spectral scoring rule sij is the corresponding entry value in the low-

rank approximation with the rank coming from the non-backtracking spectral method.

A.4.1.1 Link Prediction

For link prediction for these methods, we compare the pairwise scores for missing links and

non-links to compute the AUC using Monte Carlo sampling. We remove (1 − α)% of the links

uniformly, randomly choose 10000 pairs of missing links and non-links, and compare the scores on

pairs of missing links and non-links to compute the AUC.

156

A.4.1.2 Link Description

For link description, we compare the pairwise scores for links and non-links to compute the

AUC using Monte Carlo sampling. We remove (1 − α)% of the links uniformly, randomly choose

10000 pairs of observed links and non-observed links, and compare the scores on pairs of observed

links and non-observed links to compute the AUC.

A.4.2 Q, Q-MR, Q-MP, Infomap, MDL (SBM), and MDL (DC-SBM)

Here, we summarize the score functions for the non-probabilistic score function methods 1 .

The score function of each potential edge i, j for each of these algorithms is defined as the amount

of contribution that query edge makes in the corresponding objective function. For example in

modularity Q, the objective function is computed as Q = ∑K
r=1

[
lr
M
−
(
dr

2M

)2]
[131], where lr

is the number of edges inside group r, dr is the aggregated degree of nodes of type r, and M is

total number of edges in the network. The score function sij for a query edge i, j is the increase

in modularity ∆Q, after adding that edge into the network. For running time considerations, we

assume the partitions remain unchanged after adding the edge.

A.4.2.1 Link Prediction

For link prediction, we remove (1−α)% of the links uniformly, randomly choose 10000 pairs

of missing links and non-links, then once add a link in the location of the missing link, and once

add a link in the location of the non-link and see whose contribution is larger to compute the AUC

(see Fig. A.6(a)).

A.4.2.2 Link Description

In link description, we remove (1 − α)% of the links uniformly, and randomly choose 10000

pairs of observed links and non-observed links. Here, we have three different options to compare
1 Some of these methods, like MDL (SBM) and MDL (DC-SBM) are closely related to probabilistic methods but

their score functions are non-probabilistic.

157

the contribution of these two groups (see Fig. A.6).

In Fig. A.6 (b), we consider the current network as the reference, then once add a link in the

location of the link and add a link to the location of the non-link and see whose contribution is

larger in the objective function to compute the AUC. The reason of performing the link description

this way is we want the learned model to automatically find the position of the links without prior

knowledge.

In two other cases, Fig. A.6 (c) and (d), we assumed the learned model knows the position of

the links. In Fig. A.6 (c), we consider the current network as the reference, once remove a link from

the location of the link and once add a link in the location of the non-link to see whose contribution

is larger to compute the AUC. And finally in Fig. A.6 (d), we remove the link and consider it as the

reference, once add a link in the location of the removed link, and once add a link in the location

of the non-link to see whose contribution is larger to compute the AUC.

The link description results for these methods, presented in the manuscript, are through

using the method (b). Fig. A.7 compares the results for method (b) and method (c). Although the

results do change slightly, our main conclusions are not affected when using method (c) in computing

the contribution of the observed links versus non-observed links. Also is worth highlighting that

comparison using method (d) is very computationally expensive; since for every pair after removing

the true link for reference, we have to run the algorithm again which adds a large time complexity

compared to options (b) and (c).

A.5 Model Selection Approaches

The general problem of choosing the number of communities k is a kind of model selection

problem, specifically, a kind of complexity control, as selecting more communities generally means

more flexibility for the fitted model. Although it may be appealing to attempt to divide approaches

based on whether k is chosen explicitly as a parameter (as in many probabilistic approaches, like

the SBM and its variants) or implicitly as part of the community detection itself (as in modularity

maximization), such a dichotomy is not particularly clean. In this section, we survey the various

158
a

b

c

d

link

link

missing link

removed link

Figure A.6: Computation of (a) link prediction versus (b,c,d) link description in non-probabilistic
score function methods of Q, Q-MR, Q-MP, Infomap, MDL (SBM), and MDL (DC-SBM). (a)
Consider the current network as the reference, once add a link in the location of the missing link,
and once add a link in the location of the non-link and see whose contribution is larger to compute
the AUC, (b) consider the current network as the reference, once add a link in the location of the
link and once add a link to the location of the non-link and see whose contribution is larger in the
objective function to compute the AUC, (c) consider the current network as the reference, once
remove a link from the location of the link and once add a link in the location of the non-link to see
whose contribution is larger to compute the AUC, and (d) remove the link and consider it as the
reference, once add a link in the location of the removed link, and once add a link in the location
of the non-link to see whose contribution is larger to compute the AUC.

different approaches to model selection in community detection.

