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This thesis is concerned with real-time monocular visual-inertial simultaneous localization

and mapping (VI-SLAM) with application to Long Term Autonomy. Given a sensor rig capable of

making visual and inertial measurements, accurate real-time estimation of its position and orienta-

tion (pose) as well as the creation of a scale-correct map of the surrounding environment is desired.

This estimation task requires accurate calibration of both intrinsic and extrinsic properties of the

visual and inertial sensors. As such, the continuous estimation of these calibration parameters is

also desired. Three novel methods are presented, covering real-time VI-SLAM, self calibration, and

change detection. Together they form a basis for long term localization and mapping robust to

changes in calibration.

The VI-slam methodology is motivated by the requirement to produce a scale-correct visual

map, in an optimization framework that is able to incorporate relocalization and loop closure con-

straints. Special attention is paid to achieve robustness to many real world difficulties, including

degenerate motions and unobservablity. A variety of helpful techniques are used, including: a

relative manifold representation, a minimal-state inverse depth parameterization, and robust non-

metric initialization and tracking. Also presented is an extensible framework for real-time self-

calibration of cameras in the SLAM setting. The system is demonstrated to calibrate both pinhole

and fish-eye camera models from unknown initial parameters while seamlessly solving the maxi-

mum likelihood online SLAM problem in real-time. Self-calibration is performed by tracking image

features, and requires no predetermined calibration target. By automatically identifying and using

only those portions of the sequence that contain useful information for the purpose of calibration

the system achieves accurate results incrementally and in constant-time vs. the number of im-

ages. Finally, a framework for online SLAM and self-calibration is presented which can detect and
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handle significant change in the calibration parameters. A novel technique is presented to detect

the probability that a significant change is present in the calibration parameters. The system is

then able to re-calibrate. Maximum likelihood trajectory and map estimates are computed using

an asynchronous and adaptive optimization. The system requires no prior information and is able

to initialize without any special motions or routines, or in the case where observability over cal-

ibration parameters is delayed. Both self-calibration frameworks are extensible and able to cover

any calibration parameters which can be estimated from the measurements. The contributions

are individually evaluated in a number of experiments with real data. Specific focus is placed on

accuracy and real-time performance.
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Chapter 1

Introduction

The work presented in this thesis is primarily motivated by Long Term Autonomy: the

development of autonomous robotic systems capable of operating for weeks, months, and years

without requiring human intervention. The advantage of robots capable of Long Term Autonomy

are twofold. First, they are economical. To design systems capable of Long Term Autonomy,

robustness must be considered as a primary goal. These systems must deal with all extraneous

elements in their operating environments, as well as responding and adapting to any deliberate

or accidental changes to their software or hardware components. As such, they are capable of

operating without human assistance for long periods which makes them economically feasible for

repetitive and simple tasks. Second, they can be sent into environments where human supervision is

not readily feasible. Examples of this are long voyages in the ocean or in space as well as hazardous

environments such as underground mines and disaster zones. Needless to say, an ambitious goal

such as Long Term Autonomy permeates the design of all aspects of an autonomous systems:

hardware and software.

Much like for any autonomous robot, Long Term Autonomy demands that the robot be able

to both sense its environment and act appropriately to achieve its objectives. We are primarily con-

cerned with the former requirement: the perception of the robot’s environment. This requirement

is further refined into a perception of one’s location within an environment, creating representations

of this environment, and finally the semantics of objects and components within this environment

which may be useful in fulfilling the objectives of the robot. Our focus is then further narrowed
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onto the first two components: knowing one’s location within the environment which is referred to

as localization, and constructing a representation of the environment which is conducive to future

attempts at localization, which is referred to as the map.

The two previously mentioned components of robotic perception must ideally be performed

simultaneously when faced with unknown or changing environments. Simultaneous Localization

and Mapping (SLAM) has therefore been a mainstay of robotics research for decades. SLAM is

agnostic to the sensing modality used to perceive the robots environment. Early SLAM research

used sonar sensors which returned range measurements by bouncing ultrasonic sound waves off

the environment. Laser rangefinders (Lidar) were also used to perform SLAM, using their better

range and bearing resolution to increase the localization accuracy and create more accurate maps.

Finally, visible light and infrared cameras have been used to perform SLAM since the computing

power necessary to perform the heavy calculations have become available.

We will focus our attention once again on SLAM performed with a specific sensing modality:

cameras. This type of SLAM is referred to as Visual SLAM. Since our intended application is

robotics, out focus will also be mainly narrowed to algorithms and approaches which are real-time

and therefore can be executed online to aid robotic perception.

1.1 Structure

In the rest of this chapter, an introduction will be given to the concepts utilized in this

thesis. This introduction will cover various falvors of visual and visual-inertial SLAM, as well as

key concepts such as marginalization and conditioning. The applications of the presented work will

also be described. In Chapter 2, visual-inertial SLAM is explored. A novel method is introduced

which eschews marginalization in favor of conditioning and enables accuarate localization and

mapping. Chapter 3 introduces a framework for self-calibration which allows lifelong calibration

of parameters in constant computational complexity. This framework is then applied to the task

of calibrating camera intrinsic parameters. In Chapter 4, the previously mentioned self-calibration

framework is extended to handle the case where calibration parameters change. The extension is
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able to detect the onset of change, and handle the subsequent re-calibration of the parameters.

Finally in Chapter 5, the outcomes and contributions of the work as well as potential avenues for

future research are discussed.

1.2 Visual SLAM

In Visual SLAM, visible or infrared light cameras are used to take measurements of and

perceive the environment around the robot for the purposes of localization and mapping. To

accomplish this, a measure of correspondence between measurements taken at different locations

and different times is needed. Since cameras perceive the environment through captured images,

the correspondence required is that between images taken at different times and locations. If

correspondence is established between images taken at consecutive times by the camera, information

about its continuous motion can be obtained. This is referred to as visual odometry. Similarly, if

correspondence is established against images which the camera took at different times and places

in the past, we can obtain information about the location of the robot relative to those prior

measurements and by association, the map. Furthermore, of is interest is metric SLAM, where the

location of the robot and also the map which is created for the environment are geometrically and

metrical consistent with the real world. For this reason, focus will be placed on correspondence

between images which is in some way related to the metric relationship between the cameras at the

time of capturing the images, and the 3D scene.

Visual SLAM can be divided into two broad categories based on the type of correspondence

that is establish between images: Dense and Sparse.

1.2.1 Dense Visual SLAM

The defining characteristic of dense methods is that correspondence is established at the level

of every pixel of an image captured by the camera. Consider the visible or infrared light intensity

which reaches the 2D sensing array of the camera as a continuous function Ĩ (ũ, ṽ) where ũ and ṽ

are continuous coordinates which parameterize the surface of the 2D sensing array. The resulting



4

image returned by the camera can be written as I (u, v) where u and v are now discrete variables

representing the two coordinates of the pixels on the array. Given two such images I1 and I2 a

relationship between the two can then be established

I1 (p) = F (I2 (W (q,x))) (1.1)

where p is the 2D image coordinates of a pixel, F () is the correspondence function, x is a parameter

vector describing the metric relationship between the two images and the 3D scene, and W () is

a warping function which given the metric parameters x will warp the image coordinates of I2 to

their corresponding coordinates of I1. Note that the vector x typically consists of the parameters

representing the relative translation and rotation between the two cameras which captured I1 and

I2, and parameters describing the 3D scene which they observed. This vector may also contain

other extrinsic and intrinsic parameters of the cameras or their metric relationship. Examples of

such parameters include focal length and lens distortion.

Given the relationship defined in Equation 1.1, any of the parameters which define the cor-

respondence can be set as unknowns and solved for in an optimization framework. A typical

example is setting the metric parameter vector x as unknown and solving for it using multiple

correspondences between pixels in the two images.

The correspondence function F () defines how the values of the pixels in the two images are

related to one another. The simplest form of correspondence is photometric [8]. In photometric

correspondence, the expectation is that two corresponding pixel values would have similar intensities

as measured by the camera. This expectation can be written in the form of a residual function:

rp = I1 (p)−F (I2 (W (q,x))) (1.2)

As an example, if the metric parameter vector x is unknown, an optimization can be formed

around minimizing the residual rp:
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x̂ = arg min
x

(rp (x)) (1.3)

Depending on the dimensionality of the unknown vector x and the formulation of the residual,

it may not be sufficient to constraint the values of the unknown parameters. In this case multiple

residuals are used to constrain and obtain accurate estimate for the parameters. In a typical

dense optimization, many hundreds of thousands of pixel residuals in the optimization. The metric

parameter vector x in Equation 1.1 must also contain information about the 3D scene being observed

by the camera in order to be able to correctly warp the coordinates of a pixel [30]. This is typically

represented as the distance from the scene point that was captured by a pixel of the camera to the

camera, referred to as the depth. In the case of dense SLAM, since there are hundreds and thousands

of pixels involved in the optimization, the depth values are often estimated separately. Common

sources of depth values are depth cameras such as the Kinect, as well stereo depth estimation using

a pair of synchronized cameras.

Some dense SLAM methods indeed estimate pixel depth values as well [80][87], however due

to the complexity of the required optimization, these methods generally split it into two steps: a

reconstruction step where depth values for the most recent image are estimated, and a localization

step where the camera’s position is refined based on current and past images and depth values.

The correspondence function F () does not necessarily have to be based on photometric

correspondence. As an example, Mutual Information based approaches such as [110] establish cor-

respondence by maximizing the mutual information between two images. Correspondence between

the two images is established based on a joint intensity histogram which is computed by warping one

image into the other. While these images require dense depth information to be able to accomplish

the warping, they are exceptionally robust to changes in illumination and lighting, from which the

photometric correspondence methods suffer heavily. However, these methods are computationally

expensive and are generally difficult to optimize as they reduce the entire image alignment problem

to a single residual.
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More recently, binary descriptors have been shown to be applicable to dense methods in real-

time [4]. Rather than operating on the photometric error between a pixel and its reprojection, a

small support region around the pixel is converted to a binary descriptor. This descriptor is then

used in the residual in place of the photometric error. Implications of this are that dense methods

may become much more resilient to lighting and material based effects, whilst avoiding the high

computational cost and poor optimization form of information theoretical alignment methods.

1.2.2 Semi Dense Methods

While the methods described in this section are applied to every pixel of the image, a subset

of dense methods instead opt to assign a weight to each pixel residual. The residual described in

1.2 then becomes:

rp = wp [I1 (p)−F (I2 (W (q,x)))] (1.4)

where wp is the weight assigned to the residual formed by the reprojection of pixel p. The

weight is a representation of how important the residual should be to the optimization. The assigned

weight can also be binary, depending on some criteria that may or may not be satisfied for the

pixel p. In this case, only a subset of pixels in the image will be used to optimize the unknown

parameters. A common metric to decide whether or not a pixel is include in the optimization is the

magnitude of the image gradient. Intuitively, such a metric will ignore pixels where the magnitude

of the image gradient is below a certain value, thereby focusing the optimization on regions with

discriminative potential. Due to the reduced size of the optimization, some semi-dense methods

[17][16] also estimate the depth of pixels included in the optimization.

1.2.3 Sparse Visual SLAM

Conversely to dense methods, sparse visual SLAM methods create an abstraction over the

image by extracting a set of interest points referred to as features. The primary characteristic for
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these features is that they must be repeatable: in another image of the same scene, given the same

3D location for which the feature was originally extracted, it must be possible to both recognize

that 3D location as a feature in the new image, and associate it to the feature in the original image.

This is generally accomplished in two steps. First, the image is processed by a keypoint detector

which is tasked with finding points of interest. These keypoints are generally located in areas of

the image with enough detail to constrain their 2D positions. An example is a sharp corner in the

image. There are a multifarious range of keypoint detectors [29][101][96][62], however they share

the goal of being invariant to the same 3D point from different viewing locations and angles.

The second step is to obtain a descriptor for the keypoint. The descriptor serves as a signature

for that particular keypoint. In another image of the same 3D point, once the keypoint detector has

marked a location as being a point of interest, a descriptor can be extracted for the keypoint and

compared with the original descriptor. This can be used as a means to establish correspondence

between two keypoints in different images. Much like keypoint detectors, there is a broad range

of feature descriptors, some examples of which are presented in [62][10][11][97]. The goal of the

descriptor is to produce the same response when presented with two keypoints which represent

the same 3D scene point in two different images. This invariance to the viewpoint from which

the image was captured is what allows sparse keypoints and descriptors to form correspondences

across multiple images. Descriptors vary significantly among their ranks in terms of invariance and

performance. Some descriptors are invariant to size and rotation, meaning that the same response

would be generated for keypoints when viewed from different distances and camera orientations.

Some descriptors produce descriptors which are in a binary format, vs. real-valued descriptors

produced by others.

By virtue of the abstraction generated over the image using sparse features and their descrip-

tors, the correspondence residual which is minimized in sparse slam is simplified compared to the

dense correspondence residual in Equation 1.2:
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rp = p−W (q,x) (1.5)

where rp ∈ R2 is now a 2 dimensional error vector computed from the difference between the

2d location of a feature in image 2, q, and the warped 2d location of the corresponding feature

in image 1, p. As before, the warping function W () encodes the metric information of the 3D

scene as well as the relative position and rotation between the cameras which captured the two

images. As evident in this formulation, image intensities no longer factor in the image residual.

This is the advantage of the abstraction which features generate over the image. This absence of

image intensities in the residual ostensibly gives sparse visual SLAM methods improved invariance

to illumination changes, but this is only true insofar as the feature descriptors themselves are

invariant to changes in illumination. Otherwise, correct correspondence cannot be achieved across

images. In practice, the use of illumination invariant descriptors does afford an improved invariance

to illumination changes to sparse vs. dense methods.

Contrary to dense methods, sparse methods typically need far fewer residuals in order to solve

for the unknown metric parameters of the scene and cameras. Features extracted for each image are

typically within the range of 100− 1000. This affords sparse methods the option of simultaneously

estimating the camera pose parameters as well as the depth of the scene, which is now only required

at feature locations as opposed to every pixel. To this end, correspondences can be established for

features across multiple images. The camera pose estimates for each image as well as the depth

estimates for each feature are then solved simultaneously via bundle adjustment [119][3]. To solve

for these estimates, the correspondence residual outlined in Equation 1.5 is formulated across sparse

features observed from multiple images and the entire system of equations solved at once.

1.2.3.1 Direct Feature Tracking

In the previous sections, the sparse visual slam problem has been framed as requiring discrete

feature matches across multiple frames using a variant of descriptor. Feature tracking methods
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however are not limited to this approach. Rather than extract descriptors for every keypoint

extracted at every frame for using in frame-to-frame matching, Direct methods [22] track features

by directly matching appearance from frame-to-frame, without extracting new keypoints. The first

step is to initialize keypoints in areas of the image where the number of tracked features may be

less than what is desired. In the method presented in [22], these new keypoints are then projected

into subsequent frames, given the camera motion. An optimization is then performed over the

surrounding support region of the keypoint, parameterized by the depth of the feature. In this way,

each feature is tracked individually based on the appearance of its projection in subsequent frames.

Alternatively, features can be tracked without any geometric projection and purely in the 2D

image plane. The well known KLT tracking method [63][118] is an example of such an approach. A

support region around an original keypoint extracted in an image is tracked in subsequent images

by directly minimizing its photometric error, parameterized by a 2D homography applied to the

original support region. This tracking method obviates the need to extract keypoints in subsequent

images. However, due to the use of a photometric error term, this method of tracking will be more

susceptible to illumination and material based effects and is most effective when used for short

duration frame-to-frame tracking.

Regardless of the method used to track features, sparse methods eventually minimize the 2D

reprojection error of tracked features in order to estimate scene and camera parameters.

1.2.4 Filtering

Figure 1.1 introduces the graphical model representation of the SLAM problem which will

be used from here on out. The figure shows a series of camera pose parameters, corresponding to

the 6DOF pose of the camera where a particular image was taken. Furthermore, the figure shows

a number of landmarks, which are points of interest in the scene observed in one or more images.

The edges connecting these parameters represent constraints formed using the correspondences

established between the images. Note that while this graphical model is commonly used to describe

sparse SLAM formulations, it applies equally to the dense SLAM problem. The difference is in
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landmark

camera pose

observation

……

Figure 1.1: Graphical model representing the batch SLAM problem. The camera poses refer to
6DOF parameters added to the optimization at every instance the camera captures an image. The
landmarks refer to the parameters which define the position of the landmarks. This can either be
a 3DOF vector or an inverse depth represntation [75]. The edges connecting the elements of the
graph are constraints. In this case, the constraints are formed by correspondences found in images
taken by the camera. The optimal value of the parameters for the landmarks and poses can then
be computed by jointly minimizing the error of all constraints. As apparent in the graphical model,
the influence of landmarks and poses on other landmarks and poses is bidirectional and extends
the length of the graph. This is what renders the batch visual SLAM problem difficult to factorize
and solve efficiently.

the dimensionality of the observation edge. For sparse SLAM formulations, this edge is a 2D

measurement of the image-plan postion of a feature, whereas for dense SLAM formulations, it will

be a form of visual similarity metric such as photometric error.

It is evident that while the camera pose parameters are each estimated independently, they

are linked together via observations of co-visible landmarks. This co-visibility chain extends beyond

the portion of the graph shown in the figure all the way to the point where information collection

began, and on the other extreme it extends to the current time. In this form, every parameter’s

estimate needs to be jointly estimated with all other parameters, as there a two-way dependency

that spans the entire graph.

Solving for all parameters in this way is usually referred to as the batch solution. This involves

setting an optimization comprising of all observations and solving for the parameters from scratch

every time the graph is modified. For real-time and robotic systems where the current pose of the
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camera is desired, this is clearly intractable as the complexity of the problem grows as time goes

on. These systems require solutions with constant O(1) complexity.

Given that the batch solution is intractable, many different solutions have been proposed in

order to solve the problem in a more computationally efficient way for real-time applications. In

this section some of these methods will be reviewed as they serve as a good introduction to the

problems faced specifically for Visual-Inertial SLAM.

1.2.5 Incremental Factorization

The visual SLAM problem is nonlinear. To optimize the pose parameters of the camera,

the projection equations which are used to form the residuals are linearized around the current

estimates. When there are no estimates, the problem must therefore be initialized to provide

an adequate linearization point. This linearization allows the optimization to approximate the

nonlinear form of the problem using a Taylor series expansion up to the second order. This series

of equations can then be solved using a 2nd order method such as Gauss-Newton. The formation

of the linearized forms of the equations, as well as forming and factorizing the resulting hessian

matrix in order to solve for the iteration update is computationally expensive and in the worst case

is O(n3) with respect to the number of parameters in the optimization. This process is typically

repeated from scratch after every iteration, as the linearization point changes as the parameters

are updated.

Incremental methods such as those presented in [40] and [41] reduce the computational over-

head associated with each iteration by storing the result of the linearization in a form which allows

updates to the graph to be incorporated into the solution efficiently. This is very effective in sit-

uations where a SLAM system is operating in odometry mode. In this mode, while simultaneous

localization and mapping is indeed performed, no attempt is made to detect whether the camera

is observing a scene it has previously mapped. This type of event is referred to as a loop closure,

as it typically occurs after the camera travels in a loop and returns to a previously observed point.

Figure 1.2 shows some of the situations in which loop closures can occur. In the case of a loop
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closure, the complexity of incremental approaches is no longer constant, or O(1).

loop closure edge

1 2

3

4

5

Figure 1.2: Example graphical model when loop closures are detected. Here, the landmarks of
Figure 2.3 have been omitted for brevity. The co-visible connections between two edges are shown
as curves instaed. In sections 1 and 2, the system is odometry mode and new pose parameters are
added to the optimization. During section 3, a loop closure occurs and landmarks previously seen
in section 2 in live images are able to be located. This allows us to establish our position relative
to the landmarks of section 2 rather than initializing new ones. In section 4 odometry mode is
once again active, adding new pose parameters before closing a loop against section 2 once more.
Finally in section 5 odometry mode is active. Similar to the example shown in this Figure, loop
closures are far from rare when SLAM is deployed in practice and are a critical tool in creating
consistent and useful maps for localization.

