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The increasing penetration of renewable and distributed energy resources (DERs) in distribution net-

works call for fast and efficient distributed voltage regulation algorithms. This thesis first studies the existing

local Volt/VAR control and designs new local algorithms with less restrictive convergence conditions and

better voltage regulation. Meanwhile, unlike the traditional assets owned and managed by utility companies,

the customer-owned DERs are not necessarily subject to the control of network operators unless properly in-

centivized. This thesis then investigates the joint design of distributed control and incentive mechanisms for

managing DERs by introducing a market-based voltage regulation framework and extending it to a real-time

setting with both continuous and discrete decision variables as well as device dynamics under time-varying

operating conditions. The resulting randomized distributed algorithm admits asynchronous implementation

in practical systems, and its performance is analytically characterized as well as numerically evaluated.
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Chapter 1

Introduction

Known as one of the most complex infrastructures that human beings have ever created, the electric

power network is essential to the functioning of our society and daily life. The traditional electric power

system mainly comprises of the generators that supply the power, the transmission system that carries the

power from the generating centers to the load centers, and the distribution system that eventually delivers

the power to nearby homes and industries; see Fig. 1.1.

Figure 1.1: Electricity generation, transmission, and distribution.

1.1 Voltage Regulation in Distribution Networks and New Challenges

Since distribution networks are directly connect to end users, keeping their voltages within specific

levels is extremely important. Both overvoltages and undervoltages are problematic to end users by caus-
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ing improper or inefficient operation of equipments. Moreover, overvoltages may also impair equipments

through insulation damage and incur higher losses in transformers due to higher magnetizing currents, while

undervoltages can overheat induction motors [108]. In US, voltage regulation in distribution networks usu-

ally follows ANSI voltage standards (ANSI C84.1-2011), e.g., maintaining the voltage magnitudes at users’

meters within ±5% of the nominal voltage value.

1.1.1 Traditional Voltage Regulation in Distribution Networks

Voltage fluctuations are usually attributable to unbalanced power supply and demand. Traditionally,

given predictable and relatively slow changes in power demand, voltage regulation is realized by tuning

the outputs of the generators to match the demand, load tap changers (LTC) to change the turns ratio of

transformers, and capacitor banks to inject/consume reactive power to adjust voltages [121]. Traditional

voltage regulation in distribution systems is usually conducted in a centralized way a few times per day

[17, 18].

Figure 1.2: Solar PV Global Capacity and Annual Additions, 2006–2016 [101].
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Figure 1.3: Growth in global renewable energy compared to total final energy consumption,

2004–2014 [101].

1.1.2 Increasing Penetration of Renewable Energy and DERs

Power systems have been operating under traditional control paradigms for more than a century.

However, in recent year, profound evolution from two aspects is taking place in power systems, especially

in distribution networks, bringing about enormous and urgent control challenges.

1.1.2.1 Renewable Energy and Real-Time Control

In pursuit of sustainable and environmentally friendly energy resources, people all over the world are

implementing a large amount of renewable energy resources like photovoltaic (PV) and wind generations.

The growing new investment upon renewable energy has reached a historically-high $286 billion in 2015

[89, 101], and the cost of renewable energy has dropped significantly making it more accessible to ordinary

customers [58]. As a result, the capacity and penetration of renewable energy resources have been increasing

substantially for the last decade [101]; see Fig. 1.3 and Fig. 1.2.

However, the intermittent nature of the renewable energy causes frequent and rapid voltage fluctua-

tions (at the timescale of seconds) in the distribution system, considerably beyond the reach of traditional
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voltage regulation methods with capacitor banks and under load tap changers that operate at the timescale

of hours. This naturally calls for a real-time control strategies that are able to react fast enough to keep up

with the rapid fluctuations produced by renewable energy resources.

1.1.2.2 DERs and Market-Based Distributed Control

In the meantime, power grids are also experiencing an increasing flexibility in control on both supply

and demand sides thanks to growing penetration of distributed energy resources (DERs) on the distribution

level, including roof-top photovoltaic (PV) panels, electric vehicles (EV), smart batteries, thermostatically

controlled loads (TCLs, e.g., water heaters, air-conditioners (A/Cs), etc.), and other responsive loads, etc.

While these flexible or controllable devices can potentially provide ancillary services for the grid [38],

coordinating a large number of such devices with various dynamics and constraints to achieve network-wide

objectives such as voltage regulation, frequency control and economic efficiency is extremely challenging.

Moreover, unlike the traditional assets owned and managed by utility companies, the mass customer-

owned devices are not necessarily subject to the control of network operators unless properly incentivized.

This calls for the joint design of distributed control and incentive/market mechanisms to bring self-interested

customers into the control loop so that network-wide objectives and constraints can be achieved by inducing

the desired customer behaviors through proper incentives.

1.2 Inverter-Based Voltage Regulation

Even though the current IEEE Standard 1547 [111] requires distributed generation to operate at unity

power factor, inverters can readily adjust real and reactive power outputs to stabilize voltages and cope with

fast time-varying conditions. Indeed, the IEEE Standards group is actively exploring a new inverter-based

Volt/VAR control. Unlike the capacity banks or tap changers, inverters can push and pull reactive power

much faster, in a much finer granularity and with low operation costs. They will enable real-time distributed

Volt/VAR control that is needed for the future power grid with a large number of renewable and DERs.

Inverter-based voltage regulation has been studied extensively in literature. Related work largely fall

into the following categories:
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(1) Centralized control: By collecting all the required information and computing a global optimal power

flow (OPF) problem, a central controller determines an optimal set point for the whole network [43, 65, 71,

82, 83]. Centralized control can incorporate general objectives and operational constraints, but suffers from

huge communication and computation costs when the size of the problem is large. For the same reasons,

centralized control usually cannot provide fast real-time control.

(2) Distributed control: For OPF problems of certain structures, one can design algorithms to distribute

computation with coordinative communication, which is conducted either between a central controller and

agents in a hierarchical way, e.g., [13, 29, 37, 66, 77, 84, 136, 138], or among neighborhoods of individual

agents without a central controller, e.g., [19, 85, 97, 107, 115, 127]. Distributed control provides a scalable

way to solve a global OPF problem and can therefore provide fast real-time control.

(3) Local control: Based on only local information such as the voltage, local control can provide fast re-

sponse without any communication within or among control hierarchies; see, e.g., [60, 102, 110, 117, 134,

142, 143].

We also refer to [92] for a recent comprehensive survey of distributed optimization and control in

power systems.

1.2.1 Inverter-Based Local Volt/VAR Control

In Chapter 2–3 of this thesis, we focus on analysis and design of inverter-based local Volt/VAR

control. Based on local information and reactive power control, local Volt/VAR control admits simple

implementation without communication with other control nodes or central coordinator. However, char-

acterization of its performance, especially from a global perspective as well as its dynamic properties, is

challenging. In the extensive literature of local Volt/VAR control, many works such as [10, 117] focus on

numerical performance evaluation only and lack analytical characterization, while some other works such

as [60, 102] characterize stability analytically, but do not portray its performance from a global perspective.

There are also works that provide rigorous performance analysis but are subject to special control functions;

e.g., [128, 143] study linear control functions without deadband, while [110] focuses on quadratic control

functions.
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Given general monotone control functions, previous study [44] has reverse engineered a non-incremental

local control together with the linearized power flow model as a distributed algorithm for solving a well-

defined convex optimization problem that seeks a trade-off between minimizing the reactive power provi-

sioning cost and minimizing the cost of voltage deviation from nominal value. As will be shown, in order to

achieve better voltage regulation result, control functions of steeper slopes are preferred. However, conver-

gence condition of the non-incremental control prohibits control functions of large derivatives. To break out

of this dilemma, an incremental local control based on (sub)gradient algorithm for solving the same convex

optimization problem is then proposed. It has been proved that given control functions of any finite deriva-

tives, the (sub)gradient algorithm converges to its unique equilibrium point for most situations. However,

the subgradient nature of this algorithm prevents it from convergence when the equilibrium point is close to

the non-differentiable point in the cost function.

This motivates us to design improved local Volt/VAR control algorithms. We propose an incremental

local control based on the pseudo-gradient algorithm for solving the same optimization problem as before.

Moreover, we have proved that, given any control functions, this new design converges with appropriately

chosen stepsize to its unique equilibrium regardless of the non-differentiable points. Following that, we

design another incremental local control to assure that the stabilized voltages stay within specified bounds

corresponding to the deadband in control functions given sufficient reactive power supply. These two new

designs present not only better voltage regulation results, but also superior convergence properties and sim-

pler implementation.

The convergence proofs of the new designs are challenging. For the pseudo-gradient algorithm,

the Lyapunov-function-based analysis is difficult because the objective function that it solves may not be

differentiable due to the deadband in control functions, and that the operator based on pseudo-gradient

algorithm is generally not monotone; norm-based contraction mapping analysis does not render satisfying

results either. Nevertheless, we prove the convergence by studying the Jacobian matrix of the equivalent

mapping of the dynamics. We first show that the eigenvalues of the asymmetric Jacobian matrix are all

real and non-positive. Then by Gershgorin circle theorem, we prove that given small enough stepsize, the

magnitudes of the eigenvalues are all smaller than 1, and ergo the pseudo-gradient algorithm converges. We
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also utilize similar approaches based on Jacobian matrix to show the convergence for the second design of

strict voltage regulation.

1.3 Market-Based Distributed Voltage Regulation

Considering that the power system is not only an engineering problem, but also a market problem, we

study joint distributed control and incentive/market mechanisms in Chapter 4–6.

There is a lot of effort on market-based control algorithms for tapping and coordinating the customer-

owned DERs; see, e.g., [79,86,91,123] for demand management, [80,138] for voltage regulation, and [122]

for frequency regulation. This thesis focuses on market-based distributed voltage regulation. The goal is to

incentivize customers to provide ancillary services to the grids based on maximizing their own economic

benefits and performance objectives [86, 91, 123]. For example, customers may be incentivized to adjust

the output powers of DERs or the power consumption of controllable loads in real time to aid voltage

regulation [80], control the aggregate network demand [79], and follow regulating signals [122].

In particular, we first consider a social welfare optimization problem that captures the operational

and economic objectives of both network operator and customers as well as the voltage constraints, and

design an optimization framework based on a primal-dual gradient algorithm such that the network operator

and customers pursue the given operational and economic objectives while concurrently ensuring that the

voltages are within the prescribed limits.

Since the framework only considers continuous decision variables, there are a few important limita-

tions. Notably, discreteness in decision variables for certain devices such as A/Cs and batteries is mostly

ignored. Discrete decision variables make the problem non-convex, for which in general no efficient algo-

rithms exist. Considering these, we then propose a practical stochastic dual algorithm to address the problem

of discrete decision variables and device dynamics, and further we develop an online implementation of the

stochastic optimization approach. Specifically, we formulate a general multi-period social welfare maxi-

mization problem (minimum cost problem, in terms of minimization) with both continuous and discrete

decision variables as well as device dynamics for managing DERs, and introduce a convex relaxation of the

problem by replacing discrete feasible sets with their convex hulls. We then propose a distributed stochastic
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algorithm that recovers discrete decision variables randomly according to convex combination coefficients

from the dual gradient algorithm for the relaxed problem. The resulting algorithm is distributed, where the

self-interested customers update their devices’ power setpoints based on local constraints and individual

cost functions for given incentive signals and the network operator updates the incentive signals based on

network-wide operational constraints.

The convergence of the dual gradient method can be hard to characterize, as the dual function may

be non-smooth and not strongly concave. The additional stochasticity of our algorithm makes it more

challenging. In literature diminishing stepsizes are usually assumed to be necessary for convergence (see,

e.g., [30, 98, 100, 140, 144]), which may not be practical in, e.g., a real-time and/or asynchronous setting.

Nevertheless, we leverage recent insights in the dual method to characterize the convergence of the proposed

stochastic dual algorithm with constant stepsizes. To the best of our knowledge, this is a first convergence

characterization of its kind for the dual method applied in power systems.

Notice that, due to intermittent renewal generations and fluctuating uncontrollable loads, the operating

condition of power grid may change at a fast timescale, which allows only a few iterations of the above-

mentioned algorithm. Moreover, different DER devices may be featured with different timescales in con-

trol; e.g., devices with continuous decision variables can update power setpoints at relatively fast timescales,

while those with discrete decision variables may only be able to update at relatively slow timescales. We

therefore extend the proposed stochastic dual algorithm to a practical online realtime setting where 1) during

each timeslot the algorithm can only run one or a few iterations in order to track the time-varying “optimal”

operating point and 2) devices may update power setpoints asynchronously at different times. Also notice

that, while we use a linearized power flow model to guide tractable algorithm design, our realtime algo-

rithm will leverage the measured values of relevant electrical variables on the power system to account for

the nonlinear power flows as well as reduce communication overhead. The resulting real-time feedback

receding horizon control (RHC) algorithm provides a general online stochastic optimization algorithm for

coordinating networked DERs with discrete power setpoints and dynamics to meet operational and economic

objectives and constraints. We further characterize its convergence analytically and evaluate its performance

numerically.
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1.4 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 models the distribution system, and intro-

duces related works including reverse engineering of the local Volt/VAR control as an optimization problem

and a (sub)gradient algorithm for solving it. Chapter 3 proposes two of our new designs that improve

the convergence and the voltage regulation properties with simpler implementation. Chapter 4 presents an

incentive-based distributed voltage control framework by exact convex relaxation with continuous decision

variables only. Chapter 5 extends the results of Chapter 4 to discrete decision variables and device dynam-

ics and solves the problem by a stochastic dual algorithm. Chapter 6 advances the results in Chapter 5 to

an online optimization and control of various DERs with mixed decision variables and device dynamics in

a real-time setting. Chapter 7 introduces some other works of mine including analysis of local Volt/VAR

control with nonlinear power flow model in Section 7.1, a new perspective of frequency synchronization of

coupled oscillators through reverse engineering in Section 7.2, and demand shaping algorithms in cellular

networks in Section 7.3.



Chapter 2

System Model and Related Works

This chapter first introduces nonlinear power flow model for distribution networks and its lineariza-

tion. We then present preceding works on local Volt/VAR control including (1) a non-incremental local

control together with the linearized power flow model that is reverse-engineered as a distributed algorithm

for solving a well-defined convex optimization problem, and (2) an incremental local control by applying

(sub)gradient algorithm to solve the same optimization problem for less restricted voltage regulation and

convergence conditions. As discussed later this chapter, the presented design and analysis motivate im-

proved local Volt/VAR control strategies for more strict voltage regulation, better convergence properties

and less implementation complexities, which will be proposed next chapter. Related works of this chapter

have been initially published in [44] and [45], and later improved in [141].
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Main Notation For Chapter 2–3

N set of buses excluding bus 0, N := {1, ..., n}

L set of power lines

Li set of lines from bus 0 to bus i

pc
i , q

c
i real, reactive power consumption at bus i

qg
i , q

g
i real, reactive power generation at bus i

Pi j,Qi j real and reactive power flow from i to j

ri j, xi j resistance and reactance of line (i, j)

R, X resistance and reactance matrices

vi magnitude of complex voltage at bus i

`i j squared magnitude of complex current of line (i, j)

β( j) ⊂ N set of all descendants of bus j, β( j) =
{
i|L j ⊆ Li

}
L weighted Laplacian matrix

αi upper bound of the derivative of the control function at bus i

A A := diag{α1, . . . , αn}

[w]Ωi projection of w onto set Ωi

[w]+ projection of w onto positive orthant

λmax(W) maximum eigenvalue of matrix W

σmax(W) maximum singular value of a matrix W

2.1 Power Flow Model for Distribution Networks

Consider a tree graph G = {N ∪{0},L} that represents a radial distribution network consisting of n+1

buses and a set L of undirected lines between these buses. Bus 0 is the substation bus (slack bus) and is

assumed to have a fixed voltage of 1 p.u.. Let N := {1, . . . , n}. Due to the tree topology, we also have the

cardinality of the line set |L| = n. For each bus i ∈ N , denote by Li ⊆ L the set of lines on the unique path

from bus 0 to bus i, pc
i and pg

i the real power consumption and generation, and qc
i and qg

i the reactive power
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consumption and generation, respectively. Let vi be the magnitude of the complex voltage (phasor) at bus

i. For each line (i, j) ∈ L, denote by ri j and xi j its resistance and reactance, and Pi j and Qi j the real and

reactive power from bus i to bus j respectively. Let `i j denote the squared magnitude of the complex branch

current (phasor) from bus i to bus j.

We adopt the following branch flow model introduced in [17, 18] (DistFlow equations) to model a

radial distribution system:

Pi j = pc
j − pg

j +
∑

k:( j,k)∈L

P jk + ri j`i j, (2.1a)

Qi j = qc
j − qg

j +
∑

k:( j,k)∈L

Q jk + xi j`i j, (2.1b)

v2
j = v2

i − 2
(
ri jPi j + xi jQi j

)
+

(
r2

i j + x2
i j

)
`i j, (2.1c)

`i jv2
i = P2

i j + Q2
i j. (2.1d)

Following [16] we assume that the terms involving `i j are zero for all (i, j) ∈ L in (2.1). This approximation

neglects the higher order real and reactive power loss terms. Since losses are typically much smaller than

power flows Pi j and Qi j, it only introduces a small relative error, typically on the order of 1%. We further

assume that vi ≈ 1 so that we can set v2
j − v2

i = 2(v j − vi) in equation (2.1c). This approximation introduces

a small relative error of at most 0.25% if there is a 5% deviation in voltage magnitude.

With the above approximations the model (2.1) simplifies to the following linear model:

Pi j =
∑

k∈β( j)

(
pc

k − pg
k

)
,

Qi j =
∑

k∈β( j)

(
qc

j − qg
j

)
,

vi − v j = ri jPi j + xi jQi j,

where β( j) is the set of all descendants of bus j including bus j itself, i.e., β( j) =
{
i|L j ⊆ Li

}
. This yields an
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explicit solution for vi in terms of v0 (which is given and fixed):

v0 − vi =
∑

( j,k)∈Li

r jkP jk +
∑

( j,k)∈Li

x jkQ jk

=
∑

( j,k)∈Li

r jk

 ∑
h∈β(k)

(
pc

h − pg
h

) +
∑

( j,k)∈Li

x jk

 ∑
h∈β(k)

(
qc

h − qg
h

)
=

∑
j∈N

(
pc

j − pg
j

)  ∑
(h,k)∈Li∩L j

rhk

 +
∑
j∈N

(
qc

j − qg
j

)  ∑
(h,k)∈Li∩L j

xhk


=

∑
j∈N

Ri j
(
pc

j − pg
j

)
+

∑
j∈N

Xi j
(
qc

j − qg
j

)
,

where

Ri j :=
∑

(h,k)∈Li∩L j

rhk, (2.2a)

Xi j :=
∑

(h,k)∈Li∩L j

xhk. (2.2b)

Figure 2.1: Li ∩ L j for two arbitrary buses i, j in the network and the corresponding mutual
voltage-to-power-injection sensitivity factors Ri j, Xi j.

Fig. 2.1 gives an illustration of Li ∩ L j for two arbitrary buses i and j in a radial network and the

corresponding Ri j and Xi j. Since

Ri j =
∂vi

∂pg
j

= −
∂vi

∂pc
j
, (2.3a)

Xi j =
∂vi

∂qg
j

= −
∂vi

∂qc
j
, (2.3b)

Ri j, Xi j are also referred to as the mutual voltage-to-power-injection sensitivity factors.

Define a resistance matrix R = [Ri j]n×n and a reactance matrix X = [Xi j]n×n. Both matrices are

symmetric and positive. With the matrices R and X the linearized branch flow model can be summarized

compactly as:

v = v0 + R(pg − pc) + X(qg − qc), (2.4)
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where v0 = [v0, . . . , v0]> is an n-dimensional vector. In this chapter and the next, we assume that v0, pg, pc, qc

are given constants. The only variables are (column) vectors v := [v1, . . . , vn]> of squared voltage magni-

tudes and qg := (qg
1, . . . , q

g
n) of generated reactive powers. Let ṽ = v0 + R(pg − pc)−Xqc, which is a constant

vector. For notational simplicity, in the rest of this chapter and the next we will ignore the superscript in qg

and write q instead. Then the linearized branch flow model reduces to the following simple form:

v = Xq + ṽ. (2.5)

We have the following result, the proof of which is referred to [44].

Lemma 2.1 (Lemma 1 of [44]). The matrices R and X are positive definite.

2.2 Inverter Model and Local Volt/VAR Control

2.2.1 Inverter Model

We consider an inverter at bus i that can generate non-negative real power pi and reactive power qi

that can have either sign. pi and qi are constrained by the apparent power capability si of the inverter as

follows:

0 ≤ pi ≤ si, 0 ≤ |qi| ≤ si, p2
i + q2

i ≤ s2
i . (2.6)

Consider power ratio cos ρi with 0 ≤ ρi ≤ π/2 such that

pi/si ≥ cos ρi. (2.7)

Given non-controllable pi ≤ si, the feasible power set Ωi for inverter i is cast as:

Ωi :=
{
qi

∣∣∣ qi
min ≤ qi ≤ qi

max
}
, (2.8)

where

qmax
i = min

{
pi tan ρi,

√
s2

i − p2
i

}
,

qmin
i = max

{
−pi tan ρi,−

√
s2

i − p2
i

}
,
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based on (2.6)–(2.7). Here, pi is further assumed to be sized appropriately to provide enough freedom in

qi [117]. Please also refer to [37] for more general PV inverter modeling.

For buses without inverters, we can set si = pi = qi = 0 and thus Ωi = {0}. Define Ω :=×n
i=1 Ωi for

notational simplicity.

2.2.2 Local Volt/VAR Control

The goal of Volt/VAR control in a distribution network is to maintain the bus voltages v to within

a tight range around their nominal values vnom
i = 1 p.u., i ∈ N by provisioning reactive power injections

q := (q1, . . . , qn). This can be modeled as a feedback dynamical system with state
(
v(t), q(t)

)
at discrete time

t. A general Volt/VAR control algorithm maps the current state
(
v(t), q(t)

)
to a new reactive power injections

q(t + 1). The new q(t + 1) produces a new voltage magnitudes v(t + 1) according to (2.5). Usually q(t + 1) is

determined either completely or partly by a certain Volt/VAR control function defined as follows:

Definition 2.1. A Volt/VAR control function f : Rn → Rn is a collection of local control functions fi : R→ R,

each of which maps the current local voltage vi to a local control variable ui in reactive power at bus i:

ui = fi(vi − vnom
i ). ∀i ∈ N . (2.9)

The control functions fi are usually decreasing but not always strictly decreasing because of a poten-

tial deadband where the control signal ui is set to zero to prevent too frequent actuation. Assume for each

bus i ∈ N a symmetric deadband (vnom
i − δi/2, vnom

i + δi/2) with δi ≥ 0 around the nominal voltage vnom
i .

Two assumptions are made for the control functions.

Assumption 2.1. The control functions fi are non-increasing in R and strictly decreasing and differentiable

in (−∞,−δi/2) and (δi/2,+∞).

Assumption 2.2. The derivative of the control function fi is upper-bounded, i.e., there exist αi > 0 such that

| f ′i (vi)| ≤ αi for all vi ∈ (−∞,−δi/2) ∪ (−δi/2, δi/2) ∪ (δi/2,+∞), ∀i ∈ N .

Assumption 2.2 means that an infinitesimal change in voltage should not lead to a jump in the control

variable. Define A := diag{α1, . . . , αn} ∈ S
N
++, and let M = σmax(AX), the largest singular value of AX. We

have the following result.



16

Lemma 2.2 (Lipschitz continuity). Suppose Assumptions 2.1–2.2 hold. For any q, q′ ∈ Ω, we have

∥∥∥ f (v(q) − vnom) − f (v(q′) − vnom)
∥∥∥

2 ≤ M
∥∥∥q − q′

∥∥∥
2 . (2.10)

Proof. Without loss of generality, assume that vi(q) ≥ vi(q′). If both vi(q) and vi(q′) are in (−∞, vnom
i − δi/2]

or in [vnom
i + δi/2,+∞), by the mean value theorem we have | fi(vi(q) − vnom

i ) − fi(vi(q′) − vnom
i )| ≤ ᾱi|vi(q) −

vi(q′)|. If both are in [vnom
i − δi/2, vnom

i + δi/2], 0 = | fi(vi(q) − vnom
i ) − fi(vi(q′) − vnom

i )| ≤ ᾱi|vi(q) − vi(q′)|.

If vi(q) ∈ [vnom
i + δi/2,+∞) and vi(q′) ∈ [vnom

i − δi/2, vnom
i + δi/2], | fi(vi(q) − vnom

i ) − fi(vi(q′) − vnom
i )| =

| fi(vi(q)−vnom
i )− fi(δi/2))| ≤ ᾱi|vi(q)−(vnom

i +δi/2)| ≤ ᾱi|vi(q)−vi(q′)|, where the first inequality follows from

the mean value theorem. Similarly, we can show that | fi(vi(q) − vnom
i ) − fi(vi(q′) − vnom

i )| ≤ ᾱi|vi(q) − vi(q′)|

holds under other situations too. Therefore,

‖ f (v(q) − vnom) − f (v(q′) − vnom)‖2 ≤ ‖A(v(q) − v(q′))‖2,

from which we have

‖ f (v(q) − vnom) − f (v(q′) − vnom)‖2 ≤ ‖AX(q − q′)‖2 ≤ M‖q − q′‖2.

�

See Fig. 2.2 (left) for an illustrative example of control function based on a piecewise linear droop

control function in IEEE Standard 1547 [111]:

fi(vi) = −αi [vi − δi/2]+ + αi [−vi − δi/2]+ (2.11)

with slope −αi in (−∞,−δi/2) and (δi/2,+∞). Notice that our design and analysis in the rest of chapter (as

well as the next) are not confined to the piecewise linear control functions.

Motivated by the IEEE Standard 1547, we consider a “non-incremental” control where the reactive

power qi = ui, i ∈ N , and obtain the following dynamical systemD1 for the local Volt/VAR control:


v(t) = Xq(t) + ṽ

qi(t + 1) =
[
fi
(
vi(t) − vnom

i
)]

Ωi
, i ∈ N ,

(2.12a)

(2.12b)

where [ ]Ωi denotes the projection onto the set Ωi. A fixed point (v∗, q∗) of the above dynamical system,

defined as follows, represents an equilibrium operating point of the network.
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Figure 2.2: From left to right: (left) piecewise Volt/VAR control curve based on the piece-
wise linear function (2.11), (middle) its inverse function, and (right) the corresponding cost
function (2.15), i.e., the integral of the inverse function.

Definition 2.2. (v∗, q∗) is called an equilibrium point ofD1, if it satisfies

v∗ = Xq∗ + ṽ, (2.13a)

q∗ =
[
f (v∗ − vnom)

]
Ω. (2.13b)

In the next section of related works, we first characterize the equilibrium of the systemD1 by showing

that it is an distributed algorithm for solving a well-defined optimization problem, followed by its dynamical

properties. We then introduces an incremental local Volt/VAR control based on (sub)gradient algorithm that

achieves the same equilibrium as D1 while permits less restrictive convergence conditions. These works

have been previously published and further improved later, especially regarding their stability analysis.

2.3 Related Works

This section first studies the equilibrium and dynamical properties of local Volt/VAR control D1,

and then designed a (sub)gradient-based control dynamics D2 for better voltage regulation results and less

restricted convergence conditions.
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2.3.1 Reverse Engineering

Since fi is non-increasing, a (generalized) inverse f −1
i exists. In particular, at the origin, we assign

f −1
i (0) = 0 corresponding to the deadband [−δi/2,+δi/2] of fi. This may introduce a discontinuity to f −1

i at

qi = 0 if the deadband δi > 0, with

f −1
i (0+) ≤ −δi/2 and f −1

i (0−) ≥ δi/2. (2.14)

Define a cost function for provisioning reactive power at each bus i ∈ N as:

Ci(qi) := −

∫ qi

0
f −1
i (q) dq, (2.15)

which is convex since f −1
i is decreasing. Then, given vi(t), qi(t + 1) in (2.12b) is the unique solution to the

following individual optimization problem:

qi(t + 1) = arg min
qi∈Ωi

Ci(qi) + qi
(
vi(t) − vnom

i

)
, (2.16)

i.e., (2.12b) and (2.16) are equivalent specification of qi(t + 1).

Take for example the piece-wise linear control function (2.11). Its inverse is given by:

f −1
i (qi) :=


−

qi
αi

+
δi
2 if qi < 0,

0 if qi = 0,

−
qi
αi
−

δi
2 if qi > 0,

(2.17)

and the corresponding cost function is given by:

Ci(qi) =


1

2αi
q2

i −
δi
2 qi if qi ≤ 0,

1
2αi

q2
i +

δi
2 qi if qi ≥ 0.

(2.18)

See also Fig. 2.2 (middle and right) for illustration.

2.3.2 Equilibrium Characterization

Consider the scalar valued function F(q) : Ω→ R:

F(q) := C(q) +
1
2

q>Xq + q>∆ṽ, (2.19)
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where C(q) :=
∑

i∈N Ci(qi) and ∆ṽ := ṽ − vnom, and a global optimization problem:

min
q∈Ω

F(q). (2.20)

Theorem 2.1 (Theorem 1 in [44]). Suppose Assumption 2.1 holds. ThenD1 has a unique equilibrium point.

Moreover, a point (v∗, q∗) is an equilibrium of D1 if and only if q∗ is the unique optimal solution of (2.20)

and v∗ = Xq∗ + ṽ.

We refer the proof of Theorem 2.1 to [44].

With v = Xq + ṽ, the objective can be equivalently written as:

F(q, v) = C(q) +
1
2

(v − vnom)>X−1(v − vnom) −
1
2

∆ṽ>X−1∆ṽ. (2.21)

Notice that the last term is a constant. Therefore, the local Volt/VAR control D1 can be seen as seeking

an optimal trade-off between minimizing the cost of reactive power provisioning C(q) and minimizing the

cost of voltage deviation 1
2 (v − vnom)>X−1(v − vnom). We next provide more detailed characterization of the

objective function (2.21).

2.3.2.1 Further Characterization of Equilibrium

The first term C(q) of the objective (2.21) is well-defined and has the desired additive structure. It is

however not clear what specific structure the second term 1
2 (v− vnom)>X−1(v− vnom) entails. We will further

characterize this term in this subsection.

Notice that bus 0 has a fixed voltage magnitude, which decouples different subtrees rooted at it.

Therefore, without loss of generality we only consider a topology where the bus 0 is of degree 1. Denote T

the (sub)tree rooted at bus 1 and LT the set of links of T . Define an inverse tree T ′ that has the same sets

of buses and lines as T but with reciprocal line reactance 1/xi j. Let L ∈ Rn×n be the weighted Laplacian

matrix of T ′ defined as follows:

Li j =


−1/xi j, (i, j) ∈ LT ,∑

(i,k)∈L 1/xik, i = j,

0, otherwise.
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Recall that x denotes the reactance of the line connecting buses 0 and 1, we have the following result by Liu

et al. [81].

Theorem 2.2 (from [81]). Given the tree graph G = {N ∪ {0},L} with bus 0 being of degree 1 and its

reactance matrix X defined by (2.2b), the inverse matrix X−1 has the following explicit form:

X−1 = L +



1/x 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


. (2.22)

With the above result, the cost function (2.21) can be written as:

F(q, v) = C(q) +
1
2

 (v1 − vnom)2

x
+

∑
(i, j)∈LT

(vi − v j)2

xi j

 − 1
2

∆ṽ>X−1∆ṽ. (2.23)

We see that the second term (i.e., the cost of voltage deviation) consists of two parts: the first part

(v1 − vnom)2/x represents the cost of voltage deviation of the bus 1 from the nominal value, and the second

part
∑

(i, j)∈LT (vi − v j)2/xi j gives the cost of voltage deviation among the neighboring buses. This leads to a

nice leader-follower structure where the first bus (the bus 1) aims to attain the nominal voltage while each

other bus tries to achieve the same voltage as that of the bus “in front of” it.

2.3.3 Dynamics Analysis

We now study the dynamic properties of the local Volt/VAR controlD1.

Theorem 2.3. Suppose Assumptions 2.1–2.2 hold. If

σmax(AX) < 1, (2.24)

then the local Volt/VAR controlD1 converges to the unique equilibrium point (v∗, q∗). Moreover, it converges

exponentially fast to the equilibrium.

Proof. WriteD1 equivalently as a mapping g1:

q(t + 1) = g1(q(t)) :=
[
f (Xq(t) + ∆ṽ − vnom)

]
Ω. (2.25)
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By Lemma 2.2 and the non-expansiveness property of projection operator, given any feasible q, q′ we have

∥∥∥g1(q) − g1(q′)
∥∥∥

2 ≤ M‖q − q′‖2, (2.26)

where M = σmax(AX). When condition (2.24) holds, M < 1 and thus the mapping g1 is a contraction,

implying that (v(t), q(t)) converges exponentially fast to the unique equilibrium point underD1. �

Define the following matrix norms for some W ∈ Rm×n:

‖W‖1 = max
1≤ j≤n

m∑
i=1

|wi j|, ‖W‖∞ = max
1≤i≤m

n∑
j=1

|wi j|, ‖W‖2 =
√
λmax(W>W) = σmax(W),

where λmax(·) denotes the largest eigenvalue of a matrix. By utilizing the following relationship among these

matrix norms based on Hölder’s inequality

‖W‖2 ≤
√
‖W‖1 · ‖W‖∞ , (2.27)

we have the following sufficient condition for convergence ofD1, which is easier to verify in practice.

