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Advances in computational power have enabled the simulation of increasingly complex phys-

ical systems. Mathematically, we represent these simulations as a mapping from inputs to outputs.

Studying this map—e.g., performing optimization, quantifying uncertainties, etc.—is a critical

component of computational science research. Such studies, however, can suffer from the curse of

dimensionality—i.e., an exponential increase in computational cost resulting from increases in the

input dimension. Dimension reduction combats this curse by determining relatively important (or

unimportant directions) in the input space. The problem is then reformulated to emphasize the

important directions while the unimportant directions are ignored. Functions that exhibit this sort

of low-dimensional structure through linear transformations of the input space are known as ridge

functions. Ridge functions appear as the basic components in various approximation and regression

techniques such as neural networks, projection pursuit regression, and multivariate Fourier series

expansion. This work focuses on how to discover, interpret, and exploit ridge functions to improve

scientific computing.

In this thesis, we examine relationships between the ridge recovery technique active sub-

spaces and the physically-motivated Buckingham Pi Theorem in magnetohydrodynamics (MHD)

models. We show that active subspaces can recover known unitless quantities from MHD such as

the Reynolds and Hartmann numbers through a log transformation of the inputs. We then study the

relationship between ridge functions and statistical dimension reduction for regression problem—

i.e., sufficient dimension reduction (SDR). We show that a class of SDR methods called inverse

regression methods provide a gradient-free approach to ridge recovery when applied to determinis-

tic functions. We examine the numerical properties of these methods as well as their failure cases.

We also introduce novel algorithms for computing the underlying population matrices of these in-



iv

verse regression methods using classical iterative methods for generating orthogonal polynomials.

Finally, we introduce a new method for cheaply constructing accurate polynomial surrogates on

one-dimensional ridge functions by obtaining generalized Gauss-Christoffel quadrature rules with

respect to the marginal density on the one-dimensional ridge subspace.
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Chapter 1

Introduction

The rapid growth of computing power has enabled the simulation of complex physical pro-

cesses by models that more accurately reflect reality. Mathematically, we treat these models as a

deterministic mapping from a set of inputs to some output of interest,

y = f(x), x ∈ Rm, y ∈ R, (1.1)

where x contains a vector of continuous physical inputs, y is a scalar-valued output or quantity

of interest, and f represents the underlying computational model. It is common to treat f as a

deterministic function, since a bug-free computational model produces the same outputs given the

same inputs; in other words, there is no random noise in simulation outputs. This perspective is

the de facto setup in the statistics subfield of computer experiments [100, 76, 102].

We assume (1.1) is accompanied by a known input probability measure πx. This measure

treats the model inputs as random variables to represent aleatory uncertainty. One common choice

is to assume a uniform weighting over a valid set of parameter ranges for each of the inputs. In

general, we assume that the inputs are uncorrelated and standardized such that

E [x] = 0 and Cov [x] = I. (1.2)

We can apply relatively straightforward transformations of the inputs to ensure (1.2) holds if needed.

We revisit and justify this idea later in the thesis. This is the standard problem setup in the field

of uncertainty quantification [109, 117, 55].
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One means by which we can increase the complexity of a given model is by increasing the

dimension of the model—i.e., the number of inputs m. This increases the size of the input space,

potentially leading to better understanding of the physical system, improved optimal solutions,

and other benefits. However, this increase in dimension can also lead to strange and unintuitive

behavior. This idea is generally referred to as the curse of dimensionality and can have different

interpretations in different contexts.

1.1 The curse of dimensionality

The curse of dimensionality was first introduced 1961 by Richard Bellman in reference to

combinatorial optimization in high dimensions [7]. This phrase has been used to describe a wide

range of issues arising from the nonintuitive behaviors of high-dimensional spaces. In general, the

curse of dimensionality refers to an exponential increase in the difficulty of applying various machine

learning techniques as the dimension of the input space increases [43]. Despite the significant strides

made in computational power in recent years, we continue to find ourselves dealing with issues

related to dimensionality. Pedro Domingos states that “after overfitting, the biggest problem in

machine learning is the curse of dimensionality” [42].

In statistics, the curse of dimensionality can make adequately sampling high-dimensional

spaces very difficult, even in seemingly simple cases [103, Chap. 7]. Consider a standard multivari-

ate Gaussian distribution in m dimensions, x ∼ N (0, I). Typically, we think of such distributions

as being highly intuitive, with the mean in the center of the density and an exponential decay

as we move outward. When visualizing the Gaussian density function (note that the process of

visualization implies m = 1 or m = 2), we see much of the function’s “mass” is concentrated

around the mean. This would seem to suggest that a high percentage of random samples drawn

from this distribution should be near the mean. However, this does not hold true as we increase

the dimension. Figure 1.1 shows the percentage of random samples that fall within a unit ball

around the mean. There is an exponential decay in the number of points within a radius r = 1 of

the center of the distribution.
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Figure 1.1: A study of the percentage of random samples that fall with the unit ball around the
mean of an m-dimensional multivariate Gaussian distribution.

High-dimensions can also inhibit clustering-based algorithms for unsupervised machine learn-

ing, such as the k-nearest neighbor algorithm [69, Chap. 2]. This algorithm infers some character-

istics regarding a particular point of interest by considering the k closest points in m-dimensional

space to that point. The fundamental assumption of this algorithm is that nearby points are more

likely to share similar characteristics than far away points. Such an assumption seems reasonable

when considered for m = 2 or m = 3 dimensions. However, this breaks down as the dimension

increases [8]. Consider a collection of N points uniformly sampled from the [−1, 1]m hypercube.

For each point, we consider the ratio of the distance to its farthest neighbor over the distance to

its nearest neighbor,

maxi 6=j ||xi − xj ||
mini 6=j ||xi − xj ||

. (1.3)

Figure 1.2 contains the average of this ratio for fixed N with increasing dimension. Notice that this

ratio tends towards one as m increases. This implies that the difference between nearby points and

far-away points vanishes in high dimensions. This undermines the fundamental assumption behind

the k-nearest neighbor algorithm.

In computational science modeling, the curse of dimensionality typically appears in the con-

text of high-dimensional function approximation. These models can be expensive to evaluate, often

requiring us to numerically approximate a highly-coupled system of partial differential equations.
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Figure 1.2: A study of the average ratio of distance to the farthest point over the distance to the
nearest point for a fixed number of samples as dimension increases.

Studying these models by performing uncertainty quantification or optimization may require mul-

tiple evaluations at various inputs. Instead, we may choose to construct a cheap approximation

of the computational model. These approximations appear under several names: response sur-

faces [90, 75], surrogate models [98, 5], metamodels [126], and emulators [12]. Methods for building

such surrogate models include radial basis functions [47], splines [125], and polynomial approxima-

tions (referred to as polynomial chaos expansions in the uncertainty quantification literature) [132].

Once we have constructed the surrogate model, we can perform the study on it much more cheaply

than on the original function.

Unfortunately, if we are restricted to only classical smoothness assumptions—e.g., Lipschitz

continuity, continuous differentiability, etc.—then building surrogate approximations suffers from

the curse of dimensionality [119, 129]. Roughly speaking, the number of function evaluations

required to construct a surrogate of fixed accuracy grows exponentially with the dimension—i.e.,

the number of inputs to the function. David Donoho acknowledges this fact when he refers to

the curse of dimensionality as “the apparent intractability of accurately approximating a general

high-dimensional function” [43]. This perspective on the curse of dimensionality is most closely

aligned with the work presented in this thesis.

To demonstrate the type of intractability Donoho mentions, we consider the following illus-
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trative example. We wish to sufficiently sample an m-dimensional input space in order to build an

accurate surrogate of a computational model. To do this, we must evaluate the function at N = 6

unique input locations per dimension and each model evaluation takes T = 1 second to execute.

Figure 1.3 shows the exponential growth in the computational time required to run the required

number of the simulations as the dimension increases. We rapidly approach infeasible computation

times. Suppose we develop a better method for searching the input space that only requires N = 3

model evaluations per dimension. Or alternatively, suppose we obtain a more powerful computer

that can evaluate the model in T = 1 milliseconds. The computational times for these studies as a

function of dimension are shown in red and blue, respectively. Note that these improvements reduce

the overall computation time; however, the costs are still growing exponentially with dimension and

quickly become infeasible. Thus, the best approach for combating the curse of dimensionality is to

reduce the dimension of the input space.
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25 minutes

22 days

75 years

90 thousand years

115 million years
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N = 6 evaluations, T = 1 second

N = 3 evaluations, T = 1 second

N = 6 evaluations, T = 1 millisecond

Figure 1.3: A study of the computation time to perform a study of an m-dimensional model
requiring N model evaluations per dimension with each evaluation taking time T to execute.

1.2 Dimension reduction

Dimension reduction methods attempt to reduce the dimension of some space or set of data

while retaining various important characteristics. There exist a wide range of both linear [37]

and nonlinear [78] techniques for performing dimension reduction with the main differences be-

tween them being the specific characteristics they deem important. Additionally, we can consider

dimension reduction in the context of unsupervised and supervised problems.
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Unsupervised methods for dimension reduction consider relationships among the various pa-

rameters. For example, principle component analysis (PCA) seeks out linear transformations of the

parameters that maximizes the variance [74]. This can be expressed in terms of the optimization

problem

argmax
a∈Rm

a>Cov [x] a,

subject to a>a = 1.

(1.4)

The solution to (1.4) is the normalized eigenvector of the covariance matrix associated with the

largest eigenvalue. This can be generalized to n dimensions by projecting the parameters along the

n dominant eigenvectors—i.e., those associated with the largest eigenvalues. It should be noted

that PCA is characterized by its definition of what is important—i.e., the covariance structure

between parameters. It is not characterized by the use of the eigendecomposition (or singular value

decomposition (SVD)) in discovering these important direction. Consider multidimensional scaling

(MDS) which attempts to perform dimension reduction while preserving distances been the various

data points [10]. This is done by constructing a squared distance matrix and converting it into a

Gram matrix. The data is then projected along the dominant eigenvalues of this matrix. The term

spectral dimension reduction refers to the generalized approach of constructing a similarity matrix

from the data and computing its eigendecomposition to obtain appropriate linear transformations

of the parameters [116].

Recall that the fundamental problem statement for this work is given by (1.1). Thus, we are

primarily interested in dimension reduction that accounts for the deterministic relationship between

the m-dimensional input and the scalar-valued output—i.e., dimension reduction in the supervised

framework. Additionally, recall from (1.2) that we assume standardized and uncorrelated inputs.

This suggests that the unsupervised dimension reduction methods described above will not be

beneficial as there are no relationships between the various inputs that can be exploited.

One natural approach to perform this type of dimension reduction is to examine the relative

impact of each input on the output. Sensitivity analysis is a field of research concerned with

quantifying the importance of each input with respect to changing the output [101]. Note again that
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the idea of importance is defined by the specific techniques employed for performing the sensitivity

analysis. For example, Sobol indices determine how much different inputs or interactions of inputs

account for the total variance in the output [111]. Alternatively, the Morris method assesses

sensitivities by using approximated partial derivatives with respect to each of the inputs [88]. Once

the sensitivities have been quantified, inputs that have relatively little impact on the output can

then be fixed at a nominal value, reducing the dimension of the function by exploiting coordinate-

aligned anisotropy.

We can generalize the idea of coordinate-aligned dimension reduction via sensitivity analysis

by considering arbitrary directions within the input space. One such method for accomplishing this

is active subspaces [18]. Active subspaces determines a set of directions in the input space along

which f(x) is changing the most on average. We can then disregard the orthogonal directions along

which f(x) is changing less on average. This is done by examining the eigenspace of the matrix

C =

∫
∇f(x)∇f(x)> dπx(x), (1.5)

where ∇f(x) ∈ Rm is the gradient of (1.1) with respect to the inputs and πx is the input probability

measure introduced at the beginning of this chapter. We examine active subspaces in more detail in

Chapter 2. Other approaches to this type of supervised dimension reduction solve an optimization

problem over the space of possible directions [23, 70] or reformulate the problem in terms of a

compressed sensing problem [15, 123, 118]. This idea of finding relatively important/unimportant

directions over the input space is formalized by the concept of ridge functions [96]. In a sense, all

of these dimension reduction techniques can be considered methods for finding ridge structure in

computational models.

1.3 Ridge functions

In this thesis, we approach supervised linear dimension reduction from the perspective of

ridge functions [96]. A function f : Rm → R is a ridge function if there exists a matrix A ∈ Rm×n
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with n < m and a function g : Rn → R such that

y = f(x) = g(u), (1.6)

where u = A>x ∈ Rn. Thus, a ridge function is nominally a function of m inputs, but it is

intrinsically a function of n < m derived inputs. The columns of A are the directions of the ridge

function and g : Rn → R is the ridge profile. The term ridge function sometimes refers specifically

to the n = 1 case, while n > 1 is called a generalized ridge function [96]. We do not distinguish

between the n = 1 and n > 1 cases and refer to all such functions as ridge functions for convenience.

Figure 1.4 provides an illustrative example of a ridge function.

Figure 1.4: An illustrative example of a ridge function.

Ridge functions first appeared under the name plane waves in 1955 in the context of solutions

to hyperbolic differential equations [72, 35]. The term ridge function was introduced in 1975 in

relation to computerized tomography [86]. Ridge functions are the fundamental component of

various regression and approximation techniques. For example, single index models assume a

regression model comprised of a one-dimensional ridge function [68, Chap. 6] and projection pursuit

regression generalizes this to a sum of n one-dimensional ridge functions,
∑n

i=1 gi(a
>
i x), where each

gi is a spline or some other nonparametric model [51]. The nodes of a multilayer feedforward neural

network use functions of the form σ(W>x + b), where W is a matrix of weights from the previous

layer of neurons, b is a bias term for the model, and σ(·) is an activation function [66]. This

activation function is essentially a ridge function of the m inputs from the previous layer.

Ridge functions are good low-dimensional representations of functions that exhibit off-axis

anisotropic dependence on the inputs since they are constant along directions orthogonal to the



9

ridge directions—i.e., the columns of A. Consider a vector w ∈ null(A>). Then, for any x ∈ Rm,

f(x + w) = g(A>(x + w)) = g(A>x + 0) = g(A>x) = f(x). (1.7)

Therefore, we need not consider the m − n directions in the input space that are orthogonal to

the columns of A. Reflecting on Figure 1.3, this can result in an exponential savings in the

computational costs of studying f(x).

We may also be interested in functions that are well-approximated by a ridge function,

y = f(x) ≈ g(u). (1.8)

The best L2 approximation of f by g is the expected value of the output conditioned on u =

A>x [96, Ch. 8]. That is,

g(u) = E
[
f(x)

∣∣∣u = A>x
]
. (1.9)

We formalize the phrase “well-approximated” in this context to refer to the expected conditional

variance,

E
[
Var

[
f(x)

∣∣∣u = A>x
]]
. (1.10)

In practice, we can approximate 1.10 using a hit-and-run algorithm for drawing conditional samples

from the input space [110]. We explore this idea further in upcoming chapters. Note that the

conditional variance and expectation in (1.10) are computed with respect to the input probability

measure πx. This implies that we can allow the variance of f(x) conditioned of u = A>x to be very

large, provided that this occurs in regions of the domain where the probability density is small. In

this way, we take a global perspective on ridge approximation with πx playing an important role

in determining how well-approximated a function is by a ridge function.

The problem of discovering A ∈ Rm×n such that (1.6) or (1.8) holds is known as ridge

recovery or ridge approximation, respectively. Recall the claim from the previous section that active

subspaces addresses the ridge recovery problem. In the case of (1.6), active subspaces perfectly

recovers the ridge directions, while in the case of (1.8), active subspaces minimizes an upper bound
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on the expected conditional variance from (1.10) [18]. We formalize the ridge recovery problem

here.

Problem 1 (Ridge recovery). Given a queryable deterministic function f : Rm → R and an input

probability measure πx, find A ∈ Rm×n with n < m such that

f(x) = g(A>x) (1.11)

for some g : Rn → R.

Note that principle component analysis (PCA) from Section 1.2 does not address the ridge

recovery problem. PCA only considers covariant relationships between the various inputs in deter-

mining what direction are deemed important.

Note that the ridge directions—i.e., the columns of A—are not unique in defining a ridge

function. Consider B ∈ Rn×n with full rank. Then,

f(x) = g(A>x) = g(B−1BA>x) = g̃(BA>x) = g̃(Ã>x), (1.12)

implying that the column space of A is the critical component in defining a ridge function. This

motivates a class of ridge recovery methods that solve an optimization problem over the Grassmann

manifold of n-dimensional subspaces of Rm [23, 70]. Additionally, this allows us to assume without

loss of generality that the columns of A are orthonormal, such that A>A = I ∈ Rn×n. Under this

assumption, the transformation of the inputs in (1.6) is a rigid rotation of m-dimensional space

followed by a reduction of m− n unimportant directions.

In the space of general functions f : Rm → R, assumptions of approximate or exact ridge

structure might seem restrictive. For sure, it is easy to write down an example of a multivariate

function that does not exhibit low-dimensional ridge structure. However, computational models

for simulating physics-based phenomena often exhibit the type of anisotropy characteristic of ridge

functions. Recent work has revealed ridge function structure in a variety of physics-based models,

including lithium ion battery models [21], car aerodynamics models [93], integrated hydrologic

models [71], hypersonic scramjet designs [16], among others [27, 57, 34]. Figure 1.5 shows examples
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of this ridge structure. The plots in this figure are known as shadow plots or sufficient summary

plots [30]. These are one-dimensional scatter plots of the model output against the inputs projected

along the most important direction in the input space. All of the shadow plots in this figure

depict relatively strong one-dimension trends, despite the underlying models depending on higher-

dimensional sets of inputs. These plots are powerful tools for qualitatively assessing how well a

given model can be approximated by a ridge function. Deviations from the one-dimensional trend

are qualitative examples of the conditional variance in (1.10).

(a) Scramjet model [16] (b) Battery model [21] (c) Solar cell model [27]

(d) Reentry vehicle model [34] (e) Transonic airfoil model [18] (f) MHD generator model [62]

Figure 1.5: One-dimensional shadow plots of data derived from computational models across ap-
plications.

There are several possible explanations for the abundance of ridge structure in computational

science models. First, the models are physically-motivated. This implies a fundamental relationship

between the inputs and the outputs that does not exist for general mathematical functions. We
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explore how this physically-driven relationship can induce ridge structure in more detail in Chapter

2. Another reason why the assumption of ridge structure in computational science models is

nonrestrictive is that the models are typically built to study a very specific phenomenon, leading

to modeling decisions that restrict the inputs to a relatively small domain where the model is

applicable. This is reflected in the input probability measure πx, which is given along with the

model f(x). For example, we typically use different modeling approaches for laminar flow versus

turbulent flow. Within each of these regimes, we might find different kinds of ridge structure;

however, it would not make sense to perform ridge recovery for both regimes simultaneously since

the underlying models are different.

1.4 Outline and contributions

This thesis is organized into four main chapter, each focusing on a specific project. These

projects explore a variety of key research directions related to ridge recovery and approximation.

In Chapter 2, we examine the interpretability of dimension reduction via ridge functions in the

context of physically-motivated computer models. This work is based on [62]. We use the gradient-

based active subspace analysis as a framework for studying ridge functions [18]. We look for low-

dimensional structure in magnetohydrodynamics models that depend on several physical inputs [36].

Linear dimension reduction defines a reduced set of inputs by linear combinations of the original

inputs. The contributions in this work consider how to understand this type of dimension reduction

by connecting it to classical dimensional analysis. This work also suggests possible nonlinear

transformations of the input space that can induce ridge structure in computational models.

Chapter 3 considers the application of sufficient dimension reduction (SDR)—a theoreti-

cal framework for subspace-based dimension reduction in statistical regression—to deterministic

functions. We prove that, in this context, SDR provides a novel subspace-based perspective to

addressing the ridge recovery problem (Problem 1). This work is based on [61]. One of the main

contributions of this work is to draw formal connections between these two previously disjoint

fields of research. We rigorously study two SDR algorithms—sliced inverse regression (SIR) and
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sliced average variance estimation (SAVE)—as ridge recovery methods. These methods look for

low-dimensional structure by approximating statistical moments of key components of f(x). This

approach is significantly cheaper than approximating gradients (a necessary step for active sub-

space analysis). As part of this investigation, we perform rigorous numerical analysis of the SIR

and SAVE algorithms that provides insight into the convergence and accuracy of these methods

for discovering ridge subspaces. Furthermore, this works enables the development of improved

algorithmic approaches for computing the underlying population matrices of SIR and SAVE.

The work in Chapter 4 builds upon Chapter 3 by introducing novel methods for computing

the underlying population matrices of SIR and SAVE algorithms. This work is based on [59]. The

new algorithms replace the crude slice-based approximations of SIR and SAVE with orthonormal

polynomial expansions and high-order Gauss-Christoffel quadratures. We refer to these algorithms

as Lanczos-Stieltjes inverse regression (LSIR) and Lanczos-Stieltjes average variance estimation

(LSAVE) since they employ the Lanczos iteration as a discrete approximation to the Stieltjes

procedure. These algorithms are shown to perform as well as the best-case scenario for their

slice-based counterparts while also enabling the use of more accurate designs—e.g., tensor product

quadrature rules—on the input space.

Finally, Chapter 5 presents a novel approach to constructing polynomial approximations of

one-dimensional ridge functions. This work is based on [60]. The linear transformation of the

inputs in a ridge function induces a probability measure on the one-dimensional ridge subspace.

The new algorithms approximate this measure and use several of the same numerical techniques

from Chapter 4 for constructing generalized quadrature rules. We perform several numerical studies

of the convergence and behavior of the introduced methodologies and compare them to existing

methods for constructing ridge function approximations.



Chapter 2

Ridge functions and dimensional analysis in magnetohydrodynamics

Using ridge functions for dimension reduction can lead to questions regarding the inter-

pretability of the reduced inputs, particularly when applied to physically-motivated computational

models. While useful as mathematical tools, the linear combinations of physical inputs in a ridge

function can be difficult to understand from an engineering perspective. In this chapter, we con-

nect ridge functions to physically-motivated dimension reduction based on dimensional analysis,

providing useful insights into how the transformed inputs of ridge functions relate to the phys-

ical model in question. Recent work in the statistics literature has recognized the importance

of dimensional analysis for inference and experimental design when data are derived from physi-

cal systems [108, 84, 107]; moreover, it is suggested that dimensional analysis is underutilized by

statisticians [4]. For this work, we use active subspaces [18] as the mathematical formulation for

exploring ridge structure in functions.

Magnetohydrodynamics (MHD)—an area of physics concerned with electrically conducting

fluids—serves as the framework for making these connections [36]. MHD models are found in dis-

parate fields from geophysics to fusion energy. The US Department of Energy’s investment in MHD

for power generation with low emissions generators dates back to the 1960s. Interest waned in the

mid 1990s after a proof-of-concept program revealed several technical challenges to scaling and

integrating MHD-based components into a practical power generator [124]. However, in the last

two decades, several of these challenges have been addressed via other investments; a recent work-

shop at the National Energy Technology Laboratory brought together current MHD researchers
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from labs, academia, and industry to assess the state of the art in MHD power generation. In

particular, given two decades of supercomputing advances, the workshop report calls for improved

simulation tools that exploit modern supercomputers to build better MHD models and integrate

them into full scale generator designs [92]. Recent work has developed scalable simulations for

resistive MHD models [85, 104, 105, 112]. To incorporate such simulations into generator design, a

designer must understand the sensitivities of model predictions to changes in model input parame-

ters. To address this, MHD simulation codes with built-in adjoint capabilities have been developed

that enable the computation of derivatives of output quantities of interest with respect to input

parameters [106].

2.1 Dimension reduction methods

Recall from Section 1.1, that we represent a given computational science model mathemat-

ically by a deterministic function mapping a vector of m physically-motivated inputs to a scalar-

valued output,

y = f(x), y ∈ R, x ∈ Rm. (2.1)

We assume the physical model is accompanied by a known input probability measure πx that

represents uncertainty or variability in the model inputs. In the previous chapter, we discussed

how ridge functions provide a framework for reducing the dimension in a way that takes advantage

of structure in f(x) from (2.1).

We consider two types of dimension reduction here. The first is dimensional analysis, which is

a mature tool for reducing the number of variables in a physical system by examining the quantities’

units. The second is active subspaces, which is a mathematical approach to ridge recovery and

ridge approximation in functions. The former is analytical while the latter is computational. In

other words, dimensional analysis follows from the quantities’ units and can typically be performed

without the aid of a computer in small systems. In contrast, the active subspace is estimated by

evaluating the function and its gradient at several values of x. We follow the linear algebra-based
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presentation of dimensional analysis from [11, Chapter 4], which enables a precise comparison with

active subspaces in Section 2.1.3.

2.1.1 Dimensional analysis and Buckingham Pi Theorem

Dimensional analysis enables dimension reduction by examining the physical units of the

output and inputs. The central result in dimensional analysis—the Buckingham Pi Theorem [6,

Chapter 1]—states that the original model (2.1) can be written in a unitless form as

Π = f̃(Π) (2.2)

where Π ∈ R and Π ∈ Rn denote the unitless output and inputs. The number of unitless inputs

in (2.2) cannot be more than the number of inputs in (2.1), and often, it will be less (i.e., n ≤ m).

Thus, dimensional analysis and Buckingham Pi facilitate dimension reduction of the model. This

section focuses on the development of the unitless quantities, Π and Π.

To apply dimensional analysis, we assume (2.1) to be a physical law, meaning that the output

and inputs are accompanied by physical units. These units are derived from k ≤ m base units,

denoted generically as L1, . . . , Lk, which are a subset of the seven SI units; Table 2.1 shows the SI

base units. Note that if k is larger than m, then there are more fundamental units than needed to

describe the system [6].

Table 2.1: International system of units (SI). Table taken from [91].

Base quantity Name Symbol

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of a substance mole mol
luminous intensity candela cd

The unit function of a quantity, denoted by square brackets, returns the units of its argument.

For example, if y is a velocity, then [y] = m · s−1. If a quantity is unitless, then its unit function
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returns 1. We can generically write the units of x = [x1, . . . , xm]> and y as

[xj ] =
k∏
i=1

L
di,j
i , [y] =

k∏
i=1

Luii . (2.3)

In words, the units of each physical quantity can be written as a product of powers of the k base

units. To derive the unitless quantities from (2.2), define the k ×m matrix D and the k-vector u

as

D =


d1,1 · · · d1,m

...
. . .

...

dk,1 · · · dk,m

 , u =


u1

...

uk

 , (2.4)

which contain the powers from the quantities’ units in (2.3). Assume that rank(D) = r. Let

v = [v1, . . . , vm]> satisfy Dv = u, and let U ∈ Rm×n be a basis for the null space of D, i.e.,

DU = 0 ∈ Rk×n, where n = m − r. If r = m, then dimensional analysis does not result in

dimension reduction. Note that the elements of v and U are not unique. We can construct the

unitless quantity of interest Π as

Π = y
m∏
i=1

x−vii . (2.5)

The unit function, defined above, then returns [Π] = 1 by construction. We similarly construct

unitless parameters Πj as

Πj =

m∏
i=1

x
ui,j
i , j = 1, . . . , n, (2.6)

where ui,j is the (i, j) element of U .

The Buckingham Pi Theorem [6] states that a physical law (2.1) can be written in unitless

form

Π = f̃(Π), Π =

[
Π1 · · · Πn

]>
. (2.7)

The number of inputs in the unitless form of the physical law (2.2) is n < m, which has reduced

dimension compared to (2.1). This dimension reduction may enable more accurate semi-empirical

modeling of the map f̃ given experimental data, since a model with fewer inputs typically has fewer

parameters to fit with a given data set. Additionally, the unitless quantities allow one to devise

scale-invariant experiments, since scaling the units does not change the form of the unitless physical
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law (2.2). These advantages of dimensional analysis can be exploited for statistical inference and

experimental design [4].

2.1.2 Active subspaces

We use active subspaces as a mathematical approach for relating dimension reduction through

ridge functions to dimensional analysis. In what follows, we provide some background on active

subspaces and their relationship to ridge functions; further details on active subspaces can be found

in [18].

