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Two fluids are considered Rayleigh-Taylor unstable when the more dense fluid is suspended

above the less dense fluid in the presence of a gravitational like accelerative force. When a pertur-

bation is applied to the interface between the two, they begin mixing as the light fluid rises and

the heavy fluid drops. The extension of this to the compressible regime leads to the densities of the

fluids to not be constant, but instead the molar mass is used to define the weights. At the interface,

a density jump still occurs, but away from the interface the densities can vary in a variety of ways.

This research investigates the effects of these density changes by imposing an initial background

stratification before the initial perturbation is applied. Isothermal, isentropic, and isopycnic initial

conditions are imposed for small molar mass differences and the growth of the perturbations are

studied through the use of the Parallel Adaptive Wavelet Collocation Method. Strong non-linear

interactions lead to the growth and destruction of complex vortical fields resulting in the initial

suppression of the instability in all cases. For the isothermal case, this leads to a complete sup-

pression at moderate to high Mach numbers, but for the isentropic and isopycnic case, this initial

suppression is overcome and an increased acceleration occurs that grows with the Mach number. To

further investigate these interactions, the vorticity transport equation is investigated and modified

to give insights into the effects background stratification and fluctuating terms. In addition to this,

a comparison is drawn to the simplified case of vortex pairs and rings propagating in the same

stratifications. All of these interactions and discoveries have strong implications for understanding

the physics governing engineering scenarios such as fuel capsules in inertial confinement fusion,

flame front propagation in supernovae, and the mixing of fuels in some specialized burners.
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Chapter 1

Introduction

1.1 Motivation and Objective

In one of his famous dialogues, Plato said, ”nothing without understanding would ever be

more beauteous than with understanding.” To me, this simple line points to the heart of what it

means to be a scientist, i.e. to explain the unexplained and to discover the undiscovered. It is

our duty and responsibility as scientists to look for unanswered questions and seek for the answers.

The field of fluid mechanics is one where there often seems to be more questions than there are

answers. It is only the most basic of problems that have analytic solutions and as you chip away

each underlying assumption, less and less is known. As the range of scales becomes wider, and

velocities begin growing, turbulence and chaos begins to onset, and even more is unknown, but we

end up with a more accurate description of real flows. It is only though the constant methodical

work done by the fluids community at large that we can hope to understand these mysteries and

thusly unlock the secrets of the world around us.

The following project all began in the late 1800’s with Lord Rayleigh. The story goes that

he was puzzled by the exact way cirrus clouds were able to form and take the shapes that they

did, so he set out to develop a theory for an incompressible fluid with a density jump under

constant acceleration. Over time, further investigations have lead to the development and better

understanding of the instability along with the realization of the plethora of physical scenarios

in which similar flows occur. It has come to our understanding that the the Rayleigh-Taylor

instability is the occurrence of a mean density gradient in the opposite direction of a gravity-like



2

body force, accelerating front, or local differential motion. If the interface is perturbed, this force

then results in the generation of vorticity and continues growing and mixing in a non-linear fashion.

This instability is found in many engineering applications at all scales from astrophysical flows to

oceanic to geophysical, and it can even be commonly seen when doing something as simple as

pouring cream into coffee.

The bulk of the previous work done, largely revolves around the analysis of immiscible and

incompressible RTI’s. Both experiments and numerical simulations have been carried out to try

to characterize the effects of varying such things as the density difference at the interface and the

initial perturbation applied. Approximating the initial growth regimes has been largely successful

leading to good approximations of the growth rate for the bubbles and spikes as they move upwards

and downwards in the system, respectively. Such phenomenon as the late time asymptotic growth,

eventual approach to self similarity, merging of bubbles and spikes with multimodal perturbations,

and the achievement of chaotic growth in high Reynolds number flows have all been documented

and studied.

Though there have been many discoveries and many advancements over the history of study-

ing RTI, there is still much to be found. In the physical world, RTI occur in very complex scenarios,

most of which involve compressible and miscible fluids. Their background states and stratifications

can wildly vary and many RTI occur in scenarios with external forcing from sources such as elec-

tromagnetism and reactions. Based on this, there is still much to be uncovered and much of the

work is just unfeasible to do with experiments. This leaves us with the need to explore these

regimes through numerical modeling. This project is designed to work on filling in the gaps in our

knowledge base through the use of highly adaptive wavelet based numerical simulations.

In addition to understanding the complete, full system, it is also important to work towards

simplified systems and the understanding of these in order to feed our knowledge of the larger

system. Like a physicist explaining atoms through the approximation of balls and springs, finding

simple analogs to further elucidate complex scenarios is imperative to the development of new

models and techniques. It is known that RTI propagates fluid flow through the development and
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propagation of vortical fields. Initially, these manifest themselves as either vortex pairs in two

dimensions, or vortex rings in three. To help paint the entire picture of RTI development, a study

into these reduced analogs of vortex pairs and rings is also presented and investigated through the

use of wavelet based simulations.

1.2 Methodology

In order to complete these investigations, simulations must be carried out. Essentially, we

have two options, to use modeling such as Large Eddy Simulations (LES), or to use Direct Numerical

Simulations (DNS) [16]. The advantage of using modeling is that the simulations are inherently

cheaper whereas DNS leads to better capturing of the physics. For RTI driven systems, there is a

large range of scales that needs to be resolved and the multi-species nature leads to steep gradients

developing causing this problem to be very difficult to model. With modeling, there has been some

success, but in general the nature of RTI causes small scales to force large scale growth, which is

opposite of what most models are built to do. In addition, previously untouched regimes are to be

explored, and the models are not tailored to capture unknown new physics. Because of this, DNS

is the only way we can be sure that we are accurately capturing and representing the flow fields.

To help alleviate the negative aspect of the simulations, using modern adaptive techniques

to alleviate the costs is necessary [16]. Even though today we have access to cutting edge super

computing power, it is still necessary to ensure that these resources are used efficiently so we can

explore as many regimes as possible. The Parallel Adaptive Wavelet Collocation Method (PAWCM)

lends itself naturally to flow simulations, especially localized flows such as the RTI, because it allows

us to take advantage of the inherent aspects of the problem to create highly adaptive and compressed

grids. This allows us to simulate these complex flows for significantly cheaper than a non-adaptive

simulation. It is truly only through the use of such powerful techniques that we are able to explore

new physics such as this.
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1.3 Organization

The rest of the this document is ordered as follows. In Chapter 2, there is a thorough dis-

cussion on the background and current state of Rayleigh-Taylor instability research. It contains

the relevant historical approximations and physical descriptions while also discussing the previous

simulations and experiments that have been done. Chapter 3 then goes on to discuss the numerical

method used to approach this problem with a brief section on other applications of the Adaptive

Wavelet Collocation Method. Chapters 4-6 present the results of this research in the format of

the papers that have been written about them, and thusly may contain some redundancy in the

information presented because each was also written to stand on its own. Chapter 4 begins as a dis-

cussion of the results obtained from the isothermal single-mode simulations. Chapter 5 widens this

scope to also investigating the isentropic and isopycnic initial stratifications while also comparing

these with the isothermal. Chapter 6 presents results for the multi-mode isothermal stratification.

Finally, Chapter 7 includes a discussion about the overall conclusions and the future work that is

still to be done.



Chapter 2

Background

Rayleigh-Taylor instability has been a phenomenon experienced throughout all history and

time. Any time we overturn a glass of water, pour water into oil, or add creamer to our favorite

caffeinated beverage, we experience RTI. It wasn’t until Lord Rayleigh became interested in under-

standing the physics behind the formation of cirrus clouds, though, that a mathematical definition

of these motions was generated. Lord Rayleigh’s paper in 1880 focused on the description of a

heavier fluid on top of a light fluid where both are immiscible and in the presence of Earth’s gravity

[50]. Later, 1950 to be exact, Sir G.I. Taylor came through and expanded this theory to any general

acceleration and not just our gravity [59]. From this, the instability was given its name. You can

view an image of the two namesakes for this instability below in Figure 2.1. The rest of this section

investigates the work that has already been accomplished since Lord Rayleigh and Sir Taylor began

this research.

2.1 Overview of the Rayleigh-Taylor Instability

RTI by definition occurs when a light fluid supports a heavy fluid in the presence of a gravity

like accelerative force, or alternatively, you can think about it as a light fluid pushing on a heavy

fluid. This results in an acceleration in the opposite direction of a density gradient [10, 50, 59].

When the interface is perturbed, it results in the generation of small scale vorticity, in the form

of a counter rotating vortex pair in two dimensions or a vortex ring in three, that continues to

grow larger in time. This vorticity results in the propagation of the heavy fluid downwards in a
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(a) Lord Rayleigh (b) Sir Taylor

Figure 2.1: The namesakes of the Rayleigh-Taylor Instability courtesy of Art UK (artuk.org).
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”spike”, while the light fluid is propagated upwards as a ”bubble”. Initially, the two motions are

very similar, but as time progresses the bubble begins to widen at its tip while the spike begins

to narrow, hence feeding the names given to them. As these motions continue, the shearing on

the interfaces results in the generation of a Kelvin-Helmholtz instability and thusly the addition of

more induced motion [64].

In large, the main defining characteristic of the instability is the intensity of the density jump

at the interface. This is classified in the non-dimensional number known as the Atwood number,

defined as the difference of the fluid densities divided by the sum of the fluid densities for the

classical incompressible case. In more general terms, and thusly for the compressible case, this

is defined synonymously by replacing the density with the molar mass of the fluids. Hence the

Atwood number is defined as follows in 6.12.

A =
W2 −W1

W2 +W1
,which in the incompressible limit becomes Ainc =

ρ2 − ρ1
ρ2 + ρ1

(2.1)

In this definition, the subscript 2 refers to the upper fluid while 1 refers to the lower fluid. In order

to have the system be Rayleigh-Taylor unstable, it is required that W2 > W1 and equivalently that

ρ2 > ρ1 at the interface. This puts the bounds on the Atwood number between 0 and 1 where close

to 0 refers to a small difference in densities and 1 refers to an infinite difference in densities. As the

Atwood number approaches 1, we expect to see the differences in the bubble and spike enlarge as

we should see very wide and circular bubbles develop while the spikes become an extraordinarily

narrow point. This leads to the spike moving further and faster downwards as it creates a jet-like

effect in comparison to the bubbles movement. Conversely, as the Atwood number approaches 0, we

should see very similar growth between the bubble and spike as both maintain a very similar shape

and appearance somewhere in between rounded and pointed, while both maintain very similar

growth rate and distance traveled. When thinking about multi-modal perturbations, these bubble

and spike formations start off even smaller, but as the instability growth continues, they begin to

join into even larger structures [57, 37].

One of the most interesting features of the RTI is that it occurs in a huge range of scales
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and physical scenarios. On the largest side, RTI have been shown to affect how galaxies form,

the transfer of plasmas in giant magnetospheres such as Jupiter’s and Saturn’s, and supernova

explosions. An example of a nebula exhibiting RTI structures, namely the Crab Nebula, and a

simulation from recent research exploring RTI in supernova explosions can be seen in Figure 2.2.

Essentially for supernova, the core of a star will explode and send hot reacting gases from its center

into a cloud of cooled gas. Because of the temperature difference, this results in the lighter and

hotter gas pushing into the heavier and cooler gas creating RTI at the interface of reaction. The

RTI is then able to act as a mixing mechanism for the system to allow unburnt reactants into

the reaction zone to continue supplying it with fresh fuel. In the other astrophysical scenarios,

namely magnetospheres and galaxies, magnetic fields cause the movement of dense plasmas from

the interior of the system towards the exterior which has less dense plasmas pushing back [72, 35,

44, 19, 31, 33, 54, 28]. On the vastly opposite end from the astrophysical scale, is the scale of fusion

(a) Crab Nebula (b) Supernova Simulation

Figure 2.2: An example of a nebula exhibiting RTI characteristics and the results from a supernova
simulation to study the effects of RTI on the growth of the flame front [33].

reactors. With our technology, it is feasibly impossible to achieve fusion without the introduction of

RTI. In space, fusion is achieved because of the massive amount of mass a star has causing intense

gravity to force fusion to happen. To try to recreate this in a lab, we cannot nearly achieve the levels

of gravity needed, so instead, large amounts of kinetic energy must be applied to some fuel to force

the fusion to happen. This is typically done through the use of magnetics or lasers. The magnetic

case ends up similar to that of the astrophysical phenomenon already described. The method using
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lasers is referred to as inertial confinement fusion and a schematic for how it works is shown in

Figure 2.3 In this process, it is practically impossible to input the energy in a completely uniform

Figure 2.3: A schematic for inertial confinement fusion. (1) First lasers heat the exterior of the fuel
pellet leading to (2) blow off and fuel compression. If done properly (3) the core will ignite finally
resulting in (4) the thermonuclear burn that should output many times the input energy.

fashion because there will either be stronger inputs towards the center of the beam, imperfections

in the fuel capsule, or the power of the individual beams will vary. This essentially then creates a

perturbation that results in the generation of a RTI because of the vast differences in the densities

between the burnt and unburnt fuels. As soon as the instability occurs, mixing begins to sap away

the thermal potential making their performance less than desirable. Through the understanding of

RTI in cases like this, the hope is to work towards minimizing this mixing thusly creating better

thermonuclear fusion reactors [34, 7, 41].

These two scales present interesting engineering ideas and thoughts, but they occur in very

nuanced and specific regimes. The exciting part about RTI is that it also occurs in everyday

situations. The origins of this research began with clouds, and there are multiple atmospheric

conditions that can lead to the generation of RTI with clouds in the atmosphere [9]. Essentially if a

temperature inversion occurs, the atmosphere becomes RT unstable and if the conditions are right,

this results in the shaping of clouds accordingly. In Figure 2.4, there are two examples of this, i.e.

a mammatus cloud resulting from cool water vapor occurring above warm atmosphere, and also

a volcanic ash mushroom cloud resulting from the intense heat from the volcano rising through

the cooler air around it [56]. As mentioned previously, RTI can also occur in everyday scenarios

like pouring creamer into coffee [54]. Because of its everyday occurrences, in classes such as Dr.

Jean Hertzberg’s Flow Visualization and for aspiring artists, RTI lends itself for the generation of
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beautiful artwork since the experimental setup is quite easily obtainable. An example of this can be

seen in Figure 2.5 where one of Dr. Hertzberg’s students photographed a RTI created by pouring

dyed milk into sugar water.

(a) Mammatus Cloud (b) Volcanic Mushroom
Cloud

Figure 2.4: Examples of clouds being shaped by the development of RTI.

Figure 2.5: A RTI created and photographed for Dr. Jean Hertzberg’s Flow Visualization class by
Kyle Thatcher in 2014.
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2.2 RTI Development and Analysis

To achieve RTI, we impose a heavy fluid above a light fluid, and perturb the interface. The

perturbation then grows, but how does it grow? In general, the instability growth is described

exactly the by compressible continuity, Navier-Stokes, energy, and species mass fraction equation.

For the single mode situation, after any diffusion is allowed to take place, we know that initially the

interface will grow according to linear stability theory in an exponential fashion. After this stage,

the instability continues according to potential flow theory as the small scale vorticity begins to be

generated. From there, the instability was originally believed to reach a terminal velocity [57, 38].

Recently, though, it has been shown that if the viscous effects are small enough, and the generation

of vorticity is strong enough, then the instability will actually grow to reaccelerate [64]. From there,

the continuous generation of additional vorticity from the Kelvin-Helmholtz instability causes the

instability to proceed into a chaotic and turbulent like regime. A diagram of these regimes can

be seen in Figure 2.6. The specific growth in any one of these regimes is characterized by many

different parameters, such as compressibility, diffusivity, finite density gradients, surface tensions,

and viscous effects to name a few [17, 36, 42, 23]. With the extension of the linear stability theory

to the compressible regime, it has been shown that there is no single parameter to quantify the

effects of such complex interactions on even the earliest growth regimes, let alone the even more

complex late time growth [42].

Figure 2.6: The stages of RTI growth. IC stands for initial conditions, DG diffusive growth, EG
exponential growth, PFG potential flow growth, RA reacceleration, and CD chaotic development.
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To further investigate these effects, I will give a short description on the derivation of the

linear stability analysis and then the potential flow theory. To perform the linear stability analysis,

the first step it so define all flow fields as a background state plus a perturbation. Essentially,

this equates to defining any variable, u, as u = u0 + u′ where u0 is the base state and u′ is the

applied perturbation to this state. To arrive at an analytical solution, we can begin by looking at

the incompressible result. For any given perturbation with wavenumber k, we know the interface

location will follow the relationship

ηI(x2, x3, t) = ηAexp (i(k2x2 + k3x3) + nt) , (2.2)

where the perturbation is only applied in the x2 and x3 direction, n is the growth rate, and ηA is

the amplitude of the initial perturbation.This then results in the solution for the incompressible

growth rate as

ninc =
√
Agk where k2 = k22 + k23. (2.3)

This solution then can be expanded on to include the effects of diffusivity and viscosity. This results

in the determination that the upper limit for the growth rate is

nvisc,diff =

(
Agk

ψ
+ ν2k4

)1/2

− (ν +D)k2, (2.4)

where D is the mass diffusion coefficient, ν is the kinematic viscosity, and ψ is a function of A,

k, and the initial diffusion thickness δ that is a purely empirical relation [17]. This equation

succinctly shows that both viscosity and diffusion work to suppress the instability, especially at

higher wavenumbers. While these relationships might be great at predicting the initial growth

for incompressible cases in both simulations and experiments, we are in need of the inclusion of

compressible effects.

Unfortunately, the inclusion of compressibility results in great difficulty in deriving analytic

relations. In order to uncover an analytical solution, we must make the assumptions that the

fluids are inviscid, immiscible, and lack both heat diffusion and surface tension effects [42]. This
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essentially leaves us with a simplified set of governing equations that is as follows.

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.5)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− ρgi, (2.6)

∂p

∂t
+
∂puj
∂xj

= (1− γ)p
∂uj
∂xj

(2.7)

where gi = g1 = g is gravity, p is pressure, ui is velocity, and ρ is density. From here, we want to

seek solutions in the form of that for the position of the incompressible interface ηI , namely, the

form exp(i(k2x2 + k3 + x3) + nt). Assuming this relationship, we end up with the solutions

nρ = −ρ0
(
∂u1
∂x1

+ i(k2u2 + k3u3)

)
− u1

∂ρ0
∂x1

, (2.8)

ρ0nu1 = − ∂p

∂x1
− gρ, (2.9)

ρ0nu2 = −ik2p, (2.10)

ρ0nu3 = −ik3p, (2.11)

np = −γp0
(
∂u1
∂x1

+ i(k2u2 + k3u3)

)
+ u1ρ0g, (2.12)

where the subscript 0 implies the unperturbed state. From this, we can rearrange and work on

eliminating variables so that we end with an equation for u1. Keeping in mind that on either side

of the interface, our local speed of sound, c =
√
γ p0ρ0 , is constant and we have a jump condition at

the interface, we end up with the relationship of

∂2u1m
∂2x1

− γmg

c2m

∂u1m
∂x1

−
(
k2 +

n2

c2m
+

(γm − 1)g2k2

n2c2m

)
u1m = 0, (2.13)
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where the subscript m refers to the fluid species. The solution must take the form of u1m =

Amexp(λ1mx1) +Bmexp(λ2mx1) where

λ1,2m =
γmg

2c2m
± k

√
1 +

n2

k2c2m
+

(γm − 1)g2

n2c2m
+
γ2mg

2

.
4k2c4m (2.14)

Finally, from this we can use our definition of u1, the boundary conditions that u1 = 0 at ±∞, the

fact that u1 must be continuous, and its jump condition to solve for the growth rate n. With this

we arrive at

n2comp,inv = k2g

(
γ2(k

2c21 + n2comp,inv)− γ1(k2c22 + n2comp,inv)

γ1(k2c22 + n2comp,inv)λ11 − γ2(k2c21 + n2comp,inv)λ22

)
(2.15)

From this, we can then go back and obtain the perturbation fields from earlier [42]. There has

also been work done to extend these results to the case where the thermodynamics are not in

equilibrium. These results end with a similar expression except it does not provide an explicit

analytical solution except for in two limiting cases. These cases are when the thermodynamics are

in near equilibrium, where it reduces to the same expression as above, or when the thermodynamics

are so out of equilibrium that the resulting equations are dominated by the temperature gradient

effects. This solution though, is cumbersome and does not add any real importance to this report,

so it is omitted [23].

To further our investigation into the growth of the RTI, we must progress into the non-

linear regime where the early stages can be predicted using potential flow theory. The previous

results show the growth rate for any arbitrary perturbation wavenumber, k, but to continue on,

it is imperative to make the assumption that the instability only has a single mode. Though this

is inconsistent with any real system found in nature, it is the only true way to proceed with the

analysis and is still useful for obtaining an upper bound for the predicted terminal velocities from

this method. To continue with the examination of the growth, we must first define a velocity

potential, ui = ∇φ, and assume we are near the A = 1 limit [37]. This analysis can proceed in

either two dimension or three, but will be presented in two and the extension to three dimensions

will be discussed. Assuming gravity in the x direction, the velocity potential is defined as

φ(x, y, t) = a(t)cos(k(y − y0))exp(−k(x− η0)) (2.16)
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where the tip of the bubble is defined to be at (y0, η0) at a given time, and k is the wavenumber of

the applied perturbation. This potential must satisfy the Bernoulli equation, i.e.

∂φ

∂t
+

1

2
(u2 + v2) + gx = C (2.17)

where C is a constant on the interface, and u and v are the velocities in the x and y direction,

respectively. The interface location is defined by

x = ηI(y, t) = η0 + η2(t)(y − y0)2 (2.18)

where the subscript I refers to at the interface, y0 and η0 are still the location of the tip, and η2

is defined by the radius of curvature R such that η2 = −1/2R. To solve this system, we need one

more equation, and the comes in the for of the kinematic equation to describe how the interface

moves with the fluids. This equation is

uI −
∂η0
∂t
− ∂η2

∂t
(y − y0)2 − 2η2(y − y0)(vI −

∂y0
∂t

) = 0, (2.19)

and the same definitions are used as above. When we combine all of these equations together, we

get the system

ak +
∂η0
∂t

= 0, (2.20)

ak2
(
η2 +

k

2

)
− ∂η2

∂t
+ 2ak2η2 = 0, (2.21)

∂a

∂t
k

(
η2 +

k

2

)
− a2k4

2
− gη2 = 0. (2.22)

From here, we can use standard techniques for solving a system of ordinary differential equations.