Corollary 2.1. Suppose Assumptions 2.1–2.2 hold. If

max
i∈N

(αi) ·max
i∈N

∑
j∈N

Xi j

 < 1, (2.28)

thenD1 converges exponentially fast to the unique equilibrium point (v∗, q∗).

Proof. A sufficient condition for (2.24) based on (2.27) is

‖AX‖1 < 1 and ‖AX‖∞ < 1. (2.29)

Given symmetric matrix X, (2.28) is thereafter sufficient for (2.29). �

2.3.3.1 Limitation of the Non-Incremental Control

The voltage control (2.12b) is non-incremental, as it decides the total amount of reactive power based

on the deviation of current voltage from the nominal value. Intuitively, such a control may lead to over-

actuation and oscillatory behavior. In order to have converging or stable behavior, the control function
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should not be too aggressive, i.e., have small derivative. This can also be seen from Theorem 2.3. In the

case of the piece-wise linear control function (2.11), this implies a small αi value.

On the other hand, seen from the equivalent objective (2.21), smaller cost functions Ci(qi) are pre-

ferred for better voltage regulation. However, a small cost function implies large derivative of the control

function; see, e.g., the cost function (2.18) that becomes smaller as αi takes larger value, as well as numerical

examples shown in Section 3.3 next chapter.

Hence, there is a contention or fundamental limitation for the non-incremental control: control func-

tion with smaller derivative is preferred for convergence, while for better voltage regulation at the equilib-

rium control function with larger derivative is desired. This motivates us to seek new types of voltage control

that are not subject to such a limitation, as will be seen in the next section.

2.3.4 (Sub)gradient Algorithm

Given an optimization problem, we may apply different algorithms to solve it. A common algorithm

that often admits distributed implementation is the (sub)gradient method [31]. Applying to the problem

(2.20) leads to the following voltage control:

qi(t + 1) =

[
qi(t) − γ2

∂F(q(t))
∂qi

]
Ωi

, i ∈ N , (2.30)

where γ2 > 0 is the constant stepsize and the (sub)gradient is calculated as follows:

∂F(q(t))
∂qi

=



− f −1
i (qi(t)) + vi(t) − vnom if qi(t) , 0,

vi(t) − vnom if qi(t) = 0 and − δ/2 ≤ vi(t) − vnom ≤ δi/2,

−δi/2 + vi(t) − vnom if qi(t) = 0 and vi(t) − vnom > δi/2,

δi/2 + vi(t) − vnom if qi(t) = 0 and vi(t) − vnom < −δi/2.

(2.31)

The above control is incremental as the change in reactive power (instead of the total reactive power) is

based on the voltage deviation from the nominal value. It is also distributed, since the decision at each bus

i ∈ N depends only on its current reactive power qi and voltage vi.

We thus obtain the following dynamical systemD2:
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v(t) = Xq(t) + ṽ

qi(t + 1) =

[
qi(t) − γ2

∂F(q(t))
∂qi

]
Ωi

, i ∈ N .

(2.32a)

(2.32b)

The following result is immediate.

Theorem 2.4. Suppose Assumption 2.1 holds. Then there exists a unique equilibrium point for the dynamical

system D2. Moreover, a point (v∗, q∗) is an equilibrium if and only if q∗ is the unique optimal solution of

problem (2.20) and v∗ = Xq∗ + ṽ.

Since the feasible sets are bounded, we also have the bounded (sub)gradient of F(q) with some con-

stant G > 0 as

‖∇qF(q)‖2 ≤ G, ∀q ∈ Ω. (2.33)

Theorem 2.5. Suppose Assumption 2.1 hold. The dynamical systemD2 converges as

lim
t→∞

sup
q(t)

t∑
τ=1

F(q(τ)) − F(q∗)
t

= γ2
2G2. (2.34)

Proof. We characterize the distance between q(t + 1) and q∗ as:

‖q(t + 1) − q∗‖22

≤ ‖q(t) − γ2∇qF(q(t)) − q∗‖22

= ‖q(t) − q∗‖22 + γ2
2‖∇qF(q(t))‖22 − 2γ2(q(t) − q∗)>∇qF(q(t))

≤ ‖q(t) − q∗‖22 + γ2
2G2 − (F(q(t)) − F(q∗))

≤ ‖q(1) − q∗‖22 + tγ2
2G2 −

t∑
τ=1

(F(q(τ)) − F(q∗)),

where the first inequality is due to non-expansiveness of projection operator, the second inequality is because

of the definition of subgradient as well as the bounded gradient (2.33), and the last inequality is by repeating

previous steps.

Because ‖q(t + 1) − q∗‖22 ≥ 0, it follows that:

t∑
τ=1

F(q(τ)) − F(q∗)
t

≤ ‖q(1) − q∗‖22/t + γ2
2G2. (2.35)

When t → ∞, we have (2.34). �
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2.4 Motivation for Improved Design

Notice that for any control functions fi (that satisfies Assumption 2.1–2.2), one can always find a

small enough stepsize γ2 such that D2 converge to a neighborhood of the (v∗, q∗) of required accuracy on

running average. Moreover, as proved in [45], when q∗ is not close to the non-differentiable point, D2

converges exactly to the optima. In contrast, the convergence condition (2.24) for the non-incremental

voltage control D1 does constrain the allowable control functions fi. Therefore, D2 permits potentially

better voltage regulation results thanD1; see the discussion at the end of Section 2.3.3.1.

Nevertheless, the (sub)gradient nature of D2 may prevent it from converging to the exact optimal

point. This could take place when the optimal is close to the non-differentiable point of F(q) (qi = 0 for some

i in this case) where the value of subgradient (2.31) changes abruptly if δi , 0. Moreover, the (sub)gradient-

based control D2 incurs implementation complexity, since the (sub)gradient computation (2.31) requires

tracking the value of vi with respect to deadband ±δi/2, and takes different forms accordingly. Furthermore,

it requires the calculation of the inverse of the control function fi, which can be computationally expensive

for general control functions. These limitations motivate us to design the next incremental algorithms with

better convergence properties and simpler implementation in Section 3.1.

Moreover, noticing that the algorithms for solving (2.21) does not strictly assure the range of the

voltages at equilibrium, we will further propose a local control to guarantee that the stabilized voltages are

within bounds specified in the deadband of control functions in Section 3.2.



Chapter 3

Local Volt/VAR Control Design and Analysis

This chapter presents two incremental local Volt/VAR control strategies for better voltage regulation,

improved convergence properties, and simpler implementation. In particular, we first propose a local control

based on pseudo-gradient algorithm that not only achieves the same equilibrium point as the (sub)gradient

algorithm and the original non-incremental control, but also assures convergence to the equilibrium point

with appropriately chosen stepsize regardless of the derivatives of control functions or the non-differentiable

points in the cost function. While the aforementioned incremental algorithms are able to attain smaller

voltage deviation from nominal values by applying steeper control functions, they cannot strictly contain

the voltages within specific ranges. In light of this limitation, we design another incremental local control

that stops altering local reactive power provisioning when local voltage is within the bounds specified by the

deadband in the control function. This design ensures that the stabilized voltages at control buses are strictly

within specific ranges, given sufficient reactive power supply. Our designs are characterized analytically and

evaluated numerically. Related works of this chapter have been presented in [134, 139, 141].
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3.1 Local Volt/VAR Control with Better Convergence

3.1.1 Pseudo-Gradient Algorithm Design

The pseudo-gradient can provide a good search direction for an optimization problem without requir-

ing the objective function to be differentiable [124]. Consider the following incremental voltage control:

qi(t + 1) =
[
(1 − γ3)qi(t) + γ3 fi(vi(t) − vnom

i )
]
Ωi

(3.1a)

=
[
qi(t) − γ3

(
qi(t) − fi(vi(t) − vnom

i )
)]

Ωi
, i ∈ N , (3.1b)

where γ3 > 0 is a constant stepsize/weight and qi − fi(vi − vnom
i ) is the pseudo-gradient direction. The above

control is distributed, and is evidently simpler to implement than the (sub)gradient algorithm (2.30).

With (3.1b) we obtain the following dynamical systemD3:
v(t) = Xq(t) + ṽ,

qi(t + 1) =
[
qi(t) − γ3

(
qi(t) − fi

(
vi(t) − vnom

i
))]

Ωi
, i ∈ N .

(3.2a)

(3.2b)

Notice that D3 has the same equilibrium condition as the dynamical systems D1 and D2. The following

result is thus immediate by examining the equilibrium condition of (3.2).

Theorem 3.1. Suppose Assumption 2.1 holds. There exists a unique equilibrium point for the dynamical

system D3. Moreover, a point (v∗, q∗) is an equilibrium if and only if q∗ is the unique optimal solution of

problem (2.20) and v∗ = Xq∗ + ṽ.

3.1.2 Dynamics Analysis

We now analyze the convergence of the dynamical systemD3. We shall first introduce the following

useful results.

Denote by ∇v f the diagonal matrix with each entry
(
∇v f

)
ii representing the (sub)gradient of the

control functions defined as

(∇v f )ii =


f ′i (vi) if vi ∈ (−∞,−δi/2) ∪ (−δi/2, δi/2) ∪ (δi/2,+∞)

f ′i (v−i )+ f ′i (v+
i )

2 if vi = −δi/2 or vi = δi/2
, (3.3)
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which is bounded by −αi ≤ (∇v f )ii ≤ 0 based on Assumption 2.1–2.2. Denote by λ any eigenvalue of the

asymmetric matrix ∇v f X. Consider ∇v f X’s similar matrix X1/2∇v f X1/2, which is symmetric and negative

semidefinite with real and nonpositive eigenvalues. Therefore, eigenvalues of the original asymmetric matrix

∇v f X are also real and nonpositive. Similarly, all the eigenvalues of AX are real and positive.

Theorem 3.2. Suppose Assumptions 2.1–2.2 hold. If the stepsize γ3 satisfies the following condition:

0 < γ3 < 2/
(
1 + λmax(AX)

)
, (3.4)

then the dynamical systemD3 converges to its unique equilibrium point.

Proof. WriteD3 equivalently as a mapping g3:

q(t + 1) = g3(q(t)) :=
[
(1 − γ3)q(t) + γ3 f (v(q(t)))

]
Ω. (3.5)

We study the convergence of D3 based on the Jacobian matrix of g3 without projection operator,

which is computed as

∇qg3 = (1 − γ3)I + γ3∇v f X, (3.6)

where I is identity matrix. Suppose the projection operator is active for some qi. Then the ith row of the

resulting ∇qg3 is all 0. So, by Gershgorin circle theorem [119], the magnitude of ∇qg3’s eigenvalue without

active projection has a larger bound than that with projection. Thus it is sufficient to consider g3 without

projection operator for the rest of the proof.

Denote by z the eigenvector of matrix ∇v f X corresponding to λ, and by definition one has ∇v f Xz =

λz. Therefore, we have

∇qg3z = (1 − γ3 + γ3λ)z, (3.7)

that is, the corresponding eigenvalue of ∇qg3 with respect to λ is 1 − γ3 + γ3λ. To ensure that g3 is stable,

one must have:

−1 < 1 − γ3 + γ3λ < 1 (3.8)

for any eigenvalue λ of ∇v f X [46, 60]. (3.4) is sufficient for the left-hand side of (3.8) and the right-hand

side always holds because λ is nonpositive. This completes the proof. �
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By Theorem 3.2, D3 converges to the optimum with properly chosen stepsize γ3, regardless of the

non-differentiable point that potentially preventsD2 from converging to equilibrium point.

Remark 3.1. Notice that γ3 ≤ 1 in D3 gives a nice interpretation of the new decision qi(t + 1) being a

(positively-)weighted sum of the decision qi(t) at the previous time and the local control ui(t) = fi(vi(t)−vnom
i )

in reactive power. Similar approaches in literatures can be identified as Exponentially Weighted Moving

Average (EWMA) control, delayed control, etc. with γ3 ≤ 1. However, here we do not require γ3 ≤ 1 forD3

to converge, as long as condition (3.4) is satisfied.

3.2 Local Volt/VAR Control with Better Voltage Regulation

3.2.1 Algorithm Design

Consider the following voltage control scheme:

qi(t + 1) =
[
qi(t) + γ4 fi(vi(t))

]
Ωi
, i ∈ N , (3.9)

where each bus adjusts its reactive power provisioning incrementally in response to its current voltage with

a certain constant stepsize γ4 > 0, until local voltage is within deadband of the control function, i.e., when

fi(vi) = 0. This control scheme is local, as each bus only needs to know its own reactive power and voltage.

With this local control scheme, the dynamical system denoted byD4 can be written as:
v(t) = Xq(t) + ṽ

qi(t + 1) =
[
qi(t) + γ4 fi(vi(t))

]
Ωi
, i ∈ N .

(3.10a)

(3.10b)

3.2.2 Equilibrium Characterization

An equilibrium of the dynamical systemD4 is defined as follows.

Definition 3.1. (v∗, q∗) is an equilibrium of dynamical systemD4 if

v∗ = Xq∗ + ṽ, (3.11a)
fi(v∗i ) = 0, or

fi(v∗i ) < 0 & q∗i = qmin
i , or

fi(v∗i ) > 0 & q∗i = qmax
i .

(3.11b)
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Theorem 3.3. There may exist infinitely many equilibria for the dynamical systemD4.

Proof. In order to show the possible existence of infinitely many equilibria for D4, it is sufficient to show

one such situation. For convenience, let v j := vnom
j + δi/2 and v j := vnom

j − δi/2 be the upper and lower

bounds of the acceptable voltage range at bus j.

Consider a simple situation where there exists a fixed point (v∗, q∗) whose voltage value v j < v∗j <

v j, ∀ j ∈ N , and qmin
j < q∗j < qmax

j , ∀ j ∈ N . This can be easily realized by choosing appropriate control

functions and bounds on reactive powers, given the structure of the distribution network. An example is

presented in Section 3.3.1.2.

Let ε > 0 be a small enough perturbation occurring to an arbitrary bus i, so that its reactive power

injection becomes q∗′i = q∗i + ε. As a result, voltages across the networks will become v∗′j =
∑

k,i X jkq∗k +

X jiq∗′i ,∀ j ∈ N . When ε is small enough, we can still have v∗′j ∈ (v j, v j), ∀ j ∈ N , which leads to q∗j

remaining unchanged for ∀ j , i. We can see that ((v∗′1 , . . . , v
∗′
n ), (q∗1, . . . , q

∗′
i , . . . , q

∗
n)) is also an equilibrium

ofD4. Since ε can be arbitrarily small, there are infinitely many possible equilibria. �

Remarks: Intuitively, as long as the system can provide enough reactive power so as to bring the

voltages to the acceptable ranges, there are usually infinitely many equilibria for D4. On the other hand,

situations with unique equilibrium may take place when there is not enough reactive power supply.

3.2.3 Reverse Engineering

For better understanding the dynamical system D4, we first examine if it can be reverse engineered

as a distributed algorithm for solving a well-defined optimization problem. We will show that this generally

cannot be done. Nevertheless, as we will show later, D4 can still be seen as a non-cooperative game where

each bus minimizes its local voltage deviation from deadband.

Theorem 3.4. Suppose A1 holds. A point (v∗, q∗) is an equilibrium of the dynamical system D4 if and only

if (v∗, q∗) is a solution of the following variational inequalities (VI) problem:

− f (v∗)>(q − q∗) ≥ 0, ∀q ∈ Ω, (3.12a)

v∗ = Xq∗ + ṽ. (3.12b)
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Proof. This can be proved by the showing equivalence between (3.11) and (3.12). �

We get to the next result based on the VI formulation ofD4.

Theorem 3.5. The dynamical system D4 can be seen as a distributed algorithm for solving a convex opti-

mization problem if and only if all control functions fi’s are identically linear functions with δi = 0.

Proof. VI problem (3.12) can be seen as the optimality condition of a well-defined convex optimization

problem with a scaler objective function if and only if the Jacobian matrix of − f (v(q)) is symmetric, ∀q ∈ Ω

[104], that is,

∂ fi(vi(q))
∂q j

= Xi j f ′i (vi) =
∂ f j(v j(q))

∂q j
= X ji f ′j (v j), ∀i, j ∈ N .

Since Xi j = X ji, it is necessary to have f ′i (vi) = f ′j (v j), ∀i, j, which is true if and only if all fi’s are identically

linear with no deadband. �

Define a cost function for bus i ∈ N as

hi(vi) :=
∫ vi

0
− fi(v)dv, (3.13)

penalizing local voltage deviation from deadband, and a voltage deviation minimization game Gvd as fol-

lows.

Definition 3.2. A non-cooperative voltage deviation minimization game is defined as a triple Gvd :=

{N ,Ω, (hi(qi; vi(q)))i∈N }, where the strategic interaction among players is through the voltage vi(q), i ∈ N .

Then the VI formation of the equilibrium ofD4 naturally leads to the following result [104].

Theorem 3.6. The non-cooperative voltage deviation minimization game Gvd is equivalent to VI prob-

lem (3.12).

3.2.4 Dynamics Analysis

We next characterize the convergence of the dynamical systemD4.
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Theorem 3.7. Suppose Assumption 2.1–2.2 hold. If the stepsize γ4 inD4 satisfies the following condition:

0 < γ4 <
2

λmax(AX)
, (3.14)

where A := diag({αi}i∈N ), then the dynamical systemD4 converges globally and asymptotically to one of its

equilibrium points.

Proof. The proof is similar to that of Theorem 3.2. RewriteD4 equivalently as the following mapping g4:

q(t + 1) = g4(q(t)) :=
[
q(t) + γ4 f (v(q(t)))

]
Ω. (3.15)

We consider the Jacobian matrix of g4 without projection operator, which will lead to a sufficient

condition, computed as

∇qg3 = I + γ4∇v f X. (3.16)

Similar to (3.7), the corresponding eigenvalue of ∇qg4 with respect to the eigenvalue λ of ∇v f X is

1 + γ4λ. To ensure that g4 is stable, one must have:

−1 < 1 + γ4λ < 1 (3.17)

for any eigenvalue λ of ∇v f X [46, 60]. Then (3.14) is sufficient for the left-hand side of (3.17) and the

right-hand side always holds because λ is nonpositive as shown in Section 3.1.2. �

Since the objective function (3.13) for each bus has an interpretation as the cost of voltage deviation

from deadband, the incremental local voltage control D4 minimizes the cost of local voltage deviation.

This is different from D1–D3 which achieve a trade-off between minimizing the cost of reactive power

provisioning and minimizing the cost of voltage deviation. The above reverse engineering result suggests a

way to stabilize the distribution system to within desired acceptable voltage ranges by simply specifying the

control function fi’s deadband as the acceptable voltage range.

3.3 Numerical Examples

Consider a distribution feeder of South California Edison (SCE) with a high penetration of photo-

voltaic (PV) generation. As shown in Fig. 3.1, bus 1 is the substation (root bus) with fixed voltage vnom
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Figure 3.1: Circuit diagram for SCE distribution system.

and five PV generators are integrated at buses 2, 12, 26, 29, and 31. As we aim to study the Volt/VAR

control through PV inverters, all shunt capacitors are assumed to be off. Table 3.1 contains the network data

including the line impedance, the peak MVA demand of loads, and the capacity of the PV generators. It is

important to note that all studies are run with a full AC power flow model with MATPOWER [145] instead

of its linear approximation. As will be seen, the results we develop for the linearized model are corroborated

numerically with the full power flow model.

In all numerical studies, we implement homogeneous piecewise linear droop control functions (2.11)

of the IEEE 1547.8 Standard [111] for all PV inverters, with deadbands ranging from 0.98 p.u. to 1.02 p.u.

and slopes αi to be determined.

3.3.1 Equilibrium

3.3.1.1 D1–D3: Single Equilibrium with Tradeoff

As discussed in Section 2.3.3.1, large slopes of the control functions lead to better voltage regulation

at the equilibrium. To illustrate this, we change αi from 1 to 200 and record the corresponding equilibrium

voltages v∗. As shown in Fig. 3.2, v∗ gets closer to vnom as αi increases. This confirms our previous

discussion that steeper control functions should be implemented for smaller voltage deviation from the

nominal value.
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Network Data

Line Data Line Data Line Data Load Data Load Data PV Generators
From To R X From To R X From To R X Bus Peak Bus Peak Bus Capacity
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MW

1 2 0.259 0.808 8 34 0.244 0.046 18 19 0.198 0.046 11 0.67 28 0.27
2 3 0.031 0.092 8 36 0.107 0.031 22 26 0.046 0.015 12 0.45 29 0.2 2 1
3 4 0.046 0.092 8 30 0.076 0.015 22 23 0.107 0.031 13 0.89 31 0.27 26 2
3 13 0.092 0.031 8 9 0.031 0.031 23 24 0.107 0.031 15 0.07 33 0.45 29 1.8
3 14 0.214 0.046 9 10 0.015 0.015 24 25 0.061 0.015 16 0.67 34 1.34 31 2.5
4 17 0.336 0.061 9 37 0.153 0.046 27 28 0.046 0.015 18 0.45 35 0.13 12 3
4 5 0.107 0.183 10 11 0.107 0.076 28 29 0.031 0 19 1.23 36 0.67
5 21 0.061 0.015 10 41 0.229 0.122 30 31 0.076 0.015 20 0.45 37 0.13
5 6 0.015 0.031 11 42 0.031 0.015 30 32 0.076 0.046 21 0.2 39 0.45
6 22 0.168 0.061 11 12 0.076 0.046 30 33 0.107 0.015 23 0.13 40 0.2
6 7 0.031 0.046 14 16 0.046 0.015 37 38 0.061 0.015 24 0.13 41 0.45
7 27 0.076 0.015 14 15 0.107 0.015 38 39 0.061 0.015 25 0.2 Vbase = 12.35 KV
7 8 0.015 0.015 17 18 0.122 0.092 38 40 0.061 0.015 26 0.07 S base = 1000 KVA
8 35 0.046 0.015 17 20 0.214 0.046 27 0.13 Zbase = 152.52 Ω

Table 3.1: Network Parameters of the SCE Circuit: Line impedances, peak spot load KVA,
Capacitors and PV generation’s nameplate ratings.
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Figure 3.2: Equilibrium voltage versus the αi value: As αi increases, the equilibrium voltage

v∗i deviates less from the nominal value.

3.3.1.2 D4: Multiple Equilibrium within Deadband

As proved in Theorem 3.3,D4 may possess multiple equilibrium points if we have nonzero deadband

and sufficient reactive power. Here we use the same initial condition but different stepsizes to achieve various

equilibrium points from D4. The results are shown in Fig. 3.3, where the voltages of all 5 controlled buses
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are confined within deadband from different equilibria, even though those of other buses may fall out of

deadband.
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Figure 3.3: Different possible equilibria of D4 compared with single equilibrium of D1–D3.

Notice that voltages of 5 controlled buses are all within the 0.98 p.u.–1.02 p.u. deadband,

despite that those of other buses may fall out.

3.3.2 Dynamics

3.3.2.1 Convergence of Non-incremental AlgorithmD1

As shown in Fig. 3.4, the dynamical system D1 displays less stable behavior as the control function

become steeper with the increase of αi value, till it ends up with oscillation when αi becomes too large.

See also the vertical dash line in Fig. 3.2, beyond which there is no convergence. As discussed in Section

2.3.3.1, a contention between convergence and equilibrium performance for the non-incremental voltage

control (2.12b) exists: a smaller slope is preferred for convergence, while a larger one is selected for better

voltage regulation.
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Figure 3.4: Evolution of voltage of the dynamical systemD1 with different slopes of the piece-

wise linear control function: Voltage does not converge when the (absolute) slope of the control

function become too large (when αi > 26 in this example).
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Figure 3.5: Evolution of voltage of the dynamical systems D2 and D3 with αi = 27: Conver-

gence is ensured with small enough stepsizes.
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3.3.2.2 Convergence of Incremental AlgorithmsD2–D4

Proved in Section 2.3.4 and Section 3.1.2, given any control function, D2 and D3 converge if small

enough stepsizes are chosen, and we can thus decouple the equilibrium property from the dynamical prop-

erty. For instance, when αi = 27, the dynamical system D1 does not converge; see Fig. 3.4(b). However,

when the stepsizes γ2 and γ3 are properly chosen, the dynamical systemsD2 andD3 converge; see Fig. 3.5.

D4 also converges as long as stepsize γ4 is chosen to be small enough regardless of the choice of the

control function; see Fig. 3.6.
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Figure 3.6: Convergence of the dynamical systemD4 to one of the equilibria with small enough

stepsize γ4, regardless of the choice of control function.

3.3.2.3 Convergence ofD2–D3 at Non-Differentiable Point

The dynamical systemD2 based on subgradient algorithm can only converge to within a small neigh-

borhood of the equilibrium if the equilibrium is near a non-differentiable point of the objective function

(7.42a). We tune the parameters such that the equilibrium reactive power provisioned at certain bus — bus

2 in this case — is close to zero. As shown in Fig. 3.7, D2 eventually converges to a small region around

the optimum, even with very small stepsize chosen. On the other hand, as shown in Fig. 3.8, the dynamical

systemD3 based on pseudo-gradient algorithm converges to the equilibrium despite the non-differentiability

of the objective function at the equilibrium; see Fig. 3.7–3.8.
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Figure 3.7: Convergence of the dynamical system D2 to within a small neighborhood of the

equilibrium.
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Figure 3.8: Convergence of the dynamical systemD3 to the equilibrium.

3.4 Conclusion

We have proposed two incremental local Volt/VAR control algorithms that not only achieve better

voltage regulation results than previous results, but also posess superior convergence properties and simpler

implementation. Performance of the new designed are characterized both analytically and numerically.



Chapter 4

Distributed Voltage Regulation with Continuous Variables

As shown in previous chapters, certain voltage regulation goals can be realized by inverter-based local

Volt/VAR control with carefully designed control strategies. However, in various situations, local control

has limitations.

In a distribution system that has been increasingly penetrated by various controllable DERs, it is

crucial to consider a control framework that is applicable to more diverse devices, with more general con-

straints explicitly satisfied. Moreover, customers are usually not assumed to follow certain control protocols;

they are instead interested in maximizing their own utility—or optimizing a trade-off between their com-

fort level and electricity bill. This calls for a market-based framework that incentivizes the participation of

self-interested customers into the control loop.

This chapter considers a social welfare optimization problem that captures the operational and eco-

nomic objectives of both network operator and customers as well as the voltage constraints, and design an

optimization framework based on a primal-dual gradient algorithm such that the network operator and cus-

tomers pursue the given operational and economic objectives while concurrently ensuring that the voltages

are within the prescribed limits. We considers DERs with continuous decision variables in this chapter, and

will extend the results to DERs with discrete output and complex feasible sets in the next chapter. Related

work of this chapter has been published in [137, 138].
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Main Notation for Chapter 4–6

N Set of nodes, excluding node 0; N := {1, ...,N}

E Set of distribution lines

pi Net real power injected at node i

qi Net reactive power injected at node i

zi Overall power injected at node i, zi := [pi, qi]>

Zi Feasible set of real and reactive power at node i

p, q p := [p1, . . . , pN]>, q := [q1, . . . , qN]>

z z := [p>, q>]>

vi Voltage magnitude at node i

v v := [v1, . . . , vN]>

A, B Linearization parameters for real and reactive power, respectively

αi Signal for injected real power for node i

βi Signal for injected reactive power for node i

si Overall signal zi := [αi, βi]>

α, β α := [α1, . . . , αN]>, β := [β1, . . . , βN]>

s Compact signal vector s := [α>, β>]>

xi,d Device state of device d at node i

yi System state at node i

[·]+ Projection of x onto the nonnegative orthant

[·]Z Projection of x onto the convex setZ

4.1 Preliminaries and System Model

4.1.1 Network Model

Similar to previous Chapters, we consider a distribution network with N + 1 nodes collected in the set

N ∪ {0} with N := {1, ...,N} and node 0 being the point of common coupling or substation, and distribution



40

lines collected in the set L. Let Vi ∈ C denote the line-to-ground voltage at node i, and define vi := |Vi|.

Denote as pi ∈ R and qi ∈ R the (net) active and reactive power injections, respectively, of a distributed

energy resource (DER) located at node i ∈ N . For notational simplicity, exposition is tailored to the case

where one DER is located at each node; however, the technical approach straightforwardly applies to the

case where multiple DERs are connected to a node. Hereafter, Zi denotes the feasible set of active and

reactive powers pi and qi at node i ∈ N . In the following, we explain how to construct this set for some

types of DERs.

Photovoltaic (PV) systems: Let pi,av denote the available real power from a PV system, and let ηi be the

rated apparent capacity. Then, the setZi is given by:

Zi =
{
(pi, qi): 0 ≤ pi ≤ pi,av, p2

i + q2
i ≤ η

2
i
}
.

Energy storage systems: The setZi for an energy storage system is given by:

Zi =
{
(pi, qi): p

i
≤ pi ≤ pi, p2

i + q2
i ≤ η

2
i
}
,

for given limits p
i
, pi and for a given inverter capacity rating ηi. The limits p

i
, pi are updated during the

operation of the battery based on the state of charge.

Variable frequency drives: For devices such as water pumps and supply fans of commercial HVAC systems,

the setZi can be described as:

Zi =
{
(pi, qi): p

i
≤ pi ≤ pi, qi = 0

}
,

for given limits p
i
, pi. These limits can be fixed or updated by local controllers at a regular time intervals,

based on the state of e.g., thermal loads.

The operating region of small-scale diesel generators can be modeled using constant box constraints.

For DERs with discrete levels of output powers (e.g., electric vehicle chargers with discrete charging levels),

Zi represents the convex envelope of the possible operating points; see e.g., [22]. Randomization techniques

can then be utilized to recover a feasible setpoint. However, the development of control strategies for DERs

with discrete levels of output powers is left as a future research activity.
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Voltages, currents, and powers {pi, qi} are related by the well-known nonlinear AC power-flow equa-

tions; assuming, for illustrative purpose, a balanced tree network, these equations read:

Pi j = −p j +
∑

k:( j,k)∈L

P jk + ri j`i j, (4.1a)

Qi j = −q j +
∑

k:( j,k)∈L

Q jk + xi j`i j, (4.1b)

v2
j = v2

i − 2
(
ri jPi j + xi jQi j

)
+

(
r2

i j + x2
i j

)
`i j, (4.1c)

`i jv2
i = P2

i j + Q2
i j, (4.1d)

where `i j is the squared magnitude of the current on line (i, j), Pi j,Qi j are real and reactive powers injected

on line (i, j), and ri j + jxi j is the impedance on line (i, j).

To facilitate the design and analysis of computationally-tractable algorithms, the proposed approach

will employ suitable linearization approaches for (4.1). Particularly, the following approximate linear rela-

tionship between voltage magnitudes and injected powers is utilized:

v ≈ v̂ = Ap + Bq + c, (4.2)

where the parameters A, B ∈ RN×N
++ and a ∈ RN can be obtained using one of the two following approaches:

i) regression-based methods, based on real-time measurements of {vi}, p, and q, e.g., the recursive least-

squares method [11] can be utilized to continuously update the model parameters; and, ii) suitable lineariza-

tion methods for the AC power-flow equations; see e.g., [16, 28, 36, 44, 50]. In the latter case, the model

parameters A, B, and c can be time-varying too, by using current operating points as linearization points for

the AC power-flow equations. Parameters A, B, and c should be re-computed every time that the system

changes topology.

The approximate model (4.2) is utilized to facilitate the design of computationally-affordable algo-

rithms. Section 4.2.3 will show how to leverage appropriate measurements to cope with approximation

errors and systematically enforce voltage limits.

Remark 4.1. (multiphase systems) For notational and exposition simplicity, the framework is outlined for

a single-phase system. However, the proposed algorithmic solution is applicable to unbalanced multiphase
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networks. This can be obtained by substituting (4.2) with the linearized model recently proposed in [24] for

unbalanced multiphase networks with both wye-connected and delta-connected DERs.

4.1.2 Problem Setup

The goal is to design a strategy wherein the network operator and customers pursue their own opera-

tional and economic objectives, while achieving a global coordination to enforce voltage regulation.

4.1.2.1 Customers’ Optimization problem

Consider a cost function Ci(pi, qi) that captures a well-defined performance objective for the cus-

tomer(s) located at node i ∈ N . Let αi ∈ R and βi ∈ R be incentive signals produced by the network operator

(e.g., distribution system operator or aggregator) for active and reactive power injections, respectively. Given

signals (αi, βi), the following optimization problem is solved at each node i ∈ N :

(P1,i) min
pi,qi

fi(pi, qi|αi, βi), (4.3a)

s.t. (pi, qi) ∈ Zi, (4.3b)

where the quasilinear utility function [120] is defined as

fi(pi, qi|αi, βi) := Ci(pi, qi) − αi pi − βiqi, (4.4)

portraying a trade-off between comfort level Ci(pi, qi) and electricity bill with αi pi and βiqi representing

payment to/reward from the network operator. The following assumption is made.

Assumption 4.1. Functions Ci(pi, qi), ∀i ∈ N are continuously differentiable and strongly convex in (pi, qi).

Moreover, the first-order derivative of Ci(pi, qi) is bounded inZi.