The input space from (2.1) is equipped with a known probability measure πx. Additionally,

assume that (i) f is square-integrable with respect to πx and (ii) f is differentiable with square-

integrable partial derivatives. Denote the gradient vector of f as ∇f(x). Define the m × m

symmetric and positive semidefinite matrix C as

C =

∫
∇f(x)∇f(x)> dπx(x). (2.8)

Since C is symmetric, it admits a real eigenvalue decomposition,

C = WΛW>, (2.9)

where the columns of W are the orthonormal eigenvectors, and Λ is a diagonal matrix of the

associated eigenvalues in descending order such that λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.

The eigenpairs are functionals of f for the given πx. Assume that λn > λn+1 (i.e., λn is

strictly greater than λn+1) for some n < m. Then we can partition the eigenpairs as

Λ =

Λ1

Λ2

 , W =

[
W1 W2

]
, (2.10)

where Λ1 contains the first n eigenvalues of C, and W1’s columns are the corresponding eigenvec-

tors. The active subspace of dimension n is the span of W1’s columns; the active variables y ∈ Rn

are the coordinates of x in the active subspace. Note that the vector-valued y differs from the

scalar-valued quantity of interest y in (2.1). The active subspace’s orthogonal complement, called
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the inactive subspace, is the span of W2’s columns; its coordinates are denoted z ∈ Rm−n and

called the inactive variables.

The following property justifies the labels; see Lemma 2.2 from [22]:

λ1 + · · ·+ λn =

∫
∇yf(x)>∇yf(x) dπx(x),

λn+1 + · · ·+ λm =

∫
∇zf(x)>∇zf(x) dπx(x),

(2.11)

where ∇y and ∇z denote the gradient of f with respect to the active and inactive variables,

respectively. Since the eigenvalues are in descending order, and since f is such that λn > λn+1,

(2.11) says that perturbations in y change f more, on average, than perturbations in z. Equation

(2.11) allows us to use active subspaces as an analog for ridge functions.

If λn+1 = · · · = λm = 0, then f is constant along the directions of the inactive variables—i.e.,

f is a ridge function. If these trailing eigenvalues are sufficiently small, then f can be approximated

by a ridge function,

f(x) ≈ g(W>
1 x), (2.12)

where g : Rn → R. If we are given N function evaluations (xi, f(xi)) and an estimate of W1,

constructing g with the N pairs (W>
1 xi, f(xi)) in n < m variables may be possible, whereas N

may be too small to construct a function of all m variables. Thus, the active subspace enables

dimension reduction in the space of x for response surface construction.

In practice, we estimate C from (2.8) with numerical integration; high-accuracy Gauss

quadrature [39] may be appropriate when the dimension of x is small and the integrands are

sufficiently smooth. Alternatively, we can approximate C using the Monte Carlo method [17].

Draw M independent samples xi according to the given πx and compute

C ≈ Ĉ =
1

M

M∑
i=1

∇f(xi)∇f(xi)
> = Ŵ Λ̂Ŵ>. (2.13)

The eigenpairs Λ̂, Ŵ of Ĉ estimate those of C. Using results from non-asymptotic random matrix

theory [121, 58], we can understand how large the number M of samples must be to ensure quality

estimates [17]; the analysis supports a heuristic of M = α(δ) k log(m) samples to estimate the first
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k eigenvalues within a relative error δ, where α is typically between 2 and 10 and m is the dimension

of f(x). Let ε denote the distance between the true subspace and its Monte Carlo estimate defined

as [64]

ε = ‖W1W
>
1 − Ŵ1Ŵ

>
1 ‖2, (2.14)

where Ŵ1 contains the first n columns of Ŵ . Using standard perturbation theory for invariant

subspaces [113], Corollary 3.7 from [17] shows that, for sufficiently large M ,

ε ≤ 4λ1 δ

λn − λn+1
. (2.15)

Equation (2.15) shows that a large eigenvalue gap λn − λn+1 implies that the active subspace

can be accurately estimated with Monte Carlo. Therefore, the practical heuristic is to choose the

dimension n of the active subspace according to the largest gap in the eigenvalues.

2.1.3 Connecting dimensional analysis to ridge functions

Next we study the relationship between these two dimension reduction techniques; this closely

follows the development in [20]. Dimensional analysis produces the unitless physical law (2.2) by

defining unitless quantities (2.5) and (2.6) as products of powers of the dimensional quantities. On

the other hand, the inputs to a ridge function are defined by linear combinations of the system’s

original inputs—i.e., y = W>
1 x and z = W>

2 x for x ∈ Rm. Thus, these two techniques are

connected via a logarithmic transformation of the input space. Combining (2.5), (2.6), and (2.2),

y

m∏
i=1

x−vii = f̃

(
m∏
i=1

x
ui,1
i , . . . ,

m∏
i=1

x
ui,n
i

)

= f̃

(
exp

(
log

(
m∏
i=1

x
ui,1
i

))
, . . . , exp

(
log

(
m∏
i=1

x
ui,n
i

)))

= f̃

(
exp

(
m∑
i=1

ui,1 log(xi)

)
, . . . , exp

(
m∑
i=1

ui,n log(xi)

))

= f̃
(

exp
(
u>1 log(x)

)
, . . . , exp

(
u>n log(x)

))
(2.16)
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where log(x) returns an m-vector with the log of each component. Then we can rewrite y as

y = exp
(
v> log(x)

)
· f̃
(

exp
(
u>1 log(x)

)
, . . . , exp

(
u>n log(x)

))
= g̃(A> log(x)),

(2.17)

where

A =

[
v u1 · · · un

]
∈ Rm×(n+1), (2.18)

and g̃ : Rn+1 → R. In other words, the unitless physical law can be transformed into a ridge

function of the logs of the physical inputs. Compare (2.17) to the form of the ridge approximation

(2.12).

Since the physical law can be written as a ridge function, its active subspace is related to the

coefficient matrix A. Let x̃ = log(x), and assume π̃x̃ is a probability measure on the space of x̃

derived from πx. By the chain rule,

∇x̃g̃(A>x̃) = A∇g̃(A>x̃), (2.19)

where ∇x̃ denotes the gradient with respect to x̃, and ∇g̃ is the gradient of g̃ with respect to its

argument, A>x̃. Plugging (2.19) into (2.8),∫
∇x̃g̃(A>x̃)∇x̃g̃(A>x̃)> dπ̃x̃(x̃) = A

(∫
∇g̃(A>x̃)∇g̃(A>x̃)> dπ̃x̃(x̃)

)
A>. (2.20)

The first column of A is not in the null space of D from (2.4), and its remaining columns are a

basis for D’s null space. Therefore, A has full column rank. Then (2.20) shows that the active

subspace for the physical law—as a function of the logs of its inputs—has dimension at least n+ 1,

and it is a subspace of the A’s column space.

The connection between the dimensional analysis and the active subspace provides an upper

bound on the dimension of the active subspace. However, the eigenvalues of C from (2.8) rank

the importance of each eigenvector-defined direction. So the eigenpairs of C reveal more about the

input/output relationship than dimensional analysis alone.
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2.2 Magnetohydrodynamics (MHD)

In this section, we perform dimensional analysis on the governing equations of MHD to study

the number of unitless quantities affecting the system. MHD models the behavior of electrically-

conducting fluids, such as ionized liquids or plasmas. The governing equations for MHD couple the

Navier-Stokes equations for fluid dynamics with Maxwell’s equations for electromagnetism. Under

simplifying assumptions, we can write the equations for steady-state MHD as

∇ ·
[
ρu⊗ u + (p0 + p)I − µ

(
∇u +∇uT

)
− 1

µ0

(
B⊗B− 1

2
||B||2I

)]
= 0,

∇ ·
[
u⊗B−B⊗ u− η

µ0

(
∇B−∇BT

)]
= 0,

∇ · u = 0, ∇ ·B = 0,

(2.21)

where the unknown quantities are the fluid velocity u, the magnetic field B, and the fluid pressure

p.

It is worthwhile to examine the parameters within the MHD model in detail. For an incom-

pressible flow system solved in terms of the primitive variables (u, p,B), five parameters appear

in the governing equations: i) the fluid viscosity µ, ii) the fluid density ρ, iii) the applied pressure

p0 (more specifically, the applied pressure gradient ∇p0), iv) the magnetic resistivity of the fluid

η, and v) the permeability of a vacuum µ0. Two additional parameters do not appear in (2.21)

but are essential to describing the physics of the system. The first is an external magnetic field B0

which is applied to the fluid flow. This quantity appears in the boundary conditions, which we do

not discuss here. The second is a length scale ` that determines the size of the channel through

which the fluid is flowing.

Altogether, there are seven model parameters; however, for the active subspace analysis in

Section 2.3, we fix two of these parameters—µ0 and `—such that we only have five independent

variables. The quantity µ0 is fixed since the permeability of a vacuum is a universal constant

of a similar nature to the speed of light. Treating this value as variable would not provide useful

information. The length scale is considered fixed in this study to represent a specific MHD generator

configuration. Despite fixing these parameters for the active subspace analysis, they appear in the
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dimensional analysis. Proper application of the Buckingham Pi Theorem requires that we include

all dimensional quantities relevant to describing the physics of the system, regardless of whether or

not they are treated as fixed or variable. Furthermore, fixing these parameters for active subspace

does not alter the upper bound on the dimensionality of the reduced parameter space provided by

dimensional analysis.

We perform dimensional analysis for the MHD problem from two perspectives. Both ap-

proaches are valid and produce equivalent results; however, they each highlight different aspects of

the problem. The first may be considered a classical perspective on dimensional analysis. It does

not assume y = f(x) from (2.1), i.e., an input/output system as described in Section 2.1. Instead,

we apply the Buckingham Pi Theorem directly to governing system of PDEs in (2.21) by con-

structing the dimension matrix using all relelvant dimensional quantities. Such analysis produces

the traditional unitless quantities (e.g., the Reynolds number and Hartmann number) that appear

in MHD. The second perspective is motivated by the connection between dimensional analysis and

active subspace explained in Section 2.1.3. For this analysis, we treat the seven model parameters

as inputs for f . We assume the output is some functional of the solution fields from (2.21). We

then follow the procedure discussed in Section 2.1.1.

2.2.1 Classical dimensional analysis for MHD

Classical dimensional analysis is performed directly on the governing equations, which allows

us to reformulate them in terms of unitless (or non-dimensional) quantities. Performing such

analysis requires that we consider all dimensional quantities that are fundamental to the model.

These include the seven model parameters as well as a velocity—which we denote by v—due to

the dependent variable u in (2.21). We need not include additional pressure and magnetic field

terms since these appear in the parameters. The necessary base units are L = length, T = time,

M = mass, and C = electric current; see Table (1). The model’s dimensional quantities, with their

units, are

• length, `, with [`] = L,
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• velocity, v, with [v] =
L

T
,

• fluid viscosity, µ, with [µ] =
M

L T
,

• fluid density, ρ, with [ρ] =
M

L3 ,

• pressure gradient, ∇p0, with [∇p0] =
M

L2 T2 ,

• fluid magnetic resistivity, η, with [η] =
M L3

T3 C2 ,

• magnetic field, B0, with [B0] =
M

T2 C
,

• and the vacuum permeability, µ0, with [µ0] =
ML

T2C2 .

The associated matrix D (see (2.4)) is

D =

` v µ ρ ∇p0 η B0 µ0



L 1 1 −1 −3 −2 3 0 1

T 0 −1 −1 0 −2 −3 −2 −2

M 0 0 1 1 1 1 1 1

C 0 0 0 0 0 −2 −1 −2

. (2.22)

A basis for the null space of D is



1

1

−1

1

0

0

0

0



,



1

0

−1/2

0

0

−1/2

1

0



,



1

1

0

0

0

−1

0

1



,



1

−2

0

−1

1

0

0

0





. (2.23)
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Since the dimension of the null space of D is four, the Buckingham Pi Theorem states that the

system depends on four unitless quantities; see (2.6). In this case,

Π1 = `1v1µ−1ρ1∇p0
0η

0B0µ0
0 =

` v ρ

µ
,

Π2 = `1v0µ−1/2ρ0∇p0
0η
−1/2B1

0µ
0
0 =

`B0

µ1/2η1/2
,

Π3 = `1v1µ0ρ0∇p0
0η
−1B0

0µ
1
0 =

` v µ0

η
,

Π4 = `1v−2µ0ρ−1∇p1
0η

0B0
0µ

0
0 =

`∇p0

v2ρ
.

(2.24)

An alternative way to determine the unitless quantities for (2.21) is to nondimensionalize the

equations. To do so, we express the spatial variables and the outputs as products of a unitless

quantity (denoted by ∗) and a characteristic quantity (denoted with a subscript c),

x = x∗`c, u = u∗vc, B = B∗Bc, p0 = p∗0 pc, and p = p∗pc, (2.25)

where the characteristic quantities have units matching their corresponding dimensional quantities.

Plug (2.25) in (2.21) and simplify to obtain

∇∗ ·
[
u∗ ⊗ u∗ + (p∗0 + p∗)I − 1

Re

(
∇∗u∗ +∇∗u∗T

)
− 1

Rm

Ha2

Re

(
B∗ ⊗B∗ − 1

2
||B∗||2I

)]
= 0,

∇∗ ·
[
u∗ ⊗B∗ −B∗ ⊗ u∗ − 1

Rm

(
∇∗B∗ −∇∗B∗T

)]
= 0,

∇∗ · u∗ = 0, ∇∗ ·B∗ = 0.

(2.26)

The unitless spatial variables appear in the derivatives

∇∗ =

[
∂
∂x∗1

∂
∂x∗2

∂
∂x∗3

]T
. (2.27)

Equation (2.26) depends on four unitless quantities that are well-known from fluid dynamics [99]

and electromagnetics [38]:

• the Reynolds number, Re =
`c vc ρ

µ
,

• the Hartmann number, Ha =
`cBc

µ1/2η1/2
,
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• the magnetic Reynolds number, Rm =
`c vc µ0

η
,

• and a dimensionless pressure gradient, ∇∗ · (p∗0I) = ∇∗p∗0 =
`c∇p0

v2
cρ

.

Scaling the MHD equations is consistent with the unitless quantities derived from the basis (2.23).

In other words, the unitless quantities from the classical Buckingham Pi analysis match those in

(2.26).

2.2.2 Active subspaces-motivated dimensional analysis for MHD

In this section, we perform dimensional analysis motivated by the connection between active

subspaces and dimensional analysis discussed in Section 2.1.3. This analysis assumes a problem of

the form y = f(x). We consider the seven model parameters to be the inputs x. The scalar-valued

output is a functional of the unknown solution fields (e.g., velocity, magnetic field) in the governing

equations. In Section 2.3, we consider two outputs: the average flow velocity and the magnitude of

the induced magnetic field. For the dimensional analysis in this section, we have a single D matrix

(see (2.4)) associated with the set of inputs and one distinct u vector for each output.

The matrix D from (2.4) is

D =

` µ ρ ∇p0 η B0 µ0



L 1 −1 −3 −2 3 0 1

T 0 −1 0 −2 −3 −2 −2

M 0 1 1 1 1 1 1

C 0 0 0 0 −2 −1 −2

. (2.28)
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A basis for the null space of D is 



1

0

0

1

0

−2

1



,



1

−1/2

0

0

−1/2

1

0



,



0

1

−1

0

−1

0

1





. (2.29)

If we consider the average velocity output, then the u vector from (2.4) is

u =

[
1 −1 0 0

]T
. (2.30)

Solving Dv = u yields

v =

[
0 0 −1/3 1/3 1/3 0 −1/3

]T
. (2.31)

The matrix A from (2.18) is

A =



0 1 1 0

0 0 −1/2 1

−1/3 0 0 −1

1/3 1 0 0

1/3 0 −1/2 −1

0 −2 1 0

−1/3 1 0 1



. (2.32)

This matrix has full column rank. Therefore, the average flow velocity depends on at most four

linear combinations of the log-transformed input parameters, as shown in Section 2.1.3.

Next, we consider the total induced magnetic field. The u vector from (2.4) for this output

is

u =

[
0 −2 1 −1

]T
, (2.33)
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and the solution to Dv = u is

v =

[
0 0 1/6 1/3 1/3 0 1/6

]T
. (2.34)

The matrix A is

A =



0 1 1 0

0 0 −1/2 1

1/6 0 0 −1

1/3 1 0 0

1/3 0 −1/2 −1

0 −2 1 0

1/6 1 0 1



. (2.35)

Once again, A has full column rank implying that the induced magnetic field depends on four or

fewer linear combinations of the log-transformed input parameters. In the next section, we analyze

the active subspaces of the particular outputs, average velocity and total induced magnetic field, as

functions of the model parameters; we numerically verify the theoretical results about the number

of linear combinations of inputs that affect the outputs.

2.3 Active subspaces for MHD

The dimensional analysis in the previous section, coupled with the analysis from Section

2.1.3, indicates that both the average flow velcity and the induced magnetic field can be written

as a ridge function of four linear combinations of the log transformed inputs. Therefore, we expect

numerical tests to reveal an active subspace of dimension 4 or less. We study two MHD models

with active subspaces: (i) the Hartmann problem that models a simplified duct flow and (ii) a

numerical model of an idealized MHD generator in three spatial dimensions.

2.3.1 Hartmann problem

The Hartmann problem is a standard test problem in MHD. It models laminar flow between

two parallel plates. In general, we assume these plates are separated by distance 2`. We define



29

` = 1m for the numerical investigations in this section. The fluid is assumed to be a conducting fluid

and a uniform magnetic field is applied perpendicular to the flow direction. As the fluid flow bends

the magnetic field, an induced field in the horizontal direction is generated and a corresponding

magnetic stress is developed that resists, or damps, the flow non-uniformly in the boundary layer

and the core of the flow. This can be seen in Figure 2.1.

Figure 2.1: Depiction of the Hartmann problem. A magnetic fluid flows between two parallel plates
in the presence of a perpendicular magnetic field. The field acts as a damping force on the fluid
while the flow induces a horizontal magnetic field.

The advantage of working with the Hartmann problem is that it admits closed form analytical

expressions for the quantities of interest in terms of their input parameters. This enables thorough

numerical studies where errors can be computed exactly. As mentioned earlier, we consider two

quantities of interest: (i) average flow velocity across the channel uavg and (ii) the induced magnetic

field Bind. Derivations of these quantities of interest for the Hartmann problem from the governing

MHD equations (2.21) are not presented here; they may be in found in [36]. As functions of the

model inputs (see Section 2.2.1),

uavg = −∂p0

∂x

η

B2
0

(
1− B0`√

ηµ
coth

(
B0`√
ηµ

))
(2.36)

and

Bind =
∂p0

∂x

`µ0

2B0

(
1− 2

√
ηµ

B0`
tanh

(
B0`

2
√
ηµ

))
. (2.37)

The expressions for the Hartmann problem quantities of interest have five input parameters: fluid

viscosity µ, fluid density ρ, applied pressure gradient ∂p0/∂x (where the derivative is with respect

to the flow field’s spatial coordinate), resistivity η, and applied magnetic field B0. Note that fluid
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Table 2.2: Indices and intervals for the parameters x of the Hartmann problem. These intervals
represent the expected operating conditions for an MHD generator modeled with the Hartmann
problem.

Index Name Notation Interval

1 fluid viscosity log(µ) [log(0.05), log(0.2)]
2 fluid density log(ρ) [log(1), log(5)]

3 applied pressure gradient log
(
∂p0
∂x

)
[log(0.5), log(3)]

4 resistivity log(η) [log(0.5), log(3)]
5 applied magnetic field log(B0) [log(0.1), log(1)]

density ρ does not appear in either (2.36) or (2.37). We treat ρ as an input parameter for two

reasons. First, ρ appears in the governing MHD equations (2.21); its absence from the closed form

solutions, (2.36) and (2.37), is not apparent without knowing the closed form solutions. Second,

the problem provides an interesting test for whether or not the active subspace analysis can identify

the lack of dependence on ρ.

Recall from Section 2.1.3 that we consider the quantities of interest as functions of the log-

transformed inputs. Let

x =

[
log(µ) log(ρ) log

(
∂p0
∂x

)
log(η) log(B0)

]T
(2.38)

be the vector of inputs for the active subspace analysis from Section 2.1.2. To estimate the active

subspace for each quantity of interest, we define πx to have a uniform density over a five-dimensional

hyperrectangle. The ranges of each of x’s components are in Table 2.2; they are chosen to represent

the expected operating conditions of an MHD generator modeled with the Hartmann problem. We

estimate C from (2.8) with a tensor product Gauss-Legendre quadrature rule [39] with 11 points

in each dimension—a total of 115 = 161051 points. This is sufficient for 10 digits of accuracy in

the eigenvalue estimates.

Figure 2.2 shows the results of analyzing the active subspace of the Hartmann problem’s

average flow velocity uavg from (2.36). Figure 2.2a shows that all but two eigenvalues are zero

(to machine precision). This implies that the active subspace of dimension n = 2 is sufficient to

describe the relationship between the log-transformed inputs and the quantity of interest. Figure
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2.2b shows the components of the first two eigenvectors of C’s quadrature estimate; the index

on the horizontal axis maps to the specific input as in Table 2.2. A large eigenvector component

reveals that the corresponding parameter is important in defining the active subspace. Notice that

both eigenvector components corresponding to log(ρ) (the second input) are zero; this is consistent

with the definition of uavg in (2.36), which does not depend on fluid density ρ, as discussed earlier.

Figure 2.2c is a shadow plot of 1000 samples of uavg—taken from the quadrature evaluations used to

estimate C—versus the corresponding samples of the active variable. Such plots are commonly used

in regression graphics [30]. The plot shows a strong relationship between the first active variable

and uavg, so a ridge function of the form (2.12) with one linear combination would be a good

approximation; this is validated by the three-order-of-magnitude gap between the first and second

eigenvalues. Figure 2.2d shows a two-dimensional shadow plot with the same data, where the color

is the value of uavg, the horizontal axis is the first active variable (defined by the first eigenvector

of C), and the vertical axis is the second active variable (defined by the second eigenvector of C).

Since the eigenvalues with index greater than two are zero, the two-dimensional shadow plot reveals

the complete relationship between the log-transformed inputs and uavg.

Figure 2.3 shows the same plots as Figure 2.2 for the induced magnetic field Bind from (2.37)

as the quantity of interest. Compared to uavg, the one-dimensional shadow plot for Bind, Figure

2.3c, shows greater departure from a univariate relationship when the first active variable wT
1 x is

less than 0. This structure is confirmed in the two-dimensional shadow plot, Figure 2.3d, which

shows the truly two-dimensional structure in map from inputs to Bind. The eigenvectors in Figure

2.3b differ substantially from the eigenvectors associated with uavg in Figure 2.2b; these differences

reflect the different dependence between inputs and outputs, which are verified in the analytical

expressions from (2.36) and (2.37). Notably, the second component of the eigenvectors is zero for

both outputs, which indicates that neither output depends on the fluid density ρ (the second input

parameter).

The dimensional analysis from Section 2.2 showed that the quantities of interest should

depend on four unitless quantities. Equation (2.26) expresses the governing equations in terms of
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Figure 2.2: These figures represent the active subspace-based dimension reduction for the Hartmann
problem’s average flow velocity uavg from (2.36). Figure 2.2a shows the eigenvalues of C, and Figure
2.2b shows the components of C’s first two eigenvectors. Figures 2.2c and 2.2d are one- and two-
dimensional, respectively, shadow plots of the quantity of interest.

the Reynolds number, the Hartmann number, the magnetic Reynolds number and a dimensionless

pressure gradient. With scaling, we can write unitless forms of the quantities of interest, uavg from

(2.36) and Bind from (2.37), in terms of unitless parameters:

u∗avg = −∂p
∗
0

∂x∗
Re

Ha2
(1−Ha coth (Ha)) (2.39)
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Figure 2.3: These figures represent the active subspace-based dimension reduction for the Hartmann
problem’s induced magnetic field Bind from (2.37). Figure 2.3a shows the eigenvalues of C, and
Figure 2.3b shows the components of C’s first two eigenvectors. Figures 2.3c and 2.3d are one- and
two-dimensional, respectively, shadow plots of the quantity of interest.

and

B∗ind =
∂p∗0
∂x∗

Re

2Ha2
Rm

(
1− 2

Ha
tanh

(
Ha

2

))
. (2.40)

Notice several of the unitless quantities appear only as a product in (2.39) and (2.40). This product

of unitless quantities defines a new unitless quantity. Thus, u∗avg and B∗ind depend only on two
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unitless quantities. This explains why the eigenvalues of C are zero after the second.

We next compare the ridge structure with respect to the log-transformed input space versus

the original input space. To do this, we approximate the expected conditional variance from (1.10).

Recall that this value serves as a metric for quantifying how well a function can be approximated

by a ridge function. To approximate (1.10), we draw 10,000 random samples according to πx and

transform these samples into n-dimensional space via A>x. Then at each of these points, we use a

hit-and-run algorithm to draw 1,000 conditional samples. We compute the conditional variance of

each set of 1,000 samples and then average all of the conditional variances to approximate the ex-

pected conditional variance. The smaller this quantity, the better a given function is approximated

by an n-dimensional ridge function. Such a study is only feasible because we have the closed form

solutions to uavg and Bind, but it provides interesting insights into approximate ridge structure

with respect to the log-transformed inputs.

Table (2.3) contains the results of this study performed on both Bind and uavg. Note that

we normalize the expected conditional variance by the total variance of f(x) so we can compare

performance on the two different outputs. Additionally, note that the samples in each case are drawn

from identical distributions since πx can play a role in influencing approximate ridge structure. We

perform this study using ridge functions of increasing dimension. Using the original inputs, our

approximate ridge structure seems to perform reasonably well. The one-dimensional ridge function

approximation captures around 90-95% of total variance in the output with improvement made by

allowing more ridge directions—i.e., increasing n. However, the log-transformed inputs result in

a numerically-exact ridge function after two dimensions for both Bind and uavg. Additionally, the

one-dimensional ridge approximations perform better in each case for the log-transformed inputs.

This aligns with Figures 2.2 and 2.3 and suggests that a log-transformation of the inputs can

improve ridge approximation in physically-motivated problems.
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Table 2.3: The normalized expected conditional variance from (1.10) for both Bind and uavg in
terms of the original and log-transformed inputs.

Bind Bind uavg uavg

Original inputs Log-transformed inputs Original inputs Log-transformed inputs

n = 1 1.01× 10−1 5.50× 10−2 5.71× 10−2 1.29× 10−2

n = 2 3.85× 10−2 1.42× 10−23 9.31× 10−3 1.47× 10−23

n = 3 1.93× 10−2 1.78× 10−23 5.81× 10−4 2.55× 10−23

n = 4 5.06× 10−28 4.75× 10−28 7.39× 10−28 6.01× 10−28

2.3.2 MHD generator problem

This model is a steady-state MHD duct flow configuration representing an idealized MHD

generator; the governing equations for the flow and magnetic field are the resistive MHD equation—

a slightly modified version1 of the governing equations presented in Section 2.2; see [105] for details.

The MHD generator induces an electrical current by supplying a set flow-rate of a conducting fluid

through an externally supplied vertical magnetic field. The bending of the magnetic field lines

produces a horizontal electrical current. The geometric domain for this problem is a square cross-

sectional duct of dimensions 15m× 1m× 1m. The simple geometry problem facilitates scalability

studies as different mesh sizes can be easily generated. The velocity boundary conditions are set

with Dirichlet inlet velocity of [1, 0, 0] m · s−1, no slip on the top, bottom and sides of the channel,

and natural boundary conditions on the outflow. The magnetic field boundary conditions on the

top and bottom are specified as a set magnetic field configuration (0, Bgen
y , 0), where

Bgen
y =

1

2
B0

[
tanh

(
x− xon

δ

)
− tanh

(
x− xoff

δ

)]
. (2.41)

The values xon and xoff indicate the locations in the x direction where the magnetic field is active.