By combining 2.20 and 2.21 we can arrive at a relationship between the bubble height and curvature

of the system. This results in the relationship

∂η0
∂t

= −
(

2

k(k + 6η2)

)
∂η2
∂t

(2.23)



16

which gives way to the solution

η0(t) = − 1

3k
ln(k + η2(t)) + C. (2.24)

If we consider η0 to be initially small such that η0(t = 0) << 1, then we can solve for the constant

and arrive at the actual solution. This comes out to be

η2(t) = −k
6

+

(
k

6
− k

2
η0(0)

)
exp(−3k(η0(t)− η0(0))) (2.25)

From this relation, we can predict the asymptotic behavior of the curvature of the bubble. By

letting η0 go to ∞, it is clear that η2 goes to −k/6, and form there the radius of curvature, R,

can be obtained. This same process can be repeated but by combining 2.22 with 2.20. With the

addition that the terminal velocity of the bubble is defined as

Vb =
∂φ

∂x
= −ak at the bubble tip. (2.26)

We can then arrive at the result that for two dimensional flow, the terminal bubble velocity,

Vb =
√

g
3k . We can then repeat this process but expand everything into three dimensions with

axial symmetry and cylindrical coordinates. Overall, the process remains largely the same and we

arrive at a similar results, i.e. Vb =
√

g
k . This immediately shows the result that by switching from

two to three dimensions, we should expect the velocity to increase. This is attributed to the fact

that in three dimensions, there is a reduced amount of drag per unit volume on the growth of the

bubble [37].

The next step is to try to extend these findings to any generic Atwood number instead of

assuming A = 1. To do this, the simplest way is to consider a buoyancy-drag model [48]. These

models relate the velocity of the bubble or spike to a force balance equation that includes buoyancy

and drag with the inclusion of the inertia of the system. This balance becomes the equation(
(ρin + Caρout)

dV

dt
− β(ρout − ρin)g

)
[Volume] = −CdρoutV |V |[Area] (2.27)

where V represents the velocity of either the spike or the bubble, ρin is the velocity of the feature

of interest, i.e. ρin = ρ2 for the spike and ρ1 for the bubble whereas ρout becomes the density of
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the other, Ca is a mass effect caused by the displacement of fluid, and Cd is the coefficient of drag.

Both Ca and Cd are dependent on the shape and thusly volume of the moving fluid, and β is a

parameter allowing us to account for the mixing of the two fluids at the interface . Essentially,

β = 1 represents the immiscible case and β < 1 allows us to investigate effects of diffusion [15]. To

determine the terminal velocities, all we must do is take the limit as t goes to ∞. When this limit

is achieved, and we assume immiscible fluids, the time derivative naturally goes to zero and we are

left with the equation

(ρout − ρin)g[Volume] = −CdρoutV 2
m[Area]. (2.28)

This limit occurs when the height of the instability reaches about one wavelength, λ, so we can take

the ratio of the area and volume to be 1/λ leaving us with the equation (ρout−ρin)g = −Cd
λ ρoutV

2
m.

From this we can rearrange the equation and invoke the definition of the Atwood number to arrive

at an equation for the terminal velocity of either the bubble or spike. This equation is

Vb,s =

(
2Agλ

(1±A)Cd

)1/2

(2.29)

This result has also been expanded on to account for more general conditions such as in [25].

The final stage of the instability that has been explored analytically is the onset of self-

similarity. Essentially, the idea is that in the perfect case of pure RTI, as the flow progresses the

initial conditions are forgotten. As a random perturbation proceeds to grow, the various modes

begin coalescing to form larger modes. The high wavenumber modes start coupling and forming into

low wavenumber modes and these low wavenumbers begin to dictate the growth of the instability,

pushing it towards a single mode growth. This self similar regime is only supposed to happen

when the dominant wavelength is significantly greater than the largest wavelength from the initial

perturbation, but once this is achieved all memory of the initial state is said to be lost [12].

If the memory is truly lost, then it stands to reason that the growth rate must only depend

on the the density difference between the fluids, i.e. the Atwood number, the strength of the

acceleration being applied, and time. Using this dimensional reasoning it should stand true that

the growth height a bubble, hb, becomes a function of only those parameters, i.e. hb = hb(A, g, t).
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From this we can surmise that the length scale to relate the height to will be gt2 thusly leaving

us with the equation for the dominant bubble height as hb = f(A)gt2. To solve for this equation,

we must first note that it requires that the bubble height, hb, the bubble diameter, Db, and the

dominant wavelength, λb, all be proportional to each other. From here we note that the time for

a wavelength to become dominant, tb must be equal to a number of linear growth periods Nb,

where Nb = nbtb. The linear growth rate, nb is thusly derived from linear stability theory to

nb =
√

2πAg/λb. When we combine all of this information together and solve for the dominant

wavelength, we are left with

λb =
2π

N
Agt2. (2.30)

We know that the height of the growth must be proportional to the dominant wavelength giving

the expression for the bubble height, hb, as

hb = αAgt2 (2.31)

where α is some non-dimensional growth parameter [5]. If we were to do this same analysis for

a spike, we would find that for low Atwood numbers, where the spike and bubble are nearly

identical, the spike growth rate hs equals the bubble growth rate hb. As we increase A, though,

this approximation becomes poor. The drag on the spike becomes significantly reduced leaving it

to achieve near free fall velocities. In the end, though, finding the growth parameter, α has been

the goal of many research efforts [6, 4, 16, 48, 70]. To this day, there still remains discrepancy over

what α should be, and it is nearly impossible to tell if a simulation or experiment has truly ”lost

all memory of its initial conditions,” to determine if the analysis is fitting.

2.3 Modern Experiments and Simulations of the Rayleigh-Taylor Instability

There is constantly more research going on in the world of RTI, and my goal here is to

highlight just a few of the things that are currently being worked on or have recently been published

both computationally and experimentally. The goal is that the research directly related to this

project investigating late time effects of compressibility on low Atwood RTI will be presented. The
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first important work was done to classify the growth stages of incompressible, miscible, low Atwood

number RTI flows. Essentially, these were the incompressible simulations that the simulations

presented later were based off of. It involved simulating A = 0.04 RTI until extremely late times

at Reynolds numbers that had not been touched before. This was the research that discovered the

existence of the reacceleration and chaotic growth regime. Essentially, it was found that during

the early stages of growth, i.e. diffusive, exponential, and potential flow, the vorticity dynamics

are small, but as the late time is entered the vorticity dynamics grow. A new definition for the

Reynolds number,i.e. the perturbation Reynolds number: Rep, was defined and found that at

values of O(104) or greater the viscous effects are low enough to allow the late time generation of

vorticity to cause the reacceleration and chaotic development of the instability [64].

One of the current gold-standards for computational simulations of RTI arises from the Alpha-

group collaboration which consisted of a large group effort to try to better characterize α. The

team used seven different numerical frameworks, TURMOIL3D, FLASH, WP/PPM, NAV/STK,

RTI-3D, HYDRA, and ALEGRA, to run high Reynolds number simulations until late times to

perform this study. All but one of these codes works by using a compressible solver and working in

the near incompressible limit, so small compressibility effects may be present. Also, all of the codes

use a version of LES that is total variation diminishing, namely MILES or monotone integrated

LES. In addition to this, they all worked with the Euler equations, allowing only the numerical

diffusion to dissipate the energy from the small scales. Though they completed some of the most

advanced simulations to date, they still obtained a value for α roughly 40% less than what is found

in experiments. Because of the schemes used, it is unknown whether these results are perfectly

reproducible via DNS, but DNS would be the way to improve on them [16].

Lafay, et al. have been a group that has also been working on the numerical and theoretical

side of compressible, miscible RTI growth. For their main study, they have two approaches, first

to vary a stratification parameter related to the gradient of density, and secondly, to explore the

effects of changing the ratio of specific heats, γ, between the two fluids. Their work stayed in

the low Reynolds number region, keeping it at 1000, while they studied these effects on RTI with
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Atwood number of 0.25. In this situation, the simulations were only carried out in two dimensions

and were incapable of making it into the reacceleration regime with their high viscous dissipation.

In general they found that compressibility tended to lower the growth rates of the instability. The

only exception was when allowing the heavy fluid to become very incompressible, i.e. large γ, while

allowing the light fluid to become largely compressible, i.e. small γ, the most unstable state was

achieved in which the highest growth rate was seen. In general, though, they found that increasing

compressibility led to a decrease in mean vorticity. They then went on to explore the multi-modal

regime, where it was found that even at very high Reynolds numbers, the background stratification

is able to suppress the instability eventually causing it to form a decaying mixing layer which slowly

dissipates the kinetic energy [36, 20, 21].

Wykes, et al. at Cambridge have recently done exciting experimental work in the realm of

miscible and stratified RTI growth. Though they use incompressible fluids and induced stratification

through salinity, the background stratification is remarkably similar to that of which we see in our

compressible isothermal states. For their studies, Atwood number varied from trial to trial, but it

remained very small around 0.005 to 0.01. The main purpose of their investigation was to determine

the mixing efficiency, and they found that in general, RTI would cause a very high mixing efficiency,

i.e. 95%, in the central region of the stratified fluid. The end result is that the instability grows

to some height inside of which the fluid is mixed well. This then results in the development of a

stable stratification and the instability is suppressed [13].

There are numerous other areas of active research going on right now in the RTI community

that simply do not hold much relevance to this project, or I do not have time to get into great detail

on. Some of these are presented here with a very short synopsis. There is a group looking into

the effect of electric fields on dielectric fluids exhibiting RTI[69]. There is effort to characterize the

coupled Kelvin-Helmholtz and RT instabilities and quantify the transition between the two through

experiments[2]. A combination effort to use experiments and numerical models to characterize the

convective and diffusion terms exists to show that the lateral movement of bubbles and spikes

is potentially due to diffusion [26]. The effects of miscibility and forced or natural perturbation
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application is being looked into [53]. A group is seeing how the instability changes when the density

difference is caused by the heavy fluid containing suspended particles [11]. All of these things lead

to very different results and are helping to push the field forward while uncovering new interactions.



Chapter 3

Simulation Setup and Numerical Method

The Rayleigh-Taylor instability presents many challenges that lend itself to be difficult to

characterize. In the compressible regime, there are many parameters and intertwined effects that

are not well understood [43, 42]. Because of this it is important to isolate any individual parameters

possible to try to understand the effect of each. Doing this and maintaining known perturbations is

a huge challenge for experimentalists, whereas getting the exact initial conditions wanted is easier to

do in a computational world. In order to effectively explore the parameter space we have provided,

it is necessary to try to run these simulations as efficiently as possible and thusly advanced adaptive

numerical techniques should be employed. This chapter explains the numerical method chosen to

run these simulations and details the setup of the simulations themselves.

3.1 Governing Equations, Initial Conditions, and Non-dimensional Param-

eters

The simulations have been performed using the standard multi-species compressible fluid

dynamics equations. The full system of equations is[43, 68]:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (3.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (3.2)
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∂ρe

∂t
+
∂ρeuj
∂xj

= −∂pui
∂xi

− ρuigi +
∂τijui
∂xj

− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (3.3)

∂ρYl
∂t

+
∂ρYluj
∂xj

=
∂sjl
∂xj

, (3.4)

where ρ is density, p is pressure, T is temperature, ui is the velocity in the xi direction, Y1 is the

mass fraction for the bottom fluid, Y2 is the mass fraction for the top fluid, R is the gas constant,

and the ideal gas law p = ρRT is enforced. Repeated indices imply summation. The specific total

energy is

e =
1

2
uiui + cpT −

p

ρ
, (3.5)

the viscous stress is assumed to be Newtonian and is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (3.6)

the heat flux is written as

qj = −k ∂T
∂xj

, (3.7)

and the species mass flux is defined as

sjl = ρD
∂Yl
∂xj

. (3.8)

From here, we can initialize the simulation. The upper fluid occupies the space where x1 is

greater than 0, and the lower fluid occupies where it is less than zero. This puts the interface right

at x1 = 0 where the species mass fraction is smoothed using the error function since it is the exact

solution to the diffusion equation between the species. For the RTI to be present, it is required

that the density (for the incompressible case) or the molar mass (compressible case) be greater in

the upper fluid than the lower fluid, i.e. W1 < W2. The difference between these two is typically

measured by a non-dimensional parameter called the Atwood number,

A =
W2 −W1

W2 +W1
. (3.9)
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For this study, the majority of the fluid properties were taken to be the same between the two

species for simplicity. This includes the dynamic viscosity, µ, the heat conduction coefficient, k,

the mass diffusion coefficient, D, and the gravitational acceleration, gi, which is taken to only act

in the vertical, x1, direction. Finally, the gas constants are found based on the molecular weight as

R = R Yl
Wl

, (3.10)

where R is the universal gas constant. Following from this, cp is calculated as an average as well,

i.e. cp = cplYl ,.

Compressibility can be characterized by several parameters [42, 43]. Here, we are mainly

concerned with flow compressibility. In this case, the corresponding incompressible limit can be

obtained by increasing the speed of sound through increasing the background pressure (or temper-

ature), such that the densities are not affected. The Mach number associated with this compress-

ibility aspect is defined as the ratio of the gravity wave speed,
√
gλ, and the isothermal speed of

sound, a0 =
√

pI
ρI

, at the interface. This gives the definition of M as:

M =

√
ρIgλ

PI
, (3.11)

where the subscript I implies interfacial. The interface density, ρI , is found with

ρI =
RTI
pI

(
W1 +W2

2

)
. (3.12)

Since the background state needs to be in hydrostatic equilibrium away from the interface, the

Mach number defined above also characterizes the background stratification. The simulations

presented have the same ρI (which fixes the Atwood number), perturbation wavelength λ, and g,

so that varying M results in a change of pI and subsequently TI . To further elaborate on the

available parameters, Table 3.1 has a collection of all the non-dimensional parameters that are used

to characterize these simulations. Also included is the range of values used for the simulations

presented later.
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(a) Isothermal Stratifications by Mach number (b) Stratifications by state for M = 0.3

Figure 3.1: Density and pressure stratifications for A = 0.04 as both a function of Mach number
and stratification type.
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Parameter Definition Description Range

Atwood A = W2−W1
W2+W1

Density jump 0.04

Mach M =
√

ρIgλ
pI

Compressibility + stratification 0.3-1.2

Perturbation Reynolds Rep =
√

Agλ3

(1+A)ν2
Viscosity 5,000-20,000

Schmidt Sc = ρIµI
DI

Mass diffusivity 1.0

Prandtl Pr =
cpIµI
kI

Thermal diffusivity 1.0

Froude Fr = U0
(gL)1/2)

Gravitational effects 1.0

Specific Heat Ratio γ =
cpI
cvI

Compressibility 1.4

Table 3.1: A synopsis of the relevant non-dimensional parameters and their respective meanings
and values.

In order to remain consistent with the governing equations, the initialization of the back-

ground state must satisfy the hydrostatic equation, namely,

∂p

∂x
= −ρg. (3.13)

This leads to the possibility of many different initial states. For this study, three different sets of

stratifications were used to initialize the simulations, namely isothermal, isentropic, and isopycnic.

Each one of these conditions isolates a field of interest, and minimizes its effects by leaving it

constant while allowing the other states to vary. It it important to note that isobaric initial

conditions are impossible to generate in a fashion consistent with the governing equations. For the

isothermal stratification, the density and pressure fields are

p(x1) = pIexp

(
− gx1
RlTI

)
, (3.14)

ρ(x1) =
pI
RlTI

exp

(
− gx1
RlTI

)
, (3.15)

where in this case TI is not only the temperature for the interface, but is constant in the whole

domain. For the isentropic case the stratification is defined as

p(x1) = pI

(
1− γ

γ − 1

gx1
RlTI

)(
γ
γ−1

)
, (3.16)
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ρ(x1) = ρl

(
1− γ

γ − 1

ρlgx1
pI

)(
1

γ−1

)
, (3.17)

and the temperature field is set to satisfy the equation of state. Finally, for the isopycnic case, ρ is

set to be constant above and below the interface and the pressure field is set as

p(x1) = −ρlgx1 + pi, (3.18)

where pi is added to ensure that it maintains the right interface pressure and T is again set to

satisfy the equation of state. An example of the different stratifications can be seen in Figure 6.1.

Finally, to begin the RTI simulations, either a single-mode small amplitude velocity pertur-

bation or a linear combination of randomized perturbations with random amplitudes and random

phase shifts for the multi-mode perturbation is applied directly at the interface. The simulation is

then carried out from that state [52].

3.1.1 Vortex Analogs

As RTI develop, one of the key features in their growth is the development of vortical

structures[43, 64]. In two dimensions this first manifests itself as the formation of a pair of counter

rotating vortices while in three dimensions, it manifests as a vortex ring. This transformation from

the initial perturbation to these vortical structures is what ends up driving the instability. As it

continues to grow, this first vortical structure remains intact, and sheds additional vorticity along

the sides of the bubble and spike to form the Kelvin-Helmholtz instability. For this reason, these

initial vortical structures are imperative to the growth of the RTI.

To further understand the effects of compressibility and background stratifications on the

growth of RTI, an investigation into the effects onto these vortical structures by themselves can be

carried out. To perform these simulations, a similar methodology is carried out to initialize them

as the RTI. The same background state is used as the RTI case but with A = 0 so that there is no

density discontinuity in the domain. The same non-dimensional parameters are all used to describe

the vortex analog case so that the comparison can be one to one.
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Figure 3.2: A comparison of the initial velocity field for the vortex pair simulations and the resulting
velocity field from the development of the vortex pairs through RTI.

To complete the initialization, an imposed velocity field must be applied. For the vortex pair

the initialization is

u1 = −
2∑
i=1

Λ

σ2
(x2 − x2,i)exp

(
−(x1 − x1,i)2 + (x2 − x2,i)2)

σ2

)
(3.19)

u2 =

2∑
i=1

Λ

σ2
(x1 − x1,i)exp

(
−(x1 − x1,i)2 + (x2 − x2,i)2)

σ2

)
(3.20)

so that the velocities are described by a Gaussian distribution with the summation being for the

two different vortices [62]. The center of each vortex is located at (x1,i, x2,1), and the width is

described by σ. The strength of the vortex pair, Λ, is set so that the circulation over each vortex

matches that of the vortices generated by the RTI. A comparison of the velocity fields for the vortex

pair case and two dimensional RTI case can be found in Figure 4.2. For the vortex ring case, the

velocities are set similarly, i.e. they are also defined by a Gaussian distribution, but instead, it is

based on the radius away from the center as if in cylindrical coordinates.

3.2 Parallel Adaptive Wavelet Collocation Method

The RTI problem lends itself naturally to state-of-the-art adaptive numerical methods. To

effectively capture the instability growth, very long domains are needed to ensure late-time growth
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is captured, but very small grid spacing is needed to fully resolve the high gradients at the interface

of the instability. This would equate to having a very dense grid and incredibly high computational

costs with traditional methods. During the majority of the simulation, however, the grid far away

from the interface is unnecessary, and thusly, through the use of adaptive methods, high grid

compression rates can be achieved. A method that has proven effective at doing this, is the Parallel

Adaptive Wavelet Collocation Method (PAWCM), and it is what has been applied here[51, 52].

PAWCM uses the natural properties of the wavelet transformation to locate areas of steep

gradients and gives direct control over the amount of resolution applied based on how steep these

gradients are. Essentially, through PAWCM a flow field variable is transformed into wavelet space

resulting in wavelet basis functions and coefficients that are localized in both wavelet and physical

space. From there, the coefficients are passed through a thresholding filter where all the coefficients

above the parameter ε are kept, and any of those below are set to zero. The resulting thresholded

decomposition appears as follows

u≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl |≥ε||u||

dµ,jl ψµ,jl (x), (3.21)

where u is any variable, φk are the scaling functions on the coarsest level, ck are the corresponding

coarse level wavelet coefficients, ψl are the scaling interpolating functions on any arbitrary level, dl

are the coefficients that the thresholding is applied to, l and k represent physical grid points, and µ

and j represent the wavelet family and level of resolution, respectively [61, 47]. The equivalence of

setting one of these coefficients, dl, to zero is the removal of a grid point at that level of resolution.

dl itself is a large value when in the presence of a large gradient at the given level, j or j-level, of

resolution, and is small when it is in a relatively constant region. In addition to these points, when

dealing with a field that changes in time, a buffer zone of the points on the same j-level around

the significant point are kept as well. This method results in the error being of the order of which

we set ε. An example of applying this method to a test function can be seen in Figure 3.3. In this

image, PAWCM is applied to a hyperbolic tangent function. The entire grid for the given j-levels

is shown, and then the same grid is shown with the points that have significant coefficients at their
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respective j-levels highlighted in red. As expected, more points at higher j-levels are used as we

approach the region of high variability, and then less are used as we move passed it [61, 55, 47].

(a) A hyperbolic tangent
function

(b) Wavelet coefficient loca-
tions

(c) Wavelet-threshold filter
locations

Figure 3.3: An example of the application of the Adaptive Wavelet Collocation Method to a test
function. On the left is the test function, the middle shows all of the grid points for j-levels up to
6, and the right highlights which points would have a coefficient above ε in red.

PAWCM has been implemented in a way that enables it to work with finite difference methods.

For this method, fourth order central differences have been applied spatially, and a third order total

variation diminishing explicit Runge-Kutta method scheme has been applied in time. PAWCM also

boasts many modern features besides its adaptivity to enable fast and efficient processing. It is

highly parallelized, having successfully run on up to 5000 cores with decent scaling, and it is able to

do arbitrary domain decompositions using the Zoltan library. It has a tree-like data structure for

easy MPI communications, and direct error control. All of this results in the fact that any additional

overhead that arises from the wavelet methodology, is made up for by using many processors and

a maintaining 90%+ grid compression[61, 55, 47].

To effectively capture these simulations, proper boundary conditions must be used. On the

boundaries all sides that can be taken as periodic are, i.e. the boundaries in the x2 and x3 directions.

In the x1 direction, at the top and bottom of the domain, careful thought must be given to the

boundary conditions implemented. The goal is to essentially mimic an infinite domain, but to

ensure both the background stratification is preserved and that none of the shocks are reflected

back into the domain. To do this, shear free slip boundary conditions were put in place with

the addition of numerical diffusion buffer zones before them. These buffer zones ensure that any
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shockwaves sent to the boundaries are dissipated before reaching the end which guarantees that

issues won’t arise as the waves try to leave the domain. Also, the waves are fully dampened so no

reflections can take place[52].

3.3 Resolution Requirements

To ensure the simulations are fully resolved, a resolution convergence study was completed

for both the maximum j-level and for the thresholding parameter, ε. The results for the ε study

can be seen in Figure 3.4 and for the j-level in Figure 3.5. To accomplish this, first the grid

resolution is held constant and ε is varied to arrive at a converged value of 10−3. Next, the ε value

is held constant at this converged quantity, but the resolution is varied by changing the maximum

allowed j-level. Effectively, increased or decreasing the j-level by one either increases or decreases

the maximum resolution by a factor of 2 in each direction, respectively. Through this it becomes

clear that convergence is reached when jmax = 6 [52]. The puzzling part, is that even when these

criteria are met it is still possible to introduce extremely small scale error that propagates through

time and causes the introduction of secondary modes. The result of this can be seen in 4.5 in which

the instability displays proper growth rates by looking at the maximum bubble and spike tips, but

secondary modes cause the point at which the tip should be to invert. [htp] [htp] As mentioned

Figure 3.4: The convergence of RTI growth with respect to the grid determined by ε. The Atwood
number is 0.7 for all cases, and the zoomed in view focuses on the area between the two red lines.
It becomes clear that convergence is reach when ε = 10−3 [52].
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Figure 3.5: The convergence of RTI growth with respect to the grid determined by maximum j-
level. The Atwood number is 0.7 and ε = 10−3 for all cases. The zoomed in portion focuses on the
area highlighted by the red box. It is clear that convergence is reach when the maximum j-level
allowed is 6 [52].

