
A Paradigm for Scalable, Transactional, and Efficient

Spatial Indexes

by

Ning Gao

B.A., Zhejiang University, 2012

M.S., University of Colorado at Boulder, 2016

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2018

This thesis entitled:
A Paradigm for Scalable, Transactional, and Efficient Spatial Indexes

written by Ning Gao
has been approved for the Department of Computer Science

Dirk Grunwald

Prof. Qin Lv

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Gao, Ning (Ph.D., Computer Science)

A Paradigm for Scalable, Transactional, and Efficient Spatial Indexes

Thesis directed by Prof. Dirk Grunwald

With large volumes of geo-tagged data collected in various applications, spatial query pro-

cessing becomes essential. Query engines depend on efficient indexes to expedite processing. There

are three main challenges: scaling out to accommodate large volumes of spatial data, support-

ing transactional primitives for strong consistency guarantees, and adapting to highly dynamic

workloads. This thesis proposes a paradigm for scalable, transactional, and efficient

spatial indexes to significantly reduce development efforts in designing and comparing

multiple spatial indexes.

This thesis first introduces a distributed and transactional key value store called DTranx to

persist the spatial indexes. DTranx follows the SEDA architecture to exploit high concurrency in

multi-core environments and it adopts a hybrid of optimistic concurrency control and two-phase

commit protocols to narrow down the critical sections of distributed locking during transaction com-

mits. Moreover, DTranx integrates a persistent memory based write-ahead log to reduce durability

overhead and combines a garbage collection mechanism without affecting normal transactions. To

maintain high throughput for search workloads when databases are constantly updated, snapshot

transactions are introduced.

Then, a paradigm is presented with a set of intuitive APIs and a Mempool runtime to re-

duce development efforts. Mempool transparently synchronizes local states of data structures with

DTranx and it handles two critical tasks: address translation and transparent server synchroniza-

tion, of which the latter includes transaction construction and data synchronization. Furthermore,

a dynamic partitioning strategy is integrated into DTranx to generate partitioning and replication

plans that reduce inter-server communications and balance resource usage.

Lastly, single-threaded data structures BTree and RTree are converted into distributed ver-

iv

sions within two weeks. The BTree and RTree achieve 253.07 kops/sec and 77.83 kops/sec through-

put respectively for pure search operations in a 25-server cluster.

Dedication

To all of families and friends.

vi

Acknowledgements

I’m thankful to my thesis advisor Dirk Grunwald who has guided me through difficulties.

Without his guidance and inspiration, I would not have been able to complete this dissertation.

Dirk is a very smart and knowledgeble scholar and keeps a humble attitude to listen to others.

Besides being a well informed advisor, Dirk is patient and encouraging. His metaphor of research

as the Japanese dorodango inspired me to persevere and perfect my work. Thanks are also extended

to my committee members: Eric Keller, Qin Lv, Shivakant Mishra, and Sriram Shivakant for their

precious feedback.

I would like to thank my colleagues for insightful research discussion. This includes Hansu

Gu, Chenyu Zheng, Tian Lei, Bryan Dixon, Blake Caldwell, Guohui Ding, Zhang Liu, Yuru Li,

Mohammad Hashemi, Zhiyuan Liu, Mahnaz Roshanaei, and Shuo Zhang. They created a joyful

and pleasant environment in our system lab. I wish the best luck to their future careers.

I have been fortunate to meet a lot of friends in Boulder. I thank Xinyang Zhou, Ke Ma,

Yuanzhe Zhang, Zhanan Zou, Simeng Chen, Hang Yin, Tong Shen, Mengyuan Wang, Xizheng Ma,

Feichi Feng, Haojie Hang, Xinshuo Yang, Ze Chen. I’ve enjoyed sharing life moments, climbing,

snowboarding, hiking, and running with them. Especially, Xinyang Zhou, Ke Ma, Yuanzhe Zhang,

and I started our friendship since 2012 and they helped me grow, kept me accompany, and shared

life moments. Without them, my graduate life would never be like the same.

Finally, I would like to express my deep appreciation to my families. My parents Eryun

Gao and Minjuan Lin have always been there to encourage and support me during difficult times.

My wife Yuan Sui stood besides me throughout my graduate life and she has been both a caring

vii

wife and a great friend. She has brought me happiness, encouragement, and love that makes me

stronger.

viii

Contents

Chapter

1 Introduction 1

1.1 Motivation . 1

1.2 System Overview . 2

1.3 Contributions . 3

1.4 Thesis Organization . 5

2 Background 7

2.1 History . 7

2.1.1 MAMs: Multidimensional Access Methods . 7

2.1.2 SDDS: Scalable Distributed Data Structures 8

2.1.3 P2P: Peer-To-Peer Systems . 9

2.1.4 NoSQL Databases & Big Data Computing Framework 9

2.1.5 Summary . 10

2.2 Architecture . 10

2.2.1 Execution Module . 11

2.2.2 Storage Module . 12

2.3 Summary . 12

3 DTranx 13

3.1 Introduction . 13

ix

3.2 Background . 14

3.3 Design . 16

3.3.1 Architecture Overview . 16

3.3.2 Serializability . 18

3.3.3 Persistent Memory Based Log . 20

3.4 Implementation . 23

3.4.1 Cache . 23

3.4.2 Exactly-Once RPC . 23

3.4.3 LevelDB . 24

3.4.4 Fault Recovery . 25

3.4.5 Optimizations . 25

3.5 Evaluation . 26

3.5.1 Experiment Details . 26

3.5.2 Transaction . 27

3.5.3 Scalability . 27

3.5.4 Persistent Memory Based Log . 28

3.6 Related Work . 30

3.7 Summary . 31

4 DDSBrick 32

4.1 Introduction . 32

4.2 Overview . 35

4.3 Paradigm . 37

4.3.1 Programming Interface . 37

4.3.2 Mempool Design . 40

4.4 Key Value Store . 42

4.4.1 Snapshot Read Transaction . 42

x

4.4.2 Dynamic Partitioning . 43

4.5 Evaluation . 49

4.5.1 BTree & RTree . 51

4.5.2 Snapshot . 54

4.5.3 Dynamic Partitioning . 55

4.5.4 Summary . 58

4.6 Related Work . 58

4.7 Summary . 60

5 Related Work and Discussion 62

5.1 Distributed Spatial Access Methods . 62

5.1.1 Monolithic Indexes . 62

5.1.2 Hierarchical Indexes . 67

5.1.3 Discussion . 78

5.1.4 Performance Analysis . 83

5.2 Strength and weakness of DDSBrick . 85

5.2.1 DSAMs vs. DDSBrick . 86

5.2.2 Tango vs. DDSBrick . 88

5.3 Summary . 90

6 Conclusion and Future Work 91

6.1 Thesis Summary . 91

6.2 Limitations and Future work . 92

Bibliography 95

xi

Tables

Table

4.1 DDSBrick programming interfaces. 37

4.2 Tango vs. DDSBrick . 52

5.1 Monolithic Designs with Space Filling Curves . 65

5.2 Hierarchical Designs with Partitioned Global Index 72

5.3 Performance . 84

6.1 Data structures mapped to DDSBrick . 92

xii

Figures

Figure

1.1 Client-Server Model . 4

2.1 Distributed spatial access methods history. 7

2.2 Architecture . 10

3.1 SEDA architecture . 15

3.2 DTranx architecture. 17

3.3 Commit Protocol. 18

3.4 Coordinator and Participant state transition. Black arrows show the state transitions

and red arrows show the ordered steps of garbage collection. 23

3.5 Distributed transactions. The horizontal axis represents the percentage of read trans-

actions while the vertical axis shows the throughput on the left and commit success

rates on the right. 28

3.6 DTranx Scalability. Four workloads are run, namely 50%, 75%, 95%, and 100% read

workloads. 29

3.7 The left plot shows the instant throughput with and without GC for both NVM and

SSD. The right plot shows the space usage with and without GC for NVM. Specif-

ically, gc nvm means the system with GC enabled and NVM based log; nogc nvm

is the system with NVM based log but GC disabled; gc ssd is the system with GC

enabled and SSD based log. 29

xiii

4.1 B+Tree insertion. The number of children varies from 2 to 4 except the root

node. Red nodes are updated/inserted and the shaded area indicates the transaction

boundary within which all nodes are updated/inserted atomically. 33

4.2 RTree Class Diagram. UML class diagram for RTree implementation. 36

4.3 Mempool design. It shows the internal modules of Mempool and the interactions

among these modules. 40

4.4 Transaction graph representation. It is a binary search tree on the bottom right and

the transactions on the top right are the input for the graph generated on the left. . 45

4.5 2PC for NT and DMT . 47

4.6 Repartition failure scenario. Arrows represent a happens-before relationship. 49

4.7 Throughput and Latency. There are four types of workloads: BTree search opera-

tions, BTree mix operations, RTree search operations, and RTree mix operations. . . 50

4.8 Scalability. Cluster sizes are 3, 9, 18, and 25. The right vertical axis is the percentage

of distributed transactions that are committed in one server. The bottom baseline

is the throughput for a single-threaded rtree. 51

4.9 Snapshot throughput. 53

4.10 Snapshot creation. The vertical dotted lines are when new snapshots are created. . 54

4.11 Throughput before and after DMT. 55

4.12 Server side requests metrics. We normalize the request numbers by dividing them

by the average number of ClientService requests. And, data are sorted in increasing

order such that the number of requests is the lowest in the server with ID 1. 56

4.13 This figure shows how the repartitioning affects ongoing transactions for BTree. The

number of transactions means how many history transactions are applied for the new

partitioning strategy. 57

4.14 Feature supports for current DDS systems. 59

5.1 Literature Category . 63

xiv

5.2 Space Filling Curves . 67

5.3 Problems: Black represent the problems and blue represent solutions. 79

5.4 Hierarchical Indexes: objects with multiple color blocks are replicated in each corre-

sponding server. 87

5.5 Tango vs. DDSBrick . 88

Chapter 1

Introduction

1.1 Motivation

As geo-sensors are widely available and the volumes of geo-tagged data are collected in

an unprecedented pace, numerous applications arise in demand of an indexing service to handle

various spatial queries. For example, since the FCC opened unlicensed spectrum for public usage, a

spectrum registration system, which regulates and coordinates the spectrum usage, needs to answer

the question: whether a spectrum range A in location X collides with any existing hotspot. A spatial

index that handles range queries is required. Another example is the Uber taxi service that collects

drivers’ and passengers’ location information and searches for nearest drivers or passengers. Uber

depends on a spatial index for nearest neighbor queries. Services like these have boomed during

the last decade, necessitating spatial indexes to deal with various spatial queries. Since the 1970s,

researchers have exploited multidimensional access methods, such as RTree, KD-Tree, etc. However,

current applications call for a more scalable solution. For instance, Uber claimed1 that it reached 15

million daily rides, 3 million drivers, and 75 million riders. Besides the large numbers of daily rides,

these Uber drivers and riders frequently updated their real-time locations, causing high volumes of

both query and update requests to the Uber database.

Spatial distributed data structures were heavily explored to scale the multidimensional access

methods. There are two categories: monolithic indexes and hierarchical indexes. Monolithic indexes

store the spatial indexes in distributed storage systems, such as HBase and Cassandra, to scale out.

1 According to the statistics published in https://www.uber.com/newsroom/company-info/.

2

For example, MD-HBase [128] persisted a KD-Tree in HBase and spatial queries are processed

in any MD-HBase server in parallel. Hierarchical indexes divide the spatial index structures into

partitions and distribute the partitions across the servers. For instance, SD-RTree [49] proposed a

distributed RTree and DiST [120] introduced a distributed KD-Tree. However, neither monolithic

nor hierarchical indexes offer transactional primitives, which are notoriously costly in databases.

Without transactional support, the aforementioned spectrum registration system might accept

multiple concurrent requests, of which the covered regions overlap with one another. Furthermore,

spatial systems naturally generate dynamic workloads, undermining load balances. If a subset of

the cluster contains all the heavily accessed data, the overall throughput would be limited by these

servers. In the worst case where all requests need to access a particular data item, the throughput

of a cluster could be less than that of one server.

Thesis Statement: This thesis attempts to build scalable, transactional, and efficient

spatial indexes and provide a paradigm such that researchers are able to design and compare

various spatial indexes with minimum development efforts.

It aims to address all the challenges above. First, the paradigm enables researchers to convert

central multidimensional access methods to distributed spatial indexes efficiently such that the

converted distributed spatial indexes can be compared and combined to handle various kinds of

spatial queries. Second, transactional primitives are provided for the developers to reason their

program correctness and the internal design guarantees high throughput and low latency. Lastly,

data partitioning are adapted dynamically to the current workloads to achieve better scalability.

1.2 System Overview

We follow the client-server model and offload scalability and transaction burdens to a dis-

tributed storage system. The overall architecture is shown in Figure 1.1. Clients offer a runtime

and a library to facilitate the constructions of various spatial data structures and servers run a

distributed key value store that supports high scalability and serializable transactions. The client-

server model brings two benefits. First, the separation of the data structure logic from the storage

3

system enables us to leverage techniques from distributed databases to achieve low latency, high

throughput, and linear scalability. Second, it simplifies DDS implementations by hiding distributed

system complexities, such as data placements.

Client To minimize developing efforts, we introduce an intuitive abstraction and a Mem-

pool runtime to consistently synchronize data between local machines and servers transparently.

Developers decompose data structures into basic data unit that we call data bricks. For example,

the data bricks of binary trees are tree nodes. Mempool calculates a distinct address for each

data brick automatically. With transparent server synchronization and address translation, the

conversion from single-threaded data structures to distributed versions becomes effortless while the

transactional interface ensures consistency.

Server A distributed key value store is deployed on the servers. We implement DTranx

instead of document databases or graph databases for two reasons. First, the mapping of data bricks

to keys is straightforward, reducing address translation overhead. Second, distributed key value

stores have been explored extensively in the last decade and numerous partitioning algorithms have

been proposed, such as consistent hashing and content addressable network. Not only does DTranx

implement efficient distributed transactions, it also integrates a dynamic partitioning strategy for

load balance.

1.3 Contributions

The contributions of the thesis are summarized into four aspects as follows.

Transactional KV Store We build a scalable and transactional key value store from

scratch. First, Staged Event-Driven Architecture(SEDA) is adopted to increase the system con-

currency and an optimal binding from threads to physical cores is searched. On top of that, lock

free queues connect SEDA stages as the communication channels to reduce the contention among

threads. Second, A hybrid commit protocol that combines optimistic concurrency control and

two phase commit is customized to achieve efficient serializable transactions. Moreover, we avoid

deadlocks and livelocks with a customized locking mechanism. Third, A modular Write-Ahead

4
Client

Server

Mempool Runtime

API

DS 1
DS 2 DS 3

DS 4

Dynamic
Partition

Distributed
Transaction

Figure 1.1: Client-Server Model

Log(WAL) based on Non-Volatile Memory cuts down the durability costs considerably, from which

most distributed ACID-compliant systems suffer; And, a garbage collection mechanism is integrated

to reclaim log space without affecting transaction performance. Lastly, snapshot read transactions

are proposed to bypass distributed commit protocols. It maintains high throughput even when

update transactions are constantly modifying the databases.

Paradigm We design the Mempool runtime and a set of intuitive APIs on the client

side to reduce development efforts. It enables researchers to examine various spatial indexes in

a short period while ensuring effective performance. After the internal logic of spatial indexes is

implemented, the conversion to distributed versions only requires developers to write a few callback

functions and wrap spatial query functions that call for consistent accesses with transactional

primitives. This simplicity results from the Mempool runtime, which transparently synchronizes

local states of data structures with DTranx. Mempool handles two critical tasks: address translation

and transparent server synchronization. Mempool assigns addresses to data bricks such that the

remote servers know where to store or fetch them. Transparent server synchronization includes

automatic transaction construction and data synchronization. Particularly, Mempool is capable

of capturing data brick reads, creations, and updates automatically and constructing transactions

5

transparently before committing to DTranx. It speeds up the conversion process significantly since

developers do not have to keep track of the accessed data items in transactions. Furthermore,

Mempool maintains a local cache of deserialized objects to lower the serialization overhead.

Dynamic Partitioning Strategy We propose a dynamic partitioning strategy into the

transactional KV store to reduce inter-server communication and balance resource usage. Tradi-

tional key value stores do not yield good performance when workloads display non-uniform access

patterns. For example, the server storing the root of a binary tree is visited by every request. We

adopt a hybrid strategy that combines hash and adaptable partitioning. Transactions are repre-

sented as a graph structure and a partitioning algorithm called METIS [65] is applied to minimize

edge cuts. It brings two benefits. First, data that are jointly accessed in transactions are stored

together such that no 2PC is necessary. Second, data loads are effectively replicated and balanced

across the cluster. In addition, we introduce a greedy algorithm to minimize data migrations and

adjust 2PC to enable online database migration while still serving strongly consistent transactions.

BTree & RTree We successfully convert two single-threaded data structures to distributed

ones within ten days: BTree and RTree. For pure search workloads in a 25-server cluster, our BTree

and RTree achieves 253.07 kops/sec and 77.83 kops/sec respectively. STI-BT, a highly optimized

distributed BTree shows ≈22 kops/sec in a 60-server cluster. For workloads with 70% search, 15%

insert, and 15% remove operations in a 25-server cluster, our BTree and RTree support 100.13

kops/sec and 35.36 kops/sec throughput respectively. Tango achieves 20k ops/sec in a 18-server

cluster for cross-partition transactions on a Zookeeper tree.

1.4 Thesis Organization

The remaining chapters are organized as follows. Chapter 2 introduces the background of

distributed spatial access methods and the common architecture. Chapter 3 describes a scalable

and transactional key value store, called DTranx, which adopts persistent memory for log designs.

Chapter 4 then presents a paradigm for building and testing various scalable and transactional spa-

tial structures based on DTranx. Chapter 5 reviews the past research on distributed spatial access

6

methods in detail and discusses techniques applied. Chapter 6 discusses the strength and weak-

ness of DDSBrick in greater depth, comparing it with peer systems and analyzing the limitations.

Finally, Chapter 7 summarizes the thesis.

Chapter 2

Background

2.1 History

Figure 2.1 shows the history of distributed spatial access methosds(DSAM) research. DSAM

is mainly based on Multidimensional Access Methods(MAMs) and Scalable Distributed Data Struc-

tures(SDDSs). The first DSAM papers are MR-Tree [90] and k-RP*s [102] where MR-Tree proposes

to store a global RTree in the master server and k-RP*s decentralizes a global RTree by gradually

splitting.

2.1.1 MAMs: Multidimensional Access Methods

Gaede et al. [61] and Samet et al. [143] give a comprehensive review on MAMs. Based on the

object types, there are two classes of methods: Point Access Methods(PAMs) and Spatial Access

Multidimensional
Access Method

High-Dimensional
Access Method Spatial Index

Spatial Index Spatial Temporal
Index

Moving Object
Database

Distributed Hash
Table

Scalable Distributed
Data Structure Peer-to-Peer

Scalable Distributed
Spatial Index

Big Data Storage
System

Big Data Processing
Framework

Big Data Framework

Monolithic Design Hierarchical Design

Figure 2.1: Distributed spatial access methods history.

8

Methods(SAMs) where the former searches for points and the latter handles extended objects, such

as rectangles. Another categorization depends on the decomposition method. MAMs with data-

dependent decomposition, such as cell tree [70], choose the partitioning hyperplane based on the

current objects while MAMs with data-independent decomposition apply regular decomposition1

, such as QuadTree [142] and PMR-quadtree [125]. On the other hand, decomposition methods

can be either disjoint or overlapping based on whether the regions of child nodes are disjoint or

overlapping. Overall, there are many criteria to define optimality for the MAMs and the choice of

MAMs mainly depend on the application requirements.

Within MAMs, researchers that focus on spatial temporal access methods add temporal

attributes in the access methods to support temporal queries. Based on the reviews from [115],

[112], [127], and [141], the majority of spatial temporal access methods are R-Tree variations, such

as MV3R-Tree [154] and TPR-Tree [160]. And, spatial temporal access methods usually do not

handle deletions since old data are queried in temporal databases. Bohm et al. [27] conducts an

overview on high-dimensional index structures where the high number of dimensions renders normal

MAMs useless. Illarri et al. [82] introduces location dependent query processing in moving object

databases(MODs), such as LUR-Tree [92]. The challenge is to process frequent updates efficiently.

However, the majority of the proposed work depend on either of the two assumptions: trajectory

being a mathematical function, queries being continuously monitoring a static space while objects

are moving. This paper aims at literature work on distributed spatial indexes where the observers

are not known as a priori.

2.1.2 SDDS: Scalable Distributed Data Structures

As distributed hash tables(DHTs) became heavily explored in 1990s, scalable distributed

data structures attracted researchers’ attention. The main focus was to extend DHTs to effi-

ciently support complex query processing, such as range queries. There are generally two ap-

1 Regular decomposition partitions the space by recursively halving it across the various dimensions instead of
permitting the partitioning lines to vary

9

proaches: over-DHT indexing and overlay-dependent indexing. Over-DHT indexing rely only on

the “put/get/lookup” interfaces and can utilize any DHTs. Overlay-dependent indexing entails

development of locality-preserving overlays, which will be covered in 2.1.3. Examples of SDDSs

include LH* [103], RP* [104], and LIGHT [153].

2.1.3 P2P: Peer-To-Peer Systems

P2P systems implemented indexes to query for object locations and consistent hashing [86]

has been widely used. When P2P systems support key value searching, the indexes could be DHTs,

such as Pastry [140], Chord [151], and P-Grid[7]. When P2P systems support range queries on keys,

the indexes could be a tree structure over DHTs, such as LIGHT [153] or BATON [83]. One example

of P2P systems supporting multi-dimensional queries is CAN [137].

2.1.4 NoSQL Databases & Big Data Computing Framework

Eldawy et al. [54] and Nam et al. [121] surveyed multidimensional indexes based on distributed

storage systems. Eldawy et al. covers spatial databases that rely on big data frameworks, such

as HBase [2] and MapReduce [43]. It summarizes three different approaches for spatial databases:

on-top, from-scratch, and built-in. The on-top approach implements algorithms of query logic or

MAMs construction in the big data processing system. For example, Zhang et al. [179] implements

MapReduce programs to scan the input records for range queries and k-nearest neighbor queries.

From-scratch approach designs the spatial databases from scratch and do not construct distributed

MAMs. Examples are Paradise [44] and SciDB [152]. Built-in approach either applies space filling

curves to reduce multidimensional data to one-dimensional keys or constructs central MAMs before

storing to the NoSQL databases. MD-HBase [128] applies Z-ordering to order the multidimensional

objects before a Quad-Tree or KD-Tree index is created where the index structures are stored in

the underlying key value store. However, we do not follow its categorization since it focuses on

spatial databases, which includes query engines, languages etc.

10
Server

Storage

Execution

Processing Engine
Local Index

Router Global Index

Query
Update

Figure 2.2: Architecture

2.1.5 Summary

From 1970s to 2000s, researchers have been explored multidimensional access methods,

SDDSs, P2P systems, and distributed storage systems, which lays the foundation for building scal-

able distributed spatial indexes. Multidimensional access methods provide various data structure

designs to support different data types and query types. SDDSs and P2P systems offer partitioning

and load balance techniques to achieve linear scalability. Lastly, distributed storage systems lend

persistence support with possibly transactional interfaces.

2.2 Architecture

We conduct this survey on distributed spatial index research from the last two decades.

