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As social behavior moves increasingly online, the study of social behavior has followed. On-

line traces of social systems, whether to study online behavior directly or the online traces of offline

activity, have made possible previously unavailable empirical analyses of people, groups and orga-

nizations. However, practically observing any social system is nontrivial: even if we can directly

instrument and measure the social constructs we wish to study, we will still observe this through

the lens of the system itself. We inherit effects due to the design and history of the platform,

the ecology of other online systems, the measurement tool and pre-processing of our data, and

the assumptions of our models. At the same time, organizations represent a fundamental unit of

human social behavior. Then, to understand social behavior, we must understand how the size,

boundaries, and context of organizations impact social relationships within them. I focus on this

boundary of online systems and offline activity in organizations. We exploit heterogeneities across

populations of social networks to explore the boundary of online systems, online social behavior,

and offline activity across different organizations. I discuss empirical work exploring how offline

behavior is reflected in online systems, and conversely, how an online system relates to offline out-

comes. We then turn to the relationship between the measurement of networks from online data

and past work on network structure and evolution.

In this dissertation, I develop a comparative structural perspective to tease apart the roles

of these exogenous and endogenous processes on network structure. Using populations of compa-

rable networks, I explore the roles of individual social strategies, organizational environments, and

network construction on network structure. First, I explore how the unique timing and setting of

Facebook’s initial expansion to universities afforded a natural experiment, revealing differences in

social strategies and network growth, and we explore empirical network scaling in this population
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of networks. We find that the social strategies employed by students who only interacted online

differed from those who had interacted in the offline world. Second, I explore a vaunted tradition

of organization theory—relating a firm’s informal network structure to firm performance—using a

novel email network data set across a population of large firms. In this setting, I explore the previ-

ously untested heterogeneity of firms and the relationships between organization size, organization

context and social network structure. There, we find a surprising amount of heterogeneity across

firm types, and a lack of relationship between network structure and firm performance. We find

novel scaling results, including a lack of relationship between the size of a firm and an individual’s

number of contacts, but find that the formal geographic structure of an organization increases bot-

tlenecks in communication across firms. Finally, reflecting on the challenges of working with social

networks drawn from interaction data, I explore the connections between network construction and

network evolution. To put these connections in perspective, I visit the theory of weak ties, network

stability and network densification using this lens. We find evidence to confirm, reject, and suggest

novel hypotheses in this literature. We find, for example, that network densification can appear as

an artifact of total activity within the observed system.

The comparative approach is uncontroversial but novel in the empirical study of networks,

organization theory, and computational social science. In this context, the comparative approach

allows us to compare empirical scaling properties to results from random graph theory. Using

networks bounded by organizations and platforms, we can leverage the boundaries of online systems

to relate covariates at the platform-, organization-, or network-level to structure. This provides a

novel empirical perspective into how offline behavior is reflected in online systems, and conversely,

how an online system relates to offline outcomes. By working with populations of comparable

networks, we can meaningfully characterize variation across empirical social networks and shed light

on the ecological and organizational processes underlying online social systems. The comparative,

population-level approach suggests a novel opportunity in network science and the computational

study of social systems.
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Chapter 1

Introduction

Social networks—specifically, social network data—are derived from largely unobserved social

systems. This represents a challenge and an opportunity to understand how structure can be derived

from such complex systems and what we can learn from that structure. Conversely, from a data-

driven perspective, we can how to understand networks in the context of the social systems from

which they are drawn. Network structure serves as a lens into the interactions in a social system,

representing local and global constraints on relationships, information flow, and group formation.

With an observed social network, we use metrics or models to characterize network structure. These

tools operationalize theorized or observed social processes, such as centrality measures to represent

status, or stochastic block models to infer community structure.

Social networks additionally encode structure that reflects endogenous and exogenous pro-

cesses in the social system from which they are derived. For example, the Facebook friendship

network reflects differences induced by system-endogenous design changes from within the plat-

form itself (Malik and Pfeffer (2016) and Zignani et al. (2014a)) and shifting norms among users

(boyd (2013) and Tufekci (2008)). The Facebook network structure also reflects its history from

competing with other online social networks (boyd and Ellison (2007) and Kleineberg and Boguñá

(2015, 2016)). However, given this mixture of processes, determining when and if the structure we

discover is an accurate reflection of underlying social processes of interest is then a nontrivial task.

A fundamental unit of social systems is the organization. To understand social systems

and individuals, we then also need to understand organizations and communities. We also look
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to the specific setting of organizational social networks. The history of using social networks to

understand organizations is long: in the foundations of management, Roethlisberger and Dickson

(1939) argue for the importance of the informal relationships within work groups, and some of the

earliest social network research focused on the optimal organization of work groups (Moreno 1934).1

However, this is typically done on single examples: we typically only observe one network for a

setting, whether it be a single organization, such as a karate club (Zachary (1977)) in the “offline”

world, a single firm, or a single online social network platform. A comparative perspective allows

us to understand and measure the natural variation in these systems, and understand the degree

to which the examples we observe are products of their environment or are atypical.

The comparative perspective is the norm in other domains: consider the demographer or biol-

ogist characterizing a population of a species, or the anthropologist or political scientist comparing

societies and institutions. In the study of social networks, this perspective has largely been missing.

This is partly due to a lack of data—there is only one Twitter—and so this gap is reflected in under-

developed empirical results and open theoretical challenges in the network science literature. The

lack of comparative work also extends to the organizational theory literature, which draws from

1 Moreno (1934) develops sociometry as a tool to design “a social group which can function at the maximum effi-
ciency and with the minimum of disruptive tendencies and processes.” His book works through a range of applications
on organizational networks, from the organization of work groups in a prison to predicting how network structure
was related to which students ran away from a “school” for teenage girls convicted as delinquents. (Coincidentally,
this was the New York State Training School for Girls in Hudson, NY. Moreno conducted most of his studies there
in 1932; the singer Ella Fitzgerald was sent there as a teenager in April 1933, sentenced delinquent by the state. A
judge wrote that she was “ungovernable and will not obey the just and lawful commands of her mother”; she ran
away some time later that year (Immarigeon 2014).)

Despite the organizational focus of Moreno’s work, the primary challenge he saw for survival was not in reference
to the school retention rate or to organizational success, but a greater existential threat. Explicitly, “the meaning
of the title of this book ‘Who Shall Survive?’ is the survival of creativity, of man’s universe. The survival of human
existence itself is at stake” (Moreno (1953), p. 600; emphasis his). Moreno described concern about humanity faced
with “two threats, the aggression coming from man and the aggression coming from ‘robots.’ The answer to the first
[is] sociometry” (Moreno (1953), p. 599).

In the 1934 edition, and even then “the destiny of man” (Moreno 1934, p. 366) was already at stake: “the weakest
point in our present day universe is the incapacity of man to meet the machine, the cultural conserve, or the robot,
otherwise through submission, actual destruction, and social revolution,” Moreno (1934), p. 363. The early adoption
of this language is notable; the stakes appear to be raised further in the later 1953 edition, which presents the
introduction of the atomic bomb as relevant and discouraging in this progression.

Moreno characterizes his study of the structure of human relationships as “the discovery and demonstration of the
social atom,” and presents sociometry as one of the tools necessary for “the final situation of man and his survival”
(Moreno 1934, p. 363). He also departs from this narrative to apparently advocate an additional approach, beyond
the social and technical: the “eugenic doctrine” as a “promiser of extreme happiness to man” (Moreno 1934, p. 365;
Moreno 1953, p. 597). Despite this horrifying early suggestion, the field of organizational social networks has not
carried this suggestion forward, nor do we promote it here.
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economic sociology to understand the structure and behavior of organizations. This field has his-

torically relied heavily on single examples to understand the social system of the organization, and

advanced a wide range of under-specified, and occasionally conflicting, hypotheses (Blau (1965),

Carroll and Hannan (2000), Davis (2010, 2015a), Kimberly (1976), and Schwarz et al. (2007)). In

1965 the sociologist Peter Blau laid out a potential research agenda for “The Comparative Study of

Organizations.” Blau (1965) opens: “The comparative method, in the broadest sense of the term,

underlies all scientific and scholarly theorizing.” We proceed from this sentiment.

1.1 Problem setting

This dissertation focuses on social networks, representing people and the interactions among

them. We adopt a comparative, population-level approach to explore heterogeneities across net-

works that are defined within the boundaries of organizations (universities; firms) and mediated

by online platforms (early Facebook; email). The measurement of networks, the comparative ap-

proach, and the growth and comparison of online networks and organizations all invite unique

challenges. We review the context and breadth of these challenges and approaches that are aligned

with the direction we adopt here.

1.1.1 Networks

N = 1 network analysis. Network measures describe the structure of networks, that is,

the local and global patterns of connections that ideally correspond to some social phenomenon of

interest. These measures may capture some local description of the population of individuals in the

network, such as degree, which might describe the number of contacts or friends in a social network,

or the aggregate of local descriptions, such as average degree. These measures can also capture

global properties of the networks, unobservable to individuals. For example, the greatest distance

between any two individuals in the network, captured by the network diameter, or the degree

to which communication must pass through a small number of bottlenecks to diffuse across the

network (a measure of centralization: see Chapter 4). Our emphasis is on whole-network measures
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that characterize the patterns across the whole network, either aggregates of local structure or

global structure, rather than the specific position of an individual. White et al. (1976) were early

advocates of this perspective, and used organizational social networks to argue for the efficacy of

network-level analysis.

We focus on measures that are defined to describe some implied social process. The measures

used throughout the dissertation are defined in Chapter 2. We refer the reader to Wasserman and

Faust (1994) and Newman (2010) for more exhaustive references.

Given single network examples, it is also useful to establish means with which to infer whether

or not large-scale structure in the observed network is meaningfully different than random chance.

Probabilistic models have also been widely adopted as such an approach to understanding struc-

ture within single network examples. Generative models allow for sampling from distributions of

networks: this yields a rigorous framework with which to detect large-scale patterns of structure,

such as community structure (e.g., Aicher et al. (2015)) or hierarchical structure (e.g., Clauset et al.

(2008)), and test whether or not that structure is meaningful.2 Further discussion is beyond the

scope of this dissertation but see Jacobs and Clauset (2014) for a relevant overview.

Regardless of the instrument, measurements of network structure vary across networks. Some

sources of variation across networks are better understood: random graph models help us explore

what network properties emerge as a function of network size (Newman (2010)). The degree to

which these scaling properties appear empirically, or if different scaling properties apply, is still

underdeveloped as empirical network studies are typically done on single (N = 1) network exam-

ples. Random graph models also help reveal how real world networks tend to empirically deviate

from random: for example, social networks tend to have higher clustering (Watts and Strogatz

(1998)). Other sources of variation across networks, due to behavioral norms, individual differ-

ences, or network- or organizational-level outcomes are less clear. For example: Is the Facebook

2 Unfortunately, these models do not extend trivially to populations (N > 1) of networks. This is true whether
they be exponential random graph models, which already suffer a range of degeneracies including lack of projectivity,
or more traditional exchangeable generative models for network structure (D’Amour and Airoldi (2016) and Shalizi
and Rinaldo (2013)). This is an open and exciting area for future methodological research.
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network like Twitter? Are food webs like high school social networks?3 Does online social network

structure vary in a way that predicts their success or dissolution (Garcia et al. (2013))? Does orga-

nizational network structure predict performance, or correspond to industry differences (Chapter

4)? These questions underlie a range of methodological and social studies, but are inaccessible

without analyzing populations of networks.

N > 1 network analysis. It is, however, reasonably common practice to compare a hand-

ful of different types of networks to demonstrate the robustness of an empirical phenomenon (e.g.,

citations among articles and patents, autonomous systems communications of the Internet, email

networks, and movie actor-film relationships (Leskovec et al. (2007))) or of a modeling technique

(e.g., hierarchical structure in a terrorist association network, a metabolic network, and a food

web (Clauset et al. (2008))). Demonstrating a phenomenon across multiple diverse systems sug-

gests robustness—never universality!—but do not provide systematic evidence of a particular phe-

nomenon across a type of social systems.

Small sample sizes can suggest misleading empirical results (see, e.g., Button et al. (2013)),

and messy social systems are no exception. Davis (1970) analyzes 742 (!) social networks from

about 400 small social groups—using “sociometric data presented in punch card form (one card

for each row of a sociomatrix),” no less—and fail to find support for Davis’s own previous work on

structural balance, which had found evidence from a population of 60 empirical networks (Davis

and Leinhardt (1972); then in press). Uncontroversially, evidence for specific empirical social

phenomena is more compelling when shown across multiple instances of comparable network types.

For example, the role of status is robust across a population of high school social networks (Ball

and Newman (2013)). Facebook networks decreased density and average shortest path, both at

the country level and globally, over a period of five years (Backstrom et al. (2012)). Gender is

better predictable as a node attribute in Facebook and high school networks using the distribution

of attributes of two-hop neighbors (Altenburger and Ugander (2017)).

3 Based on the strongly status-driven patterns of unreciprocated relationships—“aspirational friendships” (Ball
and Newman (2013)) along a one-dimensional niche space—in high school friendship networks, comparing the high
school social universe to the food chain is likely more apt than not.
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Analyzing multiple networks quickly induces issues related to size: a single individual ex-

changing messages, for example, with 10% of an organization means something fundamentally

different in a community of 100 vs. 100,000. The empirical relationship of network measures to

network size is a fundamental question in networks-related research, as it immediately interferes

with the comparison of measures across networks of different sizes (e.g., Dunne et al. (2002) and

Faust and Skvoretz (2002)). The ecology community, for one, has been forced to reckon more

directly with the role of size of networks is ecology. Ecologists are often interested in the stability

or resilience of ecosystems, which may be of different sizes. Teasing apart the role of size from the

questions of interest, which may otherwise be conflated with the role of ecological processes, is then

of immediate interest. As a telling example, Dunne et al. (2013) find that food web research, where

past work had tried to determine the impact of introducing species of parasites to food webs on

ecological outcomes, conflated changes to network structure that were strictly due to increases in

size with ecological impacts.

Understanding how network structure empirically varies with network and organizational

properties, including size, brings us naturally to questions of comparison. Analysis across multiple

networks is undoubtedly useful: to make a claim that some process occurs and to show that it

occurs in multiple environments is a scientifically meaningful effort. But this is different than a

N > 1 comparative or population-level approach, where we also can characterize variation at the

individual and organizational level across a population of networks. We first consider the related

context of studying online social systems (Chapter 1.1.2) and ecological approaches to studying

organizations and networks (Chapter 1.1.3). Together these perspectives lend insights into the

comparative approach, which we return to in Chapter 1.1.4.

1.1.2 Measuring online systems

Social dynamics, exogenous processes (such as platform competition or environmental con-

straints), and choices about network representation, implicit or explicit (including name generators,

survey design, threshold setting), can obscure the patterns we intend to measure in online social
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systems. We explore a range of these issues here and point to a set of related methods that have

emerged as a result in Chapter 1.1.3.

Name generators In the study of social networks, name generators historically refer to

the questions or definitions used to operationalize relationships between people (Campbell and Lee

(1991)). In sociology, differences among name generators have been studied to capture different

types of social structure. While it may not be surprising, it is still useful to understand that,

e.g., advice networks differ in structure from the trust networks (Lazega and Pattison (1999)).

While different name generators induce different structures, it is still difficult to make large-scale

comparisons of network types without a meaningful baseline of heterogeneity in these systems to

begin with. Data-driven comparison across networks of a single type can help quantify the diversity

in these systems. If this natural heterogeneity is more or less significant than the differences between

modes of measurement, this is revealing.

Within a single social system, dynamics and differences imbued by different network genera-

tors can obscure the patterns we intend to measure. Comparing the modes of defining an interaction

or edge in a social network has been explored to some degree in online systems, e.g., email vs. in-

person contact (Grippa et al. (2006) and Huberman and Adamic (2004)); maintained relationships,

communication, and ‘friendship’ on Facebook (Marlow (2009)); within a single type of network,

this has been explored through the strength of reciprocity in email networks (De Choudhury et al.

(2010)) and the time window in proximity networks (Clauset and Eagle (2007)); see Chapter 5 for

more details.

Network construction & measurement Sampling algorithms to construct networks

from a more general system can lead to robust false discoveries of certain structural patterns (Lee

et al. (2006)): for example, algorithms to sample subnetworks from large, difficult-to-measure net-

works can misleadingly suggest skewed degree distributions (Achlioptas et al. (2009)) and heuristic

network measures detect degenerate community structure (Good et al. (2010)). Sampling an un-

derlying network, such as when people encode their offline relationships on an online platform, can

produce network densification, regardless of the structure of the underlying network (Pedarsani et
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al. (2008) and Schoenebeck (2013)). Conversely, community structure in the underlying structure

of a network can induce wide variance in estimates drawn from standard sampling approaches (Li

and Rohe (2015) and Rohe (2015)). Network measures may also vary with network size—a theme

we will return to in every chapter—and failing to take this into account can lead to incorrect infer-

ences about the structure of networks (Dunne et al. (2013)). Assumptions used during modeling

and inference may further introduce biases or obscure large-scale structure (Jacobs and Clauset

(2014)), and algorithms to infer structure used in practice can vary dramatically in output and

over-fitting (Ghasemian et al. (2017)).

These problems aside, inferring a social network from interaction data is a nontrivial task.

Systems of social interactions can be measured in numerous ways, revealing different patterns

related to the measurement tool itself. Constructing a network from a set of interactions involves

nontrivial choices about representation that significantly impact the types of patterns detectable

in a network (Clauset and Eagle (2007)): we explore the parameters that go into constructing a

network from communication interactions in Chapter 5.

Boundaries of network data and of organizations. Measuring relationships in a social

system requires choosing a boundary of that social system, that is, determining who belongs in our

observed population. This challenge, related to sampling, is not novel: see, e.g., Laumann et al.

(1989) for ways to characterize the boundaries of social networks by internally socially consistent

or externally imposed social designations. This has also been recognized as a necessary challenge

if the unit of interest is the full network structure (White et al. (1976)).

Fortunately, defining such a boundary should presumably be more straightforward in orga-

nizations (e.g., Wasserman and Faust (1994)), and even more so in online platforms that require

explicit engagement or membership (Holme (2015))—and yet. First, this question is related to

sampling, and asks what population is necessary to observe social and organizational processes

of interest (Kilduff and Brass (2010)). Furthermore, even in traditional corporate settings, large

firms act as systems of interacting smaller firms (Ghoshal and Bartlett (1990)), and relationships

between firms transcend organizational boundaries (Granovetter (1994)), so even the boundaries
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within traditional organizations are porous and non-obvious. In Chapter 4, we are forced to recon-

cile that the number of full-time employees—which excludes part time and temporary workers, as

well as contractors—can differ widely from the number of organization-affiliated email users.

Platforms can automatically suggest a boundary: for example, those that are members of

Facebook is a natural way to delimit the Facebook network. However, this is a nontrivial assump-

tion. An example of immediate relevance is Facebook in its initial founding (Chapter 3), when

one needed a specific university email address (e.g., @harvard.edu), which required having a suffi-

cient relationship to the organization (as a student, professor, or staff); later Facebook opened to

specific employers (and the concomitant problems of defining the boundaries of an organization),

other student types, and the general public. Passive consumers of platforms, such as Reddit, or

anonymous contributors immediately suggest that social activity on a platform may extend beyond

the bounds of membership. Among members, failing to take into account cohort or level of user

engagement can yield misleading aggregate assessments of user behavior (Barbosa et al. (2016)).

Finally, interaction across and user migration between platforms yields a different view of the online

social world (Chapter 1.1.3).

It is now unambiguous that social dynamics mediated on the Internet, including through

online communication and communities, interact with social dynamics in the offline world (Wellman

and Haythornthwaite (2008)).4 While the boundary between online and offline worlds may be

eroding, it is still useful to employ this dichotomy. For example, shocks and interventions in the

“offline” world can induce and reveal shifts in social behavior, and this has been applied in settings

as varied as hurricanes (Phan and Airoldi (2015)), changes in stock price (Romero et al. (2016)),

FOIA requests (ben-Aaron et al. (2017)) and the implementation of censorship (Hobbs and Roberts

(2016)). Differences among users of a given platform may interact differently online depending on

their offline affiliation (Jacobs et al. (2015a), Kossinets and Watts (2009), and Zhu et al. (2014)).

(Shocks that come from changes within the platform itself, or by interactions between platforms,

4 How online communication, information dynamics, and social platforms on the Internet interact with broader
economic and geopolitical systems, while a pressing and timely issue in 2017, is beyond the scope of this dissertation.
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are of a different and endogenous flavor: see Chapter 1.1.3.) Regardless, explicitly considering the

offline features of users and collections of users, including organizations, yields a useful perspective

into patterns of online social behavior.

To briefly illustrate this perspective, we note that in Chapters 3, 4, and 5, we explicitly

leverage the boundaries induced by organizations. In Chapter 3, we consider university-affiliated

members of Facebook with active accounts at the beginning of September 2005 for a set of specific

universities; using information about the platform growth and offline properties of those universities,

we find that online network growth varies with the offline context of these networks. Chapter 4

uses employer-specific enterprise email to delimit membership in firms and account for firm size,

and we ask if (well-theorized) offline properties of the organizations vary with network structure.

In Chapter 5, we reckon directly with how the specification of networks derived from interaction

data can induce differences in network structure, and how variation along these specifications can

align with existing theory or, alternatively, build or erode trust in empirical results. However, we

first discuss a range of perspectives that have emerged in response to a range of these challenges:

these represent important directions for future research, and we draw on these perspectives in the

work here.

1.1.3 Emerging perspectives in the study of online social systems

In response to these challenges in measuring social processes in online social systems, a

number of theoretical and empirical approaches have emerged.

Platform effects: system design vs. user behavior Exploring the boundaries of net-

work data, that is, understanding the way that it is shaped by and shapes the social system it is

drawn from, is made more accessible in the comparative network setting. This can otherwise be

difficult in typical N = 1 settings, such as online systems, where one instead must generally rely on

hopefully revealing interventions, environmental and platform-induced natural experiments, and

platform effects (Malik and Pfeffer (2016)). This can be brought into a causal inference context,

using platform design changes (Malik and Pfeffer (2016), Oktay et al. (2010), and Su et al. (2016))
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to infer how social networks change. Conversely, in settings where the platform design, such as

recommender systems, are creating unknown effects on user behavior, exogenous changes to the

system can be used to measure the effect of the design (Sharma et al. (2015) and Su et al. (2016)).

Other system-level interventions may be relatively exogenous changes that impact user social be-

havior (such as reduced platform access through censorship (Hobbs and Roberts (2016)), or social

structures responding differently to natural disasters, such as hurricanes (Phan and Airoldi (2015))

or designed as experiments (such as modified rewards systems (van de Rijt et al. (2014))).

It is worth noting the concept of “platform effects” relies on two distinct interpretations of

online social networks. The first mode, on which this dissertation rests heavily, is the concept of on-

line social networks as social networks, representing connections between people. The second mode,

which often employs the same language to refer to the platform operators, i.e., the organizations

that host and design the system platform online: the social networking sites themselves (Weber

et al. (2016)). Taking advantage of when the social networking site (organization) makes changes to

the platform that effect the social network (structure) yields insight into social processes happening

between users of the platform, which may appear in the social network structure. However, social

networking sites (the latter mode) incorporate ideas and models from the social network literature

(the former mode) into the design of systems, which then encourages behavior that follows the

design, a process called performativity (Healy (2015)). For example, the concept of triadic closure

describes the process of people with shared connections becoming connected—enacting the concept

that “the friend of my friend is my friend”—has been well established in the study of networks

(Rapoport (1953)) and in sociology (Granovetter (1973)). Zignani et al. (2014a) found that triadic

closure increased suddenly in 2008, concurrent with when the Facebook platform introduced the

“People You May Know” feature: that is, when the platform introduced a recommender system

explicitly leveraging the concept of triadic closure (Malik and Pfeffer (2016)). The feedback loop

induced between social network concepts and the design of social networking sites is as old as social

networking sites themselves: the first modern social networking site—SixDegrees.com, founded in

1997 (boyd and Ellison (2007) and Weber et al. (2016))—encoded the popular network concept of
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“six degrees of separation” in its name.5

Ecological approaches: organizations Organizational ecology represents a major paradigm

of organization theory that emphasizes the diversity and sources of heterogeneity in populations of

organizations (Baum and Shipilov (2006)). In organization theory, these ideas have been imported

for several decades (Carroll (1984) and Hannan and Freeman (1993)), including population ecol-

ogy and evolution (Baum and Singh (1994a)) and niche theory (Baum and Singh (1994b,c)). The

tradition of organizational ecology is traceable to Hannan and Freeman (1977)—“The Population

Ecology of Organizations”—where a core challenge in organization theory is understanding the

heterogeneity of organizations. Paraphrasing the ecologist G. E. Hutchinson, Hannan and Freeman

(1977) ask, “Why are there so many kinds of organizations?”6 In Chapter 4, we suggest novel

empirical support of this perspective in a population of firms.

As it has become more apparent that online communities and organizations face similar con-

straints to growth, change, and evolution to those as offline organizations (e.g., Kreiss et al. (2011),

Shaw and Hill (2014), and Wang et al. (2013)), the (offline) organizational ecology perspective

may also provide novel opportunity to understand online communities. While studies that cross

multiple communities are still rare, this is a compelling open area for future research. Despite

a prevalence of enterprise online systems, such as email, messaging, and task-based applications

that serve multiple organizations, and multi-community online platforms, such as Reddit, Wikia

5 This concept has a rich history in popular and network science (see Watts (2004) for a relevant overview),
sociology (Milgram (1967)), literature (Guare (1990) and Karinthy (1929); see Backstrom et al. (2012)), and pop
culture (see Schuessler (2017) for a recent reincarnation). The website followed only a few years after the 1993 film
based on John Guare’s 1990 play, “Six Degrees of Separation.”

6 Understanding the foundations and sources of diversity in natural systems is foundational in biology. The
perspective of niches affords a way to characterize the space over which species reside, providing a general framework
for understanding coexistence and competition. According to the research program led by Michael Hannan and John
Freeman, these problems map naturally to organizations. Hannan and Freeman (1977) purposefully mirror a famous
address by G. Evelyn Hutchinson, the founder of ecological niche theory: “Why are there so many kinds of animals?”
(Hutchinson (1959)).

Here we focus on organizations and networks, which may occupy different niches in the context of populations of
organizations and networks. Organizations, like all social and biological systems, function at multiple scales (Simon
(1962)), and so niche modeling can also be applied within organizations. A thorough discussion of niches applied
to other system levels is beyond the scope of this dissertation, but we note that niche models can be applied to
understand roles within networks (see Jacobs and Clauset (2014), Jacobs et al. (2015b), and Williams and Purves
(2011)). Liu et al. (2015) employ this perspective to examine roles within organizations, using informal social networks
in a firm derived from an email communication network (cf. Chapter 4); they find that density and diversity within
niches is related to employee performance.
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and StackExchange (Hill and Shaw (2017) and Tan and Lee (2015)), this area remains underde-

veloped. However, the ecological perspective on the rate, constraints, and sources of heterogeneity

in populations of organizations and the structural mechanisms that support and impede change in

organizations suggests novel hypotheses for the analysis of online communities.

This perspective has been applied in a handful of settings. Wang et al. (2013) find, for ex-

ample, that online groups in the same niche suffer competition from shared members. More subtly,

Zhu et al. (2014) uses ecological niches to describe communities within an online organizational

communications tool. They find that competition among similar communities is stronger among

communities with users with shared offline affiliations. They also find that similar communities

are more successful when they do not have users with shared offline affiliations. This tradeoff—

between competition driven by similar users vs. benefit to the community from having coexisting

competitors—suggests a novel characterization of online communities. Tan and Lee (2015) charac-

terizes how users traverse multiple communities in a niche space and show how these trajectories

predict future activity. In a platform for petitions, TeBlunthuis et al. (2017) find evidence of density

dependence theory, with an inverse U-shaped relationship between the density of the niche that a

petition occupies and its success. However, they do not find evidence that specialized petitions do

better, although this has been found for offline organizational forms (Carroll (1985)).

Finally, we note again that social networking sites are themselves a type of organization

(a nontrivial observation: see Weber et al. (2016)). Then to the extent that users are shared

resources, these concepts from organizational ecology map to the competition and coexistence of

different platforms by expanding over different niches (Kleineberg and Boguñá (2015, 2016)). More

deeply understanding the structure of users within platforms lends itself to more specific ecological

concept of community assembly, which I describe next.

Ecological approaches: assembly We draw from the ecological notion of assembly, in

which a community, possibly represented by a network, is formed in a way that depends on a

number of complex factors: composition of the current community; ordering effects (which group

arrives earliest may set constraints on who may join or set norms for behavior); competition within
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and between systems; and natural limits on growth (due to local or global resources or current

community size). Community assembly was originally framed using islands as the unit of analysis:

a novel opportunity for ecologists to consider almost-independent model systems, and quantitatively

describe how variation across these communities could be explained by processes within and outside

of these units (MacArthur and Wilson (1963) and Warren et al. (2015)). Assembly specifically

leverages the boundaries of the systems to delimit patterns of growth, competition, and evolution.

We exploit the analogues to these concepts in online social networks and organizational networks

and use network assembly as a frame, within which we can tease apart different social processes.

Separating the complex social, behavioral, and engineered processes that mediate online and offline

social networks is nontrivial but crucial to understanding how social networks encode and influence

relationships.

In the context of social network data, the process of network assembly brings together the

unknown mixture of online, offline, social and behavioral, structural and design-based mechanisms

that are subject to constraints due to ordering effects, competition, technology, composition and

context. This is a concept richer than that of network growth, and captures both the emergent

construction of networks or groups as well as their explicit formation (Bascompte and Stouffer

(2009), Contractor (2013), Lungeanu et al. (2014), May (2009), and Saavedra et al. (2008)).

These concepts have been explored in a range of empirical settings in online social networks.

Shaw and Hill (2014) find the establishment of norms is set and entrenched by the early adminis-

trators of peer production systems: specifically, the initial settlers of the governance arm of wikis

determine future behavior (providing support for the Iron Law of Oligarchy (Michels (1915)), anal-

ogous to founder effects in community assembly). Notably, Shaw and Hill (2014) find this across

a population of peer production systems. On individual systems, Heaberlin and DeDeo (2016)

find that the evolution of norms is related to those established by the earliest users on Wikipedia.

Kooti et al. (2012) found the establishment of retweeting norms on Twitter diffused from core,

active members; this empirical observation found that pre-existing network structure was related

to this spread. Centola and Baronchelli (2015) found this experimentally, establishing that the
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structure of a social network could determine the emergence of norms.

Beyond initial founders, Barbosa et al. (2016) found that the arrival timing of different

cohorts revealed differences in activity and engagement with Reddit, an online community. Fire

and Guestrin (2016) found that the distribution of arrival times across a population of Reddit

networks was related to differences in network structure. In Chapter 3 (Jacobs et al. (2015a)), we

find that differences in offline context of users, which varied by cohort, changed patterns of adoption

and network structure; during a similar time window on Facebook, Lampe et al. (2006) found

that offline networks informed online social network activity. As in ecological communities (and

organizational ecology: see, e.g., Baum and Singh (1994b)), platforms can coexist by establishing

different niches (Kleineberg and Boguñá (2015)). Different niches can be related to, or exacerbate,

demographic differences across platforms (boyd (2013) and Hargittai (2007)). Turmoil within a

platform can drive cross-platform migration, which in turn can drive differences in user behavior

(Newell et al. (2016)). The spread of a platform across demographic niches, combined with platform

design effects—such as a feature to highlight most popular users or a policy enforcing that profiles

map to real identities, both on Friendster (boyd (2006))—can drive behavioral norms on a platform,

as well as drive users away, leading to collapse.

1.1.4 Comparative & population-level approach

Comparative, population-level analyses of networks allows us to unite these perspectives

under a common umbrella, find more compelling evidence of social processes across organizations,

and take advantage of natural variation in the environment and engineered variation in platforms

to meaningfully compare social systems.

At a structural level, we can begin by remarking that empirical networks are structurally

different than those generated from random graph models. How properties of observed empirical

social systems vary with network structure is of unambiguous interest in the study of networks

(Newman (2010), Newman (2003), and Watts and Strogatz (1998)). For example: are social net-

works different than random graphs? (Yes. See, e.g., Newman and Park (2003) and Watts and
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Strogatz (1998).) Are social networks different than biological and technological networks? (Maybe,

although it depends on your choice of data set construction (Larremore et al. (2014)) or taxonomic

classification (Onnela et al. (2012)).) Is Twitter like Facebook? (Great question. This could be

answered by comparing their embeddings in some latent space (Asta and Shalizi (2014)), distri-

bution of community structure (Onnela et al. (2012)); their position in the organizational niche

space (Kleineberg and Boguñá (2015), Wang et al. (2013), and Weber et al. (2016)); or the “social

resilience” (Garcia et al. (2013)) or “loyalty” of their users (Hamilton et al. (2017)).) Or, more

simply, how does empirical network structure vary by size? Is scaling similar to what is predicted

by random graph models? (It’s complicated. But consider Chapters 3, 4, and 5.) Does organiza-

tional network structure predict their performance? (We suggest not (Chapter 4).) By adopting a

comparative approach, we can begin to understand how variation among social systems—by their

external environment (e.g., industry of an organization; location of an ecosystem); by their internal

attributes (e.g., size, prior history of assembly); or by their antecedents or outcomes (e.g., fund-

ing of a platform, performance of an organization)—relates to network structure, and, conversely,

whether variation network structure can reveal differences in social processes and outcomes.

Exogenous variation in social systems can yield insights into meaningful social processes.

Along organizational dimensions, online communities with larger administrative (moderator) teams

on Reddit were more likely to join a collective action protest (Matias (2016)). Traud et al. (2012)

compare across one hundred university Facebook networks and find that attending the same high

school matters more for network structure in larger universities than smaller colleges. Gee et al.

(2017) find evidence of Granovetter (1973)’s paradox of weak ties, but that strong ties are more

useful in countries with greater income equality. Recalling the idea of assembly in online systems,

shocks can also provide sources of meaningful variation, for example by exogenous shocks (e.g., by

hurricanesPhan and Airoldi (2015)) and shocks induced by platform design (e.g., of reward systems

(van de Rijt et al. (2014))).

Cross-platform studies provide an opportunity to characterize the exchange of users (Newell

et al. (2016) and Tan and Lee (2015)), information (Leskovec et al. (2009)), and connections across
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communities (Hill and Shaw (2017)). This supports both an ecological approach (Kleineberg and

Boguñá (2015)) and is analogous to prior work on the study of connections between organizations

(interorganizational networks) in the organization theory literature (Provan et al. (2007) and Zaheer

et al. (2010)). This has been theorized to drive outcomes at the single organization and community

level (Kilduff and Brass (2010) and Provan et al. (2007)).

