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The performance and degradation of lithium batteries strongly depends on electrochemical,

mechanical, and thermal phenomena. While a large volume of work has focused on thermal man-

agement, mechanical phenomena relevant to battery design are not fully understood. Mechanical

degradation of electrode particles has been experimentally linked to capacity fade and failure of

batteries; an understanding of the interplay between mechanics and electrochemistry in the battery

is necessary in order to improve the overall performance of the battery. A multi-scale model to simu-

late the coupled electrochemical and mechanical behavior of Li batteries has been developed, which

models the porous electrode and separator regions of the battery. The porous electrode includes

a liquid electrolyte and solid active materials. A multi-scale finite element approach is used to

analyze the electrochemical and mechanical performance. The multi-scale model includes a macro-

and micro-scale with analytical volume-averaging methods to relate the scales. The macro-scale

model describes Li-ion transport through the electrolyte, electric potentials, and displacements

throughout the battery. The micro-scale considers the surface kinetics and electrochemical and

mechanical response of a single particle of active material evaluated locally within the cathode re-

gion. Both scales are non-linear and dependent on the other. The electrochemical and mechanical

response of the battery are highly dependent on the porosity in the electrode, the active material

particle size, and discharge rate. Balancing these parameters can improve the overall performance

of the battery. A formal design optimization approach with multi-scale adjoint sensitivity analysis

is developed to find optimal designs to improve the performance of the battery model. Optimal

electrode designs are presented which maximize the capacity of the battery while mitigating stress

levels during discharge over a range of discharge rates.
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Chapter 1

Introduction

1.1 Motivation and Goals

Batteries are a critical component in modern electronics, from micro-electronics, to iPods,

to hybrid and electric cars. There is a constant and consistent demand for more reliable, longer

lifetime, higher energy density, and increased rate capability from batteries. In addition, electro-

chemical energy storage is becoming a key component in integrating renewable energy sources into

the power grid by mitigating the requirement to use power as it is generated. Improvement in

rechargeable battery technology is enabling the production of today’s hybrid-electric and all elec-

tric vehicles. Research on battery technology seeks to improve the energy density, rate capability,

and/or lifetime of the battery. Much of this research is focused on the materials systems of the

battery components while some is focused on electrode and overall battery architectures. Lithium

ion chemistries are among the most promising material systems due to their higher energy densities

and operating voltages as compared to other chemistries. However rechargeable lithium batteries

generally have much shorter lifetimes, and are limited in number of charge-discharge cycles due to

degradation of the electrodes and electrolyte[79]. This degradation, as well as the overall battery

performance, has been experimentally linked to electrochemical, mechanical, and thermal phenom-

ena. While a large volume of work has focused on thermal management, an understanding of the

interplay between mechanics and electrochemistry in the battery is necessary in order to improve

the overall performance of the battery. This dissertation extends existing electrochemical models

of lithium-ion battery performance to include mechanical effects and applies a design optimization
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methodology to improve the battery performance through functionally graded electrode structures.

Battery performance is often measured via (1) Ragone charts[17] which plots the power (or

rate) capability vs. usable energy storage capacity and (2) in terms of capacity fade when charging

and discharging the battery. Typically Ragone plots show a tradeoff between power and capacity -

at low power requirements, the energy storage capacity is high, however as the power requirement

increases, the storage capacity decreases. Figure 1.1 shows the power versus energy storage capacity

for typical electrochemical energy storage devices. The diagonal lines show the time constants for

these devices. As the power requirement increases, the devices reach a power plateau. This figure

Figure 1.1: Ragone plot for electrochemical energy storage devices[66]

compares capacitors, electrochemical capacitors, and several battery chemistries. Capacitors have

the highest power capability, but are limited in the amount of energy they can store; electrochemical

capacitors are capable of greater energy storage, but with lower high power capability. Battery

technologies have a lower power capability, but increased energy storage capacity. Four types of

batteries are shown here, at the left is PbO2/Pb or lead-acid battery, next is Ni/MH, then Li-ion,
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and Li-primary batteries. Li-primary batteries are single-use batteries and have the highest energy

storage capacities, while Li-ion (or secondary) batteries are rechargeable Li batteries. The focus of

this study is on Li-ion rechargeable batteries. The goal is to increase the energy storage capacity -

shifting the lines to the right, and to increase the power capability - extending the lines upwards -

without sacrificing energy storage capacity.

Capacity fade of the battery when cycling (charging and discharging) the battery is an area

of great concern as even a slight loss in capacity during each cycle will be significant when the

battery is cycled 3,000 to 10,000 times as is needed in many applications.[67] Experimental studies

have linked capacity fade with cracks in electrode particles[76] and shown that electrode particles

are not uniformly strained during cycling [77].

This dissertation focuses on understanding and simulating the interplay between electrochem-

ical and mechanical phenomena in the battery and subsequently improving the performance of the

battery by optimizing the electrode structures. To this end, a multi-scale model to simulate the

coupled electrochemical and mechanical behavior of Li batteries has been developed, which models

the porous electrodes and separator regions of the battery. A multi-scale finite element approach is

used to analyze the electrochemical and mechanical performance. This model includes a macro- and

micro-scale with analytical volume-averaging methods to relate the scales. The macro-scale model

describes Li-ion transport through the electrolyte, electric potentials, and deformations throughout

the battery. The micro-scale considers the surface kinetics and the electrochemical and mechanical

response of a single particle of active material evaluated locally within the electrode region. Both

scales are non-linear and dependent on the other. The electrochemical and mechanical response of

the battery are highly dependent on the porosity, the electrolyte volume fraction, in the electrode;

the electrode active material particle size; and discharge rate. Balancing these parameters can

improve the overall performance of the battery. A formal design optimization approach is used to

find optimal electrode designs to improve the performance of the battery model via gradient-based

optimization schemes. To this end, a decomposition method for computing the multi-scale adjoint

sensitivities is developed which significantly reduces the computational time required for sensitivity
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analysis versus numerical finite differencing. Optimal electrode designs are presented which max-

imize the capacity of the battery while mitigating stress levels during discharge over a range of

discharge rates.

1.2 Structure of Dissertation

This dissertation summarizes the author’s work completed during her Ph.D. studies. The

majority of the work has been published; therefore this document focuses on the fundamental

aspects of the study, outlining the basic concepts and theory with the publications included in the

Appendices.

Chapter 2 introduces the multi-scale battery model and investigates the electrochemical and

mechanical affects at both scales. This model is used to simulate the battery behavior in the

author’s publications, see Appendices A-D. Additionally, previously unpublished results from a

single-scale study on silicon anodes are included in this chapter.

Chapter 3 focuses on design optimization as applied to Li batteries. A multi-scale adjoint

sensitivity analysis method was developed to perform the sensitivity analysis on the battery using

both macro- and micro-scale design variables. This efficient computation of the design sensitivities

allows for the use of gradient-based optimization algorithm to predict optimal electrode structures.

The development of the multi-scale adjoint sensitivity approach is detailed in C. Publications C

and D present results of completed multi-scale optimization studies for lithium batteries.

Chapter 4 summarizes the completed study and ideas for future work.

1.3 Summary of Publications

Brief summaries of the author’s publications are provided in this section.
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1.3.1 Summary of A: Numerical modeling of electrochemical-mechanical in-

teraction in lithium polymer batteries

This study presents a multi-scale finite element model for lithium batteries to study elec-

trochemical and mechanical interaction phenomena. The battery model consists of a lithium foil

anode, a separator, and a porous cathode that includes solid active materials and a liquid elec-

trolyte. Three length scales are considered in this model. At the macro-scale, transport processes

and mechanical deformations in the entire battery layer are modeled; at the micro- scale, a single

active material particle in the cathode is modeled; and at the meso-scale, homogenization methods

based on particle aggregates relate the micro- and macro-scales.

The macro-scale model is based on the work of Doyle et. al[29, 36, 35, 30, 28] which

utilizes porous electrode theory [59, 28] and concentrated solution theory [59, 28] to predict the

electrochemical response in the separator and electrode. This model is applicable to lithium-ion

batteries with at least one porous insertion electrode in which the electrode acts as a host for

the lithium ions tranported through a binary electrolyte. This model is extended to account for

elastic and inelastic deformations due external loads and electrochemical eigenstrains resulting from

swelling of the aggregate structure. The micro-scale model is based on the work of Zhang et al. [84],

and models the Li diffusion into the particle and resulting diffusion-induced stresses in the particle.

A multi-scale approach to analyze the surface kinetics and electrochemicalmechanical phenomena

within a single spherical particle of the active material is developed. At the meso-scale, analytical

homogenization methods are used to relate the macro- and micro-scales via an effective flux of

Li+ intercalating into the active material particles from the electrolyte and an effective chemically

induced eigenstrain due to the swelling of the particles.

Results of this study show the time-evolution profiles of the Li+ concentration in the elec-

trolyte, stresses in the electrode due to aggregate swelling of the particles, and Li concentration

and diffusion induced stresses in individual active material particles. The influence of discharge

rate, electrode particle size, and the effect of external mechanical stress are investigated. Results
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show lower stress levels for lower discharge rates, better electrochemical performance and lower

particle-level stresses for smaller cathode particle sizes, and no influence of mechanical boundary

conditions on electrochemical performance.

1.3.2 Summary of B: Stress Generation in Silicon Particle During Lithium

Insertion

This study focuses on the single electrode particle model for spherical silicon particles. The

model is based on the micro-scale model presented in [39] (Appendix A). The insertion of lithium

into a spherical particle is simulated using the fully-coupled diffusion-elasticity model with Butler-

Volmer surface kinetics. Simulations predict the evolution of concentration, displacements, and

stresses in the particles during the initial insertion of Li. The particle response depends strongly

on the reaction kinetics and the resulting stresses can be above the tensile failure limit of silicon

depending on the particle size and discharge rate. Results of this study predict peak particle stress

as a function of Li insertion rate and particle size. These results can be interpreted as a failure

map to predict when particles can be expected to fail when incorporated into a battery.

1.3.3 Summary of C: Multi-Scale Design Optimization of Lithium Ion Bat-

teries with Adjoint Sensitivity Analysis

This study applies design optimization to the battery model introduced in [39] (Appendix A)

to predict optimal electrode architectures to improve the energy storage capacity of the battery. A

computational framework for optimizing the multi-scale lithium ion battery cell model is developed.

A key component of the optimization methodology is the development of the adjoint sensitivity

equations for the multiscale battery model. The efficient solution of the adjoint equations relies

on the decomposition of the multiscale problem into multiple, computationally small problems as-

sociated with the individual realizations of the micro-scale model. This decomposition method is

shown to significantly reduce the computational time needed for sensitivity analysis versus numer-

ical finite differencing. The potential of the proposed optimization framework is illustrated with
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numerical examples involving both macro-scale and micro-scale performance criteria and design

variables. The usable capacity of a lithium ion battery cell is maximized while limiting the stress

level in the electrode particles through manipulation of the local porosities and particle radii. The

optimization results suggest that optimal functionally graded electrodes improve the performance

of a battery cell over using uniform porosity and particle radius distributions.

1.3.4 Summary of D: A Design Optimization Methodology for Li+ Batteries

This study applies the design optimization methodology developed in [40] (Appendix C),

to the optimization of the battery electrode over a range of discharge rates. A multi-objective

formulation of the design problem is introduced to maximize the usable capacity over a range of

discharge rates while limiting the mechanical stresses. Design optimization for functionally graded

battery electrodes is shown to improve the usable energy capacity of Li batteries predicted by

computational simulations by numerically optimizing the electrode porosities and particle radii.

Studies were performed on both half and full cell configurations resulting in distinctly different

optimal electrode designs. The numerical results show that the highest rate discharge drives the

simulations and the optimal designs are dominated by Li+ transport rates. The results also suggest

that spatially varying electrode porosities and active particle sizes provides an efficient approach to

improve the power-to-energy density of Li+ batteries. For the half-cell configuration, the optimal

design improves the discharge capacity by 29% while for the full cell the discharge capacity was

improved 61% relative to the initial design. Most of the improvement in capacity was due to

the spatially varying porosity, with up to 5% of the gains attributed to the particle radii design

variables.



Chapter 2

Battery Simulation

This chapter presents a broad overview of battery operation and previous work, outlines the

multi-scale battery model used in the author’s work - references [39, 40, 41] (Appendices A, C,

and D), and presents previously unpublished results from a single-scale study on silicon anodes

extending the work from Ref. [42] (Appendix B).

2.1 Battery Operation & Simulation

A typical Li battery is shown in Figure 2.1 and consists of current collectors, porous electrodes,

and separator regions. The porous electrode includes active insertion compounds, conductive ad-

ditives, and binders with electrolyte filling the pores. The liquid volume fraction of electrolyte in

referred to as the porosity, ε, and in a typical battery is 30%[79]. When the battery is discharged, Li

in the anode oxidizes. Electrons flow through the external circuit to the cathode and lithium ions,

Li+, are transported through the electrolyte via diffusion and migration to the cathode where they

are reduced. In modern Li batteries, Li inserts into a host electrode material rather than plating

onto metals, and these compounds shrink and swell as a result of the Li insertion and de-insertion.

The resulting stresses can be high enough to fracture the active particle and experimental studies

have linked mechanical effects with capacity fade[76] and localized degradation of the electrode[77].

These studies demonstrate that it is necessary to consider mechanical effects when designing a

battery.

Here, the battery performance is investigated using a multi-scale model to simulate the full
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Figure 2.1: Battery cell.

battery and a single-scale model for Li concentration and stress fields in electrode particles during Li

insertion. This chapter overviews previous work on battery simulation, and presents the multi-scale

battery model and single-scale electrode particle model that are the basis for the publications.

2.2 Previous Work

Much of the previous work on modeling lithium batteries has focused on electrochemical and

thermal phenomena in porous electrodes[9]. West et al.[78] and Doyle et al.[29] simulate electro-

chemical performance in lithium batteries using a porous electrode model. The porous electrode

approach treats electrode regimes as a continuous superposition of solid electrode material and

liquid electrolyte domains characterized by the relative porosity or liquid volume fraction of the

electrolyte. This porous electrode approach has also been applied to Ni-MH batteries[45] and

extended to include thermal effects in Ni-MH batteries[44] as well as thermal effects in lithium

batteries[74, 54]. Kumaresan, Sikha, and White[54] compared their electrochemical-thermal model

to experimental results to determine the solid-phase diffusion coefficient, kinetic constants, and

thermal conductivity of the battery showing good agreement between predicted and experimen-

tal discharge curves and temperature increases. Porous electrode models have been extended to

include capacity fade[68] and use more detailed models for the electrode conductivity, account-

ing for electron transfer between different-sized particles and materials including the conductive
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carbon additives[70]. More recent work has extended the porous electrode to three-dimensions to

resolve electrochemical, electrical, and thermal fields in large-format stacked prismatic battery cell

designs.[51]

Some studies have opted to investigate the effects of the detailed electrode micro-structure.

Wang and Sastry[75] studied the effects of regular and random arrays of cathode particles on the

achievable capacity as compared to the theoretical capacity of the battery showing that, at low

discharge rates, regular arrays can increase the achievable capacity by a factor of 10 compared to

random arrays. Garcia et al.[38, 37] developed a two-dimensional single-scale model that includes

the swelling of the electrode particles upon lithium insertion and studied the performance of var-

ious nano-structured electrode layouts showing that decreased distance between the electrodes is

desirable.

Consideration of mechanical phenomena during charge and discharge is important for under-

standing fade and failure mechanisms in the battery as experimental studies have linked capacity

fade of batteries to crack growth in the electrodes[76, 77]. Stress-induced surface cracks in elec-

trode particles have been shown to nucleate new solid electrolyte interphase (SEI) layer growth

and substantially contribute to the loss of Li, resulting in capacity fade.[27] In situ observations of

the expansion of graphite particles upon lithiation have shown that the particle level strains are

an order of magnitude higher than at the composite level due to the porosity of the electrode and

that overall porosity changes significantly upon lithiation.[63]

Several studies have focused on modeling the electrochemistry, stress, and crack formation in

a single electrode particle. Zhang et al.[82] modeled lithium intercalation into a single Mn2O4 par-

ticle with surface kinetics governed by a cyclic linear potential sweep and compared the predicted

current density vs. applied voltage from their model to experimental work showing good agree-

ment. Christensen and Newman[18] have developed a model for the growth of the solid electrolyte

interphase layer on negative electrode particle surfaces to quantify capacity loss in a cell. Huggins

and Nix[46] developed a one-dimensional model to predict stresses and fracture in electrodes un-

dergoing volume changes. Their model predicts a terminal particle size below which particles are
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not expected to crack. Aifantis and co-authors[1, 2, 3] have modeled crack formation in electrodes

using facture mechanics; cracks in the electrode may break off pieces of the active material result-

ing in capacity fade due to loss of electrical contact and new SEI layer growth. Aifantis et al.[3]

used fracture mechanics to predict when an electrode particle will fracture, finding that smaller

particles are preferable. Christensen and Newman[21] predicted, for a single spherical particle,

stress generation and fracture in lithium insertion compounds finding that particles are more likely

to fracture when used in high-power applications. In subsequent work[20], they also modeled the

effects for a spherical particle of lithium manganese oxide, predicting that the intercalation-induced

stress can exceed the strength of the particles. Zhang et al.[84] studied intercalation-induced stress

in LiMn2O4 particles, treating the intercalation-induced stress analogously to thermal stress and

extending the spherical model to ellipsoidal particles. This study includes the effect of stress en-

hancing diffusion within the particle, however it ignores possible surface tractions due to external

mechanical loads, surface stress effects, and constraint of the particle by the surrounding electrode

matrix. An extension of this study also included heat generation within the single particle.[83]

Cheng and Verbrugge developed analytical models for diffusion-induced stresses for both galvanos-

tatic and potentiostatic operation of cells,[14, 15] with and without the influence of surface kinetics

and not accounting for the influence of stress on diffusion.

Studying the mechanics of batteries at the cell level is necessary to understand the effects

of swelling of the electrode particles, applied loads due to packaging of a battery in a pack, or

incorporating the battery into a composite as a structural member. The swelling of electrode

particles with Li insertion has been harnessed to utilize a battery as an electrochemical actuator

with reversible linear strains of ∼3% under zero stress and 1.5% strain under 10MPa stress.[16]

Batteries have been incorporated into structures and studies on the effect of external mechanical

loads have been performed. Thomas and Qidwai[73] have placed commercial lithium batteries in

the wings of microair vehicles (MAV) resulting in improved range of the MAV. In their mechanical

model of structurally integrated batteries, Thomas and Qidwai[73] assumed that the effects of

electrochemical-mechanical interactions are negligible. Pereira et al. have studied experimentally



12

the effects of flexural deection[61] and uniaxial pressure[60] on lithium thin film batteries. Their

observations suggest that up until structural failure of the battery, the electrochemical performance

of the battery is not signicantly affected by external mechanical loads. These authors showed in a

subsequent paper[62] that the same batteries could be successfully incorporated into a carbon fiber

composite lay-up without degrading the battery performance to improve the mechanical properties

of the composite.

2.3 Multi-Scale Battery Model

The multi-scale battery model developed in the author’s work is an extension of Doyle and

Newman’s electrochemical battery model[29, 36, 35, 30, 28] to include mechanical effects across

the full electrode and at the single electrode particle level. Here, the electrodes are simulated

using porous electrode theory[59, 28], treating the electrode as a superposition of solid and liquid

phases, rather than modeling the detailed microstructure of the electrode. The model is extended

to include deformations due to external mechanical loads and swelling of electrode particles upon

lithiation. The effects of Li+ transport in the electrolyte, Li transport in the electrode particles,

local electrode surface kinetics, diffusion-induced stresses in the electrode particles, and resulting

aggregate swelling of the electrode are considered. Solid electrolyte interphase (SEI) layer growth,

chemical side reactions, thermal effects, and degradation effects due to cycling and aging are not

included.

This model results in two length scales: at the macro-scale, transport processes in the elec-

trolyte, electric potentials in both the electrode and electrolyte, and mechanical deformations across

the full battery are modeled; at the micro-scale, the response of a single representative electrode

particle is modeled; a meso-scale is used to relate these two scales using volume averaging homoge-

nization methods. An overview of numerical multiscale modeling methods can be found in Kanoute

et al.[48]. This model follows the approach of Miehe et al.[57, 56] and Feyel[32, 34, 33], using fi-

nite element models at both macro- and micro-scales bridged by volume averaging homogenization

methods[58, 7, 8]. At a given material point in the macro-scale model, the local, volume-averaged
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response of the micro-scale model is evaluated.

The model is verified against previously published numerical studies[84, 29] on which this

model is based. Additionally, previous studies have qualitatively compared discharge curves gener-

ated by the electrochemical portion of this model with with experimental data with good agreement.[4,

54]

2.3.1 Governing Equations at Macro-Scale

At the macro-scale, the Li+ concentration in the electrolyte, cl, electric potentials in the

electrode, φ1, and electrolyte, φ2, phases, and displacements, u, are modeled.

The transport of Li+ ions through the electrolyte and the current carried by the solid and

liquid phases are described by Eqns. 2.1-2.3.[28, 29, 36, 35, 30] The macro-scale mechanical response

is assumed to be linear-elastic with a volume-averaged eigenstrain model to account for swelling of

the micro-scale electrode particles, Eq. 2.4.

ε
∂cl
∂t

+∇ ·N +
1

F

∂t0+
∂cl

i2 · ∇cl −
(
1− t0+

)
jeff = 0 (2.1)

∇ · i1 + Fjeff = 0 (2.2)

∇ · i2 − Fjeff = 0 (2.3)

∇ · σ + b = 0 (2.4)

with constitutive equations:

N = −Deff∇cl (2.5)

i1 = −λ∇φ1 (2.6)

i2 = −κeff

[
∇φ2 −

RT

F

(
1− t0+

)
∇ln(cl)

]
(2.7)

σ = C : (e− ech) , e =
1

2

(
∇u +∇uT

)
(2.8)

Deff is the effective diffusion coefficient of Li+ in the electrolyte, λ is the conductivity of the electrode

particles, κeff is the effective ionic conductivity of the electrolyte, C is the homogenized elasticity
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tensor, and ech is the volume-averaged chemically induced eigenstrain due to the aggregate swelling

of the electrode particles. Eq. 2.1 describes the transport of Li+ ions through the electrolyte where

ε is the porosity, N is the diffusive flux, and F is the Faraday constant. In addition to the diffusive

flux, two source terms account for the migration of Li+ ions due to the current carried by the

electrolyte, i2, and for the effect of Li+ ions leaving the electrolyte and intercalating into the solid

material. The transference number, t0+, is the percentage of the current in the solution carried

by the Li+ ion rather than the anion in the solution; this is generally a function of the Li+ ion

concentration in the electrolyte, cl. Li+ ions leaving the electrolyte and entering the active electrode

material results in an effective pore wall flux, jeff. The currents in the solid active material and

liquid electrolyte phases, i1 and i2, are governed by Eqns. 2.6 and 2.7, and include the effective

pore wall flux to account for Li+ entering and exiting the two phases. In the electrode, Eq. 2.6,

Ohm’s law relates the current to the electric potential in the active material particles. Similarly,

the electric potential in the electrolyte, 2.7, is governed by a modified Ohm’s law that accounts for

the dependence of the current in the electrolyte on the concentration of Li+ in the electrolyte.

At the anode-current collector boundary, ΓAC , and cathode-current collector boundary, ΓCC ,

all the current is carried by the electrode particles. The boundary conditions are given in Table

2.1.

Table 2.1: Boundary Conditions For Macro-Scale Battery Model

Anode-Current Cathode-Current
Collector Boundary ΓAC Collector Boundary ΓCC

Li+ flux ∇cl = 0 ∇cl = 0
Current in solid particles i1 = I i1 = I
Current in electrolyte i2 = 0 i2 = 0
Displacements u = 0 u = 0
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2.3.2 Governing Equations at Micro-Scale

At the micro-scale, the response of a single electrode particle embedded in the host electrolyte

is modeled. The difference in length scales between the macro- and micro-scales allows for the

assumption that the macro-scale Li+ concentration, electric potentials, and displacement fields are

spatially constant in the electrolyte immediately surrounding the micro-scale particle. In addition,

it is assumed that the micro-scale particles are spherical. These assumptions allow for simplification

of the micro-scale model to one dimension using spherical coordinates. The micro-scale model is

based on the coupled diffusion-stress model developed by Zhang et al.[84], and extended to include

Butler-Volmer surface kinetics[6, 59] and surface pressures.

