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Cer, Daniel (Ph.D., Computer Science)

Parameterizing Phrase Based Statistical Machine Translation Models: An Analytic Study

Thesis directed by Prof. James H. Martin

The goal of this dissertation is to determine the best way to train a statistical machine translation

system. I first develop a state-of-the-art machine translation system called Phrasal and then use it to examine

a wide variety of potential learning algorithms and optimization criteria and arrive at two very surprising

results. First, despite the strong intuitive appeal of more recent evaluation metrics, training to these metrics

is no better than the older traditional approach of training to BLEU. Second, the most widely used learning

algorithm for training machine translation systems, called minimum error rate training (MERT), works no

better than standard machine learning algorithms such as log-linear models. This result demonstrates that

machine translation does not require using a special purpose learning algorithm, but rather can be approached

in a manner similar to other natural language processing and machine learning tasks. These results have a

number of important implications. Contrary to existing beliefs, work on improving machine translation

evaluation metrics and then training to the improved metrics will not in itself result in improved translation

systems. Even more significantly, the widespread usage of MERT has limited the sort of models that can

be used for machine translation, as it does not scale well to large numbers of features. If it is not necessary

to use MERT to train competitive systems, machine translation can be treated similarly to any other natural

language processing task with models that include arbitrarily large feature sets.
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Chapter 1

Introduction

In this dissertation, I investigate the effectiveness of different approaches to training statistical machine

translation models. I present experimental results on the use of different optimization algorithms as well as

the benefits, disadvantages and trade-offs involved in using different training criteria. A novel approach

to training models to slower evaluation metrics is also presented. The experimental results challenge some

of the long held beliefs regarding machine translation model training, with strong implications for ongoing

research into new training criteria.

Training decoding models for statistical machine translation differs from most other machine learning

and natural language processing tasks in that there is a very close relationship between the methods used

to evaluate system performance and model learning. Most machine learning tasks are approached by first

formulating a model that can map from a set of inputs to the desired output representation. The parameters

of the model are then trained to make the desired mapping using some sensible objective function that trades

off the accuracy of the mapping over some set of training data points and how well the solution is expected

to generalize. For any given set of model parameters, the objective function assigns a single numerical score

that reflects how well the model fits the training data combined with some regularization term that prefers

simpler more general models. Learning then reduces to searching for the model parameters that achieve the

best possible score according to the objective function.

After training is completed, the quality of the resulting model is evaluated by scoring its performance

on held-out data that was excluded from training. The calculation of this score is problem specific. Problems

involving assigning appropriate category labels to each data point will often just be scored according to the
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label accuracy,
(
correct labels
total labels

)
. Problems where accuracy on rare labels is important can be evaluated

using slightly more sophisticated metrics such as the precision, recall, and F-score of some class of interest.

For most tasks, choice of evaluation metric is reasonably straightforward and is independent of the objective

function used to train the model. The objective function used during training only depends on the choice

of modeling frameworks, and task specific evaluation criteria allows the performance of different modeling

frameworks to be compared to each other.

Training machine translation models directly combines evaluation metric selection with selection of

the criterion optimized during training. Whatever criterion will be used to ultimately evaluate the model is

typically also used as the objective function that is optimized during model training. The reason machine

translation systems are trained by directly fitting evaluation metrics is due to two factors. The first is that

machine translation differs from most other machine learning and natural language tasks in that there are

typically numerous acceptable translations of any non-trivial source sentence. Due to the structure of the

machine translation system, some of these might be effectively easier for it to produce than others. Other

acceptable translations might be out of reach to the system due to a vocabulary or idiommapping between the

two languages that the system does not know about or the system’s limited capacity for reordering material

during translation. The second reason machine translation decoding models are trained by directly fitting

evaluation metrics is that early experiments suggested that this approach performed better than using more

traditional machine learning methods (Och, 2003). However, results presented in subsequent work suggest

that more mainstream learning algorithms may be competitive with exact metric fitting. Chiang et al. (2008)

demonstrates that model tuning using the MIRA algorithm performs as well as exact metric fitting. But it

is not clear whether this result is idiosyncratic to MIRA and under what conditions other popular machine

learning algorithms can be successfully used for training machine translation models.

There are, however, unique problems that arise when typical machine learning algorithms are used

to train machine translation systems. Supervised machine learning tasks involve training a model to prefer

certain correct output targets for whatever input the model is provided. For machine translation, we have cor-

rect reference translations that could be used as targets during learning. However, the existence of numerous

acceptable translations and limitations in what translations the model can produce creates a situation where
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it is not really clear what should be used as the target of learning. Using the reference translations as the

learning targets can result in the loss of over half the sentences in the training data, because the system is just

not capable of producing the reference translation. For the reference translations that it can produce, some

of them are only reachable by pathological derivations such as incorrectly translating punctuation marks or

functions works into content words and meaningful phrases (Liang et al., 2006a).

Training to an evaluation metric allows the system to produce the closest translation it can to the refer-

ence given its limitations. It also results in the system using more sensible derivations, since the derivations

it uses are selected based on how well they work for all of the sentences in the training data in which they

might be used. Such training then bridges the gap between what is in the reference translation and what

is possible given the system being trained. It also plausibly allows improvements in evaluation metrics to

improve training and the quality of the resulting translations. New evaluation metrics that broaden the set

of high scoring correct and mostly correct sentences, while still limiting the number of incorrect translations

assigned a high score, give the system more flexibility in the good translations it can try to produce. This in

turn increases the odds of it being able to learn to produce one of the better translations.

Using the system’s performance on an evaluation metric as the criterion that is maximized during

training brings with it a number of issues and challenges. The metrics used to evaluate translation systems,

such as BLEU, TER, METEOR, mWER, only examine the translations produced by the system. Small

changes in the decoding model parameters will usually not change these translations. Making small changes

then typically does not alter the score assigned to the system by the evaluation metric. However, at certain

critical points, changes in the parameter values will result in a different translation candidate receiving the

highest relative score according to the decoding model. This new translation candidate will then be supplied

to the evaluation metric, altering the evaluation score assigned to the system.

The resulting training objective being optimized can be characterized as being full of flat plateaus

with discontinuous jumps from one plateau to another. Such objective functions are more difficult to work

with since they cannot be approached by gradient descent based methods. A number of approaches are taken

within the machine translation community to optimize such a space including downhill simplex and Powell’s

method. The popular CMERT software package just uses coordinate descent with an efficient derivative-
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free line search. There is little work on systematically evaluating which of these approaches works best for

machine translation.

Training to evaluationmetrics also bringswith it the question of what evaluationmetric should be used.

Training to a specific metric should produce a system that does particularly well on that metric. However, for

this improvement to be meaningful, it must also produce translations that are actually objectively better. It is

possible to imagine training to a metric and getting a system that does a good job of maximizing whatever is

being measured by the metric, but that does so in a way that either does not improve or perhaps even harms

the actual translation quality.

For example, imagine there was a metric that simply measured howmany words were present in trans-

lations produced by the system that were also present in reference translations created by human translators.

If the system produced “The election held” and the correct translation was “The election was held on Tues-

day”, it would be rewarded with three points for matching three words in the reference. While such a metric

could be used to estimate the quality of the system’s translations, using it to train the decoding model would

likely result in a system that produces excessively long translations. The system would try to produce as

many words as possible, since the more words it produces the greater the odds that one or more of them will

match the words in the reference translation.

More sophisticatedmetrics may be harder to cheat, but training will try to exploit any and all properties

of the metric. Training to evaluation metrics makes it essential we verify that improvements in the score

achieved by maximizing a metric actually reflect true improvements in translation quality. Unfortunately,

most published work on machine translation has no or little human evaluation of the translations produced

by the system. Introducing a new feature to a system with a corresponding new parameter that can be set

during training may just allow the system to better fit the preferences of the evaluation metric used for

training without actually improving translation quality. There has been a substantial amount of work that

has examines how well the scores returned by various machine translation metrics correlate with human

judgments. However, there has been no work that examines how training to different evaluation metrics

affects the true quality of machine translations as evaluated by human judges.

Popular evaluation metrics largely examine the number and length of overlapping words that are
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present in both a machine translation and one or more reference sentences. They differ then largely in how

they go about measuring that overlap and how much variation they allow in what they consider a match.

Some metrics such as the popular BLEU score (Papineni et al., 2002) only allow exact matches between

words in the reference translation and the words in a translation being scored. Others such as TERp (Snover

et al., 2006) and METEOR (Lavie & Denkowski, 2009) allow for matches of words with similar meanings,

or even paraphrases of various multi-word expressions.

Since they perform such a superficial analysis, these metrics are fairly fast. This is a critical property

for metrics that will be used to train a system, since during training hundreds of thousands of evaluations

maybe performed. However, it is possible that such a superficial analysis handicaps training. A machine

translation system may be able to produce a translation that closely matches the meaning of a human ref-

erence translation, but that is worded quite differently than the available references. A deeper analysis of

the meaning of both sentences could reveal their similarities. But, if the wording is different enough, a sim-

ple word sequence overlap based metric will incorrectly give the translation a very low score. If there is a

choice between producing the differently worded but correct translation or an incorrect translation with more

overlapping word sequences, training to a simple overlap based metric will cause the system to prefer the

incorrect translation.

Metrics that perform a deeper analysis of the translations being evaluated do exist. For instance, the

Stanford Entailment metric scores sentences according to whether the information in the reference translation

seems to entail what is in the machine translation and vice versa. However, this metric is substantially slower

than the simpler word sequence overlap approaches, taking seconds to score each pair of sentences that it

is given. Since a very large number of evaluations need to be performed during training, slow metrics that

perform deep analysis have not been used for training machine translation systems. This is unfortunate since

such metrics could plausibly improve the translation quality in ways that are not possible with simpler more

superficial metrics. No work exists that has attempted to speed up or adapt such a metric for the purposes of

training.

This work investigates the issues involvedwith usingmachine translation evaluationmetrics to param-

eterize phrase-based statistical machine translation models as well as the use of alternative learning methods.
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It investigates different methods of searching the parameter space, the effects of using different popular eval-

uation metrics, as well as the use of the new Stanford entailment based evaluation metric that performs a

much deeper analysis of meaning than the simple surface analysis performed by most other metrics. Finally,

I examine the use of popular algorithms from the mainstream machine learning community for training ma-

chine translation models. The remainder of this chapter is organized as follows. The next section provides

a brief overview of phrase-based machine translation. After that, motivation for the work presented here is

provided. The chapter closes with a summary of prior work and an overview of the organization of the rest

of the material presented within this document.

1.1 Overview of Phrase-Based Machine Translation

Phrase-basedmachine translation systems translate a sentence f into translation e by segmenting f into

a series of phrases that are translated and rearranged to construct e. The sentence being translated is known

as the source , while the translation being constructed is called the target. As seen in figure 1.1, translations

are produced from left-to-right, with the system selecting at each time step one or more contiguous words

in the original sentence and then appending the translation of the selected material to the end of the current

partial translation.

The phrases used to construct the translation are selected from a phrase-table. Phrase-tables can con-

tain numerous entries for the phrases being translated in the source. While some entries may capture different

meanings of the source words being translated, much of the variation comes from different possible gram-

matical variations. As seen in table 1.1, an English to French phrase-table allows for the French phrase

“le budget de” to be translated as “the budget” followed by a number of different function words such as

“by”, “from”, “of”, and “on”. It also allows the translation to be prefixed by “,” “to”, or even “’s”. These

variations allow the decoder to select whatever grammatical glue is most appropriate given the reset of the

material in the sentence being translated. It also gives the decoder stylistic flexibility in being able to render

the translations as either “the budget of X” or “X’s budget”.

Since the final translated sentence is built-up one phrase at a time, constructing a good translation

requires the system to always select the correct material to translate and then choose a translation of that
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Figure 1.1: Phrase-Based Decoding: The translation is produced from left-to-right by selecting and then
translating words and phrases in the original sentence. In addition to the current partial translation, the
decoder keeps track of what material has been translated so far as well as the location of the last foreign
material that was translated.

material that not only preserves the original meaning but that also is grammatically correct given the existing

partial translation. This process is guided by a decoding model that consists of a weighted combination of

knowledge sources. Known as decoding model features, these knowledge sources can be partitioned into

three classes. The first are the translationmodel features, which score the probability that a phrase in isolation

is a good translation of a corresponding phrase in the source material. The second are language modeling

features. These features score the fluency and grammaticality of the translation being constructed. This is

typically done using n-gram language models, but there has been some work in using syntactic dependency

languagemodels (Galley&Manning, 2009). Finally, the third class of features consists of re-orderingmodels

that attempt to capture word order differences between the source and target languages.
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Source Phrase Target Phrase Plex(e |f) Plex(f |e) P(e |f) P(f |e) Phrase
Penalty

le budget de la the budget for the 0.018 0.006 0.143 0.013 2.718
le budget de la the budget of the 0.135 0.014 0.714 0.079 2.718
le budget de la to the budget of the 0.333 0.014 0.143 0.079 2.718
le budget de ’s budget , 0.25 0.017 0.010 0.022 2.718
le budget de ’s budget for 1 0.010 0.010 0.001 2.718
le budget de ’s budget 0.248 0.017 0.377 0.022 2.718
le budget de , the budget for 0.125 0.023 0.010 0.022 2.718
le budget de in its budget 0.1 0.022 0.010 0.002 2.718
le budget de its budget 0.023 0.022 0.010 0.002 2.718
le budget de tax 0.001 2.8e-6 0.010 1.2e-4 2.718
le budget de the budget by 0.2 0.023 0.010 0.010 2.718
le budget de the budget for 0.284 0.023 0.276 0.022 2.718
le budget de the budget from 0.5 0.037 0.010 0.011 2.718
le budget de the budget of 0.767 0.053 0.235 0.138 2.718
le budget de the budget on 0.25 0.014 0.010 0.012 2.718
le budget de this whole budget of 1 0.011 0.010 0.005 2.718
le budget de to the budget of 0.333 0.053 0.010 0.138 2.718

Table 1.1: Phrase Table Entries: Entries in a French to English phrase-table for le budget de and le budget
de la. The phrase-table contains both lexicalized and unlexicalized phrase translation probabilities going
from both French to English and English to French. The last column is a phrase penalty.

System Features Description
Pharaoh Language model P(e), n-gram probability of sentence e.

Translation model P(e| f ), P( f |e), Plex(e| f ), Plex( f |e), probability of
phrases in e being translated as phrases in f .

Phrase penalty Count of phrases used to produce e from f .

Word penalty Count of words in e.

Distortion penalty Measure of linear distance between phrases in e
and their counter parts in f .

Unknown word Number of untranslated words from f in e.

Moses Lexical reordering Pm( f1 f2| f1), Ps( f1 f2| f1),Pd( f1 f2| f1),
Pm( f1 f2| f2), Ps( f1 f2| f2). Pd( f1 f2| f2),
Probability of adjacent phrases in f being either
monotone (m), swapped (s), and
non-adjacent/discontinuous (d) in e.

Table 1.2: Machine Translation Feature Sets: Common decoding model features, grouped by the transla-
tion software packages that led to their widespread usage.
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Table 1.2 illustrates the features commonly used in modern phrase-based machine translation systems

to guide the selection and translation of material from the original sentence. Older translation systems based

on the Pharaoh software package have a total of nine features: a language model score, 4 translation model

scores, a phrase count, a target word count, a distortion penalty, and an unknown word penalty. Model

weights are learned for only eight of these features, as the unknown word feature is assumed to have a

weight of 1. The Moses software package adds support for six additional features that model the reordering

of phrases in e from their relative locations in f . The Phrasal decoder used for my experiments supports the

Pharaoh features, the additional lexical reordering features introduced byMoses, and a hierarchical extension

of the Moses reordering features.

1.1.1 Learning Model Weights

Recall that within other applications of natural language processing and machine learning, models are

typically trained to map the input provided to the system to certain static targets. However, within machine

translation, there are typically numerous equally valid translations of any non-trivial sentence. Given the

structure of a model, certain correct translations might be easy to produce, while producing others would

require questionable translations of some of the content in the source sentence. Moreover, many models

may not even be able to generate some of the correct translations.

The training technique known asminimum error rate training (MERT) avoids target selection issues by

tuning model parameters to directly maximize the score achieved on some automated measure of translation

quality (Och, 2003). The method works by making the learning objective identical with the score produced

by the selected evaluation metric. This learning objective is piecewise constant, since the evaluation metric

only examines the highest scoring translations produced by the system and these translations will typically

not change for most small perturbations of the model weights. However, at certain critical points, the score

assigned to another translation will exceed the score of the previous best translation. At these points a new

translation is provided to the evaluation metric and the metric will likely change the score it assigns to the

system.

Producingmachine translations for any given set of model weights is a relatively slow process. Having
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a decoder translate a standard dataset used for model training can take up to an hour or more. This makes

it impractical to run the decoder for every point in parameter space that will be explored during training.

To make training tractable, learning is performed by first running the decoder and having it generate n high

scoring candidate translations for each sentence in the training data using manually set weights. These n-

best lists of candidate translations are then used by MERT to search for a new set of weights that achieves

a higher evaluation metric score when they are used to select translation hypotheses just from the n-best

lists. In this way, the n-best lists allowMERT to quickly simulate decoding using a large number of different

model parameters.

Figure 1.2: MERT Training Loop: MERT alternates between the decoder producing new n-best lists of
translations and using those n-best lists to learn new model weights. Learning is done in batches, with the
decoder translating all of the sentences in the training data before the model weights are updated by running
the learning algorithm over the new n-best lists.

The n-best lists are, however, at best only a rough approximation of what the decoder would do when

given various different parameter values. As shown in figure 1.2, this approximation can be made iteratively

more accurate by using the parameter values returned by learning over the current n-best lists to re-run the

decoder to obtain additional n-best list entries that can be then combined with those found during earlier
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decoder runs. This process continues until either the decoder returns only n-best list entries that were dis-

covered during prior iterations or the parameter values learned from one iteration to the next differ by at

most some very small value ε .

1.1.2 Progression of MERT

Say that we have a simplified decoder with three features: a language model score, a translation model

score, and linear distortion. The language model score is the log probability assigned by an n-gram language

model to the translation. The translation model score is the sum of the log probabilities assigned to the

translation of individual phrases. Linear distortion is a measure of the linear distance between the position

in the original sentence of the first word in a phrase being translated and the position in the original sentence

of the end of the phrase that was just translated.

Figure 1.3: Selecting Translations Using Model Weights: The decoder chooses the appropriate translation
of a foreign sentence according to what translation receives the highest score from the decoding model.
Learning then consists of adjusting the model weights so that the translations preferred by the decoder are
as close as possible to reference sentences produced by human translators.

Say that, during the first iteration of training, the weights for all of the features are set to 1.0. This will

cause the decoder to equally weight the model scores for the isolated translation of individual phrases, the re-

ordering of phraseswhen going from the original sentence to the translation, and the n-gram languagemodel’s
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fluency assessment of the translated sentence. Figure 1.3 gives an example of two candidate translations for

the Chinese source sentence “這 [this]間房子 [house]我 [I]喜 [like]。”. If all of the feature weights are

set to 1.0, the highest scoring candidate translation would be “This house, I like.” However, let’s say the

desired translation given in a reference sentence was “I like this house.” From the system’s perspective, the

salient differences between the two candidates are that the first one, “This house, I like”, has a lower language

model score, while the second, “I like this house”, has a higher linear distortion. MERT can use either of

these differences to adjust the system’s degree of preference for the two translations. As seen in figure

1.3, doubling the language model weight causes the second candidate to be the preferred translation. This

change would improve the score assigned to the model if it was evaluated just over its ability to discriminate

between these two sentences (i.e., effectively using one n-best list containing two items). However, to ensure

that this change in model weights actually improves the performance of the system, we would need to rerun

the decoder using the new model weights. This is to ensure that no new translation will be produced by

the decoder using the new weights that both receives a higher decoding model score and a lower evaluation

metric score than the preferred candidate, “I like this house.”

1.2 Alternatives to MERT

While MERT is the most popular method for fitting a machine translation model to an evaluation

metric, some work has been done using the margin infused relaxed algorithm (MIRA) (Chiang et al., 2009;

Chiang et al., 2008; Watanabe et al., 2007). MIRA is an online large-margin learning algorithm (Crammer &

Singer, 2003). Like other work with using discriminative learning algorithms for machine translation such as

using averaged perceptron (Liang et al., 2006a), MIRA can approximate the fitting of an evaluation metric by

using the metric to select the translations that will be used as the target of learning. However, unlike averaged

perceptron, MIRA also allows the scores provided by the evaluation metric to be incorporated as the loss

assigned to incorrect translations. While this work focuses on the use of MERT rather than MIRA, many but

not all of the same issues apply. Within chapter 6, we will see that MIRA and other discriminative learning

algorithms such as support vector machines for interdependent structured output spaces (Tsochantaridis et al.,

2004), max-margin Markov networks (Taskar et al., 2004), and conditional log-likelihood training of log
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linear models (Och & Ney, 2002) all perform similarly to MERT. Discussion will be provided when the

results obtained using MERT may potentially differ from other learning methods.

1.3 Motivation

While notmuchwork has been done on improving the parameterization ofmachine translationmodels,

recently there has been increased interest in this area. There are, however, significant gaps in the literature

such as: a comparison of different approaches to optimization; an investigation into the mapping between

the choice of evaluation metric used for training and the actual quality of the resulting system; a method for

training to more advanced but slower evaluation metrics; and a systematic comparison of MERT to other

mainstream machine learning approaches.

