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RF signals and devices have been used for wireless communication to improve the mobility and

ubiquity of mobile devices. In this dissertation, we show that these RF signals can also be used for

context sensing applications. Specifically, we present cyber-physical systems and algorithms to sense

human vital signals, object vibrations and movements, and object’s location to deliver new sensing

capabilities for a variety of new applications including health-care monitoring, privacy protection,

and indoor localization. We deliver three fundamental contributions. First, we develop an RF-

based system to “sense” human breathing volume continuously in fine-grained from afar. Second,

we develop a technique to “sense” the wireless signals emitted from drones/fly-cams to detect them

and alert users for privacy protection. Last, we present our preliminary study on building a system

to enable the mobile device to “sense” their global locations at the indoor environment. To deliver

these contributions, we exploit the properties of physical characteristics of RF signals, analyze

and understand targeted subjects behaviors (i.e., human, drones), work across di↵erent limitations

and hardware-software barriers, and introduce novel systems and new algorithms to overcome the

challenges. We implement and evaluate the system on real users/patients, test the systems across

di↵erent environments, and demonstrate how they can enable many other real-world applications.
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Chapter 1

Introduction

This thesis explores the use of RF signals for context sensing applications. In particular, we

present techniques that utilize RF signals and devices to enable new sensing capabilities including

human sensing, objects sensing, and location sensing. While the thesis focuses on the first two

sensing capabilities, we would like to also present a feasibility of using RF signal to allow mobile

devices to sense their indoor locations. These sensing capabilities can be used for three domain

applications including 1) health-care, 2) privacy protection and 3) emergency response. Specifically,

we first demonstrate the feasibility of using RF signal to sense human by developing an unobtrusive

RF system to monitor human vital signs (breathing volume) during sleep. The RF system includes

a wireless transmitter to send out an RF signal, this signal then hits the human chest and bounces

o↵. The bounced o↵ signal is captured by the wireless receiver and extract the human breathing

volume. The system does not require a user to wear any sensor/device. Second, we demonstrate

the feasibility of sensing object using RF signal by developing a system to detect their presence for

protecting user’s privacy. The proposed system examines whether physical characteristics of the

drone can be detected in the wireless signal transmitted by drones during communication. Last

but not least, we would like to present a preliminary study on design system to make GPS signal

available inside the building for enabling GPS-enabled devices to sense their global locations to

help firefighters and 911 callers to continuously track their locations in emergency scenarios.

There are many challenges preventing us from realizing these systems. First, the signal of

interests (human vital signals, drone vibration, etc.) are usually very weak and buried under the
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noises floor. Second, sensing the human or object from afar is challenging because the wireless

signal drops quickly over distance. Third, since the RF band is unlicensed, it is heavily used by

others such as Wi-Fi devices, there will be a lot of interference in the environment. Last but not

least, the systems will be deployed at urban environments with buildings around in which RF

interference and multi-path maybe exacerbated.

Beside algorithm innovations, addressing the above challenges require designing hardware

and software systems that allow us to fully control each component in the system. For example,

to sense the human chest movements to infer breathing volume during sleep, the RF transmitter,

receiver, mechanical movements need to be synchronized so that the signal will always hit the

monitored human chest area for accurate monitoring. As another example, to detect the presence

of the drones, we had to carefully analyze the signal at di↵erent stages of RF receiver stack (RF

front end, base-band data, etc.) to identify the drone’s physical signature for reliable detection.

The combination of algorithms and hardware-software systems allow us to fully utilize RF

signals for new sensing capabilities. Our designs have the followings advantages: First, there is no

need for a specific assumption for the testing environment. The system has to deal with all of the

challenges of the wireless signal and targeted subject, i.e., noises, power reduction over distance,

human body movement, unpredictable drone’s vibrations and movements, and so on. Second, we

built the prototypes using COTS components that are available around us. And last, the system

is implemented and evaluated on real-users, di↵erent environments, settings, conditions to validate

the practicality of the solution, and demonstrate their feasibility and high accuracy.

1.1 Research Areas and Contributions

Utilizing the ubiquity of RF signals and devices around us, my research focus on using these

signals to enable unconventional context sensing applications. Below, I highlight the contributions

of each of these systems in chronological order of their development:

Sensing human breathing volume using RF signals. We propose an autonomous system,

called WiSpiro, that continuously monitors individual’s breathing volume with high resolution dur-
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ing sleep from afar. Breathing volume has been widely used as an important indication for diag-

nosis and treatment of pulmonary diseases and other health care related issues such as critically ill

patients neonatal ventilation, post-operative monitoring and various others. Most of existing tech-

nologies for respiration volume monitoring require physical contact with the human body. WiSpiro

Figure 1.1: WiSpiro is a system to monitor breathing volume continuously in fine-grained using
wireless signal. WiSpiro includes a transmitter antenna sending out 2.4 GHz signal. This signal is
then reflected o↵ the human body and captured by a receiver. By observing the phase variation of
the reflected signal, WiSpiro calculates the chest movements and then infers to breathing volume.
https://youtu.be/APqgPOxlfIs.

relies on a phase-motion demodulation algorithm that reconstructs minute chest and abdominal

movements by analyzing the subtle phase changes that the movements cause to the continuous wave

signal sent by a 2.4 GHz directional radio. These movements are mapped to breathing volume,

where the mapping relationship is obtained via a short training process. To cope with body move-

ment, the system tracks the large-scale movements and posture changes of the person by analyzing

the received signal strength and phase changes of the signal, and moves its transmitting antenna

accordingly to a proper location in order to maintain its beam to specific areas on the frontal part of

the person’s body. It also incorporates interpolation mechanisms to account for possible inaccuracy

of our posture detection technique and the minor movement of the person’s body. We have built

WiSpiro prototype, and demonstrated through a user study that it can accurately and continuously

monitor user’s breathing volume with a median accuracy from 90% to 95.4% (or 0.058l to 0.11l of
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error) to even in the presence of body movement. The monitoring granularity and accuracy are

su�ciently high to be useful for diagnosis by clinical doctor.

Sensing drones presence by identifying their signatures from RF signals. Drones are

increasingly flying in sensitive airspace where their presence may cause harm, such as near airports,

forest fires, large crowded events, secure buildings, and even jails. This problem is likely to expand

given the rapid proliferation of drones for commerce, monitoring, recreation, and other applications.

A cost-e↵ective detection system is needed to warn of the presence of drones in such cases. We

Figure 1.2: Matthan is a system to detect the presence of the drone by recognizing its body shifting
and body vibration signature utilizing RF AP architecture. In particular, Matthan receiver captures
the signal emitted from RF transmitters in the surrounding environment, and then analyzes the
captured signals to detect the presence of drones to alert and protect their privacy. https://youtu.
be/id2LxOsr G8.

explore the feasibility of inexpensive RF-based detection of the presence of drones. We examine

whether physical characteristics of the drone, such as body vibration and body shifting, can be

detected in the wireless signal transmitted by drones during communication. We consider whether

the received drone signals are uniquely di↵erentiated from other mobile wireless phenomena such

as cars equipped with Wi-Fi or humans carrying a mobile phone. The sensitivity of detection at

distances of hundreds of meters as well as the accuracy of the overall detection system are evaluated

using software defined radio (SDR) implementation.

Exploring the feasibility of sensing indoor location leveraging forwarded GPS signal.

While outdoor localization needs have been largely met by satellite-based positioning systems (e.g.,



5

GPS), indoor localization has not been able to take advantage of these systems since GPS signals

are often too weak or unavailable indoor. To fill in that gap, we explore the feasibility of developing

a global in-building positioning system that utilizes the ubiquity of Wi-Fi Access Points (APs) to

relay GPS signals from outdoor to indoor environments. The proposed system will allow o↵-the-

shelf GPS-enabled devices to localize their own global positions in 3-dimensional space (3D). Its key

enabling techniques are two fold: a hardware add-on and accompanied algorithms. Steamed from

an observation on the modern Wi-Fi AP hardware architecture, a plug-n-play hardware add-on is

introduced to allow existing Wi-Fi APs to receive and relay GPS signal, making it available inside

the building. A series of localization algorithms allow the GPS-enabled mobile device to convert

Figure 1.3: We explore a system to relay GPS signal from outdoor to indor allowing user to localize
their global location continuously. The proposed system includes a plug-n-play add-on attached to
Wi-Fi AP access point, which relay GPS signal from outdoor to indoor and localization algorithms
allowing receiver to accurately localize its location.

these relayed GPS signals into an accurate 3D location. We prototype the system’s hardware and

GPS receiver software to validate the feasibility of using the system. The preliminary results show

that the proposed system obtains a median error in 3D space of 1.038m and 2.304m at 95%, ±6

degree error in azimuth estimation, and ±5 degree error in elevation estimation.
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1.2 Beyond the developed systems

The dissertation explores the use of RF signals as sensing tools to solve a variety of societal

and technological challenges. Nonetheless, the synergies identified during this thesis between RF

systems, other computer science communities (mechanical engineering, vision, localization) extend

beyond the problems addressed in this thesis. This dissertation contributes the foundation for an

on-going exploration, we believe RF sensing research will expand and grow.

Figure 1.4: Techniques to Leverage RF Signals for Context Sensing

Fig. 1.4 illustrates a new generation of RF devices (e.g., Wi-Fi AP) that supports a variety

of wireless sensing and positioning capabilities. Specifically, Wi-Fi AP is designed to monitor 1)

user’s health condition (e.g., vital signals, activities), 2) user’s bio identification (e.g., heart rate

and breathing patterns), 3) status of the surrounding environments (e.g., machines are operating

such as co↵ee maker, washing, dryer, speakers, and even drones flying around), and support 4) user

to localize their global and local positioning.

On user’s side, upon receiving the monitored vital signals from RF devices (e.g., Wi-Fi

AP) (Fig. 1.4 right), user’s mobile devices will use these signals for di↵erent types of applications

including 1) vital signals monitoring, 2) breathing analysis, 3) heart failure monitoring, and so on.

This will cut the cost of hospitalization significantly as the user can monitor their health everywhere

they go (o�ce, home, co↵ee shop). Next, the user will know when co↵ee is made, washing and

drying tasks are done, and which drones are around. Lastly, the user can globally and locally
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localize their locations continuously.

1.3 Existing Literature

Non-contact vital sign sensing: Radar technique has been widely used in estimating vital

signs. The frequency and phase shift of body-reflected radar signals have be used to estimated the

heart and breathing rate [1, 2, 3, 4]. Droidcour et al. [5] introduce a linear correlation model to

approximate the chest movement based on phase information. Linearity holds only if the movement

is much smaller compared with the wavelength so that the chest movement is linearly proportional to

the phase change. Using this approach, breathing rate and heart beat can be extracted by analyzing

the received signal on frequency domain. Changi et al. [6] analyze the breathing activities using

Fourier series and exploit the harmonics information to obtain the respiration rate and heart beat

regardless of the distance from subject to radar. The dependency of movement and wavelength of

the signal has also been resolved. Adib [7] used FMCW technique to collect the change of distance

between radar to multiple objects and infer their breathing rates based on the traveling time of

the signal. These approaches triggered substantial investigation along the same line. In addition,

Patwari et al. [3] presented the feasibility of using Wi-Fi of the shelf device to track respiration

rate in real time. However, breathing volume estimation, a problem equally important to medical

practitioners, has not been thoroughly solved. Early e↵orts in tidal volume estimation (e.g., [8])

focused on controlled settings and short-term monitoring, which is of less clinical significance. To

our knowledge, our breathing volume estimation marks the first step to systematically investigate

the problem under practical settings involving body area heterogeneity, body movement, etc.

Non-contact object (drone) sensing: Multiple sensing modalities have been employed for

detecting objects (including drones), including audio, video and RF. First, an acoustic approach

collects a database of acoustic signatures from di↵erent drones and uses this database to compare

with observed sound signals to make a decision [9]. Challenges to this approach include detection

accuracy in noisy urban environments and at distance, keeping this database updated, and new

quieter drone models [10]. Second, a video-based solution employs a camera to detect drones [11].
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Challenges to this approach include operation at night, compute-intensive image processing that

must distinguish between a drone and say a bird at distance, and occlusion by buildings that

limit distance in an urban environment. Thermal cameras have been proposed to detect drones at

night [12] but are a relatively expensive technique.

A variety of RF-based solutions have been proposed for drone detection. One approach is

to monitor the 1MHz - 6.8GHz band, and any unknown transmitter is assumed to be a drone

[13]. This would su↵er from false positives. Another approach is MAC address collection and

analysis [14], but this can be bypassed easily by spoofing the MAC address. The frequency of

packet communication on the uplink and downlink between the drone and its controller has also

been used for detection[15]. However, other periodic packet sources at similar rates such as VOIP

tra�c could be mistaken as drone communication. Radar-based techniques actively transmit RF

waves and look for the reflection to determine the presence of the drone. WiDop [16] is a non-

coherent radar system which exploits the modulation produced by a target in a clutter with a

non-coherent X-band radar. WiDop is claimed to have advantages over a coherent radar in terms

of low cost radar and high range, but there exist disadvantages due to the radar angle and lack of

high precision. Another radar technique is passive bistatic radar [17, 18, 19, 20, 21], which consists

of a passive receiver to process a received signal from a known source of transmission and reflected

signals from the moving target. These systems have advantages of low cost, fast update of the target

position and variable frequency allocation. In conjunction with the usage of abundant WiFi sources

as reference transmitters, multiple algorithms [22, 23] have been proposed for signal processing in

passive bistatic radar systems such as MTI and LS adaptive filters [24] or compressive sensing [25].

Moreover, multistatic radar [26, 27], which includes more than two receivers, is also used to detect

flying objects by calculating the radar cross section. The use of multiple receivers increase the

accuracy of the system. Radar generally introduces interference due to active transmissions, which

is especially problematic when there is a large amount of legitimate packet tra�c over RF bands

such as Wi-Fi, especially in crowded environments.

Indoor global position sensing: For indoors, the naive solution is using pseudo satellite or
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so-called pseudolite architectures [28, 29, 30, 31, 32, 33, 34]. In this technique, GPS signals are

received and replayed with amplification to be able to transmit inside a building. The indoor

transmitters are placed at corners to gather the strongest GPS signals and then starts forwarding.

Receivers might not be able to identify the incoming signal clearly because it can be distorted

after reflecting from multiple transmitters. In order to fill the gap, transmitters should take turn

forwarding the signals considering their relative positions. The cycling approach is called repeaters

[35]. The more advanced solution, namely repealites combining the repeaters and peseudolites to

establish a flexible transmission scheme [36, 37, 38, 39, 40, 41, 42, 43]. Each transmitter does not

need to follow the sequential mode. Instead it plans to avoid interference with packages sent by

the previous repealites. The authors in [44] propose to extract each satellite signal from the GPS

signals and deliver through the indoor antennas. Recently, COIN-GPS [45] tries to achieve direct

GPS-based indoor localization using a steerable, high-gain directional antenna and leverages the

advantage of CO-GPS [46] to o✏oad the computation to the cloud for robust signal acquisition.

Due to limitation of GPS, several works have explored other types of signals to carry longitude

and latitude information. In [47], the authors take advantage of ADS-B, an aircraft signal, which is

strong enough to be captured inside buildings. However, the technique does not work with existing

mobile devices at the moment. GSM signal is another option to locate indoor objects. For example,

the authors of [48, 49, 50, 51, 52, 53, 54, 55] show their attempt to utilize GSM signals in various

ways to perform the indoor localization. However, the accuracy is around 30 meters [49] which are

not adequate for localization in a less than 10-story building. Bluetooth GPS spoofing [56] is one

solution to send the fake GPS signal to the mobile device via Bluetooth connection using NMEA

message format. This won’t work with device only support GPS chip. Other approaches leverage

FM signals [57, 58, 59, 60, 61, 62, 63, 64] and visible light [65, 66, 67, 68, 69, 70, 71, 72, 56] to

perform the indoor positioning. The error distance under the FM technique is less than 10 meters

at 87% confidence level.

There have been many localization e↵orts using Wi-Fi signals including SpotFi [73], Tone-

Track [74], Phaser [75], Tagoram [76], LTEye [77], ArrayTrack [78] and others [79, 80, 81, 82, 83, 84]
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to detect the angle and/or distance between Wi-Fi AP and clients, both of which should be equipped

with multiple antennas. Among others, Chronos [85] allows two Wi-Fi devices to approximate their

distance precisely at decimeter accuracy. However, this system requires two devices to connect to

each other to exchange packets for ToF measurement as well as for synchronization between mul-

tiple frequency bands. all the above approaches assume that the location of the APs are known

from o✏ine to calculate the location of the target device. In contrast, our work doesn’t impose

any communication channels between the two devices. The Wi-Fi AP simply acts as a relay to

repeat the GPS signal from outdoor to indoor and the user device runs its dedicated localization

component upon the receipt of the relayed GPS signal.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce a

system that utilizes Wi-Fi signal to continuous and fine-grained monitor human breathing volume.

In Chapter 3, we describe how Wi-Fi signal emitted from an object can be used to analyze its

physical characteristics. In particular, we show how could we detect the presence of the drones

to protect user’s privacy and safety. In Chapter 4 we present a preliminary study on developing

technique to allow mobile devices to sense their location with indoor environment for protecting

user safety especially emergency scenarios. Finally, Chapter 5 summarizes the contribution of this

dissertation and proposes future work.



Chapter 2

Continuous and Fine-grained Breathing Volume Monitoring from Afar

Using RF Signals

2.1 Introduction

Monitoring patient tidal volume can be e↵ectively used to extract important indicators of

pulmonary and other medical conditions that are identifiable through a patients respiration pat-

terns. While an abnormality in breathing rate is a good indication of respiratory diseases such

as interstitial lung disease (too fast) or drug overdose (too slow), fine-grained breathing volume

information adds valuable information about the physiology of the disease. Common obstructive

airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), for example,

are characterized by the decreased flow rate measure at di↵erent breathing volumes. A constant

loss of lung volume in these diseases not only indicates acute changes in the disease stability but

also reveals lung remodeling and other irreversible states of diseases. Further, patients with lower

airway diseases such as cystic fibrosis or tuberculosis could be diagnosed when sudden drops in

breathing volume are frequently detected []. Therefore, accurate and fine-grained breathing vol-

ume measurements could o↵er rapid and e↵ective diagnostic clues to the development of disease

progression [86].

Being able to unobtrusively and continuously monitor lung volume has a high clinical impact.

In many instances, patients with respiratory disease only show their symptoms for a short period

and at a random time. In another important health care practice, breathing volume of prematurely-

born, or preterm, babies needs to be closely and continuously monitored. A decrease of the babies’



12

breathing flow and volume must be promptly detected well before it causes oxygen desaturation

for doctors to give an e↵ective neonatal ventilation intervention. In a recent study on the e↵ects of

sleep apnea during pregnancy [87], it has been shown that detection of sleep-disordered breathing

is possible in women who did not have sleep apnea prior to pregnancy, and that apnea leads to

abnormal pregnancy outcomes [88]. In these cases, many only develop apnea for a short period of

time. Hence, monitoring them non-invasively over a longer term to detect lung volume changes is

critical. Last, but not least, long-term monitoring of breathing volume during sleep detects sleep-

related breathing disorders common in 5% of children and 10-40% of adults population [89, 90].

Fine-grained and continuous breathing volume information will help classifying di↵erent types of

hypopnea (partial airflow obstruction common in children) during sleep to better define the ab-

normality and direct proper treatment strategies where obstructive hypopnea is treated di↵erently

than central apnea [91]. In all above mentioned health care practices, the detection of disease

and the observation of disease progression or remission could only be viable with an accurate and

fine-grained breathing volume monitoring technique over an extended period of time.

TX RX
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M3 M1
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(d)
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Body turns
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Figure 2.1: The conceptual design of WiSpiro. A radar beams to human’s heart area to observe
the respiratory and heart beat activities, as shown in (a, b). If a body movement or posture change
is detected during sleep, the radar is then moved to a new location and redirects its radio beam
to maintain its orientation pointing to the heart area, as shown in (c).The radar navigator could
roll, pitch, and yaw with 360 degree of freedom using three motors M1, M2, and M3 to control
antennas’ position and their beaming directions, as shown in (d).

Current practice for long-term breathing volume monitoring is obtrusive: airflow are mea-

sured from the nose and mouth qualitatively or at best semi-quantitatively with pressure manome-
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ters or impedance chest belt [91]. Non-obtrusive approaches are apparently more attractive and

usable. So far, however, the literature has mainly focused on the problem of breathing rate esti-

mation using camera [92], laser [93, 94], infrared (IR) signal [95], earphones [96], and most recently

using radio signals [5, 6, 97, 7, 98]. While these breathing rate estimation solutions are accurate and

practical, little progress has been made along the line of breathing volume estimation. Massagram

et al. [1] presented a technique to calculate breathing volume of a person from radio signal reflected

o↵ the subject’s chest. While the technique is promising and works with a static subject, it is not

applicable for long-term monitoring where subject movement is unavoidable. Moreover, it can only

estimate breathing volume once in every breathing cycle. Shane et al. present a new technique

to estimate breathing volume using camera [99], but this technique doesn’t in case the user weary

thick cloths or blanket.

This chapter introduces WiSpiro, a system that uses directional radios to continuously mon-

itor a person’s breathing volume with high resolution during sleep from afar. WiSpiro relies on a

phase-motion demodulation algorithm that reconstructs minute chest and abdominal movements

by analyzing the subtle phase changes that the movements caused to the continuous wave signal

beamed out by WiSpiro’s transmitter, as shown in Fig. 2.1(a, b). These movements are used to

estimate breathing volume, whose relationship is obtained via a short neural-network training pro-

cess. More importantly, the key feature of WiSpiro is the ability to work with the presence of

human’s random body movement. WiSpiro autonomously tracks the large-scale movements and

posture changes of the person, and moves its transmitting antenna accordingly to a proper location

in order to maintain its beam to specific areas on the frontal part of the person’s body during

sleep, as conceptually illustrated in Fig 2.1(c) and (d). WiSpiro also incorporates interpolation

mechanisms to account for possible inaccuracy of our posture detection technique and the minor

movement of the subject’s body.