159

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.0

0.2

0.4

0.6

0.8

1.0
AU

C
(a) link description via method (b)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of observed edges ()

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

(b) link description via method (c)
Q
Q-MR
Q-MP
Infomap
MDL (SBM)
MDL (DC-SBM)

Figure A.7: Comparison of link description (train) benchmark performance curves for non-
probabilistic score function methods of Q, Q-MR, Q-MP, Infomap, MDL (SBM), and
MDL (DC-SBM) using method (b) versus method (c) in comparing contribution of observed links
versus non-observed links in link description.

Community detection methods can be divided in two broad categories: probabilistic and

non-probabilistic methods. These two general groups cover roughly six classes of methods:

• Bayesian marginalization and regularized likelihood2 approaches [85, 190, 51],

• information theoretic approaches [163],

• modularity based methods [135],

• spectral and other embedding techniques [106, 166, 110, 74, 154],

• cross-validation methods [36, 98], and

• statistical hypothesis tests [183].

We note, however, that the boundaries among these classes are not rigid and one method can belong

to more than one group. For example, MDL is both an information theoretic approach as well as

a Bayesian approach, and modularity can be viewed as a special case of the DC-SBM.

Many probabilistic approaches choose a parametric model like the popular SBM or one of its

variants, and then design specific rules for model selection (choosing k) around this basic model.
2 The frequentist approaches belong to the regularized likelihood approaches.

160

One principled way to avoid overfitting is to use the minimum description length (MDL) [160]

method, which tries to compress the data via capturing its regularities. Ref. [148] employs MDL on

networks and aims to avoid overfitting via trading off the goodness of fit on the observed network

with the description length of the model. This approach can also be generalized to hierarchical

clustering and overlapping communities [149, 151].

The probabilistic group includes the Regularized-Likelihood approaches [51, 109, 47] and

Bayesian model selection methods [85, 136, 190, 81]. Regularized-Likelihood approaches are similar

to Bayesian Information Criterion (BIC) in model selection [169]. Ref. [25] proposes to select the

number of clusters in mixture models, using some criterion called the integrated complete likelihood

(ICL) instead of BIC. Basically, BIC does not take into account the entropy of the fuzzy classification

and ICL is intended to find more reliable clusters by adding this entropy into the penalty terms.

However, computing ICL in the setting of a network mixture model like the SBM is not tractable.

To address this issue for the SBM, Ref. [51] proposed using ICL and approximating it by resorting

to the frequentist variational EM. Because of asymptotic approximations in ICL, these results are

not reliable for smaller networks. In another study [109], the authors employ variational Bayes EM

and propose to use the ILvb criterion for complexity control. In both the ICL and ILvb [51, 109]

approaches, some approximations are used. Ref. [121] bypasses these approximations by considering

the conjugate priors and tries to improve the results by finding an analytical solution. Also in

Ref. [47], the authors find the exact ICL by using an analytical expression and propose a greedy

algorithm to find the number of clusters and partition the network simultaneously.

We categorize regularized-likelihood and Bayesian approaches together, because the prior

beliefs in Bayesian approaches play a similar role to penalty terms in penalized likelihood functions.

Bayesian marginalization and related approaches aim to control for overfitting by averaging over

different parameterizations of the model. The various approaches in the Bayesian group use different

approximations in order to make this averaging computationally feasible in a network setting. A

common practice for networks, e.g., starting with the SBM, is to either use a Laplace approximation

or use conjugate priors [136, 190, 81], both of which yield a penalty term that can be compared with

161

penalty terms in regularized methods. Different choices in the particular priors [136, 190] or in the

order of Laplace approximations [136, 81] yield different resulting model selection specifications.