Figure 3.6: Any introduction of error in the initial conditions leads to the generation of secondary
modes in the late time growth.
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previously, pure single mode perturbations do not occur in actual RTI driven systems. By nature,

all of these systems are inherently multi-mode. The power in simulating the single mode instability

is that we can use it to determine the requirements of our code base. In the single mode system,

we should remain symmetric for the entire growth regime, whereas in the multi-mode scenario, we

are not guaranteed symmetry. For cheaper simulations, we do have the option of simulating only

half of the single mode perturbation with mirrored boundary conditions instead of periodic, but

the power in simulating the entire wavelength is that it allows us to check if any additional modes,

directional biasing, or asymmetrical growth happens. This allows us to be able to determine a set of

requirements so that when investigating the multi-mode regime, we can be sure that we are purely

seeing the growth of the applied perturbations. As shown in 4.5, the standard convergence studies

are not a rigorous enough check to ensure that secondary modes are not applied. To determine

these requirements, a secondary study must be carried out.

To complete this study, all that is required is the analysis of the symmetry of the problem in

the initial conditions. Essentially, if there is any asymmetry in the initial conditions, we know that

this will nonlinearly propagate through time and cause issues later. The nature of RTI is that the

initial conditions are on a very small scale, so anything else on that scale will also grow. We seek to

minimize the difference across the line of symmetry in the initial fields of the simulations. Though

all the fields are important, the most significant fields defined at the initial conditions to determine

this symmetry are the species mass fraction, as it is the scalar to be advected to determine the

position of the bubble and spike, and the initial velocity. This first step to doing this is to study the

effect that the resolution has on the symmetry of the initial conditions. In Figure 3.7, the results are

shown for calculating both the l∞ and l2 norms of the symmetry error. The l2 norm is normalized

by the number of points in the domain, and the points that are omitted, i.e. velocities at jmax = 8

and mass fraction at jmax = 4, are effectively zero. Essentially, we can see that the maximum error

in the velocity field is at the level of machine precision, and thusly not much can be done. The

error in Y , though, is significantly higher, but we can see a clear decreasing trend with the l2 error

as the resolution is increased. For this reason, and also because there is a minimum in the l∞ error
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Figure 3.7: A plot of the symmetry error of Y, u and v as a function of resolution.

for jmax = 7, as well as jmax = 7 being cheaper to run than jmax = 8, we can choose this resolution

as our new requirement. Continuing in this study, we must also approach the problem of whether

ε has an effect on the initial symmetry. To do this, we run a similar study on the initial conditions,

subtracting the two sides from each other to get the symmetry error while varying the value of

ε while keeping jmax = 7. The l∞ and l2 error (which no longer needs to be normalized for the

number of points) from this can be seen in Figure 3.8. This shows a clear trend that for u and v,

there is no significant change in the symmetry as a function of ε, but Y becomes more symmetrical

with lower ε. This decrease in error asymptotes in the l2 sense near ε = 10−5. This tells us that

at least for the initial conditions, the smaller the thresholding in the initial conditions, the more

symmetrical our initial conditions will be. To remedy this problem, we can set our initial ε to be

very small, i.e. 10−8, and let it slowly rise to our standard running epsilon, 10−3, over the first few

hundred iterations. This process adds minimal cost to the simulation as a whole, and helps ensure

that we maintain initial symmetry.

The final parameter we can play with in regards to maintaining symmetry in the initial

conditions, is the initial interface thickness. When the initial conditions are set, the interface is

set as a diffusion zone between the two species. This is done using the exact solution for the mass
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Figure 3.8: A plot of the symmetry error of Y, u and v as a function of ε.
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diffusion equation, i.e. the error function. When setting this, though, we can choose how thick we

want the initial diffusion zone to be, and by changing this we only impact the growth through a

slight shifting of the initial diffusive growth phase, i.e. it has minimal impact on late time behavior.

Essentially, by increasing our diffusion region at the interface, we should be able to both better

represent the error function by having more points to describe it, and it should also act as an initial

smoothing buffer region. In short, the thicker the initial interface, the better chance we should

have at gaining smoothness. The thickness of this interface is characterized by how many points

on the finest resolution we use to transition from 1% of the top fluid to 99% of the top fluid. The

results for the effect on the symmetry of this parameter is shown in 3.9. Similarly to the last

parameter, changing this one does not cause an increase or decrease in the number of points in the

total domain, so there is no need to normalize the error. It is interesting to note that increasing the

number of points across the interface actually causes an increase in the symmetry error. The goal

is to maximize the number of points across the interface to act as a buffer in the initial time steps,

while still maintaining the best symmetry possible. For these reasons, the two choices are either for

8 points across the interface or 16. In practicality, the difference between the two images in 4.5 is

that the one without the secondary modes was initialized with 16 points across the interface while

the one with the secondary modes only had 8. Based on this heuristic, the choice becomes to use

16 points across the interface.

In summary, in order to accurately capture the physics of these RTI driven flows, we will

use a maximum j level of 7, an initial ε of 10−8 that is then allowed to slowly shift to our running

epsilon of 10−3, and we will initialize the diffusion zone using 16 points across the interface.

3.4 Adaptation Parameters

One of the benefits to using PAWCM is that it allows us to adapt on any flow field variable

that we can calculate. Given this choice, though, how do know which fields are the ones that

require adaptation? There are two separate approaches to this problem, and conveniently, one can

feed off of the other. Firstly, we can choose which parameters we want to adapt on based on our
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Figure 3.9: A plot of the symmetry error of Y, u and v as a function of the points across the
interface. .
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a priori knowledge. For example, we know that we are interested in resolving the mass fraction,

there could potentially be an acoustic wave in the domain, and also that the driving force behind

the development of the instability is vorticity, so our initial guess would be to adapt on the set

of parameters that should best capture these features, namely Y, ||Sij ||, and ω, respectively. We

can apply this to a test simulation and see what sort of grid each variable will give us. These grid

solutions can be seen in Figure 3.10 along with the mass fraction and vorticity fields for a reference.

By looking at the grids, it becomes quite apparent that each parameter adapts on vastly different

features of the flow. For instance, the acoustic wave towards the top of the domain would not be

captured by either the adaptation from Y or ω. In all actuality to get the best grid, adaptation

on all three parameters is required to ensure that the unique physics that each one exhibits is

accurately captured. Alternatively, lets say that we chose that we wanted to adapt on velocity and

density because our intuition tells us that the flow is driven by a density jump and by velocity

fields. The resulting adapted grids and reference fields are shown below in Figure 3.11. At just

a glance it becomes immediately apparent that the grids supplied by the analysis of these fields

are much more sparse than what we were able to generate before, especially the grid generated

by adapting on the density field. Looking back to how the adaptation works, we know that the

methodology looks for steep gradients and high variability, so this means that the density field must

be relatively smooth. What this posits is that there are much more complex interactions going on

that are driving the instability. This breaches the realm into the second method for choosing our

grid adaptation parameters. By performing an analysis on a single time step and adapting on a

variety of different variables, we can determine the variables that are contributing the most to the

growth and development of the instability. As long as we are resolving our fields to ensure that we

aren’t causing numerical oscillations, we know that the dynamics caused by a variable will cause

more significant points as it affects a greater region of the flow. This means by analyzing variables,

we can essentially determine the most important variables by just seeing how many grid points the

adaptation generates. Now, this does not mean that low significant point generation means a flow

variable is unimportant, but it does imply that the more points generated, the more important
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(a) Adapted by Y

(b) Adapted by ||Sij ||

(c) Adapted by ω

Figure 3.10: Example grids based on the adaptation of a single flow field parameter.
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that variable is in determining the evolution of the flow. If we look back to the five grids generated

(a) Adapted by ρ (b) Adapted by ui

Figure 3.11: Alternative grids based on different adaptation parameters.

for the test case, it becomes evident that the 2 most important variables out of the selected ones

are the vorticity and norm of the strain rate tensor, ||Sij ||, simply because they generate the most

complex grid with the most significant points. This in itself is not an interesting discovery. We

already know that strain rates are high around acoustic waves and that vorticity generation and

development causes the growth of the instability. What is the interesting find is the idea that we

can now analyze more complex flow fields to determine what variables are dominating the flow. In

Figure 3.12, you can see a late time flow field of a RTI simulation with the mass fraction, vorticity,

and corresponding grid shown. To arrive at this grid, the adaptation was done on multiple variables,

namely the velocity, species, gradient of the species, the magnitude of vorticity, and the norm of the

strain rate tensor. Note the complexity in the formations of both the grid and the mass fraction.

It is important to notice that at this stage some asymmetry has developed, but this simulation was

chosen to show that these asymmetries can be captured through the right adaptation. In Figure

3.13, you can see a comparison of the contribution that each one of these variables has on the grid.

Looking at these individual grids, it is clear that vorticity and the gradient of the species mass

fraction seem to be contributing the most points at the highest resolution levels with the norm of
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Figure 3.12: A late time RTI driven flow with its corresponding grid.
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(a) ui (b) Y (c) ∂Y
∂x1

(d) |ω| (e) ||Sij || (f) Legend

Figure 3.13: The individual contribution of the adaptation of each variable.

the stress tensor not being far behind. The adaptation that is accomplished from the velocity and

mass fraction fields is negligible in comparison. From here, though, we can begin exploring even

more derived variables, below in Figure 3.14, you will find what happens if the grid is allowed to

adapt on the baroclinic term from the vorticity equation or the divergence of the velocity field. The

end results are quite clear, namely that the baroclinic term causes a large amount more adaptation

on the finest grid resolution than any of the other flow variables. The divergence of velocity also has

a large number of points, larger than the velocity or species fields, but not nearly as many as the

baroclinic term. In Table 3.2, you can find a summary of the number of points that are active after

the adaptation on that variable takes place. Looking at these counts, it becomes readily apparent

that the baroclinic term causes more adaptation than any other term. This result tells us that the

baroclinic term in the vorticity equation must be a dominant feature in the flow.
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(a) 1
ρ2
∇ρ×∇p (b) ∇ · ui (c) Legend

Figure 3.14: The individual contribution of the adaptation of each variable.

Variable Active Points

ui 401349
Y 785760
∂Y
∂x1

2373332

|ω| 2754066
||Sij || 1700967

All variables above 3933336
1
ρ2
∇ρ×∇p 8225174

∇ · ui 1219567
P 262272
ρui 400592
e 262272
ρ 262598
ω 1148117
ρY 426794

All variables presented 9344958

Table 3.2: A summary of the number of active grid points when adapting on various variables.

3.5 Other Applications of PAWCM: Data Assimilation

This wavelet method has been shown to be useful in many other scenarios. In addition to

the RTI problem, it has been applied to many other case including shock particle interactions,
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channel flow, and flow around cylinders just to name a few. In addition to performing effectively

at DNS simulations, it has been shown to be a useful tool for running Large Eddy Simulations and

other models. It can capture reactions, work on ocean flows, and capture shocks, all while being

efficient and effective at maintaining its grid adaptation [60, 18, 14, 32, 55]. In addition to these

problems, the Adaptive Wavelet Collocation Method has been adapted to work on space and time

simultaneously in a data assimilation problem. Using this method, we are able to adapt on a grid

as we did before, but by treating time as another dimension, we are able to adapt our time step by

the intermittency of the problem [58].

The idea behind the Space Time Adaptive Wavelet Collocation method for the 4D-Var prob-

lem is as follows.The 4D-Var problem consists of a system described by some model with a set of

unknown inputs such as physical parameters, boundary conditions, or initial conditions. In addition

to this model, there is a collection of observations of the system state, and the goal is to estimate

what the unknown inputs are. To determine the unknowns, the problem is approached as a least

squares problem and solved using any number of non-linear optimization problems. To do this, a

cost function is defined based on the weighted norm of the difference between the solution from the

direct problem and the known observations along with a term to measure the change of the initial

state from the previous estimate. The difficulty in this arises when the optimization algorithms

require the gradient of this cost function. To do this, an approximation can be found using the

adjoint problem and essentially solving the system using backwards time stepping. Finding the

solution to the adjoint problem, though, requires access to the entirety of the solution form the

forward problem. This is problematic because either large amounts of extra data must be stored,

or a large amount of extraneous computations must be completed. Using the Space Time Adaptive

Wavelet Collocation Method (STAWCM) allows for the solution to be well approximated using a

compressed mesh that adapts on the intermittent structures of the problem [45, 29, 1, 49, 27, 40, 3].
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In general the space-time formulation of the 4D-Var problem takes the form F̄ (u(x)) = 0 x ∈ Ω,

u(x|xd+1 = 0) = c,

(3.22)

where F̄ (u(x)) =
∂u

∂t
(x, t)− F (u(x, t)), where F : Rn → Rn is a vector valued function such that

F = (F1, F2, . . . , Fn)T with Fi = Fi(u) for 1 ≤ i ≤ n, and {x ∈ Ω|xd+1 = 0} is the boundary of the

space-time domain with xd+1 = 0. Also, the space time variable is defined as x = (x1, x2, . . . , xd+1)
T

where d is the dimensionality of the physical space domain. Essentially this means that we have d

spacial directions and an extra dimension due to space.Thusly the second equation of Eq. (3.22) is

the equivalent to the initial condition in the conventional formulation of the problem.

From this, we write out our cost function where we use the norms that are based on the

appropriate inner products and then derive the adjoint model of the equation. First we write out

the observations yo in terms of the space-time variable

yo : Ω → Rm

x 7→ yo(x) = h (u(x)) + εo(x).

(3.23)

Then, we can write the cost function as:

J(c) =
1

2
‖h (u)− yo‖2O +

1

2
‖c− cb‖2B (3.24)

where

‖h (u)− yo‖O =

∫ T

0
‖h (u(x))− yo(x)‖2Odxd+1 (3.25)

Which allows us to write out the adjoint model as:
F̄∗ (p(x)) =

[
∂h

∂u

]∗
· [h(u(x))− yo(x)] , x ∈ Ω,

p(x|xd+1=T ) = 0,

(3.26)

where

F̄∗ (p(x)) =
∂p

∂xd+1
(x) +

[
∂F

∂u
(u(x))

]∗
· p(x) (3.27)

Finally, we are able to discretize these equations for use with our numerical techniques. This is done

in a way that makes its convenient to apply STAWCM. As the solutions are obtained, STAWCM
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works by going through the same grid refinement techniques as described previously, except that

now, an additional dimension is added to adapt on. So, if we are solving a two dimensional

problem, STAWCM will treat it as a three dimensional problem but with time added. It then uses

the adaptive techniques as it would with any other dimension.

To test out this method, two test problems were used. First a linear problem was studied, and

then a non-linear problem, both of which tested as one dimensional in space and one dimensional

in time. The linear problem is described with the space-time domain Ω being Ω = Ωs × [0, T ],

where Ωs = [−1, 1] and [0, T ] are the physical space and the time domains, respectively. A linear

advection-diffusion problem is considered:

∂u

∂xd+1
+ vd

∂u

∂xd
− ν ∂

2u

∂x2d
= 0,

u|xd+1=0 = c(xd),

u|xd=−1 = u|xd=+1 = 0,

(3.28)

where u is the scalar system state, c(xd) is a function that defines the initial condition, and vd(x) is

the advection velocity. The subscripts d and d+ 1 are used to denote spatial and time coordinates,

respectively. The associated adjoint model is given by:

∂p

∂xd+1
+
∂(vdp)

∂xd
+ ν

∂2p

∂x2d
=

[
∂h

∂u

]∗
(h(u)− yo) , x ∈ Ω,

p|xd+1=T = 0,

p|xd=−1 = p|xd=+1 = 0,

(3.29)

where p is the adjoint variable. To achieve the observations, a base mesh at j-level jobs is forced to

always be present and the observations are taken from a known control variable ct which in this

case is defined as

ct(xd) = exp

(
−
x2d
2σ2

)
with σ = 0.1. (3.30)

Lastly, the time domain is taken such that T = 2 ad the advection velocity is described by

v(xd, xd+1) = 0.5 sin(2πxd+1). (3.31)

From here we are able to solve the problem using STAWCM and the MODULOPT library’s M1QN3

algorithm [24]. An example result for the solution obtained from the analysis of the data assimilation



47

-1 0 1
x

ti
m
e

0

1

2

0

0.25

0.5

0.75

1
u

0.0

0.5

1.0

-1 0 1
x

0

7

g
rid

lev
el

Figure 3.15: Analysis: the solution( left) and the corresponding grid (right) with the analyzed
control variable, jmax = 6, and ε = 10−3.

problem is shown in 3.15. The evolution of the cost function and its gradient during the optimization

of this process are shown in 3.16. For this particular run, jmax = 6 and ε = 10−3, and we can

see from the evolution of the cost function and its gradient that the solution is converged. It was

found by varying the order of ε, that the data assimilation results remained congruent with that

of what we expected, i.e. ε determined the level of error present in the solution. This analysis was

also carried out for a nonlinear test problem where the advection velocity was changed from νd to

be νd + u and the adjoint model changed accordingly. The results from this can be seen in 3.17.

This paints a clear picture that even for non-linear problems, the data assimilation can reach a

reasonable approximation of the true solution and it converge as ε gets smaller.
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Figure 3.16: Evolution of the cost function and its gradient during optimization.
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Figure 3.17: The analyzed solution of nonlinear 4D-Var (top row) and the corresponding compu-
tational grid (bottom) for different values of the threshold parameter. The column 4 is the true
solution with ε = 10−6.



Chapter 4

Effects of Isothermal Stratification Strength on the Single Mode Compressible

Rayleigh-Taylor Instability

4.1 Abstract

The effects of isothermal stratification on the single mode compressible two-dimensional (2D)

Rayleigh-Taylor instability (RTI) is examined using fully compressible wavelet-based direct numer-

ical simulations (DNS). The simulations model low Atwood number (At = 0.04) RTI development

for four different strengths of initial stratification, corresponding to isothermal Mach numbers from

0.3 (weakly stratified) to 1.2 (strongly stratified). Simulations are also performed for three dif-

ferent Reynolds numbers, spanning 5,000 to 20,000, for the two cases with weakest and strongest

stratification. All simulations use adaptive wavelet-based mesh refinement to achieve very fine

spatial resolution at relatively low computational cost. The simulations show that weak initial

stratification in the nearly incompressible regime leads to pronounced bubble and spike asymme-

tries, while bubble and spike growth rates become increasingly similar as the stratification strength

increases. For small initial stratifications, the bubble and spike growth rates undergo oscillatory

behavior whereby slow-downs and re-accelerations are alternately observed until the growth halts

even for the weakest stratification. Above an isothermal Mach number of roughly 0.6, this behavior

is less pronounced and nearly uniform suppression is observed. Reynolds number is found to have

little effect on bubble and spike growth, although the formation of secondary vortices becomes

substantially more pronounced as Reynolds number increases. A simultaneous study of vortex

pair evolution shows that, at low Atwood numbers, bubble and spike growth rates for the strongly
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stratified cases are nearly identical to vortex propagation rates, but there is a substantial mismatch

in vortex pair and RTI growth rates for weak stratification when the RTI is able to continue grow-

ing and re-acceleration occurs. Finally, a three-dimensional (3D) simulation of compressible RTI

in the strongly stratified case (corresponding to a Mach number of 1.2) is performed in order to

demonstrate that the present 2D results for single mode RTI are qualitatively consistent with 3D

results.

4.2 Introduction

The Rayleigh-Taylor instability (RTI) is formed when a mean density gradient is oriented in

a direction opposite to that of an accelerative force [50, 59]. Such a scenario arises in a number

of engineering and physics problems, including Inertial Confinement Fusion (ICF) [7], supernovae

ignition fronts [31, 28, 8], and x-ray bursts [39], to name just a few examples. Understanding RTI

growth and behavior in these systems is made challenging, however, by the low Atwood and high

Reynolds numbers present in many real-world problems, resulting in dynamics driven by relatively

small density differences over a wide range of length and time scales. The present study is focused

on understanding the long-time evolution of RTI as a function of stratification strength (i.e., Mach

number) and Reynolds number at low Atwood number for isothermal stratifications using fully

compressible wavelet-based direct numerical simulations (DNS).

The use of DNS for the study of RTI is motivated by the difficulty in controlling, with high

precision, initial and boundary conditions in experiments. This difficulty has resulted in ambiguity

surrounding many experimental observations, for example the unexpectedly high RTI growth rates

measured in prior experiments, which are now understood to be the result of low wavenumber

perturbations. By contrast, all initial and boundary conditions are known and carefully controlled

in DNS, and DNS has become an increasingly common tool for the study of RTI over the past five

years [64].

Despite its promise, DNS is not without its challenges. In particular, the computational cost

required to resolve all length and time scales at high Reynolds and low Mach numbers using three-
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dimensional (3D) fully compressible simulations is enormous. Ultimately, resolution requirements

are determined by the sharpness of the interface between the two fluid species, and the generation

of shockwaves from both acoustics and the RTI itself. The nature of RTI growth also requires

domains that are much longer than the initial perturbation in order to capture the entirety of

the growth, prevent unphysical boundary interactions, and to give enough space to dissipate any

shockwaves generated. As a result of these resolution and domain size requirements, most RTI

simulations have been performed in only 2D, at low Reynolds numbers, and from an incompressible

standpoint [43, 42] by assuming that the velocity flow-field remains divergence free (i.e., by solving

the Boussinesq or anelastic equations).

In the present paper, these simplifying assumptions are relaxed through the use of a new fully

compressible DNS capability [51, 52] that employs adaptive mesh refinement based on the Parallel

Adaptive Wavelet Collocation Method (PAWCM). This method allows high spatial resolution to

be used where it is needed (e.g., where density and velocity gradients are large), while reducing

the total number of collocation points used in the simulation. The development of the adaptive

wavelet DNS capability was described by Reckinger et al. [52], where a preliminary study was

performed of 2D RTI growth as a function of stratification strength at moderately high Atwood

and low Reynolds numbers.

Using this adaptive capability, DNS are performed here at low Atwood number for different

Reynolds numbers and different strengths of isothermal initial stratification, corresponding to Mach

numbers between 0.3 (weak stratification) and 1.2 (strong stratification) [43, 42, 23]. The focus on

low Atwood number, in particular, is motivated by the observations of RTI growth and regimes in

Wei and Livescu [64], where an asymptotic variable-density form of the Navier-Stokes equations

were solved in 2D to show that RTI is suppressed at high Mach numbers. The goals of the present

study are to reproduce these features by solving the fully compressible Navier-Stokes equations in

both 2D and 3D, and to determine the dependence of these features on Reynolds number and strat-

ification strength. Here single-mode initial perturbations are studied in order intended to simplify

the problem by eliminating complex interactions of multiple wavelengths, thereby allowing the un-
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derlying fundamental physics to be more easily understood. Although the isothermal stratification

creates variations in density and pressure, the thermodynamics are assumed to be in equilibrium.