Within a single platform or medium, analyzing N > 1 comparable communities can mitigate

platform effects. In contrast, cross-platform studies based on multiple N = 1 may still end up

overfitting to environment-specific attributes: Facebook is different than Twitter for a lot of rea-

sons.7 Single platform studies can also define a population boundary, which can help define which

communities are observed. This is crucial because it is impossible to fully characterize the diversity

of online organizations, or correlates of successful communities, without also characterizing systems

that did not become successful (Hill (2013)). Hill and Shaw (2017) persuasively argue for the com-

parative, population-level study of online communities across a single platform, medium or type.

To paraphrase, Hill and Shaw isolate five benefits of such a perspective: generalizability of results

across communities; the ability to study community- or organization-level attributes and outcomes

(see Chapter 4); insight into diffusion between communities, e.g., across platforms or news media;

insight into ecological dynamics, extending the organizational ecology approach to online systems

(recall Chapter 1.1.3); and insight into multilevel processes, merging individual-level dynamics with

understanding meso- and macro-level processes.

We note that this work is largely observational, and is likely to continue in that vein. Exper-

iments across network structures are usually limited to artificial or virtual lab settings (see, e.g.,

Centola (2010) and Mao et al. (2016)). However, there have been experiments conducted across

multiple network structures: to find effective distribution strategies of microfinance loans across

villages, for example (Banerjee et al. (2013)). Experiments using virtual labs and the extension of

7 An early (and well-cited) publication on Twitter was “What is Twitter, a Social Network or a News Media?”
(Kwak et al. 2010), which considered the properties of only the Twitter network, with no comparison. In the
present context, this title is evocative. Having sufficiently many N > 1 examples of networks from varied online
platforms would be a step in this direction. But even given a taxonomy of networks (as in Onnela et al. (2012)), the
external context of these platforms, differences in user bases, and platform design would all be necessarily relevant
to understanding this space.
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meaningful experimentation techniques to estimate the effect of social processes across networks

(Eckles et al. (2016)) will contribute to future research in this space. The comparative perspective

enables research questions that consider changes or effects of policies on platforms, how design

changes can induce favorable (and unfavorable) shifts in user behavior, and how groups and organi-

zations can encode their external environment or support productivity. Specifically, this emphasis

on outcomes, design, and the ecology, competition, and interaction among systems lends itself to-

wards “solution-oriented social science” (Watts (2017)), suggesting an underexplored opportunity

for computational social science.

1.2 Contributions

This work unites and draws on a range of these perspectives. Each chapter considers an

empirical setting where populations of instances of social systems can be meaningfully compared.

With that comparative perspective, we can consider the role of social processes within and outside

of the boundaries of the observed system. As this population-level view has been rare, the range

and sources of heterogeneity in these systems is unknown a priori. By considering the context

of these systems—for example, the educational trajectories and social opportunities of Facebook’s

earliest users, or the industrial differences and geographical constraints across a population of

firms—and making explicit the construction of networks from interaction data, we can provide

novel understanding into how these systems vary.

In Chapter 3, “Natural experiments in online social network assembly,” we leverage the unique

timing and growth strategy from the first two year’s of Facebook’s existence to reveal multiple

sources of exogenous variation in the user base during that time. We apply this comparative,

structural perspective to one hundred Facebook friendship networks, representing the individual

(and previously distinct) university networks to which Facebook first expanded. Facebook’s early

design discouraged cross-university connections, and so we take advantage of the shared platform

with nearly distinct networks to treat this as a population of online social networks. Furthermore,

we draw on the ecological notion of assembly to characterize the initial establishment of online
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communities. Here, Facebook’s iterative expansion strategy created university networks of different

ages, and differences in adoption led to systematic differences in structure across this population.

Furthermore, the timing of this expansion and the timing of our data snapshot coincided with

shifts in the student population, corresponding to students sharing a campus when they gained

access to the network, before and after graduation or arrival on campus, respectively. We find

heterogeneities across these networks corresponding to attributes of the underlying population

(adoption), network size, and context (with respect to graduation timing and arrival on campus).

This chapter is based on a previously published paper coauthored with Sam Way, Johan Ugander,

and Aaron Clauset, “Assembling thefacebook: Using Heterogeneity to Understand Online Social

Network Assembly” (Jacobs et al. (2015a)). It is included here in full, with minor modifications.

In Chapter 4, “A comparative study of informal social networks in firms,” I introduce a novel

type of data set from a population of large firms. Defining formal ties to be the set of hierarchi-

cal authority relationships within a company, we define the informal social network to be the set

of social ties, which may or may not be aligned with the formal network. In organizations, the

structure of these networks are believed to play a role in outcomes, and decades of literature from

organizational theory, management, and economic sociology have used theory and case studies to

characterize this relationship. Using traces of communication patterns within each firm, we empir-

ically explore the structure and heterogeneity of a population of informal social networks, derived

from a large email communication dataset, for this population of firms. We empirically explore

the theorized relationships between network structure, organizational context, and outcomes. We

find a surprising amount of heterogeneity across this population, as well as no evidence of an em-

pirical relationship between the structure and performance of these firms. We do find that size

is the primary meaningful variable to characterize structure across these firms, with two notable

caveats. First, we find that an employee’s average number of contacts does not vary with the size

of the firm, and we note that this is meaningful both within the organization theory literature and

quite broadly across the social networks literature. Second, the centralization of these firms does

not vary with size, but it does vary with how firms are geographically dispersed. Overall, this
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computational, empirical perspective reveals a large scale of heterogeneity and lack of meaningful

correlations; this suggests that there is a diversity of communication structures with which firms

can successfully accomplish complex tasks, but also suggests a potential challenge and opportunity

for organization theory. This chapter is being prepared for submission for an organization theory

audience and is coauthored with Duncan Watts.

Chapter 5, “Empirical network construction: computational perspectives on weak ties, sta-

bility, and densification,” explores the construction of networks from communication and interac-

tion data. Expanding from comparison across populations of static networks (Chapter 3 and 4)

to dynamic networks, we empirically explore a range of hypotheses, empirical observations from

single-network studies, and theoretical mechanisms from the social networks literature. This repre-

sents the second contribution from this organizational research program: representing another novel

large-scale data set that I constructed, we examine the dynamics of the communication patterns

from across a population large organizations. We make explicit three variables that are used to

derive networks from interaction data. These variables can be implicitly or explicitly chosen, and

potentially beyond control by a researcher. We describe how previous theoretical and empirical

work has been drawn along these dimensions, and how this perspective can highlight new research

questions. We demonstrate the utility of this framework by examining three phenomena, the theory

of weak ties, network stability, and network densification, and we use a population of large commu-

nication networks of comparable origin to test and explore these ideas. First, considering network

tie strength, we find that empirical structure varies in expected ways for weak and strong ties, but

that very weak ties are qualitatively different. Turning to network stability, we show that despite

global stability of network properties, individual properties vary rapidly over time, suggesting that

cross-sectional analyses may be capturing dynamics other than those intended. Finally, we show

that this perspective admits us to revisit the decorated concept of network densification. We find

evidence for network densification, but we also show that this pattern emerges as an artifact of the

level of activity in the online system. Together, this perspective unites past theoretical work and

novel empirical results, and reveals a range of tools for exploring the foundations of social network
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research from communication and interaction data. This chapter will be prepared for submission

for a computer science audience and is coauthored with Duncan Watts.

In Chapter 6, I conclude with a brief discussion synthesizing this work and point to future

directions for research in this space.



Chapter 2

Background

This dissertation focuses on empirical populations of networks. Here we define relevant

notation that crosses multiple chapters and introduce the data sets employed in the dissertation.

2.1 Notation and measures

2.1.1 Notation: Population-level analysis of networks

Population size N . We describe population size as the number of instances observed

and being compared. For example, a population of university networks (N = 100), a population

of firms (N = 65). Following these examples, the organizations are themselves the unit of analysis

and may vary in size (e.g., by number of employees).

Network G = (V,E). We formalize networks as graphs G = (V,E) where the vertex set

(equivalently nodes) V and edge set (equivalently ties) E ⊂ V ×V represents pairwise relationships

between the elements of V . For our purposes, we will exclude self-edges, i.e., (i, i) 6∈ E ∀ i ∈ V .

We will primarily focus on undirected reciprocated edges, such that if (i, j) ∈ E then (j, i) ∈ E,

and the definitions below will focus on this case.

Size (of a network) S. S = |V | is the number of vertices in an individual network.

Networks are expected to exhibit changes in their structural properties based on their size S (e.g.,

Newman (2010)). We will also be interested in the number of edges, |E|, from which we calculate

average degree.

Occasionally it may be useful to give S =
∑

G SG as the total number of individuals across all
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networks in the population. That is, we analyze and S = 1.2 million Facebook users from N = 100

universities in Chapter 3 and S = 1.4 million active senders from across N = 65 organizations in

Chapters 4 and 5.

2.1.2 Network-level analysis: network measures

These chapters employ a range of traditional network measures that are calculated over static

networks. Beyond these, there are chapter-specific measures that we define in context. We refer the

reader to Newman (2010) for further details and more exhaustive definitions and histories. These

definitions assume connected, undirected networks.

Degree and mean degree 〈k〉. For an individual i ∈ V , the degree of an individual

ki is the number of ties (edges) they are coincident with. This may be in-degree, the number of

incoming directed edges {(j, i) ∈ E} for j ∈ V or out-degree, the number of outgoing directed edges

{(i, j) ∈ E} for j ∈ V . For undirected networks as we employ here, these are the same.

The mean degree 〈k〉 is simply defined as the average over all nodes in the network, that is:

〈k〉 = 1
|V |

∑
i∈V ki. Note that this is equivalent to 2|E|/S.

Density. This represents the fraction of edges that exist out of all possible edges, and is

given by 2|E|
S(S−1) .

Mean geodesic, or average shortest path length L. This represents the average

shortest path distance between all pairs in the network. We define dij to be the pairwise path

distance between two nodes in the network, i.e., the number of “hops” across edges to reach each

other. For example, if i and j share an edge, i.e., (i, j) ∈ E, then dij = 1. If they do not share

an edge, but they do share a mutual neighbor, i.e., (i, j) 6∈ E, (i, k) ∈ E, (j, k) ∈ E, i 6= j 6= k,

then dij = 2. (Note that this is the shortest path, i.e., we always use the minimum length path

between two nodes.) Trivially, dii would be zero. If G is not connected and there exists no path

between i and j then dij = ∞. Then the average shortest path length, or mean geodesic, is given

by L = 2
S(S−1)

∑
(i,j)∈V×V,i>j dij .

Diameter. The diameter of a graph is defined as the longest shortest path in the graph.
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That is, the diameter is given by max(i,j)∈V×V,i 6=j dij , as defined in the previous definition.

Clustering coefficient C. In this work we employ the global clustering coefficient, cal-

culated as the number of closed triplets ({i, j, k} : (i, j), (j, k), (k, i) ∈ E) divided by the number

of connected triplets (“wedges”: ({i, j, k} : (i, j), (j, k) ∈ E)).

2.2 Data

Chapter 3 focuses a new dataset from Facebook’s initial founding, 2004–2005. Chapters 4

and 5 use a novel dataset that I developed; I briefly describe this process in Chapter 2.2.2.

2.2.1 Historical Facebook data

In Chapter 3, we introduce a novel data set that augments the “Facebook100” network data

set. We received the Facebook100 network dataset with permission from Mason A. Porter and

Eric Kelsic. Please refer to (Traud et al. (2011, 2012)) for further detail from their original source.

The Facebook100 network dataset represents N = 100 disjoint networks, corresponding to the

friendship edges within the first hundred universities that received access to the Facebook online

social network. The networks are static and were taken from a single snapshot (in September 2005:

see Jacobs et al. (2015a) or Chapter 3 for more details).

Specific data sets we constructed are available online1 . These include:

• Table of inferred dates that each university gained access to Facebook, February 2004–

September 2004.

• Table of inferred dates that students physically arrived on each university campus in the

fall of 2005.

• University identities associating Facebook100 nicknames to official (IPEDS) data sources.

We additionally use data from the National Center for Education Statistics (Institute of

Education Sciences, U.S. Department of Education) Integrated Postsecondary Education Data

1 https://azjacobs.com/fb100/

https://azjacobs.com/fb100/
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System (IPEDS)2 .

2.2.2 Organizational communication data

In Chapters 4 and 5, we use aggregate, anonymized email metadata for a set of 65 U.S.-based

organizations from a large enterprise email platform, and we aggregate over a contiguous six month

period. We also use organization-level data from the Dun & Bradstreet Hoover’s database3 and

MSN Money4 and our data is drawn from U.S.-based data and organizations. We analyze these

patterns in aggregate.

We create a number of minimal requirements for inclusion to cope with noise in each of

our data sources. The Hoover’s D&B database has inconsistencies and missing data, particularly

among smaller companies and branches (children) of the parent organizations. We strictly use data

aggregated to the highest level parent organization and we consider the full networks under the

highest level parent: we do not separate firms by, e.g., division. Note that we have no meaningful

way to measure behavior, either structure or performance, below the parent level, and comparisons

at the parent level are then strictly comparable across firms.

We make the following reasonable restrictions:

• Organizations must have at least 100 full-time employees across the entire organization,

according to the Hoover’s record. (This mitigates noise from within the Hoover’s database.

This bound also occurs naturally a consequence of choosing publicly traded companies.)

• The Hoover’s database must report sales figures for the organization. (Helps manage noisy

database: if this was missing, other entries were likely missing too.)

• The organization must be U.S.-based and publicly traded on the NASDAQ or NYSE. (The

noisy database is mitigated by publicly available financial information; this increases the

available productivity measures and secondary data.) We use only U.S.-based data.

2 http://nces.ed.gov/ipeds/
3 http://www.hoovers.com/
4 https://www.msn.com/en-us/money

http://nces.ed.gov/ipeds/
http://www.hoovers.com/
https://www.msn.com/en-us/money
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• The number of full-time employees, as listed in the Hoover’s database, must be within

a factor of two of the number of active email senders. (Helps manage merging of noisy

database with noisy estimate: not all senders need to be considered full-time employees,

and not all full-time employees might be active email senders or information workers.)

Additionally, we restrict our data to exclude companies that were acquired during this time.

We also exclude companies that transitioned email coverage during this time period and had rela-

tively stable numbers of active internal senders across the six month time period (moving average

of active senders did not change by more than 30%).

For the few data cleaning tasks where a ground-truth organization was needed, we use data

from a large company with high ground-truth adoption of the email service across the organization.

To ensure regular usage, we aggregate across all senders to get the average (day of the

week, hour) sending volume. This produces a 168-length feature vector of average sending volume

corresponding to every (day of the week, hour) pair (Figure 4.1). As a proxy for accuracy of

individual coverage, we select only organizations with daily average behavior that varies over the

course of the day and is highly correlated with the reference dataset. We use only communication

from within firms, such that we can observe the complete interaction patterns and infer the informal

networks specific to each firm. This represents about 86.1% of all messages sent (mean: 86.1,

standard deviation: 7.3%) across all firms, drawn from 2.1 billion messages in total. Next, we

describe how we derive a network from this email metadata.

Comparability and selection bias. We note that these steps allow for systematic, apples-

to-apples comparisons across organizations. This data curation process necessarily induces bias, as

does working within a single enterprise data source. However, by comparing large firms curated

with strong restrictions to be of similar origin, we exchange a potentially arbitrarily diverse data set

to a smaller data set of 65 firms that are directly comparable. As we are interested in measuring

the empirical heterogeneity across these firms, this curation process represents a best effort in

restricting the amount of heterogeneity due to the instrument (email communication networks),
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rather than among the organizational networks themselves. We discuss the limitations of these

choices in context in Chapter 4.5.

2.3 Network construction from email metadata

We describe the construction of the networks inferred from the observed communication data.

As choices of threshold and modeling choice in the network inference process could plausibly lead to

different outcomes (De Choudhury et al. (2010) and Hofman et al. (2017)), we test the robustness

of our results across different choices (Appendix B.3).

We define active senders as those who have sent and received at least one email from within

the organization in the six month period. While this is a very weak requirement for what constitutes

a ‘real’ sender, it is sufficient to exclude some presumably-automated and inactive senders. we only

include senders in the giant connected component. For network calculations, only senders in the

giant connected component are used. On average, this was over 97% of active senders (mean

fraction in giant connected component (GCC) in the observed networks: 0.974, median: 0.976,

max: 0.991, min: 0.945). This high percentage also serves as validation of the efficacy of the initial

data cleaning process.

For each network, we treat edges as bidirected and condition on each edge being reciprocated:

i and j must have each received at least one email from each other in the six month time period.

As for reciprocity assumptions, this is a very lightweight assumption: there is no restriction on

how many recipients were on such a message. This would include, e.g., j responding to a large

thread of which i is a participant at any point. Although this was already required by definition

of an active sender, we note that this means all senders have minimum in- and out-degree of 1.

In an organizational context, again, this restriction is meaningful: we should largely exclude, e.g.,

automatic distribution lists and automatically generated emails associated with software systems.

We annotate each person-person edge with weights. Following De Choudhury et al. (2010),

we use the geometric mean of the number of messages exchanged between each pair, weighted

by the number of recipients on each message. Specifically, for each pair of individuals (i, j), and
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messages they exchange Iij = {ι1, ι2, . . . , ιmij}, aggregated over the full six month time period, we

define:

• mij = |Iij | = total messages sent from i to j

• mji = |Iji| = total messages sent from j to i

• Reciprocity τij = τji =
√
ωij ∗ ωji, where

ωij =
∑
ι∈Iij

1

number of recipients(ι)

and similarly for ωji. Note that τij = 0 when the link is unreciprocated.

For example, if i emails j directly twice, that will count as weight wij = 2, but if j emails i once when

there are two recipients total and once when there are four, that will count as weight wji = 1
2+ 1

4 = 3
4 .

Then the reciprocity between the two of them will be τij =
√

2× 3
4 = 1.22. Then, one can consider

the full weighted social network, or one can modulate the strength of relationships implied by the

reciprocity score (De Choudhury et al. (2010)). The strength of relationships observed will also

vary with the size of the time window observed: ten emails exchanged in one day vs. ten emails

total exchanged over the course of a year vs. ten exchanged daily most days of the year may all

imply different types of relationships.

We focus on the network aggregated over all six months of data, although we explore the

robustness of our results over different intervals of time and across different thresholds in Appendix

B.3. The results here shown are on the networks with minimum reciprocity strength τij = 1 and

validated on networks with minimum reciprocity strength τij = 5. Prior work (De Choudhury et al.

(2010)) suggests a heuristic of 5–10 reciprocated emails per year to infer relevant social networks

(twice the span of time as here). However, the varied types of relationships captured in an informal

organizational network may vary, and the diversity of relationship strengths may take on different

meaning in this setting. Other than robustness checks of our results, we leave further exploration

of network structure by tie strength to future work.
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2.4 Organizational network properties

The distribution of network properties from across the population of networks are given in

Table 2.1. The representation of organizations across industries is included in Table 2.2.

Table 2.1: Properties of the communication networks.

Mean Median Std. Dev. Min. Max.

Number of senders S 21,247 12,732 30,903 4,446 218,986
Average sender degree 〈k〉 26.9 27.0 8.1 10.6 53.4
Density 0.00261 0.00219 0.00187 0.000132 0.00756
Median sender degree 34.7 34.0 16.5 3.0 91.0
Clustering coefficient C 0.163 0.170 0.047 0.029 0.303
Average shortest path length L 3.17 3.16 0.384 2.37 4.46
Diameter 8 8.34 2.15 6 15
Small world quotient Q 107.9 76.6 90.4 21.7 500.3
Gini coef. of betweenness 0.841 0.841 0.041 0.749 0.938
Gini coef. of degree 0.554 0.540 0.072 0.423 0.783

2.4.0.1 Industry classifications

Industry classifications use the SIC industry code standard. The classification system as

applied here is shown in Table 2.2.5 We use the first two digits of the primary SIC code designation

for each firm. Every classification except for Mining, Construction, and Public Administration is

represented in our data set.

5 http://siccode.com/en/siccode/list/directory; retrieved May 9, 2017

http://siccode.com/en/siccode/list/directory
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SIC No. of
prefix firms Classification

01-09 1 Agriculture, Forestry, Fishing
10-14 0 Mining
15-17 0 Construction
20-39 27 Manufacturing
40-49 7 Transportation & Public Utilities (incl. Communication)
50-51 5 Wholesale Trade
52-59 3 Retail Trade
60-67 5 Finance, Insurance, Real Estate
70-89 17 Services (incl. Technology)
91-99 0 Public Administration

Table 2.2: Industry classifications for SIC codes. We use firms’ SIC code designation to group
firms by industry. The second column reports the number of firms included in this data set.



Chapter 3

Natural experiments in online social network assembly

Online social networks represent a popular and diverse class of social media systems. Despite

this variety, each of these systems undergoes a general process of online social network assembly,

which represents the complicated and heterogeneous changes that transform newly born systems

into mature platforms. However, little is known about this process. For example, how much of

a network’s assembly is driven by simple growth? How does a network’s structure change as it

matures? How does network structure vary with adoption rates and user heterogeneity, and do

these properties play different roles at different points in the assembly? We investigate these and

other questions using a unique dataset of online connections among the roughly one million users

at the first 100 colleges admitted to Facebook, captured just 20 months after its launch. We first

show that different vintages and adoption rates across this population of networks reveal temporal

dynamics of the assembly process, and that assembly is only loosely related to network growth. We

then exploit natural experiments embedded in this dataset and complementary data obtained via

Internet archaeology to show that different subnetworks matured at different rates toward similar

end states. These results shed light on the processes and patterns of online social network assembly,

and may facilitate more effective design for online social systems. 1

1 This text originally appeared in “Assembling thefacebook: Using Heterogeneity to Understand Online Social
Network Assembly” by Abigail Z. Jacobs, Samuel F. Way, Johan Ugander, and Aaron Clauset. Originally printed
inWebSci ’15, June 28 – July 01, 2015, Oxford, United Kingdom. Copyright is held by the owner/author(s). Publi-
cation rights licensed to ACM. DOI: http://dx.doi.org/10.1145/2786451.2786477
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3.1 Introduction

Since their emergence in the mid-1990s, online social networks have grown into a highly

popular and diverse class of social media systems. This class includes now-defunct systems such as

Friendster, tribe.net and Orkut, niche systems such as Academia.edu and HR.com, and large, more

general systems such as Facebook and LinkedIn. In contrast to earlier online social communities

such as newsgroups (Fisher et al. 2006) and weblogs (Marlow 2004), many modern systems tend

to encourage users to transfer offline relationships onto an online setting. Despite the wide variety

of these systems—professional vs. personal, contextual vs. general, virtual vs. anchored offline—all

of these systems undergo a general process of online social network assembly that represents the

complicated and heterogeneous changes by which newly born systems evolve into mature platforms.

Relatively little, however, is known about the central tendencies or variability of this process,

while such understanding would shed considerable light on the effective design of new platforms.

As a result, questions abound. How much of a network’s assembly is driven by simple growth

processes? How does a network’s structure change as it matures? How does network structure

vary with adoption rates and user heterogeneity, and do these properties play different roles at

different points in the assembly? Are there distinct developmental “phases” to the assembly of

these systems?

One reason we lack good answers to such questions is a lack of good data. Traditional online

social network datasets fall short in two key ways. First, understanding the effects of different

processes requires a network-population perspective, in which many parallel network instances can

be examined in order to discern the natural variability of network structure. Second, in the rare

situations where populations of networks have been available, such as the National Longitudinal

Study of Adolescent Health (Resnick et al. 1997), the underlying social processes do not vary

across network instances enough to identify and model different aspects of assembly. By analogy,

in social networks recorded from survey questionnaires, it is well-known that different so-called

name generators (Campbell and Lee 1991)—questions used to elicit social ties—lead to networks
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with substantially different structure. As a broad generalization for online social networks, we

are interested in the general consequences of variations in the circumstances under which social

networks are assembled online.

To understand the structural impact of different assembly processes, we therefore need

a population of networks that vary dependably in their assembly. The so-called Facebook100

dataset (Traud et al. 2012), which is a snapshot of N = 100 within-college social networks on

Facebook in September 2005, provides just such a population. These networks provide a unique

perspective on the very early assembly of a major online social network platform. Crucial to our

investigation, these networks vary somewhat in their sizes, characteristics, and history. Each net-

work has a different “vintage,” representing a different amount of time between when the college

first adopted Facebook and when the snapshot was taken. These vintages, and differential adop-

tion rates across colleges, effectively reveal temporal dynamics of the assembly processes, which

we exploit. Finally, a series of natural experiments related to the academic calendar and college

characteristics created sufficient heterogeneity at the user- and network-level, which in turn can

reveal certain aspects of the underlying assembly processes.

As an example of a natural experiment we can exploit, we note that these 100 colleges joined

Facebook sometime between its launch in February 2004 and the end of September 2004 (Fig. 3.1).

Because this period spans the end of the 2003–2004 school year, students in some graduating classes

of 2004 would have experienced Facebook only as alumni (colleges that joined after graduation)

while others experienced it as students (colleges that joined earlier). Comparing the subnetworks

of these two groups of students, who should otherwise be fairly similar, with each other and with

students of earlier or later graduation years, will shed light on the importance of physical proximity

and on-campus interactions in driving network assembly.

As an additional natural experiment, the networks were observed in early September 2005,

during the beginnings of the 2005–2006 academic calendars, dates that again vary considerably in

this population. As a result, students in the class of 2009 (incoming freshmen in 2005) enrolling

at colleges with late start dates (late September) were observed before any significant offline inter-
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actions could have taken place (excluding brief summer orientation programs and students from

the same high schools). As the students in these classes largely lack any shared historical context,

the networks corresponding to colleges with late start dates primarily represent assemblies of rela-

tionships formed online, rather than offline. In contrast, students in the class of 2009 enrolling at

colleges with early start dates will have shared a real world context. This affords an opportunity

to ask: how do online social networks encoding online interactions differ in structure from networks

that are also encoding offline interactions? We address this by constrasting the classes of 2009 at

these early- and late-starting colleges.

By complementing the Facebook100 dataset with the above dates (a modest Internet-archaeological

effort2 ), as well as with basic statistics provided by the U.S. Department of Education, we pro-

vide a unique, discerning perspective into how online social network structures differ depending

on (i) the presence or absence of an underlying offline social network (by studying the classes of

2009), and (ii) the presence or absence of present-time social interactions (by studying the classes

of 2004). We also present broad analyses of the population-level variability of network statistics

in a general assembly process observed at different vintages. These results shed new light on the

general processes that shape social network assembly in online environments, and may facilitate

more effective designs of online social systems that relate to the offline world.

3.2 Facebook in the age of Friendster

In 2015, Facebook is today a large and sophisticated social media system, claiming more

than 1.44 billion monthly active users (as of March 2015). In 2005, however, Facebook was a very

different kind of online social network, in a correspondingly different social media landscape (boyd

and Ellison 2007).

Facebook launched at Harvard University on February 4th, 2004 under the name thefacebook.com,

at a time when the dominant online social networks were Friendster and MySpace. A host of other

online college “facebooks” such as CUcommunity, CampusNetwork, and CollegeFacebook were also

2 These data supplements are available at http://azjacobs.com/fb100/
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Figure 3.1: Key milestones in the early history of Facebook, including launch dates for the 100
colleges in the Facebook100 dataset.

emerging, in addition to efforts by individual universities to move their student directories onto the

Web. Facebook initially limited registration to users affiliated with a sanctioned but growing list of

colleges, starting with Harvard (Figs. 3.1 and 3.2). Facebook’s popularity spread quickly3 , and by

3 The Daily Northwestern describes the first 48 hours of Facebook access at Northwestern University thusly: “
‘It’s an epidemic. . . my whole hall is infected,’ said Erica Birnbaum, a Communication freshman. But it’s not only one
hall. After being available for only about 34 hours, 931 NU students already had registered as of 8 p.m. Monday . . .
Such a large quantity of friend request and confirmation e-mails being sent from the Facebook caused Northwestern
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Figure 3.2: The cumulative distribution of schools in the Facebook100 dataset, by date added to
Facebook during 2004 (left) and by start of the 2005–2006 school year (right). Shaded regions show
how colleges are divided in terms of having received access to Facebook before or after the end
of the 2003–2004 school year and whether or not the 2005–2006 school year had begun when the
Facebook100 dataset was collected.

the time of the Facebook100 snapshot (September 2005), Facebook had dropped the “the” in its

name, opened to over 800 colleges, and had just begun opening itself to high school students. By

December 2005, Facebook’s user base numbered 6 million, compared to 20 million for Friendster

and over 22 million users for MySpace. In September 2006, Facebook opened to all persons over

the age of 13.

Description of the network dataset The Facebook100 dataset (Traud et al. 2012)

contains an anonymized snapshot of the friendship connections among S = |V | = 1, 208, 316 users

affiliated with the first 100 colleges admitted to Facebook, all located in the United States. This

comprises a total of |E| = 93, 969, 074 friendship edges (unweighted and undirected) between users

within each separate college. Each vertex is associated with an array of social variables representing

the person’s status (undergraduate, graduate student, summer student, faculty, staff, or alumni),

dorm (if any), major (if any), gender (M or F), and graduation year. Across all networks, only

0.03% of status values are missing. Other variables have slightly higher missing rates (gender:

5.6%; graduation year: 9.8%). Dorm and major have higher rates still, which is likely related to

University Information Technology to block all mail sent from the site Sunday night. . . ‘It was viewed as an attack
against the network.’ ” (26 April 2004)
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off-campus living and undeclared majors. The completeness of these data reflects the pervading

social norms surrounding data privacy expectations in 2005, and possibly a selective bias against

users who disliked the default setting of sharing all information within the college network (Acquisti

and Gross 2006; Tufekci 2008).

For nearly all colleges, alumni made up about 10–25% of users, a quantity that increased

with the age of the network. Vertices labeled as faculty, staff or students who were not regu-

lar undergraduates (graduate students and summer students) made up on average 4.1% of each

population.

Each college network includes an “index” variable that gives its ordinal position of when

it joined Facebook: Harvard is 1 and Trinity College is 100 (Fig. 3.1). For each network, we

acquired college-level variables (enrollment, public vs. private, semester vs. quarter calendar) from

the Integrated Postsecondary Education Data System (IPEDS) provided by the U.S. Department

of Education (National Center for Education Statistics 2014). Full-time undergraduate enrollment

from 2007, the earliest date for which data are fully available, was used a proxy for 2005 enrollment.

By dividing the number of undergraduate accounts in each college network by reported enroll-

ment, we can estimate the fraction of students in each network who were on Facebook, a measure of

service adoption (Fig. 3.3). In some cases, the estimated ratio exceeds 1.0 as a result of either errors

in our enrollment numbers, part-time students on Facebook who were not counted as “full-time

enrolled,” or multiple/fake accounts at the few colleges that allowed students to control multiple

email aliases and circumvent Facebook’s initial limits on access.

3.3 Online social network assembly

Online social network assembly is the process by which networks transform from initial cre-

ation to a mature online social network. Assembly processes are affected by the composition of

the community, online and offline social and behavioral practices, limits on growth (e.g., needing

an elite university email address), and competition from other systems, among other mechanisms.

Assembly can in part be characterized by the sequence of structural changes that newly-born on-
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Figure 3.3: Fraction of undergraduates that adopted Facebook vs. network index. Vintage is
visualized with network index, the order in which schools were given access to the site. Size
corresponds to the size of the undergraduate population. Color indicates the date on which schools
were opened to Facebook.

line social networks undergo as they mature. In particular, this area of study aims to identify

and model the underlying social processes that guide assembly, and to identify the ‘developmental’

patterns that are common across different networks. Here, we focus on the role of network growth,

user heterogeneity, adoption rate, and network ‘vintage’ in shaping these assembly patterns. We

examine the impact of these elements on structural patterns in the networks, e.g., their degree

distributions, clustering coefficients, diameters, and community structure (Ugander et al. 2011), as

well as understanding how those patterns change under network growth (Backstrom et al. 2012),

how they vary across subpopulations within the network, and what social processes govern these

patterns and variations. We note, however, that reliably connecting observed patterns with the cor-

rect underlying processes can be complicated, as different processes can sometimes lead to similar,

or even identical, structural patterns (Mitzenmacher 2004).

By comparing patterns across these networks, we aim to characterize the scale and sources of
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natural variation. Here, several observable features of Facebook’s early college networks—differing

potential network sizes, ages, adoption and heterogeneity of context—play important roles in shed-

ding light on its early assembly. First, its staged expansion among colleges during 2004 produced

a population of online social networks of different vintages, at schools of different sizes, within

which the service was adopted at different rates. Second, the graduation year annotations identify

subpopulations that changed identity during the time observed, e.g., different classes that joined

or left the campus environment.

Processes and models of assembly Online social network assembly is a special kind of

network evolution. Most techniques and statistical models developed for analyzing the structure

of temporal networks (Holme and Saramäki 2012), however, cannot be applied to the Facebook100

data because these networks are not snapshots of a single evolving system. Instead, we will exploit

the several ways that temporal information is embedded within the observed network structures and

represented in their covariates, e.g., vintage and adoption rates at the network level and graduation

year at the vertex level.

The simplest model of assembly is network growth, in which the number of vertices and edges

grow monotonically in some way. Several simple models of network growth exist, including many

variations on preferential attachment (Kumar et al. 2010), in which new users join the network and

create connections with existing users with probability proportional to those users’ current degree;

randomly grown networks (Callaway et al. 2001), which are related to classic random graph models;

and the forest-fire model (Leskovec et al. 2005a, 2007), which is related to preferential attachment

but produces both greater local clustering and a shrinking diameter. Crucially, these models assume

that assembly is a homogeneous process, and thus network structure changes uniformly across all

subsets of vertices (Schoenebeck 2013). In contrast, the assembly patterns of real online social

networks are likely to be considerably more heterogeneous, both at the vertex level and at the

network level. These models thus hold value primarily as theoretical reference points in our analysis.

Social surveys of early Facebook users provides some hints about the processes governing

its assembly, and support our claim that assembly in real networks is unlikely to be simple or
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homogeneous. One survey from 2006 found that students of different graduating years had different

usage patterns, and that older students—those whose college careers were mostly over by the time

Facebook arrived on their campus—were less likely to adopt the service (Tufekci 2008). Thus,

local network structure is likely to vary by graduating year. Several surveys also found evidence

that online connections on Facebook among current students generally reflect pre-existing offline

relationships (Lampe et al. 2006; Mayer and Puller 2008). This implies that Facebook’s early

assembly should reflect the inhomogeneities of real-world social processes, which depend on factors

like age, gender, and being on campus.