Similarly, Ref. [136] chooses a maximum entropy prior (B-NR), while Ref. [190] chooses a uniform

prior.

An approximation technique known as factorized information criterion (FIC) is explored

in the context of networks in Ref. [81], along with its corresponding inference method known as

factorized asymptotic Bayesian (FAB). Ref. [81] adapts this criterion to the SBM and name it F2IC,

which is more precise than FIC and is specifically designed for SBM. A tractable algorithm named

F2AB (B-HKK) is proposed to carry out Bayesian inference. A key property of the FIC is that it can

account for dependencies among latent variables and parameters, and is asymptotically consistent

with the marginal log-likelihood. Ref. [81] also proposes a modification to the ICL criterion [51]

that corresponds to the simplified version of FIC [82], and which is referred to as corrected ICL

(cICL-HKK) here.

In contrast to the description length approaches taken with probabilistic models like the

SBM, Ref. [163] proposes a different information theoretic approach known as Infomap, which uses

compression techniques on the paths of a random walker to identify community structure regularities

in a network. This approach can be generalized to hierarchical community structure [165] and to

overlapping modular organization [62].

In modularity based methods [135, 193], an objective function based on a particular goodness

of fit measure is proposed and the corresponding optimization over partitions can be solved in any

number of ways. Undoubtedly, the most widespread measure in this category is modularity Q

proposed by Newman and Girvan [135]. Modularity maximization favors putting the nodes with

large number of connections inside the clusters compared to the expected connections under a

random graph with the same degree sequence.

Recently, Ref. [133] showed that multiresolution modularity (Q-MR) maximization is math-

ematically equivalent to a special case of the DC-SBM, under a k-planted partition parameteriza-

tion. The Q-MR algorithm works implicitly like a likelihood maximization algorithm, except that

162

it chooses its resolution parameter, which sets the number of communities k, by iterating between

the Q and DC-SBM formulations of the model. In another modularity based approach [193], the

authors propose a message passing algorithm (Q-MP) by introducing a Gibbs distribution utilizing

the modularity as the Hamiltonian of a spin system, and a means for model selection via mini-

mization of the Bethe free energy. This approach enables marginalization over the ruggedness of

the modularity landscape, providing a kind of complexity control not available through traditional

modularity maximization. The main issue is that to infer informative communities, some parame-

ters of the model (inverse temperature β) need to be chosen so that the model does not enter the

spin-glass phase. Ref. [99] builds on this approach by proposing a generalized version of modularity

message passing (Q-GMP) for model selection that infers the parameters of Boltzmann distribution

(inverse temperature β) instead of just setting it to some pre-calculated value.

Spectral methods using eigen decomposition techniques can find the informative eigenvectors

of an adjacency matrix or a graph Laplacian, and the embedded coordinates can be used for

community detection. However, traditional spectral approaches are not appropriate in clustering

sparse networks, or networks with heavy-tailed degree distributions. Recently, Ref. [106] proposed

a spectral approach for community detection in sparse networks based on the non-backtracking

matrix (S-NB), that succeeds all the way down to the detectability limit in the stochastic block

model [55]. In this setting, the number of communities k is chosen by the number of real eigenvalues

outside the spectral band. More recently, Ref. [166] proposes to choose k as the number of negative

eigenvalues of the Bethe Hessian matrix. Ref. [110] proves the consistency of these approaches in

dense and sparse regimes and also describes some corrections on the spectral methods of Refs. [106]

and [166] (S-cBHm and S-cBHa).

There is another venue of embedding techniques used in clustering, related to feature learning

in networks. Following the recent achievements in natural language processing via the skip-gram

model, Ref. [154] develops an algorithm to encode a representation of graph vertices by modeling

and then embedding a stream of rigid random walks. Ref. [74] generalizes this idea and proposes an

algorithm to learn continuous feature representations for nodes, which can be used in community

163

detection and for learning which nodes have similar structure. Two attractive properties of such

node-embedding approaches are their scalability and the ease with which they can be used to make

predictions about edges. These methods are not included in our study as they have not yet been

well explored in the context of community detection.