The assumption of bounded derivative means that an infinitesimal change in power should not lead to

a jump in cost. Because (4.3a) is strictly convex in (pi, qi) andZi is convex and compact, a unique solution

(p∗i , q
∗
i ) exists.
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For future developments, consider the so-called best response strategy of node i, denoted as bi(αi, βi),

for given αi and βi:

(p∗i , q
∗
i ) = bi(αi, βi) := arg min

(pi,qi)∈Zi

fi
(
pi, qi|αi, βi

)
. (4.5)

4.1.2.2 Social-welfare Problem with Voltage Regulation

Consider a cost function D(v̂) that captures network-oriented objective in voltage. For example, to

minimize the voltage deviation from the nominal value vnom, we can set D(v̂) = 1
2‖v̂− vnom‖2. The following

assumption is made.

Assumption 4.2. Function D(v̂) is continuously differentiable, convex, and with bounded first-order deriva-

tive at achievable voltage magnitude values.

Because the feasible set of power injections (p, q) is compact and v̂ is a continuous function of (p, q),

the achievable values of v̂ are bounded. Thus, the boundedness of the first-order derivative of D(v̂) is a

reasonable assumption.

Consider the following optimization problem to be solved by the network operator, which captures

both customer-oriented and network-oriented objectives of a distribution network:

(P2) min
p,q,v̂,α,β

∑
i∈N

Ci(pi, qi) + γD(v̂), (4.6a)

s.t. v̂ = Ap + Bq + c, (4.6b)

v ≤ v̂ ≤ v, (4.6c)

(pi, qi) = bi(αi, βi), ∀i ∈ N , (4.6d)

where γ ∈ R+ is used to trade off between the customers and network-oriented objectives, and v and v

are vectors collecting prescribed minimum and maximum voltage magnitude limits (the inequalities are

component-wise). Note that the payment/rewards between network operator and customers are canceled out

when we consider the social-welfare problem.
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Note that (P2) is usually non-convex due to the constraint (4.6d). This is because (4.6d) is usually

not affine. For better illustration of the non-convexity of (P2), consider the following simple example with

real power only. Assume a quadratic cost function Ci(pi) = p2
i and a box feasible set pi ∈ [p

i
, pi] with upper

and lower bounds for real power injections p
i

and pi, and we end up with a non-convex piece-wise linear

function bi:

pi = bi(αi) =


p

i
, if αi/2 < p

i

αi/2, if p
i
≤ αi/2 ≤ pi

pi, if αi/2 > pi

, (4.7)

which becomes more complex or does not even have a closed form when we consider more complicated Ci

andZi.

4.2 Incentive-Based Distributed Algorithm

(P2) lends itself to a Stackelberg game interpretation where α and β are calculated via (P2) by the

network operator (i.e., the leader) and sent to each nodes i ∈ N ; subsequently, each consumer (i.e., the

follower) computes the power setpoints p∗i and q∗i from (P1,i). By design, (p∗, q∗) is an optimal point of

(P2).

However, it is challenging for the network operator to solve (P2) not only because of the non-

convexity introduced by constraint (4.6d), but also because it requires knowledge of the customer’s best-

response function bi (or equivalently, Ci and Zi, ∀i ∈ N). To solve the problem, in Section 4.2.1 we first

formulate a convex relaxation of (P2) and show that its optimum gives the optimum of (P2), and then in

Section 4.2.2 we design a distributed algorithm to solve (P2) based on the algorithm for the relaxed problem.
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4.2.1 Convex Reformulation

We start by deriving a convex relaxation of the non-convex problem (P2) as well as conditions under

which an optimal point of (P2) can be identified. Consider the following convex optimization problem:

(P3) min
p,q,v̂

∑
i∈N

Ci(pi, qi) + γD(v̂), (4.8a)

s.t. v̂ = Ap + Bq + c, (4.8b)

v ≤ v̂ ≤ v, (4.8c)

(pi, qi) ∈ Zi, ∀ i ∈ N , (4.8d)

where we replace the non-convex constraint (4.6d) in (P2) with (4.3b), and signals α and β are to be deter-

mined later. We assume that the above problem is feasible.

Assumption 4.3 (Slater’s condition). There exists a feasible point ( p̃, q̃) ∈ Z, Z := Z1×. . .×ZN , such

that:

v ≤ Ap̃ + Bq̃ + c ≤ v. (4.9)

Assumption 4.3 does not involve strict inequality because the constraint is linear. Given the strong

convexity of the objective function (4.8a) in (pi, qi) and the linear relation (4.8b), a unique optimal solution

exists for problem (P3). Notice that a solution (p∗i , q
∗
i , v̂
∗) of (P3) may not be feasible for (P2), i.e., there

does not exist a (α∗, β∗) such that (p∗i , q
∗
i ) = bi(α∗i , β

∗
i ). We will, however, show next that such a (α∗, β∗)

exists, and thus the solution of (P3) gives the solution of (P2).

Denote by µ and µ the dual variables associated with the two inequality constraints in (4.8c). Let v̂∗ be

the optimal voltage magnitudes produced by (P3) and µ∗, µ∗ the optimal dual variables. Then, we propose

to design the incentive signals as follows:

α∗ = A>
(
µ∗ − µ∗ − γ∇v̂D(v̂∗)

)
, (4.10a)

β∗ = B>
(
µ∗ − µ∗ − γ∇v̂D(v̂∗)

)
, (4.10b)

where ∇v̂D denotes the gradient of function D with respect to the vector v̂. Note that α∗ and β∗ are composed

of dual prices µ∗, µ∗ and the marginal cost of network operator γ∇v̂D(v̂∗), together with A, B characterizing
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the network structure. As will be shown shortly, α∗ and β∗ are in fact designed based on the optimality

conditions of (P2) and (P3). The above incentive signals are bounded, which precludes the possibility of

infinitely large signals.

Theorem 4.1. Under Assumptions 4.1–4.3, the incentive signals (α∗, β∗) defined by (4.10) are bounded.

Proof. Notice that the derivative ∇v̂D is bounded. To show the boundedness of (α∗, β∗), it is enough to show

that the optimal duals (µ∗, µ∗) are bounded.

Consider the KKT conditions for problem (P3):

(
∇p

∑
i∈N

Ci(p∗i , q
∗
i ) + γA>∇v̂D(v̂∗) − A>(µ∗ − µ∗)

)>
(p − p∗) ≥ 0,∀(p, q) ∈ Z, (4.11a)

(
∇q

∑
i∈N

Ci(p∗i , q
∗
i ) + γB>∇v̂D(v̂∗) − B>(µ∗ − µ∗)

)>
(q − q∗) ≥ 0, ∀(p, q) ∈ Z, (4.11b)

v̂∗ = Ap∗ + Bq∗ + c, (4.11c)

v ≤ v̂∗ ≤ v, (4.11d)

(v̂∗ − v)>µ∗ = 0, µ∗ ≥ 0, (4.11e)

(v − v̂∗)>µ∗ = 0, µ∗ ≥ 0. (4.11f)

Combining (4.11a)–(4.11c) results in:

(
∇p

∑
i∈N

Ci(p∗i , q
∗
i ) + γA>∇v̂D(v̂∗)

)>
(p − p∗) +

(
∇q

∑
i∈N

Ci(p∗i , q
∗
i ) + γB>∇v̂D(v̂∗)

)>
(q − q∗)

+(µ∗ − µ∗)>(v̂ − v̂∗) ≥ 0, ∀(p, q) ∈ Z, ∀v̂, (4.12)

where the first two terms on the left of the inequality are bounded because of the bounded derivative of

cost functions and the bounded set Z. By the complementary slackness conditions (4.11e)–(4.11f), µ∗i and

µ∗
i
, i ∈ N cannot be nonzero at the same time. If µ∗i → ∞, then v̂∗i = vi and we can choose a (p, q) and thus

v̂i such that the third term on the left of (4.12) goes to −∞ and (4.12) does not hold. So, µ∗i and thus µ∗ is

bounded. Similarly, we can show that µ∗ is bounded too. The result follows. �

By examining the optimality conditions of (P2) and (P3), we have the following result.

Theorem 4.2. The solutions of problem (P3) along with the signals (α∗, β∗) defined in (4.10) are global

optimal solutions of problem (P2); i.e., problem (P3) is an exact convex relaxation of problem (P2).



47

Proof. By the signal design (4.10), (4.11a)–(4.11b) become

(
∇p

∑
i∈N

Ci(p∗i , q
∗
i ) − α∗

)>
(p − p∗) ≥ 0, ∀(p, q) ∈ Z, (4.13a)

(
∇q

∑
i∈N

Ci(p∗i , q
∗
i ) − β∗

)>
(q − q∗) ≥ 0, ∀(p, q) ∈ Z. (4.13b)

Notice that the above variational inequalities imply that (p∗i , q
∗
i ) = bi(α∗i , β

∗
i ), i ∈ N . So, the solution of

problem (P3) along with (α∗, β∗) defined in (4.10) is feasible for problem (P2). The result follows, as (P3)

is an exact convex relaxation of (P2). �

From now on, we will use the optima of (P3) and (P2) interchangeably depending on the context.

Next, based on Theorem 4.2, we will develop an iterative algorithm that achieves the optimum of (P3) (and

hence that of (P2)) without exposing any private information of the customers to the network operator.

Remark 4.2. Theorem 4.2 asserts that non-convex problem (P2) can be solved through solving a convex

problem (P3). At first glance, it appears that the non-convexity of (P2) comes from a non-convex representa-

tion of the feasible set that may have a convex representation as implied by (P3). An ongoing investigation is

to identify the specific problem structure to generalize the result in Theorem 4.2 to a larger class of problems.

4.2.2 Distributed Algorithm

For notational simplicity, let si = [αi, βi]> denote the overall signals for customer i and define zi =

[pi, qi]>. Further denote by z := [p>, q>]> ∈ R2N the vector of stacked power injections, and by µ :=

[µ>, µ>]> ∈ R2N
+ the vector of stacked dual variables. Recall that v̂ is a function of z and consider the

following Lagrangian function associated with (P3):

L(z, µ) =
∑
i∈N

Ci(zi) + γD(z) + µ>(v − Ap − Bq − c) + µ>(Ap + Bq + c − v), (4.14)

which is obtained by keeping the constraints z ∈ Z and µ ∈ R2N
+ implicit. Denote as (z∗, µ∗) a saddle-point

of L(z, µ).

To facilitate the development of provably convergent algorithms, consider the following regularized
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Lagrangian function:

Lφ(z, µ) :=
∑
i∈N

Ci(zi) + γD(z) + µ>(v − Ap − Bq − c) + µ>(Ap + Bq + c − v) −
φ

2
‖µ‖2, (4.15)

where φ > 0 is a predefined parameter (see e.g., [69,109]). With the regularization term −φ2 ‖µ‖
2, the resultant

function Lφ(z, µ) is strongly concave in the dual variables. Based on (4.14), we proceed with the following

minimax problem:

max
µ∈R2N

+

min
z∈Z

Lφ(z, µ). (4.16)

In general, the unique optimizer of (4.16), denoted by (z∗φ, µ
∗
φ), is not a saddle-point of the Lagrangian

function (4.14) because of the regularization term −φ2 ‖µ‖
2. However, the discrepancy between the unique

optimizer of (4.16) and the optimizers of (4.14) can be bounded as shown next.

Notice first that the boundedness of µ∗ is shown in Theorem 4.1; µ∗φ can be readily shown to be

bounded too. For ease of exposition, define f (z) :=
∑

i∈N Ci(zi) + γD(z) and g(z) :=


v − Ap − Bq − c

Ap + Bq + c − v

; this

way, the Lagrangian can be re-expressed in a compact form as L(z, µ) = f (z) + µ>g(z) and the regularized

counterpart reads Lφ(z, µ) = f (z) + µ>g(z) − φ
2 ‖µ‖

2. From Assumption 4.1–4.2, it follows that f is strongly

convex in z. Equivalently, ∇z f (z, µ) is strongly monotone in z. Therefore, we have the following lemma:

Lemma 4.1. There exists a scalar m > 0 such that ∀z, z′ ∈ Z,

(
∇z f (z, µ) − ∇z f (z′, µ)

)>(z − z′) ≥ m‖z − z′‖2. (4.17)

Then, the discrepancy between z∗ and z∗φ due to the regularization term can be bounded as follows

(see also [69, Proposition 3.1]).

Theorem 4.3. The difference between z∗φ and z∗ is bounded as:

‖z∗φ − z∗‖2 ≤
φ

2m
(
‖µ∗‖2 − ‖µ∗φ‖

2). (4.18)

Proof. As a saddle point of (4.16), (z∗φ, µ
∗
φ) satisfies the following inequalities:

Lφ(z∗φ, µ) ≤ Lφ(z∗φ, µ
∗
φ) ≤ Lφ(z, µ∗φ), ∀z, µ .
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The left inequality leads to

(µ∗φ − µ
∗)>g(z∗φ) −

φ

2
‖µ∗φ‖

2 +
φ

2
‖µ∗‖2 ≥ 0, (4.19)

where we set µ = µ∗. We next characterize the term (µ∗φ − µ
∗)>g(z∗φ).

(i) Leveraging the definition of convex functions, g j(z∗φ) can be upper bounded as:

g j(z∗φ) ≤ g j(z∗) + ∇zg j(z∗φ)>(z∗φ − z∗)

≤ ∇zg j(z∗φ)>(z∗φ − z∗), (4.20)

where the second inequality is due to the fact that g j(z∗) ≤ 0. Multiply both sides of (4.20) by µ∗φ, j (which is

nonnegative) and sum up for all j to have:

µ
∗ᵀ
φ g(z∗φ) ≤

∑
j

µ∗φ, j · ∇zg j(z∗φ)>(z∗φ − z∗)

= ∇zLφ(z∗φ, µ
∗
φ)>(z∗φ − z∗) − ∇z f (z∗φ)>(z∗φ − z∗)

≤ −∇z f (z∗φ)>(z∗φ − z∗), (4.21)

where the second inequality is due to the first-order optimality condition ∇zLφ(z∗φ, µ
∗
φ)>(z∗φ − z∗) ≤ 0.

(ii) On the other hand, one has that:

g j(z∗φ) ≥ g j(z∗) + ∇zg j(z∗)>(z∗φ − z∗). (4.22)

Multiply both sides of (4.22) by −µ∗j (which is nonpositive) and sum up for all j to get:

−µ∗ᵀg(z∗φ) ≤ −
∑

j

µ∗jg j(z∗) −
∑

j

µ∗j · ∇zg j(z∗)>(z∗φ − z∗)

=
∑

j

µ∗j · ∇zg j(z∗)>(z∗ − z∗φ)

= ∇zL(z∗, µ∗)>(z∗ − z∗φ) − ∇z f (z∗)>(z∗ − z∗φ)

≤ ∇z f (z∗)>(z∗φ − z∗), (4.23)

where the first equality is due to the complimentary slackness condition and the second inequality is obtained

from the first-order optimality condition.

Substitute (4.21) and (4.23) into (4.19), and use (4.17) to obtain (4.18). �
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The key advantage of utilizing the regularized Lagrangian is that the primal-dual gradient methods

applied to (4.16) exhibit improved convergence properties [109] as explained next.

Hereafter, we omit the subscript φ from the optimization variables for notational simplicity, with the

understanding that the updates of z(k) and µ(k) are designed to solve the regularized saddle-point prob-

lem (4.16). Consider the following primal-dual projected gradient method, where k denotes the iteration

index: 
z(k + 1)

µ(k + 1)

 = T̂



z(k)

µ(k)


 :=



z(k)

µ(k)

 −

ε1∇zLφ(z(k), µ(k))

−ε2∇µLφ(z(k), µ(k))



Z×R2N

+

, (4.24)

where [ ]Z×R2N
+

denotes the projection operation onto the set Z× R2N
+ , and ε1, ε2 > 0 are prescribed step

sizes for the primal and the dual updates. Notice that ∇zLφ(z, µ) and ∇µLφ(z, µ) are Lipschitz continuous

and strongly monotone. Therefore by virtue of [25, Sec. 3.5, Proposition 5.4], the following result holds.

Theorem 4.4. There exist some ε̄1, ε̄2 > 0 such that for any ε1 ∈ (0, ε̄1], ε2 ∈ (0, ε̄2], T̂ is a contraction map-

ping. For ε1 ∈ (0, ε̄1], ε2 ∈ (0, ε̄2], the sequence {(z(k), µ(k))} generated by (4.24) converges geometrically

to the optimizer of (4.16).

We can further provide analytical bound for such ε̄1, ε̄2 for completeness. We also refer to Sec-

tion 4.3.2.1) for numerical characterization of step sizes as regards convergence. In the following we provide

sufficient conditions on the stepsizes ε1 and ε2 that guarantee the operator T̂ in (4.24) to be a contraction.
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Theorem 4.5. If the stepsizes ε1 and ε2 satisfy the following conditions for any i ∈ N:

ε2 <
1

2
∑

j∈N Ai j
, (4.25a)

ε1∇
2
pi

(Ci + γD) > 2ε2

∑
j∈N

Ai j, (4.25b)

ε1∇
2
pi

(Ci + γD) + 2ε2

∑
j∈N

Ai j < 2, (4.25c)

ε2 <
1

2
∑

j∈N Bi j
, (4.25d)

ε1∇
2
qi

(Ci + γD) > 2ε2

∑
j∈N

Bi j, (4.25e)

ε1∇
2
qi

(Ck + γD) + 2ε2

∑
j∈N

Bi j < 2, (4.25f)

ε1 <
1∑

j∈N (Ai j + Bi j)
, (4.25g)

ε1

∑
j∈N

(Ai j + Bi j) > ε2φ, (4.25h)

ε1

∑
j∈N

(Ai j + Bi j) + ε2φ < 2, (4.25i)

then T̂ is a contraction.

Proof. Let ∇T̂ ∈ R4N×4N denote Jacobian matrix of T̂ , and let ∇T̂i j denote the element on row i and column

j of the Jacobian matrix ∇T̂ . To prove that T̂ is a contraction, it is sufficient to have the following condition:

∑
j

|∇T̂i j| < 1, ∀i,

which is satisfied if the following three inequalities hold:

∣∣∣1 − ε1(∇2
pi

(Ci + γD))
∣∣∣ + 2ε2

∑
j∈N

Ai j < 1, (4.26a)

∣∣∣1 − ε1(∇2
qi

(Ci + γD))
∣∣∣ + 2ε2

∑
j∈N

Bi j < 1, (4.26b)

∣∣∣1 − ε2φ
∣∣∣ + ε1

∑
j∈N

(Ai j + Bi j) < 1. (4.26c)

Conditions (4.25) and (4.26) are equivalent. Therefore, (4.25) are sufficient for T̂ to be a contraction. �

Remark 4.3. Conditions (4.25) together with assumptions in this chapter guarantees the existence of small

enough step sizes ε1 and ε2 to achieve convergence. This result is consistent with Theorem 5.3.



52

Given Theorems 4.3–4.5, algorithm (4.24) converges to within a small neighborhood of problem

(P3) (problem (P2)) whose size can be controlled by choosing a proper weight φ for the regularization

term. Apply contraction mapping theorem, and we immediately have the following result.

Theorem 4.6. Under the above modeling assumptions, it follows that dynamics (4.24) converges to the

saddle point of (4.16), i.e.,

lim
k→∞

∥∥∥[z(k)>, µ(k)>]> − [z∗>φ , µ∗>φ ]>
∥∥∥ = 0.

The decomposable structure of (4.24) naturally enables the following iterative distributed algorithm:

zi(k + 1) =
[
zi(k) − ε1

(
∇zCi(zi(k)) − si(k)

)]
Zi
, i ∈ N , (4.27a)

µ(k + 1) =
[
µ(k) + ε2

(
v − v̂(k) − φµ(k)

)]
+ , (4.27b)

µ(k + 1) =
[
µ(k) + ε2

(
v̂(k) − v − φµ(k)

)]
+ , (4.27c)

α(k + 1) = A>
(
µ(k + 1) − µ(k + 1) − γ∇v̂D(v̂(k))

)
, (4.27d)

β(k + 1) = B>
(
µ(k + 1) − µ(k + 1) − γ∇v̂D(v̂(k))

)
, (4.27e)

v̂(k + 1) = Ap(k + 1) + Bq(k + 1) + c , (4.27f)

where the power setpoints of each device are computed locally through (4.27a) and (4.27b)–(4.27f) are

performed at the network operator. The resultant scheme is tabulated as Algorithm 1. Notice that each

customer i does not share its cost function Ci or its feasible set Zi with the network operator; rather, the

customer transmits to the network operator only the resultant power injections zi(k). Indeed, the results of

Theorem 4.3–4.6 apply to (4.27) too.

Remark 4.4. In (4.27), α and β are utilized by the customers to construct the primal gradient ∇zLφ. This

strategy enables a distributed implementation of the primal-dual projected gradient method (4.24) without

the customers knowing information of the network.

4.2.3 Performance Analysis with Nonlinear Power Flow

The iterative algorithm (4.27) is designed and analyzed with a linearized voltage model (4.2). How-

ever, we now analyze the stability of Algorithm 1 in the purview of the nonlinear AC power-flow model (cf.
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Algorithm 1 Incentive-based iterative algorithm

repeat
[S1] Customer i ∈ N performs (4.27a) and sends zi(k + 1) to network operator.
[S2] Network operator performs steps (4.27b)–(4.27f).
[S3] Network operator transmits signals si(k + 1) to customer i ∈ N .

until Stopping criterion is met

(4.1)). Particularly, the step (4.27f) is no longer executed to estimate the voltages; rather, the voltages are

computed based on a nonlinear AC power-flow model or directly measured from the network.

For the rest of this section, hatted symbols (e.g., v̂) refer to variables used in the linearized voltage

model; on the other hand, non-hatted symbols represent electrical quantities obeying the nonlinear AC

power-flow model. Accordingly, the control strategy is modified as follows:

zi(k + 1) =
[
zi(k) − ε1

(
∇Ci(zi(k)) − si(k)

)]
Zi
, i ∈ N , (4.28a)

µ(k + 1) =
[
µ(k) + ε2

(
v − v(k) − φµ(k)

)]
+ , (4.28b)

µ(k + 1) =
[
µ(k) + ε2

(
v(k) − v − φµ(k)

)]
+ , (4.28c)

α(k + 1) = A>
[
µ(k + 1) − µ(k + 1) − γ∇vD(v(k))

]
, (4.28d)

β(k + 1) = B>
[
µ(k + 1) − µ(k + 1) − γ∇vD(v(k))

]
, (4.28e)

v(k + 1) obey the nonlinear model (4.1). (4.28f)

The power setpoints are updated at each node i ∈ N via (4.28a) and commanded to the devices;

steps (4.28b)–(4.28e) are performed by the the network operator; and, voltages are either computed based

on a nonlinear AC power-flow model (e.g., using OpenDSS) or directly measured.

To establish convergence of (4.28), the following is assumed (see also [35, 142]).

Assumption 4.4. There exists a constant e > 0 such that |v̂i(z) − vi(z)| ≤ e, i ∈ N , for all z ∈ Z.

This assumption bounds the discrepancy between voltages generated based on the linearized model

and the actual voltages (obtained from the nonlinear AC power-flow equations or measured). By compar-
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ing (4.27) with (4.28), Assumption 4.4 naturally leads to the following bounds:

|µ̂
i
− µ

i
| ≤ ε2e, |µ̂i − µi| ≤ ε2e,

|α̂i − αi| ≤ A>i (γ∇2D(ṽ)1n + ε2)e,

|β̂i − βi| ≤ B>i (γ∇2D(ṽ)1n + ε2)e,

for some ṽ. The following bounds can be readily shown too:

|p̂i − pi| ≤ ε1A>i (γ∇2D(ṽ)1n + ε2)e := δ1,i,

|q̂i − qi| ≤ ε1B>i (γ∇2D(ṽ)1n + ε2)e := δ2,i.

Let δ := [δ1,1, . . . , δ1,N , δ2,1, . . . , δ2,N] ∈ R2N×1
+ , and collect the primal and dual variables the vector y := (z, µ)

for notational simplicity. Consequently, one has that:

‖T̂ (y) − T (y)‖ ≤ ‖ρ‖, ∀y ∈ Z × R2N
+ , (4.29)

where ρ := [ε2e · 11×2N , δ
>]> and T (·) is the counterpart of T̂ (·) for the iterates (4.28). Let ∆ ≤ ∆̄ < 1 be

the contraction modulus for T̂ (·) with appropriate stepsizes ε1 and ε2 chosen according to Theorem 4.5; by

definition, we have that:

‖T̂ (y) − T̂ (y′)‖ ≤ ∆‖y − y′‖, ∀y, y′ ∈ Z × R2N
+ , (4.30)

and the following result can be established.

Theorem 4.7. Iterates (4.28) converge to the unique saddle point of (4.16) within a ball of radius ‖ρ‖1−∆
.

Proof. Let ŷ∗φ be the unique optimizer of (4.16) and consider bounding ‖y(k) − ŷ∗φ‖ as follows:

‖y(k) − ŷ∗φ‖

= ‖T (y(k − 1)) − ŷ∗φ‖ (4.31)

= ‖T (y(k − 1)) − T̂ (y(k − 1)) + T̂ (y(k − 1)) − ŷ∗φ‖

≤ ‖T (y(k − 1)) − T̂ (y(k − 1))‖ + ‖T̂ (y(k − 1)) − ŷ∗φ‖

≤ ‖ρ‖ + ‖T̂ (y(k − 1)) − T̂ (ŷ∗φ)‖

≤ ‖ρ‖ + ∆‖y(k − 1) − ŷ∗φ‖, (4.32)
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where the first inequality is due to the triangle inequality; the second inequality is due to Assumption 4.4;

and the last inequality leverages the definition of contraction mapping. By repeating steps (4.31)-(4.32)

recursively, one can obtain:

‖y(k) − ŷ∗φ‖ ≤
‖ρ‖(1 − ∆k)

1 − ∆
+ ∆k‖y(0) − ŷ∗φ‖. (4.33)

When k → ∞, one has that:

lim
k→∞

sup ‖y(k) − ŷ∗φ‖ =
‖ρ‖

1 − ∆
. (4.34)

�

4.3 Numeric Examples

4.3.1 Simulation Setup

Consider a modified version of the IEEE 37-node test feeder shown in Figure 4.1. The modified

network is obtained by considering the phase “c” of the original system and by replacing the loads specified

in the original dataset with real load data measured from feeders in Anatolia, California, during a week of

August 2012 [15]. Line impedances, shunt admittances, as well as active and reactive loads are adopted

from the respective data set. It is assumed that 18 PV systems are located at nodes 4, 7, 10, 13, 17, 20, 22,

23, 26, 28, 29, 30, 31, 32, 33, 34, 35, and 36, and their generation profiles are simulated based on the real

solar irradiance data available in [15]. The ratings of these inverters are 300 kVA for i = 3, 350 kVA for

i = 15, 16, and 200 kVA for the remaining inverters.

The voltage limits vi and vi are set to 1.05 p.u. and 0.95 p.u. respectively, for ∀i ∈ N . Various step

sizes ε1 and ε2 are tested to provide examples of cases where the algorithm converges as well as cases where

it is not convergent. The customers’ objective functions are set uniformly to Ci(pi, qi) = cp(pi,av−pi)2+cqq2
i ,

in an effort to minimize the amount of real power curtailed from the available power pi,av based on irradiance

conditions, and the amount of reactive power injected or absorbed. The coefficients are set to cp = 3 and

cq = 1. The network-oriented objective is set to D(v) = 1
2‖v − vnom‖22 to penalize voltage deviation from

the nominal value vnom = 1 p.u. Without loss of generality, we demonstrate our results with the trade-off
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Figure 4.1: IEEE 37-node feeder. The boxes represent PV systems. The red nodes are the ones
analyzed in the numerical example.

parameter γ set to either 0 or 1. For γ = 1, it is possible to trade off the customer-oriented objectives for

flatness of the voltage profile. The regularization parameter φ is set to 10−4. All the simulations are run with

nonlinear AC power flow model calculated by MATPOWER [145].

4.3.2 Iterative Algorithm

We first test Algorithm 1 and show how the algorithm can address overvoltages in distribution sys-

tems [80]. To this end, we focus on a single timeslot at 12 pm.

4.3.2.1 Convergence

Let γ = 0 for simplicity. Recall from Theorem 5.3 that step sizes ε1 and ε2 both affect the convergence

properties. For simplicity, set ε2 = 0.01, and consider tuning ε1 to achieve convergence. Similar results can

be observed by fixing ε1 and tuning ε2, or tuning both ε1 and ε2. As shown in Figure 4.2, when ε1 is

increased from 0.01 to 0.3, we observe faster convergence. However, when we further increase ε1 beyond

0.4, an oscillatory behavior is observed.
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Figure 4.2: Convergence of the distributed algorithm with increasing step size ε1 and fixed step
size ε2.

5 10 15 20 25 30 35

Node Index

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

V
o
lt
a
g
e
 M

a
g
n
it
u
d
e
, 
p
.u

.

Uncontrolled voltage

Controlled voltage, =0

Controlled voltage, =1

Voltage upper limit

Figure 4.3: Controlled and uncontrolled voltages at all nodes at noon.
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4.3.2.2 Voltage regulation

The results are plotted in Figure 4.3 corresponding to the case where ε1 = ε2 = 0.01. We show voltage

profiles in three scenarios: (i) uncontrolled setting, where the PV systems operate at unity power factor and

inject the maximum available power without any curtailment (blue dots), (ii) controlled voltages with γ = 0

(red dots), and (iii) controlled voltages with γ = 1 (yellow dots). It is clear that in the uncontrolled case (i)

the voltage values exceed the limit of 1.05 p.u. (black dashed line) due to large reverse power flows, while

the controlled scenarios (ii) and (iii) show voltage within limits. Furthermore, voltage values achieved by

(iii) are closer to the nominal value than those by (ii), because (iii) also penalizes voltage deviation from

1 p.u.

4.4 Conclusion

This chapter considers a social welfare maximization problem modeling network operator and DER-

owners operational objectives as well as voltage constraints. The formulated problem is non-convex; how-

ever, we propose a convex relaxation and we provide conditions under which the optimal solutions of the

relaxed problem coincide with the optimal points of the non-convex social-welfare problem. We then design

distributed algorithms to identify the solutions of the social welfare maximization problem without expo-

sure of customers’ privacy. Stability of the proposed schemes is analytically established and numerically

corroborated.

It is worth mentioning that, the results of the exact convex relaxation and the distributed algorithm

design also serve as a novel way to solve a class of Stackelberg game problem with quasilinear utility

functions that has been considered difficult to solve in an efficient way.



Chapter 5

Distributed Voltage Regulation with Discrete Variables

Chapter 4 presents a market-based framework where network operator and customers pursue the

given operational and economic objectives while concurrently ensuring that the voltages are within the

prescribed limits. However, Chapter 4 only considers continuous decision variables (i.e., continuous DER

commands), whereas in practice many appliances operate with discrete decision variables, e.g., capacity

banks, thermostatically controlled loads (TCLs), and battery charging of electric vehicles (EVs), along with

device dynamics as constraints.

This chapter extends the market-based framework developed in previous chapter to including discrete

decision variables and device dynamics. Specifically, we first relax the discrete feasible sets to their convex

hull. We then propose a distributed stochastic dual algorithm to solve the relaxed problem while recovering

feasible power set points for discrete devices at every iteration, where two timescales are considered for

devices of different updating frequencies. Eventually, we prove that the proposed algorithm converges

to a random variable whose mean value coincides with the optimal solution of the relaxed problem. We

also characterize the variance of the resultant voltage due to the stochastic process of discrete power rate

recovering, and design a robust implementation for the voltage bounds accordingly. While diminishing

stepsize for dual updates are utilized in this chapter, it is not practical in settings of real-time implementation

and asynchronous updates. Online extension with constant stepsize will be presented next chapter. Related

work of this chapter has been published in [140].
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5.1 System Modeling

We use the same nonlinear AC power-flow model (4.1) and its linearization (4.2) as in last chap-

ter. More generally, we consider a setting where each node could integrate multiple controllable devices;

both continuous and discrete power outputs, as well as device dynamics, are considered for controllable

devices.

5.1.1 Node and Device Model

At node i ∈ N , assume that non-controllable devices and controllable devices contribute to the aggre-

gate net power injections pi ∈ R and qi ∈ R. Denote by pi,0 and qi,0 the overall active and reactive powers

injected by all the non-controllable devices at node i. On the other hand, a number of controllable devices

are collected in a set Di. Denote by pi,d ∈ R and qi,d ∈ R the active and reactive power injections of a

controllable device d ∈ Di. It follows that the powers at node i can be expressed as

pi = pi,0 +
∑
d∈Di

pi,d, qi = qi,0 +
∑
d∈Di

qi,d. (5.1)

Power injections/consumption of device d is constrained as zi,d := (pi,d, qi,d) ∈ Zi,d ⊂ R
2. We

consider the following two types of controllable devices.

Devices with convex sets: Devices with power injections/consumptions that can be chosen from a convex

and compact set. These devices are assumed to be fast responding, in the sense that they regulate the power

output to given commands within seconds. We collect these devices in the set DFi ⊆ Di. For example, the

feasible region of a PV inverter d ∈ DFi has the following form:

Zi,d =
{
zi,d

∣∣∣0 ≤ pi,d ≤ pav
i,d, p2

i,d + q2
i,d ≤ η

2
i,d

}
, (5.2)

where pav
i,d denotes the available active power from a PV system (based on prevailing ambient conditions),

and ηi,d is the rated apparent capacity.