Specifically, our focus is spatial access methods as opposed to high dimensional access methods,

distributed data structures as opposed to central single server structures and index design as op-

posed to GIS system or database designs. A high level design is illustrated in Figure 2.2.The

execution module handles updates and queries by utilizing the spatial index structures. The spa-

tial index structures can be either monolithic or hierarchical where monolithic indexes assembles

single server indexes and hierarchical indexes divide the whole indexes into two layers: global index

and local index. When servers receive a request, the router searches through the global index and

11

decides whether to forward the request or process it locally. The storage module persist the indexes

and it could be either local storage systems, such as LevelDB, or distributed storage systems, such

as HBase.

2.2.1 Execution Module

There are three major design challenges in the execution module: processing engine, router,

and load balance. The processing engine handles three subproblems: query type support, filtering,

and parallelism. Query support means what kind of queries the distributed spatial index supports,

such as point queries, range queries, and KNN queries, etc. Gaede et al. [61] summarized all the

spatial query types. Query support usually depends on the spatial AMs adopted. For example,

RTree supports range queries and Voronoi diagram supports nearest neighbor searching. And, the

spatial AMs also affect what spatial objects are supported. For example, KD-Tree only stores

point data while RTree stores rectangular data. Filtering means how the processing engine filters

out regions which expected objects are not in. For example, RTree with bloom filters, such as

BR-Tree [80], reduces false positive rates. Parallelism aims to lower processing latencies. Some

researchers utilizes the distributed computing engines like Mapreduce and Spark to parallelize

query processing. Examples are Traverse [174] and [12].

The router maintains the whole or partial global index as the routing table. The critical

problem is how to use less routing information to route within fewer steps. Less routing information

means less cost for database updates and fewer steps means more efficient query processing. The

most popular approach is to adopt the P2P overlay network that commonly needs O(logN) links

to achieve average routing step bound as O(logN) where N is the number of the servers.

Load balance guarantees high scalability. If the workloads display static hot spots, the

execution module can achieve load balance by offloading the highly loaded servers to lightly loaded

ones. However, The problem becomes complicated when the hot spots frequently change, in which

case index distribution should be adapted to dynamically adjust the loads.

12

2.2.2 Storage Module

Storage module is responsible for index construction and maintenance. Index construction

can be either insertion gradually like SD-RTree [49] or batch construction like EDMI [186]. Index

maintenance keeps the indexes consistent, which consists of consistency between global indexes

and local indexes and consistency among replications. For hierarchical indexes, lazy updates are

adopted in BR-Tree [80] and ATree [134] such that local index changes are lazily propagated to

global indexes. The laziness could lead to false positives and false negatives. When local indexes

shrink, lazy updates results in false positives where global indexes direct queries to servers without

expected data. When local indexes expand, lazy updates causes incorrectness. For example, a

search query might return a partial result set since it skips servers that contain the expected

data. For consistency among replications, researchers choose different replication factor. Generally,

indexes are stored in master-slave mode, partial-replication mode, and full-replication mode. In

master-slave design, indexes are stored in a designated master server and requests are forwarded

to slave servers for further processing. Partial-replication design stores part of the indexes in each

server and proposes a routing algorithm to forward requests to corresponding servers. For example,

P2P technologies overlay a structured network, mapping points, rectangles, and cubes to servers.

Full-replication design simply replicates the global index in all servers such that each server is able

to process requests locally.

2.3 Summary

This chapter reviews multidimensional access methods, scalable distributed data structures,

peer-to-peer systems, and big data systems from which distributed spatial indexes inherit various

techniques. Then, a high-level general architecture that all the distributed spatial indexes have

followed is presented. The main challenges are summarized as four aspects: query support, routing,

load balance, and distributed storage.

Chapter 3

DTranx

3.1 Introduction

There are numerous storage management systems, such as distributed RDBMS, NoSQL

database, distributed file systems, and transactional key value stores. These systems offer dif-

ferent levels of transactional and data schema support. Distributed RDBMS provides strict data

schema and full ACID properties with the price of low availability and efficiency. NoSQL databases

and distributed file systems, such as Cassandra [93] and GFS [66], are scalable and highly available,

but they often lack consistency support. Transactional key value stores, such as BigTable [32], sac-

rifice data schema flexibility, but they offer higher availability, superior performance, and better

scalability.

In this paper we present DTranx, a SEDA-based distributed transactional key value store with

persistent memory log. DTranx follows the SEDA[167] architecture to exploit the high concurrency

in multi-core environments. SEDA organizes the software in a network of stages where stages

contain both the application logic and communication channels. DTranx adopts lock free queues

as the communication channels to reduce contention among threads. In addition, DTranx binds

threads to physical cores to minimize the context switch overhead.

Unlike most existing key value stores, DTranx is fully ACID compliant supporting serializ-

ability. To serialize concurrent transactions, we adopt a hybrid of Optimistic Concurrency Con-

trol(OCC) and Two-Phase Commit(2PC) to narrow down the critical section of distribute locking

to the commit time and enables parallel validation for high scalability. Furthermore, we avoid dead-

14

locks and livelocks with a customized locking mechanism where transactions are aborted if shared

lock requests are rejected and the exclusive lock requests are blocked for a timeout if not granted

immediately. However, if the data is exclusively locked when the new exclusive lock requests come,

the new requests are rejected immediately.

Moreover, DTranx integrates a modular Write-Ahead Log (WAL) which can be configured to

use conventional SATA SSDs or Non-Volatile Memory(NVM) [163] technologies. Applying NVM

in the WAL considerably cuts down the durability cost that most ACID-compliant systems suffer.

A state transition mechanism to garbage collect(GC) WALs is also developed to reclaim the logs

of the completed transactions. The garbage collection process does not affect normal transactions

since old logs and the current appending log are not in the same file.

In summary, the contributions of DTranx are as follows:

• Adopting SEDA concurrent architecture and employing the optimal core binding strategy;

• Customizing a hybrid commit protocol combining optimistic concurrency control and two-

phase commit and introducing a locking mechanism to avoid deadlocks and livelocks;

• Adopting NVM using the Linux pmem library in the WAL of the distributed transactional

system to reduce the persistence overhead and to offer durability;

• And, designing a state transition based garbage collection mechanism to efficiently reclaim

increasing log space without affecting normal transactions.

3.2 Background

Staged Event-Driven Architecture SEDA is a highly concurrent architecture, consisting

of a network of event-driven stages connected by queues. A stage is an independent software module

that manages a shared resource. For example, the lock service in transactional systems is a stage

that maintains the locking information and handles lock requests. As shown in Figure3.1, a stage

is composed of an incoming event queue, a handler, and a thread pool. Besides the three core

15

Event Queue

Handler

Thread Pool

Figure 3.1: SEDA architecture

elements, SEDA adds a controller to adjust the thread pool size dynamically. The event handler

sends events to another stage by invoking the enqueue operation on the incoming event queue of that

stage. SEDA brings four benefits. First, it offers modularity and independent load management.

Second, it facilitates debugging and performance analysis, which has always been a tough task

for multi-threaded programs. Third, it optimizes the overall system performance by dynamically

adjusting resource allocations, such as thread numbers among stages. Fourth, it enables batch

request processing. For example, a database stage could write multiple keys at a time. Note that

SEDA requires nonblocking design of the event handler.

Optimistic Concurrency Control Concurrent control is the coordination of multiple con-

current accesses to the database and Philip et. al [24] decomposed it into two major subproblems:

read-write synchronization and write-write synchronization. There are pessimistic and optimistic

approaches towards both subproblems. The pessimistic approach assumes the probability of ac-

cess conflicts to be high and decides whether to restart at the start of transactions, such as two-

phase locking. The optimistic approach assumes the probability of access conflicts to be low and

decides whether to restart at the end of transactions. Specifically, Optimistic Concurrency Con-

trol(OCC) [74] consists of three phases: read, validation, and write. During the read phase, trans-

actions read databases and store updated data in the buffer. Then, databases check whether the

current transaction is in conflict with any concurrent operations. Finally, if it passes the validation

phase, the current transaction proceeds to update the database states.

16

Two-Phase Commit Two-Phase Commit(2PC) is a classic commit protocol in the dis-

tributed environment that guarantees agreement among servers on the commit results. Moreover,

once the agreement is reached, the commit results are persisted even if the servers fail. There are

two roles for the servers: coordinator and participant. During the first phase, coordinators initiate

2PC by sending prepare messages to participants and participants either accept or reject the pre-

pare messages. In the second phase, coordinators send out commit messages if all participants

accept the prepare messages and abort messages, otherwise. Both coordinators and participants

write Write-Ahead Log(WAL) to persist volatile states, such that the commit decisions for recovery

purposes.

3.3 Design

DTranx adopts the SEDA architecture to reach the optimal performance in each server

and achieves serializability by combining OCC and 2PC protocols. Furthermore, it introduces a

NVM-based WAL design with a garbage collection mechanism to effectively and efficiently reclaim

logs.

3.3.1 Architecture Overview

As shown in Figure 3.2, DTranx follows the SEDA [167] design and invents three categories of

stages: Service , Internal ,and Daemon . Service stages handle Remote Procedure Calls(RPCs).

For example, ClientService accepts transaction commit requests from clients and TranxService

processes 2PC requests from peer servers. Internal stages manage local shared resources. For

example, LockService maintains locking states and WAL writes logs to persistent storage. Daemon

stages run background tasks. For example, GC periodically reclaims logs and TranxAck sends

commit results from coordinators to participants.

To further exploit concurrency in SEDA, DTranx adjusts each of the stage components. First,

DTranx removes the dynamic control of the thread pools but statically assigns thread numbers for

each stage, after which threads are bound to physical CPU cores. We found out that one thread for

17

TranxService

Socket

StorageService

LockService

Storage

ClientService

WAL

GC

TranxAck TranxReply

ClientReply

Service Internal

Daemon

Figure 3.2: DTranx architecture.

each stage yields better performance when context switching is rare than that of multiple threads

for each stage when context switching happens frequently. However, dynamic control of the thread

pools is enabled in certain stages where handlers might be blocking. For example, Storage launches

multiple threads to handle I/O requests which involve blocking system calls. Besides the core

bindings for DTranx threads, kernel Interrupt Request(IRQ) threads are bound to CPU cores as

well since I/O throughput is severely affected otherwise.

Second, DTranx adopts lock free queues as the incoming event queues such that the en-

queue/dequeue operations on the queues are nonblocking and it achieves high throughput without

compromising consistency. The lock free queues utilize atomic primitives to reserve a spot and then

proceed to read/write in non-critical sections. In addition, multiple queues are created in each lock

free queue to spread loads.

18

Client Coordinator Participant

Time WAL write

Lock

WAL write

WAL write

Unlock

WAL write

Prepare

 Commit Request

Ready

Commit/Abort

DB update

Check read items

Local Process

 Read Request

Figure 3.3: Commit Protocol.

Third, DTranx reduces queue element construction and destruction costs by pushing element

pointers , instead of the element itself into the lock free queues and allocating an element pool

to store destructed elements. For example, Service stages get elements from the pool when new

requests come and Internal stages put elements to the pool when requests are completed.

3.3.2 Serializability

DTranx combines OCC and 2PC protocols to guarantee serializability, following Alexan-

der’s [156] hybrid OCC scheme that embedded lock acquisition and validation in the 2PC. The

main benefit compared to distributed Two-Phase Locking(2PL) is that locks are only held during

the commit time and DTranx employs parallel validation for better scalability. The detailed proto-

col flows are shown in Figure 3.3. Additionally, if all data items in a transaction are stored in the

same server, 2PC is converted to One-Phase Commit(1PC) to reduce latencies.

Initially (Stage 1), transactions read data without locks and clients keep track of the read

19

items, read item versions, and write items in the local buffer. At commit time (Stage 2), clients

choose a server as the coordinator and send it the transactions. During the first phase, coordinators

initiate 2PC by first sending prepare messages to participants. Then, participants lock both the

read and write items, check the read item versions, write WAL logs and reply to the coordinator.

During the second phase, coordinators wait for responses from all participants, then decides whether

to commit or abort, and notifies all participants of the agreed result. However, if any participant

aborts in the first phase, the coordinator immediately sends out abort messages without waiting

for all replies. Finally, participants write WAL logs, update database states, and unlock all relevant

data.

Proof of Serializability

Assumption : Two phase locking(2PL) ensures serializability, see proof in [64].

Method : We reduce the hybrid OCC to 2PL. Using action abbreviations L (Locking),

C (Checking), U (Unlock), R (Read), W (Write) and object abbreviations r (read items), w (write

items). Concatenated action and object symbols represent tasks, e.g., Lr means “lock read items”.

The sequencing abbreviation “-” binds two actions and enforces an “execute before” local order

and → binds two tasks and enforces an “execute before” distributed order. Our transactions can

thus be represented as R → Lrw-Cr → W-Urw. The Cr action validates the read items. If any

read item has been changed after it was read, the transaction aborts, releasing all locks. If not, our

successful transaction is equivalent to Lr-R → Lw-Cr → W-Urw, thus Lr-R → Lw → W-Urw. In

this way, all locking actions precede all unlocking actions, which is 2PL. Unlocking after committing

to the database avoids cascading rollbacks. For successful transactions, the serialization point is

the moment when all the write locks are granted.

Deadlock Common deadlock avoidance methods are timeout, wait-for graph, ordered lock-

ing and timestamps with wait-die or wait-wound mechanisms. SiloR [183] avoids deadlocks by

enforcing a global order on the locking sequences, necessitating multiple round trips in distributed

environments. The wait-for graph introduces too much network traffic and timestamps method

requires a global synchronized clock, which will become the bottleneck or single point of failure.

20

Our deadlock avoidance method aborts transactions immediately if read locks are not granted and

waits for a configurable time period(e.g. 50ms) before aborting write lock requests. However, if the

data is currently exclusively locked, the write lock request is aborted immediately. If a transaction

is aborted since write locks are not granted, DTranx retries committing it after an exponential

timeout. If a transaction is aborted since read locks are not granted, DTranx restarts it immedi-

ately. This is because read lock request denial indicates there are concurrent transactions updating

the same item and retrying committing will fail again.

Livelock Write starvation rarely happens since write lock requests are blocked for a short

fixed period and exponential backoff technique is adopted to reduce the probability of lock conflicts

when the transactions are retried. The same goes for read starvation since the number of read

items are usually much larger than write items.

3.3.3 Persistent Memory Based Log

In distributed systems, the logging module plays a critical role in failure recovery. WAL

is the persistent copy of the volatile states that are subject to failures due to power outage and

kernel hanging. However, persisting WAL to the durable storage results in long latencies. With the

advances of the NVM technologies, the performance gap between in-memory and persistent storage

accesses is narrowing. Thus, we propose a WAL design based on NVM and introduce a garbage

collection mechanism to effectively and efficiently reclaim the limited NVM space.

3.3.3.1 Log Design

The logging module is designed in three vertical layers: NVM library, LogManager and

TranxLog. The NVM library provides the basic interface to persistent memory to create files, read

and write data. LogManager structures the log into a list of log files, calculates checksums, and

supports block read/write operations. Lastly, TranxLog offers high level abstractions for distributed

transaction logs and presents a continuous and append-only log.

We use Intel’s NVM [3] library to manipulate memory mapping for log files in persistent

21

memory. After log files are mapped to the memory space, writes are immediately durable after

being flushed from cache to memory(e.g. using clflush in the x86 instruction set). Two adjustments

of the NVM library are made. First, a read pointer is added to the original NVM library to provide

an on-demand read interface. Second, internal write locks are disabled since only one thread is

launched in the WAL stage, thus no race conditions.

On top of NVM library, LogManager organizes the logs in a list structure such that logs of

variable sizes are supported. To reduce I/O system calls and reach higher throughput, reads and

writes are block based and logs in the same block are buffered in memory. In addition, checksums

are calculated and written for each block to detect data corruption.

TranxLog serializes transaction logs such as CommitLog that records commit states for co-

ordinators and ReadyLog that records ready states for participants. Then, TranxLog separates

WALs into files whose names are set to their creation timestamps. Thus, the file with the smallest

timestamp is the oldest one, with which the garbage collector starts. On the other hand, reclaiming

old log files does not interfere with current transactions since current transactions are appending

logs to new log files.

3.3.3.2 Garbage Collection

Since the WAL is written as transactions are committed, its size would increase indefinitely

if DTranx does not reclaim the WAL of complete transactions. The WAL for transactions that

reach consensus are not required during recovery. Therefore, we introduce a state transition based

garbage collection mechanism to identify unnecessary logs without performance hiccups. In partic-

ular, each transaction is assigned with a unique TranxID that combines the ServerID and a local

monotonically increasing 64-bit integer. Since ServerIDs are assigned as the server indexes in the

group membership stored in the replicated state machine Raft [130], TranxIDs are guaranteed to

be distinct among servers. Moreover, each server keeps updating the largest committed TranxID,

LC TranxID, where transactions with TranxIDs less than LC TranxID have reached consensus.

Then, each server broadcasts its LC TranxID and stores the LC TranxIDs from other servers in a

22

fixed-size GC log. The benefits of the GC log are twofold: it is fixed size space usage and it enables

WAL reclamation.

The state transition flow is illustrated in Figure 3.4. On the one hand, each transaction

has a state to represent the current stages in the 2PC and each server has a GC state to record

completed transactions where LC TranxIDs are calculated. On the other hand, there are volatile

and nonvolatile states where the nonvolatile states are durable copies of the volatile ones. For

example, WALs are the nonvolatile copies of 2PC states including Start, Prepare, Ready, Commit,

and Abort. GCLog is the nonvolatile state persisting the GC state. Although both WALs and

GCLog are persistent copies of the volatile states, their orders of updating volatile and nonvolatile

states differ. For WALs, nonvolatile 2PC states are updated after WALs are written in order for the

transactions to be recoverable. For the GCLog, GC state is updated before GCLog for two reasons.

First, the history can be replayed as long as WALs are not reclaimed yet. Second, accumulating

in-memory GC states and writing to the GCLog in batch is more I/O efficient. For coordinators,

GCThread periodically collects the volatile GC states and updates the GCLog, after which WALs

containing only completed transactions are reclaimed and the LC TranxIDs are broadcasted to all

the other servers. For the participants, GCBroadcast thread passively receives the broadcasted

LC TranxID, updates the local GC state and GCLog, and then reclaims WALs.

Not only does the state transition help to reclaim WALs, it is also utilized to clean the

aborted transaction IDs in the lock service, which are referenced to avoid faulty re-lock situations.

For example, after a participant receives the prepare request of transactionA and its volatile state is

checked to be Start, an abort request of transactionA arrives, changing the volatile state to Abort.

It is possible that abort requests come before prepare requests are done since the coordinator

immediately sends out abort requests if any participants aborts. Note that these two requests are

processed concurrently. Then, the prepare requests lock the data items and these locks will never

be unlocked. Nonetheless, the committed transaction IDs are not stored in the lock service since

coordinators only send out commit requests after all participants agree to commit, in which case

it is impossible that prepare and commit requests are processed concurrently.

23

Log

MemoryStart

Prepare

AbortCommit

GC

WAL

Coordinator

GCThread

1

2 3GCLog
Log

Memory
Start

Ready
Abort

Commit

GC

Participant

GCBroadcast

1
2

WALGCLog

GCThread
3

4

2 2

Lock Service

Abort

2

Figure 3.4: Coordinator and Participant state transition. Black arrows show the state transitions
and red arrows show the ordered steps of garbage collection.

3.4 Implementation

In this section, we explain the implementation details of DTranx and also the major opti-

mization techniques used to improve DTranx performance.

3.4.1 Cache

DTranx enables client side cache to avoid excessive network traffic. The caching policy works

as follows: (1) The data cache is updated if read or commit requests succeed. (2) The data cache

is invalidated if commit requests fail. In addition, DTranx servers piggyback the updated data in

the response to failed commit requests such that the clients can update the local cache and read

requests in the retrying transaction can read from the local cache.

On the other hand, DTranx enables the server side database cache to serve read requests in

lower latency and it adopts the write-through strategy for durability.

3.4.2 Exactly-Once RPC

There are three different RPC calls corresponding to the three stages in Figure 3.2: Read

requests from clients to servers; Commit requests from clients to servers; and, Transaction requests

24

from servers to servers. Duplicate processing of RPCs would lead to system failures in certain cases.

For example, if DTranx servers process a duplicate prepare request after the corresponding commit

request is done, the locking service would lock the data items and future transactions would not be

able to update these data. Therefore, DTranx should guarantee to process each RPC exactly once.

First, we guarantee at least once delivery by resending messages on the sender side if no

responses are received within a timeout. We build the RPC protocol based on the ZeroMQ library,

which automatically resends messages if they are lost. In addition, DTranx implements the retrying

mechanism itself when no responses are received since at least once delivery in ZeroMQ does not

indicate at least once delivery in DTranx. For example, if servers are restarted after the ZeroMQ

library receives a message but before the DTranx system detects the message, ZeroMQ does not

retry the message and the message is lost.

Second, we guarantee at most once processing by blocking duplicate messages. we assign

distinct IDs for each RPC message and receivers record the IDs of completed messages. Read

requests are never blocked since they are idempotent. For Commit requests, each message has a

clientID and messageID where the clientID is distinct for each TCP connection and the messageID

is monotonically increasing for each client. ClientIDs are assigned by the ZeroMQ library when

the connection is established. For Transaction requests, each message has a unique transaction

ID(TranxID) and a message type. TranxID is the concatenation of the distinct coordinator server

ID and a monotonically increasing integer. And, there are four message types corresponding to the

four Transaction requests in Figure 4.5: Prepare, Ready, Commit, and Abort. With at least once

delivery and at most once processing, each message is processed exactly once.

3.4.3 LevelDB

We choose levelDB[4] as the local database implementation since it is lightweight and efficient

compared to multi-version KV stores. To validate the read items during the OCC commit, DTranx

keeps a version number for each key value pair by storing the combination of the real value and

a version number as the value in levelDB. The real value and the version number are separated

25

by a special delimiter, such as #. When clients send read requests, servers interpret the values

retrieved from levelDB and returns the value and the version number to the clients. When clients

send Commit requests, servers increment the corresponding version numbers by 1 if transactions

commit.

3.4.4 Fault Recovery

As the cluster size increases, the probability of server failures will increase considerably. For

example, if the aggregated MTBF (Mean Time Between Failure) of a server is 1 year including disk

failures, network failures etc., then in a cluster of 100 servers, there is a server failure every 3 to

4 days on average. DTranx triggers the recovery process in two stages: local recovery and global

recovery. Local recovery reapplies local logs by updating databases if transactions commit and lock

data items if no agreement has been reached. In addition, DTranx fills the TranxID space with

aborted transactions. Missing transactions are possible when servers crash immediately after read

item checking fails in coordinators. Global recovery repairs transactions of which commit results

can not be decided unilaterally. It is initiated after local recovery to inquire transaction states from

other involved servers. Specially, if the coordinator is in Prepare state and all participants are in

Ready states, neither committing nor aborting violates distributed consensus. DTranx chooses to

abort them such that the clients can assume the transaction failure if no responses are received.

On the other hand, DTranx starts service stages in Figure 3.2 after local recovery such that

the changes from completed transactions are applied and in-memory states of ongoing transactions

are stored. However, the order between service stage startup and global recovery does not matter

and DTranx chooses to starts service stages before global recovery to reduce the service downtime.

3.4.5 Optimizations

In order to achieve better performance, multiple optimization techniques are applied. The

most significant techniques are listed below.

• Delayed In-Memory Reclamation DTranx reclaims the volatile Commit/Abort states

26

in participants when the servers are under light loads to avoid performance hiccups.

• Batch Ack Phase DTranx delays the second phase(Ack phase) of 2PC when coordinators

send transaction commit results. We delegate the Ack phase to a separate stage, TranxAck

in Figure 3.2, to reduce the transaction latency and offload the high processing demand of

the ClientService stage.

