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Abstract

Peterson, Daniel Wyde (Ph.D., Computer Science)

Probabilistic Modeling of VerbNet Clusters

Thesis directed by Professor Martha Palmer

The objective of this research is to build automated models that emulate VerbNet, a se-

mantic resource for English verbs. VerbNet has been built and expanded by linguists, forming

a hierarchical clustering of verbs with common semantic and syntactic expressions, and is

useful in semantic tasks. A major drawback is the difficulty of extending a manually-curated

resource, which leads to gaps in coverage. After over a decade of development, VerbNet has

missing verbs, missing senses of common verbs, and is missing appropriate classes to contain

at least some of them. Although there have been efforts to build VerbNet resources in other

languages, none have received as much attention, so these coverage issues are often more

glaring in resource-poor languages. Probabilistic models can emulate VerbNet by learning

distributions from large corpora, addressing coverage by providing both a complete cluster-

ing of the observed data, and a model to assign unseen sentences to clusters. The output of

these models can aid the creation and expansion of VerbNet in English and other languages,

especially if they align strongly with known VerbNet classes.

This work develops several improvements to the state-of-the-art system for verb sense

induction and VerbNet-like clustering. The baseline is two-step process for automatically

inducing verb senses and producing a polysemy-aware clustering, that matched VerbNet more

closely than any previous methods. First, we will see that a single-step process can produce
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better automatic senses and clusters. Second, we explore an alternative probabilistic model,

which is successful on the verb clustering task. This model does not perform well on sense

induction, so we analyze the limitations on its applicability. Third, we explore methods of

supervising these probabilistic models with limited labeled data, which dramatically improves

the recovery of correct clusters. Together these improvements suggest a line of research for

practitioners to take advantage of probabilistic models in VerbNet annotation efforts.
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Chapter 1

Contributions

Natural language processing (NLP), or natural language understanding, is a field broadly

concerned with enabling computers to interact with human (or “natural”) language. One of

the most difficult open problems in natural language processing is how to model meaning

in a way that permits computers to generalize and reason about the text. This sub-field is

called computational semantics.

VerbNet (Kipper-Schuler, 2005) is a resource that is based around semantic (meaning-

based) groups of verbs. It aids computer understanding of natural language, because verbs

in the same group tend to share important aspects of meaning, and also tend to be expressed

in a small number of possible sentence structures (called syntactic frames; sets of meaning-

preserving syntactic frames may be called syntactic alternations). VerbNet provides useful

semantic information to aid in natural language processing tasks, but it suffers from a chronic

problem. It does not have enough coverage. Manually adding new verbs and classes to

VerbNet is a challenging task requiring linguistic expertise, and is likely infeasible to carry

out for every potential domain of application, or for multiple languages. Addressing this

coverage issue is the major motivator of this research, and VerbNet is explained in more

detail in Section 2.2.3

The following pages describe an effort to improve VerbNet by expanding coverage, using
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large bodies of text to create the verb clusters. A baseline framework from Kawahara et al.

(2014b), which is explained in detail in Chapter 3, builds VerbNet-like clusters from observed

dependency parses in a large corpus. This is a step-wise framework, that breaks the verb

clustering process down into steps of sense induction (Section 2.4.1) and verb clustering

(Section 2.4.2). The clusters from this baseline have higher VerbNet alignment than any

previous method. Systematically experimenting on this baseline model has produced a set

of independent improvements to the state of the art. Each aids in understanding of the task,

and brings us closer to achieving an automatic, data-driven extension to VerbNet, to bridge

the gap in coverage for any corpus. These improvements are explained in detail in Chapters

3, 4 and 5.

1.1 Hypotheses

The foundational hypothesis that drives this work was laid down by Levin (1993). We

state it as:

Hypothesis 1 Observable syntactic behavior is a reflection of a verb’s semantics.

Levin introduced a set of semantic classes for verbs, which gave evidence of this hypothesis

in action. Each class was semantically coherent, in the sense that the verbs all shared

important semantic aspects. Further, each class had a set of syntactic patterns or allowable

alternations, that were distinct. To illustrate this principle, consider the example verbs

“break” and “cut.” The sentences “John broke the window,” and “John cut the bread,”

are syntactically identical and both are grammatically acceptable. But, while “The window

broke,” is a fine sentence that may be observed in a corpus, “The bread cut,” is an awkward

construction and is unlikely to occur. This is evidence that “break” and “cut” belong in

different semantic classes. However, “shatter” can participate in both syntactic patterns,

and is much more semantically similar to “break”.
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Levin’s classes gave significant evidence of Hypothesis 1, but did not provide enough

coverage to be used for computational semantics. VerbNet, which is a major focus of this

work, expanded these original classes, adding thousands more verbs and many new classes,

as well as rich semantic annotation.

We adopt Hypothesis 1 because it is plausible, and can be experimentally validated.

Levin’s classes and VerbNet have stood up to scrutiny in the field of linguistics and have

been useful to NLP practitioners. The even more important aspect is that it is testable.

The organizing principle is that verbs with the same semantics share syntactic patterns.

Syntactic patterns are observable in a large corpus (as detailed in Chapter 2.1). We can test

the hypothesis by grouping together verbs that share syntax, and test whether the resulting

clusters are semantically coherent. And, we can test whether verbs that share semantics do,

in fact, share clusters.

In this work, we often use VerbNet or related semantic verb classes to evaluate our

success. VerbNet is a large-scale semantic grouping of verbs, based on Levin’s verb classes,

so it provides many examples of semantic verb clusters with similar syntactic preferences.

We aim for our models to produce those same clusters, as correctly as possible.

Hypothesis 2 Sense disambiguation is a crucial component of deriving semantic groups of

verbs.

Polysemy is a relationship where the same word can have multiple, partially related

meanings. For example, “enter a room” has a different meaning than “enter university,”

and “cutting prices” is different from “cutting ribbon.” Homonymy is a relationship where

words have the same spelling but completely unrelated meanings, such as “bolting in terror”

or “bolting steel”. This work considers all meanings for the same word as distinct senses,

and in general we will not distinguish between polysemy and homonymy. Some highly-

frequent verbs have a large number of senses, and to put those senses together into the same

class is often entirely incorrect. “Bolt” sometimes shares semantics with “attach”, “staple”,

or “screw”, and sometimes “bolt” means “flee”. “Attach” never means “flee”, so the term
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“bolt” has an ambiguous meaning. Resolving this uncertainty is called sense disambiguation,

and the task of discovering senses is called sense induction.

This hypothesis is especially relevant when using syntax-based approaches to semantics.

Syntactic behavior is likely to be different for these different meanings, Ignoring polysemy

introduces noise, which causes two problems for cluster recovery. A polysemous verb treated

as a single unit has many syntactic frames, including frames from different semantic classes,

which makes it align poorly with any well-constructed classes of syntactic patterns. Further,

once that polysemous unit is assigned to a cluster, it degrades the coherence of the cluster

by introducing syntactic frames which do not belong.

The importance of capturing polysemy is highlighted in prior work on verb clustering (Ko-

rhonen et al., 2003).

Hypothesis 3 Sense disambiguation can be done simultaneously with semantic cluster cre-

ation.

The baseline model, introduced in Chapter 3, is a two-step framework for creating seman-

tic verb clusters, separating the learning of verb senses from the learning of verb clusters.

The sense induction model effectively works by building semantic groups of co-occurring

arguments to the verb, like topics from latent Dirichlet allocation (LDA) (Blei et al., 2003),

using a separate set of topics for each verb. Then these verb senses are clustered across verbs,

using a set of syntax features as topics to describe the syntactic behavior of verb clusters.

This model requires processing the corpus twice, and does not share any information across

verbs.

The joint model, also introduced in Chapter 3, provides sense disambiguation and clus-

tering in a single step, and offers several advantages. The learned senses are actually better

than the step-wise system, and the clusters can be improved by incorporating the full set

of features from both steps of the baseline model. Because there is no layer of abstraction

between sentences and clusters, sentences with VerbNet class labels can be used to help guide
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the cluster creation (Chapter 5), providing further benefit. Further, the model is concep-

tually and mathematically more similar to LDA, so can be implemented easily by making

minor modifications to existing codebases.

Hypothesis 4 Partial supervision can increase both the accuracy and the coherence of

automatically-created semantic verb clusters, even for clusters with no supervised examples.

Machine learning is about teaching computers to uncover and recognize patterns; when

the patterns are a set of known labels for some examples, it is generally called supervision.

Preliminary experiments adding supervision to Bayesian verb clustering, described in Chap-

ter 5, indicate that VerbNet alignment can be improved by adding supervision. Overwhelm-

ing evidence from the body of machine learning research supports the notion that supervision

will help classification on the provided classes; this hypothesis supports a stronger notion

that supervision need not describe all behavior of interest in order to improve the quality of

all clusters. Evidence provided in Chapter 5 demonstrates that the accuracy of the clusters

is improved even if a cluster is not included in the supervision, but the coherence judgements

are still inconclusive. There are open questions about the best way to add partial supervi-

sion to clustering techniques, and best practices seem to depend on the domain, so this is a

promising line of future research discussed in Chapter 6.

1.2 Publications

Kawahara et al. (2014a) introduced a model for verb sense induction using probabilistic

models, which is covered in Section 3.2. Later, Kawahara et al. (2014b) clustered these

induced senses into polysemy-aware verb clusters that aligned well to VerbNet, creating a

step-wise framework covered in Section 3.3.

Peterson et al. (2016) was published at *SEM 2016, and demonstrates a method to im-

prove the step-wise framework by including distant supervision from SemLink. The method-

ology and results are covered in detail in Section 5.1.
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Peterson and Palmer (2018) was published at AAAI 2018, and includes several contri-

butions that improved the step-wise framework. First, it introduced a model that performs

sense induction and semantic clustering for all verbs simultaneously. This model is nearly

identical to latent Dirichlet allocation (LDA) (Blei et al., 2003), treating each verb as a docu-

ment. Second, it introduced a novel model with a unique mathematical basis to improve the

verb clustering step. Peterson and Palmer (2019) is currently under review, and is a short

paper discussing the limitations of this novel model. These results are covered in Sections

3.4.1 and Chapter 4.

Peterson et al. (2019) is currently under review, and introduces a method for partially

supervising the joint sense induction and clustering model (Peterson and Palmer, 2018).

The semi-supervised clustering method is extremely computationally efficient, requiring no

further changes to the inference algorithm. The resulting clusters align to VerbNet more

closely than any previous model, including the method of adding supervision to the step-

wise framework (Peterson et al., 2016). These results are detailed in Sections 3.4.2 and

5.2.

During this research, we carried out several experiments on supervised topic modeling

at Oracle Labs. Oracle has filed a provisional patent covering this work, which includes,

in part, the computationally-efficient method of partial supervision described in Section 5.2

(Peterson et al., 2019).

1.3 Outline

Chapter 2 defines important terms and describes the foundation of ideas this work is

built upon. Chapter 3 describes the Dirichlet-multinomial and Dirichlet process mixture

models that form the scaffold of the experiments in this research. Chapter 4 describes

a novel clustering model based on the positive pointwise mutual information (PPMI), and

illustrates its success and limitations. Chapter 5 describes two methods of adding supervision
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from Semlink, one for the step-wise model and one for the joint sense induction and clustering

model. Chapter 6 ties this work together, and provides some insight into future directions

for this research.
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Chapter 2

Background

This work, like all human accomplishments, relies on a foundation of established knowl-

edge. It employs theory from both linguistics and machine learning. In order to place it in

proper context, we must first understand the linguistic principles that serve as inspiration,

the resources used for evaluation, and the corpora that provide the required input knowl-

edge. We will then discuss probability theory and how probabilistic models can be used to

model semantics. This work builds semantic clusters, so we will discuss the general case

of clustering, define polysemy and cast in in terms of clustering, and review the history of

creating semantic verb clusters. Finally, we’ll cover a history of capturing meaning using

vectors, which admit easy representation and manipulation by computers.

2.1 Corpora and Parsing

Language is a basic human faculty. It allows us to transmit ideas, with the basic assump-

tion that our ideas can be understood by others. However, it is not obvious how this works.

We want to learn more about how language works because it has practical and philosophical

importance.

The scientific process, in which ideas are held up to examination by experiment, is the

best way to gain knowledge about the world. Scientific examination of language is called
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linguistics, but in order to test our ideas we must have a testing apparatus. Linguists have

developed many methods to gather experimental evidence, but in this work we primarily use

corpora.

A corpus (plural corpora) is simply a body of text, composed of many distinct works.

A collection of newspaper articles, or medical abstracts, or works of fiction, is a corpus. In

some sense, an encyclopedia or even a full library may be a corpus.

Corpus linguistics employs observations of real language use as evidence to make infer-

ences. Each document in a corpus, and each sentence in the document, was written by an

author trying to convey an idea. If a corpus contains a wide range of authors discussing

a wide range of topics, it should actually reflect a fairly complete range of accepted lan-

guage use. Of course, many terms are used only in particular domains (“contraindicated” is

seldom used outside of medical contexts, and “abet” is seldom used outside criminal law),

and almost any corpus will be missing terms that exist in others. In a large enough corpus,

even uncommon terms will typically occur with high enough frequency to reason about their

typical patterns of use. Corpora are essentially treated as true linguistic evidence, and we

can use this observational data to validate hypotheses about how language works.

Further, annotated corpora provide an important function for training machine learning

systems to perform linguistic tasks. In natural language processing the goal is often to train

a computer to extract meaning, to translate, summarize, or find the structure of a sentence.

By treating a corpus as a set of example sentences, and explicitly labeling the structure that

should be derived for each sentence in the corpus (“annotating”), we guarantee that the

machine learning system has a training set of examples that look like the real data it may

encounter. If the annotated corpus is sufficiently large, it will contain varied examples, and

can train a sophisticated and accurate recognizer for the desired behavior.

In particular, this work uses corpora that are completely digital, and contain primar-

ily modern English. Working with digital corpora makes it easier to start analysis using

computers, and is hardly restrictive since the vast majority of text produced in the last
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three decades has been digital in the first place. English is one of the major languages for

international communication, and as a result has many large and widely-available corpora.

Standard and often-used corpora for computational linguistics include dumps of Wikipedia

(wik), or the large Gigaword corpus (Parker et al., 2011) (distributed by the Linguistic Data

Consortium).

2.1.1 Parsing

Parsing is the act of converting a sentence into a structured syntax tree Jurafsky and

Martin (2014); Manning et al. (1999). It is a basic task in computational linguistics, and

one of the prerequisite steps for this work. Tbere are several processing steps involved to

produce a parse of a sentence, and each has been given attention as a task in its own right.

The main preprocessing steps are sentence segmentation, tokenization, and part-of-speech

tagging (Jurafsky and Martin, 2014). The raw text must be broken into sentence units,

and while the boundaries are typically marked with punctuation, punctuation marks aren’t

perfect indicators (e.g., abbreviations are often marked with periods, question marks may

appear inside quotes). Each sentence must have its words separated into “tokens,” which

are the raw units of text. Each word is a token, but a word with a trailing comma should

be treated as two tokens: the word, and the comma. For this reason, punctuation marks

are treated as independent tokens, again with some exceptions (e.g., apostrophes and the

aforementioned abbreviation periods). The rules for tokenization are thus a little complex,

but generally agreed upon1 Finally, each token is labeled with a “part of speech” - these

are the typical word types (noun, verb, adjective, adverb) and also some specific special

cases of linguistic relevance (punctuation, proper noun, separation of singular from plural in

nouns and gerund from infinitive in verbs). These preprocessing steps are standard input to

many natural language processing tasks, and there are high-quality, free systems available

1Tokenization rules are much more complicated in Chinese than in English, since Chinese words may
span multiple characters, and deciding which characters belong together as a unit is nontrivial. English has
a lovely tendency to split words with spaces, but this isn’t a universal, and this splitting completely ignores
multi-word expressions (e.g., “heart attack”) that may be better to treat as a single token.

10



to perfom them (Bethard et al., 2014; Bird et al., 2009; Manning et al., 2014).

Parsing, or converting a sentence into a syntax tree, can be done in two ways, called

“constituency” and “dependency” parsing. This work uses dependency parses to represent

the syntactic information in a corpus, but both types of parsers are briefly described.

S

V P

NP

NP

JJ

white cats

NN

chases

V B

dog

NN

The

DET

Figure 2.1: An example constituency parse.

Constituency parsing breaks a sentence (or, recursively, a phrase) into its syntactically-

coherent constituent parts. Figure 2.1 shows a constituency parse for the sentence “The dog

chases white cats.” The “leaves”, or terminal nodes of the tree, have a one-to-one corre-

spondence with the tokens of the text. Each non-terminal node is labeled with a summary

of the “type” of phrase it represents. Some types are coarse, such as “noun phrase” (NP),

which contains a noun along with any determiners or modifiers that appear in conjunction;

others are essentially parts of speech, such as determiner (DET) or adjective (JJ). Each

constituent, regardless of granularity, has a unified grammatical role in the sentence, and

that role is labeled. The example sentence can be broken into two coarse constituents: a

noun phrase (“the dog”; NP) and a verb phrase (“chases white cats”; VP). The verb phrase

itself has two finer-grained constituents: a verb (“chases”; VB) and a noun phrase (“white

cats”).
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dobj

attr

Figure 2.2: An example dependency parse.

Dependency parsing attaches words together with directed links. Figure 2.2 shows a

dependency parse of the same example sentence. The main verb of a sentence (“chases” in

the example above) is linked to an always-present “root” node, that is named for being the

root of the tree. The dependents of the verb, which may include subjects, direct and indirect

objects, clausal complements, and other syntactic structures, are linked with paths leading

from the verb. However, if the dependent is a multi-word phrase, only the “head” word is

a dependent of the verb. In the above example, “The dog” is the subject of “chases”, but

“dog” is the head word of the phrase. “The” depends on “dog”, not “chases”. Similarly,

“white” depends on “cats.” Each word in the sentence is the direct descendant of a word,

and may be the head word of its own syntactic sub-tree.

An important aspect of dependency parsing is labeling the links. Typically, the subject of

a verb is labeled differently from the object, because these are distinct syntactic relationships.

Because each link goes to exactly one word, the main syntactic structure of the sentence can

be read from the direct dependents of the verb, and the relationships are clear.