Devices with discrete sets: Devices that admit a discrete set of possible setpoints. Control actions of these

devices are usually implemented at a slower timescale. Collect these devices in the setDS i ⊆ Di, and denote
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by Pi,d the set of discrete power setpoints of a device d ∈ DS i ; i.e.,

zi,d ∈ Pi,d. (5.3)

The devices may also feature states with given dynamics. For a device d, let xi,d denote the states of

the device. We postulate an affine relationship between xi,d and zi,d; i.e.,

xi,d = fi,d(zi,d). (5.4)

On the other hand, constraints on the state are modeled via a function ψi,d:

ψi,d(xi,d) ≤ 0. (5.5)

By substituting (5.4) into (5.5), one obtains the following constraint:

ψi,d( fi,d(zi,d)) ≤ 0. (5.6)

For a device d ∈ DS i , its feasible power set is then written as

Zi,d = {zi,d |(5.3), (5.6)}. (5.7)

The setZi,d is then convex if d ∈ DFi ; on the other hand, it is discrete and non-convex if d ∈ DS i . In

the following, we provide two examples.

a) For a heating, ventilation, and air conditioning (HVAC) system d ∈ DS i , let xi,d be the room temperature

(i.e., the state) to be controlled . The dynamics (5.4) and constraints (5.5) are, in this case, in the form:

xi,d = T in
i,d + θ1(T out

i,d − T in
i,d) + θ2 pi,d, (5.8)

T in
i,d ≤ xi,d ≤ T

in
i,d, (5.9)

where T in
i,d and T out

i,d are current room temperature and ambient temperature, θ1, θ2 are parameters specify-

ing thermal characteristics of the HVAC and its operating environment, and T in
i,d and T

in
i,d are customized

temperature bounds; see, e.g., [75]. We assume that the HVAC system can be turned on/off; that is,

pi,d ∈ Pi,d = {pon
i,d, 0}, (5.10)
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with working power rate pon
i,d < 0. Then, the feasible set isZi,d = {zi,d |(5.8)–(5.10)}.

b) For an electric vehicle (EV) at charging station d ∈ DS i , xi,d represents its state of charge (SOC) ; then,

(5.4) represents the evolution of SOC for m = 1, . . . ,w; i.e.,

xi,d = Ei,d + ξpi,d, (5.11)

where Ei,d is the current SOC and ξ is the charging efficiency. The constraint (5.5) in this case takes the

following form:

Ei,d ≤ xi,d ≤ Ei,d, (5.12)

with an acceptable SOC range of [Ei,d, Ei,d]. Further, a discrete set of feasible charging rates can be written

as:

pi,d ∈ Pi,d =
{
pcha,1

i,d , pcha,2
i,d , . . . , pcha,N

i,d , 0
}
, (5.13)

with feasible charging power rates pcha,1
i,d , pcha,2

i,d , . . . , pcha,N
i,d < 0. The EV battery’s feasible set is thenZi,d =

{zi,d |(5.11)–(5.13)}.

5.1.2 Problem Formulation

We aim to design an algorithmic strategy where network operator and the DER-owners pursue their

own operational goals and economic objectives, while concurrently achieving global coordination to enforce

engineering constraints. For simplicity of exposition, consider the following notation

Zi := ×
d∈Di

Zi,d, Z :=×
i∈N
Zi,

zi = {zi,d}d∈Di ∈ Zi, z = {zi}i∈N ∈ Z.
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5.1.2.1 Customer’s problem

The discrete nature of the control actions associated with devices in the sets DS i would render perti-

nent optimization problems nonconvex. Consider then utilizing the convex hull, defined as follows:

conv(Zi,d) :=
{
zi,d |(5.6), zi,d ∈ conv(Pi,d)

}
. (5.14)

The relaxed set conv(Zi,d) is convex and compact. Accordingly, consider the following convex sets:

conv(Zi) :=

 ×
d∈DFi

Zi,d

× ×
d∈DS i

conv(Zi,d)

 ,
and

conv(Z) :=×
i∈N

conv(Zi). (5.15)

While a convex hull is utilized for the algorithmic design, a randomization strategy will be leveraged to

recover feasible control actions from conv(Zi,d).

Consider a cost function Ci(xi, zi) that captures well-defined performance objectives of all devices at

node i. Since xi is in fact a function of zi, we will henceforth write the cost as Ci(zi).

Assumption 5.1. Functions Ci(zi), ∀i ∈ N are strongly convex in zi ∈ conv(Zi).

Let αi ∈ R and βi ∈ R be the pricing/reward signals sent by the network operator (e.g., distribution

system operator or aggregator) to customer i for real and reactive power injections, respectively. Customers

are assumed to be rational and self-interested to minimize their own cost, by solving the following problem

(P′1,i) given signals (αi, βi):

min
zi

Ci(zi) −
∑
d∈Di

(αi pi,d + βiqi,d), (5.16a)

s.t. zi ∈ conv(Zi), (5.16b)

where αi pi,d and βiqi,d represent payment to/reward from the network operator owing to all controllable

device d ∈ Di.

Because (5.16a) is strongly convex in zi, and Zi is convex and compact, a unique solution z∗i exists.

For future developments, consider a “best-response” strategy bi of customer i as the following function of
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(αi, βi):

z∗i = bi(αi, βi) := arg min
zi∈cov(Zi)

Ci(zi) −
∑
d∈Di

(αi pi,d + βiqi,d).

5.1.2.2 Recover feasible power rates

Given p∗i,d solved from the relaxed feasible set for slow device d, we randomly select a feasible power

rate pi,d based on the probability distribution such that E[pi,d] = p∗i,d, where E[·] denotes the expectation.

While there are multiple ways to determine the probability distribution of feasible setpoints based on

p∗i,d, we exemplify the procedure with two-point distribution for illustrative purpose. We select two feasible

power rates and denote them as p
i,d

and pi,d, such that p
i,d
≤ p∗i,d ≤ pi,d. Then the related probability of the

corresponding two-point distribution is calculated as:
P(pi,d = p

i,d
) = (pi,d − p∗i,d)/(pi,d − p

i,d
),

P(pi,d = pi,d) = (p∗i,d − p
i,d

)/(pi,d − p
i,d

),
(5.17)

according to which pi,d is randomly chosen.

5.1.2.3 Social-welfare problem

Similar to (P2) in last Chapter, consider now the following optimization problem (P′2) capturing both

social welfare and voltage constraints of a distribution feeder:

min
z,v̂,α,β

∑
i∈N

Ci(zi), (5.18a)

s.t. pi = p0
i +

∑
d∈Di

pi,d, qi = q0
i +

∑
d∈Di

qi,d, (5.18b)

v̂ = Ap + Bq + c, (5.18c)

v ≤ v̂ ≤ v, (5.18d)

zi = bi(αi, βi), i ∈ N . (5.18e)

Notice that the problem formulation naturally extends to the case where multiple customers are located at

node i, but we outline the problem in this way to limit the complexity of the notation.
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Since (P′2) is structured based on the relaxed sets of discrete devices, convex reformulation as well as

the result of exact convex relaxation introduced in the Section 4.2.1 holds, as will be presented in the follow-

ing section. Then, based on the stochastic dual algorithm, we propose a distributed algorithm that prevents

any exposure of private information from the customers while solving a convex optimization problem where

devices admits discrete power levels.

5.2 Distributed Algorithm Design

5.2.1 Convex Reformulation and Signal Design

Consider the following convex optimization problem (P′3):

min
z,v̂

∑
i∈N

Ci(zi), (5.19a)

s.t. pi = p0
i +

∑
d∈Di

pi,d, qi = q0
i +

∑
d∈Di

qi,d, (5.19b)

v̂ = Ap + Bq + c, (5.19c)

v ≤ v̂ ≤ v, (5.19d)

zi ∈ Zi,∀i ∈ N , (5.19e)

with non-convex constraint (5.18e) replaced with (5.19e), and α, β to be designed later. We assume (P′3) is

feasible:

Assumption 5.2. Slater’s condition holds for (P′3).

Given the strong convexity of the objective function (5.19a) in z, a unique optimal solution exists for

problem (P′3). Notice that a solution (z∗, v̂∗) of (P′3) might not be feasible for (P′2), because there might

not exist a (α∗, β∗) such that z∗i = bi(α∗i , β
∗
i ). We will, however, show next that such (α∗, β∗) exists; thus, the

solution of (P′3) gives the solution of (P′2).

Substitute (5.19c) into (5.19d), and denote by µ and µ the dual variables associated with the con-

straints (5.19d). Let v̂∗ be the optimal voltage magnitudes produced by (P′3), and denote the optimal dual
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variables associated with (5.19d) as µ∗, µ∗. Then, we design the signals as:

α∗ = A>
[
µ∗ − µ∗

]
, (5.20a)

β∗ = B>
[
µ∗ − µ∗

]
. (5.20b)

Note that α∗ and β∗ are composed of dual prices µ∗ and µ∗ with A, B characterizing the network structure.

We can prove that the following results similarly as Theorem 4.1–4.2 in Section 4.2.1.

Theorem 5.1. Under Assumptions 5.1–5.2, the signals (α∗, β∗) defined by (5.20) are bounded.

By examining the optimality conditions of (P′2) and (P′3), we have the following result.

Theorem 5.2. The solution of problem (P′3) along with the signals (α∗, β∗) defined in (5.20) is a global

optimal solution of problem (P′2); i.e., problem (P′3) is an exact convex relaxation of problem (P′2).

Next, based on Theorem 5.2, we will develop an iterative algorithm that achieves the optimum of (P′3)

(and hence that of (P′2)) without exposing any private information of the customers to the network operator.

5.2.2 Two Timescales and Iterative Algorithm

In this part, we design an iterative algorithm to solve (P′3). As mentioned, we have two types of

devices with two different update frequencies. Assume that slow devices update M times slower than fast

devices with integer M ≥ 1. We index by k ∈ Z++ the iterations when fast devices update. Then slow

devices updates when k = tM with index t ∈ Z++. We put the two timescales update in Algorithm 2 for

easy reference later. Based on this strategy, we next propose a stochastic dual algorithm to solve (P′3) while

recovering feasible power rates for slow devices.

Denote by µ := [µ>, µ>]> ∈ R2N
+ the vector of stacked dual variables, and denote g(z) =


v − Ap − Bq − c

Ap + Bq + c − v

.
For notational simplicity, we here use zS :=

{
zi,d

}i∈N
d∈DS

and zF :=
{
zi,d

}i∈N
d∈DF

. We now can write the Lagrangian

of (P′3) as:

L(z, µ) = L(zS , zF , µ) =
∑
i∈N

Ci(zi) + µ>g(z), (5.21)
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Algorithm 2 Two-timescale update

if iteration k = tM then
Customer i solves z∗i (k + 1) = arg min

zi∈Zi

Ci(zi) −
∑

d∈Di

(
αi(k)pi,d + βi(k)qi,d

)
, recovers zi,d(k + 1) with

E[zi,d(k + 1)] = z∗i,d(k + 1) for d ∈ DS i , and sets zi,d(k + 1) = z∗i,d(k + 1) for d ∈ DFi .
else iteration k = tM + m, m = 1, . . . ,M − 1

Customer i keeps zi,d(k + 1) = zi,d(k) for d ∈ DS i , and gets zi,d(k + 1) for d ∈ DFi by solving:

arg min
zFi
∈ZFi

Ci(zFi
|zS i

) −
∑

d∈DFi

(αi(k)pi,d + βi(k)qi,d),

end if

which is obtained by keeping the constraints z ∈ Z and µ ∈ R2N
+ implicit. Fix the value of zS , and define the

resultant form as a “reduced” Lagrangian LF(zF , µ|zS ).

We will implement a dual algorithm with two timescales to solve the following minimax problems

based on L(z, µ) and LF(zF , µ|zS ):

max
µ∈R2N

+

min
z∈conv(Z)

L(z, µ), (5.22a)

max
µ∈R2N

+

min
zF ∈ZF

LF(zF , µ|zS ). (5.22b)

To this end, we define two concave dual functions for L and LF , respectively:

h(µ) := min
z∈Z
L(z, µ), (5.23a)

hF(µ|zS ) := min
zF ∈ZF

LF(zF , µ|zS ), (5.23b)

with corresponding dual problems:

max
µ∈R2N

+

h(µ), (5.24a)

max
µ∈R2N

+

hF(µ|zS ). (5.24b)

Considering the dual algorithm to solve (5.22) while recovering implementable feasible power rates

for discrete devices at each iteration, we have the following stochastic dual algorithm:

z(k + 1) set by Algorithm 2, (5.25a)

µ(k + 1) =
[
µ(k) + εkg(z(k + 1))

]
+, (5.25b)
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where [ ]+ is a projection operator onto the nonnegative orthant, and the stepsize εk to be selected. Also

notice that g(z(k + 1)) is subgradient of h(µ(k)) when k = tM and that of hF(µ(k)) when k = tM + m, m =

1, . . . ,M − 1.

BecauseZ is compact and g(z) is linear in z, there exists some constant G > 0 such that E[‖g(z(k))‖] ≤

G for all k. We next show the stability of dynamics (5.25) with diminishing stepsize in the following

subsection.

5.2.3 Performance Analysis with Diminishing Stepsize

In this part, we choose stepsize εk to be square summable but not summable, i.e.:

∞∑
k=1

ε2
k < ∞,

∞∑
k=1

εk = ∞, (5.26)

e.g., εk = 1/t at iteration k = tM + m, m = 0, . . . ,M − 1. With such diminishing stepsize, we will prove

the convergence of the sequence {µk} generated by (5.25) to a random vector. Moreover, we characterize the

variance of voltage due to the randomness, and we propose a robust design.

5.2.3.1 Convergence

To show the convergence of dynamics (5.25), we utilize the next lemma [98].

Lemma 5.1. Consider a sequence of random variables ω(1), . . . , ω(k) ≥ 0, E[ω(1)] < ∞ and

E[ω(k + 1)|ω(1), . . . , ω(k)] ≤ (1 + xk)ω(k) + yk,

with

∞∑
k=1

xk < ∞,

∞∑
k=1

yk < ∞, xk ≥ 0, and yk ≥ 0.

Then

ω(k)→ ω(∞)

almost surely, where ω(∞) ≥ 0 is some random variable.
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We accordingly have the following convergence result.

Theorem 5.3. If the stepsize εk is chosen as in (5.26), the sequence {µ(k)} generated by (5.25) converges to

certain random vector µ(∞) almost surely.

Proof. The convergence of sequence {µ(k)} is equivalent to that of sequence {‖µ(k) − µ∗‖2}, where µ∗ is an

optimal dual of (P′3). Then, at iteration k = tM with some t > 0:

E
[
‖µ(tM + 1) − µ∗‖2|µ(1), . . . , µ((t − 1)M + 1)

]
≤ E

[
‖µ(tM) + εtM g(z(tM)) − µ∗‖2|µ((t − 1)M + 1)

]
≤ E

[
‖µ(tM) − µ∗‖2|µ((t − 1)M + 1)

]
+ ε2

tM
G2 + 2εtM (µ(tM) − µ∗)ᵀg(z∗(tM))

≤ ‖µ((t − 1)M + 1) − µ∗‖2 +

tM∑
k=(t−1)M+1

ε2
kG2 +

M−1∑
m=0

2εtM−m(µ(tM − m) − µ∗)ᵀg(z∗(tM − m))

≤ ‖µ((t − 1)M + 1) − µ∗‖2 +

tM∑
k=(t−1)M+1

ε2
kG2 + 2εtM (h(µ(tM)) − h(µ∗)) +

M−1∑
m=1

2εtM−m(hF(µ(tM − m)) − hF(µ∗))

≤ ‖µ((t − 1)M + 1) − µ∗‖2 +

tM∑
k=(t−1)M+1

ε2
kG2,

where the first inequality comes from the non-expansiveness of projection operator, the third from repeating

previous steps, the fourth from the definition of the subgradient, and the last from the definition of optimality

of concave functions h and hF .

Because
∑∞

t=1
∑tM

k=(t−1)M+1 ε
2
kG2 < ∞, by Lemma 5.1 the sequence {‖µ(k) − µ∗‖2} converges to some

random variable {‖µ(∞) − µ∗‖2} almost surely, and therefore the sequence {µ(k)} converges to some random

vector µ(∞) almost surely. �

Denote µ̃(k) := E[µ(k)]. By Theorem 5.3, limk→∞ µ̃(k) = µ̃(∞), where µ̃(∞) is the mean value of

random variable µ(∞) to which {µ(k)} converges. We next show that µ̃(∞) = µ∗.

Theorem 5.4. Select the stepsize εk as in (5.26). The sequence {µ̃(k)} generated by (5.25) converges to µ∗.

Meanwhile, the running average of h(µ(k)) approaches h(µ∗) as k → ∞:

lim
k→∞

h(µ∗) −
k∑
κ=1

h(µ(κ))/k = 0. (5.27)
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Proof. Similar to the proof of Theorem 5.3, we have:

E[‖µ(tM + 1) − µ∗‖2]

≤ E
[
‖µ((t − 1)M + 1) − µ∗‖2

]
+

tM∑
k=(t−1)M+1

ε2
kG2 + 2εtM (h(µ(tM)) − h(µ∗)) +

M−1∑
m=1

2εtM−m(hF(µ(tM − m)) − hF(µ∗))

≤ E
[
‖µ((t − 1)M + 1) − µ∗‖2

]
+

tM∑
k=(t−1)M+1

ε2
kG2 + 2εtM (h(µ(tM)) − h(µ∗)).

Apply the above steps recursively to obtain:

E[‖µ(tM + 1) − µ∗‖2] ≤ E[‖µ(1) − µ∗‖2] +

tM∑
k=1

ε2
kG2 +

t∑
τ=1

2ετM E[h(µ(τM)) − h(µ∗)].

Because E[‖µ(tM + 1) − µ∗‖2] ≥ 0, the following holds:

t∑
τ=1

2ετM E[h(µ∗) − h(µ(τM))] ≤ E[‖µ(1) − µ∗‖2] +

tM∑
k=1

ε2
kG2. (5.28)

By Jensen’s inequality:

E[h(µ∗) − h(µ(τM))] ≥ h(µ∗) − h(µ̃(τM)). (5.29)

Therefore, by considering
∑∞

k=1 ε
2
k < ∞ from (5.26), we have from (5.28) and (5.29) that:

lim
t→∞

t∑
τ=1

2ετM

(
h(µ∗) − h(µ̃(τM))

)
< ∞. (5.30)

We next show h(µ∗) = h(µ̃(∞)) by contradiction. Recalling that h(µ∗) ≥ h(µ) for any feasible µ,

assume there exists some e > 0 such that h(µ∗)− h(µ̃(∞)) ≥ e. Because
∑∞
τ=1 ετM = ∞, we must have

limτ→∞
∑t
τ=1 2ετM

(
h(µ∗) − h(µ̃(τM))

)
=∞, which contradicts (5.30). Hence, h(µ∗)=h(µ̃(∞)).

Further, because µ is statistically stationary, its ensemble average and time average are identical.

(5.27) follows. �

Remark 5.1. With strongly convex cost functions Ci, {µ(k)} generated by (5.25) usually converges to a

random vector even with constant stepsize, where all the properties we obtain in Theorem 5.3–5.4 hold.

This will be shown with numerical examples in Section 5.3, and proved next setion.
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5.2.3.2 Variance and Robust Design

The randomness in the power rate selection for discrete devices ofDS leads to volatility of voltages.

Let DS be the number of all discrete devices. We next characterize the variance of the voltage (the result is

tailored to the variable (5.17), but can be straightforwardly generalized).

Proposition 1. Using the randomized selection strategy (5.17), the voltage variance Var(vi) at node i ∈ N

is bounded as:

Var(v̂i) ≤ DS /4
∑
j∈N

A2
i j ·max

j,d
(p j,d − p

j,d
)2. (5.31)

Proof. The variance of v̂i can be written as:

Var(v̂i) = E[|v̂i − v̂∗i |
2] = E

[∣∣∣∑
j∈N

Ai j(p j − p∗j)
∣∣∣2]

≤
∑
j∈N

A2
i j · E

[∑
j∈N

(p j − p∗j)
2
]

≤
∑
j∈N

A2
i j ·

∑
j∈N

∑
d∈DS j

E
[
(p j,d − p∗j,d)2]

=
∑
j∈N

A2
i j ·

∑
j∈N

∑
d∈DS j

(p∗j,d − p
j,d

)(p j,d − p∗j,d)

≤
∑
j∈N

A2
i j ·

∑
j∈N

∑
d∈DS j

(p j,d − p
j,d

)2/4,

≤ DS /4
∑
j∈N

A2
i j ·max

j,d
(p j,d − p

j,d
)2,

where we apply Cauchy-Schwarz inequality in the first inequality, Jensen’s inequality in the second, and the

second equality is based on the probability distribution (5.17). �

The result of Proposition 1 motivates us to propose the following robust design. We choose tighter

voltage bounds [v′, v′] with v < v′ < vnom < v′ < v, and replace the original bounds with the tighter bounds

in the algorithm so that the resultant voltage falls within the original bounds with required probability. We

design the tighter bounds based on Chebyshev’s inequality [112] as shown next.

Proposition 2 (robust implementation). Given δ > 0, if the voltage upper and lower bounds are set as:

v′i ≤ vi − δ and v′i ≥ vi + δ, then:

P[v̂i ≥ vi] ≤ Var(v̂i)/2δ2, and P[v̂i ≤ vi] ≤ Var(v̂i)/2δ2.
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Proof. Let ˜̂vi = E[v̂i]. By Chebyshev’s inequality [112], given δ > 0, we have

P[|v̂i − ˜̂vi| ≥ δ] ≤
Var(v̂i)
δ2 .

Consider the upper bound first. Design the robust bound as v′i ≤ vi − δ, so that we must have ˜̂vi ≤ v′i

by Assumption 6.3 and Theorem 5.4. And we write the probability of voltage violation as follows:

P[v̂i ≥ vi] = P[v̂i − ˜̂vi ≥ vi − ˜̂vi]

≤ P[v̂i − ˜̂vi ≥ vi − v′i] ≤ P[v̂i − ˜̂vi ≥ δ]

=
1
2
· P[|v̂i − ˜̂vi| ≥ δ] ≤

Var(v̂i)
2δ2 .

Similar process applies to P[v̂i ≤ vi]. �

Remark 5.2. These bounds are admittedly conservative; however, reasonable values can be obtained in

realistic settings. For example, scenario 2) in Section 5.3.1 with variance estimated by upper-bound (5.31)

leads to robust bounds v′i = 1.035 p.u. and v′i = 0.965 p.u., with Var(v̂i)/2δ2 ≤ 5% and vi = 1.05 p.u. and

vi = 0.95 p.u. Tighter bounds can be obtained empirically.

5.2.4 Distributed Stochastic Dual Algorithm

The decomposable structure of (5.25) naturally enables the following iterative distributed algorithm:

z(k + 1) set by Algorithm 2, (5.32a)

v̂(k + 1) = Ap(k + 1) + Bq(k + 1) + c (5.32b)

µ(k + 1) =
[
µ(k) + εk

(
v − v̂(k + 1)

)]
+ , (5.32c)

µ(k + 1) =
[
µ(k) + εk

(
v̂(k + 1) − v

)]
+ , (5.32d)

α(k + 1) = A>
[
µ(k + 1) − µ(k + 1)

]
, (5.32e)

β(k + 1) = B>
[
µ(k + 1) − µ(k + 1)

]
, (5.32f)

where the power set points of the devices are computed and implemented locally through (5.32a), and (5.32b)–

(5.32f) are performed at the network operator. Notice that each customer i does not share its cost function
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Ci or its feasible set Zi with the network operator; rather, the customer transmits to the network operator

only the resultant power injections zi(k). Indeed,(5.25) and (5.32) are equivalent and the results of Theorem

5.3–5.4 apply to (5.32).

5.3 Numerical Examples

Based on the same simulation setup as in Section 4.3.1, we further add the following devices with

discrete power rates and device dynamics. We install 15 identical A/Cs at each of the following 25 nodes: 2,

5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 33, 35, and 36, totaling 375 A/Cs

that comprise the setDS . We set a uniform cost function for all A/Cs as Ci,d(T in+
i,d ) = 20(T in+

i,d −T nom
i,d )2, where

T nom
i,d is a preferred room temperature set at 75◦F, and the room temperature 15 minutes later is modeled as

T in+
i,d = T in

i,d + 0.1(T out
i,d − T in

i,d) − 0.001pi,d. Also, T in+
i,d should be within [70◦F, 80◦F]. For each A/C, there

are two possible power rates: 0 and -4 kW. The cost function of customer i sums the cost functions of all its

devices Ci(zi) =
∑

d∈Di Ci,d(zi,d).

The voltage limits are vi = 1.05 p.u. and vi = 0.95 p.u., and robust voltage limits are set to v′i = 1.04

p.u. and v′i = 0.96 p.u. for ∀i ∈ N . Stepsize ε = 0.1 is constant, which enables us to achieve all the results

proved under diminishing stepsize.

5.3.1 Convergence and Variance

We update PVs every iteration, and A/Cs every 60 iterations, with the following scenarios:

1) All 15 A/Cs at each node are combined to be controlled together with two power rates of 0 kW and

-60 kW.

2) 15 A/Cs at each node are controlled independently.

3) All 15 A/Cs at each node are combined to be controlled together with 16 power rates: 0 kW, -4 kW,

... , -60 kW.

Without loss of generality, we use scenario 2) to show convergence. The results are plotted in Fig.

5.1. Though the resultant voltage (red line) is changing randomly, it fluctuates around the solution of the
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relaxed problem (blue line). Also, the running average of the fluctuating voltage (green line) approaches the

solution of the relaxed problem as iteration number increases, verifying Theorem 5.3–5.4 even with constant

stepsize. Moreover, in between updates of A/Cs, their random consequence is absorbed by the PV’s faster

updates.

Next, we compare the variance of the resultant voltages among scenarios 1)–3). Based on design,

these three scenarios have the same optimality on average. By Proposition 1, the voltage variance stems from

the number of random variables and the control granularity. We compare scenario 1) and 3) to illustrate that

finer granularity generates less variance, and scenario 2) and 3) to show that less random variables results in

less variance. The results are presented in Fig. 5.2, where three scenarios are marked with different colors.

5 10 15 20 25 30 35

node index

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

v
o

lt
a

g
e

 m
a

g
n

it
u

d
e

, 
p

.u
.

Uncontrolled voltage

Controlled voltage w/ 95% confidence interval

Voltage upper limit

Figure 5.3: Uncontrolled voltage and controlled voltage under scenario 2) with 95% confidence

interval.

5.3.2 Voltage Regulation

In this part, we use scenario 2) to compare the resultant voltages at all nodes to those without any

voltage regulation. We record 25,000 random processes since convergence, and we plot the mean values of

the voltages together with their 95% confidence intervals in Fig. 5.3. Because of the robust bounds as well

as the small variance of the resultant voltages, the controlled voltages are all less than the original voltage
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upper-limit of 1.05 p.u.

5.4 Conclusion

Based on the market-based framework developed in Chapter 4, we have proposed an iterative dis-

tributed stochastic dual algorithm that allows the distribution network operator and the customers to coordi-

nate with private information preserved to optimize the social welfare while concurrently recovering feasible

power rates for discrete devices and ensuring that the voltage magnitudes are within the prescribed limits.

We prove its convergence and analyze its performance. Numerical examples are provided to support the

theoretical results.
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Figure 5.1: The running average of the voltage converges to the optimal voltage of the relaxed
problem.
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Chapter 6

Online Distributed Voltage Regulation

Based on results of joint distributed control and incentive/market mechanisms to coordinate DERs

in distribution grids from Chapter 4–5, this chapter formulates a multi-period social welfare maximization

problem, and an online setting with time-varying operating conditions, asynchronous updates by devices,

and feedback being leveraged to account for nonlinear power flows as well as reduce communication over-

head. The resulting algorithm provides a general online stochastic optimization algorithm for coordinating

networked DERs with mixed continuous/discrete power setpoints and dynamics to meet operational and

economic objectives and constraints.

In literature diminishing stepsizes are usually assumed to be necessary for convergence of the dual

method. Nevertheless, we leverage recent insights in dual method to characterize the convergence of the

proposed stochastic dual algorithm with constant stepsizes. To the best of our knowledge, this is a first

convergence characterization of its kind for the dual method applied in power systems. Performance of

the online algorithm are then analytically characterized and numerically corroborated. Related work of this

chapter has been presented in [136].
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6.1 System Model and Problem Formulation

6.1.1 Network Model

Since this chapter studies a time-varying setting, we recast the system modeling accordingly. Con-

sider a distribution network with N + 1 nodes collected in the set N ∪ {0}, N := {1, ...,N}, and distribution

lines represented by the set E. Let pt
i ∈ R and qt

i ∈ R denote the aggregate net active and reactive power in-

jections, respectively, at node i ∈ N at time t. Further, let yt be a vector collecting certain electrical quantities

of interest; for example, voltage magnitudes at some selected nodes, current on some lines, or power flows

at the substation. The electrical quantities collected in yt are related to pt
i and qt

i via a nonlinear relationship

that follows from Ohm’s and Kirchhoff’s Laws. In this chapter, we utilize the following approximate linear

relationship:

yt ≈ ŷt = Apt + Bqt + c, (6.1)

where A, B and c are linearization parameters that can be computed as shown in, e.g., [23, 36] and pertinent

references therein. It is worth pointing out that the linearized model (6.1) is utilized to facilitate the design of

computationally-light algorithms that admit a real-time implementation. In Section 6.3, we will show how

to leverage appropriate measurements from the distribution grid and DERs to cope with the inaccuracies in

the representation of the AC power flows and we will establish appropriate convergence claims. As shown

in [23,36], the linear model (6.1) can be built in the way to account for an unbalanced system operation and

for both wye and delta connections.

6.1.2 Node and Device Models

At time t, denote by pt
i,0 and qt

i,0 the overall active and reactive powers injected by all the non-

controllable devices at node i. On the other hand, a number of controllable devices are collected in a setDi.

Denote by pt
i,d ∈ R and qt

i,d ∈ R the active and reactive power injections of a controllable device d ∈ Di at

time t. It follows that the powers at node i can be expressed as:

pt
i = pt

i,0 +
∑
d∈Di

pt
i,d, qt

i = qt
i,0 +

∑
d∈Di

qt
i,d. (6.2)
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Power injections/consumption of device d at time t is constrained as zt
i,d := (pt

i,d, q
t
i,d) ∈ Zt

i,d ⊂ R
2.

Also, denote by Ww
t = {t, t + 1, · · · , t + w} the time window from time t up to time t + w, and zt

i,d :=

[(zt
i,d)>, . . . , (zt+w

i,d )>]> the power trajectory andZt
i,d =×t+w

τ=t Z
τ
i,d the feasible set of device d within this time

window. We consider the following two types of controllable devices within the time window Ww
t .

Devices with convex sets: Devices with power injections/consumptions that can be chosen from a convex

and compact set. These devices are assumed to be fast responding, in the sense that they regulate the power

output to given commands within seconds. We collect these devices in the set DFi ⊆ Di. For example, the

feasible region of a PV inverter d ∈ DFi has the following form for time t:

Zt
i,d =

{
zt

i,d

∣∣∣0 ≤ pt
i,d ≤ pav,t

i,d , pt2
i,d + qt2

i,d ≤ η
2
i,d

}
, (6.3)

where pav,t
i,d denotes the available active power from a PV system at time t (based on prevailing ambient

conditions), and ηi,d is the rated apparent capacity.

We use bold set symbolZt
i,d to represent the feasible set of device d within the window of Ww

t . For a

device without temporarily correlated constraint like a PV inverter,Zt
i,d can be the Cartesian product of the

time-varying feasible sets within the time window Ww
t , e.g., Zt

i,d =×w
τ=tZ

τ
i,d. This is not usually the case

for devices with dynamics, as to be introduced next.

Devices with discrete sets: Devices that admit a discrete set of possible setpoints. Control actions of these

devices are usually implemented at a slower timescale. Collect these devices in the setDS i ⊆ Di, and denote

by Pi,d the set of power setpoints of a device d ∈ DS i ; i.e.,

zt
i,d ∈ Pi,d. (6.4)

The devices may also feature states with given dynamics. For a device d, let xt
i,d := [xt

i,d, . . . , x
t+w
i,d ]>

collect the states of the device from the current time t up to time t + w (i.e., within the time window Ww
t ).

We postulate an affine relationship between xt
i,d and zt

i,d; i.e.,

xt
i,d = f t

i,d(zt
i,d) (6.5)

where f t
i,d(zt

i,d) := [ f t
i,d(zt

i,d), . . . , f t+w
i,d (zt

i,d)]>. On the other hand, constraints on the state are modeled via a
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general convex vector-valued function ψt
i,d:

ψt
i,d(xt

i,d) ≤ 0. (6.6)

By substituting (6.5) into (6.6), one obtains the following constraint:

ψt
i,d( f t

i,d(zt
i,d)) ≤ 0. (6.7)

The setZt
i,d is then convex if d ∈ DFi ; on the other hand, it is discrete and non-convex if d ∈ DS i .