• Core Bindings We manually analyze the queue size for each stage and bind the threads

to physical cores in an optimal way. The best core binding strategy yields almost 6 times

higher throughput than the worst. In the future, we plan to explore how to automate the

core bindings to attain the best performance based on the number of CPU cores available.

3.5 Evaluation

Our tests are run on a Cloudlab [138] cluster with 36 machines. Each machine has dual Intel

E5-2660 v3 with 20 2.6GHz cores, 130GB RAM, 480GB solid state disk at 6GB/sec, and 10Gbps

Ethernet card. We emulate the NVM by enabling DAX support in Linux to create a PM-aware

environment. This DRAM based emulation is adopted since current persistent memory latency

is comparable to DRAM and NVM was not available on Cloudlab yet. For example, STT-RAM

[17] achieves ∼10ns write latency compared to 50ns DRAM latency. NVM throughput is also far

beyond the current usage as shown in Figure 3.7b. To generate workloads, we use Yahoo Cloud

Serving Benchmark(YCSB) [35] C++ version and add DTranx and HyperDex support. YCSB

clients are running in separate servers from the cluster which accommodates the DTranx system.

Each experiment is repeated three times, and the average values are used.

3.5.1 Experiment Details

We evaluate DTranx with a database of 120 million key value pairs in the 36-node cluster.

Test data keys are generated as integers from 1 to 120 million and values are 100 bytes of random

characters. Transactions are categorized into read and update transactions. Read transactions only

27

contain read items and update transactions contain one write item. The total number of read/write

items in one single transaction is uniformly distributed between 1 and 3.

3.5.2 Transaction

In Figure 3.5, DTranx is compared with Hyperdex Warp [55] that supports distributed trans-

actions. Only successful transactions are counted in the throughput metric. DTranx shows approx-

imately 30% higher throughput than Hyperdex and DTranx degrades slowly as the percentage of

update transactions increases. Moreover, DTranx maintains high commit success rates. For exam-

ple, DTranx reaches 99.65% success rate for 50% read workloads. On the other hand, Hyperdex

shows high throughput but the software is unstable and periodically fails due to internal assertion

errors, leading to low success rates. For example, several servers crashed during the 95% read work-

load, causing 58.96% success rates and 275.72k ops/sec throughput. To remedy the crash effect, we

restarted the servers manually after each run. There are three reasons why DTranx outperforms

Hyperdex. First, DTranx follows the highly concurrent SEDA architecture with lock free queues

and stages are bound to physical cores, utilizing all CPU power and avoiding context switching over-

head. Second, DTranx integrates the NVM based log that bypasses system calls like sync/fsync,

reducing log persistence latencies. Third, DTranx applies various optimization techniques, such

as an allocated element pool, batch ack phase, and optimal core binding strategy. Furthermore,

strace [5] reveals that Hyperdex does not synchronize data to physical storage devices immediately

after write log calls. While the Hyperdex paper supports fault recovery by replication, that version

of the software is not publicly available. Lastly, the average latency for DTranx is below 2ms when

the throughput is 50% of the maximum and it increases to 10ms when the throughput reaches the

maximum.

3.5.3 Scalability

In this experiment, scalability tests are run against cluster of 3, 9, 18 and 36 servers. Cor-

responding to the cluster size, 10, 30, 60, 120 million keys are inserted into DTranx. As shown

28

50% 75% 95% 100%

DTranx vs. Hyperdex

read percent

T
h
ro

u
g

h
p

u
t(

x
1

0
0
0

 o
p

s
/s

)

0

200

400

600

hyperdex
dtranx

20

40

60

80

100

S
u
c
c
e

s
s
 r

a
te

Figure 3.5: Distributed transactions. The horizontal axis represents the percentage of read trans-
actions while the vertical axis shows the throughput on the left and commit success rates on the
right.

in Figure 3.6, the throughput shows linear increases as more nodes are involved. For example,

with pure read workloads, throughput reaches 574.76k reqs/sec with 36 nodes. In addition, work-

loads with various mixture of read and update transactions are benchmarked. Even with 50%

read workloads and 50% update workloads, the throughput is 60% to 85% of that with pure read

workloads. The high scalability of DTranx results from our efficient hybrid commit protocol design

that minimizes the critical section of distributed locking and reduces the 2PC to 1PC whenever

possible.

3.5.4 Persistent Memory Based Log

Two experiments are conducted to validate the effectiveness and efficiency of the NVM based

log. Both experiments are run with 36 servers and 95% read transactions. In Figure 3.7a, the instant

throughput is plotted with and without GC. The GC process doesn’t affect normal transactions

when WALs are GC’ed every 10 seconds since the reclamation of volatile states that affects normal

transactions is delayed until servers are in light loads. The system with SSD log shows 19k ops/sec

on average, which is 30 times slower than that with NVM log. In Figure 3.7b, we measure the

29

0 5 10 15 20 25 30 35

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Scalability

Machines

T
h
ro

u
g

h
p
u
t(

x
1
0
0

0
 o

p
s
/s

)

50% read
75% read
95% read
100% read

Figure 3.6: DTranx Scalability. Four workloads are run, namely 50%, 75%, 95%, and 100% read
workloads.

0 5 10 20 30

0

100

200

300

400

500

600

Persistent Memory

T
h

ro
u
g
h
p
u
t(

x
1

0
0

0
 o

p
s
/s

))

Time(sec)

gc_nvm
nogc_nvm
gc_ssd

(a) throughput

0 50 100 150

0

200

400

600

800

Log Space Usage

Time(sec)

L
o
g
S

p
a

c
e
 U

s
a

g
e

(M
B

)

gc_nvm
nogc_nvm

(b) log space usage

Figure 3.7: The left plot shows the instant throughput with and without GC for both NVM and
SSD. The right plot shows the space usage with and without GC for NVM. Specifically, gc nvm
means the system with GC enabled and NVM based log; nogc nvm is the system with NVM based
log but GC disabled; gc ssd is the system with GC enabled and SSD based log.

space over time with and without GC to show the GC efficiency. The logs are NVM files of 100MB

size so that the space usage changes in units of 100MB. The GC mechanism successfully keeps

log space usage low since DTranx reclaims the transactions from WALs much faster than it writes

them. After 120 seconds, tests are complete and the log usage with GC converges to 200 MB(one

for GCLog and one for the current WAL).

30

3.6 Related Work

DTranx is a highly concurrent and transactional KV store that integrates various techniques

from concurrent programming, database, and NVM fields.

Distributed Transaction. Transaction research are heavily explored in the database field

and we investigated both classic and state-of-the-art methods to guide the DTranx design. Span-

ner [36] was a globally consistent and efficient key value storage system, which required atomic clocks

to be installed on each server and its two-phase locking approach limited concurrency. Yang [182]

introduced transaction chains to obtain both serializable transactions and low latency but required

that read and write items to be known as a priori, similar to Granola [37]. Calvin [157] designed a

deterministic locking protocol to eliminate distributed commit protocols , but it enforced a global

synchronization of transaction orders. SiloR [183] used OCC but required only exclusive locks on

write items, while both shared and exclusive locks are requested in DTranx. SiloR would require

two successful rounds of operations (exclusive lock, followed by read); in a distributed system, these

two rounds would have significant latency due to RPC calls, but SiloR was implemented on a single

computer and did not use RPCs. GMU [136] avoided read only transaction aborts by guarantee-

ing the Extended Update Serializability (EUS) isolation level, where read only transactions might

observe snapshots from different linearizations of update transactions. This might work for some

applications but as a fully ACID compliant KV store, DTranx enforces strong isolation. Other

approaches that added serializability to snapshot isolation such as [172], [29] required a central

server for validation in distributed environment.

We explored various distributed transaction designs and chose the system that combined

OCC and 2PC since it yielded great performance and guaranteed strong consistency without special

hardware such as atomic clocks.

Hardware-assisted Transactional System. With hardware advances like NVM, RDMA,

software designs adopting these technologies show tremendous performance growth. NVM devices,

such as PCM(Phase Change Memory), 3D XPoint, emerge and significantly reduce persistence

31

overhead. Tianzheng et al. [163] designed a scalable log leveraging NVM to support distributed

logging where they focused on alleviating the contention bottleneck with passive group commit.

According to our experiments, distributed transactional systems based on NVM logs yield such

high throughput that the bottleneck resides in CPU processing. Hence, we focus on building an

efficient GC supported NVM log. METRADB [113] was a middle layer that provided key value

interfaces for applications and hided the complexities of using NVML to facilitate application

development. However, we aim at providing an efficient garbage collection mechanism. On the

other hand, HERD [85] focused on building key value services in memory using RDMA to reduce

network round trips but lacked fault recovery over server failures. In the future, we plan to explore

RDMA for lower latency RPCs.

3.7 Summary

We propose a fully ACID compliant transactional and scalable key value store that utilizes

non-volatile memory based log with an effective and efficient garbage collection mechanism. To

exploit the multi-core machines, we adapt the SEDA architecture with lock free queues and apply

an optimal core binding strategy. Moreover, DTranx combines OCC and 2PC to move the locks

to the commit time and employ parallel validation for better scalability. Evaluations show that

DTranx offers higher throughput than the state-of-the-art system, Hyperdex, and DTranx also

displays high scalability for various workloads. In the future, we plan to explore how to automate

the core bindings to attain the best performance based on the number of CPU cores available.

With DTranx handling server side scalability and transaction challenges, next chapter illus-

trates a paradigm that transparently converts local data structure operations to remote transactions

in DTranx.

Chapter 4

DDSBrick

4.1 Introduction

As the volumes of data increase in a rapid pace, there is a proliferation of big data frame-

works such as Hadoop [168], Graphlab [105], and Spark [176] as well as distributed databases,

such as Cassandra [93]. Despite being widely adopted to build scalable systems, most of the big

data frameworks support coarse-grained data processing while fine-grained manipulations require

delicate designs of customizing multiple distributed protocols. For example, Spark introduced dis-

tributed read-only objects called RDD, supporting only coarse-grained operators, such as map and

reduce. Spanner [36] exploited Paxos state machines to manage transactions and Hyperdex [56]

achieved consistency among replications by value dependent chaining, both of which involved vast

design efforts. On the other hand, distributed key value stores support fine-grained operations and

high scalability but offer low level abstractions. Since 1990s, researchers have exploited distributed

data structures(DDSs) when single-threaded data structures yield low throughput. For example,

the maximum throughput for a single-threaded R*-Tree [23] is 3.18 kops/sec. DDSBrick based

RTree offers 35.36 kops/sec in a 25-server cluster and the throughput would continue to increase if

more servers are added. Even though the throughput gain partly results from the larger size of the

dataset used in DDSBrick based RTree, the difference would not have been so significant if it is not

for the dynamic partitioning strategy of DDSBrick, which keeps the root nodes from becoming the

bottleneck. DDS is a promising candidate to fill the gap between performance and programming

abstractions. It is a higher level and expressive abstraction for scalable fine-grained systems. For

33

31* * …

6* * 19 * 26 *

1 2 6 8 10 19 25 26 27 28

38* * …

31 35 38 42

26* * …

6* * 19 *

1 2 6 8 10 19 25 26 3028

38* * …

31 35 38 42

28* *

31 *

…

27

…

After	inserting	30 A’

B’ E’

F’

A

B

DC

D’

Figure 4.1: B+Tree insertion. The number of children varies from 2 to 4 except the root node. Red
nodes are updated/inserted and the shaded area indicates the transaction boundary within which
all nodes are updated/inserted atomically.

instance, Boxwood [111] used a BTree service as the fundamental storage infrastructure, simplifying

the NFS file service design. Similarly, DDSBrick is intended to do the same for various kinds of

data structures.

Despite the potential benefits of the DDS abstraction, designing and implementing error-

prone and efficient DDSs take tremendous efforts. Specially, consistent accesses are necessary

conditions for correctness. Figure 4.1 shows B+Tree states before and after an insertion operation.

During the insertion, leaf node D overflows and the splitting process propagates from the bottom

up, resulting in 5 node updates in total. Without consistent and atomic guarantees, a concurrent

search operation of value 27 might go through A->B’->C, thus missing the update. Other problems

related to the DDS design are data placement and data replication. In Figure 4.1, root node A

is accessed by every operation while the leaf nodes, such as C are seldom accessed, necessitating

a sophisticated replication strategy to spread loads for A and minimize replication costs for C. In

general, there are three major challenges: first, it is error-prone to tailor and combine low level

distributed protocols, such as consensus; second, it is non-trivial to implement efficient protocols

from scratch, such as two-phase commit(2PC); third, diverse workload patterns require adaptable

34

partitioning and replication strategies to reach higher scalability. Researchers from different groups

have implemented customized DDSs for special-purpose applications. Diegues et al. implemented

STI-BT [46], an efficient B+Tree with extended update serializability. Minuet [150] is a distributed

BTree that supports writable clones. Each of the DDSs above took months to design, implement,

test, and tune for optimal performance.

Therefore, we propose DDSBrick, a paradigm for building scalable and transactional DDSs.

DDSBrick reduces development efforts by taking care of distributed data placements and consistent

accesses while providing intuitive programming interfaces. DDSBrick enables researchers to exper-

iment on multiple data structures for various applications in a short period while ensuring effective

performance. It separates specific data structure designs from distributed system complexities by

injecting Mempool and adopting a distributed key value(KV) store as the backend storage system.

Mempool transparently synchronizes local states of data structures with the distributed KV store

such that application designers need only focus on the interactions between local data structures

and Mempool. Mempool handles two tasks: address translation from local memory to storage

systems and server synchronization.

Moreover, our KV store supports snapshot read transactions that maintain high throughput

even when update transactions are constantly modifying the data structures. One scenario of using

snapshot reads is to search for nearby taxis in a dynamically updated taxi geolocation database.

The snapshot of taxi geolocations 5 seconds ago suffices for many applications, such as Uber.

By bypassing expensive 2PC protocols, the KV store offers efficient snapshot operations without

interfering with transactional operations. Our RTree snapshot search throughput is 3.17 times

faster than that of transactional search when there are 6.82k update operations per second.

We also integrate a dynamic partitioning strategy into the KV store to reduce inter-server

communication and balance resource usage. Traditional key value stores do not yield good per-

formance when workloads display non-uniform access patterns. For example, the server storing

the root of a binary tree is visited by every request. The KV store adopts a hybrid strategy that

combines hash and adaptable partitioning. DDSBrick represents transactions with a graph struc-

35

ture and applies a partitioning algorithm called METIS [65] to minimize edge cuts. It brings two

benefits. First, data that are jointly accessed in transactions are stored together such that no

2PC is necessary. Second, data loads are effectively replicated and balanced across the cluster. In

addition, we introduce a greedy algorithm to minimize data migrations and adjust 2PC to enable

online database migration while still serving strongly consistent transactions.

In summary, our contributions are as follows:

• Introducing DDSBrick, a paradigm to build scalable and transactional distributed data

structures;

• Providing snapshot read transactions to bypass distributed transaction overhead;

• Integrating a dynamic partitioning strategy to balance resource usage based on distinct

workload patterns;

• Implementing two practical DDSs, BTree and RTree, that exhibit high performance and

high scalability; and

• Seamlessly synthesizing the techniques from database and distributed system fields to one

piece of software.

4.2 Overview

DDSBrick follows the client-server model where clients run data structure algorithms and

servers host a distributed storage system, such as RamCloud [132] and Tango [21]. Servers store

the data structures and provide the transactional interfaces while application developers implement

the DDSs based on a client library, which synchronizes local data structures with servers. The client-

server model brings two benefits. First, the separation of the data structure logic from the storage

system enables us to leverage techniques from distributed databases to achieve low latency, high

throughput, and linear scalability. Second, it simplifies DDS implementations by hiding distributed

system complexities, such as data placements.

36
RTree

root: Node*
Insert(data: List)
Remove(data:List)
Search(data: List)

Iterator
stack: Stack<Node*>
Next(): Bool
Operator*(): String
IsNULL(): Bool
GetBound(min: List, max: List)

Node
level: Integer
count: Integer
branch: List
IsInternalNode(): Bool
IsLeaf(): Bool

Branch
rect: Rectangle
data: String
child: Node*
Get(): Node*

Rectangle
min_bound: List
max_bound: List

Point to
Organize

Contain Define

Traverse

Figure 4.2: RTree Class Diagram. UML class diagram for RTree implementation.

On the client side, developers are required to decompose data structures into basic data units

called data bricks. For example, the data bricks of binary trees are tree nodes and the data bricks

of hash tables are key ranges of a fixed length. As shown in Figure 4.2, a RTree consists of Nodes,

i.e. data bricks, and the algorithm defines how Nodes are organized to support operations, such

as Insert, Remove, and Search. In this paper, we assume that the local data structure designs

follow Figure 4.2 since the divisibility of data structures into data bricks is a prerequisite for DDSs.

To minimize developing efforts, DDSBrick introduces Mempool to move data bricks between local

machines and servers transparently. In addition, Mempool calculates a distinct address for each

data brick automatically. With transparent server synchronization and address translation, the

conversion from single-threaded data structures to distributed versions becomes effortless.

On the server side, DDSBrick depends on a scalable and transactional key value store called

DTranx [63] where each data brick is stored as a key value pair. DTranx servers accept read requests

and commit requests of which the former reads from DTranx optimistically and the latter initiates

the serialization process. We choose DTranx instead of document databases or graph databases

since the mapping of data bricks to keys is more straightforward, reducing address translation over-

head; And, there are more partitioning algorithms available in KV stores, such as consistent hash-

ing and content addressable network [137]. Moreover, DTranx adopted non-volatile memory(NVM)

37

Table 4.1: DDSBrick programming interfaces.

API

Access New : allocates new bricks.
Delete: deletes old bricks.
GetBrick : retrieves bricks from Mempool or DTranx.
GetRoot : retrieves root from Mempool or DTranx.
AddUpdate: notifies Mempool of a modified item.

Transaction Commit : commits transactions.
Abort : aborts transactions.

Hook (De-)Serialize: serialization.
CopyBrick : clones a data brick.
IsBrickDifferent : checks if two bricks are different.
ResetPointerKey : resets memory pointers in bricks.

to minimize database logging overhead. On top of DTranx, DDSBrick introduces snapshot read

transactions and integrates a dynamic partitioning strategy. Snapshot read transactions offer high

throughput when there are ongoing update transactions and the dynamic partitioning strategy gen-

erates data placement rules to balance load effectively. The dynamic partitioning strategy prevents

the whole system from being bounded by slower and more heavy-loaded machines. Since DDSBrick

is able to generate nearly optimal data placement rules according to history workloads, we do not

expose interfaces to clients for customized data placements.

4.3 Paradigm

On the client side, Mempool is designed to handle two critical tasks: address translation and

transparent server synchronization, of which the latter further includes transaction construction

and data synchronization. Mempool presents an in-memory transactional KV store to the data

structures and defines a set of interfaces.

4.3.1 Programming Interface

The APIs are divided into three categories: Access, Transaction, and Hook, as shown in

Table 4.1. Access APIs are memory allocation functions and brick retrieval functions that bridge

local memory and DTranx. For example, GetBrick fetches data bricks, de-serializes them, and

38

returns an in-memory instance; Transaction APIs are transaction primitives to commit changes

consistently. Client operations, such as BTree insert and RTree search should be guarded with

transaction primitives; Hook APIs are callback functions to be implemented in data bricks. For

example, Mempool calls Serialize to convert in-memory data bricks to byte strings when committing

transactions. We illustrate how to convert the local RTree in Figure 4.2 to a distributed RTree in

four steps.

Step 1: Define persistent pointers

To persist the in-memory pointers in data bricks, developers define an extra string field(persistent

pointers) for each in-memory pointer. Then, the persistent pointers are serialized and stored in

DTranx. For the RTree example, a string field is defined in Branch class for child nodes. When a

data brick is retrieved from DTranx, its persistent pointers are fetched while the in-memory point-

ers are initialized to NULL. The NULL value indicates that the corresponding data bricks are not

in local memory. As more data bricks are referenced and retrieved, the in-memory pointers are

assigned gradually. Whenever the in-memory pointers are changed, persistent pointers are updated

accordingly.

Step 2: Intercept data brick accesses

Data brick accesses consist of reads, creations, and updates. Updates are discussed in Sec-

tion 4.3.2. Developers define read methods and creation methods in data bricks to return neighbor

bricks and newly allocated bricks. For example, GetChild and NewLeaf are defined in the Node

and Branch class. Then, the read and creation methods call Access APIs, such as GetBrick to

communicate with DTranx. For example, read methods receive persistent pointers as parameters

and call GetBrick if the corresponding in-memory pointers are NULL. Finally, developers replace

data brick reads and creations in data structure implementations with the read and creation meth-

ods. For example, RTree calls GetChild instead of referencing the child member in Branch. Since

Access APIs are monitored by Mempool, data brick reads and creations are intercepted.

Step 3: Wrap client operations with transactions

Client operations, such as RTree REMOVE should be wrapped in transaction primitives.

39

In Algorithm 1, RTree REMOVE calls Commit after local erase is complete. If Commit succeeds,

REMOVE returns; If Commit fails, REMOVE retries; If any exceptions are thrown when invariants

are violated, Abort is called. Clients may observe violated invariants since single-threaded data

structures might assume certain invariants that are not true in concurrent environments. For

example, optimistically read bricks might be partially modified by another committing transaction

in DTranx. Developers are required to implement the invariant checking in the read methods

defined in Step 2. For example, GetChild in Node checks if its level is larger than that of the

fetched child. However, invariant checking is disabled if the in-memory pointer is not NULL, in

which case GetBrick is not called. Moreover, transactions are early aborted in case of invariant

violation, thus preventing 2PC from being triggered.

Algorithm 1 Distributed RTree REMOVE. Lines starting with # are added for distributed RTree.

1: procedure Remove(key)
2: #root←Mempool.GetRoot()
3: result← True
4: while True do
5: try
6: iter ← Find Unique(key, root)
7: if iter.node == Null then
8: result← False
9: else

10: result← True
11: erase(iter)
12: end if
13: if #Mempool.Commit() then break
14: end if
15: #root←Mempool.GetRoot()
16: catch #Util::InConsistencyException
17: #Mempool.Abort()
18: #root←Mempool.GetRoot()
19: end try
20: end while
21: return result
22: end procedure

Step 4: Implement Hook functions inside data bricks

Mempool depends on user-defined Hook APIs to serialize data bricks and detect updated

bricks in transactions. The first set of Hook APIs, namely Serialization and Deserialization, are

called when Mempool retrieves or updates data bricks. Serialization writes all fields including per-

40

Data Structure

Data Brick

Mempool
TransactionHookAccess

DTranx

TranxMonitor Key
Manager

DTranxHelper CCache

DCache
Dynamic pool

Shadow pool
sync

Figure 4.3: Mempool design. It shows the internal modules of Mempool and the interactions among
these modules.

sistent pointers. The second set, consisting of CopyBrick, IsBrickDifferent, and ResetPointerKey,

assist Mempool in constructing transactions. The Hook APIs are discussed in detail in Section

4.3.2.

4.3.2 Mempool Design

Mempool addresses three main challenges: address translation, transaction construction,

and data synchronization. First, data bricks are assigned with distinct keys by concurrent clients.

Second, data brick reads, creations, and updates are detected and transactions are constructed

automatically. Third, data bricks are synchronized to DTranx. Correspondingly, Mempool con-

tains three modules as depicted in Figure 4.3: KeyManager, TranxMonitor, and DTranxHelper.

KeyManager manages the key space and generates unique keys for new data bricks. KeyMan-

ager follows RFC4122 standards [133] to generate unique keys and a special key is hard coded

41

in Mempool to handle metadata information, such as RTree root key. TranxMonitor constructs

transactions. And, DTranxHelper provides the interface to DTranx.