The inlet, outlet, and sides are perfect conductors with B · n̂ = 0 and E× n̂ = 0, i.e., the current

and magnetic fluxes are zero at these boundaries. Homogeneous Dirichlet boundary conditions are

used on all surfaces for the Lagrange multiplier enforcing the solenoidal constraint ∇ ·B = 0; see

[105]. This problem has similar characteristics to the Hartmann problem with (i) viscous boundary

layers, (ii) Hartmann layers occurring at the boundaries, and (iii) a flow field that is strongly

1 The minor modification to the governing equations does not change the dimensional analysis.
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Figure 2.4: Visualization of flow field from an idealized 3D MHD generator model. The image
shows x velocity iso-surface colored by the y velocity. Vectors (colored by magnitude) show vertical
magnetic field (applied and induced) and horizontal induced current.

modified by the magnetic field in the section of the duct where it is active. Figure 2.4 shows a

solution for this problem for Reynolds number Re = 2500, magnetic Reynolds number Rem = 10,

and Hartmann number Ha = 5. The image shows x velocity iso-surface colored by y velocity,

where the modification of the inlet constant profile and the parabolic profile at the region where

the magnetic field is active are evident. Vectors (colored by magnitude) show the vertical magnetic

field (applied and induced) and horizontal induced current from the bending of the magnetic field

lines.

The fixed physical parameters for the MHD generator are µ0 = 1, xon = 4.0, xoff = 6.0, and

δ = 0.1. The variable input parameters are the same as in the Hartmann problem. However, the

generator uses different input ranges, which can be found in Table 2.4. The probability measure

on the space of inputs is uniform over the hyperrectangle of log-transformed parameters defined

by the ranges in Table 2.4. The quantities of interest are the average flow velocity uavg and the

induced magnetic field Bind, as in the Hartmann problem.

Given values for the input parameters, the MHD generator’s solution fields are computed

with the Sandia National Laboratory’s Drekar multiphysics solver package [106, 95]. The package
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Table 2.4: Indices and intervals for the parameters x of the MHD generator problem. These
intervals represent the expected operating conditions for the idealized MHD generator.

Index Name Notation Interval

1 fluid viscosity log(µ) [log(0.001), log(0.01)]
2 fluid density log(ρ) [log(0.1), log(10)]

3 applied pressure gradient log
(
∂p0
∂x

)
[log(0.1), log(0.5)]

4 resistivity log(η) [log(0.1), log(10)]
5 applied magnetic field log(B0) [log(0.1), log(1)]

has adjoint capabilities, which enables computation of the derivatives of the quantities of interest

with respect to the input parameters [106]. Each MHD generator model run uses 5.3 CPU-hours

(10 minutes on 32 cores), so estimating C from (2.8) with a tensor product Gauss-Legendre quadra-

ture rule is not possible. Instead, we use a Monte Carlo method to estimate C using M = 483

independent samples from the uniform probability measure on the log-transformed parameters. For

this study, our budget was roughly 500 simulations, which is common for simulation models whose

size and complexity are comparable to the Drekar-based MHD model. For details on the accuracy

of the Monte Carlo method for estimating active subspaces, see [17].

Figure 2.5a shows the eigenvalue estimates computed with Monte Carlo for the uavg quantity

of interest. The dashed lines show upper and lower bounds on the eigenvalue estimates computed

with a nonparametric bootstrap with 500 bootstrap replicates from the set of 483 gradient samples.

We emphasize that since there is no randomness in the map from inputs to outputs (i.e., the

computer simulation is deterministic), the bootstrap is a heuristic to estimate the variability due to

the Monte Carlo sampling. Estimates of standard error from sample variances are not appropriate,

since the eigenvalues are nonlinear functions of the gradient samples. For an example of a similar

bootstrap computation for eigenvalues, see [45, Chapter 7.2].

The fifth eigenvalue is 0.00024% of the sum of the five eigenvalues, which is consistent with

the dimensional analysis from Section 2.2—i.e., there should be no more than 4 linear combinations

of the model parameters that affect the quantity of interest. And this restriction is reflected in the

small fifth eigenvalue.
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Figure 2.5: These figures represent the active subspace-based dimension reduction for the MHD
generator problem’s average flow velocity uavg. Figure 2.5a shows the eigenvalues of C, and Figure
2.5b shows the components of C’s first two eigenvectors. Figures 2.5c and 2.5d are one- and
two-dimensional, respectively, shadow plots of the quantity of interest.

The first two eigenvectors of C’s Monte Carlo estimate (for uavg) are shown in Figure 2.6b.

The magnitudes of the eigenvector components can be used to determine which physical parame-

ters influence the active subspace—i.e., they provide sensitivity information. (See [41] for how to

construct sensitivity metrics from active subspaces.) The fluid viscosity µ and the pressure gradi-
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ent ∂p0/∂x are the most important parameters for the average fluid velocity. This insight agrees

with physical intuition, and it is consistent with the same metrics from the Hartmann problem; see

Figure 2.2b.

Figure 2.5c and 2.5d show the one- and two-dimensional shadow plots for uavg as a function

of the first two active variables using all 483 samples. Similar to Figures 2.2c and 2.2d, we see a

nearly one-dimensional relationship between the log-transformed input parameters and the average

velocity, where the one dimension is the first active variable.

Figure 2.6a shows the eigenvalues for C’s Monte Carlo estimate, with bootstrap ranges, for

the induced magnetic field quantity of interest Bind. In this case, the fifth eigenvalue is 0.000001%

of the sum of the eigenvalues, which is consistent with the dimensional analysis from Section 2.1.3

that shows that any quantity of interest will depend on at most four linear combinations of the

log-transformed input parameters. The first eigenvector in Figure 2.6b shows that Bind depends on

all input parameters except the fluid density ρ. This is remarkably similar to the dependence seen

in the Hartmann problem; see Figure 2.3b.

The one- and two-dimensional shadow plots for Bind are in Figures 2.6c and 2.6d. There

appears to be a region in the parameter space—when the first active variable is positive—where

the relationship between the inputs and Bind is well characterized by one linear combination of the

log-transformed inputs. However, the one-dimensional character of that relationship degrades as

the first active variable decreases. (Note that the first eigenvector is only unique up to a sign, so

this relationship could be inverted.) The relative signs of the eigenvector components yield insight

into the how the output varies as each input is varied. For example, the fourth and fifth components

of the first eigenvector have opposite signs. Thus, the corresponding model parameters—resistivity

η and applied magnetic field B0—affect Bind in opposite directions, on average.

2.4 Summary

In this chapter, we reviewed two methods for dimension reduction in physical systems: (i)

dimensional analysis that uses the physical quantities’ units and (ii) active subspaces that use the
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Figure 2.6: These figures represent the active subspace-based dimension reduction for the MHD
generator’s induced magnetic field Bind. Figure 2.6a shows the eigenvalues of C, and Figure 2.6b
shows the components of C’s first two eigenvectors. Figures 2.6c and 2.6d are one- and two-
dimensional, respectively, shadow plots of the quantity of interest.

gradient of the output with respect to the inputs to address the ridge recovery problem. We showed

the connection between these two methods via a log transform of the input parameters—namely,

that the dimensional analysis provides an upper bound on the number of linear combinations of

log-transformed parameters that control any quantity of interest.

We applied these techniques to two quantities of interest—average flow velocity and induced
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magnetic field—from two magnetohydrodynamics models that apply to power generation: (i) the

Hartmann problem that admits closed form expressions for the quantities of interest and (ii) a

large-scale computational model of coupled fluid flow, magnetic fields, and electric current in a

three-dimensional duct. The computational model has adjoint capabilities that enable gradient

evaluations.

The insights from the active subspace analysis is consistent with the dimensional analysis. In

particular, there are at most four linear combinations of log-transformed parameters that affect the

quantity of interest—which is a reduction from an ambient dimension of 5 to an intrinsic dimension

of 4. The Hartmann problem has a further reduction to an intrinsic dimension of 2—i.e., two

linear combinations of log-transformed parameters are sufficient to characterize the quantities of

interest. Furthermore, the eigenvalues of the active subspace matrix C rank the relative importance

of each linear combination. This offers more insight into the input/output relationships than the

dimensional analysis alone.



Chapter 3

Inverse regression for ridge recovery

In the previous chapter, we explored how to interpret ridge functions in the context of compu-

tational science models by drawing connections between active subspaces and physically-motivated

dimension reduction through dimensional analysis. We used active subspaces as a tool for discov-

ering ridge structure since the column space of the matrix C from (2.8) provides a basis for the

ridge directions. Computing this matrix requires the gradient of f(x) with respect to the m inputs.

For complex models, such as those arising from systems of coupled partial differential equations, it

may be impossible to analytically compute the gradient. We can approximate the gradient using

adjoints, as was done for the MHD generator model in Chapter 2. However, implementing adjoint

capabilities in complex physical models can be difficult and solving the adjoint system is as expen-

sive as a typical forward solve. Alternatively, we can approximate the gradient of f using finite

differences, but this requires m+ 1 model evaluations to approximate the m-dimensional gradient.

In this chapter, we seek out methods for ridge recovery that do not require gradients.

In regression modeling, subspace-based predictor dimension reduction goes by the name suf-

ficient dimension reduction (SDR) [30, 2, 79]. Techniques for SDR include sliced inverse regres-

sion (SIR) [80], sliced average variance estimation (SAVE) [33], ordinary least squares (OLS) [82],

and principal Hessian directions (pHd) [81]—among several others. These techniques seek a low-

dimensional subspace in the predictor space that is sufficient to statistically characterize the rela-

tionship between predictors and response. Related techniques and extensions have enabled feature

space dimension reduction in supervised learning models [89, 130, 52].
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In this work, we make connections between SDR and ridge functions. We show that in the

context of deterministic functions, such as those underlying computational science models, the

fundamental conditions of SDR are equivalent to those of ridge functions. We then evaluate and

analyze the inverse regression methods SIR and SAVE as candidates for gradient-free ridge recovery

in deterministic functions. Recent work by Fornasier, Schnass, and Vybiral [49] and related work

by Tyagi and Cevher [123] develop ridge recovery algorithms that exploit a connection between a

linear measurement of a gradient vector and the function’s directional derivative to estimate A with

finite differences. Constantine, Eftekhari, and Wakin [24] exploit a similar connection to estimate

active subspaces with directional finite differences. In contrast, SIR- and SAVE-style dimension

reduction follows from low-rank structure in the regression’s inverse conditional moment matrices;

we detail how this difference (gradients versus inverse conditional moments) affects the methods’

ability to recover the ridge directions.

Lastly, we analyze the numerical convergence of SIR and SAVE subspaces as the number N

of samples increases and derive the expected Op(N−1/2) rate, where Op denotes convergence in

probability and the constant depends inversely on associated eigenvalue gap. This provides useful

insights into how to obtain accurate estimates of the ridge directions. Moreover, this view enables

the development of more efficient numerical integration methods than Monte Carlo for SIR and

SAVE, which we examine in Chapter 4.

3.1 Sufficient dimension reduction

We review the essential theory of sufficient dimension reduction (SDR); our notation and

development closely follow Cook’s Regression Graphics: Ideas for Studying Regressions through

Graphics [30]. The theory of SDR provides a framework for subspace-based dimension reduction

in statistical regression. A regression problem begins with predictor/response pairs {[ x>i , yi ]},

i = 1, . . . , N , where xi ∈ Rm and yi ∈ R denote the vector-valued predictors and scalar-valued

response, respectively. These pairs are assumed to be independent realizations from the random

vector [ x> , y ] with unknown joint probability measure πx,y. The object of interest in regression
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is the conditional random variable y|x; the statistician uses the given predictor/response pairs to

estimate statistics of y|x—e.g., moments or quantiles. SDR searches for a subspace of the predictors

that is sufficient to describe y|x with statistics derived from the given predictor/response pairs.

The basic tool of SDR is the dimension reduction subspace (DRS). Consider a random vector

[ x> , y ], and let A ∈ Rm×n with n ≤ m be such that

y |= x|A>x, (3.1)

where |= denotes independence of y and x. A dimension reduction subspace SDRS for y|x is

SDRS = SDRS(A) = colspan(A), (3.2)

where colspan(A) denotes the column space of the A. Equation (3.1) denotes the conditional

independence of the response and predictors given A>x. We can define a new random variable

y|A>x that is the response conditioned on the n-dimensional vector A>x. If SDRS(A) is a DRS

for y|x, then the conditional CDF for y|x is the conditional CDF for y|A>x [30, Chapter 6]. If a

regression admits a low-dimensional (n < m) DRS, then the predictor dimension can be reduced

by considering y|A>x.

Note that the matrix A in (3.2) is not unique in defining a DRS [28]. For any matrices

A,B ∈ Rm×n such that colspan(A) = colspan(B),

y |= x|A>x ⇐⇒ y |= x|B>x. (3.3)

Moreover, it is possible for two distinct subspaces to be DRSs for the same regression. Sup-

pose a particular regression admits the DRS SDRS(A) with A ∈ Rm×n and n < m, and let

v ∈ Rm such that v 6∈ colspan(A). Consider the m× (n+ 1) matrix B =

[
A v

]
. The subspace

colspan(B) is also a DRS for the same regression. However, SDRS(A) is the preferred subspace

since dim (SDRS(A)) ≤ dim(SDRS(B)) where dim(·) denotes the subspace dimension. It is not nec-

essary that a DRS reduce the predictor dimension of the regression. In fact, all regressions admit

the trivial DRS, Rm [30, Chapter 6]. Since the goal of SDR is to reduce the predictor dimension,

we are interested in finding the one which has minimum dimension.
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A subspace S is called a minimum DRS for y|x if it is a DRS and dim(S) ≤ dim(SDRS), where

SDRS is any DRS for y|x. Since the predictor dimension is finite, a minimum DRS always exists—

though the minimum DRS may be Rm—i.e., the full predictor space. Existence of the minimum

DRS indicates that all regression problems exhibit a minimum dimension for sufficient dimension

reduction. This minimum dimension, referred to as the structural dimension of y|x, represents

the largest possible reduction of the predictor space while maintaining the structure of y|x [29].

Despite uniqueness of the structural dimension, a unique minimum DRS is not guaranteed—as the

following example illustrates [28].

Example 1. Assume that x ∈ R2 has a uniform marginal density on the unit circle. Suppose that

the random variable y|x = x2
1 + ε, where ε is random noise that is independent of x. This implies

that SDRS([ 1 , 0 ]>) is a DRS for this problem. However, the marginal density of x is such that

1 = x2
1 + x2

2. This means y|x = 1 − x2
2 + ε. From this expression, SDRS([ 0 , 1 ]>) is also a DRS.

Both of these DRSs have dimension 1 and there does not exist a DRS of dimension 0—i.e., {0} is

not a DRS. Therefore, there does not exist a unique minimum DRS for this regression.

As demonstrated in Example 1, a given regression problem may admit multiple DRSs. A

uniquely-defined DRS is required to ensure a well-posed SDR problem. To this end, we define the

the central DRS (or simply the central subspace) of y|x to be the DRS Sy|x such that Sy|x ⊆ SDRS,

where SDRS is any DRS for y|x. When the central subspace exists it is the intersection of all other

DRSs,

Sy|x =
⋂
SDRS (3.4)

for all SDRS of y|x. The intersection in (3.4) always defines a subspace, but this subspace need not

satisfy the conditional independence from (3.1). Therefore, a regression need not admit a central

subspace. However, when a central subspace exists, it is the unique DRS of minimum dimension

for y|x [30, Chapter 6].

There are a variety of conditions that ensure the existence of Sy|x for a given regression

problem. We consider the following condition on the marginal density of the predictors.
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Theorem 1 ([30]). Suppose that S1 and S2 are two DRSs for y|x where the marginal measure of

the predictors πx exhibits a density function that has support over a convex set. Then, S1 ∩ S2 is

also a DRS.

According to Theorem 1, if predictor space has density function with support over a convex

set, then any intersection of DRSs will be a DRS—i.e., Sy|x from (3.4) is a DRS and (hence) the

central subspace. In regression practice, this existence condition may be difficult to verify from

the given predictor/response pairs. Existence of the central subspace can be proven under other

sets of assumptions, including a generalization of Theorem 1 to M-sets [133] and another based on

location regressions [30, Chap. 6]. The existence criteria in Theorem 1 is the most pertinent when

we employ inverse regression for ridge recovery in Section 3.2.

There are two useful properties of the central subspace that enable convenient transfor-

mations. The first involves the effect of affine transformations in the predictor space. Let z =

Bx + b for full rank B ∈ Rm×m and x ∈ Rm. If colspan(A) = Sy|x for some A ∈ Rm×n, then

colspan(B−>A) = Sy|z [29]. This allows us to assume a standardized predictor space, similar to

the assumption from (1.2), without loss of generality. The second property involves mappings of

the response. Let h : R→ R be a function applied to the responses that produces a new regression

problem, {[ x>i , h(yi) ]}, i = 1, . . . , N . The central subspace associated with the new regression

problem is contained within the original central subspace,

Sh(y)|x ⊆ Sy|x, (3.5)

with equality holding when h is strictly monotone [31]. Equation (3.5) is essential for studying the

slicing-based algorithms, SIR and SAVE, for estimating the central subspace, where the mapping

h partitions the response space; see Sections 3.1.1 and 3.1.2.

The goal of SDR is to estimate the central subspace for the regression from the given re-

sponse/predictor pairs.

Problem 2 (SDR problem). Given response/predictor pairs {[ x>i , yi ]}, with i = 1, . . . , N , as-

sumed to be independent draws from a random vector [ x> , y ] with joint probability measure πx,y,
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compute a basis A ∈ Rm×n for the central subspace Sy|x of the random variable y|x.

Next, we review two algorithms that address Problem 2—sliced inverse regression (SIR) [80]

and sliced average variance estimation (SAVE) [33]. These algorithms use the given regression data

to approximate population moment matrices of the inverse regression x|y.

3.1.1 Sliced inverse regression

Sliced inverse regression (SIR) [80] is an algorithm for approximating the matrix

CIR = Cov [E [x|y]] (3.6)

using the given predictor/response pairs. CIR is defined by the inverse regression function E [x|y],

which draws a curve through the m-dimensional predictor space parameterized by the scalar-valued

response. If the given regression problem satisfies the linearity condition [80], then

colspan(CIR) ⊆ Sy|x. (3.7)

In words, the column space ofCIR is a subset of the central subspace for the regression. The linearity

condition is satisfied when πx is elliptically symmetric (e.g., a multivariate standard Gaussian) [44].

SIR approximates CIR using given predictor/response pairs by partitioning—i.e., slicing—the

response space. Consider a partition of the observed response space,

min
1≤i≤N

yi = ỹ0 < ỹ1 < · · · < ỹR−1 < ỹR = max
1≤i≤N

yi, (3.8)

and let Jr = [ỹr−1, ỹr] denote the rth partition for r = 1, . . . , R. Define the function

h(y) = r for y ∈ Jr. (3.9)

Applying h to the given responses creates a new regression problem {[ x>i , h(yi) ]}, where (3.6)

becomes

CSIR = Cov [E [x|h(y)]] . (3.10)
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The notation CSIR emphasizes that this matrix is with respect to the sliced version of the original

regression problem. Combining (3.7) and (3.5),

colspan(CSIR) ⊆ Sh(y)|x ⊆ Sy|x. (3.11)

The sliced partition of the response space and the sliced mapping h bin the predictor/response

pairs to enable sample estimates of E [x|r] for r = 1, . . . , R. This is the basic idea behind the SIR

algorithm; see Algorithm 1. Note that if the response is discrete, then Algorithm 1 produces the

maximum likelihood estimator of the central subspace [32].

Eigenvectors ofCSIR associated with nonzero eigenvalues provide a basis for the SIR subspace,

colspan(CSIR). If the approximated eigenvalues λ̂n+1, . . . , λ̂m from Algorithm 1 are small, then

m × n matrix Â approximates a basis for this subspace. However, determining the appropriate

value of n requires care. Li [80] and Cook [33] propose significance tests based on the distribution

of the average of the m−n trailing estimated eigenvalues. These testing methods also apply to the

SAVE algorithm in Section 3.1.2.

For a fixed number of slices, SIR has been shown to be N−1/2-consistent for approximating

colspan(CSIR) [80]. In principle, increasing the number of slices may provide improved estimation

of the central DRS. The number of slices should be chosen such that there are enough samples

in each slice to estimate the conditional expectations accurately. For this reason, Li [80] suggests

constructing slices such that the response samples are distributed nearly equally.

3.1.2 Sliced average variance estimation

SAVE uses the variance of the inverse regression. Li [80] recognized the potential for Cov [x|y]

to provide insights into the central subspace by noting that

E [Cov [x|y]] = Cov [x]− Cov [E [x|y]] = I − Cov [E [x|y]] , (3.15)

under the assumption of standardized predictors. Equation (3.15) implies that E [I − Cov [x|y]] may

be useful in addressing Problem 2. Cook suggests using E
[
(I − Cov [x|y])2

]
, which has nonnegative
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Algorithm 1 Sliced inverse regression [80]

Given: N samples {[ x>i , yi ]}, i = 1, . . . , N , drawn independently according to px,y.

(1) Partition the response space as in (3.8), and let Jr = [ỹr−1, ỹr] for r = 1, . . . , R. Let
Ir ⊂ {1, . . . , N} be the set of indices i for which yi ∈ Jr and define Nr to be the cardinality
of Ir.

(2) For r = 1, . . . , R, compute the sample mean µ̂h(r) of the predictors whose associated
responses are in Jr,

µ̂h(r) =
1

Nr

∑
i∈Ir

xi. (3.12)

(3) Compute the weighted sample covariance matrix

ĈSIR =
1

N

R∑
r=1

Nr µ̂h(r)µ̂h(r)>. (3.13)

(4) Compute the eigendecomposition,

ĈSIR = Ŵ Λ̂Ŵ>, (3.14)

where the eigenvalues are in descending order λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m ≥ 0 and the eigenvectors
are orthonormal.

Output: The first n eigenvectors of ĈSIR, denoted by Â.
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eigenvalues [33]. Define

CAVE = E
[
(I − Cov [x|y])2

]
. (3.16)

Under the linearity condition [80] and the constant covariance condition [31], the column space of

CAVE is contained within the central subspace,

colspan(CAVE) ⊆ Sy|x. (3.17)

Both of these conditions are satisfied when πx is elliptically symmetric [44].

Using the partition (3.8) and the map (3.9),

CSAVE = E
[
(I − Cov [x|h(y)])2

]
. (3.18)

The notation CSAVE indicates application to the sliced version of the original regression problem.

Combining (3.17) and (3.5),

colspan(CSAVE) ⊆ Sh(y)|x ⊆ Sy|x. (3.19)

Algorithm 2 shows the SAVE algorithm, which computes a basis for the column span of the sample

estimate ĈSAVE. This basis is a N−1/2-consistent estimate of colspan(CSAVE) [31]. Increasing the

number of slices improves the estimate but suffers the same drawbacks as SIR. In practice, SAVE

performs poorly compared to SIR when few predictor/response pairs are available. This is due to

difficulties approximating the covariances within the slices using too few samples. For this reason,

Cook [32] suggests trying both methods to approximate the central DRS.

3.2 Inverse regression as ridge recovery

This section develops SIR (Algoroithm 1) and SAVE (Algorithm 2) as tools for ridge recovery

(Problem 1). These algorithms seek to construct a basis for the optimal dimension reduction

subspace—i.e., A that satisfies the conditional independence requirement from (3.1). The next

theorem connects the conditional independence underlying sufficient dimension reduction to ridge

functions in deterministic functions.
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Algorithm 2 Sliced average variance estimation [31]

Given: N samples {[ x>i , yi ]}, i = 1, . . . , N , drawn independently according to px,y.

(1) Define a partition of the response space as in (3.8), and let Jr = [ỹr−1, ỹr] for r = 1, . . . , R.
Let Ir ⊂ {1, . . . , N} be the set of indices i for which yi ∈ Jr and define Nr to be the
cardinality of Ir.

(2) For r = 1, . . . , R,

(a) Compute the sample mean µ̂h(r) of the predictors whose associated responses are in
the Jr,

µ̂h(r) =
1

Nr

∑
i∈Ir

xi. (3.20)

(b) Compute the sample covariance Σ̂h(r) of the predictors whose associated responses
are in Jr,

Σ̂h(r) =
1

Nr − 1

∑
i∈Ir

(xi − µ̂h(r)) (xi − µ̂h(r))> (3.21)

(3) Compute the matrix,

ĈSAVE =
1

N

R∑
r=1

Nr

(
I − Σ̂h(r)

)2
. (3.22)

(4) Compute the eigendecomposition,

ĈSAVE = Ŵ Λ̂Ŵ>, (3.23)

where the eigenvalues are in descending order λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m ≥ 0 and the eigenvectors
are orthonormal.

Output: The first n eigenvectors of ĈSAVE, denoted by Â.



52

Theorem 2. Let (Ω,Σ, P ) be a probability triple. Suppose that x : Ω → Rm and y : Ω → R are

random variables related by a measurable function f : Rm → R so that y = f(x). Let A ∈ Rm×n be

a constant matrix. Then y |= x|A>x if and only if y = g(A>x) where g : Rn → R is a measurable

function.

The proof is in Appendix A.1. Theorem 2 states that conditional independence of the inputs

and output in a deterministic function is equivalent to the function being a ridge function. This

provides a subspace-based perspective on ridge functions that uses the DRS as the foundation.

That is, the directions of the ridge function are relatively unimportant compared to the subspace

they span when capturing ridge structure of f with sufficient dimension reduction.

The central subspace from (3.4) corresponds to the unique subspace of smallest dimension

that completely describes the ridge structure of f . Moreover, our focused concern on the subspace

instead of the precise basis implies that we can assume standardized inputs x (see (1.2)) without loss

of generality, which simplifies discussion of the inverse conditional moment matrices that underlie

the SIR and SAVE algorithm for ridge recovery.

Theorem 1 guarantees existence of the central subspace in regression when the marginal den-

sity of the predictors has convex support. However, this condition is typically difficult or impossible

to verify for the regression problem. In contrast, the deterministic function is accompanied by a

known input measure πx. In practice, a relatively non-informative measure is used such as a mul-

tivariate Gaussian or uniform density on a hyper-rectangle defined by the ranges of each physical

input parameter. Such choices for modeling input uncertainty satisfy Theorem 1 and guarantee the

existence of the central subspace.

The input probability measure can influence the structure of the central subspace. For

example, let a,b ∈ Rm be constant vectors pointing in different directions and consider the function

y = f(x) =

 (a>x)2 if xi > 0 for i = 1, . . . ,m

(b>x)2 otherwise.

(3.24)

If πx has a density function with support only for positive values of x (e.g., uniform over [0, 1]m),
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then the central subspace is span a. Alternatively, if the input density has support over all of Rm

(e.g., multivariate Gaussian), then the central subspace is span a,b. For this reason, we denote the

central subspace for a deterministic function by Sf,πx to emphasize that this subspace is a property

of the given function and the associated input probability measure.

In the next two sections, we reformulate the key matrices underlying the SIR and SAVE

algorithms (Equations (3.6) and (3.16), respectively) to enable proper analysis of these algorithms

for deterministic ridge recovery. However, we must first understand how to interpret one of the

basic components of these matrices in the deterministic framework. Both algorithms are based on

statistical moments of the inverse regression x|y. The deterministic analog of this object is the

inverse image of f for the output value y,

f−1(y) = {x ∈ Rm : f(x) = y} . (3.25)

Unlike the random vector inverse regression, f−1 is a fixed set determined by f ’s contours. Further-

more, the inverse image begets the conditional probability measure πx|y, which is the restriction of

πx to the set f−1(y) [13].

3.2.1 Sliced inverse regression for ridge recovery

For deterministic functions, we can write CIR from (3.6) as an integral against probability

measures:

CIR =

∫
µ(y)µ(y)> dπy(y) (3.26)

where the conditional expectation over the inverse image f−1(y) is

µ(y) =

∫
x dπx|y(x). (3.27)

This term represents the average of all input values that map to a fixed value of the output. The

integration in (3.26) is performed with respect to πy. This is an induced probability measure on

the output space. That is, the given input probability measure πx is propagated forward through

f and induces πy on the output space.