1.2.6 Marginalization

Figure 1.3: Once a landmark is marginalized, it induces new edges into the graphical model. These
edges represent the influence of the landmark parameters on the remaining parameters of the
optimization. As evident in the figure, the induced edges connect ever pair of parameters which
took part in a constraint with the original landmark parameters.

Another method used to tame the ever-growing size of the batch SLAM problem is marginal-

ization. In this technique, parameters are removed by marginalizing them out of the optimization,

turning their influence on other parameters into constraints between them. Figures 1.3 and 1.4
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Figure 1.4: Once a pose is marginalized, it induces new edges into the graphical model. These edges
represent the influence of the pose parameters on the remaining parameters of the optimization.
As evident in the figure, the induced edges connect ever pair of parameters which took part in a
constraint with the original pose parameters.

illustrate the effects of marginalizing landmark and pose parameters on the graphical model re-

spectively. When a landmark is marginalized, a new constraint, represented as an edge in the

graphical model, is formed between each pair of poses which were originally part of a constraint

with the landmark. Similarly, when a pose is marginalized as in Figure 1.4, a new constraint is

formed between each par of landmarks which were originally took part in a constraint with the

pose.

At first glance, marginalization is a powerful method to reduce the complexity of the problem

by removing parameters, without paying the penalty of losing the information that the parameters

and the constraints they took part in provided to the optimization. In the case of an optimization

consisting of only constraints, this is indeed the case. In this case, marginalization of parameters

is performed using the Schur Complement of the matrix of coefficients for the system of equations

[24]. However, the constraints which are formed between the parameters of the SLAM problem are

nonlinear. Correspondingly, the optimization that must be solved is also nonlinear, and is generally

solved by iteratively linearizing the constraints and solving for the next step the optimization

must take in order to minimize the residuals. In this case, marginalized parameters will induce

the linearized forms of their constraints on the remaining parameters of the problem. There are

two issues with this approach. If the parameter being marginalized was not optimally estimate,
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the induced constraints on the rest of the problem will be based on this sub-optimal estimate.

Second and perhaps more importantly, if the parameters on which the constraints were induced are

themselves re-estimated, the induced constraints may introduce inconsistency into the optimization

. For these reasons, it is preferable to marginalize parameters for which the estimates have largely

settled. Estimation of parameters over the long term (such as the case of self-calibration in Chapter

4) is one example where marginalization should be approached with careful consideration.

An example of the application of marginalization to the SLAM problem is the Sliding Window

Filter [107]. In this method, a temporal window of camera poses and landmarks are maintained in

the optimization. As new measurements are taken, the parameters held in the filter are re-estimated.

Parameters at the other end of the filter are marginalized out into a prior which will affect the

remaining parameters. In this way, parameters are given many iterations and measurements to

settle on estimates before being linearized into a prior.

1.2.7 Conditioning

Figure 1.5: Graphical model representing conditioning for the visual slam problem. Poses and
landmarks in dark red have been set to constant. The rest of the graphical model has been
conditioned on these constant parameters through the conditioning edges which are in blue. These
edges represent constraints between the variable and constant parameters and constrain the graph
based on the solutions of the constant parameters.

Conditioning is yet another method to combat the growing size of the full batch SLAM

problem. Tt involves fixing certain parameters as constant after their estimates have settled or
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after a certain amount of time has passed. The method in [105] is an example of an optimization

which uses conditioning to constrain the number of parameters which are solved for. Note that

this method is adaptive. A parameter is not permanently set constant. The constancy assumption

is purely based on the assumption that the parameter’s estimate has converged and there is no

further need to optimize it. However, this assumption may be challenged in the future. In that case,

continuing to use the constant estimate for the parameter will introduce errors into the optimization.

At this point, an adaptive optimization can choose to re-enable the parameter and use the new

information to obtain a new estimate. Figure 1.5 shows an example of conditioning in the visual

SLAM graphical model. The conditioning edges highlighted in blue link the constant parameters

to the rest of the graph which is iteratively re-estimated. For constant-time SLAM, parameters are

set to constant once their estimates have converged. Compared to marginalization, linearization

errors are not a source of concern when marginalizing parameters. However, care must be taken

to re-estimate parameters as more information becomes available as to their estimates. Otherwise,

errors due to mis-estimation will be introduced into the problem through the conditioning edges.

1.3 Visual-Inertial SLAM

……
IMU integrations

Figure 1.6: Graphical model representing the batch visual-inertial SLAM problem. The visual
measurements between landmarks and poses are present as in the visual-only version of the SLAM
problem. The inertial measurements introduce a new class of constrain to the optimization: one
that connects the poses directly to one another through the inertial measurements. This constraint
is formed by integrating the IMU measurements taken between subsequent poses.
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In the preceding sections, the SLAM problem has been framed mainly in terms of visual

measurements, be it direct or indirect measurements per-pixel, or abstractions extracted in the

form of features. However, in the quest for accurate localization and mapping, it would be remiss

to ignore any other sources of information. Visual measurements may be corrupted or unavailable

due to extraneous factors such as motion blur, insufficient or too might lighting, and blocked

cameras. The additional information used to supplement the visual SLAM problem can take the

form of measurements taken from a wide range of modalities such as Sonar, Radar, Lidar, encoders,

and contact switches. One such sensing modality which is of great interest to visual SLAM is

body acceleration and rotation rates. These quantities are typically measured by gyroscopes and

accelerometers in an inertial measurement unit (IMU). Similar to visual measurements of landmark

projections, IMU measurements are taken at discrete points of time, but are measurements of

continuous variables. Generally, IMU measurements are taken at might higher frequencies (100-

1000Hz) vs. visual measurements (30-60Hz).

Figure 1.6 shows the graphical model representing the batch visual-inertial SLAM problem.

A new class of constraint can be seen in the model, linking the poses directly together through

the integration of inertial measurements. This graph shows the visual-inertial SLAM problem in

its tightly coupled form, where visual and inertial measurements are considered simultaneously and

all sensor states are optimized. This is chiefly important due to the introduction of new sensors

states when considering inertial measurements. Accelerometers measure the second derivative of the

quantity of interest to the optimization: the position of the camera. For this reason, velocities must

be estimated in order to use inertial measurements. Similarly, IMU measurements are affected by

sensor biases which have to be continuously estimated as they change based on extraneous factors

such as temperature. Failure to estimate these parameters relegates IMU measurements to their

use in loosely coupled formulations, where they are used as hints of inclination or rotation, but not

tightly integrated with visual measurements. In this thesis the primary focus will be placed on a

tightly coupled formulation of visual-inertial SLAM. While inertial measurements can be integrated

with dense or sparse visual measurements, in this thesis the primary focus will be on integrating
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sparse visual and inertial measurements taken with a monocular camera-IMU setup.

Incorporating IMU measurements in a tightly coupled framework requires their use in residu-

als involving the same parameters that were used with visual measurements. Sparse visual residuals

involve the pose parameters representing the position of the camera when the image was captured,

as well as the parameters representing the location of the landmark in 3D space (whether via inverse

depth or 3DOF representation). Since landmarks are in no way involved in inertial measurements,

the only parameters which are shared between inertial and visual residuals are those representing

the camera pose. Referring to these parameters as xp, we can write the general form of the pose

portion of the IMU residual:

rip = xpk+1
� I (xpk ,xi, zi) (1.6)

where I () represents a function which given pose parameters xpk , and a set of inertial measurements

zi, results in a new set of pose parameters which were integrated forward in time from xpk using

the inertial measurements. The measurements used for the integration must cover the span of time

between the kth and the k+ 1th frames. Due to the out-of-sync nature of typical IMU and camera

measurements, the inertial measurements are typically interpolated to align precisely to the frame

capture times. Once integrated, the new pose can then be compared with the pose parameter for

the following frame, k + 1. The error between the integrated pose and the pose parameter xpk+1

then forms the pose portion of the inertial residual, denoted here as rip . The comparison is not

a subtraction due to the nonlinearity of the rotation component of the pose. This comparison is

denoted here by the � operator and is explored in detail in Chapter 2. The integration function I ()

also requires another parameter vector xi for the integration. This parameter is required due to the

additional state needed to integrate inertial measurements which are of the 1st and 2nd derivatives

of rotation and translation respectively. This additional state is generally comprised of a 3DOF

body velocity which must be estimated, as well as a representation of the gravity vector. A body

velocity estimate is required in order to integrate the 2nd derivative of translation. Similarly, since
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the accelerometers sense both body accelerations and those imparted by gravity, and estimate of

the gravity vector is required to subtract from the accelerometer measurements. Note that these

estimates can also potentially add further residuals to the optimization, for instance to ensure the

continuity of the body velocity estimate.

The integration function I () must be able to accurately model the generation of the inertial

measurements in order to precisely integrate the pose forward. Given that body accelerations

due to rotation are relative to the privileged frame of reference chosen in the body, the IMU

itself is typically set as the privileged frame of reference. This choice decouples the rotation and

translation terms in the IMU residual, as body rotations no longer result in measured acceleration.

In reality, the gyroscopes and accelerometers if the IMU are not perfectly collocated, voiding

this assumption. However this does not generally results in a significant loss of accuracy with

MEMS (Microelectromechanical systems) based IMUs, as the distance between the gyroscopes and

accelerometers is small.

Moving the privileged frame of reference to the IMU presents a secondary challenge: all

visual residuals must now be formed with respect to the IMU frame of reference. This requires an

accurate estimate of the transformation between the camera and IMU frames of reference. This

extrinsic calibration parameter is critical for accurate visual-inertial SLAM.

1.4 Contributions

The contributions in this thesis cover 3 distinct areas which are covered in the three following

chapters. We present a novel framework for visual-inertial SLAM which breaks with the conven-

tional methodology of using marginalization to reduce the computational complexity of the problem

and instead uses an adaptive form of conditioning. The motivation for this decision was foremost

to alleviate some of the downsides inherent to marginalization such as potential early linearization

and inconsistency, as well as presenting a way forward to integrate visual-inertial SLAM into a

long-term mapping solution where frequent loop-closure and map localization events are expected.

The framework is tested using a number of visual-inertial datasets and is shown to be accurate as
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well as running in constant-time.

In order to achieve accurate results, the visual-inertial SLAM framework requires an accurate

calibration of the sensor extrinsic and intrinsic parameters. These include parameters such as focal

length, image center, and translation/rotation between the IMU and camera. Motivated by long-

term autonomy, a novel framework is presented which enables self-calibration of these parameters

using nothing but the data which would normally be captured from the sensors. As such, no

bespoke calibration targets or procedures are required. Furthermore this framework allows the

continued improvement of the calibration estimate in constant-time by detecting and prioritizing

the best segments of data for the purposes of calibration. The framework is tested on the problem

of camera intrinsic calibration and is shown to closely match the batch optimal estimate in constant

time, as well as yielding accurate calibration estimates when compared to offline methods which

used bespoke targets. The framework is adaptable to any calibration task as long as constraints

can be established between the sensor data and the parameters of interest.

While the self-calibration framework is able to continually improve the estimates of the cali-

bration parameters, it assumes that the underlying parameters themselves are constant. In reality,

extraneous influences may change the intrinsic or extrinsic calibration parameters, voiding this

assumption. With this in mind, an extension to the framework is presented which can probabilis-

tically determine a significant change in the calibration parameters and trigger a re-calibration

process while seamlessly continuing the SLAM estimation task.

1.5 Applications

The contributions in this thesis are applicable to a variety of applications due to the focus on

robustness and long-term operation. As previously discussed, long-term autonomy remains a strong

focus of the work as well as a viable application. The methods presented here provide both the

means to use robust long-term localization and mapping, as well as providing the means to maintain

accuracy by continuously monitoring and estimation calibration. Another avenue of interest is

hand-held, head-mounted, and other wearable devices which require localization and mapping.
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These devices often undergo sharp motions or periods where visual information may be denied.

As such, the visual-inertial methods presented in this thesis could be used to maintain accurate

localization during these motions. Furthermore, the self-calibration frameworks presented would

facilitate continued calibration for accurate localization and mapping. Finally, an increasingly

relevant topic where the methods presented here could be of use is self-driving vehicles. The

localization, mapping, and self-calibration frameworks presented could all be used in conjunction

with other sensors such as wheel odometry and GPS to provide accurate localization to vehicles,

as well as continuously maintain calibration between sensors.

1.6 Publications

The work presented in this thesis is based on the following peer-reviewed publications: [47]

• Nima Keivan and Gabe Sibley, ”Asynchronous Adaptive Conditioning for Visual-
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Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)

2014

• Nima Keivan and Gabe Sibley, ”Online SLAM with Any-time Self-calibration and

Automatic Change Detection”, In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA) 2015

• Nima Keivan and Gabe Sibley, ”Asynchronous Adaptive Conditioning for Visual-

Inertial SLAM”, The International Journal of Robotics Research (IJRR), Volume 34,

Issue 13, 2015.



Chapter 2

Visual Inertial SLAM

2.1 Introduction

In this chapter, a novel method is introduced to combine visual and inertial measurements for

SLAM which avoids the pitfalls of current methods for visual-inertial SLAM which utilize marginal-

ization in order to roll up past parameters into a prior to acheive constant-time computation of

the SLAM solution. As discussed in Chapter 1, if compute resources were not a concern, the batch

solution would always be desired. It is well known that the batch bundle-adjustment solution to

monocular SLAM is the gold standard, in that its form defines the Cramer-Rao lower bound and

that it takes advantage of all measurements over all time to compute the maximum likelihood

parameter estimate (MLE) ([18, 119]). Due to the addition of a new modality of measurement,

the resulting additional states which must be estimated, synchronization of measurements, and

two separate frames of references for the sensors, visual-inertial bundle adjustment is significantly

more challenging than vision-only BA ([56]). Apart from robustness against the unavailability of

high quality visual measurements (such as in the case of fast motions resulting in motion blur or

too much or too little lighting), the addition of inertial measurements is particularly important

in the case of visual SLAM with a singlae camera. Vision-only monocular systems suffer from

a well-studied scale ambiguity, in that the metric scale of the position and scene estimates are

ambiguous. Considering inertial measurements can make scale observable, however inertial mea-

surements complicate matters when it comes to computing the global MLE solution incrementally

in real-time.
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For bundle adjustment to be real-time for use on robots, a local approach is typically em-

ployed ([77]). With an IMU this is difficult since the local adjustment region may need to be very

large in order to ensure observability of certain parameters. This is particularly noticeable regard-

ing parameters which are purely introduced in order to integrate the inertial measurements, such

as the body velocity parameters or explicitly or implicitly parameterized direction of the gravity

vector. Indeed, under certain degenerate motions such as constant velocity forward motion, some

parameters may never be observable (though this rarely if ever happens in practice) ([50, 39]).

An alternative to local-bundle adjustment is to only keep a sliding window of the most recent

poses and landmarks active, and marginalize the rest into a prior distribution ([104, 78, 103]).

This is equivalent to a fixed-lag Kalman smoother ([67, 26]) and recently such systems have shown

remarkable results ([31, 59, 57]). As discussed in chapter 1, marginalization can be an effective way

to approximate the batch solution in constant-time, thereby enabling visual-inertial SLAM systems

to operate in real-time applications.

Marginalization into a prior distribution as such is predominantly employed for computational

efficiency – if it were possible to compute the batch MLE solution in real-time it would be preferable.

Marginalization is also costly because it introduces conditional dependencies between the remaining

parameters causing “fill-in”. An example of fill-in can be seen in Figures 1.3 and 1.4. Once a pose or

landmark parameter is marginalized, its effects on the parameters with which it shared constraints

are linearized into measurements between the remaining parameters. Fill-in can be addressed

by cutting feature tracks and carefully marginalizing poses and landmarks simultaneously ([79]).

Marginalization is also potentially dangerous because it bakes in linearization errors which can

lead to over-confident estimates or divergence unless one is careful to maintain consistency ([31],

[57]). Carrying prior distributions induced from marginalization also necessitates an expensive

global optimization at loop-closure to obtain the correct marginal. This is particularly problematic

in the case of long term autonomoy, where many loop closures are to be expected as shown in

Figure 1.2, due to the creation and maintenance of a consistent map against which continuous

localization is desired. The methods presented in this chapter attempt to remedy these downsides
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by avoiding marginalization altogether, while still striving to approximate the batch visual-inertial

SLAM solution.

2.2 Adaptive Asynchronous Conditioning

Instead of relying on marginalization, conditioning is used in order to reduce the compu-

tational complexity of visual-inertial SLAM. Conditioning has has shown surprisingly robust and

accurate results when applied to visual SLAM problems ([53, 18]). It also avoids locking in incorrect

parameter estimates when used adaptively ([105]). Using a relative manifold to represent the map

is also helpful because optimal relative transformation estimates in SE(3) are by definition near

zero. This fact allows multiple threads to asynchronously optimize and update different overlapping

subsets of the full problem without detriment.

Adaptive asynchronous conditioning has other benefits: it can a) perform robust initializa-

tion even under degenerate motions, b) allow constant-time loop closure without expensive loop-

long re-linearization, c) operate even during poor observability conditions, e) avoid inconsistency

associated with early marginalization and re-linearization, f) track the relative-space maximum

likelihood solution in constant time. It is shown through experiments that adaptive asynchronous

conditioning is accurate, and closely tracks the global batch optimal solution at a fraction of the

computational cost, which enables real-time operation.

With sparse visual SLAM, the objective is generally the estimation of keyframe ([54]) and

landmark poses, based on the image measurements of tracked 3D features ([119]). The addition

of Gyroscope and Accelerometer measurements however, necessitates the estimation of the body

velocity and the sensor biases. With these added parameters, the state vector for the batch visual-

inertial SLAM problem is defined as

X =

[ {
xT
wpn vT

wn
bgn

T ban
T

}
{ρk}

]T
, (2.1)

where

{
xT
wpn vT

wn
bgn

T ban
T

}
is the set of keyframe parameters, defined as follows: xwpn ∈
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SE(3) is the transformation from the coordinates of the nth keyframe to world coordinates, vwn ∈

R3 is the velocity vector of the nth keyframe in world coordinates, and bgn ∈ R3 and ban ∈ R3 are

the gyroscope and accelerometer bias parameters for the nth keyframe respectively. Similarly {ρk}

is the 1-d inverse-depth ([85]) parameter for the kth landmark.

Note that in this case, the world frame denotes a “lifted” local frame, where a breadth-first

search is used to obtain a local coordinate system from the relative map representation ([68], [105]).

This local coordinate frame simplifies the visual and inertial constraints which are minimized in

the optimization, in comparison to their relative formulations. Once the optimization is complete,

the relative representation of the optimized parameters is written back into the map. Note that the

relative map representation is not a prerequisite of the proposed method, and is used as it facilitates

updates to a single map structure from multiple asynchronous optimizations. Section 2.2.5 further

expands on the specifics of using a relative map representation with visual-inertial SLAM.

The parameterization of xwpn deserves special notice. The transformation has 6 degrees of

freedom: 3 for translation, and 3 for rotation. However, 6DOF representations of transformations

suffer from singularities, due to what is known as Gimbal Lock in the rotation degrees of freedom.

To avoid this problem, the rotation component of the transformation is represented as a quaternion

xwp =

[
pT
wp qT

wp

]T
, (2.2)

where qwp ∈ R4 is a quaternion representing the rotation from keyframe to world coordinates,

and pwp ∈ R3 is the translation vector from keyframe to world coordinates. This representation

has 7 degrees of freedom and as such, is over-parameterized for the underlying 6 degrees of free-

dom. To avoid the null spaces caused by over-parameterizing the space in an optimization, a local

parameterization of the space is utilized as follows

xwp′ = xwp ⊕ xpp′ (∆xq,∆xp) =

[ (
qwp ⊗ expq (∆xq)

)T
(pwp + ∆xp)

T

]T
, (2.3)
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where xpp′ (∆xq,∆xp) represents an update applied to the transformation xwp, composed of a 3DOF

translation delta ∆xp and a 3DOF rotation delta ∆xq , and ⊗ is the quaternion multiplication

operator. The translation delta is additive and is simply added to the translation vector of xwp.