We have built WiSpiro prototype and demonstrated its potential through a user study that it

can accurately and continuously monitor user’s breathing volume with a median accuracy from 90%

to 95.4% even in the presence of body movement and posture changes during sleep. Our results
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also show granularity of the estimation is su�ciently high to be useful for sleep study analysis.

They key findings and contributions of this work are as follows:

• Theoretical and practical design of a breathing volume estimator. We derive a model for

the e↵ects of chest movement and posture change on radar signals in terms of phase and

signal strength. We adopt a calibration technique inspired by Bayesian’s neural network

back propagation training model to calculate breathing volume from the chest movements

(Sec. 2.4).

• A set of algorithms to address challenges caused by body and body part movement. Posture

detection and point localization techniques are developed to guide the antenna movement

and orientation when movement occurs. To improve the correctness of inferring breathing

volume from chest movement, an interpolation technique is introduced to integrate with

the point localization output which helps correcting the estimation results (Sec. 2.6).

• Implementation and evaluation show the feasibility, performance, and potential of the sys-

tem. We propose and implement 5 algorithms including chest movement reconstruction,

posture estimation, point localization, and volume interpolation on our prototype. We

conducted experiment on 6 users for 360 minutes and report the results. The results show

high estimation accuracy after integrating of the 5 above-mentioned optimization techniques

(Sec. 4.6).

2.2 Goals and Challenges

WiSpiro is designed to be able to unobtrusively and autonomously estimate the breathing

volume with fine-granularity at sub-breathing cycle level even with the presence of random body

movements. At a high level idea, the radar always directs its beam to human chest to observe the

movements. When the user changes her posture during sleep, the radar then navigates to a new

location and orientation orthogonal to the human chest. We now discuss challenges in realizing

such goals including the ones caused by the nature of by body movement, breathing activities and
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non-uniformed shape of human chest areas , and the nature of radio signals.
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Figure 2.2: Motivation of developing WiSpiro. An illustration of the problem of approximating
breathing volume using rate, and inferring breathing volume from untrained areas. Di↵erent with
a cylinder as in Fig. (a), when observing the chest movement at two di↵erent areas (i.e., A and B)
as in Fig. (b), the measured movements are di↵erent even though they are representing the same
amount of air volume that the human breaths in and breaths out.

⌅ Nonuniform movement of body areas during breathing. Due to the non-uniform physical

shape of human rib cage and upper body, the movement of di↵erent areas on human chest caused

by respiratory activities are also non-uniform. Fig. 2.2 illustrates the non-uniformity of a human

chest in contrast with a uniform surface of a cylinder. Given the same volume change, all points on

the cylinder will move with the same distance. On the other hand, when a normal person inhales

or exhales a certain volume, the xiphoid process area moves with a smaller amplitude compared to

the movement of the right chest or left chest area, as shown in prior work in human anatomy [100].

This implies that the relationship between chest movement and breathing volume is non-uniform

across di↵erent chest areas. Because of this property, even a minor non-respiratory movement of

the body could make the antennas point to a new location which could cause significant volume

estimation error. Therefore, at any given time, WiSpiro must be able to distinguish the area that

it is beaming to in order to estimate breathing volume with high accuracy. To that end, we choose

to adopt highly directional radar transceivers, and develop a posture detection algorithm to detect

the cross section vector of human chest movement. Next, we build an autonomous motion control

system which is able to direct the antennas towards a fixed anchor area (e.g., heart area) to monitor
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human chest movement. We present the solutions in Sec. 2.6.1.

⌅ Non-linear relationship between chest movement and breathing volume. It is seem-

ingly possible to obtain breathing volume from the rate by assuming that the breathing volume has

a form of V = Asin!t, where V is the breathing volume, A is the amplitude that could be obtained

by calibration, and ! = 2⇡f (f is the breathing rate) [6]. However, this model misses the inhaled

and exhaled patterns of breathing activities. A brief experiment has been conducted to evaluate

the possibility of this approach. The results (Fig. 2.2 (a)) show that the actual breathing volume

does not follow a perfect sinusoidal form in each cycle. However, the imperfect curve is of interest

to medical practitioners because it reflects the subject’s breathing patterns. The respiration vol-

ume information is buried in the very minor phase shift of the reflected signal. This is in sharp

contrast with respiration rate which only needs to extrapolate peak frequency of the respiration

curve. To solve this problem, we establish a model to map WiSpiro’s received signal pattern to

chest movement (Sec. 2.4), and then map the movement to fine-grained breathing volume value

according to a neural network model trained for di↵erent chest positions (Sec. 2.4.4).

⌅ Possible blockage of radio signals. During sleep, a subject might change her posture or

move her body part (arms, legs, ..) to react to common environmental events such as random loud

sound, change of temperature, humidity, and light condition, etc. These changes or body part’s

movements (e.g., arms) might block the anchor area (e.g., heart area) from the light-of-sight of

the antennas. Therefore, WiSpiro needs to find an alternative area which can be seen clearly by

radar. It then infers the breathing volume based on the movements captured on that area and the

relationship between that movement and breathing volume learned in the one-time training process

at the beginning. We present the solution to this problem in Sec. 2.6.2.

In summary, there are many challenges on designing a radar system for monitoring the breath-

ing activity continuously, automatically, and with fine granularity. To our knowledge, WiSpiro rep-

resents the first system that can meet the challenges, and realize robust breathing volume estimation

in practical sleeping environment with the presence of participant’s random body movement.
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2.3 System Overview

In this section, we discuss the overview picture of WiSpiro and briefly describe how does

it overcome challenges mentioned earlier. WiSpiro is created to continuously monitor breathing

volume of a subject during sleep. Figure 2.3 sketches its functional architecture, which includes

three main components: volume estimator, radar navigator, and one-time trainer. In the following,

we briefly describe these key components.
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Figure 2.3: Architectural overview of WiSpiro. WiSpiro includes three main components (1) One-
time trainer, (2) Volume estimator, and (3) radar navigator. One-time trainer provides a correlation
between chest movement and breathing volume and the breathing patterns at each location on
human chest. Volume estimator converts the chest measurements by WiSpiro to breathing volume
using the correlation function obtained from one-time trainer when there is no body movement
detected. When there is movement detected, Radar navigator component will control the 360
degree motor to navigate radar to proper location and direction keep track of human chest.

⌅ Volume estimator. WiSpiro builds on a decoding technique that extracts subject’s frontal

movement due to breathing, heart beat, and random body movement from the reflected radio

signals. It continuously tracks the minute frontal body movement by analyzing the phase shift
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and signal strength of the signal captured by the receiving radar. This movement information is

then combined with a prior knowledge, learned through a one-time training process, to estimate

fine-grained breathing volume.

⌅ Radar navigator. WiSpiro relies on this navigator to address challenges caused by subject’s

random movement, which could come from limbs, shoulder, other body parts, or the whole body,

during sleep. Taking phase-shift and signal strength information from the previous component

as inputs, the radar navigator detects large- and small-scale body movement. It estimates the

sleeping posture of the subject and moves the antenna accordingly to redirect the radio beam

to the subject’s chest upon detecting body movement. Furthermore, it executes an area local-

ization algorithm to identify the area on the chest to which the radio beam is pointing. This

area information not only allows the navigator to fine-tune its antenna orientation to beam to the

subject’s heart area but also informs the volume estimator which training data should be used for

calculating the volume. Note that the same breathing behavior can cause di↵erent areas to move

di↵erently. The last operation of the radar navigator is occlusion detection, i.e., detecting if the

heart area is in direct light-of-sight with the transmitter and the receiver. In case when occlusion

occurs, it redirects the antenna beam to alternative areas (e.g., lower chest, or abdominal areas) to

continue the monitoring process.

⌅ One-time trainer. Firstly, a training step is required to establish the correlation between

human chest movement and breathing volume because this correlation depends on chest size, age,

breathing patterns, and so on. Secondly, the system needs to know exactly where it’s pointing,

so that it uses the correct correlation function for estimating breathing volume from the chest

movement. For the first task, the trainer uses neural network to establish the relationship between

body movement and beaming area with the breathing volume. Given an instance of chest movement

at a known area on human chest as an input, the output of the function is a corresponding breathing

volume. Lastly, the trainer provides the characteristics of the reflected signal when radar beams to

di↵erent areas on the human chest. These characteristics are mapped into features. By comparing

the features of the signal with those of the signals from trained areas, the system can infer the
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location at which radar is pointing. We describe in detail the 3 above components in the next

sections.

2.4 Volume Estimator with Chest Movement Reconstruction

2.4.1 Theoretical analysis of movement reconstruction

In this section, we describe how the reflected signal can be used to infer the chest movement.

It is note that our WiSpiro includes a wireless transmitter sending out wireless beam at 2.4 GHz

toward human chest and a wireless receiver to capture the reflected components of the signal. The

WiSprio transmitter continuously emits a single tone signal with frequency ! using software define

radio, and uses a directional antenna to beams the signal towards the subject’s chest. When hitting

the subject’s chest, parts the signal will eventually be captured by a directional receiver radio. The

single-tone continuous wave T (t) is formulated as:

T (t) = cos(!t)

Let d0 be the distance between radar and human chest, m(t) be the chest movement function

representing the chest position at time t, then d(t) = d0 + m(t) will be the e↵ective distance

between the radar and human chest at any given chest position at time t. The received signal,

namely R(t), can be written as:

R(t) = cos


!

✓
t� 2d(t)

c

◆�
= cos


!

✓
t�

2d0 + 2m(t� dt

c
)

c

◆�

In the above equation, d(t)
c

is negligible since d(t) is 10 orders of magnitude smaller than the speed

of light c. Therefore, m(t� d(t)
c
) ⇡ m(t) and, R(t) can be rewritten as:

R(t) = cos


!

✓
t� 2d0

c
� 2m(t)

c

◆�
= cos

✓
!t� 4⇡d0

�
� 4⇡m(t)

�

◆
(2.1)

As shown in the Eq. (2.1), the received signal R(t) includes a high frequency component

(i.e., at transmitted frequency !) and a low frequency component caused by chest movement m(t).

We are interested in extrapolating the low frequency component which is pertinent to volume

estimation.
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To do that, we note that the radar mixes its received signal R(t) with the originally trans-

mitted one T (t) using a simple mixer. In an ideal mixer, the output signal, called B(t), is the

multiplication of T (t) with R(t) which are the two inputs to the mixer. T (t) is fetched into the

mixer via its local oscillator (LO) port. Di↵erent frequency components of the output signal from

the mixer is calculated as:

B(t) = cos(!t)cos

✓
!t� 4⇡d0

�
� 4⇡m(t)

�

◆

= cos

✓
4⇡d0
�

+
4⇡m(t)

�

◆

| {z }
low freq. comp.

+ cos

✓
2!t� 4⇡d0

�
� 4⇡m(t)

�

◆�

| {z }
high freq. comp.

(2.2)

Now that the two signal are separated after passing through the mixer, the low frequency

component could be retrieved by a simple low pass filter. The filtered signal, called F (t), is written

as following:

F (t) = cos

✓
large-scale movement

z}|{
4⇡d0
�

+

vital sign movement
z }| {
4⇡m(t)

�

◆
(2.3)

Note that WiSprio estimates breathing volume only when the subject does not move. If a body

movement is detected (discussed in Sec. 2.6), the radar navigator will take control to adjust the

antennas to beam to a correct position before restarting the breathing volume estimation process.

When the body is static, the distance between the antennas and the subject’s frontal areas d0

remains fixed. Therefore, from Eq. (2.3), phase change between two consecutive samples, F (k) and

F (k � 1), represents only chest movement due to vital signals including breathing and heart rate.

arctan

✓
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◆
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✓
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◆
⇡ 4⇡(m(k)�m(k � 1))

�

Let �m be the chest movement between the two consecutive samples, then �m = m(k)�m(k�1).

If FI(t) and FQ(t) are the I and Q channels of F (t), respectively, then the above equation can be

rewritten as:
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Eq. (2.4), shows how chest movement is calculated from samples of received signal. Note that the

movement estimation is independent of d0, which is base distance from chest to antenna.

2.4.2 Volume Estimation Algorithm

Based on the prior analysis, we design an algorithm to robustly demodulate fine-grained

breathing volume from received signals. Several challenges need to be addressed in this process.

First, the respiratory chest movement between two consecutive reflected signal samples is very

small and is buried in minor phase change. Second, it is di�cult to detect phase changes given the

various types of noise in the system which are introduced by reflection from background objects,

multipath components, and signal leakage due to TX, RX hardware imperfection. Last but not

least, the nonuniform movement of di↵erent body areas during breathing makes the correlation

between area movement vs. breathing volume to be dependent on the area location.

To overcome the above challenges, we exploit the regularity and quasi-periodic nature of

chest area movement. In particular, an area is highly likely to move along the same direction,

either inward (exhaling) or outward (inhaling), for a number of sampling cycles before the direction

is changed. The intuition is that one cannot alter his or her breathing from inhale to exhale in

one sampling cycle and then back. Moreover, the movement direction only changes when the

subject changes from inhale to exhale, i.e., finishing one half of a breathing cycle. Thus, we

identify and group chest area movements within one half of a breathing cycle for breathing volume

estimation for which per-sample breathing volume is inferred. In addition, we found that the noises

are either reflected o↵ rather stationary sources or from hardware leakage, and thus have either

relatively low frequencies or frequencies following Gaussian distribution. Therefore, these noises

can be removed with proper filtering mechanisms such as DC and band-pass filters. Lastly, a one-

time neural-network-based training process is designed to mine the relationship between breathing

volume and chest movement for each chest area. These area-specific relationships are later used for

volume estimation. Alg. 1 summarizes our basic volume estimator which integrates these solution

principles, with the following key steps.
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Algorithm 1: Basic Volume Estimation Algorithm

Input : FI(k) and FQ(k) /* Received samples */
S, areaID,L,Nc(areaID) /* which are number of samples, chest area ID, moving

window size, and trained neural network for areaID, respectively/
Output: Estimated breathing volume vector V ⇤[1 : S]

1 F 0
I
 DC filtered of FI ; and F 0

Q
 DC filtered of FQ

2 CZ[1 : n] Find cross zero indexes of arctan(
F

0
Q

F
0
I
[1 : S]),

3 for j = 1 to n� 1 do

4 V [CZ(j) : CZ(j + 1)] Nc(areaID, arctan(
F

0
Q

F
0
I
)[CZ(j) : CZ(j + 1)])

5 V ⇤[1 : S] V [CZ(1) : CZ(n)]

Signal preprocessing. Assuming the signal sequence received by the receiver has S samples

which are in I and Q channels and acquired as described in Sec. 2.4.1. The series of FI(k) and FQ(k),

k 2 [1 : S] contains DC components caused by hardware leakage and quasi-stationary background

which are removed by a moving-average DC filter. The filtered signal sequence, F 0
I
(k) and F 0

Q
(k),

are F 0
I,Q

(t) = FI,Q(k)� 1
L

P
L

i=0 |FI,Q(k � i)| in which L is the moving window size and k 2 [1 : S].

Half-cycle segmentation. The filtered samples are then divided into n segments where n is

the number of times that the phase of the signal, arctan(
F

0
Q

F
0
I
), crosses zero. By doing so, samples

of the same breathing activity, either inhale or exhale, are grouped into the same segment. It also

accommodates group with di↵erent size which mean breathing activity with di↵erent paces, such

as a long inhale or short exhale.

Per-segment volume estimation. This step is to calculate the volume of each half-cycle seg-

ment. One important input of this step is the neural network that contains the relationship between

a movement of a specific chest area and its corresponding breathing volume values. This network

conducts the one-time training process that is presented in the following subsection, Sec. 2.4.3.

Another key input is the ID of the chest location at which the antennas are beaming.

2.4.3 Training the Neural Network for Movement-to-Volume Mapping

WiSpiro is built on a physiological premise of the harmonic movement between the chest and

lung expansion during breathing. That is, when the lung expanses due to inhaling, the chest is
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also expanding. Likewise, the chest is collapsing during exhale. This phenomenal is the leading

principle for our training algorithm. This training process quantifies the relationship between chest

movement and breathing volume of individual. It needs to also take into account the non-uniformity

of the movement on di↵erent chest areas given the same breathing activity.

1 2 3

6 5
7 8 9

4

To 
spirometer

Figure 2.4: Movement-to-Volume Training. The subject chest is divided into subareas each.
WiSpiro collects data from Radar and Spirometer data at the same time to build the correla-
tion between chest movement and breathing volume. The blue text shows the ID of each location
on human chest. The red arrows illustrate the direction of moving transceiver antenna during
training.

The movement-to-volume training is needed only once for each subject. During this process,

a subject is asked to lie down and breath normally into a spirometer. The breathing volume VG

of the person is recorded. The patient’s chest is spatially divided into subareas. Depending on

the chest size and the beam width of the transmitting antenna, the number of areas, gridSize,

is determined so that the antenna can beam to each area individually without overlapping to the

others. Illustrated in Fig. 2.4, a chest is divided into 9 areas each of which is scanned sequentially

by the antennas. For each area, FI and FQ signals are collected, along with the corresponding VG.

The training process is formalized in Alg. 2.

⌅ Pre-processing. The preprocessing steps remove DC components and filter out the signals

that are not at frequencies of interest. This step is very important to remove the e↵ect when radar
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Algorithm 2: Training for Movement-to-Volume Neural Network

Input : FI(k) and FQ(k) /* Received samples */
gridSize /* Number of chest areas */
N /* Total number of samples collected per area */

Output: Trained neural network Nc[i] for all areas with i 2 [1, gridSize]
1 for each area do
2 VG[1 : N ] Volume measured by spirometer for area i
3 fL  0.2Hz; fH  1.8Hz; /* Cut-o↵ frequencies */ F 0

I
 DC filtered of FI ; and F 0

Q
 

DC filtered of FQ

4 F ⇤[1 : N ] Band pass filter of (arctan(
F

0
Q

F
0
I
)[1 : N ])

5 Align F ⇤ with VG using peaks and cross zero points
6 Resampling F ⇤ to match with VG

7 [CZF ⇤ [1 : n0]] Find cross zero indexes F ⇤

8 Segment < F ⇤, VG > pairs using cross zero indexes
9 Obtain Nc(areaID) /* trained network for all pairs using Bayesian back-propagation

neural network */
10 Navigate the antennas to the next area

11 return Nc

is placed at di↵erent distance with the chest. It is note that the distance highly a↵ects to the

received signal strength. By doing DC removal, we could eliminate the e↵ects of distance to the

phase variation according to chest movement.

⌅ Signal Alignment and Resampling. Next, breathing volume vector VG and phase vectors

FI , FQ are aligned using zero crossing and peaks analysis. By doing so, the three time series have

the same starting and ending points in time. The starting point of the three series is aligned based

on the first peak location. The ending points correspond to the smallest last cross-zero indexes of

the three series. To guarantee the same number of samples on all series, we resample the longer

data series to match the size of the shorter one.

⌅ Segmentation. We divide the resulting series into multiple segments which are separated by

cross-zero indexes. Each segment corresponds to an entire duration of either inhale or exhale, CZ[i]

with i 2 [1 : n0] and n0 is the number of segments. These 3-tuple segments are derived from VG, FI ,

and FQ and then fed into a neural-network that learns and quantifies the relationship between the

movement and volume for each chest area. The inner-working of the neural-network is discussed

below.
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⌅Neural-network Construction. We apply Bayesian back-propagation learning algorithm [101]

to obtain the correlation of each chest movement cycle with its correspond breathing volume,

VG. The chest movement for each area is passed through the system in the first layer of the

neural network. Hidden layers are expected to generate non-linear correlation function so that

the breathing volume produced from the last layer is as close to the ground truth volume, VG, as

possible. To reduce the error between the output volume and the ground truth, the weight of each

layer must be determined. In particular, the basic concept of back-propagation can be found from

many well-known literature [102, 103]. We first discuss about back-propagation neural network,

it has been commonly used recently due to its simplicity of implementation. Back-propagation is

trained by feeding a series of examples of input and expected output. Each hidden and output unit

processes its inputs by multiplying that input with its weight. The summation of the product is then

analyzed using a non-linear transfer function to produce the result. The key idea of the training

process is to modify the weights to reduce the errors between the actual output values and the

target output values. The key limitation of this technique is that the optimal network architecture

and learning parameters are usually determined by trial-error or by heuristics. A common problem

of using neural network is overfitting, where the training algorithm takes the noise as a part of the

data. To solve this problem, early stopping heuristics algorithm was proposed to solve the problem.

To overcome most of above limitations, Bayesian probability model was used for back-propagation

neural networks [101, 104].

2.4.4 Achievable Accuracy of Volume Estimator

We have implemented the basic volume estimating system (details in Sec. 4.5). Now we set

up a simple scenario to verify the achievable accuracy of the technique and to identify possible

optimization. The subject under test lies down on a bed and breaths normally for a period of

3 minutes, while his breathing volume are being monitored and estimated by both our WiSpiro

and a spirometer [105]. At the beginning of the experiment, the person performs a 9-minutes-long

training, following the procedure in Sec. 2.4.3.



26

Figure 2.5 plots the estimated volume time series. WiSpiro demonstrates a small mean error

of 0.021l, maximum error 0.052l, and standard deviation 0.011l across the testing period.

We also found that the breathing volume waveform also represent unique patterns of a par-

ticipant. which can contribute to clinical analysis of diagnosis and treatment. The signals (of

di↵erent participants) are not only di↵erent in frequency and amplitude but also represent unique

breathing form characteristics. This information is not be obtained by existing state of the art rate

estimation techniques.
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Figure 2.5: WiSpiro estimation output. The figure shows breathing volume estimated by the basic
WiSpiro algorithm for a stationary person - a mean error of 0.021l and maximum error of 0.052l
and a standard deviation of 0.011l.

2.5 Body Movement Detection

2.5.1 Theoretical analysis of received signal strength and chest movement.

Given the transmitted signal as T (t) = cos!(t) as mentioned earlier, the received signal

strength, denoted as Pr(t), reflecting from human chest can be modulated as:

Pr(t) = ✓K2(d0 + ˆm(t)), (2.5)

where m(t) is the chest movement, ˆm(t) = m(t) cos �, � is the angle between the chest movement

direction and reflected direction. d0 is the distance between antenna and human chest. K(.) is
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the gain, this is considered as 1/path loss. As the signal travels from the wireless device to the

human chest and reflected o↵, the gain is in square form. Note that the antennas and human

chest are under light-of-sight condition. So, K(.) will follow traditional pass loss model such as free

space. The signal scattered from the bed and other objects inside the environment is negligible. In

addition, ✓ is the reflection capacity of the human chest.