From a theoretical perspective, the social processes that seem likely to influence assembly

in these networks can be divided into two major dichotomies: offline/online processes and contem-

porary/historical processes. In the first case, offline processes are those driven by relationships in

the offline world that are then transferred to an online setting, while online processes are confined

to mechanisms mediated by digital interactions alone. In the second case, contemporary processes

are those that reflect social events in the present time, while historical processes are those where

the formation of links in the online social network is driven by pre-existing relationships that are

brought online.

These classes represent different ways that social connections can be recorded in online net-

works, and are orthogonal to the social processes that drive link formation, such as homophily,

social status, or strategic behavior. For instance, triadic closure—the event in which two people

who have a mutual friend, but who are not themselves currently friends, become friends—can drive

relationships in the past or present, because closing a triad can occur at any time, and can be

mediated by either offline or online interactions. Different endogenous or exogenous forces can also

shape the assembly of a particular online social network. For instance, features like Facebook’s

“People You May Know” module influence which links form by facilitating the transfer of offline

relationships to the online network (Zignani et al. 2014b), while competition from other systems

can impede or reverse link formation altogether (Ribeiro 2014). The systematic loss of links, and

more generally the decay and disassembly of online social networks is a related but distinct re-
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search domain, as disassembly processes are not simply assembly processes in reverse (Bascompte

and Stouffer 2009; Garcia et al. 2013).

Here we focus on three distinct types of social processes in our data, and how they relate

to the network assembly of early Facebook: (i) the transfer of offline historical friendships to the

online environment (Ellison et al. 2007), (ii) the formation of connections that reflect present day

and offline interactions in the college environment, and (iii) connections formed purely online. We

expect to observe a mixture of these processes, and the corresponding patterns they induce, across

our network population. Furthermore, because past work suggests that Facebook connections,

from the very start, reflected offline social interactions (Lampe et al. 2006; Mayer and Puller 2008),

we expect that networks further along in the assembly process will more closely resemble complex

offline social structures. We expect strong differences in how quickly different Facebook subnetworks

assemble, for instance between students and alumni, because students often live together, take

classes together, socialize and work together and alumni generally do not.

Network growth due to accretion, in which existing users invite their friends to the network,

and due to triadic closure mechanisms would tend to make the more mature subnetworks appear

more dense, with higher mean degrees, and lower mean geodesic distances than less mature subnet-

works. We expect the differences between subnetworks to decrease with older vintages. In addition,

we expect different subnetworks to mature at different rates, unlike previous work that focuses on

homogeneous processes (Schoenebeck 2013).

Finally, given Facebook’s role in 2005 as a campus-oriented social network, we expect that

adoption among undergraduates can be used as a proxy for maturity of the network. As the early

design was to facilitate within-campus interactions, the college online social networks would grow

by adding new users and increasing the connections among them. High adoption indicates the

online social network would be nearing its effective finite limit for the undergraduate network.
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3.4 Vintage, growth, and adoption in network assembly

To begin our analysis, we first test how changes in network structure are related to network

size, network vintage, and service adoption. While the domain of study about network growth

investigates the relationship of network properties to network size, it is an open question whether

network assembly can be strictly explained by network size or network vintage, the relationship to

which is not obvious a priori. We thus expect to see either no relationship between a particular

measure of network structure and age—in the case that the corresponding network property is

roughly stationary under the assembly process—or a simple relationship—in the case that the

property is gradually modified with age. Alternatively, if assembly is equivalent to simple growth,

as in traditional network models of growth, we expect to see certain specific relationships between

network measures and network size. We evaluate these two competing hypotheses by examining the

relationship of standard measures of network structure, such as mean degree, clustering coefficient,

mean geodesic distance, and degree assortativity with network size S and vintage.4

We find that these networks as a population exhibit the classic “small world” pattern found

in many social networks, with small pairwise distances and relatively high average clustering co-

efficients, capturing the frequency of triangles to length-two paths (Watts and Strogatz 1998).

Specifically, the mean geodesic distance (average length of a shortest path) scales like O(logS)

with network size S, while the clustering coefficient scales like O(1/S),5 seemingly towards a mod-

est constant as an asymptotic end state (Fig. 3.4); in contrast, neither mean geodesic distance nor

clustering coefficient varies clearly with vintage. The rising mean geodesic distance with S, and its

independence of vintage, contrasts with the graph densification literature (Leskovec et al. 2005a),

which predicts a falling distance with size or time, and it is instead consistent with basic theories

for random graphs, which predicts a O(logS) behavior. The fact that a densification pattern is

observed in Facebook several years later (Backstrom et al. 2012) suggests that online social net-

4 For clarity, we visualize the schools by network index, corresponding to the order in which schools were added
to Facebook. In these cases we overlay the color corresponding to the date added (Fig. 3.1), thereby vintage is
monotonically increasing with index.

5 In light of the O(logS/S) scaling we uncover in Chapter 4, future work should explore a broader range of
hypotheses across this population of graphs.
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Figure 3.4: (top) Mean geodesic distance (shortest path length), and (bottom) mean clustering
coefficient ordered by school size S and by network index. In agreement with results from random
graph theory, the mean geodesic distance varies like O(logS) and the clustering coefficient varies
like 1/S. Color indicates the vintage of the network by date added. Dashed lines show an ordinary
least squares fit to the data, demonstrating little to no trend between network features and vintage.

work assembly may go through distinct developmental phases, with an early phase of sparsification,

resembling a growing random graph (Callaway et al. 2001), that is followed much later by densifi-

cation. The falling clustering coefficient pattern observed here, which is expected in random graphs

but not in social networks (Newman 2010), supports this hypothesis.

We examine several other measures of network structure, such as mean degree; assortativity

on vertex degree (Pearson correlation of degrees between connected pairs); and modularity by

gender or major. Modularity quantifies whether pairs share an attribute more than expected by

random (positive) or less (negative) (Newman 2010). We find very weak or no correlation with

network size or network vintage (Fig. 3.5). The lack of any clear relation with size and vintage for

these measures supports the notion that the online social network assembly process for Facebook

college networks is not uniquely explained by size and vintage. That is, assembly is more complex
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Figure 3.5: Relation of various network features to network size and network index. Colors indicate
the vintage of the network by date added. Dashed lines show an ordinary least squares fit to the
data, demonstrating little to no trend between network features and vintage.

than simple growth or network vintage.
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As Facebook was introduced to different colleges, each school’s online social network grew

within a finite social space, limited by the size of the student population. The fraction of service

adoption describes the relative growth in these populations and is therefore a plausible measure of

the maturity of each network in this context. We expect to see more clear correlations between

measures of network structure and the maturity of a networks’s assembly process. (Because adop-

tion levels are estimated only among students, we restrict these analyses to the induced subgraph

among student vertices.) In Fig. 3.3 we find a relationship between vintage and adoption. We also

find that as adoption increases, the normalized mean geodesic distance, i.e., the distance divided

by the overall O(logS) pattern, tends to decrease slightly (Fig. 3.6). That is, the greater the

level of adoption, the shorter the paths between a pair of individuals, controlling for network size

(Fig. 3.4). Thus, adoption, rather than size, may be a better measure of the maturity of a network

under assembly. Furthermore, this supports the two-phase developmental process, in which path

lengths should grow during a sparse growth phase, and become on average shorter as the network

densifies.

The degree distribution is a network description of great interest, with social networks fre-

quently exhibiting heavy-tailed degree distributions. A consequence of this heavy-tailedness is the

unequal distribution of mean neighbor degree to mean degree (Kooti et al. 2014). For regular

graphs this ratio is one, while for all other degree distributions it is necessarily greater than one.

We use this ratio as a proxy for the heavy-tailedness of the degree distribution, and find that de-

gree distributions become less heavy-tailed as networks mature (Fig. 3.7). That is, even though the

mean degree of a random neighbor of a vertex and the mean degree of a random vertex both tend

to increase with adoption, the mean degree of a random vertex grows slightly faster as a network

matures. This pattern is consistent with the two-phase developmental pattern suggested above,

where an initial phase of sparse growth with many new vertices and comparatively few connections

are added, and then followed by a densification phase, where new connections are mainly added

between existing vertices.

Together, these results argue that network assembly is not simply network growth, or vintage,
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Figure 3.6: Even after controlling for size, the mean geodesic distance decreases with adoption in
undergraduate networks. Color corresponds to the vintage of the network by date added.

Figure 3.7: Mean degree increases and degree distributions become less skewed in more mature
networks, shown here by adoption rate. Color corresponds to the vintage of the network by date
added.

or adoption, and furthermore, that the Facebook100 networks are drawn from a single online social

network assembly process. However, heterogeneity of the network assembly processes is induced by

differences in network size and network adoption. The Facebook100 networks can provide useful

insights into how these mechanisms interact, and heterogeneity within subpopulations of these

networks can potentially reveal greater insight into the assembly mechanisms at play.
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3.5 Heterogeneities from natural experiments

Accidents of history and the timing of our snapshot induced auspiciously observable hetero-

geneities in the online and offline assembly processes of our population of college networks. In this

section, we examine these heterogeneities as natural experiments to explore the variability in online

social network structure due to differing processes. These natural experiments are useful because

they let us examine how different subpopulations of users differ in their connectivity, which lets us

identify the detailed processes by which these networks assemble.

We begin by first examining basic differences among different subpopulations defined by

graduating class year. We then use the timing of the arrival of freshmen on campus (in 2005,

at the time of the snapshot) and the arrival of Facebook on campus (in 2004, either before and

after the class of 2004 graduated) to investigate the maturity of the online social networks more

precisely. Finally, we find that the subnetworks that had less time to mature (due to environmental

and historical reasons) share broad structural patterns with the university networks that had lower

adoption rates.

We first look at differences among the undergraduate population (Fig. 3.8). The classes

of 2008 and 2009 arrived on campus as freshmen in the fall of 2004, at a similar time or after

Facebook, and thus formed their offline and online social networks almost concurrently. Previous

work found that classes with more established offline networks prior to Facebook’s arrival had

observable differences in behavior: survey research conducted within our sample showed that the

classes of 2008 and 2009 were more likely than the classes of 2006 and 2007 to form offline friendships

as a result of online friendships (Ellison et al. 2007). On the other hand, for the classes of 2006,

2007, and 2008, students had access to Facebook for a similar amount of time, so these networks

should have had equal opportunity to assemble. Thus, we can investigate the roles of time and

offline social context among these classes.

Between the classes of 2006, 2007, and 2008, we observe that the class of 2006 has notably

lower mean degree, a more skewed degree distribution, and higher modularity by major. The lower
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Figure 3.8: Distributions of undergraduate network features across the population of 100 schools,
by graduating class. Distributions are visualized using kernel density estimation. Arrows move
from class of 2009 to classes of 2007 and 2008, the classes with the highest adoption, when the
difference between those distributions is statistically significant (two-sample KS test, p < 0.01).

mean degree and higher skew are consistent with a less mature network, possibly due to lower en-

gagement (Tufekci 2008), while the higher modularity by major suggests that these upperclassmen

simply mix less across majors.
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Figure 3.9: Network features ordered by date new students arrived on campus, August–September
2005. The snapshot was taken in early September 2005 (gray). The dashed lines are LOESS curves
over schools that began before and after September 1, shown with 95% confidence intervals about
the mean.
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Class of 2009 natural experiment Across most statistics, the most strikingly different

distributions are those that describe the class of 2009 networks (Fig. 3.8). The class of 2009

primarily began their undergraduate careers in the fall of 2005, when the snapshot of our data was

taken. As these new students only recently gained university affiliations, the class of 2009 networks

would have had the least time to develop. Notably, a fraction of these classes would have arrived

on campus before the snapshot was taken, and those classes could have an offline basis for their

online friendships.

Overall, the class of 2009 networks have lower average degree, more skewed degree distri-

butions, and are disassortative by gender, whereas the older classes are assortative by gender.

Studying these differences at the distributional level, it is not clear whether the differences we

see in Fig. 3.8 are the result of the reduced vintage of these subnetworks, with students having

only joined Facebook during the summer of 2005, or some difference of assembly connected to the

principally online interactions that formed these networks. Enter the natural experiment.

Students enrolling in the fall of 2005 generally obtained access to Facebook during the summer

of 2005, in conjunction with obtaining university email addresses. Activity on Facebook for students

not yet on campus was essentially limited to online “social browsing” (Lampe et al. 2006), as they

possessed no offline context yet to motivate “social searching.” Through Internet-archaeological

research, we gathered the calendar dates that incoming freshmen arrived on campus in 2005 at the

100 involved colleges to discover if and to what degree the observed differences in network structure

could be connected to opportunities for offline interactions (Fig. 3.9). We first observe a strong

relationship whereby the networks for new students who have spent more time on campus—but

similar amounts of time socializing online—are more mature. Students that have spent more time

on campus have higher mean degree, less skewed degree distributions, as well as higher adoption

overall. Interestingly, we find strong evidence for a pattern of social browsing focusing on the

opposite gender: students that have spent more time physically together, and thus are more actively

engaging in social search, are more gender assortative than students that have primarily interacted

online.
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Controlling for the size of the freshman networks, there are three data points of particular

interest: Northeastern, Caltech, and Tulane. At Northeastern, most undergraduates are enrolled in

programs that are explicitly five-year programs: that is, students identify at the outset as having a

five-year graduation date. (This is in contrast to most colleges, where students enter identifying with

a four-year graduation date, despite potentially longer times to completion.) For the Northeastern

networks, the class of 2009 shares properties well-aligned with the second year (sophomore) students

at other schools; this should be expected, as most of the members of the Northeastern class of 2009

began college in Fall 2004, not 2005. Caltech, meanwhile, is known to have an exceptional social

environment among the schools in the Facebook100 dataset, as was studied closely in earlier work

(Traud et al. 2011, 2012). Caltech is an outlier on almost every network metric including clustering

coefficient and modularity by dorm. The structure of Tulane’s class of 2005 has at play unique

external events, namely the massive disruption due to Hurricane Katrina, which hit New Orleans

on August 29, 2005. Tulane freshmen ultimately spent very little time physically on campus, but

may have coped with this significant event by connecting through the medium of Facebook during

the early days following (Phan and Airoldi 2015).

Class of 2004 natural experiment Shifting our focus to the opposite temporal end of

the dataset, the alumni in our sample reflect a diversity of social, spatial and cultural settings,

and notably lacked the opportunity for closed mixing within university campuses. In Fig. 3.10,

we consider three graduating classes of students: 2003, 2004, and 2005, which in sum comprise

on average 84.4% of the alumni users at the time of the snapshot. (Less than 5% of alumni

have observable earlier class years; 11.4% of the alumni do not report their class year.) We first

investigate differences between these three classes, of which the class of 2005 spent almost a full

year with Facebook while colocated on campus; some of the class of 2004 gained access to Facebook

before graduating (Fig. 3.1), a distinction we will explore more deeply next; and the class of 2003

only having gained access to Facebook after graduation. We analyze the induced subgraphs of these

alumni classes, and find that the more recent alumni networks are more mature, and furthermore

that the class of 2004 network appears to represent a maturity level intermediate to the class of
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Figure 3.10: Distributions of alumni network features across the population of 100 schools, by
graduating class. Distributions are visualized using kernel density estimation. Arrows move from
the class of 2003 (lowest adoption) to the class of 2005 (highest), when the difference between those
distributions is statistically significant (two-sample KS test, p < 0.01).

2003 and 2005. This smooth transition suggests that the university environment induces additional

online assembly of the offline social networks being captured.

The graduating class of 2004 primarily finished their undergraduate careers during May and
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Figure 3.11: (top) Network adoption for different class years. The boxes are bound by the 25th
and 75th percentiles, and the center line is the median. (top center) Network adoption for each
university network by the class of 2004, ordered and shaded by date the university gained access
to Facebook. (below) Network properties for the class of 2004 by date of access to Facebook. The
shaded region separates classes that graduated prior to gaining access to Facebook, and the dashed
lines are LOESS curves, shown with 95% confidence intervals about the mean.

June of 2004. Concurrently, Facebook was spreading to increasingly many campuses, with students

at Harvard (id=1) graduating after several months on Facebook, and the University of California



54

San Diego (id=34) after just a few weeks. Of the 100 colleges in the sample, 66 did not gain access

to Facebook until after the class of 2004 graduated, so those new alumni would no longer share the

university environment when they joined.

Again using Internet archaeology—primarily via the Internet Archive, the Spring 2004 Media

Kit from TheFacebook LLC, and student newspapers—we collected the dates that universities

joined Facebook in order to tease apart the effects of the university environment on the early

growth of the Facebook network. Across the different school networks, the class of 2004 student

populations have approximately constant demographics, and the first 34 schools are comparable

by size, public/private status, and geography compared to the remaining 66 (Figs. 3.1, 3.3). Thus,

other things being equal, we can examine the impact of the arrival of Facebook on the network

assembly of the class of 2004.

At the time of the snapshot, over a year past most students’ graduation and granted access

to Facebook, adoption still tracks strongly with the arrival time of Facebook (Fig. 3.11). We also

find that mean degree correlates with arrival time, both of which suggest that the offline and

cohesive social environment played a role in the rate at which these networks grew. Other variables

did not exhibit a strong trend throughout this transition. This negative result suggests that the

class of 2004 networks were of relatively constant maturity level. Arguably, this maturity level

interpolates between the classes of 2003 (whose network assembly was almost exclusively outside

of the college environment) and 2005 (whose graduating students were able to connect while on

campus) (Fig. 3.10), whereas the size of the network was largely determined by the amount of time in

a shared offline context. This suggests that the initial transition into alumni status realized a similar

level of complexity of existing offline social structures, as opposed to the sharp transition exhibited

among freshmen arriving on campus, with a discrete start time and novel social connections. This

suggests that the type of shared offline context plays a significant role in the trajectory of network

assemblies.
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3.6 Discussion and conclusions

The large size, early rise, and storied history of Facebook make it a model system for studying

the processes and patterns of online social network assembly, i.e., the complicated and heterogeneous

changes these networks undergo as they mature. The Facebook100 networks capture a special part

of this history—the first 20 months, the first 100 colleges, and the first one million users—which

allows us to investigate the early stages of assembly. Our analysis sheds new light on the extent

to which a network’s assembly is driven by simple growth, how a network’s structure changes as it

matures, how network structure varies with adoption, and how the connectivity patterns of different

groups of users tends to converge, at different rates, on similar end states.

Each of these results depended on our using a population of social graphs to measure dis-

tributions of structural statistics, which allowed us to better estimate the natural variability of

network structure produced by the underlying social processes. In contrast, many other studies

rely on a single network instance, which makes it difficult to identify whether some pattern reflects

a general insight or a special case. Many questions and tasks in the analysis of networks would

benefit from this kind of population approach.

Applied to the Facebook100 data, this approach revealed several novel insights into the

assembly of online social networks. First, these graphs exhibit a clear O(logS) dependence for the

mean geodesic distance (Fig. 3.4). This pattern agrees closely with conventional wisdom, which is

largely drawn from classic results in random graph theory, but it defies recent claims about general

“densification laws,” which predict shrinking rather than growing distances. These results are

not, in fact, contradictory, and instead suggest that online assembly proceeds through two distinct

phases.

Initially, a network grows via sparsification, adding many new vertices from the extant pop-

ulation and a relatively smaller number of connections among them. For early Facebook, each

time a new college joined, or a new class arrived on campus, this phase started anew within that

population and proceeded as the adoption rate rose from zero. The second phase begins once the
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network has expanded to include a large fraction of the available population. Then, assembly tran-

sitions into a densification pattern, adding many connections among existing vertices and a smaller

number of completely new vertices. Of note, these two phases can be seen as corresponding to the

growth and saturation phases of logistic growth within a finite population (Barrat et al. 2008).

Past work on distances in the large-scale Facebook social network (Backstrom et al. 2012)

corroborates our finding: the mean geodesic distance between users peaked in 2008 and subsequently

shrank, illustrating a transition into a densification pattern around that time. Between its opening

to the general population in 2006 and 2008, Facebook was expanding rapidly into new populations,

and our findings imply that its large-scale structure grew according to a sparsification pattern. The

2008 transition to densification implies that Facebook’s expansion into new populations began to

slow then, allowing continued link formation to begin to densify the network.

We find further evidence for this same two-phase pattern within the Facebook100 networks,

distributed across different subpopulations, which experience network assembly at different rates

but toward similar end states. By combining these networks with additional information about

Facebook adoption rates, and college graduation and matriculation dates, we leveraged two natural

experiments within these networks to show how structure varied between students on and off

campus, between students of different graduating years, and between alumni and current students.

Each of these analyses showed a consistent behavior: the longer a subpopulation had access to

Facebook, especially for students on campus, the greater its level of adoption. As adoption increases

we see distances shrink, degrees increase, and degree distributions becomes less heavy tailed.

This model would predict that just before Facebook opened up to the general population

in 2006, the network structure within each of its college subnetworks was very mature, having

reached high levels of adoption. Opening up to a wider range of users, however, moved the system

as a whole back into the sparsification phase. As Facebook spread into this large and unadopted

population, its diameter expanded and its degree distribution became more heavy-tailed, before

transitioning back into the densification phase, as a greatly enlarged system, in 2008.

The specific processes by which online social networks assemble are also implicated by our
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results, which sheds new light on several understudied questions about networks. The online

assembly process described above tends to sample offline individuals and relations (Schoenebeck

2013), a pattern supported by social surveys of users at the time (Tufekci 2008). Online social

networks that specifically reflect such offline relationships are thus different than those based on

mainly online interactions. For instance, consider assortativity by gender among new students

(Fig. 3.9): those who had not yet arrived on campus tended to connect with students of the opposite

gender. In contrast, those on campus tended to connect with those of the same gender, which is

the pattern observed among older students already on campus. That is, the former group did not

have the offline social interactions to ground their behavior in reality, and thus treated Facebook

very differently—apparently, like a dating website—than on campus students embroiled in the rich

offline social milieu of college life.

Looking forward, it seems clear that designing or modifying online social networks is a task

best done with a detailed understanding of how different social factors and processes influence the

particular trajectory that assembly takes, both at the level of individual users and at the level of

the entire network. That is, human behavior is not independent of the design of these systems, and

designs are likely to be more effective and more useful if they are informed by an understanding of

their impact on the long-term structure and function of these networks. The study of online social

network assembly promises to shed new light on these tradeoffs.
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Chapter 4

A comparative study of informal social networks in firms

“Within a firm, informal networks are as an important a factor of production as its
financial capital, buildings, and machinery and the human capital of its personnel.”
Flap et al. (1998)

Informal communication networks within firms represent the connections among workers

across which information and organizational learning are transferred, status is exchanged, and

social, mentoring, and administrative relationships are shared. Despite wide attention to the impli-

cations of the patterns of these relationships, little is known about the natural heterogeneity across

communication networks in firms, and how the structure of those networks varies with attributes

or performance of the organization. We present a comparative study of high resolution, within-firm

communication network structure across 65 U.S. based, publicly traded firms of varying industries,

sizes, and formal organization. We find a high level of heterogeneity across organizations, where

within-type variation exceeds between-type variation. We largely find a lack of relationship between

organizational type and network structure, as well as between network structure and organizational

performance. The primary meaningful variable related to informal network structure is its size—

although we find that the average individual’s number of contacts, while varied, does not depend

on the size of their organization. We find that centralization in firms does increase with geographic

and organizational dispersion through increases in information bottlenecks, but surprisingly, we

find no relationship to firm size or age. The scale of this heterogeneity and lack of meaningful

correlations suggests that previous results based on case studies may reflect over-fitting. This novel

empirical perspective suggests a potential challenge and opportunity for organizational theory.
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4.1 Introduction

In “The Comparative Study of Organizations,” Blau 1965 laid out the need for the “system-

atic comparison of a fairly large number of organizations in order to . . . determine relationships

between attributes of organizations.” Such comparisons are necessary to advance the field of orga-

nization theory, he argued, and if undertaken, the initial empirical tasks would be straightforward:

for example, measuring relationships between centralization and firm size, age, and industry. Such

studies would allow the testing of existing organizational theory, as well as establish a basis from

which to advance new theories. This motivation is both foundational and uncontroversial: in Blau’s

setting, “the comparative method, in the broadest sense of the term, underlies all scientific and

scholarly theorizing,” just as it does today.

Within organizations, patterns of communication reflect diverse types of relationships: status,

power, knowledge transfer, collaboration, mentorship, and friendship all are encoded within these

ties. The efficacy and success of organizations and individuals is widely thought to vary with

the structure of these relationships within the organization. As one author said simply, “Social

networks matter” (Kleinbaum 2017). The capabilities, responsiveness, and innovation of a firm

are all thought to vary with the structure of these informal networks (Ahuja 2000; Kleinbaum and

Stuart 2014; Krackhardt and Hanson 1993; Srivastava 2015). Others have gone so far to assert

that, “within a firm, informal networks are as an important a factor of production as its financial

capital, buildings, and machinery and the human capital of its personnel” (Flap et al. 1998). As

a management tool, Krackhardt and Hanson 1993 assert that the informal network “is the central

nervous system driving the collective thought processes, actions, and reactions of its business units”

in a firm.

However, these organizational networks are, at best, difficult and expensive to observe at

any level of analysis. The difficulty of observing communication patterns has meant that empirical

studies are typically within a single organization, and frequently within a subset of that organiza-

tion. Then even in this case study setting, we often still lack a direct test of communication network
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structure across an organization. This is still useful—case studies provide a proof of the existence of

social processes encoded by social structure—but they cannot reveal the range or sources of hetero-

geneity across firms. The field has lacked systematic, rigorous and direct tests of the relationships

between informal social network structure in firms and organizational attributes, including perfor-

mance, and this sentiment has been shared in organization theory from Blau 1965 through today

(Davis 2015a). Although it has been recognized that new sources of private, firm-level data could

make novel comparative analyses possible (Davis 2015b; George et al. 2014), such analysis has not

yet been conducted with modern in-depth, firm-level data. The simple comparisons laid out by Blau

to understand populations of firms, although well theorized, have not been empirically measured,

or even measurable. The fundamental diversity of informal networks in firms is unknown.

Using a novel data set of email communication networks across a population of firms, we

characterize the natural variation among informal social networks and the degree to which these

communication patterns relate to organizational context and performance. The diversity of com-

munication patterns within a single organization is thought to be significant for organizational

outcomes, but it was previously impossible to directly characterize the degree to which commu-

nication patterns vary across organizations without a comparative, data-driven perspective. We

examine the structure of communication patterns of organizations using email sending behavior

from 65 U.S. based, publicly traded firms comprising 1.8 billion email exchanges among 1.4 million

employees. We compare the internal sending patterns and structure across organizations of varying

industry, level of productivity, and size, covering almost two orders of magnitude of firm size.

We find wide heterogeneity across firms. The primary meaningful variable for explaining

network structure is firm size; however, we find that both average degree and centralization do

not vary with size. Furthermore, once we account for firm size, this heterogeneity among firm

networks is not explained by organizational context—industry, firm age, or dispersion—with one

exception. We find that, as projected by theory, dispersion increases at a declining rate with firm

size. Dispersion in this setting captures geographic dispersion and, by proxy, differentiation across

the formal network structure. We find that network centralization increases with dispersion: that
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is, although power does not become more concentrated with firm size or age, it does with dispersion.

Finally, we find no relationship between network structure and firm performance.

Although our exploratory approach is unsuited for making causal claims (Button et al. 2013;

Gelman and Loken 2014; Simmons et al. 2011), we argue that it has some important advantages for

organization theory. First, by operationalizing and testing many possible relations, our approach

provides a general template for empirical studies that seek to make claims about the causal effects

of network structure on other organizational properties or the reverse. In place of vague or implicit

assertions, that is, a comparative structural approach enforces explicit hypotheses about the relation

between say, average path length (L) and size (S), even to the point of specifying a mathematically

precise functional form (e.g. L ∝ S vs. L ∝ logS). Second, by making comparisons across many

firms we avoid the mistake of generalizing a relation from a single case, or even a comparison of two

cases. As we show in Section 4.4.2, simple heterogeneity across firms can easily yield misleading

conclusions from small-N comparisons. Finally, our overall conclusion that firms exhibit large

amounts of heterogeneity on almost any metric, and that very little of this observed heterogeneity

is explainable in terms of any of the metrics that are commonly invoked in the literature, poses

interesting challenges both to organization theory and to future empirical analyses.

4.2 Informal social networks in firms

Informal networks in firms are composed of the interpersonal social, communication, or trust

relationships along and across the underlying hierarchy of formal roles in an organization. These

informal networks—or emergent networks as they are sometimes called (Aldrich and Pfeffer 1976;

Monge and Contractor 2001)—are defined in contrast to formal networks, which represent the

hierarchy of relationships of formal authority. While there has been a rich history of understanding

firms through formal network structure (March and Simon 1958; Weber 1947), this hierarchy does

not represent all important relationships within a firm. (Simon 1962, in the process of arguing for

the fundamental role of hierarchies in complex systems such as firms, still notes that “the formal

hierarchy only exists on paper” (p. 468).) Communication and social interactions, and related
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processes of power, information flow, and status, are informed by this hierarchy but not exclusively

contained by it; these formal networks have been insufficient to explain the behavior and efficacy

of firms (Monge and Contractor 2001). Moreover, empirical studies such as Rice 1994 confirm

the overwhelming impression from lived experience that communication in organizations, while

related to formal network structure, deviates from it in important ways. Communication networks

represent a broad class of networks within organizations (Monge and Contractor 2001), and email

networks, in particular, have been established to be a useful empirical tool to understand informal

social networks in firms (Kleinbaum 2008).

In light of the impression that is conveyed by the literature on informal social networks that

such networks contribute in consequential ways to important features of organizational behavior

and performance, it is surprisingly difficult to identify in the literature any clear consensus on

precisely how they should matter or with respect to what. In part, this lack of conceptual clarity

derives from vaguely worded assertions that imply an effect without articulating a clearly testable

hypothesis, and in part it derives from coexisting claims that appear to stand in contradiction with

one another (e.g. denser networks predict higher/lower innovativeness), where these contradictions

have not subsequently been addressed. In large, part, however, these problems themselves derive

from the sheer diversity of network studies. Exploring the premise that network structure matters,

we consider the inherent variability across the potential interpretations and hypotheses of such a

statement, which vary with respect to at least three dimensions:

(1) The composition of organizational networks (e.g., individuals, teams, or organizations) and

the relationships represented within them.

(2) The level of analysis (e.g., ego/individual, full network) at which structure is measured.

The level determines what structural measures are used for analysis and to whom network

effects are hypothesized to accrue.

(3) The variables of theoretical interest (e.g. performance, innovativeness, size, organizational

type) and the direction of the proposed causal relation between the network and other
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variables. The latter determines whether network structure is a predictor of some outcome

variable of interest (e.g. performance) or is itself an outcome of some other variables (e.g.

organizational type).

To clarify the space within which our contribution is situated, therefore, we next describe variation

along these dimensions in more detail.

4.2.1 Organizational networks

The literature takes a number of interpretations of organizational network structure, varying

by the unit of analysis (individual, team, organization) and scope of relationships (within or across

organizations). The study of organizational networks broadly encompasses networks, for example,

of individual shareholders; interorganizational networks of firms within an industry sector; intraor-

ganizational networks composed of teams and team-level interactions, as well as intraorganizational

networks composed of individuals and individual-level interactions; see Kilduff and Brass 2010 for

a wider discussion. We contrast two types of analysis induced by whether relationships are within

or between organizations. This choice of boundary frames the research questions available.

Interorganizational networks. Almost all network studies that consider multiple orga-

nizations are done at the interorganizational level. That is, the networks represent relationships

between firms. For example, the networks of corporate stakeholders may predict how organizations

respond to conflicting interests (Rowley 1997); patterns of ownership ties reveal the resilience of a

national industry (Kogut and Walker 2001); and patterns of collaboration reveal industry depen-

dence on strategic alliances for learning (Powell et al. 1996). While interorganizational networks are

frequently used to characterize individual firm positions and outcomes, for example through strate-

gic alliances or access to resources (Gulati et al. 2000), the network-level analysis of the structure

of interfirm relationships can characterize the robustness of an industry, constraints on growth, or

the structure of business groups (Granovetter 1994; Provan et al. 2007).
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Intraorganizational networks. Firms contain underlying hierarchical structure of for-

mal authority relationships. While these hierarchies are a key component of organizations and

organizational communication, social interactions happen both along this hierarchy and across it

(Monge and Contractor 2003). The patterns of relationships within individual organizations, i.e.,

the informal social networks, reveal how individuals are distributed across a firm, as well as how

information, status and governance flow through the firm (Wellman and Berkowitz 1988). The

capabilities and adaptability of a firm are then related to the structure of the informal network

(Argote and Ingram 2000; Hansen 1999), suggesting a relationship to the performance of firms.

4.2.2 Level of analysis

Ego-level analysis. Network position of an individual can determine differences in social

capital, status, or access to information (Burt 2000) and has been shown to be related to individual-

level outcomes. The opportunities of an individual (ego) may be based on its relationships to its

neighbors (alters), or more broadly to its neighbors’ neighbors (Uzzi 1997). This perspective has

been applied across types of networks: Balkundi and Harrison 2006 found, for example, that

the centrality of both the ego position of a leader in a team and the position of a team within

an organization are positively associated with team effectiveness; at the level of organizations and

their inter-organizational relationships within industry sector, a moderate amount of embeddedness

increases firms’ chances of survival (Uzzi 1996).

Network-level analysis. In contrast, the global structure of social networks can reveal

the underlying patterns of relationships within them (White et al. 1976). Measures such as the

density, small-world structure or transitivity of a network can reveal the organization within a team,

firm, or industry; centralization, for example, describes how power and status might be distributed

across an organization. This can translate into system-level outcomes: Uzzi and Spiro 2005, for

example, finds that the structure of collaboration networks among artists led to differences in

innovativeness; Powell et al. 1996 describe how the interfirm network was related to the trajectory

of the biotechnology; and Provan et al. 2007 summarize the literature on network-level analysis
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in interorganizational networks. Within firms, Kleinbaum and Tushman 2007 find that social ties

across organizational units are necessary for innovation across multi-divisional firms. Looking at

individual organizations, this type of analysis has connected the structure of informal networks to

organizational outcomes (Kleinbaum 2008).

4.2.3 Network structure as predictor and outcome

Networks in organizations are understood to matter: Cross et al. 2002, for example, argues

that “critical informal networks often compete with and are fragmented by such aspects of or-

ganizations as formal structure, work processes, geographic dispersion, human resource practices,

leadership style, and culture,” but these networks are of “strategic and operational value.” Net-

works appear here, and in the academic and management literature, in two ways: as an outcome

of those organizational processes, and a predictor of value or success of the organization. As an

outcome, communication network structure in firms is shaped by a range of mechanisms, including

the formal organization, distribution of tasks, and access to communication technologies. As a

predictor of outcomes, variations in network structures are tied to innovativeness or performance.