This work uses dependency parses, which are general and compact. Although some

nuance is lost, “dog chases cats” is the syntactic and semantic core of the example sentence

above. It helps to use collapsed prepositional dependencies, so if the prepositional phrase “on

Tuesday” was linked to a verb, the head word “Tuesday” would be linked directly to the verb,

with label prep on. With these collapsed dependencies, all the most relevant information to

12



the verb and its context is preserved in one single link, and everything lower in the tree can

be removed.

There are corpora that have been annotated with parse information (Silveira et al.,

2014). Though labeling such a corpus required a large investment of resources to create,

there are now enough example parses to successfully train algorithmic parsers (Chen and

Manning, 2014), and achieve high-quality output. These parsers can be used to label orders of

magnitude more data than could be feasibly accomplished by humans, and do so quickly. The

dependency relations analyzed in this work are all automatically generated by algorithmic

parsers.

2.2 Semantics: Models of Meaning

Semantics is the study of meaning. One useful approximation is describing who did what

to whom, when, how, where, and why.

In Section 2.2.1, I will describe semantic role labeling, which is a widely-used framework

for labeling the parts of a sentence that answer the questions above. Section 2.2.2 describes

semantic resources, including PropBank, WordNet and FrameNet. Because this work deals

extensively with VerbNet, Section 2.2.3 describes this particular resource in more detail.

Section 2.2.4 describes SemLink, which includes a unified annotated corpora with VerbNet,

PropBank, and FrameNet labels.

2.2.1 Semantic Roles

Semantic role labeling (SRL) (Palmer et al., 2010) is the task of labeling the semantic

participants (predicates and arguments) in a sentence. Each argument is labeled with its

“role,” which indicates its relationship to the predicate. Consider the sentence, “Bob broke

the window.” Here the predicate, or action, is “break,” and it’s the what of the sentence.

The “agent” is the argument that performs the action, “Bob” (who). The “patient” is the
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argument that is acted upon, “window” (whom). Linguists use the role “patient” especially

to describe arguments that are changed by the action; if Bob only looked through the window,

the window should instead be the “theme.” If he broke the window with a hammer, the

hammer is the “instrument” of the breaking, and if he gave the hammer to Alice, then she is

the “recipient.” Of course, not every sentence has an agent; sometimes, “The window simply

broke.” Here, although window is in the syntactic subject position, it is still the patient of

the predicate.

PropBank is a corpus labeled with verbal, nominal, and adjectival propositions and their

arguments, and it defines semantic roles for each predicating element. The underlying text

for PropBank is the same as the Penn Treebank, so the semantic role labels are an additional

layer of annotation, on top of the parse trees. PropBank defines numbered semantic roles for

each verb, and are somewhat coarse- grained. Typically, PropBank uses arg0 to denote the

prototypical agent, and arg1 to denote the prototypical patient. The notion of “prototypical”

agency was introduced by Dowty (1991), who argued that role types should be viewed not as

discrete types, but as prototypes with a list of verbal entailments. For example, if “The ball

broke the window,” the ball is still the arg0 because it fits the “breaker” proto-role, even

though it doesn’t have any particular agency in the action. Similarly, arg1 may be used for

themes, or experiencers, for some verbs. Numbered arguments can also denote verb-specific

additional roles: for “buy”, arg0 is the buyer; arg1 is the thing bought; arg2 is the seller;

arg3 is the price paid; and arg4 is the beneficiary. Obviously, any particular sentence may

contain a subset of these arguments. Not all roles are obligatory.

Semantic role labeling is often treated as an intermediate task, and supports systems like

information extraction and question answering (Shen and Lapata, 2007; Christensen et al.,

2010; Moreda et al., 2011).

2.2.2 Semantic Resources

There are several noteworthy semantic resources aside from PropBank.
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WordNet (Miller, 1995) acts as a dictionary with explicit links that capture word-level

semantics. “Synsets” are groups of words that are synonymous (mutually interchangeable),

and are labeled and linked to other synsets with relations like antonymy (having opposite

meaning, as “bad” is to “good”), hyponymy (one is a kind of the other, as a car is a type of

vehicle), and meronymy (one is a part of another, as a tire is a part of a car). Each synset

also has a part-of-speech label, so the verb “bank” is in a separate synset from the noun.

Polysemy (where the same word may have multiple meanings, like “bank” as a noun may be

either a financial institution or the side of a river) is accounted for by numbering the distinct

senses, and putting each into a synset independently.

FrameNet (Baker et al., 1998) collects the semantic “frames” of various verbs, and is a

more abstract representation. A semantic frame is a description of an event, which may

be invoked by a predicate. For example, “commerce buy” is a semantic frame that may be

invoked by a predicate like “buy” or “purchase”, but shares certain semantic references. As

in PropBank, Framenet lists the semantic participants (a buyer, and the goods purchased,

and optionally a seller, money exchanged, a beneficiary, or an explanation), but lists words

that can invoke the frame (like a WordNet synset), and its relationship to other frames

(inheritance, frames it relies on or that rely on it. For example, “import” invokes a frame

that relies on “commerce buy”). This mapping of relationships describes the “network” of

semantic frames.

2.2.3 VerbNet

VerbNet (Kipper-Schuler, 2005) is a semantic resource for verbs. Like WordNet and

FrameNet, it links words that are semantically similar. Unlike other resources, VerbNet is

a verb-specific lexicon, and each VerbNet “class” (cluster of semantically-related verbs) is

described with thematic roles (similar to FrameNet, but typically less specific), the restric-

tions on the arguments (e.g. whether the subject must be a person, or must be animate),

and a set of syntactic frames. In VerbNet, a frame is a syntactic realization (e.g. transitive,
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intransitive, or ditransitive sentences, whether prepositional attachments are allowed, and

whether a sentential complement is allowed or expected), and an associated set of semantic

predicates, which provide general semantics of the event described by the verb.

VerbNet is based on the classes of Levin (Levin, 1993). Levin’s classes are organized

by the hypothesis that semantics has a strong impact on syntax, and therefore that syn-

tactic distributions contain useful semantic information. Verbs share a class when they can

appear in the same set of syntactic frames, and share a set of semantic predicates. This

hypothesis, which we call Hypothesis 1, has so far held up to linguistic scrutiny. VerbNet

extends the coverage of these initial classes to a much larger set of predicates. VerbNet also

extends the structure hierarchically, allowing sub-clusters that share specific behaviors to be

distinguished from more general classes.

VerbNet’s semantic information is extremely rich, and is designed to aid semantic pro-

cessing. Any sentence with a VerbNet class label has instant access to a list of semantically

similar verbs, selectional restrictions on the observed syntactic frame, thematic roles, alter-

nate allowable syntactic frames using those same roles, and a set semantic predicates that

describe the general event semantics of the sentence. These pieces may be used in automatic

translation, for example, to generate simpler paraphrases of a sentence which may be easier

to translate into the target language. Or, when tracking events through a news story, they

may be used to reason about whether any of the semantic participants in a sentence has

changed state.

VerbNet class annotations have proven useful semantic role labeling (Giuglea and Mos-

chitti, 2006; Hartmann et al., 2016). Its success in supporting NLP tasks has led to the

creation of similar resources in other languages, such as Urdu (Hautli-Janisz et al., 2015),

French (Pradet et al., 2014), Basque (Aldezabal et al., 2010) and Arabic (Mousser, 2010).

The main drawback of VerbNet is its lack of coverage. VerbNet is in English, and similar

resources exist in only a handful of languages, even though it may be especially useful for

processing in low-resource languages. Further, VerbNet’s coverage in English has gaps, and
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offers limited support for restricted domains (such as legal or medical texts). Adding coverage

to VerbNet is difficult, and the task grows more difficult as the resource grows; making the

correct classification is harder when there are more options, and some necessary classes are

likely to be missing. However, the semantic information of VerbNet is especially necessary

when dealing with rare words because these words have fewer examples to learn patterns

from. Expanding VerbNet’s coverage manually for all possible domains is an overwhelming,

likely infeasible task. Developing VerbNets for other languages is even more challenging.

Automated approaches to generating VerbNet-like structures are promising because they

solve the coverage issue directly. A resource that builds verb clusters based on a corpus will

have coverage of that same corpus. The challenge lies in aligning automatic verb clusters

to VerbNet in order to gain the semantic information associated with VerbNet classes. In

this work I aim to improve automated approaches in two ways. First, I aim to tease out

the necessary components of making VerbNet-like structures based only on corpus counts

(Hypotheses 2 and 3). These models are more generalizable, and portable to new domains

and languages much more easily. Second, I aim to improve alignment using limited labeled

data (Hypothesis 4), because high-accuracy alignment with VerbNet is required in order to

gain the benefits of VerbNet’s semantic annotation. Chapter 5 shows that each of these

investigations can improve VerbNet alignment, and presents a new state of the art model

that incorporates all the improvements from this work.

2.2.4 SemLink

Semlink (Palmer, 2009; Bonial et al., 2013b) is a project that links together the seman-

tic resources PropBank, WordNet, FrameNet, and VerbNet. Semlink version 1.1.2 contains

annotations of roughly 78,000 tokens from the Wall Street Journal section of the Penn Tree-

bank corpus. These annotations contain the semantic roles, VerbNet classes, and FrameNet

frames associated with each verb. It is useful for training tools that allow automatic link-

ing of these resources, but is also a useful corpus of VerbNet class annotations. We use it
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extensively in this work, both as an evaluation set and later as a source of supervision.

2.2.5 Recap of Semantics Background

Section 2.2 introduced the basic notions of semantics and semantic role labeling (2.2.1). It

also described useful semantic resources such as PropBank (2.2.1), WordNet and FrameNet

(2.2.2), VerbNet (2.2.3), and SemLink (2.2.4). It also defined polysemy, which will be a

recurring theme throughout this work. Polysemous words have multiple meanings, but the

same spelling. These meanings may not be related in any obvious way, so polysemy is an

important phenomenon to characterize language use.

2.3 Bayes’ Theorem

A great deal of this work deals with probabilities. Section 2.3.1 provides a primer on very

basic probability, and Section 2.3.2 introduces a few common probability distributions, and

the notion of expected value. Section 2.3.3 describes probabilistic graphical models, which

model the world by stating assumptions about how observed variables are related. These

models find explanations of data that balance the tradeoff between accuracy and the strength

of the assumptions, and often learn good representations. One extremely popular graphical

model for textual analysis is latent Dirichlet allocation (LDA), which is described in Section

2.3.4. Section 2.3.5 describes supervised topic modeling, which is a family of techniques

that incorporates known document labels as part of the graphical model. Incorporating

these known labels can steer the model to find representations that describe the data, while

simultaneously optimizing that representation to learn specific patterns. Finally, Dirchlet

processes (Section 2.3.6) can be used to sidestep one major challenge in LDA, which is choos-

ing a good number of clusters. Dirichlet processes instead sample the number of clusters,

with a strong assumption that the number of clusters should be small.
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2.3.1 Basic Probability

We encounter probability all the time in daily life. All outcomes are uncertain when

flipping coins, rolling dice, or shuffling cards. We also know, on some level, that every time

we get in a car, we may blow a tire on a stray nail, or that a lottery ticket may win us

millions of dollars. What is amazing about studying probability is that it gives us the tools

to precisely describe the chances of any outcome. The sum of two dice is three times as

likely to be 7 as it is to be 3; the odds of a flat tire are low but easily calculable for a trip of

known length; and the odds of a Powerball ticket winning the jackpot are lower still.

Probability theory is based upon two very simple assumptions (mathematically, these

are called axioms). The first is that we will reflect probabilities as being odds, where an

event that will surely happen has probability 1, and an event that will never happen has

probability 0. The second is that no event has negative probability.

Consider a well-shuffled deck of playing cards. Trivially, we can observe there is a one

in four chance the first card is a club (P (C) = 1/4), since there are four suits. There are

thirteen ranks, so there is also a one in thirteen chance it is an ace (P (A) = 1/13), and the

same chance it is a 4 (P (4) = 1/13). It can be both an ace and a club, but and there is

exactly one such card in a deck of 52 (P (AC) = 1/52). Because P (AC) = P (A) ∗ P (C),

we call these events independent. It cannot be both an ace and a 4, so P (A4) = 0. But,

because it cannot be both, we can compute the probability of it being an ace or a 4 by

simply summing the individual probabilities (P (A or 4) = P (A) + P (4) = 2/13). Because

the first card will surely be a club or not a club, so P (C or ¬C) = 1, and since it cannot be

both, 1 = P (¬C) + P (C).

If I observe the first card before you see it, and give you information about it, it should

affect your assumptions of the likelihood of the card. If you know it is a club, you know

there is a zero chance it is a spade. Mathematically, we denote “probability of S given C” as

P (S|C) = 0. We also know P (C|C) = 1 and P (A|C) = 1/13. In general, we can compute
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the conditional probability for events A and B as

P (A|B) =
P (AB)

P (B)
. (2.1)

This makes sense, because the probability of A, knowing B, must be related to the probability

of them occurring together. And, if B is known, we don’t have to consider any part of the

full distribution where B doesn’t occur, so in order to make P (B|B) = 1 as we would expect,

we need to divide by P (B).

Conditional probability gives further insight to the notion of independence. Recall A

and B are independent when P (AB) = P (A) ∗ P (B). Here, P (A|B) = P (AB)/P (B) =

P (A) ∗ P (B)/P (B) = P (A), and similarly P (B|A) = P (B). So, for independent events,

knowledge of one doesn’t change the probability of the other.

Bayes’ theorem builds on the relationship between joint probability and conditional prob-

ability. Consider Equation 2.1. We may restate this as,

P (AB) = P (A|B) ∗ P (B). (2.2)

We could also show, from P (B|A), that

P (AB) = P (B|A) ∗ P (A). (2.3)

Since P (AB) is the same in both Equations 2.2 and 2.3, the right hand sides must also be

equal, and with one simple algebraic step,

P (A|B) =
P (B|A) ∗ P (A)

P (B)
. (2.4)

This seems simple enough an idea, but it is incredibly powerful. It lets us compute the prob-

ability of P (A|B) without needing to compute P (AB), which often depends on knowledge
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of the full joint distribution. For a deck of cards this is simple, but we are often interested in

probabilities with billions of possible events in the joint distribtuion, and computing P (AB)

is computationally infeasible, even with a supercomputer. Computing the conditional prob-

ability of P (B|A) and the probability of a single event P (A) or P (B) is much easier, and

much faster.

The most important properties of probability theory are as follows.

• For any event A, P (A) ≥ 0.

• For any event A, P (A) + P (¬A) = 1.

• For disjoint events A and B, P (A or B) = P (A) + P (B) and P (AB) = 0.

• Events A and B are independent if P (AB) = P (A) ∗ P (B).

• The probability of A when B is known is P (A|B) = P (AB)/P (B).

• The above can be expressed as P (A|B) = P (B|A) ∗ P (A)/P (B).

2.3.2 Distributions and Probabilistic Functions

A probability function with mutually disjoint outcomes is called a “distribution” because

it describes how the fixed probability mass (recall, the sum of all disjoint events is 1) is

distributed to each outcome. A distribution implies a sort of scenario: drawing cards from

a deck, or measuring the typical waiting time between severe storms, or predicting the price

of a stock in the future. Some general scenarios occur commonly, and these probability

functions are studied and named as standard distributions. I will focus on characterizing the

distributions that are relevant to this work.

The uniform distribution, U(X), characterizes a draw of a random, real number x from

the interval [0, X). In particular, it is called uniform if every real number in that interval

has an equal chance of being drawn.
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The multinomial distribution, Mult(θ), characterizes a roll of a weighted die, with a fixed

number of sides. θ is a vector of non-negative real numbers, whose sum is 1; each component

θi describes a probability for a particular outcome i. When we roll the die, we show value i

with probability P (i) = θi.

A variable x drawn from a distribution is called a random variable, since we do not know

its value until performing the draw. We use the notation x ∼ U(X) to denote x being drawn

from a uniform distribution with maximum value X > 0.

The “expected value” E(x) for a random value x is essentially the mean of the distribution

from which x is drawn, weighted by the chance of choosing it. For a continuous distribution

like the uniform distribution, we can compute the expected value using E(x) =
∫∞
−∞ xP (x)dx.

For a discrete random variable drawn from the multinomial distribution, we compute E(x) =∑
i iP (i).

The Dirichlet distribution, Dir(α), is a distribution that takes a vector α of concentration

parameters. A draw from a Dirichlet θ ∼ Dir(α) is a vector of the same length as α, having

the properties that all elements of θ are nonzero, and
∑

i θi = 1. That is to say, a draw from

a Dirichlet distribution may be treated as the parameters of a Multinomial distribution. The

vector θ, on expectation, will be greater where α is greater, and the larger the components

of α, the smaller the variance that will be allowed from that mean.

2.3.3 Probabilistic Graphical Models

In this work, we will use the term model to mean a mathematical description of the

world. The model describes the structure that we expect to see in the world, and we “fit”

a model by finding parameters that make the model match our observations. Once a model

has been fit, it can exploit its structure to reason about the world it has not observed. It is

useful to the extent that it makes correct predictions about new data. When we talk about

the accuracy of a model we always mean that we fit the model to some data and evaluate

its accuracy on some intentionally held-out, extra data.
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R X

Figure 2.3: A graphical model describing the relationship of the first card drawn from a
deck, X, to the suit, S, and rank R. S and R are not linked, because they are independent
variables.

In this work, we particularly use the term model to mean a probabilistic graphical model.

We call the models graphical because we build a graph describing which variables are related

to one another, and what the relationships are. Each relationship is probabilistic, encoding

conditional likelihood once the parent variable is known.

We again use the well-shuffled deck of cards to illustrate a simple probabilistic graphical

model. The first card, X, depends on both the suit, S, and the rank, R. There is no

relationship between the suit and the rank, because they are independent. Knowing S

influences our knowledge about X, so there is clearly a relationship between these two

variables. A similar relationship holds between R and X. Figure 2.3 draws the variables and

shows their relationships.