Traditional approaches to evaluating and controlling for model overfit, such as optimizing

the bias variance tradeoff, fail in network settings because pairwise interactions violate standard

independence assumptions. Because of this non-independence issue, cross-validation techniques

are not theoretically well developed in the context of networks, and even simple edge-wise cross-

validation can be computationally expensive. Recently, Ref. [98] showed that the leave-one-out

cross-validation prediction error can be efficiently computed using belief propagation (BP) in sparse

networks and thereby efficiently used for model selection. Similarly, Ref. [36] estimates the number

of communities using a block-wise node-pair cross-validation method, which can be adapted to any

other algorithm and model. The number of communities is chosen by validating on the testing

set (minimizing the generalization error) and the technique can simultaneously chooses between

SBM and DC-SBM by selecting the minimum validation error. However, it should be noted that

recently Ref. [178] showed that model selection techniques based on cross-validation are not always

consistent with the most parsimonious model and in some cases can lead to overfitting.

Statistical methods test the number of clusters using some test statistics through a recursive

hypothesis testing approach. In general, these approaches have a high computational complexity

because of this outer loop. Ref. [37] proposes an algorithm for automated model order selection

(AMOS) in networks for random interconnection model (RIM) (a generalization of the SBM). The

method uses a recursive spectral clustering approach, which increases the number of clusters and

tests the quality of the identified clusters using some test statistics achieved by phase transition

analysis. Ref. [37] proves this approach to be reliable under certain constraints. Ref. [183] proposes

a likelihood ratio test (LRT-WB) statistic for the SBM or DC-SBM to choose the number of clusters

k, and shows that when the average degree grows poly-logarithmically in N , the correct order of

a penalty term in a regularized likelihood scheme can be derived, implying that its results are

164

asymptotically consistent.

Ref. [24] proposes a sequential hypothesis testing approach to choose k. At each step, it tests

whether to bipartition a graph or not. To this end, the authors derive and utilize the asymptotic

null distribution for Erdős-Rényi random graphs. This possibility originated from the fact that

the distribution of the leading eigenvalue of the normalized adjacency matrix under the SBM

converges to the Tracy-Widom distribution. Ref. [111] uses recent results in random matrix theory

to generalize the approach of Ref. [24] to find the null distribution for SBMs in a more general

setting. Utilizing this null distribution and using the test statistic as the largest singular value of

the residual matrix, computed by removing the estimated block model from the adjacency matrix,

Ref. [111] proposes an algorithm to choose k by testing k = k0 versus k > k0 sequentially for each

k0 ≥ 1, which is proved to be consistent under a set of loose constraints on the number of clusters

(k = O(N1/6 − τ) for some τ > 0) and the size of clusters (Ω(N5/6)).

It is noteworthy that Ref. [8] recently proved that one constraint on the sizes of inferred

communities under some methods is an artifact of identifying the large and small clusters simul-

taneously. It goes on to show that this issue can be resolved using a technique called “peeling,”

which first finds the larger communities and then, after removing them, finds the smaller-sized

communities using appropriate thresholds. This iterative approach is similar to the superposition

coding technique in coding theory and recalls the hierarchical clustering strategy introduced in

Ref. [149] for capturing clusters with small sizes. Basically, by iteratively limiting the search space,

finding an optimum solution becomes computationally more tractable. Relatedly, Ref. [39] shows

that in planted k-partition model, the space of parameters of the model divides into four regions

of impossible, hard, easy and simple, which are related to the regimes that algorithms based on

maximum likelihood estimators can succeed theoretically and/or computationally. These results

indicate that no computationally efficient parametric algorithm can find clusters if the number of

clusters increase unbounded over Ω(
√
N). This fact is in strong agreement with our experimental

results.

Appendix B

Appendix to Chapter 3

B.1 Generative Process for Synthetic Networks

In this Section, we will explain the generating process to construct synthetic networks em-

ployed in our link prediction analysis. We generate networks using model of stochastic block model

(SBM). Also to compensate for the heterogeneity of the degrees occurring in real data, an extension

of this model is considered in our analysis, i.e., the degree corrected-stochastic block model (DC-

SBM). Among the degree distributions, the simplest distribution is Poisson degree distribution that

can explain the homogeneous patterns in the network and assume all pairs of nodes at each cluster

are connected with the same probability. The Poisson degree distribution is a popular distribution

in modeling the networks for its simplicity and its convenience in computing analytic results about

networks, which leads to the Vanilla SBM for modeling the block structure. However, this model

is not a good model on modeling the degree sequences observed on real data.