We address work in both of these directions.

Network structure as dependent variable: unknown scale and sources of hetero-

geneity across firms

While network structure has been theorized to vary with organizational properties, such as

centralization with size and dispersion, even the degree of variability across firms is unknown.

DiMaggio and Powell 1983 famously counter Hannan and Freeman 1977’s observation that there

is a diversity of “internal structural arrangements” (specifically: “Why are there so many kinds

of organizations?”) by instead investigating the “startling homogeneity of organizational forms.”

Lacking empirical baselines, the pairwise comparison of firms cannot reveal the sources of hetero-

geneity or whether networks are meaningfully different. This is further reflected in choices made

during analysis: for example, selecting thresholds for the presence of small-world structure across

firms of different sizes (Baum et al. 2003).
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Organization size as an organizational attribute is understood to have a role in the structure

of organizational communication. This has been argued by Weber 1947 and in many forms since,

but this requires teasing apart the concomitant role of size in organizational structure (Krackhardt

1994a) from function and performance (Child 1973). At the same time, potentially independent

of any social process, network measurements are expected to vary with network size; these scal-

ing patterns are well understood in random graph models but lack thorough empirical validation

(Newman 2010).

Beyond size, Pugh et al. 1968 and colleagues argue that organizational context is an im-

portant predictor of the structure of communication (Child 1973; Pugh et al. 1969). They argue

that although organizational context as “of primary importance in influencing the structure and

functioning of organization[,] there have been few attempts, however, to relate these factors in a

comparative systematic way to the characteristic aspects of structure” (p. 91). In the time since,

differences in structure have been attributed to industry, geographic dispersion, and age (e.g.,

Cross et al. 2002; Hannan and Freeman 1984) or otherwise seek to mitigate differences by making

intratypical comparisons (e.g., Blau and Schoenherr 1971). However, it is unclear the degree to

which heterogeneity among firms is captured by these differences.

Network structure as independent variable: firm-level outcomes

There is a lively tradition of linking ego network structure to outcomes across all types of

networks, including a range of firm-level financial performance outcomes (Shipilov and Li 2008).

For linking network-level structure to network-level outcomes, there is tradition using interorgani-

zational networks to measure the performance, productivity or robustness of an industry or state

(Provan et al. 2007). For network-level studies of intraorganizational networks, the organization

theory and strategy literature is rich with studies but sparse with direct tests of the relationship of

between network structure and firm outcomes; Kleinbaum and Stuart 2014 lay out a compelling ar-

gument for the relationship established by the literature for the role of intraorganizational networks

for firm performance.

Leana and Van Buren 1999, for example, argue that stable within-firm relationships can
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improve firm outcomes, but can potentially impede the spread of innovation. Intraorganizational

networks can mitigate the effects of geographic dispersion to improve innovation (Lahiri 2010).

Alcácer and Zhao 2012 argue that firms with stronger internal linkages between research divisions

yield competitive advantages in co-located R&D settings. These claims echo the theory that the

efficacy of knowledge transfer within a firm is dependent on internal network structure, which

in turn impacts productivity in large firms (Argote and Ingram 2000). Finally, where crises have

induced changes to network structure (e.g., by increasing centralization), the structure of firm social

networks and communication processes has been argued to impact decision-making with firm-level

financial outcomes (Romero et al. 2016; Staw et al. 1981).

This perspective, linking networks within firms to organization-level outcomes, fits between

the local level of individual outcomes and wide interfirm relationships. At this “meso” level, it

has been argued that “there is clear evidence that individuals and groups substantially influence

macro organizational phenomena” House et al. 1995. And yet, these claims have been limited by

obvious “empirical obstacles to persuasive tests of the effect of intrafirm networks on firm-level

performance,” i.e., lacking “network data from many firms to test such a theory” (Kleinbaum

and Stuart 2014). The conflict is then when, and how, organizational context is relevant to the

large-scale patterns of individual communication, and to what degree the relationships among

individuals is related to firm-level outcomes (Smith et al. 2006). Despite this, large, comparative

in-depth studies across organizations are exceptionally rare.

This dichotomy of networks as consequent or antecedent makes the endogeneity of these

tasks readily apparent. A shift in communication technologies, firm size, or geographic dispersion

can induce changes in the informal network; however, changes in firm performance might encourage

such a shift, for example, through a reduction in firm size through reorganization during a less

productive year. Access to similar resources may induce homogenization across firms. There

may be an additional loop, if the strategies implemented are based on the measurement of network

structure to begin with (Healy 2015). While these concerns are not novel (cf. Davis 2010; Kleinbaum

and Stuart 2014; March and Sutton 1997; Smith et al. 2006), this theoretical framework has lacked
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direct empirical tests across firms.

4.2.4 The present work

To summarize, it is clear from the extensive literature on informal social networks in organi-

zations that such networks are thought to matter both in theory and in practice. Somewhat more

precisely, it is clear that organization theorists believe that informal network structure of an organi-

zation is related both to the context and to the performance of the organization (Ahuja et al. 2012;

Burt 1997, 2004; Flap et al. 1998; Granovetter 2005; Ibarra et al. 2005; Kilduff and Brass 2010;

Kilduff and Tsai 2003; Kleinbaum et al. 2013; Kogut 2000; Krackhardt 1994b; Krackhardt and

Hanson 1993; McEvily et al. 2014; Nohria and Gulati 1994; Reagans and McEvily 2003; Reagans

and Zuckerman 2001; Rice 1994; Romero et al. 2016; Williamson 1994). In spite of these evident

beliefs, a broad reading of the literature on organizational networks does not yield clear and specific

hypotheses that admit to testing in the type of a large-N comparative study of whole-organization

networks that Blau 1965 called for. Instead, it surfaces a large number ambiguously-connected

claims that operationalize key constructs in inconsistent ways, conflate qualitatively different units

of analysis, select (and correspondingly exclude) variables of interest in an ad hoc manner, and take

opposing positions on whether networks should be treated as inputs or outputs, and mix implicit

with explicit statements of cause and effect1 .

In the absence of any consensus on which specific features of network structure should be

related to which other organizational properties, and in what manner, we instead adopt an ex-

ploratory, comparative approach. Specifically we leverage a unique dataset of intra-organizational

1 We note that our assessment of the literature broadly echoes a series of previous assessments (Davis 2010, 2015a;
Lewin and Minton 1986; Miner 1984; Schwarz et al. 2007; Smith et al. 2006) in which the authors have observed
that although organization science has generated many individually interesting theories of organizations (Miner 1984
identified 110 distinct theories while Lewin and Minton 1986 identified 13 distinct bodies of theory), when viewed
collectively it has failed to make clear and testable predictions about the relationship between organizational structure,
context, and performance.

Nor are we alone in this specific frustration. Dalton et al. 1980 asserts“the literature on structure-performance
relationships is among the most vexing and ambiguous in the field of management and organizational behavior.”
Thirty years later, in “Do Theories of Organizations Progress?” Davis 2010 finds “sloppy operationalizations” where
“organizational researchers need to take measurement more seriously by making explicit the link between constructs
and indicators, for both substantive and control variables.”
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email logs to conduct a comparative structural analysis of 65 US publicly traded firms to address

two broad questions of general theoretical interest:

Q1: How does informal network structure vary as a function of organizational properties, such as

size, age, industry, and dispersion?

Q2: How does an organization’s performance vary as a function of informal network structure?

To make these questions precise and testable, we require clearly defined and quantifiable met-

rics that operationalize three key conceptual constructs: network structure, organizational proper-

ties, and organizational performance. For network structure, we draw from the networks literature

a set of canonical network measures, representing communication diversity, average shortest path

length, clustering, and centralization. For organizational properties, we refer to the organizations

literature, where size, geographical dispersion, age and industry are commonly cited covariates of

interest. And for performance, we refer to the industrial organization literature, in which return on

equity, return on capital, % annual revenue growth, and revenue per capita are frequently invoked

as metrics.

4.3 Data

Email communication data has been shown to reflect offline communication patterns (Kossinets

and Watts 2006; Wellman and Haythornthwaite 2008). Specifically to firms, email communication

networks encode the underlying formal structure as well as communication beyond the hierarchy

(Adamic and Adar 2005; Kleinbaum and Stuart 2014; Monge and Contractor 2001; Rice 1994).

These email sending patterns reveal traces of interpersonal, inter-group, and cross-organizational

relational behaviors (e.g., Ducheneaut and Bellotti 2001; Fisher 2004; Tyler et al. 2005; Wuchty

and Uzzi 2011).

Our goal is to comparatively study informal networks with respect to organizational at-

tributes; however, the natural heterogeneity of informal networks in firms is unknown. Despite

this interest in informal networks, we only observe email communication data. As part of our data

collection process, we require that firms must have used email across the firm at comparably high
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levels. This mitigates unknown biases in communication usage across firms, but as a result, our

data set has far fewer companies than a more forgiving data collection process.

Using aggregated, anonymized email metadata from 1.8 billion messages and almost 1.4

million senders from a large enterprise email system, we derive the communication networks for 65

firms. We combine this with firm-level attributes from the Dun & Bradstreet Hoover’s database.

We collected properties of the firms as they were reported coincident with our communication data

collection time period. Hoover’s collects information about the full family tree of organizations

within a firm; we restrict our data to the properties of the global parent of the organization.

To construct the networks, we first identify the set of organizations for which we have repre-

sentative email communication data. This entailed a significant data cleaning effort, described in

Section 4.3.1, to require that all firms had consistent, high email usage across the firm and across

the time period observed. Lacking ground truth across most firms, we use a reference data set

for which we have known high and consistent engagement across the firm. This effort prevents

unintentionally capturing structural differences due to variation among email adoption and usage,

rather than meaningful structural differences among informal networks. This cleaned subset of or-

ganizations comprises consistently active email users across the organization and across the window

of observation (Section 4.3.1). We then describe how we construct networks from communication

data (Section 4.3.2).

4.3.1 Dataset construction

We use aggregated, anonymized email metadata corresponding to U.S.-based firms, covering

a six month time period. We hand-verified all identities of the organizations to align with the

records in the Dun & Bradstreet Hoover’s database, and restrict to only active, U.S.-headquartered,

publicly traded firms.

We restrict our data to within-organization communication, such that we can observe the

complete interaction patterns and construct the informal networks specific to each firm. This

represents about 86.1% of all messages sent (mean: 86.1, standard deviation: 7.3%) across all
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firms, drawn from 2.1 billion messages in total. Within this data set, we seek to restrict to only

human-like active senders within active organizations (comprised of active human senders covering

a reasonable amount of the organization). For these organizations, we characterize the distribution

of daily and weekly sending patterns, the time series of daily behavior over the six month time

window, and the intraorganizational email networks. We identify 65 large public companies for

which we have active adoption and consistent use across the six month time period.

We include a number of restrictions to bound the noise from each data source and their

combination. These restrictions also help insure that, without access to ground truth, the commu-

nication data we observe is reasonably representative of communication inside of a organization.

They also insure that there is sufficient information to describe each firm’s performance and or-

ganizational attributes. Specifically, we make the following requirements, with additional detail in

Chapter 2.2.2.

• The Hoover’s database must report sales figures for the organization.

• The highest level of the organization must be U.S.-based and publicly traded on the NAS-

DAQ or NYSE.

• The number of full-time employees (as listed in the Hoover’s database) must be within a

factor of two of the number of active email senders.

The last requirement is due to merging two noisy sources of data. The number of active

senders counts senders who have sent and received at least one internal email during the window

of observation: this would exclude, for example, internal distribution lists and external marketing

addresses, but also employees who use personal email accounts. Full-time employees is a well

defined, but not necessarily representative, count of the number of active, email-sending employees

in a firm. There are multiple sources of variation here. Organizations with a large number of

contract or temporary workers may have a lower number of reported full-time employees than

expected, but a high number of active email accounts. On the other hand, organizations with

many retail or food service workers might have many official full-time employees but few active
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Figure 4.1: Average number of messages sent per hour by day of the week. Trade and services
organizations send the most mail during peak times. In addition to the regular daily morning,
lunch and afternoon pattern, the evening volumes are higher at the beginning of the week, and
small peaks on Saturday morning and Sunday evening are common across industries.

emailers or information workers. In practice, organizations are fairly evenly distributed around this

ratio and a lower tolerance does not dramatically change our viable set of organizations, but we

are likely systematically excluding organizations of certain types, including retail firms.

Finally, we use distributions of individual behavior at a finer timescale than our eventual

analysis to further identify organizations with active and consistent user behavior (Figure 4.1). As

a proxy for how well we capture behavioral patterns, we select only organizations with daily average

behavior that varies over the course of the day similarly to our reference data set (Chapter 2.2.2).

This daily ‘heartbeat’ of activity is similar to other daily behavioral patterns observed in organi-

zations, such as the physical proximity of acquaintances (Eagle and Pentland 2006) and activity in

markets (Zaheer et al. 1999).

4.3.2 Network inference

From a record of interactions, such as communication, there is no unique network construc-

tion. Communication networks must be inferred from interaction data as a preprocessing step,
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Table 4.1: Sizes of the communication networks. Total is taken as the sum over all 65 networks.
Messages sent refers to the number of messages sent within the organization during the time period.
Links and sender degree (i.e., number of contacts) are defined to be above the reciprocity threshold
(τ ≥ 1); see Chapter 2.3 for more details.

Mean Minimum Maximum Std. Dev. Total

Number of senders 21,247.2 4,446 218,986 30,903 1,381,065
Links between senders 58,4575 55,294 6,316,618 916,872 37,997,377
Unique messages sent 27,882,595 3,132,970 359,324,382 47,560,772 1,812,368,654
Average sender degree 26.9 10.6 53.4 8.1 –

the choices in which may change what patterns are detected (De Choudhury et al. 2010; Hofman

et al. 2017; Kossinets and Watts 2006). In this exploratory analysis, we describe our results un-

der one choice of network definition, and we show that our results are robust across a range of

alternative choices of threshold and time window (Appendix B.3). Membership in the networks is

restricted to within-organization email accounts that reflect active users. This boundary implies

that the sizes of the networks are related to the sizes of the organizations. Each network represents

within-organization aggregated over six months.

To construct each network, we define the nodes to be the active senders, and we annotate

each person-person edge with weights. For each edge (i.j) we assign the weight τij = τji to be the

geometric mean of the number of messages exchanged between each pair, weighted by the number

of recipients on each message De Choudhury et al. 2010. For example, if i emails j directly five

times, then this counts as 5
1 messages, but if j emails i once directly and once again with four

recipients total, that will count as weight 1
1 + 1

4 = 5
4 . Then the reciprocity between the two of them

will be τij = τji =
√

5× 5
4 = 5

2 = 2.5.

We restrict the network to include only edges with weight τij ≥ 1, and we validate our results

on the network generated by other thresholds (see Appendix B.3). We then treat the network as

undirected, having conditioned on each edge being reciprocated. We calculate network statistics

only for senders in the giant connected component in the observed networks. This was on average

97.4% of identified users (maximum 99.1%, minimum 94.5%); this high percentage also serves as

validation of the initial data cleaning process.
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4.3.3 Network attributes

We calculate statistics over each network to characterize the structure. Averages are calcu-

lated within each network across all individuals (degree) or all pairs (shortest paths). We then

compare these statistics across the population of firm networks.

Average degree. The average number of contacts one exchanges emails with. Degree is

sometimes used as a proxy for social capital, potentially varying with status, power, or prestige;

in communication networks, one’s number of contacts may be limited by practical and cognitive

constraints.

Average shortest path length. The shortest path (i.e., smallest number of hops) between two

senders, averaged over all pairs of senders. In communication networks, this suggests how easily

information could spread or innovations could be transferred across a large network, conditional on

the links that already exist.

Clustering coefficient. A measure of transitivity of exchange, calculated by the number of

closed triplets (triangles) by the number of connected triples. This can suggest collaboration and

open communication, where there are multiple channels for sharing information, or as redundancy,

where information is unnecessarily passed back and forth through additional ties. For example,

consider two employees working together and with the same manager: a closed triangle of commu-

nication between all three parties could either represent collaboration or redundancy.

Centralization. A measure of inequality of access to information across the network, defined

as the Gini coefficient of betweenness centrality. Betweenness centrality measures how many short

paths will pass through an individual, so individuals with high betweenness will have access to

diverse information and important roles in the network. If this is evenly distributed, then no in-

dividual has unique access to information, whereas if this is very unevenly distributed, then this

suggests inequality in the distribution of information, and by proxy, power in the organization.

Betweenness centrality tends to be unequally distributed in empirical social systems, appearing

as right-skewed distributions (Newman 2010). The Gini coefficient measures how (un)evenly dis-
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tributed this centrality is across the organization, from 0 (uniformly distributed) to 1 (power is

concentrated in the top individual).

Small world quotient. We also include Walsh’s small world quotient Q (Walsh 1999). This

quotient is given by the ratio Q = C/CR

L/LR
for C, the clustering coefficient and L, the average shortest

path length. These ratios are normalized by the expected values for an Erdős-Rényi random graph

of the same size: CR = 〈k〉
S and LR = logS. This compares the degree to which a network’s small

world structure is different than random, and was also developed in Uzzi and Spiro 2005 to compare

a population of empirical networks.

4.3.4 Organizational attributes

To define each organizational unit, we combine these entries to the highest level of parent

organization. For example, Skype would be considered a part of Microsoft, and we would consider

only Microsoft’s organizational features.

Organizational context We use attributes of the firms to instrument different types of

organizational contexts using the Dun & Bradstreet Hoover’s database.

Firm demographics. We define the organization age to be the year of founding of the parent

of the organization. We quantify the size of the organizations in two ways: the number of active

senders, as defined by the communication networks (Sec. 4.3.2), and the number of employees listed

in the D&B Hoover’s database.

Dispersion. This counts the total number of distinct, active physical locations associated

with the parent firm during 2015, according to the Hoover’s database. This is a measure of the size

of the organizational family tree, and is a proxy for geographic dispersion. This quantity will be

related to differentiation in the firm and is our only measure that likely corresponds to the latent

formal structure within these firms. Lacking precise measures of the formal hierarchies in each firm

or any individual roles, this measure gives us insight into how the firm organizes itself, whether

related to communication, function, industrial constraints, or management approach.

Industry. We use the primary SIC codes associated with these firms, according to the Hoover’s
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database. The first two digits are used to separate the six primary industry categories (Chap-

ter 2.4.0.1).

Organizational performance We use publicly available financial data to create several

measures of organizational performance, drawing from the D&B Hoover’s database and MSN Money

for firm attributes and corresponding industry averages for the end of 2015. We use four measures:

log of revenue per employee; revenue quarterly growth rate (for the past year); return on assets

(5 year average); and return on equity (5 year average). We also create a combined performance

measure, by taking the average firm rank position of each measure compared to other firms in the

dataset.

4.4 Results

Having constructed the informal networks for these firms, we can then measure the structure

in these networks: specifically, to assess the underlying diversity in our data and how structural

properties vary with firm attributes and outcomes. Recalling our original research questions Q1

and Q2, using the network construction and network attributes described in Section 4.3, we ex-

plore the relationships between the communication network structure and firm attributes. For the

relationships between organizational attributes, performance and network structure, we compare

different models of best fit and use AIC for model selection.

We find a considerable amount of heterogeneity among these networks. While some variability

can be explained by the size of the firms (Section 4.4.1), we find within-type diversity of network

structure typically exceeds any cross-type diversity. This large range of firm-level differences are

not correlated with organizational characteristics (Section 4.4.2) or performance (Section 4.4.3).

Finally, these results are robust: we find qualitatively similar results, including wide heterogeneity

among networks, even within homogeneous industry sectors (Appendix B.1.4) and over different

choices of network construction (Appendix B.1.3, B.3).
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4.4.1 Firm size and informal network structure

A key feature of our data set is that these firms vary in size, over almost two orders of

magnitude (Figure 4.2). Although this suggests generalizability of our results across large firms,

measures of empirical networks are expected to vary with size, in a similar way to how properties

of random networks scale (Newman 2003). So we must first tease apart what variability among

network structure is a function of their size, rather than something inherent to the firms themselves.

Figure 4.2: Histogram of firm sizes. Firm size is given by the number of active senders, and
industry by top levels of SIC code.

The reasons to do this are twofold: first, understanding how firms vary by size is, on its

own, interesting, and has been a foundational topic of organizational theory. (Dobrev and Carroll

2003 argue that “size is perhaps the most powerful explanatory organizational covariate in strategic

analysis,” a not uncommon sentiment.) The role of size is necessarily complicated, as firm size is

endogenous to performance (Ahuja et al. 2012; March and Sutton 1997), as both an outcome and

antecedent of productivity; unpacking causal effects of size on performance is already suspect. But,

our second goal is direct: to the extent that our chosen measures vary with size, our interpretation

of variability among firm networks mis-attributes known patterns to individual differences.

Average degree does not vary with size. One of the most basic network measures,
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degree, considers the number of contacts one has in an organization. Empirically, individuals’

degree may vary for functional reasons across an organization (an administrator may communicate

with more than a specialized engineer), personality, and social constraints and mechanisms for

information transfer. Bandwidth on total communication and structural patterns of an individual’s

network suggest tradeoffs for the size of their network (Aral and Van Alstyne 2011); in email

organizational networks, the number of ties has been found to grow, causing networks to “densify”

(Leskovec et al. 2007), corresponding to increasing average degree. On the other hand, degree

may still be limited by cognitive constraints (Hill and Dunbar 2003), corresponding to constant

average degree; Hill and Dunbar 2003 suggest that degree will vary with relationship type, whether

strong ties or acquaintances, but will have low variance conditional on relationship type. Other

conceptions of firm growth disagree as well: average degree in an organization might increase, due

to greater availability of potential contacts (Krackhardt 1994a) or flatter managerial structures

with wide span (Simon 1962), or decrease, due to increases in hierarchy and specialization (Blau

and Schoenherr 1971).

Figure 4.3 shows that average degree varies widely across all firms (grand average is 26.9

reciprocated contacts, with standard deviation of 8.1 contacts (Table 4.1), but it does not vary

with firm size—a conclusion that also holds for median degree2 (Appendix B.1, Figure B.1.1) and

is robust to network definition (Appendix B.3). In other words, this finding does not support any

of the hypotheses suggested: Leskovec et al. 2007 would suggest that average degree increases, and

Hill and Dunbar 2003 would suggest that cognitive constraints imply constant average degree, with

little variability.

The average shortest path length has been of significant focus in the organizational theory

and management literature (Uzzi et al. 2007). Network theory has also well described the scaling

properties of average shortest path length in many random network models. In many of these

models, average shortest path increases proportionally to logS/ log〈k〉 for the size of the network S

2 The average median degree is higher, 34.7, suggesting that about half of typical senders in each organization
have fully reciprocated email exchanges with about 35 people (Chapter 2.4; Figure B.1.1).
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Figure 4.3: Informal social networks exhibit wide heterogeneity, only some of which
is explained by size. We find three important results from these comparisons. (1) Average
degree does not vary with size, which does not support a number of hypotheses from the literature.
Conditional on degree, average shortest path varies in an expected way. (2) Clustering coefficient
decreases as logS/S, different than what has been modeled in the literature. The small world
quotient varies with size, in an expected way conditional on average shortest path length and
clustering coefficient. (3) Finally, centralization does not increase with size.
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and average degree 〈k〉. This a pattern which has also been observed in empirical networks. This

scaling pattern emerges naturally in systems that are well-approximated by an underlying hierarchy,

which would have height proportional to logS given a fixed average degree. Many complex systems

naturally have underlying hierarchical organization (Simon 1962), but this is explicitly a feature in

large firms through the formal network of roles. Then not surprising, it is important nonetheless

that we recover that as a function of network size S, average shortest path length is best fit by

logS; that is, we recover this logarithmic scaling in the firm networks (Figure 4.3).3 Intuitively,

we also find that additional variation in the average shortest path length is explained by average

degree (Table B.2.1): in networks of equivalent size, additional ties would create more, potentially

shorter, paths in the network. Then higher average degree suggests a lower average shortest path

length, and we observe this in practice (Pearson’s correlation −0.76). As average degree does not

fluctuate with the size of the network, we do not observe any additional confounding scaling effects

due to degree.

Clustering coefficient decreases like logS/S. Reflecting near ubiquitous processes of

homophily and transitivity, it is well known that clustering in social networks is generally much

higher than what simple random graph models would predict (Watts and Strogatz 1998). We

therefore expect that networks derived from communication networks in firms, will similarly reflect

relatively high clustering: reflecting homophily, two members of the same team, unit or division

are more likely to communicate on average than two members of different teams, units, etc.; and

reflecting transitivity, team members who communicate with the same manager are also more

likely to communicate with each other. Less clear is how clustering should be expected to vary

with increasing size of a firm. Although generative models of graphs have not generally focused

on the relationship between clustering and size, they have typically implied one of a few simple

scaling relations. At one extreme, random graph models imply that the clustering coefficient scales

as O(〈k〉/S), falling quickly with the size of the graph: in very simple models, such as the Erdős-

3 In addition, we find that the diameter of the networks, defined as the longest shortest path in the network, also
scales logarithmically with size (Appendix B.1, Figure B.1.3).
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Rényi random graph, there is no basis for the common social mechanism that “the friend of your

friend is your friend.” At the other extreme, a number of “small-world” models (Holme and Kim

2002; Watts and Strogatz 1998) have shown that clustering can be kept nearly constant even as

network size increases. Finally, in between these extremes, models of networks that assume some

underlying hierarchical structure imply that an individual’s transitivity will scale like 1/ki, although

the scaling is sensitive to definition of global clustering coefficient (Ravasz and Barabási 2003; cf.

discussion in Newman 2003).

Encouragingly, Fig. 4.3(C) shows that overall clustering coefficients are comparable to numer-

ous previous studies of large-scale social networks (Kossinets and Watts 2006; Leskovec and Horvitz

2008; Ugander et al. 2011) which find clustering coefficients in the range 0.1 ≤ C ≤ 0.15. With

respect to scaling, the quantity and scale of our data is insufficient to reject a number of similar

models; however, by observing that C ×N scales like O(logS), we can assert that C = O(logS/S)

(further details in Appendix B.1 and Fig. B.1.4). We do not find evidence to support constant

or 1/S scaling, as suggested by the literature, but this may suggest agreement with Klemm and

Eguiluz 2002a. As with degree, this result does not correspond with any of the dominant models of

graphs; however it is not without precedent. For example, Klemm and Eguiluz 2002b describes a

model where clustering falls quickly in small graphs, but for large graphs (size of over 100 nodes),

clustering scales as (lnS)2/S; the authors expand on this to suggest two models: one with highly

clustered, but constant, scale-free networks, or “random” scale-free networks with (lnS)2/S clus-

tering (Klemm and Eguiluz 2002a). Dunne et al. 2002, on the other hand, found empirically across

a population of diverse networks that clustering coefficient does decrease proportionally to 1/S.

Small-world quotient scales like logS The small world quotient, defined as Q = C/CR

L/LR
,

characterizes how far a network is from random. Interestingly, even though the measure ostensibly

controls for size by comparing to a random network of the same size by definition, the quotient

has been empirically observed to vary with size (Baum et al. 2003). As a result Gulati et al. 2012

specifically attempts to control for observed variation in the measure with respect to size, however

they apply the same scaling properties as CR and LR, resulting in a measure that reduces back
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to C/L. Adjusting for size would be a necessary step if CR and LR systematically depart from

empirical scaling, i.e., if the scaling of random graphs is different than the empirically observed

pattern; however, this pattern has been unknown. We find that the small world quotient scales

logarithmically with the size of the network. This follows as a consequence of our observations

about C and L. Recalling our earlier result, the dynamics of the denominator, L/LR = L/ logS,

appear to not contribute meaningfully here to the scaling: Figure 4.3 showed that L varied regularly

around logS with average degree, which was unrelated to size. Then although the denominator

captures the distance to what would be expected by a random network of the same size, the

empirical networks have values both above and below this number, but within a small range of

values. This suggests that the dynamics of the small world quotient are dominated by the effects

of the clustering coefficient, in the numerator. The ratio C/CR = C
〈k〉/S varies logarithmically with

size, similarly to Q (Figs. B.1.4 and B.1.5), Appendix B.1). Recalling that the average degree,

〈k〉, was constant with size, this suggests that we are here primarily observing the dynamics due

to the clustering coefficient: O(S × logS
S ) = O(logS). While this does not suggest any immediate

interpretation, this offers a way to interpret the role of size on analysis: past studies, including

Baum et al. 2003; Davis et al. 2003 and Uzzi and Spiro 2005 use a size-independent threshold to

determine whether or not a network has the small world property, which will be inappropriate for

networks of significantly different sizes.

Centralization does not vary with firm size. We use the distribution of betweenness

centrality as a proxy for how access to information is distributed across a company. We measure

how unevenly distributed this centrality is using the Gini coefficient, where high values (near 1)

suggest that very few individuals hold very highly central positions, and low values (near 0) suggest

that centrality is uniformly distributed across the organization. We find that while inequality

is typically high (mean: 0.84, standard deviation: 0.04), we find that there in no relationship

between the distribution of inequality in firm networks to the size of the networks (Figure 4.3). We

also observed no relationship to size in the inequality of the degree distribution (Appendix B.1,

Figure B.1.2). The degree distributions are also less unevenly distributed (mean: 0.55, standard
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Network statistic

〈k〉 L C Q Gini

Size S 0.0 0.36 0.41 0.57 0.0

Industry 0.13 0.12 0.11 0.09 0.06

Age 0.0 0.0 0.0 0.0 0.0

Dispersion 0.0 0.18 0.09 0.15 0.13

Table 4.2: R2 for best-fitting models of network statistics. R2 captures the variance explained
by the model of best fit for each relationship. For industry, this represents the variance explained by
industry category, and these quantities are not significantly different than zero: see Appendix B.1.3
for more details.

deviation: 0.07). Degree may be less extremely distributed, as the number of contacts is still

constrained by human activity: very few senders with extremely high degree, and many senders

with very low degree, may not be representative of active email users in an organization over a long

period of time, where we expect roles to be more evenly distributed across the organization and

strength of reciprocity to limit the maximum degree feasible. High inequality that is invariant to

size is compelling: as organizations get larger, we might expect that communication becomes more

unequal. Instead, either as a consequence of the underlying hierarchy or despite it, firms do not

appear to become more unequal with increased size. However, this still suggests that all firms have

highly skewed, unequal distributions of power.

4.4.2 Firm context and informal network structure

We now consider what organizational attributes, beyond size, are related to network structure.

Our firms vary widely in age, industry and geographic dispersion. We find that the heterogene-

ity of informal network structure in firms typically exceeds any heterogeneity explained by their

characteristics. These results are summarized in Table 4.2.

Network heterogeneity is not explained by industry. While large public firms may

have some common structures, representing hierarchy, administration and specialization, the needs

of these firms may vary by industry. Manufacturing firms that produce physical products seem

likely to have different online footprints than software companies or media companies, for example.
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Figure 4.4: Informal social network features are unrelated to industry. Across all measures,
we find that within-category variance exceeds between-category variance.
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DiMaggio and Powell 1983 famously argue that firms with similar contacts or of similar types

ought to become more similar over time by virtue of imitation and diffusion. Instead, we find that

within-industry heterogeneity exceeds almost all between-industry heterogeneity. Across all five

network measures, the scale of this heterogeneity is striking. In Figure 4.4, we separate out firms

by each top-level SIC industry classification. For all network measures, there is significantly more

within-industry variation than between. The scale and robustness of this diversity within industry

suggests evidence against the “startling homogeneity” of firms (DiMaggio and Powell 1983).

Wide variation within industry is not unprecedented: Foster et al. 2008, for example, found

broad differences even within similar product manufacturing, with productivity differences related

to entry and exit of an industry. Larger public firms, as we observe here, may be more diversified,

capturing a range of efficient (or inefficient) structures. But, here we still might be able to capture

cultural differences around communication that vary by industry. When we condition on size, we

do find moderate evidence for deviation in average shortest path length and small world quotient by

the retail trade sector (Appendix B.1.3). However, we have insufficient data to validate this result,

and we then leave this hypothesis to future confirmatory research, which will have to tease apart

whether this is an effect of our measurement tool—if email captures behavior differently, potentially

less well, in retail settings—or whether these informal networks actually vary meaningfully as a

function of organizational context.

Network heterogeneity is not explained by firm age. Age is measured from the year

of founding of the parent organization, subsuming any mergers and acquisitions. Older firms can

suffer from organizational inertia (Hannan and Freeman 1977), and their informal networks may

be subject to decades of path dependence. This may lead to the emergence of more concentrated

power and increased centralization; Krackhardt 1994a argued that Michels’s Iron Law of Oligarchy

applied at least as well to firms. DiMaggio and Powell 1983 famously suggested that organizational

forms should become more similar over time: it is possible then that we are observing firms at

different stages in this process. However, we lack the statistical power to claim that heterogeneity

is decreasing with age. We also find that if the small-worldness of the network is evolving (cf. Gulati
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Figure 4.5: Informal social network features are unrelated to firm age. However, organi-
zational network properties are very diverse across all ages.
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et al. 2012), there is not evidence that this structure varies with the age of the firm. Once again,

we find wide heterogeneity across all network measures (Figure 4.5), but we find no relationship

between firm age and network properties. This is robust to network definition, that is, even on

networks constructed from stronger pairwise relationships (Appendix B.3).

Degree does not increase with dispersion, but centralization does.

Average degree shows no relationship to dispersion (Figure 4.6)). This is suggestive that

the constraint on total communication is somehow held constant regardless of organization size

or arrangement. Clustering coefficient decreases logarithmically with firm dispersion, and the

average shortest path length increases logarithmically and small world quotient Q ∝ log log d.

However, as predicted by theory (Blau 1970), dispersion increases at a declining rate with firm size

(Figure B.1.7); this suggests that the clustering and average shortest path length results are an

artifact of firm size (Figure B.1.8, Appendix B.1.2). The small world quotient does appear to vary

meaningfully with dispersion: while clustering coefficient is not related to the amount of dispersion

per person, it does appear to be more similar to random in firms that have more geographic units

per person (Figure B.1.8). Centralization, on the other hand, grows logarithmically with firm

dispersion, and appears to vary independently of size. This suggests that there is clearly an impact

on how information flows through the network: with larger and more dispersed firms, individuals

still can reach each other with relatively few hops but require longer paths through a less cohesive

network. With increased centralization, these paths must also be less evenly distributed, creating

more unequally distributed roles. This suggests that while organizations have mechanisms to keep

individuals tied to each other across the organization, fewer individuals span these boundaries.