Given the difficulty of directly optimizing an evaluation metric score during training, it is possible

that there are dramatic performance differences between different algorithms that can be applied to the task.

Recall that the objective is not smooth since small variations in the parameter values will usually not change

the translations produced by the system and thus not affect the evaluation score. However, at certain critical

points small variations in the parameters will change one of the translations produced and the assigned eval-

uation score. This problem has been approached using typical zero-order optimization techniques such as

downhill simplex and Powell’s method. However, the performance of the different techniques has not been

systematically evaluated.

Directly fitting an evaluation metric also brings with it some risks. Most machine learning techniques

include some smoothing or regularization component to ensure the resulting model will do reasonably well

on not just the exact data that was used for training but also new unseen data. By exactly fitting an evaluation

metric, it is possible that the resulting model will achieve a high evaluation score by exploiting something

idiosyncratic about the training data and will not generally perform well. Prior work has not examined

methods for regularizing the MERT objective.

Since the introduction of MERT, it has been generally assumed that improvements in the quality of

automated evaluation metrics will directly result in improved machine translation systems (Och, 2003). Tak-

ing an automated measure that better reproduces human judgments of translation quality and then tuning a
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system to maximize the score returned by the metric seems intuitively like it should result in a system that

produces higher quality translations. Such reasoning also presumably holds for classifier based approaches

that use evaluation metrics to select examples of good and bad translations to be used for training.

In practice, most machine translation systems are trained using the BLEU score (Papineni et al., 2002),

a measure of n-gram overlap between the translation produced by the system and one or more reference

translations. The popularity of BLEU for training is due in part to BLEU’s use as the standard evaluation

metric reported when publishing research results. BLEU’s dominance was historically also due the lack of

good alternative metrics.

Recently, however, the development of improved evaluation metrics has been a very active area of

research. More recent metrics such as translation edit rate (TER) (Snover et al., 2006) and METEOR (Lavie

& Denkowski, 2009) do correlate better with human judgments than BLEU. Since the DARPA GALE1

project uses human translation edit rate (hTER) (Snover et al., 2006) to evaluate system quality, many

systems developed for GALE have been tuned to TER as an approximation of hTER. Tuning systems to

TER rather than BLEU results in systems that do achieve better TER scores. Since TER correlates better

with human judgments, such systems also presumably produce translations that would be preferred by human

judges. However, this assumption has not been explicitly tested.

Newer metrics such as METEOR and TER are being continuously enhanced. For example, an en-

hanced variant of TER, known as TER-plus (TERp), includes support for matching synonyms and para-

phrases. While METEOR has always included support for matching synonyms, newer releases have also

been extended to support paraphrase matches. These two metrics however are still fairly similar to BLEU

in that they just focus on matching sequences of words in a reference translation to sequences of words in

translations produced by a machine translation system. Matching more sequences and longer sequences will

tend to result in the system being assigned a higher evaluation score by the metric.

No existing work has examined whether training to newer evaluation metrics like METEOR and TER

actually results in better systems. By training to one of these newer metrics, it is expected that the resulting

system will do better on the new metric than a similar system trained to BLEU. However, the most critical
1 Defense Advanced Research Projects Agency: Global Autonomous Language Exploitation
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question is training to what metric results in the best translations according to humans? Similarly, it also

seems worthwhile to investigate how individual improvements in evaluation metrics affect model training.

Knowing how or if certain improvements change the resulting system behavior would help inform what

sorts of avenues for improvement are worthwhile with respect to training. For instance, recall that TER-plus

allows for matching material in the reference translations to a machine translation using a paraphrase-table.

While using a paraphrase-table improves TER-plus’ correlation with human judgments, it is possible that it

might only have a marginal impact on the quality of model training.

While there are other metrics that attempt to examine deeper structural relationships between refer-

ences and machine translations, such metrics have not been used for training due to the amount of computa-

tion that is required. For instance, the headword chain based metric (HCBM) (Liu &Gildea, 2005), measures

the syntactic similarity between two translations by matching dependency parse fragments. This allows for

better scoring of translation pairs with surface level reordering that preserves the syntactic relationships be-

tween words. However, using this metric requires dependency parse trees, which can be time consuming

to produce. Another metric, known as textual entailment evaluation (TEval) (Padó et al., 2009a), performs

an even deeper level of analysis by using a collection of linguistically informed features that assess if two

translations effectively mean the same thing. This metric is even more time consuming then HCBM since

it requires both dependency parse trees, an alignment between the trees, as well as the output of numerous

featurizers. Machine translation systems have not been tuned to such metrics since they are too slow to

compute and MERT requires a large number of evaluation metric calls during training.

Using MERT brings with it some limitations in the types of decoding models that can be trained.

For example, all of the typical optimization approaches used for MERT fail to scale well to larger numbers

of decoding model parameters. When using line search methods such as coordinate descent or Powell’s

method to train a model with n parameters, the inner loop of training involves n expensive line searches and

numerous executions of the inner training loop are needed to learn the best parameters for just a single set

of n-best lists. Similarly, using downhill simplex to optimize a decoding model with n parameters requires n

evaluation metric calls just to initialize the algorithm. Prior to convergence, simplex also requires numerous

sets of n calls to the evaluation metric being optimized. This means that while MERT can be used to optimize
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models with a dozen or so underlying parameters, it cannot be used to train models that contain millions or

even thousands of decoding model features. This is unfortunate since using large numbers of binary features

that fire for specific model states has been shown to be a very effective way of improving performance on

other natural language processing tasks.

Since MERT restricts the space of decoding models we can use, it is important to verify that it actually

is in fact a superior means of training machine translation models. When MERT was first introduced, Och

(2003) demonstrated that MERT models vastly outperformed log-linear models trained to a conditional log-

likelihood objective. However, recent work by Chiang et al. (2008) and Chiang et al. (2009) demonstrate

that not only is the MIRA algorithm actually able to obtain the same level of performance as MERT when

it is applied to a model containing a small number of features, but MIRA also is able to outperform MERT

when it is used with a model containing over ten thousand features. This result suggests we should reevaluate

whether MERT is in fact better than other mainstreammachine learning methods. No systematic comparison

exists that contrasts the performance of MERT to other popular machine learning algorithms.

In summary, prior work in this area has four significant problems. The first is that there has not been

any thorough comparison of how well different optimization methods for MERT perform. Second, while

it has been assumed that improved evaluation metrics will naturally produce better machine translations

systems when they are used during training, this hypothesis has surprisingly never been explicitly tested.

Third, many of the recently developed evaluation metrics all have a very similar character in that they still

perform scoring based on how many overlapping word sequences appear in both a machine translation and a

reference translation. Improvements in these evaluation metrics simply allow for fussier matching of seman-

tically similar words and phrases. While more advanced automated metrics exist, training to them has not

been previously explored. Finally, since recent work suggests that MERT is not a better method for training

translation decoding models than the mainstream learning algorithm known as MIRA, it seems it would be

worthwhile to reevaluate the presumed performance advantage of MERT over other popular algorithms from

the machine learning community.
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1.4 Contribution

This work explores the effectiveness of different methods for parameterizing machine translations

systems. It contrasts the effectiveness of using different approaches to optimization for MERT. It com-

pares existing methods to a new approach using randomized search directions and proposes a regularization

heuristic for MERT. Both randomized search directions and regularization are found to improve the qual-

ity of the resulting models. This work also investigates the effects of tuning to different evaluation metrics

and examines whether using improved evaluation metrics actually results in improved translation quality as

determined by humans. As expected, tuning to different evaluation metrics results in systems that do better

on the evaluation metric they were trained on than models trained to other metrics. However, it is found

that when using metrics that essentially just measure word sequence overlap, such as BLEU, TER, and ME-

TEOR, human judges show little preference for models trained to any one metric over another. A technique

for training a model to a more advanced but slower metric such as TEval is also presented. Finally, this work

examines the effectiveness of training translation models using more mainstream machine learning methods

including log-linear models, and a number of large-margin based methods.

1.5 Prior Work

Since the introduction of MERT, part of its theoretical appeal was that it allowed improvements in

evaluation metrics to improve the quality of machine translation systems. However, no work has been done

that investigates the link between evaluation metric quality and the quality of the resulting tuned machine

translation systems. Part of the reason for this is that historically there were very few MERT tools that

were publicly available. The ones that were available such as the CMERT packaged and its predecessor

written in Perl, were hard coded to optimize the BLEU evaluation metric. Since important details of the

MERT algorithm were only weakly described in Och (2003)’s original paper, research work on using new

evaluation metrics with MERT required the non-trivial overhead of building the software tools necessary to

perform optimization to the newer metrics. Similarly, this also reduced the amount of work on using different

optimization algorithms for MERT.



18

1.5.1 Z-MERT

Zaidan (2009) introduced Z-MERT as a replacement for the popular CMERTpackage. Unlike CMERT,

Z-MERT was designed to allow for pluggable evaluation metrics. Out of the box, Z-MERT supports opti-

mization to BLEU, TER, and TER-BLEU. However, adding new evaluation metrics can be done by simply

implementing an interface to the new metric using the Z-MERT API. Given the use of hTER as the official

evaluation metric for the GALE project, Z-MERT’s support of TER has made the package popular in the

machine translation community.

One drawback of the package is that it does not provide out of the box support for the popular ME-

TEOR evaluation metric nor other newer metrics or metrics of historical significance such as PER (Tillmann

et al., 1997) and m-WER (Nießen et al., 2000). The package also only provides one optimization algorithm,

based on using coordinate descent in conjunction with the optimal global line search algorithm proposed in

(Och, 2003).

1.5.2 Alternative Search Methods

Themost common approach toMERT is to optimizemodel parameters through a series of line searches

embedded in some larger search strategy such as coordinate descent or Powell’s method. Zhao and Chen

(2009) examine the use of downhill simplex for optimization. Their work found that downhill simplex tends

to find better minima than line search approaches to MERT. The difference between the two approaches can

be reduced by using more random restarts. However, even for a very large set of restarts, they found that

downhill simplex still modestly outperformed line search approaches.

1.5.3 Tuning to METEOR

Since its introduction, there have been anecdotal claims that tuning to the METEOR evaluation metric

results in poor system performance. The default parameterization ofMETEOR is recall orientated. It rewards

the system translations more for including all of the words in the reference translation than it effectively

punishes the system translation for including additional words not present in the reference translations. When
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used for optimization, the claimwas thatMETEOR resulted in system translations that were excessively long

and that were more prone to hallucinating content that was not present in the original sentence that is being

translated.

He and Way (2010) explored tuning a system to the default configuration of METEOR and confirmed

much of the criticism of the metric when it is used to train a system. The translations produced by systems

tuned to METEOR tended to be longer than equivalent systems tuned using BLEU. Additionally, while

systems tuned to BLEU tend to error on the side of dropping content words, systems tuned to METEOR

tended to insert additional words that were unsupported by the original sentence.

However, theMETEORmetric includes three hyper-parameters that allow users to adjust the behavior

of the metric. The α hyper-parameter controls how the metric trades off precision and recall during scoring

and the β and γ hyper-parameters control how the metric trades off precision and recall with its penalty

for word scrambling. One plausible way to improve METEOR’s performance as a tuning metric would

be to adjust how the metric trades off precision and recall. Increasing the weight the metric assigns to

precision would presumable discourage systems tuned to it from producing excessively long translations

that hallucinate new material not present in the original sentence.

He and Way (2010) found that adjusting the word scrambling penalty was actually a good method for

improving the performance of systems tuned toMETEOR. Increasing the extent to which system translations

were punished for word scrambling not only encourages improved word ordering in the system translations,

but it also implicitly discouraged the system from producing excessively long translations with hallucinated

words. The reason for this is that under the default configuration, hallucinated words could sometimes be

rewarded if METEOR could find somewhere in the reference translation words that could be associated

with them. By turning up the word scrambling penalty, the system translations were heavily penalized for

introducing any words that were not in the correct position in the reference translation. This heavily punishes

translations that would otherwise receive high scores through random associations between words.

By increasing the γ chunking penalty, He and Way (2010) found that tuning systems to METEOR

actually performedwell evenwhen being evaluated by the BLEUmetric. In fact, systems tuned to this variant

of the METEOR metric actually performed better on BLEU than a system specifically tuned to BLEU. This
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later result is very interesting, since a priori one would expect a system to do best on whatever evaluation

metric it was trained on and do slightly worse on other evaluation metrics when compared to systems that

were specifically trained to the other metrics. This result seems to indicate that there are other factors at work

such as how difficult the objective provided by different evaluation metrics is to optimize. For example, the

objective provided by one evaluation metric maybe prone to containing more local minima that another.

1.6 Organization

The next chapter describes the Phrasal machine translation software that was developed to perform the

experiments presented in this work. Phrasal is a state-of-the-art phrase-based machine translation package.

It is similar to Moses and even supports the use of many Moses decoding models. The package provides

an easy to use feature API for the creation of new decoding model features and a flexible implementation

of MERT that allows for training to all popular machine translations evaluation metrics using a variety of

approaches to optimization.

In the subsequent chapter, Phrasal is used to explore the effectiveness of different approaches to op-

timization for MERT. Results are presented for Powell’s method and coordinate descent. The chapter also

presents a new method based on performing line searches along randomly chosen search directions. Ran-

dom search directions are found to outperform Powell’s method and coordinate descent. This chapter also

explores a heuristic for smoothing the objective function optimized during MERT by averaging the evalua-

tion metric score assigned to adjacent plateaus within the objective. The heuristic is shown to improve the

performance of Powell’s method and coordinate descent. However, combining the smoothing heuristic with

random search directions leads to no further improvements over what is achieved when either approach is

used in isolation.

Chapter four examines the properties of decoding models trained to different popular evaluation met-

rics. It investigates the performance of systems trained to one metric and then evaluated on another and the

stability of models trained to the different metrics. The chapter closes by examining the connection between

the evaluation metric used during training and actual human preferences for the translations produced by the

resulting systems. It is found that the BLEU score has a number of desirable properties when it comes to
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training. BLEU trained models perform reasonably well when evaluated by other evaluation metrics. The

models are also more stable, with there being less variation in performance across different training runs.

Finally, while there was no clear preference for one evaluation metric over another when the models trained

to them were evaluated by human judges, the BLEU trained models tended to do reasonably well for both

language pairs examined. With other metrics like TER and METEOR, some configurations of the metrics

did okay on one language pair, but less well on another.

Chapter five investigates the possibility of training to the Stanford entailment metric, a sophisticated

evaluation metric that performs a deep analysis of the translation being evaluated and its reference. Unlike

word sequence overlap metrics like BLEU, TER, and METEOR, this metric uses a collection of syntactic

and semantic features to determine whether a machine translation and a reference translation mean the same

thing. In its original form, this metric is very slow taking seconds to evaluate each pair of sentences presented

to it. The chapter explores methods for speeding up the metric and using a staged training regime involving

first training a system to a faster metric, such as BLEU or TER, and then training to TEval using smaller

n-best lists.

Chapter six contrasts the performance of MERT with several mainstream machine learning methods

including conditional likelihood training of log-linear models, max-margin Markov networks, support vec-

tor machines for interdependent and structured output spaces, and MIRA. The results show these learning

methods are just as effective as MERT. This equivalence may seem to contrast with the results found in

Och (2003)’s work that introduced MERT, since in his work MERT trained models were generally shown

to overwhelmingly outperform conditional likelihood training of log-linear models. To account for this dis-

crepancy, I provide an analysis that reconciles Och (2003)’s results with my own. From the analysis and the

experimental data, I conclude that MERT does not actually have a performance advantage over other state-

of-the-art machine learning methods. Finally, chapter seven concludes and discusses possible directions for

future work.



Chapter 2

Phrasal: A Toolkit for Statistical Machine Translation

2.1 Introduction

Later chapters will describe experiments on using different optimization techniques and evaluation

metrics for MERT. When this work first began, there were no existing software packages that could be used

to perform such experiments. David Chiang’s CMERT1 package is hardwired to perform optimization using

coordinate descent and to use BLEU as the evaluation metric being optimized. Inspection of the software’s

source code revealed that it did include an orphaned implementation of Powell’smethod, but it is not available

to users of the package without making source code changes. The later introduction of the Z-MERT package

(Zaidan, 2009) allows for swappable evaluation metrics. However, out of the box Z-MERT supports only a

subset of the well known evaluation metrics used by the machine translation community.

While this work does not directly investigate the use of new decoding model features, many of the

results that are presented strongly suggest future work should include feature engineering research. For ex-

ample, more sophisticated decoding model features could allow us to better take advantage of evaluations

metrics like the Stanford entailment metric that perform deeper linguistic analysis of the machine and refer-

ence translations. There are a number of phrase-based machine translation packages. However, the existing

packages are not designed around being used for decoding model feature engineering. The Pharaoh machine

translation system (Koehn, 2004) is closed source, so it is not possible to add new decoding model fea-

tures, unless they can be included as additional scores for each phrase pair in the phrase-table. This restricts
1 The CMERT package was released informally by David Chiang. But, it became broadly used after it was incorporated into the

Moses machine translation package
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new features to just those that effectively provide a new way of scoring phrase pairs and there is no way

to add a feature that scores across phrases. The Phramer package (Olteanu et al., 2006) is an open source

re-implementation of Pharaoh in Java. While it would be possible to use this package for feature engineer-

ing, doing so would require substantial changes to the code since it very strongly assumes that the 8 Pharaoh

decoding model features are the only features that will be used. The Moses package (Koehn et al., 2007)

is an enhanced re-implementation of Pharaoh that allows for the use of factored decoding models. This al-

lows for the introduction of new decoding model features that can either be represented as a translation or

language model score for an abstract “factored” representation of the phrases being translated (e.g., phrases

consisting of POS tags) as well as features that score the combination of tokens across factors. While, this

does enhance the space of features that can be developed and used with the Moses decoder, it still does not

allow for flexible feature engineering outside the general kind of features that are typically used for phrase-

based machine translation systems. Similar to Phramer, earlier versions of the Moses code strongly assumed

that the features that were going to be used on the factors were fixed and included hard coded calls to the

individual features. Later versions of the code do however include a more flexible implementation of the

code involved with features.

In order to perform the desired experiments and to facilitate future related research, I developed Phrasal

(Cer et al., 2010b), a state-of-the-art phrase-based machine translation system. As originally developed, the

system provides what I believe were the most useful attributes of existing systems in addition to an API

that allows for easy feature engineering. This facility for feature engineering has been used to develop new

innovative features. These features allow Phrasal machine translation models to outperform other similar

phrase-based system and even hierarchical machine translation systems. The package’s implementation of

MERT allows for pluggable evaluation metrics and supports optimization using all popular evaluation met-

rics used by the machine translation community. It also supports optimization using a variety of algorithms

including coordinate descent, Powell’s method, and downhill simplex.

The toolkit was implemented in Java, since Java offers a good balance between performance and

developer productivity. Compared to C++, developers using Java are 30 to 200% faster, produce fewer

defects, and correct defects up to 6 times faster (Phipps, 1999). While Java programs were historically
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much slower than similar programs written in C or C++, modern Java virtual machines (JVMs) result in

Java programs being nearly as fast as C++ programs (Bruckschlegel, 2005). Java also allows for trivial code

portability across different platforms.

The next section presents the beam search decoding algorithm used by Phrasal and other phrase-

based machine translation systems. After that, I review various important implementation details necessary

for obtaining good translation performance as well as unique software engineering issues that arise when

implementing amachine translation system in Java. The chapter concludes by presenting the usage of Phrasal

to build new machine translations system, unique attributes of the system, and a highlights of other research

that was enabled by the creation of the software package.

2.2 Beam Search Decoding for Phrase-Based Machine Translation

Phrasal uses a left-to-right beam search decoding algorithm that was first introduced with the Pharaoh

system (Koehn, 2004). The same algorithm is also used by both the Moses (Koehn et al., 2007) and Phramer

(Olteanu et al., 2006) systems. The algorithm operates by selecting and translating words and phrases from

the original source sentence and then appending their translation to the end of the translation being con-

structed. The search is guided by a decoding model that evaluates the quality of the translations being

constructed according to their apparent preservation of meaning of the words and phrases that are translated,

the appropriateness of reorderings of translated material from their relative position in original sentence to

their relative position in the translation, and the fluency and grammaticality of the translation. A beam search

is used since choices that appear good locally may ultimately lead to a lower quality translation. Within the

beam search, hypotheses compete with each other based upon the sum of the scores obtained from making

local decoding decisions and an estimate of the future cost of covering material in the original sentence that

is not yet address by the partial translation. The future cost estimate critically allows for better competition

between hypotheses that have already translated a very difficult part of the original sentence with hypothesis

that have only addressed the portions of the original sentence that are relatively easy to translate.
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2.2.1 Hypothesis Construction

Figure 2.1,2 illustrates the process of constructing a single translation within a left-to-right phrase

based machine translation system. Initially, the system starts out with an empty hypothesis that covers none

of the material in the original sentence. The system then selects a word or continuous span of words in the

original sentence to translate. It then translates the word or phrase,3 and constructs a new more complete

working hypothesis by appending the material just translated to the end of the partial translation for the

rest of the sentence. Since the complete translation is constructed by incremental concatenation of newly

translated material, the process is traditionally known as left-to-right phrase-based translation. However, a

more technically correct termmaybe concatenative phrase-based machine translation, since when translating

into languages like Arabic, Hebrew, or Farsi the translations can actually be seen as being built up from right-

to-left.

