
Program Synthesis for Software-Defined Networking

by

Jedidiah McClurg

M.S., Computer Science, Northwestern University, 2013

B.S., Electrical Engineering, University of Iowa, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2018

This thesis entitled:
Program Synthesis for Software-Defined Networking

written by Jedidiah McClurg
has been approved for the Department of Computer Science

Prof. Pavol Černý

Prof. Bor-Yuh Evan Chang

Prof. Nate Foster

Prof. Dirk Grunwald

Prof. Mooly Sagiv

Prof. Sriram Sankaranarayanan

Date

The final copy of this thesis has been examined by the signatories, and we find that both the content and the
form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

iii

McClurg, Jedidiah (Ph.D., Computer Science)

Program Synthesis for Software-Defined Networking

Thesis directed by Prof. Pavol Černý

Software-defined networking (SDN) is revolutionizing the networking industry, but even the most

advanced SDN programming platforms lack mechanisms for changing the global configuration (the set of

all forwarding rules on the switches) correctly and automatically. This seemingly-simple notion of global

configuration change (known as a network update) can be quite challenging for SDN programmers to

implement by hand, because networks are distributed systems with hundreds or thousands of interacting

nodes—even if the initial and final configurations are correct, naı̈vely updating individual nodes can lead

to bugs in the intermediate configurations. Additionally, SDN programs must simultaneously describe both

static forwarding behavior, and dynamic updates in response to events. These event-driven updates are

critical to get right, but even more difficult to implement correctly due to interleavings of data packets

and control messages. Existing SDN platforms offer only weak guarantees in this regard, also opening

the door for incorrect behavior. As an added wrinkle, event-driven network programs are often physically

distributed, running on several nodes of the network, and this distributed setting makes programming and

debugging even more difficult. Bugs arising from any of these issues can cause serious incorrect transient

behaviors, including loops, black holes, and access-control violations.

This thesis presents a synthesis-based approach for solving these issues. First, I show how to au-

tomatically synthesize network updates that are guaranteed to preserve specified properties. I formalize

the network updates problem and develop a synthesis algorithm based on counterexample-guided search

and incremental model checking. Second, I add the ability to reason about transitions between configura-

tions in response to events, by introducing event-driven consistent updates that are guaranteed to preserve

well-defined behaviors in this context. I propose network event structures (NESs) to model constraints

on updates, such as which events can be enabled simultaneously and causal dependencies between events.

I define an extension of the NetKAT language with mutable state, give semantics to stateful programs us-

ing NESs, and discuss provably-correct strategies for implementing NESs in SDNs. Third, I propose a

iv

synchronization synthesis approach that allows correct “parallel composition” of several event-driven pro-

grams (processes)—the programmer can specify each sequential process, and add a declarative specification

of paths that packets are allowed to take. The synthesizer then inserts synchronization among the distributed

controller processes such that the declarative specification will be satisfied by all packets traversing the net-

work. The key technical contribution here is a counterexample-guided synthesis algorithm that furnishes

network processes with the synchronization required to prevent any races causing specification violations.

An important component of this is an extension of network event structures to a more general programming

model called event nets based on Petri nets. Finally, I describe an approach for implementing event nets

in an efficient distributed way on modern SDN hardware. For each of the core components, I describe

a prototype implementation, and present results from experiments on realistic topologies and properties,

demonstrating that the tools handle real network programs, and scale to networks of 1000+ nodes.

v

Dedication

To my wife Anna and my trusty little sidekick, Ernest the ragdoll cat.

vi

Acknowledgements

I am indebted to many people who have helped and encouraged me in this undertaking. Thanks to

my wife and family for being supportive every step of the way. Thanks to fellow climbers at the Boulder

Rock Club for introducing me to Colorado and pushing me to climb harder. Special thanks to the students

and faculty of the CUPLV group at CU Boulder, who welcomed me and made me feel like a valued member

of the community. Many thanks to Nate Foster and Hossein Hojjat—I profoundly enjoyed our research

collaborations, and hope we will continue to have many more. Last but not least, thanks to my advisor Pavol

Černý. I owe a massive debt of gratitude to him for his guidance through the years, and I do not think I

could have made it to this point without such an exceptional mentor.

Chapter 2 was originally published as “Efficient Synthesis of Network Updates” (McClurg, Hojjat,

Cerny, and Foster [85]) in The 36th ACM SIGPLAN Conference on Programming Languages Design and

Implementation (PLDI 2015), and the Artifact Evaluation Committee (AEC) found that the prototype im-

plementation “met or exceeded expectations.” In regards to that paper, I would like to thank my co-authors

for invaluable assistance and ideas, the anonymous PLDI reviewers and AEC members for insightful feed-

back on the paper and artifact, as well as Xin Jin, Dexter Kozen, Mark Reitblatt, and Jennifer Rexford for

helpful comments. Andrew Noyes and Todd Warszawski contributed a number of early ideas through an

undergraduate research project. The work was supported by the National Science Foundation (NSF) under

awards CCF-1421752, CCF-1422046, CCF-1253165, CNS-1413972, CCF-1444781, and CNS-1111698;

the Office of Naval Research (ONR) under Award N00014-12-1-0757; and gifts from Fujitsu Labs and Intel.

Chapter 3 was originally published as “Event-driven Network Programming” (McClurg, Hojjat, Fos-

vii

ter, and Cerny [86]) in The 37th ACM SIGPLAN Conference on Programming Languages Design and

Implementation (PLDI 2016), and the AEC found that the prototype implementation “met or exceeded ex-

pectations.” In regards to that conference paper, I would like to thank my co-authors for their help, the

anonymous PLDI reviewers for offering helpful and constructive comments, as well as Zach Tatlock for

shepherding the paper and providing useful feedback. The work was supported by the NSF under grants

CNS-1111698, CNS-1413972, CCF-1421752, CCF-1422046, CCF-1253165, and CCF-1535952; the ONR

under grant N00014-15-1-2177; and gifts from Cisco, Facebook, Fujitsu, Google, and Intel.

Chapter 4 was originally published as “Synchronization Synthesis for Network Programs” (McClurg,

Hojjat, and Cerny [84]) in The 29th Intl. Conference on Computer-Aided Verification (CAV 2017), and the

AEC found that the prototype implementation “met or exceeded expectations.” In regards to that conference

paper, I would like to thank my co-authors for their invaluable help, as well as Nate Foster and P. Madhusu-

dan for fruitful discussions. The research was supported in part by the NSF under award CCF 1421752, and

by DARPA under agreement FA8750-14-2-0263.

viii

Contents

Chapter

1 Introduction 1

1.1 Difficulties of Programming Networked Systems . 1

1.2 Core Contribution: Synthesis of SDN Programs . 3

1.3 Overview of Contributions . 5

1.3.1 Synthesis of Network Updates . 5

1.3.2 Event-Driven Network Programming . 9

1.3.3 Synchronization Synthesis for Event-Driven Network Programs 15

1.3.4 Data-Plane Mechanisms for Distributed Network Programming 18

1.4 Thesis Outline . 20

2 Efficient Synthesis of Network Updates 22

2.1 Preliminaries and Network Model . 22

2.1.1 Network Model . 22

2.1.2 Network Update Problem . 25

2.1.3 Efficiently Checking Network Properties . 28

2.2 Update Synthesis Algorithm . 32

2.2.1 Algorithm Description . 32

2.2.2 Optimizations . 34

2.2.3 Formal Properties . 35

2.3 Incremental Model Checking . 36

ix

2.3.1 State Labeling . 36

2.3.2 Incremental Algorithm . 39

2.4 Implementation and Experiments . 42

2.5 Related Work . 44

3 Event-Driven Network Programming 47

3.1 Event-Driven Network Behavior . 47

3.2 Programming with Events . 53

3.2.1 Event-Driven Transition Systems . 54

3.2.2 Stateful NetKAT . 56

3.2.3 Converting Stateful NetKAT Programs to ETSs . 57

3.3 Implementing Event-Driven Programs . 58

3.3.1 Implementation Building Blocks . 58

3.3.2 Operational Model . 60

3.3.3 Correctness of the Implementation . 61

3.4 Implementation and Evaluation . 62

3.4.1 Case Studies . 63

3.4.2 Quantitative Results . 69

3.4.3 Optimizations . 70

3.5 Related Work . 71

4 Synchronization Synthesis for Network Programs 73

4.1 Network Programming using Event Nets . 73

4.2 Synchronization Synthesis for Event Nets . 75

4.3 Fixing and Checking Synchronization in Event Nets . 81

4.3.1 Repairing Event Nets Using Counterexample Traces 82

4.3.2 Checking Event Nets . 87

4.3.3 Overall Correctness Results . 88

x

4.4 Implementation and Evaluation . 88

4.5 Related Work . 93

5 Data-Plane Mechanisms for Distributed SDN Programming 98

6 Conclusion and Future Work 108

Bibliography 110

xi

Tables

Table

4.1 Performance of Examples 1-5. 88

xii

Figures

Figure

1.1 Example topology. 6

1.2 Example naı̈ve (blue/solid-line), two-phase (green/solid-bar), and ordering (red/dashed) up-

dates: (a) probes received; (b) per-switch rule overhead. 6

1.3 Topology for simple Stateful Firewall. 9

1.4 Example #1 . 16

2.1 Network model. 24

2.2 The Holds0 function . 38

2.3 Incremental labeling—Initial (left), Final (right) . 40

2.4 Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, Net-

Plumber solvers on Topology Zoo, FatTree, Small-World topologies (columns); (d-f) Per-

formance of Incremental vs. NetPlumber (rule-granularity). 43

2.5 Overall scalability results: (g) Scalability of Incremental on Small-World topologies of in-

creasing size; (h) Scalability when no correct switch-granularity update exists (i.e. algo-

rithm reports “impossible”), and (i) Scalability of fine-grained (rule-granularity) approach

for solving switch-impossible examples in (h). 44

3.1 Example topology with four switches and hosts. 49

3.2 Event-driven transition systems. 54

3.3 Stateful NetKAT: syntax. 57

3.4 Stateful NetKAT: extracting NetKAT Program (state ~k). 57

xiii

3.5 Stateful NetKAT: extracting event-edges from state ~k. 58

3.6 Implemented program semantics. 60

3.7 Topologies: (a) Firewall, (b) Learning Switch, (c) Authentication, (d) Bandwidth Cap, (e)

Intrusion Detection System. 64

3.8 Programs: (a) Firewall, (b) Learning Switch, (c) Authentication, (d) Bandwidth Cap, (e)

Intrusion Detection System. 64

3.9 Stateful Firewall: impact of delay. 65

3.10 Stateful Firewall: (a) correct vs. (b) incorrect. 65

3.11 Learning Switch: (a) correct vs. (b) incorrect. 66

3.12 Authentication: (a) correct vs. (b) incorrect. 66

3.13 Bandwidth Cap: (a) correct vs. (b) incorrect. 68

3.14 Intrusion Detection System: (a) correct vs. (b) incorrect. 68

3.15 Circular Example: (a) bandwidth (solid line is mine, dotted line is reference implementation)

and (b) convergence. 69

3.16 Heuristic: reducing the number of rules. 70

3.17 Heuristic: two different tries for the same configurations. 70

4.1 Example #1 . 74

4.2 Petri nets: (a) sequencing, (b) conflict, (c) concurrency, (d) loops. 76

4.3 LTL syntax. 79

4.4 LTL semantics. 80

4.5 Synchronization Synthesis—System Architecture . 81

4.6 Synchronization skeletons: (1) Barrier, (2) Condition Variable, (3) Mutex. 83

4.7 SMT function symbols. 83

4.8 Inputs for Example #2. 89

4.9 Inputs for Example #3. 90

4.10 Inputs for Example #4. 91

4.11 Inputs for Example #5. 91

xiv

4.12 Performance results: scalability of Example #1 using Fat Tree topology. 92

4.13 Example network topologies. 92

4.14 Performance results: scalability of Example #1 (continued). 93

5.1 System architecture. 98

5.2 Intermediate representation (IR) syntax. 100

5.3 Constant Propagation . 102

5.4 Callback net. 102

5.5 Step 1: Flattening IR statements . 105

5.6 Step 2: Flattening IR assignments/datatypes . 106

5.7 Step 3: Flattening IR variables . 106

1

Chapter 1

Introduction

Networked computer systems are everywhere. Billions of people use web-based services every day

for communication, social networking, navigation, etc., and these services rely heavily on the correct and

efficient functioning of complex networked systems, such as datacenters. When things go wrong in these

systems, the consequences can make headlines—for example, Google cloud services experienced a failure

in April 2016 due to a combination of human error and software bugs [47], and Twitter went down in January

2016 due to problems caused by faulty software upgrades [116]. Beyond hurting users, downtime can cost

companies tens of thousands of dollars per minute [28]. The stakes are only becoming higher, as networks

are relying on programmable devices and more complex software, and this added complexity means that

the human effort required in (re)configuring these systems could quickly become unmanageable. What is

needed is better programming languages/tools for networked systems, and in this thesis, I outline a

promising new approach based on program synthesis.

1.1 Difficulties of Programming Networked Systems

At the heart of many web-based applications is a datacenter containing a complex network, possibly

with tens of thousands of interconnected servers. Traffic flows between these servers through devices known

as switches, which process and forward packets efficiently using specialized hardware. The network oper-

ator can change the configuration of the network (the global set of forwarding tables on all switches) by

communicating with individual switches. Software-Defined Networking (SDN) makes this process eas-

ier, by providing a uniform API for “programming” the switches (I will subsequently refer to the network

operator as the “programmer”).

2

SDN is a relatively new paradigm in which a logically-centralized controller machine manages a

collection of programmable switches. The controller responds to events such as explicit commands from the

programmer, topology changes, shifts in traffic load, or new connections from hosts, by pushing forwarding

rules to the switches. Because the controller has global visibility and full control over the entire network,

SDN programs can implement a wide range of advanced network functionality including fine-grained access

control [21], network virtualization [70], traffic engineering [56, 54], and many others. SDN has been used

in production enterprise, datacenter, and wide-area networks, and new deployments are rapidly emerging.

Much of SDN’s power stems from the controller’s ability to change the global state of the network.

Controllers can set up end-to-end forwarding paths, provision bandwidth to optimize utilization, or distribute

access control rules to defend against attacks. However, implementing these global changes in a running

network is not easy. Networks are complex systems with many distributed switches, but for all practical

purposes, the controller can only modify the configuration of one switch at a time. Hence, to implement

even a simple global change between two static network configurations (referred to as a network update), an

SDN programmer must explicitly transition the network through a sequence of intermediate configurations

to reach the intended final configuration. The code needed to implement such a transition is tedious to write

and prone to error—in general, the intermediate configurations may exhibit new behaviors that would not

arise in the initial and final configurations.

Beyond just simple operator-initiated transitions between static initial and final network configura-

tions, in real network applications, these transitions are often triggered dynamically by events such as

packets arriving at certain switches. This complicates things further, since it then becomes necessary to

reason about interleavings of control messages and regular data packets being processed by the switches.

Finally, even though SDN provides the abstraction of a centralized controller, in practice, such a setup

would not provide adequate performance, so it is desirable to have distributed control operating at multiple

nodes of the network. This adds an additional layer of complexity, since even correct control applications

can work together improperly to produce incorrect behavior.

The goal of this thesis is to address these problems. More concretely, I examine the following four

core problems.

3

(1) High-level programmability: SDN allows switch forwarding tables to be programmatically set,

but how can programmers write a single program that describes behavior of the network as a whole?

(2) Correctness of network programs: while the network is “running” a program, how can program-

mers ensure that consistency/security invariants are not violated due to unexpected switch-level

delays/errors, or concurrency bugs within the program itself?

(3) Event-driven behavior: beyond simply specifying static configurations, how can programmers

write programs which efficiently and automatically change the configuration due to network events?

(4) Correct distributed behavior: high-level network behavior often takes the form of several appli-

cations operating concurrently—how can programmers specify such behavior, utilize errors/traces

to rule out unwanted interleavings (concurrency bugs), and produce efficient distributed implemen-

tations for such programs?

1.2 Core Contribution: Synthesis of SDN Programs

Program synthesis is a recent approach for solving a hard problem: given a high-level specification

of a program’s behavior, automatically determine the program’s code. Much success has been achieved

using a synthesize-verify loop, where a verifier repeatedly checks whether a candidate program satisfies

the specification, and counterexamples are used to guide the search for new candidates. This is often

performed using off-the-shelf tools such as SMT solvers or model checkers, and typically cannot be directly

applied to large (distributed) SDN programs.

In this thesis, I present a set of techniques for effectively extending program synthesis techniques to

the context of network programs. By properly extending program synthesis techniques to the SDN context,

I am able to directly address the previously-mentioned network-programming difficulties. In particular,

I focus on two main goals in this thesis, (I) designing new programming abstractions for SDN which

enable everyday programmers to write correct and efficient network functionality, and (II) building scalable

development tools, e.g., synthesizers to assist programmers with writing difficult networking code, which

are often powered by verifiers to check the correctness of existing networking code.

4

Thesis Statement: Program synthesis enables an accessible and efficient approach to producing real-world

network programs which are correct and efficiently implementable in an SDN.

In particular, accessible means the tools and systems should be usable by network programmers,

and efficient means the algorithms should readily scale to at least thousands of nodes, making them usable

in the context of small real-world datacenters. Real-world means the languages and formalisms should

allow actual network programs to be modeled, and correct means the resulting program should satisfy (cus-

tomizable) correctness properties that are of interest in the networking literature. Finally, efficiently imple-

mentable means the running network programs should be distributed, i.e., avoid relying on the controller,

and operate at line-rate, i.e., avoid the use of expensive mechanisms such as blocking.

In this document, I defend this thesis statement by providing strong evidence to support each of the

following four hypotheses.

Hypothesis 1. The problem of performing a network update which is correct with respect to customizable

single-packet properties can be solved efficiently using counterexample-guided program synthesis.

I use the term single-packet property to mean a formula that each packet being processed in the

network must satisfy, e.g., “if a packet enters the network from Host 1, it must eventually arrive at Host

2,” and correctness with respect to such properties means that packets in any state of the network (even

intermediate transient states) must satisfy the property.

Hypothesis 2. In addition to languages/guarantees that work well in the context of network updates, it is also

possible to develop intuitive languages/guarantees that enable easy reasoning in the event-driven context.

In other words, it is possible to produce a language with built-in support for event-driven behavior, as

well as reasonable guarantees about which global configuration should process each packet. By intuitive,

I mean that the language and guarantees should be similar to existing tools used by network programmers,

and should be able to capture real networking applications.

Hypothesis 3. The problem of repairing concurrent event-driven programs, that is, synthesizing program

constructs which cause the programs to satisfy a specification over single-packet traces, can be solved

cleanly and efficiently using a counterexample-guided program synthesis approach.

5

By concurrent event-driven programs, I mean a set of event-driven applications which are intended

to be operating in the network at the same time. By cleanly and efficiently, I mean that the solution should

enable straightforward reasoning about concurrency in this context, and should scale to network programs

and topologies of realistic size.

Hypothesis 4. It is possible to use a modern stateful switch architecture to build mechanisms which effi-

ciently implement the event-driven programs.

By modern stateful switch architecture, I mean a platform which endows switches with stateful

memory, i.e., local registers which can be read and written by incoming packets. By efficient implemen-

tation, I mean one that is distributed (i.e., does not reside solely on a single controller), and does not use

expensive operations such as blocking of packets.

1.3 Overview of Contributions

In this section, I outline the individual components of my synthesis-based solution.

1.3.1 Synthesis of Network Updates

I begin by considering the most basic type of network program, network updates. Even in this con-

text, writing network programs correctly is challenging due to the concurrency inherent in SDNs—switches

may interleave packet and control message processing arbitrarily. Hence, programmers must carefully con-

sider all possible message orderings, inserting synchronization primitives as needed. The algorithm pre-

sented here works by searching through the space of possible sequences of individual switch updates, learn-

ing from counterexamples and employing an incremental model checker to re-use previously computed

results. The model checker is incremental in the sense that it exploits the loop-freedom of correct network

configurations to enable efficient re-checking of properties when the model changes. Because the synthe-

sis algorithm poses a series of closely-related model checking questions, the incrementality yields large

performance gains on the update scenarios examined in the experiments.

Example: Simple Network Update. To illustrate key challenges related to network updates, con-

sider the network in Figure 1.1. It represents a simplified datacenter topology [40] with core switches (C1

6

C1 C2

A1 A2 A3 A4

T1 T2 T3 T4

H1 H2 H3 H4

Figure 1.1: Example topology.

0 2 4 6
0

33%

66%

100%

Time (s)
(a)

Pr
ob

es
R

ec
ei

ve
d

T1 T2 T3 T4 A1 A2 A3 A4 C1 C2
0

1X

2X

(b) Switch ID

R
ul

e
O

ve
rh

ea
d

Figure 1.2: Example naı̈ve (blue/solid-line), two-phase
(green/solid-bar), and ordering (red/dashed) updates: (a) probes
received; (b) per-switch rule overhead.

and C2), aggregation switches (A1 to A4), top-of-rack switches (T1 to T4), and hosts (H1 to H4). Initially,

I configured switches to forward traffic from H1 to H3 along the solid/red path: T1-A1-C1-A3-T3. Later,

I decided to shift traffic from the red path to the dashed/green path, T1-A1-C2-A3-T3 (perhaps to take C1

down for maintenance). To implement this update, the operator must modify forwarding rules on switches

A1 and C2, but note that certain update sequences break connectivity—e.g., updating A1 followed by C2

causes packets to be forwarded to C2 before it is ready to handle them. Figure 1.2(a) demonstrates this

with a simple experiment performed using my system. Using the Mininet network simulator and OpenFlow

switches, I continuously sent ICMP (ping) probes during a “naı̈ve” update (blue/solid line) and the order-

ing update synthesized by my tool (red/dashed line). With the naı̈ve update, 100% of the probes are lost

during an interval, while the ordering update maintains connectivity.

Consistency. Previous work [105] introduced the notion of a consistent update and also developed

general mechanisms for ensuring consistency. An update is said to be per-packet consistent if every packet

is processed entirely using the initial configuration or entirely using the final configuration, but never a mix-

ture of the two. For example, updating A1 followed by C2 is not consistent because packets from H1 to H3

might be dropped instead of following the red path or the green path. One might wonder whether preserving

consistency during updates is important, as long as the network eventually reaches the intended configura-

tion, since most networks only provide best-effort packet delivery. While it is true that errors can be masked

by protocols such as TCP when packets are lost, there is growing interest in strong guarantees about network

behavior. For example, consider a business using a firewall to protect internal servers, and suppose that they

decide to migrate their infrastructure to a virtualized environment like Amazon EC2. To ensure that this new

deployment is secure, the business would want to maintain the same isolation properties enforced in their

7

home office. However, a best-effort migration strategy that only eventually reaches the target configuration

could step through arbitrary intermediate states, some of which may violate this property.

Two-Phase Updates. Previous work introduced a general consistency-preserving technique called

two-phase update [105], which involves explicitly tagging packets upon ingress and using these tags to

determine which forwarding rules to use at each hop. Unfortunately, this has a significant cost. During

the transition, switches must maintain forwarding rules for both configurations, effectively doubling the

memory requirements needed to complete the update. This is not always practical in networks where the

switches store forwarding rules using ternary content-addressable memories (TCAM), which are expensive

and power-hungry. Figure 1.2(b) shows the results of another experiment where I measured the total number

of rules on each switch: with two-phase updates, several switches have twice the number of rules compared

to the synthesized ordering update. Even worse, it takes a non-trivial amount of time to modify forwarding

rules—sometimes on the order of 10ms per rule [59]! Hence, because two-phase updates modify a large

number of rules, they can increase update latency. This can make two-phase updates a non-starter.

Ordering Updates. My approach is based on the observation that consistent (two-phase) updates

are overkill in many settings. Sometimes consistency can be achieved by simply choosing a correct order

of switch updates. I call this type of update an ordering update. For example, to update from the red

path to the green path, I can update C2 followed by A1. Moreover, even when achieving full consistency

is impossible, one can often still obtain sufficiently strong guarantees for a specific application by carefully

updating the switches in a particular order. To illustrate, suppose that instead of shifting traffic to the green

path, I wish to use the blue (dashed-and-dotted) path: T1-A2-C1-A4-T3. It is impossible to transition from

the red path to the blue path by ordering switch updates without breaking consistency: I can update A2 and

A4 first, as they are unreachable in the initial configuration, but if I update T1 followed by C1, then packets

can traverse the path T1-A2-C1-A3-T3, while if I update C1 followed by T1, then packets can traverse the

path T1-A1-C1-A4-T3. Neither of these alternatives is allowed in a consistent update. This failure to find

a consistent update hints at a solution: if I only care about preserving connectivity between H1 and H3,

then either path is actually acceptable. Thus, either updating C1 before T1, or T1 before C1 would work.

Hence, if I relax strict consistency and instead provide programmers with a way to specify properties that

8

must be preserved across an update, then ordering updates will exist in many situations. Recent work [80,

59] has explored ordering updates, but only for specific properties like loop-freedom, blackhole-freedom,

drop-freedom, etc. Rather than handling a fixed set of “canned” properties, I use a specification language

that is expressive enough to encode these properties and others, as well as conjunctions/disjunctions of

properties—e.g. enforcing loop-freedom and service-chaining during an update.

In-flight Packets and Waits. Sometimes an additional synchronization primitive is needed to gen-

erate correct ordering updates (or correct two-phase updates, for that matter). Suppose I want to again

transition from the red path to blue one, but in addition to preserving connectivity, I want every packet to

traverse either A2 or A3 (this scenario might arise if those switches are actually middleboxes which scrub

malicious packets before forwarding). Now consider an update that modifies the configurations on A2, A4,

T1, C1, in that order. Between the time that I update T1 and C1, there might be some packets that are

forwarded by T1 before it is updated, and are forwarded by C1 after it is updated. These packets would

not traverse A2 or A3, and so indicate a violation of the specification. To fix this, I can simply pause after

updating T1 until any packets it previously forwarded have left the network. It is thus necessary to have

a command “wait” that pauses the controller for a sufficient period of time to ensure that in-flight packets

have exited the network. Hence, the correct update sequence for this example would be as above, with a

“wait” between T1 and C1. Note that two-phase updates also need to wait, once per update, since one must

ensure that all in-flight packets have left the network before deleting the old version of the rules on switches.

Other approaches have traded off control-plane waiting for stronger consistency, e.g. [79] performs updates

in “rounds” that are analogous to “wait” commands, and Consensus Routing [62] relies on timers to obtain

wait-like functionality. Note that the single-switch update time can be on the order of seconds [59, 73],

whereas typical datacenter transit time (the time for a packet to traverse the network) is much lower, even

on the order of microseconds [1]. Hence, waiting for in-flight packets has a negligible overall effect. In

addition, I provide a reachability-based heuristic eliminates most waits in practice.

Summary. This part of the thesis presents a sound and complete algorithm and implementation for

synthesizing a large class of ordering updates efficiently and automatically. The network updates it generates

initially modify each switch at most once and “wait” between updates to switches, but a heuristic removes an

9

Figure 1.3: Topology for simple Stateful Firewall.

overwhelming majority of unnecessary waits in practice. For example, in switching from the red path to the

blue path (while preserving connectivity from H1 to H3, and making sure that each packet visits either A3

or A4), my tool produces the following sequence: update A2, then A4, then T1, then wait, then update C1.

The resulting update can be executed using the Frenetic SDN platform and used with OpenFlow switches—

e.g., I generated Figure 1.2 (a-b) using my tool. I ran experiments on a suite of real-world topologies,

configurations, and properties—my results demonstrate the effectiveness of synthesis, which scales to over

one-thousand switches, and incremental model checking, which outperforms a popular symbolic model

checker used in batch mode, and a state-of-the-art network model checker used in incremental mode.

1.3.2 Event-Driven Network Programming

In practice, many network programs are more complex than a network update. For example, various

applications of interest are dynamic in that they produce changes to the global network configuration in

response to events, such as arrival of packets at certain switches, etc. In this part of the thesis, I seek to

determine what is the “best” way to specify event-driven network programs, and how to reason about and

ensure correctness in this context.

Example: Stateful Firewall. To illustrate the challenges that arise when implementing dynamic

applications, consider a topology as in Figure 1.3, where an internal host H1 is connected to switch s1, an

external host H4 is connected to a switch s4, and switches s1 and s4 are connected to each other. Suppose

I wish to implement a stateful firewall: at all times, host H1 is allowed to send packets to host H4, but H4

should only be allowed to send packets to H1 if H1 previously initiated a connection. Implementing even

this simple application turns out to be difficult, because it involves coordinating behavior across multiple

devices and packets. The basic idea is that upon receiving a packet from H1 at s4, the program will need to

10

issue a command to install a forwarding rule on s4 allowing traffic to flow from H4 back to H1. There are

two straightforward (but incorrect) implementation strategies on current SDN controllers.

(1) The outgoing request from H1 is diverted to the controller, which sets up flow tables for the in-

coming path and also forwards the packet(s) to H4. Reconfiguring flow tables takes time, so H4’s

response will likely be processed by the default drop rule. Even worse, if the response is the SYN-

ACK in a TCP handshake, normal retransmission mechanisms will not help—the client will have

to wait for a timeout and initiate another TCP connection. In practice, this greatly increases the

latency of setting up a connection, and potentially wreaks havoc on application performance.

(2) The outgoing request is buffered at the controller, which sets up the flow tables for the incoming

path but waits until the rules are installed before forwarding the packet(s). This avoids the problem

in (1), but places extra load on the controller and also implements the firewall incorrectly, since in-

coming traffic is allowed before the outgoing request is delivered. Leaving the network unprotected

(even briefly) can be exploited by a malicious attacker.

Thus, while it is tempting to think that reliability mechanisms built into protocols such as TCP already

prevent (or at least reduce) these types of errors, this is not the case. While it is true that some applications

can tolerate long latencies, dropped packets, and weak consistency, problems with updates do lead to serious

problems in practice. As another example, consider an intrusion detection system that monitors suspicious

traffic—inadvertently dropping or allowing even a few packets due to a reconfiguration would weaken the

protection it provides. The root of these problems is that existing SDN frameworks do not provide strong

guarantees during periods of transition between configurations in response to events. An eventual

guarantee is not strong enough to implement the stateful firewall correctly, and even a (per-packet) consistent

update would not suffice, since consistent updates only dictate what must happen to individual packets.

Existing Approaches. Experienced network operators may be able to use existing tools/methods

to correctly implement event-driven configuration changes. However, as seen above, this requires think-

ing carefully about the potential interleavings of events and updates, delegating atomic operations to the

controller (incurring a performance hit), etc.

As mentioned, there are stateful programming systems that attempt to make this process easier for the

11

programmer, but update strategies in these systems either offer no consistency guarantees during dynamic

updates, rely on expensive processing via the controller, and/or require the programmer to craft an update

protocol by hand. In this thesis, I group these approaches together, using the term uncoordinated update

to describe their lack of support for coordinating local updates in a way that ensures global consistency.

Event-Driven Consistent Update. I propose a new correctness condition with clear guarantees

about updates triggered by events. This enables specification of how the network should behave during

updates, and enables precise formal reasoning about dynamic network programs.

An event-driven consistent update is denoted as a triple Ci
e−→ Cf , where Ci and Cf are the initial

and final configurations respectively, and e is an event. Intuitively, these configurations describe the for-

warding behaviors of the network before/after the update, while the event describes a phenomenon, such as

the receipt of a packet at a particular switch, that triggers the update itself. Semantically, an event-triggered

consistent update ensures that for each packet:

(1) the packet is forwarded consistently, i.e. it must be processed entirely by a single configuration

Ci or Cf , and

(2) the update does not happen too early, meaning that if every switch traversed by the packet has

not heard about the event, then the packet must be processed by Ci, and

(3) the update does not happen too late, meaning that if every switch traversed by the packet has

heard about the event, then the packet must be processed by Cf .