To model real data we use heavy tailed degree distributions. There are several heavy-tailed

distributions used in literature to model real-world networks. The power law degree distribution

is a well-known distribution when the frequency of variable is proportional to a power of the

variable. For example, the distribution of some physical, biological, social phenomena is following

a power law. One of the main properties of this distribution is its scale invariance. The degree

distribution is scale free if the argument scales, the degree distribution doesn’t change. It is known

for years that the heterogeneity of degrees in most real networks can be modeled using a power

law distribution [17] and that is why the real networks are frequently called scale free. However,

166

recently its universality is challenged using some statistical tools which show only a small fraction

of real networks could pass successfully along these tests [30] and it brings up again the necessity of

new models for better modeling of heavy tailed distributions. There are two important alternatives

for power law degree distribution; log-normal and Weibull distributions [44]. In this chapter we

model the degrees of nodes in our synthetic data using power-law and Weibull distributions.

In power law degree distribution the probability of degree r can be written as

f(r) = cr−γ , (B.1)

where c is the normalization constant and γ has some values in the range of (2, 3) for most real

networks. The Weibull probability distribution can be summarized as

f(r) = crβ−1e−λr
β
, (B.2)

where the constant c is the normalization constant.

B.1.1 Generating Process

To avoid confusion, we separate the stochastic block model into two models: when k = 1

(aka Erdős-Rényi (ER)), and when k > 1. Here, we explain generating networks using ER, DC-ER,

SBM, and DC-SBM.

generating ER

• choose number of nodes n, and average degree c, or the interaction probability p = c

n− 1,

• connect each pair of nodes independently with probability p.

generating DC-ER

• choose number of nodes n, and average degree c,

• compute the parameters of degree distribution for the average degree c,

• generate a degree sequence with length n with the computed parameters in the previous

step,

167

• compute the number of edges for the network as m =
∑
i di
2 ,

• make a multi-edge between each pair of nodes i, j independently with the Poisson probabil-

ity with rate λ = di
dgi

dj
dgj

2m; As our goal is generating an unweighted network, and since we

are in sparse regime, removing multi-edges does not change the network very much (most

of the connections are unweighted).

generating SBM

• choose number of nodes n, number of clusters k, average degree c, and ε, the ratio of

number of edges connected to a node outside and inside its cluster i.e. ε =
pout

n

k

pin
n

k

= pout
pin

;

by choosing c, and ε the mixing probabilities can be computed as pin = c
n

k
(1 + ε(k − 1))

and pout = εpin,

• generate the type of the nodes independently with prior probabilities qr for r = {1, ..., k},

• connect each pair of nodes i, j independently with probability pgigj , where

pgi,gj =


pin if gi = gj

pout if gi 6= gj

.

generating DC-SBM

• choose number of nodes n, average degree c, and ε̃, the ratio of number of edges between

the clusters and inside the clusters i.e. ε̃ = mout
min

, where min is the number of edges inside

the clusters, and mout is the number of edges between the clusters,

• generate the type of nodes independently with prior probabilities qr for r = {1, ..., k},

• compute the parameters of degree distribution for average degree c,

• generate a degree sequence with length n with the computed parameters in previous step,

and compute the aggregate degrees for each cluster noted as dr = ∑
i:gi=r di,

168

• compute the total number of edges for the network as m =
∑
i di
2 ,

• using ε̃, we can compute the number of edges inside and outside the clusters, noted as min,

and mout, i.e., we have min = m

1 + ε̃
and mout = ε̃min,

• since we do not assume any heterogeneity for the size and volume of clusters in our gen-

erating process (types of nodes are randomized uniformly and also edges are created uni-

formly inside and between clusters), then we can approximate the number of edges inside

each cluster r as m(r)
in = min

k
, the number of edges between cluster r and any other clus-

ter as m(r)
out = mout

k

2

, and the number of edges between each pair of clusters r and s as

m
(rs)
out = mout(k

2
) ,

• make a multi-edge between each pair of nodes i, j with types r, s, independently with the

Poisson probability with rate λr,s(di, dj) = di
dr

dj
ds
ωr,s, where

ωr,s =


2m(r)

in if r = s

m
(rs)
out if r 6= s

.