When a new partial hypothesis is constructed it can be characterized by four defining factors. The first

is the string that represents the most recently translated word or phrase. The second is a score correspond-

ing to the merit of the hypothesis, which is used by the decoding algorithm to determine which hypotheses

are worth extending and which ones are of sufficiently low quality that they are unlikely to lead to good

translations of the original sentence. The merit score is computed by summing the score the decoding model

assigned the parent of the new hypothesis plus the score from the decoding model for the most recent exten-

sion of the hypothesis, and an estimate of the cost associated with translating material in the original sentence

that is not yet accounted for the by partial translation. The third defining factor is a bitmap that marks what

words in the original sentence have been accounted for by the partial translation and what positions remain

to be translated. When the decoder constructs new hypotheses from existing ones, this bitmap is consulted to

determine what positions in the original sentence are still available for translation. When all of the positions

in the source sentence are covered, the decoder has reached a complete translation of the original sentence.

Finally, the last defining factor of a hypothesis is a back pointer to the parent hypothesis from which it was
2 Figure reproduced from Chapter 1.
3 Recall that in phrase-base machine translation, the term “phrase” is used very loosely to refer to any adjacent set of words,

rather than in any proper linguistic sense of the word phrase. As we will see later, recent extension to Phrasal have allowed this
constraint to be further loosen, with phrases now being able to contain gaps in the middle of them.
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Figure 2.1: Phrase-Based Decoding (Reproduced from Chapter 1): The translation is produced from
left-to-right by selecting and then translating words and phrases in the original sentence. In addition to the
current partial translation, the decoder keeps track of what material has been translated so far as well as the
location of the last foreign material that was translated.

constructed. This allows the decoder to compute certain decoding model scores that depend on knowing

the structure of the existing partial translation. Typically, the model scores that use this information are

those that look at the reordering of material during translation. For example, the linear distortion feature and

hierarchical reordering features needs to know the position in the original sentence of the phrase that was

translated by the parent hypothesis.

In the interest of performance optimization, Phrasal and other phrase-based decoders cache some

information that could be derived by simply inspecting the back pointers to parents and ancestors of a hy-

pothesis. For example, decoders can cache the position in the original sentence of the end of the phrase that

was just translated. This allows linear distortion to be calculated very efficiently using just the expression
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distortion = -abs(endPosPriorTranslatedPhrase-posPhraseBeingTranslated+1). If each hypothesis

did not store the end position in the original sentence of the most recently translated phrase, endPosPri-

orTranslatedPhrase would need to be computed by XOR-ing the bitmaps of a hypothesis’ parent and the

parent’s parent and then searching for the position of the most significant non-zero bit. Similarly, under

some configurations, Moses style lexical reordering features need to know the identity of both the source

and the target sides of the phrase that was translated by the parent hypothesis as well as the source and the

target side of the phrase that was just translated by the current hypothesis. While such information could

be reconstructed by inspecting bit-sets and following back pointers, it is far more computationally efficient

to just cache this information explicitly in the hypothesis. As will be discussed later in this chapter, since

one of the design goals of the Phrasal machine translation system was to export an API that would allow for

easy engineering of new knowledge sources for the decoding model, Phrasal caches a significant amount of

information in each hypothesis that is constructed including a representation of the complete partial transla-

tion associated with the hypothesis, and information regarding the alignment of each translated phrase to its

position in the original sentence.

2.2.2 Beam Search

Typical implementations of beam search in other domains proceed as follows. The system first con-

structs an empty hypothesis corresponding to the system’s start state. The system then uses the search op-

erates that are available to it to expand the hypothesis. This produces new hypotheses and often numerous

new hypotheses. These new hypotheses are then scored by some figure of merit that is appropriate for the

domain. For example, a path finding problem might use the distance covered by each hypothesis and some

approximate estimate of how far away the partial solution is from reaching the goal position. The system

then sorts the hypotheses by this figure of merit and only keeps either the top stackmax highest scoring hy-

potheses or the hypotheses that have a figure of merit that is at most δmax worse than the hypothesis with the

best figure of merit. Pruning to only the top n best hypotheses is known as histogram pruning, while pruning

based on the maximum distance between the figures of merit is known as threshold pruning.

Beam search implementationsmay incorporate some form of recombinationwhereby the system keeps
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track of which hypotheses are necessarily worse than other hypotheses that have already been constructed

given the structure of the domain. Returning to the example of a path finding problem, recombination could

take the form of keeping track of the lowest cost found so far for each position on themap. If a new hypothesis

is constructed and it arrives at a position that has been previously discovered by a lower cost hypotheses,

then the newer more costly hypothesis can be safely discarded since there is no way that its descends will

be able to reach the goal with a lower cost than those of the previously constructed lowest cost hypothesis

for the current position. When using threshold pruning, recombination can open up a significant number

of positions on the beam and allow the space to be searched much more thoroughly than would have been

possible using the same beam size and no recombination. When the beam is being pruned by threshold

pruning, using recombination can help to speed up the search by not wasting time exploring hypotheses that,

while still being within δmax of the best hypothesis, will necessarily give rise to lower scoring descends than

alternatives.

Phrasal aggressively recombines hypotheses by looking inside of the standard decoding features and

making use of subtle differences in what is and is not captured by the feature. For example, a naive im-

plementation of a recombination rule for a system that includes an n-gram language model might not allow

hypothesis recombination if the last n-1 words in the partial translations associated with two hypotheses are

different, where n is the order of the language model being used. However, the recombination rules for both

Phrasal and other decoders such as Moses actually inspect the contents of the language model being used and

allow the recombination of hypotheses with matching suffixes that are much shorter than order of language

model. This is done by looking up the longest suffix of each partial translation that can be found in the

n-gram language model. For the purposes of the language model score, translations with identical longest

match suffixes can then be safely recombined. This approach exploits the fact that higher order n-grams are

typically very sparse. Even though say a 5-gram language model is being used, the language model often

computes a score by backing-off to lower order n-grams.

The quality of the solution found by a beam search is determined by three factors.4 The first is the
4 For tasks like machine translation, there are two senses of the quality of the solution. The first is the quality of the solution

according to the decoding model that is used to drive the search. This is the sense of “quality” that is used here. Another is the
actually quality of the resulting translation which depends on how well the scores returned by the decoding model actually reflect
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size of the beam as defined by stackmax, δmax, or both. The larger the maximum stack size and the further the

search is able to deviate from the figure of merit assigned to the current best hypothesis, the more thoroughly

it will search the space and the more likely it will be to find a better lower cost solution. Second, better

future cost estimates allow the algorithm to more precisely search the hypothesis space and avoid exploring

regions that are unlikely to result in good quality solutions. In the extreme case, a perfect future estimate

would allow the search to use a beam that only ever contains one hypothesis, e.g., stackmax = 1 or δmax = 0,

and still proceed directly to the goal state along the lowest cost route. Alternatively, a very poor future

cost estimate may systematically encourage the search to waste time, and more importantly space on the

beam, exploring regions of the hypothesis space that are unlikely to lead to good quality solutions. Third,

as previously mentioned, the existence of recombination allows the search to explore much more of the

hypothesis space. For complex search problems like machine translation, developing correct but aggressive

recombination rules requires knowing exactly what knowledge sources and features are being used by the

decoding model. An admissible recombination rule can then be derived by only allowing hypotheses to be

recombined if the differences between them could not possibly affect the scores that will be returned by any

of the features in the future.

2.2.3 Future Cost Estimate

Future cost estimation for phase-based machine translation is performed by running the decoding

model features over the individual phrases that could be used to translate a source sentence. The locally

featurized phrases are then scored using the decoding model’s feature weights. Using these scored phrases,

the system searches for the lowest cost selection of phrases that cover each part of the source sentence. The

result is a future cost matrix that specifies the minimum cost of covering any continuous span of words in

the source sentence. When calculating the future cost of a hypothesis, the decoder sums over the future cost

matrix entries for all of the uncovered spans of words in the source sentence that still need to be translated.

the true quality of the translations being constructed.
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2.2.3.1 Features used for future cost

The decoding model features used for the future cost matrix include all of the features that are not

used to score reorderings during translation. The complete set of features used by default for the future cost

matrix is given below:

• n-gram language model(s)

• Phrase-table translation probabilities

• Phrase penalty, word penalty and unknown word penalty

Of these, all but the n-gram language model score(s) can be calculated exactly at the level of individual

bilingual phrase pairs. The n-gram language model score used for the future cost heuristic is obtained by

running the language model over just the target set of each phrase pair. Usually, the decoder is run with a

language model that was trained on the same data that was used to extract the bilingual phrase pairs. Running

the language model on the target side of each phrase pair is then running the language model on the same

data that it was trained. This and the fact that the language model is not applied across phrase boundaries

when calculating the future cost causes the language model component of the future cost heuristic to tend to

under estimate the true cost of completing the hypothesis.

However, the estimate is not strictly lower than the true cost. It is possible to construct scenarios

containing words that are very unlikely to occur in general, and thus have low language model scores, but

that have a very high probability of occurring in certain contexts. For example, “ado” is a relatively rare

word in English and in isolation it will receive a low language model score. However, in the context of

“Without further ado” it has a much higher probability of occurring.5

Not accounting for the re-ordering features also causes the future cost matrix to tend to underestimate

costs. Such underestimation makes it so that it would not be reasonable to compare hypotheses at different

levels of completion when pruning the beam. Mostly complete hypotheses would have accurate figures of
5 In practice, however, if the system knows the word “ado”, then the phrase “Without further ado” would also be available in

the phrase-table. When calculating the future cost heuristic, having the whole idiomatic expression captured within a single phrase
would allow the language model to score “ado” in context and thus not overestimate the cost of translating the larger span.
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merit that are mostly based on the actual score assigned by the decoding model to the hypothesis. Largely

incomplete hypotheses would have grossly inflated figures of merit based mostly on underestimated future

cost estimates. Such differences in hypothesis completion are a real risk during phrase-based machine trans-

lation, since some hypothesis expansions can translate as little as one more word of the source sentence,

while others can translate a larger multi-word phrase. Section 2.2.4 discusses how this issue is addressed

within the decoder by using different beams for hypotheses at different levels of completion.

2.2.3.2 Computing future cost

The algorithm to compute the future cost for any continuous span is somewhat similar to bottom-

up chart parsing. First, the system searches for the lowest cost way of translating each individual word in

the source sentence. Then, the system proceeds to search for the lowest cost covering of all spans of two

consecutive words. This is done by first consulting with the phrase-table to find the lowest cost translation

for each two word span. The cost of covering the span with a two word entry from the phrase-table is

then compared to the cost of covering the span using the lowest cost covering of the two individual words

that it contains. That is, the system checks whether the cheapest 2-word entry from the phrase-table is less

expensive than the sum of the cheapest 1-word entries that can be used to cover the same span. As shown in

figure 2.3, the algorithm continues like this until it constructs a span that covers the whole sentence.

For higher order spans, there are numerous possible covering segmentations as seen in that, for a span

of length n, there are O(2n−1) different ways to cover it with smaller spans. It is, however, easy to check

all of these efficiently. To do so, the algorithm only needs to check all possible divisions of a span into two

chunks and, if it is available, compare the lowest cost of these to the cheapest entry from the phrase-table that

could be used to cover the span. The future cost matrix will have already computed the lowest cost covering

of each span that is smaller than the one that it is currently computing. By comparing all two-span coverings,

the algorithm is performing the comparison using the lowest cost sub-segmentation of each of the two spans.

For example, in figure 2.3, computing the future cost for the span [間房子我喜歡] by examining the future

cost for the span [間房子] and [我 喜歡] implicitly is using the lowest cost sub-segmentation of the two

word span [我喜歡].



32

Figure 2.2: Future Cost Estimation : Future cost estimation computes the lowest cost covering of each span
of consecutive words in the input sentence. The cost of covering a span is either the cheapest covering using
a single entry from the phrase-table, or the cheapest covering achieved by segmenting the span into smaller
spans that are in turn covered by entries from the phrase-table. The computation of the future cost matrix is
done using dynamic programming and is somewhat similar to bottom up chart parsing. First, the algorithm
computes the lowest cost covering of all spans of length 1. Then, it computes the lowest cost covering of all
spans of length 2 by comparing the lowest cost coverings found from the 1-spans to the lowest cost covering
of the 2-spans using entries from the phrase-table. The algorithm continues until it reaches a span that covers
the entire sentence.

Pseudo-code for the future cost calculation can be seen near the top of algorithm 1. Computing the

future cost estimates is O(n3) in the length of the source sentence being translated. Using this future cost

estimate makes the time complexity of left-to-right beam search decoders O(n3), which actually matches

that of hierarchical decoders which explicitly use CKY for decoding (Chiang et al., 2005). However, while

the time complexities are the same, the future cost estimate for left-to-right beam search decoders executes

much faster than hierarchical decoders.

2.2.4 Partitioning Beams by Source Coverage

Applying the traditional formulation of beam search to phrase-based machine translation would result

in the system comparing hypotheses at drastically different levels of completion. For example, starting with

an empty hypothesis, let’s say that the search algorithm ran for two iterations. During each iteration, it

loops through all of the existing hypotheses and expands them with whatever word or phrase translations
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Figure 2.3: Future Cost Comparison: Computing the lowest cost covering of higher order spans can be
done efficiently by reusing the lowest cost covering already computed for lower order spans. In this example,
the lowest cost covering for [間房子我喜歡] is computed by comparing the lowest cost covering of [間房
子] and [我喜歡]. The lowest cost covering of [我喜歡] has already performed the analysis of whether it is
cheaper to cover [我喜歡] as a single chunk using an entry from the phrase-table or whether it would be less
expensive to cover the span using translations for the individual words [我] [喜歡]

that can be applied. Doing two iterations would mean that the least complete partial hypotheses would only

cover two words in the source sentence being translated. The most complete hypotheses could cover up

to 2∗maxPhraseLength positions, where maxPhraseLength is the maximum length of the source side of

phrases in the phrase-table. In real systems, this is typically a value of about five. Consequently, after only

two iterations, the system may have some hypotheses on the beam that cover only a small fraction of the

larger sentence being translated, while others are almost complete translations.

Having such drastically different hypotheses completion for space on the same beam increases the

risk that a good hypothesis will get squeezed out, since the future cost estimate tends to underestimate the

cost of completing each hypothesis. The approach taken by beam search decoders to address this problem is

to have separate beams for hypotheses at different levels of completion. For example, one approach would

be to have a separate beam for each unique coverage bit map. This would mean that hypotheses would only

be competing with other hypotheses that were making use of the exact same future cost estimate. However,

such an approach scales poorly since the number of unique coverage sets is 2n for a sentence of length n.6

The approach that is taken by Phrasal and other decoders such as Moses, Phramer, and Pharaoh is to
6 One way to make decoding with a separate beam for each coverage set tractable would be to use a very tight distortion limit.

Using a distortion limit of l and decoding a sentence of length n would require only O(n2l) beams.
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Figure 2.4: Beam-Search Decoding: The decoder starts with an empty hypothesis that covers none of the
words in the source sentence. This hypothesis is expanded by selecting and translating a single span of source
words. Each new hypothesis that is expanded is placed on a subsequent beam based on how many source
words are now covered in the hypothesis. After the decoder exhausts all possible expansions of the empty
hypothesis, it starts to expand the hypotheses on the beam[1], which corresponds to partial translations that
cover one source position. After expanding all of those hypotheses, the decoder continues to process the
beams in order until it reaches the last beam on which all hypotheses cover all source positions and are thus
complete translations of the source sentence. The decoder then selects the highest scoring hypothesis from
this beam and returns it as its best guess for the translation of the original sentence.



35

have a separate beam for each number of positions covered in the source sentence being translated. As illus-

tration in figure 2.4, the decoder operates as follows. The system begins by expanding the empty hypothesis

by translating phrases of various lengths in the source sentence. If the translated phrase only consists of a

single word, the corresponding newly constructed hypothesis is then added to the beam for hypotheses that

only cover one word in the source sentence. While the hypotheses on this beam all only cover one word, the

actual location of the covered word can vary from one hypothesis to another. Since one hypothesis may have

translated a particularly difficult to translate word, while another covered one with a relatively straightfor-

ward translation, the hypotheses depend on the future cost estimate to ensure that the competition between

them is fair. Other expansions of the empty hypothesis may cover more source positions, up to the longest

source side entry in the phrase-table that can be applied. The new hypotheses that cover n source positions

are all added to the n-th beam.

After all possible expansions of the initial empty hypothesis are complete, the system begins to expand

hypotheses on beam[1], the beam corresponding to hypotheses that all cover at least one source position.

After all of the hypotheses on beam[1] have been completely expanded, the system moves on to expanding

hypotheses on beam[2]. This process continues until the system reaches the last beam in the series, with

hypotheses on this beam all corresponding to complete translations of the source sentence. The system can

then extract the highest scoring hypothesis on this beam and return it as the most appropriate translation of

the source sentence.

2.2.5 Pseudo-code

Pseudo-code for the complete decoding algorithm is given in algorithm 1. The decoder starts by

retrieving all bilingual phrase pairs from the phrase-table that could be used to translate a word or phrase in

the source sentence. The decoding model then scores each phrase pair using all of the model features that can

be applied to a phrase pair in isolation (i.e., n-gram language model score of the target side of the phrase pair,

the phrase pair translation probabilities, the phrase penalty, the word penalty, and unknown word penalty).

Given the portions of the source sentence each phrase pair can be used to translate, the resulting isolated

phrase pair scores are then used to calculate the highest scoring way of covering each possible span of text
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Algorithm 1 Left-to-Right Phrased-Based Decoding: The left-to-right phrase-based decoding algorithm
first introduced by the Pharaoh machine translation system and that is also used by both Moses and Phrasal.
Input: f: source sentence, wts: weights, pt: phrase-table, fts: features, isofts: isolated phrase features
// Compute Phrase Coverage ChartM
for i = 0 to f.length-1 do
for j = i to min(f.length-1,i+pt.maxPhraseLen) do
M[i,j] = pt.getTranslations(f[i, j])

end for
end for
// Compute Future Cost Estimate Matrix F
for span = 1 to f.length do
for i = 0 to f.length-span do
F[i,span-1] = min(phr ∈M[i,span-1] : wts.score(isofts.featurize(phr)))
for j = i+1 to i+span-1: do
F[i,span-1] = min(F[i,span-1], F[i,j]+F[j,span-1])

end for
end for

end for
beam[0]← empty hypothesis
// Main decoding loop
for b = 0 to f.length: do
for h ∈ beam[b] do
for i = 0 to h.lastUncover + distortionLimit do
for j = i to f.length do
for phr in M[i,j] do
newH← h.appendPhrase(phr)
if RecombinationHashBest[newH] > newH.merit break
RecombinationHashBest[newH] = newH.merit
beam[newH.coveredCount].addThenPrune(newH)

end for
end for

end for
end for

end for
// Return highest scoring hypothesis
e← beam[f.length].best()
return e



37

in source. The score associated with the best way to cover each span then becomes the future cost estimate

for that span. With the future cost estimates in hand, we are now ready to enter the main decoding loop. The

decoder first constructs an empty hypothesis that covers none of the words in the source sentence and places

this hypothesis on the first beam. As described above, it then proceeds to loop through the beams one-by-one

expanding hypotheses and then placing their children on the appropriate downstream beam for subsequent

processing. Once all beams have been processed, the decoder selects the best scoring hypothesis from the

last beam, which recall contains the hypotheses that cover all source sentence positions. This hypothesis is

returned as its best guess for the appropriate translation of the original sentence.

2.3 Toolkit Usage

The toolkit provides easy to use end-to-end support for the creation and evaluation of machine trans-

lation models. Given sentence-aligned parallel text, a new translation system can be built using a single

command:

j a v a edu . s t a n f o r d . n l p . mt . Crea teModel \

( s o u r c e . t x t ) ( t a r g e t . t x t ) \

( dev . s o u r c e . t x t ) ( dev . r e f ) ( model_name )

Running this command will first create word level alignments for the sentences in source.txt and

target.txt using the Berkeley cross-EM aligner (Liang et al., 2006b).7 From the word-to-word alignments,

the system extracts a phrase-table (Koehn et al., 2003) and hierarchical reorderingmodel (Galley&Manning,

2008). Two n-gram language models are trained on the target.txt sentences: one over lowercased target

sentences that will be used by the Phrasal decoder and one over the original source sentences that will be used

for truecasing the machine translation output. Finally, the system trains the feature weights for the decoding

model using minimum error rate training (Och, 2003) to maximize the system’s BLEU score (Papineni et al.,

2002) on the development data given by dev.source.txt and dev.ref. The toolkit is distributed under the GNU

general public license (GPL) and can be downloaded from: http://nlp.stanford.edu/software/phrasal
7 Optionally, GIZA++ (Och & Ney, 2003) can also be used to create the word-to-word alignments.
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2.4 Advanced Features

Phrasal includes a number of advanced features themake it an attractive choice for machine translation

research. These include multiple decoding engines, good multi-threading support, and an easy to use feature

engineering API.

