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Nejadmalayeri, Alireza (Ph.D., Mechanical Engineering)

Hierarchical Multiscale Adaptive Variable Fidelity Wavelet-based Turbulence Modeling with

Lagrangian Spatially Variable Thresholding

Thesis directed by Prof. Oleg V. Vasilyev

The current work develops a wavelet-based adaptive variable fidelity approach that inte-

grates Wavelet-based Direct Numerical Simulation (WDNS), Coherent Vortex Simulations (CVS),

and Stochastic Coherent Adaptive Large Eddy Simulations (SCALES). The proposed methodology

employs the notion of spatially and temporarily varying wavelet thresholding combined with hier-

archical wavelet-based turbulence modeling. The transition between WDNS, CVS, and SCALES

regimes is achieved through two-way physics-based feedback between the modeled SGS dissipation

(or other dynamically important physical quantity) and the spatial resolution. The feedback is based

on spatio-temporal variation of the wavelet threshold, where the thresholding level is adjusted on

the fly depending on the deviation of local significant SGS dissipation from the user prescribed level.

This strategy overcomes a major limitation for all previously existing wavelet-based multi-resolution

schemes: the global thresholding criterion, which does not fully utilize the spatial/temporal intermit-

tency of the turbulent flow. Hence, the aforementioned concept of physics-based spatially variable

thresholding in the context of wavelet-based numerical techniques for solving PDEs is established.

The procedure consists of tracking the wavelet thresholding-factor within a Lagrangian frame by

exploiting a Lagrangian Path-Line Diffusive Averaging approach based on either linear averaging

along characteristics or direct solution of the evolution equation. This innovative technique repre-

sents a framework of continuously variable fidelity wavelet-based space/time/model-form adaptive

multiscale methodology. This methodology has been tested and has provided very promising results

on a benchmark with time-varying user prescribed level of SGS dissipation. In addition, a longtime

effort to develop a novel parallel adaptive wavelet collocation method for numerical solution of PDEs

has been completed during the course of the current work. The scalability and speedup studies of
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this powerful parallel PDE solver are performed on various architectures. Furthermore, Reynolds

scaling of active spatial modes of both CVS and SCALES of linearly forced homogeneous turbulence

at high Reynolds numbers is investigated for the first time. This computational complexity study,

by demonstrating very promising slope for Reynolds scaling of SCALES even at constant level of

fidelity for SGS dissipation, proves the argument that SCALES as a dynamically adaptive turbu-

lence modeling technique, can offer a plethora of flexibilities in hierarchical multiscale space/time

adaptive variable fidelity simulations of high Reynolds number turbulent flows.
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Chapter 1

Introduction

Humorous fable by Horace Lamb, British physicist and applied mathematician, in 1932 just

two years before his death in 1934 goes as follows: “I am an old man now, and when I die and go to

heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

and the other is the turbulent motion of fluids. And about the former I am rather optimistic.”

In the words of the legendary Nobel Prize-winning physicist, Richard Feynman, “Turbulence

is the last great unsolved problem of classical physics.”

George Papanicolaou from Stanford University, in an interview with Science Watch corre-

spondent Gary Taubes, to answer the question, “Turbulence theory has not changed much in 30

years. Why is that? Why did Feynman call it the last great unsolved problem?” said: “Simply,

turbulence is very hard. Every hard problem in classical physics finds itself embedded in turbulence.

It is nonlinear, chaotic, stochastic. And there is no separation of scales – you must deal with a very

large number of scales of irregularities. It’s just a mess. In most other physics problems, you can get

control by reducing them to simpler problems that you can understand. You can separate scales,

for instance, and determine that certain scales are not important. You can limit the phenomena.

Or perhaps the inhomogeneity, the chaotic behavior, is not there all the time, so you can somehow

approach it. In turbulence all these things happen at once, and you don’t know how to separate

them out.”

Papanicolaou still hopes he will be able to “find a way to create numerical computational

methods that really use theoretical insight.” He continued “One really interesting problem is to
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think of clever ways to make numerical calculations that really straddle many scales. So far the

numerical calculations have been rather straightforward – direct numerical calculation: write down

the equations, put them on the computer, solve them. There have to be more intelligent ways of

approaching this, to put more insight into the computer modeling. In the next 10 or 20 years, that’s

what’s going to happen. The computational schemes are going to become increasingly intelligent,

more adaptive. We are going to put into computer code the ability to recognize its environment

and adapt, to become more efficient, and to be guided by the theory. The scant theory that exists

right now is not employed in any intrinsic way when you use a computer to help make the problem

more efficient. For turbulence it would be enormously important to be able to do that.”

According to Marcel Lesieur [28]: “Turbulence is a dangerous topic which is often at the origin

of serious fights in the scientific meetings devoted to it since it represents extremely different points

of view, all of which have in common their complexity, as well as an inability to solve the problem.

It is even difficult to agree on what exactly is the problem to be solved.”

Lesieur schematically categorized the opposing points of view advocated during last 30 years

into 3 communities as follow: 1) Statistical: tried to model the evolution of averaged quantities

of the flow. This community, which had followed the glorious trail of Taylor and Kolmogorov,

believed in the phenomenology of cascades, and strongly disputed the possibility of any coherence

or order associated to turbulence; 2) Coherence among Chaos: considered turbulence from a

purely deterministic point of view, by studying either the behavior of dynamical systems, or the

stability of flows in various situations. Experimentalist and computer simulators who sought to

identify coherent vortices in flows were also associated to this community; 3) Emergence of third

point of view – with the concepts of renormalization group theory, multifractality, mixing, and

Lagrangian approaches – pushed by physicists, has made the existence of the first two camps less

clear.

This “very hard” (in words of Papanicolaou) and “dangerous” (according to Lesieur) topic

by and large has been the center of attention of scientific-computing society and numerical-scheme

developers community, although not all the attempts have made precise attention to even a few
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existing scant theories. The goal of this work is to try to propose improvement techniques in an

attempt to construct a numerical scheme, which address all aforementioned challenges: mainly to

distinguish different scales and to treat them in different consistent fashion while not forgetting

even the ignored scales or better to say, being able to include even ignored scales within the same

numerical framework in future works.

The high fidelity numerical techniques for computational simulation of turbulence are mainly

categorized as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). Direct Nu-

merical Simulation [17] is the most accurate numerical approach for solving Navier-Stokes (N-S)

equations using higher-order finite difference/spectral schemes. DNS resolves all the physically

meaningful scales within the limit of continuum mechanics from integral length scale all the way

down to the smallest dissipative Kolmogorov length scale; however, its formidable computational

complexity, ∼ Re 9
4 only for spatial scales, makes it an impossible solution for real flow applications

at least by end of this century or perhaps until quantum computers become a reality – “Every time

a new supercomputer comes out, people immediately test what it will do for the turbulence problem

[1].” It is worth stressing that the largest DNS to date is limited to 40963 grid points at Re ≈ 106

performed in 2002 [49].

To tackle the DNS challenges, the notion of Large Eddy Simulation [10, 41] proposed in which

the resolved large scales are simulated deterministically directly (akin to the DNS) while the interac-

tion of large (resolved) with small (unresolved, modeled) scales are modeled. The scales distinction

is obtained by applying low-pass frequency filters to the Navier-Stokes equations. Throughout the

filtering process, filtered Navier-Stokes equations have more unknowns than number of equations

and hence Sub-Grid Scale (SGS) models close the system via modeling the SGS stresses tensor.

Contrary to Reynolds Averaged Navier-Stokes (RANS) in which nonlinear Reynolds stresses repre-

senting the effect of turbulence at all scales on the mean flow is modeled, only a part of the nonlinear

interactions is modeled in LES by means of modeling the effect of small unresolved scales on large

resolved ones. The modeled interactions involve small scales which are generally in the inertial-

range and, as a result, have more universal character than flow-dependent large-scales. In spite of
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its success in enormous degree-of-freedom reduction and distinction of small/large scales, in LES

only the large-scales are resolved versus energy-containing-motions, which are of more importance.

Besides, LES of wall-bounded flows is still expensive if no-slip boundary conditions (BCs) are used.

Issues like strong temporal/spatial intermittency, localized small structures in spatial/time

space, and large range of spatial scales (Integral-scale / Kolmogorov-scale: L

η= 4
√
ν3/ε

) require the

need for multi-resolution schemes in turbulence simulations among which wavelet-based techniques

are strong candidates due to the prominent wavelet properties including: windowed transform

property (temporal/spatial localized change of scale); intrinsic adaptiveness of these schemes simply

by switching on/off wavelet coefficients; signal de-noising; existence of fast transform; capability

of identification of coherent structures (signature-recognition property); and capturing multiscale

(multi-resolution) character of turbulence. Based on these outstanding properties, the idea of using

wavelets in turbulence was proposed for the first time by Marie Farge [13].

(a) (b) (c)

Figure 1.1: Schematic of Wavelet Threshold Filter [45]: (a) A hyperbolic tangent function; (b)
Wavelet coefficient locations; (c) Wavelet-threshold filter locations.

The way wavelet transform works in general is to decompose a function, e.g. Figure 1.1(a), into

wavelet-coefficients and wavelet-scaling-functions on different level of resolution at different locations

on a dyadic grid, e.g. Figure 1.1(b). The way that wavelet-thresholding-filter works is to keep only

the grid-points corresponding to the wavelet-coefficients above a priori defined thresholding factor,

e.g. Figure 1.1(c), and there is no limitation on thresholding-factor at all, which is an arbitrary

non-dimensional positive real-value scalar. The error of this filtering scales as thresholding-factor.
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(a) Vorticity (b) Active wavelet locations

Figure 1.2: Wavelet transform of the Vorticity field. Courtesy of Marie Farge and Kai Schneider
[14].

A very insightful and artistic illustration by Farge and Schneider [14], showed that by trans-

forming the vorticity field into wavelet space, it can be realized that the high-concentration of

active-wavelets are appeared only at few spatial locations, Figure 1.2. This illustrates the astonish-

ing wavenumber compression, which is the first and most prominent beauty of wavelets in turbulence.

In addition to compression, wavelet-threshold filtered velocity field corresponds to a wider range of

wavenumbers compared with Fourier-cutoff filtered velocity field, Figure 1.3. That is because of the

fact that each wavelet level (scale) corresponds to a range of wavenumbers, Figure 1.4. This implies

the second major advantage of wavelets in turbulence, which is the multi-resolution nature of the

wavelet-based filters.

The family of wavelet based turbulence models is mainly categorized into Wavelet based

DNS (WDNS), Coherent Vortex Simulation (CVS), and Stochastic Coherent Adaptive Large Eddy

Simulation (SCALES). WDNS – proposed for the first time by Fröhlich and Schneider [20] – is in

fact an adaptive-DNS, where the wavelet-based numerical methods are used to solve the wavelet-

filtered Navier-Stokes equations without any model with a sufficiently small threshold in order

to ensure that the ignored-scales are not significant. As a result of wavelet filtering and due to
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Figure 1.3: Filtered DNS data on 2563 grid at Reλ ≈ 168. Courtesy of Daniel E. Goldstein [24].

compression property of wavelets, the number of DOF (degree-of-freedom) is reduced compared with

DNS using conventional approaches; however, still due to small threshold, it is still computationally

very expensive and impractical for real high Reynolds number flow applications: the 2D spatial

computational complexity scales as Re
7
10 compared with Re for non-adaptive computation [27].

Coherent Vortex Simulation (CVS) – proposed by Farge et al. [15] – is based on the idea that

coherent modes are the ones, which are mostly responsible for the evolution of the turbulence as

well as turbulent energy cascade and the fully developed turbulence is made of: 1) an organized

coherent part; and 2) a random incoherent part. It was observed that by filtering the vorticity field

using orthogonal wavelet bases with an ideal threshold level, the probability density function (PDF)

of the unresolved filed is of the form of PDF of Gaussian white noise for homogeneous turbulence.

Therefore, CVS (wavelet-filtered vorticity with an ideal threshold) is an approach to decompose the

flow into deterministic and stochastic fields. Hence, in CVS the coherent-structures (the wavelet de-

noised vorticity-field) are simulated directly while neglecting the effect of the incoherent-structures,

since they provides no turbulent-dissipation.

CVS achieves a significant compression compared with DNS; however, number of remaining

active modes are still large and the process of calculating the optimal threshold at each time-step

is quite expensive since it requires the variance of the incoherent modes. Furthermore, the wavelet-
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Figure 1.4: Velocity Energy Spectra For Each Wavelet Scale. Courtesy of Daniel E. Goldstein [24].

based coherent vortex extraction for inhomogeneous turbulence is still an open question [40].

Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) – proposed by Goldstein and

Vasilyev [24] – is a recent wavelet-based methodology for numerical simulations of turbulent flows

that resolves energy containing turbulent motions using wavelet multi-resolution decomposition and

self-adaptivity. In the original formulation of this technique, the extraction of the most energetic

structures is achieved using wavelet thresholding filter with a priori prescribed threshold level.

SCALES is a methodology, which inherits the advantages of both Coherent Vortex Simulations

(CVS) [15] and Large Eddy Simulation (LES), while overcoming the shortcomings of both. Unlike

coherent/incoherent and large/small structures decomposition in CVS and LES respectively, in

SCALES the separation is between more and less energetic structures. Therefore, unlike CVS, the

effect of background flow can not be ignored and needs to be modeled similarly to LES. Furthermore,

the filtering and consequently, the subgrid scale (SGS) model are benefited from wavelet nonlinear

multiscale band-pass filter, which depends on instantaneous flow realization. As a result of using

SGS models, the number of degrees-of-freedom is smaller than CVS and consequently a higher

grid-compression can be achieved, Figure 1.5.
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(a) SCALES (b) CVS

Figure 1.5: A visualization to show that even in CVS, which matches the DNS spectra, just at few
locations, grid is adapted to the highest level of resolution while in SCALES most of the time, the
highest level of resolution is one less than the maximum level of resolution.

In SCALES, the wavelet-filtered Navier-Stokes equations are solved using the adaptive wavelet

collocation method (AWCM) [45], which is based on the second-generation bi-orthogonal wavelet –

a compactly supported and symmetric scheme. Unlike the CVS with its original formulation, which

is based on vorticity equations, SCALES similar to LES solves the velocity field and it was proved

that using bi-orthogonal wavelets, the PDF of the modeled portion of the SGS (wavelet-filtered out)

velocity field is of the form of Gaussian white noise PDF.

This fraction of the less energetic structures is in fact a small part of SGS field. That is to say,

the velocity field is initially decomposed to more and less energetic structures by means of wavelet-

threshold filter. The “deterministic most energetic coherent structures” are solved directly using

AWCM. However, the unresolved field in not absolutely an incoherent stochastic field with no effect

on the resolved field and as a result, it needs to be modeled. Again, using wavelet-threshold filter,

the unresolved field is decomposed into two kinds of modes: the minority “deterministic coherent

SGS modes”; and the “majority stochastic incoherent SGS modes”. The effect of these two modes

on the resolved field can be modeled by “deterministic SGS models” and “stochastic SGS models”

respectively.
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Figure 1.6: Coherency Diagram: At-a-Glance Comparison of DNS, WDNS, CVS, SCALES, LES.
Courtesy of Daniel E. Goldstein [24].

The overall at-a-glance comparison of these wavelet-based turbulence modeling techniques –

WDNS, CVS, SCALES – and the conventional non-wavelet-based methods – DNS, LES – can be

easily illustrated in Coherency Diagram [24], Figure 1.6, on which the wavenumber increases in the

horizontal direction and the wavelet-threshold-filter threshold-parameter increases in the vertical di-

rection upward. It is clearly shown that the CVS and LES are limiting case of Coherent/Incoherent

and Large/Small structures distinctions, while in SCALES in a more relaxed fashion, both re-

solved and unresolved structures are not limited to these separations. Therefore, while not being

limited to homogenous-turbulence – as is the case in CVS – with a very high grid-compression

ratio, majority of important energetic structures are resolved and both coherent-deterministic and

incoherent-stochastic unresolved modes can be modeled. This distinction is not anymore limited to

the size of the structures – which is rather less informative – as it is the case in classical LES. Fur-

thermore, resolved structures and the modeled eddies overlap over a range of wavenumbers together

in order to ensure more realistic energy cascade.
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1.1 Motivation

Ever since the emergence of the wavelet-based multi-resolution schemes for simulations of

turbulence, there has been a major limitation for all wavelet-based techniques: the use of a pri-

ori defined global (both in space and time) thresholding-parameter. In this work the robustness

of the SCALES approach is further improved by exploring the spatially and temporally variable

thresholding strategy, which allows more efficient representation of intermittent flow structures.