In the following, we provide two examples.

a) For a heating, ventilation, and air conditioning (HVAC) system d ∈ DS i , let xt
i,d be the room temperature

(i.e., the state) to be controlled at time t. The dynamics (6.5) are, in this case, in the form:

xt+m
i,d = T t+m

0,i,d +

m−1∑
τ=0

(1 − θ1)m−1−τθ2 pt+τ
i,d . (6.8)

Here, T t+m
0,i,d is a constant characterized as

T t+m
0,i,d = (1 − θ1)mxt

i,d +

m−1∑
τ=0

(1 − θ1)m−1−τθ1T t+τ
out,i,d, (6.9)

where T t+τ
out,i,d is the ambient temperature, and θ1, θ2 are parameters specifying thermal characteristics of the

HVAC and its operating environment; see, e.g., [75]. The constraint (6.6) can be

Tt
i,d ≤ xt

i,d ≤ T
t
i,d, (6.10)

which is to confine the room temperatures within a given comfort range [Tt
i,d,T

t
i,d]. We assume that the

HVAC system can be turned on/off; that is,

pt
i,d ∈

{
pon

i,d, 0
}
, ∀t, (6.11)

with working power rate pon
i,d < 0. Then, the feasible set within Ww

t isZt
i,d = {zt

i,d |(6.8)–(6.11)}.

b) For an electric vehicle (EV) at charging station d ∈ DS i , xt
i,d represents its state of charge (SOC) at

time t; then, (6.5) represents the evolution of SOC for m = 1, . . . ,w; i.e.,

xt+m
i,d = xt

i,d +

m−1∑
τ=0

ξpt+τ
i,d , (6.12)
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where ξ is the charging efficiency. The constraint (6.6) in this case takes the following form:

Et
i,d ≤ xt

i,d ≤ E
t
i,d, (6.13)

with an acceptable SOC range of [Et
i,d, E

t
i,d]. Further, a discrete set of feasible charging rates can be written

as:

pt
i,d ∈

{
0, pcha,1

i,d , pcha,2
i,d , . . . , pcha,N

i,d

}
, ∀t. (6.14)

The EV battery’s feasible set from within Ww
t is thenZt

i,d = {zt
i,d |(6.12)–(6.14)}.

6.1.3 Problem Formulation

We aim to design an algorithmic strategy where network operator and the DER-owners pursue their

own operational goals and economic objectives, while concurrently achieving global coordination to enforce

engineering constraints. For simplicity of exposition, consider the following notation:

Zt
i := ×

d∈Di

Zt
i,d, Zt :=×

i∈N
Zt

i,

zt
i = {zt

i,d}d∈Di ∈ Z
t
i, zt = {zt

i}i∈N ∈ Z
t.

We now describe pertinent optimization problems that model operational goals and constraints of network

operator and the DER-owners. For simplicity of exposition, again we outline the problem formulation under

the presumption that one customer/DER-owner is located at a node of the electrical network; however, the

proposed methodology is applicable to the case where multiple customers are located at a node (this is the

case, for example, where multiple houses are connected to the same distribution transformer).

6.1.3.1 Customer-level problem

Let αt
i = [αt

i, . . . , α
t+w
i ] ∈ Rw+1 and βt

i = [βt
i, . . . , β

t+w
i ] ∈ Rw+1 be vectors collecting “incentive

signals” that are sent by the network operator to customer i within the time window Ww
t . Let xt

i := {xt
i,d}d∈Di

be a vector collecting states of all devices of node i at time t, and consider a cost function Ct
i(zt

i, x
t
i) that
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captures well-defined performance objectives of all devices at node i within the time window Ww
t . Since xt

i

is in fact a function of zt
i, we will henceforth write the cost as Ct

i(zt
i). Notice further that the cost function

captures objectives over the time window Ww
t , and it can be expanded as, but not confined to, an additive

form, e.g., Ct
i(zt

i) =
∑t+w
τ=t

∑
d∈Di costτi,d(zτi,d), where costτi,d(zτi,d) denotes the cost function for device d at time

τ.

The discrete nature of the control actions associated with devices in the sets {DS i} would render

pertinent optimization problems nonconvex. As in last chapter, we then consider utilizing the convex hull,

defined as follows:

conv(Zt
i,d) :=

{
zt

i,d |(6.7), zτi,d ∈ conv(Pi,d), ∀τ = t, . . . , t + w
}
. (6.15)

The relaxed set conv(Zt
i,d) is convex and compact. Accordingly, consider the following convex sets:

conv(Zt
i) :=

 ×
d∈DFi

Z
t
i,d

× ×
d∈DS i

conv(Zt
i,d)

 ,
and

conv(Zt) :=×
i∈N

conv(Zt
i). (6.16)

While a convex hull is utilized for the algorithmic design, a randomization strategy will be leveraged to

recover feasible control actions from conv(Zt
i,d).

For given the vectors (αt
i,β

t
i), and for a given optimization horizon of w + 1 time slots, the following

problem is solved at node i at time t:

(Pt
1,i) min

zt
i

Ct
i(zt

i) −
t+w∑
τ=t

∑
d∈Di

(ατi pτi,d + βτi qτi,d), (6.17a)

s.t. zt
i ∈ conv(Zt

i), (6.17b)

where the terms ατi pτi,d and βτi qτi,d are utilized to enable responsiveness to the network-level signals (αt
i,β

t
i)

(which can be interpreted as incentives or prices), and device-specific states are naturally accounted for

in (6.17b). The following assumption is imposed.
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Assumption 6.1. Functions Ct
i(zt

i), ∀i ∈ N are strongly convex in zt
i ∈ conv(Zt

i); i.e., there exists some

σc > 0 such that ∇2
zi

Ct
i(zt

i) ≥ σcI. Moreover, the gradient of Ct
i(zt

i) with respect to zt
i is Lipschitz continuous

for any zt
i ∈ conv(Zt

i).

Since (6.17a) is strongly convex and that the constraints are convex, a unique solution zt∗
i exists for

given αt
i and βt

i, represented as the following mapping:

zt∗
i = bt

i(α
t
i,β

t
i). (6.18)

6.1.3.2 Social-welfare problem

Let gt(ŷt) be an affine function of the electrical quantities of interest ŷt, and let the following con-

straints capture network-level operational constraints at time t:

gt(ŷt) ≤ 0 . (6.19)

By equations (6.1)–(6.2), ŷt is affine in zt. For future development, define the vector-valued function

gt(zt) := [gt(ŷt(zt))>, . . . , gt+w(ŷt+w(zt+w))>]> within the time window Ww
t , which is affine in zt. Notice

that the operational constraints are usually “independent” in the sense that none of them will subsume any

other. We therefore have the following assumption.

Assumption 6.2. Function gt is an affine function of zt with full row rank.

With Assumption 6.2 and the boundedness of the set conv(Zt), the Jacobian of gt(zt) is bounded over

conv(Zt); i.e., there exists some constant σg > 0 such that

‖∇z gt(zt)‖F ≤ σg, ∀zt ∈ conv(Zt), (6.20)

where ‖ · ‖F denotes the Frobenius norm.

With these definitions in place, the following optimization problem is formulated to minimize the
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aggregate cost incurred by the customers, subject to network constraints:

(Pt
2) min

∑
i∈N

Ct
i(zt

i) (6.21a)

over zt, ŷt,αt,βt (6.21b)

s.t. pt
i = pt

i,0+
∑
d∈Di

pt
i,d, i ∈ N , (6.21c)

qt
i = qt

i,0+
∑
d∈Di

qt
i,d, i ∈ N , (6.21d)

ŷτ = Apτ + Bqτ + c, τ = t, . . . , t + w, (6.21e)

gt(ŷt) ≤ 0, (6.21f)

zt
i = bt

i(α
t
i,β

t
i), ∀i ∈ N , (6.21g)

where (6.21g) explicitly accounts for the solution of the customer-level problem (Pt
1,i). Notice that αt and

βt are optimization variables, and they are designed in a way that customer responses (6.21g) do not lead to

violation of network constraints.

Notice that even though (6.21g) renders problem (Pt
2) nonconvex as it is usually not affine, convex

reformulation and exact convex relaxation utilized in Section 4.2.1 still apply to (Pt
2). Before outlining the

solution approach to address nonconvexity brought in by (6.21g) (see Section 6.2.1), we briefly explain how

to recover discrete control actions for the devicesDS i in this scenario next.

6.1.3.3 Recovering feasible power setpoints

For a device d ∈ DS i with discrete power commands, the solution pt∗
i,d of the problem (Pt

1,i) may not be

implementable, since it is computed based on the convex hull of the discrete set Pt
i,d. To recover a feasible

command implementable at time t, notice that pt∗
i,d ∈ conv(Pt

i,d) can be written as a convex combination∑
m θm ptm

i,d of certain points ptm
i,d in Pt

i,d, where θm ≥ 0 are such that
∑

m θm = 1. Then, a feasible power

command ptm
i,d ∈ P

t
i,d can be randomly selected with probability θm.

As an illustrative example, assume that a device has two feasible power commands denoted by pt1
i,d

and pt2
i,d. It follows that pt1

i,d ≤ pt∗
i,d ≤ pt2

i,d. Then, one can select pt1
i,d with probability (pt2

i,d − pt∗
i,d)/(pt2

i,d − pt1
i,d),

and pt2
i,d with probability (pt∗

i,d − pt1
i,d)/(pt2

i,d − pt1
i,d).
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6.2 Distributed Stochastic Dual Algorithm

At time t, problem (Pt
2) naturally leads to a Stackelberg game where: (i) αt and βt are calculated via

(Pt
2) by the network operator and broadcasted to all nodes i ∈ N ; and, (ii) each consumer computes the

power set points zt∗
i from (Pt

1,i). By design, zt∗ is in fact an optimal point for (Pt
2).

In the following, we first recall a result presented in Section 4.2.1 to obtain an exact convex relaxation

of (Pt
2) regarding non-convex constraint (6.21g). Then, Section 6.2.2 and Section 6.2.3 will present a

stochastic dual algorithm to identify optimal points of (Pt
2) and to recover feasible power commands for

devices in {DS i}.

6.2.1 Exact Convex Relaxation

Consider the following convex optimization problem:

P
t
3) min

∑
i∈N

Ct
i(zt

i) (6.22a)

over zt, ŷt (6.22b)

s.t. pt
i = pt

i,0+
∑
d∈Di

pt
i,d, i ∈ N , (6.22c)

qt
i = qt

i,0+
∑
d∈Di

qt
i,d, i ∈ N , (6.22d)

ŷτ = Apτ + Bqτ + c, τ = t, . . . , t + w, (6.22e)

gt(ŷt) ≤ 0, (6.22f)

zt
i ∈ conv(Zt

i), i ∈ N , (6.22g)

which is obtained from (Pt
2) by dropping the nonconvex constraint (6.21g) and instead adding the device-

specific constraints (6.22g). The following is assumed.

Assumption 6.3. Problem (Pt
3) is strictly feasible, i.e., it satisfies Slater’s condition at each time t.

Given the strong convexity of the cost function (6.22a) in zt, a unique optimal solution exists for

problem (Pt
3). Leveraging the results of Section 4.2.1, we can show that (Pt

3) together with a particular

choice of αt and βt lead to an exact convex relaxation of (Pt
2); i.e., the solution of (Pt

3) coincides with an
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optimal solution of (Pt
2). Specifically, substitute (6.22c)–(6.22e) into (6.22f), and denote by µτ the dual

variable associated with the constraints (6.22f) for a given τ. Let ŷt∗ be the optimal solution of (Pt
3), and

denote the optimal dual variables associated with (6.22f) as µτ∗ for time τ. Consider then the following

choice for αt and βt:

ατ∗ = −A>∇ŷgτ(ŷτ∗)µτ∗, (6.23a)

βτ∗ = −B>∇ŷgτ(ŷτ∗)µτ∗? (6.23b)

for all τ = t, . . . , t + w. Then, Theorems 4.1–4.2 can be extended to obtain the following result.

Theorem 6.1. Under Assumptions 6.1–6.3, it follows that (αt∗,βt∗) defined by (6.23) are bounded. More-

over, the solution of problem (Pt
3) along with (αt∗,βt∗) defined in (6.23) is a globally optimal solution of the

nonconvex problem (Pt
2).

Hereafter, we will refer to the globally optimal solutions of (Pt
3) and (Pt

2) interchangeably, depend-

ing on the context. In the next section, we will design a stochastic dual algorithm for solving (Pt
3) in an

offline or batch setting, and show how to recover feasible commands for devices with discrete power levels.

Subsequently, we will develop an online stochastic dual algorithm.

Remark 6.1. From a practical standpoint, αt and βt can be interpreted as “incentive signals” or “prices”

that the network operator communicates to customers to ensure that engineering constraints in the network

are satisfied. For example, when yt collects voltage magnitudes and the function g is designed to ensure

voltage regulation, αt and βt can be understood as prices of voltage violation.

6.2.2 Offline Stochastic Dual Algorithm

Consider the Lagrangian function associated with (Pt
3):

Lt(zt,µt) =
∑
i∈N

Ct
i(zt

i) + µt>gt(zt), (6.24)

where µt is the vector of dual variables associated with the network constraints (6.22f). The Lagrangian (6.24)

is obtained by substituting (6.22c)–(6.22e) into (6.22f) and by keeping the constraints (6.22g) implicit. De-
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fine the primal optimal solution at time t as for a given dual µt:

zt∗ := arg min
zt

Lt(zt,µt), (6.25a)

s.t. (6.22g), (6.25b)

and consider the following dual problem

max
µt≥0

ht(µt) (6.26)

where the dual function is defined as:

ht(µt) = Lt(zt∗,µt). (6.27)

We then have the following result.

Lemma 6.1 (Theorem 2.1 of [93]). Under Assumptions 6.1–6.2, the gradient of the dual function is given

by ∇µht(µt) = gt(zt∗). Furthermore, the gradient of the dual function is Lipschitz continuous with constant

σ2
g

σc
, i.e.,

‖∇µht(µ) − ∇µht(µ̃)‖ ≤
σ2

g

σc
‖µ − µ̃‖ (6.28)

for any feasible µ and µ̃.

Using the results of Theorem 2.1 of [93], we augment a dual gradient method for solving (6.26) with

the a randomization strategy to recover discrete power commands at each iteration. The resultant stochastic

dual gradient algorithm involves a sequential execution of the following steps:

[S1] zt∗(k + 1) = arg min
zt

Lt(zt,µt(k)), s.t. (6.22g), (6.29a)

[S2] For d ∈ DS i , pick zt
i,d(k + 1) ∈ Zt

i,d randomly based on

zt∗
i,d(k + 1) using scheme described in Section 6.1.3.3, (6.29b)

[S3] Set zτi,d(k + 1) = zτ∗i,d(k + 1),∀d ∈ DS i , ∀τ , t,

and zt
i,d(k + 1) = zt∗

i,d(k + 1),∀d ∈ DFi , (6.29c)

[S4]µt(k + 1) =
[
µt(k) + εgt(zt(k + 1))

]
+ , (6.29d)
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where [ ]+ denotes the projection onto the nonnegative orthant, and ε > 0 is a given constant stepsize. Notice

that (6.29c) recovers feasible power commands only for the current time t (and not for τ = t + 1, . . . , t + w).

Further, in step (6.29d), gt(zt(k + 1)) is stochastic gradient of h(µt(k)) with E[h(µt(k))] = gt(zt∗(k + 1)) (the

gradient).

Lemma 6.2. Under Assumptions 6.1-6.2, the dual function ht(µt) is strongly concave.

Proof. By definition, the dual function is given by

ht(µt) = min
zt

∑
i∈N

Ct
i(zt

i) + µt>gt(zt)

= −max
zt

∑
i∈N

−Ct
i(zt

i) − µ
t>gt(zt). (6.30)

On the other hand, the conjugate function of
∑

i∈N Ct
i(zt

i) is defined as

C̃t(φt) =
∑
i∈N

C̃t
i(φ

t
i) := max

zt
φt> zt −

∑
i∈N

Ct
i(zt

i), (6.31)

which further gives:

C̃t(−∇z gt · µt) = max
zt
−(∇z gt · µt)> zt −

∑
i∈N

Ct
i(zt

i).

Under Assumption 6.2, gt is affine in zt. Therefore, ht(µt) = −C̃t(−∇z gtµt). Moreover, under As-

sumption 6.1, it follows from [103, Proposition 12.60] that the conjugate function C̃t
i(φ

t
i) is strongly convex.

Thus ht(µt) is strongly concave. �

Let σh > 0 be the strong concavity coefficient of ht(µt); that is, for any feasible µ and µ̃, it holds that:

(
∇µht(µ) − ∇µht(µ̃)

)>(µ − µ̃) ≤ −σh‖µ − µ̃‖
2. (6.32)

Furthermore, let ∆ > 0 be a given scalar such that the following holds uniformly in time:

Var
(
gt(zt)

)
:= E[‖gt(zt)‖2] − ‖gt(zt∗)‖2 ≤ ∆, (6.33)

where the variance is taken with respect to the randomization step (6.29c). In other words, Var
(
gt(zt)

)
represent the variance of the discrepancy between the constraint function evaluated at the relaxed solution

and at the randomized solution.

The following convergence result for the dual variables can be stated.
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Theorem 6.2. Under Assumptions 6.1–6.3, and with a stepsize ε chosen such that

0 < 1 + ε2σ4
g/σ

2
c − 2εσh < 1, (6.34)

the stochastic dual algorithm (6.29) converges as

lim
k→∞

E[‖µt(k) − µt∗‖2] =
ε∆

2σh − εσ
4
g/σ

2
c
. (6.35)

2

Proof. Let µt∗ be the vector of unique optimal dual variables. Then,

E
[
‖µt(k + 1) − µt∗‖2

∣∣∣µt(k)
]

≤ E
[
‖µt(k) + εgt(zt(k + 1)) − µt∗ − εgt(zt∗)‖2

∣∣∣µt(k)
]

= ‖µt(k) − µt∗‖2 + ε2E
[
‖gt(zt(k + 1)) − gt(zt∗)‖2

∣∣∣µt(k)
]
+ 2ε(µt(k) − µt∗)>(gt(zt∗(k + 1)) − g(zt∗))

= ‖µt(k) − µt∗‖2 + ε2E
[
‖gt(zt(k + 1)) − gt(zt∗)‖2

∣∣∣µt(k)
]
+ 2ε(µt(k) − µt∗)>(∇ht(µt(k)) − ∇ht(µt∗))

≤ ‖µt(k) − µt∗‖2 + ε2E
[
‖gt(zt(k + 1)) − gt(zt∗)‖2

∣∣∣µt(k)
]
− 2εσh‖µ

t(k) − µt∗‖2,

where the first inequality follows from the non-expansiveness property of the projection operator; the first

equality is due to the the fact that gt is linear and it accounts for the recovery of discrete solutions; the

second equality follows from Lemma 6.1; and the last inequality is due to the strong concavity of ht(µt).

Notice that

E
[
‖gt(zt(k + 1)) − gt(zt∗)‖2

∣∣∣µt(k)
]

= Var
(
gt(zt(k + 1))

∣∣∣µt(k)
)

+ ‖gt(zt∗(k + 1)) − gt(zt∗)‖2

≤ ∆ + ‖∇ht(µt(k)) − ∇ht(µt∗)‖2

≤ ∆ + σ4
g/σ

2
c‖µ

t(k) − µt∗‖2,

where the last inequality is due to the Lipschitz continuity of ∇ht(µt). We then obtain the following inequal-

ity:

E
[
‖µt(k + 1) − µt∗‖2

∣∣∣µt(k)
]
≤ (1 + ε2σ4

g/σ
2
c − 2εσh)‖µt(k) − µt∗‖2 + ε2∆ .
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By taking the total expectation on both sides and by recursively computing the steps above, one obtains:

E
[
‖µt(k + 1) − µt∗‖2

]
≤ (1 + ε2σ4

g/σ
2
c − 2εσh)kE

[
‖µt(1) − µt∗‖2

]
+ ε2∆(1 − (1 + ε2σ4

g/σ
2
c − 2εσh)k)/(2εσh − ε

2σ4
g/σ

2
c).

With ε chosen as in (6.34), the result (6.35) follows. �

Notice that (6.34) allows to select a stepsize ε > 0 that is “small enough” to satisfy the converge

requirement. It is also worth pointing out that when ∆ = 0 (i.e., no devices with discrete power commands

are present), the right-hand-side of (6.35) goes to zero, corresponding to (6.29) reducing to the standard dual

gradient algorithm when no discrete variables are present.

Corollary 6.1. When DS i = ∅ for all i (i.e., there are no discrete optimization variables), and under As-

sumptions 6.1–6.3, if the stepsize ε satisfies (6.34), then (6.29) converges to the exact optimal solution of

(Pt
3) asymptotically; i.e.,

limk→∞ ‖µ
t(k) − µt∗‖2 = 0 (6.36a)

limk→∞ ‖zt(k) − zt∗‖2 = 0 . (6.36b)

We next present a distributed implementation of the proposed method, along with a receding horizon

optimization strategy.

6.2.3 Distributed Implementation and Receding Horizon Optimization

The stochastic dual algorithm (6.29) can be implemented in a distributed fashion by leveraging the

decomposability of the Lagrangian function. Specifically, step (6.29a) is decomposable on a per-node basis,

where each customer/node i can update the power commands of the devices Di once the vectors (αt,βt)

are received. On the other hand, the dual step is performed by a network operator. The overall distributed

algorithm is tabulated as Algorithm 3.

Problem (Pt
3) is a multi-period problem. To optimize the operation of both network and devices,

problem (Pt
3) can be embedded into a receding horizon control (RHC) strategy [88] where:
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(i) At time t, the temporal window of w time slots Tk := {tk, tk+1, . . . , tk+w} is considered, and the offline

Algorithm 3 is utilized to solve (Pt
3) to convergence;

(ii) The solution {zt∗
i,d} corresponding the first slot t is implemented;

(iii) The temporal window is shifted of one time slot Tk → Tk+1; and,

(iv) Once the window is shifted, point (i) is repeated.

This strategy is consistent with traditional RHC methods. However, the premises here are that:

• Each time slot is “long enough” to allow the offline Algorithm 3 to converge to the solution of (Pt
3);

•Within each time slot, the problem inputs are not changing; i.e., prevailing ambient and operational con-

ditions are invariant over a time slot.

In the following section, we will present an online algorithm that can cope with cases where prevailing

ambient and operational conditions vary fast, and they lead to problem inputs that change even within an

iteration (or a few iterations) of the Algorithm 3. The resultant algorithm can be interpreted as a real-time

RHC strategy where the temporal window is shifted every iteration of the online algorithm (with the shift

being determined by the computational time of the algorithmic steps).

Remark 6.2. Since this chapter primarily focuses on the design and analysis of Algorithm 3 and its online

counterpart presented in Section 6.3, errors in the forecasting of problem inputs (such as maximum available

PV generation, uncontrollable loads, etc; e.g., [61,64]) are not considered in the chapter. On the other hand,

the proposed framework could be equally applicable to robust or chance-constrained counterparts of (Pt
3),

so long as the optimization problem is convex.
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Algorithm 3 Offline Distributed Algorithm
At time t,

repeat

[S1] Node i measure the state xt
i.

[S2] Given (αt
i(k),βt

i(k)), node i computes zt∗(k + 1) by solving (Pt
1,i), and recovers feasible power set

points zt(k + 1) for d ∈ DS i via randomization.

[S3] Node i updates pt
i(k+1) and qt

i(k+1) based on (6.2) and sends the results to the network operator.

[S4] Network operator calculates system states for τ = t, . . . , t + w as:

ŷτ(k + 1) = Apτ(k + 1) + Bqτ(k + 1) + c.

[S5] Network operator updates dual variables as:

µt(k + 1) =
[
µt(k) + εgt(ŷt(k + 1))

]
+.

[S6] Network operator computes the following quantities for τ = t, . . . , t + w:

ατ(k + 1) = −A>∇ŷgτ(ŷτ(k + 1))µτ(k + 1),

βτ(k + 1) = −B>∇ŷgτ(ŷτ(k + 1))µτ(k + 1),

and sends them to the nodes.

until meeting stopping criterion

6.3 Online and Asynchronous Optimization

In this section, we address the case where computational and communication constraints may render

infeasible the distributed solution of (Pt
3) — and, hence, (Pt

2) — to convergence (i.e., offline solution) at a

timescale that is consistent with the variability of the underlying ambient and operational conditions. We

consider a situation with:

(i) Real-time implementation: power setpoints are implemented whenever they are updated numeri-

cally.

(ii) Asynchronous computation: power setpoints for devices in the setDFi (with continuous decision
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Figure 6.1: Illustration of the online asynchronous distributed algorithm.

variables) are updated every iteration of the algorithm (e.g., every second or a few seconds); on the other

hand, the setpoints of device DS i (with discrete decision variables) are updated at a slower time scale (de-

pending on, e.g., the availability of the device). This leads to an asynchronous control algorithm, where

different devices are controlled at different timescales.

(iii) The temporal window of the multi-period problem is advanced at each iteration (or every few

iterations, depending on particular implementations) of the algorithm.

(iv) The resultant online algorithm will leverage feedback (see also [39, 138]), to substitute the lin-

earized model (6.1) with measurements of ŷt for the first timeslot of the optimization window. This accounts

for the nonlinear power flows and also helps reduce communication and computation overhead.

6.3.1 Online Asynchronous Algorithm

Let Ti,d := {t1
i,d, t

2
i,d, . . .} denote the set of time indexes where the device d of node i updates the local

variables. Let |Ti,d | denote the cardinality of Ti,d. Let Dt
i ⊂ Di be the subset of devices that update power

setpoints at time t, and let Dt =
⋃

i∈N D
t
i. The quantities {zt

i,d}d<Dt are treated as constants at time t; thus,

define a “reduced” Lagrangian as

Lt
r
(
{zt

i,d}d∈Dt ,µt
r
)

:= Lt({zt
i,d}d∈Dt ,µt

∣∣∣{zt
i,d}d<Dt

)
, (6.37)
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and define its corresponding “reduced” dual function as:

ht
r(µ

t
r) := min

{zt
i,d}d∈Dt

Lt
r
(
{zt

i,d}d∈Dt ,µt
r
)
, (6.38)

whose unique optimal solution is:

µt∗
r := arg max

µt
r≥0

ht
r(µ

t
r). (6.39)

Based on the definitions above, we propose the online asynchronous algorithm tabulated as Algorithm 4.

Notice that we have included an additional subscript to denote the time when decision variables are calcu-

lated; e.g., µt+1
r,t is the dual vector for the reduced Lagrangian from t + 1 to t + w + 1 calculated at time t. We

also recall that in Algorithm 4, only one iteration is carried out at time t, and then the temporal window is

shifted from t to t + 1.

6.3.2 Performance Analysis

To analyze the performance of Algorithm 4, the following assumptions are made.

Assumption 6.4. There exists some constant e > 0 such that the variation of the optimal µ∗r of (Pt
3) over

any two consecutive timeslots is bounded as

‖µt+1∗
r − µt∗

r ‖
2 ≤ e, ∀t. (6.40)

This is a standard assumption in the domain of time-varying optimization [39,109] to characterize the

variability of optimal solutions from the current timeslot to the next (and, hence, the variability of problem

inputs).

Let ŷt := [ŷt>, ŷt+1>, . . . , ŷt+w>]>, and yt := [yt>, ŷt+1>, . . . , ŷt+w>]>, where the first element of the

vector ŷt is measured from the grid. We next assume bounded error due to the linearization of power flow

equations.

Assumption 6.5. Given any feasible power injection zt, there exists a constant ρ > 0 such that

‖gt(yt(zt)) − gt(ŷt(zt))‖2 ≤ ρ. (6.41)
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Algorithm 4 Online Asynchronous Algorithm
At time t,
[S1] Node i updates measures xt

i,t.
[S2] Given (αt

i,t−1,β
t
i,t−1), Node i sets zt

i,d,t = zt−1
i,d,t−1, ∀d < Dt

i, and solves (Pt
1,i) over {zt

i,d,t}d∈Dt
i

to get
the solution {zt∗

i,d,t}d∈Dt
i
. Recover and implement discrete power set points forDS i via randomization, with

E[zt
i,d,t] = zt∗

i,d,t.
[S3] Node i calculates future aggregated power (zt+1∗

i,t , . . . , zt+w∗
i,t ) based on (6.2), and sends the result to

network operator.
[S4] Network operator measures the current states yt

t, and estimates the future states ŷτt for τ = t+1, . . . , t+
w by

ŷτt = Apτ∗t + Bqτ∗t + c.

[S5] Network operator updates the dual variables for t + 1 with measured states by

µt+1
r,t =

[
µt

r,t−1 + εgt(yt
t)
]
+.

and updates the dual variables for τ = t + 1, . . . , t + w with predicted states by

µτ+1
r,t =

[
µτr,t−1 + εgτ(ŷτt )

]
+.

[S6] Network operator updates signals for t + 1 by

αt+1
t = −A>∇ŷgt(yt

t)µ
t+1
r,t , β

t+1
t = −B>∇ŷgt(yt

t)µ
t+1
r,t ,

and those for τ = t + 1, . . . , t + w by

ατ+1
t =−A>∇ŷgτ(ŷτt )µτ+1

r,t , β
τ+1
t =−B>∇ŷgτ(ŷτt )µτ+1

r,t ,

and sends the results (αt+1
i,t ,β

t+1
i,t ) to node i.

[S7] Shift temporal window from t to t + 1, and go to [S1].
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Then, the following convergence result can be stated.

Theorem 6.3. Under Assumptions 6.1–6.5, and given a stepsize ε chosen to satisfy (6.34), Algorithm 4

converges as

lim sup
t→∞

E
[
‖µt+1

r,t − µ
t+1∗
r ‖2

]
=

ε2∆ + ε2ρ + e
2εσh − ε2σ4

g/σ
2
c
. (6.42)

Proof. Denote by µt+1
t,r the dual produced by Algorithm 4 at time t and µt+1∗

r the optimal dual solution. We

have

E
[
‖µt+1

t,r − µ
t+1∗
r ‖2

]
≤ E

[
‖µt

r,t−1 + εgt(ŷt
t−1) + εgt(yt

t−1) − εgt(ŷt
t−1) − µt∗

r + µt∗
r − µ

t+1∗
r ‖2

]
≤ E

[
‖µt

r,t−1 + εgt(ŷt
t−1) − µt∗

r ‖
2 + ‖µt∗

r − µ
t+1∗
r ‖2 + ‖εgt(yt

t−1(zt
t−1)) − εgt(ŷt

t−1(zt
t−1))‖2

]
≤ E

[
‖µt

r,t−1 + εgt(zt
t−1) − µt∗

r − εgt(z∗)‖2
]
+ e + ε2ρ,

where the last inequality is due to (6.40)–(6.41). Using Lemma 6.1 and Lemma 6.2 (which still hold for the

reduced dual function), and recalling that ∆ is the upper bound on the variance Var(gt(zt)), one has that:

E
[
‖µt+1

r,t − µ
t+1∗
r ‖2

]
≤ (1 + ε2σ4

g/σ
2
c − 2εσh)E

[
‖µt

r,t−1 − µ
t∗
r ‖

2] + ε2∆ + ε2ρ + e

≤ (1 + ε2σ4
g/σ

2
c − 2εσh)tE

[
‖µ1

r,0 − µ
1∗
r ‖

2] + (ε2∆ + ε2ρ + e)
1 + (1 + ε2σ4

g/σ
2
c − 2εσh)t

2εσh − ε2σ4
g/σ

2
c

.

Selecting the stepsize ε in a way to satisfy (6.34), and letting t → ∞, the main result (6.42) follows. �

The bound (6.42) provides a characterization of the discrepancy between the optimal dual variable

and the dual variable generated by the online algorithm. The asymptotic bound depends on the underlying

dynamics of the optimization problem through e and on the measurement errors and linearization errors

through ρ. The result (6.42) can also be interpreted as input-to-state stability, where the trajectory of the

optimal dual variables is taken as a reference.

The result (6.42) also suggests ways to improve the performance of Algorithm 4 in terms of tracking.

For example, more frequent updates leads to smaller e; a finer control granularity for discrete devices leads

to a smaller ∆.
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6.4 Numerical Examples

6.4.1 Simulation Setup

Consider a modified version of the IEEE 37-node test feeder shown in Fig. 4.1. The modified network

is obtained by considering the phase “c” of the original system and by replacing the loads specified in the

original dataset with real load data measured from feeders in Anatolia, California during a week of August

2012 [15]. Particularly, the data have a granularity of 1 second, and represent the loading of secondary

transformers. Line impedances, shunt admittances as well as active and reactive loads are adopted from

the respective data set. It is assumed that 18 PV systems are located at nodes 4, 7, 10, 13, 17, 20, 22, 23,

26, 28, 29, 30, 31, 32, 33, 34, 35 and 36, and their generation profiles are simulated based on the real solar

irradiance data available in [15]. The ratings of these inverters are 300 kVA for i = 3, 350 kVA for i = 15, 16,

and 200 kVA for the remaining inverters. Loads and the power available from a PV system with capacity of

50 kW are reported in Fig. 6.2 for illustrative purpose. We then install 15 A/Cs and 15 batteries at each of

the following 25 nodes: 2, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 33, 35

and 36, totaling 375 A/Cs and 375 batteries. The detailed simulation modeling of PV inverters, A/Cs, and

batteries are described as follows.

PV inverters: The PV inverters’ objective functions are set uniformly to

Ct
i,d(pt

i,d, q
t
i,d) = cp(pav,t

i,d − pt
i,d)2 + cqqt2

i,d, (6.43)

with positive constant cp and cq, in an effort to minimize the amount of real power curtailed from the

available power pav,t
i,d based on irradiance conditions at time t, and the amount of reactive power injected or

absorbed. PV inverters are set to be updated every second within a convex feasible set as (6.3).