4.4.3 Informal network structure and firm performance

Informal network structure reflects the capabilities, adaptability and performance of the

firm. Hansen 1999 and Argote and Ingram 2000, for instance, describe how ties between project

teams and among employees mediate knowledge search and transfer, with implications for project

success and innovation, translating into firm-level performance outcomes. Uzzi and Spiro 2005
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Figure 4.6: Centralization increases with firm dispersion, but average degree does not.
Bottom panel, centralization increases as dispersion d0.5(note log scale on the x-axis). These other
measures, L, C and Q vary as an artifact of network size: see Figures B.1.6 and B.1.8.
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found that variation in the small world properties among networks of artists were related to success

and creativity. Leana and Van Buren 1999 argue that relationships within an organization impact

organization-level outcomes, such as flexibility and productivity, by aligning collective goals and

increasing trust; Lahiri 2010 and Alcácer and Zhao 2012 find that the structure of internal networks

between teams increases innovativeness despite geographic pressures.

Dalton et al. 1980 also argues that while there have been a range of attempts to measure

the relationship between structure and performance, the functional forms or even the sign of rela-

tionships is not clear from the literature. They find, e.g., negative and null relationships between

centralization and performance, although those lacked rigorous quantitative measures of firm pro-

ductivity and output (such as financial data), and also no systematic evidence for a relationship

between size and firm performance (this established also by meta-analysis in Gooding and Wagner

1985). While the forms of these relationships are not clear, the theme that there is a relationship

between structure and performance is consistent. Kleinbaum and Stuart 2014 present a cogent

modern argument that there is a strong theoretical basis for intraorganizational networks to be a

determinant of firm performance. Of course, “it ultimately will be necessary but challenging to

assemble network data from many firms to test such a theory” (Kleinbaum and Stuart 2014): de-

spite the theoretical prior in the literature, the empirical relationship between variation in informal

network structure and firm outcomes is unknown.

We explore several potential types of relationships between network structure and organiza-

tional productivity. We use a range of outcome variables describing firm performance: income per

employee, return on equity, return on assets, and revenue quarterly growth rate, and a combined

rank measure based on the combination of these variables. We first look for evidence of pairwise re-

lationships between network structure and performance. We then consider nested regression models

to model more complex relationships between multiple types of network structure and performance.

Finally, we create a classification task to predict whether firms are high or low performers and use

a flexible machine learning method, random forests, to detect any relationship between network
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structure and performance.4 We find that performance is not predictable or related to observable

differences in informal network structure.

In the first task, we look for simple correlations between network structure and productivity.

To illustrate what types of patterns we find, we show average degree, average shortest path length,

clustering and centralization—common variables of interest in the literature, e.g., Ahuja et al.

2012; Granovetter 2005; Reagans and Zuckerman 2001; Rice 1994—in Figure 4.7. Across different

performance outcomes (see Section B.2.1 for additional details on variables), and confirmed across

other network definitions (Appendix B.3), we find a stunning lack of signal across effectively every

variable and outcome. For all pairwise relationships, we find R2 = 0 for the best-fitting model across

all pairs of informal social network structure (〈k〉, L, C, Q, and centralization) and the performance

outcomes (Income per Employee, Return on Assets, Return on Equity, revenue quarterly growth

rate, and the combined ranking).

We next look to a regression task to predict outcomes. We incorporate dummy variables

to condition on performance by industry sector. We exclude the single firm from the agriculture,

mining and forestry industry sector. We then compare a series of nested linear regression models,

where in addition to the industry dummy variables, we progressively incorporate the number of

employees, adoption (ratio of senders to employees), and the network measures (〈k〉, L, C, Q, and

centralization) into the model. Appendix B.2.1 shows the explicit model constructions and regres-

sion coefficients. We find that performance is not predictable or related to observable differences

in informal network structure. The lack of meaningful relationships was also robust to different

network definitions (Appendix B.2.1).

Finally, we carried out a number of other prediction tasks: using the network structural

measures as features, we used decision trees and random forests across different tasks of varying

difficulty. These tasks were predicting whether a firm is above or below median industry perfor-

mance; or, presumably easier, predicting whether or not an organization was in the top 10% or the

bottom 10% for performance compared to others in the same industry. In preliminary work, these

4 Results using random forests will be included in the future version of this paper submitted for publication.
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Figure 4.7: Productivity measures are unrelated to network measures in informal social
networks. We compare network measures pairwise to different outcome variables. From top to
bottom, each row shows average degree, average shortest path length, clustering coefficient, and
centralization against the performance variables. From left to right, the performance variables are
Income per Employee, Return on Equity, Return on Assets, and revenue quarterly growth rate. We
find no statistically meaningful relationship between any of these measures, nor the measures not
shown.

exercises, with many network features or very few curated features, revealed no signal, with predic-

tions no better than random (AUC not statistically significantly different than 0.5 for classification

tasks with balanced classes); we leave the complete results to future work (see Appendix B.2.2).

Overall, we find that financial performance in firms is not observably related to informal

network structure. This holds true across industries, prediction tasks, and construction of the data

set. While this setting is strictly exploratory—to discover potential relationships between network

structure and performance—had we found some meaningful correlation, it would still most likely
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be spurious. We discuss some of the potential avenues for future research, as well as the limitations

of this study, in the closing section.

4.5 Discussion

Groups of people working together, from small teams to companies and governments of

hundreds of thousands, accomplish complex tasks using a diversity of communication patterns. The

extent of this diversity has been previously difficult to quantify, as the scale of this comparative data-

driven perspective—particularly of structural communication patterns in firms (Kilduff and Brass

2010; Kleinbaum and Stuart 2014)—has been previously unavailable to the academic community.

We developed a large, high-resolution data set to investigate communication patterns across a

population of highly comparable large firms, ranging from a few thousand to a few hundred thousand

employees, covering 1.4 million employees total from six industries.

We find that there is a wide amount of heterogeneity in the structure of informal networks

in firms. Furthermore, we find that this heterogeneity is both large and largely unexplained by

organizational context, despite what has been previously suggested in the organizational theory

literature. These findings are robust across network definitions and timescales, as well as among

homogeneous organizations. The scale and robustness of this heterogeneity suggests that patterns

hypothesized from case studies may be easily subject to over-fitting: one might be able to equally

validate competing hypotheses given only a handful of examples (cf. Davis 2010).

The salient association between the size of the organizational network and network struc-

ture is compelling. Krackhardt 1994a described how organizations would be naturally constrained

by communication networks from growth: firm growth would lead to increases in degree that are

potentially unsustainable. We find that network structure does vary with size, but not with pro-

ductivity; this is seemingly in alignment with results from organizational theory that size does

not matter for organizational function and productivity (Gooding and Wagner 1985). (Of course,

disagreement remains: cf. Dobrev and Carroll 2003, “size is perhaps the most powerful explanatory

organizational covariate in strategic analysis.”)
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We find that the average number of contacts that people have is constant with respect to

the organization size, and that this is robust to network definition. This result, and the robustness

of this result, appeals to a number of different academic communities. The study of the social

brain suggests we might find constant average degree, although without wide heterogeneity (Hill

and Dunbar 2003); degree has been suggested to be related to innovation in organizations (Reagans

and Zuckerman 2001, e.g.); and the study of graph evolution and scaling has centered on models

for which degree increases with network size (Leskovec et al. 2007).

Through organizational inertia or the iron law of oligarchy, we would expect to see central-

ization increase with the size and age of the firm. Instead we find that centralization of the network

is unrelated to firm size and age. However, we find that centralization is positively related to the

dispersion of the firm. This is not obvious: Monge and Contractor 2003, for example, describe how

online communication across geographically disperse organizations “can lead to greater centraliza-

tion in some organizations, but also undermines centralization in others,” Furthermore, this could

potentially relate to outcomes: Jansen et al. 2006 found that less centralized formal networks were

associated with increased innovation. Furthermore, as centralization is not a function of size, it is

not a managerial outcome that large firms are associated with information bottlenecks, but instead

a correlate of the physical dispersion of senders. Geographic dispersion is likely related to shifts in

the communication network: similar to in-person, off-line contact, the likelihood of email contact

has been shown to drop off with physical distance (Krackhardt 1994a; Monge and Contractor 2003),

and Adamic and Adar 2005 find that the probability of connection drops as inverse the distance

between two people. Furthermore, centralization may be associated with geographic dispersion as

an emergent organizational outcome or by managerial design. While greater geographic dispersion

does not change the number of contacts an individual has, on average, our results suggest that the

barrier of separate physical units is crossed by fewer individuals.

Despite a strong theoretical prior from the literature, we found no relationship between this

heterogeneity and firm performance, and this is true across a range of productivity measures. While

predicting firm performance is objectively hard, we use a range of tasks that vary in difficulty, task
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and instrument: if there were a relationship, we ought to find it. While it is infeasible to prove

that there could be no relationship, these tests suggest strongly that it is very unlikely that there is

no relationship between network structure and performance. Data mining even more aggressively

could plausibly discover a correlation, as a matter of uncovering statistical artifacts, rather than a

meaningful association.

Limitations This empirical perspective offers a new lens across a population of complete

intraorganizational networks; however, we do not yet fully understand the empirical and theoretical

limitations in this new territory. A number of these open challenges are empirical, and left to future

work. For theoretical challenges, we are constrained by what data is available and observable.

The constraints used to construct the data set potentially introduce several sources of bias.

First, we are necessarily restricted to firms that are Microsoft customers. Beyond that, we have

introduced a range of constraints as a best effort to find firms of similar email usage and data quality.

Error has been necessarily introduced by merging a noisy database of firm attribute information

(Dun & Bradstreet) with a noisy measurement tool (email, where senders need not be full-time

employees). We potentially introduce endogeneity by restricting our data set to publicly traded

firms: requiring that firms be large and publicly traded already implies that these are firms that

have historically been successful, and we are then conditioning on the outcome (Davis 2015a).

One major source of bias for our analysis is due to the communication network data. This

has a number of potential sources of bias. First, the patterns of relationships reflected by email

communication data are necessarily noisy observations of true social relationships. Grippa et al.

2006 have shown that in a small organization, email can fail to represent interactions among closely

co-located individuals. However, Grippa et al. 2006 also argue that email underestimates the roles

of communication gatekeepers, compared to other types of network construction, which may suggest

that our observed high levels of centralization may even be an underestimate. On the other hand,

Quintane and Kleinbaum 2011 suggest that self-reported relationships will overstate high status

relationships and therefore misrepresent information flow, compared to email networks.

Furthermore, different choices of network construction from email communication data will
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lead to differences in network measures. De Choudhury et al. 2010 found that networks defined by 5–

10 reciprocated emails per year were most predictive of future interaction; for our six month data set,

this would correspond to half as many, but it may be that in the full organizational network setting,

other levels of relationship strengths—weaker, stronger, or both—may better represent channels

of information flow and communication structure relevant to organizational function. Different

network differences could result in different inferences drawn from our data (De Choudhury et al.

2010; Hofman et al. 2017); this motivated our robustness checks across networks derived using

different relationship strengths.

Construct validity is difficult to assess in studying organizations (Davis 2010). The concept

of firm size is poorly defined—Kimberly 1976’s criticism is still relevant today—and this is salient

here, where the number of active company email senders is different than the number of full-time

employees. (This is both a boundary specification problem and a construct validity problem.) Many

studies that have looked at communication networks in organizations have been restricted to only

a subset of the firm, for example, only the R&D branch (e.g., Rice 1994). One attempt to compare

networks across firms only analyzed the top three levels of the firm (Nelson 2001). The infamous

and well-studied Enron email network data set covers 158 out of about 20,000 total employees,

primarily including senior management, the executive level and the board (Diesner et al. 2005). It

is unclear what the correct boundaries are to understand an organization.

Finally, we are limited by what data is observable. We lack the content of the messages

exchanged, and so we can not observe, for example, the qualities of relationships between senders

or the types of information being shared. We cannot measure the content or sentiment attached to

the email data, nor directly observe the cultural differences around email usage in these firms. We

do not know the gender, generation, or job function of the senders in our data set. Furthermore, we

cannot directly observe whether or not relationships are within or across teams. This limits what

we understand about dispersion, in particular. For dispersion, we do not observe the true formal

network, nor do we know how the firm distributes roles across geographically distinct locations.

Dispersion within division, for example, may be more relevant to outcomes than across the firm:
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Lahiri 2010 and Gibson and Gibbs 2006 examine the impact of geographic dispersion on innova-

tion in R&D teams. Without knowing the formal network of roles, we cannot measure how well

aligned, or similar, the informal network is to the formal network: it is possible that this network

responsiveness is most related to firm context and outcomes (Kleinbaum and Stuart 2014). Soda

and Zaheer 2012, for example, found that the alignment of informal and formal networks lead to

increased performance, where this alignment creates a trade-off between reduced coordination and

increased access to information.

Future directions

Organizational dynamics, reflected in their network structures, are important but still not

well studied (Ahuja et al. 2012). This requires meaningful theory, or motivating practical chal-

lenges, to connect dynamics to organizational understanding. (Simply finding a relationship would

be insufficient in this context: the existence of a correlation between some high resolution financial

measure and some dynamic network measure would say far more about our many researcher de-

grees of freedom than anything about communication and structure in firms.) Understanding how

information flows through organizations is crucial to understand organizational function, learning,

and efficiency. This will be a problem that requires understanding what information is being trans-

mitted and how—observing content, as well as roles—and may require looking more broadly across

organizational types.

Global communication network structure has previously been found to be largely stable, but

exhibits rapid dynamics at the local level (Kossinets and Watts 2006). The rate at which we ob-

serve a network compared to its underlying dynamics will then change the inferences we make from

it (Clauset and Eagle 2007; De Choudhury et al. 2010; Hofman et al. 2017). Understanding how

sampling effects the observation of communication networks would have implications for under-

standing how to do robust inference in dynamic networks. Empirical populations of organizational

networks would then help us tease apart network change, at the individual and organizational

level, to better understand when shifts in network structure are meaningful. This has implica-

tions for understanding individual networks (e.g., Burt 2002, 2004), consequences of organizational
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change and network responsiveness (Kleinbaum 2017; Kleinbaum and Stuart 2014), and social and

organizational reactions to shocks (Romero et al. 2016; Srivastava 2015).

The wide heterogeneity of observed organizational forms, even among firms within the same

specialized subfield, suggests that there is a wide range of communication patterns that through

which people can achieve complex, large-scale tasks. Given the interplay between social and com-

munication structures at the individual, team, and inter-team level, mixed methods approaches

may better explain how to interpret organizational level communication (Ibarra et al. 2005).

Conclusion We introduced a novel data set, comprising 1.4 million senders and 1.8 billion

email exchanges from a diverse population of 65 large, publicly traded firms. We emphasize that

the comparability of these networks is a key component of the construction of this data set: lacking

any prior empirical baseline, and an unknown variability across informal networks, we made a range

of restrictions to explore and assess the natural heterogeneity across these firms. While our data set

is restricted to comparable firms with similar and consistent email adoption and usage, we discover

a rich diversity of network structure. Variability in these informal networks is only partly described

by network size (a function of the size of the firm), and in large part unrelated to the context or

performance of the organization. And yet, organizations of all sizes, these included, are effective at

accomplishing complex tasks. Understanding when, and how, informal networks are related to firms,

given this broad diversity, then suggests a challenge for organization theory. Exploratory research

of this nature can push us towards meaningful confirmatory research to understand heterogeneity

in organizational structure (Davis 2015a; Hofman et al. 2017), however this may require revisiting

the questions appropriate and testable for understanding organizations, including what aspects of

performance are relevant in different contexts. We look forward to the questions that will emerge

in this intersection.
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Chapter 5

Empirical network construction: computational perspectives on weak ties,

stability, and densification

While social relationships are not directly observable, we can observe and measure interac-

tions between people. Empirically observed interactions then present a mode with which to infer

the existence and strength of relationships. To define a network from relational data—such as the

patterns of emails sent, phone calls exchanged, collaborations, or trades between individuals—we

explicitly or implicitly select some instrument that detects these relationships. The resulting net-

work encodes these ties into networks, a low-dimensional representation of the social world that

is revealing nonetheless. However, empirical tests of social theories rely on having measured these

networks in some reasonable way, and evidence of theoretical claims ought to be robust to the

settings of that instrument. Here we make explicit the settings used to construct empirical network

snapshots in the context of relational interaction and communication data. By unifying this repre-

sentation and clarifying the space of these often implicit researcher choices, we reveal that a range

of traditional social network problems fall strictly within this construction, and that these problems

may not be apparent in implicitly defined and N = 1 network settings. To reveal the utility of this

perspective, we empirically explore along each of these dimensions: relationship strength, window

size, and timespan. Using a population of networks derived from email communication patterns, we

explore the roles of these settings for understanding the theory of weak ties, stability, and densifi-

cation, respectively. By emphasizing the precise dimensions across which networks are derived, this

reveals a precise view of the literature where dynamic processes and structure have been previously



99

conflated. We motivate tools for robustness, find evidence that the lack of stability in networks

suggests concern for traditional cross-sectional analysis, and find that network densification in or-

ganizational email networks is confounded by overall levels of activity within the system. The range

of problems explored here suggest that these dimensions must be made precise and explicit in order

to do meaningful comparative, population-level analysis in networks, and that the population-level

view allows a novel opportunity to test a breadth of hypotheses from the networks literature.

5.1 Introduction

Interpersonal social relationships are unobservable. However, as researchers we often employ

interaction data, communication data, online traces of social interactions, and surveys as instru-

ments to determine the presence or absence of social relationships. Using these data sources, we

then construct social networks from these inferred relationships (Golder and Macy 2014). For

example, Eagle et al. (2010) investigate the well-theorized role of network diversity on economic

success by comparing social networks inferred from cell phone communication data to economic

development. This process—using inferred social networks, taken from different communication or

interaction media—allows us easily observable and quantifiable relational data to test hypotheses

motivated by social theories and empirical observation.

The sources of data to describe relationships between people may be explicitly designed (as

in surveys) or found (as in online traces, call records, or email metadata) (Salganik 2017). We

focus on the latter, and in particular on the patterns of interactions between people using email

communication metadata, where patterns of timing, direction, and total volume of interactions are

known, but where content, quality, and sentiment are unknown. While online behavior may differ

from offline behavior, it would be a fallacy, as demonstrated by the title of Grippa et al. (2006)—

“Email may not reflect the social network”—to suggest that networks generated from online data

are necessarily less true than those generated by “ground-truth” survey. Survey methods can reveal

how observed data might differ from experimentally designed data (Burke and Kraut 2014; Salganik

2017), but survey-generated networks suffer their own biases. In sociology, the method used to elicit
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relationships is defined as the name generator. Social networks among the same individuals will

vary across different (survey-based) name generators (Campbell and Lee 19911 ), just as online

networks may differ from those generated from surveys (Grippa et al. 2006; Wuchty and Uzzi 2011)

and online networks will vary depending on tie definition (De Choudhury et al. 2010; Marlow 2009).

Despite these challenges, interaction and communication data derived from online systems provide

a useful tool with which to infer social relationships.

Unfortunately, having observed an interaction or communication between a pair does not

uniquely define a relationship. Network construction requires defining some mapping between ob-

served interactions and inferred relationships. This must implicitly or explicitly answer questions

of the form: does one email per week, or two phone calls per year suggest the presence of a relation-

ship? What if the calls are unreciprocated and never returned? That is, given a record of interaction

events between pairs, one must still infer the presence or absence of a latent relationship—a task

distinct from, but related to, predicting future interaction events.2

Data availability creates additional constraints on observable networks. Mode of interaction

matters—for example, Facebook friendship relationships provide a different view of a network than

the relationships implied by frequent message exchange (Marlow 2009) or shared photos (Kahanda

and Neville 2009)—although only one mode of interaction may be publicly available or available

to academics (such as Facebook friendships, as in Chapter 3, Traud et al. (2011) and Traud et al.

(2012)). Beyond this construction, practically, API and data access restrictions might limit the total

observed time. Limited windows of observations limits researchers’ ability to observe meaningful

network evolution; observing networks after their initial formation subjects them to constraints due

to left-censoring; and failure to account for cohort effects can yield misleading aggregate behavior

(Barbosa et al. 2016). Computational constraints may further impact the size of time windows

1 In the spirit of this dissertation, we note that Campbell and Lee (1991) uses a population of comparable
neighborhood networks to reveal the differences in networks induced by different name generators.

2 Note that here we do not treat this as an inference task in the probabilistic sense, but in the literal sense of
drawing conclusions (about the presence or strength of relationships) from (interaction) data. In this chapter, we
focus on the structural consequences for network structure across different deterministic functions of relationship
structure. This could be easily extended to a more general predictive model, but we leave that task to future work.
See Chapter 5.5 for further discussion.
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over which this data is aggregated, and this interacts with sampling rate of measurement tools,

which themselves may be faster or slower than the rate of social interactions of interest (Clauset

and Eagle 2007). Finally, heuristics and field norms may suggest how relationship strengths are

incorporated into data analysis (De Choudhury et al. 2010).

Time is handled in a variety of ways in social network data, and under a range of titles

(network evolution (Dorogovtsev and Mendes 2002; Kumar et al. 2010; Leskovec et al. 2007);

temporal networks (Holme 2015)). A common practice is to consider a series of network snapshots,

each of which may be constructed over a range of time. When these snapshots are taken over

overlapping time windows, that is, with a sliding time window, this can reveal how quickly network

structure varies over time (Kossinets and Watts 2006). Alternatively, sequences of non-overlapping

snapshots then yield a sequence of networks for a set of discrete time steps. This yields panel data,

or equivalently a tensor, which admits cross-sectional analysis.

Social network theories, such as structural holes (Burt 1992), are typically evaluated using

cross-sectional or panel data, but implicitly, these theories describe processes that are dynamic,

including information flow, brokerage, and access. The observation of these relationships only oc-

curs at varying rates—potentially quite quickly in communication networks (Kossinets and Watts

2006)—and so the structure captured by a temporal network will vary, depending on the construc-

tion of the network and granularity of timescales observed (Clauset and Eagle 2007; De Choudhury

et al. 2010). Even after balancing the noise and structure implied by these dynamics, there is still

the problem of sampling over time: empirical data of temporal processes is still usually left-censored

(i.e., we usually do not observe the system from its beginning), and we may not have enough data

to ‘wait’ long enough to observe all relationships.

Furthermore, we are left with an impression of stability from analyzing networks derived from

cross-sectional data. Even looking across a network over time, one typically observes that even if

global statistics are stable, but individual (local) statics vary rapidly (Kossinets and Watts 2006).

This is holds over both individual identities and the distribution over their connections. However,

this invites potentially misleading conclusions drawn from panel data. where individual variability



102

can be interpreted as a potentially meaningful signal (Burt and Merluzzi 2016). (Alternatively,

Quintane and Carnabuci (2016) instead carefully make explicit the temporal process of brokerage

across structural holes, and find, roughly, that brokers are inferred to be brokers because they serve

as brokers.) Extending to the setting of population-level network analysis, if we observe structure

in networks to have meaningful patterns, e.g., be associated with outcomes (Chapter 4) or offline

context (Chapter 3), then we would hope that these patterns can be observed across multiple

network examples (N > 1) and multiple network construction definitions.

Across these different settings, we are still asking one question: does theory stand up to uncer-

tainty in the instrument? Or, as we reveal later, when the settings of this instrument correspond to

well-theorized social phenomena, when and how can we use theory to inform our choices of network

construction? Conversely, can we use variation in network construction to better understand how

these phenomena are exhibited empirically? By being explicit about these settings reveals where

the literature has previously conflated temporal processes in networks and artifacts of observation.

Here we attend to variables that are often treated as a pre-processing step, if treated explicitly at

all, to derive social networks from communication and interaction data. These variables, once made

explicit, touch on some of the most foundational ideas in the study of social networks. Explicitly

considering our instrument of observation unites our perspectives on cross-sectional data, network

evolution, stability, and robustness and reveals novel empirical questions in this setting.

Our contributions

We bring together three variables of network construction, often treated as a preprocessing

step, which determine how networks are inferred from a set of interaction data. These variables

can be implicitly or explicitly chosen, and potentially beyond control by a researcher. We describe

how previous theoretical and empirical work has been drawn along these dimensions, and how this

perspective can highlight new research questions. To illustrate the effectiveness of this framework,

we apply this perspective empirically to a population of large email networks. First, considering

network tie strength, we find that empirical structure varies in expected ways for weak and strong

ties (Granovetter 1973), but that very weak ties are qualitatively different. Second, we observe that
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individual properties vary rapidly over time, echoing past findings on local instability in networks

(Kossinets and Watts 2006). Third, we exploit the population of differently-sized networks to

empirically test the concept of network densification (Leskovec et al. 2005b, 2007). We find that,

naively, our data support the densification hypothesis, but we also uncover a confounding variable:

the activity level of the underlying system. Together, this network construction perspective unites

past theoretical work with the challenges of making empirical claims, and this suggests a set of

tools to explore the robustness of sociological results and a novel empirical perspective with which

to explore the interactions between these social phenomena.

5.2 Network construction

Building social networks from online communication or interaction data is a nontrivial ex-

ercise, but is often treated as a preprocessing step. Observed interactions are assumed to be a

correlate of relationship strength (Gupte and Eliassi-Rad 2012). We take the inverse approach

of Kahanda and Neville (2009) and characterize how network structure varies with relationship

strength.3 We aim to construct network snapshots, i.e., collections of pairwise relationships from

non-overlapping periods of time. This results in a sequence of networks, which can also be inter-

preted as panel data, where interactions might be represented as (i, j, t) for some pair of individuals

i and j interacting at time t. For cases as we explore here, we may have attributes such as tie

strength in this tuple as well. Analogously, in multi-modal data, this might also include an action

type, such as emailing or instant messaging. Together this construct defines a tensor, which admits

flexible modeling techniques (Schein et al. 2016).

Different choices of network construction from email communication data will lead to differ-

ences in network measures. Wuchty and Uzzi (2011) found that reciprocal email-based ties are a

useful proxy for social ties. The degree to which email data encodes meaningful social structure

has been examined in email data specifically (Grippa et al. 2006; Quintane and Kleinbaum 2011

3 The study of social networks necessarily suffers many endogeneities. One relevant aspect is that increased
interaction through communication or a social media platform can also increase perceived relationship strength
(Burke and Kraut 2014). We ignore this endogeneity here.
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and see also Chapter 4.5). De Choudhury et al. (2010) found that networks defined by 5–10 recip-

rocated emails per year were most predictive of future interaction; for our six month data set, this

would correspond to half as many, but it may be that in the full organizational network setting,

other levels of relationship strengths—weaker, stronger, or both—may better represent channels

of information flow and communication structure relevant to organizational function. Different

network differences could result in different inferences drawn from our data (De Choudhury et al.

2010; Hofman et al. 2017), and so comparing across thresholds can serve as a robustness check.

(We employed this strategy in Chapter 4.)

Furthermore, selecting an algorithm can yield misleading conclusions. Sampling algorithms

can lead to robust but degenerate discoveries of structural patterns, regardless of their true pres-

ence (Lee et al. 2006). For example, sampling algorithms or heuristic measures can misleadingly

imply the presence of skewed degree distributions (Achlioptas et al. 2009) or community struc-

ture (Good et al. 2010) in networks. One natural setting where this occurs is when online networks

sample from some hidden, pre-existing offline network—for example, when creating online Face-

book relationships between offline friends—where this process has been shown to induce nontrivial

structural patterns, including so-called network densification (Pedarsani et al. 2008; Schoenebeck

2013). Specifically with respect to time, the level of temporal resolution used in network construc-

tion can reveal wide differences in network structure. Clauset and Eagle (2007) show that deriving

snapshots from proximity networks can produce wildly different structure at high resolution.

Here we emphasize the construction of network snapshots from communication or interaction

data. The degree to which many of these issues apply to organizational email data is unknown,

and it is an empirical question as to how construction will shed light on measurement of network

processes. We first set up the notation necessary to speak precisely to the consequences of these

choices. Separating these variables will be necessary to meaningfully characterize social networks

drawn from interaction data and compare across networks of similar construction.

Tunable knobs: time, observation window, and relationship strength First, we

clarify the variables of interest to construct network snapshots from interaction or communication
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0

Figure 5.1: Terms for network construction. Top, observations of interactions between i and j
are observed during time t, t0 ≤ t ≤ T . Bottom, a network snapshot is constructed from a window
of size w. Reciprocated pairwise interactions determine the value of reciprocal interaction strength
τij , and an edge between i and j is created for that time window if τij ≥ τmin.
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data. These are often encoded during preprocessing or implicitly chosen or assigned. Making these

variables explicit will allow us to empirically explore the consequences of network construction.

Figure 5.1 combines how a set of interactions between a pair, i and j, taken over time [0, T ] might

be aggregated over some window of length w. The strength of a relationship between i and j here

is measured by τij , and we may be interested in binarizing this network, where we define edges

between i and j during some time window if their relationship strength is observed to be above τmin,

with no edge between them otherwise. This task is a simple network inference question, where we

are inferring the presence or absence of a relationship based on some (possibly weighted) reciprocal

count data.

We begin by characterizing these terms:

• Relationship strength or reciprocal tie strength (τ) As defined in Chapter 2.3

and 5.3.1, this represents the reciprocal interaction strength between two individuals.

Specifically, we use the geometric mean of the messages exchanged between two individuals,

down-weighted by the number of co-recipients of each exchange. This measure instruments

the strength of the pair’s relationship. The interpretation of τ is highly dependent on the

size of the observation window w—four emails exchanged in one hour, one week, or one

year indicate very different relationships (De Choudhury et al. 2010)—as well as the total

sampling time and window size (w ≤ T ), rate of observation (for low τ compared to window

size), and rate of change in the underlying system.

• Observation window (w) The width of the observation window w signals what timescales

of human behavior we will capture, by choosing the sensitivity of the data to external

influence. For example, w at the level of minutes would provide a sparse and noisy view

of any social relationship, with inferred relationships flickering with observations (Clauset

and Eagle 2007). This induces sampling effects that are misaligned with longer term social

processes of interest: in a university email data set, for example, it is unlikely that strong

ties ‘forget’ their relationship over Thanksgiving break (Kossinets and Watts 2006).
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• Time (t ≤ T ) We are interested in the role of time to mark how a network evolves. While

time t primarily serves as an index, where we iterate through the time series of interactions,

aggregated over an observation window w. Given some model of underlying dynamics or

sampling rate, it will also be a question of when or whether the total amount of time T will

be enough to observe the patterns of interest (problems of left-censoring and resolution of

social process). In single network (N = 1) settings, furthermore, it is difficult to tease apart

the role of network size S from time T , and this has created ambiguities in the literature.

Note: snapshots and sliding windows. Let δ be the distance between observed windows. That

is, for some window size w and window wα = [tα, tα+w), the next window would start at t = tα+δ.

Here we restrict our analysis to the case where δ = w, i.e., snapshots are non-overlapping, but it

is also common to analyze sliding windows of social networks. We leave discussion and empirical

exploration of these methods to future work.

Some subtleties First, and trivially, window sizes are limited by the total time of obser-

vation: w ≤ T . The scale of these terms compared to the social system will determine whether

one has sufficient time to observe the dynamics in a system is related to the timescale of the social

processes of interest (cf. Clauset and Eagle (2007)) the problem of left-censoring (if missing his-

torical data would have revealed pre-existing relationships), or sufficient data to reveal meaningful

long-term evolution.

Second, the relationship strength of a pair τij and the window size within which the relation-

ship is observed w are closely related. The inferred strength of a relationship will relate to how

much time has been made available to observe it. Contacts that exchange birthday cards may have

an infrequent, meaningful exchange, whereas a support team/customer relationship may include

many exchanges in a short period of time, followed by no future contact. These examples, though

caricatures, hint at the subtleties of these measures. Simply converting relationship into a scale-free

measure, e.g., by measuring τij/w (for example: “5 emails per week; 2 phone calls per year”) as

a relationship strength implies a model of the relationship between pairwise interaction and time,
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even though people communicate on a range of timescales. We emphasize that this is instead an

empirical question, relevant but beyond the scope of this chapter, as to how these measures would

vary together and how to convert relationship strength into a meaningful rate.

Figure 5.2: Any point in this parameter space defines a unique network from a set
of interaction data. From left, the first panel represents different networks constructed from
different minimum interaction strengths τ . This would reveal networks that vary by tie strength,
as we explore in Section 5.4.1; this could also be used to verify robustness of an empirical result
(Chapter 4). The second panel represents networks constructed from different observation window
sizes, which could reveal differences in stability of network structures, as we explore in Section
5.4.2. The third panel represents networks sampled over different total time spans, which would
reveal differences in how a network aggregates, as we explore in Section 5.4.3.

Constructing a network from (τmin, w, T ) We can then imagine this as a three-

dimensional space. Then, given some source of interaction data, the location of a point in this

space—the selection of these three variables—will uniquely define a network. To yield a population

of comparable networks, we can imagine fixing a location in this space, and using this to define a

network from different sources of interaction data, as we did in Chapter 4.

Alternatively, by sampling different points in this space—for example, fixed w and T but

different minimum relationship strengths—we can compare how the choice of network construction

yields different network structures. We visualize this idea in Figure 5.2. (As we have noted, these

variables are not truly orthogonal. Some of the relationships between these variables are straight-

forward (w ≤ T ), but as previously discussed, other relationships in this space must be explored

empirically (τ vs. w).) In this chapter, we will explore multiple points along each dimension, con-

sidering one variable at a time. We leave to future empirical work to explore the relationships
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between each dimension. While relationships between these dimensions would be quite complex,

these single dimensions are still nontrivial to explore. Our approach yields a surprisingly rich area of

exploration, where each variable relates to some idea from the study of social networks, particularly

where the N � 1 population setting reveals novel empirical results. Having a single framework

with which to reason about these ideas suggests a promising perspective.

Final construction detail: Size from (τmin, w, T ) and time Subtleties abound in

network construction. We note one additional detail that appears as a function of the network

construction and the observation in time. For each time window observed, we will only observe

the senders who were active and sufficiently active during this time. Then the number of active

participants observed S may fluctuate across time during observations of an online system. For

example, any online platform operator knows this intimately well: the number of user accounts is a

meaningfully different statistic than the number of daily or monthly active users, and the number

of daily or monthly users may vary with regularity (weekends or seasons) and due to noise. Senders

who are not counted during a given time window are still, in some sense, ‘meaningful’ zeros, in that

senders not observed may still reappear in a future network observation, but also do not represent

meaningful contribution to network structure during that time. However, we expect from random

graph theory and the previous chapters that empirical network structure may vary as a function of

network size, and so we must take this into account during measurement.