TranxMonitor is capable of capturing data brick reads, creations, and updates. As mentioned

in Section 4.3.1, data brick reads and creations are intercepted in GetBrick and New. Data brick

update detection relies on a Mempool shadow method, which maintains two memory pools: a

shadow pool and a dynamic pool. As shown in Figure 4.3, the shadow pool is a shadow copy of

the data structures before the current transaction changes any bricks while the dynamic pool is

actively read and modified. Both pools are empty initially. When data bricks are retrieved from

DTranx, Mempool copies them to both pools and returns the copy in the dynamic pool to the data

structures. With the shadow technique, Mempool captures data brick updates by comparing the

bricks in the dynamic pool to the ones in the shadow pool. During commit time, Mempool compares

the two data bricks by calling IsBrickDifferent in Hook APIs. However, the shadow method leads

to constant copying operations. Programmers might choose to call AddUpdate manually whenever

bricks are changed to bypass the shadow pool copying. The trade-off of programming simplicity

and low overhead is left to the users. Above all, the overhead is on the client side and the scalability

of DTranx is not compromised.

DTranxHelper incorporates a caching mechanism to obviate the invalidation of the whole

pools. Otherwise, pools are invalidated between transactions and data bricks are fetched, deserial-

ized, and replicated in each transaction. In Figure 4.3, CCache is the client side cache maintained

by the DTranx client library and DCache is the deserialized Mempool. CCache and DCache are

kept synchronized since the versions of optimistically read bricks, which are compared in 2PC, are

only stored in CCache. Similar to the CCache policy [63], the DCache policy works as follows. If

read requests succeed, DCache inserts the read bricks; If commit requests succeed, newly allocated

bricks are deleted in DCache since the version numbers of new bricks do not exist in CCache; If com-

mit requests fail, DCache invalidates all read bricks in failed transactions. Between transactions,

there are two tasks. the dynamic pool is synchronized to the shadow pool to remain consistent.

And, Mempool calls ResetPointerKey in Hook APIs to reset in-memory pointers to NULL such

42

that GetBrick is called in later transactions, capturing data brick reads.

4.4 Key Value Store

While DTranx offers transactional key value accesses with high performance, it fails to scale

for workloads with hot spots. We integrate a dynamic partitioning strategy to address the hot

spot issue and introduce snapshot read transactions(SRTs) that boost read transaction throughput

when there are update operations. Furthermore, we customize a 2PC variant in Section 4.4.2.4 to

ensure consistency while DTranx is updated and migrated concurrently.

4.4.1 Snapshot Read Transaction

While serializable transactions simplify application development, it is expensive to run 2PC

protocol that involves remote procedure calls and write ahead log(WAL). SRTs provide consistent

views to DDSs and reduce lock contention by skipping 2PC. We first discretize time into epochs

during which there is at most one version for each data item. Normal transactions operate on the

data in the active epoch while SRTs operate on data in old epochs. Since data in old epochs are

read only and consistent, read-write and write-write conflicts avoidance is unnecessary between

SRTs and normal transactions.

Database snapshots are created by snapshot creation transactions(SCTs). A special data

item called Epoch is added to the database and replicated in all servers to denote the current epoch

number. Epoch is also embedded into the version numbers to distinguish different snapshots and

enable old snapshots reclamation. To resolve the conflicts between normal transactions and SCTs,

normal transactions acquire shared locks on Epoch and SCTs acquire exclusive locks on it. The

moment when SCTs obtain locks in every server is the serialization point after which copy-on-

write technique is applied. SCTs increment Epoch but do not reclaim the old snapshots since the

reclamation process could take long time when normal transactions are blocked. Instead, the old

snapshots are reclaimed when database read operations find more than N versions. N is configured

to reach the balance between disk usage and the number of old snapshots stored. For example,

43

N being 2 leads to one snapshot stored. Furthermore, if a data item is not updated during the

current epoch, databases will not contain the item with the current epoch number. SCTs avoid

deep-copying by inheriting the old data versions implicitly. For example, if Epoch is 5 and data

item A contains versions in epoch 2 and 3, the version in epoch 3 is also interpreted as the versions

in epoch 4 and 5.

Livelocks are impossible since exclusive lock requests from SCTs are blocked indefinitely while

shared lock requests from normal transactions are non-blocking. During the snapshot creation, the

normal transactions that hold shared locks on Epoch continue to completion while the normal

transactions yet to request locks are aborted. We avoid deadlocks from multiple concurrent SCTs

by allowing one SCT at a time. SCTs are initiated only at the master server and new SCTs are

not started until the previous one commits. The master server is selected based on its rank in the

group membership that is stored in a replicated state machine [130].

4.4.2 Dynamic Partitioning

Our dynamic partitioning strategy combines hashing and graph partitioning algorithms and

takes replication into account. We do not offer high availability but apply replication for better

performance. Our approach customizes data placement rules based on data access patterns. As a

result, each data item has its own replication factor and data that are frequently accessed together

are placed in the same servers. This fine-grained data placement method achieves well balanced

resource usage while incurring little mapping data that record the data placement rules. To further

reduce the mapping data size, data that are involved in less than a configured number of transactions

are filtered out since they are seldom accessed.

Initially, data are assigned to servers based on their hash value. Then, distributed trans-

actions are recorded, mapped to a graph structure, and input into METIS [65] to generate new

placement rules. Finally, the new placement rules are installed in all servers, followed by the

database reorganization.

44

4.4.2.1 DTranx Modification

There are two modifications to the original DTranx system: mapping data management and

replicated data locking. First, mapping data is fine-grained data placement rules. For example,

the mapping data for the RTree root is {X,Y,Z}, indicating that the RTree root is replicated in

Server X, Y, and Z. We insert a “mapping read” step in coordinators during 2PC, as shown in

Figure 4.5. In addition, a mapping cache is created on DTranx clients to route read and commit

requests. The mapping cache is updated when either read or commit requests are forwarded, in

which case DTranx servers piggyback the new mapping data in the reply messages. Second, we

adjust the locking service to guarantee the consistency among replicated copies. Let’s denote N

as the replication factor for data D, S as the number of locks required for shared locking, X as

the number of locks for exclusive locking. The following two restrictions are necessary for strong

consistency: S + X > N and 2X > N . In DDSBrick, they are configured as S = 1 and X = N to

reduce the locking costs for hot spots, such as RTree root.

4.4.2.2 Graph Construction

Past transactions in WALs are collected and broadcast to the master server before DTranx

reclaims the WALs. When the number of past transactions exceeds the configured threshold,

the master server initiates the dynamic partitioning process. In the following, we use “dynamic

partitioning” and “repartitioning” interchangeably.

In Figure 4.4, there are two kinds of vertices: replication vertex and central vertex. Repli-

cation vertices are created per transaction per data item and the vertices that represent the same

data item are connected to the central vertices. Similarly, there are two kinds of edges: replication

edge and transaction edge. Replication edges connect replication vertices to central vertices while

transaction edges connect replication vertices of different data items in the same transactions. Edge

weights are set based on the edge kind: replication edges weights are the update costs, meaning

the number of transactions that update the data items; transaction edges are configured as the

45

A

A

A A

BB

B

E

E

D

D

F

F

C
C

1

1
1 1

0

1

1

1

1

1

0

0

0

0

0

Partition 1

Partition 2

Partition 3

3

3
3

Tranx Read Update Rep
T1 A,B,E E 1
T2 A,B,D N/A 3
T3 A,C,F C, F 1

A

B

D

C

FE G

Partition
Replicated DataReplication Edge

Transaction Edge

Figure 4.4: Transaction graph representation. It is a binary search tree on the bottom right and
the transactions on the top right are the input for the graph generated on the left.

number of transactions that co-access the data items. For example, T2 is executed for 3 times and

the transaction edge weights between {A,B}, {A,D}, and {B,D} are 3.

After the graph is constructed, the METIS algorithm partitions the graph structure, mini-

mizing the edge cuts between partitions. It has four indications. First, frequently read data are

replicated since the replication edge weights are low while frequently updated data are not repli-

cated. This effect distributes read request loads and reduces exclusive lock overhead. Second,

data that have been accessed together in transactions are stored in the same server such that no

distributed commit protocol is necessary. Third, METIS generates a fairly balanced partitioning

strategy. Lastly, METIS supports configurable partition numbers, supporting cluster membership

changes. However, the running time of METIS grows substantially as the graph expands. To reduce

the graph size, past transactions are sampled to balance the partition effectiveness and runtime

costs.

4.4.2.3 Greedy Optimization

Different mappings of the partition IDs from the METIS algorithm to servers result in differ-

ent data migration sizes. In the worst case, every key value pair is moved. Worse still, the mapping

data size would be enormous. We designed a greedy algorithm to minimize the migration traffic as

shown in Algorithm 2. oldMapping is a hashmap from data keys to a list of ServerIDs where date

46

currently reside and newMapping is a hashmap from data keys to a list of new partitionIDs from

METIS. The output of Algorithm 2 is a mapping from partitionIDs to ServerIDs. The core idea

of the greedy algorithm is to match servers in the oldMapping with those in the newMapping that

share the most data items.

Initially, servers in the oldMapping are sorted by the number of keys they contain. Server X

with the most keys are chosen and for each server Y in the newMapping, the number of keys shared

by X and Y is calculated. Then, the new server Y ′ that shares the most keys with X is chosen to

map to X.

Algorithm 2 Optimize Data Migration

1: procedure Optimize(oldMapping, newMapping)
2: resultMapping ← {}
3: serverBags← {}
4: serverOrder old← Ø
5: for key ∈ oldMapping do
6: for server ∈ oldMapping[key] do
7: serverBags[server].add(key)
8: end for
9: end for

10: serverOrder old← OrderServer(serverBags)
11: while !serverOrder old.empty() do
12: srv old← serverOrder old.front()
13: serverOrder old.pop()
14: allKeys← serverBags[srv old]
15: serverFreq new ← {}
16: serverOrder new ← Ø
17: for key ∈ allKeys do
18: for server ∈ newMapping[key] do
19: serverFreq new[server] + +
20: end for
21: end for
22: srv new ← FindBest(serverFreq new)
23: resultMapping[srv new]← srv old
24: end while
25: return resultMapping
26: end procedure

47

Client Coordinator Participant

Time
WAL writeWAL write

Mapping read Lock

Lock Lock

WAL write
WAL write

WAL write

WAL write

WAL write

Unlock Unlock

WAL write

Mapping check

Data migrate

Unlock

Data migrate

Prepare

Request

Ready

Commit

DB update

Check read items

NT
DMT

Figure 4.5: 2PC for NT and DMT

For S servers and K keys, the time complexity is

T (K,S) =

O(K) K � S,

O(SK + SlogS + S(SK + SlogS)) otherwise.

The memory complexity is

M(K,S) =

O(K) K � S,

O(SK + S) otherwise.

In real scenarios, K is much greater than S, in which case, both the time and memory complexities

are O(K).

4.4.2.4 Data Migration Transaction

To install the new placement rules and migrate the database consistently, we customize a

variant of 2PC. Let’s denote normal transactions as NT and data migration transactions as DMT.

48

As shown in Figure 4.5, NT obtains the participant list from the mapping data and checks if they

change during 2PC. DMT follows 2PC and replaces the database update with data migration. The

serializability challenge is decomposed into three conflict cases: NT with NT, DMT with DMT,

and NT with DMT.

Case 1: DMT-DMT Conflict

We prevent DMT-DMT conflicts by allowing one DMT at a time. Similar to SCTs in Sec-

tion 4.4.1, the master server initiates the DMT and guarantees that DMTs are not started until

the previous one completes.

Case 2: NT-DMT Conflict

Suppose that a NT “T1” updates DataA in ServerX and a DMT “T2” migrates DataA from

ServerX to ServerY. T1 updates DataA in ServerX while T2 migrates the old version of DataA to

ServerY, causing lost updates. We prevent NT-DMT conflicts by capturing read-write and write-

write conflicts. Specifically, the database and the mapping data share the locking service and DMTs

request exclusive locks on the corresponding data. Therefore, either T1 or T2 would abort due to

write-write conflicts in the previous example.

Case 3: NT-NT Conflict

NT-NT conflicts happen when there is a concurrent DMT since NTs read mapping data before

locks are granted. In Figure 4.6, data A is migrated from server X to server Y and Z. T1 requests

exclusive locks in X where old mapping data is referenced, while T2 requests exclusive locks in Y

and Z where the new mapping data is referenced. These two conflicting transactions are able to

access the same data concurrently. Even though servers in the new mapping are storing consistent

copies, clients with outdated mapping data might read A in X optimistically. To prevent NT-NT

conflicts, mapping data for all items in NTs are checked after locks are granted in Figure 4.5. This

checking guarantees that no intervening DMTs are running.

49

X ZY
T1 read old map

T3 start to commit T3 start to commit T3 start to commit

T1 exclusive lock A T2 read new map

T2 exclusive lock A T2 exclusive lock AT1 commit lock A
prepare

T2 Commit
T2 Commit

commit

A=5 A=6 A=6

Data: A Transaction:
Servers: X,Y,Z T1: update A(new value 5)
Mapping: T2: update A(new value 6)
 A(X->Y,Z) T3: repartition

Figure 4.6: Repartition failure scenario. Arrows represent a happens-before relationship.

4.5 Evaluation

Our benchmark tests are run on Cloudlab [138] where each machine is equipped with 2 Intel

E5-2660 v3 CPU(each with 10 2.6GHz cores), 130GB RAM, 480GB SSD at 6GB/sec, and 10Gbps

Ethernet card. DAX support in Linux is enabled to emulate NVM. We used DRAM based emulated

NVM since NVM was not available during the tests and current NVM yields latency comparable to

DRAM. For example, STT-RAM [17] achieves ∼10ns write latency compared to 50ns for DRAM.

In addition, current NVM offers far more throughput than what DTranx requires.

Distributed Data Structure we have transformed both an in-memory BTree [6] and

RTree [71] to distributed versions. To generate workloads, we run the YCSB C++ version [35]

and added BTree and RTree support. The max numbers of children for both BTree and RTree

50

0
2500
5000
7500

10000
12500

0 50 100
Throughput(x1000 ops/s)

L
a
te

n
c
y
(m

ic
ro

s
e

c
o
n

d
s
)

Throughput vs Latency

1000

2000

3000

4000

0 50 100 150
Throughput(x1000 ops/s)

L
a
te

n
c
y
(m

ic
ro

s
e
c
o

n
d

s
)

treekind_workload
btree_mix
btree_search
rtree_mix
rtree_search

Throughput vs Latency

Figure 4.7: Throughput and Latency. There are four types of workloads: BTree search operations,
BTree mix operations, RTree search operations, and RTree mix operations.

are configured as 30. YCSB clients are run in separate machines from the cloud servers that

accommodate DTranx.

Workloads BTree and RTree are initialized with 1, 3, 6, and 8.5 million data items in 3, 9,

18, and 25-server clusters respectively. BTree stores 64-bit integers that are randomly generated

from a uniform distribution function between -X to +X where X is 100, 300, 600, and 850 million

for the different cluster sizes above. RTree stores three-dimensional cubes which are constructed

with a coordinate of one vertex and a side length. Similar to BTree, the coordinates are randomly

generated from a uniform distribution function. The side length is randomly generated from a

uniform distribution function between -10 and +10. we choose the uniform distribution instead of

zipfian since the uniform distribution of workloads to BTree or RTree is translated to a nonuniform

distribution of workloads to DTranx. For all the following tests, the initial results during cache

population are discarded and the average of 3 runs are reported with variances.

51

Scalability

Cluster Size

T
h
ro

u
g
h
p
u
t(

x
1
0
0
0
 o

p
s
/s

)

0 5 10 15 20 25

0

50

100

150

200

250

300 btree search
rtree search
btree mix
rtree mix
single−threaded rtree mix

0

10

20

30

40

50

1
P

C
 T

ra
n
s
a
c
ti
o
n
 P

e
rc

e
n
ta

g
e
(%

)btree
rtree

Figure 4.8: Scalability. Cluster sizes are 3, 9, 18, and 25. The right vertical axis is the percentage of
distributed transactions that are committed in one server. The bottom baseline is the throughput
for a single-threaded rtree.

4.5.1 BTree & RTree

In this section, we evaluate the throughput and latency of the distributed BTree and RTree

as well as their scalability. Workloads are categorized into search ones and mix ones of which the

former means search operations and the latter means 70% search, 15% remove, and 15% insert

operations.

Throughput vs. Latency In Figure 4.7, throughput and latency are recorded in a 9-server

cluster as we vary the number of client threads. The latency increases slowly in the beginning

and soars up when the throughput approaches the maximum since more clients introduce higher

contention in DTranx. However, there is a turning point for mix workloads when the throughput

is low. The turning point is when the number of client threads changes from one to five where

exclusive lock contention takes effect. Nonetheless, RTree mix workloads yields 7.77ms latency

when the throughput hits 23.19 kops/sec. On the other hand, search workloads generally yield

higher throughput and lower latency compared to mix workloads since they request non-contentious

52

shared locks. Compared with RTree, BTree yields lower latency for the same workloads since the

overlapping regions in RTree leads to more data items accessed in transactions, thus more servers

involved in 2PC. In the future, we plan to examine the RTree splitting algorithm to reduce the

internal nodes overlapping.

Scalability In Figure 4.8, the throughput of BTree search workloads and RTree mix work-

loads reaches 253.07 kops/sec and 35.36 kops/sec respectively on a 25-server cluster. Both of them

show linear scalability since the dynamic partitioning strategy spreads hot spot loads. However,

RTree performance degrades from the 9-server cluster to the 18-server cluster. By inspecting the

number of servers involved in RTree transactions, we found out that 7.19 servers in the 18-server

cluster are involved on average in a single transaction compared to 4.4 servers in the 9-server clus-

ter. The impact from more servers involved in transactions outweighs the benefits of extra servers

alleviating the loads. In the 25-server cluster, RTree transactions involve 8.12 servers where the

benefit of 7 more servers overshadows the impact of 0.93 more servers involved in transactions. On

the other hand, the one-phase commit(1PC) transaction percentage decreases as the cluster size

grows since database are spread out across more servers. And, BTree shows more 1PC transac-

tions than RTree since BTree operations access fewer data items. Finally, to validate that better

programmability is not achieved at the sacrifice of performance, we compared the performance of

BTree read transactions and key-value read transactions to DTranx. Given that both BTree and

key-value read transactions involve 5 data items on average(it is a 5-layer BTree), the throughputs

differ within 8%. Otherwise speaking, DDSBrick-based BTree fully utilizes the underlying KV

store.

Table 4.2: Tango vs. DDSBrick

Throughput TangoMap DDSBrick RTree DDSBrick BTree

8/9-server 25k (est.) 29.48k 47.29k

18/25-server 25k (est.) 35.36k 100.13k

Tango Although there are no open source DDSs to compare with, we conduct a qualitative

analysis between DDSBrick and Tango [21] in Table 4.2. The transaction throughput for a single

53

0 2 4 6 8 10 12

0
5

0
1

0
0

1
5

0

Snapshot Tranx vs Normal Tranx

Update Throughput(x1000 ops/s)

T
h

ro
u

g
h

p
u

t(
x
1

0
0

0
 o

p
s
/s

)

btree snapshot
rtree snapshot
btree normal
rtree normal

Figure 4.9: Snapshot throughput.

TangoMap object is around 15 kops/sec and 25 kops/sec in a 8-server cluster when keys are selected

with zipfian and uniform distribution. DDSBrick RTree throughput for mix workloads reaches 29.48

kops/sec in a 9-server cluster. First, a fair comparison should be between TangoMap with zipfian

distribution and DDSBrick RTree with uniform distribution since the latter generates highly skewed

workloads to the backend storage. Second, 25 kops/sec is the maximum throughput for a single

TangoMap since system wide throughput is limited by the speed at which a single client can play the

logs. Third, even if data are partitioned across multiple TangoMap and transactions are constructed

among the TangoMaps, the cross-partition throughput reaches around 25 kops/sec in a 18-server

cluster, compared with 35.36 kops/sec for DDSBrick RTree in 25-server cluster. Tango depends

on the creation of more partitions to further improve the overall performance, but the throughput

for transactions across partitions is low. Based on this analysis, DDSBrick offers slightly better

performance and it effectively alleviates development efforts for building DDSs.

54

0 10 20 30 40 50

0
5

0
1

0
0

1
5

0

Instant throughput during snapshot creation

Time(seconds)

T
h

ro
u

g
h

p
u

t(
x
1

0
0

0
 o

p
s
/s

)
btree search

rtree search

btree mix

rtree mix

Figure 4.10: Snapshot creation. The vertical dotted lines are when new snapshots are created.

4.5.2 Snapshot

To confirm the efficiency of SRTs, we run a background update workload, consisting of 50%

remove and 50% insert operations, in a 9-server cluster. In Figure 4.9, both SRT and normal

read transaction throughputs are measured as different update workloads are running. Normal

read throughput is severely affected since update transactions are contending for locks while SRT

throughput is lightly affected as no locks are requested. Nonetheless, SRTs call for database reads,

causing a slight performance drop. Furthermore, SRTs do not outperform normal read transactions

when there are no concurrent update transactions since clients disable the local cache such that

SRTs can get the most recent snapshot. For example, the throughput for BTree normal transac-

tions(137.53 kops/sec) is 16.82% higher than that of BTree SRTs(117.73 kops/sec), implying 588.65

kops/sec optimistic reads(it is a 5-layer BTree).

On the other hand, we measure the instantaneous throughput as new snapshots are con-

tinuously created. In Figure 4.10, both search and mix workloads are run for BTree and RTree

where snapshots are created every 5 seconds. Neither BTree nor RTree throughput is affected since

the snapshot creation merely updates Epoch and old snapshots are not immediately cleaned. The

55

btree search btree mix rtree search rtree mix

Throughput before and after repartitioning

T
h

ro
u

g
h

p
u

t(
x
1

0
0

0
 o

p
s
/s

)

0
2

0
6

0
1

0
0

1
4

0

before repartition

after repartition

Figure 4.11: Throughput before and after DMT.

throughput for BTree mix workloads oscillates more than others since the number of client threads

spawned during the tests exceeds the balancing point where the servers start to saturate. Since the

instant throughput is fairly stable, we did not tune the client thread number.

4.5.3 Dynamic Partitioning

To evaluate if our dynamic partitioning strategy boosts performance, we run three tests: the

first test compares BTree and RTree throughput when dynamic partitioning is enabled with the

ones when it is disabled; the second test examines the service request numbers on the servers to

find out why the dynamic partitioning increases throughput; the last test studies how DMTs affect

ongoing transactions. For all three tests, both BTree and RTree are initialized with 3 million data

items in a 9-server cluster and both search and mix workloads are run.

In Figure 4.11, Both BTree and RTree benefit from dynamic partitioning for search and mix

workloads since data are replicated based on past transactions and loads are balanced across the

cluster. BTree search throughput after database re-organization is 2.8 times higher than the one

before. Moreover, the throughput gain of search workloads is greater than that of mix workloads

56

2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

ClientService Requests

Server ID

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts btree before repartition

rtree before repartition

btree after repartition

rtree after repartition

2 4 6 8

0
5

1
0

1
5

2
0

TranxService Requests

Server ID

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts btree before repartition

rtree before repartition

btree after repartition

rtree after repartition

2 4 6 8

0
.0

1
.0

2
.0

3
.0

StorageService Requests

Server ID

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts btree before repartition

rtree before repartition

btree after repartition

rtree after repartition

2 4 6 8

0
.0

0
0

.1
0

One−Phase Commit Transactions

Server ID

N
u

m
b

e
r

o
f

T
ra

n
s
a

c
ti
o

n
s

btree before repartition

rtree before repartition

btree after repartition

rtree after repartition

Figure 4.12: Server side requests metrics. We normalize the request numbers by dividing them by
the average number of ClientService requests. And, data are sorted in increasing order such that
the number of requests is the lowest in the server with ID 1.

since the former benefits from both data replication and data affinity while the latter suffers from

data replication.