The rotation delta is in the so(3) tangent space ([111]) and is transformed into the SO(3) manifold

using the exponential operator. The resulting quaternion can then be multiplied by qwp to apply

the update to the rotation. Here ⊕ is the update operator, equivalent to matrix multiplication if xwp

and xpp′ were represented as 4×4 homogenous transformation matrices. ∆xq and ∆xp now represent

a 6dof manifold which can be used to update the keyframe pose without over-parameterization.

2.2.1 Probabilistic Derivation

Given the state vector in Equation 2.1, a probabilistic method will be derived to obtain the

optimal estimates for the parameters given visual and inertial measurements. The joint probability

distribution of the state vector X and the visual-inertial measurement set Z can be factored using

Baye’s rule as follows:

P (X,Z) = P (Z|X)P (X), (2.4)

where P (Z|X) is the measurement likelihood and P (X) is the prior term. Assuming conditional

independence between measurements, the likelihood term can be factored:

P (X,Z) =

n∏
i=1

P (zi|X)P (X), (2.5)

where P (zi|X) is the likelihood of the ith measurement given the state vector X. The optimal

estimate for the state vector parameters is then one that maximizes the joint probability of the

state and measurements in Equation 2.4, which is also achieved by maximizing the measurement

likelihood and prior probabilities:
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X̂ = arg max
X

P (X,Z) = arg max
X

(
n∏

i=1

P (zi|X)P (X)

)
. (2.6)

With the assumption that the measurement terms are normally distributed, the likelihood

term for the ith measurement term (Equation 2.5) can be written as a multivariate normal distri-

bution with mean h(X) and covariance Σz as follows

P (zi|X) =
1√

(2π)k |Σz|
exp

(
−1

2
(zi − h(X))T Σ−1

z (zi − h(X))

)
∝ exp

(
−1

2
‖zi − h(X)‖2Σz

)
,

(2.7)

where the proportional relation (∝) is used to omit the normalization term, and ‖z − h(X)‖2Σz
=

(z− h(X))T Σ−1
z (z− h(X)) denotes the squared Mahalanobis distance. h(X) is the measurement

function, which predicts the measurement z given the state vector.

Likewise, with the assumption that the prior term is normally distributed with mean Π and

covariance ΣΠ, it can be written as

P (X) ∝ exp

(
−1

2
‖X−Π‖2ΣΠ

)
. (2.8)

Given Equations 2.7 and 2.8, Equation 2.6 can be written as

X̂ = arg max
X

P (X,Z) = arg max
X

[
n∏

i=1

exp

(
−1

2
‖zi − h(X)‖2Σz

)
exp

(
−1

2
‖X−Π‖2ΣΠ

)]
. (2.9)

Taking the negative log of Equation 2.9, a cost function can be obtained, in order to obtain

the maximum a posteriori estimate for the state vector X

X̂ = arg min
X

(
n∑

i=1

‖zi − h(X)‖2Σz
+ ‖X−Π‖2ΣΠ

)
, (2.10)
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where the first term represents a sum over all measurements residuals, and the second term repre-

sents the prior residual. Note that since both the state vector X and prior mean Π contain rotations,

the subtraction operator is not sufficient to obtain a residual between the two. Instead, due to the

existence of discontinuities in the space of rotations, the difference between two quaternions is used

as a measure of distance:

∆q = logq
(
qX ⊗ q−1

Π

)
, (2.11)

where the logq operator transforms the 4DOF difference quaternion from the SO(3) manifold

to the 3DOF so(3) tangent space. In Section 2.2.3, it will be shown that in the case of inertial

measurements, a similar approach is required in order to compute the residual zi−h(X) as rotation

terms are involved. This detail does not however, invalidate the aforementioned derivation.

Note that although the aforementioned maximum a posteriori formulation includes a prior

distribution on the state parameters, the proposed method does not make use of a prior, and as

such uses maximum likelihood estimation. This is further explained in Section 2.2.4.

2.2.2 Visual Measurements

Visual measurements are formed by tracking the 2D image projection location of 3D land-

marks in the scene. A residual is then computed from the difference in the predicted 2D image

position of the landmark and the actual measured 2D position. Figure 2.1 shows the parameters

involved in a single visual residual. The measurement function h(X) for visual residuals is defined

as follows (Note that the transformation Twp is the equivalent 4× 4 matrix representation of xwp,

which is used here for brevity. The underlying implementation uses the quaternion and translation

components of xwp):

h(X) = P (pr,X) = P
(
T−1

pc T
−1
wpmTwprTpcP−1 (pr, ρ)

)
, (2.12)
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Figure 2.1: The formation of a visual residual given a landmark and the reference and measurement
keyframes. The landmark is first formed by corner detection, where pr denotes the image location
of the detected corner in the reference frame xwpr . The landmark inverse depth parameter ρ
specifies the perpendicular distance between the landmark and the image plane. The measurement
keyframe reference frame xwpm specifies the transformation from the measurement keyframe to
world coordinates, and pm is the detected image location of the landmark in the measurement frame.
As the keyframe pose corresponds to the IMU frame (Section 2.2.3), xpc denotes the transformation
from the camera to the IMU frame. Given the aforementioned values, the landmark can be projected
into the measurement frame, where an error vector (eV) is formed with the difference between the
predicted and measured landmark location in the image.

where ρ is the inverse depth of the landmark, Twpr is the transformation from the coordinates of the

reference keyframe (in which the landmark was first seen and initialized) to world coordinates, Twpm

is the transformation from the measurement keyframe to world coordinates, pr is the 2D image

location where the original feature was initialized in the reference keyframe, pm is the measured

2D image location in the measurement keyframe, Tpc is the transformation from the camera to the

keyframe coordinates, P−1 is a 2D to 3D back-projection function which returns the homogenous

landmark position given the reference 2D image location pr and the inverse depth ρ, and P is

a 3D to 2D camera projection function which returns the predicted 2D image coordinates. This

operation forms a transform function from the image plane of the reference camera to that of the

measurement camera, given their respective poses and the inverse depth of the landmark. The

camera to keyframe transformation Tpc is non-zero as the keyframe is collocated on the inertial

frame (the frame in which inertial measurements are made), to simplify the inertial integration
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equations. As shown in Figure 2.1, the visual measurement residual of the kth landmark in the

mth frame is calculated from the error vector between the predicted and measured 2D location, ev

as follows

rVm,k
= ‖eVm,k

‖2Σpm,k
= ‖pm,k − P

(
T−1

pc T
−1
wpmTwpr,kTpcP−1 (pr, ρk)

)
‖2Σpm,k

, (2.13)

where pm,k is the measured 2D image location of the kth landmark in the mth keyframe with

covariance Σpm,k
, and Twpr,k is the transform from coordinates of the reference keyframe of the

kth landmark to world coordinates.

Since the camera intrinsics are assumed constant, the back-projection of the reference feature

location onto the z = 1 plane can be computed once and then stored for all reprojections involving

that landmark. This pre-computation step provides significant benefits where non-invertible camera

models are used, as the inverse projection function for these camera models can be computationally

expensive. The back-projection is undertaken as follows:

[xk ; 1.0] = P−1 (pr, 1.0) , (2.14)

where xk ∈ R3 is the 3D vector representing the feature on the z = 1 plane of the reference

camera. Given this precalculated vector, the residual can be re-written by simply replacing the

z = 1 inverse depth value with the parameter ρ, obviating the inverse projection function in

Equation 2.13:

rVm,k
= ‖eVm,k

‖2Σem,k
= ‖pm,k − P

(
T−1

pc T
−1
wpmTwpr,kTpc [xk ; ρ]

)
‖2Σpm,k

. (2.15)

Here the covariance of the error vector eVm,k
is equal to the covariance of the 2D pixel location

detected in the image Σpm,k
, due to the fact that the measurement and error vector are in the same

space. More formally, if the image measurement is defined as
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pm,k ∼ N
(
p̄m,k,Σpm,k

)
, (2.16)

where p̄m,k is the true measurement, then the distribution over the error vector can be written as

P
(
eVm,k

|X
)

= P (pm,k − h (X)) ∼ N
(
h (X) ,Σpm,k

)
. (2.17)

Therefore the measurement uncertainty is used directly in the mahalanobis distance used for

the residual. This distinction is made to motivate the covariance derivation in Section 2.2.3, as the

inertial measurement and error vector are not in the same space. Linear error propagation must

then be used to obtain the covariance of the error vector. The covariance Σpm,k
can be obtained

from the autocorrelation matrix used in extracting harris corners ([29]). However, due to the fact

that the salient corners used for tracking are generally thresholded to have high autocorrelation, a

standard value of 1 pixel is used for the x and y dimension covariance. In other words, Σpm,k
= I2×2.

2.2.3 Inertial Measurements

Similar to Section 2.2.2, inertial measurements obtained from the inertial measurement unit

(IMU) are used in order to form constraints over state variables. The values obtained from the

IMU are 3 degrees of freedom acceleration and angular rate measurements. IMU measurements

are taken in the IMU coordinate frame. This fact motivates the use of the IMU coordinate frame

as the privileged frame, as the equations governing the rigid body dynamics are greatly simplified.

Both accelerometer and gyroscope measurements are assumed to have additive Gaussian noise, and

are therefore defined as follows

ωm ∼ N
(
q−1
wp ⊗ (ωw) + bg,Σω

)
(2.18)

am ∼ N
(
q−1
wp ⊗ (aw − gw) + ba,Σa

)
, (2.19)
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Figure 2.2: Inertial residuals formed by integrating inertial measurements between subsequent
keyframes. The residual vector eIk+1

is then formed using the error between the integrated inertial
measurements from keyframe n and the state parameters of keyframe n+1. The ellipsoids represent
the (exaggerated) uncertainty in the integrated state, which grows as more noisy measurements are
used in the integration. The final state uncertainty is then used in computing the weight of the
residual.

where ωm refers to the angular rate measurements in the IMU frame obtained from the sensor, qwp

is the quaternion defining the rotation from IMU to world coordinates, ωw is the true angular rate of

the IMU in the world frame, bg is the gyroscope bias vector, and Σω ∈ R3×3 is the covariance matrix

specifying the uncertainty in gyroscope measurements. Similarly for acceleration measurements,

ωm is the acceleration measurements in the IMU frame obtained from the sensor, aw refers to the

true acceleration of the IMU in the world frame, gw is the gravity vector in the world frame, ba is

the accelerometer bias vector, and Σa ∈ R3×3 is the covariance matrix specifying the uncertainty

in the accelerometer measurements. The effects of the Earth’s rotation have been ignored in these

equations.

Note that the angular velocity vector ωw ∈ R3×1 is the minimal representation of the so(3)

tangent space. As the measurement is in the IMU frame, the tangent space needs to be transformed

between two different SO(3) reference frames. This operation is the Adjoint Map ([111]), which for

SO(3) is simply multiplication by the rotation matrix transforming from the start to end reference

frame. Therefore multiplication by the equivalent quaternion q−1
wp can be used to transform the

angular velocities in the world tangent space to the IMU frame tangent space.

In order to constrain the state variables, the equations of rigid body motion are used to obtain



32

analytical relationships between the IMU measurements and the state parameters. The integration

state for the kth step (xk ∈ R16) is arranged as follows:

xk =

[
pT
wpk

qT
wpk

vT
wk

bT
gk

bT
ak

]T
. (2.20)

The relationship between the state parameters and IMU measurements is derived as follows:

ṗwp = vw

v̇w = aw = qwp ⊗ (am − ba) + gw

ḃg = wg

ḃa = wa. (2.21)

The time-derivatives of translation (ṗwp) and velocity (v̇w) are straightforward. The ac-

celerometer and gyroscope biases are modeled as Gaussian random walk processes. Consequently,

their discrete time derivatives are given by the white Gaussian noise vectors wg ∈ R3, and wa ∈ R3,

where elements of each vector are independently drawn from a zero-mean Gaussian distribution

with variance of σbg , and σag respectively. The case of rotation derivatives deserves special atten-

tion. Given that the skew-symmetric angular velocity tensor ω̂, denoted by the hat operator ([111])

is in the so(3) tangent space, Euler integration of the angular velocities to form an incremental

rotation in SO(3) can be performed using the exponential operator: ∆qwp = expq (ω̂wdt), where

expq returns the SO(3) rotation in the form of a quaternion.

This incremental rotation can then be compounded with the original rotation matrix. Using

a quaternion to represents elements of SO(3), the discrete integration of of the angular velocities

for a single time step can then be written as

qwpk+1
= exp(ω̂wk

dt)⊗ qwpk = expq

(
qwp ⊗ (ωmk

− bgk)
∧

dt
)
⊗ qwpk , (2.22)
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where the IMU-frame angular rate measurement ωwk
is transformed into the world frame by the

SO(3) Adjoint. The other parameters are similarly discretely integrated for a single time step:

pwpk+1
= pwpk + vwk

dt

vwk+1
= vwk

+ awdt = vwk
+ (qwp ⊗ (amk

− bak) + gw) dt

bgk+1
= bgk

bak+1
= bak . (2.23)

The gyroscope and accelerometer biases are modeled as random walk processes, and as such

are not modified in the integration. However, the uncertainty over the bias parameters grows

with the integration. Note that although Euler integration is used here for brevity, in the actual

implementation, Runge-Kutta 45 integration is used for higher accuracy.

Given the aforementioned integration approach, the inertial measurement set Z =
{
zt0 , . . . , ztn

}
where z =

[
ω a

]
can be used to integrate the SE(3) pose, velocity and biases from time t0 to

tn. A residual can then be formed between the integrated state (x′) and the parameters in the next

keyframe as shown in Figure 2.2:

rIj = ‖eIj‖2Σeij

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



pwpj+1 − p′

logq

(
q−1
wpj+1

⊗ q′
)

vwj+1 − v′

bgj+1 − bgj

baj+1 − baj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

ΣeIj

, (2.24)

where logq

(
q−1
wpj+1

⊗ q′
)
∈ R3 is used to calculate the so(3) difference between the integrated

orientation q′ and the orientation of the (j + 1)th keyframe, qwpj+1 . This is required, as the

quaternion parameterization is redundant, and the underlying space has only 3 degrees of freedom.
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2.2.3.1 Residual Covariance

Unlike the visual residual covariance in Equation 2.17, the covariance of the inertial residual

Σeij
is not due to the uncertainty of a single measurement. Rather, the uncertainty of multiple

measurements inflate the covariance of the integrated state as shown in Figure 2.2. In order to

obtain this covariance, the uncertainty of the integrated state must be calculated at each stage of

the integration. This involves the propagation of the current uncertainty for the time-step k to

time-step k+ 1, as well as adding the uncertainty introduced from the measurements integrated at

time k as follows:

Σxk+1
(xk,Σxk

, zk,Σzk) =

(
∂xk+1

∂xk

)
Σxk

(
∂xk+1

∂xk

)T

+

(
∂xk+1

∂zk

)
Σzk

(
∂xk+1

∂zk

)T

, (2.25)

where Σxk
∈ R16×16 is the singular covariance matrix of the most recent integration state, and

Σzk ∈ R12×12 is the covariance matrix of the IMU measurements and the bias drift model. It

should be noted that Σxk
is singular due to the redundant 4D representation of rotation, during

the integration on the SE(3) manifold. However, this covariance is propagated into the minimal

se(3) tangent space before being used in the optimization, and will no longer be singular. (See

Equation 2.28). xk ∈ R16 is the integration state matrix arranged as

xk =

[
pT
wpk

qT
wpk

vT
wk

bT
gk

bT
ak

]T
, (2.26)

and z =

[
ω a

]
is the measurement vector at time-step k. The IMU measurement and bias

covariance matrix is usually diagonal, as the measurement uncertainties of the separate axes of the

gyroscope and accelerometer and their biases are not correlated. It is formulated as

Σzk = diag
(
σ2
g · I3×3, σ

2
a · I3×3, σ

2
bg · I3×3, σ

2
ba · I3×3

)
, (2.27)

where σg, σa, σbg , and σba are the uncertainties for the gyroscope, accelerometer, gyroscope bias
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and accelerometer bias respectively. The derivatives ∂xk+1/∂xk and ∂xk+1/∂zk are straightforward

and are obtained by differentiating the single-step integrations in Equation 2.23.

Using the uncertainty propagation in Equation 2.25, the uncertainty of the final state Σx′

can be obtained. Note that at the first step of the integration, the uncertainty of the state is set

to 0. More formally: Σx0 = 016×16. The uncertainty of the error vector eI can then be obtained

from Σx′ :

ΣeI ∈ R15×15 =

(
∂ei
∂x′

)
Σx′

(
∂ei
∂x′

)T

, (2.28)

where ∂eI/∂x′ ∈ R15×16 is the Jacobian of the function which forms the error residual from the

integrated state x′, and the subsequent keyframe:

∂eI
∂x′

=


−I3×3 03×4 03×9

03×3 ∂ logq

(
q−1
wpj+1

⊗q′
)
/∂q′ 03×9

09×3 09×4 −I9×9

 . (2.29)

Due to the simple subtractions used to form the errors, this Jacobian is mostly comprised

of the negative identity matrix −I. The only exception is the orientation term. As a redundant

4D quaternion parameterization is used during the integration, the covariance term for it will be

singular. The orientation block in ∂eI/∂x′ is then used to propagate this uncertainty into the se(3)

tangent-space where the 3D error will be formed.

Note that depending on the uncertainty and number of IMU measurements used in the

integration, ΣeI could become singular or badly conditioned, in which case a pseudo-inverse should

be used to compute the mahalanobis distance in Equation 2.7. Unlike the visual residual covariance,

the inertial residual covariance depends on the state, via propagation through the state integration.

However, this dependence is assumed to be negligible, as the residual covariances are recomputed

before every optimization iteration.
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2.2.3.2 Jacobian Calculation

In order to optimize the residual in Equation 2.24 in a maximum-likelihood estimator, partial

derivatives of the error vector eIj with respect to the involved state parameters are required. The

error vector eIj is formed by integrating IMU measurements starting at the jth keyframe, and

comparing the integrated state with that of the (j + 1)th keyframe. Therefore the involved state

parameters are the position, orientation, velocity and biases of these two keyframes. Given the

inertial residual in Equation 2.24, it can be observed that the derivatives with respect to the (j+1)th

keyframe are easily obtained, as they do not involve the integration of the inertial measurements.

However, the same cannot be said for the jth keyframe, as it is the starting state for the integration.

The partial derivatives would then need to be computed step-by-step through the integration using

the chain rule. In order to simplify the required partial derivatives, some of the starting keyframe

state parameters can be factored in the integration, as shown in section . The error vector and

residual can then be re-written given this factorization, by replacing the components of the final

integration state x′ with their factorized forms:

rIj = ‖eIj‖2Σeij

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



pwpj+1 −
(
pwpj + vwj∆t+ 1

2gw∆t2 + qwpj ⊗∆p
)

logq

(
q−1
wpj+1

⊗
(
qwpj ⊗∆q

))
vwj+1 −

(
vwj + gw∆t+ qwpj ⊗∆v

)
bgj+1 − bgj

baj+1 − baj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

ΣeIj

, (2.30)

where ∆t is the total time of the integration, and ∆p, ∆q, and ∆v are specially integrated deltas

of position, orientation and velocity which do not depend on any state parameters, as described

in section . Given this factorization, partial derivatives with respect to velocity, position and

orientation of the jth keyframe need not be computed through the integration, and can be directly

evaluated. Unfortunately the same cannot be said about the partial derivatives with respect to the

bias: ∂eIj/∂bgj and ∂eIj/∂baj , which have to be computed using the chain rule as follows:
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∂eIj
∂bj

=
∂eIj
∂x′

· ∂xn

∂bj
=
∂eIj
∂x′

·
(

∂xn

∂xn−1
· ∂xn−1

∂xn−2
· . . . · ∂x1

∂bj

)
. (2.31)

It is worth noting that due to the additive noise model used for IMU measurements, (Equa-

tions 2.18 and 2.19), the partial derivative of the integration step with respect to the biases (∂xn/∂bj)

is in fact equal to the partial derivative with respect to the measurement noise (∂xk+1/∂zk), which is

used in the propagation of the measurement uncertainty in Equation 2.25. This partial derivative

can be easily computed from the single-step integration in Equations 2.22 and 2.23 and used for

both the partial derivatives of the error vector, and to propagate the measurement uncertainties.