This methodology provides an automatic transition among WDNS, CVS, and SCALES, which

represents a framework of continuously variable fidelity wavelet-based space/time/model-form adap-

tive hierarchical multiscale methodology. This work aims to develop such a uniform approach, i.e.

a single computational framework, for multiscale turbulence modeling.

Even with enormous compression achieved by wavelets, i.e. 99%, still at high resolutions,

the number of active degrees-of-freedom are beyond the capability of the most advanced CPU and

memory configurations: for instance one cannot fit 1% of 20483 > 85 millions DOF into any

available CPU. All in all, highly adaptive multi-resolution techniques like SCALES are not the

replacement of the need for highly scalable petascale algorithms but they are necessary to utilize

the existing computational power more robustly. Therefore, completion of a long-time effort to

parallelize an adaptive wavelet-based PDE solver is another essential component of the current

effort.

The compression accomplished by wavelets has been proved by the existing efforts using CVS

and SCALES and it is widely believed and accepted within the turbulence community; however, no

work has yet proposed exactly how the number of active wavelets (DOFs) scale as Reynolds number

increases. That is to say, it is unknown that how quantitatively the wavelet-based multi-resolution

techniques improve the Reynolds scaling of spatial modes in DNS. Hence, the second major objective

of this study is to use the aforementioned proposed wavelet-based parallel PDE solver and the

spatially variable thresholding methodology in order to attain the Reynolds scaling of number of

active spatial modes in 3-D linearly forced homogeneous turbulence – i.e. by taking into account
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the spatial intermittency – using both CVS and SCALES. In addition to compression – which is

the most prominent strength of wavelets in turbulence, due to the other wavelets properties and the

dynamically adaptive mechanism, the hierarchical multiscale adaptive variable fidelity methodology

developed by this work, provides a unique tool in controlling the flow-physics information, which is

desired to be modeled. The current study investigates the effect of the fidelity of simulation on the

Reynolds scaling of this modified SCALES in order to demonstrate how wavelet based methods can

resolve more flow-physics yet using profoundly smaller number of spatial modes compared with the

other techniques.

1.2 Organization

This dissertation is organized as follows. Chapter 2 addresses the background of SCALES

governing equations and the AWCM for solving PDEs. In Chapter 3, the motivation, derivation and

validation of the spatially variable thresholding are discussed. Chapter 4 presets the idea of “hybrid

wavelet-based multiscale adaptive variable fidelity turbulence modeling” based on spatio-temporal

field for the threshold-level of the WTF. Chapter 5 explains in detail the scalability studies of a

parallel adaptive wavelet collocation technique. The Reynolds scaling of spatial modes of both

Coherent Vortex Simulations and Stochastic Coherent Adaptive Large Eddy Simulations of linearly

forced homogeneous turbulence at high Reynolds numbers Reynolds are addressed in Chapter 6.

Finally, a concise overview of the most notable achievements throughout the course of this numerical

effort as well as discussion of envisioned ideas for the future work are given in Chapter 7.

It is worth clarifying that each chapter ends with synopsis of in-progress efforts and perspective

of future endeavors. Also, each chapter starts with a small redundant introduction as to make each

chapter self consistent and comprehensive.



Chapter 2

Background

2.1 Stochastic Coherent Adaptive Large Eddy Simulation

The properties of wavelet transform, namely the ability to identify and efficiently represent

temporal/spatial coherent flow structures, self-adaptiveness, and de-noising, have made them at-

tractive candidates for constructing multi-resolution variable fidelity schemes for simulations of

turbulence [40]. To address the shortcomings of LES and CVS, SCALES uses a wavelet threshold-

ing filter to dynamically resolve and track the deterministic most energetic coherent structures while

the effect of less energetic unresolved modes is modeled. The unresolved less energetic structures

have been shown to be composed of a minority of deterministic coherent modes that dominate the

total SGS dissipation and a majority of stochastic incoherent modes that, due to their decorrelation

with the resolved modes, add little to the total SGS dissipation [8, 24]. In the current implemen-

tation, similar to the classical LES, only the effect of coherent part of the SGS modes is modeled

using deterministic SGS models. The use of stochastic SGS models to capture the effect of the

incoherent SGS modes will be the subject of future investigations. The most significant feature of

SCALES is the coupling of modeled SGS dissipation and the computational mesh: more grid points

(active wavelets) are used for SGS models with lower levels of SGS dissipation. In other words, the

SCALES approach compensates for inadequate SGS dissipation by automatically increasing the lo-

cal resolution and, hence, the level of resolved viscous dissipation. Another noticeable feature of the

SCALES method is its ability to match the DNS energy spectra up to the dissipative wavenumber

range using considerably less degrees of freedom.
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2.2 Wavelet Thresholding Filter

In the wavelet-based approach to the numerical simulation of turbulence the separation be-

tween resolved energetic structures and unresolved residual flow is obtained through nonlinear multi-

resolution wavelet threshold filtering (WTF). The filtering procedure is accomplished by applying

the wavelet-transform to the unfiltered velocity field, discarding the wavelet coefficients below a

given threshold (ε) and transforming back to the physical space. This results in decomposition

of the turbulent velocity field into two different parts: a coherent more energetic velocity field

and a residual less energetic coherent/incoherent one, i.e., ui = u>εi + u′i, where u
>ε
i stands for the

wavelet-filtered velocity at level ε

u>εi (x) =
∑

l∈L1

c1
l φ

1
l (x) +

+∞∑

j=1

2n−1∑

µ=1

∑

k ∈ Kµ,j

|dµ,jk | > ε‖ui‖WTF

dµ,jk ψµ,jk (x), (2.1)

where ψµ,jk are wavelets of family µ at j level of resolution, djk are the coefficients of the wavelet

decomposition, and φ1
l are scaling functions at the first level of resolution.

The key-role in the wavelet-filter definition is clearly played by the

non-dimensional relative thresholding level ε that explicitly defines the relative energy level of the

eddies that are resolved and, consequently, controls the importance of the influence of the residual

field on the dynamics of the resolved motions. This work explores the use of spatially and temporary

varying thresholding level ε, which follows the evolution of the turbulent velocity field.

2.3 Adaptive Wavelet Collocation Method

Depending on whether taking full or partial advantage of wavelet analysis (e.g. multi-

resolution properties, wavelet compression, detection of localized structures and subsequent use

for grid adaptation, fast wavelet transform/inverse-transform, wavelet-based interpolation, active

error control), the wavelet-based PDE-solver algorithms can be categorized in different ways [40].

Here the focus is on “pure wavelet methods” where wavelets are used either directly for discretizing

the underlying PDEs or the properties of wavelets are used for grid adaptation, preconditioning
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or inversion of the operators and fast interpolation [46]. The pure wavelet methods are mainly

categorized as “Adaptive Wavelet Galerkin Methods” and “Adaptive Wavelet Collocation Methods”.

The main difference is that former solve the problem in wavelet coefficient space but the later solve

the problem in physical space on an adaptive computational grid.

In Adaptive Wavelet Galerkin Methods, the unknown variable u is decomposed into a wavelet

series given by Equation (2.1). Substituting this approximation of considering only coefficients with

absolute value above a given threshold into the underlying differential equation(s) and requiring that

the residual vanishes with respect to test functions results in a system of equations for the unknown

wavelet coefficients dµ,jk and scaling function coefficients c1
l , which can be solved at each time step

[40]. The test functions can be either dual wavelets and scaling functions for bi-orthogonal wavelets,

wavelets and scaling function for orthogonal wavelets, or vaguelettes [40]. The grid adaption strategy

is based on analyzing the wavelet coefficients dµ,jk and the adjacent zone, which will be explained

later. Using this algorithm, the approximation of 2.1 automatically tracks the solution in space

and scale. Boundary conditions can be imposed using either boundary adapted basis functions or

imposing them afterwards, as done for spectral methods using the tau method [40].

In Adaptive Wavelet Collocation Methods, the differential equations are solved in physical

space on an adaptive computational grid. This prevents the major difficulties associated with

adaptive wavelet Galerkin methods: challenging treatment of nonlinearities and general boundary

conditions. The evaluation of the nonlinear terms in adaptive wavelet collocation methods is per-

formed in the physical domain similar to pseudo-spectral methods. The grid adaptation in wavelet

collocation methods is done similarly to other wavelet-based methods. The only difference is that

at the end of each time step (or iteration) an additional wavelet transform is performed for the

analysis of wavelet coefficients and construction of the adjacent zone. Once the approximation (2.1)

is constructed, the computational grid is obtained based on one-to-one correspondence between

wavelets and collocation points: a collocation point is kept if the corresponding wavelet is kept in

the approximation (2.1). The implementation of wavelet collocation methods used in the current

study uses a finite difference approximations of the wavelet-based interpolant: namely taking ad-
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vantage of wavelet interpolation properties and evaluate spatial derivatives using finite difference

approximation on either fixed stencils using a ghost point approach or variable stencils that use

values at the nearest grid points. This implementation utilizes “second generation wavelets”, which

are constructed in the spatial domain rather than Fourier space and as a result they can be custom

designed for the complex geometries and nonuniform sampling intervals. The current implemen-

tation exploits the second-generation lifted interpolating wavelets where the Lagrange polynomials

are used to construct local polynomials P2N−1(x) of order 2N − 1, which uses 2N closest adaptive

even points. The spatial derivatives can be taken up to 2N th order.

In pure wavelet methods, adaptation of the wavelet expansion is based on the analysis of

the wavelet coefficients of the approximation (2.1). The wavelet thresholding criterion is adequate

for representing a function or a field with fewest degrees of freedom, while still retaining a good

approximation. However, for solving PDEs, it is imperative to ensure that the wavelet basis or

computational mesh is sufficient to approximate the solution throughout the time-integration step

for the evolution problems or at the next iteration in the elliptic problems. This extended adaptation

strategy for an evolution problem is illustrated in Figure 2.1, where solid circles indicate the positions

of wavelets both in location (index i) and scale (index j). The locations of wavelets with significant

coefficients kept in approximation (2.1) at time t are marked by the orange bell curve (significant

wavelets are inside of the orange region). The second bell-shaped region on the right of the original

one marks the locations of the significant wavelet coefficients at the end of the time integration, i.e.,

at t + ∆t. In order to ensure the adequate approximation of the solution during time integration,

the concept of a safety or an adjacent zone is introduced, which includes wavelets whose coefficients

are or can possibly become significant during the period of time integration, when the grid remains

unchanged. The safety zone is represented in Figure 2.1 by the red bell-shaped region. Most of the

current wavelet adaptation techniques are based on this strategy. In the current implementation of

adaptive wavelet collocation method (AWCM), a safety zones is added for each of the significant

coefficients and the time-step is chosen such that the solution does not propagate outside of the safety

zone. This safety zone includes neighboring wavelets at the same, one-or-more above (children),
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Figure 2.1: Illustration of the adjacent zone for adaptive wavelet methods in wavelet coefficient
space with scale index j and position index i. Courtesy of Kai Schneider and Oleg V. Vasilyev [40]

and one-or-more below (ancestors) levels of resolution at each significant point. Therefore, it can

be ensured that no energy at a given scale of resolution propagates outside the safety region. The

thickness of the safety zone (number points added in each direction) determines the time interval

during which the calculations can be carried out without modifying the computational grid [40].

This thickness is a user-defined control parameter. For computational efficiency, in general a safety

zone, which includes only the immediate neighboring wavelets, is optimal.

2.4 Wavelet-Filtered Navier-Stokes Equations: SCALES Equations

By filtering the Navier-Stokes equations using wavelet threshold filtering, the following SCALES

equations that govern the evolution of coherent energetic structures are obtained:

∂xiu
>ε
i = 0, (2.2)

∂tu
>ε
i + u>εj ∂xju

>ε
i = −∂xi P

>ε + ν∂2
xjxju

>ε
i − ∂xjτ∗ij +Qu>εi , (2.3)

where P>ε = p>ε

ρ + 1
3τkk; τij = uiuj

>ε − u>εi u>εj are the unresolved “SGS stresses” tensor that

its deviatoric part τ∗ij = τij − 1
3τkkδij needs to be modeled; Qu>εi is the linear forcing term [30],

which is applied in the physical space over the whole range of wavenumbers; and the superscript

(·)>ε denotes wavelet filtered quantities. The bar symbol in the notation of the pressure variable,

P>ε, does not imply the application of the WTF operator, but is used for consistency with the
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other terms; the pressure term in the filtered momentum equation must be viewed as a Lagrange

multiplier enforcing the incompressibility constraint since our WTF is not based on divergence-free

wavelet basis. The SCALES equations are similar to the LES ones with the exception that the

nonlinear multiscale band-pass wavelet filter, which depends on instantaneous flow realization, is

used. The unresolved SGS stresses represent the effect of “unresolved less energetic deterministic

coherent and stochastic incoherent eddies” on the “resolved more energetic coherent structures”. In

this study the localized kinetic-energy-based model [9] is exploited to close the filtered momentum

equations. The SCALES methodology involving both the filtered momentum and the SGS energy

equations is implemented by means of the adaptive wavelet collocation method [45], which is a

multi-resolution adaptive scheme with O(Ŋ) computational cost, where Ŋ is the number of active

wavelets on a dyadic grid.

2.5 Localized Kinetic Energy based Model (LKM)

The localized SGS models like LKM, are based on the eddy-viscosity models assumption where

turbulent viscosity depends on SGS kinetic energy contrary to the Smagorinsky model in which

turbulent viscosity depends on the resolved rate of strain, Sij
>ε. Hence the unknown unresolved

“SGS stresses” tensor is approximated as:

τ∗ij
∼= −2νtSij

>ε
. (2.4)

In order to define the “turbulent eddy-viscosity” νt, one can assume the square root of SGS kinetic

energy as the velocity scale and the wavelet-filter characteristic width ∆ as the length scale:

νt = Cν∆k1/2
sgs , (2.5)

where Cν is the turbulent eddy-viscosity model coefficient. As a result, the deviatoric part of the

unresolved SGS stresses tensor which needs to be modeled is approximated as:

τ∗ij
∼= −2Cν∆k1/2

sgs Sij
>ε
. (2.6)
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The SGS dissipation – rate of local-transfer of energy from energetic resolved eddies to unre-

solved structures – by definition obtained from τ∗ij and Sij
>ε:

Π = −τ∗ij Sij
>ε
. (2.7)

Hence by replacing approximate (modeled) value for the the deviatoric part of SGS stress, SGS

dissipation rate is approximated in terms of the SGS kinetic energy (SGS K.E.) as:

Π ∼= Cν∆k1/2
sgs |Sij

>ε|2, (2.8)

where resolved rate-of-strain tensor is defined as:

Sij
>ε

=
1
2

(
∂xju

>ε
i + ∂xiu

>ε
j

)
(2.9)

and the modulus of the rate-of-strain tensor is:

|S>ε| =
(

2Sij
>ε
Sij
>ε
)1/2

. (2.10)

The model transport equation for SGS K.E. is expressed as follows [23]:

∂tksgs + u>εj ∂xjksgs = (ν + νt)∂2
xjxjksgs − ε̃sgs + Π, (2.11)

where SGS K.E. is defined as the difference between the wavelet filtered energy k
>ε and the kinetic

energy of the filtered velocity field kres:

ksgs = k
>ε − kres =

1
2

(uiui>ε − ui>εui>ε) (2.12)

The SGS viscous dissipation by definition is:

ε̃sgs = ν
(
∂xjui∂xjui

>ε
− ∂xju>εi ∂xju>εi

)
= ε̃

>ε − ε̃res, (2.13)

where ε̃res = ν∂xju
>ε
i ∂xju

>ε
i is the resolved pseudo-dissipation and εres = 2ν Sij

>ε
Sij
>ε is resolved

turbulent dissipation

Similar to the SGS stress model, the SGS viscous dissipation can be modeled using simple

scaling arguments:

ε̃sgs = Cε∆−1k3/2
sgs . (2.14)
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This modeling procedure results in two dimensionless model coefficients (parameters): “Turbulent

Eddy-Viscosity Model Coefficient” Cν and “SGS Energy Dissipation Model Coefficient” Cε. Based

on previous numerical studies [9], for the sake of simplicity and saving computational resources, in

the current effort, the model parameters are assumed to be priori prescribed constants as: Cε = 1.0

and Cν = 0.06.