Figure 4.12 shows the number of service requests and 1PC transactions. ClientService re-

quests are commit and abort requests from clients; TranxService requests are prepare, commit,

and abort messages among servers; StorageService requests are optimistic data reads from clients.

First, all service requests and 1PC transactions are well balanced across the cluster after reparti-

tioning. For example, the maximum number of BTree TranxService requests is 3.47 times of the

minimum before the repartitioning and 1.04 afterwards; Second, the number of RTree TranxService

57

0 10 20 30 40 50 60

0
2

0
4

0
6

0
8

0
1

2
0

Instant throughput during repartition

Time(seconds)

T
h

ro
u

g
h

p
u

t(
x
1

0
0

0
 o

p
s
/s

)

829 transactions
3563 transactions
15611 transactions
45131 transactions

Figure 4.13: This figure shows how the repartitioning affects ongoing transactions for BTree. The
number of transactions means how many history transactions are applied for the new partitioning
strategy.

requests is larger than that of BTree after repartitioning since RTree children are overlapped and

transactions involve more servers. It also explains why BTree throughput is higher than RTree;

Third, the percentage of 1PC transactions for BTree increases by 10.88% compared to 0.31% in-

crease for RTree during repartitioning. This increase contributes to the larger throughput increase

of BTree than that of RTree; Fourth, the fact that the number of StorageService requests drops

after repartitioning is coincidental. We happened to run more transactions after repartitioning

and later transactions read data from the client cache. Lastly, ClientService requests are always

balanced since clients choose servers randomly when 1PC is not possible.

Figure 4.13 shows how data migration affects ongoing transactions. The more transactions

are input to METIS, the longer it takes to complete the transition since more data are relocated.

For example, it took ≈ 10 seconds for 45131 transactions while it took less than a second for 3563

transactions. However, the throughput gain is similar for different numbers of history transactions.

Fewer transactions are preferred to alleviate the negative impact on ongoing transactions. Repar-

58

titioning for 829 transactions took longer than that for 3563 transactions since the throughput

metrics are measured once every second and the repartitioning time for both 829 and 3563 trans-

actions is so short that random factors, such as garbage collection cast a greater impact on normal

transactions.

4.5.4 Summary

We have learned the following lessons as we built DDSBrick and implemented data struc-

tures on top of the paradigm. First, there is a trade-off between automation and efficiency. If

clients choose to notify DDSBrick of update items(less automation), DDSBrick can disable Mem-

pool shadow copies(more efficiency). Second, cache pays off. For example, DCache reduces the

serialization and memory copy overhead. And, CCache not only lowers the read and commit miss

rates but also decreases the number of read requests to the servers. Third, partitioning strategy is

critical for DDS scalability. On the other hand, DDSs, such as index trees show strong access biases

where the top layer nodes are read more frequently than the bottom ones. Even for flat structured

DDSs, such as distributed hash tables, they are likely to display hot spots in real world scenarios.

METIS is able to adjust replication factors and balances loads on a fine level of granularity without

incurring considerable mapping data.

4.6 Related Work

This paper presents a paradigm for building distributed data structures in a scalable and

transactional manner while maintaining high throughput. We draw from past work in databases,

scalable systems, and distributed transactional systems [114, 87, 68, 26, 172, 8, 36].

Distributed Data Structure. DDS was first introduced by Steven [68] where a distributed

hash table was implemented for Internet services. The hash table was scalable, consistent, and fault

tolerant, but it did not support transactional updates to multiple elements. Marcos et al. [9]

developed a new paradigm called Sinfonia to simplify distributed system designs. By hiding the

complexities of concurrency control and server failure recovery, Sinfonia’s mini-transactions enabled

59

Transaction Load	Balance Snapshot Paradigm
Sinfonia Yes No No Yes
Schism Yes Fine No No
DDSBrick Yes Fine Yes Yes
HashTable(Steven) No Hash No No
Minuet Yes No Yes No
Tango Yes Fine No Yes
STI-BT Yes Coarse No No

Feature
System

Figure 4.14: Feature supports for current DDS systems.

efficient and consistent access to data. However, the assumption that transaction data items are

known a priori does not hold for many data structures. For example, B-tree [8] gradually picks up

read and update items as the tree is traversed. Minuet [150], based on Sinfonia, built a consistent

and efficient distributed B-Tree with dynamic transactions, but it did not handle workload hot

spots. Recently, Tango [21] was introduced as a DDS paradigm that relied on a fault tolerant and

durable distributed log, Corfu [20]. If the sequencer maintained offsets for large numbers of object

streams, it would become the performance bottleneck.

Current DDS systems are compared in Figure 4.14. DDSBrick supports transactions, dynamic

load balancing, snapshot operations, and a general paradigm for DDSs. STI-BT [46], a scalable and

transactional index for distributed key value stores, divided a distributed BTree into a top layer

tree and several bottom layer sub-trees where the top layer tree was fully replicated and the bottom

layer sub-trees were partially replicated. Even though this static replication strategy outperformed

hashing, it failed to dynamically adjust the sub-tree partial replications. Similar coarse grained

partitioning DDSs are [50] [180].

Transactional Data Structures In the past decade, concurrent data structures are pro-

posed to allow concurrent accesses without sacrificing performance. Examples are [79], [75]. How-

ever, the main drawback is the lack of transactional accesses to multiple elements in the data

structures, such as atomically reading and writing two elements. Recently, TxCF-Tree[77] was

60

proposed to allow efficient transactional operations to multiple elements by separating structural

operations, such as re-balancing from semantic ones. It minimized the interference between struc-

tural operations and the critical path of semantic operations but required a housekeeping thread to

process the structural operations. TxCF-Tree optimized the housekeeping thread in a multi-core

single machine, but it would introduce considerable overhead in distributed environments. Addi-

tionally, imposing the separation of structural operations from semantic ones left the design of the

DDS paradigm interface specific to certain tree structures.

Data Placement Partition strategy plays a critical role in scalability since it balances

resource usage and distribute loads. RAMCloud [132] stored the database in memory to lower

latency but its hashing-based data placement did not suffice to handle hot spot keys. Schism [42]

proposed to transform transactions to graphs and applied graph partitioning algorithms but it did

not support online migration. Turcu [159] extended Schism to support independent transactions [37]

and designed a machine-learning based mechanism for routing transactions. However, the mapping

data size was small enough to fit into the client side cache and training and pushing the classifiers to

clients resulted in overhead. DDSBrick combines the hashing and graph partitioning algorithms to

generate data placement rules and keeps a client side mapping data cache for transaction routing.

Additionally, DDSBrick designs a greedy algorithm to minimize data migrations that Schism lacks

and adjusts 2PC to avoid interruptions to ongoing operations during data migration by resolving

potential NT-NT, NT-DMT, DMT-DMT conflicts.

4.7 Summary

We have described the design of DDSBrick, a paradigm for scalable, transactional, and effi-

cient distributed data structures. DDSBrick enables efficient conversion from local, non-concurrent

data structures to distributed versions. We have shown that DDSBrick is simple to use and the

converted data structures yield great performance and scalability. Currently, we are implementing a

variety of data structures and exploiting hardware advances, such as RDMA to boost performance.

The next chapter reviews distributed spatial access methods during the last two decades. It

61

summarizes the most critical challenges and discusses the techniques proposed in these systems.

Chapter 5

Related Work and Discussion

5.1 Distributed Spatial Access Methods

We categorize the past work into two groups shown in Figure 5.1: monolithic indexes and

hierarchical indexes. Monolithic indexes are structurally similar to local indexes but physically

stored in a distributed manner. Hierarchical indexes use a global index to divide the space coarsely

into regions and build a local index for each region.

5.1.1 Monolithic Indexes

Monolithic distributed spatial indexes are further divided into three groups: full replication

index, central index, and space filling curve index. Full replication indexes replicate the spatial

indexes in every server to alleviate query costs. Central indexes depend on distributed storage

systems, such as NoSQL databases and distributed file systems, for scalability. Space filling curve

indexes linearize multidimensional keys into one dimensional keys and process queries with range

queries in one dimensional space.

5.1.1.1 Full Replication Index

Both GPR-Tree [60] and Lai et al. [148] replicate the RTree index in every server such that

insertions and deletions are sent to all servers. With the index fully replicated, any server can

process queries independently. Compared to GPR-Tree, Lai et al. [148] distributes loads when idle

servers are detected. Lai et al. [148] divides the global space with a static partition function and

63
Scalable Distributed

Spatial Index

Monolithic Index Hierarchical Index

Full Replication
Index Central Index Space Filling

Curve Index
Non-partitioned

Global Index
Partitioned Global

Index

Full
Replication

Partial
Replication

No
Replication

Multi-
Dimensional

AM

Single-
Dimensional

AM
P2P

Protocol Misc AM

Figure 5.1: Literature Category

assigns each server with one region. A query is forwarded to the server whose assigned region

intercepts with the query region and the forwarded server processes the query in its local RTrees.

If the number of RTree nodes to be searched exceeds a threshold, part of the potential RTree nodes

are forwarded to idle servers for further processing. [148] takes advantage of the fully replicated

global index to dynamically distribute loads to achieve higher throughput. SIDI [126] partitions

the global space using grid structures and replicate the partition tree in all servers. SIDI divides

the global space into a grid of n*n uniform cells and aggregates the cells into zones such that there

are more cells in sparse zones based on a sampled dataset. Then, zones are distributed to servers

based on each server’s capacity. It might scale well by partitioning data space according to density

but its dependence on the stable spatial distribution renders SIDI inflexible for data whose spatial

distribution frequently changes.

A full replication index works best for query dominant workloads since every server can

process queries independently. Dynamic data distribution with frequent hot spot changes would

lead to high update costs due to the necessity of broadcasting each update. Furthermore, load

distribution technique in [148] utilizes all idle servers for queries with large regions.

64

5.1.1.2 Central Index

Central indexes are stored in distributed storage systems, such as HDFS or HBase. Tra-

verse [174], Akdogan et al. [12], and Liao et al. [101] store the spatial indexes in HDFS and

CCIndex [187] uses HBase. Both Traverse and Liao et al. [101] construct RTrees but Traverse

stores each layer of the RTree in one HDFS file while Liao et al. [101] stores the whole RTree in one

HDFS file and aligns the tree nodes with the file blocks in HDFS. The difference results from how

indexes are constructed. Traverse employs packing algorithms [99] to build RTree from bottom up.

On each layer of the RTree, one Mapreduce job is launched to generate the index and output to

one HDFS file, which is the input to the next Mapreduce job. The reason for one HDFS file for the

whole index in [101] is its configuration of large fan-out where the size of the internal tree nodes

is small. Akdogan et al. [12] applies a Voronoi diagram [129] to partition the global space since

Voronoi diagrams facilitate nearest neighbor searching. CCIndex builds an inverted table for each

searching attribute and chooses one of the inverted tables during query processing, utilizing only

one querying criterion. CCIndex chooses the inverted table that incurs minimal covered regions,

filtering out as many regions as possible. Strictly, this strategy is not a multidimensional solution

and it yields more false positives than multidimensional indexes that include all querying criteria.

In terms of query engine design, central indexes launch either a procedural program, such as [101]

or a Mapreduce program, such as Traverse and [12], to process queries. For highly selective queries,

a procedural query engine is favored since the overhead to start a Mapreduce program might over-

shadow the benefits of increased parallelism. Paradase [107] builds a PMI index for range queries

and a OII index for trajectory queries and stores both indexes in a GFS-style [67] storage. PMI is

a partition tree that divides the whole space such that each partition stores data of approximately

equal size. OII is an inverted index that tracks the trajectory for each spatial object. Paradase

launches Mapreduce jobs for queries and utilizes one of the indexes based on query types.

All of these central indexes assume query dominant workloads and unload the system scal-

ability onto distributed storage systems. The main decision choices are index storage and query

65

Table 5.1: Monolithic Designs with Space Filling Curves

Systems Database Linearization Index Structure

MD-HBase [128] HBase Z-Order KD-Tree
Fox2013 [59] Accumulo Z-Order N/A
ST-HBase [110] HBase Z-Order KD-Tree
Pyro [100] HBase Moore Curve N/A
D8-Tree [41] Cassandra Z-Order 8-ary tree
KR+-Index [164] Cassandra Hilbert Curve R+-Tree
[98] HBase GeoHash [1] N/A
HGrid [73] HBase Z-Order Regular Grid

engine. Queries can be processed either in procedural programs or by distributed query engines,

such as Mapreduce and Spark [175]. Index storage depends on how the indexes are built initially

and how the query engine retrieves the indexes.

5.1.1.3 Space Filling Curve Index

In this category, papers adopt linearization techniques to map multidimensional data to one

dimensional data and store spatial objects in key value stores. Some construct index structures to

reduce false positive rates and support more kinds of queries. Table 5.1 lists all the related work.

MD-HBase [128] and ST-HBase [110] adopt KD-Trees with regular decomposition to filter

out false positives. MD-HBase persists the KD-Tree in HBase and eliminates false positives by

recursively sub-dividing the query regions, which emulates the way the KD-Tree partitions the

space. However, MD-HBase does not handle deletions and it requires transactional primitives in

HBase. ST-HBase assumes the KD-Tree fits in memory and it designs a Term Cluster Based

Inverted Spatial Index(TCbISI) to support term based queries. Fox et al. [59] and Pyro [100]

do not create indexes. Fox et al. [59] constructs bloom filters to filter out false positives and

it integrates the time attribute in the linearized keys, supporting only spatial temporal queries.

Pyro proposes a dynamic programming algorithm called Adaptive Aggregation Algorithm(A3) to

generate a query plan that decides between unnecessarily reading more data blocks and issuing more

disk seeks. In order to support moving hotspots, Pyro designs a group based replica placement

66

to preserve data locality when regions are split. D8-Tree [41] focuses on data-thinning queries by

employing de-normalization, sacrificing storage space for performance. D8-Tree is a balanced 8-ary

tree stored in Cassandra where each tree node contains the top k elements of the relative subregion.

The top k elements contained in lower levels are guaranteed to include the elements contained in

higher levels. By replicating the elements on different levels, D8-Tree enables users to navigate

with different levels of visualized details efficiently. KR+-Index [164] builds a R+-Tree and creates

a mapping table from Hilbert Curve values of fixed precision grids to R+-Tree [146] leaf nodes.

It uses R+Tree to partition the spatial database into regions and configure the fan-out to meet

the trade-off between false positive and the number of sub-queries. The regions are split if they

overflow but the top layer R+-Tree nodes are not stored or maintained. The query engine refers to

the persistent mapping table to find the rectangles that match the queries. Lee et al. [98] applies

geohash to address the spatial objects in HBase. Specifically, spatial objects are translated into

a set of geohashes with the same precision and these geohashes are stored as rowkeys in HBase.

The query engine translates the query region into geohash ranges and forwards the range queries to

HBase. HGrid [73] combines Z-Order Curve and a regular grid index to linearize the spatial points.

It first decompose the global space into tiles with Z-values and each tile is further divided into grids

based on regular grid structures. The linearized key stored in HBase is the concatenation of the

Z-value and the regular grid row index. The column name is the contatenation of the regular grid

column index and the object ID. Similar to [98], HGrid translates query ranges to the key ranges

in HBase for query processing. However, HGrid statically configures the granularity of the Z-Order

value and regular grid index and it does not handle hotspots like Pyro does.

To summarize, space filling curve based approaches linearize multidimensional data to one

dimensional data and uses the linearized key in key value stores. Figure 5.2 shows two kinds of

space filling curves in the two-dimensional space: Z-Order Curve and Hilbert Curve. Moore Curve

is a variation of Hilbert Curve and GeoHash is a variation of Z-Order Curve. Z-Order Curve has the

property of prefix matching if the linearized key is constructed by interleaving the bits in x-axis and

y-axis while Hilbert Curve keeps better data locality. Overall, there are three optimizations for space

67

Z-Order Curve Hilbert Curve

Figure 5.2: Space Filling Curves

filling curve based indexes. First, multidimensional data structures can be constructed to minimize

false positive rates. Second, algorithms can be designed in query planning to generate range queries

to reduce latency, such as Pyro’s A3 algorithm. Third, storage specific optimizations are possible,

such as pre-splitting in HBase. MD-HBase, ST-HBase, and Pyro share the common design of

storing data in HBase and adopting a pre-split technique. Pre-split technique is to proactively split

a region to pay the region split costs when the cluster is lightly loaded. MD-HBase pre-splits regions

once the split patterns are learned from historical data. Pyro does pre-splitting to preserve data

locality within regions. ST-HBase pre-splits for the inverted index table to increase concurrency

when the system boots up.

5.1.2 Hierarchical Indexes

Compared to Monolithic indexes, hierarchical indexes could achieve better scalability because

of their data dependent global partitioning. Hierarchical index designers are faced with consistency

challenges between global indexes and local indexes when database updates are frequent. We

categorize hierarchical indexes based on whether the global indexes are partitioned.

68

5.1.2.1 Non-partitioned Global Index

Non-partitioned global index papers store the whole global index in a set of servers, called

masters. The master servers could be one server, a subset of the cluster, or the whole cluster.

Full Replication In this category, global indexes are replicated in every server but incon-

sistency might exist among the copies. The benefit of the full replication is that every server is

capable of processing and routing the queries. However, the overhead of keeping the global index

updated and consistent is high.

HQT* [88] stores spatial points in a linked list called buckets, which are stored locally in

servers. A Quad-Tree is built to index the buckets using regular decomposition. Each server keeps

a subset of the buckets and a copy of the Quad-Tree that might be outdated. HQT* only updates

the local Quad-Tree when queries are forwarded by other servers. When servers are overloaded, an

algorithm called Dissection Splitting divides the buckets into two sets and minimizes the number

of buckets to be moved. BR-Tree [80] builds RTrees in each server with bloom filters and then

the MBRs of the root nodes are published to all servers. The global index is organized as an

array of MBRs with corresponding bloom filters. To reduce the global index update costs, BR-

Tree periodically broadcast update messages when the local changes reach a predefined threshold.

HQT* and BR-Tree differ in the index construction where hQT* incrementally inserts spatial points

into buckets and the global index is expanding as the buckets are split while BR-Tree builds the

local index in batch and constructs the global index afterwards. SHAHED [53] targets at a different

application where metric data are collected periodically from sensors that are uniformly distributed

around the globe. Since the sensors have static locations, SHAHED partitions the global space into

a uniform grid and builds a stock Quad-Tree which is shared and used as a template. The collected

sensor data are sorted and stored based on their Z-Order value and a lookup table that maps the

Z-Order value to the position in the sorted list is stored in each server. Overall, each server keeps a

copy of the global grid index, stock Quad-Tree, and the lookup table, all of which the query engine

depends on.

69

Partial Replication Alternatively, global indexes are replicated in a configured number

of servers. The cost of keeping global indexes consistent is relatively low since they are stored in

fewer servers than full replication approaches. However, query requests being forwarded to servers

with global indexes leads to load imbalance.

ATree [134], EEMINC [181], and Nam et al. [119] designate a set of master servers to store

global indexes. ATree builds RTrees and bloom filters in each server and then selects and distributes

RTree nodes to be stored in an array in master servers. Similarly, EEMINC builds KD-Trees in

local servers and then selects KD-Tree nodes that are organized as a RTree in master servers.

Both ATree and EEMINC design a cost-based algorithm to select the local indexes to be published

as global indexes and both determine whether to publish a parent node or its children nodes by

calculating the volume difference. Compared to ATree, EEMINC further accounts for the time

cost of updating the global index structures in its cost model. Nam et al. [119] briefly introduces a

replication protocol for the global index. It does not enforce strong consistency among the replicated

global indexes. For example, replica A might process update requests X and Y in a different order

from replica B. Concurrent search requests could potentially obtain different results if different

replicas are referenced.

The following papers share two common designs. First, global indexes are stored in dis-

tributed storage systems, such as HDFS and HBase. Second, global index construction happens

before local indexes. ABR-Tree [185] stores the global index in HBase to handle replications so that

any server can read a copy of the global index from HBase and route the queries. However, the

global index is a BTree on an ascending attribute, such as time. The dependence on the existence of

an ascending attribute causes ABR-Tree to work only for append-only spatial temporal databases.

EDMI [186] partitions the space into subspaces by building an adaptive KD-Tree on a sampled

dataset and launches a Mapreduce program to build a Z-Order Prefix RTree(ZPR-Tree) for each

subspace. Both the KD-Tree and ZPR-Trees are stored in HBase and data locality are preserved

since spatial objects are sorted by their Z-order values, similar to STR packing [99].

ScalaGiST [106] presents a scalable generalized search tree, inspired by classical Generalized

70

Search Tree(GiST) [78]. ScalaGiST samples a data set and partitions the samples into several

subspaces, after which a Mapreduce job is launched to construct a local RTree for each subspace.

Then, the master server reads the root nodes of all RTrees and builds a global RTree using the root

nodes as its leaf nodes. Both the global RTree and local RTrees are persisted in HDFS. Whitman

et al. [169] builds the global index by constructing a PMR-QuadTree on a sampled dataset and

stores the partition list in the Hive metastore. Then, a Mapreduce job is launched to build local

PMR-QuadTrees in all partitions and these trees are stored in map files in HDFS. Hadoop-GIS [11]

builds a grid based global index that recursively splits a tile if it contains too much data. The

global index is stored in HDFS and the local indexes are built on demand in memory. It integrates

a Mapreduce based query engine and a procedural program query engine to process highly selective

and computing intensive queries respectively. Aji et al. [10] extends Hadoop-GIS to support nearest

neighbor search and spatial joins. Ma et al. [108] splits the global space with a Region Split Tree, a

combination of grid index and tree index. Region Split Tree splits overwhelmed regions into grids

and stores the addresses of the new grids in the index. The Region Split Tree and local indexes are

both stored in HBase. Similar to EDMI and ScalaGiST, Ma et al. [108] relies on the Mapreduce

system to build local indexes when the data in regions become stable.

To sum up, many papers store the global indexes in distributed storage systems such that all

servers can read them and forward queries. However, EDMI, Whitman et al. [169], and Hadoop-GIS

assume the databases to be static and the global indexes are not changed over time. If the databases

are dynamically changed, the consistency costs are comparable to full replication approaches since

every server is storing an in-memory copy of the global indexes. ABR-Tree, ScalaGiST, and Ma et

al. [108] handle better for dynamic databases. ABR-Tree assumes an append-only spatial temporal

database. ScalaGiST keeps the new data in a separate tree and periodically merge the tree to the

original index. Ma et al. [108] splits grids dynamically for overwhelmed regions. Second, a sampling

method is introduced when the global space is partitioned, which works best for static databases.

Examples are EDMI, ScalaGiST, and [169]. Third, Mapreduce programs help to parallelize the local

index building. Lastly, ATree and EEMINC proposes a cost model to select local indexes to be

71

published as global indexes and guarantees that the local indexes selected from a local server cover

the whole area of that server. This cost model method reduces false positive rates by providing

more detailed MBR information while keeping the publishing costs small.

No Replication When the global indexes are not replicated, query processing tend to be

costly but updates to the global indexes are more cost effective. The global indexes are stored in

one designated master server.