As our goal is generating an unweighted network and since we are in sparse regime re-

moving multi-edges does not change the network very much (most of the connections are

unweighted).

It is worthwhile to mention that ε̃ in DC-SBM is related to ε in SBM as ε̃ = mout
min

= (k − 1)pout
pin

=

(k − 1)ε. Therefore, for the results, we used ε̃ = mout
min

for both SBM and DC-SBM.

B.2 Optimal Performance of Link Prediction in Synthetic Networks

Given a network G = (V,E), where V is the set of nodes, and E is the set of edges, we

compute the AUC as the probability of a true edge score is higher than a true non-edge score. Let

us assume n = |V |, and m = |E|. Also assume we have k clusters and the number of nodes and

169

edges for cluster i are ni and mi, respectively. Also we noted the number of non-edges in cluster i

with m̃i. The number of edges and non-edges between clusters i and j are noted by mij and m̃ij .

As we know, AUC can be approximated as the probability of a true edge score is higher than

a true non-edge score,

AUC = P (tes > tnes), (B.3)

where te, tne, tes, and tnes stand for true edge, true non-edge, true edge score, and true non-edge

score, respectively.

B.2.1 Optimal AUC for ER

Now we compute the AUC for the Erdős-Rényi model as follows:

AUC = P (tes > tnes) = 1
2 , (B.4)

since the same score assigned to both the edges and non-edges, therefore, with randomly perturbing

the scores with small values, the distribution of having larger scores for edges versus non-edges is

uniform.

B.2.2 Optimal AUC for DC-ER

Here, we have just one cluster, however, the degree of the nodes are heterogeneous. Then the

AUC can be computed as Eq. B.5. Computing the results analytically is harder than computing it

numerically. Therefore, we have computed these bounds using Monte Carlo sampling via Eq. B.3

and provided the results in Fig. 3.3.

B.2.3 Optimal AUC for SBM

The Eq. B.3 can be written as Eq. B.6 in the deep detectable regime (DDR) (see [55]), where

ε̃→ 0. Eq. B.6 has four terms that can be computed as explained below.

170

AUC =P (tes > tnes)

=
∑

u1.v1,u2,v2

p(u1v1 > u2v2, di1 = u1, dj1 = v1, di2 = u2, dj2 = v2 | (i1, j1) ∈ E, (i2, j2) /∈ E)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)p(di1 = u1, dj1 = v1, di2 = u2, dj2 = v2 | (i1, j1) ∈ E, (i2, j2) /∈ E)

(Bayes Thm.)=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)p((i1, j1) ∈ E, (i2, j2) /∈ E | di1 = u1, dj1 = v1, di2 = u2, dj2 = v2)
p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . (B.5)

AUC =P (tes > tnes)
=P (tes > tnes|both inside)P (both inside)× number of possibilities

+ P (tes > tnes|both outside)P (both outside)× number of possibilities
+ P (tes > tnes|te inside, tne outside)P (te inside, tne outside)× number of possibilities
+ P (tes > tnes|te outside, tne inside)P (te outside, tne inside)× number of possibilities , (B.6)

171

• First term:

P (tes > tnes|both inside)P (both inside)

= miα∑
imiα+∑

i 6=jmijα
× m̃i∑

i m̃i +∑
i 6=j m̃ij

=
(ni

2
)
pin∑

i

(ni
2
)
pin +∑

i 6=j ninjpout
×

(ni
2
)
(1− pin)(ni

2
)
(1− pin) + ninj(1− pout)

= 1
2

pin
k3(pin + (k − 1)pout)

= 1
2
cin
k4c

, 1 (B.7)

where α is the sampling rate of observed edges. Then since the number of possibilities is

k2, the first term can be computed 1
2

pin
k3(pin+(k−1)pout) × k

2 ≈ 1
2k .