2.3.4 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a graphical model that gives a

generative story to the creation of a corpus of text. Essentially, it posits that each document

in a corpus is a bag of words drawn from some hidden (or “latent”) distributions. The

document has a distribution over words, but that distribution is created from a mixture of

the latent distributions2, which are often called “topics.” These hidden topic distributions

are drawn from a Dirichlet distribution, which is chosen so that the multinomials tend to be

2In fact, LDA is in a category of models called Bayesian mixture models. The observed data are drawn
from a mixture of sources, and generally mixture models try to learn what those sources are, subject to
prior knowledge that put constraints on likely mixture components. These are models that have been very
effective at modeling a huge variety of phenomena as clustering algorithms.
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Figure 2.4: The generative model for latent Dirichlet allocation. Square plates indicate
repetition, and are notated with the total number of times the plate is repeated in the lower
right corner. Each of the D documents has a unique distribution over topic, θd, drawn from
a Dirichlet distribution with parameter α. Each of K topics φk is drawn from a Dirichlet
distribution with parameter β. Inside a document, Ld words are drawn by first selecting a
topic ki from θd, and then selecting wi from the corresponding φki . In practice, wi are the
observed tokens in a corpus, and so this node is shaded.

highly focused on a relatively small number of words. Also, the document’s mixture of topics

is itself a multinomial distribution, drawn from a separate Dirichlet distribution. Again, the

Dirichlet prior encourages the document to be a mixture of a small number of topics. In the

generative model (Algorithm 1), documents are written, word by word, by sampling a topic

at random from the document’s distribution, and then drawing a word at random from the

corresponding topic distribution.

Although the generative process is not an accurate description of how a document gets

written, it encourages useful topics. Each topic is focused on a small set of keywords, so

it tends to be coherent. Each document is focused on a small number of topics, so words

that occur together are naturally pulled into the same topics. The latent topic distributions

are characterizations of the coherent topics that are shared across all the documents, and

accurately model the documents and terms that are actually observed.

The graphical model for LDA is shown in Figure 2.4.
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Algorithm 1 Generating a Corpus using Dirichlet-Multinomial Mixtures

1: Select a number of topics, K
2: Select a number of documents, D
3: Select concentration parameters, α and β
4: for each topic k ∈ [1, . . . , K] do
5: Draw φk ∼ Dir(β)
6: end for
7: for each document d ∈ [1, . . . , D] do
8: Select a document length, Ld
9: Draw θd ∼ Dir(α)

10: for word i ∈ [1, . . . , L] do
11: Draw topic ki ∼Mult(θd)
12: Draw word wi ∼Mult(φki)
13: end for
14: end for

Training in LDA

LDA describes a probabilistic semantic decomposition of a corpus, but in order to use

it, we must find the parameters (topics and document-topic distributions) that allow the

generative model to most-closely match the corpus. This is called training, and broadly may

be accomplished in two ways.

Variational inference is one method of training graphical models that sacrifices some of

the expressive power in order to have faster training. It is similar to the training of Word2Vec

in that we define an objective function for which we can compute the gradient, and seek an

optimum solution numerically.

Sampling techniques, broadly called “Markov chain Monte Carlo” (MCMC), are used in

this work over variational inference. They are exact and easy to implement. In general, they

tend to be slower, but practically speaking they are adequately fast. They can take advantage

of multiple processors and be distributed across clusters of machines (Zaheer et al., 2016),

which helps dramatically, and the mathematical operations are much simpler. Because they

are simple to implement, they are much easier to modify. Adding supervision and other

complications to a variational algorithm is a much more demanding task.

In particular, LDA is often trained using Gibbs sampling, an MCMC technique that

25



updates one variable at a time. Even starting from random topics, updating the assignment

of a single word will tend to improve the distribution of topics. The Dirichlet prior on

the multinomials encourages the multinomials to put weight on only a small number of

outcomes. In sampling, this manifests through a “rich-get-richer” effect. We update the

topic assignments of all the words in the corpus, one after another, and each time we are

more likely to use the topics we’ve used often in that document, and that already place

a high chance on the observed word. As we continue to re-sample words based on these

updated topics, the rich-get-richer effect becomes more pronounced, and we end up with

an assignment that is dramatically better at using only a few topics per document, and a

few key terms per topic. This technique doesn’t require us to compute the gradient of the

full objective. Instead, we compute the statistics one variable at a time. Mathematically, it

is guaranteed that after enough passes through the data, the topics do not depend on the

initial topic distributions.

Gibbs sampling in LDA is described in Algorithm 2. It has a simple mathematical form,

because of a unique property of the Dirichlet distribution. The Dirichlet is a conjugate

prior of the Multinomial distribution. This is a precise mathematical term, but practically

speaking, it means that if we have:

• a Dirichlet distribution Dir(α);

• a Multinomial distribution Mult(θ) such that θ ∼ Dir(α); and

• observations of draws x1, x2, . . . , xn ∼Mult(θ);

then we may compute P (x ∼ Mult(θ) = k) without ever needing to know θ explicitly3. In

particular, if C(k) is the count of times k appeared in our list of samples x1, x2, . . . , xn, then

P (x = k) =
C(k) + αk∑
iC(i) + αi

(2.5)

3Actually, we can integrate over all possible distributions θ, each weighted by their likelihood. This allows
us to skip sampling any particular θ.
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Throughout this work, I will often use ∗ to stand in for an aggregate, i.e. C(∗) =
∑

iC(i).

Also, note the denominator does not depend on k at all. When it seems more legible, I will

instead write the above equation as

P (x = k) ∝ C(k) + αk,

where the ∝ implies there is a normalization step required to make the result a proper

probability, that is omitted in the equation. These are typical conventions in the literature,

because they help emphasize the details necessary for understanding the equations. Further,

I will refer to this sampling where a Multinomial is drawn from a Dirichlet, as a Dirichlet-

Multinomial.

When looking at the generative process, each word is generated by first selecting a topic k

from the the document’s distribution over topics, θ. Then, a word is drawn from that topic’s

distribution over vocabulary items, φk. The words are actually our observed variables, and

the unknown variables are the topics that were chosen at each step. In fact, we can view

fitting as learning the topic assignments, one per word, that were used in the assumed

generative process. We start with a totally random assignment to topics, and we treat

each assignment as an observation drawn from a Dirichlet-Multinomial. We know that the

topic should be chosen from the document, and we have observations of topic assignments

for the other words: by Equation 2.10, we can compute this simply using these counts.

Also, we have the set of all words assigned to each topic in the corpus; these observations

are sufficient to compute the probability of any given word from the corresponding topic’s

Dirichlet-Multinomial.

That is, we can observe counts Cθ(k) of topic assignment k inside the document’s θ. This

allows us to compute P (k|θ) ∝ Cθ(k) +αk. We also know the counts Cφk(w), allowing us to
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compute P (w|θk) ∝ Cφk(w) + β. With Bayes’s rule, we see

P (k|θ,Φ) ∝ (Cθ(k) + αk)
Cφk(w) + β

Cφk(∗) + |V |β
(2.6)

Algorithm 2 Gibbs sampling in LDA

1: Assign each word to a random topic and compute counts matrices
2: for iteration in range(num iters) do
3: for document d in corpus do
4: for word w, with current assignment k, in d do
5: Decrement counts of observations Cθd(k) and Cφk(w)
6: Sample topic knew according to Equation (2.11)
7: Increment counts of observations Cθd(knew) and Cφknew (w)
8: end for
9: end for

10: end for

2.3.5 Supervised Topic Modeling

One nice feature of graphical models is that it is easy to extend them. Since a graphical

model is a description of how variables are interrelated, new variables can be introduced, as

long as their relationship to other variables is understood.

Supervised LDA (Mcauliffe and Blei, 2008) and DiscLDA (Lacoste-Julien et al., 2009)

both add a secondary classification task to the training objective, so that the topics assigned

to each topic are effective features to classify the document according to a fixed label. La-

beled LDA (Ramage et al., 2009) designates a single, known label to each topic, and allows

documents to have multiple labels. The labels on the documents provide hard constraints

on the available topics, so the learned topics conform to the label set, regardless of semantic

interpretability.

A simple case involves document classification. Consider building a topic model that

characterizes a corpus of emails, but also classifies each message as belonging to a category:

“business,” “personal,” or “spam.” We first generate a topic distribution for each document,

and then from that distribution we generate the label, along with a set of words. When
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sampling, the topics will still tend to put words in the same document together. However,

a topic is more likely to be shared by two emails with the same label, and less likely if the

labels are different. In sampling, the model will try to find topics that are concise, coherent

descriptors of the corpus, but also are good at separating the known document classes. The

input labels are the supervision.

These techniques require accurate and complete document labels in order to be effective,

and limit the applicability to semi-supervised domains. They aren’t really suitable for our

task, because we know some verbs have senses not currently catalogued in VerbNet, and

because many verbs are missing entirely, so we do not have an exhaustive labeling of our

documents.

There are several methods of including word co-occcurrence knowledge or constraints to

help ensure topics conform to user-specified constraints (Xie et al., 2015; Yang et al., 2015;

Hu et al., 2014; Andrzejewski et al., 2009; Jagarlamudi et al., 2012), that allow users to

specify words that must or must not belong together, and in doing so guide the output of

the model without exhaustive labeleing of the documents. However, they require structural

changes to the model that increase the computational burden during sampling. In Section

5.2, I will describe a simpler method to incorporate existing supervision to the verb clustering

task.

2.3.6 Dirichlet Processes

The Dirichlet Process (DP) is a generalization of the Dirichlet distribution. It can be

thought of as a limiting case where the size of α grows to become infinite. To understand

this, consider the fixed-size Dirichlet-Multinomial. In Equation (2.10), we observe a strong

rich-get-richer effect. The more times an outcome k is observed, the more likely it is to be

drawn from the Dirichlet-Multinomial. αk acts, essentially, as a smoothing parameter, giving

some chance to a topic where C(k) = 0. As the number of parameters grows, at some point

the Dirichlet-Multinomial doesn’t tend to actually “use” the extra clusters. The tendency
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for each sample to stick to the clusters with high C(k) dominates4, and those clusters are

used over and over again. This is exactly the behavior that leads to sparse, coherent topics,

and makes LDA work.

In the Dirichlet Process, rather than choosing to select one of k topics, each parameter

chooses among k + 1 options - the k known topics, or the option to select a new, currently

unused topic. The probability for these options again depends on the count of assignments,

but is given as

P (x = k) ∝


C(k), if C(k) > 0

α, if k = knew.

(2.7)

Note that α still represents a fixed chance of exploring new topics, but as the counts for

the known topics grow, it is much less common. Replacing the Dirichlet-Multinomial with

a Dirichlet Process allows the topic model to sample new topics as it sees fit, but with a

strong tendency to use only a small number. Also, infrequent topics may be abandoned, so

the number of topics grows and shrinks slowly during sampling.

The Dirichlet process prior has an advantage over the Dirichlet-Multinomial in that the

number of topics does not have to be specified in advance, but instead is selected during

sampling. Because this eliminates one of the parameters that must otherwise be selected

by the user, these models are often called nonparametric models. The hierarchical Dirichlet

process (HDP) (Teh et al., 2006) defines a working mechanism for applying the Dirichlet

process in the context of LDA, where each document should have a small number of topics

that are shared across documents. However, the HDP is computationally expensive, and

impractical on large datasets. However, a DPMM is a much simpler structure that is easier

to estimate, and several models discussed in this work use DPMMs to learn the number of

clusters.

4Of course, this depends on the value of α relative to the counts, but α is typically chosen to be small,
because this is desired behavior.
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2.3.7 Recap of Bayesian Modeling Background

This section provided a basic introduction to probability (Sections 2.3.1 and 2.3.2) and

graphical models (Section 2.3.3). Latent Dirichlet allocation (Section 2.3.4) is a graphical

model that learns coherent “topics” from an input corpus, that allow for an interpretable,

probabilistic representation of semantics. LDA can be extended with supervision (Section

2.3.5) to make the representation more suitable for recognizing important patterns in the

data. LDA uses Dirichlet distributions, and the the quality of the topics depends on the size

of distributions used. In many cases, a Dirichlet process can be used instead, to learn an

appropriate size while sampling (Section 2.3.6).

2.4 Clustering

Clustering is the task of grouping like items together (Murphy, 2012). It is a fundamental

task in machine learning, and has been widely studied. Large datasets of complex objects

are hard to reason about, but clustering reduces the number of objects to consider, and the

similarities within the clusters can provide insight and useful features for later tasks.

There are many general clustering algorithms that can operate on any dataset with

constant, well-defined pairwise item similarities. If the practitioner can define similarity

across items in a general, context-free way, any of these algorithms can be easily applied.

The simplest clustering techniques work greedily, starting in a degenerate case and im-

proving it bit by bit. Agglomerative clustering greedily adds links between similar items,

starting with each point in a separate cluster. Divisive clustering greedily splits clusters to

minimize the similarity between the resulting clusters, starting with all points in the same

cluster. The major difference between these greedy clustering approaches is how the notion of

pairwise item similarity translates to pairwise cluster similarity. Should the distance between

clusters be counted as the minimum pairwise distance across the span, or the maximum, or

the average? These produce different clusterings for the same dataset.
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k-means, and its corrolary kernel k-means (which depends only on pairwise distances),

assume there are a fixed number of clusters (k, a hyperparameter) that each are fairly well-

defined and well-separated spheres in some feature space. Each point is assigned to the

cluster whose center is nearest, and then the centers are recomputed. If the assumption

holds, the clusters can be useful.

Clustering can also be interpreted as a matrix factorization task, operating on the matrix

of pairwise similarities (Kuang et al., 2012). Since two items in the same cluster are perfectly

similar, according to the clustering output (and two items in different clusters are perfectly

dissimilar), every possible clustering produces a matrix of binary pairwise similarities. Clus-

tering can be viewed as reducing the error between the true and the binarized similarity

matrices, and there are several approaches that are common in the literature. Symmetric

nonnegative matrix factorization (SymNMF) (Kuang et al., 2012) approximates the origi-

nal distance matrix with positive-only vectors, for each item, and then casts these vectors

into binary vectors with exactly one nonzero element to read cluster assignments. Graph

factorization clustering (Yu et al., 2006) adds a size-based regularization to this approach,

penalizing overly-large clusters. Spectral clustering (Ng et al., 2002) learns the optimal de-

composition of the similarity matrix using the eigenvector decomposition, and then applies

k-means to the eigenvector embedding of the data points, and so can be viewed as kernel

k-means with a particular choice of kernel.

A major drawback to the above clustering algorithms is the notion of a context-free

pairwise similarity between all items, which may be required in memory. Probabilistic models

like LDA are also clustering algorithms, because each word in the corpus is assigned a latent

topic, but that topic depends on the context of the word. Because the topic distributions and

document distributions are shared across individual words, and are sufficient for assigning

a cluster, the model never needs to explicitly compute similarity between items. To reach

an equivalent level of expressiveness, kernel k-means would need to compute a kernel whose

dimension was the number of words observed in the corpus. The probabilistic mixture
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model lets us compactly specify the context, and how the context affects the cluster, which

dramatically reduces the computational burden.

2.4.1 Sense Induction as Clustering

Sense induction is the discovery of the many potential meanings of a word. Hypothesis 2

specifically highlights this issue, and evidence suggests an important facet of verb clustering

(Korhonen et al., 2003).

Sense induction can be viewed as a clustering problem. If we take all the examples of a

particular word in a corpus, we can assume that they share some small number of meanings.

Many words will have only one meaning, but it is easy to find examples of polysemous words.

However, if we assign each example to its correct sense, we end up clustering the examples

together. In fact, any clustering of the examples corresponds to a possible sense inventory,

with one sense per cluster. So, discovering the senses of a word is the same problem as

clustering the examples of a word from a corpus. Throughout this work we’ll refer to a

particular example of a word as an instance.

LDA naturally clusters instances, since each instance of each word is assigned to a unique

topic during sampling. Words like “point” may occur in topics of sports terms, or topics

of financial terms. Though these topics may be drawn together by “point,” the model tries

to make the topics concise, so there is pressure from the Dirichlet-Multinomial scheme that

drives the topics apart. When coupled with the document-specific distribution’s tendency

to also be sparse, an instance of “point” with many sports terms co-occurring in the context

will effectively ignore the financial topics. This is sense induction, as it learns that “point”

means different things depending upon the surrounding context in the document, and assigns

those instances to different topics.

In Chapter 3, we will use mixture models with Dirichlet-Multinomial topics to cluster

observed instances of verbs into senses.
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2.4.2 Verb Clustering Efforts

Following Levin’s original paper introducing verb clusters based on syntactic alternations

(Levin, 1993), there has been a good deal of work on clustering and classification using these

features.

Levin’s classes were based on diathesis alternations, essentially the grammatically valid

ways to restructure the arguments in a sentence. An example alternation is “Leave a note for

her,” which has the same meaning as “Leave her a note,” but with a different grammatical

realizations. Some research has gone into identifying valid diathesis alternations (Lapata,

1999; McCarthy, 2000), although for clustering, identification of diathesis alternations can

be approximated (Sun et al., 2013).

Much of the work on verb clustering and diathesis alternation identification relies on

the notion of a subcategorization frame (SCF). An SCF is a simplified representation of a

sentence, abstracting the grammar from a parser. A SCF from a constituency parser might

show the above alternation as “V NP1 for NP2” // “V NP1 NP2”. These are related to

the syntactic frames used in this work, except we use dependency information rather than

constituency information, and we prefer the alternate term to avoid confusion. SCF’s have

been widely used as features for verb clustering (Lapata and Brew, 1999; Im Walde, 2000;

Schulte im Walde and Brew, 2002; Brew and Schulte im Walde, 2002; Sun et al., 2008).

Enriching the SCF grammar with selectional preferences, which describe the sorts of nouns

likely to take place in the noun phrases, can improve performance (Im Walde, 2006; Sun and

Korhonen, 2009).

There has also been interest in classifying verbs into a known, pre-defined set of verb

classes. Although these works show the efficiency of syntactic features, most also investigate

hand-built linguistic features (Merlo and Stevenson, 2001; Joanis, 2002; Joanis and Steven-

son, 2003; Joanis et al., 2008; Lapata and Brew, 2004). Some work investigating the use

of these same features suggests that similar features work well for verb clustering, if some

supervision is given (Stevenson and Joanis, 2003). The variance across which features per-
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formed the best is explained by an investigation by Li and Brew (2008), which concluded

that both syntactic and lexical information are useful, but neither performs well alone.

VerbNet is a hierarchical resource, but many of the efforts clustering verbs, including the

work in this thesis, flatten the hierarchical structure. One exception notably attempts to

recover the hierarchical clustering using hierarchical graph factorization (Sun and Korhonen,

2011). They measure against VerbNet but remove all but the predominant sense of each

verb, rather than explicitly tackling the issue of polysemy. Their hierarchical clustering

algorithm first makes a large number of fine-grained clusters, and then clusters these fine-

grained clusters into larger, high-level clusters. This produces a natural hierarchy of clusters,

moving from coarse- to fine-grained distinctions. Any clustering algorithm is amenable to

this approach, so if in future work the recovery of the full VerbNet hierarchy is required, this

work provides a reasonable starting point.