2.2.4 Optimization Formulation

conditioning edges

IMU integrations

active windowinactive window

Figure 2.3: The graphical model representing the conditioning sliding window optimization over a
number of active keyframes. Edges in the graph are formed by either visual or inertial residuals
and are shown as dashed lines. The solid lines represent implicit edges modeled by the inverse
depth parameterization between landmarks and their reference keyframes. The conditioning edges
are formed by residuals which involve both active and inactive parameters.

The previous sections outline the formulation of inertial and visual residuals. In a batch set-

ting, all measurements collected would be used in order to optimize the state parameters. However,

this is clearly not an acceptable solution for online systems, as the computational complexity of the

problem is unbounded as more measurements are collected. One way to deal with this problem is

to recursively marginalize landmarks and keyframes that fall outside a fixed-size window of active
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parameters. These older keyframes then form a prior distribution which is used alongside the visual

and inertial residuals ([78],[58], [56], [57]). This approach however generally results in inconsisten-

cies in the estimator, due to the multiple linearization points using in the marginalization process.

One approach to fixing the inconsistencies is to use first estimate Jacobians ([57]), however this

issue will greately reduce the tolerance of the estimator towards nonlinearities. Another issue with

carrying a marginal distribution is difficulties when closing loops, as the marginal distribution will

no longer be valid after the loop closure.

An alternate approach is to condition on parameters that fall outside the fixed-size window

instead. By conditioning, an assumption is made that the estimates for these past parameters have

converged and are correct. Figure 2.3 shows the graphical model representing the conditioning

approach, where the conditioning edges are composed of measurements that involve both the active

and inactive parameters. Conversely, active edges are composed of measurements that involve only

active parameters. Equation 2.6 is then modified to remove the prior and to split the measurement

likelihood term in two: active and conditioning measurements:

X̂a = arg max
Xa

P (Xa,Z) = arg max
Xa

 na∏
i=1

P (zi|Xa)

nc∏
j=1

P (zj |Xa,Xi)

 , (2.32)

where na and nc are the number of active and conditioning residuals respectively. Note that the

likelihood term for the conditioning residuals is conditioned on both the active (Xa) and inactive

(Xi) state parameters, but only the active parameters are optimized. Given the inertial and visual

residuals discussed in the previous section, and the aforementioned conditioning approach the total

cost optimized is formulated as :

e =

nk∑
m=1

nl∑
k=1

‖eVm,k
‖2ΣeVm,k

+

nk∑
j=1

‖eIj‖2ΣeIj
, (2.33)

where nk and nl are the total number of keyframes and landmarks respectively. Residuals which

involve inactive parameters in Xi are evaluated normally. However, the partial derivatives of these
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residuals with respect to the inactive parameters are omitted. This method is used extensively with

a fixed-window optimization in visual SLAM ([68], [54]).

In order to minimize the given cost and obtain the maximum likelihood state estimates, the

normal equations are utilized to iteratively update the active parameters Xa:

JTWJ∆Xa = JTWe, (2.34)

where e =

[
eV0 . . . eVn , eI0 . . . eIm

]T
is the residual vector, J = ∂e/∂Xa is the Jacobian of

the residual vector with respect to the active state parameters, and the block diagonal weight matrix

is composed of the inverse covariance matrix for every residual: W = diag
(

Σ−1
eV0

, . . . ,Σ−1
eVn

,Σ−1
eI0
, . . . ,Σ−1

eIm

)
.

The dog-leg trust region method ([92]) is used to solve Equation 2.34. Note that the update to the

state vector ∆Xa is additive for all parameters except the orientation parameter qwp, where the

update is applied through the exponential operator as per Equation 2.3.

Due to the connectivity of the visual-inertial SLAM graph, new residuals may significantly

alter the estimates for parameters which are no longer in the active window. Due to this same

connectivity, active parameters which are conditioned on badly estimated past parameters are

themselves poorly estimated, and can result in total divergence of the solution. In the case of visual-

inertial slam, parameters such as velocity, and implicitly estimated parameters such as the direction

of gravity are particularly sensitive to mis-estimation, and can derail the solution if not updated

in the presence of new measurements. As such, a fixed-window optimization will not approximate

the batch maximum likelihood solution. This motivates the introduction of the adaptive window

optimization.

2.2.5 Adaptive window implementation

The adaptive local bundle adjustment dynamically sets the window size, in order to ap-

propriately fold in parameters as needed. As is especially prominent when using an IMU, future

measurements can significantly affect estimates of past and inactive parameters for a fixed window
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active windowinactive window

ecI

confidence intervals

conditioning IMU integration

Figure 2.4: Graphical model of the adaptive condition shown for inertial residuals. The ellipsoids
show the confidence intervals of the Mahalanobis distance between the final integration pose and the
first active keyframe as obtained from a χ2 test. The size of the adaptive window is then expanded
if the Mahalanobis distance is larger than a threshold confidence interval. Once expanded, the
optimization is run over the larger window and the process is repeated by checking the same edge
(which will no longer be a conditioning edge, as it will involve only active parameters).

size. Dynamically adjusting the window serves to allow the optimization to include parameters

when new measurements are available which change their estimates, and when these new estimates

affect the current active set of parameters Examples of these parameters are velocities, accelerom-

eter and gyroscope biases, and the direction of gravity, which is implicitly parameterized.

Similar to the adaptive method previously presented in [105], the condition used to determine

the size of the optimization window is based on the residuals. In [105], parameters were included

in the optimization if changes in the visual residuals were larger than a specific threshold. For the

case of visual-inertial SLAM, since multiple sensor modalities are used, the Mahalanobis distance

for the residuals is computed instead, and thresholded in a χ2 test, in order to probabilistically

determine when residuals are outside their expected intervals. In particular, the condition used to

assess whether the size of the window needs to be increased between two optimization iterations

is based on the residuals observed in the conditioning edges shown in Fig. 2.3, after the kth

optimization has converged. The measurement covariances can then be used to assess whether the

conditioning residuals are within expected bounds using a χ2 test and to adjust the size for the

(k + 1)th optimization. The conditioning Mahalanobis distance for projection residuals is
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ecV =
∑
i∈C
‖rVi‖2ΣVi

, (2.35)

where the summation is over the set C comprising of all conditioning visual residuals as shown

in Figure 2.3. Likewise, the conditioning Mahalanobis distance for the single inertial residual

connecting the active and inactive sets is

ecI = ‖rIc‖2ΣIc . (2.36)

Given either ecI or ecV , their corresponding adaptive condition variables αkV and αkI can be

defined as

αkV =
ecV

Invχ2 (β, d)
,

αkI =
ecI

Invχ2 (β, d)
, (2.37)

where d = 2|C| + 15, and αkV and αkI represent the adaptive condition variables for visual and

inertial residuals respectively, Invχ2 (β, d) is the inverse cumulative χ2 distribution for d dimensions

evaluated for the confidence interval β, where d is the total dimension of the conditioning edge vector

(15 for the conditioning inertial residual, and 2×|C| for the conditioning visual residuals). Since the

multivariate Mahalanobis distance has a d-dimensional χ2 distribution, the cumulative form of the

χ2 can be used to estimated if the given Mahalanobis distance lies in a certain confidence interval.

Initially if αkV > 1 or αkI > 1, the conditioning residuals for either visual or inertial measurements

lie outside the βth percentile probability as expected from the residual covariance (as shown in

Figure 2.4), so the window size is increased, and the optimization is run to convergence with the

now larger window. This increase in the window size is continued while the following conditions

hold:

(αk+1V > 1 ∨ αk+1I > 1) ∧ ((αk+1V + αk+1I ) ≤ γ · (αkV + αkI )) , (2.38)
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where the ∧ and ∨ signify the AND and OR boolean algebra operators, and γ = (1 − 1e−5) is a

tuning parameter to ensure that the condition variables decrease more than a specific threshold

with regards to the previous optimization. If the condition in Equation 2.38 is not met, the window

is resized to its default minimum length and new frames are added to the window. Note that during

the expansion, even though the conditioning edges of iteration k are replaced with earlier edges

in the graph, the condition variables αkV and αkI are still computed at the same edge as the first

optimization instance where the condition in Equation 2.38 was met.

In the case of the inertial residual Mahalanobis distance (Equation 2.36), the residual co-

variance actually depends on the state, as it is propagated through the inertial integration as per

Equation 2.25. Consequently, the true Mahalanobis distance after the optimization must be com-

puted by propagating the IMU measurement uncertainties given the latest estimate of the states.

However, since the residual covariances are recomputed before each iteration of the optimization,

and changes to the parameters are expected to be small at convergence, the change in the covari-

ance of the inertial residual is assumed to be negligible in the final optimization iteration. Note

that in the case of visual residuals, the residual covariance does not depend on the state.

The intuition behind the adaptive criterion on Equation 2.38 is that if new residuals would

affect the estimates of past parameters, and those parameters are not part of the active window,

tension will be introduced in the conditioning edges which connect the active to the inactive pa-

rameters in the form of errors which are not explained by the measurement uncertainty. If the

errors in the conditioning edges are indeed caused by mis-estimation of inactive parameters outside

the window, including these parameters in the window should reduce these errors until they are

within expected intervals based on measurement uncertainties. In the case that the conditioning

error is not decreasing but is still outside expected bounds, the window size is returned to its de-

fault minimal value and the expansion is stopped, as the error is more likely explained by outlier

measurements.

In order to use a relative map representation with visual-inertial measurements, the architec-

ture presented in [105] has to be extended to accomodate the new parameters which are estimated:
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keyframe velocities, gravity direction and IMU biases. As the biases are estimated in the IMU

frame, they are already relative and so need no further attention. The velocities are estimated in

the ”lifted” local frame, and are therefore relative to the orientation of the first lifted pose. The

same can be said about the direction of gravity in the lifted frame, gw. In order to store the velocity

estimates and gravity direction in the map, they are converted to a relative parameterization, which

for the kth keyframe is as follows:

vpk = q−1
wpk
⊗ vwk

gpk = q−1
wpk
⊗ gw, (2.39)

where vpk and gpk are the velocity and gravity direction vectors relative to the keyframe orientation.

These values are stored in the map along with the relative transform between keyframes. Given this

map representation, a local window can be ”lifted” by performing a breadth first search starting

from a given root node. The local gravity vector gw can then be computed by inverting Equation

2.39. The local velocity for each keyframe vwk
is computed similarly. These values, alongside

the local position and orientation of the keyframe obtained as per [105], are then used as the

optimization state parameters.

The use of a relative map representation ensures that updates to the map remain small.

While the optimization is performed in a “lifted” local frame (referred to as the world frame), the

resulting parameters are pushed back into the map in their relative form, allowing multiple BAs to

update it asynchronously without clashing.

Note that if the window size expands to the point where a batch optimization is performed,

the relevant null-spaces are regularized to prevent the hessian becoming singular. For the visual-

inertial case, the null-spaces for the batch maximum likelihood estimation are the 3 unobservable

translations of the root pose, and the unobservable yaw degree of freedom around gravity. In

order to remove the yaw null-space, the rotation axis most parallel to that of the gravity vector is

regularized in the first pose.
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Rig IMU Camera

A Project Tango Peanut IMU @ 120Hz Project Tango Peanut Wide-Angle Camera @ 30fps, 640 × 480

B Microstrain 3DM-GX3-25 @ 200Hz Point Grey FL3-U3-13Y3M-C @ 30fps, 640 × 480

Table 2.1: Specifications for the sensors used in each rig.

Since the time needed to run the optimization to convergence scales with the size of the

window, the aforementioned solution could potentially be too slow for real-time operation, if the

window size expands too much. To obtain a real-time solution, two optimization windows are

run simultaneously in a multi-threaded environment. One thread runs a constant-width window

optimization which is guaranteed to run at framerate, while the other runs the adaptive window

optimization, which could potentially run slower than framerate. Special care is taken to ensure

that these two optimizations which run on different subsets of parameters do not destructively

interfere with one another. Fortunately, the relative map representation is quite conducive to this

approach. Since only relative values are stored in the map, updates to the parameters are small.

This would not be the case for a global map representation, where changes to past keyframes could

potentially have significant downstream effects on more recent keyframes. Given the relative map

representation, a greedy update approach is chosen, where synchronization between the threads is

only performed during the lift and write operations, but otherwise updates are written to the map

as soon as either optimization thread has run to convergence.

2.3 Experiments

In order to evaluate the proposed method, experiments were run on two sensor platforms: A

hand-held mobile device (hereby referred to as rig A) with a global shutter wide field-of-view camera

with 640×480 resolution and a commercial MEMS IMU sampled at 120Hz, and a custom hand-held

rig (referred to as rig B) with a wide field-of-view camera at 1280 × 960 resolution downsampled

to 640× 480 with a commercial grade IMU sampled at 200Hz. The sensor specifications are listed

in Table 2.1. Both cameras capture images at 30 frames per second. A comparison between

the images captured from the rigs is shown in Figure 2.5. In all experiments, the AAC system



45

(a) (b)

Figure 2.5: Comparison of images obtained from rig A (a) and rig B (b) as described in Section 4.3.
Rig A is a mobile hand-held device with a wide-angle lens and a global shutter camera capturing
at 30 fps and with 640× 480 resolution. Rig B is a custom hand-held device with a global shutter
camera capturing at 30fps and with 1280× 960 resolution downsampled to 640× 480. The picture
quality and contrast of rig B is generally much better. Both rigs use a commercial grade MEMS
IMUs: rig A sampled at 120Hz and rig B at 200Hz. Rig B features a much larger lens and higher
quality camera.
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Figure 2.6: a) Trajectory and structure estimate resulting from running the poposed solution on a
∼200m outdoor dataset captured using rig B. The error between the start and end keyframe poses
is 0.33% of the distance travelled. b) The window size ratio (computed by dividing the adaptive
window size by the total number of keyframes) for the trajectory, the initialization region is at the
beginning of the trajectory with the ratio reaching 1, signifying a batch solution.

comprises of a fixed-window estimator (as per Section 2.2.4) with a 10 keyframe window width

and an asynchronous adaptive estimator (as per Section 2.2.5) with a minimum window size of 20

keyframes.
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Figure 2.7: Inertial (a) and visual (b) adaptive condition variable plots (see Section 2.2.5) for the
trajectory in Figure 2.6a. The red line indicates the threshold over which the condition in Equation
2.38 will be true, and therefore the window size will be expanded. The expansion spikes in Figure
2.6b are correlated to the keyframes at which either the visual or inertial condition variable is > 1
in (a) or (b)

.

Figure 2.8: Comparison of trajectories estimated by different bundle adjustment configurations.
It can be seen that the 25 keyframe asynchronous fixed-size window BA and the adaptive win-
dow BA both produce trajectories close to the batch solution, however the 15 keyframe fixed-size
asynchronous fixed window BA diverges substantially from the batch solution.

2.3.1 Tracking and Keyframing

Visual residuals are established as per Section 2.2.2 by tracking salient image points between

frames, to form a feature track. This is accomplished via a method inspired by the tracking com-

ponent of ([22]) , where the photometric error of a re-projected feature patch is directly minimized

to obtain the new location of the feature. In order to initialize new feature tracks, Harris corners

([29]) are used in the areas of the image where not enough active tracks are present. In the direct

approach employed, epipolar geometry is respected when minimizing the photometric error to lo-
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calize the tracked features in new images. As such, the RANSAC ([21]) step generally employed

when descriptor-based matching is used is no longer required. There is slight tolerance to violations

of epipolar geometry to enable tracking if the landmarks or keyframe poses are not well estimated,

and as such non-static objects in the scene may still violate epipolar geometry over the length of

a feature track. These outliers are rejected in the fixed and adaptive window optimizations based

on the ratio of outlier visual residuals to the total number of residuals in the feature track. A

normalized cross-correlation (NCC) score is computed between the current and original feature

patches and is thresholded (at 0.875) to reject feature patches which have changed too much in

appearance. In all examples, the tracker was configured to attempt to track 128 landmarks across

the image. The value of the tuning parameter β from Equation 2.37 is set to 0.1, meaning that

αk > 1 if the conditioning Mahalanobis distance for either visual or inertial residuals is larger than

the 10% χ2 confidence interval for the given dimension d. The value of the tuning parameter β was

experimentally chosen to ensure that the window size was expanded when required estimate past

and present parameters on all datasets. Statistically, a threshold on the 10th percentile is rather

strict, as only a small percentage of errors should reside in this range, and most errors should

be higher. The experimentally obtained value of 10% could potentially be due to measurement

covariances which are set too low, resulting in under-estimated Mahalanobis distances.

Keyframing is used as a means to both increase performance and to alleviate problems arising

from a stationary camera. The keyframing approach is similar to that of [54]. Heuristics are used

over the total distance and rotation since the last keyframe, as well as the percentage of feature

tracks still active. If any of the heuristics are met, a new keyframe is placed and the feature

track measurements are inserted into the map. Images which are not keyframes are simply used for

localization against the map. Note that IMU measurements are recorded irrespective of keyframing.

The system runs at 30 frames per second on a 2.5Ghz Core i7 laptop with two threads. One thread

running the synchronous estimator as described in Section 2.2.4 and the other running the AAC

(Section 2.2.5).
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2.3.2 Results

The first experiment consists of a ∼200m outdoor loop captured with rig B with identical

start and end positions. The trajectory and reconstruction are shown in Figure 2.6a, where the

final error between the start and end keyframe poses as a percentage of traveled distance is 0.33%.

Extension 1 shows the captured images and estimated trajectory for this experiment. Figure 2.6b

shows the asynchronous adaptive window size ratio, calculated by dividing the adaptive window

size by the total number of keyframes. It can be observed that near the beginning of the trajectory,

the asynchronous window ratio does reach one, which signifies that the asynchronous estimator

is solving the batch solution with all keyframes and measurements. However, this period is short

lived, after which the size of the adaptive window settles to an approximately constant number

of keyframes. The spikes in 2.6b correspond to increases in the adaptive window size due to the

condition in Equation 2.38 being met. These spikes can be matched against Figures 2.7a and 2.7b

which show the plots for αkV , and αkI (as explained in Section 2.2.5), where the red line indicates

the threshold after which the condition is met and the adaptive window size is expanded.

Figure 2.9 shows the trajectory reconstruction of a short indoor sequence obtained using rig

A showing the comparison between the batch solution, which uses all keyframes and measurements,

and several options for the asynchronous estimator. It is observed that the adaptive window size

is the one that most closely matches the batch. While the fixed-size asynchronous window with 25

keyframes performs fairly well compared to the batch solution, the 15 keyframe fixed-size window

clearly diverges. Rig A was also used to capture two outdoor datasets shown in Figures 2.9 and 2.10.