Chapter 3

Spatially Variable Thresholding:

Framework for Adaptive Variable Fidelity Wavelet-based Models

Until now, not only SCALES but also all other wavelet-based turbulence modeling approaches

and in general all wavelet-based methods for numerical solution of PDEs had a major limitation:

the use of a priori defined global (both in space and time) thresholding-parameter for the wavelet-

thresholding-filter. One of the main objectives of this work is to enhance the robustness of the

SCALES approach even more by exploring the physics-based spatially and temporally variable

thresholding strategy. The proposed spatially variable thresholding methodology is the key element

of a more general wavelet-based hybrid adaptive variable fidelity turbulence modeling framework in

order to fully utilize spatial/temporal intermittency of flow structures.

Previous studies, e.g. [25], demonstrated that in SCALES, the SGS dissipation is proportional

to ε2; therefore, one can enhance SCALES by exploiting spatially-varying ε based on local SGS

dissipation Π = −τ∗ij Sij
>ε. This implies that rate of local-transfer of energy from energetic-resolved-

eddies to unresolved-less-energetic structures can be controlled by varying the thresholding-factor.

Therefore, the idea is to locally vary ε wherever Π deviates from a priori defined goal-value. A

decrease of the thresholding level results in the local grid refinement with subsequent rise of the

resolved viscous dissipation, while an increase of ε coarsens the mesh resulting in the growth of

the local SGS dissipation. However, in order to vary ε in a physically consistent fashion, it should

follow the local flow structures as they evolve in space and time. This necessitates the Lagrangian

representation of ε. Therefore, the continuously varying threshold level ε should be forced properly
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in order to track the time-rate-of-change of ε within a material framework subjected to a spatial and

temporal dependency of the velocity field. Differentiation with respect to time of the “statistical

average of ε along the trajectory of a fluid particles” results in the evolution equation for ε based

on the material derivative. Since the chaotic convective mixing can create high frequency modes in

the threshold field and consequently lead to undesired small-scale fluctuations in the velocity field,

an additional artificial diffusion term is added to the evolution equation. Therefore, the Lagrangian

representation of ε is achieved using the Lagrangian path-line diffusive averaging approach [47]:

∂tε+ u>εj ∂xj ε = −forcingterm(x, t) + νε∂
2
xjxj ε. (3.1)

For the sake of efficiency, instead of solving Eq. (3.1) for the evolution of ε, the linear-interpolation

along characteristics, similar to the idea of Meneveau et al. [32], can be used

1
∆t

[
εnew (x, t+ ∆t)− εold (x− u>ε∆t, t)

]
= −forcingterm (x− u>ε∆t, t) . (3.2)

The use of linear interpolation results in sufficient numerical diffusion, thus, eliminating the need for

explicit diffusion. That is to say, the required physical diffusion is controlled either explicitly by the

evolution equation approach directly or implicitly through the interpolation on the local resolution.

The proposed spatially variable thresholding strategy ensures that the wavelet threshold is

not a priori prescribed but determined on the fly by desired “turbulence resolution” described in

the following. The mechanism for the forcing term is as follows: The local fraction SGSD (FSGSD,

F) is defined as Π
εres+Π , where εres = 2ν Sij

>ε
Sij
>ε is the resolved viscous dissipation. A prescribed

level for the quantity of F is referred as desired “turbulence resolution”, since it indicates the level

to which one would like to resolve the most energetic structures and model the effect of unresolved

structures on the resolved ones. It should be noted that the SGS kinetic energy is also proportional

to the threshold-level, i.e. scales as ε2, consequently, the ratio of ksgs
kres+ksgs

could be also used to

characterize how much the flow is resolved/modeled. However, since the energy spectrum decays

with the increase of wave numbers, the SGS kinetic energy characterization of turbulence is not well

suited for high Reynolds number flows, simply because it mostly based on large-scale contribution
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and is not sensitive to the Reynolds number changes. The SGS dissipation characterization, on the

other hand, is more objective measure, since dissipation spectrum increases with wavenumber and

the changes in molecular viscosity and correspondingly Reynolds number would result in shifting

the peak of the resolved dissipation. For that reason in this work, ε is adapted based on the ratio of

dissipations rather than the ratio of kinetic energies of modeled and resolved structures. In addition,

the SGS kinetic energy is not always available, while SGS and resolved dissipations are.

Based on this concept of the turbulence resolution, the idea of the forcing scheme is basically

to maintain F at a priori-define desired “Goal”, G, value. In this work, two different simple linear

feedback forcing methods are studied:

FT1 Controlling F at the goal-value G simply implies retaining Π at εres
G

1−G . The first forcing

type (FT1) is an attempt to implement this while normalizing the forcing term based on

its time average:

forcingterm (x, t) = Cfε

Π− εres
G

1−G
TAF

ε (x, t) , (3.3)

where TAF stands for the time average of the forcing, is the time average of |Π− εres
G

1−G |.

The forcing constant coefficient, Cfε , is intentionally set to 400 in order to make the time

response of FT1 about three to four times faster than large eddy turnover time, which is

discussed in the next section.

FT2 In this approach, the variations of F is controlled directly based on the goal-value in con-

junction with a relaxation time parameter (time-scale), τε,

forcingterm (x, t) =
1
τ ε

(
Π

εres + Π
− G

)
ε (x, t) . (3.4)

Following the time-varying threshold studies [7], a time-scale associated to the characteristic

rate-of-strain is chosen: τ−1
ε = 〈|Sij>ε|〉.
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Figure 3.1: Time-history of total fraction SGSD, 〈Π〉
〈εres〉+〈Π〉 .

3.1 Results

The proposed methodology has been tested [35] for linearly forced homogeneous turbulence

[6] with linear forcing constant coefficient Q = 6 at Reλ ∼= 72 (Taylor micro-scale Reynolds number)

using localized dynamic kinetic-energy-based SGS models [9, 6] on an adaptive grid with effective

resolution of 2563. Figure 3.1 demonstrates the results of this implementation for three different goal-

values (0.4, 0.3, 0.25) for the local FSGSD with the upper and lower bound for epsilon set as 0.2 and

0.43 (ε ∈ [0.2, 0.43]) as well as a constant-thresholding case of ε = 0.43 . The local and total FSGSD

are defined respectively as Π
εres+Π and 〈Π〉

〈εres〉+〈Π〉 , where 〈Π〉 = 〈−τ∗ij Sij
>ε〉 and 〈εres〉 = 2ν〈Sij>εSij>ε〉

are respectively the volume-averaged SGS dissipation and the volume-averaged resolved viscous

dissipation .

For the case of G = 0.4, total-FSGSD never reaches the prescribed goal-value (0.4). The

reason is that the total-FSGSD for the case of constant-thresholding with ε = 0.43 is smaller than

0.4 for most of the time. As a result, varying thresholding-factor with a “local-FSGSD goal-value”

larger than the average FSGSD of constant-thresholding using the same ε and εmax resulted in

total-FSGSD, which was bellow the goal-value. Similarly to the previous case, the test case of the

goal-value of 0.3 inherits a large-period oscillations due to capping ε at 0.43 level regardless of the
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forcing method. These oscillations are removed by increasing εmax to 0.5. The success of this test

with larger εmax compared with the above mentioned two tests, where εmax was 0.43, revealed that

the upper bound of the interval for allowable threshold variations was not large enough to increase

the SGS dissipation accordingly, which implies that with ε ∈ [0.2, 0.43] flow was over resolved.

Therefore, to achieve a FSGSD greater than the average of FSGSD corresponding to constant-

thresholding at a certain εconstant−thresholding, it is required to set the εmax > εconstant−thresholding.

This is further confirmed by considering the case with the goal set to 0.25, which illustrates how

precisely the spatially variable thresholding methodology can maintain Π at a priori defined level.

In addition, when εmax is set up high enough, the SGS dissipation approaches the desired level

within few eddy turnover times.

The time history of TAF and τ−1
ε are shown in Figure 3.2. The relaxation time parameter

for FT2, τε, is approximately one-tenth of the large eddy turnover time, τeddy = u′2

〈ε〉 =
2
3
K

2KQ =

1
3Q = 1

18 . While the relaxation time parameter for FT1, CfεTAF−1, is between one-third and one-

fourth of τeddy. That is, FT2 has as much as 2 to 3 times faster response compared with FT1.

This faster time response was able to partially recover the FSGSD. This improvement reveals the

importance of very localized and fast mechanisms for the forcing term. The time-averaged term in

FT1 destroys the localized Lagrangian nature of the algorithm; however, to smear out the effect

of possible very localized FSGSD values, it is recommended to have some averaging mechanism.

Hence, another approach, which is currently under investigation, is to track the forcing term itself

within a Lagrangian frame so that the forcing term inherits the history of the flow evolution.

Analysis of spatially variable thresholding SCALES by means of the localized dynamic kinetic-

energy model (LDKM) – in which either Bardina-like or Germano-like approach is exploited for the

dynamical evaluation of both turbulent eddy-viscosity and SGS energy dissipation model coefficients

– to close the filtered momentum equations is the subject of further investigations.

Compared with the constant-thresholding case of ε = 0.43, number of active wavelets, Ŋ, for

small goal value of 0.25 by average is higher, while all the other variable thresholding cases inherit

approximately the same average of number of active wavelets (grid points), Figure 3.3.
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Relaxation Time Parameter for FT1 : Cfε TAF−1 ≈ 1
3 or 4 τeddy ( 1

75)

Relaxation Time Parameter for FT2 : τε ≈ 1
10 τeddy ( 1

170)

Compression Ratio, 1 − Ŋ
Ŋmax

– where Ŋ/Ŋmax is the ratio of the active wavelets on the

adaptive grid to the total available wavelets on the non-adaptive effective grid at the highest level

of resolution or DNS resolution of 2563 – illustrated a compression of more than 99% at most of

the time for all cases except G = 0.25, Figure 3.4. Even for G = 0.25, the compression is retained

at more than 98%. Considering that the sixth order AWCM code is about 3 to 5 times slower per

grid point than pseudo-spectral DNS code [6], even the worst case scenario of compression factor

of 98%, represents an acceleration of approximately 16 to 10 times with respect to pseudo-spectral

DNS. This clarifies the enormous compression, i.e. number one strength of wavelets in turbulence.

Total Resolved Dissipation, 〈εres〉, Figure 3.5, indicates that not necessarily the smaller goal

value for FSGSD results in higher resolved dissipation at all time. This is because of the fact

that the continuous coupling between the dissipation and grid-adaptation results in continuous

adjustment of resolved dissipation as discussed before by refining or coarsening the grid and as a

result at some time/locations it may affect the amplitude of the resolved dissipation differently.
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Therefore, one can not make such a judgement whether the lower FSGSD goal value means the

the higher resolved dissipation throughout the spatial/time space. This argument is also valid for

the Total SGS Dissipation, 〈Π〉, and Total Resolved+SGS Dissipation, 〈εres〉+ 〈Π〉, as illustrated in

Figures 3.6 and 3.7 respectively.

Taylor Microscale Reynolds Number, Reλ = u′λ
ν , where the Taylor length-scale can be eval-

uated for isotropic turbulence as λ = (15νu′2

〈ε〉 )1/2, is demonstrated in Figure 3.8 where the time

averaged of each case is also shown.

To summarize, variable thresholding is a methodology, which provides two-way feedback

between the modeled SGS dissipation and the computational mesh in order to maintain a pri-

ori defined level of SGS dissipation, namely a prescribed level of turbulence resolution. The

feedback is achieved through spatio-temporal variation of the wavelet threshold that follows the

evolution of the resolved/unresolved flow structures. The proposed methodology represents a

fully adaptive wavelet thresholding filter for turbulent flow simulation, where the thresh-

olding level is determined on the fly by tracking the areas of locally significant SGS dissipation (or

any other physical quantity).



27

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0.5

1

1.5

2

2.5

3

3.5
x 10

5

Time

nw
lt

 

 

eps=0.43
Goal = 0.4   FT1
Goal = 0.3   FT1
Goal = 0.25   FT1
Goal = 0.3   FT2
Goal = 0.3   FT2   eps−max=0.5

Figure 3.3: Number of active wavelets.
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Figure 3.6: Total SGS dissipation, 〈Π〉.
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Figure 3.7: Total Resolved+SGS dissipation, 〈εres〉+ 〈Π〉.
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For the sake of completeness it should be mentioned that the spatially varying thresholding

methodology is not limited to homogeneous flows or SCALES. It has been also tested for WDNS

of inhomogeneous external flows, where forcing term of “characteristic based tracking of epsilon” is

constructed based on the magnitude of vorticity or strain rate rather than SGS dissipation since

there is no SGS model in WDNS. The results for incompressible flow around NACA 0015 airfoil

show a very robust and fast methodology for adjusting the thresholding-factor based on dynamically

important flow characteristics, for instance, the magnitude of vorticity or strain rate (Figure 3.9).

The main objective of this test case is indeed to prove spatially variable thresholding technique is

limited neither to the homogeneous flows nor to SCALES: within the range of WDNS and CVS

that SGS dissipation is not defined, other important flow characteristics can be utilized to define

the threshold-level as a field. The extension of this feasibility study to CVS and WDNS of external

flows at high Reynolds numbers is envisioned for future endeavors.
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Figure 3.9: Incompressible flow around NACA 0015 at 30 ◦ angle-of-attack.
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Another ongoing investigation as discussed in the previous section is to track the forcing term

itself within a Lagrangian frame so that the forcing term inherits the history of the flow evolution,

i.e., analogous to the FT2, the forcing is defined based on Lagrangian Averaged of Forcing, IF ,

forcingterm (x, t) =
1
τε

1
IF

(
Π− εres

G
1− G

)
ε (x, t) , (3.5)

where the Lagrangian Averaged of Forcing defined as the statistical average of the forcing, F (x (τ) , τ),

IF (x, t) =
1
τε

∫ t

−∞
e
τ−t
τε F (x (τ) , τ) dτ. (3.6)

Similar to the threshold-factor, the Lagrangian representation of F (x (τ) , τ), is tracked using the

Lagrangian Path-Line Diffusive Averaging approach,

∂tIF + u>εj ∂xjIF = −1
τ ε

(Flocal − IF ) + νIF ∂
2
xjxjIF , (3.7)

where the local forcing is defined as follows:

Flocal = Π− εres
G

1− G . (3.8)

Therefore, the forcing, F (x (τ) , τ), also follows the local flow structures as they evolve in space and

time.



Chapter 4

Hierarchical Variable Fidelity Multiscale Turbulence Modeling

The idea of LES and filtering the velocity-field has been a breakthrough in numerical simula-

tion of turbulence, yet still has some limitations including large computational cost for high-Reynolds

number wall-bounded flows. To overcome the LES shortcomings, there has been a considerable in-

terest in development of hybrid turbulence models. Since they aim at providing better results than

RANS without the cost of a complete LES in the entire domain. This is essential for many industrial

applications, in particular for high-Reynolds number flows in the presence of walls.

Growing number of complicated fluid devices and rising challenges of complex fluid flows across

numerous disciplines necessitate the development of robust multiscale variable fidelity methodolo-

gies. A wide range of hybrid LES/RANS and DNS/LES/RANS approaches to smooth the sharp

interface between these different models has been attempted. Despite a relatively longtime endeavors

to match these techniques and construct a coherent transition, still much remain for future research,

mostly because these methodologies are fundamentally different. Furthermore, ever since the in-

ception of Computational Fluid Dynamics, turbulence modeling and numerical methods evolved as

two separate fields of research with the perception that once a turbulence model is developed, any

suitable computational approach can be used for the numerical simulations of the model.