54

To understand how CIR can be used for dimension reduction in deterministic functions,

consider the following. For w ∈ Rm with unit norm,

w>CIRw = w>
(∫

µ(y)µ(y)> dπy(y)

)
w =

∫ (
µ(y)>w

)2
dπy(y). (3.28)

If w ∈ null(CIR), then one possibility is that µ(y) is orthogonal to w for all y. The following

theorem relates this case to possible ridge structure in f .

Theorem 3. Let f : Rm → R with input probability measure πx admit a central subspace Sf,πx, and

assume πx admits an elliptically symmetric and standardized density function. Then, colspan(CIR) ⊆

Sf,πx.

See Appendix A.2 for the proof. Theorem 3 shows that a basis for the range of CIR can be

used to estimate f ’s central subspace. However, this idea has two important limitations. First,

by (3.28), we can write the inner product in the rightmost integrand in terms of the cosine of the

angle between the vectors µ(y) and w,

w>CIRw =

∫
||µ(y)||22 cos2(θ(y)) dπy(y), (3.29)

where θ(y) is the angle between µ(y) and w. Theorem 3 uses orthogonality of µ(y) and w—

i.e., cos(θ(y)) = 0 for all y—to show containment of the column space of CIR within the central

subspace; however, the integrand in (3.29) also contains the squared 2-norm of µ(y), which does

not depend on w. If µ(y) = 0 for all y, then w>CIRw = 0 for all w. Consider the following

example.

Example 2. Assume x ∈ R2 is weighted with a bivariate standard Gaussian. Let y = f(x) = x1x2.

For any value of y, x ∈ f−1(y) implies −x ∈ f−1(y). Therefore, µ(y) = 0 for all y, and CIR = 0.

But y is not constant over R2. Thus, {0} = colspan(CIR) ⊂ Sf,πx = R2.

This example shows how CIR, as a tool for ridge recovery, can mislead the practitioner by

suggesting ridge structure in a function that is not a ridge function. This could lead one to ignore

input space directions that should not be ignored. Note that if we shift the function such that



55

y = f(x) = (x1 + c1)(x2 + c2) for some constants c1, c2 6= 0, then the symmetry is broken and

µ(y) 6= 0 for all y. In this case, CIR will recover the central subspace—i.e., all of R2.

The second limitation of CIR for ridge recovery follows from the required elliptic symmetry

of the input density. This assumption is satisfied if the density is a multivariate Gaussian, but it is

violated if it is uniform over the m-dimension hypercube. If f is a ridge function and w ∈ null(A>),

then x ∈ f−1(y) implies x + w ∈ f−1(y) so that f−1(y) can be expressed as the union of lines

parallel to w. If the inputs are weighted by an elliptically symmetric density, then the expectation

over f−1(y) will be centered such that µ(y) is orthogonal to w. If the inputs do not have an

elliptically symmetric density, then the weighting can cause the conditional expectation to deviate

in the direction of w. The magnitude of this deviation also depends on the magnitude of the

conditional expectation ||µ(y)||2.

Next, we examine the sliced approximation of CIR. Recall the output partition from (3.8)

and the slicing map h(y) (3.9). Applying h to the deterministic function y = f(x) produces the

discretized function r = h(y) = h(f(x)), where r ∈ {1, . . . , R}. The output space of h is weighted

by the probability mass function

ω(r) =

∫
Jr

dπy(y), r ∈ {1, . . . , R}. (3.30)

Without loss of generality, we assume that the slices are constructed such that ω(r) > 0 for all

r. If ω(r) = 0 for some r, then we can combine this slice with an adjacent slice. The conditional

expectation for the sliced output is

µh(r) =

∫
x dπx|r(x), (3.31)

where πx|r is the conditional measure defined over the set f−1(h−1(r)) = {x ∈ Rm : h(f(x)) =

h(y) = r }. Using (3.30) and (3.31), the sliced version of CIR is

CSIR =
R∑
r=1

ω(r)µh(r)µh(r)>. (3.32)

By Theorem 2, properties of the central subspace extend to the ridge recovery problem. This
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includes containment of the central subspace under any mapping of the output,

colspan(CSIR) ⊆ Sh◦f,πx ⊆ Sf,πx . (3.33)

By approximating CSIR, we obtain an approximation of part of f ’s central subspace. An important

corollary of (3.33) is that the rank of CSIR is bounded above by the dimension of Sf,πx .

Note that CSIR from (3.32) is a finite sum approximation of the integral with respect to πy

in CIR from (3.26). Since f−1(h−1(r)) = ∪y∈Jrf−1(y), then µh(r) is the average of the conditional

expectations with y ∈ Jr. That is,

µh(r) =

∫
Jr

µ(y) dπy(y). (3.34)

Therefore, CSIR approximatesCIR by a weighted sum of the average values of µ(y) within each slice.

If µ(y) is continuous almost everywhere with respect to πy, then CIR is Riemann-integrable [48,

Chap. 2]. This ensures that sum approximations using the supremum and infimums of µ(y) over

each slice converge to the same value. By the sandwich theorem, the average value will converge

to this value as well [1]. Therefore, CSIR is a Riemann sum approximation of CIR; as the number

of slices R increases, CSIR converges to CIR. We explore the nature of this approximation in more

detail in Chapter 4.

We next study the asymptotic convergence of Algorithm 1 for ridge recovery. To generate

the data for Algorithm 1, we choose N points {xi} in the input space consistent with πx. For each

xi, we query the function to produce the corresponding output yi = f(xi). In the computational

science context, this corresponds to running the simulation model at particular sets of inputs. If we

choose each xi independently according to πx, then we can analyze SIR as a Monte Carlo method

for estimating CSIR from (3.32). Given the input/output pairs, Algorithm 1 constructs the random

matrix ĈSIR. To be clear, ĈSIR is a random estimate of CSIR because of how we chose the points

{xi}—not because of any randomness in the map f . Eigenpairs derived from ĈSIR are also random,

and the convergence analysis for Algorithm 1 is probabilistic.
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The convergence depends on the smallest number of samples per slice over all the slices:

Nrmin = min
1≤r≤R

Nr, (3.35)

where Nr is from Algorithm 1. Recall that the slices are assumed to be constructed such that

ω(r) > 0. Thus, Nrmin > 0 with probability 1 as N → ∞. The following theorem shows that the

eigenvalues of ĈSIR converge to those of CSIR in a mean-squared sense.

Theorem 4. Assume that Algorithm 1 has been applied to the data set {[ x>i , yi ]}, with i =

1, . . . , N , where the xi are drawn independently according to πx and yi = f(xi) are point evaluations

of f . Then, for k = 1, . . . ,m,

E
[(
λk(CSIR)− λk(ĈSIR)

)2
]

= O(N−1
rmin

) (3.36)

where λk(·) denotes the kth eigenvalue of the given matrix.

See Appendix A.3 for the proof. In words, the mean-squared error in the eigenvalues of ĈSIR

decays at a N−1
rmin

rate. Since ω(r) > 0 for all r, Nrmin →∞ as N →∞. Moreover, the convergence

rate suggests that one should choose the slices in Algorithm 1 such that the same number of samples

appears in each slice. This maximizes Nrmin and reduces the error in the eigenvalues.

An important consequence of Theorem 4 is that the column space of the finite-sample ĈSIR

is not contained in f ’s central subspace. In fact, due to finite sampling, ĈSIR is not precisely

low-rank. With a fixed number of samples, it is difficult to distinguish the effects of finite sampling

from actual variability in f . However, the eigenvalue convergence implies that one can potentially

devise practical tests for low-rank-ness based on sets of samples with increasing size.

The next theorem shows the value of understanding the approximation errors in the eigen-

values for quantifying the approximation errors in the subspaces. We measure convergence of the

subspace estimates using the subspace distance [64, Chapter 2.5],

dist
(

ran(A), ran(Â)
)

=
∥∥∥AA> − ÂÂ>∥∥∥

2
, (3.37)

where A, Â are the first n eigenvectors of CSIR and ĈSIR, respectively. The distance metric (3.37)

is the principal angle between the subspaces colspan(A) and colspan(Â).
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Theorem 5. Assume the same conditions from Theorem 4. Then, for sufficiently large N ,

dist
(

ran(A), ran(Â)
)

=
1

λn(CSIR)− λn+1(CSIR)
Op(N−1/2

rmin
), (3.38)

where Op denotes convergence in probability.

Appendix A.4 contains the proof. The subspace error decays with asymptotic rate N
−1/2
rmin .

The more interesting result from Theorem 5 is the inverse relationship between the subspace error

and the magnitude of the gap between the nth and (n + 1)th eigenvalues. That is, a large gap

between eigenvalues suggests a better estimate of the subspace for a fixed number of samples. We do

not hide this factor in the Op notation to emphasize the importance of Theorem 4, which provides

insights into the accuracy of the estimated eigenvalues of CSIR.

3.2.2 SAVE for ridge recovery

Similar to (3.26), we express CAVE from (3.16) as an integral,

CAVE =

∫
(I −Σ(y))2 dπy(y). (3.39)

The conditional covariance Σ(y) in (3.39) is an integral against the conditional probability measure

πx|y,

Σ(y) =

∫
(x− µ(y)) (x− µ(y))> dπx|y(x). (3.40)

To see the relationship between the CAVE matrix and ridge functions, let w ∈ Rm with unit norm:

w>CAVEw = w>
(∫

(I −Σ(y))2 dπy(y)

)
w =

∫
||(I −Σ(y)) w||22 dπy(y). (3.41)

Equation (3.41) relates the column space of CAVE to the ridge structure in f .

Theorem 6. Let f : Rm → R with input probability measure πx admit a central subspace Sf,πx,

and assume πx admits an elliptically symmetric and standardized density function. Then,

colspan(CAVE) ⊆ Sf,πx.
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See the proof in Appendix A.5. This result shows the usefulness of CAVE for revealing ridge

structure in deterministic functions: by estimating the column space ofCAVE, we obtain an estimate

of a subspace of f ’s central subspace. However, CAVE suffers two similar pitfalls as CIR. First,

CAVE can mislead the practitioner by suggesting ridge structure that does not exist—i.e., when

colspan(CAVE) ⊂ Sf,πx—as the following example illustrates.

Example 3. Assume x ∈ R2 is weighted by a bivariate standard Gaussian. Let

y = f(x) =


y1 if ||x||2 ≤ r1 or ||x||2 ≥ r2,

y2 if r1 < ||x||2 < r2,

(3.42)

for some 0 < r1 < r2. This functions looks like a bullseye with the central circle and outer ring

mapping to y1 and the middle ring mapping to y2. By adjusting r1 and r2, we can obtain

Σ(y1) = Σ(y2) = I. (3.43)

Note that µ(y1) = µ(y2) = 0 for all choices of r1 and r2. Then,

Σ(y1) =

∫
xx> dπx|y1(x),

=

1 +
r2

2e
−r22/2 − r2

1e
−r21/2

2
(

1 + e−r
2
2/2 − e−r21/2

)
1 0

0 1

 , (3.44)

and

Σ(y2) =

∫
xx> dπx|y2(x),

=

1 +
r2

2e
−r22/2 − r2

1e
−r21/2

2
(
e−r

2
2/2 − e−r21/2

)
1 0

0 1

 . (3.45)

Thus, (3.43) holds when r2
1e
−r21/2 = r2

2e
−r22/2, provided that 0 < r1 < r2. Choosing r1 and r2

that satisfy these requirements results in CAVE = E
[
(I − Cov [x|y])2

]
= E

[
(I − I)2

]
= E [0] = 0.

However, we can see from inspection of (3.42) that Sf,πx = R2. Thus, colspan(CAVE) ⊂ Sf,πx.

Example 3 explores one way in which CAVE would suggest that low-dimensional structure in

a function that is not present. Note that the key feature of this function that results in a degenerate
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CAVE matrix is its rotational symmetry. The symmetry in this function would also fool CIR. In

fact, it can be shown that, in general,

colspan(CIR) ⊆ colspan(CAVE), (3.46)

which suggests that this sort of false positive is less likely to occur with CAVE than with CIR [79,

Chap. 5]. The exhaustiveness of CAVE in capturing central subspace can be proven provided that

at least one of E
[
w>x|y

]
and Var

[
w>x|y

]
are nondegenerate—i.e., explicitly depends on y—for

all w ∈ Sf,πx . Notice that the function in Example 3 agrees with this statement.

The second limitation of CAVE arises from the elliptic symmetry requirement on the input

density. When this density function is not elliptically symmetric, we cannot guarantee that the

column space of CAVE is contained within the central subspace. Thus, a basis for the column

space of CAVE could be contaminated by effects of πx—independent of whether or not f is a ridge

function.

Next, we consider the sliced version of CAVE. We use the same slicing function h from (3.9)

to approximate CAVE from (3.40). The sliced approximation of CAVE is

CSAVE =

R∑
r=1

ω(r) (I −Σh(r))2 , (3.47)

where ω(r) is the probability mass function from (3.30) and

Σh(r) =

∫
(x− µh(r)) (x− µh(r))> dπx|r(x). (3.48)

By containment of the central subspace,

colspan(CSAVE) ⊆ Sh◦f,πx ⊆ Sf,πx . (3.49)

We can interpret CSAVE as a Riemann sum approximation of CAVE using a similar argument as in

Section 3.2.1. An important corollary of (3.49) is that the rank of CSAVE is bounded above by the

dimension of f ’s central subspace.

Algorithm 2 computes a sample approximation of CSAVE, denoted ĈSAVE, using given in-

put/output pairs {[ x>i , yi ]}. When the xi are sampled independently according to πx and each
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yi = f(xi) is a deterministic function query, we can interpret ĈSAVE as a Monte Carlo approxi-

mation to CSAVE. Thus, ĈSAVE and its eigenpairs are random—not because of any randomness

in the map f but because of the random choices of xi. The following theorem shows the rate of

mean-squared convergence of the eigenvalues of ĈSAVE.

Theorem 7. Assume that Algorithm 2 has been applied to the data set {[ x>i , yi ]}, with i =

1, . . . , N , where the xi are drawn independently according to πx and yi = f(xi) are point evaluations

of f . Then, for k = 1, . . . ,m,

E
[(
λk(CSAVE)− λk(ĈSAVE)

)2
]

= O(N−1
rmin

) (3.50)

where λk(·) denotes the kth eigenvalue of the given matrix.

The proof is in Appendix A.6. We note that the column space of ĈSAVE is not contained in f ’s

central subspace because of finite sampling. However, using a sequence of estimates with increasing

N , one may be able to distinguish effects of finite sampling from true directions of variability in f .

Next, we examine the convergence of the subspaces Algorithm 2 produces, where the subspace

distance is from (3.37).

Theorem 8. Assume the same conditions from Theorem 7. Then, for sufficiently large N ,

dist
(

ran(A), ran(Â)
)

=
1

λn(CSAVE)− λn+1(CSAVE)
Op(N−1/2

rmin
), (3.51)

where Op denotes convergence in probability.

The proof is in Appendix A.7. The subspace error for Algorithm 2 decays asymptotically like

N
−1/2
rmin with high probability. Similar to the estimated SIR subspace from Algorithm 1, the error

depends inversely on the eigenvalue gap. If the gap between the nth and (n + 1)th eigenvalues

is large, then the error in the estimated n-dimensional subspace is small for a fixed number of

samples.
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3.3 Numerical results

We apply SIR and SAVE to four test problems to study the methods’ applicability for ridge

recovery and approximation and to verify our convergence analysis. The first two are quadratic

functions with known ridge structure, the third is the output from a parameterized boundary value

problem, and the fourth is the Hartmann problem from Section 2.3.1.

3.3.1 One-dimensional quadratic problem

We study a simple one-dimensional quadratic ridge function to contrast the recovery prop-

erties of SIR versus SAVE. Let πx have a standard multivariate Gaussian density function on R10.

Define

y = f(x) =
(
b>x

)2
, (3.52)

where b ∈ R10 is a constant vector. The span of b is the central subspace. First, we attempt

to estimate the central subspace using SIR (Algorithm 1), which is known to fail for functions

symmetric about x = 0 [33]; Figure 3.1 confirms this failure. In fact, CIR is zero since the

conditional expectation of x for any value of y is zero. Figure 3.1a shows that all estimated

eigenvalues of the SIR matrix are nearly zero as expected. Figure 3.1b is a one-dimensional shadow

plot of yi against ŵ>1 xi, where ŵ1 denotes the normalized eigenvector associated with the largest

eigenvalue of ĈSIR from Algorithm 1. If (i) the central subspace is one-dimensional (as in this case)

and (ii) the chosen SDR algorithm correctly identifies the one basis vector, then the shadow plot

will show a univariate relationship between the linear combination of input evaluations and the

associated outputs. Due to the symmetry in the quadratic function, SIR fails to recover the basis

vector; the shadow plot’s lack of univariate relationship confirms the failure.

Figure 3.2 shows results from applying SAVE (Algorithm 2) to the quadratic function (3.52).

Figure 3.2a shows the eigenvalues of ĈSAVE from Algorithm 2. Note the large gap between the first

and second eigenvalues, which suggests that the SAVE subspace is one-dimensional. Figure 3.2b

shows the shadow plot using the first eigenvector ŵ1 from Algorithm 2, which reveals the univariate
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(a) Eigenvalues of ĈSIR from (3.13)
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(b) Shadow plot for SIR

Figure 3.1: The results of the SIR algorithm applied to (3.52).
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(a) Eigenvalues of ĈSAVE from (3.22)
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(b) Shadow plot for SAVE

Figure 3.2: The results of the SAVE algorithm applied to (3.52).

3.3.2 Three-dimensional quadratic problem

Next, we numerically study the convergence properties of the SIR and SAVE algorithms using

a more complex quadratic function. Let πx have a standard multivariate Gaussian density function
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on R10. Define

y = f(x) = x>BB>x + b>x, (3.53)

where B ∈ R10×2 and b ∈ R10 with b 6∈ colspan(B). Figure 3.3a shows the eigenvalues of ĈSIR;

note the gap between the third and fourth eigenvalues. Figure 3.3b shows the maximum squared

eigenvalue error normalized by the largest eigenvalue,

max
1≤i≤m

(
λi(ĈSIR)− λi(CSIR)

)2

λ1(CSIR)2
, (3.54)

for increasing numbers of samples in 10 independent trials. We estimate the true eigenvalues using

SIR with 107 samples. The average error decays at a rate slightly faster than the O(N−1) from

Theorem 4. The improvement can likely be attributed to the adaptive slicing procedure discussed

at the beginning of this section. Figure 3.3c shows the error in the estimated three-dimensional SIR

subspace (see (3.37)) for increasing numbers of samples. We use 107 samples to estimate the true

SIR subspace. The subspace errors decrease asymptotically at a rate of approximately O(N−1/2),

which agrees with Theorem 5.
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(c) SIR subspace errors for n = 3

Figure 3.3: Eigenvalues, eigenvalue errors, and subspace errors for SIR applied to (3.53). The error
decreases with increasing samples consistent with the convergence theory in Section 3.2.1.

Figure 3.4 shows the results of a similar convergence study using SAVE (Algorithm 2). The

eigenvalues of ĈSAVE from (3.22) are shown in Figure 3.4a. Note the large gap between the third
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and fourth eigenvalues, which is consistent with the three-dimensional central subspace in f from

(3.53). Figures 3.4b and 3.4c show the maximum squared eigenvalue error and the subspace error,

respectively, for n = 3. The eigenvalue error again decays at a faster rate than expected in

Theorem 7—likely due to the adaptive slicing implemented in the code. The subspace error decays

consistently according to Theorem 8.
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(a) Eigenvalues of ĈSAVE from (3.22)
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(c) SAVE subspace errors for n = 3

Figure 3.4: Eigenvalues, eigenvalue errors, and subspace errors for SAVE applied to (3.53). The
error decreases with increasing samples consistent with the convergence theory in Section 3.2.2.

3.3.3 Boundary value problem

The next problem is a standard test problem in dimension reduction [131, 46]. It is derived

from the boundary value problem(
eα(t,x) u′(t,x)

)′
= 1, t ∈ [−1, 1]

u(−1,x) = 0, u′(1,x) = 0,

(3.55)

where the parameters x ∈ R10 characterize the boundary value problem through α. This coefficient

is defined by

α(t,x) =
m∑
i=1

λ
1/2
i ψi(t)xi, (3.56)

where λi and ψi(t) are the eigenvalue and eigenfunction of the kernel k(s, t) = σ2e−
|s−t|
2` . The

parameters σ and ` represent the scaling and correlation length of the kernel. By tuning these
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parameters, we can control the difficulty in numerically approximating (3.55). For this study, we

use σ = 1 and ` = 0.5. We approximate u(t,x) using an M -point numerical discretization over the

domain t ∈ [−1, 1] [19]. For this problem, u(1,x) is the scalar-valued output of interest,

y = f(x) = u(1,x). (3.57)

The inputs are uniformly distributed over the [−1, 1]10 hypercube.

Figure 3.5 contains the one- and two-dimensional shadow plots for (3.57). These plots show

reasonable low-dimensional structure and provide some insight into the structure of f(x). For this

problem, we are more interested in studying how refining the mesh for the numerical approximation

of (3.55) affects the ridge approximation. Figure 3.6 contains plots of SIR and SAVE subspace

distances for (3.57) against the numerical discretization used to solve (3.55). To perform Algorithms

1 and 2, we use the same set of 10,000 randomly sampled parameters xi ∼ U([−1, 1]10) for all

discretization. This ensures that the numerical approximation of (3.55) is the only factor varying

the approximation of the central subspace. For both SIR and SAVE, the approximation of the

central subspace is improved by refining the numerical discretization. For a sufficiently refined

discretization, we expect the dominant subspaces errors to be caused by the numerical method

used to uncover the ridge directions.

3.3.4 Hartmann problem

The following study steps in the direction of using SIR and SAVE for parameter space di-

mension reduction in a physics-based model. We use the Hartmann problem from Chapter 2.

See Section 2.3.1 and Figure 2.1 for details on the Hartmann problem. We use the same (log-

transformed) inputs and input probability measure as in Chapter 2. Recall that the Hartmann

problem considered two useful outputs: (i) the induced magnetic field Bind (see Equation 2.37) and

(ii) the average flow velocity uavg (see Equation 2.36). In this section, we study and analyze the

SIR and SAVE algorithms for Bind. For completeness, we then include plots showing the results

of the same studies applied to uavg. It should be noted that the theory in the paper requires that
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Figure 3.5: One- and two-dimensional shadow plots of the output from the ODE in (3.57).
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Figure 3.6: Subspace errors as a function of the discretization used to solve the ODE in (3.55).

the input density be elliptically symmetric. This does not hold in this case where we are applying

uniform densities; however, the results are still useful from the standpoint of evaluating SIR and

SAVE as heuristic methods for ridge approximation.

Figure 3.7 shows the results of applying SIR (Algorithm 1) to the Hartmann problem for

the induced magnetic field Bind using N = 106 randomly drawn samples. The eigenvalues of ĈSIR

from (3.13) with bootstrap ranges are shown in Figure 3.7a. Large gaps appear after the first and

second eigenvalues, which indicates possible two-dimensional ridge structure. Figures 3.7c and 3.7d

contain one- and two-dimensional shadow plots of Bind against ŵ>1 x and ŵ>2 x, where ŵ1 and ŵ2
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are the first two eigenvectors of ĈSIR. We see a strong one-dimensional relationship in terms of

ŵ>1 x, but there is some slight curvature with changes in ŵ>2 x. These results suggest that SIR may

provide a heuristic approach to ridge approximation as well. Figure 3.7b shows the subspace errors

as a function of the subspace dimension. Recall from Theorem 5 that the subspace error depends

inversely on the eigenvalue gap. The largest eigenvalue gap occurs between the first and second

eigenvalues, which is consistent with the smallest subspace error for n = 1.
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Figure 3.7: Eigenvalues, estimated subspace errors, and shadow plots for SIR (Algorithm 1) applied
to Bind.
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We perform the same numerical studies using SAVE (Algorithm 2). Figure 3.8a shows the

eigenvalues of the ĈSAVE from (3.22) for the induced magnetic field Bind from (2.37). Note the

large gaps after the first and second eigenvalues. These gaps are consistent with the subspace errors

in Figure 3.8b, where the one- and two-dimensional subspace estimates have the smallest errors.

Figures 3.8c and 3.8d contain shadow plots for ŵ>1 x and ŵ>2 x, where ŵ1 and ŵ2 are the first two

eigenvectors from ĈSAVE in (3.22).
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Figure 3.8: Eigenvalues, estimated subspace errors, and shadow plots for SAVE (Algorithm 2)
applied to Bind.
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For completeness, we include the same results from Algorithms 1 and 2 applied to the average

flow velocity at the end of this section. The results are similar to those from Figures 3.7 and 3.8,

and the interpretations of these results are the same as discussed above.

Lastly, we study how well the SIR and SAVE algorithms perform in finding ridge structure

in the Hartmann problem. We use the expected conditional variance from (1.10) normalized by

the total variance of the output as a metric for the amount of variation capture by the computed

ridge directions. Equation (1.10) is approximated in the same way as in the comparable study from

Section 2.3.1. We draw 10,000 random samples according to πx and transform these samples into

n-dimensional space via A>x. Then at each of these points, we use a hit-and-run algorithm to

draw 1,000 conditional samples. We compute the conditional variance of each set of 1,000 samples

and then average all of the conditional variances to approximate the expected conditional variance.

The smaller this quantity, the better a given function is approximated by an n-dimensional ridge

function.

Tables 3.1 and 3.2 contain the results of this study for the ridge directions computed using the

SIR and SAVE algorithms, respectively. In each case, we see the inverse regression algorithms have

captured about 95% of the total variation in the output with just one ridge direction. We also notice

that the expected conditional variances do not decay to zero as rapidly as in Section 2.3.1. This

should be interpreted as error in the computed ridge directions. There are two likely contributions

to this error. First, the input space is weight by a uniform density over the hyperrectangle, which

violates a fundamental assumption required for SIR and SAVE to perform exact ridge recovery.

However, the ability of these algorithms to capture most of the variation in Bind and uavg supports

their use as a heuristic for ridge approximation. Second, we use a Monte Carlo approximation of

the input space, compared to the high-order tensor product quadrature used in the last chapter.

Due to the slice-based nature of the SIR and SAVE algorithms, only Monte Carlo approximations

of the input space can be used; this is an issue we address in the next chapter.
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Table 3.1: The normalized expected conditional variance from (1.10) for the ridge functions com-
puted using the SIR algorithm.

Bind Bind uavg uavg

Original inputs Log-transformed inputs Original inputs Log-transformed inputs

n = 1 8.25× 10−2 3.32× 10−2 5.99× 10−2 1.31× 10−2

n = 2 4.46× 10−2 1.92× 10−3 1.23× 10−2 7.97× 10−3

n = 3 1.54× 10−2 5.21× 10−4 3.04× 10−3 8.45× 10−5

n = 4 1.22× 10−5 5.77× 10−6 4.33× 10−8 5.59× 10−6

Table 3.2: The normalized expected conditional variance from (1.10) for the ridge functions com-
puted using the SAVE algorithm.

Bind Bind uavg uavg

Original inputs Log-transformed inputs Original inputs Log-transformed inputs

n = 1 9.15× 10−2 3.35× 10−2 5.23× 10−2 1.46× 10−2

n = 2 5.17× 10−2 2.12× 10−3 1.33× 10−2 8.05.23× 10−3

n = 3 1.42× 10−2 2.39× 10−4 1.38× 10−3 2.13× 10−4

n = 4 3.02× 10−7 5.68× 10−9 4.23× 10−7 4.29× 10−7

3.4 Summary

Seeking data-driven machine learning methods for computational science models, we inves-

tigate sufficient dimension reduction from statistical regression as a tool for subspace-based input

space dimension reduction in deterministic functions. We show that SDR is theoretically justified

as a tool for ridge recovery by proving equivalence of the dimension reduction subspace and the

ridge subspace for some deterministic y = f(x). We interpret two SDR algorithms for the ridge

recovery problem: sliced inverse regression and sliced average variance estimation. In regression,

these methods use moments of the inverse regression x|y to estimate subspaces relating to the cen-

tral subspace. In ridge recovery, we reinterpret SIR and SAVE as numerical integration methods

for estimating inverse conditional moment matrices, where the integrals are over contour sets of f .