The Li concentration, cs, and deformation, ur, fields within the particle are described by

diffusion and linear static mechanical models:

∂cs
∂t

+

(
∂

∂r
+

2

r

)
J = 0 (2.9)

dσR
dr

+
2

r
(σR − σT ) = 0 (2.10)

with constitutive equations:

J = −Ds

(
∇rcs −

Ωcs
RT
∇rσh

)
(2.11)

σR =
E

(1 + ν)(1− 2ν)

(
(1− ν)∇u+ 2ν

u

r
− Ω

3
cs(1 + ν)

)
(2.12)

σT =
E

(1 + ν)(1− 2ν)

(
u

r
+ ν∇u− Ω

3
cs(1 + ν)

)
(2.13)

where Ds is the diffusion coefficient of Li in the particle; R is the universal gas constant; T , is the

temperature; σR, σT , and σh are the radial, tangential, and hydrostatic stresses; and E and ν are

the Young’s modulus and Poisson’s ratio of the electrode material. The Li partial molar volume, Ω,

accounts for the swelling of the particle upon lithiation and the degree of stress-diffusion coupling

increases with Ω. The hydrostatic stress is defined as:

σh = (σR + 2σT )/3 (2.14)
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At the particle center, r = 0, the displacements and Li flux are zero, ur = 0, J = 0. At the

particle surface, r = Rs, Li enters the particle and a mechanical surface pressure is applied.

J = js @ r = Rs (2.15)

σR = Pmicro @ r = Rs (2.16)

The Li pore wall flux at the particle surface, js, is described by a Butler-Volmer surface kinetics

model which predicts the current/Li flux across the boundary as a function of the electric potentials

and concentrations in both phases. In the equations presented here, the anodic and cathodic

currents at the particle surface are limited by the availability of active material sites for Li insertion

into the particle[29]:

js =
i0
F

[
cs|r=Rs

ek1 −
(
cs,max − cs|r=Rs

)
ek2
]

(2.17)

i0 = FK2 (cl,max − cl)αC (cl)
αA (2.18)

k1 =
αAF

RT

(
η − U ′(cs|r=Rs

)
)

(2.19)

k2 = −αCF
RT

(
η − U ′(cs|r=Rs

)
)

(2.20)

η = φ1 − φ2 (2.21)

where cs,max and cl,max are the maximum Li and Li+ concentrations in the electrode particle

and electrolyte; αA and αC are the anodic and cathodic transfer coefficients; η is the surface

overpotential; and U ′(cs|r=Rs
) is the open circuit potential as a function of Li concentration.

The surface pressure the particle sees, Pmicro has contributions due to the inclusion of the

particle in the swelling aggregate, Ph, and from surface stress, PSS :

Pmicro = Ph + PSS (2.22)

For spherical particles, the pressure due to the surface stress can be written as:[14]

PSS = −2
τ0 +KsεT r=Rs

Rs
(2.23)
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where τ0 is the deformation-independent surface tension, Ks is the surface modulus, and εT is the

tangential strain, which in spherical coordinates is defined as: εT = ur/r. This model does not

include more complex phenomena such as the effects of chemical potential on stress, non-Fickian

diffusion, finite strains, and plastic deformations.[10, 85, 24] These effects could be incorporated in

future work.

2.3.3 Governing Equations at Meso-Scale

The micro-scale particles influence the macro-scale response through the effective pore wall

flux, jeff, and chemical chemically induced eigenstrain ech. Similarly, the micro-scale pore wall flux,

js, and surface pressure, Ph depend on both macro- and micro-scale state variables. Aggregate

theory[58] and Bruggeman relations[29, 28] are used to relate the scales. The effective pore wall

flux is related to the micro-scale pore wall flux through:

jeff =
3(1− ε)
Rs

js (2.24)

The porosity of the electrode influences the effective properties Deff and κeff of the electrolyte which

are found via Bruggeman relations based on the diffusion coefficient Dl and electrolyte conductivity,

κ∞ in the bulk electrolyte:

Deff = εDl (2.25)

κeff = ε3/2κ∞ (2.26)

The Bruggeman relationships account for the reduced volume of the conducting (electrolyte) phase

and increased path length or totruosity of the porous material.[28]

The micro-scale surface pressure, and macro-scale chemically induced eigenstrain depend on

macro- and micro-scale strains through the Mori-Tanaka model. [58, 7, 8] It is assumed there is no

chemically induced strain in the electrolyte.

Ph = (bs + BsCeff (e− ech)) n̂ (2.27)

ech = (1− ε) eV + (1− ε)
(
C−1
s −C−1

l

)
bs (2.28)
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where Cl and Cs are isotropic elastic stiffness matrices for the electrolyte and electrode.

The micro-scale volumetric strain, eV is found via:

eV =
1

3

((
Rs + ur|r=Rs

)3
R3
s

− 1

)
(2.29)

2.3.4 Spatial and Temporal Discretization

In a typical Li+ battery, the thickness of the battery cell is significantly smaller than the

overall size of the battery; this allows for an idealization of the model to one-dimension at the

macro-scale. The Li transport processes, diffusion and migration at the macro-scale and diffusion

at the micro-scale, operate on comparable time-scales, therefore separation in time scales between

macro- and micro-scales is not required. At both scales, the governing equations are discretized in

time using an implicit Euler backwards scheme and in space using finite elements [39]. Within the

electrode domains, separate micro-scale problems are solved at the macro-scale integration points.

The micro-scale problems are independent of each other, only coupled via the macro-scale equations.

This system of equations is solved via a staggered approach where the micro-scale state variables

are considered functions of the macro-scale state variables. This results in a separation of the

full system into multiple smaller problems and facilitates parallel computing schemes. Additional

details on the numerical implementation can be found in Ref. [40] (Appendix C).

2.4 Single-Scale Silicon Study

In addition to the multi-scale full battery model presented in Section 2.3, simulations of

single silicon anode particles were conducted. This section expands upon previous work (Ref. [42],

Appendix B), extending the published results to include surface stress effects that result in a lower

limit for silicon particle size.

Silicon anodes show promise due to their high gravimetric capacity, in excess of 4000 mA

h/g[43, 49] as compared to 372 mA h/g for typical carbonaceous anodes[43]. This high capacity,

however, is coupled with a volume expansion on the order of 300-400%[5, 11] upon full lithiation
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of the anode. The stress associated with this large volume expansion have been cited as the cause

of the cracking and pulverization of the electrode seen experimentally.[49] Fracture of the electrode

material results in loss of electrical contact, and thus decreases the capacity of the battery and

exposes new electrode surfaces to the electrolyte resulting in new SEI layer growth and additional

capacity fade of the battery. Literature values for the tensile failure stress of silicon are in the range

of 1-4 GPa.[71, 22]

Previous work suggests that silicon anodes with morphology of nanometer scale dimensions

are more robust than anodes with larger-dimension morphology with regard to cyclic degradation.

For example, Li et al.[55] showed that composite anodes with Si particles in the 50-100 nm range

have better cycling performance than those in the µm range. Another line of inquiry has shown

that arrays of Si nanowires exhibit cycling performance with no degradation.[23] A third example

showed that nanoporous Si architectures result in capacity retention that exceeds that of nano-

scale particles and nanowires.[52] Presumably the improvement that results from these nano-scale

architectures is related to the stresses developed during cycling. Mechanistic details regarding the

cyclic degradation that leads to capacity fade, are not well developed, and many papers simply state

that it is related to the large volume change that results upon Li insertion. Here, the linear-elastic

particle model with diffusion-induced stresses is used as a first step to quantify the development

of stresses in a single Si particle during the insertion of Li. A ButlerVolmer model that describes

the electrochemical reaction kinetics at the Si particle/electrolyte interface, models the influx of Li.

The effects of the particle size and Li insertion rate on the maximum tensile stress in the particle

are studied. The focus is on the first insertion of Li into Si to quantify the initial development of

stresses. The impact of degradation mechanisms during cycling is beyond the scope of this study.

Results form a parameter map of the maximum tensile stress vs. rate and particle size and can be

interpreted as guidelines to design cracking-resistant Si anodes.
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Table 2.2: Material Parameters for Silicon Surface Stress Effect

Symbol Value Units

τ0 -0.606 J/m3 surface tension
Ks 10.65 N/m surface modulus

2.4.1 Silicon Particle Model

The particle is idealized as a sphere embedded in a host electrolyte with uniform Li+ concen-

tration and solid and liquid-phase electric potentials in the surrounding electrolyte; this allows for

simplification of the governing equations to one dimension. The micro-scale particle governing and

constitutive equations are the same as in Section 2.3.2 (Eqns. (2.9)-(2.14)). At the particle center,

u = 0 and J = 0; at the particle surface, J = js and σR = Pmicro (Eqns. (2.15) and (2.16)). The Li+

flux is governed by a Butler-Volmer equation for the kinetics of the electrochemical reaction:[82]

J =
i0
F

[
exp

(
αAF

RgT
(η − U (c/cmax))

)
− exp

(
αCF

RgT
(η − U (c/cmax))

)]
(2.30)

i0 = Fk (cl)
αA (cmax − c)αA (c)αC (2.31)

In Eqs. (2.30) and (2.31), F is the Faraday constant, cl is the concentration of lithium in the

surrounding matrix, k is the interfacial charge transfer reaction constant, η is the electric potential

difference between the silicon particle and surrounding electrolyte, and U(c/cmax) is the open circuit

electric potential of lithium in silicon. cl, k, and T are taken to be constant in these simulations.

In the original publication, Ref. [39] (Appendix B), the surface was free to expand, Pmicro = 0;

surface stress and pressure due to swelling of the aggregate electrode structure were not included.

Here, the model is expanded to include the surface stress effect, Pmicro = PSS , Eq. (2.23)[14].

Material parameters used in the model are given in Table 1 of Ref. [42] (Appendix B), and surface

stress effect parameters for Silicon are in Table 2.2.

The model is driven by linearly varying the electric potential difference between the Si particle

and surrounding electrolyte, η. The rate the electric potential difference is changed is the potential

sweep rate, v; i.e., η = η0 − vt for vt < η0 and η = 0 for vt > η0. The difference between the

applied potential and equilibrium open circuit potential drives the electrochemical reaction at the
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particle surface, resulting in a current flux, and corresponding Li+ flux, at the particle surface. The

potential sweep rate and the radius of the Si particle affect the maximum tensile stresses in the

particle.

2.4.2 Results

Figure 2.2: Behavior of single silicon particle model with time. (a) Applied overpotential, η, (b)
current, I, and (c) particle utilization, as a function of time. (d) c/cmax, (e) (∆c/cmax)/(∆r/R),
(f) radial stress, σr, (g) tangential stress, σt, and (h) shear stress, σrt, profiles across the radius
of a R = 1µm particle at different times for a potential sweep rate of v = −0.5mV/s. The time
instances shown in plots (d)-(h) correspond to the times marked with dots in plots (a)-(c).

Figure 2.2, reprinted from Ref. [42], illustrates the spatial and temporal variation of the

concentration and stress fields during lithium insertion, without accounting for the surface stress

effects. The overpotential, η, is decreased linearly to zero, and then is maintained at zero, (Fig.

2.2a). The resulting current influx into the particle, (Fig. 2.2b), varies with time, peaking when the
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difference between the applied overpotential η and open circuit potential, U(c/cmax), is greatest.

The current influx drives the overall utilization of the particle, (Fig 2.2c). The timescales of Li

insertion into and diffusion within the sphere are such that the spatial distribution of lithium in

the sphere remains nearly constant at all times, (Fig. 2.2d), however there is a gradient in the

concentration with higher concentrations at the particle surface than at the center, (Fig. 2.2e).

The insertion of lithium and gradient in Li concentration within the particle, result in stresses

that vary with position and time (Figs. 2.2f-h). As the concentration increases near the particle

surface, the outer portion swells more than the material near the center of the particle, i.e., there is

a mismatch in strain. Material with a lower Li concentration does not swell as much, constraining

the material further out from swelling freely. This results in tensile stress near the center of the

particle. The radial stress in the Si particle is always tensile, maximum at the center of the particle,

and decreases to zero at the particle surface. The tangential stress is tensile at the center of the

particle and compressive at the surface; it is equal to the radial stress at the center where the

particle is in a state of hydrostatic tension and the magnitude is at maximum at the surface.

The shear stress is zero at the center of the particle and increases with radius. When the rate of

Li insertion rises, (Fig. 2.2b), lithium enters the particle at the surface significantly faster than

it can diffuse through the particle, i.e. the process is reaction dominated. This causes the local

concentration gradient and thus the mismatch in strain to increase. All three stresses peak together,

shortly before the maximum current is reached, then decrease with continued Li insertion as the

concentration becomes more uniform and strain mismatch within the particle decreases.

The influences of particle size and potential sweep rate on the maximum tensile tangential

stress were studied. Figure 2.3 plots the maximum (over time and position) tensile tangential stress

with and without surface stress effects as a function of particle size and potential sweep rate. For

particles with Rs ≥ 200nm, the surface stress effect does not influence the maximum stress level.

A contour line of 1 GPa, corresponding to the lower limit for Si tensile failure stress, is seen to the

right of the plot, and can be considered to separate two regions of a failure map. Points above and

to the right of this line describe configurations that would be expected to fail while those below and



23

Figure 2.3: Predicted maximum stress levels upon Li insertion into Silicon particles as a function
of particle size and sweep rate. Solid lines include the surface stress effect, dashed lines do not
include this effect. Regions outside the highlighted section are expected to fail.

to the left of the line would be expected to be safe. When the surface stress effect is accounted for,

the stresses increase with decreasing particle radii ≤ 200nm. An additional contour at the 1 GPa

level is seen on the left side of the plot where the maximum stress level is dominated by the surface

stress. These results are consistent with experimental observations where smaller particles (in the

larger nm-scale) have been shown to be more resistant to cracking than larger ones.[55] These

results also suggest, as do experiments, that for high potential sweep rate applications, it is more

important to use smaller particles than in low rate applications. These results are for the extreme

case of a particle that is permitted to expand freely. The stresses are lower in the intermediate

sized particles because the increased surface to volume ratio results in a more uniform lithium

concentration throughout the particle; the lower concentration gradient results in lower stresses.

For small-nm sized particles, the surface stress effect is dominant and the stresses increase. If the

particle is constrained by a host matrix during insertion, the stresses will increase. Note, though,

that this discussion and analysis, has not considered dependencies of the material parameters on
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phase-changes in the silicon, Li concentration, nor stress levels in the particle. DeLuca, Maute, and

Dunn[26] have performed follow up work focusing on the single scale silicon model.



Chapter 3

Design Optimization

The author’s first publication (Appendix A) illustrated how several parameters, such as

electrode porosity, electrode particle size, and discharge rate strongly affect the usable capacity and

stress levels in the electrode particles of the battery. Additional parameters such as the electrode

thickness and particle shape can also affect the electrochemical and mechanical performance of the

battery. Balancing the electrochemical and mechanical phenomena in order to achieve a desired

outcome can be done via a formal design optimization approach. Design optimization aims to

improve an objective, such as increasing the capacity of the battery at a given discharge rate, while

satisfying constraints, for example, placing limits on the maximum stress in the electrode particles.

This chapter reviews previous work on design optimization of batteries and overviews the design

optimization methodology developed and key contributions from the author’s publications - Refs.

[40, 41] (Appendices C and D).

3.1 Design Optimization of Lithium Batteries

Previous work on improving battery performance has been performed on both the cell and

battery pack level. At the pack level, studies have focused on thermal [13, 81, 47, 50] and power

management,[53] strategies. Cell level optimization studies are generally severely limited in number

of design variables due to complexity and computational cost of the battery models.[69, 31, 12, 65,

64] Du et al.[31] used surrogate models to study the influence of parameters such as cycling rate

and particle size on the specific energy and power of a battery cell identifying the Pareto-optimal
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relationship between specific energy and power in the cell and quantified the cell performance in

terms of the ratio of discharge time to diffusion time. Chen et al.[12] studied the relationship

between electronic and ionic conductivities and the specific energy of the cathode. Srinivasan

and Newman[69] increased the specific energy of an iron phosphate lithium-ion cell over a range of

discharge rates through manipulation of the porosity and thickness of the cathode while maintaining

the capacity ratio between the anode and cathode constant. This study employed the multi-

scale porous electrode battery model described in Chapter 2 and parameter sweeps over the two

design variables to determine optimal designs. The previous design studies above rely primarily

on intuition, experience, and parameter sweeps, but do not employ directly a formal optimization

approach for designing battery cells.

Ramadesigan et al.[65] employed a formal gradient-based design optimization method to re-

duce the Ohmic drop, thus increasing the capacity, of a cell by varying the porosity distribution in

the cathode in five distinct regions (design variables). This study showed that formal design opti-

mization can be used to improve battery performance but was limited in number of design variables

due to the computational cost of the model. Follow up work by De et al.[25] utilized a reformulated

version of this model with improved computational efficiency to optimize electrode thicknesses and

porosities simultaneously for increased energy in the battery. Most recently, Xue et al.[80] pre-

sented a numerical framework to maximize cell energy density while satisfying requirements for

specific power density for the porous electrode cell models[59, 36]. Twelve design variables were

investigated, these included the cycling rate, electrode thicknesses, porosities, and particle sizes,

separator thickness, cycling rate, and material properties of electrode diffusivity and conductivity.

Optimization was performed via a gradient-based design optimization method; the gradients of

the objective and constraints with respect to the design variables computed via a complex-step

approximation method. This approach is computationally expensive, requiring ∼26 to 62 hours to

converge depending on the power density requirement. Optimal results converged to the smallest

electrode particle size and separator thickness.

In the author’s work, the number of design variables is essentially unlimited due to the
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development and use of a multi-scale adjoint sensitivity analysis method. This approach is flex-

ible, allowing for different types of objectives, constraints, and types of design variables without

compromising the accuracy of the overall model.

3.2 Gradient-Based Design Optimization With Adjoint Sensitivity Analysis

The optimization studies for batteries described in the previous section are limited in number

of design variables due to the computational cost of the models used, specifically in the computation

of the sensitivities of the objective and constraints to the design variables. The ability to include

additional design variables allows for investigation of the interplay between multiple design variables

and to fully resolve the shape of an optimal structure. In the author’s work, a design optimization

methodology with adjoint sensitivity analysis was developed to efficiently handle a large number of

design variables.

Gradient-based design optimization is employed to minimize an objective, Z, subject to

inequality constraints, Gj , by varying continuous design variables, s ∈ <Ns :

min
s

Z (x,y, s) =

∫
F (x,y, s) dt

s.t. Gj (x,y, s) =

∫
G (x,y, s) dt ≤ 0 j = 1 : Ng

sLi ≤ si ≤ sUi i = 1 : Ns,

(3.1)

where x represents the state variables and y the micro-scale state variables. The objective and

constraints are differentiable functions that depend on both state and design variables. The time-

integral formulation allows accounting for both average performance measures and quantities at

distinct points in time. The lower and upper bounds for the optimization variables are denoted by

sLi and sUi , respectively.

This design optimization problem is solved by a nonlinear programming method that requires

the gradients of the objective and constraints with respect to the design variables.[72] The computa-

tional complexity of the multi-scale battery model and potentially large number of design variables

necessitates the use of analytical sensitivities in which the sensitivities are calculated based on the
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set of discrete solutions to the finite element problem. In Appendix C (Ref [41]) the derivation of

the multi-scale, transient, adjoint sensitivity equations is presented. This formulation allows for

optimization criteria which are electrochemical or mechanical in nature, and design variables that

can include macro- and micro-scale criteria such as the local electrode porosity, electrode thickness,

and local micro-scale particle size. The mathematical structure of the multi-scale transient, adjoint

sensitivity equations allows for decomposing the fully coupled problem into multiple, independent,

smaller problems at two scales. Therefore the proposed adjoint sensitivity analysis method is appli-

cable to spatially and temporally well-resolved multi-scale problems with a large number of design

variables. In Appendix C (Ref [41]), the computational savings of this adjoint sensitivity approach

is compared to finite differencing. The sensitivities of an objective and 80 constraints to 120 design

variables were calculated in 5 minutes as compared to ∼20 hours using numerical finite differencing.

In Appendices C and D, this approach is used to maximize the capacity of a lithium battery by

locally varying the porosities and particle radii in the electrodes.



Chapter 4

Conclusion and Future Work

This dissertation focused on understanding and simulating the interplay between electrochem-

ical and mechanical phenomena in lithium batteries. A multi-scale model including electrochemical

and mechanical effects was developed. Gradient-based design optimization was used to find optimal

electrode structures to improve the performance of the battery through functionally graded elec-

trodes. The first publication, Appendix A, extended an existing multi-scale, electrochemical battery

model to include mechanical effects at both macro- and micro-scales. The second publication, Ap-

pendix B, focused on the micro-scale particle model as applied to silicon anodes. A subsequent

study extended the model further to include surface stress effects, resulting in upper and lower

bounds on particle size, Fig. 2.3. A gradient-based design optimization approach was employed

to maximize the battery capacity. Development of multi-scale adjoint sensitivity equations in the

third publication, Appendix C, allowed for an essentially unlimited number of design variables as

compared to at most 12 design variables studied in previous battery optimization studies[80]. This

design optimization approach was used in the last publication, Appendix D, to maximize the usable

capacity of the battery over a range of discharge rates while limiting stress levels in the electrode

particles. Results showed that the highest rate discharge drives the design which is dominated by

Li+ transport rates. Results showed an improvement of up to 61% relative to the initial design by

manipulating the local electrode porosity and particle radii. These results illustrate the utility of

computational design optimization as an efficient tool to aid in battery design.

Future work can be broadly divided into extensions of the multiscale battery model and ad-



30

ditional optimization studies. Inclusion of thermal effects [54], SEI layer formation[68, 18], and

additional degradation from side reactions[19] will affect the electrochemical and mechanical per-

formance of the battery. The model is limited by lack of data for the dependence of material

properties on concentration profiles and stress state[63], and exclusion of more complex phenomena

such as non-Fickian diffusion, the effects of chemical potential on stress, finite strains, and large

plastic deformations[10, 85, 24]. These phenomena could be incorporated into this modeling frame-

work. Additionally, studying the effect of electrochemical cycling and including the dependence

of the macro-scale porosity on the swelling of the electrode particles with lithium insertion is rec-

ommended. Recommended future optimization studies include: incorporation of a broader range

of design variables, such as electrode thicknesses and material properties; investigation of faster

discharge rates; and inclusion of cycling and degradation effects. Design optimization could also be

employed to determine optimal charging profiles in which the charge rate varies with time depend-

ing on the state of charge of the battery. Additionally, this approach also be employed to curve-fit

simulated discharge curves to experimental results to assist in determining material properties.



Bibliography

[1] K.E. Aifantis and J.P. Dempsey. Stable crack growth in nanostructured li-batteries. Journal
of Power Sources, 143(1):203–211, 2005.

[2] K.E. Aifantis and S.A. Hackney. An ideal elasticity problem for li-batteries. J Mech Behav
Mater, 14:41327, 2003.

[3] K.E. Aifantis, S.A. Hackney, and J.P. Dempsey. Design criteria for nanostructured li-ion
batteries. Journal of Power Sources, 165(2):874 – 879, 2007.

[4] Pankaj Arora, Marc Doyle, Antoni S. Gozdz, Ralph E. White, and John Newman. Compar-
ison between computer simulations and experimental data for high-rate discharges of plastic
lithium-ion batteries. Journal of Power Sources, 88:219–231, 2000.

[5] Loic Baggetto, Rogier A. H. Niessen, Fred Roozeboom, and Peter H. L. Notten. High energy
density all-solid-state batteries: A challenging concept towards 3d integration. Adv. Funct.
Mater., 18:10571066, 2008.

[6] Allen J. Bard and Larry R. Faulkner. Electrochemical Methods. John Wiley and Sons, Inc, 2
edition, 2001.

[7] Y. Benveniste. A new approach to the application of mori-tanakas theory in composite mate-
rials. Mech. Materials, 6:147–157, 1987.

[8] Y. Benveniste and GJ Dvorak. On a correspondence between mechanical and thermal effects
in two-phase composites. In Micromechancis and Inhomogeneity. Springer, New York, 1990.

[9] Gerardine G. Botte, Venkat R. Subramanian, and R. E. White. Mathematical modeling of
secondary lithium batteries. Electrochimica Acta, 45(15-16):2595–2609, 2000.

[10] A.F. Bower, P.R. Guduru, and V.A. Sethuraman. A finite strain model of stress, diffusion,
plastic flow, and electrochemical reactions in a lithium-ion half-cell. Journal of the Mechanics
and Physics of Solids, 59:804–828, 2011.

[11] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A.
Huggins, and Yi Cui. High-performance lithium battery anodes using silicon nanowires. Nature
Nanotechnology, 3:31–35, 2008.

[12] Y.-H. Chen, C. W. Wang, X. Zhang, and Ann Marie Sastry. Porous cathode optimization for
lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. Journal
of Power Sources, 195:2851–2862, 2010.



32

[13] Yufei Chen and James W. Evans. Thermal analysis of lithium polymer electrolyte batteries by
a two dimensional model–thermal behaviour and design optimization. Electrochimica Acta,
39(4):517 – 526, 1994.