The first criterion requires that updates are consistent, which is analogous to a condition proposed previously

by Reitblatt et al. [105]. However, a consistent update alone would not provide the necessary guarantees

for the stateful firewall example, as it applies only to a single packet, and not to multiple packets in a

bidirectional flow. The last two criteria relate the packet-processing behavior on each switch to the events it

has “heard about.” Note that these criteria leave substantial flexibility for implementations: packets that do

not satisfy the second or third condition can be processed by either the preceding or following configuration.

It remains to define what it means for a switch s to have “heard about” an event e that occurred at switch t

(assuming s 6= t). I use a causal model and say that s hears about e when a packet, which was processed by

t after e occurred, is received at s. This can be formalized using a “happens-before” relation.

12

Returning to the stateful firewall, it is not hard to see that the guarantees offered by event-driven

consistent updates are sufficient to ensure correctness of the overall application. Consider an update Ci
e−→

Cf . In Ci, H1 can send packets to H4, but not vice-versa. In Cf , additionally H4 can send packets to H1.

The event e is the arrival at s4 of a packet from H1 to H4. Before e occurs, can H4 send a packet to H1,

as is possible in Cf? No, since none of the switches along the necessary path have heard about the event.

Now, imagine that the event e occurs, and H4 wants to send a packet to H1 afterwards. Can s4 drop the new

packet, as it would have done in the initial configuration Ci? No, because the only switch the packet would

traverse is s4, and s4 has heard about the event, meaning that the only possible correct implementation

should process this new packet in Cf .

Event-Driven Transition Systems. To specify event-driven network programs, I use labeled tran-

sition systems called event-driven transition systems (ETSs). In an ETS, each node is annotated with a

network configuration and each edge is annotated with an event. For example, the stateful firewall appli-

cation would be described as a two-state ETS, one state representing the initial configuration before H1

has sent a packet to H4, and another representing the configuration after this communication has occurred.

There would be a transition between the states corresponding to receipt of a packet from H1 to H4 at s4.

This model is similar to the finite state machines used in Kinetic [68] and FAST [91]. However, whereas

Kinetic uses uncoordinated updates, I impose additional constraints on the ETSs which allow them to be

implemented correctly with respect to my consistency property. For example, I extend event-triggered con-

sistent updates to sequences, requiring each sequence of transitions in the ETS to satisfy the property. For

simplicity, in Chapter 3, I focus on finite-state systems and events corresponding to packet delivery. How-

ever, these are not fundamental assumptions—my design extends naturally to other notions of events, as

well as infinite-state systems.

Network Event Structures. The key challenge in implementing event-driven network programs

stems from the fact that at any time, the switches may have different views of the global set of events that

have occurred. Hence, for a given ETS, several different updates may be enabled at a particular moment

of time, necessitating a way to resolve conflicts. I turn to the well-studied model of event structures [123],

which allows me to constrain transitions in two ways: (1) causal dependency, which requires that an event

13

e1 happens before another event e2 may occur, and (2) compatibility, which forbids sets of events that are

in some sense incompatible with each other from occurring in the same execution. I present an extension

called network event structure (NES), and show how an ETS can be encoded as an NES.

Locality. While event-driven consistent updates require immediate responses to local events (as in

the firewall), they do not require immediate reactions to events “at a distance.” This is achieved by two

aspects of my definitions.

The first defining aspect of the locality requirements involves the happens-before (“heard-about”) re-

lation in event-driven consistent update. For example, receipt of a packet in New York can not immediately

affect the behavior of switches in London. Intuitively, this makes sense: requiring “immediate” reaction to

remote events would force synchronization between switches and buffering of packets, leading to unaccept-

able performance penalties. Event-driven consistent update only requires the switches in London to react

after they have heard about the event in New York.

The second defining aspect of the locality requirements involves the compatibility constraints in

NESs. Suppose that New York sends packets to London and Paris, but the program requires transitioning to

a different global state based on who received a packet first. Clearly, it would be impossible to implement

this behavior without significant coordination. However, suppose New York and Philadelphia are sending

packets to London, and the program requires transitioning to a different global state based on whose packet

was received first in London. This behavior is easily implementable since the choice is local to London. I

use NESs to rule out non-local incompatible events—specifically, I require that incompatible events must

occur at the same switch.

This approach gives consistency guarantees even when an event occurs at a switch different from

the one that will be updated. The change will not happen “atomically” with the event that triggered it, but

(a) every packet is processed by a single configuration, and (b) the configuration change occurs as dictated

by event-driven consistent update (happens-before) requirements. I show that these requirements can be

implemented with minimal performance penalty.

Locality issues are an instance of the tension between consistency and availability in distributed

systems, which motivates existing SDN languages to favor availability (avoiding synchronization and packet

14

buffering) over consistency (offering strong guarantees when state changes). I demonstrate that it is possible

to provide the same level of availability as existing systems, while providing a natural consistency condition

that is powerful enough to build many applications. I also show that weakening the locality requirement

would necessitate weakening availability, meaning that my model is in some sense the “best” model for

event-driven network programming.

Together, this provides a new programming abstraction based on (i) a notion of causal consistency

requiring that events are propagated between nodes, (ii) per-packet consistency governing how packets are

forwarded through the network, and (iii) locality requirements. I believe this is a powerful combination that

is a natural fit for building many applications.

Implementing Network Programs. NESs also provide a natural formalism for guiding an imple-

mentation technique for stateful programs. Intuitively, this requires switches that can record the set of events

that have been seen locally, make decisions based on those events, and transmit events to other switches.

Fortunately, in the networking industry there is a trend toward more programmable data planes: mutable

state is already supported in most switch ASICs (e.g. MAC learning tables) and is also being exposed to

SDN programmers in next-generation platforms such as OpenState [13] and P4 [16]. Using these features,

an NES can be implemented as follows.

(1) Encode sets of events in the NES as tags that can be carried by packets and tested on switches.

(2) Compile the configurations contained in the NES to a collection of forwarding tables.

(3) Add “guards” to each configuration’s forwarding rules to test for the tag enabling the configuration.

(4) Add rules to “stamp” incoming packets with tags corresponding to the current set of events.

(5) Add rules to “learn” which events have happened by reading tags on incoming packets and adding

the tags in the local state to outgoing packets, as required to implement the happens-before relation.

In this thesis, I show that a system implemented in this way correctly implements an NES.

Evaluation. To evaluate my design, I built a prototype of the system described here. I have used

this to build a number of event-driven network applications: (a) a stateful firewall, which I have already

described; (b) a learning switch that floods packets going to unknown hosts along a spanning tree, but uses

point-to-point forwarding for packets going to known hosts; (c) an authentication system that initially blocks

15

incoming traffic, but allows hosts to gain access to the internal network by sending packet probes to a pre-

defined sequence of ports; (d) a bandwidth cap that disables access to an external network after seeing a

certain number of packets; and (e) an intrusion detection system that allows all traffic until seeing a se-

quence of internal hosts being contacted in a suspicious order. I have also built a synthetic application that

forwards packets around a ring topology, to evaluate update scalability. I developed these applications in

an extended version of NetKAT which I call Stateful NetKAT. My experiments show that my implemen-

tation technique provides competitive performance on several important metrics while ensuring important

consistency properties. I draw several conclusions. (1) Event-driven consistent update allow programmers

to easily write real-world network applications and get the correct behavior, whereas approaches relying

only on uncoordinated consistency guarantees do not. (2) The performance overhead of maintaining state

and manipulating tags (measured in bandwidth) is within 6% of an implementation that uses only uncoor-

dinated update. (3) There is an optimization that exploits common structure in rules across states to reduce

the number of rules installed on switches. In my experiments, a basic heuristic version of this optimization

resulted in a 32-37% reduction in the number of rules required on average.

1.3.3 Synchronization Synthesis for Event-Driven Network Programs

Software-defined networking (SDN) enables programmers or network operators to more easily im-

plement important applications such as traffic engineering, distributed firewalls, network virtualization, etc.

These applications are typically event-driven, in the sense that the packet-processing behavior can change

in response to network events such as topology changes, shifts in traffic load, or arrival of packets at various

network nodes. SDN enables this type of event-driven behavior via a controller machine that manages the

network configuration, i.e., the set of forwarding rules installed on the network switches. The program-

mer can write code which runs on the controller, as well as instruct the switches to install custom forwarding

rules, which inspect incoming packets and move them to other switches or send them to the controller for

custom processing.

Concurrency in Network Programs. Although SDN provides the abstraction of a centralized

controller machine, in reality, network control is often physically distributed, with controller processes run-

16

(a) Configurations (b) Input Net (c) Iteration 1 (d) Output Net

Figure 1.4: Example #1

ning on multiple network nodes [30]. The fact that these distributed programs control a network which is

itself a distributed packet-forwarding system means that event-driven network applications can be especially

difficult to write and debug. In particular, there are two types of races that can occur, resulting in incorrect

behavior. First, there are races between updates of forwarding rules at individual switches, or between pack-

ets that are in-flight during updates. Second, there are races among the different processes of the distributed

controller. I call the former packet races, and the latter controller races. Bugs resulting from either of

these types of races can lead to serious problems such as packet loss and security violations.

Illustrative Example. I will begin by examining the difficulties of writing distributed controller

programs, in regards to the two types of races. Consider the network topology in Figure 4.1a. In the initial

configuration, packets entering at H1 are forwarded through S1, S5, S2 to H2. There are two controllers

(not shown), C1 and C2—controller C1 manages the upper part of the network (H1, S1, S5, S3, H3), and

C2 manages the lower part (H2, S2, S5, S4, H4). Now imagine that the network operator wants to take

down the forwarding rules that send packets from H1 to H2, and instead install rules to forward packets

from H3 to H4. Furthermore, the operator wants to ensure that the following property φ holds at all times:

all packets entering the network from H1 must exit at H2. When developing the program to do this, the

network operator must consider the following:

• Packet race: If C1 removes the rule that forwards from S1 to S5 before removing the rule that

forwards from H1 to S5, then a packet entering at H1 will be dropped at S1, violating φ.

• Controller race: Suppose C1 makes no changes, and C2 adds rules that forward from S5 to S4,

and from S4 to H4. In the resulting configuration, a packet entering at H1 can be forwarded to

H4, again violating φ.

17

Synthesis Approach. I present a program synthesis approach that makes it easier to write dis-

tributed controller programs. The programmer can specify each sequential process (e.g., C1 and C2 in the

previous example), and add a declarative specification of paths that packets are allowed to take (e.g., φ in the

previous example). The synthesizer then inserts synchronization constructs that constrain the interactions

among the controller processes to ensure that the specification is always satisfied by any packets traversing

the network. Effectively, this allows the programmer to reduce the amount of effort spent on keeping track

of possible interleavings of controller processes and inserting low-level synchronization constructs, and in-

stead focus on writing a declarative specification which describes allowed packet paths. In the examples I

have considered, I find these specifications to be a clear and easy way to write desired correctness properties.

Network Programming Model. In my approach, similar to network programming languages like

OpenState [13], and Kinetic [68], I allow a network program to be described as a set of concurrently-

operating finite state machines (FSMs) consisting of event-driven transitions between global network states.

I generalize this by allowing the input network program to be a set of event nets, which are 1-safe Petri nets

where each transition corresponds to a network event, and each place corresponds to a set of forwarding

rules. This model extends network event structures [86] to enable straightforward modeling of programs

with loops. An advantage of extending this particular programming model is that its programs can be

efficiently implemented without packet races (see Section 4.2 for details).

Problem Statement. My synthesizer has two inputs: (1) a set of event nets representing sequential

processes of the distributed controller, and (2) a linear temporal logic (LTL) specification of paths that

packets are allowed to take. For example, the programmer can specify properties such as “packets from H1

must pass through Middlebox S5 before exiting the network.” The output is an event net consisting of the

input event nets and added synchronization constructs, such that all packets traversing the network satisfy

the specification. In other words, the added synchronization eliminates problems caused by controller races.

Since I use event nets, which can be implemented without packet races, both types of races are eliminated

in the final implementation of the distributed controller.

Algorithm. My main contribution is a counterexample-guided inductive synthesis (CEGIS) algo-

rithm for event nets. This consists of (1) a repair engine that synthesizes a candidate event net from the

18

input event nets and a finite set of known counterexample traces, and (2) a verifier that checks whether the

candidate satisfies the LTL property, producing a counterexample trace if not. The repair engine uses SMT

to produce a candidate event net by adding synchronization constructs which ensure that it does not con-

tain the counterexample traces discovered so far. Repairs are chosen from a variety of constructs (barriers,

locks, condition variables). Given a candidate event net, the verifier checks whether it is deadlock-free (i.e.,

there is an execution where all processes can proceed without deadlock), whether it is 1-safe, and whether

it satisfies the LTL property. I encode this as an LTL model-checking problem—the check fails (and returns

a counterexample) if the event net exhibits an incorrect interleaving.

Evaluation. I have implemented this technique, and evaluated the tool on examples from the SDN

literature. I show that the prototype implementation can fix realistic concurrency bugs, and can readily scale

to problems featuring network topologies of 1000+ switches.

Contributions. This chapter contains the following contributions:

• I describe event nets, a new model for representing concurrent network programs, which extends

several previous approaches, enables using and reasoning about many synchronization constructs,

and admits an efficient distributed implementation (Sections 4.1-4.2).

• I present synchronization synthesis for event nets. To my knowledge, this is the first counterexample-

guided technique that automatically adds synchronization constructs to Petri-net based programs.

My solution includes a model checker for event nets, and an SMT-based repair engine for event

nets which can insert a variety of synchronization constructs (Section 4.3).

• I show the usefulness and efficiency of my prototype implementation, using several examples fea-

turing network topologies of 1000+ switches (Section 4.4).

1.3.4 Data-Plane Mechanisms for Distributed Network Programming

One of the goals of software-defined networking (SDN) is to make networks more programmable.

In practice, real SDN implementations such as OpenFlow require complicated stateful functionality to be

handled on the controller machine—the switches simply serve to hold static forwarding tables, which are

(re)populated by the controller. This model is beginning to change. The SDN data-plane (packet-processing

19

functionality) is becoming more advanced, with powerful devices emerging which are able to perform com-

putations and update local state based on packet contents, all at line rate [13, 16, 110]. This has fueled an

increased interest in pushing functionality which normally occurred in the control-plane into the data-plane.

Instead of viewing a network program as simply a process that runs on the controller and interacts with

switches, it can now be viewed as a distributed system, running atop the networking hardware.

My event nets formalism provides the ability to write network programs which fit this paradigm.

However, the language does not deal with global state in a fully general way. The focus of this chapter

is to build a network programming language and runtime that extends event nets to give programmers a

convenient and correct way of managing global state.

More specifically, in this chapter, I provide a declarative callback-based language known as callback

nets for describing network behavior. Instead of the event nets model, in which events change state between

static configurations, callback nets allow events to trigger a set of modifications to global variables. These

global variables are built from conflict-free replicated datatype (CRDT) [109] registers, and updates to these

are propagated lazily by piggybacking on data packets. In this way, causality is maintained, i.e., devices that

have received a data packet which passed through a switch with newer state will also see the new state.

The second key contribution of this chapter is a compiler that produces executable code from callback

nets. In this work, I target the Barefoot P4 architecture [16], but my compiler is structured into stages, which

allows it to be easily extended with back-ends for different switch architectures. I introduce an intermediate

representation (IR) for data-plane programs which allows switch-level packet-processing behavior to be

specified using a simple C-like syntax. The compiler performs the following transformations:

• L3: Callback net (callbacks that read/write global state)

↓

• L2: (per-switch) IR programs with global variables

↓

• L1: IR programs that read/write only local state

↓

• P4 programs that read/write only local state

20

This approach can be used to efficiently implement the event-driven network programs described in this

thesis using real state-of-the-art SDN hardware.

1.4 Thesis Outline

This thesis has the following basic structure: Chapter 2 contains the work described in Section 1.3.1;

Chapter 3 contains the work described in Section 1.3.2; Chapter 4 contains the work described in Section

1.3.3; Chapter 5 contains the work described in Section 1.3.4.

In particular, in Chapter 2 (published in [85]), I investigate using program synthesis to automatically

generate network updates. The main contributions of that chapter are: (1) I present a simple operational

model of SDN and formalize the network update problem precisely (§2.1), (2) I present a counterexample-

guided search algorithm that solves instances of the network update problem, and prove the algorithm to be

correct (§2.2), (3) I present an incremental LTL model checker for loop-free models (§2.3), and (4) I describe

an OCaml implementation with backends to third-party model checkers and present experimental results on

real-world networks and properties, demonstrating strong performance improvements (§2.4). This chapter

supports Hypothesis 1, because it provides an approach for synthesizing network updates which are correct

with respect to customizable LTL properties, and experimental results show that the approach is efficient.

Chapter 3 (published in [86]), contains the following contributions: (1) I propose a new semantic

correctness condition for dynamic network programs called event-driven consistent update that balances

the need for immediate response with the need to avoid costly synchronization and buffering of packets. My

consistency property generalizes the guarantees offered by consistent updates, and is as strong as possible

without sacrificing availability; (2) I propose network event structures to capture causal dependencies and

compatibility between events, and show how to implement these using SDN functionality; (3) I describe

a compiler based on a stateful extension of NetKAT, and present optimizations that reduce the overhead

of implementing such stateful programs; (4) I present experimental result showing that my approach gives

well-defined consistency guarantees, while avoiding expensive synchronization and packet buffering. This

chapter supports Hypothesis 2, because it provides a new language which supports event-driven network

programming, and I demonstrate the intuitiveness of the approach through several real-world case studies.

21

Additionally, I show how to provide a useful consistency property that enables reasoning about how events

and data packets should interleave in an event-driven program.

Chapter 4 (published in CAV 2017 [84]) contains the following contributions: (1) I describe event

nets, a new model for representing concurrent network programs, which extends several previous ap-

proaches (including my network event structures), enables using and reasoning about many synchronization

constructs, and admits an efficient distributed implementation (Sections 4.1-4.2). (2) I present synchro-

nization synthesis for event nets. To my knowledge, this is the first counterexample-guided technique

that automatically adds synchronization constructs to Petri-net based programs. This solution includes a

model checker for event nets, and an SMT-based repair engine for event nets which can insert a variety

of synchronization constructs (Section 4.3). (3) I demonstrate the usefulness and efficiency of this approach

through several real-world examples and large network topologies (Section 3.4). This chapter supports

Hypothesis 3, because it provides a programmer-friendly approach for (1) writing event-driven distributed

network programs and high-level correctness properties, and (2) automatically adding synchronization to fix

concurrency bugs in the resulting application. I also present experimental results showing the scalability.

Chapter 5 generalizes and extends the work on event nets, providing a general and intuitive net-

work programming language which allows operators to write correct-by-construction data-plane programs

with global state, and a compiler which in turn produces efficient executable code to run on modern SDN

switches. The chapter supports Hypothesis 4, because it develops general mechanisms built on top of the

P4 hardware switch platform, allowing many different applications (and previously-described consistency

models) to be efficiently implemented in a real SDN.

22

Chapter 2

Efficient Synthesis of Network Updates

2.1 Preliminaries and Network Model

To facilitate precise reasoning about networks during updates, I develop a formal model in the style

of Chemical Abstract Machine [12]. This model captures key network features using a simple operational

semantics. It is similar to the one used by [48], but is streamlined to model features most relevant to updates.

2.1.1 Network Model

Basic structures. Each switch sw , port pt , or host h is identified by a natural number. A packet

pkt is a record of fields containing header values such as source and destination address, protocol type, and

so on. I write {f1; . . . ; fk} for the type of packets having fields fi and use “dot” notation to project fields

from records. The notation {r with f = v} denotes functional update of r.f .

Forwarding Tables. A switch configuration is defined in terms of forwarding rules, where each

rule has a pattern pat specified as a record of optional packet header fields and a port, a list of actions

act that either forward a packet out a given port (fwd pt) or modify a header field (f :=n), and a priority

that disambiguates rules with overlapping patterns. I write {pt?; f1?; . . . ; fk?} for the type of patterns,

where the question mark denotes an option type. A set of such rules ruls forms a forwarding table tbl . The

semantic function [[tbl]] maps packet-port pairs to multisets of such pairs, finding the highest-priority rule

whose pattern matches the packet and applying the corresponding actions. If there are multiple matching

rules with the same priority, the function is free to pick any of them, and if there are no matching rules, it

drops the packet. The forwarding tables collectively define the network’s data plane.

23

Commands. The control plane modifies the data plane by issuing commands that update for-

warding tables. The command (sw , tbl) replaces the forwarding table on switch sw with tbl (I call this a

switch-granularity update). I model this command as an atomic operation (it can be implemented with

OpenFlow bundles [97]). Sometimes switch granularity is too coarse to find an update sequence, in which

case one can update individual rules (rule-granularity). My tool supports this finer-grained mode of op-

eration, but since it is not conceptually different from switch granularity, I frame most of my discussion in

terms of switch-granularity.

To synchronize updates involving multiple switches, I include a wait command. In the model, the

controller maintains a natural-number counter known as the current epoch ep. Each packet is annotated

with the epoch on ingress. The control command incr increments the epoch so that subsequent incoming

packets are annotated with the next epoch, and flush blocks the controller until all packets annotated with the

previous epoch have exited the network. I introduce a command wait defined as incr ; flush . The epochs are

included in my model solely to enable reasoning. They do not need to be implemented in a real network—

all that is needed is a mechanism for blocking the controller to allow a flush of all packets currently in the

network. For example, given a topology, one could compute a conservative delay based on the maximum

hop count, and then implement wait by sleeping, rather than synchronizing with each switch. Note that

I implicitly assume failure-freedom and packet-forwarding fairness of switches and links, i.e. there is an

upper bound on each element’s packet-processing time.

Elements. The elements E of the network model include switches Si, links Lj , and a single con-

troller element C, and a network N is a tuple containing these. Each switch Si is encoded as a record

comprising a unique identifier sw , a table tbl of prioritized forwarding rules, and a multiset prs of pairs

(pkt , pt) of buffered packets and the ports they should be forwarded to respectively. Each link Lj is repre-

sented by a record consisting of two locations l and l ′ and a list of queued packets pkts , where a location

is either a host or a switch-port pair. Finally, controller C is represented by a record containing a list of

commands cmds and an epoch ep. I assume that commands are totally-ordered. The controller can ensure

this by using OpenFlow barrier messages.

Operational semantics. Network behavior is defined by small-step operational rules in Figure 2.1.

24

Switch sw ∈ N
Port pt ∈ N
Host h ∈ N
Priority pri ∈ N
Epoch ep ∈ N
Field f ::= src | dst | typ | ..

Packet pkt ::= {f1; ..; fk}
Pair pr ::= (pkt, pt)
Pattern pat ::= {pt?; f1?; ..; fk?}
Action act ::= fwd pt | f :=n
Rule rul ::= {pri; pat; acts}
Table tbl ::= ruls

Location l ::= h | (sw, pt)
Command cmd ::= (sw, tbl) | incr | flush
Switch S ::= {sw ; tbl; prs}
Link L ::= {l; pkts; l′}
Controller C ::= {cmds; ep}
Element E ::= S | L | C

Data Plane

L.l = h L.l ′ = (sw ′, pt ′) L.pkts = pkts C.ep = ep

C, L −→ C, {L with pkts = pktep ::pkts} IN

L.l = (sw , pt) L.l ′ = h L.pkts = (pktep ::pkts)

L
(sw,pt,pkt)−−−−−−−→ {L with pkts = pkts}

OUT

L.loc′ = (sw , pt) L.pkts = (pktep ::pkts) S.sw = sw [[S.tbl]](pkt , pt) = {(pkt1, pt1), .., (pktn, ptn)}

L, S
(sw,pt,pkt)−−−−−−−→ {L with pkts = pkts}, {S with prs = S.prs] {(pktep

1 , pt1), .., (pktep
n , ptn)}}

PROCESS

S.sw = sw S.prs = {(pktep , pt)}] prs L.l = (sw , pt)

S, L −→ {S with prs = prs}, {L with pkts = L.pkts@[pktep]} FORWARD

Control Plane and Abstract Machine

C.cmds = ((sw , tbl)::cmds) S.sw = sw

C, S −→ {C with cmds = cmds}, {S with tbl = tbl} UPDATE
C.cmds = (incr ::cmds)

C −→ {C with cmds = cmds; ep = C.ep + 1} INCR

C.cmds = (flush::cmds) ep(S1, .., Sk, L1, .., Lm) = C.ep

S1, .., Sk, L1, .., Lm, C −→ S1, .., Sk, L1, .., Lm, {C with cmds = cmds} FLUSH
Es1

o−→ Es′1

Es1] Es2
o−→ Es′1] Es2

CONGRUENCE

Figure 2.1: Network model.

These define interactions between subsets of elements, based on OpenFlow semantics [87]. States of the

model are given by multisets of elements. I write {x} to denote a singleton multiset, and m1]m2 for the

union of multisets m1 and m2. I write [x] for a singleton list, and l1@l2 for concatenation of l1 and l2. Each

transition N o−→ N ′ is annotated, with o being either an empty annotation, or an observation (sw , pt , pkt)

indicating the location and packet being processed.

The first rules describe date-plane behavior. The IN rule admits arbitrary packets into the network

from a host, stamping them with the current controller epoch. The OUT rule removes a packet buffered on

a link adjacent to a host. PROCESS processes a single packet on a switch, finding the highest priority rule

with matching pattern, applying the actions of that rule to generate a multiset of packets, and adding those

packets to the output buffer. FORWARD moves a packet from a switch to the adjacent link. The final rules

describe control-plane behavior. UPDATE replaces the table on a single switch. INCR increments the epoch

on the controller, and FLUSH blocks the controller until all packets in the network are annotated with at least

the current epoch (ep(Es) denotes the smallest annotation on any packet in Es). Finally, CONGRUENCE,

allows any sub-collection of network elements to interact.

25

2.1.2 Network Update Problem

In order to define the network update problem, I need to first carefully define traces of packets flowing

through the network.

Packet traces. Given a network N , my operational rules can generate sequences of observations.

However, the network can process many packets concurrently, and I want observations generated by a single

packet. I define a successor relation v for observations. Intuitively o
ep
v o′ if the network can directly

produce the packet in o′ by processing o in the epoch ep.

To formalize this, I first define what it means for a table to be active, i.e. the controller contains an

update that will eventually produce that table.

Definition 1 (Active Forwarding Table). Let N be a network. The forwarding table tbl is active in the

epoch ep for the switch sw if

(1) ep = 0 and tbl is the initial table of sw in N , or

(2) ep > 0 and either (a) if there exists a command (sw ′, tbl ′) ∈ C.cmds such that sw = sw ′ and

the number of wait commands preceding (sw , tbl) in C.cmds is ep, then tbl = tbl ′, or (b) if there

does not exist such a command, then tbl is the table active for the switch sw in epoch ep − 1.

Next I define what it means for an observation o′ to succeed o.

Definition 2 (Successor Observation). LetN be a network and let o = (sw , pt , pkt) and o′ = (sw ′, pt ′, pkt ′)

be observations. The observation o′ is a successor of o in ep, written o
ep
v o′, if either:

• there exists a switch Si and link Lj such that Si.sw = sw and Si.tbl is active in ep and Lj .l =

(sw , pt j) and Lj .l
′ = (sw ′, pt ′) and (pt j , pkt ′) ∈ [[Si.tbl]](pt , pkt), or

• there exists a switch Si, a link Lj , and a host h such that Si.sw = sw and Si.tbl is active in ep and

Lj .l = (sw , pt ′) and Lj .l
′ = h and (pt ′, pkt ′) ∈ [[Si.tbl]](pt , pkt).

Intuitively o
ep
v o′ if the packet in o could have directly produced the packet in o′ in ep by being processed

on some switch. The two cases correspond to an internal and egress processing steps.

Now, I can use these definitions to formalize single-packet traces.

26

Definition 3 (Single-Packet Trace). Let N be a network. A sequence (o1 · · · ol) is a single-packet trace of

N if N
o′1−→ . . .

o′k−→ Nk such that (o1 · · · ol) is a subsequence of (o′1 · · · o′k) for which

• every observation is a successor of the preceding observation in monotonically increasing epochs,

and

• if o1 = o′j = (sw , pt , pkt), then ∃o′i ∈ {o′1, · · · , o′j−1} such that the o′i transition is an IN moving

pkt from host to (sw , pt) and none of o′i, · · · , o′j−1 is a predecessor of o1, and

• the ol transition is an OUT terminating at a host.

Intuitively, single-packet traces are end-to-end paths through the network. I write T (N) for the set of single-

packet traces generated by N . A trace (o1 · · · ok) is loop-free if oi 6= oj for all distinct i and j between

1 and k. I consider only loop-free traces, since a network that forwards packets around a loop is generally

considered to be misconfigured. In the worst case, forwarding loops can cause a packet storm, wasting

bandwidth and degrading performance. My tool automatically detects/rejects such configurations.

LTL formulas. Many important network properties can be understood by reasoning about the traces

that packets can take through the network. For example, reachability requires that all packets starting at src

eventually reach dst. Temporal logics are an expressive and well-studied language for specifying such trace-

based properties. Hence, I use Linear Temporal Logic (LTL) to describe traces in my network model. Let

AP be atomic propositions that test the value of a switch, port, or packet field: fi = n. I call elements

of the set 2AP traffic classes. Intuitively, each traffic class T identifies a set of packets that agree on the

values of particular header fields. An LTL formula ϕ in negation normal form (NNF) is either true, false,

atomic proposition p in AP , negated proposition ¬p, disjunction ϕ1 ∨ ϕ2, conjunction ϕ2 ∧ ϕ2, next Xϕ,

until ϕ1Uϕ2, or release ϕ1Rϕ2, where ϕ1 and ϕ2 are LTL formulas in NNF. The operators F and G can be

defined using other connectives. Since (finite) single-packet traces can be viewed as infinite sequences of

packet observations where the final observation repeats indefinitely, the semantics of the LTL formulas can

be defined in a standard way over traces. I write t |= ϕ to indicate that the single-packet trace t satisfies the

formula ϕ and T |= ϕ to indicate that t |= ϕ for each t in T . Given a network N and a formula ϕ, I write

N |= ϕ if T (N) |= ϕ.

Problem Statement. Recall that my network model includes commands for updating a single

27

switch, incrementing the epoch, and waiting until all packets in the preceding epoch have been flushed

from the network. At a high-level, my goal is to identify a sequence of commands to transition the network

between configurations without violating specified invariants. First, I need a bit of notation. Given a network

N , I write N [sw ← tbl] for the switch update obtained by updating the forwarding table for switch sw to

tbl . I call N static if C.cmds is empty. If static networks N1, Nn have the same traces T (N1) = T (Nn),

then I say they are trace-equivalent, N1 ' Nn.

Definition 4 (Network Update). LetN1 be a static network. A command sequence cmds induces a sequence

N1, . . . , Nn of static networks if c1 · · · cn−1 are the update commands in cmds , and for each ci = (sw , tbl),

I have Ni[sw ← tbl] ' Ni+1.

I write N1
cmds−→ Nn if there exists such a sequence of static networks induced by cmds which ends with Nn.