Figure 2.9a shows the trajectory reconstruction superimposed over an aerial photo for a ∼200m

outdoor loop. It can be seen that the adaptive result closely matches the batch result, while a

fixed-window optimization has significantly higher error. The batch translation error between the

start and end keyframes for this trajectory is 0.71% of the traveled distance and 0.72% when using

the AAC estimator. The window size ratio (similar to Figure Fig 2.6b) for this dataset is shown in

Figure 2.9b, where it is observed that after an initialization period where the size ratio is frequently
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Figure 2.9: A loop consisting of an outdoor ∼200m dataset taken on foot with rig A, superimposed
over satellite imagery. The batch translation error between the start and end keyframes as a
percentage of traveled distance is 0.71% while the AAC error is 0.72%. The resulting poses obtained
by running AAC, batch and a fixed-window optimization over the data are shown in (a), and the
ratio of the AAC window to the total number of keyframes is shown in (b). A ratio of 1.0 indicates
a batch solve. It can be seen that a fixed window optimization is unable to accurately match the
batch solution.
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Figure 2.10: A loop consisting of an outdoor ∼400m dataset taken on foot with rig A, superimposed
over satellite imagery. The batch translation error between the start and end keyframes as a
percentage of traveled distance is 1.33% while the AAC error is 1.42. The resulting poses obtained
by running AAC, batch and a fixed-window optimization over the data are shown in (a), and the
ratio of the AAC window to the total number of keyframes is shown in (b). A ratio of 1.0 indicates
a batch solve. It can be seen that the solution obtained using a fixed-window batch solver diverges
completely.
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1 (indicating a batch solution), the window size decreases to an approximately constant number.

Figure 2.10a shows the reconstructed trajectory for a ∼400m outdoor trajectory obtained

using rig A. The 20 keyframe fixed-window optimization clearly diverges and is unable to estimate

the trajectory, while the batch and AAC results match closely, with error of 1.33% and 1.42%

respectively. Figure 2.10b shows the window size ratio for this trajectory, where once again after a

short initialization period, the AAC window size remains approximately constant.

While the approach is observed to be accurate, a large discrepancy in accuracy is observed

between datasets captured with the two different rigs in Section 4.3. Given that both rigs were

calibrated with the same offline calibration tool, the discrepancy can be attributed to both the

higher image quality of rig B due to the higher quality camera and much larger lens, and to the

higher sampling rate for the IMU of rig B. These effects are also visible in the window size ratio

plots between rigs A and B, (Figure 2.6b vs. Figure 2.9b or Figure 2.10b), where it can be seen that

adaptive window expansion is much more prevalent in Figure 2.9b and Figure 2.10b which were

captured with rig A. This signifies that good parameter estimates were less likely to be computed

given the minimum asynchronous window size, and frequent expansions were necessary. This is

in contrast to the higher quality data obtained with rig B, and the resulting window size ratio

shown in Figure 2.6b. Another factor which has a large impact on accuracy is the value of the

IMU measurement covariance matrix, Σzk . The weight placed on the IMU residual is derived from

the propagation of this covariance matrix, and an underestimation of the uncertainty can lead to

significant reduction of the system accuracy due to over-reliance on noisy IMU data.

2.3.3 Initialization

In Figures 2.6b, 2.9b and 2.10b it can be observed that for a short time after the start of

the sequence, the window size ratio tends to be equal to 1, indicating a batch solution. This

behavior arises naturally due to the adaptive window formulation (Section 2.2.5) and serves to

initialize values which may not be immediately observed at the beginning of the trajectory. Among

the values which tend to fluctuate the most in this initialization phase are the accelerometer and
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gyroscope biases, the two degrees of freedom of orientation with respect to gravity, and the velocity

vectors for the keyframes. As these quantities are not immediately available, new information

about them will stress the conditioning edges and force the AAC estimator to expand the window

in order to update all affected poses. However once the initial estimates for these parameters have

converged, the AAC window seldom expands to the batch solution.

2.4 Discussion

It was observed that in real-life situations, parameters such as velocity, gravity and bias are

observable with adaptive conditioning. This is of course contingent upon sufficient excitation of

the sensors. In the hand-held datasets there is an ever present oscillatory acceleration due to the

walking motion, which quickly renders the unknown parameters observable. Given this, a short

required window size is observed in order to closely estimate the batch MLE solution. As expected,

window growth is also seen in situations where scale and consequently velocity are ambiguous.

An example of this is at sharp turns which introduce a slew of uninitialized new landmarks while

simultaneously cutting tracks from established landmarks. The net result is a scale ambiguity that

requires a larger window size to resolve, which is automatically discovered.

It must be noted that in the case of prolonged degenerate motion (such as constant velocity),

the size of the window required to properly estimate parameters can grow without bound to the

batch solution. However, in the real datasets that were used to evaluate the system, such a scenario

was never encountered, as enough excitation of the sensors was generally observed, and the window

size was bounded.

The system is observed to be accurate, however consistent discrepancies in accuracy are

observed between reconstructions captured with different visual-inertial rigs. Given equal offline

calibration of the two rigs, the effect of sensor quality and IMU sampling frequency on the accuracy

of the reconstruction is observed to be significant, and is a candidate for further study.

When using asynchronous BA, care must be taken so as to ensure sufficient update frequency

of the asynchronous solution in order to ensure overlap with the synchronous BA. This is required
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to keep the synchronous BA in the overall solution basin as solved by the asynchronous BA. As

expected from the relative framework, the updates to the edges and inverse depth parameters for

landmarks are small and no interference was observed between the two threads, even when the

asynchronous BA is solving a batch solution during initialization (4.2.2), in which case its updates

will be markedly slower than the synchronous BA.

The use of conditioning in lieu of marginalization presents desirable properties. However, it

must be noted that marginal covariances are no longer computed for state estimates, and parameters

which are conditioned upon are assumed to be correctly estimated. Since these marginal covariances

are ignored, a loss of accuracy can generally be expected. In this case of adaptive conditioning, a

concerted effort is to re-estimate past parameters in the presence of new measurements, constantly

reducing their error where possible. As a result, it is shown that the adaptive conditioning method

is still able to obtain very high accuracy, especially when using quality sensors.

2.5 IMU measurement integration

In this section, the IMU integration equations are expanded to factorize the starting param-

eter values where possible, similar to the factorizations presented in [59] and [64]. The motivation

behind this is to obviate the need to compute the derivatives with respect to the starting parameters

by traversing the integration via the chain rule. A successful factorization allows the derivatives

to be calculated after the integration is performed, both increasing the accuracy of the derivatives

as well as increasing performance. It is shown that this factorization is possible for all starting

parameters except for the IMU biases.

2.5.1 Rotation Integration Factorization

In the interest of brevity, the derivation of the factorized rotation equations is first performed

using rotation matrices (denoted as R). The factorized form can then easily be written using

quaternions (Equation 2.45), which is the final form used in the implementation. Consequently,

the exponential and adjunct operators performed on rotation matrices are denoted as expR and
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AdR to disambiguate them from their quaternion counterparts. The integration of angular velocities

from time 0 to n can be written as

Rwpn = expR

(
ω̂wn−1dtn−1

)
× . . .× expR (ω̂w0dt0)Rwp0 , (2.40)

where Rwp0 is the rotation matrix describing the starting rotation. Since this rotation is in fact a

parameter in the optimization, derivatives with respect to it will be required in order to construct

the problem Jacobian. Since the measurement in world coordinates depends on the orientation of

the IMU frame, its formulation must be taken into account to obtain the derivative. Fortunately,

the starting orientation can be factored from the integration. To do this, a slightly different form of

the adjunct is used where: AdR · ω
∧

= AdR · ω̂ ·Ad−1
R ([111]). Since for SO(3), AdR = R, Equation

2.22 can be rewritten as

Rwpk+1
= expR(ω̂wk

dt)Rwpk = expR

(
Rwp

̂(ωmk
− bgk)dtR−1

wp

)
Rwpk , (2.41)

which gives the slightly modified form of Equation 2.40:

Rwpn = expR

(
Rwpn−1

(
ωmn−1 − bgn−1

)∧
dtn−1R

T
wpn−1

)
× . . .× expR

(
Rwp0(ωm0 − bg0)
∧

dt0R
−1
wp0

)
Rwp0 .

(2.42)

Since Rwpn−1 is the orientation as integrated up to step n − 1, it can be factored into the

starting orientation Rwp0 , and an integrated orientation delta up to time-step n−1, Rp0pn−1 . More

formally: Rwpn = Rwp0Rp0pn . Using this factorization, Equation 2.42 becomes:

Rwpn = expR

(
Rwp0Rp0pn−1

(
ωmn−1 − bgn−1

)∧
dtn−1R

−1
p0pn−1

R−1
wp0

)
× . . .×

expR

(
Rwp0(ωmk

− bgk)
∧

dt0R
−1
wp0

)
Rwp0 . (2.43)
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Using the Lie matrix exponential identity expR(AXA−1) = A expR(X)A−1 , Equation 2.42

becomes:

Rwpn =Rwp0Rp0pn−1 expR

((
ωmn−1 − bgn−1

)∧
dtn−1

)
R−1

p0pn−1
R−1

wp0
× . . .×

Rwp0 expR

(
(ωmk

− bgk)
∧

dt0

)
R−1

wp0
Rwp0 . (2.44)

Canceling out terms, and using quaternions to represent the rotation matrix R, the final

form of the integration is obtained:

qwpn = qwp0 ⊗
[
qp0pn−1 ⊗ expq

((
ωmn−1 − bgn−1

)∧
dtn−1

)
⊗ q−1p0pn−1

⊗ . . .⊗ exp
(

(ωmk
− bgk)
∧

dt0

)]
= qwp0 ⊗∆q, (2.45)

where ∆q represents the integration of bias-corrected angular velocities starting from an identity

orientation, and does not depend on qwp0 . The derivative of ∂qwpn/∂qwp0 can therefore be computed

without the need to use the chain rule through the integration.

2.5.2 Velocity Integration Factorization

Similar to Section 2.5.1, the final integrated velocity is obtained by integrating the accelerom-

eter measurements in the world frame from time 0 to n:

vwn = vw0 + aw0dt0 + . . .+ awn−1dtn−1

= vw0 + (qwp0 ⊗ (am0 − ba0) + gw) dt0 + . . .+
(
qwpn−1 ⊗

(
amn−1 − ban−1

)
+ gw

)
dtn−1,

(2.46)

where accelerometer measurements in the IMU frame are rotated into the world frame as per

Equation 2.21. It is immediately obvious that the effect of the initial velocity vw0 is already

factorized. Further inspection reveals that the gravity term is always added in the world frame,

and so it can be factorized out as well:
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vwn = vw0 + gw∆t+ qwp0 ⊗ (am0 − ba0) dt0 + . . .+ qwpn−1 ⊗
(
amn−1 − ban−1

)
dtn−1. (2.47)

Similar to the operation applied to Equation 2.42, the rotation matrix taking the accelerom-

eter measurements from the IMU to world coordinates can be decomposed as Rwpn = Rwp0Rp0pn ,

allowing the factorization of the initial rotation, Rwp0 .

vwn = vw0 + gw∆t+ qwp0 ⊗ (am0 − ba0) dt0 + . . .+ qwp0 ⊗ qp0pn−1 ⊗
(
amn−1 − ban−1

)
dtn−1

= vw0 + gw∆t+ qwp0 ⊗
[
(am0 − ba0) dt0 + . . .+ qp0pn−1 ⊗

(
amn−1 − ban−1

)
dtn−1

]
, (2.48)

where the term in square brackets represents the integration of the bias-corrected accelerometer

measurements rotated into the identity reference frame and not corrected for gravity. Referring to

this term as ∆v, the final integrated velocity is formulated as follows

vwn = vw0 + gw∆t+ qwp0 ⊗∆v.

2.5.3 Translation Integration Factorization

As with Sections 2.5.1 and 2.5.2, the final position is obtained by integrating velocities ob-

tained from the integration in Section 2.5.2:

pwpn = pwp0 + vw0dt0 + . . .+ vwn−1dtn−1. (2.49)

The velocity terms can be substituted with the integrated accelerometer measurements as

per Section 2.5.2:

pwpn = pwp0 + vw0dt0 + (vw0 + aw0dt0) dt1 + . . .+
(
vw0 + aw0dt0 + . . .+ awn−2dtn−2

)
dtn−1

= pwp0 + vw0∆t+ (aw0dt0) dt1 + . . .+
(
aw0dt0 + . . .+ awn−2dtn−2

)
dtn−1, (2.50)
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where it is immediately observed that the initial velocity (vw0) can be factored out since vw0dt0 +

vw0dt1 + . . .+ vw0dtn = vw0∆t. The accelerometer measurements in the world frame (aw) can be

replaced by the IMU frame measurements as per Section 2.5.2:

pwpn = pwp0 + vw0∆t+ (qwp0 ⊗ (am0 − ba0) + gw) dt0dt1 + . . .

+
(
(qwp0 ⊗ (am0 − ba0) + gw) dt0 + . . .+

(
qwpn−1 ⊗

(
amn−2 − ban−2

)
+ gw

)
dtn−2

)
dtn−1.

(2.51)

Since the gravity term is constant, and is double integrated in the global coordinate system,

it can be replaced by its closed form:

pwpn = pwp0 + vw0∆t+
1

2
gw∆t2 + (qwp0 ⊗ (am0 − ba0)) dt0dt1 + . . .

+
(
(qwp0 ⊗ (am0 − ba0)) dt0 + . . .+

(
qwpn−1 ⊗

(
amn−2 − ban−2

))
dtn−2

)
dtn−1. (2.52)

As per section 2.5.1, the rotation term Rwpn which is used to rotate the accelerometer mea-

surements from the IMU to the world frame can be decomposed as follows: Rwpn = Rwp0Rp0pn .

Using this Equation 2.52 can be re-written as follows:

pwpn = pwp0 + vw0∆t+
1

2
gw∆t2

+ qwp0 ⊗
[
(am0 − ba0) dt0dt1 + . . .+

(
(am0 − ba0) dt0 + . . .+

(
qp0pn−1 ⊗

(
amn−2 − ban−2

))
dtn−2

)
dtn−1

]
,

(2.53)

where the term in the square brackets represents the double integration of the accelerometer mea-

surements rotated into the identity reference frame and without gravity compensation. Referring

to this term as ∆p, the final integrated velocity is formulated as follows:

pwpn = pwp0 + vw0∆t+
1

2
gw∆t2 + qwp0 ⊗∆p. (2.54)
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2.6 Summary

Adaptive asynchronous conditioning (AAC) is a novel solution to real-time visual-inertial

SLAM. The approach automatically scales and focuses computation to capture an accurate approx-

imation to the batch MLE solution in both the keyframe poses and the map structure, and avoids

the downsides associated with marginalization, such as incorrect linearization and inconsistency.

Further, AAC avoids the computational difficulties associated with carrying prior distributions,

such as the need to compute global optimizations at loop closure.

The proposed method offers a natural ’front-end’ while simultaneously allowing larger por-

tions of the problem to influence the solution. It is thus able to produce estimates in real-time, and

also re-estimate past parameters in the presence of new information – an ability which is useful for

self calibration, during degenerate motions, or when bias and gravity are poorly observed.



Chapter 3

Constant-Time Self Calibration

3.1 Introduction

In this chapter, a novel extensible probabilistic framework is introduced allowing self-calibration

of sensor and robot parameters. Self-calibration enables initial and continuous estimation of calibra-

tion parameters without using specialized input data such as calibration targets or specific motions.

As discussed in Chapter 1, accurate calibration of intrinsic (e.g. focal length) and extrinsic (e.g.

translation between IMU and camera reference frames) is crucial to acheive accurate visual or

visual-inertial SLAM, since all residuals that form the constraints in the optimization utilize these

calibration parameters. Similar to visual and visual-inertial SLAM problem, the gold-standard for

the calibration problem is the batch solution: using all measurements which are available to the

system. This presents an ever-growing computational requirement. Since constant-time solutions

are required for real-time operation, methods which approximate the batch solution in constant-

time are desired. The framework presented in this chapter are related to those in Chapter 2 in

that marginalization is eschewed due to the same downsides previously discussed. In its stead, the

framework attempts to collect a continuously improving collection of data supporting the calibra-

tion parameters of interest, while maintaining a constant computational complexity. In this way,

the framework is able to continuously search for and incorporate useful data for the purpose of

calibration. The framework has been shown to perform well for the purpose of intrinsic camera

calibration, but it is agnostic to the particular calibration parameters desired, as long as constraints

can be made derived input data in an optimization setting to estimate the parameters. As such,
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it can also be used to calibrate parameters useful for visual-inertial SLAM, such as the extrinsic

transformation between the IMU and camera reference frames.

For both mobile and service robots, images obtained from cameras are one of the primary

sensor modalities used in localization, mapping, object detection and planning. However an accu-

rate calibration of the camera is required in order to utilize the images for metric estimation. The

experiments in Chapter 2 were all performed with offline calibration, where bespoke calibration

targets and custom routines were used to calibrate the intrinsic and extrinsic parameters before

commencing the experiments. While offline calibration provides an initial estimate to the calibra-

tion parameters, it is not always feasible and convenient to calibrate cameras using pre-fabricated

calibration targets. Calibration parameters could also change during storage or between uses, re-

quiring recalibration. A true ”power on and go” solution would both enable a simple camera

calibration solution for mobile robots, as well as removing a major barrier of entry for students and

hobbyists wishing to incorporate metric vision in their robotic projects. Camera self-calibration in

the SLAM framework is the process of estimating the intrinsic parameters of a camera considering

solely a sequence of images, without any assumptions as to the content of the scene, whilst simul-

taneously estimating the map and camera location. The calibration parameters typically consist

of the focal length, principal point and several distortion parameters. An online implementation of

self-calibration would recursively estimate these parameters as new images are obtained, attempt-

ing to provide the best estimates considering all available information. Traditionally, calibration

is performed offline using images of a known calibration target, or as part of a large offline batch

optimization. Once calibrated, the parameters are fixed for the lifetime of the robot. This approach

presents many drawbacks, such as the vulnerability to any changes in the camera parameters, the

inconvenience of producing and imaging a known calibration target, along with the bespoke soft-

ware written explicitly to detect it. Apart from continually improving the calibration parameter

estimates as new images become available, online self-calibration also paves the way for robust

change detection and estimation, dealing with situations where the physical calibration parameters

intentionally or unintentionally change. For mobile robotics, easy self-calibration and hence ”power
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on and go” functionality could for instance allow naive users, such as young students, to experiment

with visual simultaneous localization and mapping algorithms without first becoming experts in

camera calibration.

Due to these advantages, online self-calibration for visual and visual-inertial systems has

been of interest to research recently [73, 13, 51]. However, the estimation of calibration parameters

in constant-time considering all present and previous data presents challenges which have so far

prevented online self-calibration from becoming commonplace. Filtering methods have been the

main approach in cases where the estimation of parameters requires processing all present and

past information. The estimation is made constant-time by rolling information from past image

measurements into a parametric distribution, or prior. Ideally, the prior would incorporate the

influence of the now-absent parameters and measurements on the smaller, active set of parameters,

enabling a constant-time estimation of these active parameters that considers the entire trajectory

up to the present. Unfortunately, filtering methods present some drawbacks that are especially

critical for the case of self-calibration. Due to the nonlinearity of camera models, linearized para-

metric distributions often cannot represent past measurements without introducing inconsistencies

in the estimation. In the case of SLAM, it is well known that filtering methods can be inconsis-

tent. Recent work has focused on how to tackle these inconsistencies [59, 32], as their presence can

cause overconfidence in the estimated parameters, an especially undesirable situation in the case of

self-calibration. Even when complex parametric models are used, early linearization used to obtain

the parametric distributions can lead to inaccuracies in the prior which lead to inconsistency. Fur-

thermore, updates to the calibration parameters induce large and often highly non-linear changes

to the parameter estimates, further exasperating the effects of early linearization.

These issues motivate the work presented in this paper, which involves estimating the cali-

bration parameters online, by considering only the best segments of the trajectory, without a prior

distribution. The motivation behind the work is the realization that not all segments in a SLAM

sequence are equal as far as their information content regarding the calibration parameters. This

can be easily conceptualized due to the existence of degenerate configurations which provide no in-
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Figure 3.1: Graphical model representing the self-calibrating SLAM problem. Edges between the
calibration parameters xc and all other parameters make the problem difficult to factor.

formation [112]. If the best segments in the trajectory are considered, a constant time estimate for

the calibration parameters can still be obtained. Moreover, due to the lack of a prior, inconsisten-

cies are caused only by modeling and measurement uncertainty errors, rather than a product of the

framework, easing their mitigation. Due to the self-selection of these segments, special attention is

paid to ensuring unbiased estimates, as not all measurements are considered. While the proposed

system is only concerned with the calibration of camera intrinsics, it can easily be extended to

camera extrinsics and multi-sensor self-calibration.