MR-Tree [90] sorts spatial objects on their Hilbert values of the centers and assigns the

objects to servers in a round-robin manner, declustering objects that are close in space. After the

local objects are organized as chunks similar to RTree leaf nodes, the MBRs are sent to the master

server where a top level RTree is built. Instead of addressing the bottleneck in the master server,

MR-Tree focuses on selecting the optimal chunk size since a small chunk size results in activating

several servers even for small queries and a huge chunk size limits parallelism. UQE-Index [109]

takes the time attribute to build a B+-Tree as the global index. For the data in the current time

interval, UQE-Index uses either QuadTree or KDTree to divide the spatial objects into several

subspaces, which are stored as regions in HBase. When the current time interval ends, UQE-Index

builds a RTree for each subspace. Since the spatial objects in each subspace during the current

interval are not indexed, UQE-Index supports high update rates. SpatialHadoop [52] builds a

RTree on a sampled dataset and generates a partition list based on the RTree boundaries. Then,

it launches a Mapreduce job to sort the original data according to the partition list and constructs

a local RTree for each partition. Finally, the master server builds an in-memory global index on

top of the local RTrees. SpatialHadoop resembles ScalaGiST except that SpatialHadoop stores the

global index in a master server. Both MR-Tree and SpatialHadoop optimize query performance and

dynamic databases are not well supported. UQE-Index is a append-only spatial temporal index,

like ABR-Tree.

72

5.1.2.2 Partitioned Global Index

Partitioned global index papers divide the global index structures into small pieces and dis-

tribute them to servers such that client requests are routed to the destination server where the

expected local indexes reside. The critical problems to be addressed are local index selection for

publishing, query routing, and load balance. The local index selection algorithm affects query per-

formance and global index update costs since the more the local indexes are published, the lower the

query false positive rates are and the higher the index update overhead is. Query routing algorithm

directly determines the average number of query forwarding. It consists of two subproblems: what

to maintain in the routing table and how to manage the global indexes. Load balance affects the

system scalability and highly skewed resource usage could severely degrade system throughput.

Single Dimensional AMs In this category, papers adopt single dimensional AMs as

the partitioned global index. To support multidimensional queries, a dimension reduction method

is necessary, such as space filling curves. Another important problem is load balance since the

linearized space is not filled uniformly.

QT-Chord [47] builds a MX-CIF QuadTree in each local server and publishes the local index

nodes as global indexes in an overlay network, called Chord. QT-Chord assigns a code value to each

index node based on the path from the root node to the index node such that the codes for parent

nodes are prefixes of the codes of their children. To reduce the index maintenance cost, QT-Chord

select a subset of the local index nodes by a mapping function [153] that maps the index node codes

to DHT keys. The mapping function reduces the global index size by 75%. Similar to QT-Chord,

Squid [144] also deploys the Chord network but its dimension reduction technique is the Hilbert

Curves. Squid generates Hilbert Curve values for all spatial points and assigns the points to servers

in the Chord network ring without hashing the Hilbert Curve values. The purpose of not hashing

is to preserve data locality and speed up query pruning but it necessitates a load balancing step.

DHR-Trees [166] builds a Hilbert RTree on spatial objects and employs P-Tree [38] to organize the

servers by their smallest Hilbert Curve values. Each server stores the left-most root-to-leaf path of

73

Table 5.2: Hierarchical Designs with Partitioned Global Index

Systems Global
Index

Index Selection Routing Load Balance

QT-
Chord [47]

Chord Mapping function in
QuadTree

P2P Consistent hashing

Squid [144] Chord Hilbert Curve map P2P locality preserving
hashing

DHR-
Trees [166]

P-Tree Hilbert Curve map P2P N/A

ZNet [147] SkipGraph Z-Order Curve map P2P offload to neighbors
SkipTree [14] SkipNet Whole Region MBR P2P leave-rejoin
SkipIndex [178] SkipGraph Whole Region MBR P2P offload to neighbors
Skip-
Webs [18]

Skip-Webs Whole Region MBR P2P N/A

RT-CAN [162] C2 [31] Cost Model P2P N/A
k-RP*s [102] KD-Tree Whole Region MBR Tree traversal N/A
DiST [120] KD-Tree Whole Region MBR Tree traversal N/A
MIDAS [158] KD-Tree Whole Region MBR Tree traversal Virtual server balance
RAQ [124] Partition

Tree
Whole Region MBR Tree Traversal N/A

SD-RTree [49] RTree Whole Region MBR Balanced Tree
traversal with
overlapping
coverage

N/A

VBI-Tree [84] RTree Whole Region MBR Balanced Tree
traversal

N/A

P2PR-
Tree [116]

RTree Whole Region MBR Tree Traversal N/A

its independent Hilbert R-Tree as the routing information. ZNet [147] applies the Z-Order Curve

to map multidimensional objects to single dimensional points and then relies on SkipGraph [19] for

routing. Compared to Squid and DHR-Trees where the global space is statically partitioned since

the partitioning level needs to be decided beforehand, ZNet partitions the space dynamically by

covering continuous zones at the same partition level in each server. Moreover, each ZNet server

estimates the average loads of its neighbors by sampling to periodically balance loads with its

neighbors. SkipTree [14] and SkipIndex [178] uses a partition tree to decompose the global space

where each leaf corresponds to a region. Each server is assigned with a region and all servers are

organized in the SkipNet [76] or SkipGraph. The linearization method in SkipTree and SkipIndex

74

is to order the leaf regions in the partition tree such that servers know how to forward queries.

However, SkipTree and SkipIndex differ in load balancing techniques where SkipTree removes the

overloaded server before adding it again and SkipIndex migrate data to neighboring servers. Skip-

Webs [18] organizes the global space with quadtree/octree in multiple layers, similar to SkipGraph

and SkipNet. By referencing the pointers in different layers, the number of routing steps is bounded

by O(logN). Moreover, Skip-webs provides the definition for range-determined link structures and

the proof of a set-halving lemma on QuadTrees to support the theoretical bound for routing steps.

With the QuadTree structure, Skip-Webs orders the servers and route queries accordingly.

All the papers rely on the P2P overlay network and enforce a total order among the servers.

Although the underlying P2P systems guarantee O(logN) bound for routing, query costs are not

necessarily bounded. Since Chord does not support range queries, QT-Chord yields higher costs for

multidimensional range queries. However, Squid applies the Hilbert Curve values directly on the

Chord ring to support range queries, reducing query costs. The approaches that do not guarantee

uniform distribution require load balance and they either removes a server and adds it back or

offloads to neighbor servers. QT-Chord, based on consistent hashing [86], does not require load

balancing.

Multi-Dimensional AMs When the partitioned global index supports multidimensional

queries intrinsically, there is no need for dimension reductions. The main challenges are balancing

loads and reducing routing costs.

RT-CAN [162] adopts the C2 [31] overlay, which extends CAN network and supports multi-

dimensional queries intrinsically. Besides a mapping function to map R-Tree nodes to CAN nodes,

RT-CAN proposes a cost model based on statistics to select local R-Tree nodes to publish. The

index selection mechanism aims to balance index maintenance and query costs such that the overall

performance for the current workloads is improved. When new server joins, RT-CAN splits the

server with the largest volume to balance the loads. k-RP*s [102] stores spatial points in buckets

and builds a paged KD-Tree to index the buckets. Each server stores a bucket and pages in the

KD-Tree are distributed across the servers. Each split of bucket creates a new page in the KD-Tree

75

and KD-Tree pages are split in a way to equalize the probability that either page splits again.

K-RP*s keeps a local client image of the global index, which might be outdated and are updated

during the routing. The query engine traverses the global KD-Tree to find the target spatial points.

However, since the KD-Tree is not kept balanced, the number of average network hops are O(N) in

the worst case where N is the number of servers. DiST [120] adopts KD-Tree as the global index

and stores partial global index in each server. The partial global indexes are updated when queries

are further forwarded by the server that the local server forwards to. Although the index updates

are piggybacked to reduce network traffic, the update costs become higher for larger clusters. DiST

is targeted at workloads where range query performance is more important than scalability to large

clusters. Similar to k-RP*s, DiST does not keep the KD-Tree balanced and a skewed global tree

leads to the worst query performance. MIDAS [158] manages the space with a KD-Tree and each

leaf node is a virtual peer that stores the spatial points in its rectangle. A physical server can be

responsible for several virtual peers and each virtual peer stores the path from the root to its leaf

node and a routing table of outer subtrees1 . MIDAS balances loads by migrating virtual peers

among physical servers but it does not guarantee the global tree balance. It merely proves that

the expected depth of the distributed KD-Tree when n servers join on an initially empty overlay

is O(logN). RAQ [124] designs a partition tree, similar to SkipTree and SkipIndex, and assigns

each leaf node to a physical server. Each server contains a link to any of the servers in the sibling

substrees on each layer of the partition tree. During query processing, RAQ forwards requests based

on the links within O(logN) steps where N is the number of the servers. However, if the partition

tree becomes skewed, the routing costs can be O(N) in the worst case. SD-RTree [49] organizes

the whole space in a RTree and creates a routing table that assembles a binary RTree. To reduce

the network hops for queries, SD-RTree inserts overlapping coverage information that records the

overlapping regions between the current nodes and their outer subtrees. The overlapping region

maintenance costs are negligible only if the RTree embedding space is fully covered. SD-RTree

also maintains a balanced RTree by rotating unbalanced subtrees to bound the routing steps. SD-

1 Outer subtrees of tree node A are the trees rooted at the sibling nodes of A or the ancestors of A.

76

RTreeII [51] optimizes SD-RTree by introducing a more flexible allocation protocol such that node

splits can be dynamically accommodated when physical resources are scarce. VBI-Tree [84] designs

a binary tree structure as the global index, supporting RTree, MTree [34], etc. Similar to SD-RTree,

VBI-Tree maintains tree balance by rotation. Like BATON [83], each routing node stores pointers

to a selected set of nodes on the same layer of the global tree and all the node information from

the root to the current leaf node. P2PR-Tree [116] performs the first two layers of partitioning

to statically divide the global space into blocks and groups. Each group is managed with the a

RTree and each leaf node in the RTree corresponds to a server. Every server keeps track of the

node information from the root to its leaf node and gradually collect routing information as more

queries are forwarded and processed. However, P2PR-Tree does not keep RTrees balanced and it

does not support queries across groups.

Overall, systems with partitioned multidimensional global indexes have to deal with load

balancing and routing tasks. There are two approaches for load balance. One method migrates

data from overloaded servers to their neighbors, such as VBI-Tree and SD-RTreeII. Another method

is to balance the virtual servers among physical servers, such as MIDAS. Query routing costs

depend on what to maintain in the routing tables and how to manage the global index. SD-RTree

stores the overlapping coverage to reduce query cost and MIDAS2012 stores all the outer sibling

information and all the node information on the path from the root node to its leaf node. And,

VBI-Tree2006 stores pointers to some nodes on the same layer of the global tree and all the parent

information to the root node. For structures like RTree where regions of nodes overlap with others,

the overlapping coverage information in SD-RTree avoids unnecessary traversals, reducing network

traffic. On the other hand, global tree balance determines query costs. SD-RTree and VBI-Tree

maintains global tree balance to guarantee O(logN) query costs while k-RP*s, DiST, MIDAS, etc.

does not. Furthermore, keeping a global index image on the client side minimizes the routing costs

even though the image might be outdated. Examples are k-RP*s, DiST, and SD-RTree.

P2P protocols CAN [137], MAAN [30], and Mercury [25] are P2P protocols that support

multidimensional queries intrinsically. CAN builds an overlay network by hashing keys to points in

77

the multidimensional space where the servers occupy. Each CAN server stores its neighbors in the

multidimensional space and routes requests to its neighbors. A new server is assigned to a random

point and the old server containing this point splits its zone in half, retaining half and handling

the other half to the new server. The virtual coordinate space resembles an adaptive KD-Tree with

regular decomposition but it stores neighbor links instead of parents and children links. MAAN

and Mercury adopt the Chord-like network to organize the spatial databases on each dimension

and both apply a locality preserving hashing to support range queries. MAAN adopts a more strict

hashing algorithm called uniform locality preserving hashing to maintain load balance but uniform

locality preserving hashing is only possible when the distribution function of the spatial points is

continuous and monotonically increasing, and is known in advance. Mercury handles load balance

by monitoring the loads to select the lightly loaded server and uses leave-rejoin protocol. Moreover,

both MAAN and Mercury handle multidimensional queries by processing single dimensional range

queries except that MAAN intersect results from range queries on all the dimensions in the query

while Mercury collects and filters on the results from one single dimensional range query. By

maintaining approximate histograms of data distribution, Mercury is able to find the most selective

dimension in the query to minimize the number of servers to be contacted. The tradeoff is made by

QT-Chord, MAAN, and Mercury to favor range query support in sacrifice of uniform distribution.

Miscellaneous AMs Wu et al. [170] and Ganesan et al. [62] applies a few index structures

instead of a specific one. Wu et al. [170] depends on the overlay network to support range queries,

such as CAN, BATON, and P-Ring [39]. Similar to RT-CAN, the mapping function from the

global indexes to servers is implemented in the overlay network. However, the local index selection

lacks details on the random walk model and bayesian network model for update activity prediction.

Ganesan et al. [62] introduces two data structures SCRAP and MURK. SCRAP maps multi-

dimensional data to the single dimension using Z-Order Curve or Hilbert-Curve and then deploys

SkipGraph for routing in the one dimensional space. To balance loads, SCRAP adjusts the partition

boundary between two servers managing neighboring ranges. MURK partitions the global space

using a KD-Tree, similar to CAN, and adds skip pointers to reduce routing costs.

78

As mentioned earlier, three problems are addressed in partitioned global index designs: Local

index selection, query routing, and load balance. Static local index selection chooses the MBR

of the whole region in the local server and dynamic local index selection applies a cost-model to

dynamically balance index update cost and query filtering effectiveness. P2P techniques are heavily

utilized in query routing since it supports decentralized and highly dynamic environment. When

range queries are supported by the adopted P2P system, papers either replaces consistent hashing

with locality preserving hashing or simply modify the query engine to support data enumeration,

like QT-Chord. For papers utilizing multidimensional data structures instead of P2P system, query

routing module needs to decide what to maintain in the routing table and how to manage the

global index. Routing tables commonly include all the node information that is on the path from

the root to the leaf node. Particularly, for data structures where regions of nodes might overlap,

keeping the overlapping coverage avoids unnecessary tree traversals. Global index management,

such as tree balance is critical for query performance. Keeping the global tree balanced guarantees

O(logN) forwarding steps by paying the balancing costs, which is commonly solved by the rotation

technique. Lastly, load balance is necessary to scale out to large clusters when the data is in non-

uniform distribution. Three approaches are presented: offloading to neighbor servers, leave-rejoin

protocol, and migrating virtual servers among physical servers.

5.1.3 Discussion

Figure 5.3 lists all the problems and proposed solutions have been detailed in the last section.

First, Monolithic indexes vs. Hierarchical indexes. Monolithic indexes handle query domi-

nant workloads well since every server has access to the indexes to process requests independently.

Loads are relatively balanced as long as requests are routed to servers in a balanced manner. How-

ever, if the query selectivity varies a lot, which means the standard deviation of query resource

consumption is high, even distribution of queries does not suffice for load balance. Lai et al. [148]

proposes a parallel search algorithm to migrate queries to idle servers. Moreover, there are still

some monolithic indexes, especially space filling curve indexes, that handle database updates, such

79

Distributed Spatial Index

Storage

Execution

Index Construction

Index Maintenance

Replication

Global&Local Consistency

Processing Engine

Router

Load Balance

Query Type

Filter

Parallelism

Cost Model

Non-leaf MBRs

Gradual Insertion

Full Replication

Partial Replication

No Replication

Lazy Update

Mapreduce

Static

Sampling

Tree Structure

Overlapping Region
Global Index Balance

P2P

Locality Preserving Hash
Hash Enumeration

Dynamic

Offloading to Neighbors

Virtual Server balance
Leave-rejoin
Pre-splitting

Procedural

Mapreduce

Hybrid

Local Index Publishing
Bloom Filter

Query Planning

Root MBR

Spatial Index

Space Filling Curve

Z-Order Curve

Hilbert Curve

Batch Construction

Figure 5.3: Problems: Black represent the problems and blue represent solutions.

as Pyro and MD-HBase. Hierarchical indexes limit database update costs within local indexes to

increase parallelism but the servers storing global indexes could potentially become the bottleneck.

80

Second, Non-partitioned hierarchical indexes vs. Partitioned hierarchical indexes. Non-

partitioned hierarchical indexes usually require fewer forwarding steps for request processing but

the master servers storing global indexes could be a bottleneck. By choosing different replication

factors, non-partitioned hierarchical indexes reaches a tradeoff between the update costs and read

parallelism of the global indexes. Partitioned hierarchical indexes is a fully decentralized system

and supports dynamic cluster environment but the routing costs are O(logN) at best where N is

the number of servers. Furthermore, global index update costs could be considerable since parti-

tioned hierarchical indexes usually store multiple servers’ information in their routing tables. In

the following, we will discuss two most debated design choices.

5.1.3.1 Local Index Selection

Local index selection is the process of selecting local indexes to be published as global indexes.

Local index selection is specific to hierarchical indexes and it helps improve data filtering, thus

fewer false positives. The more local indexes selected, the lower false positive rate is and the higher

update costs are. When more local indexes are selected, the global index is able to filter out more

servers but there is higher chance that local index updates propagates to global indexes. Moreover,

local index selection should conform to the completeness and uniqueness properties, defined in

RT-CAN [162]. The completeness property means that all spatial objects should intercept with

at least one of the selected index nodes. The uniqueness property means that from all the nodes

selected from one server, either a node can be selected only if all of its ancestors are not selected.

The completeness property guarantees correctness and the unique property avoids unnecessary

selections. The selection can be either static or dynamic. Static selection chooses one of the

following three: the root node, all non-leaf nodes, or a bloom filter and dynamic selection is

commonly a cost based model. The selection method decides the tradeoff between low false positive

rates and low resource consumption.

Static selection. The root node selection and all non-leaf nodes selection are two extreme

cases and favors lower update costs and lower false positives respectively. For example, VBI-

81

Tree [84] and MIDAS [158] adopt the root node selection and MR-Tree [90] selects all the leaf

nodes. Bloom filters reduces false positives by taking some extra space to store hashing values of

points. It merely works for exact match queries because of the hashing matching. BR-Tree [80],

ATree [134], and Fox et al. [59] appends the bloom filters to the selected index nodes and BR-Tree

proposes a count based bloom filters to support deletions. Specially, QT-Chord [47] selects the

local indexes by a naming function that removes the grid index ending bits if the last two bits are

the same.

Dynamic selection. The cost based model relies on a benefit comparison function to decide

whether to choose a parent node or its children. Papers differ in the comparison function design.

On the one hand, ATree calculates the difference of the parent node MBR and the aggregate MBR

of all its children and decides to select the children when the MBR difference exceeds a threshold.

Otherwise, the parent node is selected by default. This structural cost model is cost effective

and often yields a more balanced selection plan than the static selection. On the other hand, the

comparison function can also be designed based on query processing cost and index maintenance

cost. RT-CAN collects the routing costs and index update costs from the history queries to generate

the comparison function and Wu et al. [170] uses random walk model and the bayesian network

model to predict update activities.

5.1.3.2 Load Balance

Similar to local index selection, load balance can be handled either statically or dynamically.

The static method partitions a sampled dataset and adopts the partitioning plan for the whole

database. SpatialHadoop [52] and Whitman et al. [169] store the partitioning plans in HDFS and

build the local indexes in parallel for each partition. The dynamic method migrates data from

heavily loaded servers to lightly loaded ones periodically and it relies on a monitoring module

to collect load information. The first dynamic method is “offloading to neighbors” where each

server collects load information from neighbors and balance loads only with neighbors, such as

Squid [144]. The second dynamic method is “virtual server balance” where each server houses

82

multiple virtual servers and one or more of the virtual servers are moved from overloaded physical

servers to lightly loaded ones, such as MIDAS [158]. The third dynamic method is “leave-rejoin”

based on P2P systems where lightly loaded servers are chosen to leave and rejoin the P2P network,

such as Mercury [25]. Since the joining algorithm chooses the heavily loaded servers to split its

data between itself and the new server, the leave-rejoin technique balances loads. The last dynamic

method is “pre-splitting” where regions are split when they tend to become congested in the near

future. This technique is popularly adopted in HBase systems such as MD-HBase [128] and ST-

HBase [110]. However, the algorithm of choosing the region for pre-splitting has not been fully

examined and requires further exploration.

5.1.3.3 Other considerations

Index Construction If the index is built when database is empty, the index will be gradually

updated as spatial objects are inserted, such as SD-RTree [49]. If the index is built when there are

initial data in the database, there is a need for an algorithm to construct the indexes in batch. To

parallelize the construction process, the first approach is the sampled method where a preliminary

partitioning plan is generated based on the sampled data. Then, local indexes are built in parallel

for each subspace of the partitioning plan and a final global index is created on top of the local

index MBRs. Examples are EDMI, [169], ScalaGiST, and SpatialHadoop. The second approach

recursively divides the global space if the subspace exceeds a threshold. For example, Ma et al. [108]

splits the overwhelmed grids recursively. The last category applies for append-only spatial temporal

indexes, such as ABR-Tree, where the top level index is a one dimensional access method on the

time attribute.

Space filling curve Linearization technique has been heavily explored in space filling curve

indexes and partitioned hierarchical indexes with single dimensional global indexes. Both two

indexes replies on either Z-Order curve or Hilbert Curve to transform a multidimensional data to

a single dimensional data. The dimension reduction enables researchers to utilize current single

dimensional systems, such as distributed key value stores and P2P systems, for query supports and

83

system scalability. The critical problem for dimension reduction is how to improve query processing

such that false positive rate is low. Pyro [100] proposes the adaptive aggregation algorithm to

balance the storage seek time and false positives. MD-HBase [128] eliminates false positives by

recursively sub-dividing the query regions. When the single dimensional systems do not support

range queries intrinsically, such as Chord, a locality preserving hashing is adopted. Examples of

locality preserving hashing are Squid [144] and MAAN [30] where MAAN uses a more strict hashing

algorithm called uniform locality preserving hashing.

Global & Local consistency The local index updates are usually lazily updated as the

global index since distributed transactions introduces high latency and resource usage. Non-

partitioned hierarchical indexes update global indexes when the local index change exceeds a

threshold, such as ATree. Partitioned hierarchical indexes update global indexes when requests

are further forwarded, such as DiST [120]. Even if the local index change does not affect global

indexes, it might still be beneficial to update the global index after it reselects the local indexes,

such as EEMINC. Furthermore, lazy update technique is also applied in keeping replications con-

sistency for non-partitioned hierarchical indexes. hQT* [88] updates global indexes when requests

are forwarded and BR-Tree updates global indexes when the local change exceeds a threshold.

Parallelism The processing engine processes requests by traversing the spatial indexes and

possibly forwarding to potential servers. This procedural approach yields low latency for highly

selective queries. One example is Whitman et al. [169]. However, less selective queries might return

so many results that the parallelism benefits overshadows the overhead of launching the parallel

programs or the communication costs. Traverse,Akdogan et al. [12], and SpatialHadoop launch

Mapreduce programs to parallelize query processing. Lai et al. [148] distributes queries when the

local processing engine returns many potential subtrees and there is idle servers. A hybrid query

engine with both procedural and parallel processing, such as Hadoop-GIS [11], can process both

queries efficiently but there is no paper that addresses how to choose the two engines.