[14] Y. T. Cheng and Mark W. Verbrugge. The influence of surface mechanics on diffusion induced
stresses within spherical nanoparticles. Journal of Applied Physics, 104(8):083521, 2008.

[15] Yang-Tse Cheng and Mark W. Verbrugge. Evolution of stress within a spherical insertion
electrode particle under potentiostatic and galvanostatic operation. Journal of Power Sources,
190(2):453–460, 2009.

[16] Timothy E. Chin, Urs Rhyner, Yukinori Koyama, Steven R. Hall, and Yet-Ming Chiang.
Lithium rechargeable batteries as electromechanical actuators. Electrochemical and Solid-State
Letters, 9:A134–A138, 2006.

[17] Thomas Christen and Martin W. Carlen. Theory of ragone plots. Journal of Power Sources,
91(2):210 – 216, 2000.

[18] John Christensen and John Newman. A mathematical model for the lithium-ion negative
electrode solid electrolyte interphase. Journal of The Electrochemical Society, 151(11):A1977–
A1988, 2004.

[19] John Christensen and John Newman. Cyclable lithium and capacity loss in li-ion cells. Journal
of the Electrochemical Society, 152(4):818–829, 2005.

[20] John Christensen and John Newman. A mathematical model of stress generation and fracture
in lithium manganese oxide. Journal of the Electrochemical Society, 153(6):1019–1030, 2006.

[21] John Christensen and John Newman. Stress generation and fracture in lithium insertion
materials. Journal of Solid State Electrochemistry, 10(5):293–319, 2006.

[22] R. F. Cook. Strength and sharp contact fracture of silicon. J. Mater. Sci., 141:841–872, 2006.

[23] Li-Feng Cui, Riccardo Ruffo, Candace K. Chan, Hailin Peng, and Yi Cui. Crystalline-
amorphous coreshell silicon nanowires for high capacity and high current battery electrodes.
Nano Letters, 9(1):491–495, 2009.

[24] Zhiwei Cui, Feng Gao, and Jianmin Qu. A finite deformation stress-dependent chemical po-
tential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of
Solids, 60:1280–1295, 2012.

[25] Sumitava De, Paul W.C. Northrop, Venkatasailanathan Ramadesigan, and Venkat R. Subra-
manian. Model-based simultaneous optimization of multiple design parameters for lithium-ion
batteries for maximization of energy density. Journal of Power Sources, 227(0):161–170, 2013.

[26] Christopher M DeLuca, Kurt Maute, and Martin L. Dunn. Effects of electrode particle mor-
phology on stress generation in silicon during lithium insertion. Journal of Power Sources,
196(22):9672–9681, 2011.

[27] Rutooj Deshpande, Mark Verbrugge, Yang-Tse Cheng, John Wang, and Ping Liu. Battery
cycle life prediction with coupled chemical degradation and fatigue mechanics. Journal of the
Electrochemical Society, 159(10):A1730–A1738, 2012.



33

[28] Marc Doyle. Design and Simulation of Lithium Rechargeable Batteries. PhD thesis, University
of California, Berkeley, 1995.

[29] Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and
discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical Society,
140(6):1526–33, June 1993.

[30] Marc Doyle and John Newman. The use of mathematical modeling in the design of
lithium/polymer battery systems. Electrochimica Acta, 40:2191–2196, 1995.

[31] W. Du, A. Gupta, X. Zhang, and Ann Marie Sastry. Effect of cycling rate, particle size and
transport properties on lithium-ion cathode performance. International Journal of Heat and
Mass Transfer, 53:3552–3561, 2010.

[32] Frédéric Feyel. Multiscale fe2 elastoviscoplastic analysis of composite structures.
Computational Materials Science, 16(1-4):344–354, 1999.

[33] Frédéric Feyel. A multilevel finite element method (fe2) to describe the response of highly
non-linear structures using generalized continua. Computer Methods in Applied Mechanics
and Engineering, 192(28-30):3233–3244, 2003.

[34] Frédéric Feyel and Jean-Louis Chaboche. Fe2 multiscale approach for modelling the elasto-
viscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied
Mechanics and Engineering, 183(3-4):309–330, 2000.

[35] Thomas F. Fuller, Marc Doyle, and John Newman. Relaxation phenomena in lithium-ion-
insertion cells. J. Electrochem. Soc., 141(4):982–990, April 1994.

[36] Thomas F. Fuller, Marc Doyle, and John Newman. Simulation and optimization of the dual
lithium ion insertion cell. Journal of the Electrochemical Society, 141(1):1–10, 1994.

[37] R. Edwin Garcia and Yet-Ming Chiang. Spatially resolved modeling of microstructurally
complex battery architectures. Journal of the Electrochemical Society, 154(9):856–864, 2007.

[38] R. Edwin Garcia, Yet-Ming Chiang, W. Craig Carter, Pimpa Limthongkul, and Catherine M.
Bishop. Microstructural modeling and design of rechargeable lithium-ion batteries. Journal of
the Electrochemical Society, 152(1):255–263, 2005.

[39] Stephanie Golmon, Kurt Maute, and Martin L. Dunn. Numerical modeling of electrochemical-
mechanical interactions in lithium polymer batteries. Computers & Structures, 87(23-24):1567
– 1579, 2009.

[40] Stephanie Golmon, Kurt Maute, and Martin L. Dunn. Multi-scale design optimization
of lithium batteries using adjoint sensitivity analysis. International Journal for Numerical
Methods in Engineering, 92(5):475–494, April 2012.

[41] Stephanie Golmon, Kurt Maute, and Martin L. Dunn. A design optimization methodology for
li+ batteries. Journal of Power Sources, in press, corrected proof 2013.

[42] Stephanie Golmon, Kurt Maute, Se-Hee Lee, and Martin L. Dunn. Stress generation in silicon
particles during lithium insertion. Applied Physics Letters, 97(3), 2010.



34

[43] Mino Green, Elizabeth Fielder, Bruno Scrosati, Mario Wachtler, and Judith Serra Moreno.
Structured silicon anodes for lithium battery applications. Electrochemical and Solid-State
Letters, 6(5):A75–A79, 2003.

[44] W. B. Gu and C. Y. Wang. Thermal-electrochemical modeling of battery systems. Journal of
The Electrochemical Society, 147(8):2910–2922, 2000.

[45] W.B. Gu, C.Y. Wang, S.M. Li, M.M. Geng, and B.Y. Liaw. Modeling discharge and charge
characteristics of nickel-metal-hydride batteries. Electrochimica Acta, 44(25):4525 – 4541,
1999.

[46] R.A. Huggins and W.D. Nix. Decrepitation model for capacity loss during cycling of alloys in
rechargeable electrochemical systems. Solid State Ionics, 6:57–63, 2000.

[47] Anthony Jarrett and Il Yong— Kim. Design optimization of electric vehicle battery cooling
plates for thermal performance. Journal of Power Sources, 196(23):10359–10368, 2011.
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a b s t r a c t

This paper presents a multi-scale finite element approach for lithium batteries to study electrochemical–
mechanical interaction phenomena at macro- and micro-scales. The battery model consists of a lithium
foil anode, a separator, and a porous cathode that includes solid active materials and a liquid electrolyte.
We develop a multi-scale approach to analyze the surface kinetics and electrochemical–mechanical phe-
nomena within a single spherical particle of the active material. Homogenization techniques relate
parameters in the micro-scale particle model to those in the macro-scale model describing the lithium
ion transport, electric potentials and mechanical response based on porous electrode theory.
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1. Introduction

Today, lithium batteries have the highest energy storage density
of any secondary (rechargeable) battery technology [1]. However,
their current use is limited to relatively low power applications
such as cell phones and other small, portable electronics. Electrical
systems requiring high voltages and/or currents such as battery
packs in hybrid-electric vehicles still use traditional, heavy, lead-
acid battery technology due to lower cost, longer lifetimes, and
increased safety as failure in lithium batteries can be dramatic such
as the laptop battery fires that occurred recently. Failure can be
due to thermal runaway, internal shorting, and mechanical degra-
dation of the electrodes. Lithium rechargeable batteries suffer in
particular from a limited lifetime in comparison to other recharge-
able chemistries, being limited to 100–150 charge–discharge
cycles versus the 300 cycles achieved by other technologies [1].
This shortened lifecycle is due to deposits formed on the surface
of the electrode during cycling [1], and possibly due to mechanical
degradation of the electrode particles [2]. To understand the latter
degradation phenomena, modeling and predicting the stresses in
the electrode particles due to external mechanical loads and
internal chemical processes is needed. The importance of under-
standing the interaction between chemical and mechanical phe-
nomena in batteries is further highlighted when incorporating

lithium batteries into structural composites to increase their stor-
age-to-weight ratio. Such concepts have recently been advocated
for aerospace systems dominated by weight constraints [3]. How-
ever, embedding a battery into a composite induces mechanical
loads on the battery during manufacturing and operation.

In order to address the concerns of the relatively short lifecycle
and safety problems in lithium batteries as well as to integrate bat-
teries into structural composites, detailed understanding and
mathematical modeling of the electrochemical and mechanical
behavior and failure mechanisms of the batteries are needed. Bal-
ancing the trade-offs between structural and electrochemical per-
formance is requisite in order to achieve these goals. To this end, in
this paper we develop a coupled mathematical model of electro-
chemical and mechanical effects in lithium batteries.

The mechanisms causing capacity fade and failure of lithium
batteries were studied by Wang et al. [2] who experimentally
showed that capacity fade of lithium batteries after 60 cycles is
linked to crack growth in the electrode. Wang et al. [4] found for
LiCoO2 cathodes that the active material particles are not uni-
formly strained during cycling and that the cycling can lead to frac-
ture of the particles. Additional work on manganese cathodes has
been performed by Thackeray et al. [5] and Aifantis and Hackney
[6]. Several studies have focused on modeling the stress and crack
formation in a single electrode particle. Huggins and Nix [7] devel-
oped a one-dimensional model to predict stresses and fracture in
electrodes undergoing volume changes. Their model predicts a ter-
minal particle size below which particles are not expected to crack.
Aifantis and Dempsey [8] have modeled the crack formation in
electrodes using facture mechanics. Christensen and Newman [9]
predicted for a single spherical particle stress generation and
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fracture in lithium insertion compounds finding that particles are
more likely to fracture when used in high-power applications.
Christensen and Newman [10] also modeled the effects for a spher-
ical particle of lithium manganese oxide, predicting that the inter-
calation-induced stress can exceed the strength of the particles.
Aifantis et al. [11] used fracture mechanics to predict when an
electrode particle will fracture, finding that smaller particles are
preferable. Zhang et al. [12] studied intercalation-induced stress
in LiMn2O4 particles, treating the intercalation-induced stress
analogously to thermal stress and extending the spherical model
to ellipsoidal particles.

Only few experimental studies incorporating batteries into
structures and studying the effect of external mechanical loads
have been performed. Thomas and Qidwai [3] have placed com-
mercial lithium batteries in the wings of microair vehicles
(MAV) resulting in improved range of the MAV. In their mechan-
ical model of structurally integrated batteries, Thomas and Qid-
wai [3] assumed that the effects of electrochemical–mechanical
interactions are negligible. Pereira et al. have studied experimen-
tally the effects of flexural deflection [13] and uniaxial pressure
[14] on lithium thin film batteries. Their observations suggest
that up until structural failure of the battery, the electrochemical
performance of the battery is not significantly affected by exter-
nal mechanical loads. The same authors showed in a subsequent
paper [15] that the same batteries could be successfully incorpo-
rated into a carbon fiber composite lay-up without degrading the
battery performance and improving the mechanical properties of
the composite. Much of the previous work on modeling lithium
batteries has focused solely on electrochemical phenomena such
as in the work of West et al. [16] and Doyle et al. [17] who model
a porous electrode and in the work of Wang and Sastry [18]
where the cathode microstructure is modeled. Garcia et al.
[19,20] include mechanical effects in their model and study the
performance of various nano-structured electrode layouts using
dilute solution theory.

The goal of this study is to develop a numerical model to predict
the electrochemical–mechanical interactions in structurally inte-
grated lithium batteries subject to external mechanical loads, in or-
der to understand and quantify the effects of electrochemical and
mechanical parameters on performance and eventually, on failure
mechanisms in these batteries. Resolving directly all length scales
involved in the analysis of a battery, in particular modeling every
cathode particle individually, leads to an impractical computa-
tional burden. Therefore, our approach is based on porous elec-
trode theory and a multi-scale finite element formulation.

1.1. Electrochemical–mechanical interaction

When discharging a battery, electrons flow from the anode
through an external electrical circuit and back to the cathode.
The electric work done in the circuit leads to a drop in the electrical
potential difference between the anode and cathode. A simple lay-
out of a lithium battery includes a negative (anodic) current collec-
tor, a lithium foil anode, a gel or liquid electrolyte, a porous
intercalation cathode, and a positive (cathodic) current collector.
The external positive and negative terminals are connected to the
current collectors. The cathode consists of two phases, a porous so-
lid, active material and a liquid electrolyte that fills the pores. In
the simplest case, the anode is a lithium foil while in modern bat-
teries and secondary (rechargeable) batteries porous graphitic
intercalation compounds are used as anode material systems. Re-
search is ongoing to develop anodes with larger storage capacity.
For the case of a porous anode, the anode is modeled the same
way as the cathode. This model can be applied to any battery sys-
tem that uses a single electrolyte. To structurally integrate the bat-
tery, it is sandwiched between two structural layers which results
in an interlaminate stress applied to the battery. A representative
configuration of a structurally integrated battery is depicted in
Fig. 1.

When an external electrical load is applied, lithium (Li) is oxi-
dized into Liþ ions and electrons at the anode–separator interface,
CAS. The electrons flow through the current collector and the exter-
nal circuit back to the positive current collector and into the cath-
ode active material. Meanwhile, the Liþ ions enter the solution
phase of the separator and are carried by migration and diffusion
across the separator–cathode interface, CSC , to the cathode active
material. At the surface of the active material particles, Liþ ions
are reduced and neutral Li diffuses into the cathode particles. To
charge a secondary lithium battery, these processes reverse. As Li
intercalates into the cathode active material particles, the particles
swell resulting in both particle- and battery-level strains and stres-
ses; for the Mn2O4 cathode discussed in this paper, the particles
can swell up to 6.5% [12]. External mechanical loads also cause bat-
tery- and particle-level stresses and affect the uptake of Li by the
particles in the cathode.

1.2. Proposed model

In this study we present a numerical approach for modeling the
electrochemical–mechanical interactions in lithium batteries. To
design and predict the performance of batteries subject to external
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mechanical loads, our model accounts for the influence of electro-
chemical parameters such as discharge rate, liquid volume fraction
in the cathode, active material particle size, and mechanical
boundary conditions from the interlaminate stress, on both elec-
trochemical and mechanical performance. This model predicts
the effects of external loads and allows one to assessing the
trade-offs between integration versus non-integration of the bat-
tery into a structural composite as well as suggest ways to improve
overall battery design.

As the performance of lithium batteries involves multiple
length scales, our approach is based on a multi-scale finite element
formulation of the electrochemical–mechanical interactions. At the
battery-level, or macro-scale, we model the Liþ ion movement
within the electrolyte and the resulting current and potential of
the electrolyte, the potential of the solid cathode material, and
the battery-level deformations. Within the cathode region, there
are both solid active material and liquid electrolyte phases. Rather
than modeling every individual cathode particle and the interac-
tions between these particles, we analyze a representative single
active material particle wherever information about the active
material is needed in the macro-scale problem. We refer to this
single particle model as the micro-scale. We model the lithium
concentration throughout the particle, the stress state, and the dis-
placements within the particle. Our numerical framework is based
on an implicit Euler backward scheme and a Galerkin finite ele-
ment model to discretize the macro- and micro-scale processes
in time and space. Homogenization is used to relate the processes
at the macro- and micro-scales.

The reminder of this paper is organized as follows: first we
present a mathematical model of a lithium battery at multiple
length scales and describe its numerical implementation for a
one-dimensional macroscopic battery model. We verify our
numerical framework by comparison with previous, experimen-
tally verified, mathematical models. Lastly, we present results for
the electrochemical and mechanical effects of varying the dis-
charge current density, the active material particle radius, the vol-
ume fraction in the porous electrode, and the external mechanical
boundary conditions due to interlaminate stress. For convenience,
a list of all symbols used in this paper is provided in Appendix A.

2. Numerical modeling of batteries

Numerical models predicting the transport and reaction pro-
cesses in batteries have been presented by Doyle et al. [17] who
modeled the electrochemical phenomena using porous electrode
theory and a finite-volume method. These models have shown
good agreement with experimental discharge experiments but do
not account for mechanical effects in the battery. Garcia et al.
[19] developed a two-dimensional micro-scale model describing
the mechanical effects of discharging and charging a battery based
on dilute solution theory. The model is solved using a finite ele-
ment scheme in space and a finite difference scheme in time. Ini-
tially, Garcia et al. [19] included only the separator and cathode;
later Garcia and Chiang [20] extended this model and included
an intercalation anode as well. Different nanostructures for the
electrodes were investigated showing that the shorter the distance
between the electrodes, the better the battery performs.

Wang and Sastry [18] developed a three-dimensional
micro-scale model predicting the electrochemical performance of
batteries with random and periodic micro-scale cathode layouts
by modeling every cathode particle. Stress effects, both internal
and external, are not included in this model. Zhang et al. [12] ac-
counted for the effects of internal stresses due to lithium intercala-
tion for single active material particles but ignore possible surface
traction due to constraint by the surrounding aggregate in the

electrode and/or due to external mechanical loads. They consid-
ered both spherical and ellipsoidal particles and showed that for
spherical particles, larger particle size and discharge currents re-
sult in higher stress; and for ellipsoidal particles, large aspect ratios
decrease the intercalation-induced stress for particles of a constant
volume. Recently, Zhang et al. [21] extended their particle model to
include heat generation during charge and discharge; resistive
heating was found to be the most significant heat generation
source at the particle-level.

2.1. Multi-scale modeling of structurally integrated batteries

The electrochemical and mechanical performance of Li batteries
strongly depends on the interaction between macro-scale and mi-
cro-scale phenomena, in particular within the porous cathode.
However, directly resolving all scales and modeling all particles
in the cathode is not practical. Instead we incorporate the micro-
scale effects into the macro-scale problem through homogeniza-
tion approaches and constitutive models that are derived from
homogenization methods. Three length scales can be distin-
guished: at the macro-scale, transport processes and mechanical
deformations in the entire battery layer are modeled; at the mi-
cro-scale, a single active material particle in the cathode is mod-
eled; and at the meso-scale, homogenization methods based on
particle aggregates relate the micro- and macro-scales.

Our macro-scale model is based on porous electrode theory
[22,23] and concentrated solution theory [22,23] predicting elec-
trochemical processes in the separator and cathode. With porous
electrode theory, the cathode is treated as a superposition of two
continuous phases—the solid material including the active mate-
rial, binders and conductive additives, and the pore-filling liquid
electrolyte. The liquid volume fraction of the cathode is called
the porosity, e, ðe ¼ Vl=VÞ. In the separator region of the battery
there is no solid phase, so e ¼ 1. We extend the porous electrode
theory to account for elastic and inelastic deformations due exter-
nal loads and electrochemical eigenstrains. In this study, we do not
model the structural layers surrounding the battery, and instead
apply generic mechanical boundary conditions that with proper
interpretation can be taken to represent the effect of the surround-
ing layers. We also assume that the lithium foil anode is perfectly
rigid and therefore only model the separator and cathode regions.
At the micro-scale, a single particle is modeled based on the work
of Zhang et al. [12]. To relate the micro- and macro-scales, meso-
scale homogenization methods are used.

The macroscopic response is characterized by the Liþ ion con-
centration in the liquid phase, cl, the electric potential of the liquid
phase, /2, the electric potential of the solid phase, /1, and the mac-
roscopic displacements, u. The intercalation of Liþ ions from the
electrolyte into the particles is represented by an effective macro-
scopic pore wall flux, jeff . The associated swelling of the particles
results in a macroscopic electrochemical eigenstrain ech.

At the micro-scale, a single representative active material parti-
cle is examined. The micro-scale variables include the microscopic
lithium concentration in the particle, cs, the microscopic displace-
ments, u, and the hydrostatic stress field, rh. The rate of diffusion
into the particle and subsequent particle swelling depends on the
microscopic pore wall flux, js and the mechanical surface traction
on the particle, Ps.

At the meso-scale, homogenization methods are used to relate
the macroscopic and microscopic variables. The micro-scale pore
wall flux, js, is dependent on the macro-scale variables, cl; /1,
and /2 and the micro-scale Li concentration at the particle surface,
cs;surf , through a micro-scale surface kinetics model. The micro-
scale surface pressure exerted on the particle surface, Ps, is depen-
dent on the macro-scale and micro-scale displacements, u, and u
through meso-scale homogenization of the mechanical variables.
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The macro-scale effective pore wall flux, jeff , is dependent on the
micro-scale pore wall flux, js, through meso-scale homogenization
of the electrochemical variables. The macro-scale chemically in-
duced eigenstrain, ech, is dependent on both the macro-scale
displacement, u, and micro-scale displacements, u through meso-
scale homogenization of the mechanical variables. The interdepen-
dency between macro- and micro-scale variables is illustrated in
Fig. 2. Note that the micro-scale boundary conditions for the mi-
cro-scale model depend on both macro- and micro-scale variables.

2.2. Macro-scale equations

The electrochemical transport of Liþ ions through the electro-
lyte and the current carried by the solid and liquid phases are de-
scribed by three equations:

e
@cl

@t
þr � Nþ 1

F
@t0
þ

@cl
i2 � rcl � 1� t0

þ
� �

jeff ¼ 0 ð1Þ

r � i1 þ F jeff ¼ 0 ð2Þ
r � i2 � F jeff ¼ 0 ð3Þ

with the following constitutive equations:

N ¼ �Deffrcl ð4Þ
i1 ¼ �kr/1 ð5Þ

i2 ¼ �jeff r/2 �
RT
F

1� t0
þ

� �
r ln cl

� �
ð6Þ

Eq. (1) describes the transport of Liþ ions through the electrolyte
with N being the Liþ ion flux. Faraday’s constant is denoted by F.
The ions are carried by both migration and diffusion effects. This
equation includes two source terms to account for the migration
due to the current i2 carried by the electrolyte and for the effect
of Li ions leaving the electrolyte and intercalating into the solid
material. The transference number, t0

þ, is the percentage of the cur-
rent in the solution carried by the Liþ ion rather than the anions in
solution; the transference number is in general a function of the
lithium ion concentration, cl. As Liþ ions leave the electrolyte and
enter the solid material, this creates an effective pore wall flux,
jeff . The currents i1 and i2 in the solid and liquid phases are governed
by Eqs. (2) and (3) with source terms to account for the effects of Li
entering and exiting the phases. In the solid phase, Ohm’s law (5)
relates the current and electric potential. In the liquid phase, the
constitutive relationship is defined by a modified Ohm’s law (6) that
accounts for the effect of Liþ ion concentration on the current. With-
in the cathode region, the effective electrolyte diffusivity and con-
ductivity are reduced from their values when no solid is present.

A homogenization approach (the Bruggeman relations) is used to
model the transport properties in the porous electrode [23]:

Deff ¼ eD2 ð7Þ
jeff ¼ e3=2j1 ð8Þ

The above model was introduced by Doyle et al. [17]. We have
reformulated their model in terms of field and constitutive equa-
tions in order to facilitate the numerical treatment of the model.
To account for electrochemical–mechanical coupling phenomena,
we extended this electrochemical model to include mechanical
deformations:

r � rþ b ¼ 0 ð9Þ

assuming the following linear constitutive and kinematic
relationships:

r ¼ C : ðe� echÞ; e ¼ 1
2
ðruþruTÞ ð10Þ

where r is the macroscopic stress tensor, b the vector of body
forces, C the elasticity tensor, ech the electrochemical eigenstrain
tensor, and e the total macroscopic strain tensor due to the macro-
scopic displacements, u.

We model a current-controlled (galvanostatic) discharge pro-
cess. We assume that there are no resistive loses in the Li foil anode
and therefore for every electron that leaves the anode, a Liþ ion en-
ters the electrolyte. At the anode–separator interface, CAS, the an-
ode is modeled through a boundary condition of an influx of Liþ

ions and the requirement that all the current be carried by the elec-
trolyte. This results in Dirichlet boundary conditions on the current
carried by the solid and liquid phases and a Neumann boundary
condition on the Liþ ion flux. A Galvanic process is assumed to re-
late the current discharged to the number of lithium atoms that
disassociate at the boundary yielding the Liþ ion flux. At the cath-
ode–current collector interface, CCC , lithium cannot leave the bat-
tery, so the Liþ ion flux is zero, and the solid cathode material
carries all the current. We model two mechanical configurations
through an elastic model, which is either fixed at both ends or
has an external pressure applied at the anode–separator interface,
CAS. These boundary conditions are summarized in Table 1.