3.2 Priority Queue Based Self Calibration

The self-calibrating SLAM problem can be represented as a graphical model as per Fig. 3.1.

It is observed that the calibration parameters xc are linked to all pose and landmark parameters

through measurements, making a direct solution infeasible in an online setting. However, the

amount of information obtained about the calibration parameters varies from each measurement.

Depending on the motion of the camera, and the structure of the scene, measurements may add

little to the observability of the calibration parameters. In certain degenerate cases of camera

motion, measurements may indeed provide no information.

To obtain a constant time estimate for the calibration parameters, the best segments of the

trajectory are stored in a priority queue as follows: When a new image is received, the set of
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measurements obtained from it and the additional measurements obtained from a fixed-length of

previous images are used to estimate the camera pose and landmark parameters in the window, as

well as the camera calibration parameters. This window is then scored based on the uncertainty

of the calibration parameters, with a low uncertainty signifying a high score. This score is then

compared against each window already in the priority queue. If the score is better than the worst

score in the priority queue, the worst window in the priority queue is replaced with the new

candidate window, as shown in Fig. 3.2. Once such an update takes place, all the windows in

the priority queue are used to jointly re-estimate the camera calibration parameters. Since the

maximum number of windows in the priority queue is fixed and pre-determined, the calibration

parameters are estimated in constant-time in the event of a priority update.

3.2.1 Optimization Formulation

The calibration parameters are estimated alongside the camera pose and landmark param-

eters in a non-linear maximum likelihood estimation framework. This framework is also used to

extract the uncertainty of the calibration parameters. Measurements are formed by tracking salient

points of the image across multiple frames. Each measurement is modeled as a projection of a land-

mark parameterized in inverse depth [75] into an image, to form a minimal landmark representation.

Note: parameterizing the landmark in this way is consistent with the maximum likelihood estimate,

as measurements are formed by tracking an initial reference patch, which remains along the initial

reference ray. The projected pixel coordinate p2 of a landmark in the current frame is formulated

via the transfer function W as

p2 =W (p1,T21, ρ)

= P
(
π3d

(
T−1

wc2
Twc1

[
P−1 (p1,xc) ; ρ

])
,xc

)
(3.1)

The transferred pixel coordinate is obtained by first back-projecting a reference pixel coordi-

nate obtained via harris corner detection, p1, given the back-projection function P−1, to obtain the
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reference ray. This ray is then homogenized given the inverse depth parameter ρ. The resulting 4d

homogeneous vector is transformed into the current camera reference frame by the homogeneous

transformation T−1
wc2

Twc1 where Twcn ∈ SE3 is the 4×4 transformation matrix from coordinates of

frame n to world coordinates. The result is de-homogenized by π3d and projected into the current

image by the projection function P. More specifically, P−1 (p1,xc) ∈ R3 is the 2d to 3d camera

back-projection function which outputs a unit ray given the reference 2d pixel coordinates p1 and

the camera calibration parameters xc, P (u,xc) ∈ R2 is the 3d to 2d projection function which out-

puts a 2d pixel coordinate given a de-homogenized 3d point and π3d () is the 3d de-homogenization

function defined as:

π3d

([
x y z w

]T)
=

[
x/w y/w z/w

]T
As an example, in the case of the pinhole camera model, the calibration parameters xc =[

fx fy cx cy

]
are comprised of the focal length and principal point parameters in x and y, and

the projection function P is defined as P (u,xc) = π2d (K (xc)u) where K (xc) forms the camera

projection matrix given the intrinsic parameters, u ∈ R3 is a 3d point location, and π2d is the 2d

de-homogenization function defined as π2d

([
x y z

]T)
=

[
x/z y/z

]T
. Similarly, the back

projection function P−1 for a pinhole camera is defined as u1 = P−1 (p1,xc) = K−1 (xc)

 p1

1

.

Given the aforementioned residual model, the state space vector of the optimization is defined

as

x =

[
{xwi : i = 1, . . . , n} {ρj : j = 1, . . . ,m} xc

]T
where xwi ∈ se3 is the 6d tangent space representation of the update to transformation Twi, ρj is

the inverse depth parameter for landmark j, and xc is the vector of calibration parameters. Given

the projection in (3.1), the residual for the measurement of the jth landmark, with reference (first

measurement) frame k, in the ith frame is formulated as

rij = zij −W
(
pj ,T

−1
wciTwck , ρj

)
(3.2)
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where zij ∈ R2 is the pixel coordinate measurement of the jth landmark in the ith frame, Twck is

the transformation from the reference frame coordinates for landmark j to world coordinates, Twci

is the transformation from the coordinates of the measurement frame i to world coordinates, pj is

the reference pixel coordinate for landmark j, and ρj is the inverse depth parameter for landmark

j. The total error minimized in the optimization is formulated as

e =

n∑
i=1

m∑
j=1

‖rij‖2Σij
(3.3)

where the notation ‖x‖2Σij
signifies the mahalanobis distance given the measurement uncertainty

Σij ∈ R2×2.

The problem is then solved by iteratively updating the state vector x in a dog-leg trust region

minimization framework[93]. The dog-leg update consists of a mixture of the Gauss-Newton and

steepest descent solutions denoted as δGN and δSD respectively which are formulated as

δGN =
(
JTJ

)−1
g δSD = gTg

gTJTJg
g = ‖g‖

‖Jg‖g

where g = JT r, J = W
1
2
∂r
∂x is the Jacobian matrix of the residual vector with respect to the state

vector, r = [r1 . . . rn]T is the vector of residuals formed as per (3.2), and W is the residual weight

matrix. The weight matrix W is a combination of residual weights given by the inverse of the

measurement covariance Σij from (3.3), as well as a re-weighted Huber norm for outlier rejection.

Note that the Jacobian has been represented in standard form, which includes the square root of

the weight matrix W. This is necessary for the correct calculation of the steepest descent update

δSD. The Gauss-Newton delta is obtained by solving for δSD using the Cholesky factorization of

the reduced-camera matrix, obtained by the Schur complement trick[107][3]. The optimization is

iterated until either the error or parameter change is smaller than a specific threshold.

Since the MLE framework presented above does not make use of a prior, the system will

exhibit a number of unconstrained degrees of freedom, manifesting as null spaces in the system

Hessian. The monocular SLAM problem in particular exhibits 7 null spaces. The first 6 null spaces

are due to the unobservability of the global translation and rotation, and are handled by removing
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the parameters for the first pose (xw0) from the optimization. The seventh nullspace is due to

scale unobservability and is handled by removing a single inverse depth parameter ρj from the

optimization. The landmark j for which the inverse depth parameter is removed is chosen to have

the largest number of measurements, and therefore be well estimated, to ensure minimal impact

on the optimization.

3.2.2 Priority Queue

The proposed method requires each candidate segment of the trajectory to be scored depend-

ing on the observability of the camera parameters during the segment. This enables a comparison

between it and the segments already in the priority queue. The proposed score is based on the

entropy of the distribution of the calibration parameters for a given segment, with the ultimate

goal of obtaining the segments which have the least uncertainty about their individual estimates

for the calibration parameters. Given the assumption of Gaussian distributions, a posterior can

be computed over the calibration parameters by inverting the Fisher information matrix I and

extracting the submatrix associated with the parameters xc:

Σxc = I [ixc , ixc ] =
(
JTJ

)−1
[ixc , ixc ] (3.4)

where the notation [x,y] denotes a submatrix extracted from rows specified in the vector x

and columns specified in the vector y, J is the Jacobian matrix as per section 3.2.1, and ixc ∈ Rm

is a vector containing the indices of the m camera calibration parameters in the state vector x.

Since the calibration parameters are not of the same scale, an entropy calculated based on ΣXc will

be skewed towards variables with larger variances. In order to correct for this skew, the posterior

covariance matrix is normalized as follows:

Σ′ij =
1

√
σi
√
σj

Σij

where σi and σj are the expected true variances of the ith and jth camera calibration parameters

respectively. These quantities should encode the underlying differences between the variances of
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Figure 3.2: One dimensional example of the priority queue update operation. Segment c in the
priority queue (denoted by the dashed line) has the highest entropy and will be replaced with the
candidate segment which has a lower entropy.

the parameters given their units and range, and are obtained from the posterior Σxc obtained in

a batch solution over a large sample trajectory. For the experiments discussed in this chapter, a

sample trajectory of 2000 frames was used. The quantity Σ′Xc
is similar to the posterior correlation

matrix, but with variances from a different, sample trajectory used as the normalizing factors.

Since the Jacobian matrix J in (3.4) contains terms for all poses, landmarks, and the calibration

parameters, the inverse can be very costly. Therefore, in order to obtain the marginal distribution,

the method outlined in [19] is used:

IΣ = I → IΣi = ei (3.5)

where the equality in (3.5) is due to the duality between the information matrix I and the co-

variance Σ, and consequently the ith column of the covariance Σi can form an equality with the

ith unit vector. Equation (3.5) can be solved using the Cholesky factorization of I, requiring a

forward/backward substitution per column of the covariance. As the calibration parameters xc are

at the end of the state vector, the number of substitutions per covariance column can be limited

to the dimensionality of xc[19]. Given the normalized covariance of the calibration parameters, the

entropy of the distribution is then given by h = 1
2 ln
∣∣2πeΣ′xc

∣∣ where the bars denote the matrix

determinant. The priority queue update condition is therefore:
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hc < αmax {hi : i = 1, . . . , n}

where hc is the entropy of the candidate segment, {hi : i = 1, . . . , n} is the set of the entropies

of the segments already in the priority queue, and α = 0.95 is a heuristic to ensure at least a

5% reduction of entropy for an update operation. If this condition is met, the candidate segment

is replaced with the segment with the largest entropy. If a candidate segment overlaps with a

segment already in the priority queue, the update condition is only checked against the overlapping

segment. If the condition is met, the overlapping segments are swapped. This is to ensure that

no overlapping segments are present in the priority queue, as the optimization would then double-

count the overlapping measurements. Once a swap takes place, the optimization is run again to

minimize the error in (3.3) jointly over all segments of the priority queue. The resulting calibration

parameters are then used to continue the SLAM estimation. The distribution of the calibration

parameters of the priority queue can then be extracted from the converged Hessian of the problem.

It must be noted that the nullspace regularization discussed in section 3.2.1 must be applied to

each segment in the joint priority queue optimization, as the segments do not overlap and therefore

each exhibit the aforementioned 7 nullspaces.

It is important that the priority queue update condition not be biased in any way, as rather

than solely optimizing over the calibration parameters, the measurements over which the optimiza-

tion takes place are actively being selected. Any selection criteria which attempts to reduce the

entropy of the priority queue distribution, or increase the information gained as a result of the

update, risks biasing the solution towards the current estimates for xc, given the assumptions of

Gaussian distribution. As an example, the true distribution for a particular parameter may be

multi-modal, with measurements first observing one mode, and then the other. In a batch solution

with a Gaussian distribution assumption, the observation of the second mode would in fact increase

the entropy of the distribution over the parameter, as the Gaussian assumption is incorrect, and

cannot explain the underlying distribution. It is important that this behavior also be replicated in

the priority queue solution. The proposed scoring solution is therefore solely based on the entropy
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of the posterior distribution over the segment itself, not how it relates to the posterior distribution

of the priority queue.

3.2.3 Online Self-Calibration

xi
c

candidate window

sliding window

conditioning 

poses

Figure 3.3: The sliding and candidate windows, on a sample segment of the trajectory. The
sliding window is conditioned on poses outside the window based on co-visible landmarks, whereas
the candidate window is considered separately. xi

c is the calibration parameter vector estimated
by considering only the measurements in the ith candidate window. The sliding, and candidate
windows can be processed in parallel.

The online implementation of the proposed method consists of two windowed optimizations.

The first is a conditioning sliding window[68] estimator, which does not optimize the calibration

parameters. It is tasked with estimating poses and landmarks within an active window, while

being conditioned on past poses. The secondary window estimates poses, landmarks as well as

the calibration parameters, and is used to compute the marginals Σxc . This optimization does

not condition on information outside the window. The marginals are then used in the update

condition of the priority queue. These two estimators are separated since the observability of the

calibration parameters is not guaranteed over the candidate window. Poorly observed calibration

parameters could then affect the quality of the pose and landmark estimates, affecting the reliability

of navigation and localization.

If an update to the priority queue is carried out, an optimization over the entire queue is

performed resulting in new estimates for the calibration parameters. These new estimates are then
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fed back to the sliding window estimator. Special attention has been paid to the startup sequence

where no prior information is assumed over the calibration parameters, which are initialized to

common values as per section 3.3. To handle this case, a batch optimization is run which includes

the calibration parameters, until the entropy of the posterior over the calibration parameters falls

below a preset heuristic. This batch optimization is run in conjunction with the priority queue

update procedure. Once the batch entropy is lower than a specific heuristic, further estimation is

handled by the windowed optimization shown in Fig. 3.3, and the priority queue is used to further

update the estimates of the calibration parameters.

A keyframing system [68] is implemented in order to increase performance, and the informa-

tion content of each pose regarding the calibration parameters. As each new image is received, a

number of heuristics are used to decide whether or not a keyframe should be created. These heuris-

tics are formed on the distance and angle between the current frame and the previous keyframe, as

well as on the percentage of landmarks successfully tracked. The result is that no new keyframes are

placed if images from a semi-stationary camera are received. A secondary result is that keyframes

are only placed when there is sufficient excitation of the camera to trigger one of the heuristics.

Keyframing does not completely guarantee observability of the camera parameters due to the ex-

istence of degenerate motions which still trigger new keyframes. However, a number of cases of

degenerate motion will be successfully avoided, such as the stationary camera case.

3.3 Experiments

The proposed system was validated with real data to evaluate its performance and conver-

gence characteristics. In all cases, 2d feature tracks were obtained from the images and used as

measurements in the aforementioned optimizations. The experimental datasets were captured with

a wide-angle lens and calibrated using the FOV model [14]. The calibration parameters were ini-

tialized to common values as follows: the x and y focal lengths were set equally to 90◦, the x

and y principal point parameters were set to half the image width and height respectively, and

the distortion parameter w of the FOV model was set to represent an ideal fisheye lens (w = 1.0).
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As discussed in section 3.2.3, an initial batch optimization comprising all poses, landmarks and

calibration parameters is run until its entropy h is below a certain threshold, at which point the

calibration parameter estimation is handed over to the priority queue. This batch estimation stage

lasts for approximately 10 keyframes. A large convergence basin was observed for both the focal

length and the distortion parameter w. Focal lengths corresponding to FOVs between 30◦ and 110◦

combined with values of w between 0.5 and 1.0 were observed to converge, while outside values

generally diverged due to a combination of tracking and batch estimation failure.
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Figure 3.4: Results of a loop dataset spanning 5300 frames and 1200 keyframes, reconstructed
by tracking 128 features on average. The priority queue consisted of 10 segments each with 10
keyframes. Solid and dashed red lines represent 3 sigma bounds for the priority queue and batch
solutions respectively. fx, fy, cx, and cy are the x and y focal length and principal point values
respectively, and w is the FOV model distortion parameter. det(Σ) plots the determinant of the
calibration parameter covariance Σ′ij . Solid black lines represent offline calibration values. The
priority queue and batch statistics are only calculated when the update condition is met and a
swap takes place in the priority queue.
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Fig. 3.4 shows the results of the system running on a loop dataset, captured with a wide-

angle lens camera. It can be seen after the first 10 keyframes in which the batch solution is active,

the priority queue successfully tracks the mean calibration parameter values obtained by the batch

solution, albeit with a higher uncertainty. This is expected for the priority queue, as it is computed

using a much smaller subset of the available measurements. The key aspect of the system is that is

able to include sections which significantly increase the observability of the parameters, as can be

seen in the determinant plot in Fig. 3.4, which plots the determinant of the normalized calibration

parameter covariance matrix Σ′ij . At keyframes 300 and 600, the batch solution determinant dips,

signaling a reduction in the total uncertainty of the calibration parameters. The priority queue

solution is able to mirror these reductions in uncertainty, by swapping in the relevant segments.

This is seen more prominently in the indoor dataset results shown in Fig. 3.5, where at keyframe

200 a large reduction in uncertainty is visible in both the batch and priority queue solutions.
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Figure 3.5: Focal length and covariance determinant for an indoor corridor sequence. The capture,
sequence and priority queue were performed identical to the results in Fig. 3.4.

The effects of the size of the priority queue are demonstrated in Fig. 3.7, where it is evident

that priority queues which consist of more segments tend to better match the batch solution.

However, even when using just 5 segments of 10 keyframes each, accurate estimations are observed

compared to both the batch and offline estimations. As expected, using a larger number of segments

also results in a lower uncertainty for the priority queue estimate. Higher volatility is also observed

when fewer segments are present in the priority queue as swapping any individual segment can have
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a higher impact on the overall priority queue solution.

Discrepancies are observed between some estimates from the priority queue and the offline

calibration values (such as w in Fig. 3.4). This discrepancy can be caused by a number of factors,

such as the quality of the offline calibration, feature tracking, the given uncertainty of the visual

measurements, and lack of observability over the parameters. However, it is observed that in all

cases both the batch and priority queue solution deviate together, and the priority queue closely

matches the batch solution. A particular failure case for the system is if each new image adds an

equal amount of information to the parameters. In this case, no segment will ever be swapped

in the priority queue, as all segments have equal score. However it has been observed that with

real and synthetic data, this is an unrealistic case. The determinant based scoring system can also

exhibit a failure case, if the uncertainty along a single parameter is exceptionally small compared

to the rest due to observability issues. This could artificially inflate the score of a segment, even

though it adds little information to most other parameters. It has also been observed that with real

and synthetic data that this is not the general case, however depending on the particular camera

motion it could transpire, and may warrant a more discerning scoring system.

It must be noted that although the calibration parameters are re-estimated as the priority

queue is updated, the past portions of the trajectory are not. This introduces error in the global

camera pose estimate, while local estimates remain optimal. Fig. 3.6 shows the estimated camera

poses for pre-calibrated and self-calibrating runs for a sample 200m trajectory with a fixed window

size of 10 keyframes. It can be seen that as expected, due to scale ambiguity, the loop estimate does

not close correctly. However it is also observed that without any specific measure to address global

optimality, the two solutions remain close, with a mean error of 1.76% of the distance traveled

between them. This signifies that the calibration is estimated accurately and quickly enough to

ensure estimation close to the pre-calibrated trajectory. If explicit global optimality is desired,

a scheme such as Asynchronous Adaptive Conditioning [44] can be used to match the optimal

global solution adaptively in constant-time. A single-threaded, synchronous implementation of the

proposed method runs at an average of 27fps over the course of the 200m trajectory in Fig. 3.6 on
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a 2.6Ghz Intel i7. An asynchronous implementation would significantly improve this as the sliding

window estimation would not be halted by calibration related estimation operations.
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Figure 3.6: Comparison between the estimated poses on a 200m loop trajectory for pre-calibrated
and self-calibrating estimators. The loop reconstruction does not close due to monocular scale
ambiguity. The mean error between the two trajectories is 1.76% of the traveled distance. The
self-calibrating estimator’s initial calibration parameters were set as per section 3.3.