From Eq. 2.5, Pr(t) is proportional to the distance between the human chest and the receiver.

The function K(.) can be assumed to follow traditional path loss model (free space or log normal).

Because the path loss is continuous, we use Taylor theorem to derive the received signal at the

receiver [106] as following:

Pr(t) = ✓[K2(d0) + 2K 0(d0) ˆm(t) + ...+O(do) ˆm(t)
k

], (2.6)

where K 0 is the first order derivative, O(d0) is Peano form of the remainder. The first value K2(d0)

is the DC o↵set, which depends on the distance between the radar and the human chest as well as

the environment settings. The K 0(d0) ˆm(t) contains the chest movement m(t). Hence, by analyzing

the received signal strength, we will obtain the movement information of the chest. In addition,

by observing the change on the received signal strength change, we can infer the change between

radar and human surface in order to estimate the human posture. As the received signal strength

is a↵ected much by the distance between the human chest and the radar, the chest movement m(t)

and DC o↵set K2(d0) ˆm(t) are used mostly for posture estimation and area localization.

2.5.2 Posture change detection

To identify the new posture, the system must be detected when body movement happens

first. A straightforward approach for posture change detection is to identify the threshold of the

movement in terms of amplitude and variations. This technique, however, has some limitations as

following: (1) The breathing behavior might be recognized as human movements when the human

chest is very close to the antenna; (2) some body-part movements such as arm, would also be

noticed as human movement; and (3) it is di�cult to capture the duration of the posture change,
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which might be important for sleep analysis.

The second possible approach for event detction is to use probabilistic model Markov-based

[107]. This technique would provide a better event detection results, but it is too complicated and

time consuming for real-time applications. In addition, as we sampling with a very high rate to keep

the performance of our algorithm, lightweight event detection algorithm need to be implemented to

maintain the responsiveness of the system. We will discuss more details regarding the computation

time in Section 4.6.

Understanding those drawbacks, we apply lattice filter [108] to detect posture change event.

This approach is e�cient and easy to implement, which is very suitable for our real time application.

In order to capture the posture change event, we calculate the Euclidean distance dRSS(n) in the k-

parameter space of the RSS d2
RSS

(n) =
P

p

i=0�k2
i
(n), where k0:p are a coe�cient variables that are

designed by minimization of the sum of forward and backward prediction error squared. With this

implementation, the posture change is detected in order of seconds and very robust with di↵erent

posture and distance from human body to the radar.

2.5.3 Body movement classification

After the body movement is detected, the system collects the change of wireless signal and

then used it to infer the body movement type. There are three types of the movement: (a) changing

posture, (b) body part movement, and (c) occlusion. We set two threshold of Eulidean distance for

identifying movement type w/ and w/o changing posture. If the movement w/o changing posture,

we then apply a fast algorithm to find the breathing frequency [109], which relying on analyzing

DFT calculation of the input signal. More importantly, this solution is simple but yet e↵ective.

We obtained very high accuracy of posture classification. It is straightforward to classify posture

change and body movement. The occlusion is obtained by analyzing frequency of the reflected

signal. We refer more detail discussion in Sec. 2.6.2 and 2.6.3.
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2.6 Radar Navigator

The above analysis and experiment have shown that the basic WiSpiro is capable of estimating

fine-grain breathing volume of a static subject. In this section, we describe a set of algorithms to

make WiSpiro robust to disturbance caused by body movement in practical scenarios.
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Figure 2.6: Movement event detection. Limb or body motion a↵ects
respiratory signal monitoring, causing small or large signal fluctua-
tion. The disturbance magnitude could be used for classifying di↵er-
ent types of movement.
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Figure 2.7: Vibration
sources including lung,
heart, and diaphragm
forced movement.

2.6.1 Posture Estimation

WiSpiro’s posture estimation algorithm estimates the current posture of the user and changes

the location and beam direction of the radar to ensure the chest movements are always captured

by the radar receiver.

The respiration and heartbeat information are detectable when the radar beams to user’s front

chest. Meanwhile, those vital signs are di�cult to capture when the radar beams to user’s back.

Exploiting those facts, we develop a scanning algorithm which mechanically brings the radar across

the bed surface to scan and search for a position that senses vital signs. During the scanning,

the radar transceivers are continuously running and pointing orthogonal to the bed. Figure 2.8

shows the human posture, location of the radar and the corresponding power distribution of the

measured vital signal. The posture detection algorithm relies on two main features: (1) the vital

signal (heartbeat and respiration) reflected strongest when the radar is orthogonal to the human
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Figure 2.8: Example sleeping postures. Examples illustrating di↵erent postures of participant
during sleep, location of radar together with obtained spectrogram at vital sign frequency band:
(a) Human face to the right, (b) Human face up to the ceiling, and (c) Human face to the left. The
direction respects to top-view perspective of human head.

chest as ✓ in Eq. 2.5. (2) The reflected signal from human body at vital sign frequency band

is caused from LOS position. Understanding these fact, by applying Kadane’s algorithm on the

collected RSS, we could identify a subset of signal that content a maximum vital-sign reflected

component. This algorithm bring down the resolution of detecting the angle between human back

and the bed surface down to 5o. Details implementation is shown in Algorithm 3.

Algorithm 3: Posture Estimation

input : fs /* sampling rate */
dscan /* scanning distance */
FI(k) and FQ(k) /* received wireless samples */

output: moving radar to new location

1 fL  
q
F 2
Q
(k) + F 2

I
(k)

2 fL  0.2Hz; fH  1.8Hz; /* Cut-o↵ frequencies */
3 E[1 : n] Energy(fL) in each of 5*fs samples;/* 5 seconds */

4 E[k]k2[1:n]  Kadane Algorithm(E[1 : n])

5 Mapping k to location of antenna on the arc
6 Move radar to new location

Next, WiSpiro navigates the radar to search for and beam to the heart location. Heart

location is selected because the corresponding signal fluctuation contains both respiration and
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heartbeat information. However, it is nontrivial to automatically direct the radar from current

location to the heart location. The required moving distance di↵ers for di↵erent postures. For

example, moving the radar from location 5 to 3 (Fig. 2.4) requires the radar to move its beam by 5

cm when the user is lying flat on bed (orthogonal to radar beam), but it requires only 4 cm when

user body forms a 40 degree angle with the bed. In response, WiSpiro estimates the angle between

the user’s back and the bed to calculate the e↵ective movement its beam would make on the chest

surface given a fixed amount of movement on the radar. WiSpiro then directs the radar to di↵erent

areas while capturing the signal at each moving step and stops at the location. Last, it identifies

the heard area by finding the location that has the received signal that best matched with that of

the heart location (Sec. 2.6.2).

2.6.2 Point Localization

Algorithm 4: Point Localization

input : FI(k) and FQ(k) /* Received samples */
TF (F1[1 : 16]! Fn[1 : 16]) /* features of all areas */

output: area’s ID
1 fL  0.2Hz; fH  1.8Hz; /* Cut-o↵ frequencies */
2 F 0

I
 DC filtered of FI ; and F 0

Q
 DC filtered of FQ

3 F ⇤  Band pass filter of (arctan(
F

0
Q

F
0
I
)[1 : N ])

4 F [1 : 16] Feature extraction(F ⇤)
5 Normalize F [1 : 16] respecting TF (F1[1 : 16]! Fn[1 : 16])
6 area’s ID  K-NN classify(F [1 : 16], TF )

This section describes how WiSpiro recognizes the exact chest location the radar is beam-

ing at. As can be seen in Figure 2.7, human chest movement comprises 3 main sources: lungs,

diaphragm, and heartbeat. Di↵erent areas move di↵erently according to the distance to vibration

sources, and the structure of muscles. We divide the chest into nine areas as in Figure 2.4, named

as P1, P2, ..., P9, respectively. This division depends on the radar beamwidth, its distance to chest,

and the chest size. With a narrower beamwidth, the number of areas can be increased. On the

other hand, the number of areas will be decreased if the system monitors young subjects with small



32

chest (e.g. a baby). The key idea is to make sure the beam width is small enough to isolate the

signal reflected from di↵erent areas. Moreover, as only a discrete set of areas have been trained,

we use spline interpolation technique to fill up the data for untrained areas.

⌅ Training for Point Localization. According to the characteristic of movements on di↵erent

areas as mentioned above, we selected the following signal features to distinguish them:

• Mean of interested frequency ranges. We extract the center gravity of the power spec-

trum on respiration and heartbeat ranges. The interested frequency ranges are obtained

from bandpass filters with fL1 = 0.2Hz, fH1 = 0.5 Hz (dedicated for obtaining breathing

frequency range), and fL2 = 1Hz, fH2 = 1.8Hz (dedicated for heartbeat frequency range).

• Mean of interested bandwidth. We compute the spread of those frequency ranges around

the mean frequencies. This information represents the distribution of dominant frequency

components on each area. As an example, the closer to the heart, the smaller spread and

higher peaks of the mean frequency on heartbeat range will show up.

• Group delay. We calculate the time-lapse between mean of central interested frequency

ranges. This would help to distinguish the area according to their distance from the moving

sources.

• Total energy of interested frequency range. This is the integration of the power on interested

frequency. This feature reflects the distribution of the signals.

• MFCC features : With a windows size 10s, window shift 2s, pre-emphasis coe�cient 0.97,

the system extracts 12 mel freuquency cepstral coe�cients (MFCC). We use the window

of 10s to ensure a su�cient number of respiration cycles for frequency feature analysis.

Figure 2.9 shows the features of wireless signal monitored from those areas. As can be seen

from the figure, the signature of each area is distinctive to each other.

⌅ Point and Volume Interpolation. As mentioned above, it is infeasible to conduct a training

procedure over all areas on the human chest, and we use 9 discrete spots instead (Figure 2.7(a)). If



33

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

0 5 10 15
0

0.5

1

2 3

4 5 6

7 8 9
Feature ID

A
m

p
lit

u
d

e

1

Figure 2.9: Features of 9 trained areas. WiSpiro recognizes the breathing of each chest location
based on the characteristics of the obtained signal when the radar is steering to a certain chest
area.

the radar beams areas in between the spots, the area estimation accuracy is decreased. To solve this

problem, we used spline interpolation technique to fill up the missing knowledge. More specifically,

spline interpolation is considered as polynomial interpolation because the interpolation error can

be made small even when using low degree polynomials for the spline [110, 111].

2.6.3 Occlusion

After small human body movements, WiSpiro may detect a loss of heartbeat-frequency. The

Figure 2.10 (a) and (b) show the availability of heartbeat frequency range before/after movement.

When the heart-beat frequency is lost, WiSpiro reruns the scanning procedure until heartbeat signs

are identified again. If the scanning fails, this is called occlusion. The radar now searches for two

alternative areas: lower chest, and abdomen to find the alternative area. The first location that fits

to one of the location in the trained database (for area recognition) would be used as an alternative

area. Note that if a large movement is detected, the system will start posture detection algorithm.

In summary, taking the above mentioned issues into account, Alg. 5 summarizes how WiSpiro
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integrates all presented components and algorithms.

Figure 2.10: Samples of the FFT outputs of the received signals when radar beams to human heart
location without and with occlusion scenario.

Algorithm 5: WiSpiro Breathing Volume Estimation
input : dataRD  data from radar
output: area’s ID

1 filterRD  Band pass filter (dataRD), fL=0.2Hz, fH=1.8Hz
2 Detecting human activities change based on filterRD

3 if no body movement is detected then
4 Run Basic Volume Estimation algorithm (Alg. 1)

5 if large body movement is detected then
6 Run Posture Estimation algorithm (Alg. 3)

7 if small body movement is detected then
8 Run Point Localization algorithm (Alg. 4)

2.7 System Implementation

In this section, we describe the WiSprio hardware and software that we implemented for

evaluation purposes.

⌅ Hardware. As illustrated in Fig 2.11, the hardware setup is composed of two main components:

a radio transceiver and a radar navigator. The radio transceiver hardware is developed from a

WARP kit v3 board [112]. A transmitter sends single tone continuous wave at 2.4 GHz by the

script written in Matlab. A receiver captures reflected AC-coupled signals, convert to base band,
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Figure 2.11: The current setup of WiSpiro. The motor M1, M2, M3 are controlled by computer.
The TX/RX is controlled by a WARP board.

and output discrete I/Q samples with 100 kHz baseband sampling rate. The received I/Q signals

are transferred to a PC through Ethernet cable, to which our algorithms in Sec. 2.4 and 2.6 are

applied.

The radio antennas are mounted on a mechanical motion control system from Applied Mo-

tion [113] for sliding and Cinetics [114] which are steered by a PC host in real-time. The antennas

are connected to WARP kit v3 board through SMA connection. The control system supports 360�

pan, tilt, and the slide movement is controlled by an automated script. To navigate the radar

to proper location and orientation, the motion control system is driven by our radar navigator

algorithms (Sec. 2.6) which are implemented on the PC host. The whole system is mounted across
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and on top of a twin-size bed on which all experiments are conducted.

Spirometer, camera, and microphone are used together to create ground-truth for various

experimental verification, to be detailed in Sec. 4.6. Figure 2.11 shows WiSpiro’s setup in lab

environment.

⌅ Software. We implement a program in Matlab to perform the training algorithms and volume

estimation algorithm described in Sec. 2.6. The radar controller software is developed and run in

Matlab to realize posture estimation, point (area) localization and associated training algorithms

(Sec. 2.6), and also make decisions on moving and steering antennas to proper location. We also

developed a software using C++ to simultaneously trigger multiple hardware pieces at once to

minimize the execution e↵ort of the system and minimize the starting time discrepancy across the

devices.

In addition, the original WARP board doesn’t support real-time data forwarding with high

tra�ce from the device to PC. We have adopted CWARP technique [115] to solve the problem.

The key idea is to utilize parallelism to run the read/write operations concurrently. In addition, a

high-bandwidth link is used at the host to support the combined transfer rates. We could obtain

up to 3.6 GHz/s of sampling rate. However, to reduce the size of our data collection, we use the

sampling rate at 100KHz.

2.8 Performance Evaluation

2.8.1 Experiment Setup

Participants: To evaluate the performance of WiSpiro, we recruited 6 students (5 grads, 1 middle-

school), with di↵erent weight, height, and a mean age of 25. During the experiments, a subject

sleeps on the WiSpiro testbed (described in Sec. 4.5) wearing their normal clothes and covered by

a thin blanket in some cases.

Ground truth: We use a spirometer [105] as a ground-truth to evaluate WiSpiro’s volume estima-

tion accuracy and train its algorithms when necessary. A camera was used to record participants’
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sleep behaviors and noise, together with a laser pointer to track the antenna’s direction.

Training: The training process was done within 9 minutes for each participant. They were asked

to breath normally to a spirometer when the radar was navigating and collecting data at all desired

training areas.

Testing: After training, each participant was asked to sleep normally for about 60 minutes while

WiSpiro is running. The spirometer was attached to the participant’s mouth to collect ground-truth

data.

2.8.2 Experiment Results and Analysis

⌅ Overall accuracy of breathing volume estimation. We group the testing results based on

the ID of the area that the radar points to. Fig. 2.12 shows that, WiSpiro can estimate breathing

volume with 90% to 95.4% accuracy, which mean the error is less than 10% of the total breathing

volume within an average window of 10ms. The performance peaks at areas on upper part of the

chest and around the heart area. The results also show that the impact of body and limb motion

is small, thanks to the radar navigator algorithms.

Figure 2.12: Breathing volume estimation accuracy. The mean accuracy of volume estimation in
two cases: users sleep stationary on the back, and users move during sleep.
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⌅ Medical significance of WiSpiro. We evaluate the medical implication and benefit from

WiSpiro, focusing on a specific question: Could WiSpiro provide meaningful information to help

clinical doctor in sleep and respiratory disease diagnosis?

Decrease in volume
(b) Snoring participant - Female(a) No-disease participant - Male (c) Mild hypopnea - Child

Flat-top cycles Flat-top cycles

Figure 2.13: WiSpiro breathing volume signal. The example volume signal of the three participants
with and without breathing and sleep diseases. Flat-top breathing cycles and the decrease in volume
are features that are identified and used by clincal doctor for diagnosis.

We recruited 3 volunteers: one male middle-school intern student with known minor hypop-

nea, one normal male student, one female student with a known mild snoring pattern. The three

subjects’ breathing volume, which is monitored by both a spirometer and WiSpiro, are given to

a clinical doctor, a sleep expert who directs and operates a clinical sleep analysis lab in a state

hospital.

From the fine-grained breathing information, the doctor was able to map the breathing

volume pattern to each person without prior knowledge about the mapping. Once the symptom is

confirmed, the doctor was able to provide further analysis of breathing and sleeping issues from the

volume information, part of which is presented in Fig. 2.13 (b). “With a known snoring female,

the signal shows a small inspiratory flow limitation but very little e↵ect on her tidal volume. This

is a marker of mild flow limitation that is commonly seen in premenopausal woman. It is likely a

non-REM sleep because of the regular rate. The normal volume variability which can normally be

seen through CO2 and O2 levels.”, said the doctor regarding the female subject with mild-snoring.

The flat top of part of the volume measurement, marked in Fig. 2.13, is an indication of flow

limitation which is, otherwise, not possible to be captured with breathing rate information.
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Regarding to the middle school student’s breathing volume time series, the doctor analyzed

as follows: “These three breathing cycles (the doctor was pointing to the part marked on Fig. 2.13

(c)) show a moderate inspiratory flow limitation that decreases the tidal volume of the breath. This

could be clinically important because the child might get enough O2 due to the air flow limitation

and decreased volume. This could lead to alteration of blood gas such as CO2 and O2 levels. The

moderate flow limitation during sleep is one form of hypopnea”. Once again, this analysis mostly

relies on the breathing volume and its variation overtime, which is not acquirable from respiration

rate.

While this qualitative analysis is not statistically significant to make a conclusive answer for

the aforementioned question, it shows that WiSpiro’s accurate and fine-grained breathing volume

information is potentially useful for medical practice.
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Figure 2.14: The accuracy distribution of point localization technique.

⌅ Accuracy of point localization technique. We now evaluate the accuracy of WiSpiro’s point

localization module and its impacts on the system’s overall performance. After training, we beam

the antennas to di↵erent areas on each participant. We repeat the process for 15 times at each

area for all participants. The accuracy is then averaged across participants. Fig. 2.16 shows the
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accuracy of the algorithm in correctly detecting the area ID. The results show that the algorithm

performs better in detecting areas that are close to the heart, position 2, 3, 4, and 5, while accuracy

drops near the abdominal area. This trend is intuitive since there are more vital signal a↵ects on

the former set of areas. Fig. 2.14 shows the error distribution of the localization. It shows that

when an error happens, it tends to be confused with an area with its neighborhood.

Figure 2.15: Sleeping posture estimation accuracy. Estimation accuracy of the angle between
human back and the bed surface.

⌅ Accuracy of posture detection. The performance of our posture detection algorithm is

presented in Fig. 2.15. A participant is asked to lie his/her body w.r.t. the bed with an angle

ranging from 0o to 90o with step of 5o. The estimation is repeated 20 times at each angle. The

angle is considered to be correctly estimated if the result is within 5% from the ground truth. With

the new technique of posture detection, the performance of the system is significantly improved.

2.9 Conclusion

We have presented WiSpiro, the first autonomous radar system to monitor breathing volume

of a sleeping person. WiSpiro achieves fine-grained volume estimation using a phase-motion model,

combined with a neural network training that maps chest movement to breathing volume, taking
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Figure 2.16: Chest area ID detection accuracy.

into account heterogeneity of frontal body areas. Further, WiSpiro handles random body movement,

by redirecting the radar in real-time, using a set of navigation and area localization algorithms. Our

prototype and experiments verify WiSpiro’s feasibility, and its ability to track breathing volume at

high accuracy. Our immediate next step of research is to optimize WiSpiro and test it in practical

clinical environment.

2.10 Looking forward

WiSpiro relies on the correlation between breathing volume and chest movement of a human

body. The system might not perform well in scenarios where that assumption does not hold. While

it rarely happens, there exist a few of such cases. One example is apnea caused by blockage in the

respiratory airway of the patient. Regardless of the apnea patient’s e↵ort in inhaling or exhaling,

the breathing volume does not change since no air can go through the airway, while the chest and

other frontal areas might still be moved by the pressure caused by the respiratory e↵ort. One

possible solution to detect this is to combine WiSpiro with a sensing system that could capture

inhaling and exhaling air flow, such as CO2, O2 levels, or thermal camera.
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WiSpiro’s scanning process is currently taking several due to limitations of the mechanical

motion control system and the minimum required period to obtain su�cient vital signal. The

scanning will su↵er further if the subject moves frequently during scanning, in which case, the

scanning process need to be reset. This limitation can be overcome by using a more e�cient

motion control system, combined with electronically steerable phased-array antennas. However,

the cost of the system would be added up.

Finally, our experimental results are performed on a small user population. More thorough

testing with in-house and in-hospital setup could further validate the clinical significance of WiSpiro.

We consider that as extension of this work. The improvement of WiSpiro hardware upgrading is

small with current data set and number of participants. More importantly, as there are not many

participants having critical issue with breathing behaviors, the sensitivity of the system has not

been presented in the evaluation. We hope to deploy our system for clinical trial in the near

future.



Chapter 3

Drone Presence Detection by Identifying Physical Signatures in the Drones RF

Communication

3.1 Introduction

With the advent of inexpensive commercially available unmanned aerial vehicles (UAV),

drones are rapidly rising in popularity as a host of a wide class of applications ranging from

commercial delivery [116], environment monitoring [117], photography [118], policing [119], fire

fighting [120], just to name a few. However, with the rise in drone usage, there has also been a

rise in incidents involving drones, such as mid-air collisions, damage to property, and violations of

privacy.