A/Cs: We set a uniform cost function for all A/Cs as

Ci,d(Tt
i,d) = ct‖Tt

i,d − 1 · T nom
i,d ‖

2, (6.44)

where ct is positive constant, T nom
i,d is a preferred room temperture set at 75◦F, and the future room temper-

ature and constraints are modeled according to (6.8)–(6.10) with θ1 uniformly set to 0.1, and θ2 randomly
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picked from [−0.0009,−0.0011]. The acceptable ranges of room temperatures are set to [70◦F, 80◦F]. Each

A/C updates every 15 minutes with two possible power status: 4 kW (on) and 0 (off).

Batteries: We set a uniform cost function for batteries as

Ci,d(St
i,d) = cb‖St

i,d − 1 · S nom
i,d ‖

2, (6.45)

where cb is a positive constant, S nom
i,d is a preferred battery state of charge set to 0.5 for all batteries for

illustrative purpose, and the battery dynamics and constraints are modeled as (6.12)–(6.13), with charg-

ing/discharging efficiency ξ set to 1 and SOC bounds to [0.2, 0.8] uniformly for simplicity.1 For each

battery, we set a uniform charging rate of 4 kW, and a fixed discharging rate randomly picked between

3.6 kW and 4.4 kW. Batteries update power status of charging/off/discharging every 15 minutes.

Operational constraints gt(ŷt) ≤ 0 are set to voltage regulation:

vi ≤ v̂t
i ≤ vi, (6.46)

with voltage upper and lower bounds vi and vi set to 1.04 p.u. and 0.96 p.u. respectively for ∀i ∈ N .

For the rest of this section, we will focus on illustrating performance of online asynchronous algo-

rithm, i.e., Algorithm 4. We refer to numerical results in Chapter 5 for numerical examples of stability

analysis for offline algorithm.

1 Here, this battery model is simplified for better illustrating battery’s response towards signals. In practice, one can apply
objective function to avoid frequent switch between charging and discharging, deep charge/discharge that can damage battery, etc.,
and the constraints can involve charging deadline, e.g., charge the EV battery with at least 90% SOC by 8 am.
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Figure 6.2: Profiles of loads and power available from the PV systems. The average load profile

is marked in blue.

6.4.2 Online Asynchronous Distributed Algorithm

We implement Algorithm 4 for one day to coordinate network operator and customers to achieve

operational and economic goals, and examine individual and aggregate behaviors of the controllable devices.

The asynchrony is simplified as follows: at the beginning of every minute, one-fifth of A/Cs and batteries

update their setpoints while the rest maintain previous decisions. In practice, more asynchronous updates

are expected, which usually leads to better and smoother results.

6.4.2.1 Dynamics of Individual Device

We first zoom in to examine individual controllable devices.

PV inverter: We select an arbitrary PV inverter and plot its power output in Fig. 6.3. Positive real

power curtailment and negative reactive power injection can be observed in response to the signal that

incentivizes negative power injection.

A/C: We select an arbitrary house from an arbitrary node and plot its inside temperature. As shown in

Fig. 6.4, the room temperature is controlled within the acceptable range.

Battery: We select an arbitrary battery and plot its SOC along with its power setpoint in Fig. 6.5. We

observe a SOC near 0.5 but deviating due to the response to incentive signal, which we will further illustrate
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later.

6.4.2.2 Aggregated Behavior & Voltage Regulation

We zoom out to examine the aggregated behavior of hundreds of discrete devices.

As shown in Fig. 6.6, the temperatures of all 375 houses with A/Cs are controlled within the accept-

able temperature range, with an average temperature around the preferred value of 75◦F. Tighter temperature

bounds can be achieved by finer control granularity and more frequent control.

Fig. 6.7 shows the SOCs of all 375 batteries, together with exemplifying incentive signals for real

power at 3 of nodes (see equation (6.23)). One can observe that batteries are incentivized to charge more

during the middle of the day with average SOC higher than the preferred one.

Lastly, we plot the voltage in Fig. 6.8. Due to coordinated efforts of all controllable devices, the

voltage magnitude is brought within the upper bound, compared with uncontrolled one.

6.5 Conclusion

We have proposed a distributed stochastic dual algorithm for managing DERs with both continuous

and discrete decision variables as well as device dynamics, and extended it to the practical realtime setting

with time-varying operating conditions, asynchronous updates by devices, and feedback being leveraged

to account for nonlinear power flows as well as reduce communication overhead. The resulting algorithm

provides a general online stochastic optimization algorithm for coordinating networked DERs to meet op-

erational and economic objectives and constraints. We characterize the convergence of the algorithm an-

alytically and evaluate its performance numerically. Particularly, the convergence characterization of the

proposed stochastic dual algorithm is the first of its kind in power system to our best knowledge.
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Figure 6.3: Power output of one arbitrary PV inverter.
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Figure 6.4: Temperature and power status of one arbitrary A/C.
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Figure 6.5: SOC and power status of one arbitrary battery.
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Figure 6.6: Temperatures of 375 households under control by A/Cs.

Figure 6.7: SOCs of 375 batteries under control and signals.
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Figure 6.8: Uncontrolled and controlled voltages.



Chapter 7

Other Works

This chapter consists of some other works of mine, organized as follows.

Section 7.1 seeks contribution in the domain of reactive power compensation by establishing stability

of local Volt/VAR controllers. In lieu of the approximate linear surrogate used in the existing work, the

paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model.

Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAR control,

cast the Volt/VAR dynamics as a game, and leverage the fixed-point theorem as well as pertinent contraction

mapping argument. Numerical examples are provided to complement the analytical results.

Section 7.2 takes a new approach to investigate synchronization in networks of coupled oscillators.

We show that the coupled oscillator system when restricted to a proper region is a distributed partial primal-

dual gradient algorithm for solving a well-defined convex optimization problem and its dual. We charac-

terize conditions for synchronization solution of the KKT system of the optimization problem, based on

which we derive conditions for synchronization equilibrium of the coupled oscillator network. This new

approach reduces the hard problem of synchronization of coupled oscillators to a simple problem of ver-

ifying synchronization solution of a system of linear equations, and leads to a complete characterization

of synchronization condition for the coupled oscillator network in an interesting and practically important

region. Our synchronization condition is stated elegantly as the existence of solution for a system of lin-

ear equations, of which one best existing synchronization condition is a special sufficient condition case.

In addition, we formulate a non-convex optimization problem with the force balance constraint for which

the afore convex optimization problem is relaxation, and show that the coupled oscillator system is also a
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distributed algorithm for solving this non-convex problem. This has interesting implication on exact convex

relaxation, and confirms the insight that a physical system usually solves a convex problem even though it

may have a non-convex representation.

Section 7.3 proposes a promising way to mitigate the wireless cellular capacity shortfall in the pres-

ence of ever-increasing wireless data demand. We formulate demand shaping as an optimization problem

that minimizes the variation in aggregate traffic. We design a distributed and randomized offline demand

shaping algorithm under complete traffic information and prove its almost surely convergence. We further

consider a more realistic setting where the traffic information is incomplete but the future traffic can be

predicted to a certain degree of accuracy. We design an online demand shaping algorithm that updates the

schedules of deferrable applications (DAs) each time when new information is available, based on solving

at each timeslot an optimization problem over a shrinking horizon from the current time to the end of the

day. We compare the performance of the online algorithm against the optimal offline algorithm, and provide

numerical examples to complement the theoretical analysis.

Related works have been published in [132, 133, 135, 142].
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7.1 Local Volt/VAR Control with Nonlinear Power Flow Model: A Game-Theoretic Per-

spective

7.1.1 Introduction

Previously, we have studied the Volt/VAR control grounded on a linearized AC power flow model for

mathematical tractability. With a linearized model, voltage values can be approximated as a linear function

of reactive power injections. In contrast, this section seeks an analytical characterization of Volt/VAR control

using exact nonlinear AC power flow models. To this end, the section utilizes a reverse-engineering approach

to cast the nonlinear dynamical system with non-incremental Volt/VAR control as a game, where each node

acts as a “self-interested player” who uses its local control function as a best-response strategy to minimize

its own cost function. Using this approach, we show that the equilibrium of the Volt/VAR control dynamics

is equivalent to the equilibrium of the resulting game. We further prove the existence and uniqueness of the

equilibrium by leveraging the fixed-point theorem as well as contraction mapping argument.

7.1.2 Local Volt/VAR Control with Nonlinear Power Flow Model

The power flow equations (2.1) can be represented in the following compact form:

F(P,Q, `, v, q) = 0, (7.1)

where F is twice continuously differentiable with respect to q and y := (P,Q, `, v). For prevailing ambient

conditions, given the reactive powers q, y is uniquely determined for distribution networks setups where

v0 ≈ 1 and ri j, xi j are sufficiently small [35]. It has also been shown in [35] (Proposition 4-1) that, under

the setup of v0 ≈ 1 and small ri j, xi j, the Jacobian matrix ∂yF(y, q) is nonsingular for a topology of one

main feeder with its direct laterals. This result can be straightforwardly extended to general radial networks

where laterals may have laterals and so on, because the corresponding expanded Jacobian matrix keeps the

same crucial properties for both its diagonal and off-diagonal blocks. We therefore focus on the setup of

v0 ≈ 1 and small ri j, xi j in this part. Then, by the implicit function theorem, it follows that equation (7.1)

(i.e., equations (2.1)) defines implicitly a twice continuously differentiable function y = y(q). Since Ω is
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compact, ∂qy(q) is bounded uniformly on Ω, i.e., the first-order derivatives of P,Q, `, v with respect to q are

all bounded on Ω.

Specifically, we represent voltage magnitude as a function of q:

v = v(q), (7.2)

with bounded ∂vi
∂q j
, ∀i, j ∈ N . Define the reactance matrix X = [Xi j]n×n with entries

Xi j :=
∑

(h,k)∈Li∩L j

2 · xhk > 0.

It is straightforward to check that X is symmetric. In the following, we will particularly relate the derivative

of v with respect to q to the matrix X, which will be useful for the analysis in Section 7.1.3.2.

Lemma 7.1. In a radial distribution system, for ∀i, j ∈ N , we have∣∣∣∣∣∣ ∂vi

∂q j

∣∣∣∣∣∣ ≤ (1 + η)Xi j, (7.3)

for some η > 0.

Proof. In Chapter 2, we have shown that for the linearized and lossless power flow models (i.e., terms

involving `lk, ∀(l, k) ∈ L, are all set to zero), the approximated voltage value, denoted v̂, satisfies:

v̂ = Xq + ṽ, (7.4)

where ṽ is a constant determined by the system setup.

Considering the nonlinear model, we add up (4.1c) from any node i ∈ N all the way back to node 0

to obtain:

vi = v0 +
∑

(l,k)∈Li

(
2(rlkPlk + xlkQlk) − (r2

lk + x2
lk)`lk

)
= v̂i + 2

∑
(l,k)∈Li

(
rlk

∑
(r,s)∈L̃k

rrs`rs
)

+ 2
∑

(l,k)∈Li

(
xlk

∑
(r,s)∈L̃k

xrs`rs
)
−
∑

(l,k)∈Li

(r2
lk + x2

lk)`lk.

Let Gi(`) denote the three summation terms on the right-hand side of (7.5), and substitute v̂ with (7.4). Then

equation (7.5) takes a simpler form of

vi =
∑
m∈N

Ximqm + ṽi + Gi(`). (7.5)
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Notice that Gi(`) is a function of single variable ` with an order of one. Take derivative of (7.5) on both

sides with respect to q j from any bus j ∈ N , and we have

∂vi

∂q j
= Xi j +

∂Gi(`)
∂q j

, (7.6)

and thus ∣∣∣∣∣∣ ∂vi

∂q j

∣∣∣∣∣∣ ≤ Xi j +

∣∣∣∣∣∣∂Gi(`)
∂q j

∣∣∣∣∣∣ .
Since |∂`lk

∂q j
| is bounded and Xi j is nonzero,1 there exists an ηi j > 0 such that∣∣∣∣∣∣∂Gi(`)

∂q j

∣∣∣∣∣∣ ≤ ηi j · Xi j.

Take η = max
i, j∈N

ηi j, and the inequality (7.3) follows. �

Remarks: An accurate characterization of η is challenging. In the numerical experiments, we have

found that η is usually a small number. For example, η ≤ 0.2 with the setup of the 42-bus distribution

network used in Section 7.1.4. This is due to the fact that
∣∣∣∣∂`lk
∂q j

∣∣∣∣ is bounded, and that rlk, xlk are small.

Equation (7.2) together with the control function (2.12b) yields the following nonlinear dynamical

system for Volt/VAR control:

v(t) = v(q(t)), (7.7a)

qi(t + 1) =
[
f (vi(t) − vnom

i )
]
Ωi
, (7.7b)

with locally measured v(t) as the only control input, and q(t) the only control variables.

Definition 7.1. A point (q∗, v∗) is called an equilibrium, if it is a fixed point of the dynamical system (7.7),

i.e.,

v∗ = v(q∗), (7.8a)

q∗ =
[
f (v∗ − vnom)

]
Ω . (7.8b)

1 Here we have assumed that, without loss of generality, the bus 0 has only one child node. Notice that, when the bus 0 has
multiple child nodes, as the squared voltage magnitude v0 is a constant, the branches of different child nodes are independent.
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7.1.3 Voltage Control Game

It has been shown in [44] that, given voltage vi(t), the reactive power qi(t + 1) in (7.7b) is the unique

solution of the following optimization problem:

qi(t + 1) = arg min
qi∈Ωi

ui(qi; vi(t)), (7.9)

where

ui(qi; vi) := Ci(qi) + qivi (7.10)

with Ci(qi) := −
∫ qi

0 f −1
i (q)dq is a convex function since f −1

i is non-increasing under Assumption 2.1. This

result motivates us to cast the dynamics (7.7) as a game as shown next.

7.1.3.1 A Game-Theoretic Perspective

We view each node i ∈ N as a player with strategy space Ωi and a cost function ui(qi; vi(q)) defined

by (7.10). Recalling that Ω := ×
i∈N

Ωi, the voltage control game is defined next.

Definition 7.2. A non-cooperative voltage control game is defined as a tripleGvc := {N ,Ω, (ui(qi; vi(q)))i∈N },

where the strategic interaction among players is through the voltage vi(q), i ∈ N .

In consistence with the introduction of the cost function ui, we need to extend the concept of usual

Nash equilibrium.

Definition 7.3. An equilibrium of the voltage control game Gvc is a tuple (q∗; v∗) such that ∀i ∈ N , q∗i is the

best response to vi(q∗), i.e., for ∀i ∈ N ,

ui(q∗i ; v∗i ) ≤ ui(qi; v∗i ), ∀qi ∈ Ωi, (7.11a)

v∗ = v(q∗). (7.11b)

In the above definition of equilibrium, the buses respond directly to given voltages. Similar to the

price-taking behavior of the agents in a competitive market, we call such a behavior here signal-taking, i.e.,
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when a bus makes decisions, it takes the voltage vi as given but does not take into consideration the impact

of its own decision upon the voltages.2

Recall that vi(q) is the implicit function from the implicit equation (7.17) (i.e., the power flow equa-

tions (2.1)), the following result is immediate.

Theorem 7.1. The dynamical system (7.7) can be viewed as the best response algorithm for the voltage

control game Gvc. Moreover, a point (q∗, v∗) is an equilibrium of (7.7) if and only if (q∗, v∗) is an equilibrium

of Gvc.

We further show the existence of the equilibrium of Gvc.

Theorem 7.2. Given the continuous Volt/VAR control functions f (·), there exists an equilibrium for the

voltage control game Gvc.

Proof. Recalling from Section 7.1.2 that v(q) is continuously differentiable, we know that the best response

algorithm of the game Gvc, i.e., the dynamical system (7.7), is a continuous mapping from Ω to itself. Since

Ω is compact, by Brouwer’s fixed-point theorem there exists an equilibrium for the game Gvc. �

7.1.3.2 Convergence of Dynamics and Uniqueness of Equilibrium

In this subsubsection, we establish a sufficient condition for convergence of the dynamical system

(7.7) by leveraging the pertinent contraction mapping. Existence and uniqueness of its equilibrium will

follow.

To this end, consider rewriting the control dynamics using the following mapping g : Ω→ Ω as

q(t + 1) =
[
f (v(q(t)))

]
Ω := g(q(t)).

Lemma 7.2. If condition

αi(1 + η)
∑

j

Xi j < 1, ∀i ∈ N (7.12)

holds, then the mapping g is a contraction mapping.
2 When a bus takes into consideration the impact of its own decision upon the voltages, we say that this behavior is signal-

anticipating [81]. With signal-anticipating buses, we can define the usual Nash equilibrium for the voltage control game, which we
will investigate in another paper.
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Proof. Define X̃ = [X̃i j]n×n with its entries X̃i j =
∂vi
∂q j
, ∀i, j ∈ N . With induced matrix norm ‖ · ‖∞ as the

maximum row sum, we have

‖∇qg‖∞ ≤ max
i

( ∣∣∣ f ′i (vi)
∣∣∣∑

j

∣∣∣X̃i j
∣∣∣ )

≤ max
i

(
αi

∑
j

∣∣∣X̃i j
∣∣∣ )

≤ max
i

(
αi(1 + η)

∑
j

Xi j
)

< 1,

where the four inequalities respectively come from 1) the possibility of q’s being projected onto the boundary

of Ω, making the corresponding derivative of g equal to zero (as well as a very small chance for X̃i j to be

negative), 2) assumption A2, 3) Lemma 7.1, and 4) condition (7.12). Hence, given ∀qx, qy ∈ Ω, we have

‖g(qx) − g(qy)‖∞ ≤
∥∥∥∥∂g
∂q

∥∥∥∥
∞
· ‖qx − qy‖∞ < ‖qx − qy‖∞,

i.e., g is a contraction mapping. �

Then, using the contraction mapping theorem [25], the following result can be demonstrated.

Theorem 7.3. Under the condition (7.12), the dynamics (7.7) converges to the unique equilibrium point.

Remarks: Notice that when η = 0, i.e., when we ignore line loss, (7.12) coincides with the conver-

gence condition for the same control strategy with linearized model for D1 in Section 2.3.3. While it is

challenging to characterize η, as will be shown by numerical examples in Section 7.1.4.2, by setting η = 0,

we usually still have a practical sufficient convergence condition for non-linear model, because (7.12) is a

conservative condition, and that η itself is normally small.

7.1.4 Numerical Examples

We now provide numerical examples to complement the theoretical analysis in previous sections.

7.1.4.1 Simulation Setup

We use the same network setup of simulation in Chapter 3.
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Figure 7.1: (Left) Voltage values of all buses as reactive power injection from Bus 26 changes;
(right) voltage values of Bus 10 in both linear and non-linear models as reactive power injection
from Bus 26 changes.
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Figure 7.2: As the values of αi increase from (a) to (d), we have slower convergence speed and
finally reach a non-convergent result, when the values of αi get too large.



112

We use the piecewise linear droop control functions (2.11) with their slopes αi to be determined and

analyzed. We assume that all the control functions have identical acceptable voltage range [0.98p.u., 1.02p.u.],

i.e., δi = 0.04 p.u.,∀i ∈ N .

7.1.4.2 Effects of Reactive Power Injections upon Voltage Values

In this part, we examine how voltage values change with different reactive injections. We fix the

reactive power injections of all inverters as 0 except that at Bus 26. We sweep the reactive power injections

at Bus 26 from -1 MW to 1 MW with granularity of 0.1 MW, and record the consequent voltage changes at

all buses. Similar results are observed by engaging any other inverters.

According to (7.6), we do not preclude the possibility of negative ∂vi
∂q j

, but it rarely takes place since

the second term in (7.6) is usually much smaller than Xi j, almost always resulting in positive ∂vi
∂q j
, ∀i, j ∈ N ,

as we can see from the illustration in Fig. 7.1 (left).

We then arbitrarily pick Bus 10 to compare its voltage changes against reactive power injections in

both nonlinear and linear models. As illustrated in Fig. 7.1 (right), the slopes exhibiting ∂v10
∂q26

in two models

are very close. We can find a small parameter η, such that the slope in nonlinear model is upper-bounded by

that in linear model multiplied by (1 + η). In this case, η can be set as 0.2. Similar results are observed from

voltage values of any other buses and reactive power injections from any other inverters, though the slope in

nonlinear model is not necessarily greater than that in linearized model due to the possibility of ∂`lk
∂q j

being

negative.

7.1.4.3 Convergence

In this part, we set different αi values in the piecewise linear droop control functions to see how they

affect the convergence of our Volt/VAR control dynamics (7.7). As illustrated in Fig. 7.2, when we increase

simultaneously the values of slopes for all five droop control functions from Fig. 7.2(a) to Fig. 7.2(d), we

observe decreasing convergence speeds, until convergence is no longer available with too large αi, where

oscillation occurs (Fig. 7.2(d)).

From simulation results, we also observe that, the maximum allowed slope value max
i
αi ≈ 33, is much
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larger than the α < 4.6 upper bound calculated by convergence condition (7.12) with η = 0. With larger η,

we get even smaller sufficient upper bound. This is because the sufficient condition (7.12) is conservative

estimation.

7.1.5 Conclusion

In order to analytically characterize the equilibrium and convergence of the local Volt/VAR control dy-

namics with nonlinear power flow model, we reverse-engineer the dynamical system with non-incremental

control as a voltage control game. We then establish the existence, uniqueness, and convergence of the

equilibrium by the fixed-point theorem and pertinent contraction mapping argument. We also extend the re-

sults to the incremental Volt/VAR controls. Numerical examples are provided to complement the analytical

results.



114

7.2 Reverse Engineering and Convex Relaxation in Networks of Coupled Oscillators

7.2.1 Introduction

The network of coupled oscillators and its synchronization is one of the most investigated network

dynamical systems and behaviors. It has broad applications in various disciplines from biology and medicine

to chemistry and physics and to engineering and social sciences; see, e.g., [27, 33, 40, 41, 53, 59, 68, 78, 87,

94, 113, 114, 118, 125, 126, 130]. Despite its broad applications, a complete or tight characterization of the

condition for synchronization of coupled oscillators is mostly an open question.

In this part, we consider a general coupled oscillator model that is partly motivated by the frequency

dynamics and control in power networks: some of the oscillators are subject to the second-order Newtonian

dynamics while the others are subject to the first-order kinematic dynamics, and they are sinusoidally cou-

pled; see, e.g., [33] and [41]. This coupled oscillator model and its various special cases have been studied

extensively; see, e.g., the above cited references and particularly [41] for a brief review. In particular, [41]

presents an elegant closed-form condition for synchronization that significantly improves upon the existing

conditions and is provably exact for various interesting network topologies and parameters.

Motivated by our prior work on the reverse engineering of the frequency control in the power net-

work ( [33]), we take a new approach to investigate synchronization of coupled oscillators. Specifically, we

show that the coupled oscillator system when restricted to a proper region is a distributed partial primal-dual

gradient algorithm for solving a well-defined convex optimization problem and its dual. We characterize

conditions for synchronization solution of the KKT system of the optimization problem, based on which

we derive conditions for synchronization equilibrium of the coupled oscillator network. This new approach

reduces the hard problem of synchronization of coupled oscillators to a simple problem of verifying synchro-

nization solution of a system of linear equations, and leads to a complete characterization of synchronization

condition for the coupled oscillator network in an interesting and practically important region. Our synchro-

nization condition is stated elegantly as the existence of solution for a system of linear equations, of which

one synchronization condition of [41] is a special sufficient condition case.

We then formulate a non-convex optimization problem with the force balance constraint for which the
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above-mentioned convex optimization problem is a relaxation. We show that the coupled oscillator system

is also a distributed algorithm for solving this non-convex problem. This has an interesting implication on

exact convex relaxation: a non-convex problem may be solved through solving its convex relaxation using a

carefully chosen algorithm. This kind of exact convex relaxation is a bit different from the conventional one

where the optimum of the convex problem is always a feasible point of the original non-convex problem,

and confirms the insight that a physical system usually solves a convex problem even though it may have a

non-convex representation.

7.2.2 System Model

Consider a network modeled by a connected graph G = (N ,E), with a set N of nodes and a set E

of undirected links connecting the nodes. Each node i ∈ N denotes an oscillator with phase θi ∈ R and

frequency ωi = θ̇i ∈ R, and each link (i, j) ∈ E (or l ∈ E)3 is associated with a weight or coupling constant

bi j > 0 (or bl > 0). The node set is partitioned into two disjoint sets N = N1 ∪ N2. Consider the following

coupled oscillator system:

Miω̇i + Fi(ωi) = fi −
∑

{ j:(i, j)∈E}

bi j sin(θi − θ j), i ∈ N1, (7.13)

Fi(ωi) = fi −
∑

{ j:(i, j)∈E}

bi j sin(θi − θ j), i ∈ N2, (7.14)

where each oscillator i ∈ N1 follows the second-order Newtonian dynamics with an inertia constant Mi > 0

and each oscillator i ∈ N2 follows the first-order kinematic dynamics. Each oscillator i ∈ N is subject to a

constant force of fi ∈ R and a frequency-dependent damping of Fi(ωi). The function Fi(·) is assumed to be

Lipschitz continuous and strictly increasing.

The above coupled oscillator model (7.13)–(7.14) is partly motivated by the frequency dynamics and

control in the power network, and a huge literature exists on the synchronization of this general system and

its various special cases; see, e.g., [41] and [33] and references therein. For instance, for the frequency

dynamics of the power network, the setN1 is the set mechanical generators andN2 the set of load buses; fi
3 We use (i, j) and l interchangeably to denote a link in E. Note that in this section (i, j) is an un-ordered pair, i.e., (i, j) = ( j, i).

But from the next section on, l ∈ E is directed and (i, j) , ( j, i).



116

is the power inject or draw, Fi(ωi) = Diωi with damping coefficient Di > 0,4 and Mi the generator inertia;

and bi j =
viv j
xi j

with vi the voltage magnitude at bus i and xi j the reactance of power line (i, j); see, e.g., [20]

and [33].

We aim to characterize conditions under which the network of coupled oscillators has a synchroniza-

tion equilibrium and its stability.

Definition 7.4. (Synchronization equilibrium) A synchronization equilibrium (ω, θ = {θi; i ∈ N}, θ0 =

{θ0
i ; i ∈ N}) of the coupled oscillator system (7.13)–(7.14) is defined by the following relations:

ωi = ω, i ∈ N , (7.15a)

θi(t) = θ0
i + ωt, i ∈ N , (7.15b)

Fi(ω) = fi −
∑

{ j:(i, j)∈E}

bi j sin(θi − θ j), i ∈ N , (7.15c)

where θ0
i ∈ [0, 2π), i ∈ N .

Motivated by the application in the power network where a security constraint |θi − θ j| <
π
2 , (i, j) ∈

E is usually imposed (see, e.g., [20, 21], and [42]), we are particularly interested in the synchronization

equilibrium with |θ0
i − θ

0
j | <

π
2 , (i, j) ∈ E.

Definition 7.5. (Phase Cohesiveness ( [41])) Given γ ∈ [0, π2 ), a synchronization equilibrium (ω, θ, θ0) is γ

phase cohesive if |θ0
i − θ

0
j | ≤ γ, (i, j) ∈ E.

7.2.2.1 Reverse Engineering of Network Dynamics with Linearized Coupling

Assume that the system is initially at a synchronization equilibrium with a “nominal” frequency ωn

and phases θn
i , i ∈ N such that |(θi − θ j) − (θn

i − θ
n
j )| � 1, (i, j) ∈ E. Let b̃i j = bi j cos(θn

i − θ
n
j ), and consider

4 Note that this damping term can result from frequency-sensitive load or frequency-based load or generation control. We can
include more than one of such terms at each node as in [33], which will not change the structure of the problem and the results of
this section.
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the following system with linearized coupling between oscillators:

Miω̇i + Fi(ωi) = fi −
∑

{ j:(i, j)∈E}

pi j, i ∈ N1, (7.16a)

Fi(ωi) = fi −
∑

{ j:(i, j)∈E}

pi j, i ∈ N2, (7.16b)

ṗi j = b̃i j(ωi − ω j), (i, j) ∈ E. (7.16c)

In the power network application, bi j sin(θi − θ j) is the nonlinear power flow from bus i to bus j, and the

above linearization corresponds to the assumption of small phase angle deviation; see, e.g., [20].

Let di = Fi(ωi), and F−1
i (di) is well-defined because of Fi being strictly monotone. As in [33], we

introduce a cost function corresponding to each damping term:

Ci(di) =

∫
F−1

i (di)ddi, i ∈ N , (7.17)

which is a strictly convex function by the assumption on the function Fi, and a convex optimization problem:

min
d,p

∑
i∈N

Ci(di) (7.18a)

s.t. fi = di +
∑

{ j:(i, j)∈E}

pi j, i ∈ N , (7.18b)

where d = {di; i ∈ N} and p = {pi j; (i, j) ∈ E}. The cost function Ci(di) and problem (7.18a)–(7.18b)

can have different interpretations, depending on specific applications. For instance, in the power network,

di = Fi(ωi) can be the primary frequency control and Ci(di) is then the cost associated with the generation

control, and problem (7.18a)–(7.18b) is a DC optimal power flow problem ( [33]). Notice that there may be

“operational” constraints on di. For instance, in the power network, there is a limited capacity for genera-

tion. These operational constraints can be incorporated implicitly through carefully defining the domain of

function Fi or explicitly through adding to the optimization problem (7.18a)–(7.18b).

It has been shown that the system dynamics (7.16a)–(7.16c) can be seen as a distributed algorithm for

solving the problem (7.18a)–(7.18b) and its dual; see, e.g., [33]:

Theorem 7.4. (Theorem 1 in [33] tailored to system (7.16a)–(7.16c)) The set of saddle points of the La-

grangian of problem (7.18a)–(7.18b) is the set of synchronization equilibira of dynamical system (7.16a)–
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(7.16c). Moreover, the dynamics (7.16a)–(7.16c) is a partial primal-dual gradient algorithm for solving the

problem (7.18a)–(7.18b) and its dual.

We have applied the above reverse engineering result to guide the design of new frequency control

algorithms for the power system to not only recover nominal frequency but also achieve economic efficiency;

see, e.g., [33] and [78]. However, the above linearized model and reverse engineering result applies to the

system with small phase angle derivation from an initial synchronization equilibrium, which is limited in

applicability. An important question is if the above reverse engineering result can extend to the coupled

oscillator system (7.13)–(7.14) with nonlinear coupling. In the next sections, we give a positive answer

to this question, and use it to characterize the condition for synchronization in the network of coupled

oscillators, as well as discuss its implication on convex relaxation.

7.2.3 Reverse Engineering and Synchronization

We first introduce a few notations to simplify the presentation of the system and its analysis. Assign-

ing an arbitrary direction to each link l ∈ E, we define a |N| × |E| incidence matrix A with entry

Ali =



1, if node i is the source node of link l

−1, if node i is the sink node of link l .

0, otherwise

Since G is connected, we have Rank(A) = |N| − 1 and Ker(A>) = span(1|N|); see, e.g., [26]. With the

incident matrix, we can rewrite the problem (7.18a)-(7.18b) as:

min
d,p

∑
i∈N

Ci(di) (7.19a)

s.t. f = d + Ap, (7.19b)

where f = { fi; i ∈ N}. Notice that the coupling bi j sin(θi − θ j) between nodes i and j is bounded by ±bi j.

This implies that an additional constraint should be imposed on the problem (7.19a)–(7.19b):

−b � p � b, (7.20)
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where b = {bl; l ∈ E}. The problem (7.19a)–(7.20) is convex, so all its optima are global optima. We further

assume that the problem (7.19)–(7.20) is strictly feasible.

Lemma 7.3. The problem (7.19)–(7.20) may have multiple (global) optima in p, but has an unique optimum

in d.

Proof. The objective function is not strictly convex in all the decision variable, so the problem (7.19)–

(7.20) may have multiple global optima. Suppose that d can take two values d̄ and d̂ at optima. Since the

objective function is strictly convex in d, we have
∑

i∈N Ci(di) < α
∑

i∈N Ci(d̄i) + (1 − α)
∑

i∈N Ci(d̂i) for

any d = αd̄ + (1 − α)d̂, 0 < α < 1. This contradicts the fact that d̄ and d̂ are optima. So, the problem

(7.19)–(7.20) has an unique optimum in d. �

7.2.3.1 Synchronization Solution of the KKT System

Introduce Lagrangian multiplier λi for each constraint in (7.19b), and write down the KKT condition

of the problem (7.19)–(7.20) (see, e.g., [31]):

fi = di +
∑
l∈E

Ail pl, i ∈ N , (7.21a)

di = Fi(λi), i ∈ N , (7.21b)

pl = bl, if λsl > λdl , l ∈ E, (7.21c)

pl = −bl, if λsl < λdl , l ∈ E, (7.21d)

pl ∈ [−bl, bl], if λsl = λdl , l ∈ E, (7.21e)

where sl and dl denote the source and sink nodes of link l respectively. For the reason that will become clear

later, we focus on those “synchronization” solutions to the above KKT system.

Definition 7.6. A solution to the KKT system (7.21a)–(7.21e) is said to be a synchronization solution if

λi = λ for all i ∈ N .