The overall simplicity of this physical configuration is intended to reveal compressibility effects

as clearly as possible, without additional confounding effects due to other factors. Even in the

incompressible case, RTI have been examined over an enormously wide parameter space; just a few

examples include studies of incompressible RTI for different density variations [?], temperature fields

[?], electromagnetic fields [?], viscosities [?], surface tensions [?], miscibilities [?], thermal transfers

[?], and boundary effects [?]. Compressibility adds yet another set of parameters to consider,

including temperature-dependent transport (e.g., viscosity, diffusivity) and thermodynamic (e.g.,

specific heat ratio) coefficients [20, 36]. Although each of these parameters must be varied in

succession in order to fully understand the complex nature of compressible RTI in problems such

as ICF, we specifically focus here on the effects of isothermal stratifications of various strengths,

an obvious starting point for the study of compressible RTI.

In order to explain the observed results, RTI growth at low Atwood and high Reynolds

numbers is compared with vortex dynamics for different stratification strengths. This additional

analysis and comparison is motivated by the observation that RTI growth is heavily dominated

by the vorticity transport that is generated[64]. Most of the various parameters that effect the

instability growth truly manifest themselves by affecting the vortical fields. RTI will begin by first

generating a vortex pair in the two dimensional case or a vortex ring in the three dimensional.

These vortical formations will then lead to induced velocities and the generation of additional

vorticity by the creation of shear layer instabilities such as the Kelvin-Helmholtz instability. For

these reasons, insight into the physics of the RTI scenario can be garnered by studying the effects

of various parameters on the induced velocities of vortex pairs and rings which can be done for

significantly cheaper than full RTI simulations. These pairs and rings match the initial vortical

fields generated by the RTI and give an interesting insight into the effects of the background on

the initial growth.

The rest of this paper is organized as follows. The second Section discusses the problem setup
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including the governing equations and initialization for both the RTI and vortex cases. Section 3

provides a brief discussion of the numerical method applied to complete these simulations. In

Section 4, the paper goes in depth into the results of this study, first looking at the effects of

Reynolds number and background stratification strength on RTI growth, and then repeating this

for the vortex simulations. This is then all confirmed in three dimensions. Finally, the resulting

conclusions are presented in Section 5.

4.3 Problem Description

4.3.1 Governing Equations

The numerical simulations solve the fully compressible, two-fluid Navier-Stokes equations

given by [43, 68]

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 , (4.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ρgi +

∂τij
∂xj

, (4.2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −∂(pui)

∂xi
+ ρuigi +

∂(τijui)

∂xj
− ∂qj
∂xj

+
∂[T (cp)lsjl]

∂xj
, (4.3)

∂(ρYi)

∂t
+
∂(ρYiuj)

∂xj
=
∂sji
∂xj

, (4.4)

where ρ is the density, ui is the velocity in the xi direction, p is the pressure, gi is the gravitational

acceleration, τij is the viscous stress tensor, e is the specific total energy, qi is the heat flux, T is

the temperature, (cp)i is the specific heat capacity for fluid i, sij is the mas flux for fluid j, and

Yi is the mass fraction for the ith fluid. Note that, for a two-fluid system, Y2 = 1 − Y1, and so

Eq. (6.4) need only be solved for i = 1. The ideal gas law p = ρRT is enforced by expressing the

specific total energy as

e =
1

2
uiui + cpT −

p

ρ
, (4.5)

where R is the combined gas constant defined in terms of the universal gas constant R and the

molar mass of each fluid, Wi, as

R = YiRi = R Yi
Wi

, (4.6)



54

where we define the species gas constant as Ri ≡ R/Wi. The combined specific heat capacity cp

appearing in Eq. (6.5) is similarly defined as

cp = (cp)iYi . (4.7)

The viscous stress τij in Eqs. (6.2) and (6.3) is assumed to be Newtonian and is given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (4.8)

where the dynamic viscosity is given by µ = ρν, with the kinematic viscosity ν assumed to be

constant (i.e., temperature independent). The heat flux in Eq. (6.3) is written as

qj = −k ∂T
∂xj

, (4.9)

where k is the thermal conductivity, and the species mass flux in Eqs. (6.3) and (6.4) is defined as

sjl = ρD
∂Yl
∂xj

, (4.10)

where D is the mass diffusivity. Both k and D, like the kinematic viscosity ν are assumed to be

constant and temperature independent, and both Prandtl and Schmidt numbers are unity.

In the present study, the system of equations given by Eqs. (6.1)-(6.8) is solved using the

PAWCM numerical approach, which is described in Section 4.4, for an RTI with a physical setup

as described in the following section. For this study, the majority of fluid properties are taken to

be the same between the two fluids for simplicity. This includes the dynamic viscosity, µ, the heat

conduction coefficient, and k, and the mass diffusion coefficient, D.

4.3.2 Initialization of Rayleigh Taylor Instability

Rayleigh Taylor instability occurs when a heavier fluid, denoted by index ‘2’ with molar mass

W2, is suspended above a lighter fluid, denoted by index ‘1’ with molar mass W1, in the presence

of an accelerative force such as gravity. The addition of a perturbation causes the pseudo-stable

condition to be lost, and the heavier fluid begins to fall into the lighter fluid in a spike-like formation,

while the lighter fluid rises into the heavier fluid in a bubble-like formation. Assuming that it is small
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enough, the initial perturbation grows in accordance with linear perturbation theory, but quickly

becomes more complex as Kelvin-Helmholtz instabilities cause continuous production of vorticity

along the sides of the bubbles and spikes [50, 59] via the baroclinic torque (vorticity dynamics is

discussed in more detail in the next section). This production of vorticity creates a nonlinear system

that cannot be described by simplified models [43]. In the classical incompressible case, where the

density of both fluids is constant, this growth eventually leads to a re-acceleration of the bubble

and spike tips, finally resulting in chaotic dynamics and development. In the compressible case,

however, it is impossible to have constant densities without changing the pressure and temperature

fields. The effects of changing any of these fields is largely unknown, and here we choose to impose

an isothermal background state in order to eliminate thermal effects since the background state is

already in thermal equilibrium. Future work will examine the effects of isopycnic and isentropic

background states.

The present RTI problem is initialized by imposing a perturbation in the presence of a

gravitational acceleration on a background state that is in hydrostatic equilibrium. The resulting

pressure, p(x1, x2, t), and density, ρ(x1, x2, t), fields at t = 0 can be expressed for 2D RTI (i.e., as

functions of x1 and x2) as

p(x1, x2, 0) = p0(x1) + p′(x1, x2, 0) , (4.11)

ρ(x1, x2, 0) = ρ0(x1) + ρ′(x1, x2, 0) , (4.12)

where p0 and ρ0 are hydrostatic background states assuming that the gravitational acceleration

is only in the negative x1 direction (i.e., gi = −gδi1), and p′ and ρ′ represent fluctuations on the

background state; the initial perturbations to the background state are denoted p′(x1, x2, 0) and

ρ′(x1, x2, 0).

Assuming an isothermal background state at temperature T0, the background pressure and

density fields for fluid α (where α = [1, 2] and summation over Greek indices is not implied) are
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given by

p0α(x1) = pI exp

(
− gx1
RαT0

)
, (4.13)

ρ0α(x1) =
pI

RαT0
exp

(
− gx1
RαT0

)
, (4.14)

where the initial interface between the two fluids lies at x1 = 0, with the α = 2 fluid for x1 > 0 and

the α = 1 fluid for x1 < 0, pI is the interfacial pressure, g is the magnitude of the gravitational ac-

celeration, and Rα = R/Wα is the gas constant based on the molar mass of fluid α. A corresponding

interfacial density is given using the ideal gas law as ρI = pI/(RIT0) where RI = R[(W1+W2)/2]−1.

In each of the cases examined here, the kinematic viscosity ν, which is constant and the same

in both fluids, is set using the perturbation Reynolds number, Rep, as

Rep ≡

√
Agλ3

(1 +A)ν2
⇒ ν =

√
Agλ3

(1 +A)Re2p
, (4.15)

where λ is the wavelength of the applied perturbation and A is the non-dimensional Atwood number

defined as

A ≡ W2 −W1

W2 +W1
. (4.16)

Note that in the present study, W2 > W1 in order to generate RTI, with the heavier fluid (α = 2)

initially completely above the interface (i.e., x1 > 0) and the lighter fluid (α = 1) initially completely

below the interface (i.e., x1 < 0).

The degree of compressibility enters the RTI problem by re-expressing gx1/(RαT0) in Eqs.

(6.9) and (6.10) in terms of the Mach number M . There are multiple parameters that can be

used to specify the degree of compressibility [42, 43], but, due to the isothermal initial state, the

relevant incompressible limit is found by increasing the background pressure to cause an increase

in the speed of sound such as to leave the density unaffected. This results in the definition of an

isothermal Mach number based on the ratio of the gravity wave speed,
√
gλ, and the isothermal

speed of sound, a0 =
√
PI/ρI . The resulting Mach number, M , is then given by

M =

√
ρIgλ

pI
⇒ M2 =

gλ

RIT0
. (4.17)
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Normalizing P0α in Eq. (6.9) and ρ0α in Eq. (6.10) by pI and ρI , respectively, we obtain

p∗0α(x∗1) = exp

(
−M2RI

Rα
x∗1

)
, (4.18)

ρ∗0α(x∗1) =
RI
Rα

exp

(
−M2RI

Rα
x∗1

)
, (4.19)

where x∗1 ≡ x1/λ is a normalized distance variable. It can be shown that the ratio RI/Rα can be

written in terms of the Atwood number A as

RI
Rα

=
2Wα

W1 +W2
= 1 + (−1)αA for α = 1, 2 . (4.20)

Since α = 1 corresponds to the lighter fluid for which x∗1 < 0 initially and α = 2 corresponds to the

heavier fluid for which x∗1 > 0, the non-dimensional background states P ∗0 and ρ∗0 can be written in

final form as

p∗0(x
∗
1) = exp

[
−M2(1∓A)x∗1

]
, (4.21)

ρ∗0(x
∗
1) = (1∓A) exp

[
−M2(1∓A)x∗1

]
, (4.22)

The resulting initial background stratifications are shown for a variety of Mach numbers in Figure

6.1, where the size of the density difference at x∗1 = 0 is determined by the value of A.

For this study, we have constrained ourselves to single mode perturbations. Though, they

are not a perfect representation of the multi-mode nature of the engineering problems found in ICF

and such, the effects that are being studied must be understood in the simplest cases, before they

can be expanded to the complex. Through the single mode studies, we are able to determine our

resolution requirements and guide our path to study the more complex multi-mode scenario while

still garnering useful insights into the physics arising from compressibility. To simulate the single

mode case, at this point we apply a single mode velocity perturbation to the interface in a way

that is consistent with linear stability theory[52].

Even in multi-modal simulations, the most unstable mode will grow the fastest, so single

mode perturbations serve as a limiting case in which the most unstable mode is the only mode

applied. In addition, single-mode simulations allow the opportunity to ensure that the simulations
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Figure 4.1: Density and pressure stratifications for M = 0.3to1.2 and A = 0.04.

are completely resolved from the initial conditions through the late times while also giving the

ability to check the simulations for the addition of extra perturbation modes and the maintaining

of symmetry throughout the simulation. Only through the complete investigation of single mode

studies, can a simulation platform be said to accurately, reliably, and certainly capture the exact

initial conditions that were input since it is the most sensitive case to errors in the late time growth

and will manifest any additional modes or asymmetries introduced through the platform itself.

4.3.3 Vorticity Dynamics

By taking the curl of the momentum equation, we obtain the transport equation for the

vorticity, ωi = εijk∂uk/∂xj in a general compressible flow as

∂ωi
∂t

+ uj
∂ωi
∂xj

= ωjSij − ωiSkk +
εijk
ρ2

∂ρ

∂xj

∂p

∂xk
+Di , (4.23)

where εijk is the Levi-Civita, or alternating, tensor. The first term on the right-hand side of Eq.

(4.23) represents vortex stretching, the second term represents dilatation, the third term is the
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baroclinic torque, and the last term is diffusion. Using the characteristic time scale
√
λ/g, the

transport equation for ω can be written in non-dimensional form as

Dω∗i
Dt∗

= ω∗jS
∗
ij − ω∗i S∗kk +

1

M2

εijk
ρ∗2

∂ρ∗

∂x∗j

∂p∗

∂x∗k
+

√
A

1 +A

1

Rep
D∗j , (4.24)

where D/Dt∗ ≡ ∂/∂t∗ + u∗j∂/∂x
∗
j . In the above non-dimensional equation, baroclinic torque dom-

inates dilatation when M � 1, for example in the weakly stratified case where M = 0.3. When

M & 1, by contrast, dilatation becomes increasingly strong compared to baroclinic torque.

The baroclinic torque itself has a Mach number dependence that is revealed by first writing

this in terms of the specific volume v∗ ≡ 1/ρ∗ as

1

M2

εijk
ρ∗2

∂ρ∗

∂x∗j

∂p∗

∂x∗k
= − 1

M2
εijk

∂v∗

∂x∗j

∂p∗

∂x∗k
. (4.25)

We can then split v∗ and p∗ into hydrostatic and fluctuating parts as

v∗(x1, x2, t) = v∗0(x∗1) + v′∗(x1, x2, t) , p∗(x1, x2, t) = p∗0(x
∗
1) + p′∗(x1, x2, t) , (4.26)

where v∗0 = 1/ρ∗0, and ρ∗0 and p∗0 are given by Eqs. (6.15) and (6.14), respectively. Using this

decomposition, it can be shown that Eq. (4.25) can be written as

1

M2

εijk
ρ∗2

∂ρ∗

∂x∗j

∂p∗

∂x∗k
= −

[
1

M2
εijk

∂v′∗

∂x∗j

∂p′∗

∂x∗k
+M2(1∓A)

(
v∗0
∂p′∗

∂x∗2
+ p∗0

∂v′∗

∂x∗2

)]
. (4.27)

Substituting this into Eq. (5.23) then gives

Dω∗3
Dt∗

=

[
ω∗jS

∗
ij − ω∗i S∗kk − (1∓A)

(
v∗0
∂p′∗

∂x∗2
+ p∗0

∂v′∗

∂x∗2

)
δi3 + (1∓A)

(
v∗0
∂p′∗

∂x∗3
+ p∗0

∂v′∗

∂x∗3

)
δi2

]
− 1

M2

[
εijk

∂v′∗

∂x∗j

∂p′∗

∂x∗k

]
+

√
A

1 +A

1

Rep
D∗3 .

When operating in 2D (i.e., x1 and x2 coordinates) this reduces to

Dω∗3
Dt∗

=

[
−ω∗3S∗kk − (1∓A)

(
v∗0
∂p′∗

∂x∗2
+ p∗0

∂v′∗

∂x∗2

)]
− 1

M2

[
ε3jk

∂v′∗

∂x∗j

∂p′∗

∂x∗k

]
+

√
A

1 +A

1

Rep
D∗3 . (4.28)

Note that in this expression, the fluctuating baroclinic torque term is large in comparison to the

leading dilatation and baroclinic torque terms when M is small, but is comparatively smaller when

M & 1. Effectively this means that the dynamics are dominated by fluctuating baroclinic torque

when M is small, and by dilatation and the background baroclinic torque when M is large.
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4.3.4 Vortex Analogs

As RTI develop, one of the key features in their growth is the development of vortical

structures[43, 64]. In two dimensions this first manifests itself as the formation of a pair of counter

rotating vortices while in three dimensions, it manifests as a vortex ring. This transformation from

the initial perturbation to these vortical structures is what ends up driving the instability. As it

continues to grow, this first vortical structure remains intact, and eventually begins shedding ad-

ditional vorticity along the sides of the bubble and spike to form the Kelvin-Helmholtz instability.

For this reason, these initial vortical structures are imperative to the growth of the RTI as they

lead to growth of the entire instability.

To further understand the effects of compressibility and background stratifications on the

growth of RTI, an investigation into the effects onto these vortical structures by themselves can be

carried out. To perform these simulations, a similar methodology is carried out to initialize them

as the RTI. The same background state is used as the RTI case but with A = 0 so that there is no

density discontinuity in the domain. The same non-dimensional parameters are all used to describe

the vortex analog case so that the comparison can be one to one.

To complete the initialization, an imposed velocity field must be applied. For the vortex pair

the initialization is

u1 = −
2∑
i=1

Λ

σ2
(x2 − x2,i)exp

(
−(x1 − x1,i)2 + (x2 − x2,i)2)

σ2

)
(4.29)

u2 =
2∑
i=1

Λ

σ2
(x1 − x1,i)exp

(
−(x1 − x1,i)2 + (x2 − x2,i)2)

σ2

)
(4.30)

so that the velocities are described by a Gaussian distribution with the summation being for the

two different vortices. The center of each vortex is located at (x1,i, x2,i), and the width is describe

by σ. The strength of the vortex pair, Λ, is set so that the circulation over each vortex matches

that of the vortices generated by the RTI. A comparison of the velocity fields for the vortex pair

case and two dimensional RTI case can be found in Figure 4.2.



61

Figure 4.2: A comparison of the initial velocity field for the vortex pair simulations and the resulting
velocity field from the development of the vortex pairs through RTI.
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4.4 Numerical Method

The RTI problem lends itself naturally to state-of-the-art adaptive numerical methods. To

effectively capture the instability growth, very long domains are needed to ensure late-time growth

is captured, but very small grid spacing is needed to fully resolve the high gradients at the interface

of the instability. This would equate to having a very dense grid and incredibly high computational

costs. During the majority of the simulation, however, the grid far away from the interface is

unnecessary due to the flow being quiescent, and thusly, through the use of adaptive methods,

high grid compression rates can be achieved. A method that has proven effective at doing this,

is the Parallel Adaptive Wavelet Collocation Method (PAWCM), and it is what has been applied

here[51, 52].

PAWCM uses the natural properties of the wavelet transformation to locate areas of steep

gradients and gives direct control over the amount of resolution applied based on how steep these

gradients are. Essentially, through PAWCM a flow field variable is transformed into wavelet space

resulting in wavelet basis functions and coefficients that are localized in both wave space and

physical space. From there, the coefficients are passed through a thresholding filter where all the

coefficients above the parameter ε are kept, and any of those below are set to zero. The resulting

thresholded decomposition appears as follows

u≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl |≥ε||u||

dµ,jl ψµ,jl (x), (4.31)

where u is any variable, φk are the scaling functions on the coarsest level, ck are the corresponding

coarse level wavelet coefficients, ψl are the scaling interpolating functions on any arbitrary level, dl

are the coefficients that the thresholding is applied to, l and k represent physical grid points, and µ

and j represent the wavelet family and level of resolution, respectively [61, 47]. The equivalence of

setting one of these coefficients, dl, to zero is the removal of a grid point at that level of resolution.

dl itself is a large value when in the presence of a large gradient, and is small when it is in a

relatively constant region. This method results in the error being of the order of which we set ε
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and the effective resolution being set by a base grid size and the limit put on j (referred to as jmax

from here on). This results in the error being O(ε) and the resolution in a single direction being

2(jmax−1) ∗ p where p is the base resolution[61, 55, 47].

PAWCM has been implemented in a way that enables it to work with finite difference meth-

ods. For this method, fourth order central differences have been applied spatially, and a third

order total variation diminishing explicit Runge-Kutta method scheme has been applied in time.

PAWCM also boasts many modern features besides its adaptivity to enable fast and efficient pro-

cessing. It is highly parallelized, having successfully run on up to 5000 cores, and it is able to do

arbitrary domain decompositions using the Zoltan library. It has a tree-like data structure for easy

MPI communications, and direct error control. All of this results in the fact that any additional

overhead from the wavelet methodology is made up for by using many processors and a 90%+ grid

compression[61, 55, 47].

Given this methodology, it is necessary to determine the parameters on which to adapt

the grid for the numerical simulation. Since the wavelet method is so flexible, it is possible to

generate the grid on any flow field variable that is calculable. It was determined for the initial

time steps that the important parameters to adapt on are the vorticity, the norm of the strain

rate tensor, and the gradient of the species in addition to the normal parameters of the velocity

and species fields. An example of the resulting grid from this this adaptation can be seen in 4.3.

As the simulation progresses, though, it is possible that the later time flow field would become

more complex and require further adaptation. An example of two of these grids based on more

complex flow field variables, namely the baroclinic torque term from the vorticity equation and

the divergence of velocity, can be seen in Figure 4.4. Through many attempts, it was found that

by including adaptation on the baroclinic torque, a more complete grid could be maintained and

generated throughout the simulation. This information not only allows proper grid generation, but

also informs that this term must be an important flow field quantity.

To effectively capture these simulations, proper boundary conditions must be used. On the

boundaries all sides that can be taken as periodic are, i.e. the boundaries in the x2 and x3 directions.
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Figure 4.3: An example of a simulation done at Mach number 0.3 and Reynolds number 5,000 with
adaptation on the species, gradient of the species, velocity, vorticity, and the norm of the strain
rate tensor. The leftmost image shows the mass fraction, the center shows the vorticity field, and
the right shows the resulting grid from adaptation.

In the x1 direction, at the top and bottom of the domain, careful thought must be given to the

boundary conditions implemented. The goal is to essentially mimic an infinite domain, but to

ensure both the background stratification is preserved and that none of the shocks are reflected

back into the domain. To do this, shear free slip boundary conditions were put in place with

the addition of numerical diffusion buffer zones before them. These buffer zones ensure that any

shockwaves sent to the boundaries are dissipated before reaching the end to ensure that issues don’t

arise as the waves try to leave the domain and the waves are fully dampened so no reflections can
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(a) Baroclinic Torque (b) Divergence of Velocity

Figure 4.4: Example grids generated by calculating derived flow field quantities. The grid on the
left is made by adapting on the baroclinic torque term from the vorticity equation, and the grid on
the right is generated by adapting on the divergence of the velocity field. The scales are the same
as from 4.3.
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take place[52].

To ensure the simulations are fully resolved, multiple checks were put into place. Normal

convergence studies for this investigation can be found in [52]. It has been found, though, that there

are even more constraints to ensure the accuracy of the simulation. Due to the extreme sensitivity

to initial conditions, it was found that even when the simulation appeared to be completely resolved,

that error in the initial conditions would add additional modes to the late time perturbation growth.

An example of this can be seen in Figure 4.5. Essentially, this shows that great care must be taken to

fully resolve the initial conditions. The various factors into the minimization in the initial conditions

were studied and it was discovered that the root cause was determined by asymmetrical initialization

of the species mass fraction. The asymmetrical aspects of all other fields were determined to be on

the level of machine precision.