In particular, drones are increasingly flying in sensitive airspace where their presence may

cause harm, such as near airports, forest fires, large crowded events, and even jails. For example,

Dubai airport, the third busiest airport in the world, reported that in 2016 it had to shut down

three times to avoid unauthorized drone activity [121]. In 2015, drones were used to smuggle

drugs and contraband into a Maryland prison [122]. A quadcopter crashed on the White House

lawn [123], raising concerns about the safety of buildings and political leaders. The presence of

drones has interfered with and grounded aircraft fighting forest fires [124]. Drone crashes have

also disrupted sporting events such as the US Open tennis tournament as well as a World Cup

skiing race [125, 126]. In fact, based on FAA data, more than 300 drone incidents were reported

in California alone between April 2014 and Jan 2016 [127], which is equivalent of 15 incidents per

month on average or 1 incident every two days.
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A variety of approaches have been explored to interdict drones. These include shooting nets

at the drones to tamper with their propeller to bring them down [128], using lasers to shoot down

drones [129], spoofing GPS to confuse a drone’s localization system [130], hijacking the software

of drones by hacking into them [131], using other drones to hunt down unauthorized drones [121],

and even training eagles to attack and disable drones [132].

However, these interdiction strategies typically presume that the presence of the drone has

already been detected. Recent work has sought to develop drone detection systems that leverage

either microphone, camera, or radar to sense the presence of drones [9, 11, 16]. Each approach has

its own limitations. Audio-based approaches can be confused by other sounds in noisy environments,

has limited range, and cannot detect drones that employ noise canceling techniques [133]. Camera-

based approaches require good lighting conditions, high quality lens, and camera with ultra-high

resolution for detecting drones at long distance. Thermal and IR imaging cameras for long distance

are prohibitively expensive and have limited coverage. Radio-frequency techniques based on active

radar introduce RF interference. Geofencing is useful to prevent drones from flying into fixed areas

known a priori as sensitive [127], but requires manufacturers to install such software and is less

useful to prohibit drones from flying around temporary event venues.

In this chapter, we consider an approach to detect the presence drone by passively eaves-

dropping on the RF communication between a drone and its controller (Wi-Fi standard). Such

communication mode often happens over standard unlicensed spectrum for which a low-cost COTS

hardware can be utilized for observation. Prior work utilizing passive RF to identify drones has

sought, for example, to detect the frequency of transmission, the MAC address of the drone, and

the frequency of packet communication [13, 14, 15]. All these techniques su↵er from various limita-

tions, as described in the related work section, and none seek to discern whether physical signatures

of the drone’s motion are manifested in the drone’s RF signal.

In this work, we investigate the fundamental aerodynamic and motion control mechanisms

of drones to identify two key inherent types of movement of the drone’s body, namely body shifting

caused by the spinning propellers and body vibration due to navigation and environmental impact
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corrections. We validate our hypothesis on the existence of such movements through empirical

studies and then conduct a theoretical analysis on the characteristics of such movements. We also

explore the feasibility of reconstructing such movement by using passive RF sensing. We then

propose Matthan, a system that incorporates a number of algorithms to detect the presence of

drone from both body vibration and shifting. It employs low cost software-defined radios (SDRs) to

eavesdrop on Wi-Fi channels used in drone-to-controller communication. We demonstrate that this

system can detect the physical signatures to uniquely identify an individual drone and e↵ectively

di↵erentiate it from other mobile wireless devices at distances of hundreds of meters. Matthan is

currently able to detect Wi-Fi embedded individual drones independently at any point in time. We

are investigating detection of drones that communicate at other RF frequencies to identify multiple

drones at the same time.

Our work makes the following contributions.

• We identify the relationship between the drone controller’s compensation reaction and its

body shifting

• We identify a second frequency component in the RF signal that we attribute to the drone’s

propellers

• We show that both of these on-board physical phenomena are manifested in the received

RF signal

• We devise an algorithm to detect drones from their RF-based signature based on both body

vibration and body shifting physical characteristics marked on the continuous data stream

between drones and their controllers

• We verify that this algorithm can detect drone signatures at Wi-Fi frequencies that are

uniquely di↵erentiated from other mobile Wi-Fi devices, such as cars and walking cellphone

users
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• We confirm that this algorithm can operate at distances of hundreds of meters using a

directional antenna with a 21 degree beamwidth

• We discover that this algorithm could be used to begin di↵erentiating the seven di↵erent

drones tested

In the following, we first describe in Section 3.2 the basics of drone flight and validate,

using sensors attached to the drone, that the drone vibrates at the propeller frequency and that

body shifting causes correlated disturbances in the RF signal. In Section 3.3, we develop a model

to explain the influence of both types of body motion on the RF signal, and present our drone

detection algorithm, which utilizes both frequency analysis to detect body vibration in the RF

signal and wavelet analysis to detect shifts in the drone during flight. We provide a performance

evaluation in Section 4.6 considering di↵erent types of evidence, then conduct an analysis over a

variety of drones, environments, and distances. We conclude the chapter with a discussion of the

current drawbacks of Matthan, related work, and a summary.

3.2 Fundamental Aerodynamics and Physical Signatures of Drones

Matthan relies on the unique physical signatures that persist across drones to detect and

di↵erentiate them from other moving objects. In this section, we start by providing the background

on aerodynamic principles that allows drones to move towards a desired direction or remain balanced

while flying. We then derive two unique physical signatures, namely body shifting and body vibration,

that are present on all drones that have propellers. We empirically prove the existence of such

signatures and then perform a formal analysis to show how such signature can be captured from

the radio signals that are emitted from the drones for communicating with their remote controller.

3.2.1 Drone Movement and Control Background

Drones or micro air vehicles (MAVs) can be made from a form of helicopter, an airplane, a

multirotors or even a balloon. In that, helicopter and multirotors are the most common drones due
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to simplicity of manufactoring. As its name indicated, a multirotor [134] has multiple rotors with a

much simpler flying control mechanism compared to that of a helicopter [135]. Instead of changing

its wing’s pitch and speed using a complex rotor as found in helicopters to maintain balance and

maneuver, a multirotor operates by simply changing its motors’ speed. Therefore, no complex

mechanical parts is required. Partly due to this simplicity, multirotor-based drones are much more

popular than their counterpart helicopters [136]. Since it has multiple similar rotors arranged

symmetrically, a multirotor can keep its balance more easily even when it carries additional load

(e.g. cameras, packages). The change in the center of mass can be tolerated by simply adjusting

the rotors’ speed. These advantages of multirotor become even more significant when it comes to

small-sized drones since integrating sophisticated controlling mechanics as in a helicopter requires

a large form factor, increasing cost and size of the drone’s footprint. Therefore, most of today’s

commercial drones are of the multirotor type and the same trend is predicted for the near future

[137]. As a result, we focus on this type of drone in this research.

⌅ Drone equilibrium conditions. The popular designs of multirotors include 4-, 6-,and 8-

rotors which are naturally termed quadcopter, hexacopter and octocopter respectively. The most

popular one is the quadrotor, which has four similar propellers arranged in either ”⇥” configuration

or ”+” configuration with equal distance from its the center of mass. The rotation direction of

each propellers depends on its relative position. Let the indexes of the propellers be numbered

sequentially from #1 to #4. If the propeller #1 rotates clockwise, for example, the ones #2 and

#4 will rotate counter-clockwise while #3 will rotate clockwise as illustrated in Figure 3.1. To

facilitate our analysis in the remaining sections of this paper, let !i with i = 1..n be the rotation

speed of each propeller. Without losing the generality, we only focus on analyzing quadrotors

(n = 4).

Let Fi with i = 1..4 be the forces generated by the propellers i and m be the mass of

the quadrotors. Since the quadrotor is symmetric, if L is the distance between the center of the

quadrotor and each propeller, the moment generated by each propeller is calculated by Mi = L⇤Fi.

In an ideal environment, in order to keep balance and remain in equilibrium state, the quadrotor
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must obey these four physical conditions:

(1)
P4

i=1 Fi = �mg (Equilibrium of forces),

(2)
P4

i=1 Fi||g (Equilibrium of directions),

(3)
P4

i=1Mi = 0 (Equilibrium of moments), and

(4) (!1 + !2)� (!3 + !4) = 0 (Equilibrium of rotation speeds).
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Figure 3.1: Earth and quadrotor reference systems. When a drone is moved from one place to
another, di↵erent propellers will operate di↵erently to move the make the drone move forward,
backward, turn left, and turn right. However, when the drone is at equilibrium state, the physical
conditions must be satisfied.

If one or more of those conditions are violated, the quadrotor will leave equilibrium state and

start making movement as depicted in Figure 3.1. Two reference systems are used to represent

the position and orientation of the quadrotor. The inertial reference system, i.e. the Earth frame

(denoted x, y, z-axes) provides the absolute linear position of the quadrotor; and the quadrotor

reference system, i.e. the Body frame (denoted xB, yB, zB-axes) gives the angular position with

three Euler angles. Roll angle (�), Pitch angle (✓) and Yaw angle ( ) determine the rotation of the

quadrotor around the x, y, z-axes respectively.

⌅ Drone maneuvering conditions. Any movement of a quadrotor can be created by a combina-

tion of four basic movements: roll rotation, pitch rotation, yaw rotation and altitude change. Each

of these movements is created by briefly violating the above equilibrium conditions by applying

proper angular speeds to each propeller, !1..4. For example, to create a roll rotation, !1..4 must be
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applied such that (!1 + !4) � (!2 + !3) 6= 0 . Similarly, to generate a pitch rotation, the drone

needs to change the angular speeds of di↵erent rotors such that (!1+!2)� (!3+!4) 6= 0. To move

the drone up and down, the rotation speeds should be changed to adjust the thrust force F so that

P4
n=1 Fi 6= �mg.

3.2.2 Body Shifting and Body Vibration as Drone’s Physical Signatures

Many di↵erent controllers have been introduced in the literature following aforementioned

principles, including PID [138, 139, 140, 141], back-stepping [142, 143], nonlinear H1 [144], LQR

[141], and nonlinear controllers with nested saturation[145, 146], to stabilize and maneuver drones.

Beside taking the desired direction as inputs, these controllers also need to take into account

the impacts of the unpredictable environments, such as wind, and the inaccuracy of its sensors

and actuators. Since these factors are nondeterministic and occur often, the controller needs to

frequently react to and compensate for them, causing undesirable physical movement of the drone.

In particular, the undesirable movements can be the result of the controller’s reaction to (a) an

environmental change, e.g., a gust of wind, a magnetic storm; (b) numerical errors inside control

loop of the drone itself, e.g. the imperfection of converting from speed of rotation to the exact

targeted pitch, roll, yaw angles [135, 147, 148]; and (c) by the vibration caused by propeller’s

movement [135]. We leverage these undesirable yet persistent movements as unique signatures of

drones, which can be used to di↵erentiate a drone from other moving objects. The movements of

interest fall into two main categories: the drone’s body shifting and the drone’s body vibration.

⌅ Drone body shifting. Body shifting occurs as a sequence of discrete events. Figure 3.2

illustrates the drone’s body movement caused by wind (a, b) as the result of a rebalancing e↵ort

from the drone’s controlling mechanism (c, d). Beside the drifting its body does due to the e↵ect of

environmental conditions, the drone body also usually changes its body orientation and direction

when it flies. The angular velocity of the rotor i, denoted !i, creates force Fi in the direction of

the rotor’s axis. The angular velocity and acceleration of the rotor also need to create torque ⌧Mi

around the rotor axis: Fi = k!2
i
, ⌧Mi = b!2

i
+ IM!⇤

i
in which !i is the rotation speed of rotor i, k
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Figure 3.2: Drone body shifting. An example illustrated the drone shifts its body due to the e↵ect
from an unexpected wind. The additional force �F are created by speeding up corresponding
propellers to balance the drone.

is the lift constant, b is the drag constant, the inertial movement of the rotor is IM . The impact

from !⇤
i
is usually small and thus it is omitted. When the wind creates an additional force that

changes the balance of the drone, the drag force now becomes ⌧Mi + �F1. To make the drone

return to a stable state, the propeller on the right side will speed up to create an additional force

�F2, (�F1 ⇡ �F2) against the force generated by the wind. When the drone is balanced, if the

additional force �F2 stays longer than expected, it creates a side e↵ect to the drone body that

makes the drone unbalanced again. Next, the controlling algorithm will changes the propeller speed

expecting the drone to go to the balanced state. This process will be repeated and take several

iterations until the drone gets to its equilibrium. We consider this behavior to be one signature of

a flying drone that can be used to distinguish it from other flying objects, e.g. birds. Because of

the waveform’s resemblance to a wavelet, this stimulated our interest in developing a wavelet-based

detector for drone body shifting, as explained later.

⌅ Drone body vibrations. The drone body is vibrated within a certain frequency range and

such vibrations are usually caused by the rotation of its propellers [135, 147]. In the literature,

several works have been conducted to analyze the vibration of helicopters caused by their propeller’s

rotation [149, 150, 151]. The resulting vibration is the vector sum of vertical, longitudinal, and
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lateral vibrations. More specifically, in forced vibration, the frequency of the vibration is close to the

frequency of the force or motion applied, and the magnitude of the vibration depends on the actual

mechanical system [152]. The steady-state solution of the forced vibration system with damping

subjected to a sinusoidal force F (t) = Fsin(2⇡ft) can be expressed as x(t) = Xsin(2⇡ft+�), where

x(t) is the vibration function, X is the amplitude of the vibration, f is the vibration frequency,

which is the same as the engine operating speed, and � is the phase.

Thus far, we have discussed two types of drone’s inherent body movements that happen

when the drone is flying. However, these types of movement are unexplored in the literature. To

validate our hypothesis, we conduct a set of experiment to validate the drone body shifting and

body vibration signatures. We also conduct a feasibility check to confirm whether an RF-based

technique can be used to detect the drone by observing its signatures.

3.2.3 Preliminary Validation of Drone Body Movements

This section presents a set of experiments to validate the signatures of the drone as mentioned

earlier. We conduct two main experiments to explore the body movement characteristics of the

drone using (1) inertial measurement units (IMUs) and (2) a wireless sensing hardware. In the first

experiment, we attach external IMUs, to the drone’s frame underneath each propeller to capture

the drone’s body movements. Secondly, we also attach firmly a 2.4 GHz wireless transmitting

antenna to the drone. The RF signal from the transmitter is captured by a wireless receiver placed

2 meters apart. The goal here is to validate whether the drone body movements are observable by

analyzing the received wireless samples. We present results here from experiments conducted for

the Parrot Bebop [153] in an indoor environment. Similar confirmation was obtained using the DJI

Phantom [154].

3.2.3.1 Validating Drone Body Movements using IMUs

We inspected behaviors of the drone including taking o↵, hovering, and flying. The drone is

augmented with 4 IMUs (MPU 9150 [155]) each of which is mounted beneath propeller. The data
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from these IMUs are gathered by an Arduino Pro Mini board [156] and then are sent to a computer

via Bluetooth Module HC-05 [157]. A camera was also used to record the start, the end, and the

movement of the drone during testing sessions. The objectives of the experiments are to answer

the following questions: (a) Does the drone vibrate and move its body when flying as predicted in

the previous analysis?, (b) What are the frequencies of such vibrations and movement patterns?,

(c) When there is no wind, will the drone body shifting still persist?

The spectrogram of the collected signal is shown in Figure 3.3. There are two dominant

frequencies that are observable from the data. The low frequency (less than 10Hz) components

happen at 10th(s), 20th(s), 32th(s), 40th(s), and 53th(s), which correspond to the drone’s body

shifting (confirmed from recorded videos). In addition, the second dominant frequency at 50th to

70th Hz represents the vibration frequency of the drone body caused by propellers. These results

answer the first two questions we mentioned earlier, that the drone constantly vibrates and create

iterative body shiftings when it flies. The observed data also shown that the body vibration and

body shifting can happen at the same time at some moments.
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Figure 3.3: Drone body shifting captured by IMU sensors. An example illustrates the movement
captured by IMUs attached to the Bebop drone.

To answer the third question, we setup a closed indoor experiment where wind is blocked

to a minimal level and the drone circles within a small room. Analyzing the captured IMU data

in both time and frequency domain gives us two conclusions: the drone body vibration is still

present from the IMU data even without wind; and the body shifting still happens during the time
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the drone tries to adjust its pitch and yaw angles to fly in a circular shape. Such drone body

movements happen when the drone tries to change its pitch, roll, and yaw angles. In summary,

we empirically confirmed that the drone body is shifted even in a windless environment, and the

drone body continuously vibrates when it flies. In the next subsection, we will conduct another

experiment to validate whether those movements can be captured using RF signals.

3.2.3.2 Feasibility Check: Capturing Drone Body Movements using RF Signals

We conduct the second set of experiments to check the feasibility of capturing the drone

movements using RF signals. A wireless transmission antenna is attached to the drone. A wireless

receiving antenna is placed at a fixed location to capture the signal sent from the transmitter (which

is attached to the drone as illustrated in Figure 3.4). We used USRP B200 mini software-defined

radios (SDR) [158] to control the transmitter and receiver antennas. The antennas are connected

to USRP SDRs through cables of 6m length. The transmitter antenna emits a single tone wireless

signal at 2.4 GHz when the drone is flying. The key idea is to capture the change in RSSI and

phase of the transmitted single tone signal to infer the drone body movements. In addition, we

also attached the IMUs to the drone and collect the data as the ground truth. The objectives of

this experiment are to answer the following questions: Do received wireless samples correspond to

the movements of the drone (a) for body shifting? and (b) for body vibration?

The results showed that it is possible to capture body shifting and body vibration in the RF

domain. First, in Figure 3.5, we plot the raw data obtained from accelerometer data and the phase

of the received RF signal. Note that the SDR listens to a WiFi band and demodulates the signal

to baseband, after which we compute the FFT. The body shifting peaks corresponding to turning

are clearly identifiable and correlated on both accelerometer and RF data.

We conducted experiments to see whether the measured vibration frequency of the IMU

matches what we see in the frequency domain of the RF signal. We confirmed that the peak

frequency detected in the frequency domain repeatedly matches what we observed via the IMUs.

Figure 3.6 illustrates the frequency distribution of RF signal captured with peaks around the 60
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Figure 3.4: The setup for the indoor environment. A transmitting antenna is placed on the drone
that continuously transmits wireless signal towards the detection station. A receiving antenna
placed on the detection station captures the transmitted signals from transmitting antenna. The
transceivers are implemented using USRP B200.
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Figure 3.5: Signals captured by the IMU and from RF. Whenever the drone is turnning, there are
events captured on both IMU and RF data.

Hz mark, which is similar to the peak on the IMU measurements.

3.3 Matthan Drone Presence Detection

We design Matthan, a system that detects the above-mentioned body movements, namely

body shifting and body vibration, by passively listening on the radio channels that the drone is

using to communicate with its remote controller. A number of algorithms are introduced to capture
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Figure 3.6: The frequency distribution of the signal from IMU (left) and RF (right). The vibration
frequency is appeared on both IMU and RF data.

such miniature physical signatures and to identify if it is coming from a drone. In the following

subsection, we first formally define our problem and identify challenges in realizing such a system.

We then present the body vibration detection method and body shifting detection method before

describing a fusion algorithm that combines the two types of movements into a single classifier.

3.3.1 Problem Formulation

To detect the presence of drones, Matthan listens to the channel that is used by the drones

to communicate with its remote controller. Let the signal broadcast by the drone to its remote

control be t̃(t) at time t. The signal Matthan received by listening is r̃(t). Since the movements of

interest are at frequencies that are a few orders of magnitude lower than the carrier frequency or

the data rate, r̃(t) can be filtered to obtain only the low frequency components. Let r̃f (t) be the

filtered signal. We then have:

r̃f (t) = q(t) + ⌘(t) (3.1)

where q(t) is the signal that contains the drone body shifting and body vibration, and ⌘(t), which is

the environment noise. After removing the DC components, ⌘(t) becomes a signal with zero-mean

and some variance. Previous experiments show that the drone body vibration happens continuously
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over a specific range of frequencies when the drone is flying. In addition, we also found that the

drone body shifting has a form that is close to a wavelet  (t) due to the characteristic of its

rebalancing and control loop mechanisms. Hence, the drone signal q(t) can be written as:

q(t) =  (t) +Xsin(2⇡ft+ �) (3.2)

where  (t) is the function represents the drone body shifting.  (t) is the function containing

di↵erent dominant single tone cosine signals that have amplitude Â( ), frequency f̂( ), and phase

�̂( ). And X,�, and f are the amplitude, phase, and frequency of the drone body vibration. In

summary, the key objectives of Matthan are to identify the drone body shifting (Â( ), f̂( ), �̂( ))

and the drone body vibration (X,�, f).

[⌅] Challenges. However, accurate and robust drone detection based on RF signals is hard due

to the following challenges:

1) Movements-RF translation. The drone body shifting and movement information are buried

in the wireless signal. This limits the maximum detection range that can be obtained from the

system at di↵erent environment.

2) The body shifting can happen at di↵erent scales. Di↵erent drones creates di↵erent types

of body shifting according to their controlling mechanism and accuracy as well as their physical

characteristics (weight, structures, and etc.). The signal can be detected at di↵erent magnitudes

as well as frequencies. However, the shape of the body shifting signal stays relatively constant. We

propose a wavelet based technique that is resilient to the scale and magnitude of the physical body

shift.

3) Interference from static APs. The drone may communicate at the same frequency channel

with the wireless APs in the environment. The detection algorithm should be able to distinguish

between the signals from the static APs and the signal from the drone. The solution for the next

challenge is used to solve this problem.

4) Interference from mobile APs. A mobile AP carried by a human walking or an embedded

AP on a moving vehicle, e.g. bus, could create similar wireless signals as the drone, which could
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a↵ect the detection results (assuming the AP operates at the same frequency with the drone’s

communication channel). We propose a technique that di↵erentiates the drone from other static

or mobile APs based on identifying the body vibration of the drone using RF.

5) Environment noise. The noisy and heterogeneous environment makes the problem much

more challenging. We introduce an evidence-based classifier to make the detection more robust.

The drone presence is detected based on the availability of multiple lines of evidence that uniquely

identify the physical characteristics of the drone (i.e., body shifting and body vibration).

6) Variety of drones. Drones vary in terms of having di↵erent numbers of propellors, weights,

sizes, speeds, and communication mechanisms. We present a confusion matrix showing that

Matthan’s detection approach is promising in terms of discriminating among the specific set of

drones that we tested.