I call N stable if all packets in N are annotated with the same epoch. Intuitively, a stable network

is one with no in-progress update, i.e. any preceding update command was finalized with a wait. Consider

the set of unconstrained single-packet traces generated by removing the requirement that traces start at an

ingress. This includes T (N) as well as traces of packets initially present in N . I call this T̄ (N).

Definition 5 (Unconstrained Single-Packet Trace). LetN be a network. Then (o1 · · · ol) is a unconstrained

single-packet trace of N if N
o′1−→ . . .

o′k−→ Nk such that (o1 · · · ol) is a subsequence of (o′1 · · · o′k) for which

• every observation is a successor of the preceding one in monotonically increasing epochs, and

• if o1 = o′j = (sw , pt , pkt), i.e. N
o′1−→ . . .

o′j=o1
−−−−→ Nj

o′j+1−−−→ . . .
o′k−→ Nk, then no o′i ∈

{o′1, · · · , o′j−1} precedes o1, and

• the ol transition is an OUT terminating at a host.

Unconstrained single-packet traces are not required to begin at a host. I write T̄ (N) for the set of uncon-

strained single-packet traces generated by N , and note that T (N) ⊆ T̄ (N).

Note that for a stable network N , T̄ (N) is equal to T (N).

Lemma 1 (Traces of a Stable Network). Let N be a stable network. Then for each trace t ∈ T̄ (N), there

exists a trace t′ ∈ T (N) such that t is a suffix of t′.

28

Definition 6 (Update Correctness). Let N be a stable static network and let ϕ be an LTL formula. The

command sequence cmds is correct with respect to N and ϕ if N̂ |= φ where N̂ is obtained from N by

setting C.cmds = cmds .

A network configuration is a static network which contains no packets. I can now present the

problem statement.

Definition 7 (Update Synthesis Problem). Given stable static network N , network configuration N ′, and

LTL specification ϕ, construct a sequence of commands cmds such that (i) N cmds−→ N ′′ where N ′′ ' N ′,

and (ii) cmds is correct with respect to ϕ.

2.1.3 Efficiently Checking Network Properties

To facilitate efficient checking of network properties via LTL model checkers, I show how to model

a network as a Kripke structure.

Kripke structures. A Kripke structure is a tuple (Q,Q0, δ, λ), where Q is a finite set of states,

Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Q is a transition relation, and λ : Q → 2AP labels each state

with a set of atomic propositions drawn from a fixed set AP . A Kripke structure is complete if every state

has at least one successor. A state q ∈ Q is a sink state if for all states q′, δ(q, q′) implies that q = q′,

and I call a Kripke structure DAG-like if the only cycles are self-loops on sink states. In this thesis, I will

consider complete and DAG-like Kripke structures. A trace t is an infinite sequence of states, t0t1 . . . such

that ∀i ≥ 0 : δ(ti, ti+1). Given a trace t, I write ti for the suffix of t starting at the i-th position—i.e.,

ti = titi+1 Given a set of traces T , I let T i denote the set {ti | t ∈ T }. Given a state q of a Kripke

structure K, let tracesK(q) be the set of traces of K starting from q and succK(q) be the set of states

defined by q′ ∈ succK(q) if and only if δ(q, q′). I will omit the subscript K when it is clear form the

context. A Kripke structure K = (Q,Q0, δ, λ) satisfies an LTL formula ϕ if for all states q0 ∈ Q0 I have

that traces(q0) |= ϕ.

Network Kripke structures. For every staticN , I can generate a Kripke structureK(N) containing

traces which correspond according to an intuitive trace relation ..

29

Definition 8 (Network Kripke Structure). Let N be a static network. I define a Kripke structure K(N) =

(Q,Q0, δ, λ) as follows. The set of states Q comprises tuples of the form (sw , pt , Tk). The set Q0 contains

states (sw , pt , Tk) where sw and pt are adjacent to an ingress link—i.e., there exists a link Lj and host h

such that Lj .l = h and Lj .l
′ = (sw , pt). Transition relation δ contains all pairs of states (sw , pt , Tk) and

(sw ′, pt ′, T ′k) where there exists a switch S and a link L such that S.sw = sw and either:

• there exists a link Lj and packets pkt ∈ Tk and pkt ′ ∈ T ′k such that L.l ′ = (sw , pt) and Lj .l =

(sw , pt j) and Lj .l
′ = (sw ′, pt ′) and (pkt ′, pt j) ∈ [[S.tbl]](pkt , pt).

• there exists a link Lj , a host h , and packets pkt ∈ Tk and pkt ′ ∈ T ′k such that L.l ′ = (sw , pt) and

Lj .l = (sw , pt ′) and Lj .l
′ = h and (pkt ′, pt ′) ∈ [[S.tbl]](pkt , pt).

• (sw , pt , Tk) = (sw ′, pt ′, T ′k) and there exists a packet pkt ∈ Tk such that L.l ′ = (sw , pt) and

[[S.tbl]](pkt , pt) = {}.

• (sw , pt , Tk) = (sw ′, pt ′, T ′k) and there exists a link Lj and host h such that Lj .l = (sw , pt) and

Lj .l
′ = h .

Finally, the labeling function λ maps each state (sw , pt , Tk) to Tk, which captures the set of all possible

header values of packets located at switch sw and port pt .

The four cases of the δ relation correspond to forwarding packets to an internal link, forwarding packets out

an egress, dropping packets on a switch, or reaching an egress (inducing a self-loop).

I now relate observations generated by a network and traces of the Kripke structure generated from it.

Definition 9 (Trace Relation). LetN be a static network andK a Kripke structure. Define . on observations

of N and states of K as (sw , pt , pkt) . (sw , pt , Tk) if and only if pkt ∈ Tk. Lift . to a relation on (finite)

sequences of observations and (infinite) traces by repeating the final observation and requiring . to hold

pointwise: o1 · · · ok . t if and only if oi . ti for i from 1 to k and ok . tj for all j > k.

I currently do not reason about packet modification, so the Kripke structure has disjoint parts cor-

responding to the traffic classes. It is straightforward to enable packet modification, by adding transitions

between the parts of the Kripke structure, but I leave this for future work. I now show that the generated

Kripke structure faithfully encodes the network semantics.

30

Lemma 2 (Network Kripke Structure Soundness). Let N be a static network and K = K(N) a network

Kripke structure. For every single-packet trace t in T (N) there exists a trace t′ of K from a start state such

that t . t′, and vice versa.

Proof. I proceed by induction over k, the length of the (finite prefix of the) trace. The base case k = 1 is

easy to see, since the lone observation in t must be on an ingress link, meaning the corresponding state in

K will be an initial state with a self-loop (case 3 of Definition 8), and these are equivalent via Definition 9.

For the inductive step (k > 1), I wish to show both directions of subtrace relation . to conclude

equivalence. First, let t = o1, · · · , ok+1 be a single-packet trace of length k + 1 in T (N), and I must show

that ∃t′ ∈ K(N) such that t . t′. Let tk be the prefix of t having length k. By my induction hypothesis, there

exists t′k = s1, · · · , sk−1, sk, sk, · · · ∈ K(N) such that tk . t′k. I have the successor relation ok v ok+1,

so Definition 2 and 8 tells me that I have a transition sk → s′ for some s′ ∈ K. I see that this s′ is exactly

what I need to construct t′ = s1, · · · , sk, s′, s′, · · · which satisfies the relation t . t′.

Now, let t′ = s1, · · · , sk, sk+1, sk+1, · · · be a trace in K(N) for which the finite prefix has length

k + 1. I must show that ∃t ∈ T (N) such that t . t′. Let t′k = s1, · · · , sk−1, sk, sk, · · · , and by my

induction hypothesis, and there exists tk = o1, · · · , ok such that tk . t′k. Consider transition sk → sk+1.

If sk = sk+1, then t′ = t′k, so I can let t = tk, and conclude that t . t′. Otherwise, if sk 6= sk+1, then I

have one of the first two cases in Definition 8, which correspond to the cases in Definition 2, allowing me to

construct an ok+1 such that ok v ok+1. I let t = o1, · · · , ok, ok+1, and conclude that t . t′.

This means that checking LTL over single-packet traces can be performed via LTL model-checking of

Kripke structures.

Checking network configurations. One key challenge arises because the network is a distributed

system. Packets can “see” an inconsistent configuration (some switches updated, some not), and reasoning

about possible interleavings of commands becomes intractable in this context. I can simplify the problem by

ensuring that each packet traverses at most one switch that was updated after the packet entered the network.

Definition 10 (Careful Command Sequences). A sequence of commands (cmd1 · · · cmdn) is careful if

every pair of switch updates is separated by a wait command.

31

In the rest of this chapter, I consider careful command sequences, and develop a sound and complete algo-

rithm that finds them efficiently. Section 2.2 describes a technique for removing wait commands that works

well in practice, but I leave optimal wait removal for future work. Recall that T (N) denotes the sequence

of all traces that a packet could take through the network, regardless of when the commands in N.cmds

are executed. This is a superset of the traces induced by each static Ni in a solution to the network update

problem. However, if cmds is careful, then each packet only encounters a single configuration, allowing the

correctness of the sequence to be reduced to the correctness of each Ni. To show this, I begin by present the

following auxiliary lemma.

Lemma 3 (Traces of a Careful Network). Let N be a stable network with C.cmds careful, and consider

a sequence of static networks induced by C.cmds . For every trace t ∈ T (N) there exists a stable static

network Ni in the sequence s.t. t ∈ T (Ni).

Proof. I. First, I show that at most one update transition can be involved in the trace. In other words, if

N
o′1−→ . . .

o′k−→ Nk where t = o1 · · · on is a subsequence of o′1 · · · o′k, and if f : N→ N is a bijection between

oi indices and o′i indices, then at most one of the transitions o′f(1), · · · , o
′
f(n) is an UPDATE transition.

Assume to the contrary that there are more than one such transitions, and consider two of them, o′i, o
′
j

where i, j ∈ {f(1), · · · , f(n)}, assuming without loss of generality that i < j. Now, since the sequence

C.cmds is careful, I must have both an INCR and FLUSH transition between o′i and o′j . This means that the

second update o′j cannot happen while the trace’s packet is still in the network, i.e. j > f(n), and I have

reached a contradiction.

II. Now, if there are zero update transitions, I am done, since the trace is contained in the first static

N . If there is one update transitionNk+1 = Nk[sw ← tbl], and this update occurs before the packet reaches

sw in the trace, then the trace is fully contained in Nk+1. Otherwise, the trace is fully contained in Nk.

I can now use this lemma to prove my claim about the correctness of careful command sequences.

Lemma 4 (Careful Correctness). Let N be a stable network with C.cmds careful and let ϕ be an LTL

formula. If cmds is careful and Ni |= φ for each static network in any sequence induced by cmds , then

cmds is correct with respect to ϕ.

32

Proof. Consider a trace t ∈ T (N). From Lemma 3, I have t ∈ T (Ni) for someNi in the induced sequence.

Thus t |= ϕ, since my hypothesis tells me thatNi |= ϕ. Since this is true for an arbitrary trace, I have shown

that T (N) |= ϕ, i.e. N |= ϕ, meaning that cmds is correct with respect to ϕ.

In the following lemmas, I show that checking the unique sequence of network configurations induced by

cmds is equivalent to the above.

Lemma 5 (Trace-Equivalence). Let N1, Nn be static networks where N1 → · · · → Nn and no transition is

an update command. For a single-packet trace t, I have t ∈ T (N1) ⇐⇒ t ∈ T (Nn).

Lemma 6 (Induced Sequence of Networks). Let N1 be a static network, and let N ′1 be the network obtained

by emptying all packets from N1. Let cmds be a sequence of commands, and let c1 · · · cn−1 be the subse-

quence of update commands. Construct sequence N ′1 → · · · → N ′n of empty networks by executing the

update commands in order. Now, given any N1 → · · · → Nn induced by cmds , I have Ni ' N ′i for all i.

In other words, any induced sequence of static networks is pointwise trace-equivalent to the unique sequence

of network configurations generated by running the update commands in order.

Next I will develop a sound and complete algorithm that solves the update synthesis problem for

careful sequences by checking configurations.

2.2 Update Synthesis Algorithm

This section presents a synthesis algorithm that searches through the space of possible solutions, using

counterexamples to detect wrong configurations and exploiting several optimizations.

2.2.1 Algorithm Description

ORDERUPDATE (Algorithm 2.1.1) returns a simple sequence of updates (one in which each switch

appears at most once), or fails if no such sequence exists. Note that I could broaden my simple definition,

e.g. k-simple, where each switch appears at most k times, but I have found the above restriction to work

well in practice. The core procedure is DFSFORORDER, which manages the search and invokes the model

checker (I use DFS because I expect common properties/configurations to admit many update sequences). It

33

Algorithm 2.1.1: ORDERUPDATE Algorithm.

Procedure ORDERUPDATE(Ni,Nf , ϕ)
Input: Initial static network Ni, final static configuration Nf , formula ϕ.
Output: update sequence L, or error ε if no update sequence exists.

1 W ← false // Formula encoding wrong configurations.

2 V ← false // Formula encoding visited configurations.

3 (ok, L)← DFSFORORDER(Ni,K(Ni),⊥, ϕ, λ0)
4 if ok then return L
5 else return ε // Failure---no update exists.

Procedure DFSFORORDER(N ,K,s,ϕ,λ)
Input: Static network N and Kripke structure K, next switch to update s, formula ϕ, and

labeling λ.
Output: Boolean ok if a correct update exists; correct update sequence L.

6 if N |= V ∨W then return (false, [])
7 if s = ⊥ then (ok, cex, λ)← modelCheck(K,ϕ)
8 else
9 (N ,K, S)← swUpdate(N , s)

10 (ok, cex, λ)← incrModelCheck(K,ϕ, S, λ)

11 V ← V ∨makeFormula(N)
12 if ¬ok then
13 W ←W ∨makeFormula(cex)
14 return (false, [])

15 if N = Nf then return (true, [s])
16 for s′ ∈ possibleUpdates(N) do
17 (ok, L)← DFSFORORDER(N ,K, s′, ϕ, λ)
18 if ok then return (true, (upd s′) :: wait :: L)

19 return (false, [])

attempts to add a switch s to the current update sequence, yielding a new network configuration. I maintain

two formulas, V and W , tracking the set of configurations that have been visited so far, and the set of

configurations excluded by counterexamples.

To check whether all packet traces in this configuration satisfy the LTL property ϕ, I use my (incre-

mental) model checking algorithm (discussed in Section 2.3). First, I call a full check of the model (line 7).

The model checker labels the Kripke structure nodes with information about what formulas hold for paths

starting at that state. The labeling (stored in λ) is then re-used in the subsequent model checking calls for

related Kripke structures (line 10). The parameters passed in the incremental model checking call are: up-

dated Kripke structure K, specification ϕ, set of nodes S in K whose transition function has changed by

the update of the switch s, and correct labeling λ of the Kripke structure before the update. Note that before

34

the initial model checking, I convert the network configuration N to a Kripke structure K. The update of K

is performed by a function swUpdate that returns a triple (N ′, S,K ′), where N ′ is the new static network,

K ′ is the updated Kripke structure obtained as K(N ′), and S is the set of nodes that have different outgoing

transitions in K ′.

If the model checker returns true, then N is safe and the search proceeds recursively, after adding

(upd s′) to the current sequence of commands. If the model checker returns false, the search backtracks,

using the counterexample-learning approach below.

2.2.2 Optimizations

I now present optimizations improving synthesis (pruning with counterexamples, early search

termination), and improving efficiency of synthesized updates (wait removal).

Counterexamples. Counterexample-based pruning learns network configurations that do not sat-

isfy the specification to avoid making future model checking calls that are certain to fail. The function

makeFormula(cex) (Line 13) returns a formula representing the set of switches that occurred in the coun-

terexample trace cex, with flags indicating whether each switch was updated. This allows equivalent future

configurations to be eliminated without invoking the model checker. Recall the red-green example in Sec-

tion 1.3.1 and suppose that I update A1 and then C2. At the intermediate configuration obtained by updating

just A1, packets will be dropped at C2, and the specification will not be satisfied. The formula for the un-

safe set of configurations that have A1 updated and C2 not updated will be added to W . In practice, many

counterexamples are small compared to network size, and this greatly prunes the search space.

Early search termination. The early search termination optimization speeds up termination of

the search when no (switch-granularity) update sequence is possible. Recall how I use counterexamples to

prune configurations. With similar reasoning, I can use counterexamples for pruning possible sequences

of updates. Consider a counterexample trace which involves three nodes A,B,C, with A updated, B

updated, and C not updated. This can be seen as requiring that C must be updated before A, or C must

be updated before B. Early search termination involves collecting such constraints on possible updates,

and terminating if these constraints taken together form a contradiction. In my tool, this is done efficiently

35

using an (incremental) SAT solver. If the solver determines that no update sequence is possible, the search

terminates. For simplicity, early search termination is not shown in Algorithm 2.1.1.

Wait removal. This heuristic eliminates waits that are unnecessary for correctness. Consider an

update sequence L = cmd0cmd1 · · · cmdn, and consider some switch update cmdk = (upd s). In the

configuration resulting from executing the sequence cmd0cmd1 · · · cmdk−1, if the switch s cannot possibly

receive a packet which passed through some switch s0 before an update cmd j=(upd s0) where j < k, then

I can update s without waiting. Thus, I can remove some unnecessary waits if I can maintain reachability-

between-switches information during the update. Wait removal is not shown in Algorithm 2.1.1, but in my

tool, it operates as a post-processing pass once an update sequence is found. In practice, this removes a

majority of unnecessary waits (see § 2.4).

2.2.3 Formal Properties

The following two theorems show that my algorithm is sound for careful updates, and complete if I

limit my search to simple update sequences.

Theorem 1 (Soundness). Given initial network Ni, final configuration Nf , and LTL formula ϕ, if OR-

DERUPDATE returns a command sequence cmds , then Ni
cmds−→ N ′ s.t. N ′ ' Nf , and cmds is correct with

respect to ϕ and Ni.

Proof. It is easy to show that if ORDERUPDATE returns cmds , then Ni
cmds−→ N ′ where N ′ ' Nf . Each up-

date in the returned sequence changes a switch configuration of one switch sw to the configuration Nf (sw),

and termination occurs when all (and only) switches sw such that Ni(sw) 6= Nf (sw) have been updated.

Observe that if ORDERUPDATE returns cmds , the sequence can be made careful by choosing an

adequate delay between each update command, and for all j ∈ {0, · · · , n}, Nj |= ϕ. This is ensured by the

model checker call (Line 7). I use Lemma 4 to conclude that cmds is correct with respect to ϕ and Ni.

To show that ORDERUPDATE is complete with respect to simple and careful command sequences, I

observe that ORDERUPDATE searches through all simple and careful sequences.

36

Theorem 2 (Completeness). Given initial network Ni, final configuration Nf , and specification ϕ, if there

exists a simple, careful sequence cmds with Ni
cmds−→ N ′ s.t. N ′ ' Nf , then ORDERUPDATE returns one

such sequence.

2.3 Incremental Model Checking

I now present an incremental algorithm for model checking Kripke structures. This algorithm is

central to my synthesis tool, which invokes the model checker on many closely related structures. The

algorithm makes use of the fact that the only cycles in the Kripke structure are self-loops on sink nodes—

something that is true of structures encoding loop-free network configurations—and re-labels the states of a

previously-labeled Kripke structure with the (possibly different) formulas that hold after an update.

2.3.1 State Labeling

I begin with an algorithm for labeling states of a Kripke structure with sets of formulas, following the

approach of [124] (WVS) and [120]. The WVS algorithm translates an LTL formulaϕ into a local automaton

and an eventuality automaton. The local automaton checks consistency between a state and its predecessor,

and handles labeling of all formulas except ϕ1 U ϕ2, which is checked by the eventuality automaton. The

two automata are composed into a single Büchi automaton whose states correspond to subsets of the set of

subformulas of ϕ and their negations. Hence, I label each Kripke state by a set L of sets of formulas such

that if a state q is labeled by L, then for each set of formulas S in L, there exists a trace t starting from q

satisfying all the formulas in S.

I now describe state labeling precisely. Let ϕ be an LTL formula in NNF. The extended closure of

ϕ, written ecl(ϕ), is the set of all subformulas of ϕ and their negations:

• true ∈ ecl(ϕ)

• ϕ ∈ ecl(ϕ)

• If ψ ∈ ecl(ϕ), then ¬ψ ∈ ecl(ϕ)

(I identify ψ with ¬¬ψ, for all ψ).

• If ϕ1 ∨ ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).

37

• If ϕ1 ∧ ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).

• If X ϕ1 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ).

• If ϕ1 U ϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ)

• If ϕ1Rϕ2 ∈ ecl(ϕ), then ϕ1 ∈ ecl(ϕ) and ϕ2 ∈ ecl(ϕ).

A subset M ⊂ ecl(ϕ) of the extended closure is said to be maximally consistent if it contains true and is

simultaneously closed and consistent under boolean operations:

• true ∈M

• ψ ∈M iff ¬ψ 6∈M (I identify ψ with ¬¬ψ, for all ψ)

• ϕ1 ∨ ϕ2 ∈M iff (ϕ1 ∈M or ϕ2 ∈M)

• ϕ1 ∧ ϕ2 ∈M iff (ϕ1 ∈M and ϕ2 ∈M)

Likewise, the relation follows(M1,M2) captures the notion of successor induced by temporal operators,

lifted to maximally-consistent sets. I say follows(M1,M2) holds if and only if all of the following hold:

• X ϕ1 ∈M1 iff ϕ1 ∈M2

• ϕ1 U ϕ2 ∈M1 iff
(
ϕ2 ∈M1 ∨ (ϕ1 ∈M1 ∧ ϕ1 U ϕ2 ∈M2)

)
• ϕ1Rϕ2 ∈M1 iff

(
ϕ1 ∈M1 ∨ (ϕ2 ∈M1 ∧ ϕ1Rϕ2 ∈M2)

)
Given a trace t and a maximally-consistent set M , I write t |= M if and only if for all ψ ∈M , I have t |= ψ.

For the rest of this section, I fix a Kripke structure K = (Q,Q0, δ, λ), a state q in Q, an LTL formula

ϕ in NNF, and a maximally-consistent set M ⊂ ecl(ϕ).

To compute the label of a state q, there are two cases depending on whether it is a sink state or a non-

sink state. If q is a sink state, the function HoldsSink(q,M) computes a predicate that is true if and only

if, for all ψ ∈ M and the unique trace t starting from q, I have t |= ψ. More formally, HoldsSink(q,M)

is defined to be (∀ψ ∈ M : Holds0 (q, ψ)), where Holds0 is defined as in Figure 2.2. The function Holds0

computes a predicate that is true if and only if ψ holds at q. For example, Holds0 (q, φ1 U φ2) is defined as

Holds0 (q, φ2) because the only transition from q is a self-loop.

For the second case, suppose q is a non-sink state. If I am given a labeling for succK(q) (the suc-

cessors of the node q), I can extend it to a labeling for q. Let V ⊆ Q be a set of vertices. A func-

tion labGrK is a correct labeling of K with respect to ϕ and V if for every v ∈ V , it returns a set

38

Holds0 (q, p) = q |= p
Holds0 (q,¬p) = q 6|= p

Holds0 (q, φ1 ∧ φ2) = Holds0 (q, φ1) ∧Holds0 (q, φ2)
Holds0 (q, φ1 ∨ φ2) = Holds0 (q, φ1) ∨Holds0 (q, φ2)

Holds0 (q,Xφ) = Holds0 (q, φ)
Holds0 (q, φ1 U φ2) = Holds0 (q, φ2)
Holds0 (q, φ1 R φ2) = Holds0 (q, φ1) ∨Holds0 (q, φ2)

Figure 2.2: The Holds0 function

L of maximally consistent sets such that (a) M ∈ L if and only if M ⊂ ecl(ϕ), and (b) there ex-

ists a trace t in traces(v) such that t |= M . Suppose that labGrK is a correct labeling of K with re-

spect to ϕ and succK(q). The function HoldsK(q,M, labGrK) computes a predicate that is true if and

only if there exists a trace t in tracesK(q) with t |= M . Formally, HoldsK(q,M, labGrK) is defined as

(λ(q) = (AP ∩M)) ∧ ∃q′ ∈ succK(q),M ′ ∈ labGrK(q′) : follows(M,M ′).

The following captures the correctness of labeling:

Lemma 7. First, HoldsSink(q,M) ⇔ ∃t∈traces(q) : t |= M for sink states q. Second, if labGrK is a

correct labeling with respect to ϕ and succK(q), then HoldsK(q,M, labGrK)⇔ ∃t∈tracesK(q) : t |= M .

Proof. First, for sink states, observe that there is a unique trace t in traces(q), as q is a sink state. I first prove

that t |= ϕ iff Holds0 (q, ϕ). I prove this by induction on the structure of the LTL formula. Then I observe

that there is a unique maximally-consistent setM such that t |= M . This is the set {ψ | t |= ψ∧ψ ∈ ecl(ϕ)}.

I then use the definition of HoldsSink(q,M) for sink states to conclude the proof.

Now consider non-sink states: I first prove soundness, i.e., if HoldsK(q,M, labGrK), then there

exists t ∈ traces(q) such that t |= M . I have HoldsK(q,M, labGrK) iff (λ(q) = (AP ∩M)) and there

exists q′ ∈ succK(M), and M ′ ∈ labGrK(q′) such that follows(M,M ′). By assumption of the theorem, I

have that if M ′ ∈ labGrK(q′), then there exists a trace t′ in traces(q′) such that t′ |= M ′. Consider a trace t

such that t0 = q and t1 = t′. For each ψ ∈M , I can prove that t |= ψ as follows. The base case of the proof

by induction is implied by the fact that q |= (AP ∩M). The inductive cases are proven using the definitions

of maximally-consistent set and the function follows . I now prove completeness, i.e., that if there exists a

trace t in tracesK(q) such that t |= M , then HoldsK(q,M, labGrK) is true. Let t be the trace qq1q2 It

is easy to see that if M is a maximally-consistent set, and t |= M , then M = {ψ | ψ ∈ ecl(ϕ) ∧ t |= ψ}.

39

Consider the set of formulas S = {ψ | ψ ∈ ecl(ϕ)∧ t1 |= ψ}. Observe that S is a maximally-consistent set.

By assumption of the theorem, I have that S is in labGrK(q1). It is easy to verify that follows(M,S).

Finally, I define labelNodeK(ϕ, q, labGrK), which computes a label L for q such that M ∈ L if

and only if there exists a trace t ∈ tracesK(q) such that t |= M for all M ⊂ ecl(ϕ). I assume that

labGrK is a correct labeling ofK with respect to ϕ and succ(q). For sink states, labelNodeK(ϕ, q, labGrK)

returns {M | M ∈ ecl(ϕ) ∧ HoldsSink(q,M)}, while for non-sink states it returns {M | M ∈ ecl(ϕ) ∧

HoldsK(q,M, labGrK)}.

2.3.2 Incremental Algorithm

To incrementally model check a modified Kripke structure, I must re-label its states with the formulas

that hold after the update.

Consider two Kripke structures K = (Q,Q0, δ, λ) and K ′ = (Q′, Q′0, δ
′, λ′), such that Q0 = Q′0.

Furthermore, assume that Q = Q′, and there is a set U ⊆ Q such that δ and δ′ differ only on nodes in U . I

call such a triple (K,K ′, U) an update of K.

An update (K,K ′, U) might add or remove edges connected to a (small) set of nodes, corresponding

to a change in the rules on a switch. Suppose that labGrK is a correct labeling of K with respect to ϕ and

Q. The incremental model checking problem is defined as follows: I am given an update (K,K ′, U), and

labGrK , and I want to know whether K ′ satisfies ϕ. The naı̈ve approach is to model check K ′ without

using the labeling labGrK . I call this the monolithic approach. In contrast, the incremental approach uses

labGrK (and thus intuitively re-uses the results of model checking K to efficiently verify K ′).

Example. Consider the left side of Figure 2.3, withH the only initial state. Suppose that the update

modifies J , and the δ′ relation applied to J only contains the pair (J,N), and consider labeling the structure

with formulas F a, F b, and F a∨F b. To simplify the example, I label a node by all those formulas which

hold for at least one path starting from the node (note that in the algorithm, a node is labeled by a set of

sets of formulas, rather than a set of formulas). I will have that all the nodes are labeled by F a ∨ F b, and

in addition the nodes K, I,H,M, J contain label F a, and the nodes L, I,H,N contain F b. Now I want

to relabel the structure after the update (right-hand side). Given that the update changes only node J , the

40

H

I J

a K b L a M b N

H

I J

a K b L a M b N

Figure 2.3: Incremental labeling—Initial (left), Final (right)

labeling can only change for J and its ancestors. I therefore start labeling node J , and find that it will now

be labeled with F b instead of F a. Labeling proceeds to H , whose label does not change (still labeled by

all of F a, F b, F a ∨ F b). The labeling process could then stop, even if H has ancestors.

Re-labeling states. Let ancestorsK(V) be the ancestors of V in K—i.e., a set of vertices s.t.

ancestorsK(V) ⊆ Q and q ∈ ancestorsK(V), if some node v ∈ V is reachable from q. To define

incremental model checking for ϕ, I need a function accepting a property ϕ, set of vertices V , labeling

labGrK that is correct for K with respect to ϕ and Q \ ancestorsK(V), and returns a correct labeling of K

with respect to ϕ and Q. This function is:

relblK(ϕ, labGrK , V) =

labGrK if V = ∅

relblK(ϕ, labGr ′K , V
′) otherwise

where labGr ′K(v) is labelNodeK(ϕ, v, labGrK) if v ∈ V , and it is labGrK(v) if v 6∈ V . The set V ′ is

{q | ∃v ∈ V : v ∈ succK(q)}.

Theorem 3. Let V ⊆ Q be a set of vertices and labGrK a correct labeling with respect to ϕ and Q \

ancestorsK(V). Then relblK(ϕ, labGrK , V) is a correct labeling w.r.t. ϕ and Q.

Proof. I first note that only ancestors of nodes in V are re-labeled—all the other nodes are correctly labeled

by assumption on labGr . I say that a node q is at level k w.r.t. a set of vertices T iff the longest simple path

from q to a node in T is k. Let Hk be the set of nodes at level k from V . I prove by induction on k that at

k-th iteration, I have a correct labeling of K w.r.t. ϕ and (S \ ancestorsK(V)) ∪Hk, where S is the set of

states of K. I can prove the inductive claim using Lemma 7.

Given a labeling that is correct with respect to ϕ andQ, it is easy to check whether ϕ is true for all the

traces starting in the initial states: the predicate checkInitStatesK(labGrK , ϕ) is defined as ∀q0 ∈ Q0,M ∈

41

labGrK(q0) : ϕ ∈ M . Next, let Qf be the set of all sink states of K. Then ancestorsK(Qf) is the set Q

of all states K. Therefore, for any initial labeling labGr0
K , relbl(ϕ, labGr0

K , Qf) is a correct labeling with

respect to ϕ and Q. The function modelCheckK(ϕ) is defined to be equal to checkInitStatesK(relblK(ϕ,

labGr0
K , Qf), ϕ), where I can set labGr0

K to be the empty labeling λv.∅.

I now define my incremental model checking function. Let (K,K ′, U) be an update, and labGrK a

previously-computed correct labeling of K with respect to ϕ and Q, where Q is the set of states of K. The

function incrModelCheck(K,ϕ,U, labGrK) is defined as checkInitStatesK′(relblK′(ϕ, labGrK , U), ϕ).

The following shows the correctness of my model checking functions.