It is obvious that, if there is a synchronization solution, λ is uniquely determined by
∑

i∈N fi =
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∑
i∈N Fi(λ). Let f̄i = fi − Fi(λ). Then

∑
i∈N f̄i = 0, and at a synchronization solution

f̄ = Ap, (7.22)

−b � p � b, (7.23)

where f̄ = { f̄i; i ∈ N}. From equation (7.22) we have

p = A>(AA>)†f̄ + p̄, (7.24)

p̄ ∈ Ker(A), (7.25)

where ‘†’ denotes Moore-Penrose pseudo inverse, and AA> and its pseudo inverse satisfies AA>(AA>)† =

(AA>)†AA> = I|N| − 1
|N|

1|N|×|N|. The space Ker(A) is related to the cycles in the network; see, e.g., [26].

Theorem 7.5. The following three statements are equivalent:

(1) There exits at least one p̄ ∈ Ker(A) such that −b � A>(AA>)†f̄ + p̄ � b.

(2) The KKT system (7.21a)–(7.21e) has a synchronization solution.

(3) All the solutions of the KKT system (7.21a)–(7.21e) are synchronization solutions.

Proof. The equivalence of statements (1) and (2) is already shown in the above. The statement (3) obviously

implies statement (2). Now, suppose that (2) holds but (3) does not, i.e., there exists another solution that

is not a synchronization solution. Thus, the problem (7.19)–(7.20) has two different solutions in terms of d

by equation (7.21b), which contradicts Lemma 7.3. So, (2) implies (3), and thus statements (2) and (3) are

equivalent. �

The statement (1) of Theorem 7.5 gives a sufficient and necessary condition for the synchronization

solution of the KKT system (7.21a)–(7.21e). To verify this condition is a linear programming (LP) problem,

for which efficient algorithms exit; see, e.g., [31].

Corollary 7.1. A sufficient condition for the existence of the synchronization solution of the KKT system

(7.21a)–(7.21e) is given by

||(diag(b))−1A>(AA>)†f̄||∞ ≤ 1, (7.26)
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where || · ||∞ denotes infinity norm.

Proof. Let p̄ = 0. If condition (7.26) holds, then −b � p = A>(AA>)†f̄ � b. So, p is a synchronization

solution to the KKT system (7.21a)–(7.21e). �

The condition (7.26) is easier to verify. It is also necessary for synchronization solution in certain

networks with special structure, e.g., for the tree network where Ker(A) = {0}. An interesting question is

how tight the condition (7.26) is for general networks, compared with the sufficient and necessary condition

in the statement (1) of Theorem 7.5. We will investigate related issues in future work.

7.2.3.2 Primal-Dual Gradient Algorithm

Let λ = {λi; i ∈ N}, and consider the Lagrangian for the problem (7.19)–(7.20):

L(d,p; λ) =
∑
i∈N

Ci(di) + λ>(f − d − Ap). (7.27)

A saddle point of L is a primal-dual optimum of the problem (7.19)–(7.20) and its dual (see, e.g., [31]), and

moreover, the saddle point is unique in λ by Lemma 7.3 and the strict monotonicity of the functions Fi.

Define a reduced Lagrangian:

L̄(p; λ1) = max
λ2

min
d

L(d,p; λ), (7.28)

where λ1 = {λi; i ∈ N1} and λ2 = {λi; i ∈ N2}. From the inner minimization in (7.28) we have

di = Fi(λi), i ∈ N . (7.29)

The function mind L(d,p; λ) is strictly concave and continuously differentiable in λ by the assumption on

the functions Fi. From the outer maximization we have

Fi(λi) = fi −
∑
l∈E

Ail pl, i ∈ N2. (7.30)

Since mind L(d,p; λ) is strictly concave in λ, the reduced Lagrangian L̄ is strictly concave in λ1.
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Applying the continuous-time primal-dual gradient algorithm (aka, saddle point dynamics) to the

reduced Lagrangian, we have

ṗl = −εl
∂L̄
∂pl

=

√
b2

l − p2
l (λsl − λdl), l ∈ E, (7.31a)

λ̇i = γi
∂L̄
∂λi

=
1

Mi
( fi − Fi(λi) −

∑
l∈E

Ail pl), i ∈ N1, (7.31b)

where we have chosen specific scaling factors εl =

√
b2

l − p2
l and γi = 1

Mi
. Notice that in equation (7.31a) the

choice of the scaling factor ensures that the constraint (7.20) is satisfied. As dpl/
√

b2
l − p2

l = d arcsin(pl/bl),

if we identify λi with ωi, the algorithm (7.29)–(7.31) is equivalent to the dynamical system (7.13)–(7.14)

with the phases being restricted to |θi − θ j| < π/2, (i, j) ∈ E. We thus have the following result.

Theorem 7.6. If identifying λi with ωi for all i ∈ N , the network dynamics (7.13)–(7.14) in the region

defined by |θi − θ j| < π/2, (i, j) ∈ E is a distributed partial primal-dual gradient algorithm for solving the

following problem and its dual:

min
d,p

∑
i∈N

Ci(di) (7.32a)

s.t. f = d + Ap, (7.32b)

−b ≺ p ≺ b. (7.32c)

Moreover, the set of synchronization equilibria of the dynamical system (7.13)–(7.14) in the region defined

by |θi − θ j| < π/2, (i, j) ∈ E is a subset of the set of saddle points of the Lagrangian L.

We will study the synchronization equilibrium and its stability of the network of coupled oscilla-

tors (7.13)–(7.14) from the perspective that it is a primal-dual gradient algorithm for solving the problem

(7.32a)–(7.32c) and its dual, i.e., we will study the network dynamics (7.13)–(7.14) through studying the

algorithm (7.29)–(7.31b). For this purpose, in the rest of this section we will assume that there exits at

least one p̄ ∈ Ker(A) such that −b ≺ A>(AA>)†f̄ + p̄ ≺ b, under which all the primal-dual optima of the

problem (7.32a)–(7.32c) and its dual are synchronization solutions by Theorem 7.5. We will also use ωi and

λi interchangeably from now on.
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7.2.3.3 Synchronization Equilibrium and Its Stability

We first study the convergence of the primal-dual gradient algorithm (7.29)–(7.31b) in the region

defined by −b ≺ p ≺ b.

Theorem 7.7. The primal-dual gradient algorithm (7.29)–(7.31) converges locally to a primal-dual opti-

mum of the problem (7.32a)–(7.32c) and its dual.

Proof. Let (p∗, λ∗) be a primal-dual optimum5 of the problem (7.32a)–(7.32c) and its dual. Consider the

Lyapunov function:

U(p, λ1; p∗, λ1∗) =
∑
l∈E

∫ pl

p∗l

ql − p∗l√
b2

l − q2
l

dql +
∑
i∈N1

Mi

2
(λi − λ

∗
i )2, (7.33)

which is strictly convex if −b ≺ p ≺ b. Consider its Lie-derivative under the algorithm (7.29)–(7.31):

U̇(p, λ1; p∗, λ1∗)

= −(p − p∗)>∇pL̄ + (λ1 − λ1∗)>∇λ1 L̄

≤ L̄(p∗; λ1) − L̄(p; λ1) + L̄(p; λ1) − L̄(p; λ1∗) (7.34)

= L̄(p∗; λ1) − L̄(p; λ1∗)

= L̄(p∗; λ1) − L̄(p∗; λ1∗) + L̄(p∗; λ1∗) − L̄(p; λ1∗)

≤ 0, (7.35)

where inequality (7.34) follows from the fact that L̄ is convex in p and concave in λ1, and inequality (7.35)

from the fact that (p∗; λ1∗) is a saddle point of L̄. Notice that if U̇(p, λ1; p∗, λ1∗) = 0, then all the inequalities

become equality, and L̄(p∗; λ1) = L̄(p∗; λ1∗) and L̄(p∗; λ1∗) = L̄(p; λ1∗). From LaSalle’s invariance principle

( [67]), the trajectory of the algorithm (7.29)–(7.31b) will be eventually contained in a compact subset of

the invariant set

I = {(p, λ) : U̇(p, λ1; p∗, λ1∗) = 0}. (7.36)

Since L̄(p; λ1) is strictly concave in λ1, by Proposition 11 in [33] the invariant set I is a subset of the primal-

dual optima of the problem (7.32a)–(7.32c) and its dual, and λ = λ∗ for all (p, λ) ∈ I. When the network is a
5 Notice that λ∗ = λ1|N|.
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tree, the set I is a singleton, and obviously the algorithm (7.29)–(7.31) converges to the unique primal-dual

optimum of the problem (7.32a)–(7.32c) and its dual. In general, for any networks, since the algorithm

converges to the compact set I as t → ∞, there exists a convergence subsequence {(p(tk), λ(tk))}k=1,2,... with

0 ≤ t1 < t2 < · · · and limk→∞ tk → ∞, such that limk→∞ p(tk) = p∞ and limk→∞ λ(tk) = λ∗ for some

(p∞, λ∗) ∈ I. Since the Lyapunov function can be defined in terms of any primal-dual optimum, we choose

the Lyapunov function to be U(p, λ1; p∞, λ1∗). Notice that U ≥ 0 with U = 0 only if p = p∞, and U̇ ≤ 0

along the trajectory (p(t), λ(t)) of the algorithm (7.29)–(7.31). By the continuity of U, we have

lim
t→∞

U(p(t), λ1(t); p∞, λ1∗)

= lim
k→∞

U(p(tk), λ1(tk); p∞, λ1∗)

= U(p∞, λ1∗; p∞, λ1∗) = 0.

This implies that (p(t), λ(t)) converges to (p∞, λ∗), which is a primal-dual optimum of the problem (7.32a)–

(7.32c) and its dual. �

Theorem 7.7 does not implies global convergence of the algorithm (7.29)–(7.31), as its proof requires

that the trajectory of the algorithm is contained in the region defined by −b ≺ p ≺ b. Moreover, the

convergence is trajectory-wise and does not necessarily imply the local stability of the primal-dual optimum

(p∞, λ∗). We will however show that the convergence point (p∞, λ∗) is unique, i.e., independent of the

specific trajectories, and is indeed locally stable.

Theorem 7.8. The primal-dual gradient algorithm (7.29)–(7.31) converges to a unique and locally stable

primal-dual optimum of the problem (7.32a)–(7.32c) and its dual.

Proof. By Theorem 7.6 or equation (7.31a), at a convergence point (p∞, λ∗), there exist phases θ with

|θsl − θdl | < π/2, l ∈ E such that

f̄i =
∑
l∈E

Ail pl =
∑
l∈E

Ailbl sin(θsl − θdl), i ∈ N . (7.37)

Notice that the above mapping from θ to f̄ is one to one in the domain defined by |θi − θ j| < π/2, (i, j) ∈ E;

see, e.g., [12]. So, p∞ and thus (p∞, λ∗) are uniquely determined, independent of specific trajectories of the

algorithm (7.29)-(7.31b). This further implies that the convergence point (p∞, λ∗) is locally stable. �
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Combining Theorems 7.6–7.8, we have the following result.

Theorem 7.9. The following two statements are equivalent:

(1) There exits at least one p̄ ∈ Ker(A) such that −b ≺ A>(AA>)†f̄ + p̄ ≺ b.

(2) The network of coupled oscillators (7.13)–(7.14) has a unique and locally stable synchronization

equilibrium with cohesive phases |θ0
i − θ

0
j | < π/2, (i, j) ∈ E.

Theorem 7.9 states the synchronization condition elegantly as the existence of solution for a system of

linear equations, and is a complete characterization of the condition for synchronization of coupled oscillator

network in the region defined by |θi − θ j| < π/2, (i, j) ∈ E.

Similar to Corollary 7.1, we have the following sufficient condition for synchronization equilibrium

if choosing p̄ = 0.

Corollary 7.2. The network of coupled oscillators (7.13)–(7.14) has a unique and locally stable synchro-

nization equilibrium with cohesive phases |θ0
i − θ

0
j | < π/2, (i, j) ∈ E, if

||(diag(b))−1A>(AA>)†f̄||∞ < 1. (7.38)

This sufficient condition is exactly one condition given in [41].

Notice that the synchronization equilibrium of the coupled oscillator network is locally stable. An

important question is to characterize its region of attraction, which has important implication in applications

to, e.g., the power network. We will explore the Lyapunov function (7.33) and its convexity to investigate

this question in future work.

To recapture, the above conditions for synchronization of the coupled oscillator network (7.13)–(7.14)

are carried over from the conditions for synchronization solution of the KKT system for the problem (7.19)–

(7.20). We have reduced the hard problem of synchronization of coupled oscillators to a simple problem

of verifying solution of a system of linear equations, by identifying the network system dynamics as a

distributed partial primal-dual gradient algorithm for solving a well-defined convex optimization problem

and its dual.
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7.2.4 Implication on Convex Relaxation

Consider the following optimization problem:

min
d,θ

∑
i∈N

Ci(di) (7.39a)

s.t. fi = di +
∑
l∈E

Ailbl sin(θsl − θdl), i ∈ N , (7.39b)

where the “physical” constraint (7.39b) captures the force balance that should hold at an equilibrium. The

problem (7.39a)–(7.39b) looks a more natural problem to study than the problem (7.19)–(7.20), as it captures

directly nonlinear coupling between the oscillators. In the power network application, for instance, the

problem (7.39a)–(7.39b) corresponds to an optimal power flow problem with nonlinear branch flows, i.e.,

without assuming small phase deviation as in usual DC power flow approximation.

The problem (7.39a)–(7.39b) is nonconvex, even if the phases are constrained to |θsl−θdl | ≤ π/2, l ∈ E.

Notice that the problem (7.19)–(7.20) is a convex relaxation of the problem (7.39a)–(7.39b), and at its

optimum the constraint (7.39b) is satisfied when solved using the algorithm (7.29)–(7.31b).

Theorem 7.10. The network dynamics (7.13)–(7.14) in the region defined by |θi − θ j| < π/2, (i, j) ∈ E is a

distributed algorithm for solving the problem (7.39a)–(7.39b).

Notice that an optimum of the problem (7.19)–(7.20) may not be an optimum of the problem (7.39a)–

(7.39b). Theorem 7.10 thus has an interesting implication: a non-convex problem may be solved through

solving its convex relaxation using a carefully chosen algorithm. This kind of exact convex relaxation is a

bit different from the “conventional” exact relaxation where the optimum of the convex problem is always a

feasible point of the original non-convex problem. Physically, this confirms an insight that a physical system

usually solves a convex problem (e.g., the problem (7.19)–(7.20)) even though it may have a non-convex

representation (e.g., the problem (7.39a)–(7.39b)). Even though the above implication on exact convex

relaxation is based on the result when the phases are restricted to |θsl − θdl | < π/2, l ∈ E, we expect that it

holds generally and will further investigate it in future work.
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7.2.5 Conclusion

We have taken a new approach to investigate synchronization in the coupled oscillator network, by

identifying the network system dynamics as a distributed primal-dual gradient algorithm for solving a well-

defined convex optimization problem and its dual. This new approach reduces the hard problem of synchro-

nization of coupled oscillators to a simple problem of verifying synchronization solution of a system of linear

equations, and leads to a complete characterization of synchronization condition for the coupled oscillator

network in an interesting and practically important region. Our synchronization condition is stated elegantly

as the existence of solution for a system of linear equations, of which one best existing synchronization

condition is a special case of sufficient condition. We have also formulated a non-convex optimization prob-

lem with the force balance constraints for which the afore convex optimization problem is relaxation, and

showed that the coupled oscillator system is also a distributed algorithm for solving this non-convex prob-

lem. This has interesting implication on exact convex relaxation, and confirms the insight that a physical

system usually solves a convex problem even though it may have a non-convex representation.



128

7.3 Demand Shaping in Cellular Networks

Main Notation for Section 7.3

t time index, t ∈ T := {1, . . . ,T }

n DA index, n ∈ N := {1, · · · ,N}

N ′ set of N′ continuous DAs

N ′′ set of N′′= N−N′ discrete DAs

N̂ ′′t set of discrete DAs started earlier

Ñt set of DAs adjustable at time t

b base traffic profile, b = {b(t); t ∈ T }

pn data rate profile of DA n, pn = {pn(t); t ∈ T }

pn(t) upper bounds of DA n on the data rate at time t

rn constant bit rate for DA n ∈ N ′′

ln number of timeslots to finish transmission for DA n ∈ N ′′

q virtual deferrable traffic profile

d average traffic profile

d̂ average traffic profile of online ODS

d̂∗ average traffic profile of online relaxed ODS

d∗ average traffic profile of offline relaxed ODS

Pn total traffic required from DA n, Pn =
∑

t∈T pn(t)

Pn(t) remaining traffic to be served for DA n ∈ N ′t

xk
n change in traffic profile of DA n, xk

n = pk+1
n − pk

n

ta
n arrival time of DA n

td
n deadline of DA n

An number of feasible profiles of DA n ∈ N ′′

fn,a a-th feasible profile of DA n ∈ N ′′

un,a probability corresponding to fn,a

Fn set of all feasible traffic profiles for discrete DAs, Fn = { fn,a; 1 ≤ a ≤ An}

V(d) objective value: (time) variance of d
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7.3.1 Introduction

We have witnessed in recent years rapid increase in demand for wireless data, driven by the prolifer-

ation of smart mobile devices. The global mobile traffic in 2016 has nearly reached 84 exabytes, more than

80 times greater than the entire global Internet traffic in 2000; yet, this number is expected to be increasing

at a compound annual growth rate (CAGR) of 47% in the coming five years, i.e., a seven-fold growth from

2016 to 2021 [55]. However, despite frequent upgrades of cellular networks technology from 2G to 4G LTE

and beyond, wireless service providers fall short of keeping up with this increasing wireless data demand,

leading to congestion in the network, especially in areas of dense population. As a result, users’ data rates

have to be throttled to ease congestions [2, 6, 9], at the cost of the degraded quality of service (QoS).

Admittedly, the capacity shortfall of cellular networks can be mitigated by allocating more wireless

spectrum and deploying more wireless infrastructures including more and smaller cells and WiFi networks

offloading, etc. However, spectrum allocation and infrastructure upgrading are not only costly but also time-

consuming, while WiFi networks may not always be available and secure. A promising alternative, inspired

by the similar problem of demand response in power networks, is to improve spectrum and infrastructure

efficiency through managing wireless data traffic (i.e., demand). Notice that wireless traffic or demand

usually fluctuates with a large peak-to-valley ratio throughout a day; see Fig. 7.3 for a trace of smartphone

web browsing activity over a day. However, wireless capacity needs to be provisioned to meet the peak

demand rather than the average. This means that the cellular network is usually stressed in peak hours while

largely underutilized at other times. If the demand profile can be shaped to reduce the peak and smooth the

time variation, not only can more traffic be accommodated under limited existing capacity constraints, but

also additional spectrum allocation and infrastructure upgrades can be slowed down, which together greatly

improve wireless network efficiency and QoS, and yield huge savings for service providers.

In this section, we focus on designing demand shaping algorithms for cellular networks. We divide

wireless traffic into two categories: non-deferrable traffic and deferrable traffic. Non-deferrable traffic refers

to the traffic of those applications such as online gaming that have no or low delay tolerance, and constitutes

the base traffic whose profile cannot be shaped. Deferrable traffic refers to the traffic of those applications
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Figure 7.3: North America smartphone web browsing activity in one day [56].

such as file uploading/downloading that are flexible in time and only require being served by a designated

deadline, e.g., finishing photo backup on cellphone by 12 am. Deferrable applications (DAs) are further

divided into two major types: (1) continuous-rate interruptible applications such as photos backup and

applications update that allow any data rates—e.g., the delayed offloading in [73, 90], and (2) discrete-rate

non-interruptible applications such as online movie streaming and video conference that usually requires

certain constant data rate [3, 4] and should not be interrupted once started, e.g., one can schedule movie

watching or video conference to the “valley” time to enjoy better graphic quality and incur less data cost

if he/she has the time flexibility. See Table 7.1 for a summary of traffic types and examples. We seek to

schedule the deferrable traffic to flatten the aggregate traffic profile over a day.

Specifically, we formulate the cellular traffic demand shaping as an optimization problem that mini-

mizes the (time) variation in the aggregate traffic profile subject to the time and rate specification on each

DA. We first assume complete traffic information and design an offline demand shaping algorithm. There

are two challenging issues in the offline algorithm design. First, the optimization problem is non-convex

because of discrete-rate non-interruptible applications. We instead solve its convex relaxation and design a

randomized scheme based on the solution to the relaxed problem. Second, demand shaping involves poten-

tially a huge number of applications and users. A centralized algorithm is not scalable. We instead design an
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Traffic/Application Type Examples

Non-deferrable application Online gaming, web browsing
Discrete-rate non-interruptible DA Movie streaming, video conference
Continuous-rate interruptible DA Applications update, photos backup

Table 7.1: Traffic/Application types and examples.

iterative and distributed algorithm based on the descent method. We establish the almost surely convergence

for the algorithm based on supermartingale theory.

We then consider a more realistic setting with incomplete information where we can only predict

future traffic to a certain degree of accuracy, and design an online and distributed demand shaping algorithm

that updates the schedules of DAs each timeslot when new information and updated prediction are available,

based on the offline algorithm for an optimization problem over a shrinking horizon from the current time

to the end of the day. We compare the performance of the online algorithm against the optimal offline

algorithm, and provide numerical examples to complement the theoretical analysis.

The rest of the section is organized as follows. Section 7.3.2 briefly reviews some related work

and discusses some related issues. Section 7.3.3 describes the system model and problem formulation.

Section 7.3.4 presents an offline distributed algorithm for demand shaping under the assumption of com-

plete traffic information and characterizes its performance. Section 7.3.5 considers a realistic setting of

incomplete traffic information, and presents an online algorithm for demand shaping. Section 7.3.6 provides

numerical examples to complement theoretical analysis, and Section 7.3.7 concludes the section.

7.3.2 Related Work and Issues

Demand shaping in cellular networks is similar to demand response in power networks, in terms

of design objectives, problem formulation, and the associated algorithmic challenges. Indeed, we borrow

insights from demand response in power networks; see, e.g., [32, 47, 48, 76]. In particular, our online

demand shaping algorithm is motivated by the solution approach for online control of continuous load in

reference [48], and mathematically can be seen as its extension to incorporate discrete decision variables

considered in reference [47]. However, our model captures realistic cellular traffic settings, as it includes



132

both continuous and discrete decision variables. Moreover, the integration of discrete decision variables into

the online algorithm makes the performance analysis of the algorithm more challenging, compared to that

in [48]. Related work also includes Zhao et al [131] that designs a centralized online EV charging algorithm

to minimize the peak procurement from the grid under uncertain prediction of future demand and renewable

energy supply, and Parise et al [95] that proposes a decentralized charging control for EVs to flatten the

aggregate power demand profile. They all consider only continuous decision variables.

To ease the stress from high demand in cellular networks, various demand-shaping-based methodolo-

gies as well as traffic offloading strategies have been studied in existing literatures. Tadrous et al in [116]

propose a paradigm to proactively serve peak-hour requests during the off-peak time based on prediction to

smoothen the traffic demand over time without changing customers’ activity pattern. However, such strat-

egy is limited to routine behaviors only. In [54] Hajiesmaili et al introduce an online procurement auction

framework to incentivize mobile devices to participate in device-to-device load balancing to offload traffic

from one heavy-loaded base station to adjacent idle ones. Besides, WiFi and femtocell offloading of cellular

data is another major approach to easing the congestion of cellular networks; see [14, 34, 57, 72, 73, 90] for

related works.

In this section we have focused on designing demand shaping algorithms based on a general and

simplified system model. We do not investigate the important practical issues such as the timescale and

granularity at which we schedule and reschedule the DAs. We plan to develop a platform to enable automatic

demand shaping in the future, and will investigate various practical issues then. Also, demand shaping

involves not only the design of control algorithms but also the design of right mechanisms to incentivize the

users to move out of their “comfortable zone” in wireless applications and data usage. Incentive design for

demand shaping is currently an active research area; see, e.g., the smart data pricing in wireless networks

[51, 106, 129]; pricing design in general network service to remove congestions [62, 96], pricing/reward

signals in power distribution system [74, 138], and the references therein.

Some discussion on the practicality of demand shaping is also in place. People tend to use mobile data

services whenever they want, regardless of whether it is at peak time or valley time for the cellular network.

However, a survey [52] conducted in India and USA in 2012 shows that, given proper monetary incentive,
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many people are willing to postpone their mobile data usage, with acceptable postponement varying from

minutes to hours, depending on different types of services and different individual preferences [51]. For

example, wireless service providers can motivate the users to shift their demand by implementing the time-

dependent pricing (TDP) strategy. TDP is now applied as a simple two-period plan by many wireless service

providers around the world, in voice services and data services; e.g., Verizon [8] and Sprint [5] in the US have

“happy hours” in the night and weekend for voice service, TelCom [7] in South Africa has “Night Surfer”

plans giving free data from 11pm to 5am, and Airtel [1] in India provides unlimited data in the night. More

refined TDP strategies can be applied to maximize benefits for both wireless service providers and users,

by dynamically adjusting prices according to the data usage of the current time and predicted future. For

instance, Ha et al [51] have worked on a TDP-based application named TUBE. Trials in cooperation with a

local wireless service provider shows its effectiveness in shaping the traffic profile [63]. Also refer to [105]

for a review of pricing strategies.

7.3.3 System Model and Problem Formulation

Consider a cellular network that serves users for different applications such as web browsing, file

sharing, real-time entertainment, etc. The applications can be broadly divided into two categories: de-

ferrable applications (DAs) and non-deferrable applications (non-DAs). DAs refer to those applications that

are flexible in the starting time and/or data rate, while the non-DAs refer to those that should be served im-

mediately and often have stringent data rate requirement. Please refer to the third paragraph of Section 7.3.1

and TABLE 7.1 for more detailed description and examples of DAs and non-DAs.

This work aims to schedule the traffic of DAs so as to flatten the aggregate traffic profile over a day,

subject to the time constraints and rate constraints of each application. We use a discrete-time model where

one day is divided equally into T timeslots, indexed by t ∈ T = {1, 2, · · · ,T }. The duration of a timeslot can

be, e.g., 30 minutes or 1 hour [51], depending on the time resolution of scheduling decisions.
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7.3.3.1 Non-Deferrable Applications

Non-DAs include web browsing, online gaming, and real-time chatting with multimedia, etc. The

latency tolerated by these applications usually varies from hundreds of milliseconds to seconds. Since these

applications should be served immediately upon request, their traffic is inelastic and constitutes the base

traffic whose profile cannot be shaped. Denote the base traffic profile by b = {b(t); t ∈ T }. As we can only

predict the base traffic to a certain accuracy, we model it as a random vector with mean b̄ = {b̄(t); t ∈ T }

and random derivation δb = {δb(t); t ∈ T } from the mean, i.e., b = b̄ + δb. We assume that δb(t) has a mean

of 0 and variance of δ2(t), and may be temporally correlated. We further assume that we can make better

prediction for the timeslots that are closer to current time, modeled by a time-dependent deviation from the

mean, i.e., the base traffic at some future time τ ∈ T is predicted at current time t by

bt(τ) = b̄(τ) + δbt(τ), (7.40)

where the subscript t represents the timeslot when the prediction is made, and δbt(τ) has a decreasing

variance δ2
t (τ) as t approaches τ. More concrete model for prediction will be introduced in Section 7.3.6. The

parameters b̄ and δt will be specified exogenously, and can be estimated from the historical traffic records.

7.3.3.2 Deferrable Applications

Assume that there are N DAs in the network, indexed by n ∈ N = {1, · · · ,N}. Each DA n is

characterized by an arrival time ta
n when it is requested or after which it can be started, a deadline td

n by which

its transmission must be done, and certain requirement or constraint on data rate pn = {pn(t); t ∈ T }. Let Pn

denote the total traffic required by DA n, i.e.,
∑

t∈T pn(t) = Pn. We can classify DAs into two main categories:

continuous-rate interruptible DAs (or continuous DAs for simplicity) that allow any data rates between

certain upper and lower bounds and can be interrupted and resumed at any time before the deadline, and

discrete-rate non-interruptible DAs (or discrete DAs for simplicity) that require certain (roughly) constant

data rate and cannot be interrupted once they are started. For example, system backup is usually interruptible

and allows any continuous data rates, while video conference is usually preferred to be non-interruptible and

runs at a constant (thus discrete) data rate once it is started.
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Among the total N DAs, we assume there are N′ continuous DAs, indexed by n ∈ N ′ = {1, · · · ,N′}.

For each continuous DA, denote by p
n
(t) and pn(t) the lower and upper bounds on its data rate at time t ∈ T ,

i.e.,

p
n
(t) ≤ pn(t) ≤ pn(t), t ∈ T . (7.41)

Naturally, 0 ≤ p
n
(t) ≤ pn(t). The lower bounds p

n
(t) are usually zero, and the upper bounds pn(t) can be set

according to, e.g., the available bandwidth. The arrival time ta
n and the deadline td

n can be integrated into the

rate constraints (7.41) by setting pn(t) = 0 for t < ta
n and t > td

n , i.e., no traffic is transmitted before arrival

time or after deadline.

Index the rest N′′ = N−N′ discrete DAs by n ∈ N ′′ = {N′ + 1, · · · ,N}. For a discrete DA such as a

streaming application, a constant bit rate rn corresponds to a certain graphic quality, e.g., rn = 3 Mbps for a

SD quality movie on Netflix [4], and rn = 1.2 Mbps for a HD video call on Skype [3]. As the graphic quality

usually (preferrably) does not change during those applications, this seemingly over-simplified assumption

of a single discrete rate is reasonable.

For each DA n ∈ N ′′ with its total traffic Pn and the rate rn, it takes ln = Pn/rn consecutive timeslots

(or equivalently the other way around, i.e., we calculate Pn = ln ∗ rn based on ln and rn). Therefore, the

number of its feasible traffic profiles is An = td
n − ta

n − ln + 1, wherein the a-th feasible profile is denoted as

fn,a =

pn

∣∣∣∣pn(t) =
{ rn, if ta

n + a − 1 ≤ t ≤ ta
n + a + ln

0, otherwise

 .
We denote the set of all feasible traffic profiles of DA n ∈ N ′′ by Fn = { fn,a : 1 ≤ a ≤ An}, i.e., pn ∈ Fn,

∀n ∈ N ′′.

Remark 7.1. All the modeled traffic parameters can be reasonably accessed or estimated in practice. For

example, information regarding total required traffic Pn and video streaming rate rn is available from meta-

data of traffic to be transmitted, parameters like ta
n and td

n are specified by the users in advance (and Fn

can then be calculated accordingly), whereas data rate bounds p
n
(t) and pn(t) can be either determined

by available bandwidth or designated by the users. See, e.g., [51] for an example system involving similar

information requirement and implemented with real users and service provider.
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7.3.3.3 Problem Formulation

We aim to schedule the traffic of DAs, so as to flatten the aggregate traffic profile as much as possible.

Denote the “average” traffic profile by d = {d(t); t ∈ T } := 1
N (b +

∑
n∈N pn). Traffic flattening can be

achieved by minimizing the time variance of d, formulated as the following optimal demand shaping (ODS)

problem:

ODS:

min
p,d

V(d) =
1
T

∑
t∈T

(
d(t) −

1
T

∑
τ∈T

d(τ)
)2 (7.42a)

s.t. d(t) =
1
N

(
b(t) +

∑
n∈N

pn(t)
)
, t ∈ T , (7.42b)

p
n
(t) ≤ pn(t) ≤ pn(t), t ∈ T , n ∈ N ′, (7.42c)∑

t∈T

pn(t) = Pn, n ∈ N ′, (7.42d)

pn ∈ Fn, n ∈ N ′′. (7.42e)

Notice that the constraints (7.42e) for discrete DAs are non-convex. In next section, we will in-

vestigate an offline algorithm together with a randomized scheme for solving the ODS problem under the

assumption of complete information on the base traffic and DAs. Then in Section 7.3.5, we will study an

online algorithm for demand shaping under a more realistic setting of incomplete information where we can

only predict the future traffic to a certain degree of accuracy. The offline ODS problem and algorithm will

later serve as a benchmark to characterize the performance of the online algorithm.

7.3.4 Offline Demand Shaping Algorithm

In this section, we assume complete traffic information, i.e., the base traffic and arrival of DAs are

accurately known, and study how to solve the resulting offline ODS problem. The offline problem and algo-

rithm will provide insights into the online algorithm design for realistic settings of incomplete information

that will be considered in Section 7.3.5.
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7.3.4.1 Convex Relaxation and Randomized Scheme

The offline ODS problem is non-convex, as each discrete DA has to pick a traffic profile from a

discrete set; see constraint (7.42e). Consider the convex hull of Fn, defined as

conv(Fn) :=
{
pn| pn =

An∑
a=1

un,a · fn,a, ua,n ≥ 0 and
An∑

a=1

un,a = 1
}
, (7.43)

where un := {un,1, . . . , un,An} is the convex combination coefficients, and will be interpreted as probability

distribution in the randomized algorithm to be introduced soon. We will instead solve the convex relaxation

of the ODS problem by replacing (7.42e) with the following constraint:

pn ∈ conv(Fn), n ∈ N ′′. (7.44)

We call the relaxed problem (7.42a)–(7.42d)(7.44) the R-ODS problem. However, a solution p∗n∈ conv(Fn), n ∈

N ′′ to the R-ODS problem might not be feasible for original ODS, i.e., p∗n < Fn. But since by definition

(7.43) a solution p∗n can always be written as the convex combination
∑An

a=1 un,a fn,a we will randomly pick

a traffic profile pn = fn,a ∈ Fn with corresponding probability un,a. That said, we will design a randomized

algorithm for the offline ODS problem, based on the solution to the R-ODS problem. We will integrate it

into a distributed algorithm next.