3.3.2 Drone Detection Algorithm

In this section, we present Matthan’s detection algorithms. Since the drone body shifting

happens at di↵erent scales and environments, it can be detected at di↵erent magnitudes as well as

frequencies. However, the shape of the signal stays relatively constant. We propose a wavelet-based

technique that is resilient to the scale and magnitude of the physical body shift. In addition, we

design a Fourier analysis to detect the drone body vibration. We then design an evidence-based

algorithm taking the input from wavelet and Fourier analysis to make the final decision.

3.3.2.1 Drone Body Shifting Detection

We use wavelet analysis to detect the drone body shifting. A wavelet is a wave-like oscillation

with an amplitude that begins at zero, increases, and then decreases back to zero. Wavelets are

especially good at capturing brief oscillations. From the results of our experiment (Sec. 3.2.2),

the behavior of the drone body shifting is similar to the form of a wavelet. This characteristic

will result in high coe�cients when multiplying the wireless signal r̃(t) with scaled versions of the

mother wavelet.
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The wavelet, denoted by w(t), maintains local information in both the time and frequency

domains. It is defined as a waveform that satisfies the following condition:
R +1
�1 w(t)dt = 0. The

Wavelet Transform [159] uses as the wavelet that satisfies the condition of dynamic scaling and

shifting function, ws,p,

ws,p(t) =
1p
s
w

✓
t� p

s

◆
(3.3)

where ws,p(t) are the integrated and integral transformation signal, s is the scale and p is the

shift parameter, which can also be the central location of the wavelet in the time domain. The

wavelet can be stretched and translated with flexible windows by adjusting s and p, respectively.

The wavelet transform of the wireless received samples r̃(t) using transform coe�cient W (s, p) is

calculated as following:

W (s, p) =

Z +1

�1
r̃f (t)ws,p(t)dt

=
1p
s

Z +1

�1
r̃f (t)ws,p

� t� p

s

�
dt

(3.4)

where ws,p(t) represents the complex conjugate of ws,p(t). The result of the wavelet transform

gives us a correlation function of the template signal at di↵erent scales (frequency bands) in both

the time and frequency domains. As in Equation 3.4, the correlation function W (s, p)(t) has two

main features as follows. (1) The time resolution is high with high frequencies while the frequency

resolution is high with low frequency signals. When multiplying the high frequency component

of the signal with the high frequency of the wavelet, the correlation result will indicate the exact

location where it happens. This can be used to identify the very first body shifting event created

by the drone. (2) As the wavelet has local existence in both time and frequency domain, the point

of discontinuity in the signal can be detected with high sensitivity. As the discontinuity (generated

by body shifting) is considered as an event and happens quickly in time, the result of correlation

with high frequency wavelet will be readily captured.

Let Wm(s, p), Wvi(s, p), and W⌘(s, p) be the wavelet transform coe�cients of the signal

caused by the drone body shifting, drone body vibration, and the noise, respectively. The wavelet
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transform coe�cient of the sum of the signals is calculated as follows:

Wm+vi+⌘(s, p) = Wm(s, p) +Wvi(s, p) +W⌘(s, p) (3.5)

Because of the linearity property, the coe�cients of the wavelet transform enable us to pre-

cisely identify the body shifting event in the time domain when there is a signal discontinuity. As

the drone body vibration and the noise are quite constant over time, these behaviors decay quickly

after di↵erent levels of scaling, leaving the body shifting component. The wavelet transform coef-

ficients then give us two valuable pieces of information for event detection: the location and the

duration of each body shifting event. Figure 3.7 (top) depicts the results of the wavelet transform

at 64 scales of the received wireless samples where the drone body shifting events are correctly

identified.
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Figure 3.7: Wavelet analysis result of body shifting detection. When the drone body is shifted, the
events can be captured using continuous wavelet analysis.

To identify exact time and frequency of the drone body shifting, Matthan decomposes the

signal into a sequence of sub-frequency bands and approximates the energy of each frequency band.
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Energy of each sub-frequency is calculated as following:

⇠i =

Z
|fi(t)|2dt =

nX

k=1

|fi(k)|2 (3.6)

where fi(t) is the signal of i frequency band, fi(k) is its discrete value. The system compares the

energy of each frequency band, then reconstructs the coe�cient of special sub frequencies that have

enough energy and contain the frequency of drone body shifting.

The center of the signal can be calculated according to the definition of the gravitational

center in mechanics, namely the center of the body shifting event in time is given as:

tcenter =

R
t|f(t)|2dtR
|f(t)|2dt

(3.7)

Then, the width of the window function of the STFT can be calculated from the central point to

the point where the coe�cient value Ws,p drops down to the noise band. Hence, the above results

gives us the time center and the width of the function. We then can perform STFT to analyze

the frequency of the drone body movement. The peak of the frequency distribution resulting from

STFT identifies the frequency of drone body shifting  (t).

3.3.2.2 Drone Body Vibration Detection

As seen earlier in Figure 3.3, the drone’s vibration creates a periodic signal that is well-

reflected in the FFT-based spectrogram. Conversely, a wavelet transform that is better-suited for

capturing transitory phenomena such as a body shifting event is not well-suited for drone vibration

detection. Consequently, we employ a frequency domain approach to identifying the presence of

the drone’s vibration signal. Recall that the wireless signal component that is a↵ected by the drone

body vibration has the form of Xsin(2⇡ft+�). From the received wireless sample r̃(t), an e�cient

approximation of the drone’s vibration frequency is to identify the dominant frequency component

that has maximum power spectrum density (PSD) through the STFT. Then, the approximation of

the drone’s vibration frequency fv is as follows:

fv = max
[fmin!fmax]

✓��
NX

k=1

r̃f (t)e
�j2⇡ftk

��2
◆

(3.8)
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where N is the number samples. After f is estimated, it can be used to estimate the amplitudes

and phases of di↵erent frequency channels using the following:

X =
2

N
|

NX

k=1

r̃f (t)e
�j2⇡ftk| (3.9)

� = actan
�
P

N

k=1 r̃f (t)sin(2⇡ftk)P
N

k=1 r̃f (t)cos(2⇡ftk)
(3.10)

In this way, the system obtains the desired quantities [X,�, f ].

3.3.2.3 Evidence-Based Drone Detection Algorithm

We design an algorithm to determine if a drone is present by first gathering evidence from

multiple sources that relate to drone body shifting and vibration, then combine these sources of

evidence to form a binary classifier. The overview structure of Matthan is illustrated in Figure 3.8.
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Figure 3.8: The overview architecture of Matthan. Wi-Fi samples captured from the drone is pre-
processed and analyzed using Fourier Transform and Wavelet Transform. The Transformed signals
are then put into an evidence collection to confirm the presence of the drone. The drone is detected
when all the evidences are confirmed.

⌅ Evidence #1: Moving Object. The first evidence to collect is the presence of a moving

object using RF signals. This of course is not a unique indication of a drone but of any

moving object such as a human walking while carrying a phone or a phone inside a car.

Matthan calculates the standard deviation of the received wireless signal and compares it

with the standard deviation of the environment at the time of initialization. The standar
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deviation of the signal without moving objects, denoted by �0 is an environment indepen-

dent quantity [160] and it represents the received signal changes caused by electronic noise.

Received signals are dominated by quantization errors and electronic noise. Therefore, the

signal follows a Gaussian distribution with zero-mean after DC removal [160]. On the other

hand, when the drone or other moving object is in the environment, the received signals

are expected to follow the distribution of multipath fading because it dominates the other

noise sources. A log-normal, Ricean, or Rayleigh distribution is expected to represent the

distribution of the collected data with such multipath a↵ects. As a result, the comparison

between the standard deviation of the signal at test and �0 can be done to confirm this

evidence.

⌅ Evidence #2: Drone Body Shifting. As mentioned in Section 3.3.2.1, the drone body

shifting event serves as one of the main indications of drone presence detection. Since the

shifting follows a certain pattern in space, it can be amplified and detected using wavelet

transformation. We use Mexican hat wavelet [161] as the template of comparison because

this wavelet has a similar waveform to the drone’s body shifting event shown before. It is

important to note that the speed (i.e how fast it shifts) and amplitude (i.e. how much it

moves) of the shifting might vary from one movement to another. Therefore, our evidence

confirmation method must be designed to detect a specific range of speeds (i.e. frequency)

and amplitudes (i.e. wavelet scale). We propose a two-step process for confirming the body

shifting by looking at the signal from both frequency and wavelet domains. In particular,

we (1) acquire the frequency of the body shifting as shown in Section 3.3.2.1. We then

(2) compare the waveform of the shifting with the template by calculating the coe�cient

between the two using the Dynamic Time Wrapping technique [162, 163]. The evidence

is confirmed when the frequency is less than 5Hz and the coe�cient is under a preset

threshold. This threshold is determined by the practical possible range of body shifting

amplitude.
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⌅ Evidence #3: Coe�cient Invariance: This evidence is to confirm that the body shift-

ing is a discrete event that is similar to the template. The intuition for this evidence stems

from the fact that body shifting movements are unexpected and non-uniform events trig-

gered by various environmental and electronic artifacts. As a result, two or more consecutive

body shifting motions are not expected to be similar. As one of the wavelet transformation

properties, coe�cient invariance can be used to confirm if a template is present on a trunk

of signal once and only once. In particular, the coe�cients are retained and even enhanced

as the transformation scale increases [164] for each body shifting event. Hence, if the signal

is of the template form and non-repetitive for 4 consecutive body shifting cycles, the body

shifting event is confirmed. In short, the coe�cient invariance evidence is confirmed if the

coe�cient magnitude monotonically increases across multiple body shifting events detected

by evidence #2 as the transformation scale increases.

⌅ Evidence #4: Temporal Consistency: While the previous evidence (#3) can capture

the discontinuity and repetitive of an event, it could also introduce false positive by counting

short and discrete surges of signals caused by noises in the environment. This evidence

is introduced to address this very issue. The key idea is to observe the spread of the

signal at di↵erent sampling rates. As the sampling rate reduces, the coe�cient of the noise

(discrete surges) decays because the wireless samples that represent the surges are reduced

or disappear. Let t1 be the spread of the signal at sampling rate fs1, t2 be the spread of

the signal at sampling rate fs2, f1 > f2. t1 and t2 can be approximated from the spread

of the wavelet coe�cient that is over the threshold. Wavelet decomposition [165] is used

to collect this evidence. If t1 and t2 at two consecutive levels of decomposition are close to

each other, the evidence is confirmed.

⌅ Evidence #5: Event Singularity: As the fluctuation of the drone is in the wavelet

pattern, the direction of fluctuation is very unique. The direction of the body shifting can be

obtained by the sign of extremum of the wavelet coe�cients. The direction must be changed
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between two consecutive extrema at the same frequency with that of the body shifting at

di↵erent levels of decomposition. To confirm the fluctuation is from the drone body, the

sign of the extremum coe�cient needs to alternate while the magnitudes of coe�cients

remain similar. While evidence #2 shows the similarity of the signal representing body

shifting and the template, evidences #3 and #4 make sure there is no false positive due

to the noises in the RF domain, evidence #5 confirms that the change of body shifting

behavior should cross-interleave the balance state.

⌅ Evidence #6: Drone Body Vibration: As shown in subsection 3.3.2.2, the drone body

vibration is observable through a short-time Fourier analysis. The evidence is obtained

when maximum power distribution of the peak frequency belongs to the range of drone’s

body vibration. This evidence is used to identify the drone versus other interference sources

such as mobile AP carrying by a walking user or the embedded AP on a moving vehicle.

The di↵erent forms of evidence are collected at each time window. The decision is made based

on the number of forms of evidence that are confirmed on each window. We sort the evidence based

on their uniqueness as the signature for drones. All the evidence is combined linearly for the final

decision of detection. That is, Matthan concludes a drone is present only when all the forms of

evidence are confirmed. In Section 4.6, we show the contribution of each form of evidence to the

accuracy of Matthan.

3.4 Performance Evaluation

3.4.1 Experimental Setup

We implement Matthan using the SDR USRP B200 mini [158]. The USRP board is sampled

at 100kHz to collect wireless samples from the drone’s communication channel. The USRP board

is configured as a receiver connecting to a 2.4GHz 20dBi gain directional antenna [166]. The

wireless samples collected from USRP are sent to a laptop for data processing and filtering. The

Wi-Fi channel of the drone’s communication is identified by Wi-Fi Analyzer [167]. This application
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provides the channel ID and frequency for listening to the drone’s communication. The collected

data are stored in binary files and further processed using MATLAB.

We conducted experiments in three di↵erent environments including a parking lot in the

downtown of a city (urban), a soccer field inside our university (campus), and an open field (sub-

urban) as depicted in Figure 3.9. In each environment, the data are collected when the drone is

flying at di↵erent distances with respect to our receiver. We collect data at the maximum distance

of 100m, 200m, and 600m in urban, campus, and sub-urban environments, respectively. The drone

is controlled to take o↵ and hover within the coverage area of the antenna receiver’s beam during

all experiments.

Figure 3.9: Testing locations: (a) Urban (Parking area), (b) University campus, and (c) Sub-urban

The experiment was conducted on 7 di↵erent drones of di↵erent models and manufactur-

ers as shown in Figure 3.10, including the Parrot Bebop [153], Protocol Dronium One Special

Edition [168], Sky Viper [169], Swift Stream [170], Parrot AR DRone [171], Protocol Galileo

Stealth [172], and DJI Phantom [154]. The Bebop, Dronium, Skype Viper, ARDrone, and DJI
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Phantom send Wi-Fi signals from the Wi-Fi card mounted on their body for either controlling the

channel or streaming video. Protocol Galileo Stealth and Swift Stream emit Wi-Fi signals from the

plug-n-play cameras came with the drones.

Parrot 
Bebop 

Parrot 
ARDrone

Protocol 
Glileo Stealth

DJI 
Phantom

Swift 
Stream 

Sky ViperProtocol Dronium

Figure 3.10: Drones used during experiments. There are 7 di↵erent types of drone used during the
experiment. Bebop and ARDrone are from Parrot, Glileo Stealth and Dronium are from Protocol,
and other drones are from di↵erent companies.

To test whether the drone’s RF signal could be di↵erentiated from those of other mobile

wireless devices, we also evaluated two other scenarios when a mobile AP was carried inside a

moving vehicle or by a walking person. First, the user configures a mobile device to create a Hotspot

(mobile AP) to emit Wi-Fi signals. We use another mobile phone (client phone) to connect to the

mobile AP. The client phone streams Youtube video continuously. We asked the user to carry both

client and the mobile AP to walk around at a distance of 50m away from the wireless system.

Secondly, the client and mobile AP are placed inside a car which moves around in the coverage

area of the wireless system at a distance of 50m to 100m away. The vehicle is moving at 20 mph

(32 km/h) speed. In both scenarios, the mobile AP and client are always within the coverage area

of the system.

We then segmented the collected data into two main types: drone and no drone. Each segment

has a length of 10 seconds. The “drone” data contains the wireless segments that correspond to the
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moment where the drone is flying in the environment. Similarly, the “no drone” data contains the

wireless segments that correspond to the moment at which there is no drone in the environment

(the drone is completely turned o↵). More specifically, the “no drone” data contains types of data

including “environment noises”, “human carrying mobile AP”, and “mobile AP augmented inside

a car”.

3.4.2 Evaluation Results

In this section, we evaluate the performance of Matthan at di↵erent distances (from 10m

to 600m), with 7 di↵erent types of drones, and at di↵erent environmental setups (urban, campus,

sub-urban). We use accuracy, precision and recall as the performance metrics for evaluation.

The accuracy, precision, and recall are calculated from True Positive (TP ), True Negative (TN),

False Positive (FP ), and False Negative (FN). The calculations are given as follows: accuracy =

TP+TN

TP+FP+FN+TN
, precision = TP

TP+FP
, and recall = TP

TP+FN
.

3.4.2.1 Detection Performance vs. Number of Evidences

As stated in Section 3.3, Matthan makes detection decision by collecting evidences that are

resulted from its analysis of the collected wireless samples.

We run the evaluation on the segmented data set of 600 segments of 10 seconds data (300

segments of drone’s presence and 300 other segments from the environment, human walker carrying

mobile AP, and mobile AP inside a moving car). This data is collected when the Bebop is at 50m

distance from the Matthan system. The performance of detection is shown in Figure 3.11 in which

the evidence IDs are corresponding to the IDs presented in Section 3.3. As can be seen, the accuracy

of the system is as low as 83.7% when the system uses only the first form of evidence to detect

the drone. More importantly, the system obtained a precision of detection around 78.9%. Such

performance is not really usable for reliable detection. So, the first evidence only helps to detect

the drone in an environment where the system receives minimal interference from other Wi-Fi

sources. However, based on this evidence, Matthan cannot detect the drone within environments



68

Figure 3.11: Detection accuracy with increasing forms of evidence. The accuracy improves when
increasing the number of evidences. In particular, when the last signature is added (body vibration),
the accuracy significantly increases from 89.5% to 93%.

that contain a large amount of interference. When more evidences are combined, the performance

increases significantly. More specifically, we can observe how the false positive rate diminishes

and precision correspondingly rises as more evidences are integrated. Initially, the precision of the

system is as low as 78.9% with only one part of evidence and increases successively to 86.7% once the

first five forms of evidence are considered. Matthan does not recognize all of the wireless samples

representing a human carrying an AP or a mobile AP inside a car as drone data because the standard

deviations of the wireless samples in these cases are sometime smaller than the detection threshold.

From our observations, the standard deviations of the signal in these scenarios are only incorrectly

identified as the signal from the drone only when the user goes toward or backward Matthan (with

distance less than 5m). Finally, when the vibration detection is considered (evidence #6), the

overall precision rises to 92.2% (corresponding with 93.9% of accuracy and 95.6% for recall). This

result is obtained due to the fact that the last evidence is well-represented for the uniqueness of

drone’s body vibration in the environment.
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3.4.2.2 Impact of distance

We also analyze the impact of the distance between the detection system and the drone on

Matthan’s performance. The evaluation is conducted for both short and long distances. At short

distances, we analyze the performance of the system when the drone is from 10m to 100m away.

Bebop data from the urban environment experiment is presented for this analysis. At each location,

600 segments of data are analyzed (300 segments of drone’s presence). All 6 forms of evidence are

used to calculate the results of detection. The results are shown in Figure 3.12. The system obtained

up to 96.5% of accuracy, 95.9% of precision and 97% of recall when the drone is 10m away from

the detection system. When the distance increases, the performance of the detection falls to 89.4%

of accuracy, 86.7% of precision and 93% of recall at 100m. Note that with audio-based detection

techniques, the most recent report shows that the drones are correctly detected with distance less

than 30m, and this technique completely fails with distance more than 50m [173]. Similarly, video

techniques can be performed for detection at distances less than 50m with large drones [174, 175].

Figure 3.12: Detection accuracy at di↵erent distances. The accuracy is reduced when the distance
is increased. In particular, the performance is dropped noticeable when the distance is greater than
70m

The Matthan’s performance is further evaluated when the distance between the drone and
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Matthan is from 200m to 600m. We used a sub-urban data set for this evaluation. We used

200 segments (100 segments with drones’ presence) at each distance to evaluate the system. Fig-

ure 3.13 shows the performance of Matthan at these longer distances. The system obtained 84.9%

of accuracy, 81.5% of precision, and 90.3% of recall at 600m distance. We were limited to 600m

due to the space constraints of the testing location, but hope to find another venue with greater

range.

Figure 3.13: Detection accuracy at long distances. Matthan is able to detect the drone presence
with distance up to 600m. We stopped the experiment at 600 m due to the limited space of the
testing area.

3.4.2.3 Impact of environmental setup

We also evaluate the impact of the environment noise to Matthan’s performance. We use

the 50m data set from the Bebop drone at three locations (urban, campus, and sub-urban) for this

evaluation. The impact of mobile APs is also taken into account. One half of the data set are

from the drone, another half includes the data from the environmental noises and human carrying

a mobile AP. The data from mobile APs inside the campus environment is not available because we

cannot drive a car inside the campus. The results of drone detection are shown in Figure 3.14. We

use 600 segments of data and 300 segments from the drone’s presence. The system obtained the best
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Figure 3.14: Detection accuracy in di↵erent environments. Matthan is validated at three main
environment, the system obtains great performance in all of these scenarios.

performance in the sub-urban environment as this area has little e↵ect from environmental noise as

well as multi-path reflection. The system can achieve up to 96.7% of accuracy, 95.9% and 97.3% of

precision and recall, respectively. The campus environment has a number of wireless access points

operating over di↵erent Wi-Fi channels, and hence it is found that the drone communication channel

usually interferes with other static APs in the campus environment. At the time of the experiment,

there were 16 Wi-Fi APs in the same vicinity using Wi-Fi Analyzer app [167]. Therefore, the

system creates more false alarms (false positive) in the campus environment compared with urban

and sub-urban environments. However, Matthan still performs 92% of accuracy, 88.7% of precision

and 96.3% of recall in the most interfering environment (campus).

3.4.2.4 Impact of time budget

Detecting the drone is also challenging due to the limited time budget within which the drone

flies across the detection system. We are interested in analyzing the detection accuracy of Matthan

with di↵erent time budgets for detection. The key motivation is to understand the performance

when the drone stays longer inside the coverage area. We use the data set from the Bebop drone at

50m distance in an urban environment for this evaluation. We use 600 segments of data with 300
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segments from the drone’s presence. We increase the duration of each measurement (segment) from

10s to 60s, and a decision is made for each segment. Figure 3.15 shows the performance obtained

for di↵erent time budgets. Matthan obtains up to 95.5% of accuracy with 60s budget of detection.

The accuracy and recall increase as we give more time for Matthan to make a decision, unlike the

precision.

Figure 3.15: Detection accuracy with di↵erent decision times. Matthan detection algorithm obtains
good performance with the more than 10 seconds of data samples with minimum accuracy of 93.9%.