Corollary 1. First, modelCheckK(ϕ) = true ⇐⇒ K |= ϕ. Second, for (K,K ′, U) and labGrK as

above, I have incrModelCheck(K,ϕ,U, labGrK) = true ⇐⇒ K |= ϕ.

Proof. Using Theorem 3, and the fact that the set ancestorsK(Sf) is the set S of all states K, I obtain that

labGrK = relblK(ϕ, labGr0
K , Sf) is a correct labeling of K with respect to ϕ and S. In particular, for all

initial states q0, I have that for all M ⊂ ecl(ϕ), m ∈ labGrK(q0) iff there exists a trace t ∈ tracesK(q0)

such that t |= M . I now use the definition of checkInitStates to show that if checkInitStates returns true,

then there is no initial state q0 such that there exists M ∈ labGrK(q0) such that ¬ϕ ∈ M . Thus for all

initial states q0, for all traces t in traces(t0), I have that t |= ϕ.

The proof for incremental model checking is similar.

The runtime complexity of the modelCheckK function is O(|K| × 2|ϕ|). The runtime complexity of

the incrModelCheck function is O(|ancestorsK(U)| × 2|ϕ|), where U is the set of nodes being updated.

Counterexamples. This incremental algorithm can generate counterexamples in cases where the

formula does not hold. A formula ¬ϕ does not hold if an initial state is labeled by L, such that there exists

a set M ∈ L, such that ¬ϕ ∈ M . Examining the definition of labelNodeK , I find that in order to add a set

M to the label L of a node q, there is a set M ′ in the label of one a child q′ of q that explains why M is in

L. The first node of the counterexample trace starting from q is one such child q′.

42

2.4 Implementation and Experiments

I have built a prototype tool that implements the algorithms described in this thesis. It consists of 7K

lines of OCaml code. The system works by building a Kripke structure (§2.1) and then repeatedly interacting

with a model checker to synthesize an update. I currently provide four checker backends: Incremental uses

incremental relabeling to check and recheck formulas, Batch re-labels the entire graph on each call, NuSMV

queries a state-of-the-art symbolic model checker in batch mode, and NetPlumber queries an incremental

network model checker [64]. All tools except NetPlumber provide counterexample traces, so my system

learns from counterexamples whenever possible (§2.2).

Experiments. To evaluate performance, I generated configurations for a variety of real-world

topologies and ran experiments in which I measured the amount of time needed to synthesize an update

(or discover that no order update exists). These experiments were designed to answer two key questions:

(1) how the performance of my Incremental checker compares to state-of-the-art tools (NuSMV and Net-

Plumber), and (2) whether my synthesizer scales to large topologies. I used the Topology Zoo [69] dataset,

which consists of 261 actual wide-area topologies, as well as synthetically constructed Small-World [93]

and FatTree [40] topologies. I ran the experiments on a 64-bit Ubuntu machine with 20GB RAM and a

quad-core Intel i5-4570 CPU (3.2 GHz) and imposed a 10-minute timeout for each run. I ignored runs in

which the solver died due to an out-of-memory error or timeout—these are infrequent (less than 8% of the

996 runs for Figure 2.4), and my Incremental solver only died in instances where other solvers did too.

Configurations and properties. A recent paper [75] surveyed data-center operators to discover

common update scenarios, which mostly involve taking switches on/off-line and migrating traffic between

switches/hosts. I designed experiments around a similar scenario. To create configurations, I connected

random pairs of nodes (s, d) via disjoint initial/final paths Wi,Wf , forming a “diamond”, and asserted one

of the following properties for each pair:

• Reachability: traffic from a given source must reach a certain destination: (port=s)⇒ F (port=d)

• Waypointing: traffic must traverse a waypoint w:

(port=s)⇒
(
(port6=d) U ((port=w) ∧ F (port=d))

)

43

0 200 400 600 (switches)
0

50

100 (a)
R

un
tim

e
(s

)
Topology Zoo

NuSMV
Batch
Incremental

0 200 400 600 (switches)
0

50

100 (b)
FatTree

0 200 400 600 (switches)
0

50

100 (c)
Small-World

0 5k 10k (rules)
0

20
40
60 (d)

R
un

tim
e

(s
)

NetPlumber
Incremental

0 5k 10k (rules)
0

20
40
60 (e)

0 5k 10k (rules)
0

20
40
60 (f)

Figure 2.4: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology
Zoo, FatTree, Small-World topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

• Service chaining: traffic must waypoint through several intermediate nodes: (port = s) ⇒

way(W,d), where

way([], d) ≡ F (port = d)

way(wi :: W,d) ≡
(
(
∧

wk∈W port6=wk ∧ port6=d)

U ((port = wi) ∧ way(W,d))
)
.

Incremental vs. NuSMV/Batch. Figure 2.4 (a-c) compares the performance of Incremental and

NuSMV backends for the reachability property. Of the 247 Topology Zoo inputs that completed success-

fully, my tool solved all of them faster. The measured speedups were large, with a geometric mean of

447.23x. For the 24 FatTree examples, the mean speedup was 465.03x, and for the 25 Small-World ex-

amples, the mean speedup was 4484.73x. I also compared the Incremental and Batch solvers on the same

inputs. Incremental performs better on almost all examples, with mean speedup of 4.26x, 5.27x, 11.74x on

the datasets shown in Figure 2.4(a-c) and maximum runtimes of 0.36s, 2.80s, and 0.92s respectively. The

maximum runtimes for Batch were 6.71s, 39.75s, and 12.50s.

Incremental vs. NetPlumber. I also measured the performance of Incremental versus the network

property checker NetPlumber (Figure 2.4(d-f)). Note that NetPlumber uses rule-granularity for updates, so

I enabled this mode in my tool for these experiments. For the three datasets, my checker is faster on all

experiments, with mean speedups of (6.41x, 4.90x, 17.19x). NetPlumber does not report counterexamples,

putting it at a disadvantage in this end-to-end comparison, so I also measured total Incremental versus

NetPlumber runtime on the same set of model-checking questions posed by Incremental for the Small-World

example. My tool is still faster on all instances, with a mean speedup of 2.74x.

44

0 200 400 600 800 1k (switches)
0

50
100
150
200

(g)

R
un

tim
e

(s
)

Service Chaining
Waypointing
Reachability

0 200 400 600 800 1k (switches)
0

50
100
150
200

(h)

R
un

tim
e

(s
)

0 10k 20k 30k 40k 50k (rules)
0

500

1k
(i)

R
un

tim
e

(s
)

Figure 2.5: Overall scalability results: (g) Scalability of Incremental on Small-World topologies of increasing size; (h) Scalability
when no correct switch-granularity update exists (i.e. algorithm reports “impossible”), and (i) Scalability of fine-grained (rule-
granularity) approach for solving switch-impossible examples in (h).

Scalability. To quantify my tool’s scalability, I constructed Small World topologies with up to 1500

switches, and ran experiments with large diamond updates—the largest has 1015 switches updating. The

results appear in Figure 2.5(g). The maximum synthesis times for the three properties were 129.04s, 30.11s,

and 0.85s, which shows that my tool scales to problems of realistic size.

Infeasible Updates. I also considered examples for which there is no switch-granular update. Fig-

ure 2.5(h) shows the results of experiments where I generated a second diamond atop the first one, requiring

it to route traffic in the opposite direction. Using switch-granularity, the inputs are reported as unsolvable in

maximum time 153.48s, 33.48s, and 0.69s. Using rule-granularity, these inputs are solved successfully for

up to 1000 switches with maximum times of 776.13s, 512.84s, and 82.00s (see Figure 2.5(i)).

Waits. I also separately measured the time needed to run the wait-removal heuristic for the Fig-

ure 2.5 experiments. For (g), the maximum wait-removal runtime was 0.89s, resulting in 2 needed waits

for each instance. For (i), the maximum wait-removal runtime was 103.87s, resulting in about 2.6 waits

on average (with a maximum of 4). For the largest problems in (g) and (i), this corresponds to removal of

1397/1399 and 55823/55826 waits (about 99.9%).

2.5 Related Work

This chapter extends preliminary work reported in a workshop paper [94]. I present a more precise

and realistic network model, and replace expensive calls to an external model checker with calls to a new

45

built-in incremental network model checker. I extend the DFS search procedure with optimizations and

heuristics that improve performance dramatically. Finally, I evaluate my tool on a comprehensive set of

benchmarks with real-world topologies.

Synthesis of concurrent programs. There is much previous work on synthesis for concurrent

programs [121, 113, 52]. In particular, work by Solar-Lezama et al. [113] and Vechev et al. [121] synthesizes

sequences of instructions. However, traditional synthesis and synthesis for networking are quite different.

First, traditional synthesis is a game against the environment which (in the concurrent programming case)

provides inputs and schedules threads; in contrast, my synthesis problem involves reachability on the space

of configurations. Second, my space of configurations is very rich, meaning that checking configurations is

itself a model checking problem.

Network updates. There are many protocol- and property-specific algorithms for implementing

network updates, e.g. avoiding packet/bandwidth loss during planned maintenance to BGP [43, 104]. Other

work avoids routing loops and blackholes during IGP migration [118]. Work on network updates in SDN

proposed the notion of consistent updates and several implementation mechanisms, including two-phase

updates [105]. Other work explores propagating updates incrementally, reducing the space overhead on

switches [63]. As mentioned in Section 1.3.1, recent work proposes ordering updates for specific proper-

ties [59], whereas I can handle combinations and variants of these properties. Furthermore, SWAN and

zUpdate add support for bandwidth guarantees [54, 75]. Zhou et al. [126] consider customizable trace

properties, and propose a dynamic algorithm to find order updates. This solution can take into account un-

predictable delays caused by switch updates. However, it may not always find a solution, even if one exists.

In contrast, I obtain a completeness guarantee for my static algorithm. Ludwig et al. [79] consider ordering

updates for waypointing properties.

Model checking. Model checking has been used for network verification [108, 81, 65, 66, 82].

The closest to my work is the incremental checker NetPlumber [64]. Surface-level differences include the

specification languages (LTL vs. regular expressions), and NetPlumber’s lack of counterexample output.

The main difference is incrementality: Netplumber restricts checking to “probe nodes,” keeping track of

“header-space” reachability information for those nodes, and then performing property queries based on

46

this. In contrast, I look at the property, keeping track of portions of the property holding at each node,

which keeps incremental rechecking times low. The empirical comparison (Section 2.4) showed better

performance of my tool as a back-end for synthesis.

Incremental model checking has been studied previously, with [112] presenting the first incremental

model checking algorithm, for alternation-free µ-calculus. I consider LTL properties and specialize my algo-

rithm to exploit the no-forwarding-loops assumption. The paper [26] introduced an incremental algorithm,

but it is specific to the type of partial results produced by IC3 [17].

47

Chapter 3

Event-Driven Network Programming

3.1 Event-Driven Network Behavior

This chapter presents my new consistency model for stateful network programs: event-driven con-

sistent update.

Preliminaries. A packet pkt is a record of fields {f1; f2; · · · ; fn}, where fields f represent prop-

erties like source/destination address, protocol type, etc. The (numeric) values of fields are accessed via the

notation pkt .f , and field updates are denoted pkt [f ← n]. A switch sw is a node in the network with one

or more ports pt . A host is a switch that can be a source or a sink of packets. A location l is a switch-port

pair n:m. Locations may be connected by (unidirectional) physical links (lsrc, ldst) in the topology.

Packet forwarding is dictated by a network configuration C. A located packet lp = (pkt , sw , pt) is

a tuple consisting of a packet and a location sw :pt . I model C as a relation on located packets: if C(lp, lp′),

then the network maps lp to lp′, possibly changing its location and rewriting some of its fields. Since C is a

relation, it allows multiple output packets to be generated from a single input. In a real network, the config-

uration only forwards packets between ports within each individual switch, but for convenience, I assume

that my C also captures link behavior (forwarding between switches), i.e. C((pkt , n1,m1), (pkt , n2,m2))

holds for each link (n1:m1, n2:m2). I refer to a sequence of located packets that starts at a host and can be

produced by C as a packet trace, using Traces(C) to denote the set of all such packet traces. I let C be the

set of all configurations.

Consider a tuple ntr = (lp0lp1 · · · , T), where the first component is a sequence of located packets,

and each t ∈ T is an increasing sequence of indices corresponding to located packets in the sequence. I call

such a tuple a network trace if and only if the following conditions hold:

48

(1) for each lpj , I have j ∈ t for some t ∈ T , and

(2) for each t=(k0k1 · · ·)∈T , lpk0 is at a host, and ∃C∈C such that C(lpki , lpki+1
) holds for all i, and

(3) if I consider the graph G with nodes {k : (∃t ∈ T : k ∈ t)} and edges {(ki, ki+1) : (∃t ∈ T : t =

k0k1 · · · kiki+1 · · ·)}, then G is a family of trees rooted at K = {k0 : (∃t ∈ T : t = k0 · · ·)}.

I will use ntr↓k to denote the set {t ∈ T : k ∈ t}, and when t = (k0k1 · · ·) ∈ T , I can use similar

notation ntr↓t to denote the packet trace lpk0 lpk1 · · · . Intuitively, I have defined a network trace to be

an interleaving of these packet traces (the packet traces form the family of trees because, as previously

mentioned, the configuration allows multiple output packets from a single input packet). Ultimately, I will

introduce a consistency definition that dictates which interleavings of packet traces are correct.

I now define how the network changes its configuration in response to events. An event e is a tuple

(ϕ, sw , pt)eid , where eid is an (optional) event identifier and ϕ is a first-order formula over fields. Events

model the arrival of a packet satisfying ϕ (denoted pkt |= ϕ) at location sw :pt . Note that I could have

other types of events—anything that a switch can detect could be an event—but for simplicity, I focus on

packet events. I say that a located packet lp = (pkt , sw ′, pt ′) matches an event e = (ϕ, sw , pt) (denoted

by lp |= e) if and only if sw = sw ′ ∧ pt = pt ′ ∧ pkt |= ϕ.

Definition 11 (Happens-before relation ≺ntr). Given a network trace ntr = (lp0lp1 · · · , T), the happens-

before relation ≺ntr is the least partial order on located packets that

• respects the total order induced by ntr at switches, i.e., ∀i, j : lpi ≺ lpj ⇐ i < j ∧ lpi =

(pkt , sw , pt) ∧ lpj = (pkt ′, sw , pt ′), and

• respects the total order induced by ntr for each packet, i.e., ∀i, j : lpi ≺ lpj ⇐ i < j ∧ ∃t ∈ T :

i ∈ t ∧ j ∈ t.

Event-Driven Consistent Update. In Section 1.3.2, I informally defined an event-driven consistent

update as a triple Ci
e−→ Cf consisting of an initial configuration Ci, event e, and final configuration Cf .

Here, I formalize that definition in a way that describes sequences of events and configurations (in the single-

event case, this formal definition is equivalent to the informal one). I denote an event-driven consistent

update as a pair (U, E), where U is a sequence C0
e0−→ C1

e1−→ · · · en−→ Cn+1, and {e0, · · · , en} ⊆ E .

Let ntr = (lp0lp1 · · · , T) be a network trace. Given an event-driven consistent update (U, E), I need

49

Figure 3.1: Example topology with four switches and hosts.

the indices where the events from U first occurred. Specifically, I wish to find the sequence k0, · · · , kn

where lpj does not match any e ∈ E for any j > kn, and the following properties hold for all 0 ≤ i ≤ n

(assuming k(−1) = −1 for convenience):

• ki > ki−1, and

• lpki matches ei, and for all j, if ki−1 < j < ki then lpj does not match ei (i.e., ki is the first

occurrence of ei after the index ki−1), and

• ∃t ∈ ntr↓ki such that t is in Traces(Ci) (intuitively, the event ei can be triggered only by a packet

processed in the immediately preceding configuration).

If such a sequence exists, it is unique, and I denote it by FO(ntr , U), shorthand for “first occurrences.”

Definition 12 (Event-driven consistent update correctness). A network trace ntr = (lp0lp1 · · · , T) is cor-

rect with respect to an event-driven consistent update U = C0
e0−→ C1

e1−→ · · · en−→ Cn+1, if FO(ntr , U) =

k0, · · · , kn exists, and for all 0 ≤ i ≤ n, the following holds for each ntr↓t = lp′0lp′1 · · · where t ∈ T :

• ntr↓t is in Traces(C) for some C ∈ {C0, · · · , Cn+1} (packet is processed entirely by one config-

uration), and

• if ∀j : lp′j ≺ lpki , then ntr↓t is in Traces(C) for some C ∈ {C0, · · · , Ci} (the packet is processed

entirely in a preceding configuration), and

• if ∀j : lpki ≺ lp′j , then ntr↓t is in Traces(C) for some C ∈ {Ci+1, · · · , Cn+1} (the packet is

processed entirely in a following configuration).

To illustrate, consider Figure 3.1. I describe an update Ci
e−→ Cf . In the initial configuration Ci,

the host H1 can send packets to H2, but not vice-versa. In the final configuration Cf , traffic from H2 to

H1 is allowed. Event e models the arrival to s4 of a packet from H1 (imagine s4 is part of a distributed

50

firewall). Assume that e occurs, and immediately afterwards, H2 wants to send a packet to s1. Can s2 drop

the packet (as it would do in configuration Ci)? Event-driven consistent updates allow this, as otherwise I

would require s2 to react immediately to the event at s4, which would be an example of action at a distance.

Formally, the occurrence of e is not in a happens-before relation with the arrival of the new packet to s2. On

the other hand, if e.g. s4 forwards some packets to s1 and s2 before the new packet from H2 arrives, s1 and

s2 would be required to change their configurations, and the packet would be allowed to reach H1.

Network Event Structures. As I have shown, event-driven consistent updates specify how the

network should behave during a sequence of updates triggered by events, but additionally, I want the ability

to capture constraints between the events themselves. For example, I might wish to say that e2 can only

happen after e1 has occurred, or that e2 and e3 cannot both occur in the same network trace.

To model such constraints, I turn to the event structures model introduced by Winskel [123]. Intu-

itively, an event structure endows a set of events E with (a) a consistency predicate (con) specifying which

events are allowed to occur in the same sequence, and (b) an enabling relation (`) specifying a (partial)

order in which events can occur. This is formalized in the following definition (note that I use ⊆fin to mean

“finite subset,” and Pfin(X) = {Y : Y ⊆fin P(X)}).

Definition 13 (Event structure). An event structure is a tuple (E , con,`) where:

• E is a set of events,

• con : (Pfin(E)→ Boolean) is a consistency predicate that satisfies con(X) ∧ Y⊆X ⇒ con(Y),

• ` : (P(E)×E → Boolean) is an enabling relation that satisfies (X ` e)∧X ⊆ Y =⇒ (Y ` e).

An event structure can be seen as defining a transition system whose states are subsets of E that are consistent

and reachable via the enabling relation. I term these subsets event-sets (called “configurations” in [123]).

Definition 14 (Event-set of an event structure). Given an event structure N = (E , con,`), an event-set

of N is any subset X ⊆ E which is: (a) consistent: ∀Y ⊆fin X , con(Y) holds, and (b) reachable via

the enabling relation: for each e ∈ X , there exists e0, e1, · · · , en ∈ X where en = e and ∅ ` {e0} and

{e0, · · · , ei−1} ` ei for all 1 ≤ i ≤ n.

I want to be able to specify which network configuration should be active at each event-set of the

51

event structure. Thus, I need the following extension of event structures.

Definition 15 (NES). A network event structure is a tuple (E , con,`, g) where (E , con,`) is an event

structure, and g : (P(E)→ C) maps each event-set of the event structure to a network configuration.

Correct Network Traces. I now define what it means for a network trace ntr to be correct with

respect to an NES N = (E , con,`, g). I begin by constructing a sequence S of events that is allowed

by N . A sequence S = e0e1 · · · en is allowed by N , if ∅ ` {e0} ∧ con({e0}), and ∀1 ≤ i ≤ n :

({e0, e1, · · · , ei−1} ` ei ∧ con({e0, e1, · · · , ei})).

Intuitively, I say that ntr is correct if there is a sequence of events allowed by N which would cause

ntr to satisfy the event-driven consistent update condition.

Definition 16 (Correct network trace). Let S be the set of all sequences allowed by N . Formally, a network

trace ntr = (lp0lp1 · · · , T) is correct with respect to N if

• no lpj matches any e ∈ E , and for all packet traces ntr↓t where t ∈ T , I have ntr↓t is in

Traces(g(∅)), or

• there exists some e0e1 · · · en ∈ S such that ntr is correct with respect to event-driven consistent

update (g(∅) e0−→ g({e0})
e1−→ · · · en−→ g({e0, · · · , en}), E).

Locality Restrictions for Incompatible Events. I now show how NESs can be used to impose

reasonable locality restrictions. A set of events E is called inconsistent if and only if con(E) does not

hold. I use the term minimally-inconsistent to describe inconsistent sets where all proper subsets are not

inconsistent. An NES N is called locally-determined if and only if for each of its minimally-inconsistent

sets E, all events in E happen at the same switch (i.e., ∃sw∀ei ∈ E : ei = (ϕi, sw , pt i)). To illustrate the

need for the locally-determined property, I consider the following two programs, P1 and P2.

• Program P1: Recall that two events are inconsistent if either of them can happen, but both cannot

happen in the same execution. Consider the topology shown in Figure 3.1 and suppose this program

requires that H2 and H4 can both receive packets from H1, but only the first one to receive a packet

is allowed to respond. There will be two events e1 and e2, with e1 the arrival of a packet from H1

at s2, and e2 the arrival of a packet from H1 at s4. These events are always enabled, but the set

52

{e1, e2} is not consistent, i.e. con({e1, e2}) does not hold. This models the fact that at most one

of the events can take effect. These events happen at different switches—making sure that at most

one of the events takes effect would necessitate information to be propagated instantaneously “at

a distance.” In implementations, this would require using inefficient mechanisms (synchronization

and/or packet buffering). My locality restriction is a clean condition which ensures that the NES is

efficiently implementable.

• Program P2: Consider a different program where H2 can send traffic to one of the two hosts

H1, H3 that sends it a packet first. The two events (a packet from H1 arriving at s2, and a packet

fromH3 arriving at s2) are still inconsistent, but inconsistency does not cause problems in this case,

because both events happen at the same switch (the switch can determine which one was first).

In contrast to my approach, an uncoordinated update approach improperly handles locality issues, mainly

because it does not guarantee when the configuration change occurs. Consider the program P1 again, and

consider the (likely) scenario where events e1 and e2 happen nearly simultaneously. In an uncoordinated

approach, this could result in switch s2 hearing about e1, e2 (in that order), and s4 hearing about e2, e1

(in that order), meaning the two switches would have conflicting ideas of which event was “first” (i.e. the

switches would be in conflicting states, and this conflict cannot be resolved). In my implementation, I would

require e1 and e2 to occur at the same switch, guaranteeing that I never see such a conflicting mix of states.

Strengthening Consistency. I now show that strengthening the consistency conditions imposed by

NESs would lead to lower availability, as it would lead to the need for expensive synchronization, packet

buffering, etc. First, I will try to remove the locally-determined condition, and second, I will try to obtain a

strengthened consistency condition. The proof of the following theorem is an adaptation of the proof of the

CAP theorem [18], as presented in [45]. The idea is that in asynchronous network communication, a switch

might need to wait arbitrarily long to hear about an event.

Lemma 8. In general, it is impossible to implement an NES that does not have the locally-determined

condition while guaranteeing that switches process each packet within an a priori given time bound.

Proof Sketch. Consider a simple NES, with event sets ∅, {e1}, {e2}, and where {e1} and {e2} are both

enabled from ∅. Assume that con({e1, e2}) does not hold, and that e1 can happen at switch A and e2 can

53

happen at switch B (i.e., the locally-determined condition does not hold).

Because the communication is asynchronous, there is no a priori bound on how long the commu-

nication between switches can take. When a packet p that matches e2 arrives at the switch B, the switch

must distinguish the following two cases: (#1) event e1 has occurred at A (and thus p does not cause e2), or

(#2) event e1 has not occurred atA (and thus p causes e2). No matter how longB waits, it cannot distinguish

these two cases, and hence, when a packet that matches e2 arrives toB, the switchB cannot correctly decide

whether to continue as if e2 has happened. It has the choice to either eventually decide (and risk the wrong

decision), or to buffer the packet that matches e2.

I now ask whether I can strengthen the event-driven consistent update definition. I define strong

update as an update C1
e−→ C2 such that immediately after e occurred, the network processes all incoming

packets in C2. I obtain the following lemma by the same reasoning as the previous one.

Lemma 9. In general, it is impossible to implement strong updates and guarantee that switches process each

packet within an a priori given time bound.

Proof Sketch. Let A be the switch where e can happen, and let B be a switch on which the configurations

C1, C2 differ. For A and B, the same argument as in the previous lemma shows that B must either risk the

wrong decision on whether to process packets using C1 or C2, or buffer packets.

3.2 Programming with Events

The correctness condition I described in the previous section offers useful application-level guarantees

to network programmers. The programmer is freed from thinking about interleavings of packets/events and

responses to events (configuration updates). She can think in terms of my consistency model—each packet

is processed in a single configuration, and packets entering “after” an event will be processed in the new

configuration (similar to causal consistency). An important consequence is that the response to an event is

immediate with respect to a given flow if the event is handled at that flow’s ingress switch.

With this consistency model in mind, programmers can proceed by specifying the desired event-driven

program behavior using network event structures. This section introduces an intuitive method for building

54

Figure 3.2: Event-driven transition systems.

NESs using simple transition systems where nodes correspond to configurations and edges correspond to

events. I also present a network programming language based on NetKAT that provides a compact notation

for specifying both the transition system and the configurations at the nodes.

3.2.1 Event-Driven Transition Systems

Definition 17 (Event-driven Transition System). An event-driven transition system (ETS) is a graph

(V,D, v0), in which V is a set of vertices, each labeled by a configuration; D ⊆ V × V is a set of edges,

each labeled by an event e; and v0 is the initial vertex.

Consider the ETSs shown in Figure 3.2 (a-b). In (a), the two events are intuitively compatible—they

can happen in any order, so I obtain a correct execution if both happen in different parts of the network,

and different switches can have a different view of the order in which they happened. In (b), the two events

are intuitively incompatible—only one of them can happen in any particular execution. Therefore, even

if they happen nearly simultaneously, only one of them should take an effect. To implement this, I require

the locality restriction—I need to check whether the two events happen at the same switch. I thus need to

distinguish between ETSs such as (a) and (b) in Figure 3.2, to determine where locality restrictions must be

imposed in the conversion from an ETS to an NES.

From ETSs to NESs. Given an ETS, I first form the event sets (Definition 14) and then construct the

enabling relation and consistency predicate. Given an ETS T , consider the set W (T) of sequences of events

in T from the initial node to any vertex (including the empty sequence). For each sequence p ∈ W (T),

let E(p) be the set of events collected along the sequence. The set F (T) = {E(p) | p ∈ W (T)} is my

candidate collection of event sets. I now define conditions under which F (T) gives rise to an NES.

(1) I require that each set E in F (T) must correspond to exactly one network configuration. This holds

55

if all paths in W (T) corresponding to E end at states labeled with the same configuration.

(2) I require that F (T) is finite-complete, i.e. for any sets E1, E2, · · · , En where each Ei ∈ F (T),

if there is a set E′ ∈ F (T) which contains every Ei (an upper bound for the sets Ei), then the set

Elub = ∪iEi (the least upper bound for the Ei) must also be in F (T). For example, consider the

ETS in Figure 3.2(c), which violates this condition since the event-sets E1 = {e1} and E2 = {e3}

are both subsets of {e1, e4, e3}, but there is no event-set of the form E1 ∪ E2 = {e1, e3}.

In [123], such a collection F (T) is called a family of configurations. My condition (2) is condition (i) in

Theorem 1.1.9 in [123] (conditions (ii)-(iii) are satisfied by construction).

Given an ETS T , it is not difficult to confirm the above conditions statically. They can be checked

using straightforward graph algorithms, and any problematic vertices or edges in T can be indicated to the

programmer. The development of efficient checking algorithms is left for future work.

I build the con and ` relations of an NES from the family F (T), using Theorem 1.1.12. of [123].

Specifically, predicate con can be defined by declaring all sets in F (T) as consistent, and for `, I take

the smallest relation satisfying the constraints ∅ ` e ⇐⇒ {e} ∈ F (T) and X ′ ` e ⇐⇒ (X ′ ∈

con) ∧ ((X ′ ∪ {e}) ∈ F (T) ∨ (∃X ⊆ X ′ : X ` e)).

After obtaining an NES, deciding whether it satisfies the locality restriction is easy: I check whether

the NES is locally determined (see Section 3.1), verifying for each minimally-inconsistent set that the local-

ity restriction holds. Again, I leave the efficiency of this check for future work.

Loops in ETSs. If there are loops in the ETS T , the previous definition needs to be slightly modi-

fied, because I need to “rename” events encountered multiple times in the same execution. This gives rise to

an NES where each event-set is finite, but the NES itself might be infinite (and thus can only be computed

lazily). If I have the ability to store and communicate unbounded (but finite) event-sets in the network run-

time, then no modifications are needed to handle infinite NESs in the implementation (which is described

in Section 3.3). Otherwise, there are various correct overapproximations I could use, such as computing

the strongly-connected components (SCCs) of the ETS, enforcing the locality restriction on events in each

(non-singleton) SCC, and requiring the implementation to attach timestamps on occurrences of events in

those SCCs. For simplicity of the presentation, I will consider only loop-free ETSs in this chapter.

56

3.2.2 Stateful NetKAT

NetKAT [3] is a domain-specific language for specifying network behavior. It has semantics based

on Kleene Algebra with Tests (KAT), and a sound and complete equational theory that enables formal

reasoning about programs. Operationally, a NetKAT program behaves as a function which takes as input

a single packet, and uses tests, field-assignments, sequencing, and union to produce a set of “histories”

corresponding to the packet’s traces.

Standard NetKAT does not support mutable state. Each packet is processed in isolation using the

function described by the program. In other words, I can use a standard NetKAT program for specifying

individual network configurations, but not event-driven configuration changes. I describe a stateful variant of

NetKAT which allows me to compactly specify a collection of network configurations, as well as the event-

driven relationships between them (i.e. an ETS). This variant preserves the existing equational theory of the

individual static configurations (though it is not a KAT itself), but also allows packets to affect processing

of future packets via assignments to (and tests of) a global state. The syntax of Stateful NetKAT is shown

in Figure 3.3. A Stateful NetKAT program is a command, which can be:

• a test, which is a formula over packet header fields (there are special fields sw and pt which test

the switch- and port-location of the packet respectively),

• a field assignment x←n, which modifies the (numeric) value stored in a packet’s field,

• a union of commands p+ q, which unions together the packet-processing behavior of p and q,

• a command sequence p ; q, which runs packet-processing program q on the result of p,

• an iteration p∗, which is equivalent to true + p+ (p ; p) + (p ; p ; p) + · · · ,

• or a link definition (n1:m1)_(n2:m2), which forwards a packet from port m1 at switch n1 across

a physical link to port m2 at switch n2.

The functionality described above is also provided by standard NetKAT [111]. The key distinguishing

feature of my Stateful NetKAT is a special global vector-valued variable called state, which allows the pro-

grammer to represent a collection of NetKAT programs. The function shown in Figure 3.4 gives the standard

NetKAT program JpK~k corresponding to each value ~k of the state vector (for conciseness, I only show the

non-trivial cases). I can use the NetKAT compiler [111] to generate forwarding tables (i.e. configurations)

57

f ∈ Field (packet field name)

n ∈ N (numeric value)

x ::= f | pt (modifiable field)

a, b ::= true | false | x = n | sw=n | state(n) = n | a ∨ b | a ∧ b | ¬a (test)

p, q ::= a | x← n | p+ q | p ; q | p∗ | (n:n) _ (n:n) | (n:n) _ (n:n) _ 〈state(n)← n〉 (command)

Figure 3.3: Stateful NetKAT: syntax.

corresponding to these, which I denote C(JpK~k).