The high compression property of the wavelet-based decomposition is a promising feature,

which can make very large scale hybrid adaptive wavelet-based DNS/LES/URANS of turbulent

flows a reality. This work develops a framework for very large-scale parallel hybrid adaptive wavelet-

based simulation of turbulence. Two major building blocks, required for such a framework, are
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1) hybrid models within the context of adaptive wavelet-based methods by means of the notion of

defining the thresholding-factor of the wavelet threshold filter as a field variable (spatial/temporal

variable thresholding); and 2) highly-scalable parallel adaptive wavelet-based PDE solver. While

the later has been completed by this work, the former is the first major subject of this research.

As mentioned in Chapter 1, CVS in its original formulation [15] solves the wavelet-filtered

vorticity equations with the use of orthogonal Daubechies wavelets, while SCALES analogous to

LES is solves wavelet-filtered Navier-Stokes equations along with SGS models using bi-orthogonal

second-generation interpolated wavelets. However, Goldstein and Vasilyev [24] showed that the

velocity-field can be decomposed to deterministic coherent and stochastic incoherent (with Gaussian

PDF) modes using wavelet threshold filtering in velocity space, thus, CVS can also be based on

primitive variables (velocity-pressure). Therefore, hereafter this work refers to CVS in velocity-

pressure formulation. This implies that this CVS and SCALES both solve the wavelet-threshold

filtered Navier-Stokes equations without and with SGS models respectively though at different

threshold levels. On the other hand, WDNS can be also viewed as solution of wavelet-filtered

Navier-Stokes equations at very small value of threshold parameter and without an SGS model. All

in all, the three methodologies all solve the same governing equations.

In wavelet based methods in general and particularly in SCALES, implementation of Hy-

brid DNS/LES/RANS mainly requires change of wavelet thresholding-factor with no or minimal

additional efforts for merging two different solvers. Because, within the context of wavelet-based

methods, variable fidelity is achieved predominantly by changing the thresholding-factor: very small

thresholding-factor corresponds to WDNS, moderately small thresholding-factor corresponds to

CVS, larger value of thresholding-factor along with solving the SGS models result in SCALES,

and much larger value of thresholding-factor for solving Unsteady Reynolds Averaged Navier-Stokes

equations lead to WURANS [29] (wavelet-based URANS). Hence, a careful combination of WDNS,

CVS, SCALES, and WURANS in a systematic manner can lead to fully adaptive wavelet-based

hybrid method.
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Transition from WDNS to CVS is very straightforward since it can be controlled only by

change of thresholding factor. Transition from SCALES to CVS can be performed differently.

Three main possibilities are: 1) Utilizing SGS model to control SGS dissipation (which has already

been discussed) at all time throughout the entire spatial space; 2) instead of solving SGS model,

at the CVS level, local kinetic energy of the last band can be monitored; and 3) instead of solving

SGS model, at the CVS level, the numerical dissipation due to WTF truncation – defined analogous

to the SGS dissipation based on the resolved kinetic energy – can be monitored. Following the

discussion in Chapter 3, the ratio of SGS and resolved dissipations is a more general measure of

turbulence resolution, consequently the first and the third approaches seem to be more robust.

However, the first approach is the most practical for implementation and is more general. As a

result, transition from SCALES to CVS can also be defined based on change of thresholding-factor.

The transition from SCALES to WURANS is considerably more challenging since each is

solving different governing equations and this violates the synergistic transition, which is explained

for hybrid WDNS/CVS/SCALES. In addition, the large values of threshold parameter necessitate

modeling the effect not only small, but large scales, thus require the use of models similar to RANS,

but different in nature, since the models should not be based on ensemble or time averages. Hence,

in order to properly transition from SCALES to WURANS, one requires new SGS models, capable

to model the effect of energy containing range. This new class of models will be also free from

the challenges corresponding to classical RANS - e.g. model coefficients, which must be correlated

based on experimental data. Self-adaptive models of Perot and Gadebusch [37] are good candidates

for such models, but require further studies. In addition, model switching, model-refinement, can

be based on other physically meaningful flow properties (like F) resulting in a continuous dynamic

model change from regular SGS ones (like dynamic SGS model) to the new types (which are modeling

the effect of unresolved large structures). This implies an automated model selection based on the

required local level of fidelity, the appropriate level of resolution of the dynamically important flow

structures, and user’s input. Once developed, the new models can be incorporated within the

context of the variable thresholding methodology proposed in this dissertation. Thus this work
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should be viewed as a proof of concept that cover WDNS/CVS/SCALES regimes, the transition to

WURNS regime and the development of appropriate SGS models is the subject of future research

and is not further elaborated in this research.

To summarize, ever since the first use of wavelets in turbulence [13], a number of wavelet-based

multi-resolution approaches have pursued different philosophy of physics-based turbulence model-

ing, namely direct coupling of numerical methods and physical models within the multi-resolution

wavelet analysis framework. For instance, WDNS employs mainly the compression achieved by

wavelets; CVS in addition to compression decomposes the turbulent field into deterministic (co-

herent) and stochastic (incoherent) modes; and SCALES resolves the most energetic deterministic

(coherent) structures while modeling the effect of less energetic coherent/incoherent structures. This

work proposes a unique systematic approach to merge these techniques within one single computa-

tional framework where only one type of governing equations is solved all the time. This methodol-

ogy exploits the use of spatially variable thresholding technique that exhibits synergistic transition

among various required levels of user-defined “accuracy/resolution/fidelity”. This approach automat-

ically provides the required numerical resolution and the model-fidelity in and space/time adaptive

fashion based on a two-way coupling of numerical method and physical models.

The proposed approach dynamically tracks the regions of interest in spatial and time space

and not only adapts the grid but also adjusts the model as well: the former alone is analogous

to hp-refinement, though the latter is a new concept of model-refinement, which is defined as

m-refinement. Within wavelet-based methods, the p-refinement implies changing locally the order

of wavelet transform [26]. Therefore, the methodology established in this dissertation constitutes an

hm-refinement technique. Although understanding how to adjust and correlate the models to the

physical phenomena is a fundamentally challenging problem, the proposed methodology explicitly

controls the coupling between models and numerical methods so that the interaction can be fine

tuned to tailor the models based on the theoretical/numerical/experimental observations.

The dependency diagram for both original SCALES [24] and the variable-fidelity SCALES –

proposed by this work – as well the classical explicitly filtered LES illustrates the general connections
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work, and classical explicitly filtered LES. Terminology: G: Filter, R: results, m: model refinement,
nun: numerical, F: is an arbitrary dynamically important physical quantity such as F

of the components of solver in each case and clearly identifies how the proposed variable-fidelity

SCALES connects all components including numerics/models/physics altogether to construct a fully

dynamically adaptive computational framework, Figure 4.1. In classical explicitly filtered LES, the

filter-width is priori user-defined based on which the resolution is determined; therefore, both the

CFD engine (through the resolution) and the filtering mechanism (via the filter-width) depend on

priori defined filter-width, which is not fine-tuned based on the results. The original SCALES im-

proved this by its wavelet-filtered based dynamically adaptive mechanisms via constantly adapting

both the numerical grid and the filter-width based on the results. The threshold-level of WTF can

be different for the resolved-scales-numerical-engine (AWCM) and the filtering procedure. However,

the wavelet thresholding filter uses a priori user-defined threshold-level and as a result of filtering

the velocity-filed with this constant threshold, the WTF is indeed imposing a feedback based on

a constant level of resolved kinetic energy. This limitation then has been removed by the current

work through constructing a fully adaptive wavelet thresholding filter as explained in detail before.

The new SCALES, which is denoted as m-SCALES, requires a priori user-defined level of resolu-

tion/fidelity based on which the threshold is adapted to maintain the fidelity constant as user has

requested. In original SCALES, the filtering mechanism is a function of results (kinetic energy) and

a constant threshold, while in the newly developed SCALES, threshold itself is a function of results

(any physical quantity and not limited to kinetic energy) and the user-defined fidelity.
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4.1 Results

To examine the functionality of the developed hybrid variable-fidelity methodology, two im-

portant measures must be well scrutinized: accuracy of preserving the F at the specified goal value

G and time-response of the model to adjust to the G. In other words, it is essential for the model

to not only well-maintain the fidelity of the desired physical quantity at the goal value but also

adjust the resolution rapidly to a new goal value when/where it changes. Hence, the proposed

methodology is thoroughly tested for the cases where the desired physical quantity to-be-controlled

(here the F) is changing constantly in space/time and is very localized in order to ensure that

under such circumstances still the developed framework is capable to control the F accurately and

rapidly. The homogenous turbulence is the extreme of such situation where the resolved dissipation

is highly intermittent in both space and time, thus, requiring rapid adjustment of wavelet threshold

to maintain required local and volume-averaged turbulence resolutions. If the methodology can

maintain its volume-average at a specified goal value over many eddy turnover time scales, τeddy,

or adjust to a new goal within/less-than one τeddy, the method can be claimed as a robust hybrid

computational framework. The inhomogeneous turbulence in general is more complicated to model

numerically; however, it should be noted that this approach is local and should be applicable to

inhomogeneous turbulent flows. In addition, it also can be applied to the situations with spatially

varied goal value, typical to inhomogeneous flows.

This section examines the extreme case, namely the instantaneous change of the goal value

G, resulting in rapid switching among WDNS, CVS, and SCALES regimes. If the methodology

can deal with such abrupt changes, it surely can deal with spatial changes as well. In addition to

the interpolation approach introduced in Chapter 3, the Lagrangian path-line diffusive averaging

equation (3.1) is solved directly along with the SCALES governing equations, hereafter is referred to

as “Evolution Equation (EE)” approach. The variable thresholding mechanism is based on the second

forcing, FT2, which is introduced in Chapter 3. However, to fully utilize the local intermittency

of the structures, instead of a global relaxation time-scale, τ−1
ε = 〈|Sij>ε|〉, the corresponding local
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time-scale associated to the local rate-of-strain, τ−1
ε = |Sij>ε|, is used. As discussed above, the

main factors that examine the accuracy of the approach are the accuracy of preserving the F (local

fraction of SGS dissipation: F = Π
εres+Π) at the specified G (goal value) as well as time-response

of the model to adjust to the G. The former indicates how accurate the model can really maintain

the goal value and the later shows how fast the overall turbulence resolution can be adjusted to the

desired value while changing the goal.

It is evident that the two key controlling parameters here are the time-scale and the level of

diffusivity. The first order interpolation itself introduces a larger diffusion while one should expect

less numerical diffusion associated with the 3rd order interpolation. In the EE approach, the diffusion

coefficient is a parameter, which can be controlled. A relatively complicated test case, which can

be considered as a simplified model of the physical situations where the level of the resolution

required to be changed in time constantly, is constructed where the F is continuously changed

after few τeddy. Therefore, value of G for every 5τeddy belongs to {0.2, 0.25, 0.3, 0.2, 0.3, 0.25}. The

simulation of homogeneous turbulence at Reλ ∼= 120 on a non-adaptive effective resolution of 2563

with viscosity of ν = 0.09 was performed, where the the turbulence field was initialized with a well

developed CVS field using the same resolution, viscosity, and Reynolds number. The goal value of

the turbulence resolution, i.e. G, was changed as mentioned above. The simulation was repeated

for both 1st order and 3rd order interpolation as well as EE with four different viscosity coefficients

of νε ∈ {0.05, 0.1, 4, 5}. These series of test address the effect of diffusion on both time-response

and accuracy of the achieved turbulence resolution compared with the goal value.

The interpolation approach shows a time-response delay, which is by and large greater than

one eddy turnover time, resulting in slow adjustment to the goal value, Figure 4.2(a). This undesired

and unrealistic response lag is similar regardless of the interpolation order; however, it is observed

that the small diffusion coefficient in case of EE can prevent this and as a result it is concluded that

the diffusion of the scheme is the cause of the time-response delay, Figure 4.2(b). In terms of the

amplitude of the F , i.e. the accuracy of retaining the G, also it is observed that the lower diffusion

achieved a closer global volume-averaged F (〈F〉) to the G at each time.
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As it is observed, large diffusion can significantly delay the time-response and affect the

level of accuracy of turbulence resolution; however, threshold field must be a smooth field and any

very localized structures with sharp interfaces must be prevented since velocity is filtered using

threshold and any noise in threshold field can lead to significant noise and undesired small-scale

fluctuations in the velocity field, i.e. the entire solution. Although with νε = 0.1, no evidence

of such instabilities was observed, a qualitative investigation of smoothness of threshold is highly

recommended. Therefore, the contour plots of threshold throughout the domain for all studied values

of νε as well as for both first and third order interpolation approaches are examined. Figures 4.3

and 4.4 provide snapshots of such contour plot at two different time for EE with νε ∈ {0.05, 0.1, 4, 5}

and both 1st order and 3rd order interpolation methods.

Another factor to look into is the range of change of τε. In all aforementioned cases, there

were no limits on the τε and since this is the local time-scale, which depends on the local strain-rate,

it could be either very small or very large values. Figure 4.5 illustrates the minimum, maximum,

average, and volumed-averaged of τε for three different cases using both interpolation and EE with

νε = 5 approaches. Relatively small minimum values is observed in the time-history of τε for

all three cases. Large values of τε, which correspond to small local strain-rate, are theoretically

acceptable since they can be interpreted as rapid response. Since threshold is always capped to

physically meaningful minimum and maximum allowable bounds, there is no danger in even very

large τε. However, small values of τε, which correspond to large local strain-rate, can be problematic

as they can lead to very slow response and consequently result in lag in adjusting to physically

meaningful value of threshold. Hence, three different sets of test, where either the minimum value

of τε, maximum value of τε, or the interval (both min and max) within which τε can be changed

are specified and investigated. This allows to cap τε to a limited range rather than allowing very

slow or extremely rapid local change of threshold. For the interpolation approach, the results for

limiting only the minimum value of τε to small factor of τeddy, e.g. τεmin = 2τeddy, shows a slight

improvement in the accuracy of the level of F at some time; however, for large lower bound of

τε, e.g. τεmin = 6τeddy even a less accurate F is attained, Figure 4.6(a). The results for limiting
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only the minimum value of τε in case of EE approach indicates that a less accurate F is achieved,

Figure 4.6(b). For the test cases where either the maximum or both minimum and maximum bounds

of τε are set, also either no or very-low improvement in the the accuracy of the level of F is observed,

Figure 4.6(a). To conclude, it appears that it is not necessary to bound the τε.

The time-averaged energy spectra for each interval of G for the EE case with νε = 0.1 are

illustrated in Figure 4.7(a). The value of G indeed consist of three different values, which each is

repeated twice. So, it is expected that the time-averaged energy spectra for each of these pairs of

interval to be identical; however, this is not observed for all three values of G. For small G of 0.2,

time-averaged energy spectra of the first and fourth intervals are close even at the dissipation range

since at small G the threshold will be smaller and consequently flow will be much more resolved at all

ranges including dissipation range. But at larger value of G, where threshold by average is larger, the

flow is less resolved. This implies that at larger G, a greater percentage of flow structures especially

at the higher wavenumbers, i.e. dissipation range, are modeled and due to uncertainties associated

with the SGS models, a less pronounced consistency between time-averaged energy spectra of two

different fields with the same G is achieved. By increasing the length of interval, a better agreement

would be accomplished.

The time-averaged dissipation spectra of the six cases presented in Figure 4.7(a), are illus-

trated in Figure 4.7(b). An important point to clarify is the jump in both energy and dissipation

spectra at about κ = 64 corresponding to the effective resolution of 1283. This jump is due to

the fact that the effective resolution is not always 2563, which is the strength of the wavelet-based

methods as discussed in Figure 1.5. This effective resolution lower than the maximum resolution

is even more probable in SCALES. Namely, in SCALES, most of the time, the highest level of

resolution is one less than the maximum level of resolution. This implies that by not only an adap-

tive resolution but even smaller maximum resolved wavenumber, SCALES can resolve the most

energetic structures, which are responsible for a correct energy cascade. In this particular case, at

various time frames, the maximum resolution is 1283; as a result of averaging instantaneous spec-

trum with different maximum wavenumbers of 64 and 128, a kink is appeared in the time-averaged
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spectra. Figures 4.8 and 4.9 present the time-averaged energy and dissipation spectra by averaging

the time-frames only with either κmax = 64 or κmax = 128. Figures 4.10(a) to 4.12(b) are analogous

to Figures 4.7(a) to 4.9(b) but for νε = 0.05.