We start our simulations assuming an initially uniform Liþ con-
centration. The potential in the electrolyte is zero and the potential
in the solid phase is the open circuit potential, U0, which depends
on the initial Li concentration in the active particles. The battery
is initially undeformed. These initial conditions are summarized
as follows:

Fig. 2. Interdependency of macro- and micro-scales.
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cl ¼ cl;0 ð11Þ
/2 ¼ 0 ð12Þ
/1 ¼ U0ðcs;0Þ ð13Þ
u ¼ 0 ð14Þ

where cl;0 and cs;0 are initial lithium concentrations in the liquid and
solid phases.

2.3. Micro-scale equations

The micro-scale particle model is based on the work of Zhang
et al. [12] where diffusion-induced stress in a particle is treated
analogously to thermal stress. Zhang et al. solve the equations
assuming zero surface traction on the particle and with a con-
stant pore wall flux. In this study we place the particle within
the cathode matrix. This requires accounting for particle–matrix
and particle–particle interactions, both of which result in surface
tractions. While the micro-scale governing equations presented
subsequently are the same as in Zhang et al. [12], in our model
the boundary conditions change significantly. Also, the pore wall
flux into the cathode particles changes at different locations
throughout the cathode and is modeled by the Butler–Volmer
equation which depends on both micro- and macro-scale vari-
ables. The Butler–Volmer equation is widely used in electro-
chemistry to express the reaction kinetics at the particle
surface as the difference between the cathodic and anodic
currents [22,24].

The diffusion of Li within the particle is governed by [12]:

@cs

@t
þr � J ¼ 0 ð15Þ

and the static equilibrium for the particle in the absence of body
forces is [12]:

rij;i ¼ 0 ð16Þ

with the following constitutive and kinematic equations [12,17]:

J ¼ �Ds rcs �
Xcs

RT
rrh

� �
ð17Þ

rh ¼ r11 þ r22 þ r33ð Þ=3 ð18Þ

rij ¼
E

1þ m
eij þ

Em
ð1þ mÞð1� 2mÞ ekk �

EX
2ð1� 2mÞ cs

� �
dij;

eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
ð19Þ

Note that the Liþ ion flux (17) only depends on the spatial gradient
of the hydrostatic stress,rrh, but not on the value of rh. The Liþ ion
flux at the particle surface is described by a Butler–Volmer model
[17]:

BVðcl;/1;/2; cs;surf Þ � Fjs ¼ 0 ð20Þ

with

BVðcl;/1;/2; csÞ ¼ i0 cs exp
aAF
RT

g� U0ðcsÞ
� �� ��

�ðcT � csÞ exp �aCF
RT

g� U0ðcsÞ
� �� ��

;

i0 ¼ Fk2ðcmax � clÞaC ðclÞaA ; g ¼ /1 � /2 ð21Þ

The macro-scale response influences the micro-scale model through
the boundary conditions at the particle surface. Stresses within the
electrode come from two sources: inhomogeneous swelling of the
cathode upon intercalation of lithium and from any applied external
load. Micro- and macro-scale stresses are related via homogeniza-
tion of the mechanical response; for this we use the Mori–Tanaka
Theory [25] described in Section 2.4. At the macro-scale, the loads
are propagated through the battery via Eq. (9). From the meso-scale
homogenization procedure, the micro-scale mechanical surface
pressure (23) exerted on the particle as a function of macro- and
micro-scale displacements is calculated. Macro-scale electrochemi-
cal effects are felt by the micro-scale through the Butler–Volmer
surface boundary condition (20). As the particle size is sufficiently
small such that the macro-scale variables do not vary significantly
over the size of a particle, we assume a uniform Liþ ion flux and
pressure at the surface of the particle:

J ¼ js ð22Þ
Pni ¼ rain̂ ð23Þ

We further assume a uniform initial Li concentration, cs;0, in the
particle:

cs ¼ cs;0 ð24Þ

The micro-scale particle-level effects are related to the macro-scale
through the homogenization methods described below.

2.4. Meso-scale homogenization methods

The microscopic pore wall flux is related to the macroscopic
pore wall flux assuming a uniform flux for all particles in a unit vol-
ume of the cathode [23]:

jeff ¼
3ð1� eÞ

Rs
js ð25Þ

Micro- and macro-scale mechanical properties are related using the
Mori–Tanaka (M–T) effective-field theory [25]. This homogeniza-
tion approach accounts for the interaction of spherical particles (so-
lid phase) within a matrix host (liquid phase). It has been
successfully used in a number of multiphysics settings where it
has been shown to agree well with experiments for effective elastic
properties [26], piezoelectric properties [27], thermal expansion
[28], the macroscopic stress–strain curve with a plastically-deform-
ing matrix [29], and estimates of internal stresses in individual par-
ticles [30]. Here we use the approach to generate estimates for the
effective elastic properties and overall chemical eigenstrains of the
aggregate as well as average stresses in the particles due to diffu-
sion and mechanical loads. At the macro-scale, the effective elastic-
ity tensor, Ceff , for the cathode is given by [31,32]:

Ceff ¼ Cm þ ð1� eÞðCs � CmÞAs ð26Þ

with

As ¼ AD½eIþ ð1� eÞAD��1 ð27Þ
AD ¼ ½Iþ SC�1

m ðCs � CmÞ��1 ð28Þ

where Cs and Cm are the stiffness matrices for the solid and liquid
(matrix) phases, I is the identity matrix, and S is Eshelby’s tensor,
which is a function of the aspect ratio of the particle and the Pois-
son’s ratio of the matrix phase.

Table 1
Boundary conditions for macro-scale equations.

Boundary condition Anode–separator
interface CAS

Cathode–current
collector interface CCC

Liþ ion flux N ¼ I 1�t0
þð Þ

F
rcl ¼ 0

Current in solid particles i1 ¼ 0 i1 ¼ I
Current carried by electrolyte i2 ¼ I i2 ¼ 0
Mechanical constraints u ¼ 0=r � n ¼ plm u ¼ 0

S. Golmon et al. / Computers and Structures 87 (2009) 1567–1579 1571



43

Based on the M–T, model the surface pressure exerted on a
spherical particle is a function of the macroscopic total strain, e,
and the macroscopic electrochemical eigenstrain, ech [31,32]:

Pni ¼ ðbs þ BsCeff ðe� echÞÞn̂ ð29Þ

with

bs ¼ ðI� BsÞ C�1
m � C�1

s

� 	
ech

s � ech
m

� �
ð30Þ

Bs ¼ BD½eIþ ð1� eÞBD��1 ð31Þ

BD ¼ Cs Iþ SC�1
m ðCs � CmÞ

h i�1
C�1

m ð32Þ

The macroscopic eigenstrain ech is computed as follows:

ech ¼ ech
m þ ð1� eÞ ech

s � ech
m

� �
þ ð1� eÞ C�1

s � C�1
m

� 	
bs ð33Þ

where ech
m and ech

s are the chemically induced strains in the matrix
and solid phases. We calculate ech

s from the solution to the micro-
scale problem and assume that there is no swelling of the matrix
phase of the cathode due to the Liþ ion concentration, i.e., ech

m ¼ 0.
The macroscopic total strain, e, is a function of the macroscopic dis-
placements (10). Therefore, the stress exerted on the particle sur-
face, Pni, is a function of the total macroscopic strain and the
microscopic strain of the particles. This interdependency results in
a nonlinear model at the micro-scale with micro-scale boundary
conditions on the surface pressure and pore wall flux both of which
depend on the macro-scale properties.

3. Numerical implementation

Because the distance across the battery from the anode to the
cathodic current collector is significantly smaller than the overall
size of a typical battery, we idealize the problem to one-dimension.
In our model, x = 0 corresponds to the anode–separator interface,
CAS, x ¼ ds to the separator–cathode interface, CSC , and x ¼ ds þ dþ
to the cathode–current collector interface, CCC . At the macro-scale,
the idealization to one-dimension is straight-forward. At the mi-
cro-scale, the three-dimensional problem is idealized to one-
dimension by assuming a spherical configuration and that the
spatial variation of the macroscopic variables can be neglected lo-
cally at the micro-scale. The surface pressure exerted on the parti-
cle comes from the meso-scale homogenization, and the surface
lithium flux is described by the Butler–Volmer equation.

At the macro-scale, we discretize Eqs. (1), (2), (3), and (9) in
time by an implicit Euler backwards scheme and in space by a
standard Galerkin finite element approach. The resulting discret-
ized form of the macro-scale field equations is:

Rcl
:

1
Dt

Z
X

NTeN ĉnþ1
l � ĉn

l

� �
dX

þ
Z

X
BT Nþ NT 1

F
@t0
þ

@cnþ1
l

Nî2Bĉnþ1
l � NT 1� t0

þ
� �

Njeff

 !
dX

þ Ið1� t0
þÞ

F






x¼0
¼ 0 ð34Þ

Ri1 :

Z
X
ð�BT iþ1 NT FNĵeff ÞdXþ Ijx¼dsþdþ

¼ 0 ð35Þ

Ri2 :

Z
X
ð�BT i�2 NT FNĵeff ÞdXþ Ijx¼0 ¼ 0 ð36Þ

Ru :

Z
X
ð�BT

rþ NT Nb̂ÞdXþ plmjx¼0 ¼ 0 ð37Þ

with:

N ¼ �Deff Bĉnþ1
l ð38Þ

i1 ¼ �kB/̂nþ1
1 ð39Þ

i2 ¼ �jeff B/̂nþ1
2 � RT

F
1� t0

þ
� � 1

Nĉnþ1
l

Bĉnþ1
l

" #
ð40Þ

r ¼ Ceff ðe� echÞ; e ¼ Bûnþ1 ð41Þ

where N is the shape function vector and B is the discretized differ-
ential operator. The integrals are evaluated by standard Gauss
quadrature. The above equations are combined to yield the follow-
ing dynamic residual equations:

Rdyn ¼
1
Dt

M � ðx̂nþ1 � x̂nÞ þ Rðx̂nþ1Þ ¼ 0 ð42Þ

where the vector x̂ collects all macroscopic state variables,
ĉl; /̂1; /̂2; û, and the superscript n denotes the time increment.
At each time step, Eq. (42) is solved by Newton’s method. For the
sake of numerical efficiency and robustness, we derive the Jacobian
of the residual equations, Jdyn, analytically. Because ech and jeff de-
pend on cl; /1; /2, and u, the Jacobian is fully populated and de-
pends on the micro-scale state variables; the evaluation of Jdyn

will be outlined later.
In order to compute the effective pore wall flux jeff and the

chemical eigenstrains ech, at every Gauss point we solve a separate
micro-scale problem for given values of the macroscopic variables.
In this study, Eqs. (15) and (16) are solved assuming a spherical
particle geometry. This assumption simplifies the micro-scale cal-
culations to one-dimension. However, our computational frame-
work could be easily augmented to treat particles of any shape.
The continuous micro-scale equations for a spherical particle are
given in spherical coordinates in Appendix B. Combining an Euler
backward scheme and a Galerkin approach to discretize the mi-
cro-scale problem in time and space, the discretized governing
equations in spherical coordinates are:

Rcs :
1
Dt

Z
r

NT 4pðNr̂Þ2N ĉnþ1
s � ĉn

s

� �
dr

þ
Z

r
BT 4p Nr̂ð Þ2Jdr � 4pR2

s jsjr¼Rs ¼ 0 ð43Þ

Ru :

Z
r
ð�BT 4pðNr̂Þ2rr � NT 8pðNr̂ÞrtÞdr þ 4pR2

s Psjr¼Rs
¼ 0 ð44Þ

RBV : BV cnþ1
l ;/nþ1

1 ;/nþ1
2 ; cnþ1

s;surface

� 	
� Fjs ¼ 0 ð45Þ

with

J ¼ �Ds Bĉnþ1
s � X

RT
Nĉnþ1

s Br̂nþ1
h

� �
ð46Þ

rr ¼
E

ð1þ mÞð1� 2mÞ ð1� mÞBûnþ1 þ 2m
Nûnþ1

Nr̂
�X

3
Nĉnþ1

s ð1þ mÞ
� �

rt ¼
E

ð1þ mÞð1� 2mÞ mBûnþ1 þ Nûnþ1

Nr̂
�X

3
Nĉnþ1

s ð1þ mÞ
� �

ð47Þ

BV cnþ1
l ;/nþ1

1 ;/nþ1
2 ; cnþ1

s;surface

� 	
¼ i0 Ncnþ1

s;surface exp
aAF
RT

g� U0 Nĉnþ1
s;surface

� 	� 	� ��

� cT � Nĉnþ1
s;surface

� 	
exp �aCF

RT
g� U0 Nĉnþ1

s;surface

� 	� 	� ��
;

i0 ¼ Fk2 cmax � cnþ1
l

� �aC cnþ1
l

� �aA ; g ¼ /nþ1
1 � /nþ1

2 ð48Þ

where the radial position r ¼ 0 is the center of the particle and
r ¼ Rs is the particle surface. The macroscopic variables cl; /1,
and /2 defined at a Gauss point of the macro-scale model are
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considered constant within the micro-scale model. The micro-scale
model is advanced in time synchronously with the macro-scale
problem.

To simplify the numerical treatment of the nonlinear flux
boundary conditions, we introduce the micro-scale pore wall flux,
js, as an independent variable and consider the Butler–Volmer
equation (45) as part of the governing equations. Furthermore, to
limit the order of spatial derivatives in the diffusion equations
(43) and (46) to first order, the hydrostatic stress is introduced
as an independent field and the hydrostatic stress equation is sat-
isfied in a weak sense:

Rrh
:

Z
r

NT 4pðNr̂Þ2Nr̂nþ1
h � NT 4pðNr̂Þ2ðrr þ 2rtÞ=3

� 	
dr ð49Þ

To consistently approximate displacements and hydrostatic stress
and to avoid numerical instabilities, the order of polynomial inter-
polation for the micro-scale displacements needs to be larger than
for the hydrostatic stress. For this study, quadratic elements are
used for the displacements and concentrations while linear ele-
ments are used for the hydrostatic stress interpolation.

The particle surface pressure depends on the macroscopic total
strain and the microscopic volumetric strain through Eqs. (29)–
(33). For spherical particles, the microscopic chemically induced
eigenstrain of the solid particles, ech

s , is equal to the volumetric
strain of the solid particles, eV which depends only on the displace-
ment at the surface of the particle:

eV ¼
1
3

Rs þ unþ1
surf

� 	3

R3
s

� 1

0
B@

1
CA ð50Þ

The homogenized macroscopic electrochemical eigenstrain ech is
calculated from eV using Eq. (33) with ech

s ¼ eV . The conversion from
micro-scale pore wall flux js to the effective macro-scale flux jeff is
given by the homogenization model of Eq. (25).

For solving the nonlinear subproblems at each time step at the
macro- and micro-scale, we use analytically derived Jacobians. In
order to evaluate the macro-scale Jacobian, Jdyn, the derivatives of
the micro-scale variables js and ech with respect to the macro-scale
state variables cl; /1; /2, and u are required. The macroscopic
variables cl; /1, and /2, are only present in the micro-scale model
through the Butler–Volmer equation (20). The macroscopic dis-
placements, u, are only present in the boundary condition of the
elastic residual (16) though the surface pressure. Differentiating
the Butler–Volmer equation with respect to cl; /1, and /2 and
the elastic residual with respect to u, we can compute the required
derivative of js with respect to the macroscopic variables. Details of
this algorithm are given in Appendix C. The derivatives of electro-
chemical eigenstrain ech with respect to the macro-scale variables
are slightly more involved and require the following expansion:

@ech

@n
¼ @ech

@eV

@eV

@usurf

@usurf

@n
; for n ¼ cs;/1;/2 ð51Þ

@ech

@u
¼ @ech

@eV

@eV

@usurf

@usurf

@u
ð52Þ

The derivatives @ech=@eV and @eV=@usurf can be found by differenti-
ating Eqs. (33) and (50), respectively. The evaluation of the deriva-
tives of the displacements at the particle surface with respect to the
macroscopic variables is given in Appendix C.

4. Verification

We verify our macro- and micro-scale models separately using
published data. While our model is not specific for any particular
material systems, for verification purposes we model a lithium foil
anode, PEO—LiCF3SO3 electrolyte, and either a TiS2 or Mn2O4 cath-

ode active material. Other materials systems with binary electro-
lytes can be modeled given their electrochemical and mechanical
properties. The material and geometric parameters along with
the discretization parameters and convergence criteria used in
the following simulations are given in Tables 2 and 3.

We verify our micro-scale problem by comparison with the re-
sults of Zhang et al. [12]. We compare our model for a single Mn2O4

particle of radius Rs ¼ 5 lm with zero surface traction and a con-
stant discharge current of I ¼ 10 A=m2, which corresponds to a sur-
face pore wall flux of js ¼ 10 A=m2=F. The particle is discretized by
30 elements. Piecewise quadratic interpolations are used to
approximate the lithium concentration and displacements and a
piecewise linear interpolation is used for the hydrostatic stress.
The evolution of the lithium concentration cs in the particle is sim-
ulated for 1000 s with a time step Dt ¼ 25 s.

Zhang et al. [12] compare their diffusion–stress coupling model
(17) to the classical diffusion equation:

J ¼ �Dsrcs ð53Þ

They find that including the stress effect in Eq. (17) enhances the
diffusion through the particle resulting in smaller Li concentration

Table 2
Material parameters.

Symbol Value Unit Reference

PEO—LiCF3SO3 electrolyte
cl;max 3920 mol/m3 [17]
cl;0 1000 mol/m3 [17]
Dl 7.5 � 10�13 m2/s [17]
j1 6.5 � 10�3 S/m
t0
þ 0.0107907 + 1.48837 � 10�4 cl – [17]

@t0
þ=@cl 1.48837 � 10�4 [17]

TiS2 cathode
cs;max 29,000 mol/m3 [17]
cs;0 299 mol/m3 [17]
Ds 5.0 � 10�13 m2/s [17]
rs 104 S/m [17]

Mn2O4 cathode
cs;max 22,900 mol/m3 [12]
cs;0 4351 mol/m3 [12]
Ds 7.08 � 10�15 m2/s [12]
rs 104 S/m
E 109 Pa [12]
t 0.3 – [12]
X 3.497 � 10�6 m3/mol [12]

Table 3
Geometric and discretization parameters and convergence criteria.

Symbol Value Unit Reference

Nominal setup for PEO—LiCF3SO3; TiS2 system
Rs 5 lm [17]
e 0.3 – [17]
I 12.1 A/m2 [17]
Mechanical boundary condition Fixed ends

Nominal setup for PEO—LiCF3SO3; Mn2O2 system
Rs 5 lm [12]
e 0.3 –
I 12.1 A/m2

Mechanical boundary condition Fixed ends

Macro-scale problem
Number of elements for separator 20
Number of elements for cathode 40
Newton convergence tolerance 1e�5

Micro-scale problem
Number of elements 30
Newton convergence tolerance 1e�5
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gradients. Our results, shown in Fig. 3, are indistinguishable from
those of Zhang et al. [12].

To verify our macro-scale model, we compare our results with
those of Doyle et al. [17] for a discharge current-controlled simula-
tion of a one-dimensional battery model. The battery consists of a
lithium foil anode, a separator of width ds ¼ 50 lm, and a cathode
of width dþ ¼ 100 lm and volume fraction e ¼ 0:3. The material
system includes a PEO—LiCF3SO3 electrolyte and TiS2 cathode par-
ticles with Rs ¼ 1 lm. The micro-scale diffusion of Li into the cath-
ode particle is modeled by Eq. (53) and solved semi-analytically
[17]. The separator is discretized by 20 and the cathode by 40 ele-
ments of uniform length. All macro-scale variables cl; /1; /2, and
u are approximated by piecewise linear interpolations. The time
step ranges from Dt ¼ 1 to 10s.

In Fig. 4, we plot the lithium concentration cl over the normal-
ized distance from the anode, x=ðds þ dþÞ, at different instances in
time. Overall our simulation results agree well with ones of Doyle
et al. [17]. However in the first few seconds, the evolutions of the
Liþ ion concentration differ slightly as shown in Fig. 5. Our model
predicts deeper levels of Liþ ion depletion at the separator–cathode
interface, CSC . This discrepancy is due to differences in the numer-
ical solution procedure. Doyle et al. [17] use a finite-volume ap-
proach and add artificial diffusion via an upwinding scheme to

stabilize the results at the separator–cathode interface, CSC . We
do not observe any instability at this interface in our finite element
formulation and therefore do not apply any artificial diffusion.

5. Numerical study of electrochemical–mechanical interaction
phenomena

Our computational framework can be readily used to study
electrochemical–mechanical interactions within the battery. To
illustrate this capability, we revisit the one-dimensional battery
model described above and simulate again a single current-con-
trolled discharge process. Here we consider a different material
system consisting of PEO—LiCF3SO3 electrolyte and Mn2O4 cath-
ode. This particular material system is chosen due to the availabil-
ity of material parameters; other systems can be modeled given
the material properties. This cathode material system experiences
a volume change of up to 6.5% upon lithium insertion [12]. The
nominal setup for this system is summarized in Tables 2 and 3.

By varying the electrochemical parameters of the cathode parti-
cle radius, the porosity of the cathode, and the discharge current
density, we study how the electrochemical properties affect both
electrochemical and mechanical performance. Similarly, by chang-
ing the mechanical boundary conditions and applying external
mechanical loads of different magnitudes, we study the influence
of mechanical parameters on the battery performance. We can
only partially verify our numerical studies due to a lack of pub-
lished experimental and numerical studies on the effect of applied
pressures on the battery performance.

5.1. Effect of discharge current density

Figs. 6 and 7 show the effects of different discharge current den-
sities on the electrochemical performance of the battery. As ex-
pected, a higher current density leads to a lower utilization of
the active material and therefore lower capacity. Utilization is
the ratio of the actual over the maximum Li concentration that
can intercalate into the active cathode material. In Fig. 6 we plot
the potential difference between the battery electrodes versus
the average utilization of the active cathode material. At higher
current densities the voltage drops at lower utilizations, which is
agreement with Doyle et al. [17], and results in higher Li concen-
tration gradients in the cathode material, as seen in Fig. 7. At high-
er discharge rates the active material closest to the separator–
cathode interface, CSC , saturates with Li faster than the active
material farther from the interface. At lower currents, the utiliza-
tion across the cathode is more even.

Higher Li concentrations result in higher microscopic stresses.
At any time step, the maximum radial stress in the spherical parti-
cles is always located at the center of the particle. Subsequently,
we refer to the radial stress at the particle center as the peak radial
stress. In Fig. 8, the maximum of the peak radial stress, which is the
maximum over time of the peak radial stress, reached during dis-
charge up to an average utilization of 0.3936 is plotted for different
current densities. Larger discharge currents also result in greater
maximum macroscopic electrochemical eigenstrains over time as
seen in Fig. 9. Note the distributions of the macroscopic electro-
chemical eigenstrains follow the ones of the averaged Li concentra-
tion in the solid particles.

5.2. Effect of particle size

Motivated by increasing capabilities to synthesize engineered
cathode materials, we study the effects of the particle size on the
electrochemical and mechanical performance. Simulations with
particle sizes ranging from 1 to 20 lm were performed. For this

Fig. 3. Li concentration in a single particle at t = 1000 s; solid line: the stress-
enhanced diffusion model; dashed line: classical diffusion model.
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portion of the study, the volume fraction, e, is kept constant at 0.3
and the particle size is varied, therefore the overall electrochemical
capacity of the battery is unchanged. Our results show that smaller
particle sizes give better electrochemical performance, character-
ized by the dependency of the battery voltage on the utilization
of the solid cathode material, as shown in Fig. 10. Smaller particles
also experience lower peak radial stresses over time, as shown in
Fig. 11. This is in qualitative agreement with Wang and Sastry’s
simulations [18] which show a decrease in performance with lar-
ger particle sizes, and with Aifantis, Hackney, and Dempsey’s work
[11] which predicts that smaller particle sizes will be less suscep-
tible to failure due to cracking.

5.3. Effect of porosity of the cathode

The porosity, e, the liquid volume fraction in the cathode, affects
the battery in terms of overall capacity and utilization of the active
material. If the porosity is high, the energy capacity of the battery
is lower because there is less active material into which Li can
intercalate. In this case the active cathode material particles uptake
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Liþ ions fairly evenly as seen in Fig. 12. However, if the porosity of
the battery is too low, Liþ ions do not effectively move through the
liquid phase to the deeper regions of the cathode and higher gradi-
ents in Li concentration will be found across the cathode. In this
case, the higher gradients prohibit full utilization of the cathode,
so the increased theoretical capacity of the battery is not reached.
The lower porosity also leads to higher macroscopic eigenstrains
across the battery cathode as seen in Fig. 13.