2.4.1 Decoding Engines

The package includes two decoding engines, one that implements the left-to-right beam search al-

gorithm that was first introduced with the Pharaoh machine translation system (Koehn, 2004), and another

that provides a recently developed decoding algorithm for translating with discontinuous phrases (Galley &

Manning, 2010).8 Both engines use features written to a common but extensible feature API, which allows

features to be written once and then loaded into either engine.

Figure 2.5: Chinese-to-English Translation using Discontinuous Phrases: Translating with discontinuous
phrases allows a single phrase to cover non-adjacent words in the source sentence aswell as for a single phrase
to produce non-adjacent words in the resulting translation. This allows the system to elegantly translate
grammatical constructions that encircle other material such as the Chinese当 X的 that can be translated as
when X or the French negative construction ne pas.

Discontinuous phrases provide a mechanism for systematically translating grammatical constructions.

As seen in Fig. 2.5, using discontinuous phrases allows us to successfully capture that the Chinese construc-

tion当 X的 can be translated as when X.

2.4.2 Multi-threading

The decoder has robust support for multi-threading, allowing it to take full advantage of modern

hardware that provides multiple CPU cores. As shown in Fig. 2.6, decoding speed scales well when the
8 The discontinuous phrase decoding engine was written by Michel Galley by modifying the original left-to-right beam search

decoder.
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number of threads being used is increased from one to four. However, increasing the threads past four

results in only marginal additional gains as the cost of managing the resources shared between the threads

is starting to overwhelm the value provided by each additional thread. Moses also does not run faster with

more than 4-5 threads.9
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Figure 2.6: Multi-Core Performance: Multi-core translations per minute on a system with two Intel Xeon
L5530 processors running at 2.40GHz.

2.4.3 Feature API

The feature API was designed to abstract away complex implementation details of the underlying

decoding engine and provides a simple consistent framework for creating new decoding model features.

During decoding, as each phrase that is translated, the system constructs a Featurizable object. As seen

in Table 2.1, Featurizable objects specify what phrase was just translated and an overall summary of the

translation being built. Code that implements a feature inspects the Featurizable and returns one or more

named feature values. Prior to translating a new sentence, the sentence is passed to the active features for a

decoding model, so that they can perform any necessary preliminary analysis.

2.5 Comparison with Moses

Credible research into new features requires baseline system performance that is on par with existing

state-of-the-art systems. Seen in Table 2.2, Phrasal meets the performance of Moses when using the exact
9 http://statmt.org/moses/?n=Moses.AdvancedFeatures (April 6, 2010)
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Featurizable
Last Translated Phrase Pair Source and Target Alignments
Partial Translation Source Sentence
Current Source Coverage Pointer to Prior Featurizable

Table 2.1: Featurizable: Information passed to the decoding model features in the form of a Featurizable
object for each new translation hypothesis built by the decoder.

same decoding model feature set as Moses and outperforms Moses significantly when using its own default

feature set.10

System Features MT06 (tune) MT03 MT05
Moses Moses 34.23 33.72 32.51
Phrasal Moses 34.25 33.72 32.49
Phrasal Default 35.02 34.98 33.21

Table 2.2: Phrasal vs. Moses: Comparison of two configurations of Phrasal to Moses on Chinese-to-
English. One Phrasal configuration uses the standard Moses feature set for single factor phrase-based trans-
lation with distance and phrase level msd-bidirectional-fe reordering features. The other uses the default
configuration of Phrasal, which replaces the phrase level msd-bidirectional-fe feature with a hierarchical
reordering feature.

2.6 Other Research Enabled by Phrasal

The unique features of Phrasal have supported a number of research projects other than my own work

reported in this dissertation. The following is a summary of selected work that has made use of Phrasal. It

includes the development of three new re-ordering models, and improved measures of translation fluency

using a dependency language model.

2.6.1 Hierarchical Phrase Reordering Model

Galley and Manning (2008) uses the toolkit to develop a hierarchical generalization of the Moses

lexical reordering model. Instead of just looking at the reordering relationship between individual phrases,
10 Phrasal was originally written to replicate Moses as it was implemented in 2007 (release 2007-05-29), and the current version

still almost exactly replicates this implementation when using only the baseline Moses features. To ensure this configuration of
the decoder is still competitive, we compared it against the current Moses implementation (release 2009-04-13) and found that the
performance of the two systems is still close. The current Moses implementation obtains slightly lower BLEU scores, respectively
33.98 and 32.39 on MT06 and MT05.
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the new feature examines the reordering of blocks of adjacent phrases and improves translation quality when

the material being reordered cannot be captured by a single phrase. This hierarchical lexicalized reordering

model is used by default in Phrasal and is responsible for the gains shown in Table 2.2 using the default

features.

2.6.2 Target Side Dependency Language Model

The n-gram languagemodels that are traditionally used to capture the syntax of the target language do a

poor job of modeling long distance syntactic relationships. For example, if there are a number of intervening

words between a verb and its subject, n-gram language models will often not be of much help in selecting

the verb form that agrees with the subject. Galley and Manning (2009) develop a target side dependency

language model feature that captures these long distance relationships by providing a dependency parse score

for the target translations produced by the decoder. This is done using an efficient quadratic time algorithm

that operates within the main decoding loop rather than in a separate re-ranking stage .

2.6.3 Discriminative Distortion

The standard distortion cost model used in phrase-based machine translation systems has two prob-

lems. First, it does not estimate the future cost of known required moves, thus increasing search errors. Sec-

ond, the model penalizes distortion linearly, even when appropriate re-orderings are performed. To address

these problems, Green et al. (2010) uses the Phrasal feature API to design a new discriminative distortion

model that predicts word movement during translation and that estimates future cost. These extensions allow

Green et al. (2010) to triple the distortion limit and provide a statistically significant improvement over the

baseline.

2.6.4 Discriminative Reordering with Chinese Grammatical Relations

During translation, a source sentence can be more accurately reordered if the system knows some-

thing about the syntactic relationship between the words in the phrases being reordered. Chang et al. (2009)

uses Phrasal to develop a discriminative reordering feature that examines the grammatical relationships be-
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tween words in a Chinese source sentence and then scores the appropriateness of reordering their target side

translations.

2.7 Conclusion

The Phrasal machine translation package has not only facilitated this work, but also the research

projects of many others. For other researchers, one of the system’s most valuable contributions has been

its feature engineering API. While the work presented here only makes use of the system’s flexible MERT

component and support for training to other learning algorithms, the feature engineering API will likely be

critical for trying to get the most out of newer evaluation metrics and to take advantage of the larger feature

sets that can be used with alternative learning algorithms. Developing new features should allow the de-

coding model to better capture information that is being measured by newer evaluation metrics that perform

deeper linguistic analysis but that is not usefully represented within existing decoding features (e.g., verb

argument structure). The next chapter uses Phrasal to explore new approaches to MERT optimization.



Chapter 3

Regularization and Search for Minimum Error Rate Training

While minimum error rate training (MERT) is the most widely used learning procedure for statistical

machine translation models, only a limited amount of work has been done exploring using different ap-

proaches to optimization for MERT. Software implementations of MERT usually just blindly use one of the

line search based approaches such as Powell’s method or coordinate descent. In this chapter, I use Phrasal

to explore the effectiveness of different optimization algorithms.

Three optimization strategies are contrasted. The first two are Powell’s method and coordinate de-

scent. A novel random search direction algorithm is also purposed. In the general case, such an algorithm

would be expected to perform worse than a more advanced technique such as Powell’s method. Random

search directions are used here in an effort to get more value out of the line search algorithm used withMERT

that is able to efficiently find the global minimum/maximum along the direction being searched.

MERT exactly fits an evaluation metric on a given piece of training data. This raises the possibility

that over-fitting may occur with learning producing a solution that does very well on the training data, while

taking a sizable performance hit on unseen evaluation data. This chapter also explores whether it is possible

to find more general solutions by regularizing the objective and smoothing the scores assigned to adjacent

points.

The results provided here show that using random search directions outperforms both Powell’s method

and coordinate descent. This suggests that choosing search directions at random better exploits MERT’s

unique global minimum line search method. The experiments on regularization show that generalization

performance of the system can be improved by smoothing the objective function used during training. How-
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ever, regularization seems to only help Powell’s method and coordinate descent, as adding regularization to

the random search approach does not result in any further gains.

The next section reviews the technical details of minimum error rate training. Section 3.3 details the

extensions to the algorithm proposed here and the motivation behind them. Section 3.4 and 3.5 provide

experimental results, followed by a discussion in section 3.6

3.1 Minimum Error Rate Training

Let F be a collection of foreign sentences to be translated, with individual sentences f0, f1, … ,

fn. For each fi, the surface form of an individual candidate translation is given by ei with hidden state

hi associated with the derivation of ei from fi. Each ei is drawn from E , which represents all possible

strings a translation system can produce. The (ei,hi, fi) triples are converted into vectors of m feature

functions by Ψ : E ×H ×F → Rm whose dot product with the weight vector w assigns a score to each

triple. The idealized translation process then is to find the highest scoring pair (ei,hi) for each fi, or rather

(ei,hi) = argmax(e∈E ,h∈H ) w ·Ψ(e,h, f).

The aggregate argmax for the entire data set F is given by equation (3.1).1 This gives Ew which

represents the set of translations selected by the model for data set F when parameterized by the weight

vector w. Let’s assume we have an automated measure of translation quality ` that maps the collection of

translations Ew onto some real valued loss, ` : E n→ R. For instance, in the experiments that follow, the loss

corresponds to 1 minus the BLEU score assigned to Ew for a given collection of reference translations.

(Ew,Hw) = argmax
(E∈E n,H∈H n)

w ·Ψ(E,H,F) (3.1)

Using n-best lists produced by a decoder to approximate E n and H n, MERT searches for the weight

vector w∗ that minimizes the loss `. Letting Ẽw denote the result of the translation argmax w.r.t. the ap-

proximate hypothesis space, the MERT search is then expressed by equation (3.2). Notice the objective

function being optimized is equivalent to the loss assigned by the automatic measure of translation quality,
1 Here, the translation of the entire data set is treated as a single structured prediction problem using the feature function vector

Ψ(E,H,F) = ∑n
i Ψ(ei,hi, fi)
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id Translation log(PTM(f|e)) log(PLM(e)) BLEU-2
e1 This is it -1.2 -0.1 29.64
e2 This is small house -0.2 -1.2 63.59
e3 This is miniscule building -1.6 -0.9 31.79
e4 This is a small house -0.1 -0.9 100.00
ref This is a small house

Table 3.1: Translations with Model Feature and Evaluation Scores: Four hypothetical translations and
their corresponding logmodel scores from a translation model PT M( f |e) and a language model PLM(e), along
with their BLEU-2 scores according to the given reference translation. The MERT error surface for these
translations is given in figure 3.1.

i.e. O(w) = `(Ẽw).

w∗ = argmin
w

`(Ẽw) (3.2)

After performing the parameter search, the decoder is then re-run using the weights w∗ to produce

a new set of n-best lists, which are then concatenated with the prior n-best lists in order to obtain a better

approximation of E n andH n. The parameter search given in (3.2) can then be performed over the improved

approximation. This process repeats until either no novel entries are produced for the combined n-best lists

or the weights change by less than some ε across iterations.

Unlike the objective functions associated with other popular learning algorithms, the objective O is

piecewise constant over its entire domain. That is, while small perturbations in the weights, w, will change

the score assigned by w ·Ψ(e,h, f) to each triple, (e,h, f), such perturbations will generally not change the

ranking between the pair selected by the argmax, (e∗,h∗) = argmaxw ·Ψ(e,h, f), and any given competing

pair (e′,h′). However, at certain critical points, the score assigned to some competing pair (e′,h′)will exceed

that assigned to the prior winner (e∗wold
,h∗wold

). At this point, the pair returned by argmaxw ·Ψ(e,h, f) will

change and loss ` will be evaluated using the newly selected e′.

This is illustrated in figure 3.1, which plots the MERT objective function for a simple model with two

parameters, wtm & wlm, and for which the space of possible translations, E , consists of the four sentences
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given in table 3.1.2 Here, the loss ` is defined as 1.0−BLEU-2(e). That is, ` is the difference between a

perfect BLEU score and the BLEU score calculated for each translation using unigram and bi-gram counts.

Figure 3.1: MERTObjective Function: Optimization surface resulting from the translation candidates and
decoding model feature values given in table 3.1 being fit to the BLEU:2 evaluation metric. Regions are
labeled with the translation that dominates within it, i.e. argmaxw ·Ψ(e, f), and with their corresponding
objective values, 1− `(argmaxw ·Ψ(e, f)).

The surface can be visualized as a collection of plateaus that all meet at the origin and then extend

off into infinity. The latter property illustrates that the objective is scale invariant w.r.t. the weight vector

w. That is, since any vector w′ = λw ∀λ>0 will still result in the same relative rankings of all possible

translations according to w ·Ψ(e,h, f), such scaling will not change the translation selected by the argmax.
2 For this example, we ignore the latent variables, h, associated with the derivation of each e from the foreign sentence f. If

included, such variables would only change the graph in that multiple different derivations would be possible for each e j. If present,
the graph could then include disjoint regions that all map to the same e j and thus the same objective value.
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Translation m b 1-best
e1 -0.1 -1.25 (0.86,+∞]
e2 -1.2 -0.8 (-0.83,0.88)
e3 -0.9 -2.05 n/a
e4 -0.9 -0.55 [−∞,-0.83]

Table 3.2: Line Search Parameters: Slopes, m, intercepts, b, and 1-best ranges for the 4 translations given
in table 3.1 during a line search along the coordinate wlm, with a starting point of (wtm,wlm) = (1.0,0.5).
This line search is illustrated in figure 3.2.

At the boundaries between regions, the objective is undefined, as 2 or more candidates are assigned identical

scores by the model. Thus, it is unclear what should be returned by the argmax for subsequent scoring by `.

Since the objective is piecewise constant, it cannot be minimized using gradient descent or even the

sub-gradient method. Two applicable methods include downhill simplex and Powell’s method (Press et al.,

2007). The former attempts to find a local minimum in an n dimensional space by iteratively shrinking

or growing an n+1 vertex simplex3 based on the objective values of the current vertex points and select

nearby points. In contrast, Powell’s method operates by starting with a single point in weight space, and

then performing a series of line minimizations until no more progress can be made. In this chapter, I focus

on line minimization based techniques, such as Powell’s method.

3.1.1 Global Minimum Along a Line

Even without gradient information, numerous methods can be used to find, or approximately find,

local minima along a line. However, by exploiting the fact that the underlying scores assigned to competing

hypotheses,w ·Ψ(e,h, f), vary linearly w.r.t. changes in the weight vector,w, Och (2003) proposed a strategy

for finding the global minimum along any given search direction.

The insight behind the algorithm is as follows. Let’s assume we are examining two competing

translation/derivation pairs, (e1,h1) & (e2,h2). Further, let’s say the score assigned by the model to

(e1,h1) is greater than (e2,h2), i.e. w ·Ψ(e1,h1, f)> w ·Ψ(e2,h2, f). Since the scores of the two vary

linearly along any search direction, d, we can find the point at which the model’s relative preference for
3 A simplex can be thought of as a generalization of a triangle to arbitrary dimensional spaces.
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Figure 3.2: Global Minimum Line Search: Illustration of how the model score assigned to each can-
didate translation varies during a line search along the coordinate direction wlm with a starting point of
(wtm,wlm) = (1.0,0.5). Each plotted line corresponds to the model score for one of the translation candi-
dates. The vertical bands are labeled with the hypothesis that dominates in that region. The transitions
between bands result from the dotted intersections between 1-best lines.

the competing pairs switches as p = w·Ψ(e1,h1,f)−w·Ψ(e2,h2,f)
d·Ψ(e2,h2,f)−d·Ψ(e1,h1,f) . At this particular point, we have the equality

(pd+w) ·Ψ(e1,h1, f) = (pd+w) ·Ψ(e2,h2, f), or rather the point at which the scores assigned by the model

to the candidates intersect along search direction d.4 Such points correspond to the boundaries between ad-

jacent plateaus in the objective, as prior to the boundary the loss function ` is computed using the translation,

e1, and after the boundary it is computed using e2.

To find the global minimum for a search direction d, we move along d and for each plateau we iden-

tify all the points at which the score assigned by the model to the current 1-best translation intersects the
4 Notice that, this point only exists if the slopes of the candidates’ model scores along d are not equivalent, i.e. if

d ·Ψ(e2,h2, f) 6= d ·Ψ(e1,h1, f).
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score assigned to competing translations. At the closest such intersection, we have a new 1-best translation.

Moving to the plateau associated with this new 1-best, we then repeat the search for the nearest subsequent

intersection. This continues until we know what the 1-best translations are for all points along d. The global

minimum can then be found by examining ` once for each of these.

Let’s return briefly to the earlier example given in table 3.1. Starting at position

(wtm,wlm) = (1.0,0.5) and searching along thewlm coordinate, i.e. (dtm,dlm) = (0.0,1.0), table 3.2 gives the

line search slopes, m = d ·Ψ(e,h, f), and intercepts, b = w ·Ψ(e,h, f), for each of the four candidate trans-

lations. Using the procedure just described, we can then find what range of values along d each candidate

translation is assigned the highest relative model score. Figure 3.2 illustrates how the score assigned by the

model to each of the translations changes as we move along d. Each of the banded regions corresponds to a

plateau in the objective, and each of the top most line intersections represents the transition from one plateau

to the next. Note that, while the surface that is defined by the line segments with the highest classifier score

for each region is convex, this is not a convex optimization problem as we are optimizing over the loss `

rather than classifier score. Since the loss ` is determined by running an external evaluation metric over the

best scoring hypothesis within each region, it can exhibit arbitrary variations along the line being searched.

Pseudo-code for the line search is given in algorithm 2. Letting n denote the number of foreign sen-

tences, f, in a dataset, and having m denote the size of the individual n-best lists, |l|, the time complexity of

the algorithm is given by O(nm2). This is seen in that each time we check for the nearest intersection to the

current 1-best for some n-best list l, we must calculate its intersection with all other candidate translations

that have yet to be selected as the 1-best. And, for each of the n n-best lists, this may have to be done up to

m−1 times.

3.1.2 Search Strategies

In this section, I review two search strategies that, in conjunction with the line search just described,

can be used to drive MERT. The first, Powell’s method, was advocated by Och (2003) when MERT was first
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Algorithm 2 MERT Line Search: Och 2003’s line search method to find the global minimum in the loss,
`, when starting at the point w and searching along the direction d using the candidate translations given in
the collection of n-best lists L .
Input: L , w, d, `
I ⇐ {}
for l ∈L do
for e ∈ l do
m{e}⇐ e.features · d
b{e}⇐ e.features · w

end for
bestn⇐ argmaxe∈l m{e} {b{e} breaks ties}
loop
bestn+1 = argmine∈l max

(
0, b{bestn}−b{e}

m{e}−m{bestn}

)
intercept⇐max

(
0, b{bestn}−b{bestn+1}

m{bestn+1}−m{bestn}

)
if intercept > 0 then
add(I , intercept)

else
break

end if
end loop

end for
add(I , max(I )+2ε)
ibest = argmini∈I argmax`(L ,w+(i− ε) ·d)
return w+(ibest − ε) ·d

introduced for statistical machine translation. The second, which I call Koehn-coordinate descent (KCD),5

is used by the MERT utility packaged with the popular Moses statistical machine translation system (Koehn

et al., 2007).

3.1.2.1 Powell’s Method

Powell’s method (Press et al., 2007) attempts to efficiently search the objective by constructing a set

of mutually non-interfering search directions. The basic procedure is as follows: (i) A collection of search

directions is initialized to be the coordinates of the space being searched; (ii) The objective is minimized

by looping through the search directions and performing a line minimization for each; (iii) A new search

direction is constructed that summarizes the cumulative direction of the progress made during step (ii) (i.e.,
5 Moses uses David Chiang’s CMERT package. Within the source file mert.c, the function that implements the overall search

strategy, optimize_koehn(), is based on Philipp Koehn’s Perl script for MERT optimization that was distributed with Pharaoh.
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Figure 3.3: Regularization Heuristics: Line search based smoothing heuristics, from left to right: (i) the
maximum loss of adjacent plateaus, (ii) the average loss of adjacent plateaus, and (iii) no regularization. Each
set of bars represents adjacent plateaus along the line being searched, with the height of the bars representing
their associated loss. The vertical lines indicate the surrogate loss values used for the center region under
each of the schemes (i-iii).

dnew = wpreii−wpostii). After a line minimization is performed along dnew, it is used to replace one of the

existing search directions. (iv) The process repeats until no more progress can be made. For a quadratic

function of n variables, this procedure comes with the guarantee that it will reach the minimum within n

iterations of the outer loop. However, since Powell’s method is usually applied to non-quadratic optimization

problems, a typical implementation will forgo the quadratic convergence guarantees in favor of a heuristic

scheme that allows for better navigation of complex surfaces.