84

Table 5.3: Performance

Systems Design Cloud
Size

Throughput Latency

[101] Monolithic In-
dex

9 servers N/A 40ms for %0.01 selec-
tivity range query

MD-
HBase

Monolithic In-
dex

8 servers 125 kops/sec for
insert through-
put

800ms for 0.01%
selectivity range
queries

ST-HBase Monolithic In-
dex

16
servers

6k ops/sec for
insert through-
put

45ms for range
queries

KR+-Tree Monolithic In-
dex

10
servers

310 kops/sec for
insert through-
put

N/A

Pyro Monolithic In-
dex

34
servers

N/A 119ms for
100m*100m range
queries

ScalaGiST Hierarchical
Non-
partitioned
Global Index

30
servers

N/A 100ms for %0.4 selec-
tivity range query

BR-Tree Hierarchical
Non-
partitioned
Global Index

30
servers

2 kops/sec range
queries

60ms for range
queries

EDMI Hierarchical
Non-
partitioned
Global Index

8 servers N/A 200ms for 0.001%
selectivity range
queries

[108] Hierarchical
Non-
partitioned
Global Index

8 servers 5.2 kops/sec for
insert through-
put

200ms for 0.0001%
selectivity range
queries

RT-CAN Hierarchical
Partitioned
Global Index

32
servers

3.5 kops/sec for
0.01% selectivity
range queries;
7.5 kops/sec
for 20% insert
queries

N/A

QT-Chord Hierarchical
Partitioned
Global Index

32
servers

4.5 kops/sec for
range queries

N/A

85

5.1.4 Performance Analysis

Table 5.3 lists the performance of a subset of the reviewed systems, which conduct experiments

on non-simulated environments. All systems except MD-HBase and KR+-Index achieve less than

10 kops/sec throughput. MD-HBase and KR+-Index share the same design choice that the non-

leaf nodes in KD-Tree or R+-Tree are not maintained. Leaf nodes are directly stored and split

if necessary while a grid index is applied for query processing. Workloads with large numbers of

insertions result in more indirection times due to the split process, thus eventually worse query

performance. On the other hand, query latencies range from 40ms to 800ms. Liao et al. [101]

yields 40ms for query processing since it configures a large tree fan-out and stores the non-leaf

nodes in memory. The query engine of [101] processes the range queries in memory and only needs

to retrieve the leaf nodes in HDFS. To sum up, past distributed spatial access methods reach less

than 10k ops/sec throughput and more than 40ms latencies. MD-HBase and KR+-Index yield

higher throughput at the cost of lower query performance. The last but not the least is that none

of the access methods support transactional accesses.

5.2 Strength and weakness of DDSBrick

The previous section covers the past works on distributed spatial access methods. DDSBrick

simplifies the design of scalable and transactional spatial indexes and offers high performance in

case of dynamic workloads and frequent hot spot changes. It achieves scalability by adapting

the partitioning and replication strategy to the current workloads. Nonetheless, some questions

remain: why would DDSBrick based spatial indexes outperform traditional distributed spatial

access methods? Does DDSBrick offer better programming interfaces than other paradigms like

Tango? Are there limitations in DDSBrick and how could they possibly be overcome?

In this section, we discuss the these remaining questions respectively. First, we compare

DDSBrick with DSAMs and show that DDSBrick handles replication and partitioning in finer

granularity to achieve better performance. Second, we compare DDSBrick with Tango in great

86

depth and show that DDSBrick is able to express wider ranges of data structures than those

implemented in the thesis. The dynamic partitioning strategy boosts performance for tree-like

structures, as all spatial indexes are. Third, we list several limitations in DDSBrick and proposes

potential solutions and directions to explore in the future.

5.2.1 DSAMs vs. DDSBrick

The previous section reviews all the distributed spatial access methods and categorize DSAMs

into monolithic indexes and hierarchical indexes. The following is the comparison between DDS-

Brick and DSAMs.

Monolithic Indexes vs. DDSBrick Monolithic indexes manage index structures logi-

cally as a whole and persist them in distributed storage systems. The query engine is separated from

the persistence layer such that queries can be processed in any server. DDSBrick also stores indexes

in a distributed storage system but the query engine is coalesced with the storage system. There are

two major differences between them: storage mapping and service distribution. Monolithic indexes

map indexes to files or keys in a coarse-grained manner. For example, Traverse [174] stores each

layer of a RTree in one HDFS file. DDSBrick maps each tree node to a key in DTranx. Fine-grained

mapping enables flexible replication and partitioning configuration such that the storage systems

are well tuned for dynamic workloads. Specially, space filling curve indexes map each spatial object

to a key based on the linearization curves and these indexes with fine-grained mapping, such as

Pyro, handle workload hot spots. However, space filling curve indexes do not handle databases with

frequent updates well. On the other hand, monolithic indexes and DDSBrick distribute requests

differently. Monolithic indexes simply route requests evenly across the servers while DDSBrick op-

timizes load balance by employing a workload-aware data partitioning strategy before queries are

routed to servers that store the accessed data locally. Similarly, the request distribution strategy

in monolithic indexes results in high network costs for update frequent workloads.

Hierarchical Indexes vs. DDSBrick Hierarchical indexes partition the space on two

layers such that the updates in the bottom level index do not necessarily propagate to the upper level

87

…

…

…

Layer 1

Layer 2

Layer 3

Layer 4

…

Layer N

Server 1
Server 2
Server 3

Re
pl

ic
at

io
n

Fa
ct

or

Figure 5.4: Hierarchical Indexes: objects with multiple color blocks are replicated in each corre-
sponding server.

index. Compared to monolithic indexes, hierarchical indexes minimizes update costs and enables

flexible load balance. DDSBrick can be viewed as a hierarchical index where each layer of the

index tree is a layer in the hierarchy and DDSBrick can adjust the number of layers by configuring

the tree fan-out. The design of more layers in the hierarchy is a double-edged sword. On the

positive side, more layers allow for more flexible replication and partitioning configuration. On

the negative side, it requires much of the system resource to manage the fine-grained replication

and partitioning. DDSBrick proposes a dynamic partitioning strategy that integrates a graph

partitioning algorithm called METIS to generate a key to server mapping with dynamic replication

factors. This dynamic partitioning strategy achieves balanced loads for all kinds of workloads and

the database repartitioning is a low latency process. Figure 5.4 shows a typical DDSBrick index.

The top layer indexes are more likely to be replicated than those on the bottom layers. The higher

replication factor on top layers help to distribute query requests and the lower replication factor

on bottom layers conduces to lower update costs.

Overall, both monolithic indexes and DDSBrick persist indexes in distribute storage systems

but they differ in storage mapping and service distribution. DDSBrick is able to dynamically adjust

replication and partitioning strategy for changing hot spots and frequently updated databases.

88

Corfu
Linearization

Durability

Scalability

DTranx
Transaction

Durability

Scalability

Tango
Abstraction

Transaction

DDSBrick

Abstraction

Figure 5.5: Tango vs. DDSBrick

Hierarchical indexes and DDSBrick share the hierarchical design but they differ in the number of

layers in the hierarchy. DDSBrick takes advantage of the flexibility from more layers and manages

the fine-grained replication and partitioning by a dynamic partitioning strategy. Furthermore,

DDSBrick supports transactional index accesses and integrates snapshot transactions to optimize

the performance for query workloads that do not require strong consistency. As far as we know,

there are transactional distributed data structure designs and distributed spatial data structure

designs but there is no distributed transactional spatial data structures in the past.

5.2.2 Tango vs. DDSBrick

Tango provides application developers with an abstraction of a replicated, in-memory data

structure based on a distributed shared log, Corfu. Similar to DDSBrick, Tango offloads scalability

and transaction burden to a distributed storage system. As shown in Figure 5.5, Corfu offers an

ordered, durable, and scalable log and DTranx offers a transactional, durable, and scalable key value

store. The choice of a shared log and a key value store leads to three distinct designs: programming

model, transaction, and scalability.

Programming Model Tango runtime provides two APIs update helper and query helper

and requires the data structure to implement an apply Hook function. An example of Tango

89

integer is shown in Algorithm 3. Both Tango and DDSBrick requires serialization functions to be

implemented by the developers and Transaction APIs to be called in the external interfaces of the

data structures. However, DDSBrick calls for extra functions, such as Access APIs in Section 4.3.1,

to map tree nodes to keys in DTranx. Tango does not require the mapping since it does not

partition the data structure internally.

Algorithm 3 TangoRegister class definition
1: class TangoRegister
2: int oid;
3: TangoRuntime *T;
4: int state;
5: procedure apply(void *x)
6: state← ∗(int∗)X;
7: end procedure
8: procedure writeRegister(int newstate)
9: T->update helper(&newstate, sizeof(int), oid)

10: end procedure
11: procedure readRegister
12: T->query helper(oid)
13: return state;
14: end procedure
15: endclass

Transaction Although both Tango and DDSBrick support serializable transactions and

snapshot read transactions and both implement optimistic concurrency control, their designs differ

significantly. Tango implements transactions by reserving a position in the ordered log, which is

basically an ordered database update list. A transaction only commits successfully if none of its read

items are changed during the transaction. DDSBrick launches the 2PC protocol for transaction

commit while the concurrency control method is optimistically as well. The difference between

reserving a globally ordered log position and 2PC is the level of concurrency and costs. Tango

enforces the ordering for every pair of transactions whether or not two transactions are in conflict

and DDSBrick enforces orders for transactions when they are in conflict, increasing concurrency. In

terms of costs, DDSBrick has the network overhead during 2PC and Tango also pays the network

costs when reading the logs from Corfu disks.

Scalability Tango separates the object views from the persistent logs and clients instan-

tiate the in-memory views of the data structures by applying all the relevant logs. If a distributed

90

data structure is implemented as a single Tango object, throughput for pure update workloads is

high but read throughput is mainly bounded by a single client that needs to catch up with all

the updates to serve read requests. If a distributed data structure is implemented as multiple

Tango objects, all the objects should be instantiated in every server since Tango does not allow a

client to execute transactions involving remote reads. The throughput is bounded by the sequencer

which maintains the last K offsets for each stream ID. When the number of streams is hundreds of

thousands or millions, the sequencer would be swamped.

5.3 Summary

This chapter reviews all DASMs and compares DDSBrick with distributed spatial indexes

and another paradigm called Tango for building distributed data structures. Compared to DSAMs,

DDSBrick divides the spatial indexes into more layers to manage replication and partitioning flex-

ibly. Moreover, DDSBrick supports transactional accesses, which DSAMs lack. Tango and DDS-

Brick differ significantly in three aspects: programming model, transaction, and scalability. Tango

is targeted for metadata services instead of distributed spatial indexes.

Chapter 6

Conclusion and Future Work

This thesis proposes a new paradigm for scalable, transactional, and efficient spatial indexes.

It follows the client-server model where servers offer scalable and transactional storage and clients

host a Mempool runtime and a set of intuitive APIs to reduce development efforts. By separating

the distributed storage from data structure logic, it enables researchers to design and compare

various distributed spatial indexes with little efforts.

This chapter reviews the main contributions of the thesis and discusses its limitations and

potential future work.

6.1 Thesis Summary

Transaction DTranx combines optimistic concurrency control and two-phase commit to

optimize the performance for serializable transactions. On top of that, snapshot read transac-

tions are introduced for applications that can tolerate a little outdated database. Snapshot read

transactions yield high throughput since they bypass distributed commit protocols. Moreover, a

persistent-memory based write-ahead log system is designed to lower durability costs and a garbage

collection mechanism is brought up to reclaim logs without affecting normal transactions.

Paradigm A Mempool runtime with a set of intuitive APIs are designed on the client

side. It enables researchers to experiment on multiple data structures for various applications in

a short period. Mempool transparently synchronizes local states of data structures with DTranx

such that application designers need only focus on the interactions between local data structures

92

and Mempool. In 4.3.1, a detailed step-by-step explanation is illustrated to convert a local single-

threaded data structure to a distributed one.

Scalability DTranx achieves linear scalability by adopting a dynamic partitioning strategy

that combines hashing and adaptive partitioning. The adaptive partitioning balances loads for

highly dynamic workloads, such as frequently changing hotspots, and utilizes a graph partitioning

algorithm METIS to achieve two goals. First, data that are jointly accessed in transactions are

stored together such that no 2PC is necessary. Second, data loads are effectively replicated and

balanced across the cluster. Besides the two benefits, DTranx introduces a greedy algorithm to

minimize data migrations and adjusts 2PC to enable online database migration while still serving

strongly consistent transactions. Last but no the least, this hybrid partitioning method requires

little mapping data to be stored since the majority of the data would use the hashing partitioning.

Evaluation We have implemented BTree and RTree in DDSBrick to show the performance.

Specifically, BTree search workloads reach 253.07 kops/sec and RTree search workloads reach 77.83

kops/sec. Second, BTree snapshot read throughput is 2.33 the throughput of BTree normal read

transactions when there are concurrent update transactions. Third, BTree search throughput after

database re-organization is 2.8 times higher than the one before. Lastly, neither snapshot creation

transactions nor dynamic migration transactions affect the performance considerably.

6.2 Limitations and Future work

Data Structures DDSBrick assumes that the data structures are divisible into basic

Table 6.1: Data structures mapped to DDSBrick

Data Structure Data Brick Option 1 Data Brick Option 2

BTree/RTree Tree node Subtree
Array/Linked List One element A set of elements
Heap Tree node Subtree
Trie Trie node Subtrie
HashTable/HashMap One key A set of keys
Graph Vertex Subgraph

93

bricks and a finer grained division offers more flexibility to distribute bricks and scale out. Current

data structures that have been implemented in DDSBrick are trees and tree-like structures are the

majority of all data structures. Table 6.1 lists the common data structures and their data brick

definitions. Each data structure can be divided in multiple ways where Option 1 is the fine grained

division and Option 2 is coarse grained. Application developers can adjust the granularity by

configuring the set size of the bricks. Future efforts can be paid to examine the effects of different

brick granularities.

Overlapping Regions As shown in 4.5, RTree throughput is approximately 3 times higher

than BTree since RTree operations involve higher numbers of bricks in transactions. The main

cause is the RTree’s overlapping regions. RTree allows children nodes to have overlapped regions

in order to reduce update costs and support spatial objects with non-zero volumes. We can further

explore data structures with non-overlapping decompositions, such as R+-Tree [146] and PMR-

QuadTree [125]. Another direction is to examine RTree splitting algorithms to reduce internal

node overlapping.

Fault Tolerance DDSBrick depends on the METIS algorithm to generate both parti-

tioning and replication plans. Since the access patterns to bricks differ significantly, each brick is

assigned with a customized replication factor. In Figure 5.4, the root brick is replicated in every

server while the leaf bricks are not replicated. METIS produces a replication plan that assigns high

replication factors for read intensive bricks. It inevitably leads to some bricks to have no replica-

tions, thus low availability. A hybrid approach combining both METIS and static replications for

leaf bricks can be explored to provide high availability.

Mapping data structure Maintenance Currently, DDSBrick requires that each server

store a copy of the mapping data structures, which record the partition and replication plans.

The mapping data are kept strongly consistent as explained in 4.4.2. Since the DMT transactions

are run infrequently, the consistency costs are negligible. The concern is the growing size of the

mapping data structure as the databases are expanding. By inspecting the mapping data size

of a BTree with 30 millions spatial objects, the mapping data is less than 5MB. This is because

94

the majority of the bricks are not showing strong access patterns that hashing based partitioning

suffices for load balance. If application developers design a data structure of which all the bricks

show strong access patterns and workload hot spots are frequently changing, there will be a need

for a better structure for the mapping data, such as compression.

Bibliography

[1] Geohas. http://geohash.org/.

[2] Hbase. http://hbase.apache.org.

[3] Intel NVML. https://pmem.io/.

[4] Leveldb – a fast and lightweight key/value database library by google
http://code.google.com/p/leveldb/.

[5] Linux strace. https://strace.io/.

[6] Google Btree, December 2011.

[7] Karl Aberer. P-grid: A self-organizing access structure for p2p information systems. In
Carlo Batini, Fausto Giunchiglia, Paolo Giorgini, and Massimo Mecella, editors, Cooperative
Information Systems, pages 179–194, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[8] Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. A practical scalable distributed
b-tree. PVLDB, 1(1):598–609, 2008.

[9] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis.
Sinfonia: A new paradigm for building scalable distributed systems. In SOSP, pages 159–174,
2007.

[10] Ablimit Aji, Fusheng Wang, and Joel H. Saltz. Towards building a high performance spatial
query system for large scale medical imaging data. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’12, pages 309–
318, New York, NY, USA, 2012. ACM.

[11] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel
Saltz. Hadoop gis: A high performance spatial data warehousing system over mapreduce.
Proc. VLDB Endow., 6(11):1009–1020, August 2013.

[12] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi. Voronoi-based geospatial
query processing with mapreduce. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pages 9–16, Nov 2010.

[13] A. Akdogan, C. Shahabi, and U. Demiryurek. D-toss: A distributed throwaway spatial index
structure for dynamic location data. IEEE Transactions on Knowledge and Data Engineering,
28(9):2334–2348, Sept 2016.

96

[14] Saeed Alaei, Mohammad Toossi, and Mohammad Ghodsi. Skiptree: A scalable range-
queryable distributed data structure for multidimensional data. In Xiaotie Deng and Ding-Zhu
Du, editors, Algorithms and Computation, pages 298–307, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[15] Mohamed Aly, Mario Munich, and Pietro Perona. Aly et al.: Distributed kd-trees for re-
trieval from large image collections1 distributed kd-trees for retrieval from very large image
collections, 2011.

[16] A. Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid information services.
In Proceedings. Second International Conference on Peer-to-Peer Computing,, pages 33–40,
2002.

[17] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti Tang, Daniel
Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexander Driskill-Smith, and
Mohamad Krounbi. Spin-transfer torque magnetic random access memory (stt-mram). J.
Emerg. Technol. Comput. Syst., 9(2):13:1–13:35, May 2013.

[18] Lars Arge, David Eppstein, and Michael T. Goodrich. Skip-webs: Efficient distributed data
structures for multi-dimensional data sets. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’05, pages 69–76, New York, NY,
USA, 2005. ACM.

[19] James Aspnes and Gauri Shah. Skip graphs. ACM Trans. Algorithms, 3(4), November 2007.

[20] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, Michael Wei, and
Ted Wobber. Corfu: A distributed shared log. ACM Trans. Comput. Syst., 31(4):10:1–10:24,
2013.

[21] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael
Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Distributed data struc-
tures over a shared log. In SOSP, pages 325–340, 2013.

[22] G. I. Baylor. Up, up and away. Proc. Roy. Soc., London A, 294:456–475, 1959.

[23] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, SIGMOD ’90, pages 322–
331, New York, NY, USA, 1990. ACM.

[24] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185–221, June 1981.

[25] Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: Supporting scal-
able multi-attribute range queries. In Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’04,
pages 353–366, New York, NY, USA, 2004. ACM.

[26] Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang Lee, and Nor-
man May. Distributed snapshot isolation: Global transactions pay globally, local transactions
pay locally. PVLDB, 23(6):987–1011, 2014.

97

[27] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases. ACM Comput.
Surv., 33(3):322–373, September 2001.

[28] E. Bongers and J. Pouwelse. A survey of P2P multidimensional indexing structures. ArXiv
e-prints, July 2015.

[29] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable isolation for snapshot
databases. In SIGMOD, pages 729–738, 2008.

[30] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. Maan: A multi-attribute addressable
network for grid information services. In Proceedings of the 4th International Workshop
on Grid Computing, GRID ’03, pages 184–, Washington, DC, USA, 2003. IEEE Computer
Society.

[31] Wenyuan Cai, Shuigeng Zhou, Linhao Xu, Weining Qian, and Aoying Zhou. C 2: A new
overlay network based on can and chord. In Minglu Li, Xian-He Sun, Qian-ni Deng, and
Jun Ni, editors, Grid and Cooperative Computing, pages 42–50, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[32] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley,
CA, USA, 2006. USENIX Association.

[33] R. Cheng, Y. Xia, Sunil Prabhakar, and Rahul Shah. Change tolerant indexing for constantly
evolving data. In 21st International Conference on Data Engineering (ICDE’05), pages 391–
402, April 2005.

[34] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB ’97, pages 426–435, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[35] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In SOCC, pages 143–154, 2010.

[36] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, 2013.

[37] James Cowling and Barbara Liskov. Granola: Low-overhead distributed transaction coordi-
nation. In USENIX ATC, pages 223–235, 2012.

[38] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasundaram.
Querying peer-to-peer networks using p-trees. In Proceedings of the 7th International
Workshop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004, WebDB
’04, pages 25–30, New York, NY, USA, 2004. ACM.

98

[39] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Johannes Gehrke, and Jayavel
Shanmugasundaram. P-ring: An efficient and robust p2p range index structure. In
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, pages 223–234, New York, NY, USA, 2007. ACM.

[40] M. E. Crow. Aerodynamic sound emission as a singular perturbation problem. Stud. Appl.
Math., 29:21–44, 1968.

[41] Cesare Cugnasco, Yolanda Becerra, Jordi Torres, and Eduard Ayguadé. D8-tree: A
de-normalized approach for multidimensional data analysis on key-value databases. In
Proceedings of the 17th International Conference on Distributed Computing and Networking,
ICDCN ’16, pages 18:1–18:10, New York, NY, USA, 2016. ACM.

[42] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: A workload-driven
approach to database replication and partitioning. PVLDB, 3(1-2):48–57, 2010.

[43] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. In Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.

[44] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M. Patel, and Jie-Bing Yu. Client-server
paradise. In Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB ’94, pages 558–569, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[45] Adriano Di Pasquale and EnricoZ Nardelli. Distributed searching of k-dimensional data
with almost constant costs. In Július Štuller, Jaroslav Pokorný, Bernhard Thalheim, and
Yoshifumi Masunaga, editors, Current Issues in Databases and Information Systems, pages
239–250, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[46] N. Diegues and P. Romano. STI-BT: A scalable transactional index. In ICDCS, pages 104–
113, 2014.

[47] Linlin Ding, Baiyou Qiao, Guoren Wang, and Chen Chen. An efficient quad-tree based index
structure for cloud data management. In Proceedings of the 12th International Conference
on Web-age Information Management, WAIM’11, pages 238–250, Berlin, Heidelberg, 2011.
Springer-Verlag.

[48] Julian D. Dole. Perturbation Methods in Applied Mathematics. Winsdell Publishing Com-
pany, 1967.

[49] C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtree: A Scalable Distributed Rtree. In IEEE
International Conference on Data Engineering, pages 296–305, April 2007.

[50] C. du Mouza, W. Litwin, and P. Rigaux. SDR-tree: a Scalable Distributed Rtree. In ICDE,
pages 296–305, 2007.

[51] Cédric du Mouza, Witold Litwin, and Philippe Rigaux. Dynamic storage balancing in a
distributed spatial index. In Proceedings of the 15th Annual ACM International Symposium
on Advances in Geographic Information Systems, GIS ’07, pages 5:1–5:8, New York, NY,
USA, 2007. ACM.

99

[52] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial data. In
2015 IEEE 31st International Conference on Data Engineering, pages 1352–1363, April 2015.

[53] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and S. Ghani. Shahed: A
mapreduce-based system for querying and visualizing spatio-temporal satellite data. In 2015
IEEE 31st International Conference on Data Engineering, pages 1585–1596, April 2015.

[54] Ahmed Eldawy and Mohamed F. Mokbel. The era of big spatial data: A survey. Found.
Trends databases, 6(3-4):163–273, December 2016.

[55] Robert Escriva and Emin Gun Sirer. The design and implementation of the warp transactional
filesystem. In NSDI, pages 469–483, 2016.

[56] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A distributed, searchable
key-value store. SIGCOMM Comput. Commun. Rev., 42(4):25–36, 2012.