Some clustering approaches explicitly tackle verb polysemy by allowing the same verb

in multiple clusters. A paper by Korhonen et al. (2003) provides a particularly important

starting point for the work in this thesis, providing supporting evidence for the hypothesis

that polysemy is an important behavior for semantic clustering, and providing a polyse-

mous test set against which some of the work in this thesis is evaluated. This paper uses

the information bottleneck (IB) method to cluster directly with the subcategorization frame

probabilities. The IB method is based on a criteria from information theory, trying to maxi-

mize the mutual information between subcategorization frames and clusters while minimizing

the mutual information between the verbs and the clusters. The joining of these two ob-

jectives produces clusters that describe informative trends in the data, while penalizing the

dominance of clusters which contain only a single verb. This work defines an evaluation set

of 110 verb clusters from VerbNet (Kipper et al., 2006), and pulls subcategorization frame

assignments from the British National Corpus (BNC), which also provides WordNet senses

for each verb. The WordNet senses were manually assigned to gold-standard clusters. The

analysis in this paper showed that the automatically-generated clusters were much less ac-
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curate when evaluated against monosemous clusters (where each verb is assigned only to the

cluster of its predominant sense), which suggests that polysemy in the data prevents align-

ment to a monosemous gold standard. Further, the authors show that the actual structure

of the polysemy is important for semantic clustering, by demonstrating that the quality of

alignment with a polysemous training set is significantly better than if the training set were

split into senses randomly.

In general, the approaches that handle polysemy the best are probabilistic in nature, and

it is beneficial to highlight some relevant probabilistic clustering frameworks. Several papers

(Parisien et al., 2008; Parisien and Stevenson, 2010, 2011) use Bayesian methods, including

the hierarchical Dirichlet process, to derive verb clusters that share syntactic realizations.

These clusters are derived from a corpus of child-directed speech, and are able to predict

whether a verb will participate in unseen SCFs after only a small number of observations.

This predictive power has already proven helpful to VerbNet annotators including so-called

coercive constructions in VerbNet classes (Bonial et al., 2011), which were identified as an

important gap in VerbNet’s coverage.

Another probabilistic framework that generates semantic verb clusters is called LDA-

Frames (Materna, 2012, 2013). The model generates semantic frames, each with a topic

distribution over each of its arguments, and is more comparable to FrameNet than VerbNet.

However, each frame implicitly defines a cluster of verbs. The model generates semantic

frames, each with a topic distribution over each of its arguments, and is more comparable to

FrameNet than VerbNet. Each verb participates in a small number of frames, and each frame

has a set of slots. Those slots are characterized by a preferences over grammatical relations

and semantic roles, which together identify a topic from which to draw the word. This model

separates the generation of frames into many independent parts, which is computationally

intensive.

An alternative method for generating semantic verb frames using probabilistic models

uses a simple Dirichlet process mixture per verb (Kawahara et al., 2014a), but requires a
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second verb clustering step to create polysemous verb clusters (Kawahara et al., 2014b).

This step-wise method was superior to LDA-Frames at creating polysemous VerbNet-like

clusters, and is covered in greater detail in Chapter 3.

Extending VerbNet to other languages is an aspiration of this research, and there has

been some interest in creating multi-language verb clusters. While manual work indicates

that patterns of polysemy and usage vary across languages (Im Walde, 2006; Majewska et al.,

2018), translating English VerbNet to other languages using multi-lingual word embeddings

is promising (Vulić et al., 2017).

There have been other efforts to make semantic categories or clusterings of verbs, that

have not been focused on Levin’s clusters or VerbNet. VerbKB (Wijaya, 2016) pairs verbs

with semantic categories from NELL, allowing cross-linking of VerbNet with the large knowl-

edge base and giving additional semantic power to practitioners. Verb Pattern (Cui et al.,

2016) introduces a method for discovering finer-grained associations of verbs to semantic

roles, and describes an alternative motivation and approach for the verb sense induction

task.

2.5 Semantic Vector Models

Computers are optimized for representing vectors of numbers, so there have been a num-

ber of approaches attempting to encode semantic information into these vectors. A vector is

an ordered list of numbers, essentially coordinates in a general space. This general space is

often a representation of co-occurrence matrices, described below in Section 2.5.1. One of the

first useful methods for creating semantic vectors is called Latent Semantic Analysis (LSA),

which is discussed in Section 2.5.2. This model is based on a matrix of word-document co-

occurrences, cleverly scaled. A recent alternative model called Word2Vec (Section 2.5.3) has

proven extremely useful at building semantic word vectors, and has been used widely in the

last few years to gain improved performance on semantic tasks. Word2Vec uses a different
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co-occurrence matrix, a different scaling, and a clever means of compression; these details

are described in Section 2.5.4.

2.5.1 Co-occurrence Matrices

Many semantic vectors are based on matrices expressing word occurrences in distinct

documents. A corpus with a large number of documents actually gives a very clear picture

of the way distinct tokens interact. Each document contains a large number of words, but

since a document is written about a single subject, the words that occur together have

some sort of semantic relationship: they are both used when discussing that subject. Even

ignoring word order (which we know is critical to understanding any sentence), the semantic

relationship of simple co-occurence is extremely useful.

Co-occurrence can be expressed as a two-dimensional matrix, where each row corresponds

to a single document, and each column corresponds to a single token. The number in the

row for document i and token j is simply the number of times token j appeared in document

i. Since the documents are generally about a single subject, this matrix is extremely sparse

- most of the entries are zero. A few tokens, like “the”, “and”, and other common functional

words, appear in almost every document. But there are many words that are extremely

subject-specific, and appear in very few documents (e.g., “zebra”, “dovetail”, “mousse”).

The matrix of document-token counts is a useful starting point for many tasks that are

based on capturing meaning, especially after they are compressed. Even though the count

of terms in a document does not account for word order, author, or intended audience, it

manages to capture a lot of information about each document and reflect important semantic

relationships. These matrices are extremely useful for tasks like search (finding documents

relevant to a given query), topic discovery, and document classification. Computers can

easily represent and manipulate matrices, but the raw co-occurrence matrix is extremely

large (often, there are hundreds of thousands of documents and possibly millions of tokens),

and extremely sparse. Small, dense matrices are easier to work with and computationally
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more efficient, so most approaches start by finding a way to compress this matrix while

preserving the same meaning.

2.5.2 Latent Semantic Analysis

Latent semantic analysis (LSA) (Deerwester et al., 1990) is one of the first widely-used

techniques for compressing the co-occurrence matrix. It uses the co-occurrence matrix, but

scales terms based on document frequency, and compresses the large, sparse representa-

tion using matrix factorization. Frequency scaling boosts the importance of terms that are

highly predictive of specific subjects. Matrix factorization provides a compact and efficient

representation of documents, that still preserves the data.

The document co-occurrence matrix, as described in the previous section, gives very little

weight to infrequent terms. A document of two thousand words may have a small number

of subject-specific tokens that occur only a handful times, while common function words

occur by the score. These common function words, then, account for a large amount of the

total count in the row, even though they do little to convey the meaning of the document.

Even if we remove the most common words from our matrix entirely, we often see the most

predictive terms occuring with low frequency. LSA addresses this issue by multiplying each

co-occurrence count (“token frequency” (TF)) with a quantity that boosts words that occur

in only a small number of documents (“inverse document frequency” (IDF)). Specifically,

the IDF for a word occurring in K out of D documents is computed as

IDF = log(D/K). (2.8)

The IDF reaches its minimum value (zero) when a token appears in every single document.

Such a token is not useful for predicting semantics at all, and it reaches its maximum value

(which depends on the number of documents in the corpus) when a term appears in one

document only. Such a term is extremely likely to be predictive of the subject of that
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document. The product of these two terms, or TF-IDF score, gives higher weight to terms

that appear often in a document, but also are subject-specific and therefore appear in a small

number of documents. TF-IDF is an extremely competitive baseline for semantic tasks.

Compression of large matrices can be accomplished by matrix factorization. If a matrix A

can be written as a product of smaller matrices, then the small matrices must convey struc-

tural information about A. Singular value decomposition (SVD) expresses A as a product

of three matrices,

AD×V = UD×kΣk×kV
T
V×k, (2.9)

where k << V , UUT = I, Σ is diagonal, and V V T = I. This is an extremely well-known

technique in linear algebra, and generalizes the eigenvector decomposition to non-square

matrices. The matrix Σ contains the largest k singular values, which are essentially the

amount of structural information from A that is captured by the corresponding rows of U .

The top k singular vectors approximate A more closely than any other set of vectors of the

same size, so SVD is optimal from the viewpoint of numerical accuracy.

LSA is simply the application of SVD to the TF-IDF matrix. The vectors in U have

only k dimensions (typically k is chosen to be in the low hundreds), and perform on par

with or better than the full, uncompressed rows of the TF-IDF matrix for semantic tasks

on documents. The columns of V capture important relationships between terms, but are

real-valued and hard to interpret, and the rows of V are not very good at representing the

meaning of tokens. LSA is not widely used for word-based semantic tasks; it has been most

effective in measuring the similarities of document summaries to documents (Landauer et al.,

1998).

LDA, covered in Section 2.3.4, can also be viewed as operating on the co-occurrence

matrix. Instead of trying to numerically recreate the TF-IDF matrix, LDA attempts to

maximize the probability of generating the co-occurrence matrix, subject to the Dirichlet

priors on topic and document distributions. A historical bridge between these two algorithms

is called probabilistic latent semantic analysis (PLSA) (Hofmann, 1999), which learned doc-
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ument and topic distributions to generate the co-occurrence matrix, but did not include

Dirichlet priors. The sparseness constraints imposed by the Dirichlet priors significantly

improve the coherence of the recovered topics, so LDA has become much more popular than

PLSA.

2.5.3 Word2Vec

Word2Vec (Mikolov et al., 2013), and related models like GloVe (Pennington et al., 2014),

are extremely good at representing word meaning in a semantic vector. They are inspired

by neural language models, because vectors good at predicting the neighboring words must

capture this contextual information. Compared to LSA, models in this class of word vectors

treat the token, not the document, as the basic unit in the corpus. Each word vector is

optimized for how well it predicts the context words that co-occurred within a small window,

across the corpus. These vectors carry a lot of semantic information about a word.

Most of what is called machine learning can be cast as an optimization problem. The

learning step is to minimize error, or to maximize performance, on the observed data. The

function that computes system error is called the objective function. If the objective function

can be computed efficiently, quality can be evaluated for any particular solution on the data.

If one can also compute the gradient of the objective function (how quickly the solution

improves in performance, as the parameters are varied), gradient ascent can quickly find a

maximum.

Word2Vec’s Skip-Gram model with negative sampling maximizes the following objective

function. For each observed token w in the corpus, and each context token c seen within

a small window nearby, we add a component to our objective function. We assign a word

vector w for word w, and call the collection of all these vectors W. We similarly define c

and C for context vectors. Then, our objective to maximize is,

L(W,C) =
∑
(w,c)

σ(w · c)− kEc(σ(w · c)). (2.10)
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σ is the sigmoid function, σ(x) = 1/(1 + e−x), and E is the expected value function (which

is explained in more detail in Section 2.4). Breaking the above equation into parts, it says

the following:

For an observed word, context pair (w, c), we want the vector w to have a high overlap

with the observed context vector c, which we measure using the vector dot product. However,

we want the overlap with a randomly selected word to be low, so that we predict the observed

context selectively. By subtracting the expected value of σ(w · c) for random c, we penalize

W, C assignments that give high overlap to random words.

Word analogy tasks (e.g. “good” is to “better” as “bad” is to “worse”) are used to

evaluate the quality of word-based semantic vectors. Word2Vec vectors perform well on this

task using simple addition and subtraction: the vectors x, y, z, and w for those words have

the property that y +z−x ≈ w. This means that semantic concepts have a shape, a typical

size and direction, in the vector space.

Pre-trained Word2Vec vectors are often used as input features for tasks like topic model-

ing (Batmanghelich et al., 2016). Extensions have been created for analysis of networks (Grover

and Leskovec, 2016) and gene sequences (Ng, 2017). In short, Word2Vec vectors are ex-

tremely useful semantic representations.

2.5.4 Meaning as a Matrix

Levy and Goldberg (2014) show that the Word2Vec objective function in Equation 2.3

is linked to the pointwise mutual information (PMI) matrix. We can build a co-occurrence

matrix, as used in LSA, where we compute counts of (word, context) pairs. In this case, each

row represents a token, and the “document” is the total set of all context words observed

within a small window in that corpus. As we mentioned before, LSA produces useful vectors

for documents. Word2Vec is similar, creating a pseudo-document for each token.

The Skip-Gram objective function reaches its maximal value when, for every word w and
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context c,

w · c = PMI(w, c)− k = log
( P (w, c)

P (w)P (c)

)
− k. (2.11)

k in the above equation is the same k as in Equation 2.3. This value is not the TF-IDF

used in LSA, but has broadly similar characteristics. It is large when the word and context

co-occur often, but smaller if the context co-occurs often throughout the corpus.

For observed (w, c) pairs, this value is easy to compute, but for unseen pairs it is much

harder. A practical solution is to set PMI(w, c) = 0 for unseen pairs, and for consistency

use only the positive PMI (PPMI) for observed counts,

PPMI(w, c) = max(0, log
( P (w, c)

P (w)P (c)

)
). (2.12)

The PPMI matrix is easy to compute, and like the TF-IDF matrix it is large and sparse.

Following the method of LSA, Levy and Goldberg compute the SVD of the PPMI matrix,

and show the rows of the PPMI matrix, and the compressed SVD representations, both

perform well on the word analogy task.

Word2Vec owes its performance to the definition of context-based pseudo-documents,

and the PMI vectors of these documents. Compared with computing the SVD of the full

PPMI matrix, it is extremely efficient to train. Casting Word2Vec as a matrix factorization

problem is useful because it is much more suggestive of the ways the input problem can be

modified.

Many extensions to Word2Vec can be thought of as modifications to the rows and columns

of the PPMI matrix. Paragraph2Vec, or Doc2Vec, adds rows to the matrix that correspond

to document co-occurrence counts, exactly as used in LSA. Dependency-based word embed-

dings swap the context words for labeled dependency relations, and use relationships from

a dependency parse, rather than a window of nearby words, as the context mapping. Mul-

tilingual Word2Vec can be achieved by adding translations of context words as additional

observed contexts. Visualizing these modifications as operations on the PMI matrix makes
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it easier to understand the information that will be captured by the final vectors.

2.5.5 Drawbacks of Semantic Vectors

Semantic vectors have been used widely to improve systems like parsing, sentiment anal-

ysis, machine translation, and summarization. However, they operate on what is essentially

a co-occurrence matrix. Recent improvements have basically resulted from improvements

in the construction and scaling of this matrix. However, constructing the matrix is still an

open problem with outstanding challenges. If each word is to get a vector, then each word is

a row. Likewise, if a word has multiple meanings, we want the word to have multiple rows.

This issue of polysemy will be tackled in detail later, but it highlights the main drawback of

word vectors: in order to improve our representations, we have to improve our definition of

co-occurrence, and that isn’t always straightforward. Just because semantic vector models

are not mixture models does not mean the problem of polysemy has been ignored. There

have been several approaches to making multi-sense word embeddings (Chen et al., 2014;

Huang et al., 2012; Neelakantan et al., 2015; Trask et al., 2015). Most approach the problem

using prior knowledge, such as the WordNet sense inventory, or try to learn the vectors while

updating them. More recent approaches incorporate the context around a word as a part

of its word vector, removing the notion of discrete senses by treating each occurrence of a

word as a separate event (Peters et al., 2018; Devlin et al., 2018). Chapter 4 provides a

model that instead learns semantic topics, providing sense induction and semantic vectors

for topics without explicitly calculating word vectors.

2.5.6 Recap of Semantic Vector Background

Semantic vector models are often built on co-occurrence matrices (Section 2.5.1). One of

the first widely-used models is called LSA, and is described in Section 2.5.2. LSA is most

effective at representing document semantics. A more recent model called Word2Vec (Section

2.5.3) is much more effective for word semantics and is widely used. However, Word2Vec is
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essentially a compression of a different co-occurrence matrix with different scaling (Section

2.5.4). The major drawback of semantic vectors is that a matrix compression cannot perform

sense disambiguation - this information is needed while the matrix is being constructed

(Section 2.5.5).

2.6 Comparison to VerbNet

Creating clusters that align to VerbNet is the driving goal of this research, and we need

tools to compare the clusters we create to the true clusters in VerbNet.

2.6.1 Direct comparison of clustered instances

Clustering is a well-studied task, and there are standard clustering metrics to evaluate

accuracy. Although there are several choices, we adopt the metrics that have been commonly

used in prior works on verb clustering: (modified) purity and inverse purity (Korhonen et al.,

2003).

Purity is the proportion of “correct” assignments made by a clustering algorithm, and is

analogous to precision in a supervised learning setting. Each found cluster is labeled with the

most-frequent true class and any elements of other classes are counted as errors. Precisely,

the purity for an induced clustering K of n items, given gold standard classes G is

PU(K,G) =
1

n

∑
i

|Ki|max
j

|Ki ∩Gj|
|Ki|

.

A perfect purity score may be trivially achieved by assigning each item to its own cluster.

Indeed, the purity will always increase with the number of singleton clusters, so the purity

may give misleading assessments about cluster quality. For this reason, prior work (Korhonen

et al., 2003; Kawahara et al., 2014b) defines modified purity (mPU), where all clusters of
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size one are treated as errors,

mPU(K,G) =
1

n

∑
i

I(|Ki|)|Ki|max
j

|Ki ∩Gj|
|Ki|

,

where I(x) is a step indicator function such that I(x) = 1 iff x > 1, and I(x) = 0 otherwise.

The inverse purity (iPU) is analogous to recall, and is computed as

iPU(K,G) =
1

n

∑
i

|Gi|max
j

|Kj ∩Gi|
|Gi|

.

This metric rewards grouping all items of the same true class together. Singleton clusters in

the gold standard G do always count toward increased inverse purity, but there is no reason

to penalize the structure of G, or for a modified inverse purity.