3.1.2.2 Koehn’s Coordinate Descent

KCD is a variant of coordinate descent that, at each iteration, moves along the coordinate which

allows for the most progress in the objective. In order to determine which coordinate this is, the routine

performs a trial line minimization along each. It then updates the weight vector with the one that it found to

be most successful. While much less sophisticated that Powell, the results indicate that this method may be

marginally more effective at optimizing the MERT objective.6

3.2 Extensions

In this section, I present and motivate two novel extensions to MERT. The first is a stochastic alter-

native to the Powell and KCD search strategies, while the second is an efficient method for regularizing the

objective.
6 While I am not aware of any previously published results that demonstrate this, it is likely that I were not the first to make

this discovery as even though Moses’ MERT implementation includes a vestigial implementation of Powell’s method, the code is
hardwired to call optimize_koehn() rather than the routine for Powell.
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3.2.1 Random Search Directions

One significant advantage of Powell’s algorithm over coordinate descent is that it can optimize along

diagonal search directions in weight space. That is, given a model with a dozen or so features, it can explore

gains that are to be had by simultaneously varying two or more of the feature weights. In general, the diag-

onals that Powell’s method constructs allow it to walk objective functions more efficiently than coordinate

descent (Press et al., 2007). However, given that I have a line search algorithm that will find the global min-

ima along any given search direction, diagonal search may be of even more value. That is, similar to ridge

phenomenon that arise in traditional hill climbing search, it is possible that there are points in the objective

that are the global minimum along any given coordinate direction, but are not the global minimum along

diagonal directions.

However, one substantial disadvantage for Powell is that the assumptions it uses to build up the diago-

nal search directions do not hold in the present context. Specifically, the search directions are built up under

the assumption that near a minimum the surface looks approximately quadratic and that we are performing

local line minimizations within such regions. However, since we are performing global line minimizations,

it is possible for the algorithm to jump from the region around one local minimum to another. If Powell’s

method has already started to tune its search directions for the prior minima, it will likely be less effective

in its efforts to search the new region. To this extent, coordinate descent will be more robust than Powell as

it has no assumptions that are violated when such a jump occurs.

One way of salvaging Powell’s algorithm in this context would be to incorporate additional heuristics

that detect when the algorithm has jumped from the region around one local minimum to another. When this

occurs, the search directions could be reset to the coordinates of the space. However, I opt for a simpler solu-

tion, which like Powell’s algorithm performs searches along diagonals in the space, but that like coordinate

descent is sufficiently simple that the algorithm will not be confused by sudden jumps between regions.

Specifically, the search procedure chooses directions at random such that each component is dis-

tributed according to a Gaussian,7 d s.t. di ∼ N(0,1). This allows the procedure to minimize along diagonal

search directions, while making essentially no assumptions regarding the characteristics of the objective or
7 However, I speculate that similar results could be obtained using a uniform distribution over (−1,1)
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the relationship between a series of sequential line minimizations. In the results that follow, I show that,

perhaps surprisingly, this simple procedure outperforms both KCD and Powell’s method.

3.2.2 Regularization

One potential drawback of MERT, as it is typically implemented, is that it attempts to find the best

possible set of parameters for a training set without making any explicit efforts to find a set of parameters

that can be expected to generalize well. For example, let’s say that for some objective there is a very deep

but narrow minimum that is surrounded on all sides by very bad objective values. That is, the BLEU score

at the minima might be 39.1 while all surrounding plateaus have a BLEU score that is < 10. Intuitively,

such a minimum would be a very bad solution, as the resulting parameters would likely exhibit very poor

generalization to other data sets. This could be avoided by regularizing the surface in order to eliminate such

spurious minima.

One candidate for performing such regularization is the continuous approximation of theMERT objec-

tive, O = Epw(`). Och (2003) claimed that this approximation achieved essentially equivalent performance

to that obtained when directly using the loss as the objective, O = `. However, Zens et al. (2007) found that

O = Epw(`) achieved substantially better test set performance than O = `, even though it performs slightly

worse on the data used to train the parameters. Similarly, Smith and Eisner (2006) reported test set gains for

the related technique of minimum risk annealing, which incorporates a temperature parameter that trades off

between the smoothness of the objective and the degree it reflects the underlying piecewise constant error

surface. However, the most straightforward implementation of such methods requires a loss that can be ap-

plied at the sentence level. If the evaluation metric of interest does not have this property (e.g. BLEU), the

loss must be approximated using some surrogate, with successful learning then being tied to how well the

surrogate captures the critical properties of the underlying loss.

The techniques of Zens et al. (2007) & Smith and Eisner (2006) regularize by implicitly smoothing

over nearby plateaus in the error surface. I propose an alternative scheme that operates directly on the

piecewise constant objective and that mitigates the problem of spurious local minima by explicitly smoothing

over adjacent plateaus during the line search. That is, when assessing the desirability of any given plateau,
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I examine a fixed window w of adjacent plateaus along the direction being searched and combine their

evaluation scores. I explore two combination methods, max and average. The former, max, assigns each

plateau an objective value that is equal to the maximum objective value in its surrounding window, while

average assigns a plateau an objective value that is equal to its window’s average. Figure 3.3 illustrates

both methods for regularizing the plateaus and contrasts them with the case where no regularization is used.

Notice that, while both methods discount spurious pits in the objective, average still does place some value

on isolated deep plateaus, and max discounts them completely.

Note that one potential weakness of this scheme is the value assigned by the regularized objective to

any given point differs depending on the direction being searched. As such, it has the potential to wreak

havoc on methods such as Powell’s, which effectively attempt to learn about the curvature of the objective

from a sequence of line minimizations.

3.3 Experiments

Three sets of experiments were performed. For the first set, I compare the performance of Powell’s

method, KCD, and my novel stochastic search strategy. I then evaluate the performance of all three methods

when the objective is regularized using the average of adjacent plateaus for window sizes varying from 3 to

7. Finally, I repeat the regularization experiment, but using the maximum objective value from the adjacent

plateaus. These experiments were performed using the Chinese English evaluation data provided for NIST

MT eval 2002, 2003, and 2005. MT02 was used as a dev set for MERT learning, while MT03 and MT05

were used as the test sets.

For all experiments, MERT was performed using n-best lists from the decoder of size 100. During

each iteration, the MERT search was performed once with a starting point of the weights used to generate

the most recent set of n-best lists and then 5 more times using randomly selected starting points.8 Of these,

I retain the weights from the search that obtained the lowest objective value. Training continued until either

decoding produced no novel entries for the combined n-best lists or none of the parameter values changed
8 Only 5 random restarts were used due to time constraints. Ideally, a sizable number of random restarts should be used in order

to minimize the degree to which the results are influenced by some runs receiving starting points that are better in general or perhaps
better/worse w.r.t. their specific optimization strategy.
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Method Dev Test Test

MT02 MT03 MT05
KCD 30.967 30.778 29.580
Powell 30.638 30.692 29.780
Random 31.681 31.754 30.191

Table 3.3: Optimization Search Strategy Performance: BLEU scores obtained by models trained using
three different parameter search strategies: Powell’s method, KCD, and stochastic search.

by more than 1e-5 across subsequent iterations.

3.3.1 System

Experiments were run using the Phrasal machine translation system (Cer et al., 2010b). I made use of

a stack size of 50, as this allowed for faster experiments while only performing modestly worse than a stack

of 200. The distortion limit was set to 6. The decoder was configured to retrieve 20 translation options for

each unique source phrase.

The phrase-table was built using 1,140,693 sentence pairs sampled from the GALE Y2 training data.

The Chinese data was word segmented using the GALE Y2 retest release of the Stanford CRF segmenter

(Tseng et al., 2005). Phrases were extracted using the typical approach described in Koehn et al. (2003) of

running GIZA++ (Och & Ney, 2003) in both directions and then merging the alignments using the grow-

diag-final heuristic. From the merged alignments, a bi-directional lexical reordering model conditioned on

the source and the target phrases (Tillmann, 2004; Koehn et al., 2007) was also extracted. A 5-gram language

model was created using the SRI language modeling toolkit (Stolcke, 2002) and trained using the Gigaword

corpus and English sentences from the parallel data.

3.4 Results

As illustrated in table 3.3, Powell’s method and KCD achieve a very similar level of performance, with

KCD modestly outperforming Powell on the MT03 test set while Powell modestly outperforms coordinate

descent on the MT05 test set. Moreover, the fact that Powell’s algorithm did not perform better than KCD on
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Method Win Dev Test Test

Avg MT02 MT03 MT05
Coord. none 30.967 30.778 29.580

3 31.665 31.675 30.266
5 31.317 31.229 30.182
7 31.205 31.824 30.149

Powell none 30.638 30.692 29.780
3 31.333 31.412 29.890
5 31.748 31.777 30.334
7 31.249 31.571 30.161

Random none 31.681 31.754 30.191
3 31.548 31.778 30.263
5 31.336 31.647 30.415
7 30.501 29.336 28.372

Method Win Dev Test Test
Max MT02 MT03 MT05

Coord. none 30.967 30.778 29.580
3 31.536 31.927 30.334
5 31.484 31.702 29.687
7 31.627 31.294 30.199

Powell none 30.638 30.692 29.780
3 31.428 30.944 29.598
5 31.407 31.596 30.090
7 30.870 30.911 29.620

Random none 31.681 31.754 30.191
3 31.179 30.898 29.529
5 30.903 31.666 29.963
7 31.920 31.906 30.674

Table 3.4: Effectiveness of Smoothing Heuristics: BLEU scores obtained when regularizing using the
average loss of adjacent plateaus, left, and the maximum loss of adjacent plateaus, right. The none entry for
each search strategy represents the baseline where no regularization is used. Statistically significant test set
gains, p < 0.01, over the respective baselines are in bold face.

the training data,9 and in fact actually performed modestly worse, suggests that Powell’s additional search

machinery does not provide much benefit for MERT objectives.

Similarly, the fact that the stochastic search obtains a much higher dev set score than either Powell

or KCD indicates that it is doing a better job of optimizing the objective than either of the two alternatives.

These gains suggest that stochastic search does make better use of the global minimum line search than the

alternative methods. Or, alternatively, it strengthens the claim that the method succeeds at combining one of

the critical strengths of Powell’s method, diagonal search, with coordinate descent’s robustness to the sudden

jumps between regions that result from global line minimization. Using an approximate randomization test

for statistical significance (Riezler & Maxwell, 2005), and with KCD as a baseline, the gains obtained by

stochastic search on MT03 are statistically significant (p = 0.002), as are the gains on MT05 (p = 0.005).

Table 3.4 indicates that performing regularization by either averaging or taking the maximum of adja-

cent plateaus during the line search leads to gains for both Powell’s method and KCD. However, no reliable

additional gains appear to be had when stochastic search is combined with regularization.

It may seem surprising that the regularization gains for Powell & KCD are seen not only in the test
9 This indicates that Powell failed to find a deeper minima in the objective, since recall that the unregularized objective is

equivalent to the model’s dev set performance.
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sets but on the dev set as well. That is, in typical applications, regularization slightly decreases performance

on the data used to train the model. However, this trend can in part be accounted for by the fact that during

training, MERT is using n-best lists for objective evaluations rather than the more expensive process of

running the decoder for each point that needs to be checked. As such, during each iteration of training, the

decoding performance of the model actually represents its generalization performance relative to what was

learned from the n-best lists created during prior iterations. Moreover, better generalization from the prior

n-best lists can also help drive subsequent learning as there will then be more high quality translations on

the n-best lists used for future iterations of learning. Additionally, regularization can reduce search errors by

reducing the risk of getting stuck in spurious low loss pits that are in otherwise bad regions of the space.

3.5 Conclusions

In this chapter, I have presented two methods for improving the performance of MERT. The first is

a novel stochastic search strategy that appears to make better use of Och (2003)’s algorithm for finding

the global minimum along any given search direction than either coordinate descent or Powell’s method.

The second is a simple regularization scheme that leads to performance gains for both coordinate descent

and Powell’s method. However, no further gains are obtained by combining the stochastic search with

regularization of the objective.

While it is useful to be able to efficiently maximize a system’s performance on a chosen evaluation

metric, it is perhaps even more critical that the evaluation metric being optimized improves the actual quality

of the translations produced by the system rather than just the evaluation score. The next chapter examines

the relationship between the evaluation metric optimized and the actual quality of the resulting machine

translation systems. This is done by training systems to a variety of different popular evaluation metrics

and then having the translations produced by the systems evaluated by human judges. The chapter also

examines the stability of training to the different evaluation metrics, and the performance of systems on

evaluation metrics other than the metric that was used to train them.



Chapter 4

The Best Lexical Metric for

Phrase-Based Statistical Machine Translation System Optimization

4.1 Introduction

In the last chapter, all of the machine translation models were tuned to optimize the BLEU score. This,

of course, is not an accident since up until very recently nearly all translation systemswere trained to optimize

BLEU. More recently an increasing number of systems have been trained to the newer TER metric, since

a human edited variant of the metric, hTER, is being used as the official evaluation metric for the DARPA

GALE1 project. Even so, most research results are presented using systems tuned to the BLEU metric. This

is done since the machine translation community has come to expect experimental results presented in terms

of BLEU. For any given standard evaluation set, publishing BLEU scores makes it easy to gauge to quality

of a system and the relative significance of the experimental results. To do well on the BLEU score, it then

makes sense to tune the system to BLEU.

However, the development of improved evaluation metrics is a very active area of research. A number

of newer metrics correlate better with human judgments than BLEU. It is reasonable to wonder if tuning to

these metrics would result in better systems that produce translations that are preferred by humans to those

produced by a system trained to a simpler metric like BLEU. This chapter explores how optimizing toward

various automatic evaluation metrics (BLEU,METEOR, NIST, TER, and TERp) affects the resulting model.

A state-of-the-art machine translation system is trained using MERT on many parameterizations of each

metric. The resulting models are evaluated using the other metrics and also by human judges.
1 Defense Advanced Research Projects Agency: Global Autonomous Language Exploitation
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Since their introduction, automated measures of machine translation quality have played a critical

role in the development and evolution of translation systems. While such metrics were initially intended for

evaluation, popular training methods such as minimum error rate training (MERT) (Och, 2003) and margin

infused relaxed algorithm (MIRA) (Crammer & Singer, 2003; Watanabe et al., 2007; Chiang et al., 2008;

Chiang et al., 2009) can be used to train translation models toward a specific evaluation metric. This makes

the quality of the resulting model dependent on how accurately the automatic metric actually reflects human

preferences.

For the reasons given above, the most popular metric for both comparing systems and tuning decod-

ing models has been BLEU. While BLEU (Papineni et al., 2002) is relatively simple, scoring translations

according to their n-gram overlap with reference translations, it still achieves a reasonable correlation with

human judgments of translation quality. It is also robust enough to use for automatic optimization. However,

BLEU does have a number of shortcomings. It does not penalize n-gram scrambling (Callison-Burch et al.,

2006), and since it is not aware of synonymous words or phrases, it can inappropriately penalize translations

that use them.

Recently, there have been efforts to develop better evaluation metrics. Metrics such as Translation

Edit Rate (TER) (Snover et al., 2006; Snover et al., 2009) and METEOR2 (Lavie & Denkowski, 2009)

perform a more sophisticated analysis of the translations being evaluated and the scores they produce tend

to achieve a better correlation with human judgments than those produced by BLEU (Snover et al., 2009;

Lavie & Denkowski, 2009; Przybocki et al., 2008; Snover et al., 2006).

These better correlations suggest that one might obtain higher quality translations by making use

of the newer metrics when training translation models. It is expected that training on a specific metric will

produce the best performingmodel according to that metric. Doing better onmetrics that better reflect human

judgments seems to imply the translations produced by the model would be preferred by human judges.

However, there are four potential problems. First, some metrics could be susceptible to systematic

exploitation by the training algorithm and result in model translations that have a high score according to the
2 METEOR: Metric for Evaluation of Translation with Explicit ORdering.
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evaluation metric but that are of low quality.3 Second, other metrics may result in objective functions that

are harder to optimize. Third, some may result in better generalization performance than others at test time

by not encouraging overfitting of the training data. Finally, as a practical concern, metrics used for training

cannot be too slow.

This chapter systematically explores these four issues for the most popular metrics available to the

machine translation community. It examines how well models perform both on the metrics on which they

were trained and on the other alternative metrics. Multiple models are trained using each metric in order

to determine the stability of the resulting models. Select models are scored by human judges in order to

determine how performance differences obtained by tuning to different automated metrics relate to actual

human preferences. The next section reviews the operation of the metrics. This is followed with two sets of

core results: machine evaluation in section 4.4, and human evaluation in section 4.5.

4.2 Evaluation Metrics

Designing good automated metrics for evaluating machine translations is challenging due to the vari-

ety of acceptable translations for each foreign sentence. Popular metrics produce scores primarily based on

matching sequences of words in the system translation to those in one or more reference translations. The

metrics primarily differ in how they account for reorderings, synonyms, and local paraphrases.

4.2.1 BLEU

BLEU (Papineni et al., 2002) uses the percentage of n-grams found in machine translations that also

occur in the reference translations. These n-gram precisions are calculated separately for different n-gram

lengths and then combined using a geometric mean. The score is then scaled by a brevity penalty if the

candidate translations are shorter than the references, BP = min(1.0,e1−len(R)/len(T )). Equation 4.1 gives

BLEU using n-grams up to length N for a corpus of candidate translations T and reference translations R. A

variant of BLEU called the NIST metric (Doddington, 2002) weights n-gram matches by how informative
3 For example, BLEU computed without the brevity penalty would likely result in models that have a strong preference for

generating pathologically short translations.
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they are.

BLEU:N =

(
N

∏
n=1

n-grams(T
∩

R)
n-grams(T )

) 1
N

BP (4.1)

While easy to compute, BLEU has a number of shortcomings. Since the order of matching n-grams is

ignored, n-grams in a translation can be randomly rearranged around non-matching material or other n-gram

breaks without harming the score. BLEU also does not explicitly check whether information is missing

from the candidate translations, as it only examines what fraction of candidate translation n-grams are in

the references and not what fraction of references n-grams are in the candidates (i.e., BLEU ignores n-gram

recall). Finally, the metric does not account for words and phrases that have similar meanings.

4.2.2 METEOR

METEOR (Lavie & Denkowski, 2009) computes a one-to-one alignment between matching words

in a candidate translation and a reference. If a word matches multiple other words, preference is given to

the alignment that reorders the words the least, with the amount of reordering measured by the number of

crossing alignments. Alignments are first generated for exactmatches betweenwords. Additional alignments

are created by repeatedly running the alignment procedure over unaligned words, first allowing for matches

between word stems, and then allowing matches between words listed as synonyms in WordNet. From the

final alignment, the candidate translation’s unigram precision and recall is calculated, P = matches
length trans and

R = matches
length ref . These two are then combined into a weighted harmonic mean (4.2). To penalize reorderings,

this value is then scaled by a fragmentation penalty based on the number of chunks the two sentences would

need to be broken into to allow them to be rearranged with no crossing alignments, Pβ ,γ = 1− γ
( chunks

matches

)β .

Fα =
PR

αP+(1−α)R
(4.2)

METEORα ,β ,γ = Fα ·Pβ ,γ (4.3)
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Equation 4.3 gives the final METEOR score as the product of the unigram harmonic mean, Fα , and

the fragmentation penalty, Pβ ,γ . The free parameters α , β , and γ can be used to tune the metric to human

judgments on a specific language and variation of the evaluation task (e.g., ranking candidate translations

vs. reproducing judgments of translations adequacy and fluency).

4.2.3 Translation Edit Rate

TER (Snover et al., 2006) searches for the shortest sequence of edit operations needed to turn a can-

didate translation into one of the reference translations. The allowable edits are the insertion, deletion, and

substitution of individual words as well as swaps of adjacent sequences of words. The swap operation differ-

entiates TER from the simpler word error rate (WER) metric (Nießen et al., 2000), which only makes use of

insertions, deletions, and substitutions. Swaps prevent phrase reorderings from being excessively penalized.

Once the shortest sequence of operations is found,4 TER is calculated simply as the number of required edits

divided by the reference translation length, or average reference translation length when multiple references

are available (4.4).

TER =
minedits

avg ref length
(4.4)

TER-Plus (TERp) (Snover et al., 2009) extends TER by allowing the cost of edit operations to be

tuned in order to maximize the metric’s agreement with human judgments. TERp also introduces three new

edit operations: word stem matches, WordNet synonym matches, and multi-word matches using a table of

scored paraphrases.

4.3 Experiments

Experiments were run using the Phrasal machine translation package (Cer et al., 2010b). During

decoding, I made use of a stack size of 100, set the distortion limit to 6, and retrieved 20 translation options

for each unique source phrase.
4 Since swaps prevent TER from being calculated exactly using dynamic programming, a beam search is used and this can

overestimate the number of required edits.
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Using the selected metrics, I train both Chinese to English and Arabic to English models.5 The

Chinese to English models are trained using NIST MT02 and evaluated on NIST MT03. The Arabic to

English experiments use NISTMT06 for training and GALE dev07 for evaluation. The resulting models are

scored using all of the stand alone metrics used during training.

4.3.1 Arabic to English

The Arabic to English system was based on Stanford’s well ranking 2009 NIST submission (Galley

et al., 2009). The phrase-table was extracted using all of the allowed resources for the constrained Arabic

to English track. Word alignment was performed using the Berkeley cross-EM aligner (Liang et al., 2006b).