The three parameters of interest in determining the asymmetry of the initial species field were

the thresholding parameter, determined by ε, the thickness of the initial diffusion layer, determined

by the number of points across the interface of the two fluids at the finest resolution pI and thusly

the thickness used in the solution of the diffusion equation, and the resolution, determined by the

wavelet parameter jmax. Figure 4.6 shows a summary of the results for this asymmetry study. As

ε is decreased towards 10−8, it is clear that the error is minimized, and for the initial time steps,

the cost of having an extremely low ε around 10−8 is negligible, and thusly the following results

were obtained with that as the initial parameter. For the thickness of the interface, two competing

effects were found. In general, it was discovered that the thicker the interface was made, the larger

the asymmetry of the initial conditions. At the same time, though, it was found through many

simulations that a thicker interface acts as a buffer layer to absorb other numerical errors. Based

on these two competing effects, the number of points across the interface was chosen to be 16, to

both minimize the asymmetry and to gain some of these buffering effects. Finally, it was found

that higher resolutions lead to better initial conditions. At a level of jmax = 7 it was found that the

asymmetry drops below machine precisions, and thusly this level of resolution was deemed sufficient

for the simulations.
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Figure 4.5: Asymmetry in the initial conditions leads to secondary modes developing in late time
growth. In this example, a Mach number of 1.2 was used. The image on the left was initialized
with a smaller value of ε leading to the development of additional modes that appear as concavities
on the tips of the bubble and spike formations.
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Figure 4.6: An investigation of the effects of various simulation parameters on the asymmetry of
the initial species field. Blue shows the effects of the thresholding parameter, ε, with values from
10−2 to 10−8 in increments of 10−1. Red shows the effects of the interface thickness ranging from
4 to 64 by powers of 2, and green shows the effects of resolution through the jmax parameter of
the wavelet decomposition ranging from 4 to 8 by increments of 1 with the same base resolution.
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4.5 Results

4.5.1 Rayleigh Taylor Instability

The RTI simulations have been carried out in a domain of size [−8λ,+8λ] X [0, λ] in two

dimensions and [−4λ,+4λ] X [0, λ] X [0, λ] in three dimensions, where λ corresponds to the wave-

length of the applied perturbation. The maximum resolution in the x1 direction was 65,536 for the

two dimensional case, and 32,768 for the three dimensional case. In the x2 and x3 directions, the

maximum resolution was kept at 4,096 grid points. The Atwood number studied for these cases

was kept constant at 0.04, and the Mach numbers used were 0.3 (nearly incompressible), 0.6, 0.9,

and 1.2. The perturbation Reynolds numbers investigated were 5,000, 10,000, and 20,000. The

highest was of particular interest because it has shown to be the minimum perturbation Reynolds

number necessary to reach the chaotic growth regime for the incompressible limit of this particular

case [64].

The first investigation was to simultaneously look at the effects of stratification strength and

the perturbation Reynolds number on the growth of RTI. Figure 4.7 shows the growth of RTI

as a function of both time and Mach number. It becomes quite clear that increasing isothermal

stratification strength has vast impacts on RTI growth. As stratification strength increases, the

instability growth is greatly suppressed.

This complete suppression occurs at every stratification besides the weakest. This is further

elaborated in the plot of bubble and spike height as a function of time in Figure 4.8. It is clear that

for all of the moderate to higher stratifications, they approach a growth limit asymptotically. It is

also interesting to note that in comparison to the incompressible case, from Tei and Livescu’s work,

not even the lowest stratification is able to approach its growth rate. In addition, Tei, et al. found

that for the low Atwood number case of 0.04, the bubble and spike growth was very symmetric

until late times, while the weak stratification in the nearly incompressible limit experiences a much

larger asymmetry that grows in time.

We can further investigate these effects by viewing the velocities of the bubble and spike
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(a) M=0.3, t=0 (b) M=0.3, t=5 (c) M=0.3, t=10 (d) M=0.3, t=15 (e) M=0.3, t=20

(f) M=0.6, t=0 (g) M=0.6, t=5 (h) M=0.6, t=10 (i) M=0.6, t=15 (j) M=0.6, t=20

(k) M=0.9, t=0 (l) M=0.9, t=5 (m) M=0.9, t=10 (n) M=0.9, t=15 (o) M=0.9, t=20

(p) M=1.2, t=0 (q) M=1.2, t=5 (r) M=1.2, t=10 (s) M=1.2, t=15 (t) M=1.2, t=20

Figure 4.7: RTI growth as a function of time (left to right) and Mach number (top to bottom).
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Figure 4.8: A plot of the growth of RTI height for both the bubble and spike tip as a function of
time.

Figure 4.9: A plot of the velocity of the bubble and spike tips for RTI for the range of Mach
numbers explored.
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Figure 4.10: The ratio of the actual height achieved to the height predicted by the potential energy
analysis as a function of Mach number. Blue dots represent the bubble, where red represents the
spike. The lowest Mach number is omitted since full suppression has not been achieved.

tip over time. These velocities are plotted in Figure 4.9. It becomes immediately clear that the

velocity of the larger Mach numbers all trend towards zero, confirming the complete suppression of

the instability. For Mach number of 0.3 case, though, we can see the beginning of the reacceleration

regime as the spike tip begins to rapidly accelerate towards the end. The exaggerated asymmetry

can be seen by comparing the velocities of the bubble and spike for this case as well. It becomes

apparent that even though the spike reaccelerates, the bubble remains at a nearly constant velocity

in the late time, resulting in the spike’s height increasing at a much faster rate than the bubble.

In an attempt to try to predict this point of full suppression, an analysis was performed based

on the initial potential energy of the system. Essentially, the potential energy was calculated based

on the initial density jump and relative to the point at which the density of the light fluid should

be equal to that of the heavy fluid. The results are presented in 4.10 where it is presented as the

ratio of the distance actually traveled to the distance predicted by the potential energy analysis. It

becomes readily apparent that the distance predicted by the potential energy underestimates the

actual distance traveled. It is also important to note that this trend is not perfectly matched with

a linear fit, but rather needs higher order terms to capture the behavior.

The second part of this investigation was to study the effects of Reynolds number on the

growth of these RTI scenarios. In Figure 4.11, it is evident that Reynolds number has minimal
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(a) M=0.3, Rep =
5, 000

(b) M=0.3, Rep =
10, 000

(c) M=0.3, Rep =
20, 000

(d) M=1.2, Rep =
5, 000

(e) M=1.2, Rep =
10, 000

(f) M=1.2, Rep =
20, 000

Figure 4.11: Reynolds number effects on RTI growth. The top figures show the results for various
Reynolds number for the low stratification while the bottom shows it for high. All images are at
t=20.
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(a) Height

(b) Velocity

Figure 4.12: The growth of the height and corresponding velocities for both the bubble and spike
for various Reynolds numbers at M=0.3. It is clear that the Reynolds number has minimal effect.
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effect on the development of the bubble and spike heights of RTI. Looking closer, as is expected, with

lower Reynolds numbers, the higher viscosity smears the smallest scales. This leads to significantly

less small scale development. To further investigate these phenomenon, we can again look at the

plot of the bubble and spike heights over time, as well as the corresponding velocities. This is

plotted in Figure 4.12. In this plot, we explore specifically the growth of the low Mach number

case as a function of Reynolds number. It becomes immediately clear that even for the low Mach

number case, Reynold’s number plays an insignificant role, as the growth and velocities remain

largely the same regardless of the viscous effects. Based off of this it is easy to conclude that Mach

number has a much greater effect on the growth rate than the perturbation Reynold’s number.

From these conclusions, though, a further investigation into the effects of Mach number was

performed at a Reynolds number of 5000. From the high Reynolds number results, it is already

known that the suppression occurs somewhere between a Mach number of 0.3 and 0.6. Based on

this, simulations were performed at the intermediate Mach numbers in which it was discovered that

the most significant changes occur M=0.5 and M=0.6. In Figure 4.13, the growth of the height and

velocities of the instability are plotted as a function of time. At the Mach number of 0.3, complete

suppression is still not achieved, but even at a Mach number of 0.5, the velocity of the bubble and

spike still tends towards zero. It is also clear that the suppression happens on a spectrum from

these figures. Namely, in many of these cases such as the Mach number of 0.5, 0.525, and 0.55, the

instability is even able to begin reaccelerating only for the suppression to over power and halt the

growth. In the following sections, the goal is to further understand how the stratification is able

top enact these effects.

4.5.2 Vortex Pairs

To help further our understanding of these suppressive effects of the background stratification,

we also simulated vortex pairs traversing through the same stratified media. As mentioned before,

the strength of these vortex pairs was set based upon the strength of vortices generated by the RTI.

The end results for one of these initializations can be found in Figure 4.2. Essentially, for every
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(a) Height

(b) Velocity

Figure 4.13: The growth for the height and velocity of the bubble and spike formations at a variety
of Mach numbers from 0.3 to 0.6 at a Reynolds number of 5000. This shows that spectrum on
which the suppression occurs.
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RTI case carried out, we are able to simulate two analog versions due to the periodic nature of

the simulations. To fully capture the effects, we need to simulate both the vortex pair propagating

upwards through the fluid, i.e. mimicking the bubble, and also the pair propagating downwards

through the fluid to capture the interactions of the spike. So essentially, each of the RTI cases

has two corresponding vortex pair cases to help further elaborate the physics. For these cases, the

domains were chosen to be [-4λ, +4λ] x [−λ,+λ], and the maximum resolution was set to be 8,192

points by 2,048 points, making them significantly cheaper simulations to carry out.

Similarly, it was found for this stratification that Reynolds number played a minimal role in

the development of the flow, so the rest of these results will focus on the outcome of the Mach number

investigation. Essentially, through these studies, it was found that even the weakest stratification

resulted in the destruction of the vortex pair given enough time. Through the simulations we

would see the initial intertwining of the pair that would lead to the propagation of some amount

of vorticity in the direction of the induced velocity, but then the background stratification would

cause a reversal of this transversal through the baroclinic torque term in the vorticity equation.

In the highest stratification, though, not even a small amount of transversing can be see, instead

the vortical structures are completely destroyed from the beginning. An example of the late time

vortical structures can be found in Figure 4.14. It can be seen that the destruction caused by the

strong stratification essentially leads to just random vortical noise being created, where the weak

stratification is able to maintain its structure, although the distance the vortices move is greatly

suppressed by the generation of vorticity in the opposite directions in the surrounding area

To further investigate the simulations, and to better compare the results of the vortex pair

simulations to the RTI simulations, the respective velocity fields can be decomposed into the com-

ponents of the vorticity equation. A comparison of the vorticity fields for the RTI and vortex pair

simulations at the highest and lowest Mach numbers can be found in Figure 4.15. Investigating

the terms of the vorticity equation, there are multiple terms that we can ignore in this analysis.

Because the simulations are two dimensional, vortex stretching will not play a role, and because

the gravitational body force is constant, the body force can be ignored. Finally, the dissipation
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(a) M=0.3 (b) M=1.2

Figure 4.14: A plot of the vorticity fields to show the background stratification effects on the
transversing of counter rotating vortex pairs. It can be seen that the high stratification (right)
essentially breaks the structures down and generates noise, while the low stratification (left) is able
to travel through the domain.
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(a) RTI at M=0.3 (b) RTI at M=1.2

(c) Vortex Pair at M=0.3 (d) Vortex Pair at M=1.2

Figure 4.15: The vortical structures resulting form the RTI simulations (top) and vortex pair
simulations (bottom) at both M=0.3 (left) and M=1.2 (right). They exhibit very clear similarities
in structure at the same Mach number, and clear differences when comparing between the two
stratifications
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(a) RTI at M=0.3 (b) RTI at M=1.2

(c) Vortex Pair at M=0.3 (d) Vortex Pair at M=1.2

Figure 4.16: The resulting baroclinic production fields for RTI (top) and vortex pair (bottom) at
low, M=0.3 (left), and high, M=1.2 (right), background stratifications. The baroclinic production
term is responsible for the destruction of the vortical structures by the stratification as can be seen
in all cases.
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term will just remove vorticity through viscous effects, so it will not greatly influence the growth

patterns. Between the final two terms, namely the baroclinic production and dilatation terms,

it was found that the baroclinic effects were consistently two orders of magnitude greater than

the dilatational effects. Based on this, the most important effects can be understood through the

baroclinic production term. The resulting fields can be found in Figure 4.16. From this it becomes

apparent that the destruction of vortical structures arises from the baroclinic production term, and

this destruction results in the suppression of growth. It is also important to note the similarities

of the structures that develop at the same stratification between the RTI and vortex pair cases.

Based off of these findings, we are able to track the core of the vortices by locating the

position of the maximum of the vorticity. This measure allows us to know essentially how far a

pair of vortices can travel through various stratified media. If we take these values and plot them

against the maximum distance that RTI are able to travel through the same stratified media, an

interesting relationship can be found. The resulting plot for the spike analysis can be seen in Figure

4.17. The trend that this plot shows in undeniable, and does better at capturing the behavior than

the previous potential energy analysis. Using this method of simulating vortex pairs, we should be

able to predict the stopping point of any RTI in the same isothermal stratification. Essentially what

this means is that, though there is initially enough potential energy to generate the first vortex

pair, isothermal background stratifications are strong enough that they result in the destruction of

these pairs before enough momentum can be generated to further propagate the RTI system.

To test whether or not this is applicable to the entire regime explored in this paper, an

investigation can be done to discover whether or not the low Mach number case of 0.3 will stop at

the predicted point. Though simulating the fully resolved perturbation Reynolds number of 20,000

to this point would be prohibitively expensive, it has already been shown above that Reynolds

number has minimal effect on the growth exhibited. For this reason, the Rep = 5, 000 case was

allowed to continue evolving to either confirm or deny these effects. The results can be seen in

Figure 4.18. Unfortunately, this proves that the predictive power has some limitations. In the

case of the lowest Mach number, the instability is able to generate enough momentum so that
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Figure 4.17: A plot of the growth of RTI spike height compared to the distance traveled through
the same stratified media by a pair of vortices.

the background stratification is overcome, and the RTI growth can continue past the point that

the vortex pair analysis predicts it to stop. This means that somewhere in between M = 0.3 and

M = 0.6 there is a regime change where the isothermal background stratification will not fully

suppress the growth of RTI, and thusly cannot be predicted by the vortex pair interactions.

4.5.3 Expanded Vorticity Results

Even through the comparison of the RTI with the vortex pairs, a full understanding of the

mechanism responsible for the suppression of the instability is still lacking. Through understanding

the evolution of the vorticity, we can also hope to garner a full understanding of this suppression

mechanism. To better this understanding, a time series of the vorticity for the highest and lowest

Mach numbers is shown in Figure 4.19. To get an even clearer picture, we can average the vorticity

in half the domain, i.e. in the region where 0 ≤ x2 ≤ 0.5Ṫhe result essentially allows us to view the

total effective vorticity in the system and this can be viewed in Figure 4.20. To understand the loss

of vorticity in higher strength stratifications, the standard vorticity equation lends some insight, but

it is only through the modified vorticity equation presented in Equation 6.18 that the full picture

can be seen. Referring back to the equation, there are 4 terms of interest, excluding the viscous

dissipation term. The first term is the standard dilatation term, the second term captures the

effects of the perturbation pressure, the third term encompasses the perturbation specific volume
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Figure 4.18: The growth of the Rep = 5, 000 and M=0.3 case over time (blue line) in comparison
to the predicted stopping point based on the vortex pair analysis (the orange dotted line).

or density effects, and the fourth and final term shows the effects of the perturbation baroclinicity.

The first two terms, namely the dilatation and perturbation pressure terms, work on a smaller

order of magnitude than the second two. In Figure 4.21, examples of these fields can be seen for

the highest and lowest stratification strengths. It becomes quite evident that in addition to being

orders of magnitude less than some of the other terms, they actually even oppose each other in

their growth. The dilatation term acts by enhancing the vorticity responsible for driving the

spike downwards and removes the vorticity driving the bubble. On the other hand, the pressure

perturbation term does the exact opposite, i.e. it works to enhance the bubble growth but diminish

the spike growth. In the high Mach number regime, these terms roughly cancel each other out,

but in the lower Mach number regime, the dilatation strength is significantly higher and could

contribute to the asymmetry of the late time growth.

The third and fourth terms are largely responsible for the overall growth of the instability.

In particular, the third term, i.e. the perturbation specific volume, acts as the main mechanism for

the growth of the instability as a whole. In Figure 4.22, the progression of the perturbation specific

volume term can be seen for both the high and low stratification strength case. Immediately, a few

things become apparent. Firstly, the low stratification strength case, i.e. M=0.3, has a significantly

increased magnitude throughout time which results in the generation of more vorticity as a whole.

Secondly, in the low strength scenario, this term mainly acts as source of additional vorticity, except
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(a) M=0.3, t=5 (b) M=0.3, t=10 (c) M=0.3, t=15 (d) M=0.3, t=20

(e) M=1.2, t=5 (f) M=1.2, t=10 (g) M=1.2, t=15 (h) M=1.2, t=20

Figure 4.19: The evolution of vorticity plotted over time (left to right) for both the M=0.3 case
(top) and the M=1.2 case (right).

Figure 4.20: The evolution of the average vorticity over the left half of the domain. The lowest
Mach number continuously increases while the rest of the numbers reach a peak vorticity and then
begin decaying as the vortical structures are broken and suppression is reached.
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(a) Dilitation effects for
M=0.3

(b) Pressure perturbation
effects for M=0.3

(c) Dilitation effects for
M=1.2

(d) Pressure perturbation
effects for M=1.2

Figure 4.21: The resulting fields for the first two terms of the modified vorticity equation for M=0.3
and M=1.2 at a t=15. It can be seen that these two terms largely counteract eachother and act on
a small order of magnitude.
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on the exteriors of the vortex pairs where the fluid is starting to be entrained. In the high strength

scenario, though, this terms acts as both a source and sink making the vorticity to be lost at almost

the same rate that it is gained. This is especially evident in the regions where there are shearing in

which normally additional vorticity would be generated through the Kelvin-Helmholtz instability,

but in this case it is lost.

The final term of interest from the modified vorticity equation is the perturbation baroclinic

term. The resulting evolution of this field can be viewed in Figure 4.23. Immediately, it becomes

apparent that at high stratification, this term has very minimal effects and is the smallest term in

this equations by an order of magnitude. This puts the perturbation baroclinic term at roughly the

same scale as the dilatation term which agrees with the aforementioned scaling. Also in agreement

with the theoretical scaling is the large relative magnitude of the low stratification strength per-

turbation baroclinic term. For low Mach numbers, this term is roughly half an order of magnitude

smaller than the perturbation specific volume term. This means that even though the perturbation

baroclinic term isn’t solely responsible for the growth of the instability, it does still have a great

impact on the evolution, especially when compared to the first two terms. It is of particular interest

to note that in this case, the perturbation baroclinic term helps to add additional vorticity to the

spike evolution but works to remove vorticity from the bubble. Thusly, the presence of this term in

the low Mach number regime leads to this increased asymmetry in the late times, while the absence

of this term in the high Mach number regimes leads to the growth to remain symmetrical.

Finally, we can apply this same analysis to the vortex pair simulations as well. For this

analysis, we find similar results for the first two terms of the equation, meaning that they are a

small enough order of magnitude that they can be neglected. The resulting fields for the effects of

the perturbation specific volume and perturbation baroclinic terms can be viewed in Figure 4.24.

It becomes immediately apparent that the perturbation baroclinic terms in these scenarios are also

negligible, being 2 orders of magnitude less than the effects of the perturbation specific volume

terms. The specific volume terms, though, still act as the major contributor to the evolution of

the scenario. For the high stratification case, this term strictly acts as a sink, removing vorticity
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(a) M=0.3, t=5 (b) M=0.3, t=10 (c) M=0.3, t=15 (d) M=0.3, t=20

(e) M=1.2, t=5 (f) M=1.2, t=10 (g) M=1.2, t=15 (h) M=1.2, t=20

Figure 4.22: The evolution of the perturbation specific volume term as a function of time (left to
right) and Mach number (top and bottom).
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(a) M=0.3, t=5 (b) M=0.3, t=10 (c) M=0.3, t=15 (d) M=0.3, t=20

(e) M=1.2, t=5 (f) M=1.2, t=10 (g) M=1.2, t=15 (h) M=1.2, t=20

Figure 4.23: The evolution of the perturbation baroclinic term as a function of time (left to right)
and Mach number (top and bottom).
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from the core of the vortex pairs. For the low stratification, though, this interaction becomes more

complex causing the addition of vorticity to the core while removing vorticity from the exteriors,

essentially acting to compress the vorticies into smaller but more intense formations. Eventually,

though, the removal of vorticity out-powers the addition and causes the vortex pairs to be com-

pletely destroyed. Both of these mechanisms also act on the RTI growth and contribute to the

evolution of the instability, but their effects can be seen clearer through the vortex pairs.

4.5.4 Three Dimensional Effects

To fully explore this regime, three-dimensional simulations also need to carried out. Because

of the expensive nature of large scale, three-dimensional, direct numerical simulations, only a few

can be completed. In this case, it was chosen to explore the highest stratification to see if the

complete suppressive effects still exist in the expanded dimension. The comparison of the growth

of the two-dimensional M=1.2 case and the three-dimensional one can be seen below in Figure 4.25.

Though it is immediately clear that the two do not match perfectly, it is also clear that the

two simulations exhibit very similar qualitative behavior. To further this similarity, we can explore

the plots of their respective velocities over time in Figure 4.26.

In the end, both instabilities result in being completely suppressed and tend towards a zero

velocity. The main difference is that in three dimensions, there is a larger source of potential

energy to generate the initial vorticity field. This results in a higher strength field, and thusly a

more steady velocity with a higher inertia. This greater inertia is then transferred into a greater

distance that the instability is able to travel before being suppressed and results in a greater bounce

back resulting in a greater magnitude negative velocity. In the end, though, both cases result in

creating a mixing region that does not grow any larger.

4.6 Conclusions

Through this paper we have explored the effects of isothermal background stratifications on

the growth of the Rayleigh-Taylor instability. The Parallel Adaptive Wavelet Collocation Method
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(a) The perturbation
specific volume term for
M=0.3

(b) The perturbation baro-
clinic term for M=0.3

(c) The perturbation
specific volume term for
M=1.2

(d) The perturbation baro-
clinic term for M=1.2

Figure 4.24: The resulting fields for the last two terms of the modified vorticity equation for vortex
pairs in the M=0.3 (top) and M=1.2 (bottom) stratifications.

Figure 4.25: A comparison of the spike growth height for the 2 and 3 dimensional cases with the
Mach number of 1.2.
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Figure 4.26: A comparison of the spike growth velocity for the 2 and 3 dimensional cases with the
Mach number of 1.2.

was effectively applied and used to run high fidelity wavelet based direct numerical simulations

in previously untouched regimes. Through this, it was discovered that isothermal background

stratifications have a wide range of effects on the growth of RTI. Firstly, any stratification with

a strength above the incompressible limit results in the complete suppression of the instability.

Increasing the strength of the stratification causes the suppression of the instability to occur faster

and results in a smaller mixing region. Secondly, it was found that even weak stratifications in the

nearly incompressible limit have an affect on the growth, namely, it results in the exaggeration of

the asymmetry between the bubble and spike growth in low Atwood number RTI. Finally, these

interactions were confirmed to occur in both two and three dimensions.

In addition to the study of RTI, an exploration on the effects of background stratification on

the development of other vortical fields was simultaneously carried out. Vortex pairs were allowed

to traverse through the same stratified media as the RTI, and it was found that the suppressive

effects of the stratification are caused by the destruction of these vortical structures. It has been

found that through the analysis of the distance traveled by the vortex pairs, it is possible to predict

the suppressive power on the RTI case, but when the near incompressible limit is reached, this

predictive method is no longer valid.

Also, a new form of the vorticity equation was presented and studied for both of these cases.