Potential heterogeneity in observed size and structure then suggests we explicitly highlight

this additional detail of interest before proceeding:

• Size (S). The number of active participants observed in a network, i.e., the number of

nodes or |V |, the size of the vertex set. Network structure is expected to vary with the

number of nodes, all other variables held constant. Differences in size can be the result of

different instantiations of a network: e.g., two draws from a single network model (scaling)

or two empirically different but comparable networks; or, the result of a given graph adding

(growing or evolving) or deleting (evolving) nodes.
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5.3 Data and methods

5.3.1 Data

We take advantage of a unique data set of high-resolution organizational email communication

as multiple comparable examples of graph evolution (Chapter 2.2.2). By restricting to within-

organization communication, each network is disjoint with clear membership boundaries. For each

network, we observe the time series of sending patterns between anonymized senders and receivers,

and we analyze these patterns in aggregate, using data from a large commercial enterprise email

system.

This yields a population of N = 65 unique networks. Considering the fully aggregated

networks over the full time period (w = T ), these networks range in size from approximately 4,500

to 220,000 unique senders, representing almost two orders of magnitude. In each of these sections,

we explore different settings including w = 1 week and w = 1 month, and make our choices explicit

as they change in Chapters 5.4.2 and 5.4.3. Smaller time windows capture future senders, and so

we will also observe heterogeneity in the number of senders observed, and we explore and exploit

this heterogeneity in Chapter 5.4.3.

We define τ following De Choudhury et al. (2010). Tie strength is defined using the geometric

mean of the number of messages exchanged between each pair, weighted by the number of recipients

on each message. Specifically, for each pair of individuals (i, j), and messages they exchange during

some time window wα := [tα, tα + w], we define Iij,α = {ι1, ι2, . . . , ιmij}, aggregated over a given

time window wα, we define:

• mij,α = |Iij,α| = total messages sent from i to j during wα

• mji,α = |Iji,α| = total messages sent from j to i during wα

• Reciprocity τij,α = τji,α =
√
ωij ∗ ωji, where

ωij =
∑
ι∈Iij

1

number of recipients(ι)
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and similarly for ωji. Note that τij = 0 when the link is unreciprocated.

We note that the reciprocity assumption for inclusion, that i and j must have each received at least

one email from each other in a given time window, is actually an assumption of τij > 0, as each

message could have arbitrarily many recipients.

5.4 Results

We explore the role of each variable on social network structure and, using this perspective,

explore three related social phenomena: τ and weak ties in social networks (Granovetter 1973), w

and network stability (Kossinets and Watts 2006), and T and densification (Leskovec et al. 2007).

5.4.1 The role of τ and the phenomenon of weak ties

The reciprocity strength τij represents the strength of mutual engagement between two

senders, by construction.4 We follow from De Choudhury et al. (2010) and find that network

structure varies systematically with relationship strength. While this may now be intuitive—one

has more acquaintances and strong ties than strong ties alone—the way that network structure

varies, and the degree to which this matches expectations from sociological theory, are non-obvious.

Variation about τ is meaningful in that this variable operationalizes the concept of relation-

ship strength (equivalently: tie strength), varying from “weak ties” to “strong ties.” Kilduff and

Brass (2010) defines tie strength from the literature:

“A ‘combination of the amount of time, the emotional intensity, the intimacy (mu-
tual confiding), and the reciprocal services which characterize the tie’ (Granovetter,
1973, p. 1361). Strong ties are frequent, long-lasting, and affect-laden (Krackhardt,
1992, pp. 218–219), whereas weak ties are ‘infrequent and distant’ (Hansen, 1999,
p. 84).”

The literature on weak ties, a concept made central by Granovetter (1973), emphasizes the utility

of access to new information. These arguments are often structural: the local network structure of

4 A detail about this discussion: here we will refer to variation in network structures determined by threshold
τmin as variation by τ . That is, we always refer to the graph where all relationships (i, j) ∈ E ⇐⇒ τij ≥ τmin. This
intentional sloppiness allows us to characterize how network structure varies with tie strength, where ties are only
encoded from network data conditional on having sufficiently strong relationship strength.
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strong ties (many shared ties) vs. of weak ties (potentially bridges to other parts of the network,

with fewer shared ties). This is the basis of Granovetter’s formulation: “the degree of overlap of

two individuals’ friendship networks varies directly with the strength of their tie to one another”

(Granovetter 1973). The constraints on this, and the degree to which this is a function of relation-

ship strength or network structure, are pursued in the recent literature (cf. Aral 2016; Aral and

Van Alstyne 2011; Bruggeman 2016; Quintane and Carnabuci 2016).

We find that the measure τ interpolates between very weak, weak, and strong ties, and

that there is a qualitative shift in the network structure among very weak vs. weak ties, and a

different shift, aligned with pre-existing theory, between weak and strong ties. These expected

results describe how network structure, specifically degree and clustering coefficient, ought to vary

between weak and strong ties, but we find non-obvious results for clustering in networks using very

weak ties. Finally, we find that ties with overlapping local networks (more embedded ties, with

more neighbors in common) are stronger than those with non-overlapping networks (i.e., those that

serve as bridges between communities). However, we also find that weak ties are both infrequent

and local and infrequent and distant, which suggests a departure from the original definitions put

forward by Granovetter, but is supported by recent empirical results from case studies (Quintane

and Carnabuci 2016).

Most ties in communication networks are weak ties First, descriptively, it is worth-

while to note that most network ties have relatively low tie strength. The distribution of all tie

strengths across each organizational network is illustrated in the density plot in Figure 5.3. Each

gray curve represents the distribution over each organization, and the navy blue curve represents

the distribution over all observed edges in all organizations (w = T = 6 months; τmin = 0). We

find that edge strengths are approximately lognormally distributed, with an additional nontrivial

peak at τij = 1, where the modal exchange has the same weight as having sent and received exactly

one email with a single recipient, and smaller peaks at small-integer combinations of messages ex-

changed and numbers of recipients. Recall also that we are strictly considering reciprocated email

relationships, therefore unanswered emails will not appear in this data set. Nonetheless, we find
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Figure 5.3: Across organizations, relationships are approximately lognormally dis-
tributed with a significant peak at τij = 1. Each gray curve represents the distribution
of relationship strengths within a single organization, and the navy curve represents the distribu-
tion across all organizations. Across all 65 networks, w = 1 month, we note that most ties are
quite weak—the median tie strength is 1— and there are additional small peaks for small-integer
combinations of sending and receiving.
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that most reciprocated pairwise strengths are weak.

Figure 5.4: Average degree and average shortest path lenth across all networks as a
function of minimum reciprocity threshold τ . Average degree decreases as 〈k〉 ∼ 1/

√
τ .

Average shortest path length, varying relationship strength τ , increases as L ∼
√
τ , which matches

our expectation that L ∼ logS/〈k〉.

τ interpolates from ultra-weak/nearly bipartite ties to weak ties to strong ties;

strong ties (and ultra-weak ties) are more clustered First, we recover the reasonable result

that average degree decreases as the threshold to be considered a tie increases. This and, relatedly,

average shortest path length (which generally changes with degree L ∼ 1/〈k〉) should increase as

ties get deleted. Specifically, we fit a range of functional forms and choose the best fitting model by

AIC. (Where not specified, this is the technique applied in all empirical settings in this chapter.)

We find that average degree decreases as 〈k〉 ∝ 1/
√

(τ) as average shortest path length increases

as L ∝
√

(τ) (Figure 5.4). Note that this matches the expectation from random graph theory that

L ∼ logS/〈k〉 (Newman (2010); and recall that L ∼ logS: Chapter 4).

The empirical distribution of the clustering coefficient, however, suggests a more subtle re-

lationship. For τ ∈ [1, 20], clustering coefficient increases with threshold C ∝ log(τ) (Figure 5.5).

This matches what is expected from theory: Granovetter would tell us that clustering should in-

crease with relationship strength, from weak to strong ties (Granovetter 1973). But, compellingly,

we see clustering coefficient start high for very weak ties (τ � 1) and decrease with increasing tie
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Figure 5.5: Clustering coefficient over varying minimum relationship strength τ . Clus-
tering coefficient increases as C ∼ log τ for τ ≥ 1, but clustering coefficient decreases from τ � 1
to τ = 1. All networks are taken over the full six month time window, w = T = 6 months.
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strength.5 Why could this happen? For very weak ties (τ � 1), relationships effectively represent

co-occurrence or co-membership in groups of recipients, whether formal groups or informal. For τij

very small, these pairs are effectively recipients of each other’s broadcast emails—as anyone who

has been caught in a loop of disastrous “Reply All” situations can affirm, these might be unlikely

to be meaningful relationships—and this creates dense graphs with high clustering.

We then claim that the reciprocity strength τ interpolates between very weak, weak, and

strong ties. We make this distinction because we find that empirically there is a qualitative differ-

ence between very weak ties (τ � 1), weak ties (τ ≈ 1), and strong ties (τ � 1). While it could

seem obvious that very weak ties by name alone are not evidence of a meaningful social tie, there is

no known empirical threshold for interaction or communication data at which this would be neces-

sarily true. Low τ values represent relationships between pairs that do not communicate directly,

but pairs that communicate to groups that include the other. In organizations and broader social

systems, it is not obvious a priori that these relationships are not meaningful. That is, these may

be pairs that are aware of each other’s existence, are connected in the offline world, or are likely

to be connected to each other (through the process of cyclic or triadic closure—see Kossinets and

Watts (2006) and next). Regardless, if there is a debate of the value of these very weak ties derived

from communication data, then that alone suggests this task is worthwhile and non-obvious. That

is, the suggestion that there would exist a relationship strength value in this space that is too weak

to count as a meaningful social tie immediately affirms the relevance of this exploration.

Neighborhood overlap is low and constant for very weak ties, but increases for

increasingly strong ties Here we ask how embedded are relationships of varying tie strength?

That is, how similar are ties, conditional on their observed tie strength? Recall the hypothesis from

Granovetter: “the degree of overlap of two individuals’ friendship networks varies directly with the

strength of their tie to one another” (Granovetter 1973). Again, we find that between weak and

strong ties, our empirical results match both theory and past empirical results that the degree of

5 The distributions of clustering coefficient for τ = 0.1 vs. 1 and τ = 1 vs. 5 are significantly different, by two-sided
Kolmogorov-Smirnov test, p = 0.013, p = 0.002, respectively.
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Figure 5.6: Distribution of tie strengths τij compared to the Jaccard similiarity of the neighbors
of i and j, for all neighbors. Curves shown for w = T = 1 month, τmin = 0. Each gray line shows
a smoothing spline fit to each organization’s network; aggregating over all organizations, the blue
line represents the spline fit to a 10% subsample of all edges.

neighborhood overlap increases with tie strength. Here, we measure this overlap by the Jaccard

coefficient of shared neighbors between connected pairs: Jij =
|Ni∩Nj |
|Ni∪Nj | where Ni := {j ∈ V : (i, j) ∈

E} is the set of neighbors of i.

Figure 5.6 plots the Jaccard similarity over neighbors to the tie strength. We observe that

edges with relationship strength τij ≤ 1 have low similarity (Jaccard similarity about 0.1) but

that does not vary. For τij ≥ 1, similarity of neighborhoods increases with increasing tie strength,

as expected. This suggests additional evidence that very weak ties (τ � 1) behave qualitatively

differently than weak ties (τ > 1).

5.4.2 The role of w and the phenomenon of stability

The window size w defines the timescale of observation of social processes and network

structure. Here we focus on network stability, where we focus on the distribution of individual

properties and how they might vary with time.

Here, we are interested in the construction of network snapshots from which we compute

network measures, and these snapshots are then converted into panel data. Network measures,
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however, often implicitly capture a temporal process: the social strategy employed by an individual;

the flow of information across ties, estimated using these observed structures; or the access or reach

of individuals themselves. Given that these measures assume an implicit temporal process, we must

then hope that the rate at which that process shifts is slower than the rate of observation.

Consider a practical example: if Kim Kardashian loses a fraction of her total Twitter followers

between one month and the next, then her degree centrality will decrease. However, if she is

still among the top accounts on Twitter, then this measure (degree centrality) may be useful in

characterizing her role in the system. This example is relevant to many online systems, where, for

example, there may be many users on Twitter with a few hundred followers, few will be at the

comparable scale of Kim Kardashian (over 50 million followers in July 2017). If the underlying

network dynamics are fast compared to the window of observation, then major shifts among the top

Twitter users would be frequent. In this example, while the nature of celebrity is ephemeral, the

suggestion is that the rate of observation is still faster than the mixing of that social system. In this

case, cross-sectional analyses would then be overfitting to whatever arrangement happened to be

observed at the time. (Burt and Merluzzi 2016 is potentially one example, where the distribution

of centrality measures changes rapidly, there is insufficient data to rule out over-fitting, and the

authors find that rapid change in the distribution of centrality measures is related to outcomes.)

On the other hand, if the dynamics are slower than what is captured by measures taken over the

window of observation, then observation over multiple windows could reveal meaningful individual

changes.

Stability of central roles over time Cross-sectional analyses that involve the centrality

of individuals in social networks use a series of snapshots that use individual positions to predict

individual outcomes. This has been applied across social science, from Burt (1992, 2004) to Quin-

tane and Carnabuci (2016) and Uzzi et al. (2016). We ask how stable the distributions of roles

are across weeks and months, and the degree to which these properties persist at the individual

level. We find that the distribution of network properties varies quickly. The most central members

of these organizational networks rapidly lose their position, suggesting that the position itself is
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Figure 5.7: Stability of highest-betweenness and highest-degree individuals over time, per week.
Each line represents a different organization (only four are shown—preliminary analysis), connecting
observations taken for each week (w = 1 week, δ = 1 week). For each network snapshot, we compare
the top 10% of individuals by betweenness (τ = 1), degree (τ = 1) and degree (τ = 10) to those
who were in the top 10% in the first snapshot. The y-axis plots the percentage that have remained
in the top 10% since the initial observation.
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not a persistent property. Given a fixed starting position, the half-life of remaining in that status

is quite small. Degree centrality is more persistent than betweenness centrality, and structure at

the window size of one week varies much more rapidly and widely than at the window size of one

month. We demonstrate this persistence, or lack thereof, of individual roles using a few organiza-

tions (N = 3 and N = 4), varying in size from a few thousand to over one hundred thousand active

senders; future work will expand on this population to more accurately characterize the empirical

heterogeneity across organizations.

Figure 5.7 plots the fraction of most central nodes (by degree or betweenness) that maintain

these roles over time. That is, these figures show what percentage of nodes remain in the top

10% by centrality, conditional on having initially been in it. Then, we can understand Figure 5.7

to reveal the “half-life” of the most central nodes: for the weekly snapshots, half of the original

top senders are no longer in the top after one or two weeks. This holds for all three centrality

measures, degree centrality for τmin = 1 and 10 networks and betweenness centrality for τmin = 1.

In Appendix C.1.2, we also show that the half-life is short for w = 1 month (Figure C.1.3).

Central nodes have a short half-life; monthly networks are more stable. Figure C.1.3 shows

that within two month snapshots, typically half of the most central nodes (by betweenness and

strong ties) are no longer the most central, and only about a third of the most central (by between-

ness and strong ties) remain in the top after six months. For all centrality measures, this drop-off

is precipitous when taken at the weekly snapshot level (Figure 5.7): only about 25% remain in the

top after the first three weeks, and most measures drop to almost zero.

About half of most central nodes are central at a given time later; again, monthly networks

are more stable. We also show a related, but qualitatively different point to the “half-life” of the

most central nodes suggested by Figure 5.7. Figures C.1.4 and C.1.5 instead show how many of the

initially central nodes (again, the top 10%) are currently in the observed snapshot by month and by

week, respectively. At the weekly level, we find wide variation across organizations, and find that

only about half of most central users are central at any future time point. At the monthly level,

about 2/3 of the original central nodes return at any given future snapshot. This suggests whether,
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and how often, the most central nodes are observed to be most central again. Figure C.1.4 and

Figure C.1.5 suggest more stability, and they also show greater stability at the month-level than

the week level. Monthly (Figure C.1.4), about 2/3 of the original most central nodes will be most

central during any given later snapshot. Weekly, only about half of those most central nodes will

be most central during that given time.

Together, these results support past work that suggests that while global properties of a net-

work are stable, individual properties may vary rapidly (Kossinets and Watts 2006). Furthermore,

this lack of individual stability could yield misleading inferences. In settings that use cross-sectional

data, it is often an unstated assumption that the dynamics of the process of interest are relevant

to the timescales observed. Centrality measures in particular implicitly encode a temporal process

over a static network, and these processes may vary more or less rapidly than the rate of observa-

tion (operationalized by w). Robustness checks across various values of w may reveal weaknesses

in cross sectional analyses, and these results otherwise suggest caution in the use of cross-sectional

analysis. Future work using populations of networks should more thoroughly explore the empiri-

cal heterogeneity across networks, the stability of centrality measures and other local and global

network features across varying network definitions. A compelling empirical and modeling task

could explore the robustness of inferences made using these highly variable network measures, and

characterize the conditions under which meaningful measurements can be made.

5.4.3 The role of T and the phenomenon of densification

Variation about T is meaningful in that this allows us to operationalize the total time window

of observation. In studying network evolution, this variable is often fixed and handled during

preprocessing. Networks that grow or vary over time may also be defined to aggregate their histories

(by increasing w until w = T , or, equivalently, fixing w = T and increasing T ) or may carry over

historical structure from past time windows (snapshots drawn from the same social system over

time). Then to precisely define dynamic networks, and furthermore make comparisons across

networks of different ages (and potentially different sizes), we must be explicit about the role of T
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when considering a population of networks. While this may seem like a trivial point, this sheds

light on empirical network evolution research which focuses on the dynamics of networks that vary

over time, and may vary in size, but are only observed in single N = 1 settings. Teasing apart size

and time is then at the heart of understanding empirical network scaling and network evolution.

In network evolution settings, network size S often varies with the amount of time observed.

Consider, for example, the number of users on Facebook in 2005 vs. 2017: about six million users

at the end of 2005 (Chapter 3) to over two billion users in June 20176 . Then, the role of size

immediately becomes intertwined with the role of time. In N = 1 network evolution settings, it is

not obvious how to tease apart these competing processes.

Network structure is well understood to vary with network size, yet ambiguity remains about

the ways these properties vary with size (Newman 2003), growth (Callaway et al. 2001) and evo-

lution (Leskovec et al. 2005b) in random and empirical graphs. One canonical property of random

graphs, of many types, is the average shortest path length (mean geodesic) and diameter varying

as O(logS) or O(log logS) with the size of the graph S, with constant average degree, by as-

sumption (Newman 2010). Another widely accepted and well-decorated finding is that empirical

networks appear to densify: that is, average degree increases, i.e., become more dense.7 Teasing

apart these issues, we find robust empirical evidence of constant average degree across a population

of organizational communication networks. And yet, we find that average degree increases within

a population of organizational communication networks. Within each organization, the network

structure varies with the size of the network observed.

Dissonance between these results and the densification literature is in part due to the attribu-

tion of structural properties to network growth (aggregation and evolution) as opposed to variation

strictly due to size. However, we note that this distinction is difficult if not impossible to highlight

when N = 1, i.e., in the absence of a comparative setting. We shed light on this problem using a

6 https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
7 For the moment, we omit an additional argument from Leskovec et al. (2007) about the diameter or distance

between nodes shrinking over time. We found increasing O(logS) scaling of shortest path lengths across organizational
networks both for firms and in the early Facebook data, but leave analysis within organizations for future work.

https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
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Figure 5.8: Average degree (number of contacts) within an organization, for different definitions of
the network (varying τmin). The regression lines show no relationship between network size S and
average degree 〈k〉 across all network definitions.

rich data set of a population of dynamic communication networks of that are of comparable origin

but of different size. We begin by establishing some basic relationships between size and time across

this population of networks.

Average degree does not vary with size across networks, corresponding to differ-

ent social systems. However, as demonstrated in Chapter 4, recall that we found that degree did

not vary with the number of nodes. (We also found this in Chapter 3, on a different type of social

setting.) Here, shown over a range of values of τmin, Figure 5.8 shows how 〈k〉 does not vary with

size over fixed w = T over a range of values of τmin. Then in settings where the size of a network

increases with time, it would not be feasible to tease apart size from time.

Average degree increases with a greater window of observation (timespan). Triv-

ially, we also note that average degree increases when we aggregate over time, rather than consid-

ering non-overlapping snapshots. It is a straightforward observation that during time t = [0, 2w),

we observe at least as much as we observed during time t = [0, w). We show this in Figure 5.9 and

observe that 〈k〉 increases with time, where w = T is increasing. A range of the empirical settings

considered in Leskovec et al. 2007 consider graphs that aggregated connections over time or ex-
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Figure 5.9: Average degree (number of contacts) within a single organization by increasing time
window, two standard errors about the mean shown as gray bars. Here, the graph starts at
[0, w = 1 week], and then increases w by intervals of one week, so the graph is aggregating edges
over time. The colors (as shown in the legend) correspond the the minimum reciprocity value τij
that each edge must have had by the time the window size reached w. (For example, the green
and blue lines can be considered the average number of strong ties, which are increasing as the
time window increases.) This shows, but does not fully differentiate, that new edges are still being
observed as time goes on (τ > 0.001) but also that edges are being activated over time, that is,
they reach high enough reciprocity levels as time continues.

hibited increases in the underlying population, such that size would necessarily be increasing with

time. However, we note that we must differentiate network size from the timespan of observation,

that is, S 6= T . The key argument of Leskovec et al. (2007), emphasis ours, states that: “ The

networks are becoming denser over time, with the average degree increasing (and hence with the

number of edges growing super-linearly in the number of nodes).” Without access to a population,

it is not obvious how or even feasible to separate these dimensions of time and number of nodes.

Average degree does not vary meaningfully over time. Having already distinguished

the effect of aggregation, we return to the setting of network snapshots of fixed window size w, w <

T . We note that both average degree and observed network size does not vary meaningfully over

time. Whereas Leskovec et al. (2007) considered examples with aggregation or systems where the

system size increased with time (and, as a result, made mixed claims about the roles of size and

time), we are able to distinguish network scaling and network evolution over our observed windows.
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Figure 5.10: Average degree (number of contacts) within an organization generally
increases with the number of observed senders. Observations are taken across w = 1 week
periods over T = 6 months, minimum τ = 1. We use the 24 week periods for which we have complete
coverage. Linear regressions and standard error about the mean are taken across observations for
each organization. For visual clarity, we only show organizations with no more than 20,000 weekly
active senders; all organizations are shown in Figure C.1.7.

So, where does this leave us?

Is densification real? In order to address this question, we must be precise about the

concept of network scaling vs. network evolution. As we saw in Chapter 4, and as we see here in

Figure 5.8, average degree does not vary with size across a population of networks, even if they

are of comparable origin. Within the context of network evolution, however, we do find evidence

that within a system, average degree does increase with size. That is, within each observed social

system, we find evidence of network densification, where average degree increases with size. First

we expand on the notion of densification, review the present evidence, and then present a potential

confounder and explanation for the densification process observed in this type of empirical online

social data.

Densification: some definitions We first define a weak and strong form.
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• Weak form: networks densify with increasing density, i.e., increasing average degree with

the number of nodes. Equivalently, the number of edges increases superlinearly in the

number of nodes.

• Strong form: Densification power law. Leskovec et al. (2007) argue for both densification

in the general sense and for the “denisfication power law” where |E| ∼ Sa+1, 0 < a < 1,

therefore 〈k〉 = |E|/S ∼ Sa, 0 < a < 1.8

Here we only assert to demonstrate the weak form. We introduce statistical evidence that for

some |E| ∼ Sa, where a 6= 0. That is, we show that the number of edges is increasing superlinearly

with the size of the network. We demonstrate this by providing statistical evidence that k = 2|E|/S

is increasing with S. If a = 0 then we would have |E| ∼ S, and k would be constant with respect

to S. This has not previously been systematically demonstrated on a population of comparable

networks. However, since we only have 24 network snapshots drawn from each of the 65 different

generating distributions, we have insufficient data to suggest a more precise functional form of a

scaling relationship.9

Average degree increases with size of a network within a social system Figure 5.10

is suggestive that average degree increases with size within a network. To fully test this hypothesis

across all 65 instances, we construct a model to ask whether or not size and degree are positively

related. We combine the weekly snapshots data into a single hierarchical linear model, and seek to

test whether we can reject the hypothesis that degree does not vary with size.

We frame this by asking if there is a population-level effect of size on degree using a random

effects model. This strategy accounts for heterogeneity across firms and mitigating overestimating

8 In the setting of probabilistic generative models for network structure, there is currently a debate and open
technical problem about the “sparsity” of network models (Jacobs and Clauset 2014). In the machine learning
literature, Caron and Fox (2014) and Veitch and Roy (2015) and the extant literature consider “sparse” graphs to
be precisely those defined by the densification power law setting. This is in contrast to so-called “dense” graphs for
which a = 2 (Orbanz and Roy 2014). Reconciling these notions of sparsity with generative models with the scaling
properties of networks is a meaningful technical challenge (see, e.g., Fosdick et al. (2016)).

9 Demonstrating this over a set of sliding window snapshots (δ < w < T ) would provide more observations that
were strongly dependent, based on overlapping windows of the original interaction data. Leskovec et al. (2007) suggest
that approaches such as this that only consider active nodes may increase the densification process. We develop a
related idea that the distribution of sender activity may suggest an explanation (and confounder) for the observed
densification.
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Model: 〈k〉 under τmin = 1 Model: 〈k〉 under τmin = 5
w = 1 week, T = 24 full weeks w = 1 week, T = 24 full weeks

(Intercept) 11.92∗∗∗ 2.66∗∗∗

(1.36) (0.22)
Srescaled 21.27∗∗∗ 3.24∗∗∗

(2.60) (0.32)

AIC 820.72 -3390.72
BIC 852.01 -3359.43
Log Likelihood -404.36 1701.36
Num. obs. 1360 1360
Num. groups: Symbol 65 65
Var: Symbol (Intercept) 108.16 3.10
Var: Symbol Srescaled 366.53 6.35
Cov: Symbol (Intercept) Srescaled 190.40 4.33
Var: Residual 0.06 0.00
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.1: Multilevel model relating average degree to observed network size over 24 weekly snap-
shots across 65 firms.
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effects by multiple comparisons (Gelman et al. 2012). We allow for random intercepts and random

slopes, allowing for variation in firm-level effects of size, and ask whether there is a population-level

effect of size to predict degree. We find that we can reject the hypothesis that degree does not

vary with size, p < 0.001 (Table 5.1).10 In addition, we find that the slope is qualitatively smaller

for the 〈k〉 in the τmin = 5, which lends support to our hypothesis that densification occurs as a

product of shifts in activity.

Densification: the present evidence Why does this happen? How does average degree

vary within systems, with network size, and yet not across systems? We review what evidence we

have for how networks densify through network evolution, scaling, and aggregation, and present

a potential explanation. We suggest that variation in distributions of activity are the primary

variable being captured, which increases both observed network size and average degree.

We have found evidence for the following series of observations:

• 〈k〉 is unrelated to S across networks, fixing comparable time window snapshots (Figure 5.8)

• 〈k〉 is trivially related to time under aggregation (w = T , w increasing) (Figure 5.9)

• 〈k〉 is not meaningfully to the passage of time across snapshots (w < T , fixed w) (Fig-

ure C.1.8)

• 〈k〉 is related to S within networks, across comparable time windows (Figure 5.10)

We suggest that this apparent contradiction is related to the distribution of online activity.

Recall that we are in the empirical setting of observing online activity across many offline orga-

nizations. Using two proxies for online activity, we first show that these systems vary in activity

level during different time windows (intuitively: imagine a worker’s output on Friday afternoon,

or the week of Thanksgiving, vs. a more active time period). We first show that we observe more

10 For numerical stability, we rescale S to Srescaled = S −mean(S)/sd(S), and find comparable results to . Then
an intercept of 21.27 for the rescaled model corresponds to an intercept of 0.0011 (taking the intercept and dividing
by sd(S)). Similarly, for the τmin = 5 networks, this corresponds to a much smaller slope, 0.0003. These “unscaled”
intercepts are similar to the coefficient found under the original model of 0.0011 and 0.0003, respectively. These are
also statistically significant, but are unreliable estimates due to poor convergence properties of our algorithm.
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active senders during more active time periods. Then high user counts are then snapshots of high

activity time periods, and measures that are correlated with higher activity will then appear to

be a function of larger size of observed active users. We attempt to tease apart the relationships

between activity and size. We will then show the non-obvious finding that this activity level is

positively correlated with degree in the next section.

Figure 5.11: At the hour level, senders send more messages when more other people are
active. Conditional on a sender being active, the mean number of messages sent in an hour period
per active hour user increases with the fraction of active senders within an organization. Each
point represents an observation of the average number of messages sent for a given hour (w = 1
hour) across all active senders within that hour. The fraction of active senders is given by Nobserved

divided by the total number of unique active senders ever observed (T = 6 months).

Densification: an artifact of activity level? Activity level vs. number of senders

observed. First, we consider one measure of activity, number of messages sent, by the number

of senders active. There are a number of relationships we could observe: if the distribution of

user activity was unrelated to the number of active senders, that would suggest that we are taking

samples of differently-sized user populations. Alternatively, if the number of senders observed was

a function of observing more low activity users, then it is plausible that the average and median

numbers of messages would decrease as a function of the number of senders observed. On the other

hand, if we are instead observing a system where more senders are only active during high activity
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periods, and senders were more active during those times, then we would observe the average and

median number of messages increase as a function of active senders.

We find that the number of senders observed and the activity level are positively correlated.

Figure 5.11 shows that the average number of messages sent per active sender increases with the

number of active senders in organization observed. The total number of messages and the median

per active user increases as well: see Figure C.1.9. Here, we show size as the fraction of all senders

in an organization observed, such that size is comparable across networks. Then, conditional on

being active within a time frame, users are more productive (as a function of total messages sent)

during time periods when more other senders are active (as a function of total reciprocated active

senders observed).

Figure 5.12: Left, individuals’ strongest relationship is observed to be stronger when
more senders are active. Right, the total weight of relationship strength exchanged
is higher when more active senders are observed. Taken over w = 1 week, T = 24 fully
observed weeks.

Then, we show that the number of senders observed in a given time period increases as a

function of activity level.

We first consider the maximum relationship strength of each user, i.e., each individual’s

strongest relationship, and take the average of this maximum across all users in each organization.
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Figure 5.13: Possible hypotheses for the relationship between activity level and degree.
First, we might find support for the diversity-bandwidth trade-off if we observe low activity (low
bandwidth) relationships with higher degree and highly active relationships (high bandwidth) with
lower degree. Alternatively, we would observe the opposite if senders exchange message with more
contacts during more active periods. If neither or both are true, and in aggregate, individuals’
behavior (by sender degree) is independent of activity level in the system, then we should observe
no relationship between bandwidth and degree.
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The strongest relationship of an individual can vary in multiple ways as a function of the larger social

system. First, during times when more active senders, the strength of the strongest relationship

may decrease, due to constraints on total bandwidth of an individual. (An additional argument

for observing weaker relationships with more observed senders would be if the total number of

senders observed is only increasing by observing more low activity users.) Second, the strength

of this strongest relationship may be unrelated to the larger social system: an individual’s email

relationship with their strongest tie—potentially a collaborator, their boss, or their friend—may

be independent of the total number of active users. Third, and what we find here (Figure 5.12,

left), is that the number of active observed users increases with the strongest relationship strength.

This suggests evidence for a positive relationship between activity level in a time period—even of

one’s strongest relationship—and the total number of users observed. Analogous arguments hold

for the total relationship strengths per user, and we find these results hold for the average across all

users of their total relationship strengths, a proxy for their total activity per user per time window

(Figure 5.12, right). As this measure is taken across all users, this suggests that the total number

of active senders observed is not simply increasing as a result of observing more low activity users,

but that more users are observed during higher activity time periods.

Densification: an artifact of activity level? Activity level vs. degree. Next, we

compare sender degree to activity as a function of relationship strengths. Figure 5.13 suggests a

range of hypotheses we could support by comparing our proxies for activity level to sender degree.

Degree operationalizes the diversity of users’ networks—i.e., their degree, or number of

contacts—to users’ bandwidth—i.e., users’ total information and communication expenditure, taken

here using their relationship strengths {τij}j∈N(i). We again consider individuals’ strongest relation-

ship using the maximum over all of their neighbors, averaged over all individuals (meani∈V maxjτij),

and the total of all individuals’ reciprocated relationships, averaged over all individuals (meani∈V
∑

j τij).

Following the argument that there should be a trade-off between an individual’s diversity of ties

to their total bandwidth of all communication (Aral and Van Alstyne 2011), there should be some

limit to an individual’s capacity for communication across many recipients. Then with higher user
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Figure 5.14: Left, average degree is higher when an individuals’ strongest relationship
is observed to be stronger. Right, average degree increases with total reciprocated
relationship strengths. Together, this suggests that rather than observing a trade-off between
bandwidth (total relationship strength,

∑
j τij) and diversity (degree k), we are instead observing

higher average degree during higher activity time periods. Networks taken over w = 1 week, T = 24
fully observed weeks, τmin = 1.
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degree, the total bandwidth (total relationship strength) expended should remain constant, and

the maximum bandwidth expended on their strongest ties ought to remain constant or decrease.

Instead, we observe that, on average, the average degree of the system is positively related to

maximum tie strength and average degree is positively related to total bandwidth of the system

(Figure 5.14). This means that we observe senders exchanging messages with more people when

they are also exchanging more messages with each other, in total and to their strongest tie. This

suggests evidence for densification appearing as a consequence of activity level.

As the densification hypothesis is about the relationship between size and degree, a lack of

relationship between activity and size and activity and degree would be important to establish this

connection. Instead, we find that activity and size and activity and degree are positively related,

and so our observations of networks of varying size are also observations of systems of varying

activity level. This suggests an alternative explanation of how we might observe densification in

online systems: as we tend to observe more active users during more active times, we observe

differences in network structure due to differences in activity level, not network size per se.

5.5 Discussion

Human social processes represent multiscale temporal processes, and our ability to observe

social phenomena depends on the resolution at which we observe these processes. In the context of

online social data, we can also observe relationships at a resolution that may be less informative.

These temporal processes and measurement questions reveal concrete concerns. For example: if

we speak on Monday and Wednesday, are we really no longer socially connected on Tuesday? Am

I really less popular because I had one fewer contact that day? Do my acquaintances on this

bulk email list broaden my network? Had I stayed home sick, would my network position be lost

forever? These questions would be operationalized using relationship strength τ and window size

w, about the strength of ties and network stability. For network densification, we can imagine the

organizational setting: I might have high incentives to respond frequently to emails from my boss

during peak hours when many others are active (high activity, high relationship strength, many
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active senders observed), but on average, less during the weekend. For degree related to activity

level, I might have incentives to be more available on email when the rest of my team is active

(high degree following from high activity).