[57] J. S. Fabnis, H. J. Giblet, and H. McDormand. Navier-stokes analysis of solid rocket motor
internal flow. J. Prop. and Power, 2:157–164, 1980.

[58] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. Nearest neighbor search in metric spaces
through content-addressable networks. Information Processing & Management, 44(1):411 –
429, 2008. Evaluation of Interactive Information Retrieval Systems.

[59] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon. Spatio-temporal indexing in non-relational
distributed databases. In 2013 IEEE International Conference on Big Data, pages 291–299,
Oct 2013.

[60] Xiaodong Fu, Dingxing Wang, Weimin Zheng, and Meiming Sheng. Gpr-tree: a global parallel
index structure for multiattribute declustering on cluster of workstations. In Proceedings.
Advances in Parallel and Distributed Computing, pages 300–306, Mar 1997.

[61] Volker Gaede and Oliver Günther. Multidimensional Access Methods. ACM Comput. Surv.,
30(2):170–231, June 1998.

[62] Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina. One torus to rule them all:
Multi-dimensional queries in p2p systems. In Proceedings of the 7th International Workshop
on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004, WebDB ’04, pages
19–24, New York, NY, USA, 2004. ACM.

[63] N. Gao, Z. Liu, and D. Grunwald. DTranx: A SEDA-based Distributed and Transactional
Key Value Store with Persistent Memory Log. ArXiv e-prints, November 2017.

[64] Hector Garcia-Molina. Database systems: the complete book. Pearson Education India, 2008.

[65] Vipin Kumar George Karypis. A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359—392, 1999.

[66] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 29–43, New York, NY, USA, 2003. ACM.

100

[67] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 29–43, New York, NY, USA, 2003. ACM.

[68] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable, dis-
tributed data structures for internet service construction. In OSDI, pages 319–332, 2000.

[69] F. Guillot and Z. Javalon. Acoustic boundary layers in propellant rocket motors. J. Prop.
and Power, 5:331–339, 1989.

[70] O. Gunther. The design of the cell tree: an object-oriented index structure for geometric
databases. In [1989] Proceedings. Fifth International Conference on Data Engineering, pages
598–605, Feb 1989.

[71] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,
pages 47–57, 1984.

[72] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD ’84,
pages 47–57, New York, NY, USA, 1984. ACM.

[73] D. Han and E. Stroulia. Hgrid: A data model for large geospatial data sets in hbase. In 2013
IEEE Sixth International Conference on Cloud Computing, pages 910–917, June 2013.

[74] Theo Härder. Observations on optimistic concurrency control schemes. Inf. Syst., 9(2):111–
120, November 1984.

[75] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings
of the 15th International Conference on Distributed Computing, DISC ’01, pages 300–314,
London, UK, UK, 2001. Springer-Verlag.

[76] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman.
Skipnet: A scalable overlay network with practical locality properties. In Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and Systems - Volume 4,
USITS’03, pages 9–9, Berkeley, CA, USA, 2003. USENIX Association.

[77] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Transactional interference-less
balanced tree. In Proceedings of the 29th International Symposium on Distributed Computing
- Volume 9363, DISC 2015, pages 325–340, New York, NY, USA, 2015. Springer-Verlag New
York, Inc.

[78] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search trees for
database systems. In Proceedings of the 21th International Conference on Very Large Data
Bases, VLDB ’95, pages 562–573, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

[79] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proceedings of the 23rd International Conference
on Distributed Computing Systems, ICDCS ’03, pages 522–, Washington, DC, USA, 2003.
IEEE Computer Society.

101

[80] Y. Hua, B. Xiao, and J. Wang. BR-Tree: A Scalable Prototype for Supporting Multiple
Queries of Multidimensional Data. IEEE Transactions on Computers, 58(12):1585–1598, Dec
2009.

[81] IBM. SPSS Statistics. download from vendor site, 2012. version 21.

[82] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. Location-dependent Query Process-
ing: Where We Are and Where We Are Heading. ACM Comput. Surv., 42(3):12:1–12:73,
March 2010.

[83] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: A balanced tree structure for
peer-to-peer networks. In Proceedings of the 31st International Conference on Very Large
Data Bases, VLDB ’05, pages 661–672. VLDB Endowment, 2005.

[84] H. V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, Rong Zhang, and Aoying Zhou. Vbi-
tree: A peer-to-peer framework for supporting multi-dimensional indexing schemes. In 22nd
International Conference on Data Engineering (ICDE’06), pages 34–34, April 2006.

[85] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently for key-value
services. SIGCOMM Comput. Commun. Rev., 44(4):295–306, 2014.

[86] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

[87] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In STOC, pages 654–663, 1997.

[88] Jonas S. Karlsson. hqt*: A scalable distributed data structure for high-performance spatial
accesses. In In Foundations of Data Organization and Algorithms (FODO, pages 37–46, 1998.

[89] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search for
spatial network databases. In Proceedings of the Thirtieth International Conference on Very
Large Data Bases - Volume 30, VLDB ’04, pages 840–851. VLDB Endowment, 2004.

[90] Nikos Koudas, Christos Faloutsos, and Ibrahim Kamel. Declustering spatial databases on a
multi-computer architecture. In Peter Apers, Mokrane Bouzeghoub, and Georges Gardarin,
editors, Advances in Database Technology — EDBT ’96, pages 592–614, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg.

[91] Vassil Kriakov, Alex Delis, and George Kollios. Management of highly dynamic multidimen-
sional data in a cluster of workstations. In Elisa Bertino, Stavros Christodoulakis, Dimitris
Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Ferrari,
editors, Advances in Database Technology - EDBT 2004, pages 748–764, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[92] Dongseop Kwon, Sangjun Lee, and Sukho Lee. Indexing the current positions of moving
objects using the lazy update r-tree. In Proceedings Third International Conference on Mobile
Data Management MDM 2002, pages 113–120, Jan 2002.

102

[93] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44(2):35–40, 2010.

[94] Henry Lao. Linear Acoustic Processes in Rocket Engines. PhD thesis, University of Colorado
at Boulder, 1979.

[95] Q. Lao, M. N. Cassoy, and K. Kirkpatrick. Acoustically generated vorticity from internal
flow. J. Fluid Mechanics, 2:122–133, 1996.

[96] Q. Lao, D. R. Kassoy, and K. Kirkkopru. Nonlinear acoustic processes in rocket engines. J.
Fluid Mechanics, 3:245–261, 1997.

[97] J. K. Lawder and P. J. H. King. Using Space-Filling Curves for Multi-dimensional Indexing,
pages 20–35. 2000.

[98] Kisung Lee, Raghu K. Ganti, Mudhakar Srivatsa, and Ling Liu. Efficient spatial query pro-
cessing for big data. In Proceedings of the 22Nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL ’14, pages 469–472, New
York, NY, USA, 2014. ACM.

[99] S. T. Leutenegger, M. A. Lopez, and J. Edgington. Str: a simple and efficient algorithm
for r-tree packing. In Proceedings 13th International Conference on Data Engineering, pages
497–506, Apr 1997.

[100] Shen Li, Shaohan Hu, Raghu Ganti, Mudhakar Srivatsa, and Tarek Abdelzaher. Pyro: A
Spatial-temporal Big-data Storage System. In Proceedings of the 2015 USENIX Conference
on Usenix Annual Technical Conference, pages 97–109, 2015.

[101] H. Liao, J. Han, and J. Fang. Multi-dimensional index on hadoop distributed file system. In
2010 IEEE Fifth International Conference on Networking, Architecture, and Storage, pages
240–249, July 2010.

[102] W. Litwin and M. A. Neimat. k-rp*s: a scalable distributed data structure for high-
performance multi-attribute access. In Fourth International Conference on Parallel and
Distributed Information Systems, pages 120–131, Dec 1996.

[103] Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. Lh*—a scalable,
distributed data structure. ACM Trans. Database Syst., 21(4):480–525, December 1996.

[104] Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. Rp*: A family of order
preserving scalable distributed data structures. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pages 342–353, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[105] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and data
mining in the cloud. PVLDB, 5(8):716–727, 2012.

[106] Peng Lu, Gang Chen, Beng Chin Ooi, Hoang Tam Vo, and Sai Wu. Scalagist: Scalable
generalized search trees for mapreduce systems [innovative systems paper]. Proc. VLDB
Endow., 7(14):1797–1808, October 2014.

103

[107] Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. Query processing of massive trajectory
data based on mapreduce. In Proceedings of the First International Workshop on Cloud Data
Management, CloudDB ’09, pages 9–16, New York, NY, USA, 2009. ACM.

[108] Youzhong Ma, Xiaofeng Meng, Shaoya Wang, Weisong Hu, Xu Han, and Yu Zhang. An
efficient index method for multi-dimensional query in cloud environment. In Weizhong Qiang,
Xianghan Zheng, and Ching-Hsien Hsu, editors, Cloud Computing and Big Data, pages 307–
318, Cham, 2015. Springer International Publishing.

[109] Youzhong Ma, Jia Rao, Weisong Hu, Xiaofeng Meng, Xu Han, Yu Zhang, Yunpeng Chai,
and Chunqiu Liu. An Efficient Index for Massive IOT Data in Cloud Environment. In
ACM International Conference on Information and Knowledge Management, pages 2129–
2133, 2012.

[110] Youzhong Ma, Yu Zhang, and Xiaofeng Meng. St-hbase: A scalable data management sys-
tem for massive geo-tagged objects. In Proceedings of the 14th International Conference
on Web-Age Information Management, WAIM’13, pages 155–166, Berlin, Heidelberg, 2013.
Springer-Verlag.

[111] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong
Zhou. Boxwood: Abstractions as the foundation for storage infrastructure. In OSDI, pages
8–8, 2004.

[112] Krassimir Markov, Krassimira Ivanova, Ilia Mitov, and Stefan Karastanev. Advance of the
access methods. 2, 01 2008.

[113] Leonardo Marmol, Jorge Guerra, and Marcos K. Aguilera. Non-volatile memory through
customized key-value stores. In USENIX HotStorage, pages 101–105, 2016.

[114] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: A
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

[115] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. Spatio-temporal access meth-
ods. IEEE Data Eng. Bull., 26:40–49, 2003.

[116] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2pr-tree: An r-tree-based spatial index
for peer-to-peer environments. In Wolfgang Lindner, Marco Mesiti, Can Türker, Yannis
Tzitzikas, and Athena I. Vakali, editors, Current Trends in Database Technology - EDBT
2004 Workshops, pages 516–525, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[117] F. C. Mulick. Rotational axisymmetric mean flow and damping of acoustic waves in a solid
propellant. AIAA J., 3:1062–1063, 1964.

[118] F. C. Mulick. Stability of four-dimensional motions in a combustion chamber. Comb. Sci.
Tech., 19:99–124, 1981.

[119] B. Nam and A. Sussman. Spatial indexing of distributed multidimensional datasets. In
CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005.,
volume 2, pages 743–750 Vol. 2, May 2005.

104

[120] Beomseok Nam and A. Sussman. Dist: fully decentralized indexing for querying distributed
multidimensional datasets. In Proceedings 20th IEEE International Parallel Distributed
Processing Symposium, pages 10 pp.–, April 2006.

[121] Beomseok Nam and Alan Sussman. Analyzing design choices for distributed multidimensional
indexing. J. Supercomput., 59(3):1552–1576, March 2012.

[122] Enrico Nardelli. Distributed k-d trees. In In Proceedings 16th Conference of Chilean
Computer Science Society (SCCC96, pages 142–154, 1996.

[123] Enrico Nardelli, Fabio Barillari, and Massimo Pepe. Distributed searching of multi-
dimensional data: A performance evaluation study. Journal of Parallel and Distributed
Computing, 49(1):111 – 134, 1998.

[124] Hamid Nazerzadeh and Mohammad Ghodsi. Raq: A range-queriable distributed data struc-
ture. In Peter Vojtáš, Mária Bieliková, Bernadette Charron-Bost, and Ondrej Sýkora, editors,
SOFSEM 2005: Theory and Practice of Computer Science, pages 269–277, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[125] Randal C. Nelson and Hanan Samet. A population analysis for hierarchical data structures.
In Proceedings of the 1987 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’87, pages 270–277, New York, NY, USA, 1987. ACM.

[126] Duc Hai Nguyen, Khue Doan, and Tran Vu Pham. Sidi: A scalable in-memory density-
based index for spatial databases. In Proceedings of the ACM International Workshop on
Data-Intensive Distributed Computing, DIDC ’16, pages 45–52, New York, NY, USA, 2016.
ACM.

[127] Long-Van Nguyen-Dinh, Walid G. Aref, and Mohamed F. Mokbel. Spatio-temporal access
methods: Part 2 (2003 - 2010). IEEE Data Eng. Bull., 33:46–55, 2010.

[128] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi. Md-hbase: A scalable multi-dimensional
data infrastructure for location aware services. In 2011 IEEE 12th International Conference
on Mobile Data Management, volume 1, pages 7–16, June 2011.

[129] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York, NY, USA, 1992.

[130] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
USENIX ATC, pages 305–319, 2014.

[131] Aris M. Ouksel and Gianluca Moro. G-grid: A class of scalable and self-organizing data
structures for multi-dimensional querying and content routing in p2p networks. In Gianluca
Moro, Claudio Sartori, and Munindar P. Singh, editors, Agents and Peer-to-Peer Computing,
pages 123–137, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[132] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam Mon-
tazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan
Stutsman, and Stephen Yang. The RAMCloud storage system. ACM Trans. Comput. Syst.,
33(3):7:1–7:55, 2015.

105

[133] M. Mealling P. Leach and R. Salz. A universally unique identifier (uuid) urn namespace.
RFC 4122, RFC Editor, July 2005.

[134] Andreas Papadopoulos and Dimitrios Katsaros. A-Tree: Distributed Indexing of Multidimen-
sional Data for Cloud Computing Environments. 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, pages 407–414, 2011.

[135] Jignesh Patel, JieBing Yu, Navin Kabra, Kristin Tufte, Biswadeep Nag, Josef Burger, Nancy
Hall, Karthikeyan Ramasamy, Roger Lueder, Curt Ellmann, Jim Kupsch, Shelly Guo, Jo-
han Larson, David De Witt, and Jeffrey Naughton. Building a scaleable geo-spatial dbms:
Technology, implementation, and evaluation. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’97, pages 336–347, New York,
NY, USA, 1997. ACM.

[136] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When scalability meets
consistency: Genuine multiversion update-serializable partial data replication. In ICDCS,
pages 455–465, 2012.

[137] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scal-
able content-addressable network. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’01,
pages 161–172, New York, NY, USA, 2001. ACM.

[138] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing CloudLab: Scientific infras-
tructure for advancing cloud architectures and applications. USENIX ;login:, 39(6), 2014.

[139] R. S. Richards and A. M. Brown. Coupling between acoustic velocity oscillations and solid
propellant combustion. J. Prop. and Power, 5:828–837, 1982.

[140] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor, Middleware 2001,
pages 329–350, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[141] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for time-evolving data.
ACM Comput. Surv., 31(2):158–221, June 1999.

[142] Hanan Samet. The quadtree and related hierarchical data structures. ACM Comput. Surv.,
16(2):187–260, June 1984.

[143] Hanan Samet. Algorithms and theory of computation handbook. chapter Multidimensional
Data Structures for Spatial Applications, pages 6–6. Chapman & Hall/CRC, 2010.

[144] C. Schmidt and M. Parashar. Flexible information discovery in decentralized distributed
systems. In High Performance Distributed Computing, 2003. Proceedings. 12th IEEE
International Symposium on, pages 226–235, June 2003.

[145] B. Schnitzer and S. T. Leutenegger. Master-client r-trees: a new parallel r-tree architec-
ture. In Proceedings. Eleventh International Conference on Scientific and Statistical Database
Management, pages 68–77, Aug 1999.

106

[146] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic index for
multi-dimensional objects. In Proceedings of the 13th International Conference on Very Large
Data Bases, VLDB ’87, pages 507–518, San Francisco, CA, USA, 1987. Morgan Kaufmann
Publishers Inc.

[147] Yanfeng Shu, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. Supporting multi-dimensional
range queries in peer-to-peer systems. In Fifth IEEE International Conference on Peer-to-Peer
Computing (P2P’05), pages 173–180, Aug 2005.

[148] Lai Shuhua, Zhu Fenghua, and Sun Yongqiang. A design of parallel r-tree on cluster of
workstations. In Subhash Bhalla, editor, Databases in Networked Information Systems, pages
119–133, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[149] T. M. Smitty, R. L. Coach, and F. B. Höndra. Unsteady flow in simulated solid rocket motors.
In 16st Aerospace Sciences Meeting, number 0112 in 78. AIAA, 1978.

[150] Benjamin Sowell, Wojciech Golab, and Mehul A. Shah. Minuet: A scalable distributed
multiversion b-tree. PVLDB, 5(9):884–895, 2012.

[151] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160, New York, NY, USA, 2001. ACM.

[152] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. Scidb: A database management system
for applications with complex analytics. Computing in Science Engineering, 15(3):54–62, May
2013.

[153] Y. Tang, S. Zhou, and J. Xu. Light: A query-efficient yet low-maintenance indexing scheme
over dhts. IEEE Transactions on Knowledge and Data Engineering, 22(1):59–75, Jan 2010.

[154] Yufei Tao and Dimitris Papadias. Mv3r-tree: A spatio-temporal access method for timestamp
and interval queries. In Proceedings of the 27th International Conference on Very Large
Data Bases, VLDB ’01, pages 431–440, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[155] Joseph D. Taum. Investigation of flow turning phenomenon. In 20th Aerospace Sciences
Meeting, number 0297 in 82. AIAA, 1982.

[156] A. Thomasian. Distributed optimistic concurrency control methods for high-performance
transaction processing. IEEE Transactions on Knowledge and Data Engineering, 10(1):173–
189, 1998.

[157] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned database systems.
In SIGMOD, pages 1–12, 2012.

[158] George Tsatsanifos, Dimitris Sacharidis, and Timos Sellis. Index-based query processing on
distributed multidimensional data. GeoInformatica, 17(3):489–519, Jul 2013.

107

[159] A. Turcu, R. Palmieri, B. Ravindran, and S. Hirve. Automated data partitioning for highly
scalable and strongly consistent transactions. IEEE Transactions on Parallel and Distributed
Systems, 27(1):106–118, Jan 2016.

[160] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez. Indexing
the positions of continuously moving objects. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’00, pages 331–342, New York,
NY, USA, 2000. ACM.

[161] Fusheng. Wang, Jun. Kong, Jingjing. Gao, Lee. Cooper, Tahsin. Kurc, Zhengwen. Zhou,
David. Adler, Cristobal. Vergara-Niedermayr, Bryan. Katigbak, Daniel. Brat, and Joel. Saltz.
A high-performance spatial database based approach for pathology imaging algorithm eval-
uation. Journal of Pathology Informatics, 4(1):5, 2013.

[162] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi. Indexing multi-
dimensional data in a cloud system. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 591–602, New York, NY, USA,
2010. ACM.

[163] Tianzheng Wang and Ryan Johnson. Scalable logging through emerging non-volatile memory.
PVLDB, 7(10):865–876, 2014.

[164] Ling-Yin Wei, Ya-Ting Hsu, Wen-Chih Peng, and Wang-Chien Lee. Indexing spatial data in
cloud data managements. Pervasive Mob. Comput., 15(C):48–61, December 2014.

[165] Ling-Yin Wei, Ya-Ting Hsu, Wen-Chih Peng, and Wang-Chien Lee. Indexing spatial data in
cloud data managements. Pervasive Mob. Comput., 15(C):48–61, December 2014.

[166] X. Wei and K. Sezaki. Dhr-trees: A distributed multidimensional indexing structure for p2p
systems. In 2006 Fifth International Symposium on Parallel and Distributed Computing,
pages 281–290, July 2006.

[167] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-conditioned,
scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001.

[168] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol, CA, 2009.

[169] Randall T. Whitman, Michael B. Park, Sarah M. Ambrose, and Erik G. Hoel. Spatial indexing
and analytics on hadoop. In Proceedings of the 22Nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’14, pages 73–82,
New York, NY, USA, 2014. ACM.

[170] Sai Wu and Kun-Lung Wu. An indexing framework for efficient retrieval on the cloud. 32:75–
82, 01 2009.

[171] Xiaopeng Xiong, M. F. Mokbel, and W. G. Aref. Lugrid: Update-tolerant grid-based indexing
for moving objects. In 7th International Conference on Mobile Data Management (MDM’06),
pages 13–13, May 2006.

[172] Maysam Yabandeh and Daniel Gómez Ferro. A critique of snapshot isolation. In EuroSys,
pages 155–168, 2012.

108

[173] Fan Yang, Jinfeng Li, and James Cheng. Husky: Towards a more efficient and expressive
distributed computing framework. Proc. VLDB Endow., 9(5):420–431, January 2016.

[174] Hung-chih Yang and D. Stott Parker. Traverse: Simplified indexing on large map-reduce-
merge clusters. In Xiaofang Zhou, Haruo Yokota, Ke Deng, and Qing Liu, editors, Database
Systems for Advanced Applications, pages 308–322, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[175] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages
15–28, San Jose, CA, 2012. USENIX.

[176] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In USENIX HotCloud, pages 10–10, 2010.

[177] Robert A. Zeddini. Injection-induced flows in porous-walled ducts. AIAA Journal, 14:766–
773, 1981.

[178] Chi Zhang, Arvind Krishnamurthy, and Randolph Y. Wang. Skipindex: Towards a scalable
peer-to-peer index service for high dimensional data. 2004.

[179] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial queries evaluation with mapreduce.
In 2009 Eighth International Conference on Grid and Cooperative Computing, pages 287–292,
Aug 2009.

[180] Xiangyu Zhang, Jing Ai, Zhongyuan Wang, Jiaheng Lu, and Xiaofeng Meng. An efficient
multi-dimensional index for cloud data management. In CloudDB, pages 17–24, 2009.

[181] Xiangyu Zhang, Jing Ai, Zhongyuan Wang, Jiaheng Lu, and Xiaofeng Meng. An efficient
multi-dimensional index for cloud data management. In Proceedings of the First International
Workshop on Cloud Data Management, CloudDB ’09, pages 17–24, New York, NY, USA,
2009. ACM.

[182] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and Jinyang
Li. Transaction chains: Achieving serializability with low latency in geo-distributed storage
systems. In SOSP, pages 276–291, 2013.

[183] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast databases with fast
durability and recovery through multicore parallelism. In OSDI, pages 465–477, 2014.

[184] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. Towards parallel spatial query
processing for big spatial data. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, pages 2085–2094, May 2012.

[185] Xin Zhou, Hui Li, Xiao Zhang, Shan Wang, Yanyu Ma, Keyan Liu, Ming Zhu, and Menglin
Huang. ABR-Tree: An Efficient Distributed Multidimensional Indexing Approach for Massive
Data. In Algorithms and Architectures for Parallel Processing, pages 781–790, Cham, 2015.
Springer International Publishing.

109

[186] Xin Zhou, Xiao Zhang, Yanhao Wang, Rui Li, and Shan Wang. Efficient distributed multi-
dimensional index for big data management. In Jianyong Wang, Hui Xiong, Yoshiharu
Ishikawa, Jianliang Xu, and Junfeng Zhou, editors, Web-Age Information Management, pages
130–141, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[187] Yongqiang Zou, Jia Liu, Shicai Wang, Li Zha, and Zhiwei Xu. Ccindex: A complemental
clustering index on distributed ordered tables for multi-dimensional range queries. In Chen
Ding, Zhiyuan Shao, and Ran Zheng, editors, Network and Parallel Computing, pages 247–
261, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