This examined intricate test case proved that with the use of the Lagrangian spatially variable

thresholding, a “Hierarchical Multiscale Adaptive Variable Fidelity Wavelet-based Turbulence Mod-

eling” methodology can be utilized. This hybrid turbulence modeling technique has shown a very

robust uniform-solver/single-framework for performing fully adaptive hybrid turbulence simulations

akin to hybrid LES/DNS. Within this adaptive wavelet-based computational framework, only one

solver is utilized and as a result challenges corresponding to overlapping multiple solvers and difficul-

ties associated with Adaptive Mesh Refinement (AMR) are unrelated. The current framework makes

it possible to perform hybrid wavelet-based DNS, coherent vortex simulations, as well as wavelet-

based fully adaptive LES. Namely, the developed framework is for hybrid WDNS/CVS/SCALES,

while the extension to WDNS/CVS/SCALES/WURANS is analogous though as discussed earlier,

it requires developing new self-adaptive RANS-type models.

While the developed hybrid framework makes it possible to perform fully adaptive hybrid

WDNS/CVS/SCALES, the extension of the investigated benchmark to real flow applications where

spatially varying G is desired remains for the future investigations. The computational tool required

for such complex real flow simulations has already been implemented; it is only required to define

the realistic spatio-temporal mask for G. For instance, for wall bounded flows, it is advised to set

small value of G in the vicinity of the wall. Another interesting example of the inevitability of

spatially varying G hybrid turbulence simulations, is airplane propulsion systems modeling, where

generally very accurate resolution is desired in combustion chamber, while less accurate simulations

are adequate in bypass-duct/compressor/turbine to capture the physically important flow structures.

Once again, it worth stressing the fact that the volume-average of a very localized quantity,

which is very rapidly and randomly varying in space/time, could be maintained approximately

constant and altered quickly, is proving how efficient is this scheme and how powerful it will be for

the inhomogeneous applications, where the spatial and/or temporal variations of F are smooth.
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Figure 4.2: Variable G SCALES, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563. Total FSGSD is
defined as 〈F〉 = 〈Π〉

〈εres〉+〈Π〉 , where 〈Π〉 = 〈−τ∗ij Sij
>ε〉 and 〈εres〉 = 2ν〈Sij>εSij>ε〉 are respectively the

volume-averaged SGS dissipation and the volume-averaged resolved viscous dissipation .
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Figure 4.5: Statistics (Minimum,Maximum,Average,Volume-Average) of local time-scale τε for vari-
able G SCALES, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.6: Variable G SCALES with capping τε, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.7: Time-averaged energy and dissipation spectra for variable G SCALES, EE method with
νε = 0.1, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.8: Time-averaged energy spectra of time-frames with κmax = 64, 128 for variable G
SCALES, EE method with νε = 0.1, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.



48

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

Wavenumber

T
im

e 
A

ve
ra

ge
d 

  D
is

si
pa

tio
n 

 S
pe

ct
ra

 

 

G = 0.2 t ∈ [2,4.8]τeddy

G = 0.25 t ∈ [8,9.8]τeddy

G = 0.3 t ∈ [12,14.8]τeddy

G = 0.2 t ∈ [17,19.8]τeddy

G = 0.3 t ∈ [22,24.8]τeddy

G = 0.25 t ∈ [27,29.8]τeddy

(a) κmax = 64

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Wavenumber

T
im

e 
A

ve
ra

ge
d 

  D
is

si
pa

tio
n 

 S
pe

ct
ra

 

 

G = 0.2 t ∈ [2,4.8]τeddy

G = 0.25 t ∈ [8,9.8]τeddy

G = 0.3 t ∈ [12,14.8]τeddy

G = 0.2 t ∈ [17,19.8]τeddy

G = 0.3 t ∈ [22,24.8]τeddy

G = 0.25 t ∈ [27,29.8]τeddy

(b) κmax = 128

Figure 4.9: Time-averaged dissipation spectra of time-frames with κmax = 64, 128 for variable G
SCALES, EE method with νε = 0.1, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.10: Time-averaged energy and dissipation spectra for variable G SCALES, EE method
with νε = 0.05, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.11: Time-averaged energy spectra of time-frames with κmax = 64, 128 for variable G
SCALES, EE method with νε = 0.05, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.
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Figure 4.12: Time-averaged dissipation spectra of time-frames with κmax = 64, 128 for variable G
SCALES, EE method with νε = 0.05, ε ∈ [0.2, 0.5], ν= 0.09, Cf= 6.6̄, Reλ= 70, 2563.



Chapter 5

Parallel Adaptive Wavelet Collocation Method for PDEs

In spite of the fact that the parallel AWCM has been completed and become fully functional

during the course of this study and has been a major part of the novel numerical efforts covered in

this dissertation, this parallelization of AWCM was initiated prior to the current work and was not

fully covered during the term of the current effort. However, the scalability and speedup studies of

the parallel AWCM are performed for the first time within the the scope of this dissertation.

The first aforementioned objective of large-scale wavelet-based hybrid turbulence simulation

has been developed and is addressed in Chapters 3 and 4. However, both large-scale simulations and

large Reynolds numbers studies require scalable parallel code. Therefore, another main objective of

this dissertation is to develop a parallel multi-functional adaptive wavelet-based solver that can be

used for variable fidelity hierarchical wavelet-based turbulence simulations.

In order to make a substantial progress in the development of computational capabilities for

massively parallel distributed systems, the development efforts have been focused on two main fronts:

namely improving data structure for faster access and developing scalable parallel computational

capabilities. The original serial algorithm of the AWCM [44, 45, 46] is first enhanced by means of a

robust tree structure database, which is well suited for parallel computation, and then the algorithm

has been parallelized.
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5.1 Wavelet Transform and AWCM

The second-generation wavelets are constructed on an interval Ω with arbitrary distribution of

grid (collocation) points. The construction is performed on an arbitrary set of interpolating points,

{xjk ∈ Ω}, which are used to form a set of nested grids

Gj =
{
xjk ∈ Ω : xjk = xj+1

2k , k ∈ Kj
}
, j ∈ J , (5.1)

where xjk are the grid points of the j level of resolution. The restriction xjk = xj+1
2k guarantees the

nestedness of the grids, i.e. Gj ⊂ Gj+1.

The full 1-D forward second-generation wavelet transform includes an update stage following

the predict stage as follows:

Predict Stage: djk =
1
2

(
cj+1

2k+1 −
∑

l

wjk,lc
j+1
2k+2l

)
, (5.2)

Update Stage: cjk = cj+1
2k +

∑

l

w̃jk,ld
j
k+l. (5.3)

The corresponding 1-D inverse second-generation wavelet transform is

Inverse Update Stage: cj+1
2k = cjk−

∑

l

w̃jk,ld
j
k+l, (5.4)

Inverse Predict Stage: cj+1
2k+1 = 2djk +

∑

l

wjk,lc
j+1
2k+2l, (5.5)

where wjk,l and w̃
j
k,l are coefficients associated with two stages of wavelet transform; cjk and djk are

the function values and wavelet coefficient at location k on level j on the defined dyadic nested grid.

For the details, the readers are referred to [42, 43, 45].

The first stage of forward transform is called a predict stage, since the wavelet coefficients

are calculated by predicting the function value using the interpolated points on the next coarser

level. The predict stage of the 1-D second-generation wavelet forward transform is illustrated in

Figure 5.2(a). The cjk-values that get carried down to the next lower level of resolution are then

updated using the wavelet coefficients that were calculated during the predict stage. The update
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Figure 5.1: Block diagram of lifted interpolating wavelet transform.

stage, Figure 5.2(b), guarantees that the wavelet interpolating functions have zero mean, which

ensures an accurate transform. In fact, the interpolating wavelets of order N when using the

update stage have N vanishing moments. For the inverse wavelet transform, the order of operations

is reversed and the inverse wavelet transform is performed from low to high levels of resolution as

opposed to high to low for the forward wavelet transform.

The block diagram for one step wavelet transform is shown in Figure 5.1, where S and S−1

denote respectively the delay and advance operators, i.e. Sfk = fk−1 and S−1fk = fk+1, (↓ 2)

denotes the downsampling (decimation) operator which removes odd-numbered components from

the signal, while U j and P j denote respectively lifting and dual lifting operators (P stands for

predict and U stands for update).

The second-generation scaling function φjm can be formally defined by setting cjk = δk,m

∀k ∈ Kj and dj
′

l = 0 ∀l ∈ Lj′ , ∀j′ ≥ j, and then recursively performing the inverse wavelet

transform up to an arbitrary high level of resolution J . This procedure will result in a scaling

function φjk sampled at the locations xJk . Analogously, second-generation wavelet ψjl can be formally

defined by assuming dj
′
m = δj′,jδl,m ∀l ∈ Lj , ∀j′ ≥ j and cjk = 0 ∀k ∈ Kj , and then recursively

performing the inverse wavelet transform up to an arbitrary high level of resolution J . Now using

the linear superposition it is easy to show that on each level of resolution J a function f(x) can be

approximated as

fJ(x) =
∑

k∈K1

c1
kφ

1
k(x) +

J−1∑

j=1

∑

l∈Lj
djlψ

j
l (x). (5.6)
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The described wavelet construction can be easily extended to multiple dimensions using tensor

product, e.g. the three-dimensional tensor product wavelets are given by

ψµ,ji,k,l(x) =





ψji (x1) φjk(x2) φjl (x3) µ = 1

ψji (x1) φjk(x2)ψjl (x3) µ = 2

ψji (x1)ψjk(x2) φjl (x3) µ = 3

φji (x1) φjk(x2)ψjl (x3) µ = 5

φji (x1)ψjk(x2) φjl (x3) µ = 6

φji (x1)ψjk(x2)ψjl (x3) µ = 4

ψji (x1)ψjk(x2)ψjl (x3) µ = 7

(5.7)

with three-dimensional scaling function φji,k,l(x) = φji (x1) φjk(x2) φjl (x3), where ψji (x1), ψjk(x2),

ψjl (x3), φji (x1), φjk(x2), φjl (x3) correspond to arbitrary one-dimensional wavelets and scaling func-

tions and x = (x1, x2, x3). The d-dimensional tensor product wavelets are constructed analogously,

with exception that there are 2d − 1 distinctive d-dimensional wavelets. Note that in the case of

d-dimensional tensor product wavelets, the one step of forward wavelet transform consists of the se-

quential application of one-dimensional wavelet transform starting from x1 direction, while the one

step of inverse wavelet transform consists of the sequential application of one-dimensional inverse

wavelet transform in reverse order starting from xd direction.

5.2 Asynchronous Parallel Second-Generation Wavelet Transform

As explained in the previous section and illustrated in Figure 5.2(b), the update stage at

each level of resolution for both forward and inverse wavelet-transform necessitates inclusion of grid

points at the higher level of resolution. While to predict these added points at the higher level of

resolution, again more points on the lower level of resolution will be included.

Figures 5.2(c-d) show a series of predict, update, and corresponding required extra stages on

an adaptive grid for one complete forward wavelet transform. Figure 5.2(c) is the schematics of

predict stages at levels j + 1 and j separately, while the update stages at levels j and j − 1 are
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shown by Figure 5.2(d). The sequence illustrated by these four diagrams starts with predicting a

point on level j+1 belonging to a target processor (processor red), Figure 5.2(c). This predict stage

requires four points at level j, which one of them belongs to the immediate neighboring processor

on the right (processor blue). Besides, one of the three required points from processor red itself

belongs to the lower level j − 1.1 Since j − 1 is the lowest level of resolution in this illustration,

this point (marked green) needs to updated as shown in the right diagram of Figure 5.2(c). As a

result, in order to predict one point on level j + 1 from processor red, four points from processor

blue are required.

This procedure becomes extremely complicated for the update stage as demonstrated in

Figure 5.2(d), which shows that “two extra predict stages at level j + 1 on the processor blue”

are required for “updating four points at level j on processor red”. By descending the level of

resolution, the number of extra stages required for update grows fast: for updating three points

at level j − 1 on processor red, two extra predicts as well as four extra updates are necessary at

level j. This recursive nature rapidly thickens the set of points required to perform one sequence of

predict-update.

For problems of arbitrary dimension (greater than one), the wavelet transform is performed by

transforming each dimension independently. As the levels of resolution are descended (or ascended

in the inverse wavelet transform) in one dimension, the transform is completed over the entire

domain at that level of resolution. In order to completely and accurately perform the update stage

of the wavelet transform (obtaining the correct cjk-values at each level of resolution), the points

must be synchronized across subdomain boundaries. The points lying outside of the boundaries of

each processor are buffer zones added for proper interpolation. These points, which are required to

be synchronized, are shown in Figures 5.2(c-d) by the blue and green markers. That is to say, in

this illustration, the entire set of blue and green points must be communicated to the processor red

in order to perform one complete forward wavelet transform (including both predict and update

stages) on an adaptive grid with only one point at the highest level of resolution.

1 On these diagrams, at each level of resolution, points belonging to the level itself and all levels below are shown.
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predicted point

points used for predict

updated point

points used for update

points on processor itself

points on immediate neighboring processor

points on neighboring processor used for 
current level

additional points on neighboring processor 
required due to update stage 

required from processor itself

required from neighboring processor 
(needs to be communicated)

Same as        but for additional points 
due to update

point does not exist on the adaptive-mesh
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j+1
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j

j+1
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j
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j
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j

Figure 5.2: Illustration of predict and update stages of the forward wavelet transform. (a) Predict
stage dependency; (b) Update stage dependency; (c) Predict stages at levels j+1 and j; (d) Update
stage at levels j and j − 1.
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Therefore, for asynchronous wavelet transform, i.e. with only one synchronization of the

buffer-zone, the wavelet coefficients at the lower level of resolution in the buffer-zone need to be

calculated, necessitating the inclusion of grid points at higher level of resolution required for the

update stage, which results in synchronization of the entire domain on all processors to complete

the update stage. This is impractical because neighboring points on different levels of resolution

could end up being on different processors, which drastically complicate the logic of the parallel

algorithm plus loses the efficiency.

Thus, asynchronous wavelet transform with update stage is impractical for parallel implemen-

tation, alternatively, one can perform synchronization at every level of resolution after each update

stage and/or predict stage depending on the algorithm as well as for every dimension. Note that

the more synchronization stages are implemented, the smaller the size of the buffer zone, where

wavelet coefficients need to be synchronized. Therefore, for a d-dimensional problem with J lev-

els of resolution, (2)dj communication stages are required to simply perform one forward wavelet

transform, where 2 is put in parenthesis depending if synchronization is done for both predict and

update stages or just once after update. The inverse wavelet transform requires the same amount

of stages resulting in doubling synchronization stages for one time-step while using the AWCM.

It is expected that the cost of so much communication could be a bottleneck, not mentioning the

difficulties of load balancing at each level of resolution.

Five different parallel extensions have been investigated with the idea that the performance of

these different methods would shed light on how to modify the wavelet transform so that its parallel

implementation is fully optimized. These extensions include synchronization at each update and

predict stages, only at predict stages, as well as modifying wavelet transform so that the wavelets

close to the inter-processor boundaries do not need to be updated, and finally, skipping the update

stage in the entire domain.

It was found that the most efficient solution is to skip the update stage over the entire

computational domain. This allows to develop asynchronous wavelet-transform, i.e. synchronizing

the data in the buffer-zone only at the beginning of the transform and performing wavelet transform



59

inside and in the buffer-zone. The ability of performing wavelet transform in the buffer-zone is

guaranteed by the reconstruction check procedure discussed in Section 5.4. In addition, due to

the lack of the update stage, the computational time is also cut down since the algorithm takes

half as many steps. The main drawback for this method is a loss of zero-mean properties of the

interpolating wavelet.

To easily/visually address the difference between the serial and the no-update algorithm, the

parts that are not carried out in the parallel algorithm are colored blue in the Equations (5.2 –

5.5). In the block diagram of the 1-D one-step second-generation wavelet transform (Figure 5.1)

also, the the part that is not carried out in the parallel algorithm is colored blue.

5.3 Data Structure

A dynamic arbitrary dimension tree structure database has been constructed: binary in 1D,

quad-tree in 2D, and octree in 3D, Figure 5.3. This tree like data structure has been implemented for

wavelet coefficient storage and retrieval. Trees are organized as forward link-list with a deterministic

path determined by the global non-adaptive coordinates starting from the root of the tree. Roots of

the tree are specified on a given resolution and trees could be empty. For parallel implementation,

the trees are the smallest quantum for the data migration.