Phrases were extracted using the grow heuristic (Koehn et al., 2003). However, all phrases that have a

P(e| f )< 0.0001 were thrown away in order to reduce the size of the phrase-table. From the aligned data, a

hierarchical reordering model was extracted that is similar to popular lexical reordering models (Koehn et al.,

2007) but that models swaps containing more than just one phrase (Galley & Manning, 2008). A 5-gram

language model was created with the SRI language modeling toolkit (Stolcke, 2002) using all of the English

material from the parallel data employed to train the phrase-table as well as Xinhua Chinese English Parallel

News (LDC2002E18).6 The resulting decoding model has 16 features that are optimized during MERT.

4.3.2 Chinese to English

For the Chinese to English system, the phrase-table was built using 1,140,693 sentence pairs sampled

from the GALE Y2 training data. The Chinese sentences were word segmented using the 2008 version

of Stanford Chinese Word Segmenter (Chang et al., 2008; Tseng et al., 2005). Phrases were extracted by

running GIZA++ (Och & Ney, 2003) in both directions and then merging the alignments using the grow-

diag-final heuristic (Koehn et al., 2003). From the merged alignments, a bidirectional lexical reordering

model conditioned on the source and the target phrases was also extracted (Koehn et al., 2007). A 5-gram

language model was created with the SRI language modeling toolkit (Stolcke, 2002) and trained using the
5 Given the amount of time required to train a TERpA model, I only present TERpA results for Chinese to English.
6 In order to run multiple experiments in parallel on the computers available to me, the system I use for this work differs from

the Stanford NIST 2009 submission in that I remove the Google n-gram language model. This results in a performance drop of less
than 1.0 BLEU point on the dev data.
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Gigaword corpus and English sentences from the parallel data. The resulting decoding model has 14 features

to be trained.

4.4 Results

As seen in tables 4.2 and 4.4, the evaluation metric I use during training has a substantial impact on

performance as measured by the various other metrics. There is a clear block structure where the best class

of metrics to train on is the same class that is used during evaluation. Within this block structure, I make

three primary observations. First, the best performing model according to any specific metric configuration

is usually not the model I trained to that configuration. In the Chinese results, the model trained on BLEU:3

scores 0.74 points higher on BLEU:4 than the model actually trained to BLEU:4. In fact, the BLEU:3 trained

model outperforms all other models on BLEU:N metrics. For the Arabic results, training onNIST scores 0.27

points higher on BLEU:4 than training on BLEU:4, and outperforms all other models on BLEU:N metrics.

Second, the edit distance based metrics (WER, TER, TERp, TERpA)7 seem to be nearly interchange-

able. While the introduction of swaps allows the scores produced by the TER metrics to achieve better

correlation with human judgments, the models are apparently unable to exploit this during training. This

might be due to the monotone nature of the reference translations and the fact that having multiple refer-

ences reduces the need for reorderings. However, it is possible that differences between training to WER

and TER would become more apparent using models that allow for longer distance reorderings or that do a

better job of capturing what reorderings are acceptable.

Third, with the exception of BLEU:1, the performance of the BLEU, NIST, and the METEOR α=.5

models appears to be more robust across the other evaluation metrics than the standardMETEOR,METEOR

ranking, and edit distance based models (WER, TER, TERp, an TERpA). The latter models tend to do quite

well on metrics similar to what they were trained on, while performing particularly poorly on the other

metrics. For example, on Chinese, the TER andWERmodels perform very well on other edit distance based
7 In my implementation of multi-referenceWER, I use the length of the references that result in the lowest sentence levelWER to

divide the edit costs. In contrast, TER divides by the average reference length. This difference can sometimes result in WER being
lower than the corresponding TER. Also, as can be seen in the Arabic to English results, TERp scores sometimes differ dramatically
from TER scores due to normalization and tokenization differences (e.g., TERp removes punctuation prior to scoring, while TER
does not).
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metrics, while performing poorly on all the other metrics except NIST.While less pronounced, the same trend

is also seen in the Arabic data. Interestingly enough, while the TER, TERp and standard METEOR metrics

achieve good correlations with human judgments, models trained to them are particularly mismatched in

the results. The edit distance models do terribly on METEOR and METEOR ranking, while METEOR and

METEOR ranking models do poorly on TER, TERp, and TERpA.

4.4.1 Other Results

On the training data, I see a similar block structure within the results, but there is a different pattern

among the top performers. In table 4.1, I observe that, for Chinese, the BLEU:5 model performs best on the

training data according to all higher order BLEU metrics (4-7). As seen in table 4.3, on Arabic, the BLEU:6

model does best on the same higher order BLEU metrics (4-7). By rewarding higher order n-gram matches,

these objectives actually find minima that result in more 4-gram matches than the models optimized directly

to BLEU:4. However, the fact that this performance advantage disappears on the evaluation data suggests

these higher order models also promote overfitting.

Models trained on additive metric blends tend to smooth out performance differences between the

classes of metrics they contain. As expected, weighting the metrics used in the additive blends results in

models that perform slightly better on the type of metric with the highest weight.

Training Iterations Wall Time Training Iterations Wall Time
Metric Metric
BLEU:1 13 21:57 NIST 15 78:15
BLEU:2 15 32:40 TER 7 21:00
BLEU:3 19 45:08 TERp 9 19:19
BLEU:4 10 24:13 TERpA 8 393:16
BLEU:5 16 46:12 WER 13 33:53
BL:4-TR 9 21:07 BL:4-2TRp 8 22:03
METR 12 39:16 METR 0.5 18 42:04
METR R 12 47:19 METR R:0.5 13 25:44

Table 4.5: Training Time: Chinese to English MERT iterations and training times, given in hours:mins and
excluding decoder time, when tuning to different evaluation metrics.

Table 4.5 reports training times for select Chinese to English models. Training to TERpA is very
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computationally expensive due to the implementation of the paraphrase-table. The TER family of metrics

tends to converge in fewer MERT iterations than those trained on other metrics such as BLEU, METEOR or

even WER. This suggests that the learning objective provided by these metrics is either easier to optimize

or they more easily trap the search in local minima.

4.4.2 Model Variance

One potential problem with interpreting the results above is that learning with MERT is generally

assumed to be noisy, with different runs of the algorithm possibly producing very different models. I explore

to what extent the results just presented were affected by noise in the training procedure. I perform multiple

training runs using select evaluationmetrics and examining how consistent the resultingmodels are. This also

allows us to determine whether the metric used as a training criterion influences the stability of learning. For

these experiments, Chinese to English models are trained 5 times using a different series of random starting

points. As before, 20 random restarts were used during each MERT iteration.

Train\σ BLEU:1 BLEU:3 BLEU:4 BLEU:5 TERp WER METR METR
α:0.5

BLEU:1 0.17 0.56 0.59 0.59 0.36 0.58 0.42 0.24
BLEU:3 0.38 0.41 0.38 0.32 0.70 0.49 0.44 0.33
BLEU:4 0.27 0.29 0.29 0.27 0.67 0.50 0.41 0.29
BLEU:5 0.17 0.14 0.19 0.21 0.67 0.75 0.34 0.17
TERp 1.38 2.66 2.53 2.20 1.31 1.39 1.95 1.82
WER 0.62 1.37 1.37 1.25 1.31 1.21 1.10 1.01
METR 0.80 0.56 0.48 0.44 3.71 2.69 0.69 1.10
METR:0.5 0.32 0.11 0.09 0.11 0.23 0.12 0.07 0.11

Table 4.6: Model Variation: MERT model variation for Chinese to English when training to different
evaluation metrics. I train five models to each metric listed above. The collection of models trained to a
given metric is then evaluated using each of the training metrics. I report the resulting standard deviations
for the collections. The collection with the lowest variance is bolded.

In table 4.6, models trained to BLEU and METEOR are relatively stable, with the METEOR:0.5

trained models being the most stable. The edit distance models, WER and TERp, vary more across training

runs, but still do not exceed the interesting cross metric differences seen in table 4.2. However, the instability

of WER and TERp, with TERp models having a standard deviation of 1.3 in TERp and 2.5 in BLEU:4, make
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Chinese Arabic

Model Pair % Pref p-value Model Pair % Pref p-value
METR R vs. TERp 60.0 0.0028 BLEU:4 vs. METR R 62.0 < 0.001
BLEU:4 vs. TERp 57.5 0.02 NIST vs. TERp 56.0 0.052
NIST vs. TERp 55.0 0.089 BLEU:4 vs. METR:0.5 55.5 0.069
NIST vs. TERpA 55.0 0.089 BLEU:4 vs. METR 54.5 0.11
BLEU:4 vs. TERpA 54.5 0.11 METR R:0.5 vs METR R 54.0 0.14
BLEU:4 vs. METR R 54.5 0.11 NIST vs. BLEU:4 51.5 0.36
METR:0.5 vs. METR 54.5 0.11 WER vs. TERp 51.5 0.36
METR:0.5 vs. METR R 53.0 0.22 METR:0.5 vs METR 51.5 0.36
METR vs. BLEU:4 52.5 0.26 TERp vs. BLEU:4 51.0 0.42
BLEU:4 vs. METR:0.5 52.5 0.26 BLEU:4 vs. METR R:0.5 50.5 0.47
METR vs. TERp 52.0 0.31
NIST vs. BLEU:4 52.0 0.31
BLEU:4 vs. METR R:0.5 51.5 0.36
WER vs. TERp 51.5 0.36
TERpA vs. TERp 50.5 0.47

Table 4.7: Human Preferences: Select pairwise preference for models trained to different evaluation met-
rics. For A vs. B, preferred indicates how often A was preferred to B. I bold the better training metric for
statistically significant differences.

them risky metrics to use for training.

4.5 Human Evaluation

The best evaluation metric to use during training is the one that ultimately leads to the best translations

according to human judges. I perform a human evaluation of select models using Amazon Mechanical Turk,

an online service for cheaply performing simple tasks that require human intelligence. To use the service,

tasks are broken down into individual units of work known as human intelligence tasks (HITs). HITs are

assigned a small amount of money that is paid out to the workers that complete them. For many natural

language annotation tasks, including machine translation evaluation, it is possible to obtain annotations that

are as good as those produced by experts by having multiple workers complete each HIT and then combining

their answers (Snow et al., 2008; Callison-Burch et al., 2006).

I perform a pairwise comparison of the translations produced for the first 200 sentences of the Chinese

to English test data (MT03) and the Arabic to English test data (dev07). The HITs consist of a pair of machine

translated sentences and a single human generated reference translation. The reference is chosen at random
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from those available for each sentence. Capitalization of the translated sentences is restored using an HMM

based truecaser (Lita et al., 2003). Turkers are instructed to “…select the machine translation generated

sentence that is easiest to read and best conveys what is stated in the reference”. Differences between the

two machine translations are emphasized by being underlined and bold faced.8 The resulting HITs are

made available only to workers in the United States, as pilot experiments indicated this results in more

consistent preference judgments. Three preference judgments are obtained for each pair of translations and

are combined using weighted majority vote.

As shown in table 4.7, in many cases the quality of the translations produced by models trained to dif-

ferent metrics is remarkably similar. Training to the simpler edit distance metric WER produces translations

that are as good as those from models tuned to the similar but more advanced TERp metric that allows for

swaps. Similarly, training to TERpA, which makes use of both a paraphrase-table and edit costs tuned to

human judgments, is no better than TERp.

For the Chinese to English results, there is a statistically significant human preference for translations

that are produced by training to BLEU:4 and a marginally significant preference for training to NIST over

the default configuration of TERp. This contrasts sharply with earlier work showing that TER and TERp

correlate better with human judgments than BLEU (Snover et al., 2009; Przybocki et al., 2008; Snover et al.,

2006). While it is assumed that, by using MERT, “improved evaluation measures lead directly to improved

machine translation quality” (Och, 2003), these results show improved correlations with human judgments

are not always sufficient to establish that tuning to a metric will result in higher quality translations. In the

Arabic results, I see a similar pattern where NIST is preferred to TERp, again with marginal significance.

Strangely, however, there is no real difference between TERp vs. BLEU:4.

For Arabic, training to ranking METEOR is worse than BLEU:4, with the differences being very

significant. The Arabic results also trend toward suggesting that BLEU:4 is better than either standard ME-

TEOR or METEOR α 0.5. However, for the Chinese models, training to standard METEOR and METEOR

α 0.5 is about as good as training to BLEU:4. In both the Chinese and Arabic results, the METEOR α 0.5
8 I emphasize relative differences between the two translations rather than the difference between each translation and the refer-

ence in order to avoid biasing evaluations toward edit distance metrics.
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models are at least as good as those trained to standard METEOR and METEOR ranking. In contrast to the

cross evaluation metric results, where the differences between the α 0.5 models and the standard METEOR

models were always fairly dramatic, the human preferences suggest there is often not much of a difference

in the true quality of the translations produced by these models.

4.6 Conclusion

Training to different evaluation metrics follows the expected pattern whereby models perform best

on the same type of metric used to train them. However, models trained using the n-gram based metrics,

BLEU and NIST, are more robust to being evaluated using the other metrics. Edit distance models tend to

do poorly when evaluated on other metrics, as do models trained using METEOR. However, training models

to METEOR can be made more robust by setting α to 0.5, which balances the importance the metric assigns

to precision and recall.

The fact that the WER, TER and TERp models perform very similarly suggests that current phrase-

based translation systems lack either the features or the model structure to take advantage of swap edit

operations. The situation might be improved by using a model that does a better job of both capturing the

structure of the source and target sentences and their allowable reorderings, such as a syntactic tree-to-string

system that uses contextually rich rewrite rules (Galley et al., 2006), or by making use of larger more fine

grained feature sets (Chiang et al., 2009) that allow for better discrimination between hypotheses.

Human results indicate that edit distance trained models such as WER and TERp tend to produce

lower quality translations than BLEU or NIST trained models. Tuning to METEOR works reasonably well

for Chinese, but is not a good choice for Arabic. The newer RYPT metric (Zaidan & Callison-Burch, 2009),

which directly makes use of human adequacy judgments of substrings, could obtain better human results

than the automated metrics presented here. However, the metric is less attractive for running experiments on

different system variations due to the increased cost of tuning. If the metric is used for tuning, performance

gains still will likely be sensitive to how the mechanics of the metric interact with the structure and feature

set of the decoding model being used.

BLEU and NIST’s strong showing in both the machine and human evaluation results indicates that
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they are still the best general choice for training model parameters. This emphasizes that improved metric

correlations with human judgments do not imply that models trained to a metric will result in higher quality

translations. Future work on developing new evaluation metrics should then explicitly explore the translation

quality of models trained to them.

One of the reasons why training to different evaluation metrics like BLEU, METEOR and TER did

not have much of an impact on human preferences for the translations produced by the resulting models

may have been that on some level all of these evaluation metrics are relatively similar. That is, they all

essentially score a translation based upon substring overlap, with the more advanced metrics allowing for

fuzzy matching based on lexical semantics and paraphrasing. The next chapter will present results on when a

system is tuned to a more advanced evaluation metric that operates by performing a deeper semantic analysis

of the system’s translations and the references.



Chapter 5

Improved Translation Quality Using Textual Entailment

5.1 Introduction

As seen in the last chapter, tuning to different lexical level evaluation metrics does not seem to make

a significant difference in the preferences of human judges for the resulting translation systems. One reason

this might be the case is that what is being measured by all of these metrics is essentially the same. These

metrics all score translations based on the number of overlapping strings that are present in both the system

translations and in the reference translations. Newer metrics do a better job of matching strings that mean

the same thing but that are worded differently. However, the amount of variation they allow is limited to

matching words with similar meanings or very local paraphrasing.

This chapter examines tuning to a more advanced evaluation metric that actually performs a deep

semantic analysis of the two translations being compared to each other. It does this by running the trans-

lations through a textual entailment detection system. Given two sentences, an entailment system attempts

to accurately determine if one sentence can be plausibly “inferred” from the other. Relevant to translation

evaluation, if two sentences both entail each other, then it is reasonable to conclude a fluent speaker would

consider that the two sentences both convey the samemeaning, and thus could be equally good translations of

some original source material. In order to accurately detect such entailment relationships, the entailment sys-

tem makes use of a wide range of rich linguistic representations that provide evidence for lexical, syntactic,

and structural semantic matches and mismatches.

However, using such an evaluation metric for training presents a number of new challenges. First, the

metric is significantly slower than other simpler metrics such as BLEU, TER, or METEOR. Using the metric
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HYP: Virus was infected.

REF: No one was infected by the virus.

no entailment no entailment

HYP: The virus did not infect anybody.

REF: No one was infected by the virus.

entailment entailment

Figure 5.1: Mutual Entailment of Translations: Entailments between a machine translation system hy-
pothesis and a reference translation for good translations (right) and bad translations (left). Figure courtesy
of (Padó et al., 2009a).

for training requires careful adaptation of the training produce. Second, much of what is being measured by

the new metric is not readily captured by existing machine translation decoding models. Such a mismatch

reduces the model’s capacity to fit and benefit from the metric.

The remainder of this chapter is organized as follows. Section 5.2 presents the entailment system

and its adaptation into a machine translation evaluation metric. Section 5.3 details the integration of the

entailment based metric into MERT. Section 5.4 describes my experiments, and sections 5.5 and 5.6 present

and discuss the key result: The entailment-based model produces translations that are perceived by human

raters as significantly better than those constructed by models trained using TER and BLEU.

5.2 Textual Entailment and Machine Translation Evaluation

As introduced by Dagan et al. (2005), the textual entailment recognition task attempts to capture the

inferences people would make when reading a passage. The entailments do not need to strictly logically

follow from a passage, but rather also include anything that is likely to be true given the passage. For

example, the passage “John has $20” does not logically imply that “John has less than $30”. John could

have $40 dollars making the passage correct, as someone with $40 also has $20. But with $40 in John’s

pocket, the statement “John has less than $30” would be incorrect. However, after reading the passage most

reasonable speakers would in fact make the inference that “John has less than $30”, as conversational maxims

dictate that if John actually has more than $20 a non-deceptive speaker or writer should have actually made

this information explicit (Levinson, 1983).

To perform the entailment task, a system is asked to label a series of passage and hypothesis pairs

as being valid entailments or not. This is similar to the work done by a machine translation evaluation
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metric. However, a translation evaluation metric should not only ensure that everything stated in a system’s

hypothesis is supported by the reference, but also that all of the information in the reference is captured by

the hypothesis. As shown in figure 5.1, this suggests that the entailment task can be mapped onto machine

translation evaluation by simply checking for bi-directional entailment.

Early entailment systems attempted to use bag-of-words overlap or other surface-basedmethods (Monz

& de Rijke, 2001; Glickman & Dagan, 2005). These methods represent a strong baseline, but have lately

been consistently outperformed by systems built on a richer feature set that encodes lexical, structural, and

more sophisticated semantic properties of the sentence pairs (Bar-Haim et al., 2007; Marsi et al., 2007; Roth

& Sammons, 2007; Zanzotto et al., 2007). In this respect, there is a strong parallelism to the situation in

translation evaluation, with metrics like BLEU, NIST, METEOR and TER that base their judgment on over-

lapping word sequences taking the place of robust, but ultimately simplistic bag-of-words models. While

these methods have the advantage of being relatively fast, their superficial analysis risks erroneously assign-

ing a low score to translations that are good but liberally reworded paraphrases of a reference translation.

In contrast, the deeper analysis performed by entailment-based metrics is computationally expensive,

but also hopefully results in a more accurate assessment of semantic equivalence. The deeper analysis per-

formed by state-of-the-art entailment systems allows the resulting metric to capture aspects of translation

quality that are missed by surface-level metrics, such as matches or mismatches in argument structure, the

quality of paraphrases with little surface overlap, or the preservation of long-distance dependencies.

These intuitions have been confirmed by recent work involving the use of an entailment recognition

system for machine translation evaluation (Padó et al., 2009a; Padó et al., 2009b). It was found that the

entailment based metric tended to outperform a set of popular translation evaluation metrics (BLEU, NIST,

TER, and METEOR) in predicting human assessments of translation quality across a wide range of corpora.

Moreover, it was found that the entailment based metric was best at discriminating between translations

on the higher end of the scale, that is, between good translations and even better translations. The latter is

critical, since further progress in machine translation will require evaluation metrics that capture fine-grained

distinctions in translation quality. This makes entailment based metrics a promising possible replacement

for surface level metrics like BLEU, TER, and METEOR for use in model tuning with MERT.



78

5.2.1 Stanford Entailment Recognizer Metric

This work uses the entailment based evaluation metric (TEval) described by Padó et al. (2009a). The

metric operates by running the Stanford Entailment Recognizer (SER, MacCartney et al. (2006)) in both

directions over a reference and a candidate translation. The features extracted during both runs of the SER

system are then combined in a linear regression model trained to predict human assessments of translation

quality. The resulting TEval scoring model produces sentence level scores that range from 0 to 7, with 7

corresponding to a perfect translation and 0 representing a completely unacceptable one.

As illustrated in figure 5.2, the SER system uses a pipelined approach. It begins with a deep linguistic

analysis on incoming sentence pairs. The Stanford PCFG parser is run over the translations, and the resulting

phrase-structure parse trees are converted into typed dependency graphs using a series of rule-based trans-

formations (de Marneffe et al., 2006). Subsequently, an alignment is created between the nodes in the two

graphs, which takes into account both the structure of the graphs and the semantic similarity of the nodes

being aligned.