3.4 Summary

A framework has been presented which enables live and constant-time self-calibration in

a SLAM setting. The performance of the system has been experimentally validated, where it

has been shown to perform successful SLAM estimation with no initial information about the

parameters of the given camera model. The system runs in real-time and is able to closely match

the batch calibration solution for the trajectory. Furthermore, as no parametric prior is assumed,

no inconsistencies are introduced as a result of early marginalization. Particular attention has

been paid to select an update condition which does not artificially bias the priority queue solution

towards current estimates. The system automatically identifies measurement sequences that are

useful for calibration and saves these sequences in a priority queue. Results show that the mean

of the priority queue tracks that of the batch solution, although the uncertainty of the priority
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Figure 3.7: x focal length over multiple runs of the loop dataset from Fig. 3.4 with differing
priority queue sizes. Larger priority queues tend to more accurately match the evolution of the
batch solution (shown as the dashed line).

queue estimates will be understandably higher than that of the batch solution. For future work,

the proposed framework presents an ideal platform for change-detection wherein a system reacts to

intentional or unintentional changes to the physical calibration parameters. The inclusion of stereo

and visual-inertial extrinsics calibration is straightforward given the framework, and would greatly

increase the utility of the system. A number of potential failure cases outlined in section 3.3 also

warrant further development of the priority queue update condition.



Chapter 4

Change Detection for Self Calibration

4.1 Introduction

In this chapter a novel extension to the self-calibration framework presented in Chapter 3

is introduced which enables handling changes in the calibration parameters. The aforementioned

self-calibration framework was specialized to continuously improve the estimates of calibration pa-

rameters in constant-time, however the underlying assumption was of constancy in the parameters.

That is, it was assumed that the actual ground-truth values of the calibration parameters were

constant, therefore all information as to their estimates, regardless of temporal or spacial sepa-

ration of the point-of-capture of said information, was admissible in the optimization framework

used to estimate the parameters. This assumption breaks down if the ground-truth values of the

parameters actually change, whether this change is intentional or not. Temporally separated mea-

surements may now estimate different calibration parameters, and can no longer be combined in

the same optimization. This necessitates an extension to the framework to actively look for and

handle potential changes in the parameters. The presented extension handles this in a probabilistic

manner. Similar to the method in Chapter 3, the extension presented in this chapter is derived for

the estimation of intrinsic camera calibration parameters, but is able to be adapted to handle any

calibration parameter for which constraints can be made relating them to the measurements taken

by the sensors.

As discussed in Chapter 3, camera self-calibration is the inference of the intrinsic parameters

of a camera without the explicit usage of a known calibration target. The motivation behind
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self-calibration in robotics is two-fold: it facilitates the use of computer vision for localization,

mapping or scene understanding without requiring arduous calibration procedures, and also in the

case of long-term autonomy, robustness is achieved against accidental changes in the calibration

parameters. For the first case, a self-calibration methodology which continually estimates a single

set of calibration parameters (such as camera intrinsics) will suffice. However, in order to deal

with changes in the calibration parameters, the approach must facilitate their re-estimation and

detect the onset of the change event. Furthermore, it is desired to include other parameters such

as extrinsics between different sensor modalities, time-delays or multiple cameras. For such a

method to be useful in the case of long term autonomy however, it must be compatible with

current developments in localization and mapping, as well as run in constant time to enable timely

re-calibration in case of a change event.

With this motivation in mind, an approach is presented which enables the continuous es-

timation of camera intrinsics for a monocular setup in constant-time, while also simultaneously

estimating the maximum likelihood camera and map parameters. The approach is based on a

probabilistic method to detect when significant excitation of the calibration parameters is present

in the motion to provide observability for estimation. It is able to deal with degenerate motions

and non-linearities introduced due to unknown calibration parameters, which obviates the need for

special initialization routines and motions. Probabilistic change detection indicates when the sys-

tem should re-estimate parameters. Specific attention is paid to ensure past poses and landmarks

are well estimated, even in the case of delayed observability of the calibration parameters. The

approach is not exclusive to camera intrinsics and can be extended easily to estimate and detect

changes in other calibration parameters, such as camera to IMU extrinsics, and time offsets. To

the authors’ knowledge, this is the first proposed solution to incorporate change detection for the

estimation and re-estimation of calibration parameters in the SLAM setting.

The problem of self-calibration with varying camera intrinsics has received much attention

in the literature in part due to the benefits outlined in section 4.1. [90] introduced a method to

calibrate the varying focal length of a pinhole camera model in batch across images used for 3D
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Figure 4.1: Online self-calibration during a zoom event in a ∼ 200m sequence. The left image was
captured just before the zoom event. The center image was captured during the zoom, where focus
is temporarily lost, causing a total loss of feature tracks. The right image shows an image captured
just after the zoom. This event is automatically discovered and new accurate camera intrinsics are
re-estimated online in real-time.

reconstruction with all other intrinsic parameters known. The method presented in [109] optimizes

the focal length and 3D pose of different cameras by incrementally adding them to a batch optimiza-

tion. [33] presented a method based on bundle adjustment which optimized the focal length and

principal point location parameters at each image location for a batch optimization over multiple

images. Expanding upon this, [88] introduced a method to detect good portions of the trajectory

for self-calibration. Both papers look at self-calibration in the batch setting. [1] presented a method

which using the infinite homography constraint, estimates the focal length and principal point for a

camera which only rotates, but does not translate. The rotation parameters along with the camera

intrinsics are solved in batch using a nonlinear optimizer. [114] introduced a plane-based method

for calibrating pinhole camera models in the batch setting. The principal point and focal lengths are

estimated for each camera. [60] introduced a method for self-calibration of pinhole cameras using

the SVD of the fundamental matrix between two views to derive constraints. These constraints are

then solved in a nonlinear batch setting to obtain the focal length and principal point parameters

of every camera. [70] presented a method to calibrate the varying intrinsics of a pinhole camera in

a batch setting, given the rotation of the camera was known. A solution was also offered to align

the rotation sensor and camera data in time.

More recently, simultaneous solutions to the SLAM and self-calibration problem have been
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proposed, however to the author’s best knowledge, all proposed online solutions assume constant

calibration parameters. [13] proposed a method to recursively estimate camera and landmark 3D

parameters as well as the intrinsic parameters of a nonlinear camera model in an online framework.

To deal with the large non-linearities introduced by the unknown calibration parameters, a Sum of

Gaussians (SOG) filter is used in lieu of an EKF. [59] presented a method based on the MSCKF [78]

filter which also calibrates the IMU to camera extrinsics. [65] introduced an EKF based method to

estimate the calibration between an omnidirectional camera and robot odometry. [57] proposed a

filtering solution based on the MSCEKF to estimate both the camera pose and also intrinsics and

extrinsics for a non-linear camera model with rolling shutter and a commercial grade IMU in an

online framework.

PQ segment 1 PQ segment candidate segment

xcPQ

xcs

…

…
k

Figure 4.2: Graphical model showing the priority queue and candidate segments. Triangles rep-
resent camera pose parameters, while stars represent landmarks. Circles represent calibration
parameters. In this figure, the priority queue segment size is 3 (refer to [46]). xcPQ refers to the
calibration parameter estimate computed from the measurements in the priority queue, while xcs

refers to the calibration parameter estimated computed solely from the measurements in the can-
didate segment. These two different estimates (and their posterior distributions) are used both to
update the priority queue, and to decide if a change event has been detected.

4.2 Probabilistic Change-Detection for Self-Calibration

The proposed method aims to continuously estimate the calibration parameters in constant-

time, while also detecting the onset of a change event brought forth by perturbations to the sensors.

Simultaneously, the maximum likelihood estimates of the camera pose and map parameters are

desired. The required functionality can be composed as three sub-components: Constant Time
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Self-Calibration is required in order to recursively estimate the maximum likelihood calibration

parameters at any point in the trajectory, Change Detection signals a high probability that the

calibration has been perturbed during a change event, and Adaptive SLAM estimation is used to

ensure maximum likelihood past and current camera and map parameters are estimated.

4.2.1 Constant Time Self-Calibration

To recursively estimate the calibration parameters in constant-time, the approach described

in [46] is used. In order to aid the exposition of the overall self-calibration methodology, a brief

summary of the method is presented here. The approach aims to obtain maximum likelihood values

for the calibration parameters by selecting only the segments of the trajectory which provide the

most information. In order to to assess this metric, a score is calculated based on the uncertainty

of the calibration parameters as estimated by a particular candidate segment. This score is then

compared against the score of each segment stored in a fixed-size priority queue. If the candidate

segment score is better than the worst score in the priority queue, it is swapped into the priority

queue. Once this update step takes place, a new estimate for the calibration parameters is obtained

by using all segments in the priority queue jointly. As such, the priority queue will always contain

the top k most informative segments of the trajectory, where k is a tuning parameter. The segments

are of fixed size m, which is set as a constant tuning parameter. Figure 4.2 shows the graphical

model representing the priority queue, candidate segment and their respective estimates for the

calibration parameters.

The joint probability distribution of the estimator state parameters given the measurements

(Zj) contained in the segment j is given as

p (X|Zj) = p ({Twc ∈ SE3} , {ρ} ,xc|Zj) (4.1)

where Twc is the transformation from camera to world coordinates, ρ is the landmark parameter

given inverse depth parameterization [75] and xc is the vector of calibration parameters. Note that
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the rotation component of the camera pose parameters {Rwc ∈ SO3} is actually locally parame-

terized in the so3 tangent plane [111]. Using Bayes’ Rule, the the joint probability can be factored

as follows

p (X, Zj) = p (Zj |X) p(X) =
n∏

i=1

p (zi|X) (4.2)

here the likelihood term p (Zj |X) is factored due to the conditional independence assumption

on individual measurements zi, and the prior term P (X) is omitted as the approach explicitly

avoids a prior in favor of the priority queue. The optimal estimate for the parameter vector X is

then one that would maximize the joint probability

X̂ = arg max
X

p (X, Zj) (4.3)

which would also be achieved by maximizing the likelihood term. Assuming a gaussian

distribution over the parameter noise, the probability distribution over an individual term can be

written as

p (zi|X) ∝ exp

(
−1

2
‖zi − hi(X)‖2Σ

)
(4.4)

where ‖‖2Σ denotes the squared mahalanobis distance, zi ∈ R2 is the 2D pixel location of the

landmark measurement and h(X) ∈ R2 is the measurement model, which predicts the 2D location

of the measurement given the current state variables. The measurement model is defined as

hi(X) = P (pr,X) = P (pr,Twcm ,Twcr , ρl,xc) (4.5)

where P is a projection function which predicts the 2d pixel location of the projection of a given

landmark into the measurement camera, given the 2d pixel location of the initial landmark obser-

vation in the reference camera (p2), the transformation from the coordinates of the reference and
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measurement cameras to the world coordinate frame (Twcr and Twcm respectively), the inverse

depth of the landmark in the reference camera ρl, and the calibration parameter vector xc. In the

current implementation, xc consists of the 5 parameters of the FOV camera model [14]:

xc =

[
fx fy cx cy w

]T
(4.6)

where fx, fy, cx, and cy are the x and y focal lengths and principal point coordinates respectively,

and w is a radial distortion parameter. Given this parameterization, the estimates for the camera

poses T̂wcn , landmark inverse depths ρ̂l and calibration parameters x̂c can be obtained via maxi-

mum likelihood estimation [119]. Furthermore, the normalized covariance matrix for the posterior

distribution over the calibration parameters Σ′Xc
given the measurements can be obtained by in-

verting the problem’s Fisher information matrix I at convergence, and extracting the appropriate

submatrix. This covariance matrix is normalized so as to remove the effects of the differing units

(as described in [46]), and is then used to compute a score which is the priority queue update metric

as previously described. Once an update operation takes place on the priority queue, all currently

added segments will be used to jointly estimate a new value for the calibration parameters. The

newly estimated parameters are then assigned to the frames in the set {nchange, . . . , ncurrent} where

nchange is the frame index of the last detected change event, and ncurrent is the index of the current

frame.

Due to the existence of critical motions which render some calibration parameters unobserv-

able, the candidate segment covariance matrix is checked to ensure that it is full rank and well

conditioned. If not, the candidate segment is discarded.

4.2.2 Initialization

Similar to the method described in [46], a special initialization phase is used to bootstrap

the priority queue and initialize the calibration parameters. A batch optimization is run over all

state parameters (camera locations, parameter inverse depths and calibration parameters) from
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the most recent change index nchange to the current frame ncurrent, much like the procedure used

over a candidate segment. This joint estimation is run until the score [46] of the batch segment

falls below a particular threshold. As the score is calculated from the entropy of the normalized

posterior covariance, this threshold is a direct measure of the uncertainty of the posterior, and

aims to prolong the batch optimization until the uncertainty over calibration parameters has been

sufficiently reduced.

Once this criteria is met, normal operation proceeds, where candidate segments are evaluated

and added to the priority queue as necessary.

4.2.3 Change Detection

As shown in Figure 4.2, at each point in the trajectory, two posterior distribution estimates for

the calibration parameters are available, each represented by a covariance matrix and mean. One is

computed considering only the measurements within a candidate segment which is being evaluated

for addition to the priority queue, with covariance Σ′s, and another considering all measurements

contained by the segments in the priority queue, with covariance Σ′PQ.

The priority queue posterior (with covariance Σ′PQ) represents the uncertainty over the cali-

bration parameters considering the top k segments in the trajectory. As these segments can have

significant temporal separation, this distribution encodes the long term belief over the calibra-

tion parameters. Conversely, the candidate segment posterior (with covariance Σ′s) is calculated

based on the most recent measurements and represents an instantaneous belief over the calibration

parameters.

A possible change in the actual calibration parameters would therefore manifest as a differ-

ence in the means represented by these two posterior distributions. The hypothesis test that two

multivariate normal distributions with unknown and unequal covariance matrices have the same

mean is known as the Multivariate Behrens-Fisher problem. The interested reader is directed to

reviews for the univariate [52] and multivariate [83] cases. Briefly, the null hypothesis of the test

for the change detection case is as follows
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H0 = µPQ = µs (4.7)

where µPQ is the mean estimated for the posterior distribution considering all the measurements in

the priority queue, and µs is the mean estimated for the posterior distribution considering only the

measurements in the candidate segment. For the purposes of this chapter, the particular solution

to the Behrens-Fisher problem used is the one proposed in [120]. Given this method, the null

hypothesis has an approximate F distribution which is given by

Fp,v−p+1 ∼ T 2 v − p+ 1

vp
(4.8)

where the F distribution has degrees of freedom given by p = dim (xc) = 5 and v − p+ 1 with

v =

 1

nPQ

(
µTd Σ̃−1Σ̃PQΣ̃−1µd

µTd Σ̃−1µd

)2

+
1

ns

(
µTd Σ̃−1Σ̃sΣ̃

−1µd

µTd Σ̃−1µd

)2
−1

Σ̃ = Σ̃PQ + Σ̃s

Σ̃PQ =
1

nPQ (nPQ − 1)
ΣPQ

Σ̃s =
1

ns (ns − 1)
Σs

T 2 = µTd Σ̃−1µd

where nPQ and ns are the number of measurements in the priority queue and candidate segment

respectively, and ∆µ is the difference in the mean estimated by the priority queue and candidate

segment given by µd = µPQ−µs. Note that ΣPQ and Σs are the un-normalized posterior covariances.

Once the approximate F distribution is calculated, a corresponding p-value can be obtained, which

can be compared to a level of significance parameter α, and the null hypothesis is rejected if p ≤ α

where α = 0.1 is a tuning parameter which adjusts the sensitivity of the change detector.

Using the previously outlined method for change detection, the uncertainty of both the

priority queue and the candidate segment are considered in determining the probability of a change
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event. If the candidate segment mean is significantly different than the priority queue mean, but

the entropy of its posterior is high relative to the priority queue posterior, it may have a lower

probability of being a change event than a posterior distribution with a very low entropy relative

to the priority queue, but significantly less deviation from the mean.

Sub-optimal tracking, motion blur and non-static features can all cause potentially misleading

posterior distributions to be estimated for the candidate segment. As such, a simple heuristic is

implemented to ensure that a single candidate segment which has a test p-value less than the level

of significance parameter does not signal a change event. A number ntest of candidate segments

must consecutively reject the null hypothesis, where ntest = 3 is a tuning parameter. If such an

event does take place, the detected change frame index is set to nchange = ncurrent − ntest. This

sets the starting index for a new set of calibration parameter assignments, as described in section

4.2.1.

Once a change event is detected, all of the current segments in the priority queue are removed,

as they represent information contributing to a different set of calibration parameters, and the

initialization routine outlined in section 4.2.2 is run once again to obtain an initial estimate over

the new parameters. Once the initialization criteria has been met, the new priority queue is

populated as per section 4.2.1. Note that while the exact onset of a change in camera parameters

is not obtained given the proposed method, the number of keyframes per segment is limited such

that an estimate of the new parameters is computed soon after the change event.

4.2.4 Adaptive SLAM

The final component is an adaptive SLAM estimator which is able to incorporate the up-

dates from the calibration estimation and ensure that maximum likelihood current and past poses

are re-estimated if calibration parameter estimates are updated. An immediate choice would be a

recursive filtering method for SLAM estimation, [56] [58] [78], However, with similar goals to that

of the method in [46], a linearized prior distribution is avoided in order to both keep the estimator

consistent, and to enable the ease of integration of loop closure and relocalization constraints. Fur-
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thermore, as the aim of the system is to obviate the need for particular initialization motions (such

as the SLAM wobble), the SLAM estimator must be able to handle potentially degenerate motions,

where observability over calibration parameters does not eventuate until some time after initializa-

tion. In this case, past camera location and inverse depth parameters must be retroactively updated

to ensure maximum likelihood map and trajectory estimates. Such non-linear updates (exacerbated

by the non-linearities introduced [13] when intrinsic camera parameters change), motivate the use

of an optimization based approach, which avoids marginalization altogether. Since consistency in

filtering approaches is achieved by the use of first estimates Jacobians [59], a consistent filter would

be further susceptible to non-linearities in the parameters and prior distribution. Considering the

aforementioned points, the Adaptive Asynchronous Conditioning (AAC) [45] method is used to

adaptively adjust the optimization window of an asynchronous bundle adjuster based on the error

of the conditioning edge to the inactive part of the trajectory.

When the calibration parameters are updated, the landmarks projecting in both the active

and inactive portions of the trajectory will cause an increase in the conditioning error which will be

lowered by expanding the optimization window and re-estimating past poses and landmarks. This

is done asynchronously along with a constant-size windowed estimator which is conditioned on the

inactive part of the trajectory and runs synchronously with the tracker.

The two AAC estimators run alongside the self-calibration estimation and are used to obtain

the final estimates over camera position and landmark inverse depth parameters. This is also the

case when the self-calibration estimator is in the initialization phase (section 4.2.2). As the AAC

estimator may enlarge the optimization window to span across a parameter change frame (indexed

by nchange described in section 4.2.3), care is taken to ensure that the appropriately assigned

calibration parameters are used on either side of the change event.

Note that in section 4.3, the AAC estimator is used with IMU information in order to maintain

scale during an experimental trajectory, and also in order to carry the estimation through the loss

of tracking caused by de-focus during the zoom operation (center image in Figure 4.1). The

formulation for the integration of IMU measurement is as per [44]. IMU measurements are solely
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used for scale-correct pose and map estimation. While IMU measurements contribute to the initial

pose and landmark estimates which are passed to the self-calibration estimator, they are not used

by it in the estimation of poses, landmarks or calibration parameters, which are re-estimated using

only visual measurements.

4.2.5 Tracking and Keyframing

To obtain feature correspondences between images, a method inspired by the tracking compo-

nent of [22] is used, where the photometric error of a re-projected feature patch is directly minimized

to obtain the new location of the feature. To initialize features, harris corners are used in a region

of the image where not enough active tracks are present. Since the tracking method respects pro-

jective geometry, no RANSAC is required for frame-to-frame outlier rejection. Projective outliers

however are still rejected in the bundle adjustment based on residuals. An NCC score is computed

between the current and original feature patches and is thresholded (at 0.875) to reject feature

patches which have changed too much in appearance.

For improved performance, and to solve the stationary camera problem, a keyframing [68]

system is implemented based on heuristics on the rotation angle of the camera, traveled distance,

and number of successful feature tracks from the last keyframe. If the criteria based on any of these

metrics is met, a new keyframe is inserted and the current location of tracked features is used to

add projections residuals. As such, if the camera is stationary or hardly moving, the features and

consequently the pose of the camera are tracked with respect to the previous keyframe, but no new

residuals are added to the problem.