It was found that the dilatation term and the perturbation pressure term had minimal impact
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on the growth of the instability and the evolution of the vortex pairs. For the RTI case, it was

found that the perturbation specific volume term had the greatest impact on the growth and was

responsible for both the addition of vorticity to low Mach number scenarios as well as the removal

of vorticity and the eventual suppression in high Mach number cases. It was also found that for the

RTI case, the perturbation baroclinic term was responsible for the asymmetry in the bubble and

spike formations for low Mach numbers. For the vortex pairs, it was found that the same mechanism

exacts itself through the perturbation specific volume term, but the perturbation baroclinic term

was negligible. This confirms the idea that idea that the perturbation specific volume term is truly

the term responsible for the growth and evolution of vorticity while in a background stratification.



Chapter 5

Effects of Stratification Type on the Single Mode Compressible Rayleigh

Taylor Instability

5.1 Abstract

Wavelet-based direct numerical simulations of compressible, single-mode Rayleigh-Taylor in-

stability (RTI) have been performed in order to study the effects of background stratification on

instability development. Simulations have been performed for different strengths of the initial back-

ground stratification which is varied between the isothermal, isentropic, and isopycnic conditions.

To understand the effects of the vorticity transport between the different stratifications, an analysis

is performed using the vorticity equation. It has been found that background stratifications, regard-

less of strength or type (e.g., isothermal, isentropic, or isopycnic) generally increase the tendency

towards asymmetry between bubble and spike growth, compared to the incompressible case with

similar Atwood number. This effect is the largest for the isentropic stratification. The simulation

with an isothermal background stratification quickly leads to complete suppression of RTI growth

at moderate and high stratification strengths that is expressed through a decaying vortical field.

The isentropic case causes an inhibition of the initial growth, followed by the continuous generation

of vorticity which leads to an increased asymmetry between the bubble and spike. The isopycnic

stratification has the least suppressive effect on the instability growth and, at higher strengths, it

seems to even lead to accelerated growth along with the most vorticity generation. The analysis

of the vorticity equation shows that this happens due to the interaction of the fluctuation of the

specific volume field with the hydrostatic pressure field.
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5.2 Introduction

Rayleigh-Taylor instability (RTI) arises when there is a mean density gradient in the direction

opposite that of an acceleration. This acceleration can result from a gravitational force or the force

from an accelerating front, and the RTI appears form the interaction of this acceleration with

a perturbed interface at the density gradient[50, 59]. RTI can be observed in a huge range of

systems, from large astrophysical flows to flows at the molecular level, and plays a large part

in many engineering systems of interest such as inertial confinement fusion (ICF). A significant

portion of these systems, including ICF[7], supernovae ignition fronts[31, 28, 8], x-ray bursts[39],

and more, involve highly compressible fluid flow effects. Between the acoustic effects, material

properties, and various stratifications, it becomes clear that there is not one single parameter that

can capture the entirety of compressibility effects on the growth of the instability[43, 42]. As the

instability continues growing into late times, the characteristics become more nonlinear, chaotic,

and unpredictable. In short, little is known about these effects on RTI and there is a need to better

understand them [43, 20].

Historically, the incompressible case has been the main subject of RTI studies[57, ?]. Even

in instances where a compressible solver has been used, simulations were carried out in the nearly

incompressible regime and, in many cases, additional numerics were added to dampen out what

few effects of compressibility are left[16]. In very rare cases, compressibility and background strat-

ification effects have been examined, but none have been robust and complete in their analysis of

different stratifications and strengths, leaving knowledge gaps and unanswered questions[20, 36].

This has led to the complete picture of compressibility effects on RTI growth not being well under-

stood. Thusly, a full investigation using direct numerical simulation (DNS) is needed to uncover

any previously unseen physics, and to develop better models so the cascade of energy from small

scales to large can be completely captured.

In order to fully resolve all time and length scales associated with compressible RTI, the

computational cost is quite high. Between the thin interfaces leading to high gradients, acoustic
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waves, and even shock waves generated by RTI itself, a very high resolution is needed. In order

to reach self-similar or asymptotic states, the simulations require domains that are much longer

than the initial perturbation wavelength. Also, the nature of the stratification leads to a range of

scales that spans many orders of magnitude in density, pressure, or temperature. In order to satisfy

stability requirements, the time step must also be kept quite small. When all of these factors are

brought together, it becomes clear that a complex and advanced computational method is needed

in order to actually complete the simulations. To overcome this, the adaptive wavelet based DNS

methodology originally presented in Reckinger et al., [51, 52] will be used.

In this paper, we present an extension of our previous investigation into compressible RTI

[65]. The past research was solely focused on the isothermal background stratifications, but in this

paper we present the extension of this methodology to additional background stratifications, namely

the isentropic and isopycnic cases, along with additional isothermal results. The focus continues

to be on the low-Atwood number motivated by Wei and Livescu [64]. The main goal of this paper

is to investigate the effects of varying both type and strength of background stratification on 2D

RTI, along with developing a complete understanding of the vorticity transport that drives these

mechanisms.

The rest of this paper discusses the following. First, Section 2 has a discussion of the problem

setup and the various background stratifications that will be used in the simulations. It continues

on to also presents the vorticity equation in the form that will be used to study the problem. Then,

in Section 3, there is a brief discussion of the numerical method used to perform these simulations.

Section 4 continues on to present the results of RTI simulations for all background stratifications.

This is then followed with an analysis of the vorticity dynamics and transport that are responsible

for the growth. Section 5 then finishes the paper with the conclusions.
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5.3 Problem Setup

5.3.1 Governing Equations

RTI occurs when a heavier fluid rests on top of a lighter fluid, and the interface is perturbed

all in the presence of an accelerative body force such as gravity. As the perturbation begins to

grow, the heavy fluid falls into the light fluid to create spike-like structures as the light fluid rises

to create bubble-like structures. Initially, if the perturbation amplitude is small, the growth is

described by the linearized equations, but as the growth continues, it becomes more and more

complex [50, 59]. In the early nonlinear stages, vorticity appears at the interface between the two

fluids, and potential flow theory can be used to predict a stage of constant velocity growth. Due to

the continuing addition of vorticity from the Kelvin-Helmholtz instability on the sides of the bubbles

and spikes, the vorticity dynamics quickly become too complex to predict with a simplified model

such as potential flow (i.e., the vorticity distribution cannot be understood from simple vortex

sheets or point vortices)[43]. The interactions lead to a re-acceleration of the bubble/spike growth

and late time chaotic development in the classical incompressible case [64]. How these regions

are affected by compressibility and both stratification type and strength is not fully known. The

complexity of the problem requires full DNS to be carried out in order to ensure the preservation

of all physics in the flow and to truly capture the inverse cascade of energy that develops over time.

Simulations have been performed using the standard multi-species compressible fluid dynam-

ics equations. The full system of equations is[43, 68]

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (5.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (5.2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −∂(pui)

∂xi
− ρuigi +

∂(τijui)

∂xj
− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (5.3)
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∂(ρYl)

∂t
+
∂(ρYluj)

∂xj
=
∂sjl
∂xj

, (5.4)

where ρ is density, p is pressure, T is temperature, ui is the velocity in the xi direction, Y1 is the

mass fraction for the bottom fluid, Y2 is the mass fraction for the top fluid, R is the gas constant,

and the ideal gas law p = ρRT is enforced. Repeated indices imply summation. The specific total

energy is

e =
1

2
uiui + cpT −

p

ρ
, (5.5)

the viscous stress is assumed to be Newtonian and is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (5.6)

the heat flux is written as

qj = −k ∂T
∂xj

, (5.7)

and the species mass flux is defined as

sjl = ρD
∂Yl
∂xj

. (5.8)

To initialize the simulations, the first step is to set the upper fluid to occupy the space where

x1 is greater than 0, and the lower fluid to occupy the space where it is less than zero. This results

in the interface being at x1 = 0 where the species mass fraction is smoothed using the error function

since it is the exact solution to the diffusion equation between the species. For RTI to be present, it

is required that the density be greater in the upper fluid than in the lower fluid at the interface and

that the molecular weight of the upper fluid is higher than the lower. The normalized difference

between the two densities is typically measured by a non-dimensional parameter called the Atwood

number. For the compressible case, the density is not uniform in the two fluids, and so to avoid

additional complications due to thermodynamic effects, we uniquely define the Atwood number as

A =
W2 −W1

W2 +W1
. (5.9)

where Wl denotes the molecular weight of the fluid l, with W1 < W2.
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For this study, the majority of fluid properties were taken to be the same between the two

species. This includes the dynamic viscosity, µ, the heat conduction coefficient, k, the mass diffusion

coefficient, D, and the gravitational acceleration, gi, which is taken to only act in the vertical, x1,

direction. Finally, the gas constants are found based on the molecular weights as

Rl = R Yl
Wl

, (5.10)

where R is the universal gas constant. Following from this, the mixture specific heat at constant

pressure, cp , is calculated as a mass weighted average as well (i.e., cp = cplYl ). The ratio between

the specific heat, γ, is taken to be constant between the two fluids at 1.4.

Compressibility can be characterized by several parameters [42, 43]. Here, we are mainly

concerned with flow compressibility. In this case, the corresponding incompressible limit can be

obtained by increasing the speed of sound through increasing the background pressure (or temper-

ature), such that the densities are not affected. The Mach number associated with this compress-

ibility is defined as the ratio of the gravity wave speed,
√
gλ, and the isothermal speed of sound,

a0 =
√
PI/ρI , at the interface. This gives the definition of M as

M =

√
ρIgλ

pI
, (5.11)

where the subscript I implies ”interfacial”. The interface density, ρI , is found using

ρI =
pI
RTI

(
W1 +W2

2

)
. (5.12)

Since the background state needs to be in hydrostatic equilibrium away from the interface, the Mach

number defined above also characterizes the background stratification. The simulations presented

here have the same ρI , Wl (which fixes the Atwood number), perturbation wavelength λ, and g, so

that varying M results in a change of PI and, subsequently, TI .

5.3.2 Initial Conditions

For this study, three different sets of stratifications were used to initialize the simulations,

namely isothermal, isentropic, and isopycnic. For the isothermal stratification, the density and



99

pressure fields are

p(x1) = pIexp

(
− gx1
RlTI

)
, (5.13)

ρ(x1) =
PI
RlTI

exp

(
− gx1
RlTI

)
, (5.14)

where, in this case, TI is not only the temperature for the interface, but is constant in the whole

domain. For the isentropic case, the background stratification results from

p(x1) = pI

(
1− γ − 1

γ

gx1
RlTI

)(
γ
γ−1

)
, (5.15)

ρ(x1) = ρl

(
1− γ − 1

γ

ρlgx1
pI

)(
1

γ−1

)
, (5.16)

and the temperature field is set to satisfy the equation of state. Finally, for the isopycnic case, ρ is

set to be constant above and below the interface and the pressure field is set as

p(x1) = −ρlgx1 + pI , (5.17)

where PI is added to ensure the correct interface pressure and T is again set to satisfy the equation

of state. An example of the different stratifications can be seen in Figure 6.1.

These equations can be non-dimensionalized and thusly written in therms of the Mach number

and the Atwood number. By taking ρ = ρIρ
∗, p = pIp

∗, x1 = λx∗1, and invoking that RI
Rl

=

1 + (−1)lA, the procedure can be completed. The resulting non-dimensional form of equation 6.9

and 6.10 is

p∗0(x
∗
1) = exp

[
−M2(1∓A)x∗1

]
, (5.18)

ρ∗0(x
∗
1) = (1∓A) exp

[
−M2(1∓A)x∗1

]
. (5.19)

Following the same procedure, the resulting forms for the isentropic case, i.e. equations 5.15 and

5.16, are

p∗0(x
∗
1) =

[
1−

(
γ

γ − 1

)
(1∓A)M2x∗1

]( γ
γ−1

)
, (5.20)

ρ∗0(x
∗
1) = (1∓A)

[
1−

(
γ

γ − 1

)
(1∓A)M2x∗1

]( 1
γ−1

)
. (5.21)
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Finally, applying this procedure to the isopycnic case results in 5.17 becoming

p∗0(x
∗
1) = 1− (1∓A)M2x∗1 . (5.22)

Essentially, using these three backgrounds states gives us one in exponential form, one in

power law form, and one in linear form, allowing for a full comparison of the various states. The

last step is to begin the RTI simulations by applying a small amplitude velocity perturbation

directly at the interface and then carrying the simulation out from that state [52].

5.3.3 Vorticity Equation

The growth of RTI is driven by vorticity. Previously, a comparison had been made between

RTI growth in a stratified media and the evolution of a vortex pair in the same media. An example

of this comparison can be seen in Figure 5.2. This comparison lead to the ability to predict the

height of the growth of the RTI before full suppression stopped the continued growth. It was found

that this prediction capability was valid for isothermal background stratifications of M ≥ 0.6 where

the suppression occurred before any re-acceleration [65]. An attempt at a similar comparison was

made for the isopycnic and isentropic background states and an example can be seen in Figure 5.3.

In this Figure, the movement of the vortex pair in the isothermal background state is compared to

the same vortex pair in an isentropic background state for two Mach numbers. It was found that

the isentropic case caused some suppression at higher Mach numbers, but in all cases the vortex

pair was able to travel until it met a wall. The vortex pair in the isopycnic case was suppressed

even less, and thusly we cannot conclude any true results from the vortex pair comparison.

It can be noted, though, that this predicts an inherently different result for the two new

background states. Namely, if the traversal of the vortex pair tells us anything, it is that vorticity

is suppressed at a much lower rate for the isentropic and isopycnic stratifications. Based on this,

it can be predicted that full suppression should not occur, but more importantly, a full analysis

of the vortical fields generated must be completed in order to understand the dynamics of the

problem. To begin, the non-dimensionalized 2-D vorticity equation is presented below, in which
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Figure 5.1: Density and pressure stratifications for M = 0.3 and A = 0.04 for the three different
stratification types.
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Figure 5.2: A comparison of the vorticity field generated by a vortex pair (left), and Rayleigh-Taylor
instability (left).
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(a) M=0.3

(b) M=0.9

Figure 5.3: A comparison of the vortex pair propagation through stratified media. On the left
of each image are the results for the isothermal stratification, and the right shows the isentropic
stratification results. The main representation is the vorticity field, and to the right of each vortical
field is the resulting density along the centerline of the domain. The top image is for a Mach number
of 0.3, and the bottom image for 0.9. Time is the same for all images.

the characteristic time scale has been taken to be
√
λ/g [65].

Dω∗3
Dt∗

= −ω∗3S∗kk +
1

M2

ε3jk
ρ∗2

∂ρ∗

∂x∗j

∂p∗

∂x∗k
+

√
A

1 +A

1

Rep
D∗j , (5.23)
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For convenience, a substitution can be made to replace ρ∗ with the specific volume, v∗. The

resulting equation becomes

Dω∗3
Dt∗

= −ω∗3S∗kk −
ε3jk
M2

∂v∗

∂x∗j

∂p∗

∂x∗k
+

√
A

1 +A

1

Rep
D∗j , (5.24)

and we can then split v∗ and p∗ into the hydrostatic and fluctuating parts as

v∗(x1, x2, t) = v∗0(x∗1) + v′∗(x1, x2, t) , p∗(x1, x2, t) = p∗0(x
∗
1) + p′∗(x1, x2, t) . (5.25)

After completing this step, we are left with the final form of our non-dimensional vorticity equation

shown below.

Dω∗3
Dt∗

= −ω∗3S∗kk +
1

M2

[
−∂v

∗
0

∂x∗1

∂p′∗

∂x∗2
+
∂p∗0
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∂v′∗

∂x∗2

]
−
ε3jk
M2

∂v′∗

∂x∗j

∂p′∗

∂x∗k
+

√
A

1 +A

1

Rep
D∗j . (5.26)

In this equation, the first term encompasses dilatation effects, while the second term combines

the effects of the initial hydrostatic specific volume interacting with the fluctuating or perturbation

pressure. The third term accounts for the interaction of the background pressure with the pertur-

bation specific volume, and the fourth accounts for the baroclinic generation due to the fluctuating

terms. The fifth and final term, of course, accounts for the viscous dissipation. It is important to

note that the derivatives of the hydrostatic terms can easily be found analytically by referring back

to equations 6.14 through 5.22

5.4 Numerical Method

The compact spatial localization of RTI development, at least during the early stages of

growth, naturally lends itself to using state-of-the-art adaptive grid methods. The nature of the

instability means that it will require a very long domain so that the late time growth can be

fully captured, but also a very small grid spacing is required so that sharp gradients along the

interfaces are well resolved. However, within the majority of the simulation domain, there is no

flow development occurring far away from the interface. As a result, high grid resolution is initially

only needed in the center of the domain, and a coarse grid can be used elsewhere. In order to
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minimize computational cost, a highly adaptive method is utilized so that high grid resolution

is localized to only the areas in which there are important flow features present. It has already

been successfully shown that wavelet-based methods work very well to accomplish exactly this task

[51, 52].

The Parallel Adaptive Wavelet Collocation Method (PAWCM) adapts on physical features

to take advantage of this localization. PAWCM utilizes the inherent properties of wavelets to adapt

the grid to physical quantities in areas of high variation. This leads to PAWCM automatically being

able to add more resolution to areas in which important flow physics are occurring. PAWCM is

already parallelized, has adaptive mesh refinement, direct error control, arbitrary dynamic domain

decompositions for load balancing, and a tree-like data structure for efficient message passing and

data storage. Any of the extra computational cost added by the wavelet transformation is inherently

made up for by the large amounts of compression in the grid for a localized system, such as the

RTI problem examined here [61, 55, 47]. In the end, using PAWCM for the RTI problem allows

the simulation to run using only about 1-10% of the effective grid resolution.

PAWCM essentially works by taking the wavelet transform of the flow field variable of interest.

The resulting wavelet basis functions are localized in both wave number and physical space. From

there, the adaptation and compression of the field happens through thresholding. Essentially,

a threshold parameter, ε, is defined and coefficients greater than that parameter are kept while

coefficients less than it are ignored. This results in the decomposition

u≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl |≥ε||u||

dµ,jl ψµ,jl (x), (5.27)

where u is a variable of interest, φ0k represents the scaling functions on the coarsest level, ψµ,jl

represents the scaling interpolating functions on any arbitrary level, l and k represent physical grid

points, and µ and j represent the wavelet family and level of resolution, respectively [61, 47].

As mentioned above, the wavelet thresholding technique results in any d below the threshold

ε being effectively set to 0 and removed along with the wavelet it is associated with, resulting in the
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removal of the grid point. It is in the regions of high variability that d is also high, and so in smooth

regions, d is low with respect to the j level of resolution and is most likely deemed insignificant.

In the end, this results in a reduced number of points with only these significant points remaining,

while still maintaining an error that is of the order of ε. In addition to these significant points, in

order to ensure accuracy in time stepping, the points adjacent to any significant point on the the

same j level are also retained. Finally, finite differences are used to approximate derivatives with

the addition of ghost points to ensure that the order of accuracy of the simulation is maintained.

To do this finite differencing, second generation wavelets are used so that many different orders of

accuracy are easily accessible [61, 47].

For boundary conditions, all of the faces besides the top and the bottom are taken as periodic.

This allows for the symmetry of the simulation to be maintained while only needing to simulate a

single wavelength. For the top and bottom of the domain, however, the boundary conditions are

much more difficult. The hope is to maintain the illusion of a near-infinite domain, but due to the

generation of pressure and shock waves from the application of the perturbation and the growth of

the RTI, it must be ensured that there are little to no reflections of waves back into the domain,

while also not affecting the background stratification. For this, the top and bottom boundary

conditions have been set to shear-free slip boundaries with numerical diffusion buffer zones before

them. This ensures that as a pressure wave is sent towards the top or bottom boundaries, the

diffusion zone dissipates and dampens the wave causing there to be no need to fully resolve the

wave as it hits the boundary. This approach also eliminates most of the wave energy before it can

reflect. Any reflections that may be left over are weakened enough to have no consequence on the

instability, and the domain is chosen to be large enough so that the instability does not reach these

diffusion zones [52].

5.5 Results

A total of nine two-dimensional (2D) DNS simulations have been carried out for this inves-

tigation. These include the three stratification types (i.e., isothermal, isentropic, and isopycnic)
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along with three stratification strengths for each (i.e., M = 0.3, 0.6, and 0.9). This selection of

simulation parameters allows us to capture phenomena from the near-incompressible limit to high

strength stratifications. Above M = 1.0, the isentropic and isopycnic case provides solutions that

cause unphysical pressures before the domain is large enough to capture the entire flow without

having boundary interactions. This results in limiting the stratification strengths we are able to

simulate to below unity. It can be noted, however, that smaller domain simulations did show good

agreement with the trends that will be presented below. For these simulations, the domain size is

taken to be [0, 1]× [−4,+4] with the smallest allowed grid spacing to be 1
2048 . All of these simula-

tions have been carried out for an Atwood number of 0.04, and a Reynolds perturbation number

of 5,000 for this study. This Reynolds number is defined as

Rep =

√
Agλ3

(1 +A)ν2
, (5.28)

and is a measure of the potential of the perturbation growth to the viscous forces. It also sets the

minimum vortex scales achievable on the mesh[64].

5.5.1 Isothermal Simulations

To begin with, an analysis is done on the isothermal simulations. A time series of the evolution

for the various Mach numbers can be seen in Figure 5.4. As is expected, increasing the Mach number

in this stratification quickly leads to the complete suppression of the instability’s growth. This can

be seen by looking at Figure 5.5. This figure shows the evolution of the bubble and spike tip

height and velocity over time. The heights begin to approach an asymptote for the Mach numbers

above 0.3, and the velocity of the tips begins decaying. As shown previously, Reynolds number has

minimal impact on the growth of the instability in the isothermal stratification, so these results are

in perfect agreement with what has come before.

To continue this investigation, though, and to enhance our understanding of the growth, an

analysis of the vorticity must be completed. It is known that out of all of the terms in the vorticity

equation presented in equation 5.26, only the third and fourth terms, namely the interaction of
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(a) M=0.3, t=0 (b) M=0.3, t=5 (c) M=0.3, t=10 (d) M=0.3, t=15 (e) M=0.3, t=20

(f) M=0.6, t=0 (g) M=0.6, t=5 (h) M=0.6, t=10 (i) M=0.6, t=15 (j) M=0.6, t=20

(k) M=0.9, t=0 (l) M=0.9, t=5 (m) M=0.9, t=10 (n) M=0.9, t=15 (o) M=0.9, t=20

Figure 5.4: RTI growth as a function of time (left to right) and Mach number (top to bottom) for
the isothermal background stratification.
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(a) Height (b) Velocity

Figure 5.5: The growth of the height and corresponding velocities for both the bubble and spike
for various Mach numbers in the isothermal stratification.
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(a) t=5 (b) t=10 (c) t=15 (d) t=20

Figure 5.6: The evolution of vorticity plotted over time for the isothermal M=0.3 case.

the hydrostatic background pressure with the fluctuating specific volume and the perturbation

baroclinic term, have a great impact on the vorticity generation and thusly the growth of the

instability. Essentially, the fluctuating specific volume term is responsible for dictating the overall

growth of the instability while the perturbation baroclinic term is responsible for the development

of the asymmetry and is less present with increasing Mach numbers. An example of these terms is

shown for M = 0.3 in Figures 5.6, 5.7, and 5.8. Notice that the fluctuating specific volume term is

responsible for the transport of vorticity almost everywhere, whereas the perturbation baroclinic

term adds additional vorticity to the spike while removing vorticity from the bubble.