3.4.2.5 Performance across di↵erent drones

We evaluate the performance of Matthan for di↵erent types of drones including Parrot Be-

bop [153], Protocol Dronium One Special Edition [168], Sky Viper [169], Swift Stream [170], Parrot

AR DRone [171], Protocol Galileo Stealth [172], and DJI Phantom [154]. Galileo Stealth and Swift

Stream and some small drones in the market are usually configured at a specific frequency that

does not belong to any Wi-Fi’s channel. These drones are very light-weight and cannot carry much

weight. They usually utilize a Wi-Fi camera for video streaming and navigation. As the camera

is attached to the drone, the wireless signal emitted by the Wi-Fi camera would be very similar

to the controlling signal from the drones if there is no shock absorbing mechanism is in-place for
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the camera. We found that it is the case in the drone of our procession in this experiment. Fig-

ure 3.16 shows the accuracy of detecting di↵erent drones using Matthan. Matthan performs with

the highest detection results for heavy drones such as Bebop, DJI, Galileo Stealth, and ARDrone.

We found that those four drones generate similar signatures in body shifting as well as vibration

frequency range. The Dronium and Swift Stream drones are more light-weight. We observed that

there was less vibration generated in the light-weight drones than the heavier ones, which explains

the improved results for the heavier drones.

Figure 3.16: Performance across di↵erent drones. Matthan is evaluated using 7 di↵erent types of
all. The results are compared when the distance from the drones to Matthan antenna is 50m.

3.4.2.6 Drone classification

It is also important to identify which drone is flying in the coverage area after detecting

its presence. Though it is not the focus of this work, we want to explore if it is even possible

with Matthan. We conducted a classifier based on the physical characteristics of the drones to

detect them. The key idea is to identify the frequency of vibration of each drone to detect/classify

it. Drones are often uniquely designed in weight, structure, materials, propellers’ size and so on.
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. Those characteristics a↵ect the forces generated by the propellers and therefore also a↵ect the

vibration frequency of the drones. We employed a similar experimental setup as in section 3.2.3.1.

We attached the IMUs to di↵erent drones to collect the motion data. The motion data is then

analyzed to determine the central and the dominant frequencies of vibration. According to this

central frequency, we approximate the vibration frequency windows as following: Bebop drone (60

Hz), DJI (100 Hz), Galieo (140 Hz), Dronium (35 Hz), SKy Viper (50 Hz), Swift Stream (20 Hz),

and AR Drone (70 Hz).
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Figure 3.17: Drone classification. Confusion matrix from drone classification based on FFT analysis.
Matthan is also able to classify 7 di↵erent type of drones based on the central frequencies of their
vibrations. However, the current accuracy is limited, we reserve the improvement of this method
for future work.

3.5 Discussion

Our system has focused on detecting the presence of drones through their unique inherent

physical movement signatures on WiFi domain. We wish to expand our experiments to consider

a wider variety of drones and greater distances. Our system should be expanded to incorporate
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automated channel sensing [176, 177, 178, 179], as the current experiments fix the eavesdropping

to a specific communication channel. Such an approach should improve our ability to detect diverse

drones that operate with di↵erent protocols over the same unlicensed Wi-Fi frequency bands, or

that communicate on non-Wi-Fi frequency bands. Our system should also be enhanced to integrate

automated antenna steering/ beamforming, as our current experiments fix the direction of the

antenna. Note that the directional antenna is only used for improving the gain of detection at

a certain direction, omi-directional antenna can also be used to detect the presence of the drone.

Localizing the position of the drones is the next logical step, but this consideration is outside the

scope of the current research scope.

We would like to conduct experiments that test non-line-of-sight RF detection in the presence

of occlusions such as buildings. We intend to pursue further the extent to which Matthan can

distinguish between individual drones as well as di↵erent types of drones. We also desire to conduct

a more detailed examination of fusion algorithms such as boosting and bagging for combining

multiple weak detectors into a stronger fused detector. In addition, we wish to detect other aspects

of the drone beyond merely its presence, such as its location, speed and direction. Also in the

future we hope to address the fact that our system is not currently capable of detecting multiple

drones in the same vicinity at the same time. Moreover, we would like to evaluate the impact

of the environment, e.g. windy condition, to the accuracy of detection. Finally, while reactive

control [148] is considered as one solutions to reduce a number of body-shifting events, Matthan’s

algorithm can be slightly modified to update the weight of each evidence to focus more on the

impact of the drone’s body vibration in detection.

3.6 Conclusion

This chapter introduced Matthan, a system for detecting the presence of drones by identifying

unique signatures of a drone’s body vibration and body shifting in the Wi-Fi signal transmitted by

a drone. The joint detector integrates evidence from both a frequency-based detector that looks for

the maximum frequency peak to be in the range of 50-220 Hz to indicate drone body vibration as
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well as a wavelet-based detector that captures the sudden shifts of the drone’s body by computing

wavelets at di↵erent scales from the temporal RF signal. Matthan was prototyped and evaluated

using SDR radios in three di↵erent real-world environments. When given a mix of data containing

both drone and non-drone cases (Wi-Fi-equipped car, walking user with a smartphone on, and no

drone scenarios), we showed that Matthan is capable of di↵erentiating drone signals from other

mobile wireless devices by achieving high accuracy, precision and recall, all above 90 percent at

50 meters. We also showed how Matthan’s accuracy, precision and recall varies with distance,

dropping to 90 percent accuracy and 80-85 percent precision and recall at a distance of 600 meters.

Matthan’s performance was studied across seven di↵erent drones, where the performance varied

only moderately, and was tested across three di↵erent environments, again varying only moderately

in performance. We also present how Matthan’s performance improves as it is allowed more time

to accumulate data. Finally, a confusion matrix illustrates Matthan’s potential to identify specific

drones from among seven di↵erent drones.

3.7 Looking forward

We found that that drone privacy and security research could include two main stages of

development, i.e. single and multiple drone detection and characterization. While Matthan has

contributed to the first milestone on detecting the presence of single drone, the challenges in de-

tecting and characterizing multiple drones at the same time remains unsolved. In particular, these

challenges focus on how to characterize the drone more precisely as well as how to detect multiple

drones at the same time. First, given the high speed of drone movement, characterizing a drone

at a greater details such as cargo load, number of propellers, manufacturers features, and etc. is

di�cult. In addition, when multiple drones appear in a monitored airspace, this challenge becomes

even more challenging. A network of wireless sensing stations are needed to overcome these issues.

Second, we are also investigate on how to realize single or multiple drones localization and track-

ing. Such system requires a novel solution in coordinating multiple sensing stations to accurately

identify the location of the drone and continuously track them in real-time. At last, we also need to
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find a solution to synchronize all the sensing station in the network. The drone physical signature

must be exchanged across the nodes in the drone-defense network to gather su�cient for detection

and characterization. A proper wireless network protocol must be designed to collaborate and

coordinate multiple wireless sensing stations to detect, analyze, and track the drones when they

fly at high speed. In addition, a novel network synchronization technique is required to overcome

MHz-level operation of state-of-the-art software-defined-radio platform for gathering the data at

multiple wireless sensing stations properly.



Chapter 4

Exploring a Novel Way for Indoor Localization Using GPS Signals

4.1 Introduction

Until now, GPS-enabled devices cannot accurately localize their locations when they are

indoor since GPS signal becomes very weak and even unavailable. Therefore, critical safety appli-

cation such as localizing 911 caller still has to rely on localization services which have poor accuracy

such as E911 [180]; E911 currently provides the service with 50m of accuracy using existing LTE-

based positioning technique [181, 182, 183]. As another critical application, tracking fire-fighters

during rescuing operations often fails due to the complex structure of buildings [184, 185].

Figure 4.1: The proposed system receives live GPS signal from outdoor and re-radiate it to indoor.
When GPS signal is available indoor, GPS receiver runs WiGPS algorithm to accurately localize
its own location.
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Most of the existing indoor localization techniques rely on either fingerprint-based approaches

[186, 59, 187, 63, 83, 188, 189] or Wi-Fi RF signals that require infrastructure modification (e.g.,

Wi-Fi APs and clients must be equipped with multiple antenna-array) [73, 74, 75, 85, 77, 78, 190].

While these techniques could deliver very high accuracy (up to a few decimeters), they either

require significant e↵ort in building and maintaining a fingerprint database, require explicit packet

transmission between the device to be localized and APs, or require sophisticated and dedicated

infrastructure. These approaches are unlikely applicable to the aforementioned applications due to

these requirements.

There is a recent e↵ort in making GPS receiver to work indoor called COIN-GPS [45]. COIN-

GPS has successfully received weak GPS signal in an indoor environment at the cost of building a

sophisticated receiver with a directional antenna array. While is a promising concept, the technique

does not work with o↵-the-shelf receivers such as COST smart-phone and cannot be used where

GPS signals are unreachable including underground parking, multi-story building, or even basement

at the residential area.

In this work, we aim to provide a global in-door positioning system utilizing the ubiquity of

Wi-Fi APs to establish the missing links between satellites and COST GPS receivers due to building

occlusions. Doing so will allow user devices to use its GPS receiver to continuously localize and

track its own location.

To that end, we are exploring a feasibility of designing a system which can make GPS signals

available to indoor environments by relaying them via the existing Wi-Fi APs. Our goal is to make

the Wi-Fi AP work as a GPS relayer and the user device localizes itself without performing any

communication with the APs. Although there are several types of indoor devices such as light-bulb

and smoke detector in practice, the proposed system is designed to be attached onto Wi-Fi APs

because it provides: (i) high possibility to receive GPS signal directly from outdoors, (ii) high

deployment density to cover almost the whole area inside a building, and (iii) high RF transmission

gain from their external antennas. Piggybacking on the existing WiFi APs for localization benefits

from the facts that they (1) are ubiquitous, (2) high deployment density to cover almost the whole
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area inside buildings, (3) are not power-constrained since they are powered by the external power

sources. However, realizing such idea is di�cult due to the following challenges:

• Wi-Fi AP does not support GPS frequency. Wi-Fi operates at 2.4GHz/5GHz frequency

while GPS operates at L band frequencies (L1: 1575.42 MHz, L2C: 1227.60 MHz, and L5:

1176.45 MHz).

• Di�cult to modify hardware or software on the APs. It is challenging to make the relayed

GPS signal decodeable by the GPS receiver without modifying the signal itself. This

modification however needs to be done at the relayer (i.e. the APs) if any. However, to

make the solution practical, deployable and scalable at low cost, no modification is allowed

on existing Wi-Fi AP hardware and software.

• Inherent low localization accuracy of GPS signal. GPS signals undergo several types of

impairments that introduce errors in position estimation, especially on the pseudorange

measurement. It is even more so after being relayed by the APs.

• Impact of multipath reflections. In contrast with signal found in the outdoor scenarios where

GPS receiver often estimates its location using the GPS signal coming from the direct path,

the proposed system has to deal with multipath signals in the indoor environment.

To the best of our knowledge, if successful, our proposed system will be the first system that

makes GPS signals available indoor using WiFi APs and allows COST GPS receivers to obtain its

own location. Specifically, our work has the following research contributions:

• We design a system to relay GPS signal to indoor using COTS Wi-Fi APs. It does not

require any modification to existing Wi-Fi’s circuit and firmware, and introduce no impact

on the AP’s communication performance on Wi-Fi domain.

• We present a set of localization algorithms to make GPS receiver localize itself by calculating

forwarding distance and angles from relaying hardware to GPS receiver with high accuracy.

• We prototype the proposed hardware in the form of an add-on using OTS RF components

(e.g., mixer and diplexer) and SDR implementation.

• We show that the proposed system can localize with an average error of 1.038m in 3D space
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and confirm that the proposed system works across di↵erent indoor environments.

4.2 Proposed System Overview

Figure 4.2: Proposed system overview.

The proposed system relies on the fact that Wi-Fi APs are ubiquitous today. Further, it

takes advantage of the geographical diversity of these APs, many of which are close to the edge of a

building while others are deep inside the building or under the ground. Indeed, it is recommended

by Cisco that the Wi-Fi AP should be placed at the edge of buildings to enhance coverage [191, 192].

Let us call these Wi-Fi APs the “edge APs”. In this system, every edge AP receives live GPS signals

from the satellites, then amplifies and re-radiates them to its vicinity as illustrated in Fig. 4.1.

This new functionality of the Wi-Fi AP is realized by a plug-n-play add-on attached to the AP’s

antennas. The proposed system makes GPS signals available in indoor environments and leads to

the coexistence of GPS and Wi-Fi signals. Once the relayed GPS signals are available indoor, GPS

receivers (e.g., mobile phones, tablets, smartwatches, etc.) then perform a sophisicated localization

algorithms (§4.4) to localize their location with high accuracy.

The proposed system consists of two main components: (i) a Wi-Fi AP add-on hardware and

firmware for controlling the relaying operation and (ii) a set of localization algorithms running on

the GPS receiver as illustrated in Fig. 4.2. Attaching the relay add-on hardware into the Wi-Fi AP

is very simple as removing the Wi-Fi antennas o↵ the Wi-Fi AP, connecting the relay add-on to
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Figure 4.3: The proposed modularized architecture. The proposed relay is co-exist with Wi-Fi AP
and does not impact to Wi-Fi communication.

the AP, and re-attaching the antennas to another side of the add-on. The add-on hardware can be

powered from a USB port which is available on most of APs these days as a servicing interface. The

software running on the receiver contains a set of algorithms to approximate its correct location

given the error due to the forwarding delay between the AP and GPS receiver and azimuth and

elevation angles from the relay add-on of the AP to the GPS receiver.

4.3 The Proposed Add-on Hardware

To realize proposed system, the first step is to design a relay add-on that is able to relay the

GPS signals from outdoor to inside the building. The proposed hardware system is designed to

operate as a stand-alone device, there is no modification needed on Wi-Fi AP chipset and Wi-Fi AP

circuit. The hardware is under plug-n-play form. In addition, we utilize existing RF components

(i.e., diplexer) in modern multiband Wi-Fi AP to allow the device to support multiple frequencies

the same time with Wi-Fi AP without any interference. The proposed system can be used with

most of existing Wi-Fi AP because it requires a small number of antennas to work (2 antennas).

We also design the system using modularized architecture so that the add-on can be easily attached

or removed from Wi-Fi AP.

⌅ No hardware/firmware modification on Wi-Fi AP. The key observation leading to the

ability to make Wi-Fi AP capable of receiving and relaying GPS signals, which is at a completely

di↵erent frequency, comes from the architectural design of the modern APs. This design is inspired
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from a dual-band Wi-Fi design, where the diplexer has been used in the APs to allow that 2.4

GHz and 5 GHz frequency Wi-Fi components are operated at the same time using a single Wi-Fi

antenna. We design a modularized architecture of relay add-on as follows. Each add-on per antenna

contains two or more Relay module as shown in Fig. 4.3. The Relay module includes a diplexer

which is a passive device that implements frequency-domain multiplexing so that it allows the

Wi-Fi AP to operate at Wi-Fi and GPS frequencies simultaneously. In particular, we use a COTS

diplexer that supports Wi-Fi frequency (2.4/5 GHz) and GPS frequency (L-band frequencies). In

addition, a switch controller is used to control whether the Relay module is receiving or forwarding

the signal1 .

Figure 4.4: Insertion loss of Wi-Fi antenna at GPS frequency.

⌅ Utilize Wi-Fi antenna for non Wi-Fi Frequency. Instead of using a wide-band antenna, we

discover that Wi-Fi antenna can also be used to receive and re-radiate a GPS signal due to the high

performance of GPS localization algorithm. Note that the GPS signal is desired in a special way

so that the GPS receiver still localize its own location even when the GPS signal is under the noise

floor level [194]. Therefore, high-gain antenna such as from Wi-Fi AP can be utilized to operate at

GPS frequency. To confirm this, we conduct a measurement on multiple Wi-Fi antennas in the lab

to observe its behavior. We conduct two step experiments for this study. First of all, we measure the

insertion loss of the Wi-Fi AP. We use Agilent N9344C Hand-held Spectrum Analyzer and Altelix

6dB directional coupler for this measurement to identify the insertion loss of the Wi-Fi antennas

1
Conducting research at GPS frequency may require to obtain experimental license. We obtained an experiment

license from FCC as guided in [193].
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at GPS frequency (e.g., 1575.42 MHz). We do frequency sweeping in the range from 500MHz to

3.5GHz with 0 dB signal. Fig. 4.4 illustrates the measurement results. We found that the antenna

has 14.17 dB insertion loss at GPS frequency. Secondly, we conduct another experiment using

software defined radio. Two USRP are used as GPS simulator and GPS receiver. The Wi-Fi AP is

attached to these two USRP for validation. From our experiment, we confirm the GPS receiver can

capture the signals and decode GPS message at distance up to 50m distance from GPS simulator.

WiGPS 
firmware

Amplifiers

Wi-Fi 
antenna

Switch 
Controller

Wi-Fi AP

Diplexer

Switch

Filters

Figure 4.5: The relay add-on prototype which is currently implemented using OTS components.
The size will be reduced significantly using PCB fabrication or ASIC design.

⌅ The Add-on Architecture. The detailed architecture of the Relay module other than the

diplexer is shown in Fig. 4.3 (right). Each relay module is capable of receiving the weak GPS signal

captured by Wi-Fi antenna and re-radiating them to an indoor environment after amplification. In

particular, the system front-end module receives GPS signals as its input and then those signals are

amplified by a Low-noise amplifier. The amplified signal is, in turn, passed through a Band-pass

filter to eliminate the environmental noises as well as the Wi-Fi signal at 2.4/5 GHz frequencies.

The filtered signals are then down-converted using a mixer and stored into a bu↵er located in the

firmware. After 300 ms, the stored signals can go through up-conversion, another Band-pass filter,

and amplification by a power amplifier (PA) for radiating out to the environment. During data

collection, the pseudorange is calculated from the time di↵erences between satellites instead of the
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absolute value of time di↵erence between satellites and receiver (§9 in [194]). These time di↵erence

are obtained from the decoded GPS message (Subframe 1). Therefore, the switching delay between

turn on/o↵ does not a↵ect to the pseudorange calculation at WiGPS receiver.

⌅ The Add-on Prototype. We chose 2450DM40 A1575E Diplexer from Johanson Technol-

ogy [195] for our design. This is a low cost diplexer (approx. 1.6 USD) operating at two di↵erent

frequency bands of 1.574-1.576 GHz and 2.4-2.5 GHz. We used ZX60-V82-S+[196] as Low Noise

Amplifier and Power Amplifier at input and output sides of the module. We also used VBF-1575+

Band-pass filter which operates between 1530 MHz and 1620 MHz from Mini-Circuits for both

input and output sides. We utilized USRP N210’s mixer for down-conversion and up-conversion

purposes. The firmware is written in Python and C++ on USRP’s platform. The firmware stores

recorded GPS signals and send them back to RF front-end before radiating them to the environ-

ment. A switch is also controlled by this firmware to alternating the transmit and receive modes.

The system prototype is shown in Fig. 4.5. A switch is used to control the transmit-receive be-

havior of the prototype. The Wi-Fi antenna VERT2450 from Ettus Research is used during our

experiments. Note that the size of the proposed system can be minimized to be much smaller than

the PCB using ASIC design. Last but not least, the components described above can be adopted

depending on the type of Wi-Fi AP, Wi-Fi antennas and supported connectors.

Figure 4.6: Example decoded binary message, correlation results of satellite acquisition, and BPSK
constellation of obtained GPS signal.

We then conducted a quick experiment to validate the feasibility and e�ciency of our pro-
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totype design. For this, we observe the received GPS signal forwarded by the prototype. Fig. 4.6

(left) depicts the decoded GPS message under binary bit sequence and the correlation results of

tracking mechanism, while Fig. 4.6 (right) shows the BPSK constellation of the received GPS sig-

nal obtained at indoor environment. We confirm that the the proposed design is valid and works

properly under the basic test. In §4.6, we will thoroughly evaluate other metrics of the system.

⌅ Potential Risks and Solutions. We are aware that there would be concerns related to the

impact on the existing system that use live GPS signal for synchronization. In the scenario where

live GPS signal is not available such as underground parking, the devices usually synchronize each

other through the internet by associating their clocks with an accurate GPS-based synchronization

server to maintain their precise clocks. The forwarded signal will not have impact in this case. In

some other settings, the forwarded signal from indoor relay might a↵ects GPS-devices are located

outdoor. Thus, we propose the following solutions to overcome problem for this scenario.

1) Shifting the forwarding signal to non-GPS frequency. We propose to shift the frequency of

the forwarded signal to make sure that the traditional GPS receiver cannot capture the forwarded

GPS signal. In particular, the first direction is to shift to Wi-Fi signal to allow mobile device to

listen and decode GPS message at Wi-Fi frequency. The second direction is to create a small shifting

in frequency (around 10 MHz). As the forwarded GPS signal frequency is not at the exact GPS

frequencies, traditional GPS devices cannot capture and decode forwarded GPS signal. Therefore,

there will be no impact to the operation of devices that require live GPS signal for synchronization.

2) The receiver only captures the forwarded signal if it has the software installed. This

software on the device will control the central reception frequency to capture the forwarded signal.

Without this software, the receiver cannot capture the forwarded GPS signal and cannot perform

indoor location sensing. We conducted an experiment of capturing the GPS signal and replay at

Wi-Fi frequencies using software defined radio, there are no di↵erent when we transmit data at

two frequencies. To validate the feasibility of this idea, we conducted an experiment where the

relay forwards GPS data to a receiver using Wi-Fi frequencies using software defined radio. We

found that there are no significant impact when we forward GPS data at Wi-Fi frequency. We
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also conduct other experiments where the carrier frequency is changed to 900 MHz, 1565.42 MHz,

1585.42 MHz, 2000 MHz, 2412 MHz, and 5200 MHz. The receiver is able to capture the GPS data

at these frequency without significant reduction in performance. This result is understandable

because the proposed localization technique is based on the GPS data (pseudo-range calculation)

but not the carrier frequency by which the GPS data is delivered.

We desire the implementation of above solutions to the future investigation. In the experi-

mental validation, we use GPS frequency for validation. Moreover, note that using Wi-Fi infras-

tructure to relay GPS data to the indoor environment is one of the potential directions to solve

indoor localization, other infrastructures can be also utilized to relay the GPS signals to outdoor

to indoor. This chapter focuses on the algorithm part of the solution. This algorithm is needed

for any relaying hardware (either utilizing Wi-Fi infrastructure or other infrastructure) that relay

GPS signals to outdoor to indoor.