5.4. Effect of mechanical boundary conditions

We compute the macro- and micro-scale response of our bat-
tery model for varying mechanical boundary conditions. We study
two cases: (a) the battery is clamped at both ends, and (b) an exter-
nal pressure is applied at the anode–separator interface, CAS, and
the cathode–current collector interface, CCC , is clamped. Pressure
values of ±10 MPa and ±100 MPa are considered.

In the case of spherical particles, our model predicts that there
is no influence of the interlaminate stress on the electrochemical
performance of the battery. As pointed out earlier, the micro-scale

diffusion equation (17) depends only on the gradient of the hydro-
static stress. The predicted insensitivity of the electrochemical per-
formance with respect to external mechanical loading conditions is
in qualitative agreement with the experimental work of Periea
et al. [15].

However, the dependency of macro- and micro-scale stresses
across the battery on the mechanical boundary conditions cannot
be ignored, as they will contribute to failure mechanisms in the bat-
tery. As is expected, greater interlaminate stress correlates to high-
er strains and stresses across the battery as seen in Figs. 14 and 15.

6. Conclusions

We have developed a multi-scale finite element model of the
electrochemical and mechanical interactions in lithium batteries
subject to external mechanical loads. At the macro-scale, we have
extended Doyle and Newman’s electrochemical porous electrode
model to account for elastic deformations. At the micro-scale we
have accounted for differences in Liþ ion flux into the particles
due to interfacial surface conditions using the Butler–Volmer
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equation and for surface pressures exerted on the particles by the
composite cathode matrix. We have introduced a meso-scale
aggregate model to relate micro- and macro-scale mechanical
effects. The macro- and micro-scale models are discretized in time
by an implicit Euler backward scheme and in space by a Galerkin
finite element method. The nonlinear macro- and micro-scale
subproblems are solved by Newton’s method using analytically
derived Jacobians.

We have verified our macro- and micro-scale models separately
through comparison with previously published simulation results.
The potential of our multi-scale model was demonstrated by
numerical studies on the influence of electrochemical and mechan-
ical parameters on the battery performance. Our simulation results
are in agreement with related simulation results and experimental
studies, which predict better electrochemical performance and
lower particle-level stresses for smaller cathode particle sizes

[11,12], and no influence of mechanical boundary conditions on
electrochemical performance [15].

The numerical implementation and studies presented in this
paper were limited to spherical cathode particles and single cur-
rent-controlled discharge processes, neglecting accumulated stres-
ses due to cycling of the battery. However, our numerical
framework already allows the simulation of discharge–charge cy-
cles and can be easily augmented to include more complex particle
geometries. Currently, we are extending this framework to account
for thermal effects at both macro- and micro-scale.
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Appendix A. List of symbols

Symbol Units Description

As; Bs; bs Concentration factors (Mori–Tanaka
theory)

B – Derivatives of the shape function
vector

b Pa Body force
C Pa Homogenized elasticity tensor
Cs; Cm Pa Isotropic elastic stiffness matrix for

solid and liquid phases
cl mol/m3 Concentration of lithium in

electrolyte
cmax mol/m3 Max concentration in polymer
cs mol/m3 Concentration of lithium in solid

particles

(continued on next page)
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cT mol/m3 Max concentration in solid
Dl m2/s Diffusion coefficient of electrolyte
Ds m2/s Diffusion coefficient of lithium in the

solid
E Pa Young’s modulus of solid particles
e – Macroscopic strains due to

macroscopic displacements
ech – Chemically induced eigenstrain
eV – Volumetric strain of a particle
F C/mol Faraday’s constant
I A/m2 Superficial current density
i1 A/m2 Current density in solid phase
i2 A/m2 Current density in liquid phase
jeff mol/m2 s Macro-scale effective pore wall flux
js mol/m2 s Micro-scale pore wall flux
k2 m4/mol s Reaction rate constant at cathode/

polymer interface
N mol/m2/s Lithium ion flux in the electrolyte
N – Shape Function vector
Ps Pa Surface pressure exerted on a

particle
plm Pa Surface pressure
R J/mol/K Universal gas constant
Rs m Radius of cathode particles
r m Micro-scale distance from center of

cathode particle
S Eshelby’s tensor
T K Temperature
t s Time
t0
þ – Lithium ion transference number

U0 V Open circuit potential
u m Macroscopic displacements
u m Microscopic displacements within a

particle
V m3 Total volume
Vl m3 Volume of liquid phase
x m Distance from anode

aA; aC – Anodic and cathodic transfer
coefficients

ds m Thickness of separator
dþ m Thickness of composite cathode
e – Porosity, liquid volume fraction
eij – Microscopic strain
/1 V Potential in solid phase
/2 V Potential in liquid phase
g V Surface overpotential
jeff S/m Effective conductivity of electrolyte
j1 S/m Conductivity of electrolyte, nothing

else present
k S/m Conductivity of solid matrix
m – Poisson’s ratio for solid particles
X m3/mol Partial molar volume
CCA Current collector–anode interface
CAS Anode–separator interface
CSC Separator–cathode interface
CSC Cathode–current collector interface
r Pa Macroscopic stress
r Pa Microscopic stress
rh Pa Hydrostatic stress

Appendix B. Micro-scale equations in spherical coordinates

We summarize the micro-scale equations in spherical coordi-
nates which are used in our numerical implementation. The mi-
cro-scale governing equations are:
@cs

@t
þ rr þ

2
r

� �
J ¼ 0 ð54Þ

drr

dr
þ 2

r
ðrr � rtÞ ¼ 0 ð55Þ

rh � ðrr þ 2rtÞ=3 ¼ 0 ð56Þ
with the corresponding constitutive equations:

J ¼ �Ds rrcs �
Xcs

RT
rrrh

� �
ð57Þ

rr ¼
E

ð1þ mÞð1� 2mÞ ð1� mÞruþ 2m
u
r
�X

3
~csð1þ mÞ

� �
ð58Þ

rt ¼
E

ð1þ mÞð1� 2mÞ
u
r
þ mru�X

3
~csð1þ mÞ

� �
ð59Þ

The boundary conditions at the particle surface, r ¼ Rs, are:

J ¼ js ð60Þ
rr ¼ Ps ð61Þ
BVðcl;/1;/2; cs;surf Þ � Fjs ¼ 0 ð62Þ
where BVðcl;/1;/2; cs;surf Þ is defined as in Eq. (21). The boundary
conditions at the particle center, r ¼ 0, are:

rrcs ¼ 0 ð63Þ
u ¼ 0 ð64Þ

Appendix C. Jacobian of micro-scale problem and derivatives of
micro-scale variable with respect to macro-scale variables

The Jacobian of the micro-scale problem is simplified to show
only variables describing surface phenomena and includes the fol-
lowing terms:

J ¼

@Rcs

@cs
0

@Rcs

@rh

@Rcs

@js

@Ru

@cs

@Ru

@u
0

@Ru

@js

@Rrh

@cs

@Rrh

@u
@Rrh

@rh

@Rrh

@js

@RBV

@cs

@RBV

@u
@RBV

@rh

@RBV

@js

2
666666666664

3
777777777775

ð65Þ

In order to find values for the derivatives of the micro-scale vari-
ables with respect to macro-scale variables, n ¼ cl; /1; /2 and u,
the following systems of linear equations are solved:

J

@cs

@n
@usurf

@n
@rh

@n
@js

@n

2
6666666664

3
7777777775
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0
0
0
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J
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Appendix A. (continued)

Symbol Units Description
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where the derivatives @RBV=@n with n ¼ cl; /1; /2 and @Ru=@u are
found analytically.
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Using a fully-coupled diffusion-elasticity model with Butler–Volmer surface kinetics, we simulate
the insertion of lithium into spherical silicon particles. Simulations predict the evolution of
concentration, displacements, and stresses in the particles during the first insertion of Li. The
particle response depends strongly on the reaction kinetics and the resulting stresses can be above
the tensile failure stress of silicon depending on the particle size and discharge rate. © 2010
American Institute of Physics. �doi:10.1063/1.3458707�

Rechargeable lithium ion batteries are particularly attrac-
tive due to their high gravimetric and volumetric energy den-
sity, high operating voltage, low self-discharge rate, and the
lack of memory effects. Traditional lithium ion batteries em-
ploy carbonaceous anodes with a capacity of 372 mA hg−1.
The most attractive candidate to replace carbonaceous an-
odes is silicon which has the highest known capacity, in ex-
cess of 4000 mA hg−1.1,2 A drawback with silicon is that a
volume expansion on the order of 300% �Ref. 3� to 400%
�Ref. 4� occurs upon Li insertion due to the formation of LiSi
alloys, a process thought to culminate in Li22Si5 where each
Si atom accommodates 4.4 Li atoms.5 Stresses associated
with these large volume changes have been cited as the cause
of cracking and pulverization of Si electrodes that leads to
loss of electrical contact and capacity fade during cycling.2

Mechanistic details regarding the cyclic degradation that
leads to capacity fade, are not well developed, and many
papers simply state that it is related to the large volume
change that results upon Li insertion.

A number of observations exist that suggest silicon an-
odes with morphology of nanometer scale dimensions are
more robust than anodes with larger-dimension morphology
with regard to cyclic degradation. For example, Li et al.6

showed that composite anodes with Si particles in the 50–
100 nm range have better cycling performance than those in
the micrometer range. Another line of inquiry has shown that
arrays of Si nanowires exhibit cycling performance with no
degradation.7 A third example showed that nanoporous Si
architectures result in capacity retention that exceeds that of
nanoscale particles and nanowires.8 Presumably the improve-
ment that results from nanoscale architectures is related to
the stresses developed during cycling. In this paper we take a
step toward developing an understanding of the interaction
between Si morphology size and stress generation during Li
cycling.

Christensen and Newman studied diffusion induced
stresses under constant current and Butler–Volmer current
conditions9 as well as stress and fracture in LiyMn2O4.10

Zhang et al.11,12 studied Li insertion in Mn2O4 with a fully-
coupled electrochemical and mechanical model with lithium
influx governed by a constant current and through Butler–

Volmer surface kinetics. Cheng and Verbrugge13,14 developed
analytical models for diffusion-induced stresses for both gal-
vanostatic and potentiostatic operation of cells, however this
model does not capture the influence of surface reactions, or
account for the influence of stress on diffusion.

Here we simulate the development of stresses in a
spherical Si particle using a continuum model that describes
the fully-coupled mechanics and diffusion during Li inser-
tion. The influx of Li is modeled by a Butler–Volmer model
that describes the electrochemical reaction kinetics at the Si
particle/electrode interface. These results are used to form a
parameter map of the maximum tensile stress as a function
of discharge rate and particle size, in order to provide guide-
lines for the design of cracking-resistant electrodes. We focus
on the first insertion of lithium into silicon in order to quan-
tify the initial development of the stresses. We do not con-
sider the impact of degradation mechanisms that occur upon
Li cycling; these stresses are beyond the scope of our present
study.

We idealize the electrode particles as spherically sym-
metric particles embedded in a host electrolyte. The effects
of the host electrolyte enter the model through the particle
surface kinetics. We take the Si particles to be isotropic,
deform in a linearly elastic manner, and we neglect surface
stress effects;15–17 all of these assumptions can be removed
with a more sophisticated analysis. Reaction kinetics at the
particle/electrolyte surface are described by a Butler–Volmer
model.18,19 This describes the influx of Li as a function of
time and overpotential. The subsequent transport of Li
through the spherical particle is modeled as a diffusion pro-
cess. As Li ions diffuse through the Si lattice the particle is
strained. In spherical coordinates the coupled diffusion and
displacements are described by:11

�c

�t
+ ��r +

2

r
�J = 0, �1�

d�r

dr
+

2

r
��r − �t� = 0, �2�

�h − ��r + 2�t�/3 = 0. �3�

Equation �1� describes the diffusion process where c is the
concentration of Li ions and J is the Li ion flux. Equation �2�
describes the elastic deformation where �r, �t, and �h are the
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radial, tangential, and hydrostatic stresses that occur during
the spherically-symmetric deformation. We take the elasticity
to be quasistatic because the time scale for elastic deforma-
tion is far shorter than that for diffusion. The full coupling
between diffusion and elasticity is reflected in the constitu-
tive equations:

J = − D��rc −
�c

RgT
�r�h� , �4�

�r =

E��1 − �� � u + 2�
u

r
−

�

3
c�1 + ��	

�1 + ���1 − 2��
, �5�

�t =

E�u

r
+ � � u −

�

3
c�1 + ��	

�1 + ���1 − 2��
. �6�

Here D is the diffusion coefficient of Li in Si, E and � are
Young’s modulus and Poisson’s ratio of Si, respectively. The
material parameters are taken to be constant and independent
of concentration, although this restriction could be removed
in a straightforward manner. In Eq. �4� Rg is the gas constant,
T is the absolute temperature which is assumed to be con-
stant, and � is the Li ion partial molar volume.

At the center of the particle, u=0 and J=0; the surface
of the particle is taken to be traction free. The ion flux at the
particle surface is dictated by the kinetics of the electro-
chemical reaction and described by a Butler–Volmer
equation:20

J =
i0

F
�exp
�AF

RgT
�� − U�c/cmax���

− exp
�CF

RgT
�� − U�c/cmax���	 , �7�

i0 = Fk�cl��A�cmax − c��A�c��C. �8�

In Eqs. �7� and �8�, F is the Faraday constant, cl is the con-
centration of lithium in the surrounding electrolyte, k is the
interfacial charge transfer reaction constant, � is the electric
potential difference between the silicon and matrix, and
U�c /cmax� is the open circuit electric potential of lithium in
silicon as a function of normalized concentration. We take cl,
k, and T to be constant in our simulations. The diffusion-
elasticity model is discretized by a finite element approach
and an Euler backward time marching scheme.21 Mesh and
time-step refinement studies to ensure convergence were per-
formed.

Simulations reported in this paper are for the first inser-
tion of Li into Si and are driven by a linearly-varying electric
potential �. A range of particle radii and potential sweep
rates are investigated and the development of stresses is
monitored. The electric potential is controlled by a potential
sweep rate, v; i.e., �=�0−vt for vt��0 and �=0 for vt
��0. The difference between the applied potential and equi-
librium open circuit potential drives the electrochemical re-
action at the particle surface to generate a current flux at the
particle surface. Parameters used in our simulations are given
in Table I. For the first insertion of lithium into silicon, the
open circuit potential is interpolated from experimental re-
sults of Baggetto et al.3 The value for k in the Butler–Volmer

equation was found by fitting simulations of cyclic voltam-
magrams for planar films to experimental results3 with the
goal of matching the location and slope of the initial increase
in current influx during Li insertion. Consistent with Bag-
getto et al.,3 here we take cmax to occur at Li15Si4 with a
300% volume expansion upon full insertion of Li. The model
is initialized with a uniform concentration of c0=0.01cmax,
corresponding uniform swelling, and potential of �0=U�c0�.
All calculations are performed in reference to the unde-
formed body. Simulations are carried out until the particle
reaches 96% utilization �the average concentration of Li in Si
normalized by cmax�.

Figure 1 explores the spatial and temporal variation in
the concentration and stress fields during lithium insertion.
The applied overpotential decreases linearly, until it reaches
zero, and then is maintained at zero �Fig. 1�a��. The resulting
current influx into the particle �Fig. 1�b�� varies with time

TABLE I. Parameters for silicon and Butler–Volmer model.

Symbol Value Units References

D 10−16 m2 /s 22
E 112.4 GPa 23
� 0.28 ¯ 23
	 2.33 g /cm3 5
cmax 311 053 mol /m3 Calculateda

� 4.265
10−6 m3 /mol Calculatedb

cl 1000 mol /m3

k 1
10−13 c m5/2 s−1 mol−1/2

T 300 K
�A ,�C 0.5 ¯

F 96 487 C/mol
Rg 8.3143 J/mol/K

aCalculated using the density and atomic weight of Si, and assuming 3.75
Li/Si.
bCalculated from �=3� /cmax where � is the predicted strain from a 300%
volume expansion of 0.442.
cFound by fitting cyclic voltammagrams to experimental results.3
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and drives the overall utilization of the particle �Fig. 1�c��.
The timescales of Li insertion into and subsequent diffusion
within the sphere are such that the spatial distribution of
lithium in the sphere remains nearly constant at all times
�Fig. 1�d��, however there is a gradient in the concentration,
with higher concentrations at the particle surface than at the
center �Fig. 1�e��. The insertion of lithium gives rise to
stresses that vary with position and time �Figs. 1�f�–1�h��.

During Li insertion, the radial stress in the Si particle is
always tensile, maximum at the center of the particle, and
decreases monotonically to zero at the particle surface. The
tangential stress on the other hand is compressive at the sur-
face and tensile in the interior of the particle; it is equal to
the radial stress at the center where the particle is in a state of
hydrostatic tension and the magnitude is a maximum at the
surface. The shear stress vanishes at the center of the particle
and increases as the surface is approached. All three stresses
peak at the same time, shortly before the maximum current is
reached, and then decrease with continued Li insertion. As
the concentration increases in the material near the surface, it
swells with respect to the material near the center of the
particle, i.e., there is a mismatch in strain. Material just in-
side the surface that has yet to swell constrains material at
the surface from swelling freely, which results in tensile
stress near the center of the particle. When the rate of Li
insertion rises �Fig. 1�b��, lithium enters the particle at the
surface significantly faster than it can diffuse through the
particle, i.e., the process is reaction dominated. This causes
the local concentration gradient and thus the mismatch in
strain to increase. As the concentration becomes more uni-
form, the strain mismatch within the particle decreases and
so do the stresses.

Figure 2 shows the influence of the particle size and
potential sweep rate on the maximum �over time� tensile
stress at the particle center. A contour line of 1 GPa �the
tensile failure stress of silicon is in the range of 1–4 GPa
�Refs. 24–26� is seen at the right of the plot and can be
considered to separate two regions of a failure map. Points
above and to the right of this line describe configurations that
would be expected to fail, while those below and to the left
of the line would be expected to be safe. This is consistent
with experimental observations where smaller particles �in
the nanometer-scale� have been shown to be more resistant
to cracking than larger ones.6 These results also suggest, as
do experiments, that for high potential sweep rate applica-

tions, it is more important to use smaller particles. The
stresses are lower in smaller particles because the increased
surface to volume ratio results in a more uniform lithium
concentration throughout the particle; the lower concentra-
tion gradient results in lower stresses. These results are for
the extreme case of a particle that is permitted to expand
freely. If the particle is constrained by a host matrix during
insertion, the stresses will increase. We note, though, that this
discussion, along with the analysis, has not considered sur-
face stress effects which can be significant for nanometer-
scale particles,13,15 dependancies of the material parameters
on phase-changes in the silicon, and on concentration and
stress, and the effect of a surrounding matrix that may me-
chanically constrain the particle. If Li is extracted from an
initially full particle, the processes reverse with stresses ap-
proximately equal in magnitude and of opposite sign.
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SUMMARY

The capacity of lithium ion batteries can be improved through the use of functionally graded electrodes.
Here, we present a computational framework for optimizing the layout of electrodes using a multiscale
lithium ion battery cell model. The model accounts for nonlinear transient transport processes and mechan-
ical deformations at multiple scales. A key component of the optimization methodology is the formulation
of the adjoint sensitivity equations of the multiscale battery model. The efficient solution of the adjoint
equations relies on the decomposition of the multiscale problem into multiple, computationally small prob-
lems associated with the individual realizations of the microscale model. This decomposition method is
shown to significantly reduce the computational time needed for sensitivity analysis versus numerical finite
differencing. The potential of the proposed optimization framework is illustrated with numerical problems
involving both macroscale and microscale performance criteria and design variables. The usable capacity
of a lithium ion battery cell is maximized while limiting the stress level in the electrode particles through
manipulation of the local porosities and particle radii. The optimization results suggest that optimal func-
tionally graded electrodes improve the performance of a battery cell over using uniform porosity and particle
radius distributions. Copyright © 2012 John Wiley & Sons, Ltd.
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KEY WORDS: multiscale modeling; homogenization; finite element method; adjoint sensitivity analysis;
stress–diffusion coupling

1. INTRODUCTION

In an increasingly mobile, energy-dependent society, there is a growing demand for more reliable,
higher energy density, and longer lifetime batteries. Lithium-ion (LiC) batteries are among the high-
est theoretical energy storage densities of modern batteries but are plagued with significantly shorter
lifetimes when compared with other battery chemistries [1]. The performance and degradation of
LiC batteries strongly depends on both electrochemical and mechanical phenomena. Figure 1 shows
the layout of a typical LiC battery cell. When the battery is discharged, Li in the anode is oxidized
into lithium ions, LiC, and electrons. The electrons flow through the external circuit to the cath-
ode while the ions enter the electrolyte and are carried by diffusion and migration to the cathode,
where the ions are reduced. In most batteries, the electrodes are porous composites made of active
insertion compounds, binders, and conductive additives, with liquid electrolyte filling the pores.
The liquid volume fraction in the electrode is referred to as porosity, typically ranging between 30%
and 50%. In the electrode, Li intercalates into the active material that causes the material to swell.
Depending on the electrode material, this swelling ranges from 6.5% for Mn2O4 cathode material to
300%–400% for Si anode materials [2–4] and results in stresses that can lead to cracking of the
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Figure 1. Battery cell.

active material particles. Experimental studies have linked capacity fade of batteries to crack growth
in the electrodes [5] and shown that nonuniform straining of the particles within the electrode can
lead to fracture of the particles [6].

The battery performance can be improved by altering design and discharge parameters [7]. Manip-
ulation of parameters such as discharge rate, electrode thickness, porosity, and size and shape of the
electrode particles can affect the overall behavior of the battery and the internal stress levels. As
the battery performance depends on nonlinear transient processes at multiple length-scales, design-
ing by intuition is difficult. To support the engineer in designing battery cells, we propose a formal
design optimization methodology to find optimal electrode layouts. Our approach combines numer-
ical models to predict the battery performance with mathematical optimization schemes to drive the
cell design.

Much of the previous work on improving the performance of batteries has focused on battery
pack rather than a single battery cell design, considering thermal [8,9] and power management [10]
effects. To enhance the battery performance at the cell level, the specific energy was increased by
studying the relationship between porosity and electronic and ionic conductivities [11]. The ohmic
drop across the cell was reduced by fine tuning the porosity distributions in the electrodes [12]. Du
et al. [13] used surrogate models to study the influence of several parameters including the cycling
rate and particle size on the specific energy and power of a battery cell and to identify the Pareto-
optimal relationship between specific energy and power of the cell. All of the above design studies
rely primarily on intuition, experience, and parameter sweeps but do not employ directly a formal
optimization approach for designing battery cells.

Our goal is to develop a computational framework for optimizing the electrode structure of a bat-
tery cell to improve the electrochemical and mechanical performances. The behavior of LiC batteries
is an interesting multiscale, multiphysics problem, in which the electrochemical and mechanical
phenomena are coupled, transient and nonlinear. Macroscale phenomena include LiC transport,
electric potentials, and mechanical deformations across the battery cell. These phenomena are
strongly coupled with the response of the active electrode particles at the microscale. Directly resolv-
ing the length-scales relevant for describing the electrochemical and mechanical performances of a
battery cell leads to a large computational burden. Instead, we use a multiscale modeling approach,
assuming a separation of length-scales between macroscale and microscales. For the model pre-
sented here, a separation of time scales is not needed as the LiC transport at both the macroscale
and microscale occurs at similar rates. Mesoscale homogenization methods are used to account for
the interactions between particles and relate the macroscale and microscale phenomena.

To handle a potentially large number of design variables, we consider gradient-based design opti-
mization schemes to minimize an objective, Z, subject to inequality constraints, Gj , by varying

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:475–494
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continuous design variables, s 2 <Ns :

min
s
Z .x, y, s/D

Z
F .x, y, s/dt

s.t. Gj .x, y, s/D
Z

Gj .x, y, s/dt 6 0 j D 1 WNg

sL
i 6 si 6 sU

i i D 1 WNs,

(1)

where x represents the macroscale state variables and y the microscale state variables. The objec-
tive and constraints are differentiable functions that depend on both state and design variables. The
time-integral formulation allows accounting for both average performance measures and quantities
at distinct points in time. The lower and upper bounds for the optimization variables are denoted by
sL
i and sU

i , respectively.
The design optimization problem is solved by a nonlinear programming method that requires the

gradients of the objective and constraints with respect to the design variables. The computational
complexity of the multiscale battery model necessitates the use of analytical sensitivities. In this
paper, we develop the multiscale, transient, adjoint sensitivity equations, in which the optimization
criteria can characterize electrochemical or mechanical phenomena such as the battery potential
and stress levels in the electrode. Design variables can include both macroscale and microscale
parameters such as the local macroscale electrode porosities and microscale particle radii. The
mathematical structure of the multiscale, transient, adjoint sensitivity equations, allows for decom-
posing the fully coupled problem into multiple, independent, and smaller problems at two scales.
Therefore, the proposed adjoint sensitivity analysis method is applicable to spatially and tempo-
rally well-resolved multiscale problems with a large number of design variables. We will show that
the adjoint approach significantly reduces the computational costs of computing design sensitivities
versus finite differencing.