We show that the column spaces of the conditional moment matrices are contained in the ridge

subspace, which justifies their eigenspaces as tools ridge recovery.
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Figure 3.9: Eigenvalues, estimated subspace errors, and shadow plots for SIR (Algorithm 1) applied
to uavg.
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Figure 3.10: Eigenvalues, estimated subspace errors, and shadow plots for SAVE (Algorithm 2)
applied to uavg.



Chapter 4

Gauss-Christoffel quadrature for inverse regression

In the previous chapter, we explore the connection between sufficient dimension reduction

(SDR) and ridge functions. In particular, we showed how the inverse regression algorithms sliced

inverse regression (SIR) [80] and sliced average variance estimation (SAVE) [33] address the ridge

recovery problem by computing a basis for the central subspace using statistical characteristics

of f(x). SIR and SAVE each approximate a specific matrix of expectations by slicing the out-

put space based on a given dataset. In the context of ridge recovery, these expectations become

Lebesgue integrals over the function’s range—i.e., the space of simulation outputs. Assuming the

output distributions are sufficiently smooth, the integrals can be written as Riemann integrals

against the push-forward density induced by the function and the distribution on the input space.

Then the slicing from SIR and SAVE can be interpreted as a Riemann sum approximation of

these integrals [39]. The approximation accuracy of SIR and SAVE depends on the number of

terms in the Riemann sum—i.e., the number of slices. The Riemann sum approximation acts as

an accuracy bottleneck for these algorithms; obtaining additional data or using a better design

on the input space cannot maximally improve the approximation. In this chapter, we introduce

new algorithms—Lanczos-Stieltjes inverse regression (LSIR) and Lanczos-Stieltjes average variance

estimation (LSAVE)—that improve the accuracy and convergence rates compared to slicing by em-

ploying high-order Gauss-Christoffel quadrature to approximate the integrals with respect to the

output. The new algorithms eliminate the bottleneck due to Riemann sums and place the burden

of accuracy on the input space design. Thus, LSIR and LSAVE enable the use of higher-order
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numerical integration rules on the input space such as sparse grids or tensor product quadrature

when such approaches are appropriate.

This work contains two main contributions. First, by characterizing the matrices of expec-

tations from SIR and SAVE as integrals in the context of dimension reduction for deterministic

functions, we interpret the slice-based methods as Riemann sum approximations of these integral.

We recognize that this approach produces an accuracy bottleneck on the approximation of the

matrices of expectations underlying SIR and SAVE. Second, we develop high-order quadrature

methods for these integrals that remove this accuracy bottleneck imposed by the Riemann sums on

the output space. When the input space dimension is sufficiently small and the function of interest is

sufficiently smooth so that high-order numerical integration is justified on the input space, our new

LSIR and LSAVE methods produce exponentially converging estimates of the matrices of expecta-

tions used for subspace-based dimension reduction—compared to the maximal first-order algebraic

convergence rate resulting from the slicing. When low-order, dimension-independent numerical

integration methods—e.g., simple Monte Carlo—are more appropriate due to a high input space

dimension, the LSIR and LSAVE methods perform as well as the best slice-based approaches—e.g.,

adaptive partitioning of the output space.

4.1 SIR & SAVE for deterministic functions

We briefly revisit the inverse regression methods SIR and SAVE introduced in Chapter 3

before exploring the numerical techniques we employ in the proposed algorithms. Recall from the

(1.1) that we represent a given computational model by a deterministic function that maps m

simulation inputs to a scalar-valued output,

y = f(x), x ∈ X ⊆ Rm, y ∈ F ⊆ R, (4.1)

as is the typical setup in the field of computer experiments [100, 76, 102]. Note that for this

work we specify the space of inputs and outputs by X and F , respectively. We assume that (4.1) is

accompanied by a known input probability measure πx. This probability measure, when propagated



76

forward through f(x), induces a probability measure over F , which we denote by πy. This measure

is fully determined by πx and f , but its form is assumed to be unknown.

Recall from Sections 3.1.1 and 3.1.2 that the SIR and SAVE algorithms use N random samples

{[ x>i , yi ]} (where yi = f(xi)) to approximate the underlying population matrices

CIR = Cov [E [x|y]] ,

CAVE = E
[
(I − Cov [x|y])2

]
,

(4.2)

respectively. In the context of ridge recovery, we reformulate these matrices as integrals against

probability measures,

CIR =

∫
µ(y)µ(y)> dπy(y),

CAVE =

∫
(I −Σ(y))2 dπy(y),

(4.3)

where the conditional expectation and conditional covariance are

µ(y) =

∫
x dπx|y(x),

Σ(y) =

∫
(x− µ(y)) (x− µ(y))> dπx|y(x),

(4.4)

respectively.

The integrals in (4.3) and (4.4) are difficult to approximate from the random samples since

the induced measure πy and the conditional πx|y are unknown and potentially complex. Algorithms

1 and 2 slice the range of output values to enable this approximation. Let h(y) denote the slicing

function from (3.9) and define the probability mass function

ω(r) =

∫
Jr

dπy(y), r = 0, . . . , R− 1, (4.5)

where Jr is the rth interval over the range of outputs. We can then express the slice-based matrices

CSIR and CSAVE as sums over the R slices,

CSIR =
R−1∑
r=0

ω(r)µ(r)µ(r)>,

CSAVE =
R−1∑
r=0

ω(r) (I −Σ(r))2 ,

(4.6)

where µ(r) and Σ(r) are as in (4.4) but applied to the sliced output h(y) = r.
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By expressing the various elements of SIR and SAVE as integrals, we emphasize the two

levels of approximation occurring in these algorithms: (i) approximation in terms of the number of

samples N and (ii) approximation in terms of the number of slices R. That is,

ĈSIR ≈ CSIR ≈ CIR,

ĈSAVE ≈ CSAVE ≈ CAVE.

(4.7)

Theorems 5 and 8 from Chapter 3 show that the approximation due to sampling—i.e., the leftmost

approximations in (4.7)—converge like O(N
−1/2
rmin ). From the integral perspective, the slicing ap-

proach can be interpreted as a Riemann sum approximation of the integrals in (4.3). Riemann sum

approximations estimate integrals by a finite sum. These approximations converge like R−1 for

continuous functions on compact domains, where R denotes the number of terms in the Riemann

sum [39, Chap. 2].

In the next section, we introduce several numerical tools and link them to the various ele-

ments of the SIR and SAVE algorithms discussed so far. We use these tools, including orthogonal

polynomials and numerical quadrature, in the proposed algorithms to enable approximation of CIR

and CAVE without using Riemann sums.

4.2 Orthogonal polynomials and Gauss-Christoffel quadrature

Orthogonal polynomials and numerical quadrature are fundamental to numerical analysis

and have been studied extensively; detailed discussions are available in [83, 54, 87, 63]. Our discus-

sion is based on these references, reviewing key concepts necessary to develop the new algorithms

for approximating the matrices in (4.3). We begin with the Stieltjes procedure for constructing

orthonormal polynomials with respect to a given measure. We then relate this procedure to Gauss-

Christoffel quadrature, polynomial expansions, and the Lanczos algorithm.

4.2.1 The Stieltjes procedure

The Stieltjes procedure recursively constructs a sequence of polynomials that are orthonormal

with respect to a given measure [83, Chap. 3]. Let π denote a given probability measure over R,
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and let φ, ψ : R → R be two scalar-valued functions that are square-integrable with respect to π.

The continuous inner product relative to π is

(φ, ψ)π =

∫
φ(y)ψ(y) dπ(y), (4.8)

and the induced norm is ||φ||π =
√

(φ, φ)π. Consider a sequence of polynomials {φ0, φ1, φ2, . . . }

where each φi has degree i. This sequence is orthonormal with respect to π if

(φi, φj)π = δi,j , i, j = 0, 1, 2, . . . , (4.9)

where δi,j is the Kronecker delta. Algorithm 3 contains a method for constructing such a sequence

of orthonormal polynomials with respect to π. This algorithm is known as the Stieltjes procedure

and was first introduced in [115].

Algorithm 3 Stieltjes procedure [54, Section 2.2.3.1]

Given: The probability measure π.
Assumptions: Let φ−1(y) = 0 and φ̃0(y) = 1.

(1) For i = 0, 1, 2, . . .

(i) βi = ||φ̃i(y)||π
(ii) φi(y) = φ̃i(y) / βi

(iii) αi = (y φi(y), φi(y))π

(iv) φ̃i+1(y) = (y − αi)φi(y)− βi φi−1(y)

Output: The orthonormal polynomials {φ0, φ1, φ2, . . . } and recurrence coefficients αi, βi for i =
0, 1, 2, . . . .

The last step of Algorithm 3 defines the three-term recurrence relationship for orthonormal

polynomials,

βi+1φi+1(y) = (y − αi)φi(y)− βiφi−1(y), (4.10)

for i = 0, 1, 2, . . . . Any sequence of polynomials that satisfies (4.10) is orthonormal with respect to

the given measure. If we consider the first k terms, then we can rearrange it to obtain

y φi(y) = βiφi−1(y) + αiφi(y) + βi+1φi+1(y), (4.11)

for i = 0, 1, 2, . . . , k − 1. Let

φ(y) = [φ0(y) , φ1(y) , . . . , φk−1(y) ]>. (4.12)
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We can then write (4.11) in matrix form as

yφ(y) = J φ(y) + βk φk(y) ek, (4.13)

where ek ∈ Rk is the vector of zeros with a one in the kth entry and J ∈ Rk×k is

J =



α0 β1

β1 α1 β2

. . .
. . .

. . .

βk−2 αk−2 βk−1

βk−1 αk−1


, (4.14)

where αi, βi are the recurrence coefficients from Algorithm 3. This matrix—known as the Jacobi

matrix—is symmetric and tridiagonal. Let the eigendecomposition of J be

J = QΛQ>. (4.15)

From (4.13), the eigenvalues of J , denoted by λi, i = 0, . . . , k − 1, are the zeros of the degree-

k polynomial φk(y). Furthermore, the eigenvector associated with λi is φ(λi). We assume the

eigenvectors of J are normalized such that Q is an orthogonal matrix with entries

(Q)i+1,j+1 =
φi(λj)

||φ(λj)||2
, i, j = 0, . . . , k − 1, (4.16)

where || · ||2 is the vector 2-norm.

We end this section with brief a note about Fourier expansion of functions in terms of or-

thonormal polynomials. If a given function g(y) is square integrable with respect to π, then g

admits a mean-squared convergent Fourier series in terms of the orthonormal polynomials,

g(y) =

∞∑
i=0

gi φi(y), (4.17)

for y in the support of π and where equality is in the L2(π) sense. By orthogonality of the

polynomials, the Fourier coefficients gi are

gi = (g, φi)π . (4.18)

This polynomial approximation plays an important role in the algorithms introduced in Section

4.3.
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4.2.2 Gauss-Christoffel quadrature

We next discuss the Gauss-Christoffel quadrature for numerical integration and show its

connection to orthonormal polynomials [83, Chap. 3]. Given a measure π and an integrable

function g(y), a k-point quadrature rule approximates the integral of g with respect to π by a

weighted sum of g evaluated at k input values,∫
g(y) dπ(y) =

k−1∑
i=0

ωi g(λi) + rk. (4.19)

The λi’s are the quadrature nodes and the ωi’s are the associated quadrature weights. The k-

point quadrature approximation error is contained in the residual term rk. We can minimize

|rk| by choosing the quadrature nodes and weights appropriately. The nodes and weights of the

Gauss-Christoffel quadrature maximize the polynomial degree of exactness, which refers to the

highest degree polynomial that the quadrature rule exactly integrates—i.e., rk = 0. The k-point

Gauss-Christoffel quadrature rule has polynomial degree of exactness 2k − 1. Furthermore, the

Gauss-Christoffel quadrature has been shown to converge exponentially at a rate ρ−k for integrals

defined on a compact domain when the integrand is analytic [120, Chap. 19]. The base ρ > 1 relates

to the size of the function’s domain of analytical continuability. For functions with p−1 continuous

derivatives on a compact domain, the Gauss-Christoffel quadrature converges like k−(2p+1).

The Gauss-Christoffel quadrature nodes and weights depend on the given measure π. They

can be obtained through the eigendecomposition of J [65]. Recall from (4.14) that J is the matrix

of recurrence coefficients resulting from k steps of the Stieltjes procedure. The eigenvalues of J are

the zeros of the k-degree orthonormal polynomial φk(y). These zeros are the nodes of the k-point

Gauss-Christoffel quadrature rule with respect to π—i.e., φk(λi) = 0 for i = 0, . . . , k − 1. The

associated weights are the squares of the first entry of each normalized eigenvector,

ωi = (Q)2
1,i+1 =

1

||φ(λi)||22
, i = 0, . . . , k − 1. (4.20)

The Stieltjes procedure employs the inner product from (4.8) to define the recurrence co-

efficients αi, βi. In the next section, we consider the Lanczos algorithm and explore conditions
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under which it be may considered a discrete analog to the Stieltjes procedure in Section 4.2.1.

Before we make this connection, we define the discrete inner product. Let λi, ωi define an N -point

numerical integration rule with respect to π. For example, these could be the Gauss-Christoffel

quadrature nodes and weights, though they need not be. For example, we could use Monte Carlo

as a randomized numerical integration method, where the λi’s drawn randomly according to π and

ωi = 1/N for all i. The discrete inner product is the numerical approximation of the continuous

inner product,

(φ, ψ)π(N) =
N−1∑
i=0

ωi φ(λi)ψ(λi) ≈ (φ, ψ)π , (4.21)

where the “N” in π(N) denotes the number of points in the numerical integration rule used. The

discrete norm is ||φ||π(N) =
√

(φ, φ)π(N) .

The pseudospectral expansion approximates the Fourier expansion from (4.17) by truncating

the series after k terms and approximating the Fourier coefficients in (4.18) using the discrete inner

product [25]. We write this series for a given square-integrable function g(y) as

g(y) ≈ ĝ(y) =
k−1∑
i=0

ĝi φi(y), (4.22)

where the pseudospectral coefficients are

ĝi = (g, φi)π(N) . (4.23)

Note that the approximation of g(y) by ĝ(y) depends on two factors: (i) the approximation accu-

racy of the first k pseudospectral coefficients and (ii) the magnitude of the trailing pseudospectral

coefficients omitted due to truncation. We can improve (i) by using a higher-order integration rule

or by increasing N . We improve (ii) by including more terms in the truncated series—that is,

increasing k. The pseudospectral approximation and this two-level convergence play an important

role in the new algorithms proposed in Section 4.3.

4.2.3 The Lanczos algorithm

The Lanczos algorithm was originally introduced as an iterative scheme for approximating

eigenvalues and eigenvectors of linear differential operators [77]. Given a symmetric N ×N matrix
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A, it constructs a symmetric, tridiagonal k×k matrix T whose eigenvalues approximate those of A.

Additionally, it produces an N × k matrix, denoted by V = [ v0 , v1 , . . . , vk−1 ] where the vi’s are

the Lanczos vectors. These vectors transform the eigenvectors of T into approximate eigenvectors

of A. Algorithm 4 contains the steps of the Lanczos algorithm. Note that the inner products and

norms in Algorithm 4 are the given by

(w,u) = w>u, ||w|| =
√

(w,w), (4.24)

for vectors w,u ∈ RN . These relate to the discrete inner products introduced in Section 4.2.2, and

we make precise connections later in this section.

After k iterations, the Lanczos algorithm yields the relationship

AV = V T + βkvke
>
k , (4.27)

where ek ∈ Rk is the vector of zeros with a one in the kth entry and V and T are as in (4.25)

and (4.26), respectively. The matrix T , similar to J in (4.14), is the Jacobi matrix [54]. The

relationship between the matrices J and T has been studied extensively [53, 50, 40].

Monte Carlo

(a)

                  Gauss-Christoffel Quadrature

(b)

Figure 4.1: The distribution functions associated with the probability measure π and the discrete
approximation π(N). Figure 4.1a constructs π(N) using a Monte Carlo integration rule with respect
to π while Figure 4.1b uses Gauss-Christoffel quadrature to construct π(N).

We are interested in the use of the Lanczos algorithm as a discrete approximation to the

Stieltjes procedure. Recall that Algorithm 3 (the Stieltjes procedure) assumes a given measure π.

Let λi, ωi be the nodes and weights for some N -point numerical integration rule with respect to π.
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Algorithm 4 Lanczos algorithm [54, Section 3.1.7.1]

Given: An N ×N symmetric matrix A.
Assumptions: Let v−1 = 0 ∈ RN and ṽ0 be an arbitrary nonzero vector of length N .

(1) For i = 0, 1 . . . , k − 1,

(i) βi = ||ṽi||
(ii) vi = ṽi / βi

(iii) αi = (Avi,vi)

(iv) ṽi+1 = (A− αiI)vi − βi−1vi−1

(2) Define

V =

v0 v1 . . . vk−1

 (4.25)

and

T =


α0 β1

β1 α1 β2

. . .
. . .

. . .

βk−2 αk−2 βk−1

βk−1 αk−1

 . (4.26)

Output: The matrix of Lanczos vectors V and the matrix of recurrence coefficients T .
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This integration rule defines a discrete approximation of π, which we denote by π(N) (see Figure

4.1). Inner products with respect to π(N) take the form of the discrete inner product in (4.21). If

we perform the Lanczos algorithm with

A =


λ0

. . .

λN−1

 , ṽ0 =


√
ω0

...

√
ωN−1

 , (4.28)

then the result is equivalent to running the Stieltjes procedure using the discrete inner product

with respect to π(N). Increasing N improves the approximation of π(N) to π. It can be shown that

the recurrence coefficients in the resulting Jacobi matrix will converge to the recurrence coefficients

related to the Stieltjes procedure with respect to π as N increases [54, Section 2.2]. In the next

section, we show how this relationship between Stieltjes and Lanczos can be used to approximate

composite functions, which is essential to understand the underpinnings of LSIR and LSAVE in

Section 4.3.

4.2.4 Composite function approximation

The connection between Algorithms 3 and 4 can be exploited for polynomial approximation

of composite functions [26]. Consider a function of the form

h(x) = g(f(x)), x ∈ X ⊆ R (4.29)

where

f : X → F ⊆ R,

g : F → G ⊆ R.
(4.30)

Assume the input space X is weighted with a given probability measure πx. This measure and f

induce a measure on F that we denote by πy. Note that the methodology described in this section

can be extended to multivariate inputs—i.e., X ⊆ Rm—through tensor product constructions and

to multivariate outputs—i.e., G ⊆ Rn—by considering each output individually. We need both of

these extensions in Section 4.3; however, we consider the scalar case here for clarity.
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The goal is to construct a pseudospectral expansion of g using orthonormal polynomials with

respect to πy and a Gauss-Christoffel quadrature rule defined over F . In Section 4.2.1, we examined

the Stieltjes procedure which constructs a sequence of orthonormal polynomials with respect to a

measure—πy in this context. In Section 4.2.2, we showed this algorithm also produces the nodes

and weights of the Gauss-Christoffel quadrature rule with respect to πy. In Section 4.2.3, we saw

how the Lanczos algorithm can be used to produce similar results for a discrete approximation to

the measure πy. All of this suggests a methodology for constructing a pseudospectral approximation

of g. However, we constructed the discrete approximation of πy in Section 4.2.3 using a numerical

integration rule. We cannot do this here since πy is unknown. We can construct an N -point

numerical integration rule on X since πx is known. Let xi, νi denote the nodes and weights for

our integration rule of choice with respect to πx. This rule defines a discrete approximation of πx,

which we write as π
(N)
x . We approximate πy by the discrete measure π

(N)
y by evaluating fi = f(xi).

We then perform the Lanczos algorithm on

A =


f0

. . .

fN−1

 , ṽ0 =



√
ν0

√
ν1

...

√
νN−1


(4.31)

to obtain the system AV = V T + βkvke
>
k .

Let the eigendecomposition of the resulting Jacobi matrix be

T = QΛQ>. (4.32)

The eigenvalues of T define the k-point Gauss-Christoffel quadrature nodes relative to π
(N)
y . We

denote these quadrature nodes by λ
(N)
i , i = 0, . . . , k− 1, where the superscript indicates that these

nodes are relative to the discrete measure π
(N)
y . From (4.16), the normalized eigenvectors of T have

the form

(Q)i+1 =
φ(N)(λ

(N)
i )

||φ(N)(λ
(N)
i )||2

, i = 0, . . . , k − 1, (4.33)
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where φ(N)(y) = [φ
(N)
0 (y) , φ

(N)
1 (y) , . . . , φ

(N)
k−1(y) ]> and φ

(N)
i (y) denotes the ith orthonormal poly-

nomial relative to π
(N)
y . The quadrature weight associated with λ

(N)
i is given by the square of the

first element of the ith normalized eigenvector,

ω
(N)
i = (Q)2

1,i+1, i = 0, . . . , k − 1. (4.34)

From Section 4.2.3 we have convergence of the quadrature nodes λ
(N)
i and weights ω

(N)
i to λi and

ωi, respectively, as N increases. In this sense, we consider these quantities to be approximations of

the quadrature nodes and weights relative to πy,

λ
(N)
i ≈ λi and ω

(N)
i ≈ ωi. (4.35)

In Section 4.4, we numerically study this approximation.

An alternative perspective on this k-point Gauss-Christoffel quadrature rule is that of a

second discrete measure π
(N,k)
y that approximates the measure π

(N)
y . That is,

π(N,k)
y ≈ π(N)

y ≈ πy. (4.36)

By taking more Lanczos iterations, we improve the leftmost approximation, and for k = N , we

have π
(N,N)
y = π

(N)
y (in exact arithmetic assuming that f0, . . . , fN−1 from (4.31) are distinct).

By increasing N (the number of points in the numerical integration rule with respect to πx), we

improve the rightmost approximation. This may be viewed as convergence of the discrete Lanczos

algorithm to the continuous Stieltjes procedure. This mirrors the two-level approximation from

(4.7). Both contain approximation over X by a chosen integration rule and approximation over F

by an integration rule resulting from the different algorithms. The key differences is in the quality

of those integration rules over F—Gauss-Christoffel quadrature in (4.36) versus Riemann sums in

(4.7).

The Lanczos vectors resulting from performing the Lanczos algorithm on (4.31) also contain

useful information [26]. The Lanczos vectors are of the form

(V )i+1,j+1 ≈
√
νi φj(fi),

i = 0, . . . , N − 1,

j = 0, . . . , k − 1,

(4.37)
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where fi = f(xi), νi is the weight associated with the node xi, and φj is the jth-degree orthonormal

polynomial with respect to πy. The approximation in (4.37) is due to the approximation of πy by

π
(N)
y and is in the same vein as the approximation in (4.35). We also numerically study this

approximation in Section 4.4.

The approximation method in [26] suggests evaluating g at the k � N quadrature nodes

obtained from the Jacobi matrix and using these evaluations to construct a pseudospectral approx-

imation. This allows for accurate estimation of g while placing a majority of the computational

cost on evaluating f instead of both f and g in (4.29). Such an approach is valuable when g is

difficult to compute relative to f . In the next section, we explain how this methodology can be

used to construct approximations to CIR and CAVE from (4.3).

4.3 Lanczos-Stieltjes methods for inverse regression

In this section, we use the tools reviewed in Section 4.2 to develop a new Lanczos-Stieltjes

approach to inverse regression methods—specifically to approximate the matrices CIR and CAVE.

This approach avoids approximating CIR and CAVE by Riemann sums (or slicing) as discussed

in Section 4.1. Instead, we use orthonormal polynomials and quadrature approximations to build

more accurate estimates of these matrices. Note that for these algorithms, we assume standardized

inputs (see Equation (1.2)) as we have been assuming throughout. We also assume that πx is such

that the inputs have finite fourth moments.

4.3.1 Lanczos-Stieltjes inverse regression (LSIR)

In Section 4.1, we showed that the SIR algorithm approximates the matrix

CIR =

∫
µ(y)µ(y)> dπy(y) (4.38)

using a sliced mapping of the output—i.e., a Riemann sum approximation. We wish to approximate

CIR without such slicing; however, the structure of µ(y) makes this difficult. Recall that the
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conditional expectation is the average of the inverse image of f(x) for a fixed value of y,

µ(y) =

∫
x dπx|y(x). (4.39)

Approximating µ(y) requires knowledge of the conditional measure πx|y, which may not be available

if f is complex. However, using the tools from Section 4.2, we can exploit composite structure in

µ(y).

The conditional expectation µ(y) is a function that maps values of y to values in Rm. Fur-

thermore, y is itself a function of x; see (4.1). Thus, the conditional expectation has composite

structure. That is, we can define the function

µx(x) = µ(f(x)), (4.40)

where (using the notation from (4.30))

f : (X ⊆ Rm)→ (F ⊆ R) ,

µ : (F ⊆ R)→ (G ⊆ Rm) .

(4.41)

Using the techniques from Section 4.2.4, we seek to construct a pseudospectral expansion of µ using

the orthogonal polynomials and Gauss-Christoffel quadrature with respect to πy.

By Jensen’s inequality,

µ(y)>µ(y) ≤
∫

x>x dπx|y(x), (4.42)

Integrating both sides of (4.42) with respect to πy,∫
µ(y)>µ(y) dπy(y) ≤

∫∫
x>x dπx|y(x) dπy(y)

=

∫
x>x dπx(x).

(4.43)

Since we assume the inputs probability measure has finite fourth moments, the right-hand side of

(4.43) is finite. This guarantees that each component of µ(y) is square integrable with respect to

πy, ensuring that µ(y) has a Fourier expansion in orthonormal polynomials with respect to πy,

µ(y) =
∞∑
i=0

µi φi(y) (4.44)
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with equality in the L2(πy) sense. The Fourier coefficients in (4.44) are

µi =

∫
µ(y)φi(y) dπy(y). (4.45)

Plugging (4.44) into (4.38),

CIR =

∫
µ(y)µ(y)> dπy(y)

=

∫ [ ∞∑
i=0

µi φi(y)

] ∞∑
j=0

µj φj(y)

> dπy(y)

=
∞∑
i=0

∞∑
j=0

µiµ
>
j

[∫
φi(y)φj(y) dπ(y)

]

=
∞∑
i=0

µiµ
>
i .

(4.46)

Thus, the CIR matrix can be computed as the sum of the outer products of Fourier coefficients

from (4.45).

We cannot compute the Fourier coefficients directly since they require knowledge of µ(y).

However, we can rewrite (4.45) as

µi =

∫
µ(y)φi(y) dπy(y)

=

∫ [∫
x dπx|y(x)

]
φi(y) dπy(y)

=

∫∫
xφi(y) dπx|y(x) dπy(y)

=

∫
xφi(f(x)) dπx(x).

(4.47)

This form of the Fourier coefficients is more amenable to numerical approximation. Since πx is

known, we can obtain an N -point integration rule with nodes xj and weights νj . We then define

the pseudospectral coefficients with respect to the N -point multivariate integration rule,

µ̂i =

N−1∑
j=0

νj xj φi(f(xj)). (4.48)

To evaluate φi at f(xj), we use the Lanczos vectors in V . Recall from (4.37) that these vectors

approximate the orthonormal polynomials from Stieltjes at f evaluated at the nodes scaled by the
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Algorithm 5 Lanczos-Stieltjes inverse regression (LSIR)

Given: The function f : Rm → R and input probability measure πx.
Assumptions: The input probability measure πx is such (1.2) holds and it have finite fourth
moments.

(1) Obtain the nodes xi and weights νi for an N -point integration rule with respect to πx.

(2) Evaluate fi = f(xi) for i = 0, . . . , N − 1.

(3) Perform k iterations of Algorithm 4 on

A =

f0

. . .

fN−1

 , ṽ0 =


√
ν0√
ν1
...√
νN−1

 (4.49)

to obtain AV = V T + ηkvke
>
k .