2.6.2 Indirect comparison by cluster membership

Some of the papers published in this research used indirect comparisons of clusters (Kawa-

hara et al., 2014b; Peterson et al., 2016). Rather than explicitly clustering the instances from

SemLink, we use a normalized metric that allows each verb to participate in multiple clus-

ters. We can compare against a set of polysemous verb classes (Korhonen et al., 2003;

Kipper et al., 2006), essentially a subset of VerbNet featuring frequent polysemous verbs,

and compare whether the two polysemous clusterings match well.

Because the clustering is polysemous, a typical automatically-induced cluster K will

contain only a proper subset of the senses for a particular verb. This partial membership

means that cluster assignments for a verb are actually vectors of membership. Define civ ∈

[0, 1] as the proportion of instances of verb v grouped into cluster Ki. Again normalizing for

errors, the normalized modified purity (nmPU), with respect to the gold standard clusters

G, is,

nmPU =
1

N

∑
i s.t. |Ki|>1

max
j
δKi(Ki ∩Gj), (2.13)
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where

δKi(Ki ∩Gj) =
∑

v∈Ki∩Gj

civ. (2.14)

Similarly, the normalized inverse purity (niPU) is

niPU =
1

N

∑
j

max
i
δGj(Ki ∩Gj). (2.15)

These metrics offer a more holistic view of whether polysemous verb classes are generally

aligned, and are reported only in Chapter 5. They were introduced in the Kawahara et al.

(2014b) paper.
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Chapter 3

Dirichlet-Multinomial Models for

Sense Induction and Clustering

The baseline model referred to in this work is from Kawahara et al. (2014b). This model

is used because it approaches the task of creation of a VerbNet-like semantic resource using

Bayesian mixture models. It is related to earlier work of Parisien and Stevenson (2011), but

uses significantly larger corpora and more direct comparison methods. At the time of its

publication, it was also the state-of-the-art system on this task, beating several alternate

methods on multi-sense alignment (Korhonen et al., 2003; Materna, 2012).

In Section 3.1, we’ll examine the Dirichlet process mixture model (DPMM) used in the

baseline work for sense induction and clustering. This mixture model places a Dirichlet

process prior over Dirichlet-multinomial topics.

This baseline work delivers a working scaffold of semantic verb clustering, breaking the

problem into two stages. First, as described in Section 3.2, induce verb senses using an

independent DPMM for each verb. Second, as described in Section 3.3, group senses into

verb clusters using a second Dirichlet process mixture. These two steps are computed sep-

arately, instead of using the hierarchical Dirichlet process (HDP) (Teh et al., 2006; Parisien

and Stevenson, 2011), because the two steps benefit from different feature granularity, and
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because sampling in the HDP adds significant computational burden compared to treating

the tasks as independent. In the preliminary sense induction stage, lexicalized syntactic

features (slot:token pairs) provide the best verb senses. However, when clustering known

senses into verbs, simple slot features (aggregating over tokens sharing the same dependency

relation) provide the most accurate clustering of verb senses.

Section 3.4 describes a model that performs sense induction and clustering as a single

step (Peterson and Palmer, 2018; Peterson et al., 2019). This process is even more similar

to LDA, if each document is formed by the sentences from a single verb. The only change

required to the LDA algorithm is the restriction that for each instance of a verb observed in

the corpus, all the syntactic arguments are assigned to the same topic. This restriction is easy

to implement on top of existing, fast, and distributed implementations of LDA (Zaheer et al.,

2016; Liu et al., 2011; Řeh̊uřek and Sojka, 2010). Because sharing topics allows semantic

generalization, the joint model learns better senses (Section 3.4.1), and the verb clusters

align to VerbNet better than the clusters from the step-wise framework (Section 3.4.2).

3.1 Clustering with Dirichlet Process Mixtures

The DPMM used in the baselien framework (Kawahara et al., 2014a,b) is shown in

Figure 3.1. The clusters are drawn from a Dirichlet process with hyperparameter α and base

distribution G. As discussed in more detail in the background, the Dirichlet process prior

allows the model to sample new topics, or remove small ones, as the sampling progresses.

Each cluster is chosen proportionally to the number of elements it already contains, i.e.,

P (k|α,C(∗)) ∝


C(k), if C(k) > 0

α, if k = knew,

(3.1)

where C(k) is the count of clustered items already in cluster k. Grouping using this structure

is often called the Chinese restaurant process (CRP) (Ferguson, 1973) and encourages a small,
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Figure 3.1: The Dirichlet process, Dirichlet-Multinomial mixture model used in (Kawahara
et al., 2014a,b) for clustering verb instances and senses. M is the number of verb senses, and
N is the sum total of slot counts for that verb sense. Each vocabluary item w is drawn by
selecting a mixture component k from the Dirichlet Process G, with concentration paramter
α. Once k is known, each vocabulary item w is drawn from the corresponding topic φ, which
has prior β.

but unbounded and unspecified, number of clusters.

Similarly to LDA, the baseline model defines a “topic” for each sense, which is a multi-

nomial distribution over a vocabulary of slot:token pairs (e.g., subj:dog or dobj:cat).

Topic distributions are drawn from a Dirichlet with a constant parameter β, which controls

the sparseness of the multinomials. When β < 1, the topics tend to be sparse, which in-

creases the likelihood that the induced senses are coherent, and makes sentences with similar

arguments tend to group together. These topics are drawn from the Dirichlet process (DP)

prior above.

Each cluster k has an associated multinomial distribution over vocabulary items (e.g.

slot:token pairs), φk, which is drawn from G, a Dirichlet distribution of the same size as

the vocabulary, parameterized by a constant β. As discussed in LDA, the Dirichlet is a

conjugate prior of the multinomial, so we can actually integrate out φk analytically, given

counts of vocabulary items drawn from φk. For a particular vocabulary item w, we compute

P (w|φk, β) =
Cφk(w) + β

Cφk(∗) + |V |β
, (3.2)
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where Cφk(w) is the number of times w has been drawn from φk, C(k) =
∑

iC(∗), and |V |

is the size of the vocabulary.

Since an instance I has many vocabulary items w1, w2, . . ., the probability of drawing I

is a product of the component probabilities.

P (I|φk, β) ∝
∏
wi∈I

P (wi|φk, β). (3.3)

Using Bayes’ Theorem, the probability of choosing a cluster k is given by

P (k|α,C(∗), φk, β) ∝ P (k|α,C(∗))
∏
w

P (w|φk, β). (3.4)

β < 1 encourages the clusters to have a sparse representation in the vocabulary space.

α = 1 is a typical choice, and encourages a small number of clusters to be used.

3.2 Step-wise Sense Induction

The first stage in the step-wise verb clustering is the induction of verb senses (Kawahara

et al., 2014a). In this step, the corpus is treated as a set of “instances”. Each instance is

extracted from a sentence in the corpus, and is a verb together with its labeled dependencies.

For the sentence, “The dog chased the cat around the house,” the extracted instance would

look like (verb:chase, subj:dog, dobj:cat, prep around:house). Sense induction is

treated as a clustering problem, forming groups of instances that share a sense. Polysemy is

a per-token event, so the sense induction step is to first partition all instances with the same

verb into distinct documents. The clusters are the distinct senses, and the instances are the

atoms that are clustered.

Given a large corpus and many examples of a particular verb, inducing verb senses can

be accomplished using this Gibbs sampler, as in Algorithm 3.

The baseline framework (Kawahara et al., 2014b) also includes some refinements that
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Algorithm 3 Sampling verb senses in the Dirichlet-Multinomial mixture

1: for verb v in corpus C do
2: Assign instances to random clusters and compute counts matrices
3: for iteration in range(num iters) do
4: for instance I with current assignment k in v do
5: Update counts matrices C(k) and Cφk to remove instance I
6: Sample topic knew according to Equation (3.4)
7: Update counts matrices C(knew) and Cφknew to add instance I
8: end for
9: end for

10: end for

speed convergence. The first is a reduction in vocabulary size by relabeling named en-

tities (e.g., “John”, “Microsoft”) with a generic <name> token, and clausal complements

(e.g., “John thought that <some other sentence>”) with a generic <CCOMP> token. These

replacements have the effect of clustering a subset of the observed arguments on shared

semantic properties, and call to mind the improvements from clustering-based selectional

preferences in prior verb clustering systems (Sun and Korhonen, 2009). The DPMM will

perform its own clustering of tokens, but it may benefit from a more thorough investigation

of argument clustering as a preprocessing step. We will come back to this idea in Chapter

6, and highlight it as a direction for future research.

The second is the introduction of “initial frames,” which are groups of instances that

share the same tokens in the same syntactic slots. First, any sentences that have the same

direct object are grouped into a single initial frame. Next, any remaining sentences that share

the same subject are grouped into a single initial frame. This process is repeated through

a list of syntactic slots, ordered using some linguistic knowledge of the relative saliency of

each slot. Rather than clustering each instance using the DPMM, we need only cluster the

initial frames. Initial frames with fewer than 10 instances are discarded, so this reduces the

number of elements being sampled by more than an order of magnitude. Clustering a smaller

number of larger initial frames may speed the DPMM, because the model can mix faster by

making larger changes. However, the initial frames remain fixed throughout sampling, which

means the model cannot recover from any mistakes in that initialization. This clustering
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of sentences is distinct from the supervision efforts in Chapter 5, where we will explicitly

cluster sentences with the same known VerbNet labels. But it does have a similar capacity to

provide the model with constraints. We will again leave a thorough investigation of clustering

sentences as a preprocessing step to future work.

Finally, clustering each verb independently is both a benefit and a drawback. It is much

more distributable, since there is no need to synchronize across verbs, and it allows the

topics of syntactic arguments to be tailored to the specific usage of each verb. However, not

all verbs are frequent, and less-frequent verbs will not necessarily have enough instances to

produce coherent topics. We will address this issue in Section 3.4.

3.3 Step-wise Verb Clustering

By separating the verb sense induction and the clustering of verb senses, the features can

be optimized for the distinct tasks. According to Kawahara et al. (2014b), the best features

for inducing verb classes are joint slot:token pairs. For the verb clustering task, slot

features which ignore the lexical items were the most effective. This supports Hypothesis 1,

since the syntactic patterns alone provide the highest-quality clustering.

The second stage treats each induced verb sense as a unit in the clustering, and uses

only aggregated syntactic counts. Otherwise the sampling is identical to the sense induction

step.

3.4 Joint Sense Induction and Clustering

3.4.1 Sharing Syntactic Contexts Improves Sense Induction

Sharing syntactic topics across verbs yields a considerable improvement in sense induction

quality. Treat the collection of instances for a verb as a document, and share the same set

of topics, and the sampling is identical to LDA. Actually, it is more proper to use LDA with

53



a very small modification. An instance may have multiple syntactic slots, but it should be

sampled as a unit. For example, an instance (subj:he, dobj:it, prep to:me) will have

to draw all three syntactic slots from the same topic, independently, as in the following

equation.

P (xI = k|θk, β) ∝
∏
si∈I

P (si|θk, β), (3.5)

where xI is the topic for instance I, and si are the slot:token arguments in that instance.

The final probability is given by the product of the standard Dirichlet-Multinomial prior for

the verb, and this likelihood, i.e.

P (xI = k|I, α, C(∗), θk, β) ∝ P (k|α,C(∗)) · P (xI = k|θk, β). (3.6)

This is detailed in Algorithm 4.

Algorithm 4 Sampling verb senses with common topics

1: Assign instances to random clusters and compute counts matrices
2: for iteration in range(num iters) do
3: for verb v in corpus do
4: for instance I, with current assignment k, in v do
5: Update counts matrices to remove instance I from topic k
6: Sample topic knew according to Equation (3)
7: Update counts matrices to add instance I to topic knew
8: end for
9: end for

10: end for

This approach is reminiscent of LDA-Frames (Materna, 2012), but is much simpler.

Sampling each instance as a unit encourages the topics to represent the entirety of their

constituent units, and the slot:token vocabulary eliminates the need to sample unique

topics for each syntactic slot. This has a huge advantage in ease of implementation because

distributed and optimized samplers for LDA are freely available (Liu et al., 2011; Řeh̊uřek

and Sojka, 2010). It is similar to the LDA-based selectional preference model of (Wu and

Palmer, 2015), which uses LDA on the bag of labeled-dependencies for each verb, and then
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uses the resulting topics for Semantic Role Labeling. The contribution here, compared to

that work, is to analyze the topics in the context of sense induction; this requirement is the

reason to insist that each instance should be assigned to exactly one cluster, even though

the prior work did not. The Hierarchical Dirichlet Process (Teh et al., 2006) could also be

used here, allowing us to leave the number of topics unspecified, but the algorithm is less

practical on large datasets.

Sense induction was run on two datasets. The first, in order to permit direct comparison

with prior work, was the Gigaword corpus (Parker et al., 2011). The second is the freely-

available Google Books syntactic n-grams corpus (Goldberg and Orwant, 2013). This is

possibly the largest dependency-parsed corpus in the English language, and the “verbargs”

section neatly aggregates the information about predicate-argument structures. Each line of

the verbargs section represents a single pattern of verb and linked dependencies. Because

the corpus is so large, these patterns also contain frequencies, and patterns occurring fewer

than 10 times are not included. The paper associated with the release of the corpus has

much more detail, but the verbargs include the direct syntactic dependencies of each verb

pattern, which is exactly the feature set used by the baseline and proposed models.

In order to evaluate the quality of the models, this work employs instances from the

SemLink corpus (Palmer, 2009), which has VerbNet class annotation. The test set only

contains verbs that occur at least 100 times, in order to ensure there are enough instances

to compute meaningful metrics. Also, many of these verbs are polysemous, in the sense

of having multiple VerbNet classes, so the test set allows us to evaluate sense induction

accuracy.

In order to evaluate the clustering quality, all models are used in the predictive mode.

Because the models are generative, they can be used to compute probabilities of sense assign-

ments, even for previously unseen instances. Each labeled instance in SemLink is assigned

to its maximum-probability cluster, under the learned parameters of the model.

Table 3.1 shows the clustering mPU, iPU, and F1 score (simple harmonic mean of mPU
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Corpus Algorithm
Verb Sense (Micro) Verb Sense (Macro)
mPU iPU F1 mPU iPU F1

Gigaword
Step-wise 85.08 20.44 32.96 71.92 38.72 50.34
Joint-100 81.59 43.06 56.37 71.35 54.07 61.52
Joint-200 80.29 40.62 53.95 68.16 50.07 57.73

Google
Joint-100 78.84 27.67 40.97 61.40 47.85 53.79
Joint-200 75.21 26.04 38.68 57.01 44.21 49.80

Table 3.1: Sense induction accuracy, on the Gigaword (Gigaword) and Google Books syn-
tactic n-gram Google corpora. Joint-100 refers to the modified LDA algorithm run with
100 topics, Joint-200 uses 200 topics. The baseline is the maximum-likelihood assignment
from the published verb-specific models (Kawahara et al., 2014b), but this baseline is only
available on the Gigaword corpus. The highest scores achieved by any model, on each corpus,
are highlighted.

and iPU) for senses induced from various models (trained on Gigaword or Google Books

syntactic n-grams corpora, with 100 and 200 topics). Since there is a large difference in

relative verb frequencies, it is useful to compute micro-average and macro-average of mPU

and iPU across verbs. The micro-average weights all instances equally, which gives more

weight to accuracy on frequent verbs. The macro-average is the mean of the mPU (or iPU),

taken on a verb-by-verb basis.

The major takeaway from this table is that the Joint model outperforms the step-wise

model on sense induction, even though the Step-wise model produces a slightly higher mPU.

The Joint model does a better job joining sentences that should belong to the same cluster,

because it shares topics across verbs. This makes some intuitive sense, because topics that

must explain the semantics of many varied verbs are less likely to spend the limited number

of available topics to make semantic distinctions relevant to only one verb. This intuition

is supported by the fact that increasing the number of topics harms the sense induction

performance.
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3.4.2 Extending the Vocabulary Improves Single-Step Verb Clus-

tering

This section presents results from a paper currently under review (Peterson and Palmer,

2019), which focuses on adding supervision, and therefore uses only a subset of SemLink for

evaluation. Each instance in the evaluation set is assigned its maximum a posteriori topic

under the model, and compared against the assigned VerbNet class label. For details on the

training/test split of Semlink, and the supervision technique, see Section 5.2.2.

When syntactic topics are shared across verbs, they automatically induce a clustering of

verbs, so the model can be viewed as a single-step, joint sense induction and verb clustering

algorithm.

One advantage of the step-wise approach to sense induction and clustering is the ability to

use different features at each stage. By separating the verb sense induction and the clustering

of verb senses, the features can be optimized for the distinct tasks. According to (Kawahara

et al., 2014b), the best features for inducing verb classes are joint slot:token pairs. For the

verb clustering task, slot features which ignore the lexical items were the most effective.

This aligns with Levin’s hypothesis of diathesis alternations - the syntactic contexts are

sufficient for the clustering, and encouraging the model to focus on this abstraction helps

alignment to Levin-style classes.

The single-step verb clusters also benefit from the combination of syntactic slots and

slot:token pairs. There are two models to incorporate both sets of features, that are

nearly identical mathematically. The first is to make the topic assignment of an instance

depend on both a topic distribution over slots and an independent topic distribution over

slot:token pairs. The second is to simply augment the vocabulary, and count each instance

as a bag of slot:token pairs and a bag of syntactic slots, effectively double-counting each

argument. I implemented the latter approach.

The joint model actually produces better clusters than the step-wise framework, if it has

access to the full set of features used by the step-wise approach.
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Model mPU iPU F1

Step-wise 48.06± 5.00 54.00± 1.31 50.69± 2.60
Joint 53.42± 0.91 43.83± 0.31 48.13± 0.75
Joint + slot 59.08± 0.39 46.49± 1.64 52.02± 1.09

Table 3.2: Clustering accuracy on the test portion of SemLink. Step-wise uses slot:token

features for sense induction and slot features for clustering. Joint shares topics across verbs
and performs sense induction and clustering at once. In (Peterson and Palmer, 2018), the
model uses only slot:token features, but the addition of slot features improves the clusters
from the Joint model.

Table 5.3 shows that the Joint + slot model significantly outperforms the Joint model

without slot features, even though the improvement over the Step-wise framework does

not reach a level of statistical significance. Since slot features can improve the model so

much, there is further support to the notion that pre-clustering the vocabulary may yield

significant gains. We also saw this in Section 3.2, and will come back to it in Chapter 6.