In order to decrease number of cache-misses during tree traverse, nodes of each two levels are

stored together starting from the finest level of resolution.To summarize:

(1) Nodes are arranged by levels (to simplify access during wavelet transforms) and in a cache

friendly manner (to speed up the access),

(2) In a tree of dimension d, a node of level j has 2d−1 links to the nodes of higher level j+ 1,

(3) Each node of level j is also considered as a node of level j + 1, j + 2, · · · , Jmax.
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(d)(c)(b)(a) (e)

Figure 5.3: Possible links from a tree root node. Each level goes to 2d − 1 nodes of the next
level + itself: totaly 2d. Tree-root is marked by filled black circle. Black links show the first
hierarchy (j = Jroot + 1). Blue (j = Jroot + 2) and Green (j=Jroot + 3) links show the second and
third hierarchial links respectively. The right and top edges belong to the neighboring trees. (a)
Empty tree, j = Jroot; (b) All possible links to completely fill level j = Jroot + 1; (c) All possible
links to completely fill level j = Jroot + 2; (d) All possible links to completely fill a tree with
Jroot = Jmax − 3: a full non-adaptive grid; (e) Only links required for the illustrated adaptive grid
of a tree with Jroot = Jmax − 3.

For data access based on coordinates, the length of the path to a data point at a level Jroot +j

is j. The cost of data access to all points at a level Jroot + j is (2d − 1)2(j−1)dŊroot(j + 1), where

Ŋroot is the number of points on the tree root level, Jroot, i.e. Ŋroot = M2Jroot−1. The base grid

size of M = [mx,my,mz] and tree root level of Jroot are user defined input parameters. At the limit

when j is large, it can be seen that Ŋ ∼= Ŋroot2jd, which implies that j ∼= 1
d log2

Ŋ
Ŋroot

. Therefore,

the overall cost of data access to the tree is O(Ŋ logŊ).

In addition, for faster access, the pointers to the data are stored in orthogonal list based on

wavelet family, location in relation to the rectangular computational domain (internal, face, edge,

corner), level of resolution, level of derivative calculation. This makes the cost of direct access to

the data O(Ŋ).

Trees and the corresponding data are orthogonally distributed among processors; however, in

order to facilitate the wavelet-transform and the derivative calculations, each processor has identical

matrix of tree-roots that are marked by the processor-rank where the actual data are stored on.

All the trees that belong to processor itself hereafter are called internal-zone trees and their

corresponding points are called internal-zone points. All the trees that do not belong to the pro-

cessors itself hereafter are called buffer-zone trees and the points belonging to these buffer-trees are
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called buffer-zone points. It should be noted that the buffer-zone trees are always a subset of the

trees on the corresponding processor and consist of the points that are necessary for asynchronous

wavelet-transform that is discussed in Section 5.2. Each processor should have at least one tree

with the possibility of some of them being empty. Each tree-root also has descriptor indicating to

which process it belongs.

5.4 Grid Adaptation

Significant, adjacent, ghost points/zone as well as the grid adaptation methodology based

on the wavelet threshold filtering (WTF) and the corresponding reconstruction check procedure

are explained in the following. In 1-D wavelet threshold filtering, in order to predict the wavelet

coefficient djk, only the values of cj+1
2k+2l and c

j+1
2k+1 are required. The the wavelet coefficient above

the threshold value ε are kept and wavelet coefficients below threshold value are set to zero.

Analogously, in the higher dimensional case, the only difference is that the d-dimensional

wavelet transform consists of the sequential application of d one-dimensional wavelet transforms in

xi, i = 1, . . . , d, directions. Hence, to find the grid points that are necessary for the calculation of

the wavelet coefficient dµ,jl , we start with the collocation point associated with dµ,jl and recursively,

i = d, . . . , 1, add points that are needed to perform one step of the one-dimensional wavelet transform

in the xi direction at the locations that are added to perform the one-dimensional wavelet transforms

in xl, l = i + 1, . . . , d, directions. At the end of this recursive procedure, we will have a minimal

set of grid points that are necessary for calculation of wavelet coefficient dµ,jl provided that wavelet

coefficients at other locations are either zero or negligible (below an a priori prescribed threshold).

Figure 5.4 illustrates the minimal set of grid points that are necessary for calculation of wavelet

coefficient dµ,jl belonging to three different families of wavelets, i.e. µ = 1, 3. Thus, if we a priori

know what wavelet coefficients are zero or negligible, we can disregard the values of the function at

these points.
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Algorithm 1 Reconstruction Check Procedure (RCP) for the wavelet transform:

MS+A
p,p

RCP−−−→MS+A
p,r

for ∀p = 0 : 1 : np − 1
setMS+A

p,r 6=p = ∅ at j = J

for all levels j = J − 1 : −1 : 1
extend maskMS+A

p,r to include the ancestry points at level j
end

end

The pseudocode for the perfect reconstruction check procedure is shown in Algorithm 1. At

the end of this procedure, we have the complete maskMS+A
p,r from which we can easily construct a set

of nested adaptive computational grids Gj≥. The perfect reconstruction check procedure guarantees

that all wavelet coefficients obtained by performing the wavelet transform on the adapted grid are

the same as those found by performing the wavelet transform of u≥(x) on the complete grid.

In order to be able to perform asynchronous wavelet-transform, all the data at the ancestry

points necessary to perform the wavelet-transform at the points on a given processor marked by

MS+A
p,p are required including points that are stored on different processors. In order to construct the

necessary points marked byMS+A
p,r 6=p, the reconstruction check procedure onMS+A

p,p is performed on

each processors as it is serial algorithm. The data at the points on the resulting masksMS+A
p,r 6=p need

to be synchronized among processors. Once synchronized, the wavelet-transform on each processor

can be proceeded as in the case of the regular serial algorithm.

Note that for some processor r, MS+A
p,r 6=p could be an empty set; however, the identity

MS
p,r 6=p = ∅ always holds. Also, umk and Gm≥ are local on each processor.

Both internal and buffer-zone masks for significant, adjacent and ghost points can be visualized

by Figure 5.5: for instance, red-point isMS+A
0,0 ; all the orange-points on the green-background are

reconstruction onMS+A
0,0 while all the orange-points on the blue-background are reconstruction on

MS+A
0,1 ; all the violet-points on the green-background are MG

0,0 while all the violet-points on the

blue-background represent MG
0,1. Figure 5.6 presents an illustration of the nodes that need to be

synchronized,MS+A
p,r 6=p.
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xj2,l2+1

xj2,l2

xj2,l2−1

xj+1
2,2l2+5
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xj1,l1+1x
j
1,l1+2 xj1,l1−1x

j
1,l1

xj1,l1+1x
j
1,l1+2

xj+1
1,2l1+1 xj+1

1,2l1+1 xj+1
1,2l1+1

Figure 5.4: Points at the coarser level j (marked •) and finer level j + 1 (marked •) where cj+1
k

are needed for calculation of the wavelet coefficient dµ,jl , µ = 1, 3 (marked •) for two-dimensional
wavelet transform with N = 4.

processor #0 processor #1

Figure 5.5: Illustration of Zones and Masks (includes nodes required for wavelet transform and
derivatives) in parallel. Red-wavelet above the threshold (MS+A

0,0 ), Orange-nearest neighbors to cap-
ture evolving solution (reconstruction masksMS+A

0,0 andMS+A
0,1 ), Violet-nodes required for deriva-

tives (Ghost masksMG
0,0 andMG

0,1). Courtesy of Alexei Vezolainen.

Figure 5.6: Parallel Wavelet Transform: Green-one processor (MS+A
p,p ), Red-nodes used in commu-

nication (to be synchronized,MS+A
p,r 6=p), Blue-rest of processors. Courtesy of Alexei Vezolainen.
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5.5 Calculation of Derivatives on the Adapted Grid

The differentiation procedure for obtaining derivatives of a function from its values at collo-

cation points is based on the interpolating properties of second generation wavelets. It is recalled

that wavelet coefficients dµ,jl measure the difference between the approximation of the function at

the j + 1 level of resolution and its representation at the j level of resolution. Thus, if there are no

points in the immediate vicinity of a grid point xjk, i.e. |d
µ,j
m | < ε for all the neighboring points, and

points xj+1
(2k1±1,2k2±1) are not present in G

j+1
≥ , then there exists some neighborhood of xjk, Ωj

k, where

the actual function is well approximated by a wavelet interpolant based on cjm (m ∈ Kj), i.e.
∣∣∣∣∣∣
u(x)−

∑

m∈Kj
cjmφ

j
m(x)

∣∣∣∣∣∣
≤ C4ε, x ∈ Ωj

k. (5.8)

Thus, differentiating this interpolant will give us the value of the derivative of the function at that

particular location. Rewriting this interpolant as local Lagrange polynomial of order N , i.e. the

same order as the wavelet, differentiating the polynomial, and evaluating it at xjk location would

result in local finite difference operator that uses the neighboring points of the interpolant on level

j. Let us denote by Djp a collection of such points at each level of resolution for each processor

p ∈ {0, · · · , np − 1}. Djp is the set of the points that not only they belong to significant+adjacent

mask of each processor but also the differentiation is taken on them at level j, i.e.

Djp =
{
xjk ∈ Ω : xjk ∈MS+A

p,p , differentiation taken at level j
}
. (5.9)

Note that Djp is an orthogonal set,
J⊕
j=1
Djp =MS+A

p,p .

The pseudocode for the procedure for finding derivatives at all grid points is given in Algo-

rithm 2. At the end of this procedure, we will have derivatives of the function at all grid points. The

computational cost of calculating spatial derivatives will be roughly the same as the cost of forward

and inverse wavelet transforms. For the details of the accuracy of this differentiation procedure, the

readers are referred to [44, 45].
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Algorithm 2 Calculation of derivatives on the adapted grid.

for ∀p = 0 : 1 : np − 1
perform forward wavelet transform for each component of umk onMS+A

p,r

for all levels j = 1 : 1 : J − 1
perform one step of inverse wavelet transform for level j onMS+A+G

p,r

find derivatives at grid points that belong to Djp
end

end

5.6 Data migration

The mask of pointsMS+A
p,r 6=p for either transform or derivative-calculation are constructed sepa-

rately and then communicated by means of either all-to-all or one-to-one communication techniques.

5.7 Domain Partitioning and Dynamic Load Balancing

Several partitioning approaches with different user controls are implemented, Figure 5.7. More

advanced Zoltan [2, 3, 4, 5, 11, 12] library based partitions provide nearly optimal load balancing.

In short, for the geometric simultaneous partitioning all spatial directions of the domain are divided

simultaneously. The major deficiency of that approach is poor load balancing for a non-uniform

wavelet distribution. For the geometric sequential partitioning, the domain is subdivided by planes

normal to the first axis on rounded to the nearest integer d
√
P sub-domains, where d is the problem

dimension and P is the total number of processors. The available P processors are distributed among

these sub-domain according to the number of active wavelets inside each of the sub-domains. This

recursion step is repeated d times to get the final partitioning. It may deliver not quite an optimal

load balancing, though it may be more usable for non-uniform wavelet distributions across the

domain. For significantly non-uniform wavelet distribution, the domain is partitioned using Zoltan

partitioning library by Sandia National Laboratories, Figure 5.7.
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(a) (b) (c) (d)

Figure 5.7: Domain partitioning: (a) geometric simultaneous, (b) geometric sequential, (c) Zoltan
geometric, (d) Zoltan hypergraph. Courtesy of Alexei Vezolainen.

Dynamic load balancing (DLB) is implemented via domain repartitioning during grid adapta-

tion step and reassigning tree data structure nodes to the appropriate processors. User provides an

imbalance tolerance vector to trigger the repartitioning if necessary. Depending on the imbalance

of wavelet distribution a different kind of repartitioning is performed. Highly imbalanced data are

partitioned without considering initial decomposition, moderately imbalanced repartitioned while

trying to stay close to the current decomposition, and nearly balanced will be refined by small

changes only. Three dimensional examples of dynamic load balancing for the 3D simulations of

the Convection-Diffusion of rotating ellipsoids as well as SCALES of linearly forced homogeneous

turbulence on 20483 are presented in Figures 5.8 and 5.9.

5.8 Parallel AWCM

Algorithm 3 illustrates a summary of major components of both serial and parallel AWCM.

In Algorithm 3, the operations that are only carried out in the parallel algorithm are colored

blue. The operator A−−→ is the adjacent (safety) zone inclusion that extends the significant mask

on each rank MS
p,p to its corresponding significant+adjacent mask MS+A

p,r , which may belong to

any rank r = 0, · · · , np − 1. Similarly, the operator RCP−−−→ is the reconstruction check procedure on

MS+A
p,p to extend it toMS+A

p,r .
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Algorithm 3 Adaptive Wavelet Collocation Method (AWCM).

for ∀p = 0 : 1 : np − 1
initial guess (m = 0): umk and Gm≥

end

while m = 0 or





m > 1 and

{[
Gm≥ 6= Gm−1

≥ or ‖umk − um−1
k ‖∞ > δε

]

︸ ︷︷ ︸
only for Elliptic problem

or [tm < tend]︸ ︷︷ ︸
only for

time evolution
problem

}




requestMS+A
p,r 6=p for migration

perform forward wavelet transform for each component of umk
for ∀p = 0 : 1 : np − 1

for all levels j = J : −1 : 1
create a maskMS

p,p for |dµ,jl | ≥ ε
end
MS

p,p
A−−→MS+A

p,r , r = 0, · · · , np − 1

synchronize mask: MS+A
p,r 6=p send to r processor: MS+A

r,r =
np−1⋃
p=0
MS+A

p,r

perform the reconstruction check procedure: MS+A
p,p

RCP−−−→MS+A
p,r

add ghost mask: MS+A
p,p

JL
j=1
Djp

−−−−→MS+A+G
p,r . MS

p,r ⊂MS+A
p,r ⊂MS+A+G

p,r

end
if miss-balanced

domain-repartitioning and migration of trees
cleanMS+A

p,r 6=p = ∅ andMS
p,r 6=p = ∅

perform the reconstruction check procedure: MS+A
p,p

RCP−−−→MS+A
p,r

end if
for ∀p = 0 : 1 : np − 1

construct Gm+1
≥

if Gm+1
≥ 6= Gm≥
interpolate umk to Gm+1

≥
end if

end
Either Solve the Elliptic problem (using Local Multilevel Elliptic Solver)
or Advance in Time (using Krylov/RK Time-Integration)
m = m+ 1

end
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5.9 Scalability Studies

The studies of the code scalability have been performed for the CVS (thresholding-factor

ε= 0.2) of linearly forced (Cf= 6.6̄) homogeneous turbulence at Reλ = 70, 120, 190, 320 on an adap-

tive grid corresponding to 2563, 5123, 10243, and 20483 (at the highest level of resolution) using

geometric sequential partitioning (fixed partitioning) as well as Zoltan hypergraph partitioning,

Figures 5.10 – 5.13. These figures represents the speedup based on the CPU-time for the main

time-integration loop of the code. The scalability studies confirm that parallel code even without

dynamic load balancing is scalable with the speedup monotonically increasing with approximately

the same slope (nearly linearly scalable up to a certain number of processors depending on the

resolution), but then saturates.

For geometric partitioning, the saturation occurs mainly because of spatial intermittency of

turbulent flows resulting in highly non-uniform and imbalanced distribution of grid-points among

processors.

The standard deviation (stdv), the bound of (mean+stdv) and (mean-stdv), as well as bound

of min and max of the the number of active wavelets (Ŋ = ŊSA: number of significant+adjacent

points) on each rank present the miss-balance of the data-partitioning. It is evident, Figures 5.14

and 5.15, that all of these three measures are decreasing by increase of number of ranks at regardless

of the resolution. This decrease is also even more clear by the time-average of the min, max, and

mean of the number of active wavelets, Figures 5.16 and 5.17. This implies that the miss-balance

has been improved by increasing number of processors. While number of active wavelets represents

the cost of the wavelet-transform, the number of SAG (significant+adjacent+ghost) points, which

are used for derivatives calculations, is a better measure of the overall computational time since

as mentioned in Algorithm 3, the number of SAG points is in general greater than the number of

active wavelets: MS
p,r ⊂ MS+A

p,r ⊂ MS+A+G
p,r . That is to say, the overall cost is proportional to

ŊSAG logŊSAG instead of Ŋ logŊ. Thus, it is required to ensure that the number of SAG points

are also well-balanced across all processors; the time-average of the min, max, and mean of ŊSAG



69

(number of SAG points) also show an improvement of the miss-balance by increasing number of

processors, Figures 5.18 and 5.19. All in all, scrutinizing the miss-balance of both significant and

SAG points clarify that miss-balance has been improved by increasing number of processors and it

reveals that the source of the saturation is not due to the miss-balance.