The remainder of this paper is organized as follows. The multiscale model is presented in
Section 2. In Section 3, we derive the multiscale adjoint sensitivity equations. In Section 4, we
present numerical results for battery optimization using both macroscale and microscale design
criteria and variables.

2. MULTISCALE BATTERY MODEL

The multiscale framework presented in this paper is built upon a coupled electrochemical–
mechanical model of LiC batteries. This model extends the electrochemical battery model developed
by Doyle et al. [14–18], which uses porous electrode theory to account for microscale effects
[18, 19]. We extend this model to account for elastic and inelastic deformations due to exter-
nal mechanical loads and electrochemical eigenstrains. The response of the electrode particles is
described by the coupled stress–diffusion model of Zhang et al. [2] and accounts for electrochemi-
cal surface reactions. Discharge curves generated by the electrochemical portion of this model have
been qualitatively compared with experimental studies showing similar results.[14]

The aforementioned battery model problem involves two distinct length-scales: the macroscale
includes transport processes and mechanical deformation of the anode, the separator/electrolyte,
and cathode; and the microscale considers a single representative active material particle
in the cathode. An overview of numerical multiscale modeling methods can be found in
Kanoute et al. [20]. Our numerical battery model follows the work of Miehe et al. [21, 22] and
Feyel [23–25], using finite element models at both the macroscale and microscales bridged by vol-
ume averaging homogenization methods [26–28]. At a given material point in the macroscale model,
the local, volume averaged response of the microscale model is evaluated. Here, we build upon our
previous work on multiscale battery modeling [7] and extend our original model to include surface
stress effects. As we will show later, surface stress effects need to be considered when optimizing
the size of electrode particles to avoid nonphysical solutions that incorrectly favor vanishing particle
sizes. In the following subsections, we summarize the key elements of our multiscale battery model

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:475–494
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to keep this paper self-contained and to allow for the derivation of the multiscale adjoint sensitivity
analysis presented in Section 3. A summary of symbols used is given in the Appendix A.

2.1. Governing equations at the macroscale

At the macroscale, we model the LiC concentration in the electrolyte, cl, the electric potentials in
the solid, �1, and liquid, �2, phases, and the displacements, u. To simplify the macroscale model,
we consider only a half cell and replace the anode by a Li foil which is modeled via flux and cur-
rent boundary conditions at the separator-anode interface. The diffusion and migration of LiC in the
electrolyte are described by

Rcl W

Z
�

ıcl "
@cl

@t
d��

Z
�

ırcl Nd� (2)

C

Z
�

ıcl

 
1

F

@t0C

@cl
i2� rcl � .1� t

0
C/ jeff

!
d��

Z
�xA

ıcl
I.1� t0C/

F
On d�xA D 0,

where N is the diffusive flux, t0C is the LiC transference number, F is the Faraday constant, and �xA

denotes the boundary at the anode–separator interface. The third term accounts for the migration
of ions and the volume averaged flux of LiC, jeff, from the electrolyte into the electrode parti-
cles. The last term stems from a Neumann boundary condition that models the influx of ions at the
anode–separator interface due to a prescribed current, I.

The potential in the solid phase is governed by Ohm’s law:

R�1 W �

Z
�

ır�1 i1d�C
Z
�

ı�1 F jeffd�C

Z
�xC

ı�1 I On d�xC D 0, (3)

where �xC denotes the boundary at the cathode–current collector interface. The source term accounts
for the effects of Li entering and exiting the solid phase, whereas the last term stems from a Neumann
boundary condition for the influx of electrons at the cathode–current collector interface. Similarly,
the liquid potential is governed by a modified Ohm’s law accounting for the dependence of the
current on the LiC concentration:

R�2 W �

Z
�

ır�2 i2d��
Z
�

ı�2 Fjeffd�C

Z
�xA

ı�2 I On d�xA D 0. (4)

To define a reference liquid potential, a Dirichlet boundary condition is imposed at the separator–
cathode interface, fixing the liquid potential at zero.

The macroscale mechanical response is assumed to be linear elastic using a volume-averaged
eigenstrain model to account for the swelling of the active electrode particles:

Ru W

Z
�

ıe � d�D 0, (5)

where � and e are the macroscopic stress and strain tensors, respectively. The displacements are
fixed at zero at �xA and �xC .

Constitutive equations for the macroscale model include the diffusive flux, electric and ionic
currents, and stress and strains:

ND�Deffrcl, (6)

i1 D��r�1, (7)

i2 D��eff

�
r�2 �

RT

F
.1� t0C/r, ln.cl/

�
, (8)

� D Ceff .e� ech/, eD
1

2

�
ruCruT

�
, (9)
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whereDeff is the effective macroscale diffusion coefficient of LiC in the electrolyte, � is the electric
conductivity of the solid particles, �eff is the effective ionic conductivity of the electrolyte, Ceff is
the homogenized elasticity tensor, and ech is the volume-averaged chemically induced eigenstrain
due to the aggregate swelling.

2.2. Governing equations at the microscale

At the microscale, we consider a single spherical particle of active material embedded in an elec-
trolyte host. We assume that the macroscale concentration, potential, and displacement fields are
spatially constant in the electrolyte surrounding the particle. This results in uniform boundary con-
ditions on the particle and allows for simplification of the problem to one dimension using spherical
coordinates. Considering more general models with other particle geometries is straightforward
[29]. The single particle is modeled on the basis of the work of Zhang et al. [2] and extended to
include Butler–Volmer surface kinetics and surface pressure. The microscale state variables include
the microscopic Li concentration in the particle, cs, the microscopic radial displacements, ur, the
hydrostatic stress field, �h, and the microscopic pore wall flux, js.

The concentration and deformation fields in the particle are described by the following diffusion
and linear static mechanical models:

Rcs W

Z
r

4 r2
�
ıcs
@cs

@t

�
dr �

Z
r

4 r2 .ırrcsJ/ dr C 4 R2s js D 0, (10)

Rur W

Z
r

4 r2ırur�Rdr C

Z
r

ıur8 r�T dr � 4 R2s Pmicro D 0, (11)

with the following constitutive equations:

JD�Ds

�
rrcs �

�Lics

RT
rr�h

�
, (12)

�R D
Es

.1C 	/.1� 2	/

�
.1� 	/rrurC 2	

ur

r
�
�Li

3
cs.1C 	/

�
, (13)

�T D
Es

.1C 	/.1� 2	/

�
ur

r
C 	rrur �

�Li

3
cs.1C 	/

�
. (14)

The stress–diffusion coupling increases with the Li partial molar volume, �Li. Accounting for the
spherical symmetry, the displacement at the center of the particle is fixed at zero.

The LiC flux at the particle surface, js, is described by the Butler–Volmer surface kinetics model
that depends on both the macroscopic LiC concentration and electric potentials as well as the
microscopic Li concentration at the particle surface:

F js � i0

h
csjrDRs e

k1 �
�
cs,max � csjrDRs

�
ek2
i
D 0, (15)

with

k1 D
˛AF

RT

�

�U 0.csjrDRs/

�
, (16)

k2 D�
˛CF

RT

�

�U 0.csjrDRs/

�
, (17)

i0 D Fk2 .cl,max � cl/
˛C .cl/

˛A , (18)


D �1 � �2. (19)
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The surface pressure at the particle surface includes contributions from swelling neighbor-
ing particles, Ph, which is found via a homogenization method (Section 2.3), and from surface
stress, PSS:

Pmicro D PhCPSS. (20)

For spherical particles, the pressure due to the surface stress effect can be written as follows:[30]

PSS D�2
�0CK

s"t rDRs

Rs
, (21)

where �0 is the deformation-independent surface tension, Ks is the surface modulus, and "t is the
tangential strain, which in spherical coordinates is

"t D
ur

r
. (22)

To simplify the numerical implementation by limiting the spatial derivatives in the diffusion
Equations (10) and (12) to first order, we introduce the hydrostatic stress as an independent field.
The hydrostatic stress equation is satisfied in a weak sense:

R�h W

Z
r

4 r2ı�h .�h � .�RC 2�T/ =3/ dr D 0. (23)

2.3. Mesoscale homogenization

To bridge the microscale and macroscale models, the mechanical phenomena are homogenized via
Mori–Tanaka aggregate theory [26], and Bruggeman relations [14, 18] are used to upscale transport
properties. The effective pore wall flux, jeff, in the macroscale equations is related to the microscale
pore wall flux, js, through

jeff D
3.1� "/

Rs
js. (24)

The effective properties Deff and �eff are modeled via Bruggeman relations based on the diffusion
coefficient, Dl, and the conductivity, �1, of the bulk electrolyte:

Deff D "Dl, (25)

�eff D "
3=2�1. (26)

The Mori–Tanaka homogenization model [26–28] couples the microscale particle deformations and
the resulting surface pressure, Ph, with the macroscale chemical eigenstrain, ech. Accounting for the
swelling of neighboring particles, the microscale surface pressure is

Ph D .bsCBsCeff .e� ech// On, (27)

where ech is defined as

ech D .1� "/ eVC .1� "/
�
C�1s �C�1l

�
bs, (28)

with

bs D .I�Bs/
�
C�1l �C�1s

�
eV, (29)

Bs D BD ."IC .I� "/BD/
�1 , (30)

BD D Cs
�
IC SC�1l

�
C�1s �C�1l

���1
C�1l . (31)

The microscale volumetric strain, eV is found via

eV D
1

3

 
.RsC urDRs/

3

R3s
� 1

!
. (32)

Note that in the aforementioned homogenization model, we assume there is no chemically induced
strain in the electrolyte.
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2.4. Spatial and temporal discretization

The design and operation of a typical LiC battery cell allows for the following simplifications of
the multiscale battery model. The distance through the thickness of a battery cell from the anode to
cathodic current collector is significantly smaller than the overall size of a typical LiC battery cell,
which allows for an idealization of the problem to one dimension at the macroscale. In a typical
charge or discharge process, the diffusion processes at both length-scales operate on comparable
time scales; therefore, a separation in time scales is not needed.

At both scales, we discretize the governing equations in space using finite elements and in time
with an implicit Euler backwards scheme [7]. Within the cathode, separate microscale problems are
solved at the macroscale integration points. The microscale problems are independent of each other,
only coupled through the macroscale model. The resulting discretized governing equations can be
written in compact form as follows:

RnC1x WMnC1
x

�
xnC1 � xn

�
=�t CRnC1x,st

�
xnC1, ynC1

�
D 0, (33)

RnC1yi
WMnC1

yi

�
ynC1i � yni

�
=�t CRnC1yi ,st

�
ynC1i , xnC1

�
D 0, i D 1 WNm, (34)

where RnC1x represents the macroscale residual Equations, (2)–(5), and RnC1yi
collects the microscale

residual Equations, (10), (11), and (23); the vector of all macroscale variables at time n is xn,
and the vector of variables for a single microscale problem, i , at time n is yni . The vector of all
microscale variables at time n, yn, collects the vectors of microscale states for all microscale prob-

lems, yn D
h
yn1 , yn2 , : : : , ynNm

i
, where Nm is the number of microscale problems. MnC1

x and MnC1
yi

are the macroscale and microscale capacitance matrices, and RnC1x,st and RnC1yi ,st are the macroscale
and microscale static contributions to the residual equations.

The aforementioned system of equations can be solved either by advancing macroscale and
microscales simultaneously or via a staggered approach in which the microscale state variables are
considered functions of the macroscale state variables, that is, yni .x

n/. For the forward problem,
the staggered approach is used as it naturally leads to a separation of the problem into multi-
ple smaller microscale problems and facilitates parallel computing schemes. At every time step,
Newton’s method is used to solve for xnC1 at the macroscale; within every macroscale Newton iter-
ation, the microscale problems are solved for ynC1i also by Newton’s method. For computational
efficiency, the macroscale and microscale Jacobians of the governing Equations (33) and (34) are
derived analytically.

3. ADJOINT SENSITIVITY ANALYSIS

In time-discrete form, the optimization problem, (1), can be written as follows:

min
s
Z .Qx, Qy, s/D

NtX
nD0

Fn .xn, yn, s/ dt

s.t . Gj .Qx, Qy, s/D
NtX
nD0

Gnj .xn, yn, s/ dt 6 0 8 j D 1 WNg,

(35)

where the macroscale and microscale state variables, xn and yn, satisfy the governing Equations (33)
and (34) at time steps n D 1 W Nt . The vector Qx collects macroscale variables at all times, and the
vector Qy collects all microscale variables of all time steps:

QxD
�
x0, x1, : : : , xNt

�
QyD

�
y0, y1, : : : , yNt

�
.

(36)

The gradients dZ=dsi and dGj =dsi are needed for gradient-based optimization. We compute these
gradients by deriving and solving the adjoint sensitivity equations of the multiscale battery model
described in Section 2.
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For the sensitivity analysis, it is more convenient to treat the macroscale and microscale variables
as independent instead of using the staggered approach that is used for the forward analysis. We
derive the design sensitivities explicitly for the objective, Z; the analysis for the constraints, Gj ,
is analogous.

dZ

dsi
D
@Z

@si
C

2
664
@Z

@Qx
@Z

@Qy

3
775
T 2
664

dQx
dsi
dQy
dsi

3
775 i D 1 WNs. (37)

We evaluate the sensitivities at dynamic equilibrium; therefore, the macroscale and microscale
residuals vanish for all time steps: �

QRQx
QRQy

	
D

�
0
0

	
, (38)

where the vectors QRQx and QRQy are arranged as in (36). Differentiating the state Equation (38) with
respect to si leads to2

664
d QRQx
dsi
d QRQy
dsi

3
775D

�
0
0

	
H)

2
664
@ QRQx
@si

@ QRQy
@si

3
775C

2
6664
@ QRQx
@Qx

@ QRQx
@Qy

@ QRQy
@Qx

@ QRQy
@Qy

3
7775
2
664

dQx
dsi
dQy
dsi

3
775D

�
0
0

	
. (39)

We symbolically solve for ŒdQx=dsi dQy=dsi 
T and substitute the result into (37) yielding the

sensitivity equation in terms of the macroscale and microscale governing equations:

dZ

dsi
D
@Z

@si
�

2
664
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@Qx
@Z

@Qy

3
775
T
2
6664
@ QRQx
@Qx

@ QRQx
@Qy

@ QRQy
@Qx

@ QRQy
@Qy

3
7775
�12
664
@ QRQx
@si

@ QRQy
@si

3
775 . (40)

If the number of optimization variables, Ns , exceeds the number of constraints, Ng , the sensitiv-
ity Equation (40) can be solved efficiently by the adjoint approach. Introducing the macroscale and
microscale adjoint states, �Qx and �Qy:2

6664
@ QRQx
@Qx

@ QRQx
@Qy

@ QRQy
@Qx

@ QRQy
@Qy

3
7775
T �

�Qx
�Qy

	
D

2
664
@Z

@Qx
@Z

@Qy

3
775 , (41)

the sensitivity Equation (40) becomes

dZ

dsi
D
@Z

@si
�

�
�Qx
�Qy

	T 2664
@ QRQx
@si

@ QRQy
@si

3
775 . (42)

The adjoint states are computed by expanding (41) into time steps and integrating the discrete adjoint
problem backwards in time:2

664 Jnx
@Rnx,st

@yn
@Rny,st

@xn
Jny

3
775
T �

�nx
�ny

	
D

2
664
@Fn

@xn
@Fn

@yn

3
775C

2
64
M nC1

x

�t
0

0
M nC1

y

�t

3
75
T �

�nC1x
�nC1y

	
, (43)
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where Jnx D M n
x =�t C @Rnx,st=@xn and Jny D M n

y =�t C @Rny,st=@yn are the dynamic macroscale
and microscale Jacobians. These matrices are rebuilt using the states computed and stored in the
forward problem. We solve the system of (43) for �nx by first eliminating �ny :

�nx D
h�

Jnx
�T
� c1

i�1  @Fn

@xn
C

�
M nC1

x

�t

�T
�nC1x � c2

!
, (44)

where

c1 D
�
@Rny,st

@xn

�T 
�
Jny
�T ��1 �@Rnx,st

@yn

�T
, (45)

c2 D
�
@Rny,st

@xn

�T 
�
Jny
�T ��10@@Fn

@yn
C

 
M nC1

y

�t

!T
�nC1y

1
A . (46)

The calculation of the matrices c1 and c2 requires solving linear systems of the size of all microscale
state variables. The computational burden associated with this step can be reduced owing to the
independence of the microscale problems. The microscale problems are only coupled through
the macroscale model; consequently, the matrices Jny and Mn

y are block diagonal with each block
being the microscale dynamic Jacobian, Jnyi , and capacitance matrix, Mn

yi
, for a single microscale

problem, i :

Jny D

2
6664

Jny1 0 : : : 0

0 Jny2 : : : 0
...

...
. . .

...
0 0 : : : JnyNm

3
7775 , Mn

y D

2
6664

Mn
y1 0 : : : 0

0 Mn
y2 : : : 0

...
...

. . .
...

0 0 : : : Mn
yNm

3
7775 . (47)

Furthermore, the macro–micro coupling Jacobians, @Rny,st=@xn and @Rnx,st=@yn, are sparse with a
rectangular band structure. The block diagonal structure of the matrices Jny and MnC1

y together with
the rectangular band structure of @Rnx,st=@yn and @Rny,st=@xn simplifies the calculation of the terms
c1 and c2, decomposing the full system of all microscale states into multiple subproblems. Instead
of solving one linear problem of the size of all microscale problems,Nm linear solves are performed,
each the size of a single microscale problem.

After solving for �nx , we find �ny via (43). Again the decomposition of the microscale problem
seen in (47) allows us to perform these calculations separately for each microscale problem:

�nyi D

�

Jnyi
�T ��10@@Fn

@yni
C

 
M nC1

yi

�t

!T
�nC1yi

�

�
@Rnxi ,st
@yn

�T
�nx

1
A . (48)

Using the adjoint states �nx and �ny at each time step, the derivatives of the objective with respect
to si can be computed as follows:

dZ

dsi
D
@Z

@si
�

NtX
nD1

"
�nx

�ny

#T 2664
@Rnx
@si
@Rny
@si

3
775 . (49)

The accuracy of the sensitivity analysis has been verified through comparisons with finite dif-
ferencing results. To illustrate the savings in computational cost of the proposed adjoint sensitivity
analysis versus numerical finite differencing, we compare the runtimes for the example presented in
the following section, which involves 8564 degrees of freedom, 80 state-dependent constraints, and
up to 120 design variables. One forward simulation of the battery discharge process with approx-
imately 50 time steps and the evaluation of objective and constraints require a total of 10-min
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wall-clock time. Using either a forward or backward differencing method to compute a sensitiv-
ity takes approximately 10-min wall-clock time per design variable; calculating all 120 sensitivities
via the differencing method requires 20-h wall-clock time. With the use of the multiscale sensitivity
analysis approach presented here, all design sensitivities are found in approximately 5-min wall-
clock time. This includes computing the adjoint solutions for the objective and the 80 constraints
via (43) and performing the post-multiplications (49) for all design variables. The efficiency of the
proposed adjoint approach versus finite differencing increases further as the number of design vari-
ables increases and the number of constraints decreases. Note that for this example, as well as the
problems presented in Section 4, the model is sufficiently small such that storing the state variables
during the forward analysis is not a concern and the run-time performance is the dominating factor
in these simulations. For large numerical models, strategies for reducing the memory requirements
of the adjoint sensitivity analysis might need to be considered [31–33].

4. NUMERICAL EXAMPLES

In this section, we demonstrate the potential of the proposed optimization framework for improv-
ing the performance of LiC battery electrodes. The purpose of the problems presented here is not
to cover all aspects of improving battery performance but to highlight some capabilities and fea-
tures of the proposed framework. A follow-up paper will study the application of our computational
framework to optimize the layout of electrodes in greater detail.

Results presented here illustrate the use of both macroscale and microscale design criteria and
variables to improve LiC battery performance. We seek to find optimal electrode designs to max-
imize the usable capacity of a battery cell while constraining the stresses during discharge by (1)
manipulating the local cathode porosities and (2) using both local porosities and particle radii as
design variables. The particle level stress is a microscale design criterion, whereas the capacity is
macroscale. The design variables of the local porosities and particle radii were chosen because of
their previously shown effect on the particle level stresses [7,34]. In addition, research in developing
methods to fabricate functionally graded electrodes has advanced [35, 36].

For all examples presented, the forward problem consists of a galvanostatic discharge of a cell at
a constant current of 12.1 A/m2 until the potential of the cathode material at the cathode–current
collector interface reaches 3.2 V versus Li. To simplify the problem, we model a Li half-cell that
includes a porous cathode and Li foil anode that is modeled though boundary conditions on the
macroscale LiC concentration and potential fields [7]. The cathode has a thickness of ıC D 100 �m;
the active material is Mn2O4, and the electrolyte is PEO-LiCF3SO3; the thickness of the separator
is ıs D 50 �m. The material parameters and initial conditions are given in Tables I and II.

The problem is discretized in time using an adaptive time-stepping algorithm with the time steps
varying between�t D Œ0.1, : : : , 600 s. The time steps decrease as the discharge rate increases. The
separator is discretized by 20 elements, the cathode by 40 elements, and each microscale particle
by 20 elements. Two-point Gauss integration is used at the macroscale, which results in Nm D 80
microscale problems. In total, there are 244 macroscale state variables and 8320 microscale state
variables. Studies were performed to ensure mesh and time convergence.

Table I. PEO-LiCF3SO3 electrolyte material parameters.

Symbol Value Units Description

cl,max 3920 mol/m3 Maximum LiC concentration in electrolyte
cl,0 2070 mol/m3 Initial LiC concentration in electrolyte
�1,0 U 0.cs,0/ V Initial potential in solid phase
�2,0 0 V Initial potential in liquid phase
u 0 m Initial macroscopic displacements
�1 6.5e�3 S/m Conductivity in electrolyte
Dl 7.5e�12 m2/s Diffusivity of Li in electrolyte
El 0.69 MPa Young’s modulus
	l 0.4 – Poisson’s ratio
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Table II. Mn2O4 cathode material parameters.

Symbol Value Units Description

cs,max 22,900 mol/m3 Maximum Li concentration in cathode
cs,0 4351 mol/m3 Initial Li concentration in cathode
ur,0 0 m Initial microscopic displacements in cathode
�s 3.8 S/m Conductivity in cathode
Ds 7.08e�15 m2/s Diffusivity of Li in cathode
Es 10 GPa Young’s modulus
	s 0.3 – Poisson’s ratio
�Li 3.497e�6 m3/mol Partial molar volume
k2 1e�10 m4/mol/s Butler–Volmer reaction rate constant
�end 3.2 V Cutoff potential
�0 �0.606 J/m3 Surface tension
Ks 10.65 N/m Surface modulus

Table III. Globally convergent method of moving
asymptotes parameters.

Parameter Value

Step size 0.01–0.2
Initial adaptation of asymptotes 0.5
Adaptation of asymptotes 0.7
Maximum number of subcycles 1
Convergence criterion �s 10�8

The design optimization problems are solved using the globally convergent method of moving
asymptotes (GCMMA) of Svanberg [37]. The GCMMA constructs a sequence of convex separable
subproblems that are solved by a primal–dual method and is guaranteed to converge to a Karush–
Kuhn–Tucker optimal point. This algorithm is well suited for problems with large numbers of design
variables and few constraints. The GCMMA is considered converged if the constraints are satisfied
and the relative change in design variables, �s , is sufficiently small:

k sm�1 � sm k
k sm�1 k

6 �s , (50)

where m is the iteration number of the optimization process. Parameters used for the GCMMA
algorithm are given in Table III; their influence on the convergence of the optimization algorithm is
discussed in [37].

4.1. Maximum capacity optimization

Theoretically, lower porosities have higher capacities as there is a greater amount of active electrode
material available for LiC to intercalate into. However, in practice, a decrease in the usable capacity
of the battery is seen with low porosities as LiC transport through the electrode region is inhibited
causing the battery to reach more rapidly its cutoff potential, that is, the lower operating bound of the
battery potential. If the battery is discharged beyond the cutoff voltage, side reactions occur causing
irreversible capacity loss and may lead to failure of the battery. The goal is to maximize the usable
capacity of the battery, which is the discharge rate multiplied by the time until the battery potential
reaches the cutoff potential of 3.2 V.