3.5 Recap of Dirichlet-Multinomial Models for Verb

Clustering

Sections 3.1, 3.2, and 3.3 present a step-wise framework for verb sense induction and

clustering (Kawahara et al., 2014a,b). Section 3.4 shows that a joint sense induction and

clustering model can outperform the step-wise framework on both sense induction and clus-

tering tasks (Peterson and Palmer, 2018; Peterson et al., 2019).
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Chapter 4

An Alternative Probabilistic Model

for Verb Clustering

Section 4.1 describes a novel mixture model that efficiently represents each sense with

a semantic vector, which is dramatically faster on the verb clustering task. Section 4.2

describes the features and parameter settings that worked the best. Section 4.3 discusses the

limitations of this mixture model, and the properties of the verb clustering task that allow

it to be successful.

4.1 A Novel Algorithm for Clustering Senses

The second step of the baseline model is not modeled well by a Dirichlet-Multinomial

mixture. Each sense is an aggregate of hundreds or thousands of sentences, but should belong

only to a single cluster. Generating a large number of observations from a single distribution

is possible, if they are treated as independent, but this is slower than compressing those

observations into a single semantic vector.

This chapter describes a The semantic vectors for senses are based on positive pointwise

mutual information (PPMI), which was shown to be implicitly related to popular semantic

vector models (Levy and Goldberg, 2014). Indeed, the PPMI vectors of word context even
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perform well on word analogy tasks, so they seem to be extremely useful semantic represen-

tations. The algorithm starts by generating a PPMI vector for each verb sense using the

(fixed) counts of syntactic patterns. During sampling, the model computes the count matri-

ces of syntactic patterns assigned to each cluster, and from these counts can easily generate

a PPMI vector for each cluster, as well.

Then, given cluster PPMI vectors Θi, i ∈ [1, . . . , K], and sense vector xs

P (xs|Θk) ∝ exp
(xs ·Θk

τ

)
, (4.1)

where τ > 0 is a parameter dictating “temperature”, and the probability of assigning sense

s to cluster k, with cluster sizes Ck(∗), is

P (k|s,Θ, C) ∝ P (k|Ck(∗))P (xs|Θk). (4.2)

Note that computation of the left factor is given by the Dirichlet process prior.

The inclusion of a temperature parameter allows the model to scale between putting

weight on the prior or the likelihood, because it affects how sharply peaked the likelihood

term becomes. As the temperature decreases, the maximum-likelihood cluster has more

likelihood of being selected, but at high temperatures the likelihood function is close to

uniform, leaving the prior as the sole influence on cluster choice. The appropriate setting

depends on the data and the typical magnitude of the dot products being computed, and is

nontrivial to set. We will come back to this issue in Sections 4.2.2 and 4.3.

The count matrices in this model are identical to the counts tracked using a Dirichlet-

Multinomial mixture, so the only new overhead is the computation of PPMI vectors from

these matrices. This computation is more effort than the simple smoothing and normalization

of the Dirichlet-Multinomial, but by batching samples before updates, this operation is

infrequent. During testing, quality does not suffer as the batch size increases, so it suffices

to update the vectors only once at the end of each sampling iteration.
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Algorithm
slot features pattern features

mPU iPU F1 mPU iPU F1

Step-Wise 56.95 28.11 37.64 56.95 28.11 37.64
Joint 46.24 48.06 47.14 46.24 48.06 47.14

D-M 48.63 47.77 48.20 36.27 48.18 41.38
PPMI 52.47 47.34 49.77 60.58 46.60 52.68

Table 4.1: Verb clustering accuracy, for both algorithms, on verb senses from the Gigaword
dataset. D-M is the Dirichlet Multinomial model applied to senses from the Joint framework,
and PPMI is the novel model proposed here. Two baselines are given, one from the Step-
Wise framework (Kawahara et al., 2014b), and one from the Joint framework in Section
3.4, which does not perform a second pass over the dataset. The highest scores achieved by
any model are in bold face. Baseline scores are duplicated in both columns for comparison.

Once the cluster vectors are computed, the likelihoods can be computed at once for an

entire batch, and for all topics, with a simple matrix computation. Doing this computation

as a batch is not exact, but there is precedent for batching MCMC operations to facilitate

distribution (Zaheer et al., 2016). There’s no need to add smoothing to the PPMI vectors,

and the matrices are sparse. In the end, the runtime is dramatically lower than the Dirichlet-

Multinomial model, even with the added overhead of computing PPMI.

Pseudo-code for the PPMI-vector clustering algorithm is given in Algorithm 5

Algorithm 5 Clustering with Exponential Mixture of PPMI Vectors

1: Compute X, the PPMI vectors for input matrix of sense-syntax counts
2: Assign senses to random clusters and compute counts matrices
3: Compute and normalize Y , the PPMI vectors for assigned clusters
4: for iteration in range(num iters) do
5: Compute probabilities by Equation (5), using 〈X · Y 〉
6: Assign new topics to senses and compute counts matrices
7: Re-compute and normalize Y
8: end for

Table 4.3 reports runtimes for comparison. Runtimes are measured in seconds, processed

on the same single machine with roughly equivalent optimization. A few patterns in the

table are worth mentioning. First, the accuracy of the clusters induced by the modified LDA

is surprisingly high. On the Gigaword corpus, the mLDA clusters outperform the predictions

of the baseline, prior state-of-the-art. The only model that dramatically outperforms this

61



Algorithm
slot features pattern features

mPU iPU F1 mPU iPU F1

Joint 35.04 30.22 32.45 35.04 30.22 32.45

D-M 44.82 30.15 36.05 45.96 30.25 36.49
PPMI 14.05 83.71 24.07 19.50 57.99 29.18

Table 4.2: Verb clustering accuracy, for both algorithms, on verb senses from the Google
Books syntactic n-grams dataset. D-M is the Dirichlet Multinomial model, and PPMI is
the novel model proposed here. For comparison, the Joint model, which skips the second-
step clustering is included. The highest scores achieved for each feature set are in bold face.
Baseline scores are duplicated in both columns.

Dataset Features D-M runtime PPMI runtime

Gigaword-100 slots 7400 160
Gigaword-100 patterns 6600 280
Gigaword-200 slots 5900 270
Gigaword-200 patterns 9400 320

Google-100 slots 6100 110
Google-100 patterns 4000 150
Google-200 slots 7800 110
Google-200 patterns 4900 140

Table 4.3: Verb clustering runtime (in seconds) on automatically induced senses. The dataset
names indicate the corpus and the number of topics used in the sense induction step.

one-shot clustering is the PPMI model using pattern features. Second, the PPMI model

always performs better with pattern features over slot features on the same data. Third, the

PPMI model is more than an order of magnitude faster.

4.2 Implementational Notes and Feature Engineering

It is sufficient to approximate the Dirichlet process using a Dirichlet distribution with

fixed capacity C that exceeds the final number of clusters used, and fixing the concentration

parameters at α/C (Kurihara et al., 2007; Ishwaran and Zarepour, 2002). As mentioned

above, the Dirichlet-Multinomial becomes sharply peaked when calculating probabilities for

senses with thousands of separate observations. The geometric mean of probabilities gives

much better performance than the raw product, and helps ensure the scale of the Dirichlet
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prior is roughly equivalent. This extra calculation does not seem to be necessary when

sampling individual instances in the sense induction step.

4.2.1 Verb Clustering with Syntactic Pattern Features

In the step-wise baseline, the second step is to cluster induced senses into a VerbNet-like

structure. In the joint LDA-like approach to the sense induction step, the topics form a

natural clustering. A verb sense is a collection of instances with the same verb assigned the

same topic; a verb cluster may be defined simply as the collection of verb senses assigned

to the same topic. Table 4.1 demonstrates that this verb clustering already outperforms

the baseline in F1 score. It also demonstrates that there is a benefit to keeping the second

step. In the baseline, the two steps had a key difference. After the sense induction step,

the induced verb senses were clustered using a mixture model with a modified vocabulary.

Because Levin’s distributional hypothesis is based primarily on syntax, slot features (which

have summed across all tokens sharing the same syntactic slot) gave the best alignment to

VerbNet classes.

The syntactic clustering model gains further benefit by introducing pattern features,

such as subj/dobj/prep with. There is a clear connection between pattern features and

SCFs used in prior verb clustering work (see Section 2.5.2). The slot features worked

best in the prior work, but the aggregated count of subj and dobj counts doesn’t give

a clear estimate of the number of transitive constructions. It is in general intractable to

decipher which arguments occurred together in particular instances. There are more pattern

combinations than slot combinations, but the vocabulary size remains in the thousands.

Tables 4.1 and 4.2 compare the effectiveness of both pattern and slot features on the

verb clustering task. They show results from the D-M model and the PPMI model.

On the Gigaword dataset, the PPMI model outperforms the D-M model and the single-

step Joint model. The PPMI model benefits from pattern features, and achieves a 5% F1

score improvement over the Joint model from Section 3.4, which uses slot:token features.
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It is worth noting, however, that the results on the Google dataset undercut this result. All

models perform worse when trained on the Google dataset, but the PPMI model actually

performs worse than the Joint model, and the D-M is the best-performing model. This seems

to be due to a problem with the PPMI model balancing the mPU and iPU tradeoff, which

will be discussed in Section 4.3.1. Also, in Table 4.1, the D-M model performs better with

the original slot features, so the helpfulness of pattern features is not universal.

4.2.2 Parameter choices in the PPMI mixture

The parameter τ is important to the convergence properties of the PPMI-based mixture

model. It is the same form as the well-known softmax, and as the temperature goes from

zero toward infinity, the resulting distribution switches from assigning all probability to the

maximum of observed dot products, toward a uniform distribution. Essentially, it governs

the extent to which small differences in dot product produce large differences in probability.

This is a Bayesian model, so as the temperature increases, the model puts more weight on

the prior, which is a CRP with a strong “rich-get-richer effect”. We found that τ ∈ [0.01, 1]

produced reasonable results. Lower temperature values caused the model to make dramatic

reassignments frequently, converging quickly, but exhibiting occasional, dramatic shifts of the

cluster vectors even after many iterations. Essentially, low temperatures cause the model to

choose the maximum likelihood class with extremely high probability, taking greedy steps

regardless of cluster size. Larger temperature settings made smaller, more stable steps, and

used fewer clusters, because the prior discourages exploration away from the large clusters.

The parameter α behaves exactly as it does in any Dirichlet mixture. It may be tuned

to fit the dataset, but the same setting works well for for both PPMI and D-M mixtures.
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4.3 When not to use the PPMI mixture

It is worth noting that the PPMI mixture isn’t a generative model. The sampling and

updating procedures are clear, but there isn’t an obvious mathematical process that explains

the generation of sparse, non-negative vectors for the original topics. One benefit of LDA is

that it encourages sparse topics through its generative model. The PPMI mixture model, in

comparison, produces sparse topic vectors by virtue of the PPMI operator on the sufficient

statistics matrices. A complete generative model would explain the generation of the ob-

served counts of syntactic patterns, but it is desirable that the model should at least explain

the generation of vectors for each topic and sense.

4.3.1 Warnings from Verb Clustering Experiments

Tables 4.1 and 4.2 present different stories about the effectiveness of the PPMI mixture.

On the Gigaword corpus, it outperforms all other models. But on the Google Books syntactic

n-grams, it does not perform well.

The mPU/iPU tradeoff is governed by the number of clusters the model preferred, and

depends more on τ than on α. On the Google Books syntactic n-grams corpus, when setting

τ > 0.1 the model tended to use only one or two clusters, extremely favoring iPU. As τ was

lowered progressively, the model used more clusters, and purity increased, until τ ≈ 0.01.

Lowering τ further is impractical. It requires a more complex implementation to avoid

numerical overflow after the exponential, but also, the signal from the likelihood overwhelms

the Dirichlet prior entirely. Functionally, the knob that governs the mPU/iPU tradeoff

reached its maximal setting, without reaching a region of acceptable peformance.

The Google Books syntactic n-grams makes poorer automatic sense distinctions, along

with poorer verb clusters. This runs counter to the intuition that a larger corpus should

prove more accurate for distributional models. We believe that part of the problem is the

elimination of low-frequency syntactic patterns. Pruning of low-frequency items may remove
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noise, but it also has a dramatic smoothing effect. Functionally, the Google Books syntactic

n-grams corpus represents only a fraction of the original corpus, and and only the smoothest

portions remain. It seems that, at least for this purpose, some important signal was lost

along with the noise.

This pruning removes many of the sentences that contribute to finer-grained description of

automatic senses, as well. The PPMI mixture fares worse using the slot features, which are

broad and also smooth. With smoothed features on a smoothed corpus, there doesn’t seem

to be enough discriminative power for the PPMI mixture to tell senses apart. The Dirichlet-

Multinomial performs better at making these distinctions, or at least is able to reach a more

sensible tradeoff between purity and inverse purity, on this dataset. When using the D-M

model on this corpus, the pattern features help; they actually harmed performance on the

Gigaword corpus.

4.3.2 Failure to Mix on Sense Induction

The verb clustering task is the second part of the step-wise pipeline. Dirichlet-multinomial

mixtures worked well for both sense induction and sense clustering, so it is natural to apply

the PPMI mixture to sense induction step. In keeping with prior results, we switched from

slot to slot:token vocabulary items, which increased the size of the vocabulary by several

orders of magnitude and included a large number of rare terms

These rare terms, and their chance assignments during initialization of the Gibbs sam-

pling procedure, dominated the behavior of the model. While Dirichlet-multinomial mixtures

converged to a fairly stable solution in only a few dozen iterations, the PPMI topic model

continued mixing and making dramatic changes to many of latent assignments (without

seeming to improve topic coherence), after several hundred iterations. Looking at the topic

assignments for iterations before and after these changes, the key seems to be in changing

the assignments of rare terms. The PPMI topic model is driven to merge or split groups

over the presence or absence of relatively rare terms, and all sentences with these terms are
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extremely likely to stay in that cluster over time.

The speed advantage of the PPMI topic model also disappeared on the sense induction

task. It’s possible that after enough iterations the PPMI topic model would converge to

high-quality clusters. We observed that the sampling chain did not mix in the time we

allowed it, which was longer than the Dirichlet-multinomial model took to produce good

verb senses. Also, the Dirichlet-multinomial mixtures work much more quickly on the sense

induction task because we can skip the expense of transforming the computation to log space

and still not encounter underflow errors.

4.3.3 Mathematical Comparison to Dirichlet-Multinomial

In the step-wise model (Kawahara et al., 2014b), for both the sense induction and verb

clustering, multiple observations are drawn from the topic independently. During sense

induction, the atoms are sentences, and each slot:token pair is an independent observation.

During verb clustering, the atoms are collections of hundreds or thousands of sentences, and

the corresponding slot observations must all be drawn from the same topic. If θC is the

distribution over clusters for the corpus, and Cs(wi) counts the number of observations of

wi in sense s, then the probability of assigning s to cluster k is

P (k|{Cs(wi)}ni=1, θC , φk) ∝

P (k|θC)
n∏
i=1

P (wi|φk)Cs(wi).
(4.3)

This equation is very similar to LDA, with a factor for each observation in the atom.

There are practical consequences to increasing the number of independent observations,

which are especially apparent in the verb clustering step because the number of observations

is so large. First, the product of so many probabilities can create underflow errors when

working with floating point numbers. To get around this, these probabilities are transformed

to log space, and transformed back to actually sample. This slows the sampling procedure
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quite dramatically. Second, the distribution is sharply peaked, because so many terms

are multiplied together, which can slow the progress of the MCMC sampler. This can be

alleviated by dividing the counts with the total count of observations in s, Cs(∗),

P (k|{Cs(wi)}ni=1, θC , φk) ∝

P (k|θC)
n∏
i=1

P (wi|φk)
Cs(wi)

Cs(∗) .
(4.4)

Working in log space allows this division to happen outside the exponent, ensuring numerical

accuracy.

The PPMI topic model’s sampling equation can be rewritten analogously to the Dirichlet-

Multinomial sampling equation. A dot product is a sum of individual terms, and the ex-

ponential of this sum is a product of exponentials. Recall that xs is the PPMI vector for

sense s and Θk is the PPMI vector for cluster k. Let S(s, k) be the set of terms w for which

xs(w) > 0 and Θk(w) > 0. Since the terms are products of log functions, we can cancel one

logarithm, ending with

P (k|s,θC ,P(k)) ∝

P (k|θC)
∏

i∈S(s,k)

(P (wi|k)

P (wi)

) log(P (wi|s)
P (wi)

)
τ

.

(4.5)

This is similar enough to Equation 4.4 to permit some comparisons. The prior is identical,

and both likelihoods are products of exponential functions. The first difference is that in

Equation 4.5, both the base and exponent involve ratios of probabilities. The second is that

we replace Cs(∗) with τ to scale the exponent in each likelihood term. And the third is that

we don’t take the product over all tokens in s, but rather only over the tokens in S(s, k),

which is a strict subset, and in fact guarantee that these ratios are always greater than 1.

After rewriting the sampling equation, it is much easier to see why large vocabularies

produce erratic clustering behavior. With large vocabularies, the base probabilities for terms
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P (wi) may be extremely small, and the factor for each term is weighted in both the base and

exponent to grow with 1/P (wi) . This dramatically boosts the influence of infrequent terms,

and is in keeping with observations in the literature that pointwise mutual information places

an inappropriately large weight on infrequent terms (Bouma, 2009). The D-M sampling

equation, on the other hand, tends to be less influenced by rare terms, because all terms

have their base topic preferences weighted equally, and the counts in the exponents are often

small for rare words.

4.4 Recap of PPMI Mixture Model

The PPMI mixture model is interesting, but does not generalize well outside the verb

clustering task. The verb clustering task is unusual, because it uses a small, expressive

vocabulary to cluster large groups of observations (verb senses) into coherent clusters. Verb

sense induction has a large vocabulary with a heavy-tailed distribution, and clusters small

groups of observations (sentences), which reduces the coherence of the clusters found with the

PPMI mixture. This result suggests the PPMI mixture model will be of limited applicability

outside the verb clustering task. The PPMI mixture model is only useful for a small set of

tasks, those where there is a small vocabulary with strong distinctions, and a large group of

observations to cluster.
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Chapter 5

Including Partial Supervision to

Improve VerbNet Alignment

The theme of this chapter is supervision, which is also the focus of Hypothesis 4. Although

a supervised system is less general, and harder to transfer to new domains, it can improve

alignment to established VerbNet classes. This increased accuracy is required in order to

take advantage of VerbNet’s semantic annotation, so the loss in portability is an acceptable

price to pay for many applications.