(4) For i = 0, . . . ,m− 1, ` = 0, . . . , k − 1,
Compute the ith component of the `th pseudospectral coefficient

(µ̂`)i+1 =
N−1∑
p=0

√
νp (xp)i+1 (V )p+1,`+1 . (4.50)

(5) For i, j = 0, . . . ,m− 1,
Compute the i, jth component of ĈIR

(
ĈIR

)
i+1,j+1

=
k−1∑
`=0

(µ̂`)i+1 (µ̂`)j+1 . (4.51)

Output: The matrix ĈIR.

square root of the associated weights. Algorithm 5 formalizes this process as the Lanczos-Stieltjes

inverse regression (LSIR) algorithm.

Algorithm 5 depends on two levels of approximation: (i) approximation due to the numerical

integration rule on X and (ii) approximation due to truncating the polynomial expansion of µ(y).

The former depends on the number N of points in the numerical integration rule over X while

the latter depends on the number k of Lanczos iterations. Performing more Lanczos iterations

includes more terms in the approximation of CIR; however, the additional terms correspond to

integrals against higher degree polynomials in (4.45). For fixed N , the quality of the pseudospectral
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approximation deteriorates as the degree of polynomial increases. Therefore, sufficiently many

points are needed to ensure quality estimates of the orthonormal polynomials of high degree. We

explore this phonomenon in Section 4.4.

To compare the computational cost of the LSIR algorithm to its slice-based counterpart, we

consider the approximate costs of the Lanczos method and the slicing procedure. Due to its origins

as an iterative procedure for approximating eigenvalues, the computational costs of the Lanczos

algorithm have been well-studied. For the diagonal matrix A ∈ RN×N , performing k iterations the

Lanczos algorithm requires O(kN) operations [64, Chap. 9]. The costs associated with the SIR

algorithm arise from sorting the outputs in order to define the slices. Sorting algorithms are known

to take an average of O(N log(N)) operations [3]. However, in practice the most significant cost

is typically the cost of the evaluations fi = f(xi)—a necessary step for both the Lanczos-Stieltjes

and the slice-based approaches.

4.3.2 Lanczos-Stieltjes average variance estimation (LSAVE)

In this section, we apply the Lanczos-Stieltjes approach from Section 4.3.1 to the CAVE

matrix to construct an alternative algorithm to the slice-based SAVE. Recall from (4.3) that

CAVE =

∫
(I −Σ(y))2 dπy(y), (4.52)

where the conditional covariance of the inverse image of f(x) for a fixed value of y is

Σ(y) =

∫
(x− µ(y)) (x− µ(y))> dπx|y(x). (4.53)

Similar to the conditional expectation, Σ(y) has composite structure due to the relationship y =

f(x) such that we can define

Σx(x) = Σ(f(x)), (4.54)

where

f : (X ⊆ Rm)→ (F ⊆ R) ,

Σ : (F ⊆ R)→
(
G ⊆ Rm×m

)
.

(4.55)
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We want to build a pseudospectral expansion of Σ with respect to πy similar to µ in Section 4.3.1.

By Jensen’s inequality,

‖Σ(y)‖2F ≤
∫ ∥∥∥(x− µ(y)) (x− µ(y))>

∥∥∥2

F
dπx|y(x). (4.56)

Integrating each side with respect to πy,∫
‖Σ(y)‖2F dπy(y)

≤
∫∫ ∥∥∥(x− µ(y)) (x− µ(y))>

∥∥∥2

F
dπx|y(x) dπy(y)

≤
∫ ∥∥∥(x− µ(f(x))) (x− µ(f(x)))>

∥∥∥2

F
dπx(x).

(4.57)

Expanding the integrand on the right-hand side produces sums and products of fourth and lower

conditional moments of the inputs. The assumption of finite fourth moments guarantees that all

of these conditional moments are finite. Thus,∫
‖Σ(y)‖2F dπy(y) < ∞, (4.58)

which implies that each component of Σ(y) is square integrable with respect to πy; therefore it has

a convergent Fourier expansion in terms of orthonormal polynomials with respect to πy,

Σ(y) =
∞∑
i=0

Σi φi(y), (4.59)

where equality is in the L2(πy) sense. The coefficients in (4.59) are

Σi =

∫
Σ(y)φi(y) dπy(y). (4.60)

Plugging (4.59) into (4.52)

CAVE =

∫
(I −Σ(y))2 dπy(y)

=

∫ (
I −

∞∑
i=0

Σi φi(y)

)2

dπy(y)

=

∫
I dπy(y)− 2

∞∑
i=0

Σi

∫
φi(y) dπy(y)

+
∞∑
i=0

∞∑
j=0

Σi Σj

∫
φi(y)φj(y) dπy(y)

= I − 2 Σ0 +
∞∑
i=0

Σ2
i .

(4.61)
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Therefore, we can computeCAVE using the Fourier coefficients of Σ(y). To simplify the computation

of Σi, we rewrite 4.60 as

Σi =

∫
Σ(y)φi(y) dπy(y)

=

∫ ∫
(x− µ(y)) (x− µ(y))> dπx|y(x)φi(y) dπy(y)

=

∫ ∫
(x− µ(y)) (x− µ(y))> φi(y) dπx|y(x) dπy(y)

=

∫
(x− µ(f(x))) (x− µ(f(x)))> φi(f(x)) dπx(x).

(4.62)

We approximate this integral using the N -point numerical integration rule with respect to πx to

obtain

Σ̂i =
N−1∑
j=0

νj (xj − µ(f(xj))) (xj − µ(f(xj)))
> φi(f(xj)). (4.63)

We again approximate φi(f(xj)) using the Lanczos vectors similar to LSIR; see (4.37). Notice that

(4.63) also depends on µ(f(xj)). To obtain these values, we compute the pseudospectral coefficients

of µ(f(x)) from (4.48) and construct its pseudospectral expansion at each xj . Algorithm 6 provides

an outline for Lanczos-Stieltjes average variance estimation (LSAVE).

Algorithm 6 contains the same two-level approximation as the LSIR algorithm. As such, it

also requires a sufficiently high-order integration rule to accurately approximate the high degree

polynomials resulting from k Lanczos iterations. In the next section, we provide numerical studies of

the LSIR and LSAVE algorithms on several test problems as well as comparisons to the traditional

SIR and SAVE algorithms.

4.4 Numerical results

In this section, we numerically study the LSIR and LSAVE algorithms. The error analysis for

estimating of the ridge directions in Chapter 3 depends on how well ĈSIR and ĈSAVE approximate

their respective population matrices. Therefore, in this section, we focus on the approximation the

population matrices by ĈIR and ĈAVE—i.e., the matrices constructed by the LSIR and LSAVE
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Algorithm 6 Lanczos-Stieltjes average variance estimation (LSAVE)

Given: The function f : Rm → R and input probability measure πx.
Assumptions: The input probability measure πx is such (1.2) holds and it have finite fourth
moments.

(1) Obtain the nodes xi and weights νi for an N -point integration rule with respect to πx.

(2) Evaluate fi = f(xi) for i = 0, . . . , N − 1.

(3) Perform k iterations of Algorithm 4 on

A =

f0

. . .

fN−1

 , ṽ0 =


√
ν0√
ν1
...√
νN−1

 (4.64)

to obtain AV = V T + ηkvke
>
k .

(4) For i = 0, . . . ,m− 1, ` = 0, . . . , k − 1,
Compute the ith component of the `th pseudospectral coefficient of µ(y)

(µ̂`)i+1 =
N−1∑
p=0

√
νp (xp)i+1 (V )p+1,`+1 . (4.65)

(5) For i = 0, . . . ,m− 1,
Compute the ith component of the pseudospectral expansion of µ(f(xp))

(µ̂(f(xp)))i+1 =
k−1∑
`=0

1
√
νp

(µ̂`)i+1 (V )p+1,`+1 . (4.66)

(6) For i, j = 0, . . . ,m− 1, ` = 0, . . . , k − 1,
Compute the i, jth component of the `th pseudospectral coefficient of Σ(y)

(
Σ̂`

)
i+1,j+1

=
N−1∑
p=0

√
νp
(
(xp)i+1 − (µ̂(f(xp)))i+1

) (
(xp)j+1 − (µ̂(f(xp)))j+1

)
(V )p+1,`+1 .

(4.67)

(7) For i, j = 0, . . . ,m− 1,
Compute the i, jth component of ĈAVE

(
ĈAVE

)
i+1,j+1

= δi,j − 2
(
Σ̂0

)
i+1,j+1

+
k−1∑
`=0

m−1∑
p=0

(
Σ̂`

)
i+1,p+1

(
Σ̂`

)
p+1,j+1

. (4.68)

Output: The matrix ĈAVE.
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algorithms. We measure this error using the Frobenius norm

‖E‖F =

 m∑
i=1

m∑
j=1

(E)2
i,j

1/2

, (4.69)

where E is the error in the approximated matrix.

4.4.1 Quadratic problem

This study examines the approximation of the Gauss-Christoffel quadrature and orthonormal

polynomials on the output space by the Lanczos algorithm as described in Section 4.2.4. These

components are central the Algorithms 5 and 6 so it is important to understand their convergence

properties. For this study, we consider the function

y = f(x) = g>x + x>Hx, x ∈ [−1, 1]3 ⊂ R3, (4.70)

where g ∈ R3 is a constant vector and H ∈ R3×3 is a constant matrix. We assume the inputs are

weighted by the uniform density over the input space X = [−1, 1]3,

dπx(x) =


1
23

dx if ||x||∞ ≤ 1,

0 dx otherwise.

(4.71)

Recall from Section 4.2.4 that we can use the Lanczos algorithm to obtain a k-point Gauss-

Christoffel quadrature rule and the first k orthonormal polynomials relative to the discrete measure

π
(N)
y . We treat these as approximations to the quadrature rule and orthonormal polynomials rela-

tive to the continuous measure πy (see (4.35) and (4.37)). In this section, we study the behavior of

these approximations for (4.70).

We use two different integration rules for this study: a tensor product Clenshaw-Curtis

quadrature rule [14] and simple Monte Carlo [94]. We do this to emphasize that approximation

accuracy of the Gauss-Christoffel quadrature rule and the orthonormal polynomials with respect

to πy depend on the quality of the integration rule chosen with respect to πx.

Recall from (4.37) that the Lanczos vectors contain evaluations of the first k (corresponding

to the number of Lanczos iterations performed) orthonormal polynomials with respect to π
(N)
y at
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the points fi = f(xi) weighted by the square root of the associated weights,
√
νi. To compare

the approximations for increasing numbers of samples, we must ensure that our integration rules

are nested. That is, the xi’s of the Nj-point integration rule must be included in the Nj+1-point

integration rule, where Nj and Nj+1 denote subsequently increasing numbers of points. We use the

Clenshaw-Curtis quadrature rule here because it is a nested quadrature rule. For Monte Carlo, we

append new independent random samples to our current set to ensure the nested structure.

First, we study convergence of the Gauss-Christoffel quadrature rule produced on the output

space F by the Lanczos algorithm. The convergence of the Jacobi matrix (4.26) to (4.14) as

the discrete approximation π
(N)
y approaches πy has been explore previous [54]; however, we are

specifically interested in the quadrature rule resulting from the eigendecomposition of the Jacobi

matrix. Recall from (4.35) that λ
(N)
i and ω

(N)
i denote the ith Gauss-Christoffel quadrature node

and weight with respect to π
(N)
y . Figure 4.2 shows the differences in the 5-point quadrature rules

with increasing samples over X ,

∣∣∣λ̂(Nj+1)
i − λ̂(Nj)

i

∣∣∣ and
∣∣∣ω̂(Nj+1)
i − ω̂(Nj)

i

∣∣∣ , (4.72)

for i = 0, . . . , 4. Using Clenshaw-Curtis quadrature rules over the input space (Figures 4.2a and

4.2b), the Gauss-Christoffel quadrature rule with respect to πy converges exponentially. In Figures

4.2c and 4.2d, we see the expected N−1/2 convergence in the Gauss-Christoffel quadrature rule

when using Monte Carlo to approximate πx. Quality estimates of the quadrature rule over the

output space F are required to produce good approximations of the CIR and CAVE using the

Lanczos-Stieltjes approach.

Next, we examine convergence of the Lanczos vectors to the orthonormal polynomials with

respect to πy. Let V (Nj) be the matrix of k Lanczos vectors resulting from performing Lanczos

with an Nj-point integration rule on the input space X with respect to πx. Define the matrix Wν =

diag
(

[
√
ν0 . . .

√
νNj−1 ]

)
, and let Ṽ (Nj) = W−1

ν V (Nj) be the matrix of orthonormal polynomials

evaluated at the fi’s (no longer scaled by the
√
νi’s). Due to the nestedness of the integration rules,

Ṽ (Nj) contains evaluations of the same k orthonormal polynomials at nested sets of fi’s as we
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(c) Node convergence with MC
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(d) Weight convergence with MC

Figure 4.2: Differences in the 5-point Gauss-Christoffel quadrature nodes λi and weights ωi resulting
the Lanczos algorithm applied to (4.70). Figures 4.2a and 4.2b contain the differences using a tensor
product Clenshaw-Curtis quadrature rules used over X , and Figures 4.2c and 4.2d use Monte Carlo
samples.

increase the number of samples. Let P ∈ RNj×Nj+1 be the matrix the removes the rows of Ṽ (Nj+1)

that do not correspond to rows in Ṽ (Nj). We write the maximum difference in the ith polynomial

for subsequent orders of the quadrature rule as

∣∣∣∣∣∣P (Ṽ (Nj+1)
)
i
−
(
Ṽ (Nj)

)
i

∣∣∣∣∣∣
∞
, (4.73)

where (·)i denotes the ith column of the given matrix for i = 0, . . . , k − 1.

Figures 4.3a and 4.3b contain plots of the maximum differences in (4.73) for increasing num-

bers of Clenshaw-Curtis points and Monte Carlo points, respectively. In both plots, higher degree

polynomials require more samples to produce accurate approximations. This is not surprising, but

it does highlight an important relationship between the numerical integration rule used with respect

to πx and the number of Lanczos iterations performed. Namely, as the number of Lanczos iter-

ations increases, more samples are required to ensure accurate approximation of the orthonormal
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polynomials (and, in turn, CIR and CAVE). Additionally, we see that the convergence rate of the

orthonormal polynomials depends on the integration rule chosen over X .
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(a) CC integration
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(b) MC integration

Figure 4.3: Maximum differences in the approximated orthonormal polynomials as the number of
quadrature points on X increases. Figure 4.3a uses a tensor product Clenshaw-Curtis quadrature
rule over the input space while Figure 4.3b uses Monte Carlo integration.

4.4.2 Hartmann problem

In this section, we study the convergence of the Lanczos-Stieltjes algorithms in terms of the

number of samples and the number of Lanczos iterations. Additionally, we compare the Lanczos-

Stieltjes approach to its slice-based counterpart. For these studies, we use the physically-motivated

Hartmann problem from Section 2.3.1. Recall that this problem has two relevant quantities of

interest: (i) the average flow velocity and (ii) the induced magnetic field. We first examine the

induced magnetic field. The plots are comparable studies on the average flow velocity are included

at the end of this section as well. Their behavior and the interpretation of the results is similar to

that of the flow velocity.

For our first study, we use tensor product Gauss-Christoffel quadrature rules on the input

space. The number of points in a tensor product rule grows exponentially with dimension, so they

are not appropriate for more than a handful of inputs. The point of this study is to emphasize and

demonstrate how the LSIR and LSAVE algorithms remove the approximation bottleneck caused by

the Riemann sums in SIR and SAVE and place the burden of accuracy on the numerical integration

rule over the input space. The results for this study are contained in Figure 4.4.
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Figure 4.4: Convergence studies for the LSIR algorithm (Figures 4.4a, 4.4b, and 4.4c) and the
LSAVE algorithm (Figures 4.4d, 4.4e, and 4.4f) on the induced magnetic field from the Hartmann
problem (see (2.37)).

Figure 4.4a demonstrates the convergence of the LSIR algorithm in terms of the number N of

Gauss-Christoffel quadrature nodes on the input space, and Figure 4.4b shows convergence in terms

of the number k of Lanczos iterations performed. These plots show the relative matrix error using

the Frobenius norm of the matrix differences between subsequent Lanczos-Stieltjes approximations

of CIR computed using increasing numbers of quadrature nodes (with k = 35 fixed) and Lanczos

iterations (with N = 235 = 6,436,343 fixed), respectively. We see a decay in these differences as we

increase N and k suggesting that the LSIR algorithm is converging.

For Figure 4.4c, we perform Algorithm 5 for N = 235 = 6,436,343 and k = 35 and treat

the resulting matrix as the “true” value of CIR. We then compute errors relative to this matrix

for various values of N and k. Figure 4.4c shows the relative error decaying as we increase both

the number of quadrature nodes and Lanczos iterations—i.e., as we move down and to the right.

Consider this plot for increasing N with k fixed—i.e., moving downward at a fixed point along

the horizontal axis. The error decays up to a point at which it remains constant. This decay
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corresponds to more accurate computation of the pseudospectral coefficients µ̂i from (4.48) by

taking more quadrature nodes. The leveling off corresponds to the point at which errors in the

coefficients are smaller than errors due to truncating the pseudospectral expansion at k (the number

of Lanczos iterations). Conversely, if we fix N and study the error as we increase k—i.e., fix a point

along the vertical axis and move right—we see the error decay until a point at which it begins to

grow again. This behavior agrees with the results from Section 4.4.1 that suggest that sufficiently

many quadrature nodes are needed to accurately estimate the high-degree polynomials associated

with large values of k. As we move right in Figure 4.4c, we are approximating higher-degree

polynomials using the Lanczos algorithm. Poor approximation of these polynomials results in an

inaccurate estimates of CIR.

Figures 4.4d and 4.4f contain the results of the same studies as above but performed on the

LSAVE algorithm (Algorithm 6). The results and interpretations are similar to those for the LSIR

algorithm.

Next, we examine how the approximated SIR and SAVE matrices from Algorithms 1 and 2,

respectively, compare to the LSIR and LSAVE approximations. Recall ĈSIR and ĈSAVE contain

two levels of approximation—one due to the number of samples N and one due to the number

of terms in the Riemann sum—i.e., the number of slices—R over the output space. We first

focus on convergence in terms of Riemann sums. Figure 4.5 compares the approximated SIR and

SAVE matrices for increasing R to their Lanczos-Stieltjes counterparts. For the Lanczos-Stieltjes

approximations—ĈIR and ĈAVE—we use N = 235 = 6,436,343 Gauss-Christoffel quadrature nodes

and k = 35 Lanczos iterations as this produces sufficiently converged matrices; see the previous

numerical study. For the SIR and SAVE algorithms, we use N = 108 samples randomly drawn

according to πx. The sliced approximations converge to their Lanczos-Stieltjes counterparts at a

rate R−1 as expected for Riemann sums [39, Chap. 2].

Lastly, we compare the slice-based algorithms SIR and SAVE to their Lanczos-Stieltjes coun-

terparts LSIR and LSAVE with Monte Carlo integration on the input space. This comparison is

the most appropriate for practical models with several input parameters, where tensor product
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Figure 4.5: A comparison of the Riemann sum approximation and the Lanczos-Stieltjes approxi-
mation of CIR (Figure 4.5a) and CAVE (Figure 4.5b) for increasing number of Riemann sums (or
slices) for the induced magnetic field. For the Lanczos-Stieltjes approximations, we used N = 235 =
6,436,343 Gauss-Christoffel quadrature nodes on X and k = 35 Lanczos iterations. For the slice-
based approximations, we used N = 108 Monte Carlo samples.

quadrature on the input space is infeasible.

We again use the Lanczos-Stieltjes algorithms with N = 235 = 6,436,343 quadrature nodes

and k = 35 Lanczos iterations as the “true” values of CIR and CAVE for computation of the

relative matrix errors. Figures 4.6a and 4.6b compare the SIR and LSIR algorithms (Algorithms 1

and 5, respectively) for increasing numbers of Monte Carlo samples. Additionally, we perform this

comparison for various values of R (the number of terms in the Riemann sum or slices) and k (the

number of Lanczos iterations) for each of the methods. We notice less variance in the LSIR plot

as a function of k than in the SIR plot as a function of R. The Lanczos-Stieltjes approach refines

the approximation over the output space such that the final approximation depends most strongly

on the chosen integration rule over the input space. That is, the issue of choosing how to slice

up the output space does not exist in the Lanczos-Stieltjes approach as the method automatically

chooses the best integration rule over F . Figure 4.6b also includes the best case error from the

SIR plot. This is the minimum error among all of the tested values of R for each value of N . The

LSIR algorithm performs approximately as well as the best case in SIR, regardless of the value of k

chosen. Figures 4.6c and 4.6d perform the same study as above comparing the SAVE and LSAVE

algorithms (Algorithms 2 and 6, respectively). The results and interpretations are similar to those
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for the SIR/LSIR study.
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Figure 4.6: A comparison of the SIR/SAVE and LSIR/LSAVE algorithms for the induced magnetic
field using Monte Carlo integration on the input space. Figures 4.6a and 4.6c show the relative
matrix errors of the SIR and SAVE algorithms, respectively, as a function of the number of samples
for various values of R (the number of slices). Figures 4.6b and 4.6d show the relative matrix errors
of the LSIR and LSAVE algorithms, respectively, as a function of the number of samples for various
values of k (the number of Lanczos iterations). These plots also show the best case results from
their slice-based counterparts for reference.

For completeness, we include the analogous plots from Figures 4.4, 4.5, and 4.6 applied to

the average flow velocity from (2.37). Qualitatively, the results of these studies are similar to those

for the induced magnetic field and the understanding and interpretation of this is the same.
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Figure 4.7: Convergence studies for the LSIR algorithm (Figures 4.7a, 4.7b, and 4.7c) and the
LSAVE algorithm (Figures 4.7d, 4.7e, and 4.7f) on the average flow velocity from the Hartmann
problem (see (2.36)).
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Figure 4.8: A comparison of the Riemann sum approximation and the Lanczos-Stieltjes approxi-
mation of CIR (Figure 4.8a) and CAVE (Figure 4.8b) for increasing number of Riemann sums (or
slices) for the average flow velocity. For the Lanczos-Stieltjes approximations, we used N = 235 =
6,436,343 Gauss-Christoffel quadrature nodes on X and k = 35 Lanczos iterations. For the slice-
based approximations, we used N = 108 Monte Carlo samples.
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Figure 4.9: A comparison of the SIR/SAVE and LSIR/LSAVE algorithms for the average flow
velocity using Monte Carlo integration on the input space. Figures 4.9a and 4.9c show the relative
matrix errors of the SIR and SAVE algorithms, respectively, as a function of the number of samples
for various values of R (the number of slices). Figures 4.9b and 4.9d show the relative matrix errors
of the LSIR and LSAVE algorithms, respectively, as a function of the number of samples for various
values of k (the number of Lanczos iterations). These plots also show the best case results from
their slice-based counterparts for reference.

4.5 Summary

In this chapter, we propose alternative approaches to the sliced inverse regression (SIR)

and sliced average variance estimation (SAVE) algorithms for approximating CIR and CAVE. The

traditional methods approximate these matrices by applying a partitioning—i.e., slicing—to the

range of output values. In the context of deterministic functions, this slice-based approach can be
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interpreted as a Riemann sum approximation of the integrals in (4.3). The proposed algorithms use

orthonormal polynomials and Gauss-Christoffel quadrature to produce high-order approximations

of CIR and CAVE. We call the new algorithms Lanczos-Stieltjes inverse regression (LSIR) and

Lanczos-Stieltjes average variance estimation (LSAVE).

We use two numerical test problems to study convergence of the Lanczos-Stieltjes algorithms

with respect to the algorithm parameters. We first examine the convergence of the approximate

quadrature and orthonormal polynomial components resulting from the Lanczos method’s discrete

approximation of the Stieltjes procedure. This study highlights the interplay between the number of

quadrature nodes on the input space and the number of Lanczos iterations. More Lanczos iterations

correspond to higher degree polynomials, which require more samples for the same accuracy. Poor

approximations of these polynomials lead to poor approximations of CIR and CAVE. We then

compare the Lanczos-Stieltjes approximations of CIR and CAVE to their slice-based counterparts.

These numerical studies emphasize a key characteristic of the Lanczos-Stieltjes approaches. Due to

the composite structure of CIR and CAVE, both the slicing approach and Lanczos-Stieltjes contain

two levels of approximation: (i) numerical integration on the input space X and (ii) approximation

on the output space F . There is a trade-off between (i) and (ii) in terms of which approximation

is the dominant source of numerical error for various choices of N and R. The Lanczos-Stieltjes

approach significantly reduces the errors due to approximation over F , placing the burden of

accuracy on the approximation over X . This enables Gauss-Christoffel quadrature on X to produce

high-order accuracy when such integration rules are appropriate—e.g., when the number of inputs

is sufficiently small. When tensor product quadrature rules are infeasible, the Lanczos-Stieltjes

approach allows Monte Carlo integration to perform as expected without significant dependence

on the approximation on the output space F .



Chapter 5

One-dimensional ridge function approximation and integration

The focus of this thesis so far has been on addressing the ridge recovery and ridge approxima-

tion problem—i.e., finding the ridge directions A for a given function. In this chapter, we introduce

an approach for constructing a polynomial approximation of the ridge profile g for a one-dimension

ridge functions. In this scenario, a single direction captures all (or most) of the variation in the

output. Such an assumption may appear restrictive; however, exploitable near-one-dimensional

structure has been identified in models for lithium ion batteries [21], car aerodynamics [93], inte-

grated hydrologic models [71], hypersonic scramjet designs [16], among others [27, 57, 34]. Recall

Figure 1.5, which contains several one-dimensional shadow plots of such structure.

For this work, we assume that the one important direction—i.e., the coefficients of the linear

combination—is known, having been computed by some method such as active subspaces from

Chapter 2 or sufficient dimension reduction from Chapters 3 and 4. By exploiting known one-

dimensional structure, we can build an approximation using exponentially fewer function evalua-

tions (which are assumed to be very expensive) than would be necessary for a comparable poly-

nomial approximation on the full-dimensional input space. Figure 5.1 illustrates this point. This

figure shows L2 approximation errors for a five-dimensional function that is a one-dimensional

ridge function. In terms of the total polynomial degree, there is no difference in performance

between building the polynomial surrogate on the full five-dimensional input space versus the one-

dimensional reduced input space. However, in terms of the number of function evaluations required

to build each approximation, exploiting the one-dimension structure in the function results in an
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exponential savings in the computational costs.
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Figure 5.1: A comparison of the cost and accuracy of the five-dimensional (in red) and the one-
dimensional (in blue) polynomial approximations for a given function.

One current approach for exploiting this structure assumes Gaussian process priors on the

one-dimensional subspace (referred to as a single-index model) and updates the posterior using

MCMC [67]. However, such approximations may converge slowly or struggle from issues related

to poor mixing. Another method for approximating one-dimensional ridge functions transforms

the reduced inputs through an empirical CDF to enable the use of Legendre polynomials, but this

mapping results in poor approximations near the boundaries of the domain [122]. The methodology

introduced in this chapter first approximates the induced density function on the reduced input

space using convolutions. We then use the Lanczos iterative method as a discrete approximation of

the Stieltjes procedure for constructing orthonormal polynomials and Gauss-Christoffel quadrature

rules with respect to arbitrary densities. This allows us to accurately fit polynomial surrogates on

the one-dimensional ridge subspace.

5.1 Background

As discussed in Chapter 1, we consider functions of the form

y = f(x), y ∈ R, x ∈ Rm, (5.1)
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and assume the input space is weighted by a given probability measure πx. This measure plays

an important role in the work presented in this chapter. Often, a relatively non-information input

measure is given, such as a multivariate Gaussian or a uniform density over the hypercube. As

we discuss later, the work in this chapter is uninteresting in the context of Gaussian distributions.

For this reason, we assume that the input space is weighted by a uniform density over the [−1, 1]m

hypercube. This density function is

p(x) =


1

2m if ||x||∞ ≤ 1,

0 otherwise.

(5.2)

Note that the methodologies presented here extend to any input probability measure, provided that

the components are independent.