First, we illustrate the influence of porosity on the electrochemical and mechanical response of the
battery cell of Figure 2 by considering an electrode with spatially uniform porosity and microscale
particles of constant radiusRs D 5 �m. As seen in Figure 3, uniformly varying the porosity strongly
influences the discharge behavior of the battery: high porosities result in a lower capacity and a quick
discharge to the cutoff potential. Low porosities allow for a greater overall volume of active material
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Figure 2. Model setup and discretization.
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Figure 3. Battery potential as a function of time for uniform porosity distribution with Rs D 5 �m.

and yield a higher usable capacity down to "D 0.4, beyond which the low porosity limits LiC trans-
port in the electrolyte, causing the battery to discharge more quickly as seen in the line for "D 0.3.
Figure 4(a) shows the relationship between the usable capacity of the battery and a spatially uniform
porosity. The capacity is highest with intermediate porosities. As seen in Figure 4(b), low (and high)
porosities lead to higher stresses, which are generated by a high Li flux into the particles.

After having illustrated the general influence of porosity on the electrochemical and mechanical
response of a battery cell, we now study the effects of spatially varying porosity distributions to
maximize the usable capacity of the battery during a galvanostatic discharge at I D 12.1 A/m2

while constraining the maximum tensile tangential stress, �T, observed in any particle over the
discharge period.

maxs I Ot

maxt maxr maxi �T ,t ,r ,i � �max 6 0

t D 1 WNt, r D 0 WRs, i D 1 WNm,

(51)

where Ot is the time at which the battery reaches the cutoff potential, r denotes the radial direction
in the particle model, i the individual microscale particles, and t the time step. The constraint level
for the stresses, �max is set to 50 MPa. This stress level was chosen on the basis of stress levels
seen in the constant porosity solutions as shown in Figure 4(b). Considering only constant porosity
solutions, the best solution satisfying the constraints is a constant porosity of "D 0.38 with a usable
capacity of 28.53 Ahr/m2.
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The design problem (51) is solved using the following problem formulation:

mins � I Ot

Q�T ,i � �max 6 0

0.16 si 6 0.9 i D 1 WNs,

(52)

with

Q�T ,i D
1

ˇ
ln
X
t

X
r

exp .ˇ�T ,t ,r ,i / t D 1:Nt, r D 0:Rs. (53)

To reduce the number of stress constraints, we approximate the maximum particle stress, Q�T ,i , by the
Kreisselmeier–Steinhauser function with ˇ D 3; this ˇ-value gives an error in the approximation of
less than 2%. Using 40 finite elements along the cathode with element-wise constant porosity results
inNs D 40 design variables. The local porosities are varied between 0.1 and 0.9. The Kreisselmeier–
Steinhauser approximation of the stress constraint is imposed at each macroscale integration point
resulting in Ng D 80 inequality constraints. Note that as the number of constraints is larger than the
number design variables, the direct approach for computing the design sensitivities would be more
efficient for this problem than the adjoint approach.

The initial design is chosen as " D 0.2, which has a high theoretical capacity, but lower usable
capacity due to LiC transport limitations, and stresses above the maximum allowable levels. The
usable capacity of the optimized design is increased to 28.78 Ahr/m2 from an initial value of
17.19 Ahr/m2. This is a slight improvement over the constant porosity optimal solution of "D 0.38.
Figure 5(a) shows the porosity distributions for the initial and optimal configurations. Figure 5(b)
shows the potential of the battery versus time for both configurations. The battery potential decrease
with time occurs at a lower rate for the optimal configuration as compared with the initial.

The differences between initial and optimized designs are further illustrated by examining the
particle stress and Li concentration distributions within the cathode particles over time. Figure 6
shows the evolution of the maximum tangential stress, and Figure 7 shows the evolution of the Li
concentration normalized by cs,max in the solid particles for both configurations as a function of time
and position within the battery cell. In the initial configuration, there is a significant uptake of Li in
the front of the cathode, which leads to high stresses above the stress constraint level. The optimal
design spreads the uptake of Li further into the cathode. By increasing the porosity at the front of
the cathode, where the highest stresses are located, the maximum stress is reduced, whereas the
lower porosity at the back of the cathode helps to maintain a higher potential during discharge. The
aforementioned results suggest that functional grading of the cathode results in a small but distinct
improvement in the performance of the battery.
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Figure 5. (a) Initial and optimal porosity distributions in cathode; (b) battery potential as a function of time
for initial and optimal solutions.
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Figure 6. Maximum tangential particle stress as a function of position and time (MPa). (a) Initial
configuration; (b) optimal configuration.
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Figure 7. Normalized Li concentration (cs=cs,max) in cathode particles as a function of position and time.
(a) Initial configuration; (b) optimal configuration.

4.2. Maximum capacity optimization with variable porosity and particle radii

Both the electrochemical and mechanical performances of LiC batteries are affected by the size of
the microscale particles. For uniform particle radius and porosity distributions across the electrode,
Figure 8(a) illustrates the influence of different particle radii on the battery potential as a function of
time. This plot suggests that in general, smaller particle radii improve the usable capacity. However,
as seen in Figure 8(b), for particle radii smaller than approximately 20 nm and larger than 6 �m,
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Figure 8. (a) Battery potential as a function of time and (b) maximum stress for uniform particle radius
distribution and "D 0.5.
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Figure 9. Initial and optimal porosity and radii distributions. (a) Porosity; (b) Particle Radii.

the stress levels are above the constraint level. For larger particles, the intercalation of Li into the
particle is diffusion limited, and the resulting concentration gradient causes mismatch strains and
stresses owing to the stress–diffusion coupling, (13) and (14). This effect increases with increasing
particle size. The high stresses in the smaller particles are due to the surface stress effect [29, 34].

In the following, we show that using the local particle radii in addition to the local porosities as
design variables allows for an additional increase in the usable capacity while maintaining the stress
constraint. We perform the same optimization problem as in Section 4.1, with the addition of the
microscale particle radii as design variables. The design variables associated with the particle radii
are scaled such that they are of similar magnitude as the porosity variables. Using the same dis-
cretization as before, this problem has a total of 120 design variables: 40 macroscale porosities and
80microscale radii. The particle radii are limited to vary between 1 nm and 10 �m. Again, the upper
limit of the tangential particle stress is enforced via 80 constraints. Note that for this problem, the
adjoint approach is more efficient than a direct sensitivity analysis as the number of design variables
is larger than the number of constraints.

The optimization problem is initialized with particles of radius 5 �m and a constant porosity of
0.2, and the stress constraint level is 50 MPa. Figure 9 shows the initial and optimal porosity and
particle radii distributions. Figure 10 plots the battery potential as a function of time for the initial
and optimal configurations. The initial configuration has a usable capacity of 17.19 Ahr/m2, whereas
the optimal configuration increases the usable capacity to 29.27 Ahr/m2, which is an improvement
over the optimal usable capacity of 28.78 Ahr/m2 using only porosities as design variables.

The optimal design has a similar porosity profile as the porosity only optimization problem, and
the additional improvement in performance is due to the change in the radii profiles. Larger particle
sizes are diffusion limited, maintaining high surface Li concentrations, thus decreasing the rate of Li
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Figure 10. Battery potential as a function of time for initial and optimal configurations.
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(b) Optimal Configuration

Figure 11. Normalized Li concentration (cs=cs,max) in particles as a function of position and time. (a) Initial
configuration; (b) optimal configuration.
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Figure 12. Maximum tensile tangential particle stress as a function of position and time (MPa). (a) Initial
configuration; (b) optimal configuration.

insertion, and allowing for greater LiC transport in the electrolyte. This dominates in the front half
of the cathode. Towards the rear of the cathode, smaller particle sizes dominate as the small particle
sizes allow for faster Li insertion into these particles. As seen in Figure 11, the initial design utilizes
only a small part of the cathode, with Li uptake occurring at the front of the electrode. The optimal
design pushes the Li uptake further into the cathode with most of the particles reaching saturation
levels by the end of the discharge. For the initial configuration, the highest stresses are located at the
front of the cathode, whereas for the optimal configuration, the highest stress levels occur further
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into the cathode where the largest particle sizes occur as seen in Figure 12. Overall, the addition of
particle radii as design variables improves both the electrochemical and mechanical performance of
the battery.

5. CONCLUSIONS

In this paper, we developed a computational framework for optimizing LiC battery cells using a
multiscale finite element model. The efficiency of this framework relies on an adjoint sensitiv-
ity analysis. The computational burden of solving the adjoint sensitivity equations is reduced by
decomposing the full problem into multiple independent microscale problems. Adjoint sensitivity
analysis was shown to significantly reduce the computational cost versus finite differencing; the
computational savings increase with increasing number of design variables. The potential of this
framework was illustrated with numerical examples optimizing the electrode layout to improve
the usable capacity of the battery. The performance of the battery cell was improved considering
macroscale and microscale design criteria and variables. The optimization results suggest that both
the electrochemical and mechanical performances of battery cells can be improved by functionally
grading electrodes.

The current battery model does not account for several phenomena that may impact the optimal
electrode layout. This includes finite strain effects due to large deformations of the microscale par-
ticles [38] and the formation of a solid electrolyte interphase layer on the particle surface [39, 40].
Whereas the inclusion of these phenomena may alter the optimization results presented in this paper,
our proposed computational framework allows for integrating the associated models. Beyond LiC

battery cells, our computational framework can be applied to other multiscale problems involv-
ing coupled electrochemical and mechanical phenomena, such as super-capacitors, solar cells, and
fuel cells.

APPENDIX A

Table A.I. List of symbols.

Symbol Units Description

Ceff Pa Homogenized elasticity tensor
Cs, Cl Pa Isotropic elastic stiffness matrix for solid and liquid phases
cl mol/m3 Concentration of Li in electrolyte
cl,max mol/m3 Max concentration of Li in electrolyte
cs mol/m3 concentration of Li in solid particles, microscale state variable
cs,max mol/m3 Max concentration of Li in solid particles
Deff m2/s Macroscale effective diffusion coefficient of Li in electrolyte
Dl m2/s Diffusion coefficient of LiC in bulk electrolyte
Ds m2/s Diffusion coefficient of Li in solid
Es Pa Solid particles Young’s modulus
El Pa Electrolyte Young’s modulus
e Macroscopic strains due to macroscopic displacements
ech Macroscale chemically induced eigenstrain
eV Volumetric strain of microscale solid particle
F C/mol Faraday constant
Gj Optimization constraint
I A/m2 Applied macroscale current density
i0 A m/mol Exchange current density
i1 A/m2 Current density in solid phase
i2 A/m2 Current density in electrolyte phase
J mol/m2/s Li flux in solid particles
jeff mol/m3/s Macroscale effective pore wall flux
js mol/m2/s Microscale pore wall flux
k2 m4/mol/s Reaction rate constant at cathode/polymer interface
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Table A.I. Continued.

Ks N/m Microscale surface modulus
N mol/m2/s LiC flux in the electrolyte
Ng Number of optimization constraints
Nm Number of microscale problems
Ns Number of optimization design variables
Nt Number of time steps
Ph Pa Microscale surface pressure from Mori–Tanaka theory
Pmicro Pa Microscale surface pressure exerted on a particle
PSS Pa Microscale surface pressure due to surface stress effects
plm Pa Macroscale applied pressure
R J/mol/K Universal gas constant
Rs m Radius of cathode particles
r m Microscale distance from center of cathode particle
S Eshelby’s tensor
s Vector of design variables
sL
i Lower bound for optimization variable

sU
i Upper bound for optimization variable
T K Temperature
t s Time
tC0 LiC transference number
U 0 V Open circuit potential
u m Macroscopic displacements
ur m Microscopic displacements
V m3 Total volume
Vl m3 Volume of liquid phase
x m Distance from anode
Qx Vector of all macroscale state variables at all time steps
Qy Vector of all microscale state variables at all time steps
Z Optimization objective

˛A,˛C Anodic and cathodic transfer coefficients
ıs m Thickness of separator
ıC m Thickness of cathode region
" Porosity, liquid volume fraction
"t Microscopic tangential strain
�1 V Potential in solid phase
�2 V Potential in liquid phase

 V Surface over-potential
�eff S/m Effective conductivity of electrolyte
�1 S/m Conductivity of bulk electrolyte
� S/m Conductivity of solid matrix
�Li m3/mol Partial molar volume
� Pa Macroscopic stress
�R Pa Microscopic radial stress
�T Pa Microscopic tangential stress
�h Pa Hydrostatic stress
�0 J/m2 Microscale deformation-independent surface tension
�xA Boundary at anode–separator interface
�xC Boundary at cathode–current collector interface
�Qx Macroscale adjoint states at all time steps
�Qy Microscale adjoint states at all time steps
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h i g h l i g h t s

� A formal design optimization methodology for functionally graded electrodes of Liþ batteries is developed.
� A multi-scale finite element model for predicting the power-storage characteristics of a full battery cell is presented.
� A multi-objective formulation is introduced to optimize the useable capacity over a range of discharge currents.
� The influence of spatially varying porosity and sizes of active particles on optimized electrodes is analyzed.
� The difference between considering a half-cell versus a full cell in the optimization process is shown.
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a b s t r a c t

Design optimization for functionally graded battery electrodes is shown to improve the usable energy
capacity of Li batteries predicted by computational simulations and numerically optimizing the electrode
porosities and particle radii. A multi-scale battery model which accounts for nonlinear transient trans-
port processes, electrochemical reactions, and mechanical deformations is used to predict the usable
energy storage capacity of the battery over a range of discharge rates. A multi-objective formulation of
the design problem is introduced to maximize the usable capacity over a range of discharge rates while
limiting the mechanical stresses. The optimization problem is solved via a gradient based optimization. A
LiMn2O4 cathode is simulated with a PEOeLiCF3SO3 electrolyte and both a Li Foil (half cell) and LiC6

anode. Studies were performed on both half and full cell configurations resulting in distinctly different
optimal electrode designs. The numerical results show that the highest rate discharge drives the sim-
ulations and the optimal designs are dominated by Liþ transport rates. The results also suggest that
spatially varying electrode porosities and active particle sizes provides an efficient approach to improve
the power-to-energy density of Liþ batteries. For the half cell configuration, the optimal design improves
the discharge capacity by 29% while for the full cell the discharge capacity was improved 61% relative to
an initial design with a uniform electrode structure. Most of the improvement in capacity was due to the
spatially varying porosity, with up to 5% of the gains attributed to the particle radii design variables.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Further advances in the energy density, rate capability, and
cycling efficiency of batteries are needed in order to meet growing
energy storage demands. The essential characteristics of a battery
are typically represented via (1) Ragone plots showing the tradeoff
between energy storage capacity and power (or rate) capability of
the battery and (2) cycling efficiency values whichmeasure the loss
in energy storage capacity as a function of cycle number. In this

paper, we focus on the trade-off between power and energy den-
sities with consideration of mechanical stress levels that could lead
to degradation over time. We do not explicitly model degradation
phenomena such as loss of lithium due to side reactions and SEI
layer formation and mechanical fracture [1]; instead we consider
approximately mechanical degradation by introducing a stress
limit in the electrode particles.

In general the energy storage capacity, or usable capacity de-
creases, with increasing rate or power demand as seen in Fig. 1.
Here, we define the usable capacity as the amount of energy that
can be extracted from the battery during discharge. In this study,
we will show that the decrease in usable capacity at higher
discharge rates can be mitigated by optimally designing the inter-
nal electrode structure based on the range of rates required from
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the battery for a given application. We focus the study on lithium
batteries which are among the most promising battery chemistries
due to their high energy densities and operating voltages. Design
variables for the battery electrode include the local porosity and
particle radii distributions in the electrodes. Additional design
variables such as the electrode thickness and material properties
can be incorporated into this approach. We formulate this design
problem via a multi-objective formulation, maximizing the usable
capacity at various discharge rates while constraining the stress
levels in the electrode particle to be below a specified maximum
value. The optimization problem is solved via a gradient-based al-
gorithmwhich allows for a large number of both design constraints
and optimization variables. The battery simulation uses a transient,
non-linear, multi-scale framework to simulate the discharge of the
battery at prescribed rates. The sensitivities of the objective and
constraints to the design variables are calculated via a multi-scale
adjoint approach which is more accurate and efficient than
computation of the sensitivities via finite differencing [2]. Adjoint
sensitivity analysis combined with a gradient-based optimization
algorithm drives the problem to the optimal electrode structure.

This paper is aimed at advancing the state-of-the-art in model-
based optimization for Li batteries. Previous optimization studies
for Li battery performance have focused on pack-level thermal [3e
5] and power management [6] strategies. Design studies focusing
on the cell level have been severely limited in number of design
variables due to the complexity and computational cost of most
battery models [7e10]. This brief literature review does not include
design studies based on experimental investigations and parameter
sweeps. Here, we are not limited in number of design variables due
to our use of multi-scale adjoint sensitivity analysis developed by
Golmon et al. [2]. Our approach is flexible, allowing for different
types of objectives, constraints, and types of design variables
without compromising the accuracy of the overall model. Possible
optimization variables include but are not limited to: the electrode
porosity and particle size, discharge rate(s), electrode thickness,
and material properties. In this study, we focus on improving the
discharge performance of the battery through functionally graded
electrodes by optimizing the porosity and radii distribution in both
electrodes over a range of discharge rates. We consider the effects
of Liþ transport in the electrolyte, Li transport in the electrode
particles, local electrode surface kinetics, diffusion-induced
stresses in the electrode particles and resulting aggregate
swelling of the electrode. Solid electrolyte interphase (SEI) layer
growth, chemical side reactions, thermal effects, and degradation
effects from cycling and aging are not included. The optimization
approach used here could be extended to more sophisticated
models such as that of Kim et al. [11].

2. Multi-scale battery model

A typical Li battery is shown in Fig. 2 and consists of current
collectors, porous electrodes and a separator region. The porous
electrode includes active insertion compounds, conductive addi-
tives, and binders with electrolyte filling the pores. The liquid
volume fraction of electrolyte is referred to as the porosity, 3, and in
a typical battery is 30% [12]. When the battery is discharged, Li in
the anode oxidizes. Electrons flow through the external circuit to
the cathode and lithium ions, Liþ are carried through the electrolyte
via diffusion andmigration to the cathode, where they are reduced.
In modern Li batteries, Li inserts into a host electrode material
rather than plating onto metals, and these compounds shrink and
swell as a result of the Li insertion and de-insertion. The resulting
stresses can exceed the fracture toughness of the active particle and
experimental studies have linked mechanical effects with capacity
fade [13] and localized degradation of the electrode [14]. Stress-
induced surface cracks in electrode particles have been shown to
nucleate new SEI layer growth and substantially contribute to the
loss of Li, causing capacity fade [1]. These studies demonstrate that
it is necessary to consider mechanical effects when optimizing the
electrode structure in order to limit mechanical degradation. In this
study, we define performance in terms of the trade-off between
usable energy and power density during discharge of the battery. To
minimize mechanical degradation over the life cycle of the battery,
we limit electrode stress levels during discharge.

Here, we use a coupled electrochemicalemechanical multi-
scale model to simulate the discharge of Li batteries [15]. This
model is an extension of Doyle and Newman’s electrochemical
battery model [16e20] which describes the transport processes
within the electrodes using porous electrode theory [21,20] rather
than modeling the detailed geometry of the composite electrode.
We have extended this model to include deformations due to
external mechanical loads and swelling of electrode particles upon
lithiation. This model explicitly considers two length scales: at the
macro-scale, transport processes in the electrolyte, electric poten-
tials in both the electrolyte and electrode, and mechanical de-
formations across the battery cell are described; at the micro-scale,
the response of a single electrode particle is modeled; a meso-scale
model is used to relate these two scales using volume averaging
homogenization methods. The effective macro-scale properties are
computed as a function of the micro-scale state variables at each
time-step in the transient simulation. Qualitative comparisons of
discharge curves generated by the electrochemical portion of this
model with experimental studies have shown good agreement
[22].

In the following sub-sections, we summarize the governing
equations used to describe the battery behavior at the macro-scale,
micro-scale and the homogenization approaches used to connect
the two scales at the meso-scale.

2.1. Governing equations at macro-scale

At the macro-scale, the Liþ concentration in the electrolyte, cl,
electric potentials in the solid, f1, and liquid, f2, phases, and dis-
placements, u, are modeled.

Fig. 1. Ragone plot comparing battery technologies [34].

Fig. 2. Battery cell.
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Lithium ions are transported through the electrolyte via diffu-
sion and migration:

3
vcl
vt
þ V$Nþ 1

F
vt0þ
vcl

i2$Vcl �
�
1� t0þ

�
jeff ¼ 0; (1)

where N is the diffusive flux, t0þ is the Liþ transference number, F is
the Faraday constant, and jeff is a source term which accounts for
the volume average flux of Liþ from the electrolyte into the elec-
trode particles.

Within the solid (electrode), the electric potential is governed by
Ohm’s law:

V$i1 þ Fjeff ¼ 0: (2)

Similarly, the electric potential in the electrolyte is governed by
a modified Ohm’s law that accounts for the dependence of the
current in the electrolyte, i2, on the concentration of Liþ in the
electrolyte, cl.

V$i2 � Fjeff ¼ 0: (3)

The macro-scale mechanical response is assumed to be linear-
elastic with a volume-averaged eigenstrain model to account for
swelling of the micro-scale electrode particles:

V$sþ b ¼ 0; (4)

where s and b are the macro-scale stress tensor and body force.
Here, the body force is assumed to be zero.

The diffusive flux, electric currents, stress and strains are
described by the following constitutive equations:

N ¼ �DeffVcl; (5)

i1 ¼ �lVf1; (6)

i2 ¼ �keff
�
Vf2 �

RT
F

�
1� t0þ

�
VlnðclÞ

�
; (7)

s ¼ C : ðe� echÞ; e ¼
1
2

�
Vuþ VuT

�
; (8)

where Deff is the effective diffusion coefficient of Liþ in the elec-
trolyte, l is the conductivity of the electrode particles, keff is the
effective ionic conductivity of the electrolyte, Ceff is the homoge-
nized elasticity tensor, and ech is the volume-averaged chemically
induced eigenstrain due to the aggregate swelling of the electrode
particles. More complex mechanical models to capture nonlinear
stressestrain relationships, finite strains, and irreversible de-
formations could be included in this framework.

For a galvanostatic discharge of the battery, boundary conditions
are applied as follows: at the anode-current collector boundary,
GAC, and cathode-current collector boundary, GCC, all the current is
carried by the electrode particles. The boundary conditions are
given in columns two and three of Table 1.

To simplify the computational burden of these simulations, we
also model a Li half cell, in which a porous cathode is discharged
against a Li foil anode; the anode is modeled through boundary
conditions at the anode-separator interface. At the anode-separator
boundary, GAS, Liþ enters the electrolyte based on the rate of
discharge, I, and all current is carried by the electrolyte. At the
cathode-current collector the conditions remain the same. These
boundary conditions are shown in columns three and four of
Table 1.

2.2. Governing equations at micro-scale

At the micro-scale, the response of a single electrode particle
embedded in the host electrolyte is modeled. We assume that the
macro-scale Liþ concentration, electric potentials, and displacement
fields are spatially constant in the electrolyte immediately sur-
rounding the particle. Assuming the micro-scale particles are
spherical results in uniform boundary conditions and allows for
simplification of the micro-scale model to one dimension using
spherical coordinates. Themicro-scalemodel is basedon the coupled
diffusion-stress model developed by Zhang et al. [23], and extended
to include ButlereVolmer surface kinetics and surface pressures.

The concentration, cs, and deformation, ur, fields within the par-
ticle are described by diffusion and linear static mechanical models:

vcs
vt
þ
�
v

vr
þ 2

r

�
J ¼ 0; (9)

dsR
dr
þ 2

r
ðsR � sTÞ ¼ 0; (10)

with the following constitutive equations:

J ¼ �Ds

�
Vrcs �

Ucs
RT

Vrsh

�
; (11)

sR ¼
E

ð1þ nÞð1� 2nÞ

�
ð1� nÞVur þ 2n

u
r
� U

3
csð1þ nÞ

�
; (12)

sT ¼
E

ð1þ nÞð1� 2nÞ

�
u
r
þ nVur �

U
3
csð1þ nÞ

�
; (13)

where Ds is the diffusion coefficient of Li in the particle; R is the
universal gas constant; T is the temperature; sR, sT, and sh are the
radial, tangential, and hydrostatic stresses; E and n are the Young’s
modulus and Poisson’s ratio of the electrode material. The Li partial
molar volume, U, accounts for the swelling of the particle upon
lithiation and the stressediffusion coupling increases with U. The
hydrostatic stress is defined as:

sh ¼ ðsR þ 2sTÞ=3: (14)

At the particle center, r ¼ 0, the displacements and Li flux are
zero, ur¼ 0, J¼ 0. At the particle surface, r¼ Rs, Li enters the particle
and mechanical surface pressure is applied.