3.2.3 Converting Stateful NetKAT Programs to ETSs

Now that I have the J·K~k function to extract the static configurations (NetKAT programs) correspond-

ing to the vertices of an ETS, I define L·M~k, which produces the event-edges (Figure 3.5). This collects (using

parameter ϕ) the conjunction of all tests seen up to a given program location, and records a corresponding

event-edge when a state assignment command is encountered. The function returns a tuple (D,P), whereD

is a set of event-edges, and P is a set of updated conjunctions of tests. In the figure, the t operator denotes

pointwise union of tuples, i.e. (A1, B1, · · ·) t (A2, B2, · · ·) = (A1 ∪ A2, B1 ∪ B2, · · ·). The ‚ operator

denotes (pointwise) Kleisli composition, i.e. (f ‚ g) ,
⊔
{g y : y ∈ f x}, and function F is as follows.

F 0
p (ϕ,~k) , ({}, {ϕ})

F j+1
p (ϕ,~k) , (LpM~k ‚ F j

p) ϕ

The =© is either equality “=” or inequality “ 6=”, and 6=© is the opposite symbol with respect to =©. Given any

conjunction ϕ and a header field f , the formula (∃f : ϕ) strips all predicates of the form (f =© n) from ϕ.

Using fst to denote obtaining the first element of a tuple, I can now produce the event-driven transition

system for a Stateful NetKAT program p with the initial state ~k0:

Jstate(m)=nK~k ,

{
JtrueK~k if ~k(m)=n

JfalseK~k otherwise

J(a:b) _ (c:d) _ 〈state(m)← n〉K~k , J(a:b) _ (c:d)K~k

Figure 3.4: Stateful NetKAT: extracting NetKAT Program (state ~k).

58

Lf =© nM~k ϕ , ({}, {ϕ ∧ f=©n})
Lsw =© nM~k ϕ , LtrueM~k ϕ

Lport =© nM~k ϕ , LtrueM~k ϕ

Lstate(m) =© nM~k ϕ ,

{
LtrueM~k ϕ if ~k(m)=©n
LfalseM~k ϕ otherwise

Lf ← nM~k ϕ , ({}, {(∃f : ϕ) ∧ f=n})
Lp+ qM~k ϕ , (LpM~k ϕ) t (LqM~k ϕ)

Lp ; qM~k ϕ , (LpM~k ‚ LqM~k) ϕ

Lp∗M~k ϕ ,
⊔

j F
j
p (ϕ,~k)

La ∧ bM~k ϕ , La ; bM~k ϕ
La ∨ bM~k ϕ , La+ bM~k ϕ
LtrueM~k ϕ , ({}, {ϕ})
LfalseM~k ϕ , ({}, {})

L¬trueM~k ϕ , LfalseM~k ϕ
L¬falseM~k ϕ , LtrueM~k ϕ

L¬(v =© n)M~k ϕ , Lv 6=© nM~k ϕ
L¬¬aM~k ϕ , LaM~k ϕ

L¬(a ∧ b)M~k ϕ , L¬a ∨ ¬bM~k ϕ
L¬(a ∨ b)M~k ϕ , L¬a ∧ ¬bM~k ϕ

L(s1:p1) _ (s2:p2)M~k ϕ , ({}, {ϕ})
L(s1:p1) _ (s2:p2) _ 〈state(m)← n〉M~k ϕ , ({(~k, (ϕ, s2, p2),~k[m 7→ n])}, {ϕ})

Figure 3.5: Stateful NetKAT: extracting event-edges from state ~k.

ETS (p) , (V,D, v0)

where V ,
⋃

~k
{(~k,C(JpK~k))}

and D , fst
(⊔

~k
LpM~k true

)
and v0 , (~k0, C(JpK~k0))

3.3 Implementing Event-Driven Programs

Next, I show one method of implementing NESs in a real SDN, and I prove that this approach is

correct—i.e., all traces followed by actual packets in the network are correct with respect to Definition 16

in Section 3.1. At a high level, the basic idea of my implementation strategy can be understood as follows.

I assume that the switches in the network provide mutable state that can be read and written as packets are

processed. Given an NES, I assign a tag to each event-set and compile to a collection of configurations

whose rules are “guarded” by the appropriate tags. I then add logic that (i) updates the mutable state to

record local events, (ii) stamps incoming packets with the tag for the current event-set upon ingress, and (iii)

reads the tags carried by packets, and updates the event-set at subsequent switches.

3.3.1 Implementation Building Blocks

Static Configurations. The NES contains a set of network configurations that need to be installed

as flow tables on switches. In addition, I must be able to transition to a new configuration in response to

59

a local event. I do this proactively, installing all of the needed rules on switches in advance, with each

rule guarded by its configuration’s ID. This has a disadvantage of being less efficient in terms of rule-space

usage, but an advantage of allowing quick configuration changes. In Section 3.4.3, I discuss an approach

for addressing the space-usage issue by sharing rules between configurations. My implementation strategy

encodes each event-set in the NES as an integer, so a single unused packet header field (or single register on

switches) can be used. This keeps the overhead low, even for very large programs.

Stateful Switches. Emerging data-plane languages such as P4 [16] and OpenState [13] are begin-

ning to feature advanced functionality such as customizable parsing, stateful memories, etc. I assume that

my switches support (1) modifying a local register (e.g. an integer on a switch) appropriately upon receipt

of a packet, and (2) making packet forwarding decisions based on the value of a register. This allows each

switch to maintain a local view of the global state. Specifically, the register records the set of events the

device knows have occurred. At any time, the device can receive a packet (from the controller or another

device) informing it of new event occurrences, which are “unioned” into the local register (by performing a

table lookup based on integer values). Currently, P4 data planes support this type of functionality.

I also assume that the switch atomically processes each packet in the order in which it was received.

Such “atomic” switch operations are proposed by the “Packet Transactions” P4 extension [110]. Because the

P4 switch platform is attracting considerable attention (even spawning its own highly-attended workshop),

I feel that my assumptions are realistic for the current state-of-the-art in regards to switches.

Packet Processing. Each packet entering the network is admitted from a host to a port on an edge

switch. The configuration ID j corresponding to the device’s view of the global state is assigned to the

packet’s version number field. The packet will processed only by j-guarded rules throughout its lifetime.

Packets also carry a digest encoding the set of events the packet has heard about so far (i.e. the packet’s

view of the global state). If the packet passes through a device which has heard about additional events,

the packet’s digest is updated accordingly. Similarly, if the packet’s digest contains events not yet heard

about by the device, the latter adds them to its view of the state. When a packet triggers an event, that

event is immediately added to the packet’s digest, as well as to the state of the device where the event was

detected. The controller is then notified about the event. Optionally (as an optimization), the controller can

60

Switch ID n ∈ N
Port ID m ∈ N
Host ID h ∈ N
Location l ::= n : m

Packet pkt ::= {f1; · · · ; fk;C; digest}
Located Packet lp ::= (pkt, l)
Queue Map qm ::= {n 7→ pkts, · · · }
Link lk ::= (l, l)
Links L ::= {lk, · · · }
Event e ::= (ϕ, l)
Event-set E ::= {e, · · · }

Configuration C ::= {(lp, lp), · · · }
Enabling Rel. ` ::= {(E, e), · · · }
Consist. Pred. con ::= {E, · · · }
Config. Map g ::= {E 7→ C, · · · }
Switch sw ::= (n, qm,E, qm)
Queue, Control. Q,R ::= E
Switches S ::= {sw, · · · }

(h, n:m) ∈ L S = S
′∪{(n, qm[m 7→pkts], E, qm2)}

(Q,R, S) −→ (Q,R, S
′∪{(n, qm[m 7→pkts@[pkt[C←g(E)]]], E, qm2)})

IN
(n:m,h) ∈ L S = S

′∪{(n, q1, E, qm[m 7→pkt::pkts])}
(Q,R, S) −→ (Q,R, S

′∪{(n, q1, E, qm[m 7→pkts])})
OUT

E
′
= {e : (E ∪ pkt.digest) ` e ∧ con(E ∪ pkt.digest ∪ {e}) ∧ (pkt, n:m) |= e}

{lp : pkt.C((pkt, n:m), lp)} = {(pkt1, n:m1), · · · } S = S
′ ∪ {(n, qm[m 7→ pkt::pkts], E, qm2[m1 7→ pkts1, · · ·])}

(Q,R, S) −→ (Q ∪ E
′
, R, S

′ ∪ {(n, qm[m 7→ pkts], E ∪ E
′ ∪ pkt.digest, qm2[m1 7→ pkts1@[pkt1[digest← pkt1.digest ∪ E ∪ E

′
]], · · ·])})

SWITCH

(n1:m1, n2:m2) ∈ L S = S
′ ∪ {(n1, qm1, E1, qm2[m1 7→ pkt::pkts]), (n2, qm3[m2 7→ pkts

′
], E2, qm4)}

(Q,R, S) −→ (Q,R, S
′ ∪ {(n1, qm1, E1, qm2[m1 7→ pkts]), (n2, qm3[m2 7→ pkts

′
@[pkt]], E2, qm4)})

LINK

Q = Q
′ ∪ {e}

(Q,R, S) −→ (Q
′
, R ∪ {e}), S)

CTRLRECV
R = R

′ ∪ {e} S = S
′ ∪ {(n, qm,E, qm2)}

(Q,R, S) −→ (Q,R, S
′ ∪ {(n, qm,E ∪ {e}, qm2)})

CTRLSEND

Figure 3.6: Implemented program semantics.

periodically broadcast its view of the global state to all switches, in order to speed up state dissemination.

3.3.2 Operational Model

I formalize the above via operational semantics for the global behavior of the network as it executes

an NES. Each state in Figure 3.6 has the form (Q,R, S), with a controller queue Q, a controller R, and set

of switches S. Both the controller queue and controller are a set of events, and initially, R=Q=∅. Each

switch s ∈ S is a tuple (n, qmin, E, qmout), where n is the switch ID, qmin, qmout are the input/output

queue maps (mapping port IDs to packet queues). Map updates are denoted qm[m 7→ pkts]. The event-set

E represents a switch’s view of what events have occurred. A packet’s digest is denoted pkt .digest, and

the configuration corresponding to its version number is denoted pkt .C. The rules in Figure 3.6 can be

summarized as follows.

• IN/OUT: move a packet between a host and edge port.

• SWITCH: process a packet by first adding new events from the packet’s digest to the local state,

then checking if the packet’s arrival matches an event e enabled by the NES and updating the state

and packet digest if so, and finally updating the digest with other local events.

• LINK: move a packet across a physical link.

• CTRLRECV: bring an event from the controller queue into the controller.

61

• CTRLSEND: update the local state of the switches.

3.3.3 Correctness of the Implementation

I now prove the correctness of my implementation. Formally, I show that the operational semantics

generates correct traces, as defined in Section 3.1.

Lemma 10 (Global Consistency). Given a locally-determined network event structure N , for an execution

of the implementation (Q1, R1, S1)(Q2, R2, S2) · · · (Qm, Rm, Sm), the event-set Qi ∪ Ri is consistent for

all 1 ≤ i ≤ m.

Proof Sketch. I first show that if an inconsistent set Y where |Y | > 1 satisfies the locality restriction (i.e.

all of its events are handled at the same switch), then Y ⊆ Ri ∪ Qi is not possible for any i (the SWITCH

rule ensures that multiple events from Y could not have been sent to the controller).

I proceed by induction over m, the trace length, noting that the base case Q0 ∪R0 = ∅ is consistent.

Assume that the implementation adds an e (via SWITCH) to some consistent event-set Qm ∪Rm, producing

an inconsistent set. I look at the minimally-inconsistent set Y ⊆ (Qm∪Rm∪{e}), and notice that the locality

restriction requires all events in Y to be detected at the same switch, so by the previous paragraph, I must

have |Y | ≤ 1. This generates a contradiction, since it would mean that either Y = {e0} or Y ⊆ Qm ∪Rm,

either of which would make Y consistent.

Traces of the Implementation. Note that I can readily produce the network trace (Section 3.1)

that corresponds to an implementation trace, since a single packet pkt is processed at each step of Figure

3.6. I now present the main result of this section—executions of the implementation correspond to correct

network traces (Definition 16).

Theorem 4 (Implementation Correctness). For an NES N , and an execution (Q1, R1, S1)(Q2, R2, S2)

· · · (Qm, Rm, Sm) of the implementation, corresponding network trace ntr is correct with respect to N .

Proof Sketch. The proof is by induction over the length m of the execution. In the induction step, I show

that (1) the SWITCH rule can only produce consistent event-sets (this follows directly from Lemma 10), and

62

(2) when the IN rule tags a packet pkt based on the local event-set E, that E consists of exactly the events

that happened before pkt arrived (as ordered by the happens-before relation).

3.4 Implementation and Evaluation

I built a full-featured prototype implementation in OCaml.

• I implemented the compiler described in Section 3.2. This tool accepts a Stateful NetKAT program,

and produces the corresponding NES, with a standard NetKAT program representing the configu-

ration at each node. I interface with Frenetic’s NetKAT compiler to produce flow-table rules for

each of these NetKAT programs.

• I modified the OpenFlow 1.0 reference implementation to support the custom switch/controller

needed to realize the runtime described in Section 3.3.

• I built tools to automatically generate custom Mininet scripts to bring up the programmer-specified

network topology, using switches/controller running the compiled NES. I can then realistically

simulate the whole system using real network traffic.

Research Questions. To evaluate my approach, I sought answers to the following questions.

(1) How useful is my approach? Does it allow programmers to easily write real-world network pro-

grams, and get the behavior they want?

(2) What is the performance of my tools (compiler, etc.)?

(3) How much does my correctness guarantee help? For instance, how do the running network pro-

grams compare with uncoordinated event-driven strategies?

(4) How efficient are the implementations generated by my approach? For instance, what about mes-

sage overhead? State-change convergence time? Number of rules used?

I address #1-3 through case studies on real-world examples, and #4 through quantitative performance mea-

surements on simple automatically-generated programs. For the experiments, I assume that the programmer

has first confirmed that the program satisfies the conditions allowing proper compilation to an NES, and I

assume that the ETS has no loops. My tool could be modified to perform these checks via basic algorithms

operating on the ETS, but they have not yet been implemented in the current prototype (as mentioned in

63

Section 3.2.1, developing efficient algorithms for these checks is left for future work). Experiments were

run on an Ubuntu machine with 20GB RAM and a quad-core Intel i5-4570 CPU (3.2 GHz).

To choose a representative set of realistic examples, I first studied the examples addressed in other

recent stateful network programming approaches, such as SNAP [5], FlowLog [92], Kinetic [68], NetEgg

[125], and FAST [91], and categorized them into three main groups:

• Protocols/Security: accessing streaming media across subnets, ARP proxy, firewall with authen-

tication, FTP monitoring, MAC learning, stateful firewall, TCP reassembly, Virtual Machine

(VM) provisioning.

• Measurement/Performance: heavy hitter detection, bandwidth cap management (uCap), con-

nection affinity in load balancing, counting domains sharing the same IP address, counting IP ad-

dresses under the same domain, elephant flows detection, link failure recovery, load balancing,

network information base (NIB), QoS in multimedia streaming, rate limiting, sampling based on

flow size, Snort flowbits, super spreader detection, tracking flow-size distributions.

• Monitoring/Filtering: application detection, DNS amplification mitigation, DNS TTL change

tracking, DNS tunnel detection, intrusion detection system (IDS), optimistic ACK attack detec-

tion, phishing/spam detection, selective packet dropping, sidejack attack detection, stolen laptop

detection, SYN flood detection, UDP flood mitigation, walled garden.

As I will show in the following section, my current prototype system is best suited for writing programs such

as the ones in the Protocols/Security category, since some of the Measurement/Performance programs

require timers and/or integer counters, and some of the Monitoring/Filtering programs require complex

pattern matching of (and table lookups based on) sequences of packets—functionality which I do not (yet)

natively support, Thus, I have selected three examples from the first category, and one from each of the latter

two, corresponding to the boldface applications in the list. I believe that these applications are representative

of the basic types of behaviors seen in the other listed applications.

3.4.1 Case Studies

In the first set of experiments, I compare correct behavior (produced by my implementation strategy)

64

(a, d) (b) (c, e)

Figure 3.7: Topologies: (a) Firewall, (b) Learning Switch, (c) Authentication, (d) Bandwidth Cap, (e) Intrusion Detection System.

(a)

(b)

(c)

(d)

(e)

pt=2 ∧ ip_dst=H4; pt←1; (state=[0]; (1:1)_(4:1)_〈state←[1]〉 + state 6=[0]; (1:1)_(4:1)
); pt←2

+ pt=2 ∧ ip_dst=H1; state=[1]; pt←1; (4:1)_(1:1); pt←2

pt=2 ∧ ip_dst=H1; (pt←1; (4:1)_(1:1) + state=[0]; pt←3; (4:3)_(2:1)); pt←2
+ pt=2 ∧ ip_dst=H4; pt←1; (1:1)_(4:1)_〈state←[1]〉; pt←2
+ pt=2; pt←1; (2:1)_(4:3); pt←2

state=[0] ∧ pt=2 ∧ ip_dst=H1; pt←1; (4:1)_(1:1)_〈state←[1]〉; pt←2
+ state=[1] ∧ pt=2 ∧ ip_dst=H2; pt←3; (4:3)_(2:1)_〈state←[2]〉; pt←2
+ state=[2] ∧ pt=2 ∧ ip_dst=H3; pt←4; (4:4)_(3:1); pt←2
+ pt=2; pt←1; ((1:1)_(4:1) + (2:1)_(4:3) + (3:1)_(4:4)); pt←2

pt=2 ∧ ip_dst=H4;
pt←1; (

state=[0]; (1:1)_(4:1)_〈state←[1]〉
+ state=[1]; (1:1)_(4:1)_〈state←[2]〉
+ state=[2]; (1:1)_(4:1)_〈state←[3]〉

...
+ state=[10]; (1:1)_(4:1)_〈state←[11]〉
+ state=[11]; (1:1)_(4:1)

); pt←2
+ pt=2 ∧ ip_dst=H1; state6=[11]; pt←1; (4:1)_(1:1); pt←2

pt=2 ∧ ip_dst=H1; pt←1; (state=[0]; (4:1)_(1:1)_〈state←[1]〉 + state 6=[0]; (4:1)_(1:1)
); pt←2

+ pt=2 ∧ ip_dst=H2; pt←3; (state=[1]; (4:3)_(2:1)_〈state←[2]〉 + state 6=[1];
(4:3)_(2:1)); pt←2

+ pt=2 ∧ ip_dst=H3; pt←4; state6=[2]; (4:4)_(3:1); pt←2
+ pt=2; pt←1; ((1:1)_(4:1) + (2:1)_(4:3) + (3:1)_(4:4)); pt←2

Figure 3.8: Programs: (a) Firewall, (b) Learning Switch, (c) Authentication, (d) Bandwidth Cap, (e) Intrusion Detection System.

with that of an uncoordinated update strategy. I simulate an uncoordinated strategy in the following way:

events are sent to the controller, which pushes updates to the switches (in an unpredictable order) after a few-

seconds time delay. I believe this delay is reasonable because heavily using the controller and frequently

updating switches can lead to delays between operations of several seconds in practice (e.g. [61] reports up

to 10s for a single switch update).

To show that problems still arise for smaller delays, in the firewall experiment described next, I varied

the time delay in the uncoordinated strategy between 0ms and 5000ms (in increments of 100ms), running

65

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

To
ta

l#
dr

op
pe

d
pa

ck
et

s

Delay (ms)

Incorrect
Correct

Figure 3.9: Stateful Firewall: impact of delay.

0 2 4 6 8 10 12 14 16 18 20P
in

g?
(h

ig
h=

ye
s)

Time (s)

H4-H1
H1-H4

(a)

0 2 4 6 8 10 12 14 16 18 20 22P
in

g?
(h

ig
h=

ye
s)

Time (s)

H4-H1
H1-H4

(b)

Figure 3.10: Stateful Firewall: (a) correct vs. (b) incorrect.

the experiment 10 times for each. I then plotted the total number of incorrectly-dropped packets with respect

to delay. The results are shown in Figure 3.9. Note that even with a very small delay, the uncoordinated

strategy still always drops at least one packet.

Stateful Firewall. The example in Figures 3.7-3.8(a) is a simplified stateful firewall. It always

allows “outgoing” traffic (from H1 to H4), but only allows “incoming” traffic (from H4 to H1) after the

outside network has been contacted, i.e. “outgoing” traffic has been forwarded to H4.

Program p corresponds to configurations C[0] = JpK[0] and C[1] = JpK[1]. In the former, only out-

going traffic is allowed, and in the latter, both outgoing and incoming are allowed. The ETS has the form

{〈[0]〉 (dst=H4, 4:1)−−−−−−−−→ 〈[1]〉}. The NES has the form {E0=∅ → E1={(dst=H4, 4:1)}}, where the g is given

by g(E0) = C[0], g(E1) = C[1].

The Stateful Firewall example took 0.013s to compile, and produced a total of 18 flow-table rules. In

Figure 3.10(a), I show that the running firewall has the expected behavior. I first try to ping H1 from H4 (the

“H4-H1”/red points), which fails. Then I ping H4 from H1 (the “H1-H4”/orange points), which succeeds.

Again I try H4-H1, and now this succeeds, since the event-triggered state change occurred.

For the uncoordinated strategy, Figure 3.10(b) shows that some of the H1-H4 pings get dropped (i.e.

H1 does not hear back from H4), meaning the state change did not behave as if it was caused immediately

upon arrival of a packet at S4.

Learning Switch. The example in Figures 3.7-3.8(b) is a simple learning switch. Traffic from H4

66

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9

#
Pa

ck
et

s
Se

nt

Time (s)

to H1
to H2

(a)

0
2
4
6
8

10

1 2 3 4 5 6 7 8 9

#
Pa

ck
et

s
Se

nt

Time (s)

to H1
to H2

(b)

Figure 3.11: Learning Switch: (a) correct vs. (b) incorrect.

0 5 10 15 20 25 30 35 40 45 50

P
in

g?
(h

ig
h=

ye
s)

Time (s)

H4-H3
H4-H2
H4-H1

(a)

0 2 4 6 8 10 12
P

in
g?

(h
ig

h=
ye

s)

Time (s)

H4-H3
H4-H2
H4-H1

(b)

Figure 3.12: Authentication: (a) correct vs. (b) incorrect.

to H1 is flooded (sent to both H1 and H2), until H4 receives a packet from H1, at which point it “learns” the

address of H1, and future traffic from H4 to H1 is sent only to H1.

This program p corresponds to two configurations C[0] = JpK[0] and C[1] = JpK[1]. In the former,

flooding occurs from H4, and in the latter, packets from H4 are forwarded directly to H1. The ETS has the

form {〈[0]〉 (dst=H4, 4:1)−−−−−−−−→ 〈[1]〉}. The NES has the form {E0=∅ → E1={(dst=H4, 4:1)}}, where the g is

given by g(E0) = C[0], g(E1) = C[1].

This only allows learning for a single host (H1), but I could easily add learning for H2 by using a

different index in the vector-valued state field: I could replace state in Figure 3.8(b) with state(0), and

union the program (using the NetKAT “+” operator) with another instance of Figure 3.8(b) which learns for

H2 and uses state(1).

The Learning Switch took 0.015s to compile, and produced a total of 43 flow-table rules. I again

compare the behavior of my correct implementation with that of an implementation which uses an uncoor-

dinated update strategy. I first ping H1 from H4. Expected behavior is shown in Figure 3.11(a), where the

first packet is flooded to both H1 and H2, but then H4 hears a reply from H1, causing the state change (i.e.

67

learning H1’s address), and all subsequent packets are sent only to H1. In Figure 3.11(b), however, since the

state change can be delayed, multiple packets are sent to H2, even after H4 has seen a reply from H1.

Authentication. In this example, shown in Figures 3.7-3.8(c), the untrusted host H4 wishes to

contact H3, but can only do so after contacting H1 and then H2, in that order.

This program p corresponds to three configurations: C[0] = JpK[0] in which only H4-H1 traffic is

enabled, C[1] = JpK[1] in which only H4-H2 traffic is enabled, and C[2] = JpK[2] which finally allows H4

to communicate with H3. The ETS has the form {〈[0]〉 (dst=H1, 1:1)−−−−−−−−→ 〈[1]〉 (dst=H2, 2:1)−−−−−−−−→ 〈[2]〉}. The NES

has the form {E0=∅ → E1={(dst=H1, 1:1)} → E2={(dst=H1, 1:1), (dst=H2, 2:1)}}, where the g

function is given by g(E0) = C[0], g(E1) = C[1], g(E2) = C[2].

The Authentication example took 0.017s to compile, and produced a total of 72 flow-table rules. In

Figure 3.12(a) I demonstrate the correct behavior of the program, by first trying (and failing) to ping H3

and H2 from H4, then successfully pinging H1, again failing to ping H3 (and H1), and finally succeeding in

pinging H3. The incorrect (uncoordinated) implementation in Figure 3.12(b) allows an incorrect behavior

where I can successfully ping H1 and then H2, but then fail to ping H3 (at least temporarily).

Bandwidth Cap. The Figure 3.7-3.8(d) example is a simplified bandwidth cap implementation. It

allows “outgoing” traffic (H1-H4), but only until the limit of n packets has been reached, at which point the

service provider replies with a notification message, and disallows the “incoming” path. In this experiment,

I use a bandwidth cap of n = 10 packets.

Program p corresponds to configurationsC[0]=JpK[0], · · · , C[n]=JpK[n], which all allow incoming/out-

going traffic, and a configuration C[n+1]=JpK[n+1] which disallows the incoming traffic. The ETS has

the form {〈[0]〉 (dst=H4, 4:1)−−−−−−−−→ 〈[1]〉 (dst=H4, 4:1)−−−−−−−−→ · · · (dst=H4, 4:1)−−−−−−−−→ 〈[n + 1]〉}. The NES has the form

{E0=∅ → E1={(dst=H4, 4:1)} → · · · → En+1={(dst=H4, 4:1)0, · · · , (dst=H4, 4:1)n}}, where the

g is given by g(E0) = C[0], · · · , g(En+1) = C[n+1]. Note that the subscripts on events in the NES event-sets

(e.g. the ones in En+1) indicate “renamed” copies of the same event (as described in Section 3.2.1).

The Bandwidth Cap example took 0.023s to compile, and produced a total of 158 flow-table rules.

In Figure 3.13(a), I show that the running example has the expected behavior. I send pings from H1 to H4,

of which exactly 10 succeed, meaning I have reached the bandwidth cap. Using the uncoordinated update

68

0 2 4 6 8 10 12 14 16 18 20 22P
in

g?
(h

ig
h=

ye
s)

Time (s)

H1-H4

(a)

0 2 4 6 8 10 12 14 16 18 20 22P
in

g?
(h

ig
h=

ye
s)

Time (s)

H1-H4

(b)

Figure 3.13: Bandwidth Cap: (a) correct vs. (b) incorrect.

0 5 10 15 20 25 30 35 40 45

P
in

g?
(h

ig
h=

ye
s)

Time (s)

H4-H3
H4-H2
H4-H1

(a)

0 2 4 6 8 10 12

P
in

g?
(h

ig
h=

ye
s)

Time (s)

H4-H3
H4-H2
H4-H1

(b)

Figure 3.14: Intrusion Detection System: (a) correct vs. (b) in-
correct.

strategy in Figure 3.13(b), I again send pings from H1 to H4, but in this case, 15 are successful, exceeding

the bandwidth cap.

Intrusion Detection System. In this example, shown in Figures 3.7-3.8(e), the external host H4 is

initially free to communicate with the internal hosts H1, H2, and H3. However, if H4 begins engaging in

some type of suspicious activity (in this case, beginning to scan through the hosts, e.g. contacting H1 and

then H2, in that order), the activity is thwarted (in this case, by cutting off access to H3).

Program p corresponds to three configurations: C[0] = JpK[0] and C[1] = JpK[1], in which all traf-

fic is enabled, and C[2] = JpK[2] in which H4-H3 communication is disabled. The ETS has the form

{〈[0]〉 (dst=H1, 1:1)−−−−−−−−→ 〈[1]〉 (dst=H2, 2:1)−−−−−−−−→ 〈[2]〉}. The NES has the form {E0=∅ → E1={(dst=H1, 1:1)} →

E2={(dst=H1, 1:1), (dst=H2, 2:1)}}, where g is given by g(E0) = C[0], g(E1) = C[1], g(E2) = C[2].

This IDS example took 0.021s to compile and produced 152 flow-table rules. In Figure 3.14(a), I

demonstrate the correct behavior of the program, by first successfully pinging H3, H2, H1, H3, H2, H1 (in

that order) from H4. This results in a situation where I have contacted H1 and then H2, causing the third

attempt to contact H3 to be blocked (H4-H3 pings dropped). The incorrect (uncoordinated) implementation

69

1

10

100

2 3 4 5 6 7 8

B
an

dw
id

th
(M

bi
t/

se
c)

Network Diameter (# switches)

TCP perf.
UDP % loss

UDP perf.

1

10

100

1000

3 4 5 6 7 8

E
ve

nt
D

is
co

ve
ry

T
im

e
(s

)

Network Diameter (# switches)

Max.
Avg.

Max. w/ Controller
Avg. w/ Controller

(a) (b)

Figure 3.15: Circular Example: (a) bandwidth (solid line is mine, dotted line is reference implementation) and (b) convergence.

in Figure 3.14(b) allows a faulty behavior where I can successfully ping H1 and then H2 (in that order), but

subsequent H4-H3 traffic is still enabled temporarily.

3.4.2 Quantitative Results

In this experiment, I automatically generated some event-driven programs which specify that two

hosts H1 and H2 are connected to opposite sides of a ring of switches. Initially, traffic is forwarded clock-

wise, but when a specific switch detects a (packet) event, the configuration changes to forward counterclock-

wise. I increased the “diameter” of the ring (distance from H1 to H2) up to 8, as shown in Figure 3.15, and

performed the following two experiments.

(1) I used iperf to measure H1-H2 TCP/UDP bandwidth, and compared the performance of my run-

ning event-driven program, versus that of the initial (static) configuration of the program running

on un-modified OpenFlow 1.0 reference switches/controller. Figure 3.15(a) shows that my perfor-

mance (solid line) is very close to the performance of a system which does not do packet tagging,

event detection, etc. (dashed line)—I see around 6% performance degradation on average (note that

the solid and dashed lines almost coincide).

(2) I measured maximum and average time needed for a switch to learn about the event. The “Max.” and

“Avg.” bars in Figure 3.15(b) are these numbers when the controller does not assist in disseminating

events (i.e. only the packet digest is used), and the other columns are the maximum and average

when the controller does so.

70

280 300 320 340

300

400

500

x = y

Number of Rules w/ Heuristic

#
O

ri
gi

na
lR

ul
es

Figure 3.16: Heuristic: reducing the number of rules.

∗∗ , ∅

0∗ , {r1}

00,
{r1, r2}

01,
{r1, r3}

1∗ , {r2}

10,
{r2, r3}

11,
{r1, r2}

∗∗ , ∅

0∗ , {r1, r2}

00,
{r1, r2}

01,
{r1, r2}

1∗ , {r3}

10,
{r1, r3}

11,
{r2, r3}

(a) (b)

Figure 3.17: Heuristic: two different tries for the same configura-
tions.