4.4 The Localization Algorithms

Once GPS signal becomes available indoor by the aforementioned system module, the remain-

ing task is for GPS receiver to localize its position so that the receiver can know its own location,

not the AP’s. As illustrated in Fig. 4.7, localizing the GPS receiver requires the following: (1) the

AP’s location, (2) the distance between the AP and receiver, called a “forwarding distance” (�d),

and (3) the di↵erence in horizontal and vertical directions of user’s location with respect to the

AP, called an “azimuth angle” (✓) and “elevation angle” (�), respectively. In the proposed system,

localizing the user location is to identify the triple of (longitude, latitude, and height) corresponding

to the user’s location based on its distance (�d) and angles (✓ and �) from the AP’s location.

⌅ Localization challenges. However, our localization task is di�cult due to the following limi-

tations:

• Insu�cient number of antennas : if we have only two RF antennas and an environment where

there are more than two significant propagation paths, the MUSIC algorithm [197] cannot cal-

culate either AoA or AoD accurately. Some work on AoA estimation utilizes subcarrier-level
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Figure 4.7: The proposed system overview. In order to calculate exact location, the GPS receiver
has to calculate WiGPS’s location, the forwarding distance, and the angle respecting to the relay’s
location.

information, e.g. SpotFi [73], which cannot be applied to the GPS signal as it doesn’t use

OFDM like Wi-Fi.

• Limited bandwidth of GPS frequency : the bandwidth of L1 frequency is about 15 MHz. This

means that the signal is sampled once every 67 ns, during which it travels 20 m. As such, we

can’t rely on ToF-based distance calculation. Further, the number of GPS frequency band is

limited with one, so we can’t apply a frequency hopping technique to emulate wide bandwidth

as in ToneTrack [74].

• Impact by multipath reflections: GPS signals forwarded from the Wi-Fi AP usually reach the

user devices in multiple directions due to reflections. The delay spread generated by multiple

paths varies widely. Such a noisy value significantly a↵ects the accuracy of user’s localization.

• No information about Wi-Fi AP’s positioning : when the user device receives the GPS signal

from the relaying AP, it needs to calculate its own location without knowing the location of the

APs. Most of the existing work assumes that the location of multiple APs is known in advance.

• No modification of GPS signals allowed : the user device cannot distinguish whether received
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GPS signal is transmitted directly from satellites or relayed by Wi-Fi AP.

⌅ Our approach. Our localization algorithm works in three steps: First, we present a new method

that is adapted from traditional GPS localization technique to calculate the Wi-Fi AP’s location and

the forwarding distance (�d) (§4.4.1). Second, we use two relay modules attached to AP’s antennas

and develop an algorithm that utilizes the signals from these modules for calculating the azimuth

angle and refining the forwarding distance calculation (§4.4.2). Third, we form a constrained

optimization problem based on the above obtained information (i.e., Wi-Fi AP’s location, �d, ✓)

to calculate the elevation angle (�) as described in (§4.4.3). In addition, we develop the solution for

GPS receiver to distinguish the best forwarder in presence of multiple APs equipped with relaying

add-ons. (§4.4.4). Finally, we describe algorithms together in §4.4.5.

4.4.1 Pseudorange restraint optimization to calculate the forwarding distance

⌅ Calculating GPS receiver location from pseudoranges. The additional forwarding path

from the Wi-Fi AP to the user’s GPS receiver leads to the inaccurate calculation of user’s location.

We first review the basic process of traditional GPS calculation to understand why such forwarding

path a↵ects the localization performance. The GPS calculation is to identify an unknown location

of the user Xu = [xu, yu, zu] using (at least) four known locations of the satellites Xi = [xi, yi, zi],

where i = 1 : 4.

Every satellite sends its own GPS signal at a certain time tsi. The receiver will receive the

signal at a later time tu(tu > tsi). The distance between the user and the satellite is ⇢i = c(tu� tsi),

where c = 2.99⇥ 108m/s. If we consider the e↵ect due to clock drift, we have t0
si
= tsi +�bi where

t0
si
is the actual clock time and �bi is the satellite clock error, and t0u = tu+bu where t0u is the actual

clock time at user and bu is the clock bias error of the user device, respectively. The measured

distance (i.e., pseudorange) between each satellite and the user, denoted by ⇢i=1:4, can be derived

as ⇢i = kXi �Xuk2 + bu, i = 1 : 4, since other intrinsic errors can be corrected [194]. For better

notation, we also use the Lk-norm, which is defined as kXkk = (
P

n

i=1 x
k

i
)
1
k with k = 1, 2.

The pseudorange ⇢i needs to be solved simultaneously, and for ease of computation, one of
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the solving technique is to linearize them [194]. Here, Xu are unknown, while ⇢i,Xi are known.

When we perform the di↵erential of the above equation, the result is as follows:

�⇢i =
(Xi �Xu)�Xu

kXi �Xuk2
+ �bu =

(Xi �Xu)�Xu

⇢i � bu
+ �bu. (4.1)

In the equation, �Xu = [�xu, �yu, �zu], �bu are treated as the only unknown, but Xu, bu are treated

as known values, because one can assume some initial value for these quantities. From the initial

values, a new set of �Xu, �bu can be calculated. Then, these values can be used to modify the

original Xu and bu values to find another set of solution. The new set of Xu, bu now becomes

known quantities. This updating process continues until the absolute value of �Xu, �bu becomes

very small and is bounded within a predetermined threshold.

More specifically, with �Xu and �bu as unknowns, the above equation becomes a set of linear

equations. This equation is referred as linearization.

�P =


a1 a2 a3 1

� 
� Xu �bu

�
T

(4.2)

where �P = [�⇢i]n⇥1, 1 = [1]n⇥1, aj = [↵ij ]n⇥1 with ↵i1 = xi�xu
⇢i�bu

;↵i2 = yi�yu
⇢i�bu

;↵i3 = zi�zu
⇢i�bu

, and n

is the number of observed satellites. The above equation can be written in a simplified form as:

�P = A


�Xu �bu

�
T

. Since A is not a square matrix, it cannot be inverted directly. As the above

equation is a linear equation, least-squares approach can be used to find the solutions when the

number of equations are more than unknowns. Note that from our measurement, we can gather

the data from at least more than four satellites. The solution is


�Xu �bu

�
T

= [ATA]�1AT �P.

In GPS calculation, a quantity is used to determine whether the desired result is reached and this

quantity can be defined as: " =
��

�Xu �bu

� ��
2
. The iteration will stop either when this value is

less than a certain predetermined threshold or when the maximum iteration is reached.

⌅ Calculating location and forwarding distance. In the proposed system, upon receiving

the forwarded GPS signals from the relay modules, a GPS receiver performs the following steps to

calculate the relay’s location and the forwarding distance. Let’s assume the obtained pseudorange

are ⇢0
i=1:n (⇢0

i=1:n = ⇢i=1:n + �d) as illustrated in Fig. 4.8 (left). Applying ⇢0
i=1:n as pseudorange
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Figure 4.8: Illustration of process of obtaining Wi-Fi AP’s location and forwarding distance �d.

for (4.2), the condition of " < threshold is not satisfied and the calculation is stopped when the

maximum number of iteration is reached. After the iteration is stopped, we can call these calculated

pseudoranges are “ranges” because of its high accuracy level (i.e., error is at meters). Fortunately,

when the calculation is stopped, the calculated pseudorange are representing the distance from

satellites ! Relay ! GPS receiver. The fixed location would be located on a sphere centered

at relay’s location. To identify the relay’s location, the following procedures are applied. The

calculated pseudorange ⇢00
i=1:n is shorten by a predefined amount (⇣) (i.e., ⇢00 = ⇢0 � ⇣). Then, by

subsequently applying ⇢00
i=1:n to (4.2) while reducing ⇣, the location fixed condition (" < threshold)

is obtained when ⇢00
i=1:n = ⇢i=1:n (Fig. 4.8 (right)).

To calculate the forwarding distance, the GPS receiver measures the mean di↵erence between

⇢0 and ⇢ from the above steps. The di↵erence represents the length of forwarding distance as

illustrated in Fig. 4.8 (left). Hence, the forwarding distance can be obtained from: �d =
Pn

i=1(⇢
0
i�⇢i)

n
.

This calculation results in up to 5m of errors. It is challenging to identify the location of the GPS

receiver given the errors of measurement from user’s location to both antennas of Wi-Fi AP. Next,

we will describe our method to reduce the measurement error to around 1m and how to identify



92

the azimuth angle.

4.4.2 Prominence of intersection frequency for uncovering the azimuth angle

Approximating azimuth is impossible with single forwarding antenna due to the lack of direc-

tion information. At the receiver location, assuming that the receiver can capture 4 pseudo-ranges

from 4 satellites as in Fig. 4.9 (left). Let’s assume that the elevation angle is equal to zero, the

user location is located at a circle centered at the Wi-Fi AP location with radius �d. Finding the

azimuth angle is to approximating the horizontal direction of the forwarding signal respecting the

two antennas’ direction. Such angle can be approximated using angle of arrival or angle of depar-

ture [73, 198, 75, 78]. However, these approaches do not apply to this case due to the requirement

of multiple antennas and large bandwidth, which are not supported by GPS communication. The

receiver observes the signals from two relay add-on, and identifies the azimuth angle based on the

distance measured from the two relay add-on. The azimuth angle, named as ✓, is calculated based

on the di↵erence between distance from two antennas to the user’s location. Fig. 4.9 (right) illus-

trates the relationship between distance di↵erent and the angle of arrival from two antennas. Let’s

assume the distances between receiver’s location to antennas 1 and 2 are d1 and d2, respectively.

WiGPS d'
Potential 
Solutions

User s 
location

WiGPS WiGPS

Wi-Fi AP

(a) (b)

2d
1d

Figure 4.9: Error of approximating azimuth angle using single antenna (a) and Azimuth angle
detection approach (b).

⌅ Detecting the azimuth angle from the distribution of the Wi-Fi AP intersection

fields. Theoretically, the correct measurements from the two antennas will create two circles
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which intersect each other at the user’s location. However, it is a non-trivial problem to detect the

angle under the noisy measurements. Recall that the error of distance measurement is much larger

than the antenna gap needed to estimate the position precisely. Therefore, we deeply explore the

distribution of the intersection fields of the two Wi-Fi APs and derive location based on the optimal

frequency point. For simplicity, let’s assume the transmitter and receiver have the same height, so

the elevation angle � is equal to zero. The location of Wi-Fi AP antennas are Xa

1 = [xa1, y
a

1 , z
a

1 ]

and Xa

2 = [xa2, y
a

2 , z
a

2 ], respectively, and the user’s location is Xu = [xu, yu, zu], where za1 = za2 = 0.

The possible coordination of the receiver can be approximated as the intersection of two circles

C1 and C2 (centered at Xa

1 and Xa

2, and have radius d1, d2). For simplicity, let’s omit z in the

following derivation. Now, the receiver builds 2D arrays obtained from the above measurements.

The corrected measurements should be located at the intersection of two circles C1, C2. Thus, we

have

kXu �Xa

1k22 = d21, (4.3)

kXu �Xa
2k22 = d22. (4.4)

Subtracting (4.4) from (4.3) yields

�2(Xa

1 �Xa

2)X
T

u = d21 � d22. (4.5)

If xa1 6= xa2, then from (4.5), we get

xu = �yu
2(ya1 � ya2)� (d21 � d22)

2(xa1 � xa2)
. (4.6)

Substituting (4.6) into (4.3) yields

sy2u + pyu + q = 0, (4.7)

where

s = (xa1 � xa2)
2 + (ya1 � ya2)

2,

p = 2(ya1 � ya2)


(d21 � d22)

2
+ xa1(x

a

1 � xa2)

�
� 2ya1(x

a

1 � xa2)
2,

q =


d21 � d22

2
+ xa1(x

a

1 � xa2)

�2
+ [(ya1)

2 � d21](x
a

1 � xa2)
2.
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Solving (4.7) for yu, we obtain: yu =
�p±
p

p2�4sq
2s . Substituting yu into (4.6) yields xu. Similarly if

xa1 = xa2, we solve (4.6) for yu and substitute yu into (4.3) or (4.4) to find xu.

Figure 4.10: Example results for estimating the azimuth angle in case of 0 and ⇡/4.

The measurement of d1 and d2 is subject to noise with errors in the range of 1.5-5m. In our

experiments, d1 � d12 and d2 � d12 where d12 is the distance between the two transmitters. Valid

real solutions of (4.3) and (4.4) exist if d1, d2, and d12 satisfy the triangle inequality: |d2�d1|  d12.

Any pair of (d1, d2) which fails to meet this inequality is eliminated from our data set. The

solutions of (4.3) and (4.4) are rounded to three decimal places. Since d1 and d2 experience a

range of measurement noise, the solutions (xu, yu) varies in a large number. We chose a solution

which has the highest frequency of presence and considered it our final position of the receiver.

Fig. 4.10 illustrates the density distribution of the cross section points for the 0 and ⇡/4 azimuth

angle. The highest peak, corresponding to where the interactions most likely occur, reveals the

true position of the receiver. The angle calculation with a two linear antenna array may lead

to symmetric ambiguity between 0-⇡ and ⇡-2⇡ radians. To resolve the ambiguity, we check the

geometric condition between satellites, Wi-Fi AP and GPS receiver: By projecting the coordinate

of the observed satellites onto the 2D plane of the AP, we can identify which region most of the

satellites are located in from the two regions. Then we can restrict the possible range for the

receiver by choosing the other region.
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4.4.3 Squeezing optimization for computing elevation angle and location

In order to calculate the elevation angle, we exploit the height of each floor (e.g., 3m) in

a building. From this information, we can restrict the maximum vertical di↵erence between the

Wi-Fi AP and GPS receiver. Further, we can compare this value with the height output from the

GPS calculation and choose the minimum as our feasibility set. Then, we formulate a quadratic

optimization problem with the output from §4.4.2 and refined height information to search the

accurate elevation angle of the GPS receiver with respect to the AP.

Now we describe the above intuition mathematically. Suppose that we have the location of

two antennas in Wi-Fi AP (Xa

i = [xa
i
, ya

i
, za

i
], i = 1, 2) and the distance between each of antenna of

the Wi-Fi AP and GPS receiver (diu, i = 1, 2) and the azimuth angle ✓ from the Wi-Fi AP to the

GPS receiver as calculated in §4.4.2. But, we don’t know the 3D location of the GPS receiver Xu

yet. Our objective is to derive the elevation angle � from the Wi-Fi AP to the GPS receiver with

respect to the horizontal line of the AP2 as well as the 3D position of the GPS receiver. Since edge

Wi-Fi APs are usually deployed at the ceiling inside the building for better coverage, we can assume

that the elevation angle � ranges between 0 and ⇡. Further, based on the azimuth angle ✓, we can

localize the range of the elevation angle: if 0 < ✓ < ⇡/2, 0 < � < ⇡/2; if ⇡/2 < ✓ < ⇡, ⇡/2 < � < ⇡.

Figure 4.11 illustrates the deployment of Wi-Fi AP equipped with two antennas and GPS receiver.

As shown in the figure, we have the following trigonometry relations: |xa
i
� xu| = diu cos� cos ✓,

|ya
i
� yu| = diu cos� sin ✓, and |za

i
� zu| = diu sin�, i = 1, 2 and further za1 = za2 . In addition, we can

impose the maximum bound on the vertical di↵erence between them by h and the actual vertical

di↵erence from both antennas of the AP to the receiver is exactly the same.

Finally, we formulate the following constrained optimization problem to find the elevation

angle of the GPS receiver from the Wi-Fi AP. Our objective is to minimize the error for the

2
Both antennas of the Wi-Fi AP have the same elevation angle toward the GPS receiver.
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Figure 4.11: Relationship in 3D location between Wi-Fi AP and GPS receiver.

estimated position of the GPS receiver Xu as follows:

min
✏>0

✏,

s.t. k|Xa

i �Xu|� diu�k1 < ✏,

where � = [cos� cos ✓, cos� sin ✓, sin�],

kXa

i �Xuk2 = diu, i = 1, 2,

kXa

1 �Xa

2k2 = d12,

|za1 � zu| = |za2 � zu| < h, 0 < � < ⇡.

(4.8)

From the above formulation, we optimize for the position of the GPS receiver while main-

taining the relative distance relationship between each antenna of Wi-Fi AP and GPS receiver and

the trigonometric relationship between Wi-Fi AP and GPS receiver. We write this problem as a

quadratic-constrained optimization in Matlab and use the fmincon function to find the optimal

solution. We evaluate its computational complexity in §4.6.

4.4.4 Receiving signals from multiple forwarding add-on

⌅ Mitigating the relay signal outliers. In practice, WiGPS receiver often receives signals from

the unknown number of WiGPS relay modules. To handle the case, we apply a clustering algorithm
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associated with a predefined number of centroids. The number is based on the measurement

distribution in order to group the measured forwarding distances into multiple clusters. We then

use the cluster that includes the shortest forwarding distance for localization. Specifically, these

distances are used to approximate the azimuth and elevation angles from the forwarding AP using

the algorithm mentioned in §4.4.2 and §4.4.3, respectively. This is one of the key advantages in

using GPS signal to localize the user location.

Suppose that there are k Wi-Fi APs placed at di↵erent ranges toward the receiver. Note that

the calculation of forwarding distance still results in quite a few errors. This leads to a lot of false

detection in detecting the proper pairs of forwarding distances. Thus, to eliminate the outliers,

we apply the k-means clustering [199], which is one of the representative clustering algorithms,

into the distance cluster. However, the value of k associated with the number of interfered Wi-

Fi APs is unknown. Therefore, we are unable to run the algorithm due to the missing value of

k. Fortunately, according to the kernel density estimation, the data distribution exposes some

local maxima corresponding to our forwarding distances. Hence, we can determine the number

of clusters among these local maximum points, except the locations where the data frequency is

extremely small (< 0.1% of the total data). However, the k-means clustering randomly initializes

the centroids, which results in the uncertainty of clustered data. To tackle this problem, we adopt

the centroids detected from the kernel density to initialize the k-centres in the clustering algorithm.

4.4.5 Putting together

Algorithm 6 shows how the proposed localization algorithm works. Specifically, when RSSI

of GPS signal is under noise floor level, the GPS receiver cannot recognize any forwarding relaying

signal so that it performs traditional GPS calculation to localize its location. Otherwise, the

forwarding signal can be detected when the received RSSI is over the noise floor (-100 dB). Note

that as satellites are 21,000 km away from the earth surface, their signal is always lower than the

noise floor level (e.g., -111dBm) [194]. Next, when there is single forwarding signal obtained, the

proposed algorithm will compute the forwarding distance and the azimuth and elevation angles
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before computing its location. On the other hand, when the GPS receiver captures the signal from

multiple relaying APs, it first computes and clusters the forwarding distances into multiple subsets

and then selects the set that has the smallest value. Finally, it uses them to compute both angles

for localization.

Algorithm 6: WiGPS ’s localization algorithm

input : RSSI/* Received GPS signal strength */
Gm /* Decoded GPS message */
� /* Forwarding signal detection threshold */
⌘ /* Multi-AP signal detection threshold */

output: U(lat, lon, height) /* User’s location */
1 if (RSSI < �) then
2 Compute U(lat, lon, height) based on Gm

3 else if (� < RSSI)&(Std[RSSI] < ⌘) then
4 /* Received signal from single WiGPS AP */
5 Compute �d (Forwarding distance), ✓ (azimuth angle),
6 and � (elevation angle)
7 Compute U(lat, lon, height)

8 else if (� < RSSI)&(Std[RSSI] > ⌘) then
9 /* Received signal from multiple WiGPS APs */

10 Compute �d
11 Perform clustering algorithm and spot corrected set of �d
12 Compute ✓ (azimuth angle), and � (elevation angle)
13 Compute U(lat, lon, height)

14 return U(lat, lon, height)

4.5 Software Implementation

The software receiver is implemented on USRP N210 [200]. The calculation of pseudorange

and forwarding distance is adopted from GNSS-SDR implementation [201] whose implementation is

done with Python and C++. The receiver is sampled at 20 MHz and capture the GPS signal at L1

frequency (1575.42 MHz). As explained in [202], we set to search up to 10 channels (i.e., 10 satellites)

at the same time, which is a common setting in today’s smartphones. We collected the following

information from the received GPS signals: (1) The raw I and Q signals after down-conversion to

baseband, (2) The tracking quality of observable satellites, (3) the pseudorange measurements, and

(4) the observed Navigation RINEX files. Note that the Receiver Independent Exchange Format is
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Figure 4.12: Software calculation flows. GPS receiver is currently implemented using python, C++,
and Matlab.

a standard data format for raw satellite navigation system containing position, speed of satellites.

The I and Q signals are used to validate the phase and RSS of the obtained forwarded GPS signals.

In particular, the tracking component provides (a) Discrete-Time Scatter Plot (I/Q prompt), (b)

Bits of navigation message, (c) Correlation results, (d) Raw/Filtered PLL discriminator, and (e)

Raw/Filtered DLL discriminator. The pseudorange measurements provide a real-time calculation

of the distance from the satellite to the receiver. Last but not least, the observed Navigation RINEX

in .geojson files includes calculated the relay location and forwarding distance to GPS receiver. The

aforementioned collected output is fed into Matlab for further processing of calculating forwarding

distance as well as obtaining forwarding angles. The whole system is implemented on a laptop with

a 2.0 GHz i7 CPU and 8 GB memory.
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4.6 Performance Validation

We prototyped our system to evaluate the feasibility and performance of WiGPS, and also

measure the performance overhead that WiGPS could cause to legacy Wi-Fi APs. In particular,

we conduct implementation and evaluation to answer the following questions: (1) How accurate

is the proposed system in indoor localization? (2) How does the proposed system impact legacy

Wi-Fi communication? (3) What are the accuracies of calculating forwarding distance, azimuth,

and elevation angle? (4) What are the impacts of di↵erent environments on localization accuracy?

(5) What is the accuracy of localization when the proposed receiver receives signals from multiple

relays? The following subsections provides the answers for each question above.

Campus Hall

(a) Campus building + underground (b) Residential area

Concrete Patio

Kitchen Bedroom

BedroomLiving Room

Garage

396 Sq ft

850 Sq ft

387.5 Sq ft

To Basem
ent

Underground

32
m

Figure 4.13: Locations where experiments were conducted.