While these are stylized, the more general versions of these questions demand subtle answers,

beyond a simple link prediction or interaction modeling task. Persistent social interactions are

meaningful; they can serve, for example, to access to diverse information within an organization

(e.g., Aral and Van Alstyne 2011). Then there should be a meaningful way to assess how to describe

the best settings to observe phenomena of interest (as in De Choudhury et al. (2010) for optimal τ);

whether our observed results are robust (as in Chapter 4). Together this allows us to understand

how past work about weak ties, stability, and densification fit together.

Deriving networks from interaction and communication data forces us to confront the in-

strument we use to observe social networks. These instrument settings determine what we social

processes we observe. By being precise about these instrument settings, we can understand past

exploration of networks with explicit or implicit temporal processes. This sheds light on the robust-

ness on past results. For example, varying τ, w or T can serve as a robustness check on network

results. Alternatively, conditioning on τ, w and T across a population of networks can reveal

meaningful instability or sources of variation across network structure, where case studies would

fall short. Precise language allows us to characterize the space of problems we can now address

within the framework of population-level analysis.

By emphasizing the construction of these networks, we find a common framework with which

to characterize a qualitative shift between very weak, weak and strong ties; the instability of

individual network positions over time; and densification in a population of evolving networks.

We find that the organizational networks show no relationship between average degree and

size across organizations, but we find evidence of densification (increasing average degree with size)

within organizations. This can be thought of as an example of Simpson’s paradox, where we find

no relationship between these quantities when we fail to account for organization identities, but a

strong relationship when we do. However, we also uncovered a confound for the observed pattern of
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densification, where networks are observed to be larger and denser during periods of high activity.

Furthermore, this activity level is unrelated to network size and evolution in time. Together, this

suggests that we do not have evidence for densification. In addition, this observation that senders

are observed sending more to more people is in contrast to the “diversity-bandwidth trade-off,”

where we would expect senders to trade off relationship strengths and quantity.

Limitations & future work The empirical results here are meant to be illustrative, not

exhaustive, examples of the questions afforded by the perspective introduced here. Furthermore, a

number of these analyses can and should be performed more thoroughly across a range of settings

to explore the densification result, the implications of very weak ties, and the stability of individual

network positions.

This work directly prods the relationship between network construction and network structure

in dynamic communication data, and the patterns that emerge over different time and size scales.

Having explored sampling and the strength of relationships, an open question is how to infer

‘meaningful’ edges in a graph given a time series of observations.

We further note that here we focus on a simple and deterministic model that maps recipro-

cated communication patterns into weighted relationships. This mapping could be easily extended

to a model for prediction. De Choudhury et al. (2010) provides a relevant template for evaluating

such a model on network data. With heldout data, within or even across networks, this could be

treated as a link prediction problem for which we could do more sophisticated probabilistic infer-

ence. Our simple model, and related model extensions, could also be combined with simulation

data (potentially drawn from the empirical distributions given here) to determine robustness and

sensitivity of our measures. We leave these tasks for future work. That is: given that we know that

some local changes in structure are meaningful, and some are simply a function of sampling, how

can we tell when dynamics in local social network structure are ‘real’? We consider this challenge of

dynamic network inference in future work. Allowing networks to ‘forget’ noisy or very weak edges

may be the most effective way to balance changes in structure over time; while the sliding window

construction of the network allows forgetting of edges with respect to time, it may be relationship
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strength that is the useful indicator here. Combining network measures with models of processes

on networks (such as information flow) or on edges in networks (such as dyadic communication

patterns) may provide a richer problem space, and empirical settings in which we have outcomes

at the individual level would provide a meaningful benchmark for activity and network predic-

tion. We consider future work on inferring social networks from dynamic communication data in

Chapter 6.2.1.

Typically, and in the setting observed here, empirical network construction also must handle

the problem of left-censoring, where relationships existed prior to any data observed. This is related

to network stability, where with every fixed window snapshot, we observe relationships as if new.

Future work should involve developing the empirical tools, ideally across a population of networks

with a longer timespan T , to determine when, if ever, we have fully observed a network. A related

question asks when global properties stabilize, if they do. These remain open empirical challenges.

Here we focused on reciprocated relationships. Directed exchanges are meaningful and reflect

power and status (Ball and Newman 2013; Guo et al. 2015); meaningful timing in the rate and mode

of reciprocation. This is a shortcoming because both requires undirectedness and removes those

pairwise dynamics, which is an interesting phenomenon to be studied in future work. Furthermore,

relationship strength τ and observation window size w are closely related, but it is an empirical

question how they interact. Beyond the network construction questions available here, a meaningful

test of the impact of these choices on models of individual outcomes. Relatedly, with this data we

lack outcomes for individuals. a meaningful test of the impact of these choices on models of

individual outcomes.

A wealth of questions about empirical network densification remains. As a first step, this

includes considering how network diameter and average shortest path length vary as a function

of size, time, and activity level, but we leave this to future work. It would also be meaningful to

deeply explore how network sampling relates to ideas of network densification: we are necessarily

exploring the interaction between sampling frequency, local dynamics, and observation windows.

Furthermore, past work has shown that densification can emerge as a function of encoding a latent
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offline network in an online system (Pedarsani et al. 2008; Schoenebeck 2013). This notion of sam-

pling from an offline network may be a useful model for the setting here, where offline relationships

in an organization may exist and be ‘sampled’ by an email communication process. Aligning a

deeper exploration of the role of activity levels with the literature on sampling may be a fruitful

future direction.

We largely leave the dynamics of networks, and the relationship between dynamics and

network scaling, to future work. It is clear from the previous section that differentiating structural

patterns induced by changes in network size from social processes and evolution is a nontrivial task.

Using a population of networks—particularly evolving, high-resolution, comparable networks—with

simulation suggests a novel opportunity to clarify these terms and tease apart these processes in a

structured manner. The framework put forward here should illuminate areas to test past hypotheses

and explore novel questions about online social systems.

Conclusions Social network data sets are constructed using a range of choices about the

boundary of observations. We unite these settings into a single representation from which we can

describe the space of observable networks from a set of interaction data. We demonstrate the

effectiveness of adopting this representation through three explorations, in which we confirm, dis-

pute, and offer novel empirical results for previously distinct, foundational areas in social networks

research. Crucially, we show how previous work on network densification could have conflated the

roles of size and time, given an (understandable) N = 1 network perspective. However, this may

have further hidden an underlying explanation that differences in user activity may have produced

the patterns observed by network densification. Future work in network science will be heavily

built off of communication data and, hopefully, increasingly using populations of social systems.

We provide the precise and explicit framework that will be necessary to effectively use tease apart

the varied and interacting roles of measurement through timescales, dynamics, scaling, evolution,

and local and global social processes in networks.

Acknowledgements This work was done in collaboration with Duncan Watts, and was

supported by NSF Graduate Research Fellowship award no. DGE 1144083 and Microsoft Re-



139

search. The authors thank Ashton Anderson, Aaron Clauset, Jake Hofman, Aaron Schein, and

Amit Sharma for useful discussions and feedback.



Chapter 6

Discussion and future work

6.1 Contributions

This dissertation advances the idea of using populations of comparable networks. The

population-level perspective helps us uncover and understand social processes within and between

social networks, dynamics of networks, and subtleties in the methods we use to understand social

network structure. Paraphrasing Roosevelt, comparison is the thief of joy and the wealth of op-

portunity for studying social systems, including social networks, organizations, and online social

platforms. Questions that would otherwise be untestable or based on single case studies become

available in this context. Characterizing heterogeneity within and across social systems allows us

to explore our measures, platforms, and rigorously test theories of social structure. Leveraging

the external context of networks allows us to tease apart heterogeneity in social systems due to

environment vs. due to network structure, and variation in organizations and platforms allows us

to explore empirical scaling properties of graphs.

Using these strategies, we move forward in a number of domains. First, in early Facebook

data, we discover that one can detect differences in online social strategies (social search vs. social

browsing) due to physical context and differences in product adoption (Chapter 3). Then, using

a new data set of organizational communication patterns, we discover the significant diversity in

informal network structure of organizations; while this is a challenge to the organizational theory

literature, it is also encouraging that we find that productivity is still achievable across a wide range

of network structures (Chapter 4). Inspired by the surprising empirical results of Chapters 3 and 4
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that average degree does not change with network size, and that diameter does scale logarithmically

with network size, we investigate and clarify past literature on empirical graph evolution and

stability by investigating how network snapshots are constructed from interaction data (Chapter 5).

We show that network densification can be understood as a product of the levels of activity in an

online system, and this will drive structure to a greater degree than a diversity-bandwidth trade-off.

6.2 Future work beyond the scope of this dissertation

We look forward to future work that leverages this comparative, population-level structural

approach. As laid out in Chapter 1, a number of perspectives have emerged to begin to address ex-

isting theory in novel ways and suggest new hypotheses about the structure of social systems. Maps

to this new field—as attempted in Chapter 1 and by Hill and Shaw (2017)—will help navigate this

area. Future empirical work using online systems will leverage platforms that serve multiple com-

munities (such as Wikia, Reddit, and StackExchange), and enterprise companies and technologies

will serve as key contributors and beneficiaries of this type of research.

A number of open technical challenges remain in comparative work. First, the network

science community has been lacking large scale comparative analyses across different network types

(although see Ghasemian et al. (2017)). Second, theoretical challenges of applying generative

network models are nontrivial (D’Amour and Airoldi 2016). The field of neuroscience may be a

first area where this is addressed—see, e.g., Durante et al. (2016)—but the setting of online social

data will introduce new challenges, including the endogeneities of community assembly, networks

of varying size and composition, and differences across sampling methods.

In domains that have begun to grapple with multiple community or network instances, new

research questions abound. In the ecological community, the food webs community, among others,

have faced debate particularly where ambiguous roles of network structure and size interplay at

the global (Dunne et al. 2013) and local level (Klaise and Johnson 2016)). For organization theory,

online communities, informal work organizations, and open source communities provide a novel

opportunity for computational social science. Here, access to online data has already altered the
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view of organization theory on online communities (cf. Benkler 2001, Shaw and Hill 2014).

Next, I describe several concrete future projects that build off of the technical themes in

dissertation but are beyond the scope of this document.

6.2.1 Inferring social networks from dynamic communication networks

In this future work expanding on Chapter 5, we are motivated by our results on the large

natural heterogeneity in informal social networks in firms (Chapter 4); the significant individual

dynamics comprising significant local heterogeneity but relatively stable global dynamics in com-

munication networks (Chapter 5); and, in contrast, the emphasis in the literature on cross-sectional

data, which heavily emphasizes small changes in local structure. Cross-sectional data allows for

picking up on structural signals that capture a surprising amount of heterogeneity. Instead, the

target here is to infer the “best” social network from communication data by varying precision and

recall for individual structural characteristics, pairwise relationships, and global network structure.

We can quantitatively and precisely explore how network inference relates to network construction.

By using a population of comparable networks over time, that presumably evolve on compara-

ble timescales, we can further explore how this inference varies across networks. Together with

Chapter 5, this contributes to a story about the distance between social networks and communi-

cation networks, as well as the hazards of making inferences from highly dynamic systems about

individual- and group-level performance.

6.2.2 Online change point detection for network data

Networks derived from real-world social or communication patterns may go through large-

scale structural shifts due to internally and externally induced changes. For example, in an organi-

zation, people may get reorganized formally into different divisions or reorganize informally around

different projects, and social groups may organize and change over time. In online systems, differ-

ent groups of people may interact differently depending on the time of day (time zones) or time

of year (academic year, holidays), or exogenous events (such as news events); the online platform
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may be interested in serving and redistributing computational resources to these different groups

efficiently, without inferring exactly the timing of the change point.

While this dissertation has emphasized heterogeneity across a population of networks, a

significantly more common setting is to have a single network that varies through time. This

section introduces a new project, in collaboration with Aaron Clauset and Hanna Wallach, that

brings together several of the themes of this dissertation: specifically, how to determine if and when

when meaningful shifts occur in the structure of communication networks over time. We focus on

the informal social networks of organizations using the large-scale structure of communication

patterns (Chapter 4). Instead of emphasizing the emergent graph properties of the graph, which

may themselves be changing over time (Chapter 5), we focus on changes in the underlying generative

model, which may correspond to shifts in large-scale social processes (Jacobs and Clauset 2014).

We focus on the setting of temporal networks, where for each t ∈ T = {t1, t2, . . .}, we have

network Gt = (Vt, Et) generated from some model ft(θt). In the case of nonstationarity of interest

here, the model ft and parameters θt may vary over different values of t. Here we will work under

a fixed model assumption, where only the latent variable θt is potentially varying with time. We

specifically contrast the setting of change point detection, i.e., detecting and modeling shifts in the

underlying model, to the problem of anomaly detection, where we would seek only to detect (and

potentially ignore) rogue individual deviations in the data from a baseline model.

Using this methodology, we examine the time series of communication networks derived from

email metadata for several real-world organizations. In contrast to Chapter 4, where individual

characteristics and real-world events were unknown, we look to different organizational data sources

where change points are known, such as as in Enron (Peel and Clauset 2015), in messages among

traders (Romero et al. 2016), and in the structure and dynamics of business school students (Uzzi

et al. 2016). We specifically explore the problem of online change point detection (Adams and

MacKay 2007), where we incrementally observe the network over time (Figure 6.1), as opposed

to fully post hoc analysis (Peel and Clauset 2015). Automatically characterizing organizational

dynamics then creates a meaningful baseline to help understand team assembly, the impact of
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Figure 6.1: Organizational change points. We define a change point as an abrupt variation in
the parameters of a generative model, such as a stochastic block model. These shifts may happen
in conjunction with changes in other network measures, such as assortativity, reciprocity or degree
distribution. Here, we show a series of network snapshots that are structurally similar, but still
different, within a certain epoch. The squiggly lines may represent the time series of some network
measures over all of the networks in that epoch, and one can imagine changes to the network model
parameters where some network measures strongly capture this difference (the orange line) and
others that have less signal (brown and blue).

management practices, and the scale of responses to outside shocks, even when change points are

not known a priori (Romero et al. 2016). Rigorous, data-driven approaches to modeling dynam-

ics, communication and structure in organizations will allow us to empirically evaluate previously

untested ideas from organization theory in this ubiquitous social and economic setting.

We draw on two lines of work in change point detection and network models. The first is in the

automatic detection of change points for networks as a function of large-scale structure, following

previous work from Peel and Clauset (Peel and Clauset 2015). In this setting, Peel and Clauset use a

single—but descriptively rich—generative model for network structure, the generalized hierarchical

random graph model. This detection is done post hoc, and the authors use a Bayesian hypothesis

test to infer when and whether a change point in the underlying network structure has occurred.

We additionally draw on previous work on online change point detection, in which change

points are inferred in an online fashion. We specifically take inspiration from the Bayesian online

change point detection (BOCD) framework of Adams and MacKay (2007), which yields a fully

generative specification of a time series as well as the change points themselves. (This is in contrast
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to Shalizi et al. (2011) on online change point detection, where we use an ensemble of models as

weighted ‘experts’ to predict and characterize nonstationarities in time series data. That perspective

is oriented towards exploratory data analysis, as opposed to the fully generative specification of

Adams and MacKay (2007).) Cai and Adams later introduced variational approximations for the

BOCD setting (Cai 2014; Cai and Adams 2015), as did Turner et al. for non-exponential family

models (Turner et al. 2013). We also contrast the problem of online change point detection with

the problem of (retrospective) topic segmentation and nonstationary time series prediction (Chib

1998; Clements and Hendry 1999; Green 1995; Stephens 1994). These methods have been extended

to similarly generative settings, for example, effectively clustering in non-exchangeable settings,

particularly time series (Blei and Frazier 2011), or automatically discovering shifts in conversations

and language (Nguyen et al. 2014; Purver 2011). While this work similarly focuses on discovering

a partition over the temporal sequence of data, we explicitly seek an online approach.

Change points, assembly, and observational data analysis in organizational networks

Given organization communication network data, shocks to an organization afford the opportunity

to study social processes through shifts in communication structure, content and dynamics. As

an illustrative example, recent work by Romero et al. (2016)explored changes in social processes

in organizational communication networks in response to exogenous shocks. Romero et al. find

that traders in a hedge fund shift towards internal communication, decreased inhibition, and emo-

tional responses to price shocks. This work, exploring network structure around change points

known a priori, illustrates the potential of using temporal network data to understand social

systems, particularly organizations. Similarly, interventions to organization structure—i.e., firm

reorganization—support the empirical exploration of tie strength and dynamics before and after

these changes: for example, the maintenance of relationships across different network structures

and personal attributes (Kleinbaum 2017).

Teasing apart social processes on networks using shocks is similar to the approach we took in

Chapter 3 to understand network assembly in early adoption of Facebook. Previously, we considered

network assembly in the setting of post hoc observational data analysis: revisiting assembly in the
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change point framework highlights the opportunities revealed by past work and points to open

challenges in this space. Recalling the discussion of future opportunities for research in this space

(Chapter 1.1.2), shocks, natural and designed experiments in online systems will reveal a novel

opportunities to explore social structure from a methodologically rigorous approach.

6.3 Conclusions and future outlook.

Organizations can take on a diversity of structural forms. In their landmark paper, White

et al. (1976) had laid the groundwork for the empirical approach of whole-network analysis, which

we carry forward here. White et al. (1976) were already looking ahead to characterizing how such

a diversity of organizational forms could emerge, and how this could relate to network evolution

and structure:

“ A natural next step, then, is to identify how flows of information and other
transactions relate to images and their change. One fundamental problem here
is that many social settings may admit not just a single equilibrium outcome,
but multiple alternative equilibria, with which particular equilibrium is reached
depending in part on accidents of early interaction . . . In turn, the interesting
questions may bear on what external forces may cause a social structure to pass
from one equilibrium configuration to another.”

This evolutionary perspective on the diversity of organizations and network structure helps us

understand both organization theory and the space of potential future social networks methods.

Social processes within and between systems, historical dependence, and system design cre-

ate constraints on the diversity of structural forms we observe. Characterizing the extent and

sources of empirical heterogeneity across these systems is impossible without adopting a compara-

tive, population-level approach. Online systems provide a broad opportunity to study populations

of communities (Hill and Shaw 2017), and studying unsuccessful organizations, whether online or

offline, will be necessary to fully reveal the space of configurations (Hill 2013). Furthermore, un-

derstanding how our choices of methods impact what we measure is crucial to make meaningful

empirical claims, whether based off of algorithms or models (Jacobs and Clauset 2014) or pre-

processing (Chapter 5; see also Hofman et al. 2017). Looking forward, enterprise companies and
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online platforms that support multiple organizations will provide novel opportunities to empirically

explore the diversity, evolution, and assembly of social networks, organizations and online social

systems.
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Appendix A

Appendix: Natural experiments in online social network assembly

A.1 Appendix: Facebook100 temporal data

Tables A.1.1 and A.1.2 lists the calendar date that thefacebook become available to students

at each of the first 100 colleges. The principle sources for this data are (i) Thefacebook LLC’s

“Spring 2004 Media Kit,” which lists the dates for the first 20 colleges, and (ii) snapshots of the

landing page for thefacebook.com as recorded by the Internet Archive (archive.org). Exact dates

were discernible for 30 schools. When exact dates were not discernible, upper bounds (the latest

possible date) were used. Our sources identified 84 of the 100 schools to within a window of at

most 3 days. The two schools (Rochester and Bucknell) with the least certain dates are known to

fall within a window of 9 days, so may be up to 9 days earlier than listed here.

Table A.1.3 and!A.1.4 lists the start of 2005 freshman orientation for the schools in the

facebook100 dataset. Dates were amassed from individual academic calendars, and reflect the start

of freshman orientation for non-international students. If such a date could not be found, dates

reflect the day dormitories opened. Failing that, the date was set at 1 week before the start of

classes. Summer pre-orientations were not considered. Calendars from 2005 were found for 71 of the

100 schools. For the remaining schools a judgement was performed based on more recent calendars

and the relative position of orientation/dorms opening to Labor Day on the oldest available calendar

vs. Labor Day in 2005. All 100 colleges are located in the United States.

For additional sources and complete methodology, see http://azjacobs.com/fb100.

archive.org
http://azjacobs.com/fb100
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FB100 Index Name Date Joined FB100 Index Name Date Joined

1 Harvard 2/4/2004 51 USF 8/21/2004
2 Columbia 2/25/2004 52 UCF 8/21/2004
3 Stanford 2/26/2004 53 FSU 8/21/2004
4 Yale 2/29/2004 54 GWU 8/21/2004
5 Cornell 3/7/2004 55 Johns 8/21/2004
6 Dartmouth 3/7/2004 56 Syracuse 8/22/2004
7 UPenn 3/14/2004 57 Notre Dame 8/22/2004
8 MIT 3/14/2004 58 Maryland 8/22/2004
9 NYU 3/21/2004 59 Maine 9/7/2004

10 BU 3/21/2004 60 Smith 9/7/2004

11 Brown 4/4/2004 61 UC 9/7/2004
12 Princeton 4/4/2004 62 Villanova 9/7/2004
13 Berkeley 4/4/2004 63 Virginia 9/7/2004
14 Duke 4/11/2004 64 UC 9/7/2004
15 Georgetown 4/11/2004 65 Cal 9/7/2004
16 UVA 4/11/2004 66 Mississippi 9/7/2004
17 BC 4/19/2004 67 Mich 9/7/2004
18 Tufts 4/19/2004 68 UCSC 9/7/2004
19 Northeastern 4/19/2004 69 Indiana 9/7/2004
20 UIllinois 4/19/2004 70 Vermont 9/7/2004

21 UF 4/25/2004 71 Auburn 9/7/2004
22 Wellesley 4/25/2004 72 USFCA 9/7/2004
23 Michigan 4/25/2004 73 Wake 9/7/2004
24 MSU 4/25/2004 74 Santa 9/7/2004
25 Northwestern 4/25/2004 75 American 9/7/2004
26 UCLA 4/27/2004 76 Haverford 9/7/2004
27 Emory 4/30/2004 77 William 9/7/2004
28 UNC 4/30/2004 78 MU 9/7/2004
29 Tulane 4/30/2004 79 JMU 9/7/2004
30 UChicago 4/30/2004 80 Texas 9/7/2004

Table A.1.1: Calendar date thefacebook arrived on campus to Facebook100 schools, 1 of 2.
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FB100 Index Name Date Joined FB100 Index Name Date Joined

31 Rice 4/30/2004 81 Simmons 9/7/2004
32 WashU 5/2/2004 82 Binghamton 9/7/2004
33 UC 5/20/2004 83 Temple 9/7/2004
34 UCSD 5/20/2004 84 Texas 9/7/2004
35 USC 6/23/2004 85 Vassar 9/7/2004
36 Caltech 6/25/2004 86 Pepperdine 9/7/2004
37 UCSB 6/25/2004 87 Wisconsin 9/7/2004
38 Rochester 8/4/2004 88 Colgate 9/7/2004
39 Bucknell 8/4/2004 89 Rutgers 9/7/2004
40 Williams 8/8/2004 90 Howard 9/7/2004

41 Amherst 8/8/2004 91 UConn 9/7/2004
42 Swarthmore 8/8/2004 92 UMass 9/7/2004
43 Wesleyan 8/8/2004 93 Baylor 9/7/2004
44 Oberlin 8/8/2004 94 Penn 9/7/2004
45 Middlebury 8/8/2004 95 Tennessee 9/7/2004
46 Hamilton 8/8/2004 96 Lehigh 9/7/2004
47 Bowdoin 8/8/2004 97 Oklahoma 9/7/2004
48 Vanderbilt 8/21/2004 98 Reed 9/7/2004
49 Carnegie 8/21/2004 99 Brandeis 9/7/2004
50 UGA 8/21/2004 100 Trinity 9/24/2004

Table A.1.2: Calendar date thefacebook arrived on campus to Facebook100 schools, 2 of 2.
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FB100 Index Name 2005 Orientation FB100 Index Name 2005 Orientation

1 Harvard 9/10/2005 51 USF 8/22/2005
2 Columbia 8/29/2005 52 UCF 8/17/2005
3 Stanford 9/20/2005 53 FSU 8/20/2005
4 Yale 8/26/2005 54 GWU 8/27/2005
5 Cornell 8/19/2005 55 Johns 8/24/2005
6 Dartmouth 9/14/2005 56 Syracuse 8/24/2005
7 UPenn 9/1/2005 57 Notre Dame 8/19/2005
8 MIT 8/28/2005 58 Maryland 8/24/2005
9 NYU 8/28/2005 59 Maine 9/2/2005

10 BU 8/30/2005 60 Smith 9/2/2005

11 Brown 9/3/2005 61 UC 9/19/2005
12 Princeton 9/7/2005 62 Villanova 8/20/2005
13 Berkeley 8/23/2005 63 Virginia 8/19/2005
14 Duke 8/24/2005 64 UC 9/22/2005
15 Georgetown 8/27/2005 65 Cal 9/12/2005
16 UVA 8/20/2005 66 Mississippi 8/17/2005
17 BC 8/30/2005 67 Mich 8/21/2005
18 Tufts 8/31/2005 68 UCSC 9/17/2005
19 Northeastern 9/1/2005 69 Indiana 8/24/2005
20 UIllinois 8/18/2005 70 Vermont 8/26/2005

21 UF 8/17/2005 71 Auburn 8/10/2005
22 Wellesley 8/29/2005 72 USFCA 8/22/2005
23 Michigan 8/30/2005 73 Wake 8/18/2005
24 MSU 8/25/2005 74 Santa 9/17/2005
25 Northwestern 9/13/2005 75 American 8/21/2005
26 UCLA 9/26/2005 76 Haverford 8/24/2005
27 Emory 8/24/2005 77 William 8/19/2005
28 UNC 8/27/2005 78 MU 8/17/2005
29 Tulane 8/26/2005 79 JMU 8/24/2005
30 UChicago 9/17/2005 80 Texas 8/26/2005

Table A.1.3: Start of 2005 freshman orientation for Facebook100 schools, 1 of 2.
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FB100 Index Name 2005 Orientation FB100 Index Name 2005 Orientation

31 Rice 8/14/2005 81 Simmons 9/3/2005
32 WashU 8/11/2005 82 Binghamton 8/25/2005
33 UC 9/26/2005 83 Temple 8/22/2005
34 UCSD 9/15/2005 84 Texas 8/22/2005
35 USC 8/15/2005 85 Vassar 8/30/2005
36 Caltech 9/18/2005 86 Pepperdine 8/23/2005
37 UCSB 9/17/2005 87 Wisconsin 8/25/2005
38 Rochester 8/24/2005 88 Colgate 8/20/2005
39 Bucknell 8/17/2005 89 Rutgers 8/25/2005
40 Williams 8/31/2005 90 Howard 8/20/2005

41 Amherst 8/28/2005 91 UConn 8/26/2005
42 Swarthmore 8/23/2005 92 UMass 8/29/2005
43 Wesleyan 8/31/2005 93 Baylor 8/18/2005
44 Oberlin 8/30/2005 94 Penn 8/25/2005
45 Middlebury 9/7/2005 95 Tennessee 8/13/2005
46 Hamilton 8/20/2005 96 Lehigh 8/25/2005
47 Bowdoin 8/27/2005 97 Oklahoma 8/18/2005
48 Vanderbilt 8/20/2005 98 Reed 8/30/2005
49 Carnegie 8/22/2005 99 Brandeis 8/28/2005
50 UGA 8/15/2005 100 Trinity 9/1/2005

Table A.1.4: Start of 2005 freshman orientation for Facebook100 schools, 2 of 2.



Appendix B

Appendix: A comparative study of informal social networks in firms

B.1 Appendix: Network properties, scaling, and organizational context:

additional results

B.1.1 Additional scaling results: network properties and size

Median degree does not vary with network size.

Just as average degree does not vary with network size (Figure 4.3), neither does median

degree (Figure B.1.1; R2 = 0). This result is also nontrivial in the organizations literature and

network theory literature. We also find insufficient evidence that industry varies meaningfully with

median degree: we fail to reject the intercept model (p = 0.12).

Scaling in the degree distribution The Gini coefficient of the degree distribution,

measuring how unevenly or how skewed the degree distribution is, does not vary with the size of

the organization (Figure B.1.2). This is reassuring for the data cleaning process; behavior from

real, active email users (not noise induced by our data source) should not become more extremal

in large organizations. If we were to, say, drop the threshold and reciprocity requirement, then this

may no longer apply: for example, a C.E.O. emailing all of her employees will reach more recipients

at a larger firm. However, the reciprocity requirement still implies a constraint on the number of

people that can be engaged with directly, so this may be less extreme.

Scaling in the diameter of the networks We find that the diameter of the networks, de-

fined as the longest shortest path between any two senders in the organization, scales like O(logS),

i.e., logarithmically with the size of the organization (Figure B.1.3). This quantity is similar to the



179

Figure B.1.1: Median degree does not vary meaningfully with size or industry. The
median degree, i.e., the median number of contacts that a sender has in an organization, does not
vary with the size of the organization.
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Figure B.1.2: Additional informal social network features. The Gini coefficient, a measure
of inequality, of the degree distribution. A high Gini coefficient would suggest a very skewed degree
distribution, with fewer senders contacting most of the recipients. A low Gini coefficient suggests
more evenly distributed numbers of contacts. We find no relationship to size and how (un)evenly
distributed contacts are.
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average shortest path length (Section 4.4.1), in that it is expected in many random graph models,

and is observed in empirical data, to scale logarithmically (Newman (2010)). Given that firms

typically have an underlying formal hierarchy, and that informal networks are related to the the

formal network structure, it is reasonable that the network can be traversed in O(logS) hops.

Figure B.1.3: The diameter of the network increases logarithmically with the size of the
network.

Scaling in the clustering coefficient and small world quotient Clustering coeffi-

cient scales too slowly to distinguish similar models, so we fail to reject several similar models.

For example, the function log(S)/S over only two orders of magnitude is difficult to distinguish

from a noisy 1/S scaling function. Trivially, these networks have much higher clustering than an

equivalently-sized network with constant degree and no structure, and we expect that any meaning-

ful social network from a firm, or otherwise, will have higher clustering than 1/S in the limit, and

even if it becomes small, it will not become arbitrarily close to zero. We find that 1/S, 1/(S logS),

and logS/S are effectively indistinguishable with the amount (65 data points) and scale of data

available (about 2 orders of magnitude). However, by exploring the small world quotient, we can

investigate how modified clustering coefficient C/CR varies, and through that find evidence that
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C = O(logS/S).

Figure B.1.4 finds that C/S increases with logS of the network (R2 = 0.544). This suggests

that we can differentiate models for clustering coefficient, and we should interpret C = O( logS
S ).

Figure B.1.4: Clustering coefficient deviates from random as logS; deviations of average
shortest path length do not vary with size.

The small world quotient represents the distance of the small world structure of a network

from that expected by random. We find that the empirical variation in the small world quotient

is explained by variation in the clustering coefficient from random (Figure B.1.5). The numerator

compares the clustering coefficient to th C/CR = C/(〈k〉/S), reveals the pattern remaining by

C/S, as we know that the average degree 〈k〉 does not vary with S. The clustering coefficient ratio

(C/CR) represents almost all of the variation R2 = 0.937 and R2 = 0.024 L/LR for Q

The denominator reflects that the average shortest path length L varies with log the size of

the network (Figure 4.3), and this reflects that the variation about that relationship.

Finally, while we we do not expect the average degree 〈k〉 to vary with size, and can treat

it as a constant in the small world quotient Q = C/CR

L/LR
= C×S/〈k〉

L/ logS , we can be even more confident

that this is not responsible for variation in Q. For graphs of given network size S, the shortest path



183

length will vary about that as a function of average degree, because higher degree simply creates

more ways to shorten any given path (we see this correlation as well in Table B.2.1).

Figure B.1.5: Variation in the small world quotient is due to the variation in the cluster-
ing coefficient. The small world quotient is defined as Q = (C/CR)/(L/LR). Top panel, C/CR
is compared to Q. The identity function is shown for reference. Bottom panel, L/LR by Q.

B.1.2 Firm age, dispersion & size

Size and dispersion are positively related, but unrelated to age. Geographic dis-

persion represents the number of physical entities across which these organizations are distributed.

Greater dispersion could be due to differentiation of manufacturing plants; dependence on local

or regional decentralized processes; distribution of teams over buildings; or a byproduct of acqui-

sitions. First, we find that firm age is unrelated to geographic dispersion (Figure B.1.6). This is

non-obvious: by diversifying industries, moving and expanding domain, or through acquisitions, it

seems plausible that firms could have become more dispersed with age. We do find that geographic

dispersion is related to network size (Figure B.1.7). Specifically, we find that dispersion scales

logarithmically with the size of the firm (R2 = 0.09, p value for the model p = 0.015). While this is
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intuitive—it is unlikely that a firm of 3,000 employees has 1,000 unique locations associated with

it—this aligns with our expectation from Blau (1970) that differentiation should increase at a de-

clining rate with the size of the firm. Dispersion in this setting is our best proxy for differentiation

across the underlying formal network.

Figure B.1.6: Firm age is unrelated to firm size or dispersion. While firms tend to go through
mergers, acquistions, and potentially diversify over time, they do not increase their dispersion over
time.

We compare firm age to firm size in Figure B.1.6. An implied question—of how age and

size are related, or implicitly, how long firms of certain sizes survive—is a demographic question,

beyond the scope of this study (Carroll and Hannan (2000)). Here we have a biased subset of

all publicly traded firms, limited to those who use a similar resource, Microsoft Exchange, in a

comparable manner. Instead, we test for whether the existence of a relationship between firm age

and size would carry over to other parts of our analysis. We find no relationship between age and

firm size.

Finally, the rate of dispersion helps validate which network properties were varying as a

function of firm network size—L, C and Q—and show that centralization varies with dispersion,

not size (Figure B.1.8).

Considering the effective rate of dispersion, the scaling patterns found for average shortest

path length L, clustering coefficient C, and small world quotient Q in Figure 4.6 appear to reflect
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Figure B.1.7: Geographic dispersion increases at a declining rate with the size of the
firm.

the total size of the firms. This is suggestive that the scaling relationships against centralization

are more likely artifacts of size. Average degree remains unrelated to the size, total dispersion, and

rate of dispersion. Finally, centralization does vary with respect to dipsersion.

Specifically, we find that centralization varies as log(d) for dispersion d, and varies as log(d/S)/(d/S)

with d/S.