• Second term:

P (tes > tnes|both outside)P (both outside)

= mijα∑
imiα+∑

i 6=jmijα
× m̃ij∑

i m̃i +∑
i 6=j m̃ij

= ninjpout∑
i

(ni
2
)
pin +∑

i 6=j ninjpout
× ninj(1− pout)(ni

2
)
(1− pin) + ninj(1− pout)

= 2 pout
k3(pin + (k − 1)pout)

= 2cout
k4c

. (B.8)

Then since the number of possibilities is
(k

2
)2 = k4

4 the first term is 2 pout
k3(pin+(k−1)pout)×

k4

4 =
kpout

(pin+(k−1)pout) ≈ 0.

• Third term:

P (tes > tnes|tes inside, tnes outside)P (tes inside, tnes outside)

= miα∑
imiα+∑

i 6=jmijα
× m̃ij∑

i m̃i +∑
i 6=j m̃ij

=
(ni

2
)
pin∑

i

(ni
2
)
pin +∑

i 6=j ninjpout
× ninj(1− pout)(ni

2
)
(1− pin) + ninj(1− pout)

= 2 pin
k3(pin + (k − 1)pout)

= 2 cin
k4c

. (B.9)

Then since the number of possibilities is k
(k

2
)

= k2(k−1)
2 the first term is 2 pin

k3(pin+(k−1)pout) ×

k2(k−1)
2 = k−1

k .
1 Note that in the last line we assume equally-sized homogeneous clusters i.e. ni = n

k
.

172

• Last term:

P (tes > tnes|tes outside, tnes inside)P (tes outside, tnes inside) = 0 (B.10)

Then in DDR, for assortative networks, the final term is zero; since the assigned scores to

the outer edges are smaller than the assigned scores to inner edges given we could find the

clusters (with probability 1 in DDR this is guaranteed).

Now we can compute the AUC in DDR using these terms as following:

AUC = P (tes > tnes)

= 1
2k + k − 1

k

= 2k − 1
2k . (B.11)

For example the AUC of k = 2, k = 4, k = 8, k = 16, and k = 32 are 0.75, 0.875, 0.94, 0.97, and 0.98,

respectively. These values are computed in the deep detectable regime and are not valid in other

regions. For other regimes of detectability, some of the approximations we did in our computation

is not valid. However, we can compute the exact upper bounds for each region, using Monte Carlo

(100000 samples) via the Eq. B.3. The reason we call these values as upper bound is that there

is no community detection algorithm that can find the labels exactly when ε increases [55]. When

ε→ 0, the upper bounds are tight since we have this guarantee. The numerically computed values

are presented in Fig. 3.3.

B.2.4 Optimal AUC for DC-SBM

For the degree corrected stochastic block model, the Eq. B.3 can also be written as Eq. B.6

when ε̃ → 0. However, to compute each term we should condition on the degrees of the nodes.

Here, also like SBM, we can compute each term separately as follows.

173

• First term:

P (tes > tnes|both inside)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)

×
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) , (B.12)

where by di1,2 = u1,2 we mean di1 = u1 and di2 = u2.

• Second term:

P (tes > tnes|both outside)

=
∑

u1,v1,u2,v2

1(u1v1 > u2v2)

×
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . (B.13)

• Third term:

P (tes > tnes|te inside, tne outside)

=
∑

u1,v1,u2,v2

1(u1v1mrr > u2v2mrs)

×
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . (B.14)

• Fourth term:

P (tes > tnes|te outside, tne inside)

=
∑

u1,v1,u2,v2

1(u1v1mrs > u2v2mrr)

×
p((i1, j1) ∈ E, (i2, j2) /∈ E | di1,2 = u1,2, dj1,2 = v1,2

p((i1, j1) ∈ E, (i2, j2) /∈ E)

× p(di1 = u1)p(dj1 = v1)p(di2 = u2)p(dj2 = v2) . (B.15)

174

Computing these terms analytically are harder than computing them numerically. Therefore, we

compute these terms numerically using 100000 Monte Carlo samples via Eq. B.3. The results are

presented in Fig. 3.3.