The remaining possible factors are communication, data-base search algorithms, and the

wavelet transform algorithm. The default implemented communication mechanism for all presented

results is an all-to-all communication method in which the send-receive buffers are communicated

via MPI All-to-All commands. It is well known that the all-to-all communications cost increase

significantly by increase of the buffer size and total number of ranks. In our application, by increasing

the Reλ, i.e. increasing the resolution, indeed the buffer zone of each rank enlarges and results in

very big send-receive buffers. That is why the first guess for the second cause of the saturation

after miss-balance is the all-to-all communications. The speedup based on parallel communication,

Figure 5.20, on 20483 indicates that for large resolution and large number-of-processors, i.e. very

large communication buffer size, the saturation due to all-to-all communication is evident and

daunting. It should be noted that even for this parallel algorithm, one cannot expect speedup based

on communication-cost since the buffer-size and consequently the communication cost is increasing

by increase of number of ranks; so, as long as, the “speedup based on parallel communication” is

even constant or is slightly decreasing, it can be claimed that there is no significant problem with the

communication procedure. However, on 20483, Figure 5.20 has shown a slowdown of approximately

89
0.198

∼= 450 times while increasing number of processors by a factor of 2. Therefore, a one-to-

one communication mechanism has been implemented and tested: results indicate approximately

the same speedup slope as the all-to-all approach and saturation was observed at about the same

number of processors as all-to-all case; however, there is a very significant improvement in the

slowdown, Figure 5.21. This indicates the inevitable need of one-to-one communications on large

number-of-processors, where all-to-all buffer will for sure saturates.

The untouched slope and saturation at about the same number of ranks proves that the real

cause of the saturation regardless of the resolution is the not just the communication technique
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itself. As mentioned above, in the AWCM algorithm, by increasing the resolution, the buffer zone

of each rank enlarges in other words, the ratio of number of points in the boundary zone to the

internal points is increasing as number-of-processors increases. Figures 5.22 and 5.23 denote that

size of boundary zone is increasing as number of rank increases and as a result, communication

buffer size will be larger. Therefore, there is not much that can be done to reduce the buffer zone

and the communication cost.

In the current asynchronous wavelet-transform algorithm, all ranks have to wait until the

communication is complete among all processors. This is true regardless of all-to-all or one-to-one

communication, i.e. even in one-to-one case, there is barrier at the end of communication. Perhaps,

the size of the buffer-zone and resulting very large send-receive buffers cannot be reduced; therefore,

even more smart one-to-one communication techniques will not be able to reduce the communication

wall-time significantly though by removing the barrier other operations can be performed at the same

time. A number of alternative algorithms to speedup the wavelet transform are proposed, which

are under investigation for future development. For instance, one small change in the wavelet-

transform can postpone the saturation to many times more number-of-processors: as mentioned

before, in the current asynchronous algorithm, all ranks should wait for the communication until

each rank can start the wavelet transform on its corresponding mask MS+A
p,r ; however, each rank

indeed can perform the wavelet transform on a subset ofMS+A
p,p – which does not require any point

form MS+A
p,r 6=p – at the same time the communication is executing. As soon as the migration of

MS+A
p,r 6=p to each rank is completed then the rank can continue transforming on the rest of MS+A

p,r .

This removes the barrier on the wavelet transform while migration is occurring and it ensures that

the wavelet transform engine is not idle during the migration. This technique while postponing the

saturation to a very large number-of-processors, will perhaps result in no or small improvement in

the speedup slope.

It is also imperative to note that all addressed speedup investigations here are indeed results

of strong-scalability, where the resolution is kept constant while number of processors is increasing.

Once again, the buffer zone enlarges as the number of ranks increases, i.e. the ratio of number
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of SAG (significant+adjacent+ghost) points in the boundary zone ŊSAGB
to the internal SAG

points ŊSAGI
is increasing as number-of-processors increases. Consequently, for each resolution

there will be a theoretical limit for the maximum optimal number-of-processors after which the

ratio of ŊSAGB
ŊSAGI

is very large and no speedup can be gained any more. This implies that within the

context of the strong scalability, one can not except speedup for any number-of-processor regardless

of the communication algorithm, wavelet-transform algorithm, and the data-structure efficiency.

It must be also noted that the weak scalability is not straightforward to perform for AWCM due

to the dynamically adaptive evolution of the grid, which makes it very challenging to maintain

constant number-of-active-wavelets per rank for the same number-of-processors, while the resolution

is changing.

Figure 5.24 that combines all strong-scalability plots presented before into one, indicates

an approximately the same formal speedup slope for all resolutions up to a moderate number of

processors where the effect of communication is insignificant and the InfiniBand network can be

assumed to be smart enough to handle the communication load efficiently. That is to say, the

observed formal slope, which is somehow resolution independent, should be close to the theoretical

efficiency based on zero communication cost. Therefore, it is of great importance to find an estimate

for this asymptotic slope. As explain earlier, the most expensive part of the current algorithm is the

derivatives and as a result the overall computational cost is proportional to the number SAG points.

In the serial case, there is no boundary zone; so, the overall computational cost scales as the number

of SAG points inside the domain, ŊSAGIserial
. In parallel, the the overall computational cost scales as

the total number of SAG points (both internal and boundary zone SAG points), 〈ŊSAGI
〉+〈ŊSAGB

〉,

where 〈ŊSAGI
〉 is assumed to be the volume average of number of internal SAG points across all

processors and the 〈ŊSAGB
〉 is the volume average of number of boundary-zone SAG points across

all processors. It is evident that for a well-balanced partitioning, ŊSAGIserial

∼= np〈ŊSAGI
〉. The

parallel efficiency is basically defined as the ratio of the computational cost in serial to the parallel:
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ParallelEfficiency = ηp ∼=
np〈ŊSAGI

〉
〈ŊSAGI

〉+ 〈ŊSAGB
〉 =

np

1 +
〈ŊSAGB

〉
〈ŊSAGI

〉

. (5.10)

Therefore, once an asymptotic approximation for 〈ŊSAGB
〉

〈ŊSAGI
〉 is obtained then the theoretical parallel

efficiency can be estimated. However, evaluating this asymptotic ratio is not straightforward for

the real nonadaptive simulations. Hence, the actual value of
( 〈ŊSAGB

〉
〈ŊSAGI

〉

)
, e.g. the time-average of

the statistics demonstrated in Figure 5.23, is used to estimate the theoretical parallel efficiency as

illustrated in Figure 5.25 for 20483 CVS. A very good agreement between ηp and the actual speedup

is observed for the moderate number of processors up to 512 CPU cores. At 1024 CPU cores, the

improvement by one-to-one communication is close to the theoretical efficiency and hence any more

improvement in parallel communication should not increase the speedup significantly. Although,

at 2048 CPU cores, a factor of two increase in the speedup can be expected by means of further

enhancement of the parallel communication, which remains for the future investigations. It worth

stressing again that in the theoretical efficiency, the cost associated parallel communication is not

taken into account, i.e. ηp assumes zero wall-time for parallel communication.

Another factor affecting the overall efficiency of the algorithm in both serial and parallel is the

search algorithm of the tree-structure database, which currently initiates the search from the very

beginning of each tree-root for each call. A smart search algorithm, which will inherit the access

point and search path of the previous call, has been proposed. This idea is under investigation to

construct an algorithm to achieve the smallest possible number of calls to and the lowest possible

time-spent within the database search/access functions. It is believed that a factor of at least two

times speedup can be achieved, which is the subject of future effort.
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Figure 5.8: Dynamic load balancing using Zoltan hypergraph domain partitioning for Convection-
Diffusion of rotating ellipsoids.

Figure 5.9: Dynamic load balancing using Zoltan hypergraph domain partitioning for SCALES on
20483 at Reλ = 320.
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Chapter 6

Computational Complexity of CVS and SCALES

Direct Numerical Simulation (DNS) [17], despite four decades of its existence, still remains

only a tool for turbulence research [34], since it is virtually impossible to resolve all the physi-

cally meaningful scales within the limit of continuum mechanics from integral length scale L (the

characteristic length-scale of the physical domain) all the way down to the smallest dissipative Kol-

mogorov length scale η. This daunting range of spatial scales that increases with Reynolds number,

L
η ≈ Re3/4, implies an enormous computational complexity for spatial modes that scales like Re9/4

or Re9/2
λ in terms of Taylor microscale Reynolds number. Thus, total number of floating-point

operations (considering both spatial and temporal modes) scales like Re3. For instance, for typical

aeronautical applications where Re is at least of the order of few millions, DNS requires more than

1018 number of operations making it impractical for real flow applications, at least until quantum

computers become a reality.

However, this scaling is too pessimistic, since the bounds neglect spatial and temporal inter-

mittency [27]. In reality, the turbulent flows are highly intermittent and active degrees of freedom

(DOFs) extend over many “limited” number of scales. As a result, turbulent structures can be

uniquely determined by a finite number of spatial modes at each time [16, 21, 27]. On the other

hand, according to recent observations by Yakhot and Sreenivasan [48], if the strongest and rarest

fluctuations are resolved then intermittency may indeed increase the number of required DOFs.

Based on their studies, total number of operations (space-time DOFs) scales like Re4 instead of

Re3; however, once again, their investigation was performed on a uniform computational grid and
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they commented that the space-time DOFs could in fact be smaller than Re3 if only the “interesting”

parts of the flow were resolved.

Large Eddy Simulation (LES), despite its success in modeling flows of engineering interest

[e.g., 33, 38], does not address these challenges, mainly because the computational affordability is

achieved by modeling the effect of high wavenumbers and not resolving the small-scale physics.

On the other hand, marginally resolved LES, where the ratio of SGS and resolved dissipations is

relatively small, scales similarly to DNS, Re9/2
λ , mainly because the requirement of resolving most

of the dissipation results in the filter width close to the actual peak of energy dissipation.

Thus, the only feasible alternative in the quest for methodologies that capture interest-

ing/important physics of high Reynolds number turbulent flows is the use of adaptive numerical

approaches that can extract only the essential DOFs in order to make such simulations feasible for

practical design purposes. Wavelet-based multi-resolution variable fidelity schemes for simulations

of turbulence [40] are great candidates for resolving highly intermittent turbulent flows, decompos-

ing turbulent flow into deterministic coherent and stochastic incoherent structures, and extracting

energetic structures.

The compression accomplished by wavelets has been proved by the existing efforts using CVS

and SCALES and it is widely believed and accepted within the turbulence community; however,

no work has yet proposed exactly how the number of active wavelets (DOFs) scales as Reynolds

number increases. The only available Reynolds scaling statistics of wavelet-based methods is for

2-D decaying turbulence by Kevlahan et al. [27] who presented the scaling of this kind of flow using

a space-time adaptive WDNS technique in order to take into account both spatial and temporal

intermittency. That is to say, prior to this work, it was unknown how quantitatively the wavelet-

based multi-resolution techniques improve the Reynolds scaling of spatial modes in DNS.

Hence, this study for the first time, attains the Reynolds scaling of the number of active

spatial modes in 3-D linearly forced homogeneous turbulence – i.e. by taking into account the

spatial intermittency – using both CVS and SCALES. It should be emphasized that in addition to the

wavelet compression, known as the most prominent strength of wavelets in turbulence, the capability
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of CVS and SCALES in controlling the desired flow-physics information to-be-modeled is even more

unique. The wavelet based methods in general, and SCALES in particular, offer techniques to not

only achieve high compression but more importantly to control the physical phenomena, which is

desired to be captured. Therefore, this work is not just presenting the Reynolds scaling of the CVS

and SCALES but it is an attempt to prove how wavelet based methods can resolve more flow-physics

yet using profoundly smaller number of spatial modes.

As discussed in Chapter 4, this work refers to CVS in velocity-pressure formulation, i.e. this

velocity-pressure based CVS and SCALES both solve the wavelet-threshold filtered Navier-Stokes

equations without and with SGS models respectively though at different threshold levels. Unlike

the original CVS where the ideal threshold can be calculated based on the variance of the incoherent

modes, in this velocity-based CVS, the optimal threshold should be found by numerical experiment.

6.1 Reynolds Scaling Case Study

To construct the Reynolds scaling statistics, a series of simulations where the Reynolds num-

ber is progressively increased are performed. The CVS and SCALES of linearly forced homogeneous

turbulence [6] with linear forcing constant coefficient Q = 6.66667 are performed in the computa-

tional domain of [0, 2π]3 on an adaptive grid with the base grid size of M = [mx,my,mz] = [8, 8, 8],

which is dyadically refined/coarsened as needed such that the effective spatial grid resolution would

be M2j−1 at the j level of resolution where the coarsest (minimum) level of the resolution is 2

and the highest level of resolution is 6,7,8,9. These correspond to adaptive grids with nonadap-

tive effective resolutions of 2563, 5123, 10243, and 20483 at Taylor micro-scale Reynolds number

of Reλ ∼= 72, 120, 190, 320 based on viscosities of ν = 0.09, 0.035, 0.015, 0.006. These choices of

viscosity are based on maintaining the ratio of Kolmogorov length-scale to the smallest grid-spacing

constant, i.e. η
∆min

= 2, to ensure the resolution adequate for a well-resolved DNS (analogous to

the spectral DNS). This implies that by doubling the effective resolution the viscosity should be

decreased by a factor of 24/3 (∆min ∼ Ŋ1D
−1, η ∼ ν3/4, ∆min ∼ η ⇒ ν ∼ Ŋ1D

−4/3), since in linearly

forced homogeneous turbulence ε
κ is kept constant.
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6.2 Results

The broad objective of the present study is to understand better the scaling of the number

of spatial modes as a function of Reynolds number and the fidelity of the model, i.e. to estimate

the exponent α in the relation, Ŋ ∼ Reα, where Ŋ is the number of spatial computational degrees

of freedom of the turbulence. In order to quantify the model fidelity, it is useful to define “turbu-

lence resolution”, the quantity that measures the level to which one would like to resolve the most

energetic/dynamically important structures of turbulence. As explained in Chapter 3, turbulence

resolution, can be quantified differently. One way to define turbulence resolution is to use a ratio

of sub grid scale and total turbulent kinetic energies, i.e. ksgs
kres+ksgs

, where kres is the resolved turbu-

lent kinetic energy and ksgs is the SGS kinetic energy. However, since the energy spectrum decays

with the increase of wave numbers, the SGS kinetic energy characterization of turbulence is not well

suited for high Reynolds number flows, simply because it is mostly based on large-scale contribution

and is not sensitive to the Reynolds number changes. The SGS dissipation characterization, on the
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Figure 6.1: Energy spectra for CVS and SCALES at four different Reynolds numbers.
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other hand, is a more objective measure, since dissipation spectrum increases with the wavenum-

ber and the changes in molecular viscosity and correspondingly Reynolds number would result in

shifting the peak of the resolved dissipation. Moreover, the SGS dissipation can also be related to

enstrophy. For that reason, analogous to Chapter 4, the turbulence resolution is measured by the

ratio of dissipations rather than the ratio of kinetic energies of modeled and resolved structures, i.e.

by means of the local fraction of SGS dissipation, F = Π
εres+Π ( εres = 2ν Sij

>ε
Sij
>ε , Π = −τ∗ij Sij

>ε).