3.4.3 Optimizations

When a configuration change occurs, the old and new configurations are often similar, differing only

in a subset of flow-table rules. Tables are commonly stored in TCAM memory on switches, which is

limited/costly, so it is undesirable to store duplicate rules. As mentioned in Section 3.3.1, each of my rules

is guarded by its configuration’s numeric ID. If the same rule occurs in several configurations having IDs

with the same (binary) high-order bits, intuitively I can reduce space usage by keeping a single copy of the

rule, and guarding it with a configuration ID having the shared high-order bits, and wildcarded low-order

bits. For example, if rule r is used in two different configurations having IDs 2 (binary 10) and 3 (binary

11), I can wildcard the lowest bit (1∗), and keep a single rule (1∗)r having this wildcarded guard, instead

of two copies of r, with the “10” and “11” guards. Ideally, I would like to (re)assign numeric IDs to the

configurations, such that maximal sharing of this form is achieved.

I formalize the problem as follows. Assume there is a set of all possible rules R. A configuration C

is a subset of these rules C ⊆ R. Assume there are k bits in a configuration ID. Without loss of generality

I assume there are exactly 2k configurations (if there are fewer, I can add dummy configurations, each

containing all rules inR). For a given set of configurations, I construct a trie having all of the configurations

at the leaves. This trie is a complete binary tree in which every node is marked with (1) a wildcarded mask

that represents the configuration IDs of its children, and (2) the intersection of the rule-sets of its children.

Consider configurations C0 = {r1, r2}, C1 = {r1, r3}, C2 = {r2, r3}, C3 = {r1, r2}. Figure 3.17

shows two different assignments of configurations to the leaves of tries. The number of rules for trie (a) is

6: (0∗)r1 , (00)r2 , (01)r3 , (1∗)r2, (10)r3, (11)r1. The number of rules for trie (b) is 5: (0∗)r1 , (0∗)r2 ,

(1∗)r3 , (10)r1, (11)r2. Intuitively, this is because the trie (b) has larger sets in the interior. My polynomial

71

heuristic follows that basic intuition: it constructs the trie from the leaves up, at each level pairing nodes

in a way that maximizes the sum of the cardinalities of their sets. This does not always produce the global

maximum rule sharing, but I find that it produces good results in practice.

As indicated by the Figure 3.16 result (64 randomly-generate configurations w/ 20 rules), on average,

rule savings was about 32% of the original number of rules. I also ran this on the previously-discussed

Firewall, Learning Switch, Authentication, Bandwidth Cap, and IDS examples, and got rule reductions of

18→ 16, 43→ 27, 72→ 46, 158→ 101, and 152→ 133 respectively.

3.5 Related Work

Network Updates, Verification, and Synthesis. I already briefly mentioned an early approach

known as consistent updates [105]. This work was followed by update techniques that respect other correct-

ness properties [79] [61] [126] [85]. These approaches for expressing and verifying correctness of network

updates work in terms of individual packets.

In event-driven network programs, it is necessary to check properties which describe interactions

between multiple packets. There are several works which seek to perform network updates in the context of

multi-packet properties [44] [76]. There are also proposals for synthesizing SDN controller programs from

multi-packet examples [125] and from first-order specifications [98]. Lopes et al. presented techniques for

verifying reachability in stateful network programs [78], using a variant of Datalog. This is a complimentary

approach which could be used as a basis for verifying reachability properties of my stateful programs.

Network Programming Languages. Network programs can often be constructed using high-level

languages. The Frenetic project [42] [89] [41] allows higher-level specification of network policies. Other

related projects like Merlin [115] and NetKAT [111] [10] provide high-level languages/tools to compile

such programs to network configurations. Works such as Maple [122] and FlowLog [92] seek to address the

dynamic aspect of network programming.

None of these systems and languages provide both (1) event-based constructs, and (2) strong semantic

guarantees about consistency during updates, while my framework enables both. Concurrently with this

thesis, an approach called SNAP [5] was developed, which enables event-driven programming, and allows

72

the programmer to ensure consistency via an atomic language construct. Their approach offers a more

expressive language than my Stateful NetKAT, but in my approach, I enable correct-by-construction event-

based behavior and provide a dynamic correctness property, showing (formally) that is strong enough for

easy reasoning, yet flexible enough to enable efficient implementations. I also prove the correctness of my

implementation technique.

Routing. The consistency/availability trade-off is of interest in routing outside the SDN context

as well. In [62], a solution called consensus routing is presented, based on a notion of causality between

triggers (related to my events). However, the solution is different in many aspects, e.g. it allows a transient

phase without safety guarantees.

High-Level Network Functionality. Some recent work has proposed building powerful high-level

features into the network itself, such as fabrics [22], intents [96], and other virtualization functionality [70].

Pyretic [90] and projects built on top of it such as PyResonance [67], SDX [51], and Kinetic [68] provide

high-level operations on which network programs can be built. These projects do not guarantee consistency

during updates, and thus could be profitably combined with an approach such as mine.

73

Chapter 4

Synchronization Synthesis for Network Programs

4.1 Network Programming using Event Nets

Network programs change the network’s global forwarding behavior in response to events. Recently

proposed approaches such as OpenState [13] and Kinetic [68] allow a network program to be specified as

a set of finite state machines, where each state is a static configuration (i.e., a set of forwarding rules at

switches), and the transitions are driven by network events (packet arrivals, etc.). In this case, support for

concurrency is enabled by allowing FSMs to execute in parallel, and any conflicts of the global forwarding

state due to concurrency are avoided by either requiring the FSMs to be restricted to disjoint types of traffic,

or by ignoring conflicts entirely. Neither of these options solves the problem—as I will show here (and

in the Evaluation), serious bugs can arise due to unexpected interleavings. Overall, network programming

languages typically do not have strong support for handling (and reasoning about) concurrency, and this is

increasingly important, as SDNs are moving to distributed or multithreaded controllers.

Event Nets for Network Programming. I introduce a new approach which extends the finite-state

view of network programming with support for concurrency and synchronization. My model is called event

nets, an extension of 1-safe Petri nets, a well-studied framework for concurrency. An event net is a set

of places (denoted as circles) which are connected via directed edges to events (denoted as squares). The

current state of the program is indicated by a marking which assigns at most one token to each place,

and an event can change the current marking by consuming a token from each of its input places and

emitting a token to each of its output places. Since event nets model network programs, each place is

labeled with a static network configuration, and at any time, the global configuration is taken as the union

of the configurations at the marked places.

74

(a) Configurations (b) Input Net (c) Iteration 1 (d) Output Net

Figure 4.1: Example #1

Figure 4.1b shows an example event net. I will use integer IDs (and alternatively, colors) to distinguish

static configurations. Figure 4.1a shows the network topology corresponding to this example. In a given

topology, the configurations associated with the event net are drawn in the color of the places which contain

them, and also labeled with the corresponding place IDs. For example, place 3 in Figure 4.1b is orange, and

this corresponds to enabling forwarding along the orange pathH3, S3, S5 (labeled with “3”) in the topology

shown in Figure 4.1a. In the initial state of this event net, places 1, 4 contain a token, meaning forwarding is

initially enabled along the red (1) and green (4) paths.

Event Nets and Synchronization. Event nets allow me to specify synchronization easily. In Figure

4.1c, I have added places 7, 8—this makes event C unable to fire initially (since it does not have a token on

input place 8), forcing it to wait until event B fires (B consumes a token from places 2, 7 and emits a token

at 8). Ultimately, I will show how these types of synchronization skeletons can be produced automatically.

In Figure 4.1(b-d), the original event net is shown in black (solid), and synchronization constructs produced

by my tool are shown in blue (dashed). I will now demonstrate by example how my tools works.

Example—Tenant Isolation in a Datacenter. Koponen et al. [70] describe an approach for provid-

ing virtual networks to tenants (users) of a datacenter, allowing them to connect virtual machines (VMs)

using virtualized networking functionality (middleboxes, etc.). An important aspect is isolation between

tenants—one tenant intercepting another tenant’s traffic would be a severe security violation.

I will begin by extending the example described in the Introduction. In Figure 4.1a, S5 is a physical

device initially being used as a virtual middlebox processing Tenant X’s traffic, which is being sent along

the red (1) and green (4) paths. I wish to perform an update in the datacenter which allows Tenant Y to use

S5, and moves the processing of Tenant X’s traffic to a different physical device. For efficiency, I will use

75

two controllers to execute this update—path 1 is taken down and path 3 is brought up by C1, and path 4 is

taken down and path 6 is brought up by C2. The event net for this program is shown in Figure 4.1b. The

combinations of configurations 1, 6 and 4, 3 both allow traffic to flow between tenants, violating isolation. I

can formalize the isolation specification as follows:

(1) φ1: no packet originating at H1 should arrive at H4, and

(2) φ2: no packet originating at H3 should arrive at H2.

Properties like these which describe single-packet traces can be encoded straightforwardly in linear tem-

poral logic (LTL) (note that instead of LTL, I could use the more user-friendly PDL). Given an LTL speci-

fication, I ask a verifier whether the event net has any reachable marking whose configuration violates the

specification. If so, a counterexample trace is provided, i.e., a sequence of events (starting from the initial

state) which allows the violation. For example, using the specification φ1 ∧ φ2 and the Figure 4.1b event

net, my verifier informs me that the sequence of events C,D leads to a property violation—in particular,

when the tokens are at places 6, 1, traffic is allowed along the path H1, S1, S5, S4, H4, violating φ1. Next,

I ask a repair engine to suggest a fix for the event net which disallows the trace C,D, and in this case, my

tool produces 4.1c. Again, I call the verifier, which now gives me the counterexample trace A,B (when the

tokens are at 4, 3, traffic is allowed along the path H3, S3, S5, S2, H2, violating property φ2). When I ask

the repair engine to produce a fix which avoids both traces C,D and A,B, I obtain the event net shown in

4.1d. A final call to the verifier confirms that this event net satisfies both properties.

The synchronization skeleton produced in Figure 4.1d functions as a barrier—it prevents tokens

from arriving at 6 or 3 until both tokens have moved from 4, 1. This ensures that 1, 4 must both be taken

down before bringing up paths 3, 6. The following sections detail this synchronization synthesis approach.

4.2 Synchronization Synthesis for Event Nets

Before describing my synthesis algorithm in detail, I first need to formally define the concepts/termi-

nology mentioned so far.

SDN Preliminaries. A packet pkt is a record of fields {f1; f2; · · · ; fn}, where fields f represent

properties such as source and destination address, protocol type, etc. The (numeric) values of fields are

76

accessed via the notation pkt .f , and field updates are denoted pkt [f ← n], where n is a numeric value. A

switch sw is a node in the network with one or more ports pt . A host is a switch that can be a source or

a sink of packets. A location l is a switch-port pair n:m. Locations may be connected by (bidirectional)

physical links (l1, l2). The graph formed using the locations as nodes and links as edges is referred to as the

topology. I fix the topology for the remainder of this section.

A located packet lp = (pkt , sw , pt) is a packet and a location sw :pt . A packet-trace (history) h is

a non-empty sequence of located packets. Packet forwarding is dictated by a network configuration C . I

model C as a relation on located packets: if C (lp, lp′), then the network maps lp to lp′, possibly changing

its location and rewriting some of its fields. Since C is a relation, it allows multiple output packets to be

generated from a single input. In a real network, the configuration only forwards packets between ports

within each individual switch, but for convenience, I assume that C also captures link behavior (forwarding

between switches), i.e. C ((pkt , n1,m1), (pkt , n2,m2)) and C ((pkt , n2,m2), (pkt , n1,m1)) hold for each

link (n1:m1, n2:m2). Consider a packet-trace h = lp0lp1lp2 · · · lpn. I say that h is allowed by configuration

C if and only if ∀1 ≤ k ≤ n.C (lpk−1, lpk), and I denote this as h ∈ C . I use h(i) to denote lpi, i.e., the

i-th packet in the trace, and hi to denote the corresponding suffix of the trace, i.e., lpilpi+1 · · · lpn.

Petri Net Preliminaries. As I have shown, a Petri net is a transition system where one or more

tokens can move between places, as dictated by transitions. Petri nets provide a flexible framework for

concurrency that I can utilize. For example, the Petri net in Figure 4.2(a) shows how sequencing can be

modeled—transition amust fire first (moving the token to place 2), before transition b can fire. Figure 4.2(b)

shows how conflict can be modeled—either c can fire (moving the token to place 5), or d can fire, but not

both. Figure 4.2(c) shows how concurrency can be modeled—transition e can fire (moving the token from

place 7 to place 8), and f can fire independently.

(a) (b) (c) (d)

Figure 4.2: Petri nets: (a) sequencing, (b) conflict, (c) concurrency, (d) loops.

77

My treatment of Petri nets closely follows that of Winskel [123] (Chapter 3). A Petri net N is a tuple

(P ,T , F,M0), where P is a set of places (shown as circles), T is a set of transitions (shown as squares),

F ⊆ (P×T)∪(T×P) is a set of directed edges, and M0 is multiset of places denoting the initial marking

(shown as dots on places). For notational convenience, I can view a multiset as a mapping from places to

integers, i.e., M (p) denotes the number of times place p appears in multiset M . I require that P 6= ∅, and

∀p ∈ P . (M0(p) > 0 ∨ (∃t ∈ T . ((p, t) ∈ F ∨ (t , p) ∈ F))), and ∀t ∈ T .∃p1, p2 ∈ P . ((p1, t) ∈

F ∧ (t , p2) ∈ F). Given a transition t , I define its post- and pre-places as t• = {p ∈ P : (t , p) ∈ F}

and •t = {p ∈ P : (p, t) ∈ F} respectively. This can be extended in the obvious way to T ′• and •T ′, for

subsets T ′ of T .

A marking indicates the number of tokens at each place. I say that a transition t ∈ T is enabled by

a marking M if and only if ∀p ∈ P . ((p, t) ∈ F =⇒ M (p) > 0), and I use the notation T ′ ⊆ M to

mean that all t ∈ T ′ are enabled by M . A marking Mi can transition into another marking Mi+1 as dictated

by the firing rule: Mi
T ′−→ Mi+1 ⇐⇒ T ′ ⊆ Mi ∧Mi+1 = Mi − •T ′ + T ′•, where the −/+ operators

denote multiset difference/union respectively. The state graph of a Petri net is a graph where each node is

a marking (the initial node is M0), and an edge (Mi
t−→ Mj) is in the graph if and only if I have Mi

{t}−−→ Mj

in the Petri net. A trace τ of a Petri net is a sequence t0t1 · · · tn such that there exist Mi
ti−→ Mi+1 in the

Petri net’s state graph, for all 0 ≤ i ≤ n. I define markings(t0t1 · · · tn) to be the sequence M0M1 · · ·Mn+1,

where M0
t0−→ M1

t1−→ · · · tn−→ Mn+1 is in the state graph. I can project a trace onto a Petri net (denoted

τ B N) by removing any transitions in τ which are not in N . A 1-safe Petri net is a Petri net in which for

any marking Mj reachable from the initial marking M0, I have ∀x ∈ N . (0 ≤ Mj(x) ≤ 1), i.e., there is no

more than 1 token at each place.

Event Nets. An event is a tuple (ψ, l), where l is a location, and ψ can be any predicate over

network state, packet locations, etc. For instance, in [86], an event encodes an arrival of a packet with a

header matching a given predicate to a given location. A labeled net L is a pair (N , λ), where N is a Petri

net, and λ labels each place with a network configuration, and each transition with an event. An event net

is a labeled net (N , λ) where N is 1-safe.

Semantics of Event Nets. Given event net marking M , I denote the global configuration of the

78

network C (M), given as C (M) =
⋃

p∈M λ(p). Given event net E = (N , λ), let Tr(E) be its set of

traces (the set of traces of the underlying N). Given trace τ of an event net, I use Configs(τ) to denote

{C (M) : M ∈ markings(τ)}, i.e., the set of global configurations reachable along that trace.

Given event net E and trace τ in Tr(E), I define Traces(E , τ), the packet traces allowed by τ and

E , i.e., Traces(E , τ) = {h : ∃C ∈ Configs(τ). (h ∈ C)}. Note that labeling λ is not used here—I

could define a more precise semantics by specifying consistency guarantees on how information about event

occurrences propagates (as in [86]), but I instead choose an overapproximate semantics, to be independent

of the precise definition of events and consistency guarantees.

Distributed Implementations of Event Nets. In general, an implementation of a network program

specifies the initial network configuration, and dictates how the configuration changes (e.g., in response to

events). I abstract away the details, defining the semantics of an implemented network program Pr as

the set W (Pr) of program traces, each of which is a set of packet traces. A program trace models a full

execution, captured as the packet traces exhibited by the network as the program runs. I do not model packet

trace interleavings, as this is not needed for the correctness notion I define. I say that Pr implements event

net E if ∀tr ∈ W (Pr).∃τ ∈ Tr(E). (tr ⊆ Traces(E , τ)). Intuitively, this means that each program trace

can be explained by a trace of the event net E .

I now sketch a distributed implementation of event nets, i.e., one in which decisions and state changes

are made locally at switches (and not, e.g., at a centralized controller). In order to produce a (distributed)

implementation of event net E , I need to solve two issues (both related to the definition of Traces(E , τ)).

First, I ensure that each packet is processed by a single configuration (and not a mixture of several).

This is solved by edge switches—those where packets enter the network from a host. An edge switch fixes

the configuration in which a packet pkt will be processed, and attaches a corresponding tag to pkt .

Second, I must ensure that for each program trace, there exists a trace of E that explains it. The

difficulty here stems from the possibility of distributed conflicts when the global state changes due to

events. For example, in an application where two different switches listen for the same event, and only

the first switch to detect the event should update the state, I can encounter a conflict where both switches

think they are first, and both attempt to update the state. One way to resolve this is by using expensive

79

f ∈ Field (packet field name)

n ∈ N (numeric value)

x, y ::= pkt .f | pkt .loc | n | x+ y | x− y | x ∗ y | x÷ y (numeric expression)

a ::= true | false | x = y | x > y | x < y | x ≥ y | x ≤ y (atomic proposition)

ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ϕ⇔ ψ |X ϕ | ϕU ψ | ϕR ψ |G ϕ | F ϕ (formula)

Figure 4.3: LTL syntax.

coordination to reach agreement on which was “first.” Another way is to use the following constraint. I

define local event net to be an event net in which for any two events e1 = (ψ1, l1) and e2 = (ψ2, l2),

I have (•e1 ∩ •e2 6= ∅) ⇒ (l1=l2), i.e., events sharing a common input place must be handled at the

same location (local labeled net can be defined similarly). A local event net can be implemented without

expensive coordination [86].

Theorem 5 (Implementability). Given a local event net E , there exists a (distributed) implemented network

program that implements E .

The theorem implies that there are no packet races in the implementation, since it guarantees that

each packet is never processed in a mix of configurations.

Packet-Trace Specifications. Beyond simply freedom from packet races, I wish to rule out con-

troller races, i.e., unwanted interleavings of concurrent events in an event net. In particular, I use LTL to

specify formulas that should be satisfied by each packet-trace possible in each global configuration. I use

LTL because it is a very natural language for constructing formulas that describe traces. For example, if I

want to describe traces for which some condition ϕ eventually holds, I can construct the LTL formula F ϕ,

and if I want to describe traces where ϕ holds at each step (globally), I can construct the LTL formula G ϕ.

My LTL formulas are over a single packet pkt , which has a special field pkt .loc denoting its current

location. For example, the property (pkt .loc=H1 ∧ pkt .dst=H2 =⇒ F pkt .loc=H2) means that any

packet located at Host 1 destined for Host 2 should eventually reach Host 2. Given a trace τ of an event net,

I use τ |= ϕ to mean that ϕ holds in each configuration C ∈ Configs(τ).

LTL syntax is shown in Figure 4.3. The basic formula is an atomic proposition, which is either true,

false, or a comparison between numeric expressions over the variable pkt . Formulas can be extended using

80

h |= a , h(0) |= a atomic proposition a holds in the first step
h |= ¬ϕ , ¬(h |= ϕ) ϕ does not hold
h |= (ϕ ∧ ψ) , (h |= ϕ) ∧ (h |= ψ) both ϕ and ψ hold
h |= (ϕ ∨ ψ) , (h |= ϕ) ∨ (h |= ψ) either ϕ or ψ holds
h |= (ϕ⇒ ψ) , h |= (¬ϕ ∨ ψ) if ϕ holds, then ψ holds
h |= (ϕ⇔ ψ) , h |= ((ϕ⇒ ψ) ∨ (ψ ⇒ ϕ)) ϕ holds if and only if ψ holds
h |= X ϕ , h1 |= ϕ ϕ holds at the next step
h |= ϕ U ψ , ∃i ≥ 0 : (hi |= ψ ∧ (∀0 ≤ j < i : hj |= ϕ)) eventually ψ holds, and ϕ holds until ψ holds
h |= ϕ R ψ , ¬(¬ϕ U ¬ψ) ψ holds until both ϕ and ψ hold
h |= G ϕ , false R ϕ ϕ always holds
h |= F ϕ , true U ϕ eventually ϕ holds

Figure 4.4: LTL semantics.

the standard logical operators negation (¬ϕ), conjunction (ϕ∧ψ), disjunction (ϕ∨ψ), implication (ϕ⇒ ψ),

and equality (ϕ ⇔ ψ). Additionally, LTL provides the next operator X ϕ, the until operator ϕ U ψ, the

release operator ϕ R ψ, the always (globally) operator G ϕ, and the eventually (future) operator F ϕ.

Given a packet-trace h and an LTL formula ϕ, I define the notion of h satisfying the formula (denoted

h |= ϕ) using the recursive definition in Figure 4.4. I can extend this to a configurations by letting C |= ϕ

mean that all packet-traces h ∈ C satisfy ϕ.

Note that the above packet-traces are assumed to be infinite, so for the purposes of the definition, I

consider a finite trace to be an infinite one where the last step repeats indefinitely.

For efficiency, I forbid the next operator. I have found this restricted form of LTL (usually referred to

as stutter-invariant LTL) to be sufficient for expressing many properties about network configurations.

Processes and Synchronization Skeletons. The input to my algorithm is a set of disjoint local event

nets, which I call processes—I can use simple pointwise-union of the tuples (denoted as
⊔

) to represent

this as a single local event net E =
⊔
{E1,E2, · · · ,En}. Given an event net E = ((P ,T , F,M0), λ), a

synchronization skeleton S for E is a tuple (P ′,T ′, F ′,M ′
0), where P ∩P ′ = ∅, T ∩T ′ = ∅, F ∩F ′ = ∅,

and M0 ∩ M ′
0 = ∅, and where ((P ∪ P ′,T ∪ T ′, F ∪ F ′,M0 ∪ M ′

0), λ) is a labeled net, which I denote⊔
{E ,S}.

Deadlock Freedom and 1-Safety. I want to avoid adding synchronization which fully deadlocks

any process Ei. Let L =
⊔
{E ,S} be a labeled net where E =

⊔
{E1,E2, · · · ,En}, and let Pi,Ti be the

places and transitions of each Ei. I say that L is deadlock-free if and only if there exists a trace τ ∈ L

81

Figure 4.5: Synchronization Synthesis—System Architecture

such that ∀0 ≤ i ≤ n,Mj ∈ markings(τ), t ∈ Ti. (((
•t ∩ Pi) ⊆ Mj) ⇒ (∃Mk ∈ markings(τ). (k ≥

j ∧ (t• ∩ Pi) ⊆ Mk))), i.e. a trace of L where transitions t of each Ei fire as if they experienced no

interference from the rest of L. I encode this as an LTL formula, obtaining a progress constraint ϕprogr for

E . Similarly, I want to avoid adding synchronization which produces a labeled net that is not 1-safe. I can

also encode this as an LTL constraint ϕ1safe.

Synchronization Synthesis Problem. Given ϕ and local event net E =
⊔
{E1,E2, · · · ,En}, find

a local labeled net L =
⊔
{E ,S} which correctly synchronizes E :

(1) ∀τ ∈ Tr(L). ((τ B E) ∈ Tr(E)), i.e., each τ of L (modulo added events) is a trace of E, and

(2) ∀τ ∈ Tr(L). (τ |= ϕ), i.e., all reachable configurations satisfy ϕ, and

(3) ∀τ ∈ Tr(L). (τ |= ϕ1safe), i.e., L is 1-safe (L is an event net), and

(4) ∃τ ∈ Tr(L). (τ |= ϕprogr), i.e., L deadlock-free.

4.3 Fixing and Checking Synchronization in Event Nets

Figure 4.5 shows the architecture of my solution—an instance of the CEGIS algorithm in [50], set up

to solve problems of the form ∃L. ((∀τ ∈ L. (φ(τ,E , ϕ, ϕ1safe))) ∧ ¬(∀τ ∈ L. (τ 6|= ϕprogr))), where

E ,L are input/output event nets, and φ captures 1-3 of the above specification. My event net repair

engine (§4.3.1) performs synthesis (producing candidates for ∃), and my event net verifier (§4.3.2) per-

forms verification (checking ∀). Algorithm 4.3.1 shows the pseudocode of my synthesizer. The function

makeProperties produces the ϕ1safe, ϕprogr formulas discussed in §4.2. The following sections describe

the other components of the algorithm.

82

Algorithm 4.3.1: Synchronization Synthesis Algorithm
Input: local event net E =

⊔
{E1,E2, · · · ,En}, LTL property ϕ, upper bound Y on the number of

added places, upper bound X on the number of added transitions, upper bound I on the
number of synchronization skeletons

Result: local labeled net L which correctly synchronizes E
1 initRepairEngine(E1, E2, · · · , En, X, Y, I) ; // initialize repair engine (§4.3.1)
2 L← E; (ϕ1safe, ϕprogr)← makeProperties(E1, E2, · · · , En);
3 while true do
4 ok ← true; props ← {ϕ,ϕ1safe, ϕprogr};
5 for ϕ′ ∈ props do
6 τctex ← verify(L, ϕ′) ; // check the property (§4.3.2)
7 if (τctex = ∅ ∧ ϕ′ = ϕprogr) ∨ (τctex 6= ∅ ∧ ϕ′ = ϕ1safe) then
8 differentRepair(); ok ← f alse ; // try different repair (§4.3.1)

9 else if τctex 6= ∅ ∧ ϕ′ 6= ϕprogr then
10 assertCtex(τctex); ok←f alse ; // record counterexample (§4.3.1)

11 if ok then
12 return L ; // return correctly-synchronized event net

13 L← repair(L) ; // generate new candidate

14 if L = ⊥ then
15 return fail ; // cannot repair

4.3.1 Repairing Event Nets Using Counterexample Traces

I use SMT to find synchronization constructs to fix a finite set of bugs (given as unwanted event-

net traces). Figure 4.6 shows synchronization skeletons which my repair engine adds between processes

of the input event net. The barrier prevents events b, d from firing until both a, c have fired, condition

variable requires a to fire before c can fire, and mutex ensures that events between a and b (inclusive)

cannot interleave with the events between c and d (inclusive). My algorithm explores different combinations

of these skeletons, up to a given set of bounds.

Repair Engine Initialization. Algorithm 4.3.1 calls initRepairEngine, which initializes the func-

tion symbols shown in Figure 4.7 and asserts well-formedness constraints. Labels in bold/blue are function

symbol names, and cells are the corresponding values. For example, Petri is a 2-ary function symbol, and

Loc is a 1-ary function symbol. Note that there is a separate Ctex ,Acc,Trans for each k (where k is a

counterexample index, as will be described shortly). The return type (i.e., the type of each cell) is indi-

cated in parentheses after the name of each function symbol. For example, letting B denote the Boolean

83

Figure 4.6: Synchronization skeletons: (1) Barrier, (2) Condition Variable, (3) Mutex.

type {true, false}, the types of the function symbols are: Petri : N × N → B × B, Mark : N → N,

Loc : N → N × N, Type : N → N, Pair : N × N → N × N × N, Range : N → N × N × N × N,

Len : N→ N, Ctexk : N× N→ N, Acck : N→ B, Transk : N→ N, Len : N→ N (note that Len is not

shown in the figure).

1 2 · · · n n+1 n+2 · · · n+X

1
2
...

m

m+1
m+2
...

m+Y

1 2 · · · 2 ·Len(k)+1

pl
ac
es

ad
de
d
pl
ac
es

transitions added transitionsPetri (B × B) Mark (N) Ctexk (N)

Acck (B)

Transk (N)Loc (N × N)

1
2
...

I

1 2 · · · J

sk
el
et
on

s

processesType (N) Pair (N × N × N) Range (N × N × N × N)

Figure 4.7: SMT function symbols.

The regions highlighted in Figure 4.7 are “set” (asserted equal) to values matching the input event net.

84

In particular, Petri(y, x) is of the form (b1, b2), where I set b1 if and only if there is an edge from place y to

transition x in E, and similarly set b2 if and only if there is an edge from transition x to place y. Mark(y)

is set to 1 if and only if place y is marked in E. Loc(x) is set to the location (switch/port pair) of the event

at transition x. The bound Y limits how many places can be added, and X limits how many transitions can

be added.

Bound I limits how many skeletons can be used simultaneously. Each “row” i of the Type,Pair ,Range

symbols represents a single added skeleton. More specifically, Type(i) identifies one of the three types of

skeletons. Up to J processes can participate in each skeleton (Figure 4.6 shows the skeletons for 2 processes,

but they generalize to j ≥ 2), and by default, J is set to the number of processes. Thus, Pair(i, j) is a tuple

(id , fst , snd), where id identifies a process, and fst , snd is a pair of events in that process. Range(i) is a

tuple (pMin, pMax , tMin, tMax), where pMin, pMax reserve a range of rows in the added places section

of Figure 4.7, and similarly, tMin, tMax reserve a range of columns in the added transitions.

I assert a conjunction φglobal of well-formedness constraints to ensure that proper values are used

to fill in the empty (un-highlighted) cells of Figure 4.7. The primary constraint forces the Petri cells

to be populated as dictated by any synchronization skeletons appearing in the Type,Pair ,Range rows.

For example, given a row i where Type(i) = 1 (barrier synchronization skeleton), I would require that

Range(i) = (y1, y2, x1, x2), where (y2 − y1) + 1 = 4 and (x2 − x1) + 1 = 1, meaning 4 new places and 1

new transition would be reserved. Additionally, the values of Petri for rows y1 through y2 and columns x1

through x2 would be set to match the edges for the barrier construct in Figure 4.6. Several other constraints

are captured by φglobal—due to space limitations, I will not present the full details, but the following list

summarizes the high-level descriptions of the φglobal constraints:

(1) For each active cell (id , fst , snd) in Pair , I require that fst , snd are from the same input process,

and the events between fst and snd (inclusive) in E form a simple chain (i.e., no branching behav-

ior). Additionally, different cells on the same row of Pair are from different processes, i.e., they

have different id values.

(2) Cells are in decreasing order of id in each row of Pair .

(3) No two active rows of Pair are equal.

85

(4) No two intervals represented in the Range cells are overlapping.

(5) Each interval in the Range cells stays within the added places/transitions area of Petri .

(6) Each row of Type is between 0 and 3 (no skeleton (inactive row), or one of the 3 skeleton types

respectively).

(7) Un-used places/transitions in the added places/transitions area of Petri are set to zero.

(8) As described above, interval lengths in Range and corresponding Petri /Mark cells are set based

on Type .

(9) Mark values are between 0 and 1 (enforcing 1-safety).