B.1.3 Industry and network structure

Across the network statistics, we find that at least 87–94% of variance remains after con-

ditioning on industry: Table 4.2 shows the coefficient of determination R2 for network measures

explained by industry. The lack of significance of our models, combined with the number of pa-

rameters used to fit them, suggests that this may be an underestimate of our uncertainty (Table

B.1.1).

We regress network statistics over the set of industry categories, introducing dummy variables

for each nontrivial inudstry category. We use 64 of the 65 firms, where we exclude the single firm

from the Agriculture, Forestry, and Fishing industry category and variance is undefined. (See

Table 2.2 for the distribution of industry categories in our data.) We report the results from these
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Figure B.1.8: The rate of dispersion per person helps tease apart the effects of size from
dispersion. 〈k〉 does not vary with rate of dispersion, but the scaling patterns of L, C, and Q are
more likely reflective of network size than dispersion (Figure 4.6), whereas centralization is better
explained by dispersion.
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regressions in Table B.1.1 (this R2 is also reported in Table 4.2; N.B. the adjusted R2 values suggest

a more pessimistic view). We note that this R2 value can be equivalently derived by measuring

variance across groups. Following the discussion in Martin et al. (2016), let F be the fraction of

variance remaining to explain network feature Z after conditioning on industry I:

F =
E[Var(Z|I)]

Var(Z)
=

∑
Industry i∈I

∑
firm α∈i:(z̄i − zα)2∑

β(z̄ − zβ)2
(B.1)

for z̄i the average network statistic value for all firms from industry i and z̄ the average for all firms.

For an unbiased model of the network statistics (such as regression, which we use here), z̄i = f(i),

and substituting into Equation B.1, this yields F = 1−R2.

We find that industry fails to predict each of the network statistics (Table B.1.1). We highlight

the lack of significant regression coefficients, which suggests that the industry categories are not

meaningfully distinguishable. These results are qualitatively similar, even once we account for size

(Table B.1.2).

There is one possible exception for an industry effect, for which we have weak-to-moderate

evidence. Retail trade is weakly significantly associated with lower average degree (p = 0.0396).

However, at the full model level, the model fails to reject the intercept model (p value for the

F statistic is 0.13). The F statistic, high p value, and the fact that this is drawn from so few

observations (3 firms in that category), we do not have meaningful evidence that this category

is different. Conditioning on size in our models (Table B.1.2), and using the models of size as

established in Section 4.4.1, we have weak evidence for retail trade being associated with lower

average degree (p = 0.042) and higher average shortest path length (p = 0.013) and small world

quotient (p = 0.003).

The effect disappears for average degree for other definitions of the communication networks

(τ ≥ 0.1, τ ≥ 5: p > 0.05), however these results are robust for average shortest path length

(τ ≥ 0.1 : p = 0.016, τ ≥ 5 : p = 0.026) and small world quotient (τ ≥ 0.1 : p = 0.015,

τ ≥ 5 : p < 0.001).

A difference in email usage patterns, rather than differences in the informal social networks
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themselves, is a plausible mechanism for these differences being limited to the retail sector. Future

confirmatory research is necessary to determine if these differences are meaningful.



〈k〉 L C Q Gini (betweenness)

(Intercept) 27.54∗∗∗ 3.24∗∗∗ 0.15∗∗∗ 134.64∗∗ 0.84∗∗∗

(3.50) (0.17) (0.02) (40.49) (0.02)
Manufacturing 0.45 −0.13 0.02 −37.72 −0.01

(3.81) (0.18) (0.02) (44.08) (0.02)
Retail Trade −12.04∗ 0.40 0.03 79.47 0.03

(5.72) (0.28) (0.03) (66.12) (0.03)
Services, Technology −0.02 −0.14 0.00 −35.82 0.01

(3.99) (0.19) (0.02) (46.06) (0.02)
Transportation, Communication & Public Utilities −3.22 0.08 −0.02 −6.85 0.01

(4.59) (0.22) (0.03) (53.01) (0.02)
Wholesale Trade 2.99 −0.22 0.03 −53.19 0.00

(4.95) (0.24) (0.03) (57.26) (0.03)

Num. obs. 64 64 64 64 64

R2 0.13 0.12 0.11 0.09 0.06
Adj. R2 0.06 0.05 0.03 0.01 -0.02

F statistic 1.77 1.60 1.39 1.18 0.77
p-value 0.13 0.17 0.24 0.33 0.58
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.1.1: Regressions: industry fails to predict different network statistics. Each column indicates the coefficients and
performance of the model for each network statistic (〈k〉, L, etc.). Note that the F statistic is not significant for all models, i.e., all
models fail to reject the null intercept model (where R2 = 0 and best model is the population average).
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〈k〉 L C Q Gini (betweenness)

(Intercept) 27.14∗∗∗ 0.54 0.12∗∗∗ −684.96∗∗∗ 0.83∗∗∗

(3.61) (0.46) (0.02) (85.96) (0.02)
Manufacturing 0.55 −0.02 0.01 −5.56 0.00

(3.84) (0.15) (0.02) (27.06) (0.02)
Retail Trade −11.97∗ 0.56∗ 0.01 126.39∗∗ 0.03

(5.76) (0.22) (0.03) (40.58) (0.03)
Services, Technology −0.02 −0.06 0.00 −11.10 0.01

(4.01) (0.15) (0.02) (28.19) (0.02)
Transportation, Communication & Public Utilities −3.27 0.05 −0.02 −15.70 0.01

(4.62) (0.17) (0.02) (32.33) (0.02)
Wholesale Trade 3.15 −0.11 0.02 −17.85 0.00

(5.00) (0.19) (0.03) (35.09) (0.03)
S 0.00 0.00

(0.00) (0.00)
logS 0.63∗∗∗ 192.40∗∗∗

(0.10) (19.33)
logS/S 102.99∗∗∗

(24.63)

Num. obs. 64 64 64 64 64

R2 0.14 0.47 0.32 0.67 0.10
Adj. R2 0.05 0.41 0.24 0.63 0.00

F statistic 1.49 8.41∗∗∗ 4.40∗∗ 19.16∗∗∗ 1.02
p value 0.196 � 0.001 0.001 � 0.001 0.423
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table B.1.2: Regressions for the role of industry on network structure that account for size primarily reflect the role of
size. Each column indicates the coefficients for size and industry category and the performance of the model for each network statistic
(〈k〉, L, etc.). The models include meaningful size terms, as previously modeled in Section 4.4.1. We find some support for retail trade
being predictive of a difference in average shortest path length L and small world quotient Q; the model for average degree is not
significant.



191

B.1.4 Case study: intratypical comparison within manufacturing and technology

Despite our restrictive rules for inclusion in our dataset—U.S.-based firms that publicly NAS-

DAQ or NYSE traded, of at least several thousand employees, and that were active and consistent

users of the platform— our dataset consists of a wide array of firm types. Presumably intertypical

analysis should be able to uncover patterns that are robust across settings; as Kimberly (1976) ex-

plains, “intertypical sampling . . . is justified on the grounds that a general theory of organizations

ought to enable one to derive hypotheses which can be tested-and, presumably, supported on a

heterogeneous sample of organizations.” On the other hand, intratypical sampling mitigates still

empirically unknown variation in structural characteristics due to organization type.

In the spirit of intratypical analysis, then, we consider a disparate but internally homoge-

neous collections of firms. We compare two collections of firms with the same four-digit SIC codes:

seven firms from a technology subsector and four from the same manufacturing 4-SIC device spe-

cialization. We additionally compare another set of four equally similar manufacturing firms to

the other set with the same top two SIC levels. Firms within sector may be competing within the

same niche, and be pushed to diversify over time (Hannan (2005)); on the other hand, through po-

tentially similar distributions of roles, similar market pressures and contingencies, and legitimation

through mimetic and normative processes, firms within the same sector may become more similar

over time (DiMaggio and Powell (1983)).

Across different network measures, we find that each collection of firms are each highly

heterogeneous in their own right, even once we account for size. Compellingly, these firms are

widely distributed within subsector: Figure B.1.9 highlights not only the diversity within each

highly specialized type, but also that these distinct specialized groups are difficult to distinguish.

While there may be fewer competitive pressures for firms to differentiate across sectors, this suggests

evidence for a wide diversity of firm types, both within and across sector.

Management and productivity has been shown to vary widely in firms (Bloom and Van

Reenen (2010); Foster et al. (2008), e.g, compared across producers of homogeneous products, such
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as corrugated and solid fiber boxes or mixed concrete). While the comparison here is statistically

underpowered, there is a rich tradition of small-scale comparative analysis in the organization

theory literature (Ahuja et al. (2012), Blau (1965), and Kilduff and Brass (2010)), and the role of

organization context has remained under-specified (Hansen and Wernerfelt (1989) and Pugh et al.

(1969)) and the degree of organization heterogeneity is both unknown and under debate (Hannan

(2005)).

B.2 Appendix: Predicting performance

B.2.1 Regression using informal network structure and organizational productivity

One prediction task we have performed has been using regression to predict organizational

productivity in our firms. Here we treat network structural measures as features and attempt to

predict different economic outcomes. We fit a nested model with different network measures as

features, as described in Section B.2.1.1. We try to generalize outside of this training set to look at

other versions of the firm networks. That is, we fit the models using the network structure derived

from the reciprocity strength τ ≥ 1 networks, and then fit the best model from that exercise to

the network features derived from the network of other relationship strengths. For example, if

the best model included only industry, average degree, and clustering coefficient based on a given

performance outcome Y and the networks {G}τ≥1, we would fit the model including only industry,

average degree, and clustering coefficient to fit Y for the measures derived from {G}τ≥T for different

values of T . If there was systematic variation in the performance across different versions of the

network, that would provide insight into what types of informal relationships are most relevant to

firm performance.

Data We have 65 networks for publicly traded firms as described in Section 4.3.4, of

which we use 62 in the regressions. We exclude two firms for nonrepresentative financial infor-

mation for 2015 due to mergers and acquisitions. In addition, we exclude the single firm in the

Mining/Agriculture/Construction sector, as we are using industry category as a predictor.
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Figure B.1.9: Comparison of network measures on three sets of firms from similar within-
industry domains. Blue points represent manufacturing firms, with light and dark representing
two different sectors: manufacturing of surgical and medical devices and manufacturing of trans-
portation equipment, respectively. Technology firms are represented in green. All other firms
are represented as small gray points. Despite the similarity of function of these firms, we find
heterogeneity within-type well exceeds heterogeneity across organization types.
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B.2.1.1 Models of performance

For each outcome variable (performance measures), we apply models 1–6. All performance

measures are derived from MSN Money.

Outcome variables (performance measures):

• Log of sales per employee (Income.Employee, by MSN Money). N.B. based on ‘Net Income’,

not Revenue

• Sales (Revenue) Q/Q (last year, growth rate)

• Return on Assets (5 year average)

• Return on Equity (5 year average)

• Average performance rank: rank order of organizations by these measures, then average

rank position across measures

Note about constructing the data: we don’t have complete data for the regression. We are

currently missing 7 values for sales per employee; 2 for Sales Q/Q; 2 for Return on Assets. This is

noted on the tables for each set of regressions. We compute the combined performance ranking by:

• For each measure (e.g., Return on Assets), compute rankings. Rank is descending and ties

take the average of the ranks they would take: for example, for some four performance

scores of [5, 25, 100, 25], assign rankings [4, 2.5, 1, 2.5], here averaging second and third

place.

• Given the rankings, for each firm, we take the average over the ranks available. This means

some are an average of three rankings, not four. (We do not penalize for missing data in

this measure.)

Models:

• 1 Industry + log of size



195

Industry is given by first level of primary SIC code classification; categorical/binary

variables. We exclude the only agriculture/mining company as it is the only firm in that

category.

(Size given by total employees, Hoover’s)

• 1a M1 + senders/size (ratio of total senders S / total employees)

(N is active senders, τ = 1)

• 2 M1a + Average degree (〈k〉)

• 3 M1a + Average degree + Clustering (C)

• 4 M1a + Average degree + Clustering + Avg Geodesic (L)

• 5 M1a + Average degree + Clustering + Avg Geodesic + S/W index (Q)

(Walsh small world index)

• 6 M1a + Average degree + Clustering + Avg Geodesic + S/W index + Centralization (G)

(Centralization is Gini coefficient of betweenness centrality scores)

B.2.1.2 Results

First, we consider multicollinearity (Table B.2.1). Between the relatedness of our network

features and the number of organizations in each industry, our regression results are unlikely to be

particularly robust, which we could explore further if we were to find any strong signal in the data.

We apply each model to each of the performance measures.

Notation. We use the standard significance codes: p value is labeled *** 0.001 ,** 0.01,

* 0.05, . 0.1 , 1. Adjusted R2 penalizes R2 for having a large number of explanatory variables to

available data:

Adjusted R2 = R̄2 = 1− (1−R2)
n− 1

n− p
= R2 − (1−R2)

p− 1

n− p
(B.2)
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where p is the number of explanatory variables (not including the constant term), and n is the

sample size. We also use AIC, the Akaike Information Criterion, for model selection.

Multicollinearity See Table B.2.1.

We note that log(Size) and average shortest path length are strongly correlated: this makes

sense, recalling the scaling results (L ∼ log(S)). Controlling for size, average shortest path length

is strongly negatively correlated with average degree; this is also intuitive, as more links should

make it more likely that shortest paths are shorter.

Average degree 〈k〉 and centralization G are also strongly (negatively) correlated. As degree

increases, the distribution of betweenness centrality scores decreases. This could potentially be

understood as greater degree creating more potential short paths throughout the network. Notably

the degree distribution also becomes less skewed with increasing average and median degree.

As a side note, as the minimum tie strength τ increases, the remaining networks become less

centralized: stronger ties are more equally distributed across the network.

As we discovered previously, the small world quotient (Q = C/CR

L/LR
) varies with log(S), so

these variables are also naturally correlated, although this effect goes down with increasing tie

strength. Controlling for size, this does then covary with clustering coefficient, but much more

weakly (〈ρ〉 = −.233).

Finally, we note that the relationship between the average shortest path length and size is

primarily getting stronger with stronger restrictions on the definition of a tie; on the other hand,

the relationship between degree and centralization are getting weaker with stronger tie definitions.

Regression results We show the results from applying models 1–6 to each of the five

performance measures in Tables B.2.2, B.2.3, B.2.4, B.2.5, including the combined performance

ranking in Table B.2.6. Almost all models do not have any significant coefficients, but Model

2 (Industry, Employees, Senders/Employee, and Mean Degree) does have some signal towards

predicting Income per Employee, as Model 4 (Model 2, plus Clustering Coefficient C and Average

Shortest Path Length L) for predicting Return on Equity. We apply these models across different

versions of the network (given by minimum reciprocity to define a relationship, τ) in Tables B.2.7
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τ ρ(log(S), L) ρ(〈k〉, G) ρ(log(S), Q) ρ(〈k〉, L/ log(S))

0.1 0.659 -0.740 0.804 -0.740
1 0.635 -0.722 0.734 -0.670
2 0.662 -0.730 0.705 -0.608
5 0.691 -0.665 0.653 -0.490
10 0.702 -0.569 0.522 -0.400
20 0.745 -0.424 0.073 -0.318

Table B.2.1: Correlation between network variables across different definitions of the
network. The first three combinations (log size (log(S)) and average shortest path length L;
average degree 〈k〉 and centralization of betweenness centrality G; log size log(S) and the small
world quotient Q) are explicitly included in the model. The latter (〈k〉 vs. L/ logS) confirms
that variation about average shortest path length is negatively related to average degree, and this
relationship is weaker in stronger-tie networks.

and B.2.8. Any meaningful effects seem to disappear in this setting as well.
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Table B.2.2: Income per employee. Log of income per employee. Norgs evaluated: 55 (7 missing values). Model 2 is best by AIC and
adjusted R2.

β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

1 4.018*** -0.003 0.226 -0.011 -0.358 -0.403 -.475 0.116 0.607 0.142 0.014 110.5
1a 3.125** -0.055 0.052 -0.147 -0.608 -0.666* -0.557 0.228 0.511* 0.587 0.214 0.077 107.7
2 2.794** -0.069 0.092 -0.087 -0.571 -0.627* -0.551 0.222 0.409 0.017 . 0.575 0.262 0.114 106.2
3 1.690 -0.083 0.138 -0.129 -0.580 -0.630* -0.541 0.373 0.524 . 0.017 . 2.137 0.575 0.278 0.114 107.0
4 1.814 -0.077 0.148 -0.127 -0.579 -0.617* -0.535 0.253 0.466 0.021 1.630 0.134 0.582 0.279 0.094 108.9
5 2.750 -0.101 0.147 -0.163 -0.597 -0.631* -0.565 0.195 0.452 0.020 2.078 -0.143 0.001 0.586 0.286 0.082 110.4
6 5.958 -0.134 0.098 -0.152 -0.622 -0.633* -0.549 0.600 0.624 -0.005 2.842 -0.586 0.002 -3.723 0.586 0.304 0.083 111.0

Table B.2.3: Revenue growth rate. Sales (Revenue) Q/Q (last year, growth rate). Norgs evaluated: 60 (2 missing values)

β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

1 37.262 . 2.796 4.955 8.423 -0.190 1.153 5.741 -9.279 . 13.5 0.101 -0.020 492.0
1a 36.183 2.786 4.733 8.348 -0.430 0.909 5.675 -9.150 . 0.606 13.63 0.101 -0.040 494.0
2 36.079 2.782 4.750 8.359 -0.416 0.919 5.677 -9.147 . 0.577 0.005 13.77 0.101 -0.061 496.0
3 64.573 . 2.641 3.350 8.689 -0.301 0.785 5.074 -12.934 * -2.566 0.001 -56.111 13.74 0.123 -0.056 496.6
4 59.113 2.398 2.927 8.759 -0.527 0.404 4.840 -7.634 -0.103 -0.150 -33.746 -5.892 13.86 0.126 -0.075 498.4
5 93.517 . 1.553 3.018 7.271 -1.545 0.155 3.774 -9.949 -1.275 -0.164 -20.497 -15.452 0.049 13.87 0.142 -0.077 499.2
6 -56.891 3.529 4.806 7.403 -0.926 -0.094 2.894 -28.109 -8.001 0.959 -48.915 4.962 0.039 171.29 13.42 0.215 -0.007 495.9
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Table B.2.4: Return on Assets. Return on assets (5 year average). Norgs evaluated: 62

β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

1 -12.054 0.747 -2.272 1.581 -2.042 0.721 -0.431 4.403 . 6.929 0.085 -0.034 425.4
1a -10.308 0.766 -1.939 1.770 -1.624 1.080 -0.332 4.174 . -0.895 6.988 0.087 -0.051 427.3
2 -10.772 0.750 -1.862 1.848 -1.575 1.121 -0.324 4.173 . -1.019 0.022 7.052 0.087 -0.071 429.3
3 1.032 0.702 -2.483 2.123 -1.575 0.994 -0.582 2.563 -2.127 0.017 -22.806 7.067 0.101 -0.075 430.3
4 7.956 1.017 -1.947 2.104 -1.450 1.453 -0.284 -4.144 -5.153 0.206 -50.495 7.415 7.065 0.120 -0.075 431.1
5 21.954 0.665 -1.946 1.564 -1.728 1.283 -0.740 -5.069 -5.441 0.199 -44.112 3.388 0.021 7.091 0.131 -0.082 432.2
6 -26.555 1.285 -1.296 1.331 -1.390 1.321 -1.055 -11.381 -8.187 . 0.584 -55.910 10.156 0.019 57.107 7.031 0.163 -0.064 431.9

Table B.2.5: Return on Equity. Return on equity (5 year average). Norgs evaluated: 60 (2 missing values). Model 4 is best by AIC,
although we have insufficient sample size to have high confidence in these values.

β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

1 -21.493 -1.419 -6.452 -3.835 -10.556 -1.693 -2.521 9.415 17.07 0.076 -0.048 520.2
1a -5.137 -1.038 -3.458 -2.161 -7.421 1.497 -1.634 7.181 -7.973 17.02 0.010 -0.042 520.6
2 -9.608 -1.303 -2.874 -1.530 -6.989 1.790 -1.585 7.277 -8.876 0.184 17.12 0.107 -0.054 522.2
3 6.924 -1.319 -3.712 -1.149 -7.008 1.631 -1.934 5.018 -10.443 0.176 -31.426 17.25 0.111 -0.070 523.9
4 43.383 0.694 -1.070 -1.232 -5.659 3.954 -0.458 -28.285 -25.610* 1.085* -169.474 . 36.470* 16.71 0.183 -0.004 520.8
5 76.162 -0.427 -1.113 -2.557 -6.924 3.467 -1.615 -29.644 -25.866* 1.052 . -149.520 25.642 0.051 16.78 0.194 -0.012 522.0
6 44.435 -0.203 -0.736 -2.761 -6.809 3.421 -1.883 -33.334 -27.398* 1.298 -154.553 29.300 0.051 37.243 16.94 0.196 -0.031 523.9
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Table B.2.6: Combined performance rank. Norgs evaluated: 62

β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

1 49.43* 1.125 2.386 -0.752 8.871 3.814 4.772 -5.043 13.24 0.064 -0.058 505.8
1a 54.74* 1.182 3.398 -0.177 10.143 4.906 5.072 -5.738 -2.721 13.34 0.068 -0.072 507.5
2 59.73** 1.356 2.565 -1.019 9.613 4.462 4.985 -5.720 -1.381 -0.237 13.32 0.088 -0.070 508.1
3 42.98 1.422 3.446 -1.410 9.613 4.642 5.351 -3.435 0.191 -0.230 32.380 13.4 0.096 -0.082 509.6
4 22.34 0.485 1.850 -1.353 9.239 3.276 4.462 16.554 9.212 -0.793 . 114.89 -22.098 13.19 0.140 -0.049 508.5
5 -13.353 1.382 1.847 0.025 9.949 3.708 5.626 18.912 9.943 -0.774 . 98.618 -11.830 -0.053 13.16 0.016 -0.044 508.9
6 92.97 0.023 0.423 0.536 9.209 3.624 6.316 32.747* 15.964 . -1.619* 124.48 . -26.663 -0.048 -125.166 12.95 0.204 -0.011 507.7
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Table B.2.7: Income per employee, Model 2 across different values of τ . Norgs evaluated: 55

τ β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

0.1 2.949** -0.079 0.098 -0.063 -0.552 -0.628* -0.524 0.186 0.338 0.013* 0.566 0.286 0.143 104.4
1 2.794** -0.069 0.092 -0.087 -0.571 -0.627* -0.551 0.222 0.409 0.017 . 0.575 0.262 0.114 106.2
2 2.714** -0.068 0.106 -0.088 -0.577 -0.635* -0.554 0.241 0.443 . 0.023 0.577 0.256 0.107 106.6
5 2.690* -0.066 0.113 -0.103 -0.594 -0.653* -0.562 0.254 0.483 . 0.035 0.581 0.246 0.095 107.4
10 2.719* -0.062 0.109 -0.118 -0.609 -0.666* -0.570 0.257 0.506* 0.049 0.585 0.237 0.085 108.0
20 2.779* -0.057 0.100 -0.131 -0.622 -0.676* -0.575 0.256 0.519* 0.067 0.588 0.229 0.075 108.6

Table B.2.8: Return on Equity, Model 4 across different values of τ . Norgs evaluated: 60 (2 missing values)

τ β0 Industry SIC code Emplys. Senders/ 〈k〉 C L Q G RSS R2 Adj. AIC
3 4 5 6 7 8 Emplys. R2

0.1 36.025 0.614 -0.572 -1.451 -4.992 3.807 -0.837 -28.857 -25.556* 0.758 . -134.157 40.231 . 16.86 0.168 -0.022 521.9
1 43.383 0.694 -1.070 -1.232 -5.659 3.954 -0.458 -28.285 -25.610* 1.085* -169.474 . 36.470* 16.71 0.183 -0.004 520.8
2 42.254 -0.457 -1.066 -1.151 -5.966 3.417 -0.081 -20.096 -21.804* 1.099 -147.975 24.984 17.01 0.153 -0.041 523.0
5 18.564 -1.467 -2.498 -2.286 -6.793 2.274 -0.703 -1.086 -12.662 0.450 -64.615 5.908 17.45 0.109 -0.095 526.0
10 -4.742 -0.871 -4.135 -2.382 -7.648 1.281 -1.693 7.502 -7.487 -0.450 10.745 -0.367 17.52 0.102 -0.104 526.5
20 -22.760 0.627 -5.388 -1.279 -8.409 0.202 -1.333 9.759 -5.670 -2.121 103.452 -1.901 17.25 0.130 -0.070 524.6
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B.2.2 Random forests using informal network structure to predict organizational

productivity

These tests, currently in preliminary form, will be included in full in the draft submitted for

publication.

B.3 Appendix: Robustness of the results

Here we have pursued exploratory, not confirmatory, analysis with a number of researcher

degrees of freedom (Hofman et al. (2017)), but structure potentially shifts meaningfully with choice

of network definition τ (De Choudhury et al. (2010) and Hofman et al. (2017), Chapter 5).

These tests, currently in preliminary form, will be included in full in the draft submitted for

publication.



Appendix C

Appendix: Empirical network construction: computational perspectives on

weak ties, stability, and densification

C.1 Appendix: Empirical network construction

C.1.1 Further results on weak ties

Expanding on weak ties: embedded ties are stronger than bridges Expanding

on the result that neighborhood overlap is lowest on weak ties (Figure 5.6, Section 5.4.1), we

show that embedded ties (those with shared neighbors) can be weak or strong, but that bridges

(those without) are only weak. This is a subtly different setting than the previous result. Range

characterizes how far apart a pair would be if the edge between them was removed. For pairs that

share mutual contacts (Jaccard coefficient nonzero), their range is necessarily two: there exists a

path of length two through their mutual contacts. We consider pairs that do not share mutual

contacts (Jaccard coefficient zero) to be bridges, as the relationship between them brings together

two otherwise distinct parts of the graph. More precisely, range rij is calculated as the distance

between neighbors i and j if that edge was deleted (so by definition, it has minimum 2, which

happens if i and j are in a triangle together).

Individuals in social networks, particularly organizations, that participate in these structural

bridges are understood to be brokers: individuals for whom information must pass through, who can

intermediate between different parts of an organization, and who have access to unique opportunities

across networks. Brokers are understood to enjoy better outcomes within organizations and in

general social systems (e.g., Burt 1992, 2004, 2010). On the other hand, ties that are embedded in
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the same local networks share common connections, access to information, and are more likely to

share strong ties.

Figure C.1.1: Conditional on an edge existing, compare the range rij of the edge (i.e., the distance
between those neighbors, if that edge was deleted) to the average edge strength 〈τij〉, over different
values of τ (Bottom to top, τmin = 0, 0.1, 1, 5). Taken over the six month aggregate network
(w = T = 6 months).

Figure C.1.2: While embedded ties can be weak or strong, bridges are always weak(er). Conditional
on an edge existing, compare the range rij of the edge (i.e., the distance between those neighbors,
if that edge was deleted) to the average edge strength 〈τij〉. Taken over the six month aggregate
network for τ ≥ 1 and τ ≥ 5 (w = 6 months).

Figure C.1.1 compares the range of a pair (i, j) to the average tie strength τij . The average

is taken over all observed pairs with that range, and we compare several network definitions (τ =

0, 0.1, 1, 5). Figure C.1.1 shows that embedded dyads, i.e., pairs that take part in at least one

triangle (rij = 2), have higher relationship strength than otherwise-disconnected pairs. Pairs that

have range greater than two, i.e., bridges, have comparably weak relationship strength. Figure C.1.2
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explicitly plots the distribution of tie strengths for each edge. Figure C.1.2 shows the distribution

of points from which Figure C.1.1 is generated for the τ = 1 and τ = 5 networks (top and bottom).

We note that almost all observed edges are in a triangle, and therefore have range two.

Granovetter 1973 argued that if three individuals share two strong connections, the third will

likely be closed but will be weak or strong. (The probability that this link is formed, if it does

not already exist, is a related question that we do not test here, but see, e.g., Kossinets and Watts

2006; Ugander et al. 2013.) That is, triads will be closed with a tie of any strength but that “no

strong tie is a bridge” (Granovetter 1973). We find evidence that supports this: ties within a triad

may be weak or strong, but almost all bridges are weak. This further supports recent work that

ties are infrequent and local and infrequent and distant (Quintane and Carnabuci 2016).

C.1.2 Further results on network stability

Figure C.1.3 shows the fraction of the most-central nodes (top 10% for each of the centrality

measures) that are remain most central in future months. We demonstrate the short half-life of

the most central nodes using a small handful of diverse organizations.

In contrast, Figures C.1.4 and C.1.5 show how many of the initially central nodes (again, the

top 10%) are in the observed snapshot by month and by week, respectively. That is, these figures

show what percentage of nodes in each snapshot are in the top 10% were also originally in the top

10%, regardless of whether they ever left.

These two types of figures show something qualitatively different. The first two considered,

Figures C.1.3 and 5.7 show the “half-life” of the most central nodes. The second two show whether,

and how often, the most central nodes become most central again.

C.1.3 Densification

Following our result that average degree does not vary with size, we also note (but do not

pursue further) that we do find that distances increase by O(logS) (Figure C.1.6). Furthermore,

we find that these results are robust across network definition (reciprocity strength τ). This is well
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Figure C.1.3: Stability of highest-betweenness and highest-degree individuals over time, per month.
Each line represents a different organization (only four are shown—preliminary analysis), connecting
observations taken for each month (w = 1 month, δ = 1 month). For each network snapshot, we
compare the top 10% of individuals by betweenness (τ = 1), degree (τ = 1) and degree (τ = 10)
to those who were in the top 10% in the first snapshot. The y-axis plots the percentage that have
remained in the top 10% since the initial observation.
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Figure C.1.4: Consistency of highest-betweenness and highest-degree individuals over time, per
month. Each line represents a different organization (only four are shown—preliminary analysis),
connecting observations taken for each month (w = 1 month, δ = 1 month). For each network
snapshot, we compare the top 10% of individuals by betweenness (τ = 1), degree (τ = 1) and
degree (τ = 10) to those who were in the top 10% in the first snapshot. The y-axis plots the
percentage that were originally in the top 10% in the initial observation and are in the top 10%
for the observed snapshot.)
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Figure C.1.5: Consistency of highest-betweenness and highest-degree individuals over time, per
week. Each line represents a different organization (only four are shown—preliminary analysis),
connecting observations taken for each week (w = 1 week, δ = 1 week). For each network snapshot,
we compare the top 10% of individuals by betweenness (τ = 1), degree (τ = 1) and degree (τ = 10)
to those who were in the top 10% in the first snapshot. The y-axis plots the percentage that
were originally in the top 10% in the initial observation and are in the top 10% for the observed
snapshot.
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Figure C.1.6: Top, diameter across all networks. The diameter is the length of the longest shortest
path between two senders compared to the size of the network. Bottom, the average shortest path
between two senders in an organization, across all networks. The lines shows the function of best
fit—here, growing (not shrinking) as O(logS). This matches many models from random graph
theory. The model of best fit was chosen by AIC. For the average shortest path length, O(log logS)
cannot be rejected either.
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Figure C.1.7: Average degree (number of contacts) within an organization increases
with the number of observed senders. Observations are taken across w = 1 week periods over
T = 6 months, minimum τ = 1, left, and τ = 5, right. We use the 24 week periods for which we
have complete coverage. This figure contains the same data as Figure 5.10 but for more variables
and over all organizations.

aligned with many models from random graph theory, as well as previous empirical work (Backstrom

et al. 2012; Jacobs et al. 2015a), but contrasts the implications of the densification literature if

comparing across comparable networks.

Further details on densification

Figure C.1.7 shows average degree increasing with the number of active senders observed,

across all organizations, time windows of one week, and minimum reciprocal tie strengths of 1 and

5.

Table C.1.1 shows the relationship between the observed size of a network and the average

degree, under a hierarchical linear model for networks constructed with τmin = 1 and 5, for w = 1

month. Here the data are more impoverished—we only have T = 6 months and therefore six

observations for each organization—and we find mixed results. For τmin = 5, we find results

analogous to the weekly level. For τmin = 1, we do not find evidence for a relationship between

size and average degree. The former, τmin = 5, w = 1 month, could be more similar to the
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τmin = 1, w = 1 week, if this reflects relationships that are weak but consistent across weeks.

However, most relationships are weak (Figure 5.3), and it is not clear why this might vary across

network definitions. Expanding our analysis of user activity to the monthly level could provide

insight into this difference, but we leave that to future work.

Figure C.1.8 shows the variation of average degree and the number of active senders to the

week of observation. Although we do observe variation about holidays, we do not find that degree

or the number of users are varying meaningfully across these 24 weeks.

Figure C.1.9 compares the amount of messages sent within organization, by raw count, to

the number of active senders observed. Here, a message counts as a single message, regardless

of the number of recipients, and the number of active senders is divided by the total number of

unique senders ever observed, such that the numbers are comparable across organizations. As this

is a simple rescaling, the pattern that the total and median number of emails sent (the latter, per

active user) increases with the number of active senders is robust to whether this is raw number or

fraction of active senders.
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Model: 〈k〉 under τmin = 1 Model: 〈k〉 under τmin = 5
w = 1, T = 6 month snapshots w = 1, T = 6 month snapshots

(Intercept) 11.54∗∗∗ 5.78∗∗∗

(0.51) (0.54)
Srescaled 2.42 5.23∗∗∗

(1.29) (1.13)

AIC 1195.20 370.11
BIC 1219.00 393.91
Log Likelihood -591.60 -179.06
Num. obs. 390 390
Num. groups: Symbol 65 65
Var: Symbol (Intercept) 8.15 12.30
Var: Symbol Srescaled 31.58 48.21
Cov: Symbol (Intercept) Srescaled 4.05 22.60
Var: Residual 0.52 0.04
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table C.1.1: Hierarchical linear model comparing degree and observed network size for different
minimum levels of τ for w = 1 month networks.
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Figure C.1.8: Top, average degree (number of contacts) within an organization across
time. Bottom, number of unique active senders within an organization across time.
Observations are taken across w = 1 week periods over T = 6 months, minimum τ = 1, left, and
τ = 5, right. We use the 24 week periods for which we have complete coverage. The dip in the
later weeks reflects Thanksgiving and holiday breaks, but we otherwise do not find a meaningful
variation with time.
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Figure C.1.9: At the hour level, senders send more messages when more other people
are active. Top, the total number of messages sent in an hour period increases with the fraction
of active senders within an organization. Bottom, conditional on a sender being active, the median
number of messages sent in an hour period per active hour user increases with the fraction of
active senders within an organization. Each point represents an observation of the median number
of messages sent for a given hour (w = 1 hour). The fraction of active senders is given by Sobserved

divided by the total number of unique active senders ever observed (T = 6 months).