4.6.1 Experimental Methodology

For ground-truth, we use Google Maps [203] to obtain geographic longitude, latitude for Wi-

Fi AP and GPS receiver. Instead of using Google Maps, one can record the outdoor location using

live GPS and then measure from that point to the testing location inside the building. However,

This method cannot be realized in the underground scenario. Also, the GPS receiver will have

less accuracy when it is close to the building due to multipath reflections [204]. To obtain the

correct distance and angle between the forwarding AP and receiver, we use the BOSCH GLM 80

laser distance measurer [205] to accurately find the distance and angle from the forwarding AP to
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user’s location. We validate the performance of the proposed system at three main environments

including campus hall, underground, and residential areas.

4.6.2 Priliminarty Results

⌅ Localization Accuracy. We first validate localization accuracy when GPS receiver is 10m,

20m, and 30m away from WiGPS add-on on a horizontal direction (0� elevation), at 0, 45, 90�

azimuth, and at 0, 10, 20, 30� elevation at our campus hall, underground, and residential areas.

Note that the coverage by a single AP is usually less than 30m [206, 73, 85] and further, the area

beyond 30m can be covered by another AP especially in the large area of a building [191]. Therefore,

we select 30m as a maximum distance for testing the proposed system.
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Figure 4.14: 3D Localization Accuracy

For comparison with the proposed system, we use Samsung Galaxy S8+ (GPS Logger

App [207]) and VK-162 GPS Module, which uses Ulox UBX-G7020 series chipset [208]. Fig. 4.14

shows the CDF of the accuracy of localization using the proposed technique. The proposed sys-

tem obtains a median error of 1.038 m. To calculate the forwarding distance, the azimuth angle,

and elevation angle, 1000 data samples from two antennas to receiver are used in our localization

algorithm. As the GPS receiver can see an enough number of channels (i.e., satellites) via the
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relay add-ons, it can localize their locations with high accuracy. The performance gap between the

proposed system and others is mainly due to the number of observable satellites: the former can de-

code an enough number of channels (more than seven satellites during the whole experimentation),

while the latter only sees a small number of channels (quite often less than four). In addition, our

statistic-based localization technique contributes the accuracy improvement. Note that the GPS

receiver without relaying support shows similar performance with VK-162 GPS Module.

⌅ Interference to Wi-Fi communications. We validate the impact of the proposed system to

Wi-Fi communication by observing the Wi-Fi throughput with and without attaching the proposed

system hardware to NUC platform (Wi-Fi AP mode). In particular, we set up one NUC platform

as a Wi-Fi AP using hostapd [209] and connect a Samsung Galaxy S5 phone as a Wi-Fi client to

the AP. For Wi-Fi, we choose 2412 MHz to minimize interference from other Wi-Fi transmissions

and use a TCP flow by running iperf [210], while for the proposed system, the add-on device is

connected in between the AP and Wi-Fi antenna through Multilayer Diplexer, which operates at

1572-1578 MHz and 2400-2500 MHz3

Figure 4.15: Impact to Wi-Fi

Then, we measure the instantaneous throughput achieved by the TCP flow with and without

3
This was conducted on 2.4 GHz due to limitation of our diplexer. However, a similar experiment can be conducted

with other Wi-Fi frequency, e.g., 5 GHz, by selecting other diplexers which support that frequency.
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GPS signal relaying. As shown in Fig. 4.15, we observe that the proposed system does not impose

any interference on Wi-Fi communications. In fact, we found that the system throughput is more

stable when attaching the proposed system. We believe that this is due to the e↵ect of the current

wide-band amplifier used (ZX60-V82-S+). As it is a high dynamic range amplifier supporting the

whole bandwidth between 20 MHz and 6 GHz, the proposed system leads to the increasing power of

Wi-Fi signal at 2.4 GHz. However, this phenomenon can be totally removed by selecting a narrower

band amplifier in the future.
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Figure 4.16: Distance Calculation Accuracy

⌅ Accuracy of calculating forwarding distance. We collected about 450 minute-long data of

received forwarded GPS signals when the distance from the relay to GPS receiver is 10m, 20m, and

30m. The distance between the relay and GPS receiver is obtained from BOSCH GLM laser device.

Our experiment is conducted at the campus hall inside our university. Fig. 4.16 shows the CDF

of estimation error obtained by the proposed system. The proposed technique obtains a median

of 1.6m error at 10m distance, 0.6m error at 20m distance, and 0.8m error at 30m distance. The

system obtains a median of 1.1m of error overall. We found that the performance of localizing at

10m is lower than 30m. We believe that this is due to multipath e↵ects. At the shorter distance,

the reflected signal is strong enough to a↵ect the performance. But, as the the distance is further,

the RSS from some reflected paths will be reduced and some paths experiencing severe attenuation
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(< 20dB) will not a↵ect the GPS receiver [211].

⌅ Accuracy of calculating azimuth angle. For evaluation of azimuth angle detection, we

conducted another experiment where the relay is 20m away from the GPS receiver, and the angle

created by two antennas AP and the receiver creates an angle of 0, 45�, and 90�. We collected 450

minutes of data for each angle. Fig. 4.17 shows the accuracy of estimating the azimuth angle using

the proposed technique. The proposed system obtains 2�, 6.9�, and 7.8� error when azimuth angle

is 45�, 90�, and 0�, respectively.
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Figure 4.17: Azimuth Angle Calculation Accuracy

Overall, the system obtains less than a median of 2.9� in azimuth angle calculation. We

believe the proposed system achieves the best performance when the azimuth angle is 45� due to

the impact of environment architecture. In addition, as data from di↵erent angles are collected at

di↵erent times, the satellites will also impact the result. Hence, more investigation is needed to

understand the scenario.

⌅ Accuracy of calculating elevation angle. To evaluate the performance of WiGPS on de-

tecting the elevation angle, we conducted an experiment in the first floor of a multi-story building

at our campus. In this experiment, the WiGPS AP is hanged on the ceiling on a 1-floor building,

we change the angle � from 10� to 30�. As the standard ceiling height is only around 2.5m, we

do not conduct the experiment with an angle larger than 40� because the longitude and latitude



105

0 5 10 15 20
Error (degree)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f 
m

e
a

su
re

m
e

n
t Empirical CDF

10o

20o

30o

Figure 4.18: Elevation Angle Calculation Accuracy

di↵erent between WiGPS and GPS receiver is very small. We collected 100 minutes of data in

total for this experiments. Fig. 4.18 shows the CDF of elevation detection accuracy of WiGPS.

The system obtains very accurate calculation with less than 1� error. WiGPS obtains less than

0.5� in calculating elevation angle when the GPS receiver is 10� respecting the ceiling. When the

elevation angle is 20� and 30�, WiGPS obtains 4.9� error and 8� error in calculation, respectively.

When elevation angle is bigger, the distance to WiGPS is shorter, and multipath e↵ect is stronger,

the localization accuracy reduced.
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Figure 4.19: Impact of Multiple WiGPS

⌅ Receiving signal from multiple WiGPS. We evaluated the scenario where GPS receiver
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receives signals from multiple WiGPS APs at the same time. The GPS receiver is 10m, 20m, and

30m away from three WiGPS. WiGPS algorithm will allow the GPS receiver to identify the correct

set of forwarding distance and therefore calculate its location. Fig. 4.19 shows the performance

of WiGPS when GPS receiver received multiple signals. As can be seen from the Figure, when

using single WiGPS, the average accuracy is higher than when there are multiple WiGPS in the

environment because the outlier of distance measurement are partially refined during clustering

process. Also, the maximum error obtained from multiple WiGPS scenarios is lower than with

single WiGPS. The reason is that the clustering algorithm actually helps to remove a lot of outliers

during forwarding and angles calculations.

⌅ Computational Delay. For cost analysis, we validate the computation time taken by WiGPS

software. Even though the existing algorithm is developed in Matlab, the results presented here can

be used for future developers to understand the computation cost needed to run WiGPS. However,

we believe that this high computation delay can be solved using by o✏oading the algorithm to the

cloud. As the delay of computation depends on the number of measurements that the receiver used

to find its location and angle, we calculate the delay of computation with di↵erent data sizes of the

measurements. The results are shown in Fig. 4.20. When including the time that the system needs

to have to calculate the Wi-Fi AP’s location, the total time is less than 4 minutes (Fig. 4.21). It is

noticeable that the system requires less than 5 minutes to calculate the calculation. With a better

receiver, we believe that the computational cost is significantly reduced.

Figure 4.20: Computation delay Figure 4.21: Time to first fix
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4.6.3 Sensitivity Analysis

⌅ Impact of Environments. As mentioned earlier, we also evaluated the system at the under-

ground environment and residential area. Our intention is to validate the system performance at

di↵erent environment setups to validate where WiGPS works at di↵erent architecture and mate-

rials. At underground environment, the WiGPS and GPS receiver is 10m, 20m, and 30m away

from each other. Comparing to WiGPS performance at the campus hall, WiGPS obtains better

performance at underground area due to the reduction of live GPS signal to its computation. At

residential area, the experiment is collected at a concrete wall single house 1700 sq ft, the GPS

receiver is 10m away from WiGPS and separated by a drywall. As illustrated in Figs. 4.22 and

4.23, WiGPS obtains reasonable localization error at both of these environments.
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at underground area
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at residential area

⌅ Impact of Human Movement. Human movement has a large impact in time-to-first-fix

(TTFF) as illustrated in Fig. 4.21 because the distortion caused by human movement will reduce

the e�ciency of decoding correct GPS message for localization. We conducted an experiment during

peak hours (school breaking time between classes) to validate the e�ciency of WiGPS performance.

We collected 60-minute data throughout this experiment. Fig. 4.24 illustrate the performance of

WiGPS during these peak hours compared with o↵-peak hours (e.g., night times). WiGPS obtains

around 1.3 m error in localization even in peak hours.
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⌅ Impact of Number of Measurements. We validate the impact of number of measurements

for estimating the forwarding distance and angles. Fig. 4.25 shows the accuracy trend by varying the

number of measurements used for calculation. We found thatWiGPS can achieve good performance

when the number of measurements are greater than 500. In other words, with this number of data

samples, our azimuth angle detection algorithm can provide high accuracy.
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Figure 4.25: Impact of number of measure-
ments

4.7 Conclusion

In this chapter, we have presented a novel system to relay GPS signals via Wi-Fi APs from

outdoor to indoor for GPS-based indoor localization. For verification, we implemented the pro-

posed system’s prototype using OTS RF components and SDR implementation. Through extensive

experiments, we confirmed that the proposed technique provides 1.038m of 3D localization accu-

racy and does not impact existing Wi-Fi communications. We also demonstrated that the proposed

technique works across multiple indoor environments including university campus, underground,

and residential areas. Through there are many more aspects of the proposed technique warranting

further investigations, we hope to this work will trailblaze a new path towards solving the indoor

localization problem by bring GPS signals to indoor environments using existing Wi-Fi APs.
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4.8 Looking forward

Our system has focused on how to make the GPS signal available indoor and enable GPS

receiver to accurately localize its own location. This paper may be viewed as a first step toward this

goal. Several extensions and enhancements remain open for future work. First of all, we wish to

explore a new method to improve the accuracy of receiver to reduce the localization error and time

to first fix. Second, our work utilizes on the relative height between the Wi-Fi AP and receiver for

3D localization. Even though the GPS can o↵er the altitude value, the inaccuracy is still a bit high

compared to the longitude and latitude. However, we expect that as the accuracy of GPS will be

improved in the near future [212], the proposed technique can provide geographic coordinate values

in 3D very accurately. Third, we would like to miniaturize the current hardware by revising PCB

design and then designing ASIC circuit. Fourth, while system is currently implemented on SDR,

we wish to implement it on a smartphones as done in [204]. Given raw GNSS measurement that

is currently supported by Android [213], we can utilize this API to override the positioning result

obtained from the proposed algorithms. Any location-based applications can easily incorporate this

library to obtain high accuracy of the proposed technique. Fifth, our current prototype is quite

expensive, but its PCB prototype will cost less than 30 USD. We believe that if the system is mass

produced, the price should be significantly reduced. Last but not least, we also wish to investigate

multihop scenarios in the future.



Chapter 5

Conclusions

5.1 Concluding Remarks

RF signals and devices are not only used for communication, but can also be used to monitor

human, objects, and location for monitoring user’s health condition, and enhancing user privacy and

safety protections. This dissertation introduces new algorithms and cyber-physical systems that use

RF signals to extend their usability in multiple directions. The presented technologies demonstrate

that we can build many novel applications utilizing RF signals to sense human breathing volume,

the drone body shifting and vibration. I also describe the feasibility of using RF signal to sense

the global locations at indoor environments.

Summary of Contributions: The contributions of our research can be summarized as following.

In contrast to traditional approaches which required instrumenting the human body with sensors,

our research does not require any physical contact with the human body. We present a closed loop

sensing system for health-care monitoring which can highly adapt to the dynamic of human sensing

scenario. The mechanical scanning component navigates and directs the Wi-Fi beam to steer to

the human chest and keep track of its movements. We also present a technique to extract the

chest movements and use it to infer the breathing volume. Such correlation is unknown earlier. We

evaluate the system on real patients and validate that the system obtaining high accuracy in mon-

itoring. We propose a technique to passively and cost-e↵ectively detect the presence of the drone.

As the number of incidents involving drone such as drone collisions, damage to properties, and

violations of privacy are increased, the proposed system help to reduce such unexpected scenarios.
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We evaluated the system at di↵erent distances, environments using di↵erent drones. The system

obtains high performance at all tested scenarios. In addition, we present a feasibility of sensing the

user’s location at the indoor environment. If successfully, the proposed technique can also be used

for a wide range of global-location-based services and applications. From the preliminary study,

the system obtains high performance at distance up to 30 m.

5.2 Future Works

We have only presented some small set of possible applications that could leverage RF signals.

While this dissertation has taken a first step in making the implemented systems practical, the

presented designs and implementation include some limitation which would be interesting to explore

in the future. In this section, we would like to discuss some future research that can be enabled

from the developed systems.

⌅ Sensing human breathing volume using RF signals. First, we need to improve the user

experiences in using the radar system by removing the noises created by the mechanical components

of the system. Although the previous implementation of the system does not require the user to

wear any extra device, it still generates some noises that e↵ect to human sleep during experiments.

We are going to build a bed dome and deploying 30 antennas to remove the need for mechanical

scanning procedure. The 30 antennas are distributed around the bed dome to keep track di↵erent

area of the chest regardless of current human posture. The system has control on each antenna

to decide which antenna acts as a transmitter which antenna acts as a receiver. Second, we are

developing techniques to detect sleep apnea events. As the antennas are placed across di↵erent

areas on the bed dome, each of them monitors a certain area on the human body continuously, we

can analyze the breathing behaviors at di↵erent areas at the same time to detect the sleep apnea

events. There are two kinds of sleep apnea that we are investigating including (a) central apnea

and (b) obstructive apnea. The synchronization in the phase of the breathing patterns captured

at the chest and abdominal areas are used to detect sleep apnea. Third, we are developing an

RF imaging algorithm to detect human posture and to remove the need for training in posture
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detection in the occlusion condition. This step is important for maintaining the high performance

of the breathing volume estimation. Note that we have been investigated on multiple vision and

thermal based techniques to overcome this challenge, but these techniques can only recognize a

fixed set of trained postures. We are developing an imaging technique based on Radar Polarimetry

to accurately identifying the human posture, therefore adjusting the transmitter and receiver to a

proper location and direction.

We continue to work on both RF and camera technologies for improving the accuracy of the

breathing volume estimation as well as reduce the side-e↵ects (unexpected acoustic noises) of the

system to human sleep quality. The new design makes the system operations are completely silent

because there is no mechanical component needed. To monitor the chest movement accurately, a

high resolution in controlling the transmitted and received signal is required. We are developing a

system of 30 wireless transceivers. Each of the antennae can be a transmitter or receiver. Using

this approach, we are a free-doom in monitoring the movements of the human chest in di↵erent

areas at the same time regardless of the human posture. Even though the system is still under

development, the control mechanism of switching between the transmitter to the receiver is quite

challenging. We are still seeking for the best deployment and controlling mechanism to obtain

the maximum accuracy in breathing volume estimation, sleep apnea detection, and human posture

detection.

We will utilize the dome bed design with multiple antenna transceiver arrays to detect sleep

apnea problem. The key idea is to use antenna array to track di↵erent areas on the human chest

surface (e.g., upper chest area and abdominal area) at the same time. The chest movements

obtained from the two set antennas would help to detect sleep obstructive apnea problem where

the movements in di↵erent areas are not synchronized with each other. In addition, we continue to

optimize our vision techniques to improve the breathing volume monitoring algorithm and posture

estimation using depth and thermal cameras. The breathing volume monitoring algorithm will

corporate with the new antenna array to detect sleep apnea. We are analyzing the correlation

between the actual inhale/exhale air captured by the camera and the movement of the human
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chest and abdominal area captured by the antenna array. The abnormal events observed from

camera and antenna array will be used as a signature (biomarkers) to detect sleep apnea event.

Next, to reduce the cost of expensive CO2 and thermal camera, we are investigating on a novel

and e�cient computational vision technique by placing a cheap material in front of the human face

(e.g. paper) to allow the low-cost camera to detect the inhale and exhale airs.

We will also develop an RF imaging algorithm to detect the human posture using purely

wireless signals. The key idea is to di↵erentiate the signal reflected from the human body and the

bed to build the 3D image of the human body. This is very challenging due to the unpredictable

reflection characteristics of di↵erent materials (i.e., human, bed, floor, etc.). To overcome this

challenge, we are using at Radar Polarimetry approach to di↵erentiate di↵erent materials based on

the characteristics of the received signals. Radar Polarimetry is a well-known technique in radar

imaging technology. RADAR systems use synthetic aperture radar polarimetry for topography

imaging. Aircraft and satellites can even use polarization of received RADAR signals to measure

soil moisture of farmland. By measuring the polarization and power of the received waves, we can

distinguish objects based on texture and material (metallic or otherwise). We place a metal piece

underneath the bed. The signal transmitted by the transmitter will traverse the medium, hit the

human and the metal pieces and reflected o↵. The reflected signals are then captured by our RF

receivers. The key idea here is to amplify the di↵erence in reflection signals caused by the human

body and the metal pieces to identify the human posture.

⌅ Sensing drones presence by identifying their signatures from RF signals. We have

demonstrated the feasibility of sensing objects (i.e., drone) using Wi-Fi signal emitted from the

devices. We are investigating the following research directions.

We have focused on detecting the presence of drones through their unique inherent physical

movement signatures on Wi-Fi domain. This system can be expanded to consider a wider variety

of drones, at greater distances, and on non-Wi-Fi frequency bands. The robust system should

also incorporate an automated channel sensing technique, as the current experiments fix the eaves-

dropping to a specific communication channel. Non-line-of-sight RF detection experiment should
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be carefully studied and analyzed in the presence of occlusions such as buildings. Future drone

detection system could identify other aspects of the drone beyond merely its presence, such as its

weight, number of propellers, location, speed, and direction. Moreover, an evaluation of the impact

of the environment on the accuracy of detection should be investigated.

Drone-defense would not only detect one or multiple drones at the same time but also charac-

terize the drones in detail such as cargo load, number of propellers, manufacturers features, and so

on. As mentioned earlier, this research direction would be very interesting to RF sensing researcher

where the unique characteristics among drones are studied and analyzed to detect unauthorized

drones.

Localizing and tracking drones using multiple passive radio stations and optimizing the sta-

tion coordination are challenging yet important topics in order to provide a geographical fencing

system. Proper wireless network protocol must be designed to collaborate and coordinate multiple

wireless sensing stations to detect and analyze the drone when it flies at high speed. Novel synchro-

nization technique is required to overcome MHz-level operation of state-of-the-art SDR platform

for gathering the data at multiple wireless sensing stations properly.

Also, in the future, we hope to address the fact that our system is not currently capable

of detecting multiple drones in the same vicinity at the same time. We believe that a network

of the sensing system is needed to properly detect and characterize multiple drones at the same

time. Multimodality approach of combining RF-based, acoustic-based, and video-based solution

in a cost-e↵ective manner may become a neat solution to make the system ready for massive

deployment.

Using similar approach of drone detection, we believe researchers can develop a new class of

applications ranging from sensing the status of di↵erent machines in a smart house environment

including washing machine, dryer machine, co↵ee maker, etc. The signals emitted from these

devices, which is traditionally used to communicate cloud through Wi-Fi access points, can be used

to specify the status of these machines. There would be multiple levels of sensing can be applied

in these cases. The first level of sensitivity is to sense whether these machines are on or o↵. The
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second level would be what is the stage of the machine (e.g., 30%, 70% of the process). The other

level of sense is to combine the sensing data from multiple objects status and infer the environment

information more clearly and accurately.

⌅ Continue exploring the feasibility of sensing indoor location leveraging forwarded

GPS signal. The shifting frequencies mechanism is currently the best solution to overcome the

impact of the forwarded signal to live GPS-based devices. We will investigate more to see the

better solution to overcome this challenges. Next, our existing solutions only utilizes the relative

height between the Wi-Fi AP and receiver for 3D localization. Even though the GPS can o↵er the

altitude value, the inaccuracy is still a bit high compared to the longitude and latitude. However, we

expect that as the accuracy of GPS will be improved in the near future [212], the proposed system

can provide geographic coordinate values in 3D very accurately. We would like to miniaturize the

prototype by revising PCB design and then designing ASIC circuit. The hardware prototype acts

as a record and replay component, which is a little bit expensive. We believe that if the system is

mass produced, the price should be significantly reduced. While the current system is implemented

on SDR, we wish to implement it on a smart-phones as done in [204]. Given raw GPS measurement

that is currently supported by Android [213], we can utilize this API to override the positioning

result obtained from receiver algorithms. Any location-based applications can easily incorporate

this library to obtain high accuracy of the proposed technique. In addition, in an o�ce building,

the APs signal from outside can be forwarded to deep inner areas using multi-hop. This scenario

is very complicated due to the unknown location of the APs, the angle of antennas in each AP, as

well as the arrangement of AP respective to each other.
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