Essentially, viewing these terms and the vortical structures themselves, shows that even in

the lowest Mach number case, there is still significant removal of vorticity. For example, in the left

half of the domain, the entire vortical field should be positive to keep the instability continuously

growing, but the fluctuating specific volume term supplies a significant negative contribution that

results in the removal of vorticity. This can be seen by viewing the average vorticity in that same

half of the domain as shown in Figure 5.9. this figure shows that as opposed to a continuous

addition and growth in vorticity, as is expected for RTI, the lowest Mach number reaches a peak
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(a) t=5 (b) t=10 (c) t=15 (d) t=20

Figure 5.7: The evolution of the third term in the vorticity equation, i.e. the fluctuating specific
volume term, over time for the isothermal M=0.3 case.

(a) t=5 (b) t=10 (c) t=15 (d) t=20

Figure 5.8: The evolution of the fourth term in the vorticity equation, i.e. the perturbation
baroclinic term, over time for the isothermal M=0.3 case.
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Figure 5.9: The evolution of the average vorticity over the left half of the domain. The lowest
Mach number increases and then appears to asymptote, and may even start decaying. The higher
Mach numbers all reach a peak vorticity and then begin to decay to a zero or negative quantity as
the full suppression sets in.

vorticity and stays relatively constant whereas the other Mach numbers even begin to decay. This

effect of the fluctuating specific volume term leads to the suppression of the instability and the

corresponding decrease in the average vorticity that happens at greater rates with higher Mach

numbers.

5.5.2 Isentropic Simulations

The isentropic simulations, though, tell a vastly different story. A quick glance at Figure 5.10

shows the growth and development of the instability over time for the various Mach numbers. One

apparent trend is that in the initial times, the differences in the growth between Mach numbers

is small. This becomes readily apparent by looking at the height of the bubble and spike tip over

time in addition to the velocity of the same point. This can be viewed in Figure 5.11. This shows

that the growth of the instability is relatively constant for the isentropic background state until

approximately t=13. At this point, the background stratification starts affecting the growth, and

while the bubble continues traveling at a nearly constant velocity, the spike starts accelerating

rapidly. This acceleration of the spike along with the increase in asymmetry between the bubble

and spike increases with the Mach number.

Similarly to before, to find the underlying cause of these dynamics, an analysis of the vorticity
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(a) M=0.3, t=0 (b) M=0.3, t=5 (c) M=0.3, t=10 (d) M=0.3, t=14 (e) M=0.3, t=14

(f) M=0.6, t=0 (g) M=0.6, t=5 (h) M=0.6, t=10 (i) M=0.6, t=15 (j) M=0.6, t=20

(k) M=0.9, t=0 (l) M=0.9, t=5 (m) M=0.9, t=10 (n) M=0.9, t=15 (o) M=0.9, t=20

Figure 5.10: RTI growth as a function of time (left to right) and Mach number (top to bottom) for
the isentropic background stratification.
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(a) Height (b) Velocity

Figure 5.11: The growth of the height and corresponding velocities for both the bubble and spike
for various Mach numbers in the isentropic stratification.
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(a) t=5 (b) t=10 (c) t=15 (d) t=20

Figure 5.12: The evolution of vorticity plotted over time for the isentropic M=0.6 case.

must be completed. To start off, we can view a time series of the progression of the vorticity for the

isentropic case. This progression can been seen for the M=0.6 case in Figure 5.12. From this figure,

it is immediately apparent that the isentropic case has a larger magnitude of vorticity than the

isothermal case. This also agrees with the fact that there is both an increase in the heights achieved

by the bubbles and spike tips along with their corresponding velocities over the isothermal case.

More evidence to support this enhanced growth over the isothermal case comes from the average

vorticity plots shown in Figure 5.13, where we both have an increased magnitude and a constantly

increasing field. The underlying reason for this, though, still lies hidden within equation 5.26.

In splitting apart the vortical fields into their respective components, an interesting phe-

nomenon arises. Examples of the respective terms of the vortical fields for both the M = 0.6 and

M = 0.9 cases are shown in Figure 5.14 and 5.15. In these figures the effects of the first, third,

and fourth terms of the presented vorticity equation are shown. It was found that the second term,

namely the fluctuating pressure term, was insignificant in comparison to the other terms. Essen-

tially, doing this analysis showed that the evolution of the fluctuating specific volume term, the

third term in the equation, followed a relatively similar development to the isothermal case, and
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Figure 5.13: The evolution of the average vorticity over the left half of the domain for the isentropic
case. It appears as though the generation of vorticity is constant and ever increasing resulting in a
greater average than in the isothermal case.

is largely responsible for the growth of the vorticity in the field. However, it was found that both

the dilatational effects and the perturbation baroclinic effects act on similar scales. Essentially, in

the isentropic case, the dilatation term becomes significant. The dilatation term and the baroclinic

term both affect the instability in a asymmetric way, adding vorticity at a greater rate and magni-

tude to the spike formation, and affecting the bubble much less. It was found that these terms only

become significant at later times, when the asymmetry begins appearing, and the effects of these

terms increases with increasing Mach number. In the end, the dilatation and baroclinic effects are

responsible for trend in the asymmetry that can be seen in this case.

5.5.3 Isopycnic Simulations

The final background stratification to investigate is the isopycnic case. The evolution of the

instability for all three Mach numbers can be seen in Figure 5.16 below. In this stratification, it

is readily apparent that Mach number plays an inverse role as that in the isothermal case. As the

Mach number is increased, the instability starts growing at a greatly increased rate. To put together

an idea of the complete evolution of the problem, Figure 5.17 shows the evolution of the spike and

bubble distance traveled and the corresponding velocities. It is very interesting to note, that in this

case, very similar patterns arise compared to the isothermal, before they start departing from each

other. By looking at the snapshots at t=15, it can be noted that the growth looks qualitatively
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(a) Dilata-
tion

(b) Fuctua-
tion Specfic
Volume

(c) Per-
turbation
Baroclinic

Figure 5.14: The three important terms for the vortical evolution of the isentropic case with M=0.6
shown at t=20.

(a) Dilata-
tion

(b) Fuctua-
tion Specfic
Volume

(c) Per-
turbation
Baroclinic

Figure 5.15: The three important terms for the vortical evolution of the isentropic case with M=0.9
show at t=20.



118

similar to that of the isothermal case at M=0.3 at t=20. In comparing the distances traveled by

the instability, they are all very similar having moved about 1λ away from the initial interface while

also retaining close symmetry between the bubble and spike. After t=15 for the isopycnic case,

though, the growth departs greatly.

It is important to note that the path departs greatly enough, that the M=0.9 case grows to

a point in which the buffer zone of the boundary layer may play a part after roughly t=18, this

is why this simulation is stopped here. To gather a more full understanding of the growth of this

case, a similar vortical analysis has been completed as the previous scenarios. First, a comparison

of the vortical fields at t=10 is shown below in Figure 5.18. It is interesting to see that at this

time, the vortical fields are almost identical with a slight increase in the magnitude as the Mach

number is increased. A fuller picture can be seen by viewing Figure 5.19 which shows that the

average vorticity is very similar in the early times, but the higher Mach numbers have an increased

vorticity at later times.

Of particular interest in this case, is the increased growth rate at the higher Mach numbers.

The evolution of the vortical field for the highest Mach number, M=0.9, case can be viewed in Figure

5.20. This time series clearly shows the intense increase of the vorticity over time. Essentially,

between t=10 and 18, the vorticity field increases by an order of magnitude! This intense increase

in the vortical field is responsible for the increased growth rate and is unique to the isopycnic case.

Using the vorticity equation, the reason behind this intense increase can be uncovered.

Similarly to the isothermal case, the dilatational field is an order of magnitude less than

the rest of the terms and can therefore be ignored. Also for this case, the second term, namely

the fluctuating pressure term, is analytically zero because the derivative of the initial hydrostatic

background for the density is zero everywhere besides on the density jump itself, which should

be ignored. The last two remaining terms, i.e. the fluctuating specific volume term, and the

perturbation baroclinic term, are plotted in Figures 5.21 and 5.22, respectively. These figures show

that as expected, the fluctuating specific volume term is largely responsible for the growth of the

instability and its resulting vortical field. This can easily be seen by how well the vortical field and
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(a) M=0.3, t=0 (b) M=0.3, t=5 (c) M=0.3, t=10 (d) M=0.3, t=11 (e) M=0.3, t=11

(f) M=0.6, t=0 (g) M=0.6, t=5 (h) M=0.6, t=10 (i) M=0.6, t=15 (j) M=0.6, t=17

(k) M=0.9, t=0 (l) M=0.9, t=5 (m) M=0.9, t=10 (n) M=0.9, t=15 (o) M=0.9, t=18

Figure 5.16: RTI growth as a function of time (left to right) and Mach number (top to bottom) for
the isotpycnic background stratification.
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(a) Height (b) Velocity

Figure 5.17: The growth of the height and corresponding velocities for both the bubble and spike
for various Mach numbers in the isopycnic stratification.

(a) M=0.3 (b) M=0.6 (c) M=0.9

Figure 5.18: A comparison of the vortical fields for the various Mach numbers at t=10 for the
isopycnic case.
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Figure 5.19: The evolution of the average vorticity over the left half of the domain for the isopycnic
case. This shows how the average vortical development is nearly identical in the early times, but
in the late times, the higher Mach numbers have an increased vorticity development.

(a) t=5 (b) t=10 (c) t=15 (d) t=18

Figure 5.20: The evolution of vorticity plotted over time for the isopycnic M=0.9 case.
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this term match. The most interesting result, though, is that for the baroclinic term. In this case,

the baroclinic term is actually able to grow larger than the main generation of vorticity itself, but

this term does not become significant until after t=10. The delayed effects of this term explain the

onset of the late time asymmetry that develops in the isopycnic stratification and results in the

spike growing at a much fast rate than the bubble.

5.6 Conclusions

Simulations of the Rayleigh Taylor instability have been carried out for isothermal, isentropic,

and isopycnic background stratifications. Each stratification was tested at various strengths cor-

responding to isothermal Mach numbers of 0.3, 0.6, and 0.9. It was observed that the isothermal

stratification leads to the full suppression of the instability for all but the weakest background

stratification, but even the weakest background stratification is significantly suppressed in compar-

ison to the growth with the other stratifications. The main mechanism for the growth in this case

is derived from the vorticity generated by the effects of the interaction between the hydrostatic

pressure and the fluctuating specific volume fields whereas the perturbation baroclinic term leads

to a moderate increase in asymmetry for the low Mach number stratifications.

For the isentropic stratification, it was found that the initial growth is suppressed in a similar

way with the isothermal stratification, but at late times there is an acceleration of the spike tips

while the bubble maintains growth at a constant velocity. At higher Mach numbers, the growth

is able to accelerate at an even faster rate and an increased asymmetry is experience between

the bubble and spike. The growth overall is largely dictated by the same term as the isothermal

case, but these unique effects are caused largely by the interaction of the dilatation field and the

baroclinic term which causes a significant increase in the production of vorticity in the spike while

affecting the bubble very little.

Finally, the isopycnic stratification was found to also lead to the initial suppression in the

early growth stages, and then exhibit a similar trend to the isentropic case. As the instability is

allowed to grow in the isopycnic scenario, a similar increase in both growth rate and asymmetry is
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(a) t=5 (b) t=10 (c) t=15 (d) t=18

Figure 5.21: The evolution of the third term in the vorticity equation, i.e. the fluctuating specific
volume term, over time for the isopycnic M=0.9 case.

(a) t=5 (b) t=10 (c) t=15 (d) t=18

Figure 5.22: The evolution of the fourth term in the vorticity equation, i.e. the perturbation
baroclinic term, over time for the isopycnic M=0.9 case.
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exhibited as the isentropic case, but with the bubble also having a slightly accelerated growth. This

case, however, grows at the fastest rate due to the intense generation of vorticity by the fluctuating

specific volume term in the vorticity equation. Also, as the flow continues to progress the baroclinic

term grows very large, even gaining a greater magnitude than the previously mentioned term. This

large spike leads to the highly exaggerated asymmetry experienced in the late times of this case,

and it increases along with an increasing Mach number.

Initially, predictions were made that both the isothermal and isentropic cases should not be

fully suppressed based on the effects of the background stratification on the evolution of vortex

pairs. These predictions appear to have been correct, and neither case shows any sign of the onset

of full suppression. More extreme cases may exist, but this shows that the effects of the exponential

background stratification exhibited by the isothermal case are unique. It is only through a strongly

stratified state, such as an exponential growth, that a RTI can fully be suppressed, but by using

other stratifications the growth can be modified and tuned to achieve the desired results.



Chapter 6

Effects of Stratification on the Multi-mode Compressible Rayleigh-Taylor

Instability

6.1 Abstract

The multi-mode compressible and miscible Rayleigh-Taylor instability (RTI) is studied through

the use of high resolution wavelet-based direct numerical simulations. Using classical methodologies,

the most unstable mode is identified and used as the center of the perturbation wavelength spec-

trum. The simulations are carried out with an isothermal background state with varying strengths

from M=0.3 (weakly stratified) to 0.9 (strongly stratified) at a Reynolds number of 5,000. It has

been found that all background stratifications lead to the suppression of the instability and the

transition to a decaying mixing regime. The width of this regime is determined based on the initial

background stratification strength with weaker stratifications leading to wider mixing regions. This

mixing is caused by the interaction of the hydrostatic pressure and the gradient of the fluctuations

in the specific volume causing the generation of vorticity in the opposite direction as that needed to

cause growth leading to a decay in the overall magnitude of vorticity. This leads to the smoothing

of the initial density jump resulting in a completely stable mixing layer.

6.2 Introduction

Rayleigh-Taylor instability (RTI) is experienced in a two fluid system when there is a density

jump between the two fluids in addition to an accelerative force that opposes this density gradient

[50, 59]. This instability appears in a plethora of physical scenarios from cream mixing into coffee
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all the way to supernova explosions. This wide range of scenarios makes the instability a vastly

interesting choice of subjects to explore for there are a wide range of physics that can either

be included or excluded based on the physical scenario of interest. Reactions, electromagnetics,

miscibility, surface tension, compressibility, and thermal effects are just a few examples of the

additional physics that could be chosen to be included [7, 31, 28, 8, 39]. The full effects of many of

these forces and conditions are not completely understood, and the goal of this paper is to further

the understanding of at least one: compressibility.

In order to gain a better understanding of the role of compressibility on RTI development,

this paper completes a rigorous study on the effects of the background stratification that arises from

satisfying the governing equations in a compressible fluid. Previously, the effects of the isothermal,

isentropic, and isopycnic initial background stratifications on the single mode RTI were studied

[65, 66, 67] but here, this analysis will be extended to the multi-mode regime, beginning with

the isothermal background stratification. This will be done by studying the evolution of the RTI

in different strengths of the background stratification achieved by varying the isothermal Mach

number which essentially correlates to varying the static compressibility effects.

In RTI, the incompressible scenario has been well explored, but the fully compressible case

has not. There have been a significant number of works devoted to understanding the linear

regime of the compressible RTI, but few have been done to understand the nonlinear behavior and

late time growth. Out of these that have been accomplished, many of them have chosen to use

models such as large eddy simulations or Boussinesq approximations but without a truth case to

compare to. Recently, Gauthier has presented a direct numerical simulation (DNS) investigation

of the multi-mode fully compressible RTI at high Reynolds number (i.e. 6× 104) with a very high

stratification (approximately our isothermal Mach equivalent of 2.5) at an Atwood number of 0.25.

He has found that the flow erases the density jump at the interface through turbulence bringing

about the instability’s suppression and ends with this same turbulence decaying within a stable

stratification. The question still remains, though, in multi-mode compressible RTI, what effect

do the stratification strength, Atwood number, and Reynolds number have on the growth of the
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instability [20, 21, 46, 71, 63, 22, 30]?

In order to truly understand these effects, a model cannot be relied on to capture all of the

physics, and also, RTI presents an interesting challenge in which small scale perturbations grow

to drive the large scale mixing. Because of both of these, it is necessary to use DNS to resolve

all of the scales of the flow in order to ensure that the proper physics is observed. Though this

is the case, resolving all of the scales is quite a challenge because of the naturally occurring sharp

gradients and the possible generation of both acoustic waves and shockwaves. If the instability

grows unimpeded, the domains need to be much taller than they are wide to allow for this growth

in addition to allowing the various waves to dissipate. This all leads to the cost of the simulations

being quite high [64].

To overcome these costs, a highly adaptive wavelet based method, the Parallel Adaptive

Wavelet Collocation Method (PAWCM), is used. PAWCM is a fully functional code capable of

solving the entire set of compressible flow equations. By utilizing the natural localization of wavelets

in both physical and wavenumber space, additional grid resolution is able to be generated in areas

with complex dynamical effects (i.e. vorticity generation, density gradients, etc.). This additional

resolution allows all of the scales to be resolved while still maintaining accuracy with little additional

overhead. This method has been used multiple times before and has proven to work well for a highly

localized problem such as this [51, 52, 65, 66].

In order to fully understand the evolution of the problem, a complete understanding of the

evolution of vorticity must be achieved [64]. It has been shown that the vortical generation is

responsible for the growth of the instability, and that the diminishing of this field is responsible for

the suppression. Through the splitting of the pressure and density fields into their hydrostatic and

fluctuating parts, we can investigate the vorticity production in a clear fashion. By analyzing this

and the resulting mixing that occurs, a full picture of the development is achieved.

The rest of this paper is organized as follows. In the first section, a discussion of the governing

equations, initial conditions, and the perturbation generation is presented. In the second section,

a brief overview of AWCM is given. In section three, the results of the simulations, including an in
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depth vorticity analysis, is done. Finally, the fourth and last section presents the conclusions from

this paper.

6.3 Problem Setup

6.3.1 Governing Equations

Rayleigh-Taylor instability (RTI) occurs when a lighter fluids supports a heavy fluid in the

presence of a gravity-like accelerative force. Any perturbations to the interface where the two fluids

meet, results in the loss of the pseudo-stable configuration and the perturbations begin growing

non-linearly resulting in the two fluids to begin mixing [50, 59]. First, they begin evolving according

to linear perturbation theory, but it quickly evolves into a regime that is captured by potential flow

models. After this, the instability begins growing non-linearly and it becomes difficult to predict the

growth. The effects of compressibility are well understood for the early times, but this unpredictable

late time growth is convoluted even more-so by the presence of compressibility effects [43]. In order

to describe the motion of these fluids, the standard set of compressible, miscible, multi-species, and

Newtonian fluid equations are used [43, 68]. This system of equations is

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (6.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (6.2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −∂(pui)

∂xi
− ρuigi +

∂(τijui)

∂xj
− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (6.3)

∂(ρYl)

∂t
+
∂(ρYluj)

∂xj
=
∂sjl
∂xj

, (6.4)

where ρ is density, p is pressure, T is temperature, ui is the velocity in the xi direction, Y1 is the

mass fraction for the bottom fluid, Y2 is the mass fraction for the top fluid, R is the gas constant,
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and the ideal gas law p = ρRT is enforced. Repeated indices imply summation. The specific total

energy is

e =
1

2
uiui + cpT −

p

ρ
, (6.5)

the viscous stress is assumed to be Newtonian and is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (6.6)

the heat flux is written as

qj = −k ∂T
∂xj

, (6.7)

and the species mass flux is defined as

sjl = ρD
∂Yl
∂xj

, (6.8)

where the dynamic viscosity is given by µ = ρν, k is the thermal conductivity, and D is the mass

diffusivity. All of these are assumed to be constant and temperature independent in addition to

being constant between the two fluids. Both the Prandtl and Schmidt numbers are taken to be

unity.

6.3.2 Initial Conditions

In order to remain consistent with the governing equations and the ideal gas law while still

being in an initially hydrostatic state, a background stratification must be used. In the initial

study, it was chosen to minimize the effects resulting from being out of thermal equilibrium, so an

isothermal background was chosen. The pressure, p(x1, x2, t), and density, ρ(x1, x2, t), fields arising

from this state are

p0α(x1) = pI exp

(
− gx1
RαT0

)
, (6.9)

ρ0α(x1) =
pI

RαT0
exp

(
− gx1
RαT0

)
, (6.10)

where pI is the pressure at the interface. These states assume that the gravitational acceleration

acts only in the negative x1 direction (i.e., gi = −gδi1), and the interface between the two fluids
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appears at x1 = 0, with the heavy fluid, i.e. α = 2, existing in the region where x1 > 0 and the

light fluid, i.e. α = 1, in the region where x1 < 0. In these equations, g is the magnitude of the

gravitational acceleration, and the gas constant, Rα = R/Wα ,is based on the molar mass of fluid

α. From these relations, the density at the interface is found by using the ideal gas law which

results in ρI = pI/(RIT0) where RI = R[(W1 +W2)/2]−1.

To study the effects of compressibility, there are multiple options that present themselves,

namely either varying the ratio of heat capacities, γ, or by altering the interfacial pressure, PI

[42, 43]. In this present study, the most relevant incompressible limit is obtained by increasing this

interface pressure. Using this assumption, we can create an isothermal Mach number by taking the

ratio of the speed of a gravity wave to that of the isothermal speed of sound, a0 =
√
PI/ρI . In

order to keep the background stratification the same as that in the single mode studies, the gravity

wave speed used is based on a wave with wavelength equivalent to that of the domain. This results

in an isothermal Mach number being defined as

M =

√
ρIgLx2
pI

⇒ M2 =
gLx2
RIT0

, (6.11)

where Lx2 is the width of the domain in the x2 direction.

To categorize the strength of the density difference at the interface, the Atwood number is

defined as

A ≡ W2 −W1

W2 +W1
. (6.12)

In this Wα is the corresponding molecular weight of the respective fluid, and because α = 2 is the

heavier fluid, A will always be a positive number ranging from 0 to 1. Using a similar argument

to the Mach number, we can define the Reynolds number based on the perturbation. Again, we

can do this by using the width of the domain as our normalization factor to have a one to one

comparison with that of the single mode case. This results in the definition as

Rep ≡

√
AgL3

x2

(1 +A)ν2
⇒ ν =

√
AgL3

x2

(1 +A)Re2p
. (6.13)

Given all of these non-dimensional numbers, the initial states for p and ρ can also be non-

dimensionalized to show their dependence on the Mach and Atwood numbers as shown above. The
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resulting non-dimensional forms of equations 6.9 and 6.10 are

p∗0(x
∗
1) = exp

[
−M2(1∓A)x∗1

]
, (6.14)

ρ∗0(x
∗
1) = (1∓A) exp

[
−M2(1∓A)x∗1

]
, (6.15)

and examples of these stratifications can be seen in Figure 6.1.

Figure 6.1: Density and pressure stratifications for M = 0.3to1.2 and A = 0.04.