As the title of this chapter suggests, we are interested in the specific case of one-dimension

ridge functions. That is

y = f(x) = g(u) (5.3)

or

y = f(x) ≈ g(u), (5.4)

where u = a>x for a ∈ Rm and g : R→ R.

5.1.1 Polynomial approximation

Assume that f is square-integrable with respect to the input measure. Then, we may express

f as a Fourier expansion in terms of orthogonal polynomials with respect to πx,

y = f(x) =

∞∑
|α|=0

fα ψα(x), (5.5)

where equality is denoted in the L2 sense [54]. The multivariate orthogonal polynomials ψα(x) are

indexed by the multi-index α ∈ Nm0 which denotes the degree of the polynomial with respect to each

of the components of x. Given the assumption x ∼ U([−1, 1]m), we can write these multivariate
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polynomials as

ψα(x) =

m∏
i=1

ψαi(xi), (5.6)

where each ψαi is the univariate Legendre polynomial of degree αi. Without loss of generality, we

also assume that the ψα are normalized so that the coefficients in (5.5) are the inner product of f

with the appropriate polynomial,

fα =

∫
f(x)ψα(x) p(x) dx. (5.7)

This method of approximation by orthogonal polynomials also appears in the uncertainty quantifi-

cation literature under the name polynomial chaos [128, 56, 132].

In practice, we may choose to compute the pseudospectral expansion of f(x) [25]. We do

this by truncating (5.5) to include only polynomials of total degree d or less and approximating

the integral in (5.7) numerically,

y = f(x) ≈
∑
|α|≤d

f̂α ψα(x), where fα ≈ f̂α =
M−1∑
j=0

ωj f(ξj)ψα(ξj), (5.8)

where ξj , ωj denote the nodes and weights of an M -point numerical integration rule—e.g., tensor

product Gauss quadrature—with respect to p.

Pseudospectral polynomial approximations can serve as quick-to-evaluate surrogates for the

original function. However, as the input dimension m grows, the cost of constructing (5.8) can

quickly increase—a total degree d polynomial in m dimensions has
(
m+d
d

)
coefficients. Recall that

we assume f(x) is (or can be well-approximated by) a one-dimensional ridge function. We can

exploit this structure to enable pseudospectral polynomial approximation.

To construct an orthogonal polynomial expansion of g(u) similar to (5.5), we must first un-

derstand the transformed input space. Recall that the full-dimensional input space is weighted with

the input probability density function p(x). The linear transform a>x induces a new probability

measure with density function q(u). Figure 5.2 shows different rotations and projections defined

by different vectors a of the three-dimensional cube [−1, 1]3 and the resulting one-dimensional

probability densities q(u).
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Figure 5.2: Different density functions q(u) induced by different vectors a ∈ R3

We address the computation q(u) in Section 5.1.2. For now, assume q(u) is known. We write

the polynomial expansion of g(u) as

y = g(u) =

∞∑
i=0

gi φi(u), where gi =

∫
g(u)φi(u) q(u) du, (5.9)

where the polynomials φi are orthonormal with respect to q. By truncating the expansion and

numerically approximating the coefficients, we obtain the pseudospectral approximation of the

ridge profile,

y = g(u) ≈
d∑
i=0

ĝi φi(u), where ĝi =

M−1∑
j=0

νj g(λj)φi(λj), (5.10)

where λj , νj define a numerical integration rule with respect to q.

Constructing the pseudospectral polynomial expansion of the one-dimensional ridge profile

g(u) significantly reduces the number of function evaluations required compared to working in the

m-dimensional space. However, (5.10) requires knowledge of the orthonormal polynomials φi and

an integration rule with respect to q. In Section 4.2, we showed how the Stieltjes algorithm can be

used to construct a sequence of orthonormal polynomials with respect to arbitrary q. Furthermore,
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we showed how the Lanczos algorithm can be used a discrete approximation of Stieltjes. We employ

these tools again here.

Let uj , υj be the nodes and weights of an N -point numerical integration rule with respect to

q(u). These nodes and weights define a discrete approximation of q(u), which we denote by q(N)(u).

Performing Algorithm 4 on

A =


u0

. . .

uN−1

 , ṽ0 =


√
υ0

...

√
υN−1

 , (5.11)

is equivalent to performing Algorithm 3 on the discrete density function q(N)(u) [26]. The recur-

rence coefficients in T from (4.26) converge to those in J from (4.14) as N goes to infinity [54].

Therefore, we can use these recurrence coefficients to produce approximations to the orthonormal

polynomials {φ0(u), φ1(u), φ2(u), . . . }. Additionally, the eigendecomposition of T provides us with

an approximate Gauss-Christoffel quadrature rule with respect to q(u).

5.1.2 Convolution of probability densities

To obtain a numerical integration rule with respect to q(u), we must first be able to ap-

proximate it. This is done using convolution of probability densities [9, Chap. 4]. Consider two

independent random variables x1 and x2 with density functions p1 and p2, respectively. The density

function of u = x1 + x2 is

q(u) = (p1 ∗ p2)(u) =

∫
p1(t) p2(u− t) dt. (5.12)

Equation (5.12) is referred to as the convolution of p1 and p2.

Recall from (5.2) that we assume the input space is weighted by a uniform density over the

hypercube, x ∼ U([−1, 1]m). By independence, we have that p(x) = p1(x1) p2(x2) . . . pm(xm) with

each

pi(xi) =


1
2 if |xi| ≤ 1,

0 otherwise.

(5.13)
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We can write the linear transform u = a>x = a1 x1 + · · · + amxm and recognize that ai xi ∼

U([−ai, ai]). Thus, we can obtain q(u) by iteratively applying convolutions to each aixi. In practice,

we approximate the integral in (5.12) using a trapezoidal rule. However, this integral is one-

dimensional and does not require us to evaluate the computational model—i.e., f(x) from (5.1), so

we can use a high density of points to approximate the convolution.

Algorithm 7 details the process of approximating q(u) using iterative convolutions. Note

that this algorithm uses the sign (·) function, which returns a vector of ±1 based on the sign of

each entry of the given vector. If ai = 0 for some i = 1, . . . ,m, then the corresponding xi has no

influence on the model output. For our purposes, we may assume that sign (0) = 1. Also note

that we define N equally-spaced points along the one-dimensional interval, where N is odd. This

requirement is an artifact of the numerical approximation of (5.12).

5.2 Methodology

The pseudospectral expansion of the ridge profile from (5.10) requires us to evaluate g(λj),

but the ridge profile is unknown. Consider the linear transformation ξj = λj a. If f(x) is an exact

ridge function, then

f(ξj) = f(λj a) = g(a>(λj a)) = g(λj a>a) = g(λj), (5.20)

since a is assumed to be normalized. Thus, we can evaluate f(ξj) in place of g(λj), provided that

ξj ∈ [−1, 1]m. To ensure we find a valid point at which to evaluate f , consider the projection of

the m-dimensional hypercube down to a one-dimensional domain via u = a>x. In general, the

endpoints of this one-dimensional interval are defined by two opposing corners of the hypercube.

The endpoints of the one-dimensional interval are

u` = a>sign (−a) and ur = a>sign (a) , (5.21)

and the corresponding corners of the hypercube are

x` = sign (−a) and xr = sign (a) . (5.22)
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Algorithm 7 Discrete convolution of densities

Given: a vector a ∈ Rm
Assumptions: x ∼ U([−1, 1]m)

(1) Find the inputs of the one-dimensional interval

u` = a>sign (−a) , ur = a>sign (a) , (5.14)

and define N (where N is odd) equally-spaced points along the interval

uj = u` + j∆u, j = 0, . . . , N − 1, (5.15)

where ∆u = (ur − u`)/(N − 1).

(2) Initialize the vector q =
[
q(u0) . . . q(uN−1)

]>
where

q(uj) =

{
1/(2 a1) if |uj | ≤ a1,

0 otherwise.
(5.16)

(3) for i = 1, . . . ,m− 1

(i) Define p =
[
p(u0) . . . p(uN−1)

]>
where

p(uj) =

{
1/(2 ai+1) if |uj | ≤ ai+1,

0 otherwise.
(5.17)

(ii) For j = 0, . . . , N − 1, define

k0 = max

{
1, j − N − 1

2
+ 1

}
,

k1 = min

{
N − 1

2
+ j + 1, N

}
,

(5.18)

and compute

qj =

k1∑
k=k0

qk pN−1
2
−j+k (5.19)

NOTE: skip any i for which ai = 0

Output: q =
[
q(u0) . . . q(uN−1)

]>

A line in m-dimensional space that connects these two corners of the hypercube is guaranteed to

be contained within the hypercube. By projecting the one-dimensional quadrature points λj onto

that line, we ensure that ξj ∈ [−1, 1]m. We do this by

ξj = (1− γj) x` + γj xr, (5.23)
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where γj = (λj − u`)/(ur − u`). Figure 5.3 illustrates this process for a three-dimensional cube.

-2 -1 0 1 2

Figure 5.3: The projection of the one-dimensional quadrature nodes λj into m-dimensional space.

Algorithm 8 outlines the steps for building a pseudospectral expansion of an exact one-

dimensional ridge function. To approximate the integral of (5.3), we recognize that

ĝ0 =

d∑
j=0

νj g(λj) ≈
∫
g(u) q(u) du =

∫
f(x) p(x) dx. (5.24)

Algorithm 8 contains two levels of approximation: (i) the discrete approximation of q(u)

using an N -point trapezoidal rule and (ii) the number d+ 1 of Lanczos iterations performed. The

number of Lanczos iterations corresponds to the number of terms in the polynomial expansion of

g and the number of Gauss-Christoffel quadrature nodes. The latter is important as this is the

number of model evaluations required to compute the pseudospectral coefficients. In general, we

should choose N � d since the approximation of q at the N trapezoidal points does not require

any function evaluations, which are typically the most expensive step.

In the case where f(x) is well-approximated by a ridge function (see (5.4)), the best L2

approximation of f by g is the expected value of the output conditioned on u = a>x [96, Chap. 8].

Thus, we want to compute g(λj) = E
[
y = f(x)|λj = a>x

]
. We write the sample approximation of

this conditional expectation as

g(λj) ≈ ĝ(λj) =
1

Mj

Mj−1∑
i=0

f(ξj,i), (5.30)
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Algorithm 8 Lanczos-Stieljes one-dimensional ridge function approximation

Given: function f : Rm → R and unit vector a ∈ Rm such that

y = f(x) = g(a>x)

for some unknown g : R→ R
Assumptions: x ∼ U([−1, 1]m) and f is square-integrable with respect to the input density p(x)

(1) Perform Algorithm 7 to obtain q =
[
q(u0) . . . q(uN−1)

]>
.

(2) Perform Algorithm 4 on

A =

u0

. . .

uN−1

 , ṽ0 =


√
q(u0)
...√

q(uN−1)

 , (5.25)

to obtain the Jacobi matrix T .

(3) Take the eigendecomposition of T ,

T = QΛQ>, (5.26)

where the eigenvalues are {λ0, λ1, . . . , λd} and the eigenvectors are normalized. Define
νj = (Q)2

1,j+1 for j = 0, . . . , d.

(4) For j = 0, . . . , d, compute

ξj = (1− γj) x` + γj xr, for γj = (λj − u`) / (ur − u`), (5.27)

where x` = sign (−a), xr = sign (a), u` = a>sign (−a), and ur = a>sign (a).

(5) Compute the pseudospectral coefficients

ĝi =
d∑
j=0

νj f(ξj)φi(λj). (5.28)

(6) Build the pseudospectral expansion

y = g(u) ≈
d∑
i=0

ĝi φi(u). (5.29)

where the Mj input values ξj,i ∈ [−1, 1]m are sampled uniformly conditioned on a>ξj,i = λj .

To compute (5.30), we use a hit-and-run type of sampling algorithm. Given some ξj,i, choose a

random (unit) direction w ∈ Rm that is orthogonal to the ridge direction a. We then pick a step
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size t ∈ [−
√
m,
√
m], where this range is used to ensure that the step size covers the maximum

possible range of the rotated [−1, 1]m hypercube. To obtain the (i + 1)th conditional sample, we

step from the previously drawn sample, ξj,i+1 = ξj,i + tw, provided that ξj,i+1 ∈ [−1, 1]m. If this

is not the case, then we choose a new random step size until a valid conditional sample is obtained.

An issue with approximating a near-1D ridge function is that the sample approximation of the

conditional expectation in (5.30) results in noisy estimates of g(λj). For this reason, constructing

an interpolating polynomial, as is constructed by Algorithm 8, may not be the best approach

given a restricted computational budget. We recommend truncating the pseudospectral polynomial

expansion further to avoid overfitting the approximation. For each Gauss-Christoffel quadrature

node λj , we have ξj,i for i = 0, . . . ,Mj − 1. Estimate the standard error in each approximation

of the conditional expectation, sj = σ̂j/
√
Mj , where σ̂j is the standard deviation of the f(ξj,i),

i = 0, . . . ,Mj−1. Assuming that g can be expressed as a polynomial expansion, we expect a decay

in the coefficients gi from (5.9) for sufficiently large i. Recall that the pseudospectral coefficients,

ĝi from (5.10), approximate the true coefficients. We suggest truncating the expansion at a degree

d̃ <= d polynomial, where |ĝi| <
∑d

j=0 sj/(d + 1) for all i > d̃. This heuristic removes terms

whose contribution to the expansion is smaller than the noise in the sample approximations ĝ(λj).

Algorithm 9 formalizes the process described here for building a pseudospectral approximation of

a near-1D ridge function.

5.3 Numerical results

In this section, we numerically study the behavior of Algorithms 8 and 9 for approximating

the ridge profile. We consider three problems here. The first is an exact one-dimensional ridge

function and the other two are approximate one-dimensional ridge functions. The last problem is

the physically-motivated Hartmann problem from Section 2.3.1.



117
Algorithm 9 Lanczos-Stieljes near-1D ridge function approximation

Given: function f : Rm → R and unit vector a ∈ Rm such that

y = f(x) ≈ g(a>x)

for some unknown g : R→ R
Assumptions: x ∼ U([−1, 1]m) and f is square-integrable with respect to the input density p(x)

(1) Perform Steps 1-3 of Algorithm 8 to obtain the Gauss-Christoffel quadrature nodes λj and
weights νj with respect to q(u).

(2) For j = 0, . . . , d,

(i) Compute

ξj,0 = (1− γj) x` + γj xr, for γj = (λj − u`) / (ur − u`), (5.31)

where x` = sign (−a), xr = sign (a), u` = a>sign (−a), and
ur = a>sign (a).

(ii) Evaluate f(ξj,0).

(iii) For i = 1, . . . ,Mj − 1,

(a) Choose a random vector w ∈ Rm with w>a = 0 and ||w||2 = 1.

(b) Choose a random value t ∈ [−
√
m,
√
m].

(c) If ||ξj,i + tw||∞ <= 1, then set ξj,i+1 = ξj,i + tw. Otherwise, repeat Step (b).

(d) Evaluate f(ξj,i+1).

(iv) Approximate the conditional expectation at the quadrature point,

g(λj) ≈ ĝ(λj) =
1

Mj

Mj−1∑
i=0

f(ξj,i) (5.32)

and the standard error sj = σ̂j/
√
Mj , where σ̂j is the standard deviation of the

f(ξj,i) for i = 0, . . . ,Mj − 1.

(3) Compute the pseudospectral coefficients

ĝi =
d∑
j=0

νj ĝ(λj)φi(λj). (5.33)

(4) Define d̃ to be the largest index such that |ĝi| <
∑d

j=0 sj/(d+ 1) for all i > d̃.

(5) Build the pseudospectral expansion

y = g(u) ≈
d̃∑
i=0

ĝi φi(u). (5.34)
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5.3.1 Exact ridge function

In this section, we numerically study the behavior of Algorithm 8 for

y = sin
(

2π (a>x)
)

+ cos
(π

2
(a>x)

)
, x ∈ R25. (5.35)

We assume x ∼ U([−1, 1]25). Notice that (5.35) is an exact one-dimensional ridge function.

Figure 5.4 contains the results from Algorithm 8 for N = 10, 000 and d = 50. The first plot

shows the one-dimensional ridge profile of (5.35) in black with the pseudospectral approximation

from Algorithm 8 given by the blue dashed line. The inverse CDF method using Gauss-Legendre

quadrature from [122] is shown in green for comparison. The absolute error of each method at each

point is shown in the second plot, and the density q(u) is in the third plot. Visually, both methods

appear to perform reasonably well in the center of the domain, where the induced density function

is relatively large. However, by examining the absolute errors of each method, we see that the

Algorithm 8 significantly outperforms the pseudospectral approximation constructed using Gauss-

Legendre quadrature. Near the endpoints, the errors in each approximation method begin to

increase, but q(u) in these regions is many orders of magnitude smaller than in the middle of the

domain.

Figure 5.4: The results of Algorithm 8 applied to (5.35). The first plot shows the true ridge profile
(in black) and the d = 50 Gauss-Christoffel (in blue) and Gauss-Legendre (in green) pseudospectral
approximations. The second plot contains the absolute error of the approximations, and the third
plot shows the density q(u).

Next, we examine the two levels of approximation in Algorithm 8 Recall that these two levels

are (i) the number N of trapezoid points used to construct the discrete approximation of q(u) and
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(ii) the number d of Lanczos iterations performed. The latter corresponds to the degree of the

polynomial expansion as well as the number of Gauss-Christoffel quadrature nodes.

Figure 5.5 contains the results of this study. The first plot shows the approximated L2 norm

of the error between f and the pseudospectral expansions for varying values of N and d. The error

appears to depend strongly on d. This is because a high-degree polynomial is required to fit the

highly-oscillatory nature of f(x). The second plot contains approximations of the integral of f(x)

using the first coefficient in the pseudospectral expansion. Here, we see a strong dependence on N .

This is because integration errors in the Gauss-Christoffel decay quickly with d. To improve the

approximation, we must improve our discrete approximation of the density q(u).
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Figure 5.5: Results from studies of the two levels of approximation in Algorithm 8 applied to (5.35).
The left plot contains L2 errors in the polynomial approximation for various values of N and d.
The right plot shows errors in the approximate integral of (5.35).

5.3.2 Approximate ridge function

In this section, we numerically study the behavior of Algorithm 9 for approximating nearly

one-dimensional ridge functions. We consider the function

y = sin
(π

5
(a>x)

)
+

1

5
cos

(
4π

5
(a>x)

)
+

1

40
x>B 1 x ∈ R25, (5.36)

where a ∈ R5 defines the ridge-like structure, B ∈ R5×24 contains an orthonormal basis for the

subspace orthogonal to a, and 1 ∈ R24 is a vector of ones. We assume x ∼ U([−1, 1]25).

Figure 5.6 shows the results of using the extension of Algorithm 8 discussed in the previous
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section to (5.36). The plot on the left is a shadow plot of evaluations of (5.36) against u = a>x.

The spread in the plot is due to variations in the 24 directions orthogonal to a. The red line is the

polynomial approximation of the ridge profile—g(u) = E
[
y = f(x)|u = a>x

]
. This is computed

using d = 11 and M = 50 total functions evaluations distributed among the 12 Gauss-Christoffel

quadrature nodes. The polynomial expansion is truncated at d̃ = 6 to avoid overfitting the noise

in the approximation of g(λj). Note that fitting a polynomial of total degree 6 in 25 dimensions

would require at least M =
(

25+6
6

)
= 736, 281 to have a well-posed problem.
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Figure 5.6: The results of the extension to Algorithm 8 applied to the approximate ridge function
(5.36). The left plot contains a show plot of f(x) along the u = a>x axis with the d = 11 polynomial
approximation on top of it. The right plot shows the density q(u)

5.3.3 Hartmann problem

In this section, we consider the physically-motivated Hartmann problem from magnetohy-

drodynamics. This problem is described in detail in Section 2.3.1, and we use the same problem

setup here.

Figure 5.7 contains the results of applying Algorithm 9 to the induced magnetic field from

(2.37). The top plot is a shadow plot of Bind against u = a>x overlaid with a polynomial ap-

proximation of the ridge profile. This approximation was constructed using d = 4 with a total

computational budget of 100 function evaluations (20 for each of the 5 quadrature nodes). The

bottom plots show the approximated relative L2 errors in polynomial approximations constructed
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on the full five-dimensional inputs space (on the left) and the one-dimensional ridge subspace (on

the right). On the full input space, we use uniformly-sampled points from the [−1, 1]5 hyper-

cube and construct the least-squares polynomial approximation using Legendre polynomials with

L2 regularization. These approximations perform poorly when the computational budget is lim-

ited and restrict our optimal choice of polynomial degree. This issue grows exponentially as the

dimension of the given function increases. The one-dimensional approximation constructed using

Algorithm 9 achieves its optimal performance with very few function evaluations. For the restricted

computational budget studied, the one-dimensional approximation outperforms its five-dimensional

counterpart. Given a larger computational budget, we would expect the full polynomial approx-

imation to perform better. This because the one-dimensional approximation is limited by the

approximation of Bind by a one-dimensional ridge function. Recall from Table 2.3 containing ap-

proximations of E
[
Var

[
f(x)

∣∣u = A>x
]]

, which we use as a global measure of the ridge structure

in f(x). From Table 2.3, the expected conditional variance in the one-dimensional ridge approxi-

mation of Bind is approximately 5.50×10−2. This corresponds to the leveling off in the accuracy of

the one-dimensional polynomial approximation. Figure 5.8 contains the results for the same study

applied to the average flow velocity uavg from (2.36). Note that the expected conditional variance

for uavg from Table 2.3 is 1.29× 10−2.

5.4 Summary

In this chapter, we introduce a novel algorithm for constructing polynomial approximations

of one-dimensional ridge functions using the Lanczos iterative method. In general, building a

polynomial surrogate of an m-dimensional function suffers from the curse of dimensionality—an

exponential increase in computational costs associated with increases in m. We also introduce an

approach to extending this algorithm to functions that are well-approximated by a one-dimensional

ridge function.

We numerically study the new algorithm on several test problems, including exact and approx-

imate ridge functions. We show that exploiting low-dimensional structure can result in exponential
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Figure 5.7: The results of applying the extension of Algorithm 8 to induced magnetic field. The
top plot is a shadow plot of Bind against u = a>x. The bottom plots show L2 errors of polynomial
approximations constructed on the full five-dimensional input space (on the left) and the one-
dimensional ridge subspace (on the right).

savings while maintaining accuracy. Additionally, we study the two-level approximation behavior

of the algorithm. The first level is a discrete approximation of the induced density function q(u).

The second level is the number Lanczos iterations performed. This corresponds to the degree of the

polynomial approximation of the ridge function as well as the number of Gauss-Christoffel quadra-

ture points. In studying the extension of the algorithm to nearly one-dimensional ridge functions,

we show that we can quickly achieve the baseline error using very few function evaluations.
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Figure 5.8: The results of applying the extension of Algorithm 8 to average flow velocity. The top
plot is a shadow plot of uavg against u = a>x. The bottom plots show L2 errors of polynomial
approximations constructed on the full five-dimensional input space (on the left) and the one-
dimensional ridge subspace (on the right).



Chapter 6

Conclusion

In this thesis, we examine several research questions related to the use of ridge functions

for dimension reduction. In general, approximation of high-dimensional functions suffers from

the curse of dimensionality—i.e., an exponential increase in computational costs resulting from

increasing input dimension. Supervised linear dimension reduction looks for directions within

the input space that are relatively more (or less) important in terms of determining the function

output. This idea is formalized by the concept of ridge functions, which reformulate the original

m-dimensional function into a function that depends on n < m linear combinations of the original

inputs. The work presented here considers the interpretation, discovery, and exploitation of this

type of low-dimensional ridge structure.

In Chapter 2, we relate dimension reduction via ridge functions to classical dimensional anal-

ysis. Dimensional analysis seeks to reduce the number of parameters in a physically-motivated

system by examining the units of the various quantities. The Buckingham Pi theorem describes

how unitless parameters are constructed via specific products of powers of the original parame-

ters. The number of unitless parameters is bounded above the number of original parameters. In

physically-motivated models, the linear combinations defined by the ridge directions relate to these

products and powers of the dimensional quantities through a log transform. This provides some

insight into why ridge structure seems to be prevalent in computational science models. We use

magnetohydrodynamics (MHD) as the physical framework for the work in this chapter. In partic-

ular, we studied the Hartmann problem (a standard problem in MHD with closed form solutions)
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and a computational model from an MHD generator.

In addition to clarifying the interpretation, this work also suggests a method for inducing

ridge structure in your model. By considering a log-transformed set of inputs, we are guaranteed

a ridge function whose dimension is bounded above by the number of unitless quantities resulting

from Buckingham Pi analysis. We also provide numerical evidence that this log transformation

may work as a heuristic for improving performance in ridge approximation.

In Chapter 3, we review a theoretical framework for discovering low-dimensional structure

in regression problems—sufficient dimension reduction (SDR). Methods for SDR, such as sliced

inverse regression (SIR) and sliced average variance estimation (SAVE), compute a basis for the

central subspace. This is done using a slice-based approximation of the inverse regression.

We show that, in the context of deterministic functions, the fundamental requirements of SDR

are equal to those of ridge functions. In this way, this work connects these two previously disjoint

fields of dimension reduction research. We explore SIR and SAVE as algorithms for ridge recovery.

These algorithms are significantly cheaper than other gradient- or optimization-based algorithms

for ridge recovery. We also examine situations where these methods may falsely indicate ridge

structure that is not present in the function. Lastly, we perform rigorous convergence analysis of

these algorithms.

Chapter 4 introduces novel algorithms for computing the underlying population matrices

of SIR and SAVE that outperform the slice-based approaches studied in Chapter 3. The new

algorithms replace the slicing of the output space by an orthonormal polynomial expansion and

Gauss-Christoffel quadrature. They employ classical algorithms from numerical analysis in a novel

way to accurately approximate the inverse conditional moments underlying the SIR and SAVE

methods. We call these algorithms Lanczos-Stieltjes inverse regression (LSIR) and Lanczos-Stieltjes

average variance estimation (LSAVE).

Numerical studies of the new LSIR and LSAVE algorithms show significant improvement

over the slice-based approach. We show that the slicing can be interpreted as a Riemann sum

approximation that acts as an accuracy bottleneck. After a point, increased sampling of the input
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space will not improve the accuracy of the methods. The new algorithms remove this bottleneck

and enable the use of higher-order numerical integration techniques. In the case of Monte Carlo

sampling (the only sampling that can be performed with the slice-based algorithms), the Lanczos-

Stieltjes methods perform at least as well as the best case of the SIR and SAVE algorithms.

Lastly, in Chapter 5, we introduce a new approach to building a polynomial approximation

of the ridge profile for one-dimensional ridge functions. The linear transformation defining a one-

dimensional ridge function induces a probability measure on the ridge subspace. In general, this

induced measure is arbitrary. We use discrete convolutions to approximate this measure and employ

several of the same Lanczos-Stieltjes techniques from Chapter 4 to build orthonormal polynomials

and high-order Gauss-Christoffel quadrature rules with respect to this measure. This methodology

is extended to approximate ridge functions by approximating the conditional expectation. This

is done using a hit-and run algorithm. Numerical studies of both exact and approximate one-

dimensional ridge functions show that we can construct accurate polynomial approximations of the

ridge profile with relatively few function evaluations
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Appendix A

Proofs

In what follows, we prove the various theorems presented in Section 3.2. We begin by intro-

ducing a lemma that will simplify this task. This lemma enables quick analysis of the asymptotic

behavior of multiple summations over complicated multi-index sets. Define the multi-index set

Kp,q(r) =

k ∈ Np+q

∣∣∣∣∣∣∣
k1, . . . kp ∈ {1, . . . , N}

and kp+1, . . . , kp+q ∈ {1, . . . , Nr}

 (A.1)

whereNr ≤ N . Let b ∈ Rp+q be a random vector and let
{
bk
}

, k = 1, . . . , N , denoteN independent

realizations of b whereN is from (A.1). Define the (p+q)-dimensional tensorBp,q(r) whose elements

are given by

Bp,q
k (r) = E

[
bk11 . . . b

kp
p b

kp+1

p+1 . . . b
kp+q

p+q

]
(A.2)

for k ∈ Kp,q(r). Note that the ki’s above do not indicate powers of bj , but rather indices. That is,

bkj denotes the jth entry of bk which is the kth realization of the random vector b. Thus,

Bp,q(r) ∈ R

p︷ ︸︸ ︷
N × · · · ×N ×

q︷ ︸︸ ︷
Nr × · · · ×Nr . (A.3)

The following lemma plays an important role in upcoming proofs.