From the aligned graphs, the system extracts features that suggest either the presence or absence of an

entailment relationship. One of themost basic, but yet useful, features simply reproduces the graph alignment

score assigned to the pair, as it should generally be easier to align hypotheses that follow from a passage than

it is to align those that do not follow. Most of the other features examine the aligned graphs using simple

linguistically motivated rules that suggest the presence or absence of an entailment relationship. Padó et al.

(2009a) groups such features into four classes. The semantic compatibility features check whether or not

meaning is preserved by the aligned nodes. The insertion and deletion features attempt to capture what sorts

of material can be inserted or deleted from the two sentences without breaking the entailment relationship.

Preservation of reference features attempt to verify that both sentences seem to be referring to the same

events and participants. Structural alignment features attempt to verify the compatibility of grammatically

important parts of each sentence such as the main verb and its argument structure. To increase robustness

in case the linguistic analysis fails, the TEval metric also includes as features a set of traditional machine

translation evaluation metrics based on variants of the BLEU, NIST, TER, and METEOR scores.
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Premise: India buys 1,000 tanks.
Hypothesis: India acquires arms.

Stage 1: Linguistic analysis

India

buys

1,000 tanks

subj dobj

India

acquires

arms

subj dobj

Stage 2: Alignment

India

buys

1,000 tanks

subj dobj

India

acquires

arms

subj dobj

0.9

1.0 0.7

Semantic 
compatibility: 

Insertions and
deletions:
Preservation
of reference:
Structural 
alignment:

Stage 3: Feature computation

Overall alignment quality (2), Moda-
lity (5), Factivity (8), Polarity (5), 
Quantification (4), Lexical-semantic 
relatedness (7), Tense (2)
Felicity of appositions (2), adjuncts (7), 
Types of unaligned material (10) 
Locations, Dates, Entities (10)

Alignment of main verbs (2) and 
syntactically prominent words (2), 
Argument structure (mis-)matches (7)

Figure 5.2: Stanford Entailment Recognizer: The pipelined approach used by the Stanford entailment
recognizer to analyze sentence pairs and determine whether or not an entailment relationship is present. The
entailment recognizer first obtains dependency parses for both the passage and the hypothesis. These parses
are then aligned based upon lexical and structural similarity between the two dependency graphs. From the
aligned graphs, features are extracted that suggest the presence or absence of an entailment relationship.
Figure courtesy of (Padó et al., 2009a).

5.3 Using Textual Entailment within MERT

One drawback of the TEval metric is the amount of computation required for each sentence pair. As it

was originally developed, it required approximately 6 seconds per sentence pair being evaluated. However, a
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single iteration of MERT training can require millions of calls to the selected evaluation metric. For instance,

I found that, when training onMT02 (878 sentences) using 100-best lists, the final iteration ofMERT required

around 4.6 million invocations of the evaluation metric. Assuming there are 4 reference translations, a naïve

embedding of the TEval metric that would perform a sentence pair analysis with each of the 4 references for

each call to the evaluation metric by MERT would result in this round of training alone requiring almost 3.6

years to complete.

A small number of strategic changes were performed in order to make learning with TEval tractable.

First, since the most costly analysis performed by TEval is the initial parse of the two sentences, I introduced

caching of the parse trees. Critically, this not only prevents each pair of sentences from being parsed twice

(i.e., once for each entailment direction), but it also prevents reference translations from being repeatedly

parsed for each entry on the n-best lists that they are being compared with. Second, when presented with

multiple reference translations, I only calculate the TEval score using the reference for which the candidate

translation has the best TER score. Third, I introduced caching of the scores calculated by TEval for each

unique sentence pair. Thus, during each iteration of MERT TEval was only run over the new unique n-best

list entries that were not seen during previous iterations. This resulted in significant savings since even

during early iterations of training typically 60 to 90% of the n-best entries were either duplicates or were

seen during prior iterations.1

Even with these changes, TEval still proved to be somewhat slow. On an AMD Opteron 2216 and

training on 878 sentences using 100-best lists, even early iterations of MERT using TEval took on average 4

days to complete.2 Since 10 iterations or more are often performed prior to convergence, MERT with TEval

would still take well over a month to complete. One approach would be to simply apply more computing

hardware to the problem, since the sentence pairs evaluated by the TEval metric could be trivially evaluated

in parallel on multiple machines. With as little as two dozen dedicated CPUs, the amount of time required

for each iteration would be brought down to a manageable few hours.
1 Such caching of evaluation scores for sentence pairs also led to a 5× speed up in the time required to run each iteration of

MERT when using TER as the evaluation metric.
2 Results for training MERT on the complete 100-best lists are not presented here, as the system took prohibitively long to finish

training.
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However, such an approach could only be used at somewhat resource rich sites. A more accessible

alternative, and the one that is explored here, is to break training down into two manageable steps. The first

is to train an initial model using one of the traditional translation evaluation metrics. In the second step, the

resulting model weights are used as the starting point for MERT using the TEval metric and small n-best lists

(i.e., with n = 10). While such small n-best lists would not be sufficient to train a new model from scratch,

I found that they do allow for successful adaptation of the existing model to the new evaluation metric

while minimizing the computation cost. With these changes, each MERT iteration required approximately

11 hours.

5.4 Experiments

Experiments were performed using the Chinese-English evaluation data provided for NIST MT eval

2002, 2003, and 2005. MT02 was used as a dev set for MERT learning, while MT03 and MT05 were used

as the test sets. I contrasted the performance of a model trained using TEval with those trained using the

popular BLEU and TER evaluation metrics. I also explored the effect of the initial starting point used for

the TEval metric by training models using initial weights based on both the BLEU and TER trained models.

5.4.1 System

Experiments were run using the Phrasal machine translation package (Cer et al., 2010b). During

decoding I made use of a stack size of 100, set the distortion limit to 6, and retrieved 20 translation options

for each unique source phrase.

The phrase-table was built using 1,140,693 sentence pairs sampled from the GALE Y2 training data.

The Chinese data was word segmented using the GALE Y2 retest release of the Stanford CRF segmenter

(Tseng et al., 2005). Phrases were extracted using the typical approach described in (Koehn et al., 2003) of

running GIZA++ (Och & Ney, 2003) in both directions and then merging the alignments using the grow-

diag-final heuristic. From the merged alignments, a bidirectional lexical reordering model conditioned on

the source and the target phrases (Tillmann, 2004; Koehn et al., 2007) was also extracted. A 5-gram language

model was created using the SRI language modeling toolkit (Stolcke, 2002) and trained using the Gigaword
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System MT02 (dev) MT03 (test) MT05 (test)
BLEU TER TEvl BLEU TER TEvl BLEU TER TEvl

BLEU 31.5 58.6 4.54 32.0 57.4 4.58 30.3 58.4 4.49
TER 30.4 56.8 4.59 31.1 56.1 4.62 29.0 56.6 4.55

TEvl-BLEU 30.7 57.3 4.62 31.2 56.9 4.67 29.8 57.3 4.60
TEvl-TER 30.1 57.1 4.66 30.8 56.4 4.70 29.5 57.0 4.63

Table 5.1: Tuning to TEval: Performance of models trained using MERT with BLEU, TER, TEval using
the BLEU model as a starting point, and TEval using TER as a starting point. The bolded score indicates the
best performing system according to each metric. For BLEU and TEval, higher scores are better, while for
TER lower scores are preferable.

corpus and English sentences from the parallel data.

5.5 Results

As seen in table 5.1, both models trained using TEval outperform those trained using either BLEU or

TER on both the dev set and the test sets when evaluated by TEval. It is interesting to note that the model

trained using TER does better on TEval than the one trained using BLEU. This might be attributed to the fact

that TER has been found to correlate more highly with human judgments than BLEU (Snover et al., 2006).

Notice that TER also provides a better starting point for tuning the model to TEval, as the TEval model

that was trained using the TERmodel weights as a starting point systematically outperforms the TEval-BLEU

model. Presumably, with larger n-best lists, MERT with TEval would result in models that obtain similar

performance regardless of whether BLEU or TER was used as the starting point. However, using a TER-

based starting point would likely still be more desirable, as it would probably lead to fast convergence.

5.6 Human Assessments using Mechanical Turk

In order to validate that the improvements obtained by training toward the TEval metric actually

correspond to true improvements in translation quality, I also performed a cost-effective manual comparison

of the systems using Amazon’s Mechanical Turk. Recently, it has been shown that for certain NLP-related

annotation tasks, expert-level labeling can be obtained by simply averaging the work performed by a small
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Figure 5.3: Translation Evaluation Presentation: Human Intelligence Task (HIT) sentence pair presented
to Amazon Mechanical Turk annotators.

number of people on the Mechanical Turk service (Snow et al., 2008).

Manually evaluation of machine translations is typically done on a 5 or 7 point Likert scale (Przybocki

& Bronsart, 2008). This makes it possible to assess the performance of a large number of systems without

having to make a sizable number of paired comparisons between each system. However, for my purposes,

I elect to formulate the manual evaluation task as a paired comparison between systems. Since the systems

I will be comparing under different experimental conditions are very similar, I believe a pair presentation

is desirable in order to detect subtle differences in translation quality that may only be apparent when two

alternative translations are presented simultaneously.

As shown in figure 5.3, the human evaluators were presented with the pair of sentences produced by

two different system configurations along with a single reference translation. People were then told to select

the sentence that best matched the reference translation. Specifically, people were instructed to imagine that

the information being conveyed by the sentence was of some importance to them and that they should choose

the sentence they would prefer to be presented with if the human reference sentence was not available. Each

sentence pair was presented to five human evaluators at the cost of USD 0.01 per pair.

The output of the best performing TEval trained system (i.e., using a TER-trained model as a starting

point) was manually compared to that produced by systems trained using TER and BLEU. Human evalu-
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ation required approximately 48 hours per data set, with annotators completing about 100 translation-pair

comparisons per hour. Inter-annotator agreement was estimated by first creating a single meta-annotator

that selected translations based on the majority vote over the actual annotations. Agreement with the meta-

annotator as measured by the Pearson correlation coefficient was found to be 0.71. While not terrible, such

a level of agreement does confirm the need for multiple annotations per sentence pair.

As shown in table 5.2, the gains obtained by using the TEval metric during training do in fact result

in translations that tend to be preferred by human judges. While the strength of the effect is modest, the

results are statistically significant. Moreover, it is expected that more substantial gains could be obtained by

providing the translation model with a richer feature set that addresses more of the phenomena measured by

the TEval evaluation metric.

System Pairs % TEval Preferred p
TEval vs. BLEU 52.9 < 0.001
TEval vs. TER 51.7 < 0.01

Table 5.2: Human Pairwise Preferences: Comparison of human pairwise preference for translations pro-
duced by models train to TEval vs. BLEU and TEval vs. TER and degree of statistical significance.

5.7 Analysis

To help understand why a system trained by the TEval metric produces better sentences, I examined

the sentences in the MT02 dev set produced by the BLEU, TER, and TEval trained systems. I found that

the sentences produced by the TEval systems that scored more highly on the new metric than their BLEU or

TER trained counter parts, exhibit fewer drops or mistranslations of structurally important words and also

do a better job of preserving argument structure.

One example is shown in figure 5.3, in which both the BLEU and TEval trained systems tend to drop

words that are present in the reference translation. But the words they drop have very different roles in the

meaning of the sentence. For example, the BLEU trained system not only fails to represent that the interior

minister is conveying information about what has happened to the Italian government adviser but it also

makes the erroneous claim that the interior minister was the one who was shot.
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Ref Interior minister confirms senior adviser to the Italian government was
shot by the ” red brigade ”

TEval

BLEU The senior adviser to the interior minister was shot dead ” . 3.73
TEval Interior minister said the senior adviser was shot . 4.15

Table 5.3: TEval vs. BLEU Tuning Error Analysis: Development set translations produced by a human
translator (Ref), a system trained to TEval and a system trained to BLEU. Notice that the TEval system does
a better job of preserving the meaning of the reference translation.

While the BLEU score treats all word deletions as equivalent, the TEval metric specifically penalizes

mismatches in prominent words such as the main verb. Additionally, even though “said” can be seen as

largely preserving the meaning of the translation, BLEU would not reward such a production unless it was

also present in one of the reference translations and for this particular example all of the reference translations

contain either “confirms” or “confirmed”.

The TEval metric also searches for argument mismatches and, as seen above, penalizes sentence pairs

where an action is either being performed by or performed on the wrong entities. In contrast, BLEU, TER and

other lexical semantics based evaluation metrics like METEOR only measure mismatches in argument struc-

ture using essentially the relative sequence position of the arguments. Moreover, for these word-sequence

based metrics, mistakes in argument structure are counted no more heavily than other less serious errors or

even allowable substitutions not captured in at least one the of the reference translations.

5.8 Conclusion

Automated measures of translation quality play a significant role in machine translation research. Not

only do they serve as the yard stick with which progress is measured, but they also play a critical role in the

parameterization of models. If some aspect of translation quality is not being adequately measured by the

metric being optimized using MERT, it is expected that the final model’s performance on that phenomenon

will be compromised. This will even be the case if the model’s structure is capable of producing better

quality translations, as the feature weights will only be trained to optimize performance according to what

is rewarded by the selected metric.
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This could lead to underestimating the value of certain features in a translation system. That is, let’s

assume I develop a novel feature which has the capacity to significantly improve the true quality of the

translations produced by a model. However, if the translation characteristics it could improve are not ade-

quately measured by the evaluation metric, then experimental results using the metric will likely not show

sizable improvements over the scores obtained by existing systems. Worse, the new feature will be weighted

during MERT by the apparent value it provides according to the flawed metric and thus is likely to be under-

weighted by the model, and given little influence in deciding the best translation candidate. Consequently,

even human assessment of the system will underestimate the feature’s value.

While training toward better more sophisticated metrics holds significant promise, their increased

computational requirements makes it essential to be strategic about how one approaches using them to train

models. The staged training technique presented here is one way in which a model can be efficiently tuned

toward such a computationally intensive metric. I anticipate that future work will look at other alternatives.

One promising avenue for such investigationsmay be developing strategies for selecting themost informative

subset of the data to be used during each iteration of training.



Chapter 6

Model Learning without Minimum Error Rate Training

6.1 Introduction

While minimum error rate training (MERT) allows machine translation models to be fit precisely to

automated evaluation measures of machine translation quality, we have seen in chapter 4 that there is not

necessarily a clear correspondence between tuning to many popular evaluation metrics and human prefer-

ences for the resulting translations. This raises the question of whether or not it is worthwhile exactly fitting

evaluation metrics. This chapter investigates training machine translation models using standard techniques

widely applied to other natural language processing and machine learning tasks and contrasts the resulting

models to those produced by MERT.

For much of the work on natural language processing tasks, models are trained to a general pur-

pose objective function (e.g., maximum conditional likelihood for log-linear models) that have no relation-

ship to whatever metric will be used to ultimately evaluate the resulting model. Recent work using large-

marginmethods such as support vector machines for interdependent and structured output spaces (ISOSVM),

margin-infused relaxed algorithm (MIRA), and max-marginMarkov networks (M3) can make use of an eval-

uation metric to fine tune the separation in model scores between correct and incorrect states, with the idea

being that you want either a greater separation or greater margin violation penalty for incorrect states with

very low evaluation metric scores. Such techniques allow a model to be adapted to a specific evaluation

metric, while still being trained by optimizing a well behaved large-margin objective function and without

directly walking the potentially complex error surface defined by the evaluation metric.

Since these approaches seem to work reasonably well for other domains, it is rather surprising that
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they are not widely used in machine translation as well. The reason for this is that, when MERT was first

introduced, one of the key findings was that models trained using MERT to a variety of different evaluation

metrics significantly outperformed log-linear models trained to a standard conditional likelihood objective

on whatever evaluation metric was used to train the MERT models (Och, 2003). Since the models were only

evaluated using automated metrics, and in light of the results presented in chapter 4, there is some question

about whether or not the MERT models were actually better or if they just did a better job of fitting the

idiosyncratic preferences of each evaluation metric.

Even if MERT does allow us to usefully eke out the best possible performance out of models, it also

brings with it a number of limitations. Unlike maximum conditional likelihood log-linear models or large-

margin methods, MERT does not scale well to large numbers of features. Using feature sets with massive

numbers of binary features has come to dominate research work on many other natural language processing

tasks. Using MERT thus creates a division between the sort of feature engineering that works well for other

domains and the feature engineering that must be done for statistical machine translation systems.

Recently Chiang et al. (2009) and Chiang et al. (2008) demonstrated that it is possible to train ma-

chine translation systems using theMIRA algorithm and obtain performance that is better than that of models

trained using MERT. Using a typical feature set for hierarchical machine translation models, Chiang et al.

(2009) and Chiang et al. (2008) both show that MIRA trained models outperform those produced byMERT.1

Moreover, Chiang et al. (2009) showed that the performance gap between the MERT and MIRA trained

models can be increased further by introducing large numbers of discriminative features that cannot be effec-

tively trained using MERT. While these findings have created significant interest in using MIRA for training

machine translation models, other researchers have not yet broadly replicated Chiang et al. (2009) and Chi-

ang et al. (2008)’s results. As such, MERT still remains the most popular method for training machine

translation models.

In this chapter, I investigate the use of multiple alternatives to MERT including training using log-
1 In Chiang et al. (2008)’s experiments, the MERT model outperforms the MIRA model on the newswire portion of the NIST

MT06 test set. However, the MIRA trained model does much better on the newsgroup data, allowing it to achieve a higher score on
the entire dataset. Since both models were trained on newswire, this suggests the MIRA models generalizes better than the MERT
model.
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linear models to a conditional log-likelihood objective, ISOSVM, M3 networks, and MIRA. It is shown that

all of these methods perform as well or better than MERT. These findings will hopefully encourage future

work on machine translation to no longer fell bound to the MERT algorithm, but rather researchers will be

able to freely choose from available machine learning frameworks just as they do for other natural language

processing domains.

In the next section, I review all of the machine learning techniques investigated in this chapter and

describe how they are used here for training machine translation models. I then present experimental results

for each of the learning methods for both Chinese to English and Arabic to English translation. Finally, I

provide an analysis of my results in light of Och (2003)’s original experiments that seemed to suggest that

MERT radically outperforms mainstream machine learning algorithms such as log-linear models trained to

a conditional log-likelihood objective.

6.2 Learning Algorithms

This section briefly reviews the learning algorithms explored in this chapter, as well as how I use

the algorithms for training machine translation models. The algorithms explored here include a number of

popular machine learning techniques, including a variant of support vector machines for structured prediction

problems, max-marginMarkovmodels, log-linear training, andMIRA. The biggest difference between using

these techniques for machine translation and other learning tasks is that machine translation requires heuristic

selection of learning targets.

6.2.1 Selecting Learning Targets

One of the advantages of MERT is that it allows training toward human generated reference trans-

lations without explicitly choosing learning targets. For other discriminative learning techniques, learning

operates by maximizing the score assigned to specific positive learning targets as compared to the score as-

signed other labels or outputs that can be generated by system. However, machine translation systems have

difficulty producing the exact human generated reference translations, due to either not having the appropri-

ate phrase pairs in the system’s phrase table or re-ordering limitations such as those imposed by the system’s
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distortion limit. Often, the system will either have no way of producing the human reference translations

or will only be able to generate the reference translations using some undesirable derivation, such as trans-

lating punctuation into content words (Liang et al., 2006a). To use discriminative learning techniques that

require explicit positive learning examples, translation targets are typically chosen heuristically from system

generated n-best lists rather than training directly towards human generated targets.

However, some metrics such as the BLEU score cannot be effectively applied to individual sentences.

For example, applying the BLEU:N score to individual sentences results in all sentences that do not have at

least one n-grammatch of lengthN receiving a score of 0. Thismeans that the standard BLEU:4 configuration

of the metric would not assign an informative evaluation metric score to any sentences that did not match at

least one 4-gram in the reference translations.

Prior work has addressed this by selecting learning targets using smoothed variants of evaluation

metrics that can be applied at the sentence level, such as the smooth BLEU score (Liang et al., 2006a;

Watanabe et al., 2006; Chiang et al., 2008; Chiang et al., 2009). In this work, I introduce a new approach

that selects learning targets by hillclimbing the corpus level evaluation metric score.

While the learning targets selected by both techniques should be similar, the corpus level hill climbing

technique has the advantage that it can be used with arbitrary evaluation metrics without needing to devise

any metric specific smoothing techniques. Corpus level hillclimbing also eliminates the risk of systematic

artifacts being accidentally introduced by smoothed variants of a corpus level evaluation metric.

6.2.1.1 Hillclimbing Evaluation Metrics

It is not possible to test the evaluation score assigned to all possible combinations of learning targets

that can be selected from n-best lists, since the number of possible combinations scales exponentially in the

size of the corpus being translated.2 To avoid testing all possible combinations, learning targets are selected

by hillclimbing as follows.

First, the system loops over the n-best lists and does a greedy selection of sentences that maximize the

corpus level score assigned by the evaluation metric. When using BLEU, this means that targets are selected
2 Using n-best lists of length n and a corpus containing l sentences, there are O(ln) possible ways to choose the learning targets.
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at random until the hillclimbing algorithm runs across an n-best list where it is possible to select a learning

target that matches one of the 4-grams in the reference translations.