This chapter uses supervision from SemLink, which is covered in Section 2.2.4, and is

given in the form of labels for specific instances of verbs from sentences in the Wall Street

Journal. We know, objectively, which of these sentences should be clustered together in

order to recover VerbNet classes. This is different from the pre-clustering of sentences into

initial frames performed in Section 3.2. In both cases we introduce extra information to the

models, but in this chapter that information is part of the clustering we hope to recover.

Section 5.1 describes a method of incorporating supervision to the verb clustering step

of the step-wise framework Peterson et al. (2016). Because labels are given at a level of

individual sentences, not at the level of induced senses, this method depends on sampling

an independent class assignment variable, and using aggregated verb statistics to influence

70



that sampling.

Section 5.2 describes a computationally efficient method to incorporate supervision to

the joint sense induction and clustering framweork Peterson et al. (2019). This method

observes labeled sentences directly, and uses these observations to bias the sampling toward

recovering the known classes. It dramatically reduces variance in the resulting clusters and

provides the highest-scoring alignment to VerbNet of any model in this work.

5.1 Indirect Partial Supervision for the Stepwise Model

This section describes a method for adding partial supervision to the step-wise framework.

All work in this section is carried out on the baseline set of automatically-induced verb senses.

The goal is to make clusters that align to VerbNet, so supervision is only added in the “verb

clustering” stage of the two-step model. Section 5.1.1 discusses the mathematical model

used to add supervision. Section 5.1.2 discusses modeling choices. Sections 5.1.3 and 5.1.4

compare, quantitatively and qualitatively, the difference in output compared to the baseline

model.

When incorporating supervision to the stepwise model, there is a layer of abstraction

between labeled sentences and the clusters, because the verb clustering step operates on

learned senses. SemLink labels individual instances of verbs, and while we can assign a

maximum-probability sense to each of these instances, the sense is comprised of many counts

from unlabeled sentences as well. An automatically induced sense of employ may have 1,000

unlabeled instances and five labeled sentences. If three of the labeled sentences belong to

Use-105 and the other two belong to Hire-13.5, there’s no single VerbNet label that correctly

captures the sense. Even if all five labeled sentences belong to Use-105, the 1,000 unlabeled

instances may not be a good reflection of that VerbNet class. This makes assigning a single

gold-label VerbNet class to any automatically-induced sense risky and error-prone. Rather

than using sentences to label a particular sense, we use them as a distant supervision that
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influences the clustering of all the senses of employ. For each verb, we add a distribution

η describing the likelihood a verb will participate in a particular class, using counts from

SemLink. This η is shared across all senses of the verb, and during sampling it encourages

verbs in the same VerbNet class to share clusters.

5.1.1 Adding Supervision to a Dirichlet Mixture

Adding supervision to the mixture model is fairly straightforward: at each step, sample

both a mixture component k and a VerbNet class y. To accomodate this, each cluster

(mixture component) is assigned a a unique distribution ρ over VerbNet classes, drawn from

a fixed-size Dirichlet prior with parameter γ. This Dirichlet-Multinomial framework allows

easy probability calculations, and has a strong sparsity effect which ensures the mixture

components prefer to use a small number of VerbNet classes. In particular, the probability

is

P (y|ρk, γ) =
Ck(y) + γ

Ck(∗) + |S|γ
, (5.1)

where |S| is the number of classes in the supervision.

The likelihood of choosing a class for a particular verb requires an estimate of that

verb’s probability of joining a particular VerbNet class. This starts with initializing η from

SemLink, as η(y) = ω∗CSL
v (y)+δ, for fixed constants ω and δ, and with CSL

v (y) as the count,

in SemLink, of times verb v was assigned to VerbNet class y. From this, it is possible to

create a verb-specific distribution θ over VerbNet classes, from a Dirichlet with parameters

η, so that η acts as pseudo-counts, steering θ to give high weight to VerbNet classes aligned

with SemLink for each verb. This is computed using

P (y|θ, η) =
Cv(y) + η(y)

Cv(∗) +
∑
η
, (5.2)

where Cv(y) is the number of times verb v is assigned to VerbNet class y by the model.

The VerbNet class for a verb sense is sampled from a product of experts (Hinton, 2002),
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the θv for the verb v, and ρk for the assigned cluster k. This encourages alignment between

the VerbNet classes observed in SemLink and the VerbNet classes predicted by the clusters,

and is computationally straightforward:

P (y|ρk, γ, θv, η) ∝ P (y|ρk, γ)P (y|θv, η). (5.3)

The product of two distinct probability distributions is called a “product of experts.”

Sampling a cluster for a verb sense now depends on the VerbNet class y,

P (k|y, α, φk, β, ρk, γ, θv, η) ∝
(
P (k|α,Ck(∗))× P (y|ρk, γ, θv, η)×

∏
w

P (w|φk, β)
)
. (5.4)

The supervised process is depicted in Figure 5.1. In brief, each verb v has an ηv, a given

by counts from SemLink, which serves as a prior for θv. For verb sense, the model samples

a cluster k and a VerbNet class y, which depends on θv and ρk, where ρk is the distribution

over VerbNet classes in cluster k. ρk is drawn from a Dirichlet distribution paramaterized by

γ < 1, encouraging each cluster to have a sparse distribution over VerbNet classes. Because

y depends on both θv and ρk, the clusters are encouraged to align with VerbNet classes.

5.1.2 Modeling Choices

When sampling a cluster for a verb sense with a verb in VerbNet, the model samples y

from a product of “experts”. θv is not incorporated as a prior when sampling y, because

there are multiple verbs, with distinct distributions θv1 , θv2 , . . ..

Because the product-of-experts is a discrete probability distribution, it is easy to marginal-

ize out this variable when sampling k, using

P (k|α, φk, β, ρk, γ, θ) ∝
∑
y

P (k|y, α, φk, β, ρk, γ, θv, η). (5.5)

Either way, once a cluster is selected, the sampler should update the ρk and θv. Table 5.1.3
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Figure 5.1: The Supervised DPMM used in this work for clustering verb senses. M is
the number of verb senses, and N is the sum total of slot counts, w, for that verb sense.
Each topic φ is drawn from a Dir(β). Each distribution over VerbNet classes ρ is drawn
from Dir(γ). G is a Dirichlet process parameterized by α, with a base distribution that
combines the vocabulary and supervision priors. θv is a verb-specific multinomial distribution
over VerbNet classes, and is drawn from a Dirichlet whose parameters η are initialized to
reflect the VerbNet class preferences for each verb, when they are known. k is the cluster
assignment. A verb like employ is known to prefer VerbNet classes Hire-13.5 and Use-105,
so each automatically-induced sense of employ is more likely to select its variable y from
those classes. If a sense has sampled Use-105, it will be more likely to select a cluster where
the other senses in that cluster (from across all verbs) are likely to have the Use-105 label.

compares performance for sampling k with assigned y and with marginalized y.

When incorporating supervision, classes are drawn from a flattened VerbNet, using only

the top-level categories. This simplifies the selection process for y. In the baseline (Kawa-

hara et al., 2014b), slot features were most effective features at producing a VerbNet-like

structure; these features are used here as well, for the sake of fair comparison.
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Model nmPU niPU F1 N
DPMM 55.72 60.33 57.93 522
SDPMM 51.00 75.71 60.95 122
mSDPMM 51.04 75.00 60.74 129

Table 5.1: Clustering accuracy on verbs in the Korhonen et al. (2003) dataset. N is the
number of clusters spanned by the evaluation set.

Model Example Clusters

Gold push (0.20), pull (0.17)
give (1.0), lend (1.0),

generate (0.33), allow (0.25),
pull (0.17), pour (0.17)

DPMM push (0.40), drag (0.27), pull (0.08) lend (0.30), give (0.13),

SDPMM
drag (0.87), push (0.43), pull (0.42), give (0.82), pour (0.02),
pour (0.39), drop (0.31), force (0.09) ship (0.002)

Table 5.2: Example clusters from the evaluation dataset (Gold), and along with the most-
aligned clusters from the unsupervised baseline (DPMM) and the semi-supervised clustering
scheme (SDPMM). Weights given in parentheses describe the total proportion of verb
instances assigned to each cluster.

5.1.3 Results

The quality of the supervised model is compared against the clustering from the baseline

(Kawahara et al., 2014b). The induced verb senses are used, unmodified, as input, as the

supervision step is independent. No supervision is added for verbs in the test set, in order

to ensure a fair comparison to the unsupervised model. Table 5.1.3 reports the nPU, niPU,

and F1 of the baseline, and the supervised models, against the Korhonen et al. (2003) verb

dataset.

Parameters were selected using a grid search, and cross-validation. The results are sum-

marized in Table 5.1.3, comparing the unsupervised DPMM baseline (DPMM) to the su-

pervised DPMM (SDPMM), and the supervised DPMM sampling k with y marginalized

out (mSDPMM).
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5.1.4 Comparison of Produced Clusters

The supervised sampling scheme produces fewer clusters than the unsupervised baseline.

This is in part because it produces fewer “singleton” clusters, containing only one verb sense

from the evaluation set. The SDPMM produces only 16% singleton clusters, compared with

34% of singleton clusters from the unsupervised DPMM.

The supervised clusters also tend to cluster more of the senses of each verb into the same

cluster. The predominant SDPMM cluster for a verb, which has the highest percentage of

a verb’s total instances, tends to have 224% the number of instances as the predominant

unsupervised DPMM cluster. This tendency does not prevent verbs being assigned multiple

clusters. On average, the supervised clustering uses 30% fewer clusters for each verb–a

smaller reduction than the 70% overall drop in the number of clusters.

A few example clusters are presented in Table 5.2.

5.2 Direct Partial Supervision for the Joint Model

A more recent paper proposed a single-step, joint sense induction and clustering frame-

work that is nearly identical to LDA, and achieved higher clustering accuracy than the

step-wise process. At its most basic, the single-step process is running LDA on a corpus

where each document is the collection of sentences with the same verb across the corpus,

with dependency labels included in the tokens, and with the constraint that each sentence

must be assigned the same topic. This requires only minimal modification to the LDA

algorithm, and allows us to use an existing, fast, and distributed implementation for our

research. Each topic is a verb cluster, and each topic used by a given verb corresponds to a

distinct sense of that verb. An additional benefit of this framework is that the clusters are

generated directly from the sentences, with no intermediate steps to obfuscate the labeling.

This permits us to develop a scheme for semi-supervised clustering that builds from labeled

sentences to higher-quality clusters.
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5.2.1 Semi-Supervised Clustering with Direct Observations

To guide our topic model so that its learned topics closely match VerbNet, we explicitly

observe some sentences that have a labeled VerbNet class. If our labels span C classes, we use

a minimum of C topics, and assign each VerbNet class ci to a topic ki. When initializing our

topic model, we normally assign each sentence to a random topic, and update the statistics

for the Gibbs sampler, which repeatedly updates these topic assignments until convergence.

Now, when we initialize our topic model, we also explictly observe some labeled sentences,

and assign each sentence with VerbNet class ci to topic ki, and we leave this assignment fixed

throughout sampling. All unlabeled data is treated normally, at initialization and during

sampling.

This is a simple and straightforward means of guiding the clusters, but differs from

prior work, which is described in the background section. Verbs with labeled sentences are

biased to participate in the correct VerbNet classes, and the topics are biased to contain

the vocabulary items corresponding to those same classes. We tune the weight of that bias

by observing each labeled sentence w times, because there are orders of magnitude more

unlabeled data than labeled, but once the sufficient statistics are initialized there are no

further changes to the sampling algorithm.

Our implementation allows the user to specify partial information about VerbNet classes,

to help the model conform to this prior knowledge, without requiring a complete specifica-

tion. Because it does not require any change to the training objective, it creates negligible

computational burden. It uses the labeled examples we have, but allows the model room

to discover novel classes and novel verb senses, as required to fit the unlabeled data. These

are strong advantages over existing work, and our experiments demonstrate it is surprisingly

effective.
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5.2.2 Evaluation Set

Semlink (Bonial et al., 2013c) provides labels of VerbNet class for each sentence in the

Penn Treebank’s Wall Street Journal corpus (Marcus et al., 1994). These labels were used

to evaluate the quality of sense induction and clustering in prior work, but they are also a

potentially valuable resource to guide sense induction.

To test whether a small number of labels can improve the senses learned from LDA, we

split this annotation into a training portion and a test portion. The split was designed to

address two separate concerns. First, can partial supervision of a VerbNet class improve the

recovery of that class from the topic model? Second, can supervision of some known classes

aid the recovery of other classes? To address both these concerns, we first split the data by

VerbNet class, using 2/3 of the classes as training (hereafter, C1 denotes the set of classes

in the training portion of the split) and 1/3 for testing (C2). We then split by verb, keeping

2/3 for training and 1/3 for testing. We only use examples from the 141 most-frequent

verbs in Semlink, whose labeled sentences span 148 VerbNet classes. This training/test split

produced 6400 sentences with known labels for training and 6500 for testing. To permit

replicability, we report the training and testing classes and verbs in the appendix.

The primary source of data is Gigaword (Parker et al., 2011), and the Wall Street Journal

sections of the Penn Treebank (Marcus et al., 1994), both licensed through the Linguistic

Data Consortium. Gigaword is tokenized and dependency parsed automatically as a pre-

processing step. Each “document” in LDA is the set of syntactic dependencies observed for

a particular verb. The “words” in the document are either syntactic slot labels (slot, e.g.,

“subject”, “direct object”), or the concatenation of the syntactic slot and the lexical item

observed (slot:token, e.g., “subject is John”, “direct object is river”). The best model, empir-

ically, uses both sets of vocabulary together, effectively counting each token twice (once with,

and once without, the corresponding lexical item). We only consider direct dependencies of

the verbs, and prepositional objects labeled with the observed preposition.

When training in the supervised setting, we include the 6400 sentences with known
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Model mPU iPU F1

Step-wise 48.06± 5.00 54.00± 1.31 50.69± 2.60
Step-wise + SS 67.12± 1.88 54.70± 1.17 60.26± 1.02
Joint 53.42± 0.91 43.83± 0.31 48.13± 0.75
Joint + slot 59.08± 0.39 46.49± 1.64 52.02± 1.09
Joint + SS 64.04± 0.38 54.03± 0.58 58.61± 0.45
Joint + slot + SS 65.73± 0.49 62.29± 0.74 63.96± 0.58

Table 5.3: Clustering accuracy on the complete test set, for various models. The Step-wise
model with partial supervision (+SS) was the prior state-of-the art for recovering VerbNet
classes. The unsupervised Joint model is competitive with Step-wise baseline, especially with
the addition of slot features. Adding semi-supervision to the Joint model is computationally
simpler and ultimately produces a superior result.

labels, and assign each label to a particular topic. These assignments are never re-sampled,

so throughout sampling, the supervised verb has some higher-than-random probability mass

assigned to the designated topics, and the topics always have some higher-than-random

probability mass assigned to the associated vocabulary items. Because Gigaword is much

larger than our supervision set, we include a hyperparameter to increase the weight of these

labeled instances. Effectively, we label the known sentences as though we’d seen them all

many times.

5.2.3 Quantitative Evaluation Protocol

Once a model is trained, we assign each test sentence to its maximum a posteriori topic,

and treat all sentences assigned the same topic as belonging to the same cluster. Each test

sentence has a correct label, so we have a ground-truth clustering from this annotation.

Following the conventions in the literature, we report standard clustering metrics.

5.2.4 Results

The Step-wise model splits sense induction and clustering into independent steps (Kawa-

hara et al., 2014b), and performs on-par with the Joint model which learns senses and clusters

simultaneously (Peterson and Palmer, 2018). The Step-wise model uses both slot:token
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Model iPU on C1 iPU on C2

Step-wise 52.21± 1.90 55.13± 1.29
Step-wise + SS 52.88± 1.62 55.84± 1.14
Joint 47.12± 2.56 41.76± 1.73
Joint + slot 53.48± 4.15 42.10± 1.94
Joint + SS 58.23± 0.99 51.40± 0.98
Joint + slot + SS 69.14± 0.27 57.99± 1.14

Table 5.4: Detail of inverse purity for partially-supervised VerbNet classes (C1), and for
never-observed VerbNet classes (C2), for various models. We expect to recover partially-
observed classes better with supervision, but we also see an improvement to recovery of
classes that are outside the supervision set.

pairs and slot features as vocabulary, and using both sets of features on the Joint model

(Joint + slot) significantly improves the Joint model results.

Adding partial supervision to these models significantly improves the clustering quality.

Supervision in the Step-wise model (Peterson et al., 2016) dramatically boosts the mPU score

of the clusters, improving absolute F1 by nearly 10%, and requires a significant increase

in computational complexity. Adding supervision to the Joint model using our method

significantly improves both mPU and iPU of the clusters, producing a nearly 12% absolute

F1 score improvement without increasing computational complexity.

The Joint model with partial supervision, and using both slot:token and slot features,

significantly outperforms all other models at recovering the clustering in our test set.

Adding supervision by biasing particular topics dramatically increases the consistency of

the topics learned. In Tables 5.3 and 5.4, we report the mean and standard deviations of

the scores across ten runs of each model. Joint + SS models have lower standard deviations,

but they are also extremely consistent at recovering nearly the same clusters, run after run,

for the seeded topics. Typically in topic modeling applications, different starting conditions

produce different clusters, highlighting and obfuscating different themes. However, each

seeded topic consistently produced the same clusters. This enhances the practicality of

this technique for building VerbNet-style clusters, because adding supervision of new classes

should have predictable effects despite the randomized nature of MCMC.
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Test Set Verbs
Unsupervised Model Semi-Supervised Model

Frequent Verbs Test Set Verbs Frequent Verbs Test Set Verbs

Calibratable-
COS-45.6

rise (536)
drop (122)
move (56)
vary (15)

appreciate (4)

increase
reduce
grow

exceed
rise

rise (468)
drop (49)
vary (1)

expect (24)
drop (8)
push (6)
grow (6)

grow
gain

increase
rise

reduce
dip
shift

rise (512)
drop (120)

vary (8)
drop (29)
grow (17)
vary (13)

hit (5)
rise (3)
dip (3)

count (2)

Use-105

use (588)

use
develop
support

need
utilize

use (369)
use (5)
need (3)
call (2)

use
need

create
support

have
employ

use (455)
need (46)
use (7)
call (3)

work (2)

Discover-84

find (122)

find
find out

view
work out

advise

find (80)
find (177)

find
advise
base
focus

depend

find(122)
find (202)
work (4)
count (3)

Say-37.7

add (282)
disclose (155)
declare (46)
write (26)
observe (9)

say
tell
ask

explain
add

add (134)
declare (9)
disclose (2)
admit (4)
call (2)

add
convert

link
subscribe
append

add (282)
add (3)

Table 5.5: Best clusters from the unsupervised and partially-supervised clustering algorithms
for 4 target VerbNet classes. The most-frequent verbs in each cluster are shown, with all
terms that seeded the given cluster in the semi-supervised model indicated in italics. We
also show the test set verbs assigned to that cluster, with the number of sentences indicated
in parentheses. Terms highlighted in red are the model’s errors, and show sentences assigned
to the cluster that are not in the target VerbNet class. Verbs in both black and red in the
same cluster indicate multiple senses of the verb which should have separated into distinct
clusters.