In the light of this broad objective, the CVS and SCALES simulations are first performed

with constant threshold levels ε = 0.2, 0.43 respectively, which are set to based on earlier works

on 2563 turbulent simulations [24, 25]. The performed simulations demonstrate consistency with

K−5/3 for the energy-spectra in particular at larger Reynolds number, where the inertial range is

more pronounced, Figure 6.1. The vorticity magnitude and the adaptive computational mesh for

SCALES simulations are illustrated in Figure 6.2. It is evident that how sparse is the adaptive grid of

SCALES while it is able to resolve the energy-containing structures with such low number of spatial

modes. The fixed scale for all vorticity field volume-rendered images, shows the augmentation of

vorticity magnitude while the the Reynolds number increases. The number of active wavelets (Ŋ)

and the time-average of “fraction of volume-averaged SGS dissipation (total FSGSD)” are listed in

Table 6.1. Similar to Chapter 4, total FSGSD is defined as 〈F〉 = 〈Π〉
〈εres〉+〈Π〉 , where 〈Π〉 = 〈−τ∗ij Sij

>ε〉

and 〈εres〉 = 2ν〈Sij>εSij>ε〉.

Method Reλ Resolution (Ŋmax) 〈F〉 Ŋ
CVS 70 2563 - 1 100 000
CVS 120 5123 - 5 000 000
CVS 190 10243 - 20 000 000
CVS 320 20483 - 90 000 000
SCALES 70 2563 0.323178 115 000
SCALES 120 5123 0.475869 437 000
SCALES 190 10243 0.594733 1 000 000
SCALES 320 20483 0.745060 1 850 000

Table 6.1: Reference Parameters
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Figure 6.3: Percentage of active wavelets, Ŋ/Ŋmax, for CVS and SCALES with constant-threshold.

Figure 6.3 illustrates the percentage of active wavelets, which is Ŋ divided by the corre-

sponding nonadaptive effective resolution, Ŋmax. It is evident that the percentage of active spatial

modes even decreased as Reynolds number increases; the compression ratio is increasing as Reynolds

increases, which makes SCALES even more appealing for high Reynolds number flows. The com-

putational complexity can be seen from the Re scaling presented in Figure 6.4, which includes

the DNS scaling as well. This study demonstrates that the spatial modes for CVS and SCALES

scale slower than Re3.25
λ and Re2.75

λ respectively, which compared with DNS scaling of Re9/2
λ implies

4.5− 3.25 = 1.25 and 4.5− 2.75 = 1.75 times smaller Reynolds scaling exponent.

It is important to emphasize, that both in CVS and SCALES, the scaling deviates from the

constant slope as Reynolds increases. In SCALES, the main reason for this deviation is the increase

of F , reported in Figure 6.5. This implies that as Reλ increases, the fidelity of the simulations

decreases and the flow is relatively less resolved since the threshold-level was kept constant. The

choice of ε= 0.43 [24] was based on optimum threshold for 2563 simulation that is the maximum

threshold at which SCALES matches the CVSεopt spectra up to inertial range. Therefore, using the
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same threshold for larger Reλ implies that the level of resolving the velocity field and consequently

kinetic energy would be constant. In other words, the percentage of resolved kinetic energy is

kept constant by using the same threshold value. As indicated at the begging of this section, the

kinetic energy characterization of turbulence resolution is not well suited for high Reynolds number

flows, because the kinetic energy classification is mainly based on the large-scale contribution and

is not sensitive to the Reynolds number variations. Thus, the curve for SCALES with constant

thresholding will eventually flatten out with further increase of Reynolds number.

It must be noted that the performed CVS with constant threshold value ε = 0.2 on resolutions

larger than 2563 indeed are not the true CVS, mainly because it corresponds to the optimal threshold

value for 2563 case reported by Goldstein and Vasilyev [24], Goldstein et al. [25]. As explained before,

the true CVS uses an optimal threshold to ensure that the unresolved field is the Gaussian white

noise and as a result its effect on the resolved field can be ignored. The use of larger threshold

value result in additional mode truncation that removes the energy for the resolved field and,

thus, acts as dissipative mechanism. This dissipation is responsible for slowing down of the scaling

curve. Since the current study is based on velocity-pressure formulation of CVS, in order to find

optimal threshold value for CVS, one would need to conduct similar numerical experiments as in

[24], therefore, performing true CVS based on the ideal/optimal threshold is not practical for large

Reynolds number turbulent flows.

When studying the Reynolds scaling, it is important to maintain the fidelity of the simu-

lations as Reynolds number changes. This can be achieved by keeping the fraction of the SGS

dissipation, F , constant, which would in turn ensure that the percentage of resolved dissipation or

the turbulence resolution is approximately the same. Therefore, variable thresholding is utilized

to maintain a constant level for F . Both time varying [7] and spatially variable thresholding [35]

approaches, are used to maintain F for all Reλ at the average value of F corresponding to the

Reλ = 70, i.e. G = 〈F〉2563 with ε=0.43
∼= 0.32, where G stands for the desired goal value for F .

Time varying thresholding was used only for Reλ = 70, 120 and spatially variable thresholding was

utilized for Reλ = 70, 120, 190, 320. For Reλ = 70, 120, 190 the spatially variable thresholding using
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first-order interpolation along characteristics was performed. While for Reλ = 320, the spatially

variable thresholding methodology, by directly solving the Lagrangian Path-Line Diffusive Averag-

ing equation of threshold with diffusion coefficient of νε = 0.1, was exploited. The results of both

time and spatial variable thresholding are consistent and reported in Figure 6.6. Contrary to con-

stant thresholding SCALES where the slope of Reynolds scaling was reducing, SCALES with this

variable thresholding results in approximately constant slope. Comparison of percentage of number

of active wavelets using spatially variable thresholding with constant thresholding as well as CVS

is illustrated in Figure 6.7. It is important to discuss the fundamental difference between constant

turbulence resolution Reynolds scaling of SCALES with Reynolds scaling of marginally resolved

LES, discussed earlier. Substantial decrease of the scaling exponent is a strong indication of the

effective utilization of spatial intermittency by SCALES, contrasted to nearly DNS scaling of Re9/2
λ

of marginally resolved LES.

In order to study the influence of the fidelity of simulation on the Reynolds scaling of SCALES,

a series of simulations of different turbulence resolution is conducted. The different fidelity is

achieved by using spatially variable thresholding approach with different goal values of F , namely

G = 0.2, 0.25, 0.4, 0.5 (Figure 6.8).1 It is observed that in the logarithmic scale the slope of Reλ scal-

ing of SCALES spatial modes at least up to 10243 remains nearly the same while changing the level

of turbulence resolution, Figure 6.9. In other words, the Reynolds scaling of constant-dissipation

SCALES at different fidelity levels are parallel lines in the logarithmic scale. The percentage of ac-

tive spatial modes initially either increases slightly or remains approximately constant as Reynolds

number increases though eventually reduces similar to the constant-thresholding case, Figure 6.10.

Thus, it can be concluded that the compression ratio is increasing as Reynolds increases regardless

of constant-kinetic-energy or constant-dissipation simulation.

The true CVS can be also seen as a coherent vortex simulation by which the enstrophy

or truncation-dissipation is maintained at an approximately constant level. However, in current
1 It should be noted that at the time of reporting these results, the simulations of 10243 with G = 0.25 and 20483

with G = 0.32 were still in progress; as it is clear from Figures 6.9 and 6.8, the number of active wavelets for these
two cases were still growing and 〈F〉 had not yet converged to the corresponding goal values.
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investigation, similar to constant-threshold SCALES, the resolved kinetic energy level is kept ap-

proximately constant. Therefore, similar to performed constant-dissipation SCALES, it is planned

to extend the CVS scaling based on constant-truncation-dissipation. This can be done by means of

spatially variable thresholding technique, where the ratio of truncation-dissipation to the resolved-

dissipation is maintained at a constant reference level. This goal value could be the corresponding

ratio for 2563 CVS with ε = 0.2 since this threshold level was found [24, 25] as an optimal value at

which the 2563 CVS spectra (visually) matches the DNS spectra and a nearly Gaussian PDF for

unresolved incoherent structures is achieved. However, It should be noted that the achieved slope for

CVS Reynolds scaling is the lower bound of the true CVS since by performing the aforementioned

constant-truncation-dissipation CVS, for any resolution larger than 2563, the threshold will be for

sure smaller than 0.2 by average. Besides, the constant-dissipation SCALES even at very small goal

value is still requiring smaller number of spatial modes compared with the constant-threshold CVS.

Thus, constant-truncation-dissipation CVS will make SCALES even more competitive.

The fractal dimension and consequently the intermittency of the active regions of the flow

can be estimated analogously to the analysis of Paladin and Vulpiani [36] and Kevlahan et al. [27]

who utilized the β−model of Frisch et al. [19], which shows that the spatial degrees-of-freedom of an

intermittent turbulent flow should scale like Re3DF /(DF+1), where DF ≤ 3 is the fractal dimension

of the active part of the turbulent flow. It is observed that the fractal dimension for CVS and

SCALES are DFCVS
. 13

11 and DFSCALES
. 11

13 respectively. The most intriguing part about these

finding is very low, close to unity fractal dimension of the energy containing structures.

Scrutinizing the SCALES results reveals that in the linear-scale instead of logarithmic-scale,

the number of spatial modes for SCALES with constant threshold-level is growing linearly. This

implies that the number of flow structures at a constant percentage of resolved kinetic energy is

linearly increasing as Reynolds number grows, Figure 6.11. This interesting physical phenomenon

demonstrates the potential of extracting new physical thoughts in turbulence through physics-based

simulations of SCALES.
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Chapter 7

Conclusion and Perspective

The most notable achievements throughout the course of this numerical effort can be addressed

as follows:

(1) this work represents the first attempt to develop a hybrid wavelet-based multiscale adap-

tive variable fidelity turbulence modeling approach through the notion of spatio-temporal

threshold-level for the wavelet thresholding filter;

(2) this is the first effort to present Reynolds scaling of Coherent Vortex Simulations and

Adaptive Wavelet-based Large Eddy Simulations to quantitatively justify the power of the

wavelet-based multi-resolution techniques, in particular the strength of SCALES in resolv-

ing high Reynolds number flows at a desired level of fidelity for any dynamically important

flow characteristics with a significantly small number of spatial modes; besides

(3) the first, to the best of author’s knowledge, parallel adaptive wavelet-based PDE solver,

which has been under development since 2005, has been completed and extensively tested

on various architectures.

The proposed “Hierarchical Multiscale Adaptive Variable Fidelity Wavelet-based Turbulence

Modeling” methodology, which is based on Lagrangian Spatially Variable Thresholding, is a very ro-

bust single solver/framework for performing hybrid simulations analogous to hybrid RANS/LES/DNS.

However, within this framework only one solver is utilized and challenges corresponding to overlap-

ping multiple solvers and AMR are irrelevant.
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This work materializes the very long time dream of a fully adaptive hybrid turbulence sim-

ulation using a well established wavelet-based method (SCALES). The current framework makes

it possible to perform wavelet-based fully adaptive LES as well as hybrid WDNS/CVS/SCALES

on very large domain and at large Reynolds numbers, with the aim of enormous compression of

wavelets, e.g. 99%.

This methodology provides an automatic transition from WDNS – which resolves all flow

structures via a direct solution of wavelet-filtered Navier-Stokes equations – to coherent/incoherent

flow decomposition in the CVS limit to SCALES regime, where the coherent energy containing

turbulent motions are resolved while the effect of less energetic coherent/incoherent motions is

modeled: namely, a hierarchical space/time dynamically adaptive automatic smooth transition from

resolving the Kolmogorov length-scale to decomposing deterministic-coherent/stochastic-incoherent

modes to capturing more/less energetic structures. This defines a new concept of model-refinement,

which is named m-refinement.

The performed Reynolds scaling study shows that in SCALES even with preserving a constant

level of turbulence resolution while increasing the Reynolds number, required number of DOFs is still

smaller than CVS and DNS for relatively large Reynolds numbers. This computational complexity

study utilizes extensively the capability of the proposed spatially variable thresholding technique in

order to accomplish the scaling based on constant level of SGS dissipation to the total dissipation,

i.e. a constant level of turbulence resolution.

This Reynolds scaling study has also drawn two insightful physical conclusions: the fractal

dimension – which provides a qualitative measure of how intermittent the turbulent flow is – in

both SCALES and CVS is close to unity. A fractal dimension of slightly larger than one is observed

for the coherent structures, while the fractal dimension of the energy containing structures is found

to be even less than unity. Furthermore, the number of flow structures at a constant percentage

of resolved kinetic energy – i.e. number of fixed-energy containing structures (energy containing

structures at a fixed level of kinetic energy) – scales linearly as Reynolds number.
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The perspective of proposed ideas for future progresses can be classified into eight major

categories as follows:

• Spatially Varying G The proposed benchmark in this work utilizes a goal value for

turbulent resolution, which is varying in time. A very realistic test case is a spatial varying

G whose immediate and best application is the hybrid full simulation of jet engines: this will

be an attempt analogous to the longtime effort at Stanford University to perform hybrid

RANS/LES simulation of full scale Pratt & Whitney engines. The required machinery for

such simulations has been implemented; it is only required to define the realistic spatially

varying mask for G.

• Stochastic SGS Models As discussed in Chapter 1, in the current implementation of the

SCALES methodology, only the effect of the “minority deterministic coherent SGS modes”

on the “deterministic most energetic coherent structures” are modeled by the “deterministic

SGS models”. However, it is of great interest to be able to model the effect of the “majority

stochastic incoherent SGS modes” on the “deterministic most energetic coherent structures”

as well by means of “stochastic SGS models”. Hence, hereby it is proposed to perform

studies toward understanding the Stochastic SGS models and their implementation within

SCALES framework.

• Uncertainty Quantification Studies It is said that among the the future directions

of the computational sciences, main concern will be uncertainties issues. Keeping this in

mind, another dream is to be able to fine-tune the deterministic SGS models based on the

Uncertainty Quantification (UQ) concepts. Therefore, it is envisioned to exploit possible

advantages of UQ in instantaneous corrections/adjustments of the SGS models. The UQ

based adjustment of the time-relaxation-parameter and forcing-term of the threshold-factor

Lagrangian evolution, as well as UQ based adjustment of hybrid model transition algorithm

(when/where to switch among WDNS/CVS/SCALES) are also on the wish-list for future

endeavors.
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• Extension of Complexity Study to True CVS Akin to the performed constant-

dissipation SCALES, it is planned to extend the CVS scaling based on constant-truncation-

dissipation. This can be done by means of spatially variable thresholding technique, where

the ratio of truncation-dissipation to the resolved-dissipation is maintained at a constant

reference level.

• Extension of Complexity Study to Very High Reynolds Numbers and WDNS

Upon access to much more computational resources, this study needs to be extended to

very high Reynolds number: it is possible that at higher Reynolds, at each constant goal

value of turbulence resolution, i.e. at a certain G, the slope may reduce, which would make

the SCALES even more promising at high Reynolds numbers. With more computational

resources, the previous scaling of 2-D WDNS also can be extended to 3-D.

• Extension of Complexity Study to Space-Time Adaptive WDNS, CVS and

SCALES in 3-D The current effort presents Reynolds scaling of only spatial modes

of 3-D linearly forced homogeneous turbulence. As addressed in Chapter 6, an existing

previous effort also attained Reynolds scaling of space-time modes in 2-D only using space-

time adaptive WDNS. With the framework and solver developed during this work, it is

now feasible to perform the Reynolds scaling of space-time modes of 3-D linearly forced

homogeneous turbulence using space-time adaptive WDNS, CVS and SCALES.

• Parallel Solver Improvements Even the currently developed parallel algorithm is capa-

ble of performing the largest turbulence simulation ever, which is what it has been envisioned

as the last goal of the current effort. However, further improvements on the tree-structure

search algorithms, the parallel wavelet-transform algorithm, and the buffer-zone commu-

nication strategies can significantly improve the efficiency and postpone the saturation up

to many times more number of processors. This will make the aforementioned final goal

feasible within more realistic wall-time.
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• SCALES Data Mining The energy-containing-structures related physical phenomena

observed through the Reynolds scaling study are only a glimpse of what SCALES is capable

of. With the use of the developed hybrid multiscale adaptive variable fidelity method and

parallel machinery, SCALES is going into its ultimate goal of data mining phase and it is

anticipated that it would be able to extract very insightful new physical observations in

turbulence.
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Finally, in words of Marcel Lesieur [28],

It might finally happen that this would be only a necessary transition stage
toward the definition of new fluid dynamical concepts which would render obsolete
and useless the complicated analytical and numerical techniques which helped create
them.
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