Lemma 1. Let b ∈ Rp+q be a random vector and let
{
bk
}

, k = 1, . . . , N , denote N independent

realizations of b. Define Nr ∈ N such that p + q ≤ Nr ≤ N . Let Kp,q(r) and Bp,q(r) be defined
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according to (A.1) and (A.2), respectively. Then,∑
k∈Kp,q(r)

Bp,q
k (r) = NpN q

r E [b1] . . .E [bp]E [bp+1] . . .E [bp+q]

+O(NpN q−1
r +Np−1N q

r ).

(A.4)

Proof. Define the following subsets of Kp,q(r):

Kp,q1 (r) = {k ∈ Kp,q(r) |ki 6= kj for i, j = 1, . . . , p+ q and i 6= j } ,

Kp,q2 (r) = Kp,q(r) \ Kp,q1 (r).

(A.5)

Asymptotically, the subset Kp,q1 (r) has(
q−1∏
i=0

(Nr − i)

)p+q−1∏
j=q

(N − j)

 = NpN q
r +O(NpN q−1

r +Np−1N q
r ) (A.6)

elements. Since all of the indices are unique for any k ∈ Kp,q1 (r),

Bp,q
k (r) = E [b1] . . .E [bp]E [bp+1] . . .E [bp+q] . (A.7)

Consider the number of elements in Kp,q2 (r). By construction, any k ∈ Kp,q2 (r) must have at

least two identical indices. As N and Nr tend towards infinity, the largest subset of elements in

Kp,q2 (r) will be those with only two identical elements. There are three such cases:

Case 1:

Two of the ki’s which range from 1, . . . , N are identical and all other ki’s are unique. There are(
q−1∏
i=0

(Nr − i)

)p+q−2∏
j=q

(N − j)

 = O(Np−1N q
r ) (A.8)

such elements.

Case 2:

Two of the ki’s which range from 1, . . . , Nr are identical and all other ki’s are unique. There are(
q−2∏
i=0

(Nr − i)

)p+q−2∏
j=q−1

(N − j)

 = O(NpN q−1
r ) (A.9)

such elements.

Case 3:
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One ki which range from 1, . . . , N and one ki which ranges from 1, . . . , Nr are identical and all

other ki’s are unique. There are(
q−1∏
i=0

(Nr − i)

)p+q−2∏
j=q

(N − j)

 = O(Np−1N q
r ) (A.10)

such elements. Thus, there are O(NpN q−1
r +Np−1N q

r ) elements in Kp,q2 (r).

Therefore,∑
k∈Kp,q(r)

Bp,q
k (r) =

∑
k∈Kp,q

1 (r)

Bp,q
k (r) +

∑
k∈Kp,q

2 (r)

Bp,q
k (r)

=
(
NpN q

r +O(NpN q−1
r +Np−1N q

r )
)
E [b1] . . .E [bp]E [bp+1] . . .E [bp+q]

+O(NpN q−1
r +Np−1N q

r )

= NpN q
r E [b1] . . .E [bp]E [bp+1] . . .E [bp+q] +O(NpN q−1

r +Np−1N q
r )

(A.11)

A.1 Proof of Theorem 2

Theorem 2. Let (Ω,Σ, P ) be a probability triple. Suppose that x : Ω → Rm and y : Ω → R are

random variables related by a measurable function f : Rm → R so that y = f(x). Let A ∈ Rm×n be

a constant matrix. Then y |= x|A>x if and only if y = g(A>x) where g : Rn → R is a measurable

function.

Proof. Assume that y = f(x) = g(A>x) for some A and g, then conditional independence follows

since the value of A>x fully determines y.

Next, assume that y |= x|A>x, and note that A>x : Ω → Rn is a random vector. Consider

conditional dependence in terms of the generated σ-algebras,

σ(y) |= σ(x)|σ(A>x) (A.12)

where

σ(y) =
{
y−1(B) : B ∈ B(R)

}
,

σ(x) =
{
x−1(B) : B ∈ B(Rm)

}
,

σ(A>x) =
{

(A>x)−1(B) : B ∈ B(Rn)
}
,

(A.13)
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and B(·) is the Borel σ-algebra over the indicated domain. By (A.12),

E
[
z
∣∣∣σ(A>x)

]
= E

[
z
∣∣∣σ (σ(A>x) ∪ σ(x)

)]
(A.14)

where z : Ω→ R+ is any σ(y)-measurable random variable [97, Proposition 13, Chapter 3].

Define the partition y = y+ − y− where

y+ = f+(x) =

 f(x) if f(x) > 0

0 otherwise

,

y− = f−(x) =

 −f(x) if f(x) < 0

0 otherwise

.

(A.15)

Since y is measurable, y+ : Ω→ R+ is σ(y)-measurable [127]. Applying (A.14) to y+,

E
[
y+
∣∣∣σ(A>x)

]
= E

[
y+
∣∣∣σ (σ(A>x) ∪ σ(x)

)]
. (A.16)

The transformation A>x is B(Rn)-measurable since it is linear. Therefore, σ(A>x) ⊆ σ(x), and

(A.16) becomes

E
[
y+
∣∣∣σ(A>x)

]
= E

[
y+ |σ(x)

]
. (A.17)

By the Doob-Dynkin Lemma [97, Proposition 3, Chapter 1], y+ is σ(x)-measurable since

y+ = f+(x). Combining this with (A.17),

y+ = f+(x) = E
[
y+ |σ(x)

]
= E

[
y+
∣∣∣σ(A>x)

]
. (A.18)

This argument also applies for y− : Ω→ R+ such that

y− = f−(x) = E
[
y− |σ(x)

]
= E

[
y−
∣∣∣σ(A>x)

]
. (A.19)

Thus,

y = y+ − y−

= E
[
y+
∣∣∣σ(A>x)

]
− E

[
y−
∣∣∣σ(A>x)

]
= E

[
y+ − y−

∣∣∣σ(A>x)
]

= E
[
y
∣∣∣σ(A>x)

]
.

(A.20)
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Therefore, y is σ(A>x)-measurable, and by the Doob-Dynkin Lemma [97, Proposition 3, Chapter

1], is a function of A>x. That is,

y = g(A>x) (A.21)

where g : Rn → R is a deterministic measurable function.

A.2 Proof of Theorem 3

Theorem 3. Let f : Rm → R with input probability measure πx admit a central subspace Sf,πx, and

assume πx admits an elliptically symmetric and standardized density function. Then, colspan(CIR) ⊆

Sf,πx.

Proof. Consider the orthogonal m × m matrix

[
A B

]
where A ∈ Rm×n and B ∈ Rm×(m−n)

contain bases for Sf,πx and the orthogonal complement of Sf,πx , respectively. Decompose x into

x = Au +Bv (A.22)

where u = A>x ∈ Rn and v = B>x ∈ Rm−n.

Rewrite the conditional expectation in (3.27) as

µ(y) =

∫ [∫
x dπx|u(x)

]
dπu|y(u), (A.23)

where πx|u and πu|y are the conditional probability measures over X (u) = {x ∈ Rm : u = A>x}

and g−1(y) = {u ∈ Rn : g(u) = y}, respectively. By (A.22),

X (u) =
{

x ∈ Rm |x = Au +Bv, v ∈ Rm−n
}
. (A.24)

Let πv|u denote the conditional probability measure induced by (A.22) and πx. Since x is stan-

dardized with an elliptically symmetric density and

[
A B

]
is an orthogonal matrix, πv|u is stan-

dardized and elliptically symmetric [73, Chapter 6]. Thus,∫
x dπx|u(x) =

∫
(Au +Bv) dπv|u(v)

= Au

∫
dπv|u(v) +B

∫
v dπv|u(v)

= Au

(A.25)
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Combining (A.23) and (A.25),

µ(y) = A

∫
u dµu|y(u). (A.26)

Then, for w ∈ null(A>),

µ(y)>w =

(
A

∫
u dµu|y(u)

)>
w =

(∫
u> dµu|y(u)

)(
A>w

)
= 0. (A.27)

By (3.28), w>CIRw = 0, which implies w ∈ null(CIR). Therefore, null(A>) ⊆ null(CIR), which

implies

colspan(CIR) ⊆ colspan(A) = Sf,πx (A.28)

as required.

A.3 Proof of Theorem 4

Theorem 4. Assume that Algorithm 1 has been applied to the data set {[ x>i , yi ]}, with i =

1, . . . , N , where the xi are drawn independently according to πx and yi = f(xi) are point evaluations

of f . Then, for k = 1, . . . ,m,

E
[(
λk(CSIR)− λk(ĈSIR)

)2
]

= O(N−1
rmin

) (3.36)

where λk(·) denotes the kth eigenvalue of the given matrix.

Proof. Recall the SIR matrix from (3.32),

CSIR =

R∑
r=1

ω(r)µh(r)µh(r)>. (A.29)

Algorithm 1 computes a sample approximation of CSIR,

ĈSIR =
R∑
r=1

ω̂(r) µ̂h(r) µ̂h(r)> (A.30)

where

ω̂(r) =
Nr

N
and µ̂h(r) =

1

Nr

∑
i∈Ir

xi (A.31)
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where Ir is the set of indices for which yi ∈ Jr and Nr is the cardinality of Ir. Rewrite ω̂(r) as

ω̂(r) =
1

N

N∑
i=1

χ (yi ∈ Jr) (A.32)

where χ (yi ∈ Jr) is an indicator function that is 1 when yi ∈ Jr and 0 otherwise.

Fix r and let

ω = ω(r), ω̂ = ω̂(r), χi = χ (yi ∈ Jr) , µ = µh(r), µ̂ = µ̂h(r) (A.33)

for convenience. Assume without loss of generality that Ir = {1, . . . , Nr}.

To compute the mean squared error, we focus on the computation of a single element in

ĈSIR. To do this, we move the sample index to the superscript and let the subscript denote the

vector or matrix element. That is, we let x̂ki denote the ith element of the vector x̂k which is the

kth realization of the random vector x.

For 1 ≤ i, j ≤ m,

E [ω̂ µ̂i µ̂j ] = E

 1

N

N∑
k1=1

χk1

 1

Nr

Nr∑
k2=1

xk2i

 1

Nr

Nr∑
k3=1

xk3j


=

1

N N2
r

N∑
k1=1

Nr∑
k2,k3=1

E
[
χk1 xk2i xk3j

]
.

(A.34)

Using (A.1) and (A.2), write

E [ω̂ µ̂i µ̂j ] =
1

N N2
r

∑
k∈K1,2

B1,2
k . (A.35)

Note that we drop the argument from K1,2
k (r) and B1,2

k (r) since r is fixed.

By Lemma 1,

E [ω̂ µ̂i µ̂j ] =
1

N N2
r

∑
k∈K1,2

B1,2
k

=
1

N N2
r

[
N N2

r E [χ]E [xi]E [xj ] +O(N Nr +N2
r )
]

= E [χ]E [xi]E [xj ] +O(N−1
r )

= ω µi µj +O(N−1
r ).

(A.36)
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Consider

Var [ω̂ µ̂i µ̂j ] = E
[
(ω̂ µ̂i µ̂j)

2
]
− E [ω̂ µ̂i µ̂j ]

2 . (A.37)

To compute E
[
(ω̂ µ̂i µ̂j)

2
]
,

E
[
(ω̂ µ̂i µ̂j)

2
]

= E

 1

N

N∑
k1=1

χk1

2 1

Nr

Nr∑
k2=1

xk2i

2 1

Nr

Nr∑
k3=1

xk3j

2
=

1

N2N4
r

N∑
k1,k2=1

Nr∑
k3,k4,k5,k6=1

E
[
χk1 χk2 xk3i xk4i xk5j xk6j

]
.

(A.38)

Using (A.1) and (A.2),

E
[
(ω̂ µ̂i µ̂j)

2
]

=
1

N2N4
r

∑
k∈K2,4

B2,4
k . (A.39)

By Lemma 1,

E
[
(ω̂ µ̂i µ̂j)

2
]

=
1

N2N4
r

∑
k∈K2,4

B2,4
k

=
1

N2N4
r

[
N2N4

r E [χ]2 E [xi]
2 E [xj ]

2 +O(N2N3
r +NN4

r )
]

= E [χ]2 E [xi]
2 E [xj ]

2 +O(N−1
r )

= ω2 µ2
i µ

2
j +O(N−1

r ).

(A.40)

Thus,

Var [ω̂ µ̂i µ̂j ] = E
[
(ω̂ µ̂i µ̂j)

2
]
− E [ω̂ µ̂i µ̂j ]

2

=
(
ω2 µ2

i µ
2
j +O(N−1

r )
)
−
(
ω µi µj +O(N−1

r )
)2

= O(N−1
r ).

(A.41)

Since (A.36) and (A.41) hold for each r = 1, . . . , R,

E
[
(ĈSIR)ij

]
= (CSIR)ij +O

(
N−1
rmin

)
and Var

[
(ĈSIR)ij

]
= O

(
N−1
rmin

)
(A.42)

where Nrmin is the same from (3.35),

Nrmin = min
1≤r≤R

Nr. (A.43)
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The mean squared error for each element of ĈSIR is

MSE
[
(ĈSIR)ij

]
= Bias

[
(ĈSIR)ij

]2
+ Var

[
(ĈSIR)ij

]
=
(
E
[
(ĈSIR)ij

]
− (CSIR)ij

)2
+ Var

[
(ĈSIR)ij

]
=
(
(CSIR)ij +O

(
N−1
rmin

)
− (CSIR)ij

)2
+O

(
N−1
rmin

)
= O

(
N−1
rmin

)
.

(A.44)

Next, we examine how the element-wise mean squared error in (A.44) translates to errors in

the eigenvalue estimates. By Corollary 8.1.6 in [64],

∣∣∣λk(CSIR)− λk(ĈSIR)
∣∣∣ ≤ ||E||2 (A.45)

where E = CSIR − ĈSIR. Since || · ||2 ≤ || · ||F ,

∣∣∣λk(CSIR)− λk(ĈSIR)
∣∣∣ ≤ ||E||F . (A.46)

Squaring both sides and taking the expectation,

E
[(
λk(CSIR)− λk(ĈSIR)

)2
]
≤ E

[
||E||2F

]
. (A.47)

Consider

E
[
||E||2F

]
=

m∑
i,j=1

E
[
E2
ij

]
=

m∑
i,j=1

E
[(

(CSIR)ij − (ĈSIR)ij

)2
]

=
m∑

i,j=1

MSE
[
(ĈSIR)ij

]
. (A.48)

By (A.44),

E
[(
λk(CSIR)− λk(ĈSIR)

)2
]

= O(N−1
rmin

) (A.49)

as required.

A.4 Proof of Theorem 5

Theorem 5. Assume the same conditions from Theorem 4. Then, for sufficiently large N ,

dist
(

ran(A), ran(Â)
)

=
1

λn(CSIR)− λn+1(CSIR)
Op(N−1/2

rmin
), (3.38)

where Op denotes convergence in probability.
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Proof. Recall A, Â ∈ Rm×n contain the first n eigenvectors of CSIR and ĈSIR, respectively. Let

B, B̂ ∈ Rm×(m−n) contain the last m− n eigenvectors of each matrix.

By Corollary 8.1.11 in [64], if

||E||2 ≤
λn(CSIR)− λn+1(CSIR)

5
, (A.50)

then

dist
(

ran(A), ran(Â)
)
≤ 4

λn(CSIR)− λn+1(CSIR)
||E21||2 (A.51)

where E = CSIR− ĈSIR and E21 = B>EA. In what follows, we show that (A.50) holds with high

probability for sufficiently large N .

Theorem 2.6 from [114] states that for any τ > 0

P
(
||E||F ≤ τ

√
E
[
||E||2F

])
≥ 1− 1

τ2
. (A.52)

Choose τ∗ to be large such that 1/τ2
∗ is arbitrarily close to zero, and recognize that Nrmin →∞ as

N →∞ since ω(r) > 0 for each r = 1, . . . , R. By (A.48), there exists N∗ such that

τ∗

√
E
[
||E||2F

]
≤ λn(CSIR)− λn+1(CSIR)

5
(A.53)

when N > N∗. Combining this with (A.52),

P
(
||E||F ≤

λn(CSIR)− λn+1(CSIR)

5

)
≥ 1− 1

τ2
∗
. (A.54)

Since || · ||2 ≤ || · ||F ,

P
(
||E||2 ≤

λn(CSIR)− λn+1(CSIR)

5

)
≥ 1− 1

τ2
∗
. (A.55)

Thus, (A.50) is satisfied with probability 1− 1/τ2
∗ when N > N∗. In this case,

dist
(

ran(A), ran(Â)
)
≤ 4

λn(CSIR)− λn+1(CSIR)
||E21||2

≤ 4

λn(CSIR)− λn+1(CSIR)
||E||F

≤ 4

λn(CSIR)− λn+1(CSIR)
τ∗

√
E
[
||E||2F

]
,

(A.56)
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by Corollary 8.1.11 in [64]. Thus,

dist
(

ran(A), ran(Â)
)

=
1

λn(CSIR)− λn+1(CSIR)
Op(N−1/2

rmin
). (A.57)

A.5 Proof of Theorem 6

Theorem 6. Let f : Rm → R with input probability measure πx admit a central subspace Sf,πx,

and assume πx admits an elliptically symmetric and standardized density function. Then,

colspan(CAVE) ⊆ Sf,πx.

Proof. Consider the orthogonal m × m matrix

[
A B

]
where A ∈ Rm×n and B ∈ Rm×(m−n)

contain bases for Sf,πx and the orthogonal complement of Sf,πx , respectively. Decompose x into

x = Au +Bv (A.58)

where u = A>x ∈ Rn and v = B>x ∈ Rm−n.

Rewrite (3.40) as

Σ(y) =

∫
x x> dπx|y(x)− µ(y)µ(y)>, (A.59)

and decompose the first term of (A.59) similar to (A.23)∫
x x> dπx|y(x) =

∫ [∫
x x> dπx|u(x)

]
dπu|y(u), (A.60)

where πx|u and πu|y are the conditional probability measures over X (u) = {x ∈ Rm : u = A>x}

and g−1(y) = {u ∈ Rn : g(u) = y}, respectively. By (A.58),∫
xx> dπx|u(x) =

∫
(Au +Bv) (Au +Bv)> dπv|u(v), (A.61)

where πv|u is the conditional measure induced by (A.58) and πx over the set X (u) from (A.24).
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Expanding and simplifying (A.61),∫
xx> dπx|u(x) =

∫
(Au +Bv) (Au +Bv)> dπv|u(v)

=

∫ (
Auu>A> +Auv>B> +Bvu>A> +Bvv>B>

)
dπv|u(v)

= Auu>A>
(∫

dπv|u(v)

)
+Au

(∫
v> dπv|u(v)

)
B> . . .

+B

(∫
v dπv|u(v)

)
u>A> +B

(∫
vv> dπv|u(v)

)
B>

= Auu>A> +BB>.

(A.62)

Plugging this result into (A.60),∫
xx> dπx|y(x) =

∫ [
Auu>A> +BB>

]
dπu|y(u)

= A

(∫
uu> dπu|y(u)

)
A> +BB>.

(A.63)

For w ∈ null(A>),

Σ(y)w =

(∫
xx> dπx|y(x)

)
w − µ(y)µ(y)>w =

(∫
xx> dπx|y(x)

)
w, (A.64)

since µ(y)>w = 0 as shown in (A.27). Therefore,

Σ(y)w =

(∫
xx> dπx|y(x)

)
w

=

(
A

(∫
uu> dπu|y(u)

)
A> +BB>

)
w

= A

(∫
uu> dπu|y(u)

)(
A>w

)
+BB>w

= 0 + w

= w.

(A.65)

By (3.41), w>CAVEw = 0, which implies that w ∈ null(CAVE). Therefore, null(A>) ⊆ null(CAVE),

which implies,

colspan(CAVE) ⊆ colspan(A) = Sf,πx (A.66)

as required.
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A.6 Proof of Theorem 7

Theorem 7. Assume that Algorithm 2 has been applied to the data set {[ x>i , yi ]}, with i =

1, . . . , N , where the xi are drawn independently according to πx and yi = f(xi) are point evaluations

of f . Then, for k = 1, . . . ,m,

E
[(
λk(CSAVE)− λk(ĈSAVE)

)2
]

= O(N−1
rmin

) (3.50)

where λk(·) denotes the kth eigenvalue of the given matrix.

Proof. Algorithm 2 computes a sample approximation of (3.18),

ĈSAVE =
R∑
r=1

ω̂(r)
(
I − Σ̂h(r)

)2
, (A.67)

where

ω̂(r) =
Nr

N
and Σ̂h(r) =

1

Nr − 1

∑
i∈Ir

(xi − µ̂h(r)) (xi − µ̂h(r))> (A.68)

where Ir is the set of indices such that yi ∈ Jr, Nr is the cardinality of Ir, and µ̂h(r) is the sample

estimate of the average from (3.12). Rewrite (A.68) as

ω̂(r) =
1

N

N∑
i=1

χ (yi ∈ Jr) and Σ̂h(r) =
1

Nr − 1

∑
i∈Ir

xix
>
i −

Nr

Nr − 1
µ̂h(r)µ̂h(r)> (A.69)

Fix r and let

ω = ω(r), ω̂ = ω̂(r), χi = χ (yi ∈ Jr) ,

µ = µh(r), µ̂ = µ̂h(r), Σ = Σh(r), and Σ̂ = Σ̂h(r).

(A.70)

Assume without loss of generality that Ir = {1, . . . , Nr}.

To compute the mean squared error, we focus on the computation of a single element in

ĈSAVE. To do this, we move the sample index to the superscript and let the subscript denote the
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vector or matrix element similar to proof of Theorem 4. Thus, for 1 ≤ i, j ≤ m,

E
[
ω̂
(
δij − Σ̂ij

)2
]

= E

 1

N

N∑
k1=1

χk1

δij −
 1

Nr − 1

Nr∑
k2=1

xk2i x
k2
j . . .

−

 1

Nr

Nr∑
k3=1

xk3i

 1

Nr

Nr∑
k4=1

xk4j

2
=

δij
N

N∑
k1=1

E
[
χk1
]
− 2δij
N(Nr − 1)

N∑
k1=1

Nr∑
k2=1

E
[
χk1xk2i x

k2
j

]
. . .

+
2δij
NN2

r

N∑
k1=1

Nr∑
k2,k3=1

E
[
χk1xk2i x

k3
j

]
. . .

+
1

N(Nr − 1)2

N∑
k1=1

Nr∑
k2,k3=1

E
[
χk1xk2i x

k2
j x

k3
i x

k3
j

]
. . .

− 2

NN2
r (Nr − 1)

N∑
k1=1

Nr∑
k2,k3,k4=1

E
[
χk1xk2i x

k2
j x

k3
i x

k4
j

]
. . .

+
1

NN4
r

N∑
k1=1

Nr∑
k2,k3,k4,k5=1

E
[
χk1xk2i x

k3
j x

k4
i x

k5
j

]
.

(A.71)

Using (A.1) and (A.2)

E
[
ω̂
(
δij − Σ̂ij

)2
]

=
δij
N

N∑
k1=1

E
[
χk1
]
− 2δij
N(Nr − 1)

∑
k∈K1,1

B1,1
k . . .

+
2δij
NN2

r

∑
k∈K1,2

B1,2
k +

1

N(Nr − 1)2

∑
k∈K1,2

B1,2
k . . .

− 2

NN2
r (Nr − 1)

∑
k∈K1,3

B1,3
k +

1

NN4
r

∑
k∈K1,4

B1,4
k .

(A.72)
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By Lemma 1,

E
[
ω̂
(
δij − Σ̂ij

)2
]

=
δij
N

[N E [χ]]− 2δij
N(Nr − 1)

[NNr E [χ]E [xixj ] +O(N +Nr)] . . .

+
2δij
NN2

r

[
NN2

r E [χ]E [xi]E [xj ] +O(NNr +N2
r )
]
. . .

+
1

N(Nr − 1)2

[
NN2

r E [χ]E [xixj ]
2 +O(NNr +N2

r )
]
. . .

− 2

NN2
r (Nr − 1)

[
NN3

r E [χ]E [xixj ]E [xi]E [xj ] +O(NN2
r +N3

r )
]
. . .

+
1

NN4
r

[
NN4

r E [χ]E [xi]
2 E [xj ]

2 +O(NN3
r +N4

r )
]

= δijE [χ]− 2δijE [χ]E [xixj ] + 2δijE [χ]E [xi]E [xj ] . . .

+ E [χ]E [xixj ]
2 − 2E [χ]E [xixj ]E [xi]E [xj ] . . .

+ E [χ]E [xi]
2 E [xj ]

2 +O(N−1
r )

= E [χ] (δij − (E [xixj ]− E [xi]E [xj ]))
2 +O(N−1

r )

= ω
(
δij − Σ̂ij

)2
+O(N−1

r ).

(A.73)

Consider

Var

[
ω̂
(
δij − Σ̂ij

)2
]

= E

[(
ω̂
(
δij − Σ̂ij

)2
)2
]
− E

[
ω̂
(
δij − Σ̂ij

)2
]2

. (A.74)

To find E

[(
ω̂
(
δij − Σ̂ij

)2
)2
]

,

E

[(
ω̂
(
δij − Σ̂ij

)2
)2
]

= E

 1

N

N∑
k1=1

χk1

2δij −
 1

Nr − 1

Nr∑
k2=1

xk2i x
k2
j . . .

−

 1

Nr

Nr∑
k3=1

xk3i

 1

Nr

Nr∑
k4=1

xk4j

4 .
(A.75)

By expanding, we can rewrite (A.75) in a form which can be simplified using the tensor summation

notation from (A.1) and (A.2). We then apply Lemma 1 to simplify these summations and obtain

E

[(
ω̂
(
δij − Σ̂ij

)2
)2
]

=
(
ω (δij − Σij)

2
)2

+O(N−1
r ). (A.76)
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Thus,

Var

[
ω̂
(
δij − Σ̂ij

)2
]

= E

[(
ω̂
(
δij − Σ̂ij

)2
)2
]
− E

[
ω̂
(
δij − Σ̂ij

)2
]2

=

((
ω (δij − Σij)

2
)2

+O(N−1
r )

)
−
(
ω (δij − Σij)

2 +O(N−1
r )
)2

= O(N−1
r ).

(A.77)

Since (A.73) and (A.77) hold for each r = 1, . . . , R,

E
[
(ĈSAVE)ij

]
= (CSAVE)ij +O

(
N−1
rmin

)
, Var

[
(ĈSAVE)ij

]
= O

(
N−1
rmin

)
(A.78)

where Nrmin from (3.35) denotes the minimum number of samples in any one slice. From (A.78),

the mean squared error for a single element of the SAVE matrix is

MSE
[
(ĈSAVE)ij

]
= O(N−1

rmin
). (A.79)

Similar to the proof of Theorem 4, we use this mean squared error to obtain

E
[
||E||2F

]
= O(N−1

rmin
) (A.80)

where E = CSAVE − ĈSAVE. Combining this result with Corollary 8.1.6 in [64] yields the desired

result,

E
[(
λk(CSAVE)− λk(ĈSAVE)

)2
]

= O
(
N−1
rmin

)
. (A.81)

A.7 Proof of Theorem 8

Theorem 8. Assume the same conditions from Theorem 7. Then, for sufficiently large N ,

dist
(

ran(A), ran(Â)
)

=
1

λn(CSAVE)− λn+1(CSAVE)
Op(N−1/2

rmin
), (3.51)

where Op denotes convergence in probability.
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Proof. In the proof of Theorem 7, we showed that

E
[
||E||2F

]
= O(N−1

rmin
) (A.82)

where E = CSAVE− ĈSAVE. Given this result, the proof for Theorem 8 is identical to the proof for

Theorem 5.