After selecting an initial set of potential learning targets, the system then iterates over the n-best lists

attempting to increase the evaluation metric score by swapping the learning targets with other n-best list

entries. Hillclimbing stops once the system makes one complete pass over the n-best lists without changing

any of the learning targets. Convergence usually occurs after 2 or 3 passes over the n-best lists.

6.2.2 Margin Infused Relaxed Algorithm

Themargin infused relaxed algorithm (MIRA) is an online learning technique. Rather than optimizing

some global measure of the merit or fit of the model to training data, online algorithms operate by examining

the system’s performance on one data point at a time making incremental adjustments to the model weights.

Learning in MIRA operates by making the minimum update to the model weights that would resulting in

the correct classification receiving a model score that is higher than all incorrect classifications by a margin

proportional to the loss associated with each incorrect example.

In the context of this work, the sentence level loss associated with the incorrect translations is the

difference between the evaluation metric score assigned to the target translations minus the evaluation score

obtained when the learning target for the current sentence is replaced by another entry on the n-best list.

It is not always possible to find weights that assign a higher model score to the target translation than

the alternative examples on the n-best list. Similarity, there may also be data points where achieving the

desired separation would result in a dramatic change to the weights that would cause the model to effectively

“forget” much of what it had already learned from prior training examples. To accommodate for this, slack

variables are used to allow the algorithm to trade off the size of each weight update with the degree to which

the learning targets are separated from the incorrect examples.

To determine the appropriate weight update, MIRA solves the quadratic programming problem given

in (6.1) subject to the constraints in (6.2). This simply formalizes the description above, as the procedure

attempts to make the minimal weight update ∆w that separates the feature space representations of the learn-

ing target Ψ(er) from all other possible translations by a margin equal to the difference in evaluation score
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between the learning target and each alternative translation e as given by ∆(er,e).

argmin
∆w

1
2
||∆w||2 +Cξ (6.1)

(w+∆w)(Ψ(er, f)−Ψ(e, f))≥ ∆(er,e)+ξ

∀e 6= er
(6.2)

The number of constraints for each training example in (6.2) scales with the number of possible trans-

lations e for each source sentence f. This would result in a massive number of constraints if optimization was

performed over the complete space of translations e. However, since, similar to MERT, I perform MIRA

training using n-best lists produced by the decoder, the number of constraints is only equal to the size of the

n-best lists.

The quadratic programming problem abovewas solved for eachweight update using the approach sug-

gested in Chiang et al. (2008). The problem is converted into its dual form and the resulting dual parameters

are set using a pairwise sequential minimal optimization.

6.2.3 Support Vector Machines for Interdependent Structured Output Spaces

Support vector machines for interdependent output spaces (SVMISO) are a generalization of SVMs to

structured prediction tasks (Tsochantaridis et al., 2004). The approach operates by attempting to separate all

learning targets from alternatives by the largest possiblemargin. If it is not possible to separate all alternatives

from the learning targets, the algorithm makes use of a slack penalty scaled by the inverse of the loss. This

formulation causes the algorithm to weight margin violations with high loss more than margin violations

with lower loss.

This approach solves the quadratic programming problem given in (6.3) subject to the constraints

given in (6.4). Unlike an online algorithm such as MIRA, SVMISO finds the global solution to this opti-

mization problem for all of the data points i in a training set.



93

argmin
w

1
2
||w||2 +C∑

i
ξi (6.3)

wΦ(f,er
i )−wΦ(f,e)≥ 1− ξi

∆(et
i,e)

∀i∀e 6= et
i

(6.4)

The number of constraints for each training example in (6.4) scales with the number of possible trans-

lations e for each source sentence fi. This optimization problem is solved efficiently using a cutting-plane

algorithm that incrementally adds the most violated constraints until none of the constraints are violated by

more than some small convergence criterion ε . While this approach is not strictly necessary when training

using only n-best lists, it is still used in this work in order to speed up the training procedure.

6.2.4 Max Margin Markov networks

As with both MIRA and SVMISO, max-margin Markov networks (Taskar et al., 2004) attempt to

maximize the separation between the learning targets er and all other possible translations e. Rather than

taking SVMISO’s approach of scaling themargin violation penalty, max-marginMarkov networks are similar

to MIRA in that they scale the size of the desired margin by the loss. However, the approach differs from

MIRA in that instead of doing sentence-level updates, max-margin Markov networks attempt to globally

optimize the model weights over an entire data set. The approach is formalized as the quadratic programming

problem given in (6.5) optimized subject to the constraints given in (6.6). It attempts to separate learning

targets er from all other possible translations e by a distance proportional to the difference in the evaluation

metric score associated with the two translations ∆(er,e). If this is not possible, violations of the scaled

margins are penalized uniformly. Optimization is performed using the cutting plane approach described

above for SVMISO.

argmin
w

1
2
||w||2 +C∑ξi (6.5)
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wΨ(f,er
i )−wΨ(f,e)≥ ∆(er

i ,e)−ξi

∀i∀e 6= er
i

(6.6)

6.2.5 Log-linear models

Log-linear models3 assign a probability to the translation of source sentence f to target sentence e

using equation (6.7). First, a linear score is computed for the translation of f to e using the model weights

w and the features Ψ(e, f). To map this linear score to a probability, it is first converted to a value between

0 and positive infinity by the natural exponential function e. This value is then normalized by dividing it by

the exponential function transformed scores for all other possible translations.

P(er
i |fi) =

ewΨ(er
i ,fi)

∑e ewΨ(e,fi)
(6.7)

To fit a log-linear model to a training set, its weights are set by maximizing the conditional likelihood

of the desired target translations given the source sentences. This results in the convex optimization problem

given in (6.8). In order to control for overfitting of the training data, the objective function is typically

regularized by a quadratic penalty as seen in (6.9). Both objectives can be optimized using gradient descent

based optimization techniques. In this work, optimization is performed using l-BFGS and experiments are

presented for both regularized and unregularized training.

argmin
w
−∑

i
logP(er

i |fi) (6.8)

argmin
w

1
2σ
||w||2−∑

i
logP(er

i |fi) (6.9)

3 The term “log-linear” models is currently widely used in machine translation to describe any decoding model that makes use
of a handful of features and score translations using a weighted linear combination of the feature values. In this work, when I use
the term log-linear model, I specifically mean log-linear models trained to a conditional log-likelihood objective.
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6.3 Experiments

Experiments were run using the Phrasal machine translation package (Cer et al., 2010b). During

decoding I made use of a stack size of 100, set the distortion limit to 6, and retrieved 20 translation options

for each unique source phrase. For each learning algorithm, I train both Chinese to English and Arabic to

English models. The Chinese to English models are trained using NISTMT02, with NISTMT03 being used

as dev-test and NIST MT05 being used as an evaluation set. The Arabic to English experiments use NIST

MT06 for training and GALE dev07 as dev-test.

Training using all of the different learning algorithms proceeds similarly to what is typically done for

MERT. First, the decoder is run using untuned weights.4 The resulting n-best lists are then used to learn new

model weights with the selected learning algorithm. The decoder is then run with the newly learned weights

to produce another set of n-best lists. The new n-best lists are concatenated with the n-best lists from the

prior iteration and learning is performed using the combined n-best lists. For all learning algorithms except

MIRA, training was terminated when the change in each weight during the last iteration of learning was less

than 1e−5. For MIRA, learning was stopped after 10 epochs.

6.3.1 Arabic to English

The Arabic to English system was based on Stanford’s well ranking 2009 NIST submission. The

phrase-table was extracted using all of the allowed resources for the constrained Arabic to English track.

Word alignment was performed using the Berkeley cross-EM aligner (Liang et al., 2006b). Phrases were ex-

tracted using the grow heuristic (Koehn et al., 2003). However, all phrases that have a P(e| f )< 0.0001 were

thrown away in order to reduce the size of the phrase-table. From the aligned data, a hierarchical reorder-

ing model that is similar to popular lexical reordering models (Koehn et al., 2007) but that models swaps

containing more than just one phrase (Galley & Manning, 2008) was also extracted. A 5-gram language

model was created with the SRI language modeling toolkit (Stolcke, 2002) using all of the English material
4 As with MERT, the weights used during the first iteration of the algorithm are a generic set of manually selected weights. I

use: a weight of 1.0 for all lexicalized reordering features, linear distortion, and the language model; a weight of 0.3 for translation
model scores Plex(e|f) and Plex(f|e); and 0.2 for P(e|f) and P(f|e). All other model weights were set to zero.



96

from the parallel data employed to train the phrase-table as well as Xinhua Chinese English Parallel News

(LDC2002E18).5 The resulting decoding model has 16 features that are optimized during MERT.

6.3.2 Chinese to English

For the Chinese to English system, the phrase-table was built using 1,140,693 sentence pairs sampled

from the GALE Y2 training data. The Chinese sentences were word segmented using the 2008 version

of Stanford Chinese Word Segmenter (Chang et al., 2008; Tseng et al., 2005). Phrases were extracted by

running GIZA++ (Och & Ney, 2003) in both directions and then merging the alignments using the grow-

diag-final heuristic (Koehn et al., 2003). From the merged alignments, a bidirectional lexical reordering

model conditioned on the source and the target phrases (Koehn et al., 2007) was also extracted. A 5-gram

language model was created with the SRI language modeling toolkit (Stolcke, 2002) and trained using the

Gigaword corpus and English sentences from the parallel data. The resulting decoding model has 14 features

to be trained.

6.4 Results

Table 6.1 reports results for the different learning algorithms on Chinese to English translation and

table 6.2 reports on Arabic to English. The models are evaluated on BLEU and trained using learning targets

selected using BLEU. For both language pairs, the results show that almost all of the learning algorithms

produce performance that is very close to that of MERT. On Chinese to English, regularized log-linear train-

ing even performs 0.5 BLEU points better than MERT on the dev-test set and 0.7 BLEU points better than

MERT on the test set. On Arabic to English, the regularized log-linear model marginally outperformsMERT

by 0.2 BLEU points on the dev-test set.

Both globally optimizedmaxmargin techniques, SVMISO andmax-marginMarkov networks, achieve

similar performance toMERT. However, max-marginMarkov networks are able to roughly match the perfor-

mance of MERT, while SVMISO seems to perform slightly worse than the MERT models on both language
5 In order to run multiple experiments in parallel on the computers available to me, the system I use for this work differs from

the Stanford 2009 NIST submission in that the Google n-gram language model was removed. This results in a performance drop of
less than 1.0 BLEU point on the dev data.
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Method MT02 dev MT03 dev-test MT05 test
Log-Linear (Unreg) 30.9 31.5 29.9
Log-Linear (σ = 100) 31.8 32.3 30.8
SVMISO 30.8 30.7 29.6
Max Margin Markov 31.3 31.6 30.2
MIRA 31.9 31.8 30.1
MERT 31.9 31.7 30.1

Table 6.1: Learning Algorithm Comparison - Chinese: Chinese to English training, dev-test and test
performance using different learning algorithms and evaluated using BLEU. Learning targets were selected
using BLEU for the algorithms that require them.

pairs. The only difference between these two techniques is that max-margin Markov networks use the loss

between the learning target and other translation candidates to scale the margin, while SVMISO uses the loss

to scale the penalty for margin violations. These results suggest that for difficult to separate data points as is

produced by phrase-based machine translation systems that make use of limited numbers of features, scaling

the margin may be preferable than trying to enforce a uniformmargin with a scaled penalty for margin errors.

Method MT06 dev GALE dev07
dev-test

Log-Linear (Unreg) 45.7 45.9
Log-Linear (σ = 100) 46.1 46.3

SVMISO 45.2 45.7
Max Margin Markov 46.3 46.2

MIRA 45.9 46.0
MERT 46.2 46.1

Table 6.2: LearningAlgorithmComparison - Arabic: Arabic to English training and dev-test performance
using different learning algorithms and evaluated using BLEU. Learning targets were selected using BLEU
for the algorithms that require them.

6.5 Analysis

These results contrast with the conclusions drawn in the original work that proposed MERT as a

vastly superior approach to training. However, closer inspection of Och (2003) reveals that his results are

not actually inconsistent with the results above.

In Och (2003), the baseline log-linear model is trained to learning targets selected using word error
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rate (WER) (Nießen et al., 2000) rather than BLEU. Its performance was then contrasted with MERTmodels

tuned to four different evaluation metrics: WER, PER, BLEU, and NIST. The performance of the resulting

systems was then measured using each of these evaluation metrics. Each of the MERT trained systems

outperformed the baseline log-linear system on the evaluation metric to which it was trained. In some cases,

the performance differences were enormous. The MERT model fit to BLEU outperformed the log-linear

baseline system by 5.9 BLEU points on the test data.

However, a comparison between the MERT system fit to BLEU and Och’s log-linear model is not

completely appropriate, since the baseline log-linear systemwas trained towardWER rather than BLEU. Och

(2003) and more recently Cer et al. (2010c) both show that system performance can degrade significantly if

the decoding model is fit to one evaluation metric then scored by a different metric.

Amore appropriate comparison is between Och’s baseline log-linear model and hisMERT system that

is fit to WER. When comparing these two models also using WER as the evaluation metric, Och (2003)’s

MERTWER model only outperformed the log-linear baseline model by 0.3 WER points. Since the learning

targets for the log-linear baseline model were selected using WER, this result shows that fitting a model to a

specific evaluation metric just by selecting learning targets using that metric works nearly as well as fitting

a model to the same metric using MERT.

Another difference between my results and those of Och (2003) concerns regularization. Och (2003)

used an unregularized log-linear model for his baseline. However, regularization has been shown to be

important for achieving good generalization performance in log-linear models. In my results, as in Och

(2003), the unregularized log-linear model does only marginally worse than the model trained using MERT.

However, once I introduce regularization, the log-linear model actually performs better than MERT.

Taken together, these results show that when the learning targets are selected using the same evaluation

metric that will be used to score the system, regularized log-linear models are competitive with, and may

even be superior to, MERT models.
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6.6 Discussion

The significance of the results presented here can be characterized as follows. It is not necessary to

use MERT in order to obtain to good performance from statistical machine translation systems. Rather, and

similar to other natural language processing tasks, a variety of learning algorithms can be used with largely

comparable results. While prior work has shown that the MIRA algorithm can do as well as MERT (Chiang

et al., 2008; Chiang et al., 2009), this works extends this result to other popular learning algorithms.

One of the primary weaknesses of MERT is that it does not scale well to larger feature sets. All of the

other learning algorithms explored in this work do scale well to larger numbers of features. Being able to

use these methods should encourage more work similar to Chiang et al. (2009) and Watanabe et al. (2006)

that explore richer feature sets.

6.7 Conclusion

Since its introduction, MERT has dominated training machine translation decoding models. This

dominance is based on the perception that, at least for machine translation, MERT does vastly better than al-

ternative learning algorithms. While recent work has suggested that the MIRA algorithm is competitive with

MERT, there has been no thorough benchmarking of other popular learning algorithms. When I performed

this benchmarking, the results show that MIRA is not the only viable alternative to MERT. Rather, the re-

sults suggest that any competitive machine learning algorithm can be used. These results should encourage

future work to feel at liberty to use other learning algorithms for training machine translation decoding mod-

els. Since, unlike MERT, most other learning algorithms scale well to larger numbers of features, this will

hopefully also help further encourage the general use of decoding models with richer feature sets.



Chapter 7

Conclusion and Future Work

MERT is and has long been the dominant approach for parameterizing the decoding models used for

statistical machine translation. For typical machine translation systems that make use of a modest number of

model features, the popular implementations of MERT are able to effectively search for the model weights

that achieve the best possible evaluation score either using downhill simplex or line searchmethods that make

use of Och (2003)’s global minimum line search. Fitting decoding models directly to evaluation metrics

makes it plausible that the development of improved evaluation metrics could effortlessly lead to improved

machine translation systems. Asmetrics get better at reproducing human judgments about translation quality,

MERT will always set the decoding model weights to obtain the best possible translations according to the

evaluation metric and given the limitations of the system being tuned. However, MERT does bring with it

certain limitations, such as not being able to scale well up to larger numbers of features and not being able

to easily make use of slower evaluation metrics.

In this work, I investigated a number of issues related to the training of statistical machine translation

systems using both MERT and other alternative techniques from the mainstream machine learning commu-

nity. I proposed a new search strategy for MERT based on using randomized search directions as well as

a method for regularizing the MERT objective. I systematically investigated using MERT to fit different

popular evaluation metrics. I demonstrated the use of a method for fitting slower evaluation metrics based

on staged training, first using a faster evaluation metric like BLEU or TER and then switching to training

using small n-best lists and the slower evaluation metric of interest. Finally, I contrasted the effectiveness

of a number of different machine learning methods with MERT. The results of these investigations have
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challenged some of the assumptions and beliefs about MERT within the machine translation community.

Significantly, I have shown that recent improvements in evaluation metrics do not seem to lead to

corresponding improvements in the machine translation systems trained to these new metrics. Using MERT

to train a system to a newer metric that correlates better with human judgments does result in a machine

translation system that scores higher on that metric than a system trained to an older metric like BLEU.

However, when the resulting system translations are given to human judges, there is no clear preference

for the translations produced by systems trained to popular new evaluation metrics like TER, TERp and

METEOR over those from a BLEU trained system. This shows that MERT does not necessarily allow us

to effortlessly convert improvements in evaluation metrics to improvements in the quality of the machine

translation systems that are tuned to them. Rather, it is proposed that improvements in an evaluation metric

only produce corresponding improvements in the quality of translations produced by a system tuned to the

metric to the extent that there is a correspondence between what is being measured by the evaluation metric

and the structure and features of the decoding model.

The widespread usage of MERT within machine translation was largely motivated by early experi-

mental results showing that MERT produces better systems than those trained using log-linear models. This

result suggested typical machine learning algorithms did not work well for machine translation and that

MERT should be used instead. While some recent work using MIRA has shown that MIRA training is as

effective as MERT (Chiang et al., 2008; Chiang et al., 2009), no one has systematically revisited the effec-

tiveness of different popular machine learning algorithms for training machine translation models. By doing

so in this work, I have established that neitherMIRA orMERT are special with respect to machine translation

and that rather any competitive machine learning algorithm can be used to train machine translation models

with roughly equal effectiveness.

The results presented earlier in Och (2003) may have led people to overestimate the effectiveness

of MERT, since they compared a log-linear model trained to target translations selected using WER to the

performance of models trained using MERT to a variety of other evaluation metrics. For all evaluation

metrics except for WER, the models trained using MERT to whatever metric was used for evaluation did

much better than the WER trained model. When evaluating model performance using WER, Och (2003)’s
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results show that the log-linear model performs only slightly worse than a model trained using MERT to

WER. Similar to Och (2003), the results presented in this work show that if smoothing is not used and the

evaluation metric chosen to select the learning targets is the same as the one that will be ultimately used at

test time, log-linear models do in fact perform only marginally worse than MERT models. However, I also

show that if smoothing is used, log-linear models perform as good as or better than models trained using

MERT.

Hopefully, these results will encourage future work to explore some of the potential advantages of

other learning algorithms over MERT. For instance, while MERT does not scale effectively to very large

numbers of model features, most other learning algorithms do. By using these other learning algorithms,

research inmachine translation canmake use of the sort of massive feature sets that have proven so successful

for other natural language processing tasks. As seen in chapter 4, MERT can also be a relatively unstable

trainingmethod, with different runs producingmodels of significantly different model quality. Other learning

algorithms may be more stable than MERT and result in more trustworthy results when contrasting different

system configurations.

7.1 Future Work

It would be worthwhile to investigate learning stability using learning algorithms other than MERT.

Once a set of learning targets are selected, all of the alternative learning algorithms explored in this work

operate by solving convex optimization problems. This means that the inner loop during learning is not

sensitive to noise introduced by the random initial starting points. While this should lead to more stable

results, it would be worth investigating how significantly other sources of noise impact learning using the

other algorithms. For example, the set of initial weights that are used by the decoder to generate the first

n-best lists given to the learning algorithm may have a significant impact on the quality of the model that is

ultimately learned. Also, when selecting learning targets, any alternative selections that result in the same

evaluation metric score will be effectively chosen at random.1 It is unclear to what extent different random
1 e.g., potential learning targets that either have the same surface form but that are generated using different internal alignments

or potential targets with surface form differences that are ignored by the evaluation metric such as two candidates containing two
different incorrect translations of a word or phrase.
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selections can cause significant differences in the resulting models. While it is expected that the alternative

learning algorithms will not be too sensitive to random variations in the selection of learning targets that all

receive the same evaluation score, they may be more sensitive than MERT to variations in the weights used

to generate the first set of n-best lists. For the latter, training to explicit learning targets may cause the system

to be more likely to “commit” to common errors produced by the initial weights. This may particularly be a

problem if very large discriminative feature sets are used.

Prior work has demonstrated that MIRA can both produce machine translation models that are as good

as those tuned using MERT and it can also be used to effectively train machine translation decoding models

with large numbers of features (Watanabe et al., 2006; Chiang et al., 2008; Chiang et al., 2009). Since this

work has suggested that it is actually possible to effectively train machine translation models using any state-

of-the-art learning algorithm, it would be interesting to compare and contrast howwell other algorithms scale

up to larger numbers of features. While it is expected that the results will mirror those presented here for

training traditional phrase-based models that contain a relatively small number of features, demonstrating

this definitively would strongly establish that all state-of-the-art learning algorithms are truly equivalent for

machine translation.
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