(10) Two transitions having a common input place have equal corresponding values of Loc (enforcing

locality).

(11) Each Loc value is a valid location in the network topology.

Asserting Counterexample Traces. Once the repair engine has been initialized, Algorithm 4.3.1

can add counterexample traces by calling assertCtex (τctex). To add the k-th counterexample trace τk =

t0t1 · · · tn−1, I assert the conjunction φk of the following constraints. In essence, these constraints make

the columns of Ctexk correspond to the sequence of markings of the current event net in Petri if it were

to fire the sequence of transitions τk. Let Ctexk(∗, x) denote the x-th “column” of Ctexk. I define Ctexk

inductively as Ctexk(∗, 1) = Mark and for x > 1, Ctexk(∗, x) is equal to the marking that would be

obtained if tx−2 were to fire in Ctexk(∗, x − 1). The symbol Acck is similarly defined as Acck(1) = true

and for x > 1, Acck(x) ⇐⇒ (Acck(x − 1) ∧ (tx−2 is enabled in Ctexk(∗, x − 1))). I also assert a

constraint requiring that Acck must become false at some point.

An important adjustment must be made to handle general counterexamples. Specifically, if a trace of

the event net in Petri is equal to τk modulo transitions added by the synchronization skeletons, that trace

should be rejected just as τk would be. I do this by instead considering the trace τ ′k = ε t0 ε t1 · · · ε tn−1

(where ε is a placeholder transition used only for notational convenience), and for the ε transitions, I set

Ctexk(∗, x) as if I fired any enabled added transitions in Ctexk(∗, x − 1), and for the t transitions, I

update Ctexk(∗, x) as described previously. More specifically, the adjusted constraints φk are as follows:

(1) Ctexk(∗, 1) = Mark .

86

(2) Len(k)=n ∧Acck(1) ∧ ¬Acck(2 · Len(k) + 1).

(3) For x ≥ 2, Acck(x) ⇐⇒ (Acck(x−1)∧(Transk(x)=ε∨(Transk(x) is enabled in Ctexk(∗, x−

1)))).

(4) For odd indices x ≥ 3, Transk(x) = t(x−3)/2, and Ctexk(∗, x) is set as if Transk(x) fired in

Ctexk(∗, x− 1).

(5) For even indices x ≥ 2, Transk(x) = ε, and Ctexk(∗, x) is set as if all enabled added transitions

fired in Ctexk(∗, x− 1).

The last constraint works because for my synchronization skeletons, any added transitions that occur imme-

diately after each other in a trace can also occur in parallel. The negated acceptance constraint ¬Acck(2 ·

Len(k)+1) makes sure that any synchronization generated by the SMT solver will not allow the counterex-

ample trace τk to be accepted.

Trying a Different Repair. The differentRepair() function in Algorithm 4.3.1 makes sure the re-

pair engine does not propose the current candidate again. When this is called, I prevent the current set of

synchronization skeletons from appearing again by taking the conjunction of the Type and Pair values, as

well as the values of Mark corresponding to the places reserved in Range , and asserting the negation. I

denote the current set of all such assertions φskip.

Obtaining an Event Net. When the synthesizer calls repair(L), I query the SMT solver for sat-

isfiability of the current constraints. If satisfiable, values of Petri ,Mark in the model can be used to add

synchronization skeletons to L. I can use optimizing functionality of the SMT solver (or a simple loop

which asserts progressively smaller bounds for an objective function) to produce a minimal number of syn-

chronization skeletons.

Note that formulas φglobal, φskip, φ1, · · · have polynomial size in terms of the input event net size and

bounds Y,X, I, J , and are expressed in the decidable fragment QF UFLIA (quantifier-free uninterpreted

function symbols and linear integer arithmetic). I found this to scale well with modern SMT solvers (§4.4).

Lemma 11 (Correctness of the Repair Engine). If the SMT solver finds that φ = φglobal∧φskip∧φ1∧· · ·∧φk

is satisfiable, then the event net represented by the model does not contain any of the seen counterexample

traces τ1, · · · , τk. If the SMT solver finds that φ is unsatisfiable, then all synchronization skeletons within

87

Algorithm 4.3.2: Event Net Verifier (PROMELA Model)

1 marked ← initMarking() ; // initial marking from input event net

2 run singlePacket , transitions ; // start both processes

3 Process singlePacket:
4 lock(); status ← 1; pkt ← pickPacket(); n← pickHost();
5 do
6 pkt ← movePacket(pkt ,marked) ; // move according to current config.

7 while pkt .loc 6= drop ∧ ¬isHost(pkt .loc);
8 status ← 2; unlock();

9 Process transitions:
10 while true do
11 lock();
12 t← pickTransition(marked); marked ← updateMarking(t,marked);
13 unlock();

the bounds fail to prevent some counterexample trace.

4.3.2 Checking Event Nets

I now describe verify(L, ϕ′) in Algorithm 4.3.1. From L, I produce a PROMELA model for LTL

model checking. Algorithm 4.3.2 shows the model pseudocode, which is an efficient implementation of the

semantics described in Section 4.2. Variable marked is a list of boolean flags, indicating which places cur-

rently contain a token. The initMarking macro sets the initial values based on the initial marking of L. The

singlePacket process randomly selects a packet pkt and puts it at a random host, and then moves pkt until

it either reaches another host, or is dropped (pkt .loc = drop). The movePacket macro modifies/moves pkt

according to the current marking’s configuration. The pickTransition macro randomly selects a transition

t ∈ L, and updateMarking updates the marking to reflect t firing.

I ask the model checker for a counterexample trace demonstrating a violation of ϕ′. This gives the

sequence of transitions t chosen by pickTransition . I generalize this sequence by removing any transitions

which are not in the original input event nets. This sequence is returned as τctex to Algorithm 4.3.1.

Lemma 12 (Correctness of the Verifier). If the verifier returns counterexample τ , then L violates ϕ in one

of the global configurations in Configs(τ). If the verifier does not return a counterexample, then all traces

of L satisfy ϕ.

88

benchmark #number time (sec.)
switch iter ctex skip SMT build verify synth misc total

ex01-isolation 5 2 2 0 318 0.48 0.43 0.04 0.52 1.47
ex02-conflict 3 10 3 6 349 0.28 0.94 0.61 1.14 2.98

ex03-loop 4 2 1 0 257 0.48 0.43 0.01 0.45 1.37
ex04-composition 4 2 1 0 305 0.48 0.74 0.03 0.50 1.75

ex05-exclusive 3 5 3 3 583 5.17 4.48 0.10 1.00 10.74

Table 4.1: Performance of Examples 1-5.

4.3.3 Overall Correctness Results

The proofs of the following theorems use Lemmas 11, 12, and Theorem 5.

Theorem 6 (Soundness of Algorithm 4.3.1). Given E,ϕ, if an L is returned, then it is a local labeled net

which correctly synchronizes E with respect to ϕ.

Theorem 7 (Completeness of Algorithm 4.3.1). If there exists a local labeled net L =
⊔
{E,S}, where

|S| ≤ I , and synchronization skeletons in S are each of the form shown in Figure 4.6, and S has fewer than

X total transitions and fewer than Y total places, and L correctly synchronizes E, then my algorithm will

return such an L. Otherwise, the algorithm returns “fail .”

4.4 Implementation and Evaluation

I have implemented a prototype of my synthesizer. The repair engine (§4.3.1) utilizes the Z3 SMT

solver, and the verifier (§4.3.2) utilizes the SPIN LTL model checker. In this section, I evaluate my system

by addressing the following:

(1) Can I use my approach to model a variety of real-world network programs?

(2) Is my tool able to fix realistic concurrency-related bugs?

(3) Is the performance of my tool reasonable when applied to real networks?

I address #1 and #2 via case studies based on real concurrency bugs described in the networking literature,

and #3 by trying increasingly-large topologies for one of the studies. Table 4.1 shows quantitative results for

the case studies. The first group of columns denote number of switches (switch), CEGIS iterations (iter),

SPIN counterexamples (ctex), event nets “skipped” due to a deadlock-freedom or 1-safety violation (skip),

and formulas asserted to the SMT solver (smt). The remaining columns report runtime of the SPIN verifier

89

(a) Event net. (b) Configurations.

Figure 4.8: Inputs for Example #2.

generation/compilation (build), SPIN verification (verify), repair engine (synth), various auxiliary/initial-

ization functionality (misc), and overall execution (total). My experimental platform had 20GB RAM and

a 3.2 GHz 4-core Intel i5-4570 CPU.

Example #1—Tenant Isolation in a Datacenter. I used my tool on the example described in

Section 4.1. I formalize the isolation property using the following LTL properties: φ1 , G(loc=H1 =⇒

G(loc6=H4)) and φ2 , G(loc=H3 =⇒ G(loc6=H2)). My tool finds the barrier in Figure 4.1d, which

properly synchronizes the event net to avoid isolation violations, as described in Section 4.1.

Example #2—Conflicting Controller Modules. In a real bug (El-Hassany et al. [36]) encountered

using the POX SDN controller, two concurrent controller modules Discovery and Forwarding made con-

flicting assumptions about which forwarding rules should be deleted, resulting in packet loss. Figure 4.8a

shows a simplified version of such a scenario, where the left side (1, A, 2, B) corresponds to the Discovery

module, and the right side (4, C, 3, D) corresponds to the Forwarding module. In this example, Discovery

is responsible for ensuring that packets can be forwarded to H1 (i.e., that the configuration labeled with 2 is

active), and Forwarding is responsible for choosing a path for traffic from H3 (either the path labeled 3 or

4). In all cases, I require that traffic from H3 is not dropped.

I formalize this requirement using the LTL property φ3 , G(loc=H3 =⇒ G(loc6=drop)). My tool

finds the two condition variables which properly synchronize the event net. As shown in Figure 4.8a, this

requires the path corresponding to place 2 to be brought up before the path corresponding to place 3 (i.e.,

event C can only occur after A), and only allows it to be taken down after the path 3 is moved back to path

4 (i.e., event B can only occur after D).

90

Example #3—Discovery Forwarding Loop. In a real bug scenario (Scott et al. [107]), the NOX

SDN controller’s discovery functionality attempted to learn the network topology, but an unexpected inter-

leaving of packets caused a small forwarding loop to be created. I show how such a forwarding loop can

arise due to an unexpected interleaving of controller modules. In Figure 4.9a, the Forwarding/Discovery

modules are the left/right sides respectively. Initially, Forwarding knows about the red (1) path in Figure

4.9b, but will delete these rules, and later set up the orange (3) path. On the other hand, Discovery first

learns that the green (4) path is going down, and then later learns about the violet (6) path. Since these

modules both modify the same forwarding rules, they can create a forwarding loop when configurations 1, 6

or 4, 3 are active simultaneously.

(a) Event net. (b) Configurations.

Figure 4.9: Inputs for Example #3.

I wish to disallow such loops, formalizing this using the following property: φ4 , G(status=1

=⇒ F(status=2)). As discussed in Section 4.3.2, status is set to 1 when the packet is injected into the

network, and set to 2 when/if the packet subsequently exits or is dropped. My tool enforces this by inserting

a barrier (Figure 4.9a), preventing the unwanted combinations of configurations.

Example #4—Policy Composition. In an update scenario (Canini et al. [20]) involving overlap-

ping policies, one policy enforces HTTP traffic monitoring and the other requires traffic from a particular

hosts(s) to waypoint through a device (e.g., an intrusion detection system or firewall). Problems arise for

traffic processed by the intersection of these policies (e.g., HTTP packets from a particular host), causing a

policy violation.

Figure 4.10b shows such a scenario. The left process of 4.10a is traffic monitoring, and the right

process is waypoint enforcement. HTTP traffic is initially enabled along the red (1) path. Traffic monitoring

91

(a) Event net. (b) Configurations.

Figure 4.10: Inputs for Example #4.

intercepts this traffic and diverts it toH2 by setting up the orange (2) path and subsequently bringing it down

to form the blue path (3). Waypoint enforcement initially sets up the green path (5) through the waypoint

S3, and finally allows traffic to enter by setting up the violet (6) path from H1. For HTTP traffic from H1

destined for H3, if traffic monitoring is not set up before waypoint enforcement enables the path from H1,

this traffic can circumvent the waypoint (on the S2→ S4 path), violating the policy.

I can encode this specification using the following LTL properties: φ6 , G((pkt .type=HTTP ∧

pkt .loc=H5)⇒ F(pkt .loc=H2∨pkt .loc=H3)) and φ7 , (¬(pkt .src=H1∧pkt .dst=H3∧pkt .loc=H3)

W (pkt .src=H1∧pkt .dst=H3∧pkt .loc=S3)), where W is weak until. My tool finds Figure 4.10a, which

forces traffic monitoring to divert traffic before waypoint enforcement proceeds.

Example #5—Topology Changes during Update. Peresı́ni et al. [99] describe a scenario in which

a controller attempts to set up forwarding rules, and concurrently the topology changes, resulting in a for-

warding loop being installed. Figure 4.11b, examines a similar situation where the processes in Figure 4.11a

(a) Event net. (b) Configurations.

Figure 4.11: Inputs for Example #5.

92

 0.1

 1

 10

 100

8 10 12 14 16 20 63 144
275

468
735

1088

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

Figure 4.12: Performance results: scalability of Example #1 us-
ing Fat Tree topology.

(a) FatTree.

(b) Small World. (c) Topology Zoo.

Figure 4.13: Example network topologies.

interleave improperly, resulting in a forwarding loop. The left process updates from the red (2) to the orange

(3) path, and the right process extends the green (5) to the violet (6) path (potential forwarding loops: S1, S3

and S1, S2, S3).

I use the loop-freedom property φ4 from Example #3. My tool finds a mutex synchronization skeleton

(Figure 4.11a). Note that both places 2, 3 are protected by the mutex, since either would interact with place

6 to form a loop.

Scalability Experiments.

Recall Example #1 (Figure 4.1a). Instead of the short paths between the pairs of hosts H1, H2 and

H3, H4, I gathered a large set of real network topologies, and randomly selected long host-to-host paths

with a single-switch intersection, corresponding to Example #1. I used datacenter FatTree topologies (e.g.,

Figure 4.13a), scaling up the depth (number of layers) and fanout (number of links per switch) to achieve

a maximum size of 1088 switches, which would support a datacenter with 4096 hosts. I also used highly-

connected (“small-world”) graphs, such as the one shown in Figure 4.13b, and I scaled up the number

of switches (ring size in the Watts-Strogatz model) to 1000. Additionally, I used 240 wide-area network

topologies from the Topology Zoo dataset—as an example, Figure 4.13c shows the NSFNET topology,

featuring physical nodes across the United States. The results of these experiments are shown in Figure

4.12, 4.14a, and 4.14b.

93

 0

 1

 2

 3

 4

 5

 6

 7

50 100
200

300
400

500
600

700
800

900
1000

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

(a) using Small World topologies.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5 10 14 18 20 22 24 26 30 34 37 43 53 56 65 82 754

T
im

e
 (

s)

Network size (# switches)

synthesize
verify
build

initialize

(b) using Topology Zoo topologies.

Figure 4.14: Performance results: scalability of Example #1 (continued).

4.5 Related Work

Network Repair and Network Update Synthesis. Saha et al. [106] and Hojjat et al. [53] present

approaches for repairing a buggy network configuration using SMT and a Horn-clause-based synthesis al-

gorithm respectively. Instead of repairing a static configuration, my event net repair engine must repair a

network program.

A network update is a simple network program—a situation where the global forwarding state of the

network must change. In the networking community, there are several proposals for packet- and flow-level

consistency properties that should be preserved during an update. For example, per-packet and per-flow

consistency [105, 80], and inter-flow consistency [76]. Many approaches solve the problem with respect

to different variants of these consistency properties [54, 63, 79, 61, 85, 126]. In contrast, I provide a

new language for succinctly describing how multiple updates can be composed, as well as an approach for

synthesizing a composition which respects customizable LTL properties over packet traces.

Concurrent Programming for Networks. Dudycz et al. [31] present an algorithm to compose

network updates correctly with respect to loop freedom, and show that the problem of optimally doing so

is NP-hard. Beyond network updates, there has been work on composing network programs. For exam-

ple, Pyretic has a programming language which allows sequential/parallel composition of static policies—

dynamic behavior can be obtained via a sequence of policies [90]. NetKAT is a mathematical formalism

and compiler which also allows composition of static policies [3, 111]. CoVisor is a hypervisor that allows

multiple controllers to run concurrently (sequential or parallel composition). It can incrementally update

94

the configuration based on intercepted messages from controllers, and does not need to recompile the full

composed policy [60]. The PGA system addresses the issue of how to handle distributed conflicts, via cus-

tomizable constraints between different portions of the policies, allowing them to be composed correctly

[102]. Bonatti et al. [15] present an algebra for properly composing access-control policies. Canini et al.

[20] use an approach based on software transactional networking to handle conflicts. I deal with conflicts

automatically, by producing local event nets.

Handling persistent state properly in network programming is a difficult problem. Although basic

support is provided by switch-level mechanisms for stateful behavior [16, 13, 110], global coordination

still needs to be handled carefully at the language/compiler level. FAST [91], OpenState [13], and Kinetic

[68] provide a finite-state-machine-based approach to stateful network programming. Arashloo et al. [5]

present SNAP, a high-level language for writing network programs. SNAP has a language with support for

sequential/parallel composition of stateful policies, as well as built-in features beyond what I provide (such

as atomic blocks). However, none of these approaches examine how to avoid/handle (or even analyze) dis-

tributed conflicts. McClurg et al. [86] present an approach which formalizes event-driven network programs

using event structures, and show how to deal with distributed conflicts. I extend this to a flexible model

which has a more natural notion of loops, while retaining the ability to utilize the consistency properties

presented there. I also present a synchronization synthesis framework that helps users properly compose

several such structures into a single correct network program.

Synthesis/Verification of Concurrent Network Programs. Padon et al. [98] show how to “decen-

tralize” a network program to work properly on distributed switches. My work on the other hand takes an

improperly-decentralized program and inserts the necessary synchronization to make it correct. El-Hassany

et al. [36] present SDNracer, a tool for discovering concurrency bugs in network programs. My work in-

stead seeks to repair a buggy concurrent network program to make it satisfy a high-level correctness property.

Yuan et al. [125] present NetEgg, pioneering the approach of using examples to write network programs.

Similar to my event net repair engine, they produce a policy compatible with a set of finite traces. However,

NetEgg does not support negative examples, limiting its ability to rule out incorrect interleavings. Addi-

tionally, in contrast with my SMT-based strategy, NetEgg uses a backtracking search which may limit its

95

scalability when applied to large real-world networks.

Petri Net Synthesis. Ehrenfeucht et al. [35] introduce the “net synthesis” problem, i.e., producing a

net whose state graph is isomorphic to a given DFA, and present the “regions” construction on which Petri

net synthesis algorithms are based. Desel et al. [29] present an algorithm for synthesizing all nets isomorphic

to a given DFA, in order to find “small” ones. Cortadella et al. [27] produce elementary nets, minimize the

number of places, and use label splitting when the region-based synthesis method fails. Badouel et al. [7]

show that synthesizing elementary nets (essentially 1-safe Petri nets without self-loops) is NP-complete.

For general Petri nets, the synthesis problem is polynomial-time solvable. Badouel et al. [6] present

a polynomial algorithm (based on linear programming) for pure (no self-loops) bounded nets. Badouel et

al. [8] present a polynomial-time linear-algebra-based algorithm for synthesizing distributable nets [55].

Distributable nets are local like my event nets, but not necessarily 1-safe.

The above work is not directly applicable in my context because the definition of “net synthesis”

is very different than what is needed for my repair engine. A more closely-related type of synthesis is

presented by Bergenthum et al. [11] and Cabasino et al. [19], who synthesize minimal Petri nets consistent

with positive and positive/negative examples respectively. My programming model relies on 1-safe Petri

nets, so I cannot directly apply these approaches either.

Process Mining. Process mining looks at an event log and produces an event structure which

generalizes the traces in the log [32]. This approach can also synthesize a Petri net—Ponce de León et al.

[101] use the log to produce an event structure, and then generalize the event structure by “folding” it into

an equivalent bounded net via SMT, using negative traces to constrain the amount of generalization. This is

different than my approach in that (1) their generalization adds potentially more behaviors not seen in the

positive traces, meaning it would not work for synthesis of synchronization constructs, and (2) they have a

strong well-formedness assumption on negative examples, while I allow arbitrary traces.

A related area is process enhancement (repair) [39]. This computes a minimal number of changes to

the original Petri net such that certain properties are satisfied (such as agreement with the event log). Quality

metrics are used to maintain closeness to the original model, and the degree of conformance with the event

log. For example, Martı́nez-Araiza et al. [83] use a backtracking algorithm that modifies the Petri net while

96

checking a CTL property, producing a repaired Petri net which satisfies the property. This changes the

semantics of the Petri net, while I want semantics-preserving transformations. In other words, I do not

generate arbitrary repairs—I restrict behaviors by adding new events/places (synchronization skeletons).

Basile et al. [9] preserve the semantics of the original (buggy) Petri net, but they are restricted to the context

of time petri nets (they modify the timing, not the net structure). These do not correspond well to network

programs, because careful timing can require expensive synchronization/buffering in the network.

Automata Learning. My approach is essentially an abstract learning framework [77], where my

event net repair engine is the learner. Automata learning is conceptually similar, producing a DFA instead

of a Petri net, and has been used for verification/synthesis [119]. Offline approaches to automata learning

(such as RPNI [95]) produce an automaton which agrees with a set of labeled (positive/negative) example

traces. Online approaches such as L∗ [4] actively pose queries to the user asking whether certain traces are

contained in the target language. For my purposes, an offline approach is desirable, since I wish to provide

a fully automatic tool. Learning a minimal DFA from positive/negative examples is known to be an NP-

complete problem [46], but under various restrictions on the example traces, a polynomial algorithm can

be obtained [34, 33]. It would be interesting to investigate an RPNI-style formalization for learning Petri

nets, although (1) in my case, I would need to modify a given Petri net in a minimal way, such that a set

of negative traces are rejected, rather than producing a general Petri net from a set of positive/negative

examples, and (2) it is possible that there is not an efficient solution, due to the NP-completeness of both

DFA learning and elementary net synthesis. Additionally, it would be interesting to examine the usefulness

of an online approach for learning Petri nets (e.g. [38]) in my context, but both of these directions are left

for future work.

Synthesis/Repair for Synchronization. Emerson et al. [37] use a decision procedure for satisfia-

bility of CTL to synthesize “synchronization skeletons.” The processes themselves are specified using CTL,

and the synchronization skeleton is extracted from the model. Chatterjee et al. [25] present complexity re-

sults for distributed LTL synthesis, i.e., synthesizing a set of processes such that their behavior satisfies an

LTL specification. My approach is a similar idea, but I exploit the speed of SMT solvers on quantifier-free

linear integer arithmetic.

97

PSketch [114] extends Sketch to synthesize concurrent programs. They add constructs for statement

reordering, as well as concurrency primitives for forking threads, atomic sections, etc. The SAT-based

synthesis component produces a candidate program which avoids a finite set of buggy traces, and a Spin

verifier checks that all interleavings of the candidate are correct, and if not, a counterexample representing a

new buggy trace is returned. This is conceptually similar to my approach, but PSketch encodes all possible

programs as a SAT formula, while I utilize the SMT solver to add a repair to the original program.

There are various other SAT/SMT-based approaches, such as synthesis of memory-order [88] and

insertion of fences [71] in a relaxed memory model, instruction reordering [24, 23], atomic section insertion

[121, 14], etc. Additionally, there are program-analysis-based approaches which look at a bug report, and

perform semantics-preserving reorderings, thread join/lock, etc., producing a patch to fix the bug [57, 58,

74]. Raychev et al. [103] present an approach to “determinize” a concurrent program by synthesizing order

relationships between statements. In my approach, I model programs as Petri nets, resulting in a general

framework for synthesis of synchronization where many different types of synchronization constructs can

be readily described and synthesized.

Synthesis from Examples. Programming by examples is an active research area, and has been

applied in many contexts where individual behaviors are easier to specify than full programs [49, 100].

My approach uses a new example-based Petri repair engine to synthesize programs which respect certain

high-level properties.

Transit [117, 2] allows programmers to synthesize a distributed program (protocol) using both con-

crete and symbolic partial examples of the program’s desired behavior (concolic snippets). This approach

uses CEGIS—the synthesizer enumeratively “fills in” program expressions, and uses an SMT solver to

check that the resulting candidate protocol agrees with the concolic examples (and invariants). If not, a

counterexample is provided as a new concrete example. My approach is similar, except that rather than

enumeration, I use an SMT solver (guided by negative traces) to produce a candidate, and my candidates

are Petri nets rather than program expressions.

98

Chapter 5

Data-Plane Mechanisms for Distributed SDN Programming

This chapter describes a general mechanism for implementing the event-driven network programs

described in previous chapters. The key features of this mechanism are a high-level language which extends

event nets with the ability to access arbitrary global registers, and a compiler that produces corresponding

executable code to be run on modern switches. The basic architecture of this system is shown in Figure 5.1.

Before examining these contributions in detail, I give a brief introduction to the P4 switch-programming

language, which is currently used in the backend for my compiler. Although I cover P4 specifically, the tech-

niques I use in building my compiler apply to other platforms as well, and other compiler backends could

be added relatively easily.

P4 Stateful Data-Plane. The P4 SDN platform provides the ability to store state on the switches

using registers, which can be read/written with values computed from the header fields of incoming packets.

The packet-processing functionality on P4 switches can be customized using the P4 language. This is a

“schema”-like language, which allows a sequence of tables to be (conditionally) applied to the packet, and

the tables must be separately populated with forwarding rules to achieve the desired behavior. The switch

Figure 5.1: System architecture.

99

is able to achieve line rate by using a pipelined architecture which executes the P4 program. At a high

level, the switch is structured as an ingress pipeline, followed by a queueing mechanism, followed by an

egress pipeline. Each arriving packet is processed by the ingress pipeline (with special packet metadata

fields set to indicate which port the packet arrived on), and the P4 program can set metadata fields which tell

the subsequent queueing mechanism which output port(s) to send the packet to. The queueing mechanism

duplicates the packet if needed, and sends each copy through the egress pipeline, where the P4 program can

make additional modifications to the packet (except to the output port, which is now fixed).

My first goal is to make the dataplane programming process more accessible, by moving away from

this forwarding-table-based model towards a more familiar imperative programming language.

Data-Plane Intermediate Representation. The IR is a simple imperative programming language

used in the intermediate stages of the compiler. Conceptually, the language is similar to P4, in that it provides

a way of describing basic packet-processing functions—functions which accept a packet, optionally perform

some modifications and/or update local switch registers, and then send the packet to another port(s) on the

switch. The main purpose of the IR is to provide a concise and straightforward way of encoding both the

control flow and the table contents of a P4 program.

For the purposes of experimentation and rapid prototyping, the IR can also specify the desired network

topology, and the backend emits a custom Mininet harness which implements it. For example, the following

IR code specifies the topology shown in Figure 5.1.

let topology = [

link(S1:2, S2:1),

link(S2:2, S3:1),

host(H1, 00:00:00:00:00:11, 10.0.0.1, S1:1),

host(H2, 00:00:00:00:00:22, 10.0.0.2, S3:2),

host(H3, 00:00:00:00:00:33, 10.0.0.3, S3:3),

switch(S1, main),

switch(S2, main),

switch(S3, main)

]

The full syntax of the IR is shown in Figure 5.2—the syntax and semantics are similar to (a subset

100

id ∈ Ident (identifier)

n ∈ Z (numeric constant)

e ::= true | false | n | id | id(e, · · ·) | [e, · · ·] | e[e] | (e, · · ·) | {id : e, · · · } (expression)

| e.e | e+ e | e− e | e ∗ e | −e | {s; · · · } | if(c) e else e

c ::= e 6= e | e = e | e > e | e < e | ¬c | c ∧ c | c ∨ c (condition)

s ::= e | skip | let id = e | let mut id = e | e = e | push output(id, e, n, id) | for(id in n .. n) s (statement)

m ::= fn id(id, · · ·) s (function)

Figure 5.2: Intermediate representation (IR) syntax.

of) Rust. In IR programs, the base data are true and false (of type bool), and fixed-width integers

of a certain size (e.g., int32, int64, etc.). Data can be structured into tuples such as (false, 1, 2, · · ·),

fixed-length arrays such as [1, 2, · · ·], and records such as {field1:100, field2:200}.

Variables can be created using let bindings, and later destructively modified using assignment (when

created as mutable using let mut). There is a for loop, where I require that the loop bounds evaluate

to a constant at compile time (for compatibility with the bounded programming model provided by P4 and

other hardware switches). There is also an if statement (standard else if syntax is also supported, but is

omitted for conciseness). Note that, as in Rust, the IR is an expression-based language, and “return values”

are simply the last expression in a block. For example, the following code

let a = {

let x = 1;

let y = 2;

x + y

}

sets the value of a to 1 + 2 = 3.

A packet is modeled as having a record type, i.e., {ip proto:int8, ip dst:int32, · · · , data: · · · },

where ip proto etc. are the standard header fields (TCP/IP, etc.), and the data field(s) can hold a custom

payload (of custom type). These fields are stored in the packet, and are readable/writable at switches.

Similarly, a switch is modeled as having a record type, and in this case, the fields represent stateful registers

on the switch, which can be read/written when packets arrive. Custom packet headers can also contain

bounded stack data structures, which provide push and pop operations, but I elide discussion of this, and

101

instead use arrays for clarity of the presentation.

An ingress function m is associated with each switch:

ingress(pk, sw, sw id, input port, clone id, is edge)

(in the above topology declaration, the function main is such a callback, associated with each of the three

switches). The parameters pk and sw are the records representing the current packet and switch respectively,

sw id and input port identify the current switch and port, and is edge is a flag which is set when the

packet has arrived at this port directly from a host (and also when a packet will be delivered directly to a

host after leaving this port. This function is applied to each incoming packet pk, and makes modifications

to the packet (and also potentially reads from and/or writes to the current switch sw), as well as setting the

output ports(s) for the packet, via push output(pk, port id, unique flag, egress). Here, egress is

an egress callback which is called on that copy of the packet before it is transmitted from the switch (the

clone id parameter of the callback will be set to the value of unique flag, to distinguish multiple

copies of the same packet, if needed). Conceptually, the push output function adds the packet to a stack,

and I configure P4’s queueing mechanism to send the packet (and any created copies) to the proper output

port, where it processed by the egress callback and transmitted.

There is an initialization function for packets

init packet(pkt, swt, swt id, input port)

which is called on each packet newly entering the network from a host. This allows packet header fields to

be set to default values. There is also an initialization function for switches init switch(swt, swt id),

which is called once per switch, and is used to initialize switch registers to their desired initial values. Unless

initialized, all custom header fields and all registers are set to zero.

Typechecking IR Programs. Before attempting to translate an IR program to P4, I perform type

checking—this is useful for preventing tricky bugs due to unexpected bit-width conversions, etc. The IR

is strongly-typed, and as mentioned, has boolean, fixed-width integer, and array, tuple, and record types.

Although not shown in the syntax, values can be affixed with a type annotation, such as let x = 123

int48. The integer types can be signed or unsigned, and the width can be an expression, as long as it

102

let mut x = [1,2,3,4,5][0];
let mut y = (5,(6,7),8).1.0;
let z = 123;
let mut w = z+5;
let mut r = 124;
let mut s = (1,r,3).1

let mut x = 1;
let mut y = 6;
let mut w = 128;
let mut r = 124;
let mut s = r

Figure 5.3: Constant Propagation

evaluates to a constant integer at compile time, e.g., let n = 63; let y = 124 int(n+1), which

gives y type int64. The typechecking functionality first performs constant propagation, eliminating

non-constant let bindings, and replacing the name with the corresponding value, as shown in Figure 5.3.