4.3 Experiments

The proposed method was run on real images captured from the visual-inertial rig in Figure

4.5. The rig consist of a grayscale global shutter camera recording at 640x480 pixels resolution

and 30 frames per second, and a commercial IMU collecting accelerometer and gyroscope data at

200Hz. A varifocal lens is used with the camera, to allow the zoom and focus to be manually
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Figure 4.3: Reconstruction and trajectory result from running the online self-calibration and AAC
estimators on a 193.5m dataset captured on foot with the rig shown in Figure 4.5. The circle points
to the location of the zoom event, where the focal length of the lens was manually adjusted from
approximately 4mm to 8mm. The final translation error between the start and end poses is 0.8m
or 0.42% of the traveled distance. IMU measurements are used in the AAC estimator to ensure
scale consistency in the map and trajectory estimates.
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Figure 4.4: p-values for the hypothesis test described in section 4.2.3, proposing that the priority
queue and candidate segment window posterior means (corresponding to their best estimates of the
calibration parameters) are different. p-values lower than the significance parameter α = 0.1 signal
that calibration parameters have changed. The initial calibration starting at keyframe 0, as well
as the zoom event at approximately keyframe 580 can be seen as numerous consecutive p-values
smaller than the significance parameter.

changed while collecting data. The images were used as described in section 4.2.5 to obtain feature

tracks. The tracks were then made available to the SLAM and self-calibration estimators via a
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shared map structure. IMU information was additionally made available to the AAC estimator for

scale consistency. In all experiments, the initial intrinsics estimates for the focal lengths were set

to represent a field of view of 90◦, and the principal point initialized to be the image center. The

distortion parameter w was initialized to 1.

The first experiment was performed on an outdoor dataset captured by walking around a

∼ 200m loop. A manual zoom event was performed (marked by the circle in Figure 4.3) which

consisted of changing the focal length of the camera from approximately 4mm to 8mm, as per the

lens specifications. Due to the manual focus during the zoom, significant blur is introduced (as

shown in Figure 4.1 which causes all feature tracks to be lost. In order to verify the accuracy of

the reconstruction, IMU information is used in the AAC estimator (as per [44]) to both maintain a

consistent scale through the trajectory, and also to carry the estimation through the segments where

tracking loss is encountered. Scale loss is also encountered when the zoom event is introduced, as

the intrinsics are not instantly known. The AAC estimator is used once again to re-acquire scale

and maintain a maximum likelihood map and camera pose estimate, although this does not happen

immediately. As the intrinsics are estimated by the self-calibration estimator, the AAC estimator

simultaneously attempts to find the maximum likelihood scale, camera pose and map structure given

the intrinsics. In order to properly utilize IMU measurements. the IMU to Camera transformation

and time delay were calibrated offline in a batch optimization using a known target and set to

constant during the experiment. Note that IMU information was not used in the self-calibration

estimator, and the intrinsics were estimated solely from visual feature tracks.

Apart from the heuristics outlined previously, the number of segments in the priority queue

is set to 5 segments of size 10 keyframes each (for a description of these heuristics, the reader is

directed to [46]). The tracker was configured to attempt to maintain 128 active feature tracks at

any time. The keyframing heuristics were configured to add a new keyframe if the camera motion

exceeds 0.1 radians in rotation, 0.2m in translation, or more than 20% of tracks from the previous

keyframe are lost.

The dataset features no special initialization motion, and involves simple forward walking
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Figure 4.5: Experimental rig used to capture images (640x480 pixels at 30fps) and IMU data (at
200Hz). Consists of a USB camera attached to a USB commercial-grade IMU. The varifocal lens
has adjustments for zoom and focus, with focal length variable between 4mm and 8mm.

from the first frame. The self-calibration and AAC estimators initialize the intrinsics and ensure

maximum likelihood map and pose estimates, with consistent scale as obtained from the additional

IMU measurements. Figure 4.3 shows the results of running the system on the dataset. As no

ground truth measurements were available during the trajectory, the difference between the start

and end positions of the camera were used to measure the accuracy. The dataset was captured

to ensure that the start and end positions of the camera were the same. The final estimated

translation error between the start and end camera positions is 0.8m, equating to a 0.42% error

per unit distance traveled.

Figure 4.4 shows the p-value plot (defined in section 4.2.3 from the same dataset. It can be

seen that at the beginning and around keyframe 580 the p-value is very small, indicating a large

probability that the means of the priority queue and candidate segment posterior distributions

are different. In these two cases, the indication is indeed warranted, as when the batch mode for

self-calibration is activated (as described in 4.2.2), the means of the priority queue and candidate

segment posteriors will often be quite different, as a proper estimate of the calibration parameters
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is not yet available in the priority queue. However in several parts of the trajectory, spurious dips

in the p-value can be seen, sometimes below the significance level parameter α. These dips are the

motivation for the heuristic introduced in section 4.2.3. Since the spurious dips are usually for a

single candidate segment only, they do not falsely trigger the change detection system.
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Figure 4.6: Comparisons between the ground truth intrinsics obtained from an offline calibration
library [95] and the priority queue and candidate segment estimates. The results are computed
over a short outdoor dataset with simple forward walking motion. The plots are of the x and y
focal lengths and principal point coordinates respectively, as well as the calibration parameter w
and the change detection p-value. The detection of the zoom event is clearly visible in the p-value
plot.

The second experiment was undertaken with the aim of comparing the pre and post change

event intrinsics with ground truth values obtained from an offline calibration method. The cali-

bration library [95] utilized uses a pre-defined target to estimate the intrinsics. Figure 4.6 shows
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the results of the ground truth values compared with the results obtained from running just the

self-calibration estimator (no AAC) on images obtained from an outdoor dataset. Similar to the

first experiment, the dataset consists of images captured during forward walking motion, with a

manual zoom introduced partway through (detected approximately at the 400th keyframe). The

figure shows the pre and post-zoom ground truth values, as well as the same parameter as esti-

mated by the priority queue and the candidate segment. The priority queue estimate is shown as

a stairstep plot, with steps occurring when a candidate segment is folded in, and a new estimate is

computed.

It is notable that while at some points the candidate segment estimates vary wildly, the

priority queue is not affected. These bouts of instability in the candidate segment can be caused by

a variety of factors, including loss of tracking, motion blur, and outliers. The stability of the priority

queue estimate during these portions is due to the high uncertainty in the posterior distribution of

the parameters computed for the candidate segment. As such, these segments are not folded into

the priority queue.

After the zoom event, instability is also observed in the priority queue estimate, as all the

segments in the queue are cleared, and the initialization routine is once again started (section

4.2.2). This also explains the delay between the p-value change, and the first update to the priority

queue. In this section, the batch optimization is run to initialize an estimate for the intrinsics.

Once the initialization uncertainty reaches below a certain threshold (section 4.2.2), the priority

queue estimation is activated. For the most part, the estimates agree to a satisfactory level with the

offline calibration values. Although theoretically the estimator should be consistent and unbiased,

a more thorough examination of the results (such as with Monte-Carlo simulations) are in order,

and will be slated for future work.

The p-value plot shows a similar trend to that of Figure 4.4, where apart from a few spurious

dips (which are ignored due to the heuristic introduced in section 4.2.3), the zoom event is clearly

detected by a continuous dip in the p-value, suggesting a change event has occurred.
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Figure 4.7: a) Time taken per keyframe for the fixed-window SLAM, candidate segment and priority
queue estimators. It can be seen that the fixed-window and candidate segment estimators run in
constant-time, while the priority queue estimator takes longer, but is only run when an update to
the priority queue takes place and the calibration parameters need to be re-estimated. b) Time
taken for the batch optimization. It can be seen that the optimization is only invoked at the very
beginning of the trajectory, and at the change event. Both times the optimization is run to initialize
the calibration parameters as per section 4.2.2.

4.4 Performance

The current implementation runs at approximately 23fps on a Core i7 2.5Ghz processor laptop

with a synchronous implementation of the AAC fixed-window and self-cal estimators. Figure 4.7a

shows the timing information from the first experiment. It can be seen that the fixed-window

estimator runs in constant-time during the entire trajectory. The estimator which obtains the

posterior distribution over the candidate segment also runs in constant-time. The priority queue

estimator is dormant for most of the trajectory, except when a candidate segment is swapped in,

in which case a spike is observed as new intrinsics are estimated. Figure 4.7b shows the timings

for the batch estimator. It can be seen that as stated during section 4.2.2, the batch estimator is

only run during initialization or when a change event is detected, in order to initialize the estimate
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for the calibration parameters. Currently, all estimators in Figure 4.7 are run synchronously. Run

independently, the front-end tracker and fixed-window optimization achieves greater than 60fps.

A more optimized approach would be to run the front-end, candidate segment, and AAC solver

asynchronously. This would both increase the average frame-rate of the system as well keep the

front-end running at the fastest rate.

4.5 Summary

In this chpater, a method for online, constant-time self-calibration and automatic change de-

tection and re-calibration was presented. Experiments demonstrate that the system can estimate

accurate calibration parameters, camera poses and landmark depths without any prior information.

A filtering framework is explicitly avoided in favor of an adaptive asynchronous optimization [44]

which provides the maximum likelihood current and past camera pose and landmark estimates.

Rather than roll past information about the calibration parameters into a linearized prior distri-

bution prone to inconsistency, a priority queue [46] is used to store the most-observable segments

in the trajectory to estimate the calibration parameters. The approach enables ”hands-off” ini-

tialization, where no specialized motion is needed. As parameters become observable over time

the relevant segments are automatically included in the priority queue, and past camera pose and

landmark parameters are updated when necessary.

A novel application of multivariate probabilistic change detection spurs the re-estimation of

parameters if a significant change occurs. This causes re-calibration in situations where the physical

sensor rig is perturbed. To the authors’ knowledge, this work is the first instance of online self-

calibrating SLAM which can handle a significant change in the calibration parameters while still

estimating the full maximum likelihood map and trajectory.

With additional IMU measurements to aid scale estimation, the system is able to achieve a

distance-traveled error of 0.42% even in the presence of a significant calibration change and total loss

of tracking. Experiments show that parameter estimates from before and after a calibration-change

event closely match values obtained via manual estimation with a calibration target.
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While this paper has demonstrated real-time methods for two long-standing challenge-problems

in robotics, namely 1) power-on-and-go self-calibration and 2) robust long-term SLAM in the face

of model perturbation, the application of probabilistic change detection is perhaps the most

compelling result; it is a powerful tool for introspection and model verification more generally.



Chapter 5

Conclusions

In this thesis, the problem of simultaneous localization and mapping (SLAM) using visual and

inertial measurements has been explored with a particular focus towards challenges encountered

when pursuing long term autonomy. Specifically, the focus has been on ensuring the accuracy

of localization and the consistency of mapping given an open-ended runtime requirement. The

challenges motivated the design of several novel frameworks which aid in both the core estimation of

the SLAM problem, as well as the continued estimation and maintenance of calibration parameters.

The main contributions of this thesis are:

• A method for visual-inertial SLAM which avoids marginalizing and instead uses an asyn-

chronous, adaptive form of conditioning in order to maintain constant-time computationally

complexity while simultaneously correcting errors in past parameters as new information

becomes available. The use of a relative representation for the map allows asynchronous

optimization of the graph at different scales. Crucially for the problem of long term auton-

omy, the use of conditioning rather than marginalization has the potential to simplify the

treatment of loop-closures when using both visual and inertial constraint. The framework

has shown to work in real-time with bounded computational complexity, and to result in

accurate pose estimates.

• A framework for self-calibration with bounded complexity which uses a probabilistic algo-

rithm to pluck the best portions of input measurements for the purpose of calibration as
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they become available, thereby avoiding marginalization while closely approximating the

optimal batch solution. Due to the constant time complexity, the self-calibration framework

can run indefinitely in the background, continually improving the calibration estimates as

new data becomes available. In the long term autonomy setting, this can be a crucial ad-

vantage, especially for hard to calibrate parameters where the initial, offline estimates are

made with limited data and may not be optimal The framework is shown to produce accu-

rate results when using visual measurements for the purposes of calibrating the extrinsics.

However, it can easily be extended to produce estimates for any calibration parameters as

long as input measurements can be used to form constraints in order to estimate them.

• An extension to the self-calibration framework previously presented in order to address a

shortcoming in the method borne out of an assumption that calibration parameters do not

change throughout the life of the robot. This assumption can be particularly problematic in

the case of long term autonomy, where physical changes to the robot may suddenly change

the calibration at any time. The extension provides a probabilistic method for detecting

the change, and uses the adaptive asynchronous conditioning framework also described in

this thesis to seamlessly attempt to recalibrate new estimates for the parameters while

maintaining a constant-time SLAM solution. The extension is shown to produce accurate

results in the present of significant and sudden changes to the camera intrinsic calibration

(in the form of a zoom event), when using both visual and inertial measurements. Similar

to the self-calibration framework it extends, the extension is able to be adapted to estimate

other calibration parameters.

These contributions work together to enable more robust localization using inertial data to

supplement visual measurements, while also advancing the goal of life-long continuous self calibra-

tion. An ambitious but in this author’s opinion worthwhile goal for robotic systems is for them

to never need calibration during their lifetimes even in the presence of physical alterations due to

extraneous influences, and to also be able to self-calibrate from the instance they are turned on, a
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true power-on-and-go solution. This is due to the inevitability of extraneous factors that influence

calibration except for the most tightly controlled circumstances. A true power-on-and-go solution

is desirable as it reduces barriers to operation, increasing ease of use and adoption potential for

robotic systems.

The contributions presented in the thesis loosely follow a central theme: that of eschewing

global constraints and instead focusing locally. This theme is apparent in the decision to forgo

marginalization in favor of conditioning in Chapter 2. It can also be observed again in Chapter 3,

where a local window is used to make an estimate of calibration parameters. This local focus is

rooted in practicality: robotics applications generally involve interaction with the local environment,

and therefore require high accuracy in that space. Global accuracy and consistency can be useful

for applications such as distance measurement, or the creation of consistent reconstructions of the

environment. However, interactions often occur in the local space, where accuracy is key. For

example, a ground robot tasked with retrieving an object from a room in a building generally

requires some global representation of the spaces within it. This global representation needs to be

consistent to the degree which allows navigation within the building from the starting location to

the room containing the object. This representation can be topographical and therefore globally

inconsistent, while still allowing navigation to the room. However, regardless of the global accuracy

and consistency of the representation, a highly accurate local representation is nonetheless needed in

order to navigate through the space without colliding with obstacles, and avoiding non-traversable

terrain. Ultimately, the task of retrieving the object requires accurate local representations of

the manipulator used to retrieve the object and the object itself. The global consistency of the

representation of the object, the robot and the manipulator can be factored out. These interactions

do not and should not consider the global representation, as it simply does not matter. Instead, a

local representation will factor out any global accuracies, and instead focus on relative relationships

which are required for the task at hand. A similar condition can be observed in applications

involving Augmented Reality. The objective of overlaying 3D information over the real scene

requires accurate localization and tracking to the scene. However, as in the case of the navigation
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task previously mentioned, local accuracy is required in order to believably overlay 3D imagery over

real scenes, but global accuracy and consistency can be less important. These conditions are also

applicable to estimating uncertainties. When navigating or interacting with the local environment,

the local uncertainty is directly applicable for the task at hand, and can be a used to assess the

likelihood of success or even to initiate actions in order to better localize the robot or the space

it’s interacting with. Global uncertainty on the other hand is less useful. For example, in the case

of manipulating an object, the pose of both the robot and the scene can be largely uncertain with

respect to the global origin, but manipulation would still be possible if the relative uncertainty

of the robot manipulator and the object in the local scene is low. These practical requirements

fundamentally motivate the theme of local methods in this thesis.

5.1 Future Work

Each topic explored in this thesis leaves a number of follow-on topics for research and devel-

opment. In this section, a few examples of these topics are listed for each of the subjects discussed

in the preceding chapters:

• The visual-inertial SLAM framework presented in Chapter 2 eschewed marginalization in

favor of an asynchronous adaptive variant of conditioning. This presents some benefits,

specifically regarding loop closure incidents or when attempting to localize against a prior

map. However, an actual implementation would have to overcome many hurdles, such

as the treatment of the gravity vector and alignment of the entire map with respect to

it. Of further interest is the treatment of inertial measurements when localizing again a

map that contains both visual and inertial measurements, as the traversal velocity between

different incidences of localization will not be the same. Finally, the adaptive nature of

the algorithm creates a challenge when localizing against the map, specifically for the case

where the localization adds new information to the prior map and an adaptive visual-

inertial optimziation has to take place in order to obtain the maximum likelihood estimate
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for both the prior map as well as the current location of the visual-inertial rig.

• The self-calibration framework in Chapter 3 enabled life-long calibration by selecting rele-

vant segments of input data. These segments were then stored in a fixed-size priority queue,

ordered by the amount of information they contributed to the calibration parameters. The

framework thus allowed constant-time, lifelong self-calibration. While the framework is

able to be extended to cover any calibration parameter for which optimziation constraints

can be made against data, the specific implementation and experiments focused on camera

intrinsics. Each camera parameter will bring with it a bespoke requirement for constraints

against input data, as well as initialization. Extending the framework to cover visual-

inertial calibration will thus require research to develop these constraints as well as a fast

initialization routine that quickly approximates the visual-inertial calibration parameters

to bootstrap the priority-queue self calibrator.

• The extension to the previous mentioned self-calibration framework allowing it to handle

changes in the calibration parameters was introduced in Chapter 4. This extension em-

ployed a probabilistic method to determine if the ground-truth values of the calibration

parameters had changed, and if so provided a framework for detecting the exact time of

the change and handling the re-initialization and subsequent self-calibration required to

ensure continued operation. In this work, the calibration parameters were modeled as a

0th degree polynomial, and the changes detected were assumed to be in the constant value

of the parameter. However it would be possible to extend the method to use other meth-

ods such as linear or nonlinear change, and to detect when the parameter no longer fit

a particular model. Doing so would introduce the challenge of constraint formation and

initialization to match the new model, but would enable handling a wider range of change

possibilities. The presented extension was also only tested on the problem of camera intrin-

sic calibration (similar to the method in Chapter 3 which it extends). However, it would

be possible to adapt it to the problem of visual-inertial calibration and change detection.
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This would be similar to the adaptation required by the self-calibration framework itself to

work with visual-inertial data, as the change-detection method itself would be agnostic to

the particular calibration parameters involved. However, specific challenges involving the

relative uncertainties of the additional calibration parameters would have to be overcome,

as well as deciding whether or not to group all of the calibration parameters together or

separate them for the purposes of change detection.

While the methods presented in this thesis were done so with the motivation of enabling long-

term autonomy, the simultaneous localization and mapping frameworks outlined are better placed

under the visual odometry category. Even though these frameworks build maps of the environment

while also estimating the maximum likelihood pose of the camera, the maps and representations

that are built are not subsequently used for localization. This has the side effect that errors in the

odometry system will grow unbounded. For true long-term autonomy, long-lasting representations

are required. There is a considerable challenge in going from visual odometry systems like the

ones detailed in this thesis, to long-term representations of the environment that can be used for

autonomy. These representations would require robustness not only to non-static scene components

and changes in calibration, but also to systemic changes in the environment which would render

parts of the map potentially obsolete. Such a system would not only build maps, but also maintain

them, in order to support localization over long time durations. While the local methods for visual-

inertial SLAM presented in this thesis can enable such long-term mapping due to the ease with

which constraints against an incumbent map can be incorporated into the estimation framework,

there still remains a large body of future work in designing and proving out such a framework.

Furthermore, the local methods detailed in this thesis are only spatially local. However, temporal

locality must also be considered when dealing with long-term autonomy, as the appearance - and

by consequence, the representation - of a scene may change depending on the time of day or time

of year. Disregarding this temporal locality can lead to maps which are continuously expanded or

modified in order to represent a bounded environment. These topics comprise some of the many
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potential directions for research surrounding long-term autonomy and the creation and maintenance

of supporting representations of the environment.
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