After defining these initial conditions, there exists a complete and consistent pseudo-stable

two fluid system with the lighter fluid supporting the heavier fluid. In order for the two fluids to

begin mixing, a perturbation must be applied to the interface. In this present study, a multi-modal

perturbation is applied. The process of generating this perturbation is based on the results found

by Duff and Harlow. Using their methodology, the most unstable mode is found based on the

viscous and dissipative effects. This is shown by finding dispersion curves for the growth factor

as a function of both time and wavenumber. An example of one such series of curves is shown

below in Figure 6.2 [17]. After finding this series of dispersion curves, the most unstable mode is



132

selected from the t = 0.2 curve since it accounts for the early diffusive phase, but will still supply

the highest wavenumbers possible.

After selecting this mode, random amplitudes and phase shifts are found for a sufficient

wavenumber space, and then a hat function is applied with the center at the found mode. The

half-width of this hat function is kept at 10π to allow for an adequate range of modes to be applied

while still keeping them relatively high frequency. Finally, all of the modes are forced to be periodic

in the selected domain. An example of the resulting spectrum generated can be seen in Figure 6.3.

The total perturbation is converted to a velocity perturbation on a mode by mode basis and then

applied through a summation as follows

ḣ(y) = Γ

kmax∑
k=1

ak sin (2πk + θk). (6.16)

In this equation, k is the wavenumber, ak is the corresponding amplitude, θk is the random phase

shift and is limited to 0 ≤ θk ≤ 2π, and Γ is a parameter set to keep the energy constant between

the single and multi-mode simulations.

6.4 Numerical Method

The combination of the need for highly resolved simulations with the inherent locality of the

RTI leads these simulations to be the perfect setup for highly adaptive numerical methods. For this

study, the Parallel Adaptive Wavelet Collocation Method (PAWCM) was chosen for exactly this

reason, and has shown to work very well for this problem. Essentially, at all times, the flow fields

of interest are localized to exist just around the interface of the two fluids. The area in which this

interface exits is very small in comparison to the entirety of the domain, but the interface needs

multiple points across it to resolve the flow. In order to have a large enough domain to account

for the late time growth and wave dissipation would be prohibitively expensive. By using the

adaptivity of PAWCM, though, the domains can both remain as large as needed and have enough

resolution on the interface while still remaining comparatively inexpensive [51, 52].

The basis of how PAWCM works is the by transforming from physical to wavelet space.
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Figure 6.2: The growth factor as a function of both time and wavenumber after taking into account
all of the interactions of viscosity and diffusion. This was found for Rep = 5, 000 and a Schmidt
number of 1.

Figure 6.3: The resulting spectrum and its corresponding random amplitudes after applying the
hat function to the wavenumber space.
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This transform can be performed on any variable, whether it is conserved, part of the system that

is solved, or is derived from other variables. The resulting description of the variable maintains

locality in both physical and wavelet space. The resulting decomposition appears as follows

u≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl |≥ε||u||

dµ,jl ψµ,jl (x), (6.17)

where u is a variable of interest, φ0k represents the scaling functions on the coarsest level, ψµ,jl

represents the scaling interpolating functions on any arbitrary level, l and k represent physical grid

points, and µ and j represent the wavelet family and level of resolution, respectively. ε represents

the thresholding parameter and serves as the function through which the adaptivity is achieved.

Essentially, any coefficient d that is below the thresholding value, is set to 0 and this is equivalent

to removing that grid point from the domain. [61, 55, 47].

The power of this method is that the magnitude of d relates directly to the variation of that

particular variable for the grid point at that level of resolution, j. Essentially, d is large when the

variation is large, and d is small when the variation is small. This means that if a quantity of

interest is fluctuating largely, there will be many more coefficients that are large and thusly more

points will be retained. On the other hand, if the quantity of interest is relatively constant the

coefficients will be small, and not as many points will be kept because less will be needed to exactly

represent the field. To fully generate the grid, a base number of points p needs to be chosen, and a

maximum grid level of j, i.e. a jmax needs to be chosen. Based on this, the maximum resolution in

any given direction is described as 2jmax−1 ∗ p. Finally, in addition to determining which points are

kept and which are discarded, the thresholding parameter ε also acts as a direct source for error

control of the problem. It can be shown mathematically that the error will be O(ε) [61, 55, 47].

All of the sides of the domain are taken to be periodic, and the top and the bottom of the

domain are set to shear-free slip boundaries with numerical diffusion buffer zones before them to

dissipate any incoming waves to minimize reflections. The code solves the governing equations using

fourth order finite differences in space and a third order total variation diminishing Runge-Kutta
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scheme for time integration. The domain is decomposed arbitrarily at each time step using the

Zoltan library in order to ensure the best load balancing during parallelization. When all of these

features are taken into consideration, an ideal environment for simulating RTI is achieved and able

to be executed in an efficient and highly parallel manner [52].

6.5 Results

6.5.1 RTI Simulations

The following simulations have been completed in a 2D domain that ranges from −4 to 4 in

the x1 direction and 0 to 1 in the x2 direction. Rep was taken to be 5,000 and the isothermal Mach

numbers presented here are 0.3 and 0.9. The maximum resolution was the same for both directions

and was taken to be 1
2048 . The initial results of the simulation can be seen below in Figures 6.4

and 6.5 where the mass fraction of the upper (heavy) fluid is visualized to show the progression of

the instability. The same perturbation is applied to both background stratifications, and it can be

seen that at least in the early times, the two simulations produce similar results. As time goes on,

though, the two simulations appear to diverge. To fully investigate this, we can plot the maximum

depth that the heavy fluid travels downwards as the max spike height, and the maximum height

of the light fluid traveling upwards as the max bubble height. These results can be seen in Figure

6.6.

Essentially, the tracking of the height of these two fluids interpenetrating one another can

gives us a general idea of what is happening in the fluid system. This plot shows that it is quite

evident that after the early times, the M = 0.9 case is significantly more suppressed than the

M = 0.3 case. The higher stratification results in the maximum height traveled to begin to

asymptote and the velocities to continually decay towards zero. In the lower stratification case,

though, the growth is still greatly suppressed in comparison to that of the single mode case, but it

still is able to grow at a significantly higher rate than that of the higher stratification [65]. At this

point, it appears as though both the bubble and spike are trending towards a relatively constant
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.4: The progression of the multi-mode Rayleigh-Taylor instability for M=0.3 and Rep =
5000. This figure shows the mass fraction for the heavy fluid.
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.5: The progression of the multi-mode Rayleigh-Taylor instability for M=0.9 and Rep =
5000. This figure shows the mass fraction for the heavy fluid.
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(a) Height (b) Velocity

Figure 6.6: That maximum distance traveled by the heavy and light fluid shown as the bubble and
spike height, plotted in conjunction with the vertical velocities for both as well.
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(a) M=0.3 (b) M=0.9

Figure 6.7: The average values of the mass fraction of the heavy fluid as a function of x1 plotted
at various times for both the M=0.3 (left) and M=0.9 (right) case.

velocity, but further investigation can enlighten the physics happening.

Since these simulations are multi-modal and thusly relatively chaotic in nature, it is difficult

to understand everything that is happening by simply looking at the entire field. Because of

this, and the fact that there are truly multiple different growth rates occurring, a more statistical

approach is needed and can be achieved by either taking the average of the field in the x2 direction

or the RMS value in the same direction in relation to how that variable is best described[21]. This

will leave us with averaged quantities that depends only on the x1 direction and results in a better

insight of the entire problem and its evolution. To begin with, Figure 6.7 shows the average of

the Mass fraction plotted against x1. Comparing these two plots, it is apparent that within their

respective layers, both cases experience a similar amount of mixing, but the low stratification case

is able to grow to a much further distance.

To better understand the mixing, though, a clearer picture can be obtained by looking at the

average values of the density in the same fields. These results can be seen in Figure 6.8. This clearly

shows that the two simulations are both mixing their densities in a way so that they are tending

towards a stable stratification. In the case of the high Mach number stratification, by t = 10 the
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(a) M=0.3 (b) M=0.9

Figure 6.8: The average values of the density as a function of x1 plotted at various times for both
the M=0.3 (left) and M=0.9 (right) case.

mixed layer has washed out any sign of the initial density jump and the stratification has become

uniform and stable leading to the nearly complete suppression of the instability. In the low Mach

number case, the mixing region is working towards a stable and uniform mixture, but it still has

more growth and mixing needed to accomplish this. This informs us that the growth should still

continue at some rate.

The rate at which the growth of the instability occurs at can be measured by u or the velocity

in the x1 direction. At the same time, the rate of the mixing can be measured by the growth of

the v velocity, i.e. the velocity in the x2 direction. Essentially, for the instability to continue

growing, u must also continue to grow to drive the vertical movement of the fluid, and in order

for the two fluids to be exposed to each other for mixing, the v velocity must be present. The v

velocity component increasing corresponds to an increase in mixing, but when it begins decaying

it means that the instability has been fully suppressed and the decaying mixing regime has been

reached [21]. A plot of the RMS values of the velocity components can be seen in 6.9 where it is

observed that the high stratification case reaches a peak in u velocity very quickly, i.e. t=2, and

begins decaying where the v velocity peaks much later, i.e. t=6, before it begins decaying. This



141

(a) M=0.3,u (b) M=0.3,v (c) M=0.9,u (d) M=0.9,v

Figure 6.9: The average values of the u and v components of velocity as a function of x1 plotted
at various times for both the M=0.3 (left) and M=0.9 (right) case.

shows the suppression of the growth of the instability, the transition to increased mixing, and then

followed by the regime of decaying mixing. The low Mach number case, though, has not begun

experiencing this full set of regimes yet. Both the u and v velocity have stagnated and stopped

growing in overall magnitude, but continue to spread further in the domain. This implies that the

suppression is starting to take place but has not completely stopped the growth of the instability

yet.

It is also of interest to investigate the effects of the thermodynamic properties, i.e. the

temperature and pressure. For these, the average pressure varies very little, so the fluctuating

pressure, p
′
(x, y, t) = p(x, y, t) − p0(x), is investigated. The variations in the temperature are

significant enough that they can be detected in their base fields. The resulting averaged fields

are presented in Figure 6.10. Essentially, as the Mach number is raised, the departures from the

background states are larger in their magnitude, but the lower Mach number is able to achieve a

larger area of influence caused by the larger mixing region.
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(a) M=0.3,p
′

(b) M=0.3,T (c) M=0.9,p
′

(d) M=0.9,T

Figure 6.10: The average values of the pressure fluctuations and the temperature as a function of
x1 plotted at various times for both the M=0.3 (left) and M=0.9 (right) case.
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6.5.2 Vorticity Dynamics

Though we have explored many of the resulting effects arising from the multi-mode RTI in

these configurations, a clear picture of the mechanism that causes the suppression and an indication

as to when the suppression will occur is still lacking. In order to fully understand the underlying

mechanisms that drive the instability growth, an analysis on the vortical fields must be completed.

Firstly, the evolution of the vorticity for both the low and high stratifications can be viewed in

Figures 6.11 and 6.12. As is expected, the vorticity fields for the low stratification are able to

spread to a much larger area than that of the high stratification, but it is important to note that

in both cases, the vorticity fields peak at the relatively early time around t = 4. After this peak,

the vortical fields begin to decay, with the decay rate increasing with the Mach number. To fully

see these effects, the average of the magnitude of vorticity in the entire field can be plotted as

a function of time. The results for this are shown in 6.13. This confirms exactly what the time

progression implied, i.e. the peak in vorticity occurs around t = 4 and the vorticity begins to decay.

The high stratification case decays at a faster rate, but it is this decay in vorticity that causes the

suppression observed in the growth.

In order to understand where this decay comes from, the various terms in the vorticity

equation must be explored. For the single mode study, a new non-dimensional version of the 2D

equation for ω3 was presented [65]. The equation was

Dω∗3
Dt∗

=

[
−ω∗3S∗kk − (1∓A)

(
v∗0
∂p′∗

∂x∗2
+ p∗0

∂v′∗

∂x∗2

)]
− 1

M2

[
ε3jk

∂v′∗

∂x∗j

∂p′∗

∂x∗k

]
+

√
A

1 +A

1

Rep
D∗3 , (6.18)

where v is the specific volume. This equation was derived by substituting the density for the specific

volume and then splitting the specific volume and the pressure into their hydrostatic background

states and their fluctuating parts, i.e.

v∗(x1, x2, t) = v∗0(x∗1) + v′∗(x1, x2, t) , p∗(x1, x2, t) = p∗0(x
∗
1) + p′∗(x1, x2, t) . (6.19)

In doing this derivation, the only change is in the non-dimensionalization of the problem replacing

the wavelength of the perturbation, λ with the domain width, Lx2 . This adjustment has already
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.11: The evolution of the vorticity field for the M=0.3 case over time.
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.12: The evolution of the vorticity field for the M=0.9 case over time.
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Figure 6.13: The average of the magnitude of vorticity in the entirety of the domain plotted as a
function of time for both the M = 0.3 (blue) and M = 0.9 (red) cases.
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been accounted for in the definition of M and Rep and thusly the equation works out to be identical.

In investigating this equation previously, it was shown that the first and second terms were

very small scale and had little impact on the growth of the instability, whereas the third term

accounted for the majority of the growth, and the fourth term accounted for the asymmetry in

the bubble and spike evolution. Doing a similar investigation into the orders of magnitude that

these terms present results in the knowledge that the third term, namely the interaction between

the hydrostatic pressure and the fluctuating specific volume, is at least 1.5 orders of magnitude

larger than the other terms. In Figure 6.14 each of these terms is plotted for the M = 0.3 case at a

t = 4, and through this basic view, it becomes quite clear that the fluctuating specific volume term

dominates with the sum of the other terms accounting for at most 5% of the vorticity transport.

The results for the high stratification case are nearly identical, and for this reason, the rest of the

analysis will focus just on the third term.

Since the fluctuating specific volume term is the most important for the vorticity transport

it is imperative that we understand it completely. First, a plot of the development of this term for

M = 0.3 and M = 0.9 is presented in Figures 6.15 and 6.16, respectively. It can be seen that in

both cases the peak in this term happens in the early stages of growth, around t = 2. From there

both of the stratifications show a decay in the field, meaning that the vorticity is also decaying. To

further explore this, the RMS value of this term over time as a function of x1 has been plotted in

Figure 6.17 along with similar plots for the vorticity field itself. By investigating this plot overtime,

it becomes quite clear how the vorticity develops and changes over time, and how this term causes

it. Essentially, in both cases, the peak in vorticity generation happens in the very early time, and

as the instability is allowed to grow, less and less vorticity is generated, but it is generated over

a wider field. In the case of the high stratification, the vortical field continuously decays towards

zero as is expected since it quickly enters the state of the decaying mixing regime. For the low

stratification case, though, the decay seems to slow and asymptote to a constant state that stretches

slightly wider as time goes on. This seems to imply that this low stratification may not become

fully suppressed immediately, but rather it will continue to grow at a constant, albeit slow, rate.
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(a) Term 1 (b) Term 2 (c) Term 3 (d) Term 4

Figure 6.14: The individual terms of the vorticity equation, i.e. equation 6.18. The first term is
the effects of dilatation, the second is the interaction of the hydrostatic specific volume with the
fluctuating pressure, the third is the interaction of the hydrostatic pressure with the fluctuating
specific volume, and the fourth term is the perturbation baroclinic term. The viscous dissipation
is omitted for clarity.
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To truly have a clear understanding of all the effects in play in these simulations, more run time

is needed to see how the low stratification case continues to evolve and whether or not it becomes

completely suppressed when given enough time.

6.6 Conclusions

A continuation of the study into the effects of compressibility on the Rayleigh-Taylor insta-

bility was presented. This study involved extending previous research on the single mode instability

to the multi-mode regime. This study was done using the Parallel Adaptive Wavelet Collocation

Method to perform wavelet based direct numerical simulations in order to fully resolve the entirety

of the scales of the flow but to still keep the cost of the simulations at a reasonable level. These sim-

ulations were carried out with an initially isothermal background stratification with varying levels

of strength based on the isothermal Mach number, i.e. M = 0.3 and M = 0.9. These simulations

were performed at a moderately high Reynolds number of Rep = 5000.

The resulting simulations showed surprising effects. For both stratification strengths, sig-

nificant suppression was observed resulting in the mixing layer and the relevant speed at which

it grew to be significantly reduced when compared to that of the single mode case. The velocity

of the bubble and spike layers for the high stratification do nothing but decay from the initial

conditions, while the velocity of low stratification case seems to asymptote to some constant value.

This effect can partly be explained by investigating the average values in the mixing layer. For the

high stratification case, the density is quickly smoothed to that of a stable stratification, and thusly

the velocity fields peak and then begin to diminish. For the low stratification, though, the mixing

layer is working towards a stable stratification, but because of the weakness of the background

stratification, the layer must become significantly thicker before a completely stable state can be

reached. This is expressed by the average velocities seemingly growing asymptoticly to a constant

state in which the layer slowly continues to grow in size.

To truly fully understand these effects, an investigation into the vorticity and the terms

of its relevant transport equation was done. It was found that the average vorticity in the field
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.15: The evolution of the third term, i.e. the effects of the fluctuating specific volume, of
the presented vorticity equation for the M = 0.3 case.
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(a) t=0 (b) t=2 (c) t=4

(d) t=6 (e) t=8 (f) t=10

Figure 6.16: The evolution of the third term, i.e. the effects of the fluctuating specific volume, of
the presented vorticity equation for the M = 0.3 case.
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(a) M=0.3 (b) M=0.3 (c) M=0.9 (d) M=0.9

Figure 6.17: The RMS values of the vorticity in addition to the fluctuating specific volume term
of the vorticity equation as a function of x1 plotted at various times for both the M=0.3 (left) and
M=0.9 (right) case.
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decays over time. This decay is more intense for higher stratifications, and it can all be explained

through one term in the vorticity equation. It was also found that the majority of the terms in the

vorticity equation account for less than 5% of the transport. The term that accounts for the rest

of the transport is derived from the interaction between the hydrostatic background pressure and

the fluctuating specific volume. Essentially as the simulations are carried out, this term generates

vorticity in the opposite direction as needed for growth and this causes a diminish in the magnitude

of the vorticity generated. This leads the vorticity production to peak very early in the simulations,

and then to quickly decay. In the case of high stratifications, this decay tends towards 0 as the

instability transitions into a decaying mixing regime. For the low stratification, though, the vorticity

generation appears to stall at a small but non-zero rate which accounts for the low velocity growth

that the instability continues to experience. In the end, longer simulation times are needed to truly

capture the full extent of the growth of the low stratification state, but the results from the high

stratification state are very definitive.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Successful high-resolution wavelet-based direct numerical simulations were carried out for the

compressible low Atwood Rayleigh-Taylor instability. It was found that to ensure fully resolved,

physical, and symmetric simulations without the addition of unwanted modes, an investigation

into the initial symmetry of the problem must be used. By exploring the symmetry in the initial

conditions and minimizing the inevitable computational and numeric asymmetry that occurs, the

simulations were able to be carried out until very late times while remaining highly symmetric.

The first portion of the investigation involved exploring the effects of Reynolds number

and isothermal Mach number on the development of the single mode Rayleigh-Taylor instability.

Through this, it was discovered that Reynolds number has a very minimal impact on the overall

growth of the isothermal and compressible scenario. On the other hand, though, it was found that

the isothermal Mach number, which acts as a measure of the static background stratification, has

a significant impact and causes an increase in the asymmetry between the bubble and spike devel-

opment in addition to causing the complete suppression of the instability growth at moderate to

high Mach numbers. This effect was explored by analyzing the vorticity transport terms and also

investigating the evolution of a vortex pair in the same stratification. Through this, it was shown

that the fluctuating baroclinic term was responsible for the asymmetry at low Mach numbers, while

the generation of vorticity in the opposing direction by the perturbation specific volume term was

responsible for the suppression. The vortex pairs were able to be used to predict the height of the



155

final mixing region for Mach numbers of 0.6 and above, and they were also suppressed through the

same mechanism.

The second full investigation was done by comparing the effects of the background strati-

fication type on the instability growth. The isopycnic and isentropic background stratifications

were thusly compared to the isothermal stratifications. Through this, it was found that in the

early times, all of the stratifications caused an initial suppression to the growth in the linear and

potential flow regimes, but after that, various effects dominated depending on the stratification. As

stated before, it was again confirmed that moderate and high Mach number stratifications caused

complete suppression in the isothermal case and this was caused by the perturbation specific vol-

ume term in the vorticity transport equation. For the isentropic case, though, increasing the Mach

number of the stratification caused both an increase in the late time asymmetry between the bubble

and spike by accelerating the growth of just the spike. This was due to the vorticity transport done

by the interaction of the dilitation, the perturbation baroclinic term, and the fluctuating specific

volume term. Finally, the isopycnic case was found to accelerate the growth of the instability with

increasing Mach number. For this stratification, the flow remained highly symmetric until the

fluctuating baroclinic term became significant, and then became highly asymmetric between the

bubble and spike.

The third and final investigation was done on the effects of the isothermal stratification on the

multi-modal RTI. To do this, the same stratifications were investigated as the first simulation with

a focus on the M = 0.3 and M = 0.9 cases. It was found that for the multi-mode case, all instability

growth was highly suppressed. The only significant term was the fluctuating specific volume term,

and it continued to generate vorticity in the opposing direction to the growth. Essentially, this

removal of vorticity leads to the instability reaching a maximum growth height and then entering

into a decaying mixing regime in which the two fluids mix and the kinetic energy is slowly dissipated.

This region was investigated by looking at the average values across the domain, and it was found

that given enough time, the simulations worked towards a completely stable state.

When all of this is taken into consideration, the full set of simulations can be examined
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through a different lens. Essentially, we must ask the question: in what scenario would each of

these stratifications be useful? Well, this series of investigations showed that if the desired result is

to suppress the growth of the instability, strong isothermal conditions are ideal, with multi-modal

perturbations being the most suitable since they are suppressed even faster. If intense growth is

wanted, especially at late times, the isopycnic stratification is the desired state, with the Mach

number essentially controlling the speed at which the mixing occurs. The isentropic simulations

show that if an asymmetric growth is desired, than the isentropic background stratification would

be the best. Overall though, the key is more so that the understanding of the effects of these

various stratifications has been greatly increased, and this knowledge can now be put to use in real

world applications and further simulation efforts.

7.2 Future Work

As always, there is more work that can be accomplished on this project. The most important

next step is to broaden the results of the multi-mode conditions. An exploration that will be needed

by the community at large is a full sweep of the Reynolds number effects and dimensionality in

addition to the exploration of all of the various background stratifications. In essence, the multi-

mode investigation could potentially lead to multiple more papers in which all of the various effects

found in the single mode case are explored.

Besides extending the multi-mode results, there are many other directions in which this

study could go in the future. There are many effects that have yet to be studied and are not fully

understood. Studying such things as random equilibrium initializations and initializations where

the thermodynamics are very much out of equilibrium would yield interesting results. The inclusion

of more physics, such as magnetism or reactions, into the problem would surely uncover new effects.

This code base is actually already easily adapted to include reactions between two species, and some

preliminary work on electromagnetic effects has been completed as well. Also, there has been some

work extending and exploring RTI in the immiscible case with PAWCM by using a newly found

and developed level-set method, but all three of these projects require significant more time before
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they can come to fruition. At this point, the possibilities are seemingly endless, but realistically,

this project has already pushed PAWCM to its limits in its current form. Any intense future work

will most likely require the use of a different code base and the redevelopment of the environment

for suitable use.
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