A simple bottom-up typechecking algorithm is then employed to confirm that all type annotations

are correct. By default, integer constants are taken to be signed 64-bit integers. Explicit type conversions

can be performed between integer types, e.g., let x = 123 int32; let b = (x as int64).

The compiler makes sure that the proper code is emitted to handle this conversion cleanly (sign extension,

etc.). Parameter type annotations are required on function parameters, but the function’s return type can be

inferred by my algorithm.

Callback Nets. In Section 1.3.4, I described callback nets at a high level, and based on that idea, I

will formalize the definition. I define a location to be a switch-port pair (sw, pt), and an event to be a pair

(l, ϕ), where l is a location and ϕ is a property over packet header fields. In this chapter, for conciseness

I will require ϕ = true , so that I can identify an event simply by its location (signifying arrival of some

packet at that location). I define a global variable as a Conflict-free Replicated Data Type (CRDT) register.

I define a callback to be a function which takes the event-triggering packet and location as parameters, and

performs reads/writes to global variables. In this chapter, my callbacks will have the same signature as the

ingress/egress functions described previously. Finally, I will define a callback net to be an event net where

each transition is labeled with a callback.

Figure 5.4: Callback net.

103

An example callback net is shown in Figure 5.4. In this case, the event is S1:2 (arrival of a packet

at port 2 of switch S1), and the callback is a function named callback. Updates to CRDT registers

are propagated lazily by piggybacking on data packets. The marking of each place in the callback net also

behaves as a CRDT register. For example, the packet that triggers the event in Figure 5.4 will “see” the value

of places 1, 2, 3 decremented and the value of places 4, 5 incremented, and any switches that subsequently

receive the packet will also see these updates.

Compilation: L3→L2. The first stage of the compilation translates callback nets into IR programs

with global registers. A callback net is specified along with the topology declaration:

let topology = [

// ... declare topology ...

// declare callback net:

event([1,2,3], S1:2, [4,5], callback, 123),

marking([1,2,3])

]

This example defines the simple callback net discussed previously. The places 1, 2, 3 are initially marked,

and a packet arrival at location S1:2 fires the transition, moving the tokens to places 4, 5, and calling

callback with the clone id parameter set to 123. This unique ID can be used to distinguish multiple

events using the same callback.

I translate the callback net into global registers as follows. For each place, I generate a single-bit

global register. I generate a custom init switch function to initialize these globals to match the specified

initial marking. At the beginning of each ingress callback, I read the globals and check the current marking.

I then insert a sequence of if statements to check whether the current marking and current switch and port

match a transition in the callback net. Within the body of each of these, I first insert the statements of the

corresponding callback, and then insert code to update the globals to match the new marking.

Compilation: L2→ L1. The second stage of the compilation translates IR programs with global

registers into into IR programs with local registers. Global registers are declared along with the topology

declaration. Currently, I support two types of CRDT global registers: Increment (unsigned) and Last-

writer wins (LWW) (signed). Bit-width of the registers can be specified.

104

let topology = [

// ... declare topology ...

// declare globals:

global("counter", 32, "inc"),

global("test", 64, "lww")

]

These global registers are accessed in the following way:

// read the counter

let x = counter::read(swt, swt_id);

// increment the counter by 2

counter::inc(swt, swt_id, 2 uint32);

// read the LWW register

let y = test::read(swt, swt_id);

// write 123 to the LWW register

test::write(swt, swt_id, 123 int64)

In general, CRDT registers rely on causal ordering, so for this I use Lamport timestamps [72]. I add

a new custom header field time to packets, and add a new register time to each switch. For each global,

I store a data structure in the packet header fields, and in registers on each switch. The type of this data

structure differs for each type of CRDT register. For example, an increment register is stored as an array of

(per-switch) counters, and an LWW register is stored as a register value along with a timestamp [109].

At the beginning of each ingress callback, I insert the following code, where merge is code for the

state-based merge for that CRDT type, and max computes the maximum:

// update the local timestamp

swt.time = max(swt.time, pkt.time) + 1;

// update local copy of globals

swt.count = merge(swt.count, pkt.count);

swt.test = merge(swt.test, pkt.test)

At the end of each egress callback, I insert the following:

// send out local timestamp

swt.time = swt.time + 1;

105

(a)

let a = {
let x = 1;
let y = 2;
x + y

}

let x = 1;
let y = 2;
let a = x + y

(b)

let b = if(a > 1) {
123

} else {
124

}

let umut t = 0;
if(a > 1) {
t = 123

} else {
t = 124

}

(c)

let c =
swt.one + swt.two;

let d =
pkt.one + pkt.two

let t1 = swt.one;
let t2 = swt.two;
let c =
t1 + t2;

let d =
pkt.one + pkt.two

Figure 5.5: Step 1: Flattening IR statements

pkt.time = swt.time;

// send out local copy of globals

pkt.count = merge(swt.count, pkt.count);

pkt.test = merge(swt.test, pkt.test)

At this point, I have IR code with only local reads/writes, so I can now proceed to emitting P4 code.

Compilation: L1 → P4. The final stage of the compiler produces P4 code from an IR program.

The P4 14 language does not have the expression-level if construct, let bindings, or data structures like

arrays/tuples. Thus, I perform several transformations on the code to simplify it before P4 code generation.

The first step is to flatten all expression-level blocks into statement-level blocks. This is shown in

Figure 5.5. In particular, I first eliminate blocks appearing in a let binding, by pulling out all statements,

and then let-binding the final expression (Figure 5.5(a)). I then eliminate if expressions appearing in

a let binding, by introducing a temporary mutable variable, and assigning the final expression in each

branch to this variable (Figure 5.5(b)). Finally, I pull reads/writes of switch fields out of expressions, so

that the appear at the statement level (Figure 5.5(c)). This is because P4 only has statement-level read/write

functionality for registers. After applying these transformations, the control-flow in the resulting IR code is

implementable using P4’s if blocks and statements like register write etc.

In order to translate IR data structures into flat integer types which can be handled by P4, I need to

106

(a)

let a =
[[1,2],
[3,4],
[5,6]]

let a_0_0 = 1;
let a_0_1 = 2;
let a_1_0 = 3;
let a_1_1 = 4;
let a_2_0 = 5;
let a_2_1 = 6

(b)
let b =
{foo:123,
bar:true,
baz:[1,2]}

let b_foo = 123;
let b_bar = true;
let b_baz_0 = 1;
let b_baz_1 = 2

Figure 5.6: Step 2: Flattening IR assignments/datatypes

perform the transformations shown in Figure 5.6. For example, I recursively flatten arrays into lists of flat

integers (Figure 5.6(a)). Similarly, I (recursively) flatten records in a similar way (Figure 5.6(b)), and tuples

follow a similar pattern.

The last step of the translation before emitting P4 code involves eliminating let bindings, as shown

in Figure 5.7. Since P4 does not have support for such a construct, I translate all let bindings into packet

metadata-field writes. These metadata fields essentially function as “temporary variables” stored in the

packet during processing on the switch. They are separate from the packet’s custom header fields, and are

not transmitted with the packet.

After the Figure 5.5-5.7 transformations are performed, the body of each callback function only

contains if statements, and straight-line code containing only reads/writes to packet or switch fields. Each

field is of a flat integer type. This maps readily into P4 code: the if blocks can be emitted directly, and

each executable statement (field read/write) can be emitted as a call to apply(table), where table is

an empty P4 table whose default action is the executable statement. For example, writes to switch fields

such as swt.field = e become register write(field, 0, e), reads from switch fields such

as pkt.meta.field = swt.field become register read(routing metadata.field,

field, 0), and accesses to custom packet fields such as pkt.one become data.one, where data

pkt.one = 1;
let mut two = 2;
pkt.one =
pkt.one + two;

pkt.one = 1;
pkt.meta.two = 2;
pkt.one =
pkt.one +
pkt.meta.two

Figure 5.7: Step 3: Flattening IR variables

107

is a custom P4 header holding all the (now flat integer) custom fields. The IR push output function is

implemented by conceptually “pushing” the desired output port, egress callback, and unique ID to a bounded

“stack” contained in the packet metadata fields.

A P4 parser is built for the data header. The ingress block of the P4 program (entrypoint which

processes packets from the ingress queue) first checks whether an incoming packet contains this custom

header—for simplicity, I indicate this with a special flag in the PCP bits of a VLAN header. If the packet

is not flagged, I add the custom header (and the VLAN header, if necessary). I apply tables which set the

sw id, input port, and, is edge callback parameters, and then emit the P4 code for the callback’s

body as described above.

I use the multicast group feature of P4’s “simple switch” model to make sure that the packet is sent

to each of the ports contained in the output-port stack. At the end of the ingress block, I apply tables which

match on the contents of the output-port stack, and set the intrinsic metadata.mcast grp field

accordingly. I map a unique multicast group ID to each potential combination of port IDs in the stack. The

number of multicast groups is kept low by limiting the size of the stack (multicasting many packets is not

common in my applications).

The egress block of the P4 program processes each packet after the ingress pipeline has moved it

to a specific output port queue (as dictated by the multicast group). I have set up my multicast group assign-

ments such that the multicast mechanism sets intrinsic metadata.egress rid to correspond to

the index of this packet in the output-port stack. Thus, I apply tables which set metadata fields clone id

and callback to the unique ID and specified egress callback used in the push output call. I then emit

an if block for each possible egress callback in the IR program, and match on the callback ID to deter-

mine which one should handle the packet. Finally, the egress queue ends with tables which strip the VLAN

and custom data header when the packet is being transmitted directly to a host.

108

Chapter 6

Conclusion and Future Work

In this thesis, I have outlined a new approach to network programming, based on program synthesis.

This includes a practical tool for automatically synthesizing correct network update sequences from for-

mal specifications. The thesis also presents a full framework for correct event-driven programming. The

approach provides a way of rigorously defining correct event-driven behavior without the need for speci-

fying logical formulas. Additionally, I presented an approach for synthesis of synchronization to produce

event-driven programs which satisfy correctness properties when operating in parallel. Finally, I described

an efficient implementation mechanism for event-driven programs.

There are many promising directions for continuing this research. In particular, I am especially

interested in investigating the following.

(1) Consistently “Updating” a Running Network Program: I address the problem of performing

(event-driven) updates which are correct with respect to customizable properties, but the (dynamic)

implementations my techniques produce are meant to “run” in the network indefinitely. I want to

investigate ways to update the running dynamic program itself in some consistent way.

(2) Multi-Packet Properties: The techniques in this thesis consider only single-packet properties,

meaning they cannot precisely capture behavior arising from several different interacting packets.

Research is needed to determine (1) what is the right formalism (such as LTL) for specifying multi-

packet properties, and (2) how my verifiers can be extended to efficiently check such properties.

(3) Obtaining Event Nets from Controller Applications: In this thesis, I show how various net-

working applications can be (manually) written using my event-driven abstractions. However, it

109

seems likely that event-driven code written in other SDN frameworks (e.g., the FloodLight con-

troller), could be automatically translated to event nets. This would enable existing applications to

more easily be migrated to my framework.

(4) Formalizing the Event Nets Language: It would be interesting to consider formal reasoning and

automated verification for the event nets language, as has been done for, e.g., NetKAT.

(5) Generality of the Approach: The event-driven SDN update problem considered in this thesis is

an instance of a more general distributed-systems programming problem, namely how to write

correct and efficient programs for distributed systems. I provide a PL approach (consistency

property, programming language, and compiler/runtime) which ensures that the programmer need

not reason about interleavings of events and updates for each application, and I show that my con-

sistency model and implementation technique work well in the context of SDN programs, but I do

not believe they are limited to that specific arena. The approach could also possibly be extended

to other distributed systems in which availability is prioritized, and consistency can be relaxed in a

well-defined way, as in my event-driven consistent updates. Example domains include wireless sen-

sor networks or other message-passing systems where the nodes have basic stateful functionality.

110

Bibliography

[1] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. “Data Center TCP (DCTCP)”. In SIGCOMM. 2010, pp. 63–74.

[2] Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and Abhishek Udupa. “Au-
tomatic Completion of Distributed Protocols with Symmetry”. In CAV (2015).

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger,
and David Walker. “NetKAT: Semantic Foundations for Networks”. In POPL (2014).

[4] D. Angluin. “Learning Regular Sets from Queries and Counterexamples”. In Inf. Comput. 75.2
(1987), pp. 87–106.

[5] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and David Walker.
“SNAP: Stateful Network-Wide Abstractions for Packet Processing”. In SIGCOMM (2016).

[6] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. “Polynomial Algorithms for the Syn-
thesis of Bounded Nets”. In TAPSOFT. Vol. 915. Lecture Notes in Computer Science. Springer,
1995, pp. 364–378.

[7] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. “The Synthesis Problem for Elementary
Net Systems is NP-Complete”. In Theor. Comput. Sci. 186.1-2 (1997), pp. 107–134.

[8] Eric Badouel, Benoı̂t Caillaud, and Philippe Darondeau. “Distributing Finite Automata Through
Petri Net Synthesis”. In Formal Asp. Comput. 13.6 (2002), pp. 447–470.

[9] F. Basile, P. Chiacchio, and J. Coppola. “Model repair of Time Petri Nets with temporal anomalies”.
In IFAC-PapersOnLine 48.7 (2015). 5th {IFAC} International Workshop on Dependable Control
of Discrete SystemsDCDS 2015, pp. 85–90. ISSN: 2405-8963.

[10] Ryan Beckett, Michael Greenberg, and David Walker. “Temporal NetKAT”. In PLVNET (2015).

[11] Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser. “Synthesis of Petri Nets from
Finite Partial Languages”. In Fundam. Inform. 88.4 (2008), pp. 437–468.

[12] G. Berry and G. Boudol. “The Chemical Abstract Machine”. In POPL. 1990, pp. 81–94.

[13] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. “OpenState: Program-
ming Platform-independent Stateful Openflow Applications Inside the Switch”. In ACM SIGCOMM
CCR (2014).

111

[14] Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer, Simon Ausserlechner,
and Raphael Spork. “Synthesis of synchronization using uninterpreted functions”. In FMCAD.
IEEE, 2014, pp. 35–42.

[15] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati. “A modular approach
to composing access control policies”. In ACM Conference on Computer and Communications
Security. ACM, 2000, pp. 164–173.

[16] Pat Bosshart et al. “P4: Programming Protocol-independent Packet Processors”. In ACM SIG-
COMM CCR (2014).

[17] A. Bradley. “SAT-Based Model Checking without Unrolling”. In VMCAI. 2011.

[18] E. Brewer. “Towards robust distributed systems (abstract)”. In PODC (2000), p. 7.

[19] Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. “Identification of Petri Nets from Knowl-
edge of Their Language”. In Discrete Event Dynamic Systems 17.4 (2007), pp. 447–474.

[20] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. “Software transactional networking:
concurrent and consistent policy composition”. In HotSDN. ACM, 2013, pp. 1–6.

[21] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. “Ethane: Taking Control
of the Enterprise”. In SIGCOMM (2007).

[22] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. “Fabric: A Retrospective
on Evolving SDN”. In HotSDN (2012).

[23] Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach.
“Regression-Free Synthesis for Concurrency”. In CAV. Vol. 8559. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 568–584.

[24] Pavol Černý, Thomas A Henzinger, Arjun Radhakrishna, Leonid Ryzhyk, and Thorsten Tarrach.
“Efficient Synthesis for Concurrency by Semantics-preserving Transformations”. In CAV (2013).

[25] Krishnendu Chatterjee, Thomas A Henzinger, Jan Otop, and Andreas Pavlogiannis. “Distributed
Synthesis for LTL Fragments”. In Formal Methods in Computer-Aided Design (FMCAD). IEEE.
2013, pp. 18–25.

[26] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. “Incremental Formal Verification of
Hardware”. In FMCAD. 2011, pp. 135–143.

[27] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev. “Synthesizing
Petri nets from state-based models”. In ICCAD. IEEE, 1995, pp. 164–171.

[28] “Data Center Outage Costs Continue to Rise”. In Electrical Construction and Maintenance (2016).
URL: http://ecmweb.com/power- quality/data- center- outage- costs-
continue-rise.

[29] Jörg Desel and Wolfgang Reisig. “The Synthesis Problem of Petri Nets”. In Acta Inf. 33.4 (1996),
pp. 297–315.

112

[30] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kompella. “Elasti-
Con: An Elastic Distributed Sdn Controller”. In ANCS. Los Angeles, California, USA, 2014.

[31] Szymon Dudycz, Arne Ludwig, and Stefan Schmid. “Can’t Touch This: Consistent Network Up-
dates for Multiple Policies”. In DSN. IEEE Computer Society, 2016, pp. 133–143.

[32] Marlon Dumas and Luciano Garcı́a-Bañuelos. “Process Mining Reloaded: Event Structures as a
Unified Representation of Process Models and Event Logs”. In Petri Nets. Vol. 9115. Lecture Notes
in Computer Science. Springer, 2015, pp. 33–48.

[33] Pierre Dupont. “Incremental Regular Inference”. In Grammatical Interference: Learning Syntax
from Sentences. Springer, 1996, pp. 222–237.

[34] Pierre Dupont, Laurent Miclet, and Enrique Vidal. “What is the search space of the regular infer-
ence?” In Grammatical Inference and Applications. Springer, 1994, pp. 25–37.

[35] Andrzej Ehrenfeucht and Grzegorz Rozenberg. “Partial (Set) 2-Structures. Part II: State Spaces of
Concurrent Systems”. In Acta Inf. 27.4 (1990), pp. 343–368.

[36] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin T. Vechev. “SD-
NRacer: concurrency analysis for software-defined networks”. In PLDI. ACM, 2016, pp. 402–415.

[37] E. Allen Emerson and Edmund M. Clarke. “Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons”. In Sci. Comput. Program. 2.3 (1982), pp. 241–266.

[38] Javier Esparza, Martin Leucker, and Maximilian Schlund. “Learning Workflow Petri Nets”. In Petri
Nets. Vol. 6128. Lecture Notes in Computer Science. Springer, 2010, pp. 206–225.

[39] Dirk Fahland and Wil M. P. van der Aalst. “Repairing Process Models to Reflect Reality”. In BPM.
Vol. 7481. Lecture Notes in Computer Science. Springer, 2012, pp. 229–245.

[40] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scalable, Commodity Data Cen-
ter Network Architecture”. In SIGCOMM. 2008.

[41] Nate Foster et al. “Languages for Software-Defined Networks”. In Communications Magazine,
IEEE 51.2 (2013), pp. 128–134.

[42] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer Rexford, Alec
Story, and David Walker. “Frenetic: A Network Programming Language”. In ICFP (2011).

[43] Pierre Francois, Olivier Bonaventure, Bruno Decraene, and P-A Coste. “Avoiding Disruptions dur-
ing Maintenance Operations on BGP Sessions”. In IEEE Transactions on Network and Service
Management 4.3 (2007), pp. 1–11.

[44] Soudeh Ghorbani and Brighten Godfrey. “Towards Correct Network Virtualization”. In HotSDN
(2014).

[45] S. Gilbert and N. Lynch. “Perspectives on the CAP Theorem”. In IEEE Computer 45.2 (2012),
pp. 30–36.

113

[46] E. Mark Gold. “Complexity of Automaton Identification from Given Data”. In Information and
Control 37.3 (1978), pp. 302–320.

[47] “Google apologizes for cloud outage that one person describes as a ‘comedy of errors’”. In Business
Insider (2016). URL: http://www.businessinsider.com/google-apologizes-
for-cloud-outage-2016-4.

[48] Arjun Guha, Mark Reitblatt, and Nate Foster. “ Machine-Verified Network Controllers ”. In PLDI.
June 2013.

[49] Sumit Gulwani. “Automating String Processing in Spreadsheets Using Input-Output Examples”. In
POPL (2011).

[50] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. “Synthesis of Loop-free
Programs”. In PLDI (2011).

[51] Arpit Gupta et al. “SDX: A Software Defined Internet Exchange”. In SIGCOMM (2014).

[52] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. “Concurrent Data
Representation Synthesis”. In PLDI. June 2012, pp. 417–428.

[53] Hossein Hojjat, Philipp Ruemmer, Jedidiah McClurg, Pavol Cerny, and Nate Foster. “Optimizing
Horn Solvers for Network Repair”. In FMCAD (2016).

[54] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and
Roger Wattenhofer. “Achieving High Utilization with Software-driven WAN”. In SIGCOMM (2013).

[55] Richard P. Hopkins. “Distributable nets”. In Applications and Theory of Petri Nets. Vol. 524.
Lecture Notes in Computer Science. Springer, 1990, pp. 161–187.

[56] Sushant Jain et al. “B4: Experience with a Globally-deployed Software Defined WAN”. In SIG-
COMM. Hong Kong, China, 2013.

[57] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. “Automated atomicity-violation
fixing”. In PLDI. ACM, 2011, pp. 389–400.

[58] Guoliang Jin, Wei Zhang, and Dongdong Deng. “Automated Concurrency-Bug Fixing”. In OSDI.
USENIX Association, 2012, pp. 221–236.

[59] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, and R. Wattenhofer.
“Dynamic Scheduling of Network Updates”. In SIGCOMM. 2014, pp. 539–550.

[60] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. “CoVisor: A Compositional Hyper-
visor for Software-Defined Networks”. In NSDI (2015).

[61] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Jen-
nifer Rexford, and Roger Wattenhofer. “Dynamic Scheduling of Network Updates”. In SIGCOMM
(2014).

[62] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and A. Venkataramani. “Consensus Rout-
ing: The Internet as a Distributed System”. In NSDI (2008).

114

[63] Naga Praveen Katta, Jennifer Rexford, and David Walker. “Incremental Consistent Updates”. In
HotSDN. ACM. 2013, pp. 49–54.

[64] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and Scott
Whyte. “Real Time Network Policy Checking Using Header Space Analysis”. In. NSDI. 2013,
pp. 99–112.

[65] Peyman Kazemian, George Varghese, and Nick McKeown. “Header Space Analysis: Static Check-
ing for Networks”. In NSDI. 2012.

[66] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. “VeriFlow: Verifying Network-
wide Invariants in Real Time”. In ACM SIGCOMM CCR (2012).

[67] Hyojoon Kim, Arpit Gupta, Muhammad Shahbaz, Joshua Reich, Nick Feamster, and Russ Clark.
Simpler Network Configuration with State-Based Network Policies. Tech. rep. Georgia Institute
of Technology, 2013.

[68] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and Russ Clark.
“Kinetic: Verifiable Dynamic Network Control”. In NSDI (2015).

[69] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The Internet Topology Zoo”.
In IEEE Journal on Selected Areas in Communications 29.9 (Oct. 2011), pp. 1765–1775.

[70] Teemu Koponen et al. “Network Virtualization in Multi-tenant Datacenters”. In NSDI (2014).

[71] Michael Kuperstein, Martin T. Vechev, and Eran Yahav. “Automatic inference of memory fences”.
In FMCAD. IEEE, 2010, pp. 111–119.

[72] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In Commun.
ACM 21.7 (July 1978), pp. 558–565. ISSN: 0001-0782. DOI: 10.1145/359545.359563. URL:
http://doi.acm.org/10.1145/359545.359563.

[73] A. Lazaris, D. Tahara, X. Huang, L. Li, A. Voellmy, Y. Yang, and M. Yu. “Tango: Simplifying SDN
Programming with Automatic Switch Behavior Inference, Abstraction, and Optimization”. In. 2014.

[74] Haopeng Liu, Yuxi Chen, and Shan Lu. “Understanding and generating high quality patches for
concurrency bugs”. In SIGSOFT FSE. ACM, 2016, pp. 715–726.

[75] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and David Maltz.
“zUpdate: Updating Data Center Networks with Zero Loss”. In SIGCOMM. ACM, 2013, pp. 411–
422.

[76] Weijie Liu, Rakesh B Bobba, Sibin Mohan, and Roy H Campbell. “Inter-Flow Consistency: Novel
SDN Update Abstraction for Supporting Inter-Flow Constraints”. In NDSS (2015).

[77] Christof Löding, P. Madhusudan, and Daniel Neider. “Abstract Learning Frameworks for Synthesis”.
In TACAS. Vol. 9636. Lecture Notes in Computer Science. Springer, 2016, pp. 167–185.

[78] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese.
“Checking Beliefs in Dynamic Networks”. In NSDI (2015).

115

[79] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. “Good Network Updates for Bad Packets: Way-
point Enforcement Beyond Destination-Based Routing Policies”. In HotNets. 2014.

[80] Ratul Mahajan and Roger Wattenhofer. “On Consistent Updates in Software Defined Networks”. In
HotNets. Nov. 2013.

[81] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey, and Samuel Talmadge
King. “Debugging the Data Plane with Anteater”. In SIGCOMM. 2011.

[82] R. Majumdar, S. Tetali, and Z. Wang. “Kuai: A Model Checker for Software-defined Networks”. In
FMCAD. 2014.

[83] Ulises Martı́nez-Araiza and Ernesto López-Mellado. “{CTL}Model Repair for Bounded and Dead-
lock Free Petri Nets”. In IFAC-PapersOnLine 48.7 (2015). 5th {IFAC} International Workshop on
Dependable Control of Discrete SystemsDCDS 2015, pp. 154–160. ISSN: 2405-8963.

[84] Jedidiah McClurg, Hossein Hojjat, and Pavol Cerny. “Synchronization Synthesis for Network Pro-
grams”. In CAV (2017).

[85] Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. “Efficient Synthesis of Network
Updates”. In PLDI (2015).

[86] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. “Event-driven Network Program-
ming”. In PLDI (2016).

[87] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan Turner. “OpenFlow: Enabling Innovation in Campus Networks”.
In SIGCOMM Computing Communications Review 38.2 (2008), pp. 69–74.

[88] Yuri Meshman, Noam Rinetzky, and Eran Yahav. “Pattern-based Synthesis of Synchronization for
the C++ Memory Model”. In FMCAD. IEEE, 2015, pp. 120–127.

[89] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. “A Compiler and Run-time
System for Network Programming Languages”. In POPL (2012).

[90] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker. “Compos-
ing Software Defined Networks”. In NSDI (2013).

[91] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govindan. “Flow-level
State Transition as a New Switch Primitive for SDN”. In HotSDN. 2014.

[92] Tim Nelson, Andrew D Ferguson, MJ Scheer, and Shriram Krishnamurthi. “Tierless Programming
and Reasoning for Software-Defined Networks”. In NSDI (2014).

[93] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. “Random Graphs with Arbitrary Degree
Distributions and their Applications”. In (2001).

[94] Andrew Noyes, Todd Warszawski, and Nate Foster. “Toward Synthesis of Network Updates”. In
SYNT. July 2013.

116

[95] José Oncina and Pedro Garcı́a. “Identifying Regular Languages in Polynomial Time”. In Advances
in Structural and Syntactic Pattern Recognition (1992).

[96] “ONOS Intent Framework”. In (2014).

[97] Open Networking Foundation. OpenFlow 1.4 Specification. 2013.

[98] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv, and Sharon Shoham.
“Decentralizing SDN Policies”. In POPL (2015).

[99] Peter Peresı́ni, Maciej Kuzniar, Nedeljko Vasic, Marco Canini, and Dejan Kostic. “OF.CPP: consis-
tent packet processing for openflow”. In HotSDN. ACM, 2013, pp. 97–102.

[100] Oleksandr Polozov and Sumit Gulwani. “FlashMeta: A Framework for Inductive Program Synthe-
sis”. In OOPSLA (2015).

[101] Hernán Ponce de León, César Rodrı́guez, Josep Carmona, Keijo Heljanko, and Stefan Haar. “Unfolding-
Based Process Discovery”. In ATVA. Vol. 9364. Lecture Notes in Computer Science. Springer,
2015, pp. 31–47.

[102] Chaithan Prakash et al. “PGA: Using Graphs to Express and Automatically Reconcile Network
Policies”. In SIGCOMM. ACM, 2015, pp. 29–42.

[103] Veselin Raychev, Martin T. Vechev, and Eran Yahav. “Automatic Synthesis of Deterministic Con-
currency”. In SAS. Vol. 7935. Lecture Notes in Computer Science. Springer, 2013, pp. 283–303.

[104] Saqib Raza, Yuanbo Zhu, and Chen-Nee Chuah. “Graceful Network State Migrations”. In IEEE/ACM
Transactions on Networking 19.4 (2011), pp. 1097–1110.

[105] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. “Abstractions
for Network Update”. In SIGCOMM (2012).

[106] Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan. “NetGen: synthesizing data-plane con-
figurations for network policies”. In SOSR. ACM, 2015, 17:1–17:6.

[107] Colin Scott et al. “Troubleshooting blackbox SDN control software with minimal causal sequences”.
In SIGCOMM. ACM, 2014, pp. 395–406.

[108] Ehab Al-Shaer and Saeed Al-Haj. “FlowChecker: Configuration Analysis and Verification of Feder-
ated OpenFlow Infrastructures”. In SafeConfig. 2010.

[109] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506. Inria – Centre
Paris-Rocquencourt ; INRIA, Jan. 2011, p. 50. URL: https://hal.inria.fr/inria-
00555588.

[110] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Bal-
akrishnan, George Varghese, Nick McKeown, and Steve Licking. “Packet Transactions: High-Level
Programming for Line-Rate Switches”. In SIGCOMM (2016).

117

[111] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. “A Fast Compiler for NetKAT”.
In ICFP (2015).

[112] O. Sokolsky and S. Smolka. “Incremental Model Checking in the Modal Mu-Calculus”. In CAV.
1994, pp. 351–363.

[113] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. “Sketching Concurrent Data
Structures”. In PLDI. 2008, pp. 136–148.

[114] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodı́k. “Sketching concurrent data
structures”. In PLDI. ACM, 2008.

[115] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert Kleinberg, Emin Gun
Sirer, and Nate Foster. “Merlin: A Language for Provisioning Network Resources”. In CoNEXT
(2014).

[116] “Twitter Went Down Because of an ‘Internal Code Change’”. In Recode (2016). URL: http:
//www.recode.net/2016/1/19/11588920/twitter-went-down-because-of-
an-internal-code-change.

[117] Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin,
and Rajeev Alur. “Transit: Specifying Protocols with Concolic Snippets”. In PLDI (2013).

[118] Laurent Vanbever, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, and Olivier Bonaventure.
“Seamless Network-wide IGP Migrations”. In SIGCOMM. 2011.

[119] Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. “Learning to Verify Safety
Properties”. In ICFEM. Vol. 3308. Lecture Notes in Computer Science. Springer, 2004, pp. 274–
289.

[120] Moshe Y. Vardi and Pierre Wolper. “An Automata-Theoretic Approach to Automatic Program Ver-
ification (Preliminary Report)”. In LICS. 1986.

[121] Martin Vechev, Eran Yahav, and Greta Yorsh. “Abstraction-guided Synthesis of Synchronization”.
In POPL (2010).

[122] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak. “Maple: Simpli-
fying SDN Programming Using Algorithmic Policies”. In SIGCOMM (2013).

[123] Glynn Winskel. Event Structures. Springer, 1987.

[124] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. “Reasoning about Infinite Computation Paths
(Extended Abstract)”. In FOCS. 1983.

[125] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. “Scenario-based Programming for SDN
Policies”. In CoNEXT (2015).

[126] Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey. “Enforcing Gen-
eralized Consistency Properties in Software-Defined Networks”. In NSDI (2015).