7.3.4.2 Distributed Algorithm

Solving the R-ODS problem (and the offline ODS problem) directly in a centralized way requires

collecting information on all DAs, which may incur too much communication overhead and is impractical

in the real network. Moreover, the users may not be willing to reveal information on DAs due to privacy

concern. Therefore, we seek to solve it in a distributed way. Noticing that R-ODS problem has decoupled

constraints, we attempt to design an iterative and distributed algorithm based on the decent method [?].

Before deriving the algorithm, we establish the following useful results. At k-th iteration, let pk =

{pk
n; n ∈ N} be the traffic profiles of all DAs, dk = 1

N (b +
∑

n∈N pk
n) the average traffic profile, and xk

n =

pk+1
n − pk

n, n ∈ N the change in traffic profile of DA n from iteration k to k + 1. We have:

E
[∥∥∥ ∑

n∈N

xk
n

∥∥∥2
2

]
=

∑
n∈N

Var(xk
n) +

∥∥∥ ∑
n∈N

E[xk
n]
∥∥∥2

2, (7.45)
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where the variance Var(xk
n) := E

[
‖xk

n‖
2
2
]
−‖E[xk

n]‖22, and E[·] denotes the average.6 By Jensen’s inequality,

∥∥∥∥ ∑
n∈N

E[xk
n]
∥∥∥∥2

2
≤ N

∑
n∈N

∥∥∥E[xk
n]
∥∥∥2

2. (7.46)

Therefore, one has

E
[∥∥∥ ∑

n∈N

xk
n

∥∥∥2
2

]
≤

∑
n∈N

Var(xk
n) + N

∑
n∈N

∥∥∥E[xk
n]
∥∥∥2

2. (7.47)

And it follows that

T N2
(
E
[
V(dk+1)|pk] − V(dk)

)
= E

[∥∥∥ ∑
n∈N

xk
n

∥∥∥2
2 + 2

〈
Ndk,

∑
n∈N

xk
n
〉]

≤
∑
n∈N

Var(xk
n) + N

∑
n∈N

‖E[xk
n]‖22 + 2

∑
n∈N

E
[
〈Ndk, xk

n〉
]

=
∑
n∈N ′

(
2〈Ndk, xk

n〉 + N‖xk
n‖

2
2
)

+
∑

n∈N ′′

(
2〈Ndk, E[xk

n]〉 + N‖E[xk
n]‖22 + Var(xk

n)
)
. (7.48)

Denote by W1 the first term in (7.48) and W2 the second. For n ∈ N ′, we choose pk+1
n so as to minimize W1,

i.e., to solve

min
pn

2〈dk, pn − pk
n〉 + ‖pn − pk

n‖
2
2 (7.49a)

s.t. (7.42c)–(7.42d). (7.49b)

On the other hand, after some mathematical manipulations, we have

W2 =
∑

n∈N ′′

(
2N〈dk − pk

n, E[pk+1
n ]〉 + (N − 1)‖E[pk+1

n ]‖22
)

+ Πk,

where Πk is a constant given pk
n. For n ∈ N ′′, we choose p∗k+1

n so as to minimize W2, i.e., to solve

min
pn∈conv(Fn)

2〈dk − pk
n, pn〉 +

N − 1
N
‖pn‖

2
2. (7.50)

In essence, what we have done is to maximize the expected incremental decrease in the objective

value V(d) at each iteration (i.e., steepest descent). This motivates a distributed demand shaping algorithm

with the collaboration of a coordinator; see Algorithm 5. The wireless service provider can implement a

logical coordinator at the base station.
6 Notice that we consider a randomized scheme only for discrete DAs. That said, for continuousDAs there is no randomness

and their variance is zero.
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Algorithm 5 Offline Demand Shaping (Off-DS) Algorithm
At k-th iteration:

(1) Upon gathering traffic profiles pk
n from DAs, the coordinator calculates the average traffic profile

dk = 1
N (b+

∑
n∈N pk

n) and announces it to DAs (or the end users) over a signaling or control channel.

(2) Upon receiving the average traffic profile dk,

• DA n ∈ N ′ updates its traffic profile by

pk+1
n = arg min

pn

∥∥∥pn − pk
n + dk

∥∥∥2
2

s.t. (7.42c)–(7.42d),

and submits it to the coordinator.

• DA n ∈ N ′′ calculates the average traffic profile by

p∗k+1
n = arg min

pn∈conv(Fn)

∥∥∥∥pn −
N

N − 1
(pk

n − dk)
∥∥∥∥2

2
,

which is p∗k+1
n =

∑An
a=1 uk+1

n,a fn,a, and then randomly chooses a traffic profile pk+1
n = fn,a with

probability uk+1
n,a and submits it to the coordinator.

The Off-DS algorithm is a distributed algorithm wherein each DA solves its own simple optimization

problem based on its previous decision, the average traffic profile dk, and local constraints, while the coor-

dinator collects the proposed traffic profiles and updates the average traffic profile, Therefore, this algorithm

is not only preserving privacy of the users, but also scalable and thus capable of quick response, which is

crucial especially in real-time implementation in Section 7.3.5.

The computational complexity of the Off-DS algorithm is estimated as follows for completeness.

Given certain accuracy requirement ε > 0 in the objective function value, the descent method requires

O(log(1/ε)) iterations [31]. At each iteration, DAs solves an easy quadratic programming with a polynomial

complexity of O(T O(1)) [99]. On the other hand, the coordinator calculates the average traffic profile which

requires O(N) complexity each iteration. As a result, the Off-DS algorithm requires overall computational

complexity of O
(
(N + T O(1)) log(1/ε)

)
.
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Remark 7.2. For simpler expression, we use pn as the decision variable for DA n ∈ N ′′ in algorithm design

and analysis, while in real implementation, it is more convenient to use probability distribution un as the

equivalent decision variable. Also notice that, if there is no continuous DA, Algorithm 5 reduces to the

stochastic algorithm in [47]. We expect that the solution approach—randomized algorithm based on the

“steepest” descent method for the convex relaxed problem—that we lay out in Sections 7.3.4.1 and 7.3.4.2

will find broad application in designing efficient algorithms for optimization problems that involve both

continuous and discrete decision variables.

7.3.4.3 Convergence

Before showing the convergence of the Off-DS algorithm, we first establish two useful relations. For

each DA n ∈ N ′, since pk+1
n solves the problem (7.49), we have the first-order optimality condition

〈pk+1
n − pk

n + dk, pn − pk+1
n 〉 ≥ 0 (7.51)

for any feasible pn. Set pn = pk
n to obtain

〈dk, pk+1
n − pk

n〉 ≤ −‖p
k+1
n − pk

n‖
2
2. (7.52)

For each DA n ∈ N ′′, recalling that p∗k+1
n = E[pk+1

n ], by the first-oder optimality condition, we have

〈 N
N − 1

(dk − pk
n) + p∗k+1

n , pn − p∗k+1
n

〉
≥ 0 (7.53)

for any feasible pn. Set pn = pk
n to get

〈Ndk, p∗k+1
n − pk

n〉 ≤ −(N − 1)‖p∗k+1
n − pk

n‖
2
2 + 〈pk

n, p∗k+1
n − pk

n〉. (7.54)

Now, construct a filtration Σ∗ of the probability space {Ω,Σ,P}, where the sample space Ω is the

feasible set specified by the constraints (7.42c)–(7.42e), the σ-algebra Σk = Ω, k ≥ 0, and P(Σk) = {δ(pn −

pk
n), n ∈ N ′; uk

n,a, 1 ≤ a ≤ An, n ∈ N ′′}, i.e., determined by the k-th iteration of the Off-DS algorithm.

Theorem 7.11. The pair (V(d), Σ∗) is a supermartingale. 2
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Proof. First, notice that V(d) is bounded from below. So, E[−min{0,V(d)}] < ∞. Second, applying rela-

tions (7.52)–(7.54) to equation (7.48), we obtain

T N2(E[V(dk+1)|pk] − V(dk)
)

≤
∑
n∈N ′
−N‖xk

n‖
2
2 +

∑
n∈N ′′

(
Var(xk

n) + (−N + 2)
∥∥∥E[xk

n]
∥∥∥2

2 + 2〈pk
n, p∗k+1

n − pk
n〉

)
=

∑
n∈N ′
−N‖xk

n‖
2
2 +

∑
n∈N ′′

(−N + 1)
∥∥∥E[xk

n]
∥∥∥2

2

≤ 0,

i.e., E[V(dk+1)|pk] ≤ V(dk). By definition, (V(d), Σ∗) is a supermartingale [49]. �

Notice that (V(d), Σ∗) is a nonnegative supermartingale. By the martingale convergence theorem [49],

the following result is immediate.

Corollary 7.3. V(d∞) = limk→∞ V(dk) exists almost surely, where V(d∞) is some random variable. 2

Theorem 7.12. Denote by P∞ an “equilibrium” distribution over traffic profiles that (V(d), Σ∗) converges

to. The support of P∞ is a singleton. 2

Proof. When (V(d), Σ∗) converges, E[V(dk+1)|pk] = V(dk). This requires E[xk
n] = E[xk

n′], n, n′ ∈ N ,

pk+1
n = pk

n, n ∈ N ′, and p∗k+1
n = pk

n, n ∈ N ′′ for (7.47), (7.52), and (7.54) to hold with equality. Notice that

p∗k+1
n = pk

n implies pk+1
n = pk

n, as different feasible traffic profiles of DA n ∈ N ′′ are linearly independent.

Thus, pk+1
n = pk

n, n ∈ N . So, the support of P∞ contains only one point. �

Denote by p∞ an “equilibrium” traffic profile of the Off-DS algorithm, i.e., if pk = p∞, then pk+1 =

p∞. Obviously the set of equilibrium profiles is not empty, as an optimum of the offline ODS problem is an

equilibrium. The following result follows immediately from Theorem 7.12 and Corollary 7.3.

Theorem 7.13. The Off-DS algorithm converges almost surely to an equilibrium traffic profile. 2

By equations (7.51)–(7.53), we have the following optimality conditions at equilibrium p∞: for any

feasible pn,

〈
b +

∑
m∈N

p∞m , pn − p∞n
〉
≥ 0, n ∈ N ′, (7.55a)〈

b +
∑
m,n

p∞m , pn − p∞n
〉
≥ 0, n ∈ N ′′. (7.55b)
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7.3.4.4 Performance Analysis of the Offline Algorithm

We now characterize the performance of Off-DS algorithm with respect to the relaxed problem R-

ODS that at optimum may attain a lower objective value than the ODS problem. Specifically, denote by p∗

the solution of R-ODS, we bound the gap between the equilibrium of the Off-DS algorithm and the solution

of the R-ODS problem as: Goff := V(d∞)−V(d∗), where d∞ = (b +
∑

n∈N p∞n )/N and d∗ = (b +
∑

n∈N p∗n)/N.

Denote by Goff
r := (V(d∞) − V(d∗))/V(d∗) the relative gap achieved by the Off-DS algorithm.

Theorem 7.14. For the Off-DS algorithm, the gap Goff is bounded as follows:

Goff ≤
2

T N2

∑
n∈N ′′

‖p∞n ‖
2
2. (7.56)

Moreover, the relative gap diminishes as the number N′′ of discrete DAs increases, i.e.,

lim
N′′→∞

Goff
r = 0. (7.57)

Proof. For notational simplicity, let cd :=
∑

t∈T d(t)/T , which is a constant given the total amount of traffic.

The objective value can be written as

V(d) =
1
T
‖d − cd · 1‖22

=
1
T

(‖d‖22 + c2
d‖1‖

2
2 − 2〈d, 1〉)

=
1
T

(‖d‖22 + T · c2
d − 2T · cd),

where only the part ‖d‖22 contains decision variables. We can thus write the gap Goff as

Goff = V(d∞) − V(d∗) =
1
T

(
‖d∞‖22 − ‖d

∗‖22
)

=
1
T

(
− ‖d∞ − d∗‖22 + 〈2d∞, d∞ − d∗〉

)
≤

1
T
〈2d∞, d∞ − d∗〉

=
2

N2

(∑
n∈N ′
〈Nd∞, p∞n − p∗n〉 +

∑
n∈N ′′
〈Nd∞, p∞n − p∗n〉

)
≤

2
T N2

∑
n∈N ′′
〈p∞n , p∞n − p∗n〉

≤
2

T N2

∑
n∈N ′′

‖p∞n ‖
2
2,
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where the second inequality follows from (7.55). Note that ‖p∞n ‖
2
2 is a constant for n ∈ N ′′. Then the relative

gap Goff
r can be bounded as

Goff
r ≤

2
T N2

∑
n∈N ′′

‖p∞n ‖
2
2/V(d∗)

=

∑
n∈N ′′ ‖p∞n ‖

2
2

‖b +
∑

n∈N p∗n‖22 + N2(T · c2
d − 2T · cd)

, (7.58)

whose numerator increases linearly with N′′ and denominator increases linearly with the square of N′′.

Equation (7.57) follows. �

Remark 7.3. We use the relaxed problem R-ODS for comparison instead of the ODS problem for two

reasons. First, it is difficult to characterize the optimum of the non-convex ODS problem, and thus evaluating

the gap between the equilibrium of the Off-DS algorithm and the optimum of ODS problem is mathematically

hard. Second, R-ODS achieves an optimal objective value that is not greater than ODS, resulted from convex

relaxation for the discrete decision variables. Therefore, Goff provides an upper bound for the “actual” sub-

optimality, i.e., the gap between the equilibrium of Off-DS and the optimum of ODS.

7.3.5 Online Demand Shaping Algorithm

In this section, we consider a realistic setting with incomplete information where we can only predict

future traffic to a certain degree of accuracy, and study online demand shaping that makes decisions based

on the prediction of future traffic and updates the decision as new information becomes available.

A typical algorithm used in this setting is the receding horizon control; see, e.g., [70]. However, as

the objective function (7.42a) does not have a nice additive structure, receding horizon control algorithm

does not admit an easy analysis. We will instead extend a shrinking horizon control algorithm, which is

used in [48] that studies mathematically the same problem with only continuous DAs, to include discrete

DAs, and apply it to our online demand shaping (online DS) problem.

7.3.5.1 Online Algorithm

We assume that the number mt of DAs arriving at time t is randomly distributed with a mean λt

and variance (δλt)2, and the total amount of traffic of each DA is randomly distributed with a mean P and
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variance (δP)2. Denote byN ′t = {1, · · · ,N′t } the set of continuous DAs andN ′′t = {N′ + 1, · · · ,Nt} the set of

discrete DAs that have arrived by time t ∈ T , and letNt = N ′t ∪N
′′
t and N′′t = Nt−N′t . Notice that we cannot

reschedule the remaining traffic of a discrete DA that has already started. Denote by Ñ ′′t ⊆ N
′′
t the set of

discrete DAs that have not been started by time t. For DA n ∈ Ñ ′′t , denote by Fn(t) = { fn,a; 1 ≤ a ≤ An(t)}

the set of feasible traffic profiles at time t. Let Ñt = N ′t ∪ Ñ
′′
t be the set of DAs whose profiles are still

adjustable at time t (i.e., all the continuous DAs and the discrete DAs that have not started by time t).

At time t, we make a prediction bt(t : T ) of base traffic for the rest timeslots of the day, and we also

have the information on DA n ∈ Nt and the expected total future deferrable traffic
∑T
τ=t+1 Pλτ. Following

[48], we introduce a virtual deferrable traffic profile q(t : T ) = {q(τ); t ≤ τ ≤ T } with q(t) = 0 and∑T
τ=t q(τ) =

∑T
τ=t+1 Pλτ, to emulate the impact of the future deferrable traffic upon the current demand

shaping decision. With the afore setup, we aim to schedule and reschedule the DAs, so as to solve the

following problem at each timeslot t ∈ T .

ODSt:

min V(d) =
1

T−t+1

T∑
τ=t

(
d(τ) −

∑T
s=t d(s)

T−t+1

)2
(7.59a)

over p(t : T ), d(t : T ), q(t : T )

s.t. d(τ) =
bt(τ)+q(τ)+

∑
n∈Nt pn(τ)

Nt
, τ ≥ t, (7.59b)

p
n
(τ) ≤ pn(τ) ≤ pn(τ), τ ≥ t, n ∈ N ′t , (7.59c)

T∑
τ=t

pn(τ) = Pn(t), n ∈ N ′t , (7.59d)

pn ∈ Fn(t), n ∈ Ñ ′′t , (7.59e)
T∑
τ=t

q(τ) =

T∑
τ=t+1

Pλτ, (7.59f)

where p(t : T ) = {pn(τ); t ≤ τ ≤ T, n ∈ Ñt}, d(t : T ) = {d(τ); t ≤ τ ≤ T }, and Pn(t) = Pn−
∑t−1
τ=1 pn(τ), n ∈ N ′t

is the amount of traffic to be served at or after time t.

We can solve the ODSt problem at each timeslot the same way as we solve the offline ODS problem

(7.42), constituting an online demand shaping algorithm; see Algorithm 6, wherein the convergence (and

computational complexity) of Step 2) can be established (and analyzed) in the same way as Algorithm 5.
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Algorithm 6 Online Demand Shaping (On-DS) Algorithm
At each timeslot t ∈ T :

(1) Denote by p(t−1)
n , n ∈ Nt−1 the schedules determined by time t − 1, and by N̂ ′′t ⊆ N

′′
t the set of

discrete DAs that has been started before time t. For each DA n ∈ N̂ ′′t , set its schedule pn(t; T ) =

{pn(τ); t ≤ τ ≤ T } as pn(τ) = p(t−1)
n (τ), t ≤ τ ≤ T .

(2) Solve the ODSt problem iteratively: at k-th iteration,

(a) Upon gathering traffic profiles pk
n(t : T ) = {pk

n(τ); t ≤ τ ≤ T } from DAs n ∈ Ñt, the coordina-

tor solves

min
q(t+1:T )

T∑
τ=t+1

(
bt(τ) + q(τ) +

∑
n∈N̂ ′′t

pn(τ) +
∑
n∈Ñt

pk
n(τ)

)2

s.t. (7.59f),

to obtain a virtual deferrable traffic {qk(τ); t + 1 ≤ τ ≤ T }, and then calculates the average

traffic dk(τ) = 1
Nt

(
bt(τ) + qk(τ) +

∑
n∈N̂ ′′t

pn(τ) +
∑

n∈Ñt
pk

n(τ)
)

for τ ≥ t and announces it to DA

n ∈ Ñt over a signaling or control channel.

(b) Upon receiving the average traffic profile dk,

• DA n ∈ N ′t obtains pk+1
n (t : T ) by

min
pn(t:T )

∥∥∥pn(t : T ) − pk
n(t : T ) + dk(t : T )

∥∥∥2
2

s.t. (7.59c)–(7.59d),

and submits the updated profile to the coordinator.

• DA n ∈ Ñ ′′t calculates p∗k+1
n (t : T ) by

min
pn(t:T )

∥∥∥∥pn(t : T ) −
Nt

Nt − 1
(pk

n(t : T ) − dk(t : T ))
∥∥∥∥2

2

s.t. pn(t : T ) ∈ conv(Fn(t)), n ∈ Ñ ′′t ,

represents it as a convex combination p∗k+1
n =

∑An(t)
a=1 uk+1

n,a fn,a, and randomly chooses a

traffic profile pk+1
n = fn,a with probability uk+1

n,a and submits it to the coordinator.
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7.3.5.2 Performance Analysis of the Online Algorithm

We now characterize the performance of On-DS algorithm with respect to the result of Off-DS algo-

rithm which serves as a benchmark. We will make the following assumptions to simplify the analysis and

obtain insights into how uncertainties affect the performance of On-DS algorithm.

Assumption 7.1. The amount of deferrable traffic is large and flexible enough so that a valley-filling sched-

ule exists at every time t = 1, . . . ,T, i.e., there exists some constant C(t) ≥ bt(τ),∀τ = t, . . . ,T such that

Nd(t) = C(t) =
1

T − t + 1

( T∑
τ=t

bt(τ) +

T∑
τ=t+1

Pλτ +

Nt∑
n=1

Pn(t)
)
. (7.60)

Remark 7.4. Assumption 7.1 looks a strong assumption, and we do not have empirical evidence to support

it as demand shaping has not being widely adopted in current cellular networks. However, with increasing

penetration of deferrable traffics and users, this assumption expects to hold. One purpose of algorithm

design as in this section and incentive design as in [51] is to facilitate and incentivize wide adoption of

demand shaping. On the other hand, valley-filling represents the scenario where demand shaping is most

useful and presents a benchmark for the potential of demand shaping. Mathematically, it is very difficult

to analyze the performance of the online algorithm under more general assumption than Assumption 7.1.

However, notice that in numerical examples in Section 7.3.6, we do not impose Assumption 7.1 while the

results still fall into the bound specified in Theorem 7.15.

Assumption 7.2. The base traffic prediction at t is modeled as the following causal filter

bt(τ) = b̄(τ) +

T∑
s=1

e(s) f (τ − s), τ = 1, . . . ,T, (7.61)

where e = {e(s)}Ts=1 is an uncorrelated sequence of independent and identically distributed random variables

with mean 0 and variance δ2, and f = { f (τ)}∞τ=−∞ is the impulse response with f (0) = 1. Let F(t) :=∑t
s=0 f (s).

We denote by Gon the gap defined as the expected difference between the results of On-DS algorithm

and Off-DS algorithm, i.e., Gon = E[V(d̂) − V(d∞)], where E denotes the expectation, and d̂ and d∞ denote

the average traffic profiles achieved by the On-DS algorithm and the offline-DS algorithm respectively. It
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Figure 7.4: Strategy to calculate the gap between the equilibrium of the On-DS algorithm and
that of Off-DS algorithm.

turns out that direct calculation of this gap is difficult. We therefore utilize two intermediate variables: d∗,

the average traffic profile achieved by the R-ODS problem, and d̂∗, the average traffic profile achieved by

the relaxed online DS, i.e., the counterpart of R-ODS problem in the online scenario. Similar notations are

applied to individual traffic profile pn. With the relation shown in Fig. 7.4, we can write online gap as

Gon = E
[
V(d̂)−V(d̂∗)+V(d̂∗)−V(d∗)+V(d∗)−V(d∞)

]
= E

[
V(d̂) − V(d̂∗)

]
+ E

[
V(d̂∗) − V(d∗)

]
+ E

[
V(d∗) − V(d∞)

]
. (7.62)

Theorem 7.15. The gap, i.e., the expected difference between the results of On-DS algorithm and Off-DS

algorithm is bounded as follows:

Gon = E[V(d̂) − V(d∞)] ≤
2

T N2

∑
n∈N ′′
‖ p̂n‖

2
2 +

(δλ)2

T

T∑
t=2

1
t

+
δ2

T 2

T−1∑
t=0

F2(t)
T − t − 1

t + 1
. (7.63)

Proof. Applying the approach and results from Theorem 7.14, we have

0 ≤ E
[
V(d̂) − V(d̂∗)

]
≤

2
T N2

∑
n∈N ′′
‖ p̂n‖

2
2, (7.64a)

−
2

T N2

∑
n∈N ′′
‖ p̂n‖

2
2 ≤ E

[
V(d∗) − V(d∞)

]
≤ 0. (7.64b)

For the second term of (7.62), under Assumptions 7.1–7.2, following [48], we get

E
[
V(d̂∗)−V(d∗)

]
=

(δλ)2

T

T∑
t=2

1
t

+
δ2

T 2

T−1∑
t=0

F2(t)
T − t − 1

t + 1
. (7.65)

Combine (7.64a)–(7.65) to obtain (7.63). �

Theorem 7.15 indicates that, the size of the gap between online and offline algorithms changes mono-

tonically with prediction error of both base traffic and future arrival of deferrable traffic. Accordingly we
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can improve the result of On-DS algorithm by implementing better prediction mechanism, e.g., On-DS

algorithm which updates its prediction to keep the value of prediction error small. Also, if the impulse

response f is chosen to fade quickly enough, then as we have finer time granularity, we have T → ∞,

and Gon → 0, which intuitively indicates that, with infinitely small timeslot, we can update our decisions

frequently enough to mitigate prediction errors, and therefore have a negligible performance gap.

Lastly, similar to Theorem 7.14, define a relative gap Gon
r := Gon/V(d∞). The following result is

immediate.

Theorem 7.16. The relative gap Gon
r diminishes as the number of discrete DAs N′′ increases, i.e.,

lim
N′′→∞

Gon
r = 0. (7.66)

Remark 7.5. It is worth noting that equation (7.66) does not necessarily imply a monotone decreasing of

Gon
r with respect to N′′. This can be seen from Fig. 7.8 in Section 7.3.6 that does not show a decreasing Gon

r

as N′′ increases.

By equations (7.64a) and (7.65), it is straightforward to obtain the following result.

Corollary 7.4. The expected difference between the On-DS algorithm and the optimum of the R-ODS prob-

lem is bounded as follows:

E[V(d̂) − V(d∗)] ≤
2

T N2

∑
n∈N ′′
‖ p̂n‖

2
2 +

(δλ)2

T

T∑
t=2

1
t

+
δ2

T 2

T−1∑
t=0

F2(t)
T − t − 1

t + 1
.

7.3.6 Numerical Examples

In this section, we provide numerical examples to evaluate the performance of the On-DS algorithm.

We use certain composite traffic traces to drive simulations to show the impact of base traffic prediction er-

rors, deferrable traffic prediction errors, and deferrable traffic penetration levels. We expect the conclusions

obtained to hold for real traffic.

7.3.6.1 Experimental Setup

Consider a 48-hour period of time starting from 4:00 pm to 3:59 pm two days later. We divide the 48

hours equally into 96 timeslots, each 30 minutes long. We consider scheduling traffic that arrives within the
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first 24 hours only, which may be allocated to the second 24 hours.

Non-deferrable traffic: The “real” trace we use for non-deferrable traffic, or base traffic, is shown in

Fig. 7.5 (red line). It is constructed by random fluctuation around the average base traffic trace (blue line)

composed based on North American mobile web browsing activity by time of day in 2013 [56], shown in

Fig. 7.3. As modeled in Section 7.3.3.1, the prediction of base traffic follows (7.40), consisting of average

base traffic b̄(τ) and random deviation δbt(τ) from the average value. Following [48], at time t, δbt(τ) is

modeled as

δbt(τ) =

τ∑
s=t+1

ωs(τ), t < τ ≤ T, (7.67)

where ωs(τ) are random variables of Gaussian distribution with 0 mean and variances

E[ω2
s(τ)] =

σ2

τ − s + 1
, 1 ≤ s ≤ τ ≤ T. (7.68)

In this way, δbt(τ) has decreasing variance as t approaches τ, simulating a gradually improving prediction

for some future timeslot τ as one gets closer to it. In simulation, we take the values of σ2 in (7.68) from 0 to

100 with increment of 10, corresponding to a root-mean-square prediction error (RMSE) ranging from 0%

to 32%, looking 48 timeslots (24 hours) ahead.
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Figure 7.5: Base traffic: the average (blue/dotted) and a “real” trace (red/solid).
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Figure 7.6: Repetitive experiments show that a number of 20 to 30 iterations give a satisfying

result in terms of convergence.

Deferrable traffic:

We assume that the number of DAs arriving at each timeslot follows a “shifted” Poisson process
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m + poissrnd(λp), with m ≥ 0 and poissrnd(λp) denoting a Poisson process with rate λp. Here, we set

λp = 4, while each DA has a 50-50 chance to require continuous- or discrete-rate traffic. The total traffic Pn

of each DA is uniformly distributed in [P, P] where we set P = 12 and P = 24. The deadline for DA n is

uniformly distributed in [ta
n + ln + D, ta

n + ln + D], where ln = pPn/pnq is the minimum number of timeslots

required by the DA calculated by ceiling function p·q. We set D = 6, D = 14, and a universal bit rate upper

bound pn = 3.

Benchmarks for comparison: We compare the performance of the On-DS algorithm with a few typical

benchmarks to evaluate the impact of base traffic prediction error, the benefit of updating the prediction in

real time, and the impact of deferrable traffic’s penetration level. We thus consider the followings five cases

in our experiments:

(0) Offline demand shaping w/ Off-DS algorithm. We use “real” trace for future base traffic and use

arrival information recorded from case (1) below for DAs. Applied with Off-DS algorithm, this

case gives the optimal performance used as benchmark to characterize the gap of other cases.

(1) Online demand shaping w/ On-DS algorithm. We make prediction for both DAs’ arrival and base

traffic in the future. Prediction is updated at each timeslot. We run On-DS algorithm to schedule

traffic.

(2) Online demand shaping w/ exact information for base traffic and w/o exact information for DAs. We

use “real” trace for base traffic and prediction for DAs. We apply On-DS algorithm. Comparison

of case (2) with case (1) shows the impact of uncertainty in base traffic.

(3) Demand shaping w/ updating prediction of base traffic and w/ exact information for DAs. We use

DAs arrival information recorded from case (1). Instead of applying virtual deferrable traffic, we

schedule traffic profiles for all the future deferrable traffic. Since the exact base traffic information

is not available, we updated base traffic prediction at each timeslot. Comparison of case (3) and (1)

shows the impact of uncertainty in DAs arrival prediction.

(4) Demand shaping w/o updating prediction of base traffic and w/ exact information for DAs. We
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use prediction of the base traffic at the beginning (t = 1) without further updating, and use arrival

information recorded from case (1) for DAs. This case shows how the online algorithm benefits

from updating prediction at each timeslot.

We use the metric of relative gap Gr(d) = (V(d)−V(d0))/V(d0) to evaluate the performance, where d0

is the results obtained from case (0). Also notice that when d is calculated based on case (1), Gr(d) becomes

Gon
r in Theorem 7.16.

7.3.6.2 Experiment Results

Considering randomness in DAs’ arrivals, base traffic prediction, and deciding traffic profiles for

discrete DAs, we run simulation for 10 times, and take the average as the final result to present.

Convergence Speed: We first run a case of randomly generated 143 continuous DAs and 150 discrete

DAs by Off-DS algorithm with different numbers of iterations ranging from 1 to 40 for 10 times. Because of

the random process in choosing traffic profiles for discrete DAs, we observe oscillation in objective function

values for each individual run. However, the oscillation has a trend of diminishing as the more iterations are

implemented, with satisfying enough results generated from running 20 to 30 iterations. See Fig.7.6 for the

results. We will implement a number of 30 iterations for each decision to be made in the rest of simulation.

Impact of Base Traffic Prediction Error: As described in Section 7.3.6.1, we can tune the variance

σ to emulate situations with different prediction errors in base traffic. As Fig. 7.7 shows, with updated

prediction, case (1)’s performance is barely affected by the increasing prediction error, keeping its relative

gap under 5%. This is almost as good as that of case (2) with perfect base traffic information. We can also

see from the performance of case (3) the pure impact from prediction errors, while case (4) gives an example

showing what happens if there is no updated prediction.

Impact of Penetration Level of Discrete DAs: In this case, we fix the prediction error in base traffic at

σ2 = 40 and the average number of DAs’ arrival at each timeslot at λp = 4. We then tune the penetration

level of discrete DAs from 25% to 75% with granularity of 5%. As shown in Fig. 7.8, the relative gap

maintain relatively unaffected by the changes of discrete DAs whose penetration has increased by three
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times. Here, we do not observe a decreasing relative gap mainly because the gap is not monotonically

decreasing with number of N′′.

2

Figure 7.7: Base traffic prediction error has little impact on online algorithms with updated

base traffic prediction.

Figure 7.8: Increasing penetration level of deferrable traffic does not influence the relative gap

of online algorithms.
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7.3.7 Conclusion

We have formulated demand shaping in cellular networks as an optimization problem that minimizes

the time variation in aggregate traffic subject to the rate and time requirements of the applications. We

design a distributed and randomized offline demand shaping algorithm under complete traffic information

and prove its almost surely convergence. We then consider a realistic setting with incomplete information

where we can only predict future traffic to a certain degree of accuracy, and design an online demand shaping

algorithm that updates the schedules of deferrable applications each time new information is available, based

on solving at each timeslot an optimization problem over a shrinking horizon from the current time to the

end of the day. We compare the performance of the online algorithm against the optimal offline algorithm

analytically and numerically. As future work, we are investigating to integrate the incentive mechanisms

such as the smart data pricing into the demand shaping algorithm design. We also plan to develop a platform

to enable automatic demand shaping in cellular networks and investigate the related practical issues.
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[117] Konstantin Turitsyn, Petr Šulc, Scott Backhaus, and Michael Chertkov. Options for control of reactive
power by distributed photovoltaic generators. Proc. of the IEEE, 99(6):1063–1073, 2011.

[118] Francisco Varela, Jean-Philippe Lachaux, Eugenio Rodriguez, and Jacques Martinerie. The brainweb:
Phase synchronization and large-scale integration. Nat Rev Neurosci, 2(4):229–239, Apr 2001.

[119] Richard S Varga. Matrix Iterative Analysis, volume 27. Springer Science & Business Media, 2009.

[120] Hal R Varian. Microeconomic analysis. WW Norton, 1992.

[121] Alexandra Von Meier. Electric Power Systems: A Conceptual Introduction. John Wiley & Sons,
2006.

[122] Evangelos Vrettos, Frauke Oldewurtel, and Göran Andersson. Robust energy-constrained frequency
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