5.2.5 Comparison of Produced Clusters

Including the supervision aids recovery of the VerbNet classes in purity and inverse

purity. The topic for Calibratable Change of State, from above, was seeded with examples

from VerbNet 45.6, including sentences with verbs like gain, grow, dip and shift. Out of
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1042 sentences in the test set, we put 882 of them into the same topic. In the unsupervised

setting, we grouped only 594 of these sentences together. We see a similar improvement for

VerbNet 105, the Use class. Once seeded with examples from the verb employ, we now group

226 of the 362 sentences together, rather than 179.

However, the seeded topics didn’t improve everything. We seeded one topic with examples

from the VerbNet class Discover-84, using sentences with the verbs discover and hear. In

the evaluation set, the only test examples came from the verb find, which is polysemous in

the test classes (with examples from Discover-84 and from Get-13.5.1). After supervision,

the instances of find were clustered together more strongly, and we increased the inverse

purity of both Discover-84 and Get-13.5.1. However, in both cases these two classes were

incorrectly conflated. Despite a close analysis of the SemLink find sentences, it is difficult

to account for the placement of find in a topic seeded with advise sentences.

We also increased the inverse purity score for VerbNet class Say-37.7, which is one of the

test classes omitted from the supervision. However, this increase is a result of incorrect lump-

ing with seed examples. The verb add is polysemous, belonging to both Say-37.7 (“Elaine

added a few words”) and Mix-22.1 (“Herman added the computer to the network”), and we

included Mix-22.1 examples in our supervision. This produces a cluster that is dominated by

add, clustered with verbs like convert and link, which have much lower frequency. Because

all examples of add end up in this cluster, more examples of Say-37.7 are clustered together

after supervision, but we lump them in with Mix-22.1, resulting in a cluster that does not

represent the Say-37.7 class. The unsupervised cluster with the most Say-37.7 examples

has frequent verbs say, tell, ask, and explain, which clearly recovers the desired concept. A

similar cluster is created in the partially-supervised clusters, but the test examples from add

are not included in it.
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5.3 Supervision Takeaways

Both models in this chapter leverage a small amount of labeled data alongside a large

amount of unlabeled data, and the labeled data has a large positive impact on the learned

clusters. This supports Hypothesis 4. The Joint sense induction and clustering model

performs best, and receives the most direct and predictable effect of supervised sentences,

which supports Hypothesis 3. There is still a large distance to cover with supervision, because

we are far from perfect in alignment with VerbNet.

The ability to use a small amount of labeled data to improve the clusters has direct,

practical consequences for practitioners, and suggests a fruitful line of research and devel-

opment of VerbNets in multiple languages. Right now, the task of adding verbs to VerbNet

requires reasoning about each verb and each class, and looking through corpus examples

to see whether membership is justified (Bonial et al., 2013a). We could instead present

annotators with candidate clusters and new candidate members of existing clusters, and

allow them to interactively accept or reject those suggestions, and using their decisions to

further refine the model’s suggestions (Hu et al., 2014). We know that these models respond

well to supervision, and we have hints about some potential pitfalls of direct supervision.

The seeding can apparently discourage the model from learning to separate senses, or create

clusters that are inexplicable in the verbs they lump together, and dealing with these issues

will likely present new research problems. The development of effective interactive tools, and

best practices for annotating VerbNet, is one of the most promising future lines of research,

and will be discussed further in Chapter 6.

5.4 Recap of Supervised Verb Clustering

Supervision can be added to the verb clustering step of the step-wise framework using

only information about a verb’s typical VerbNet class distribution (Section 5.1). Section 5.1.2

describes a few implementational details. Sections 5.1.3 and 5.1.4 show the quantitative and
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qualitative differences between the supervised and unsupervised mixtures. Supervision does

improve clustering accuracy, even when that supervision is distant from the VerbNet class

variable it ultimately tries to predict.

Supervision can also be added to the joint sense induction and clustering framework (Sec-

tion 5.2), by directly observing the labels of some annotated senses. This is computationally

efficient, makes the recovered classes much more predictable, and produces quantitatively

superior results.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

This thesis presents work on building semantic, VerbNet-like clusters using syntactic

features and probabilistic models. We will briefly restate the original contributions from this

line of research, the major hypotheses underlying this research, and the evidence supporting

those hypotheses.

6.1.1 Review of Contributions

Chapter 3 concerns the use of Dirichlet-Multinomial mixtures for verb sense induction

and clustering. Section 3.2 describes the verb-specific sense induction of Kawahara et al.

(2014a), and Section 3.3 shows how this lays the groundwork for the step-wise verb clus-

tering system of Kawahara et al. (2014b). A simplified, joint verb sense induction and

clustering system (Peterson and Palmer, 2018) is introduced in Section 3.4. This joint sense

induction benefits from feature engineering, including raw syntactic slot features in the

vocabulary Peterson et al. (2019).

Chapter 4 describes a novel positive pointwise mutual information (PPMI) mixture

model. This model is effective on the verb clustering task from the step-wise framework
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(Peterson and Palmer, 2018), because induced verb senses aggregate syntactic information

from hundreds of sentences. Further investigation demonstrated that it does not generalize

to sense induction, in part because the PPMI is sensitive to large vocabularies (Peterson and

Palmer, 2019).

Chapter 5 describes two approaches to incorporating a limited number of VerbNet anno-

tations to guide the clustering process. Adding supervision on the step-wise verb clustering

task uses distant supervision, through sampling an additional variable for VerbNet class as-

signment, as described in Peterson et al. (2016). In the joint sense induction and clustering

framework, a simpler technique is to lock VerbNet classes to particular, pre-assigned clus-

ters, and use the supervision to bias the recovery of these classes. This technique produces

superior cluster results, a result which is currently under review as a long paper at ACL 2019

(Peterson et al., 2019).

6.1.2 Review of Hypotheses

Hypothesis 1 Observable syntactic behavior is a reflection of a verb’s semantics.

This is Levin’s hypothesis (Levin, 1993), and underlies all the work in this hypothesis.

It has withstood scrutiny in linguistics and by natural language processing researchers, es-

pecially practitioners trying to build semantic verb clusters. The apparent coherence of the

clusters derived in this research adds further evidence to support this hypothesis.

Hypothesis 2 Sense disambiguation is a crucial component of deriving semantic groups of

verbs.

Many verbs properly belong in multiple VerbNet classes, because they have multiple

senses. Incorrect separation of senses can reduce the semantic coherence of clusters, as can

be seen in Table 5.3, where incorrect joining of distinct senses reduces the semantic coherence

of clusters in the semi-supervised model.
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Hypothesis 3 Sense disambiguation can be done simultaneously with semantic cluster cre-

ation.

The step-wise sense induction and clustering steps of Kawahara et al. (2014b) require

processing the corpus in multiple passes, adding overhead to the clustering task. The joint

sense induction and clustering model of Peterson and Palmer (2018) requires only one pass,

and produces superior senses and verb clusters. It is also amenable to an extremely efficient

supervision scheme (Peterson et al., 2019), so in the presence of labeled data its advantages

are even more apparent.

Hypothesis 4 Partial supervision can increase both the accuracy and the coherence of

automatically-created semantic verb clusters, even for clusters with no supervised examples.

Chapter 5 describes methods of adding supervision to both the step-wise and joint verb

clustering models, and evaluates them on a test set specifically designed to test the recovery

of classes without any supervision. Although the supervision does not specifically help

the step-wise model, it increases the inverse purity (average completeness of recovery) for

both seens and unseen classes in the joint model. Table 5.3 specifically highlights model

mistakes in coherence, because there is still a large amount of room for improvement. The

evidence supports the accuracy claim in this hypothesis, but there is still insufficient evidence

that supervision can increase cluster coherence. It may be that coherence improvements

require a more complete set of supervised examples. The research in this thesis suggests that

annotators can work in tandem with probabilistic models to produce Levin-style clusters that

match VerbNet. It is still an open problem how much this human-computer collaboration

can improve VerbNet annotation efforts.

6.2 Future Directions

VerbNet has been expanded and revised in the years since the SemLink annotation was

done, significantly increasing the coverage of highly frequent verbs and improving the con-
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sistency of the classes. A new version of SemLink that reflects these changes is scheduled

for release in coming months. We would like to test our system with the new data, as the

improved SemLink may produce a further improvement on the clusters.

In Chapters 3 and 4, we noted that some of the models benefit from features with

granularity less specific than the particular tokens. The step-wise framework lumps named

entities together, without even distinguishing common named entity types (e.g., person,

location, organization) (Kawahara et al., 2014b). The joint framework benefits from slot

features when added as extra counts to the slot:token featues it originally used (Peterson

et al., 2019). Prior verb clustering efforts have improved from selectional preferences, which

were clusters of tokens that gave the model additional information (Sun and Korhonen,

2009). Taken together, these suggest that the features we treat as vocabulary will have a

large impact on the model results. Giving the model additional features, or better features,

may help it achieve better performance, and in this research we have only scratched the

surface of semantically useful representations1. We have restricted our model to assign the

same cluster to all tokens from the same sentence, and the step-wise framework assigns the

same cluster to all tokens from the same initial frame, and then the same cluster to all

instances in each verb sense. The atomic unit of the clustering is, then, also a part of the

feature representation of the data, and is equally amenable to feature engineering. But there

are many plausible feature combinations that are worth trying, and this investigation is left

for future research.

Annotators working to build or extend a VerbNet-style resource must make a large num-

ber of judgements. The number and natue of senses for each verb, the combination of

syntactic alternations that should be viewed as canonical for a verb sense, and whether

any particular instance is an idiomatic or otherwise atypical construction are often subtle

questions whose answers require care, training, and evidence to answer. The final class as-

signment that is given by the answers to those questions is equally subtle, and requires the

1We did test adding pattern features from Chapter 4 to the joint model, but they did not help the way
the slot features did.
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annotator to be intimately familiar with the current classes in VerbNet.

In order to have impact for VerbNet annotation efforts, the model’s output must be pro-

vided to annotators. Probabilistic models may never be capable of making such fine-grained

distinctions, but this work demonstrates they can make reasonable clusters, and that their

quality can increase with access to labels. We believe a tool that suggests classes, class mem-

bers, and provides the annotators with a view into the example sentences would dramatically

improve and accelerate their work. The tool could track annotators’ decisions, allowing each

annotation session to refine and further improve the model’s output, interactively (Hu et al.,

2014). The most obvious next step for this research is to build that tool, and use it to expand

and improve VerbNet in as many languages as possible.

In Section 5.2 we specified supervision at the sentence level, affecting counts for both

topics and document distributions by labeling specific sentences, but inference-level super-

vision of topics can easily be applied to topics or documents without specifying particular

sentences. There is use for both broad, topic-level supervision and focused corrections for

individual sentences.

Annotators will likely spend time correcting the sense clustering for individual verbs.

We saw examples where supervision encouraged distinct senses to be incorrectly linked,

and that this created poorer semantic clusters. Because annotation may sometimes cause

clusters to lose coherence, or polysemous verbs to have their senses incorrectly lumped, the

interactive tool might be able to help users identify errors by viewing specific sentences that

have changed cluster between model training sessions. When a batch of annotation decreases

coherence, seeing the specific sentences that have changed will allow annotators to correct

the trend, either with new labels or by removing problematic annotations. We hypothesize

that properly seeding different senses into different classes will dramatically boost VerbNet

alignment.

Presenting annotators with an interactive tool for probabilistic verb clustering is only the

first step towards a line of research in how to best supervise these probabilistic clustering
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models. Interactive guiding of the process can also help us learn more about the nature of

the problem. If annotators spend time identifying incorrect lumping or splitting of senses,

we may be able to use this signal to quantify the quality of our topics with respect to sense

separation. Incorporating such an automatic metric into the statistical model would likely

improve it further (Mimno et al., 2011). Part of the benefit to working with annotators will

be learning to capture as much value as possible from the signals they give, and this provides

an extremely open field of research.

The side effect of research into best practices for VerbNet annotation will be improvements

to English VerbNet, and probably a number of VerbNet-style resources in other languages,

which will have practical value in addition to the scientific value of the investigation.

90



Chapter 7

Bibliography

Wikipedia, the free encyclopedia. http://www.wikipedia.org.

Aldezabal, I., Aranzabe, M. J., de Ilarraza Sánchez, A. D., and Estarrona, A. (2010). Building

the basque propbank. In LREC.

Andrzejewski, D., Zhu, X., and Craven, M. (2009). Incorporating domain knowledge into

topic modeling via dirichlet forest priors. In Proceedings of the 26th annual international

conference on machine learning, pages 25–32. ACM.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The berkeley framenet project. In

Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics-Volume 1, pages 86–90.

Association for Computational Linguistics.

Batmanghelich, K., Saeedi, A., Narasimhan, K., and Gershman, S. (2016). Nonparametric

spherical topic modeling with word embeddings. arXiv preprint arXiv:1604.00126.

Bethard, S., Ogren, P., and Becker, L. (2014). Cleartk 2.0: Design patterns for machine learn-

ing in uima. In Proceedings of the Ninth International Conference on Language Resources

and Evaluation (LREC’14), pages 3289–3293, Reykjavik, Iceland. European Language

Resources Association (ELRA).

91



Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python: analyzing

text with the natural language toolkit. ” O’Reilly Media, Inc.”.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022.

Bonial, C., Brown, S. W., Hwang, J. D., Parisien, C., Palmer, M., and Stevenson, S. (2011).

Incorporating coercive constructions into a verb lexicon. In Proceedings of the ACL 2011

Workshop on Relational Models of Semantics, pages 72–80. Association for Computational

Linguistics.

Bonial, C., Hargraves, O., and Palmer, M. (2013a). Expanding verbnet with sketch engine. In

Proceedings of the 6th International Conference on Generative Approaches to the Lexicon

(GL2013), pages 44–53.

Bonial, C., Stowe, K., and Palmer, M. (2013b). Renewing and revising semlink. In GenLex

Workshop on Linked Data in Linguistics.

Bonial, C., Stowe, K., and Palmer, M. (2013c). Renewing and revising semlink. In Proceed-

ings of the 2nd Workshop on Linked Data in Linguistics (LDL-2013): Representing and

linking lexicons, terminologies and other language data, pages 9–17.

Bouma, G. (2009). Normalized (pointwise) mutual information in collocation extraction.

Proceedings of GSCL, pages 31–40.

Brew, C. and Schulte im Walde, S. (2002). Spectral clustering for german verbs. In Pro-

ceedings of the ACL-02 conference on Empirical methods in natural language processing-

Volume 10, pages 117–124. Association for Computational Linguistics.

Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using neural

networks. In Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP), pages 740–750.

92



Chen, X., Liu, Z., and Sun, M. (2014). A unified model for word sense representation and

disambiguation. In EMNLP, pages 1025–1035.

Christensen, J., Soderland, S., Etzioni, O., et al. (2010). Semantic role labeling for open

information extraction. In Proceedings of the NAACL HLT 2010 First International Work-

shop on Formalisms and Methodology for Learning by Reading, pages 52–60. Association

for Computational Linguistics.

Cui, W., Zhou, X., Lin, H., Xiao, Y., Wang, H., Hwang, S.-w., and Wang, W. (2016). Verb

pattern: A probabilistic semantic representation on verbs. In Thirtieth AAAI Conference

on Artificial Intelligence.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).

Indexing by latent semantic analysis. Journal of the American society for information

science, 41(6):391.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dowty, D. (1991). Thematic proto-roles and argument selection. language, pages 547–619.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The annals of

statistics, pages 209–230.

Giuglea, A.-M. and Moschitti, A. (2006). Semantic role labeling via framenet, verbnet

and propbank. In Proceedings of the 21st International Conference on Computational

Linguistics and the 44th annual meeting of the Association for Computational Linguistics,

pages 929–936. Association for Computational Linguistics.

Goldberg, Y. and Orwant, J. (2013). A dataset of syntactic-ngrams over time from a very

large corpus of english books.

93



Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 855–864. ACM.

Hartmann, S., Eckle-Kohler, J., and Gurevych, I. (2016). Generating training data for

semantic role labeling based on label transfer from linked lexical resources. Transactions

of the Association for Computational Linguistics, 4:197–213.

Hautli-Janisz, A., King, T. H., and Ramchand, G. (2015). Encoding event structure in

urdu/hindi verbnet. In Proceedings of the The 3rd Workshop on EVENTS: Definition,

Detection, Coreference, and Representation, pages 25–33.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8):1771–1800.

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence, pages 289–296. Morgan Kaufmann

Publishers Inc.

Hu, Y., Boyd-Graber, J., Satinoff, B., and Smith, A. (2014). Interactive topic modeling.

Machine learning, 95(3):423–469.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word repre-

sentations via global context and multiple word prototypes. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume

1, pages 873–882. Association for Computational Linguistics.

Im Walde, S. S. (2000). Clustering verbs semantically according to their alternation be-

haviour. In Proceedings of the 18th conference on Computational linguistics-Volume 2,

pages 747–753. Association for Computational Linguistics.

94



Im Walde, S. S. (2006). Experiments on the automatic induction of german semantic verb

classes. Computational Linguistics, 32(2):159–194.

Ishwaran, H. and Zarepour, M. (2002). Exact and approximate sum representations for the

dirichlet process. Canadian Journal of Statistics, 30(2):269–283.
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