J ¼ js at r ¼ Rs; (15)

sR ¼ Pmicro at r ¼ Rs: (16)

The Li pore wall flux at the particle surface, js, is described by the
ButlereVolmer surface kinetics model which predicts the current/
Li flux across the boundary as a function of the electric potentials
and concentrations in both phases:

Table 1
Boundary conditions for macro-scale battery model.

Anode-current
collector boundary,
GAC

Cathode-current
collector boundary,
GCC

Anode-separator
boundary, GAS

Liþ flux 7cl ¼ 0 7cl ¼ 0 N ¼ Ið1�t0þÞ
F

Current in solid
particles

i1 ¼ I i1 ¼ I i1 ¼ 0

Current in
electrolyte

i2 ¼ 0 i2 ¼ 0 i2 ¼ I

Displacements u ¼ 0 u ¼ 0 u ¼ 0
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js ¼
i0
F

h
csjr¼Rs

ek1 �
�
cs;max � csjr¼Rs

�
ek2

i
; (17)

i0 ¼ FK2
�
cl;max � cl

	aC ðclÞaA ;

k1 ¼
aAF
RT

�
h� U0

�
csjr¼Rs

��
;

k2 ¼ �
aCF
RT

�
h� U0

�
csjr¼Rs

��
;

h ¼ f1 � f2;

(18)

where cs,max and cl,max are the maximum Li and Liþ concentrations
in the electrode particle and electrolyte; aA and aC are the anodic
and cathodic transfer coefficients; h is the surface overpotential;
and U0ðcsjr¼Rs

Þ is the open circuit potential as a function of Li
concentration.

The surface pressure, Pmicro, has contributions due to the in-
clusion of the particle in the swelling aggregate, Ph, and from sur-
face stress, PSS, which can be written for spherical particles as [24]:

Pmicro ¼ Ph þ PSS; (19)

PSS ¼ �2
s0 þ Ks 3T jr¼Rs

Rs
; (20)

where s0 is the deformation-independent surface tension, Ks is the
surface modulus, and 3T is the tangential strain, which in spherical
coordinates is defined as: 3T ¼ ur/r. The model presented here does
not include more complex phenomena such as non-Fickian diffu-
sion, the effects of chemical potential on stress, finite strains, and
plastic deformations [25e27].

2.3. Governing equations at meso-scale

The influence of the micro-scale particles on the macro-scale is
seen through the effective pore wall flux, jeff, and chemical chem-
ically induced eigenstrain ech. Similarly, the microscopic pore wall
flux, js, and surface pressure, Ph depend on both macro- and micro-
scale state variables. Aggregate theory [28] and Bruggeman re-
lations [16,20] are used to relate the scales. The effective pore wall
flux is related to the micro-scale pore wall flux through:

jeff ¼
3ð1� 3Þ

Rs
js: (21)

The porosity of the electrode influences the effective properties
Deff and keff which are found via Bruggeman relations based on the
diffusion coefficient Dl and electrolyte conductivity, kN in the bulk
electrolyte:

Deff ¼ 3Dl;
keff ¼ 33=2kN:

(22)

The micro-scale surface pressure and macro-scale chemically
induced eigenstrain depend on macro- and micro-scale strains
through the Mori-Tanaka model [28e30]. Here, we assume there is
no chemically induced strain in the electrolyte.

Ph ¼
�
bs þ BsCeff ðe� echÞ

�bn; (23)

ech ¼ ð1� 3ÞeV þ ð1� 3Þ
�
C�1s � C�1l

�
bs; (24)

where Cl and Cs are the isotropic constitutive tensors of the elec-
trolyte and active particles and Ceff is the effectivematerial tensor of
the composite electrode. The matrices Bs and bs are

homogenization operators; for details, the reader is referred to
references [15] and [2].

The micro-scale volumetric strain, eV is found via:

eV ¼
1
3

0
B@
�
Rs þ urjr¼Rs

�3
R3s

� 1

1
CA: (25)

2.4. Ragone plot simulation

The set of equations presented in Sections 2.1e2.3 is used to
predict the Ragone curve for the battery by simulating the
discharge of the battery over a range of rates. We discharge the
battery using a LixC6 anode, PEOeLiCF3SO3 electrolyte, LiyMn2O4
cathode systemwhere 0 � x � 1 and 0 � y � 1. Material properties
are given in Tables 2e4. For the simulations in this paper, the
separator is 50 mm thick and the cathode is 100 mm thick. This yields
a theoretical capacity of the battery of 34.8 Ah m�2. The theoretical
capacity for a given design is the minimum of the anode and
cathode capacities upon discharge. For the cathode, the theoretical
capacity is the amount of cathode active material multiplied by the
amount of Li that can be intercalated into the cathode particles:

Zx¼ dCC

x¼ dSC

ð1� 3Þdx
�
cs;max � cs;0

	
�F: (26)

Similarly the capacity of the anode is the amount of anode active
material multiplied by the amount of Li present in the anode at the
start of the discharge:

Zx¼ dAS

x¼ dAC

ð1� 3Þdx�cs;0�F: (27)

The thickness of the anode of 142 mm was chosen so that both
electrodes would have the same theoretical capacity. The battery is
discharged at a constant rate, I, until the potential difference be-
tween the electrodes ðf1jx¼GCC

�f1jx¼GAC
Þ reaches the cutoff po-

tential, bf1 of 2.7 V; this cutoff potential was selected due to its
position on the discharge curves e as below 2.7 V, the battery
potential quickly drops to zero with a negligible increase in
capacity.

At both scales, the governing equations are discretized spatially
using finite elements and in time using an implicit Euler backwards
scheme. An adaptive time stepping algorithm is used that varies the
time step size based on the rate of change of the potential differ-
ence across the electrodes of the battery. Spatially, we discretize the
system using 20 elements in the separator region, 80 elements in
each electrode region, and 20 elements in each micro-scale prob-
lem. Studies were performed to ensure mesh and time

Table 2
Anode material parameters, LixC6, 0 � x � 1.

Symbol Value Units Description

cs,max 26,400 mol m�3 Maximum Li concentration in cathode
cs,0 13,070 mol m�3 Initial Li concentration in cathode
ss 100 S m�1 Conductivity in cathode
Ds 5e-13 m2 s�1 Diffusivity of Li in cathode
Es 15 GPa Young’s modulus
ns 0.3 e Poisson’s ratio
U 4.221e-6 m3 mol�1 Partial molar volume
k2 1e-10 m4 mol�1 s�1 ButlereVolmer reaction rate constant
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convergence. Two-point Gauss integration is used at the macro-
scale which results in 320 micro-scale problems. In total, there
are 564 macro-scale state variables, and 33,280 micro-scale state
variables.

Fig. 3 is a Ragone plot of the rate versus usable capacity tradeoff
seen when the battery is discharged at 14 rates ranging from
0.01 A m�2 to 25 A m�2; these results use a uniform porosity of
3 ¼ 0.3 and particle radii of 5 mm in both electrodes. At low
discharge rates, the battery utilizes up to 99% of the theoretical
capacity of the battery. However as the discharge rate increases,
there is a significant drop in the usable capacity of the battery.
Ideally, the usable capacity of the battery would not decrease with
increasing discharge rate.

We compare the discharge of the battery using a carbon anode
to a Li foil anode. The theoretical capacity of the battery is the same,
however the Li foil provides an effectively unlimited source of Liþ at
the anode-separator boundary, GAS. As seen in Fig. 3, this shifts the
Ragone line to the right, i.e. higher capacities for higher rates.
Nevertheless, the decrease in usable capacity for high rates is still
seen. The advantage of analyzing the capacity of the half-cell of the
cathode cycled vs. a Li foil anode is in the decrease in computational
cost as the anode does not need to be discretized. For the compu-
tational model used in this study, the number of macro-scale state
variables decreases to 404 and the number of micro-scale state
variables is halved from 33,280 to 16,640.

When discharging the half-cell, the cutoff potential is set at
3.2 V. The higher cutoff potential as compared to the carbon anode
simulations is due to the constant anode potential (versus
increasing potential) during discharge for the half-cell simulations.
For both types of studies, the cutoff potentials were selected based
on reaching the regime in which the overall battery potential
quickly drops to zero. Qualitatively, the Ragone plots predicted by
this model are in good agreement with experimental results for Li
batteries [17].

3. Design optimization

In order to improve the high rate usable capacity of the battery,
we optimize the electrode structure when the battery is discharged

over a range of discharge rates, Ij,j¼ 1:Nj, where Nj is the number of
rates simulated. Previous studies have shown an influence of the
porosity and micro-scale particle radii on the discharge behavior of
the battery [15,31,2]. Therefore we consider the local porosities and
electrode particle radii in both electrodes as design variables. For a
given layout of the electrodes, we simulate the discharge of the
battery over the specified range to the cutoff potential and maxi-
mize the minimum capacity for the range of discharge rates
considered. This max-min multi-objective optimization problem is
solved via a bound formulation [32]. To this end, we introduce an
auxiliary variable, b:

b ¼ min
�
Ijbt j	; (28)

where bt j is the time the battery reaches the cutoff potential when
discharged at rate Ij. The objective is tomaximize b bymanipulating
the design variables, s. Constraints are placed on the difference,
b� Ijbt j, in order to ensure that b is the minimum value. This results
in the following problem formulation:

max
s

bðsÞ
s:t:Gj ¼ b� Ijbt j � 0 c j ¼ 1;.;Nj:

(29)

The design variables of the particle radii are limited to be be-
tween 1 nm and 10 mm and the porosities are limited to between
0.05 and 0.95 to ensure that both electrode and electrolyte phases
are present throughout the electrode. In addition, we place con-
straints on the maximum stress level in the micro-scale electrode
particles during discharge:

Gs ¼ max
t

max
r

max
i

sT;j;t;r;t � smax � 0;

cj ¼ 1 : Nj; t ¼ 1 : Nt;j; i ¼ 1 : Nm; r ¼ 1 : Nr
; (30)

where r is the node id of the particle finite element model, i the
individual micro-scale particle, and t the time step. Nt,j is the
number of time-steps needed when discharged at rate Ij, Nm is the
number of micro-scale particles, and Nr is the number of nodes in
the particle model. In this paper, we set smax to 50 MPa. This stress
level was chosen on the basis of stress levels seen in the constant
porosity solutions of Ref. [2]. To reduce the number of stress con-
straints, we approximate the maximum particle stress in an

Table 3
PEOeLiCF3SO3 electrolyte material parameters.

Symbol Value Units Description

cl,max 3920 mol m�3 Maximum Liþ concentration in electrolyte
cl,0 2070 mol m�3 Initial Liþ concentration in electrolyte
kN 6.5e-3 S m�1 Conductivity in electrolyte
Dl 7.5e-12 m2 s�1 Diffusivity of Li in electrolyte
El 0.69 MPa Young’s modulus
nl 0.4 e Poisson’s ratio

Table 4
Cathode material parameters, LiyMn2O4, 0 � y � 1.

Symbol Value Units Description

cs,max 22,900 mol m�3 Maximum Li concentration in cathode
cs,0 4351 mol m�3 Initial Li concentration in cathode
ss 3.8 S m�1 Conductivity in cathode
Ds 7.08e-15 m2 s�1 Diffusivity of Li in cathode
Es 10 GPa Young’s modulus
ns 0.3 e Poisson’s ratio
U 3.497e-6 m3 mol�1 Partial molar volume
k2 1e-10 m4 mol�1 s�1 ButlereVolmer reaction rate constant
s0 �0.606 J m�3 Surface tension (Si value)
Ks 10.65 N m�1 Surface modulus (Si value)

Fig. 3. Ragone Plot for full battery simulation with 3¼ 0.3 and Rs ¼ 5 mm, for both
types of anodes, the vertical line is the theoretical capacity.
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individual particle, i, at discharge rate Ij using the Kreisselmeiere
Steinhauser (KS) function with u ¼ 3:

~sT ;j;i ¼
1
u
ln

X
t

X
r

exp
�
usT ;j;t;r;i

	
t ¼ 1 : Nt;j; r ¼ 0 : Rs:

(31)

The accuracy of this approximation has been monitored in the
numerical examples to ensure the approximation is accurate to
within 0.1% at 50 MPa.

The design optimization problems are solved using the Globally-
Convergent Method of Moving Asymptotes (GCMMA) of Svanberg
[33]. The GCMMA constructs a sequence of convex separable sub-
problems that are solved by a primal-dual method, and is guaran-
teed to converge to a KarusheKuhneTucker (KKT) optimal point.
This algorithm is specifically suited for problems with large
numbers of design variables and few inequality constraints as it is
the case in the current study. The GCMMA is considered converged
if the constraints are satisfied and the relative change in design
variables, Ds is sufficiently small:





sm�1 � sm








sm�1



 � Ds; (32)

where m is the iteration number of the optimization process. Pa-
rameters used by the GCMMA are given in Table 5; for a detailed
explanation of these parameters, the reader is referred to Ref. [33].

GCMMA requires the derivatives of Gj and Gs, with respect to the
design variables. The derivatives of the objective, b, with respect to
the design variables are zero, while the derivatives of the con-
straints, Gj and Gs, are nonzero due to the dependence of the
simulation time, bt j, and model behavior on the design variables.
Due to the potentially high number of design variables and
computational cost of the model, the sensitivities are found using
an adjoint approach. The main advantage of this approach is that
the numerical costs of computing the design sensitivities are nearly
independent of the number of design variables. For the problem of
interest, the adjoint sensitivity equations only need to be solved NG
times in each step of the optimization procedure, where NG is the
number of constraints. This involves integrating backward in time
the linearized multi-scale model described in Section 2. Details on
the formulation, numerical procedure, and computational effi-
ciency of performing adjoint sensitivity analysis for the multi-scale
framework are provided in Golmon et al. [2].

4. Design optimization examples

4.1. Optimization of cathode discharged against Li foil anode

We solve the above design optimization problem (29) for a
range of discharge rates, Ij ¼ [0.01:20] A m�2, first with a Li foil
anode. The cathode is initialized with uniform porosity of 0.3 and
particle radii of 5 mm, consistent with the nominal design in pre-
vious studies [15]. Fig. 4(a) shows the effect of optimizing the
electrode design on the Ragone plot, and Fig. 4(b) and (c) plots the

Table 5
GCMMA parameters.

Parameter Value

Step size, Ds 0.01e0.2
Initial adaptation of asymptotes 0.5
Adaptation of asymptotes 0.7
Maximum number of sub-cycles 1
Relative change in optimization variables Ds ¼ 10�8

Fig. 4. Ragone plot, porosity and particle radii distributions of initial and optimal designs for design optimization problem with Ij ¼ [0.01:20] A m�2.
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initial and optimal porosity and particle radii distributions. A 39%
improvement in capacity is obtained at 20 A m�2, however at low
rates, there is a 27% decrease in capacity. The theoretical capacity of
the battery decreases from 34.80 Ah m�2 to 29.8 Ah m�2 due to the
increased porosity of the electrode. The optimal configuration
achieves 75% of the theoretical capacity at 20 A m�2 and up to 86%
of the theoretical capacity at lower discharge rates. The optimiza-
tion problem is dominated by the performance at the 20 A m�2

discharge rate which has the lowest capacity and highest electrode
particle stress levels throughout the optimization process. This
would allow for a reduction of the optimization problem to a simple
single-objective problem, maximizing the capacity at a discharge
rate of 20 A m�2.

The influence of the electrode design on the behavior of the
battery is seen in Figs. 5 and 6 which show the Liþ concentration in
the electrolyte, the normalized Li concentration in the electrode

particles, and the stress levels in the electrode particle as a function
of time and position within the battery for initial and optimal
configurations for 10 A m�2 and 20 A m�2 discharge rates.

Two main mechanisms dominate the discharge process: (1)
lithiation of the cathode particles at the back of the electrode as
seen in Fig. 5(d), and (2) depletion of Liþ in the electrolyte within
the cathode as seen in Figs. 5(a), 6(a) and 6(b). Depletion of Liþ in
the electrolyte is undesirable as it prohibits full utilization of the
activematerial. Once the electrolyte is depleted, the potential of the
battery drops quickly. The optimal design for these rates increases
the porosity towards the back of the electrode which allows for
increased Liþ transport in the electrolyte and thus a longer time
before depletion occurs. The electrode particle size is decreased
near the separator-cathode interface primarily to decrease the
stress levels in the particles; smaller particles allow for faster
diffusion of Li into the particles, decreasing the stress and strain

Fig. 5. cl and cs concentrations and maximum sT as a function of time and position in the battery for initial and optimal configurations when discharged at I ¼ 10 A m�2 for the
optimization problem with Ij ¼ [0.01:20] A m�2. The vertical lines in (a) and (b) show the separator-cathode interface.
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mismatch in the particle. The larger particle sizes slow the rate of
Liþ uptake by the particles, which results in enhanced Liþ transport
towards the back of the cathode [2]. The optimal porosity distri-
bution is most important in increasing the battery capacity, while
adding the radii as design variables allows for a further improve-
ment on the order of 0.5e1 Ah m�2.

For the discharge at 20 A m�2 using the initial configuration,
only the front half of the cathode is saturated with Li during
discharge (Fig. 6(c)) and the cathode particles at the current col-
lector interface only see a negligible increase in Li concentration.
The stress constraint level of 50 MPa is exceeded near the sepa-
ratorecathode interface (Fig. 6(e)).

In contrast, for the optimal configuration, the Li concentration
throughout the cathode increases during discharge (Fig. 6(d))
which increases the capacity and percent utilization of the theo-
retical capacity of the battery. The Liþ concentration at the back of
the cathode (Fig. 6(b)) is depleted over a smaller region of the

cathode and occurs later in the discharge. The stress levels in the
particles are maintained below 50 MPa (Fig. 6(f)) with the highest
stress levels positioned at the largest particle sizes. The “waves”
seen in the contour lines for the normalized Li concentration in the
cathode particles are due to the interplay between the different Li
transport rates in the electrolyte and particles.

If the range of discharge rates is reduced to a range of
[0.01:10] Am�2 or [0.01:1] Am�2, the capacity of the battery can be
increased over what is possible for the [0.01:20] A m�2 range. Fig. 7
shows the designs and Ragone plots for all three optimization
problems as compared to the initial configuration. The decrease in
the rate range to [0.01:10] Am�2 results in an optimal designwith a
theoretical capacity of 33.96 Ah m�2 and the [0.01:1] A m�2 range
optimal design has a theoretical capacity of 45.21 Ah m�2.

At low discharge rates, the low optimal porosities result in
higher usable and theoretical capacity of the battery; here the ca-
pacity is reaction-rate limited. As the discharge rate is increased,

Fig. 6. cl and cs concentrations and maximum sT values as a function of time and position in the battery for initial and optimal configurations when discharged at I ¼ 20 A m�2 for
the optimization problem with Ij ¼ [0.01:20] A m�2. The vertical lines in (a) and (b) show the separator-cathode interface.
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and the transport is limited by diffusion of Liþ in the electrolyte, the
porosity is increased which allows for greater Liþ transport. Particle
size primarily influences stress levels as large particles are diffusion
limited resulting in concentration gradients that cause mismatch
strains and stresses due to the stressediffusion coupling; see Eqns.
(12) and (13). With very small particles (<0.5 mm), the stress levels
will increase due to the surface stress effect; see Eq. (20). The
particle size can also influence the usable battery capacity by
effecting the local rate of Liþ uptake throughout the electrode.

A tradeoff is seen between the low and high rate performance of
the battery: for the highest rates an increase in usable capacity is
shown while the low rates show a decrease in usable capacity. The
highest discharge rate dominates the design for each simulation,
suggesting that the electrode should be designed based on the
highest discharge rate expected during operation. Optimal designs
for each discharge rate give upper bounds on what is achievable

with these design variables, giving the Pareto-optimal set of de-
signs (Fig. 7(a)).

As a next step, we replace the Li foil anode with a carbon anode
as in Section 2.4, which has the optimal cathode porosity and radii
distribution from the Li foil [0.01:20] Am�2 discharge rate range. As
seen in Fig. 8, the performance improvement is significantly
reduced and the overall theoretical capacity of the cell is still
reduced by 24%. This result demonstrates that it is necessary to
perform the design optimization on the full problem if the carbon
anode is to replace the Li foil anode.

4.2. Optimization including carbon anode

The design optimization problem (29) is solved for discharge
rates of Ij ¼ [0.01:1] A m�2, [0.01:10] A m�2, and [0.01:20] A m�2,
with both anode and cathode porosities and radii as optimization
variables. Both electrodes are initialized with uniform porosities of
0.3 and particle radii of 5 mm. For simplicity, the stress constraint
(30) is applied only in the cathode region.

Simultaneously optimizing the porosity and particle size dis-
tributions in a full battery cell results in greater capacity
improvement than using the optimal cathode designwith the Li foil
anode. As shown in Fig. 9, the resulting optimal design for the
[0.01:20] A m�2 range improves the capacity of the battery by 61%
relative to the initial configuration when discharged at 20 A m�2,
while at low discharge rates the capacity is decreased by 42%.
Similar levels of improvement are seen at the [0.01:1] A m�2 and
[0.01:10] A m�2 rate ranges. The resulting optimal designs are
depicted in Fig. 10. This figure also shows the optimal cathode
configuration for the Li foil anode optimization problem for the
[0.01:20] A m�2 discharge rate range.

The high porosity towards the separator region of the battery in
both electrodes is due to the limited amount of Li available in the

Fig. 7. Ragone plot, porosity and particle radii distributions of initial and optimal designs for all three design optimization problems.

Fig. 8. Ragone plot for the cathode found via optimization of the cathode with a Li foil
anode when discharged with a carbon anode.
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anode as opposed to the effectively unlimited Li source when a Li
foil anode is simulated. Increasing the porosity towards the sepa-
rator region increases the Liþ transport rates in the electrolyte
allowing a higher percentage of the electrodes to be lithiated. At the
highest rate, the cathode porosity is further increased at the back of
the cathode to allow for increased Liþ transport in the electrolyte. In
the anode, the optimal particle radii distributions result in a small
improvement in Liþ transport in the electrolyte while in the cath-
ode, the stress constraint also influences the distribution. There is a
greater difference in diffusion coefficients between the electrode

and electrolyte in the cathode than the anode, resulting in a larger
spatial variation of the radii in the cathode.

To further understand the transport limitations of the battery, in
Fig. 11 we examine the internal Liþ, normalized Li concentration,
and stress fields within the battery for the initial and optimal de-
signs at a 20 A m�2 discharge rate. The initial configuration limits
the reactions in the electrodes to the region closest to the separator;
the slow Liþ transport limits the amount of the electrodes utilized.
The optimal configuration shows reactions occurring throughout
both electrodes, although Liþ depletion is still the limiting factor. In
the initial configuration, the stress levels in the cathode exceed the
stress constraint level as shown in Fig. 11(e). The stress levels in the
optimal configuration were decreased primarily via the increased
porosity and the variation in particle radii enhances Liþ transport
through the depth of the cathode.

The study above shows that optimizing both electrodes simul-
taneously results in greater improvements in usable capacity than
optimizing a half cell. Note, that these simulations were performed
for a discharge of the battery and result in asymmetric designs
between the anode and cathode, optimization of a full charge/
discharge cycle could change the optimal configuration.

5. Conclusion

In this paper, a design optimization approach based on a multi-
scale battery cell model has been presented and applied to opti-
mizing the electrode design, in order to increase the usable capacity
of a battery over a range of discharge rates. Optimal porosity and
radii distributions in the battery electrodes were found via a multi-
objective design problem with constraints placed on the stress
levels in the cathode particles. Studies were performed on both a Li-
foil half cell and carbon anode full cell configurations which
resulted in different optimal designs. For all studies, the highest
rate discharge dominated the performance and the porosity design
variables had a greater influence on the usable capacity than the
particle radii design variables. Simulations presented showed that
the transport of Liþ in the electrolyte was the dominate process
driving the optimal designs resulting in increasing porosities with
increasing rates. The particle radii design variables were important
in stress-mitigation near the separator-cathode interface and
served to further enhance the Liþ transport due to the effect of
particle size on the rate at which Liþ enters the particles. A tradeoff
was observed between low and high rates because the highest rate
of discharge drives the optimization problem.

Design optimization of the electrode porosities and particle radii
resulted in a 39% increase in capacity for the Li-foil half cell and a
61% increase in capacity for the full cell versus the non-graded
design at the 20 A m�2 discharge rate. However the optimization
results are limited by the level of accuracy of the model which does
not include effects such as solid electrolyte interphase (SEI) layer
growth, chemical side reactions, and other degradation phenom-
ena. Only a single discharge of the battery was simulated, and
optimizing the electrode configuration over a full charge/discharge
cycle may result in different optimal electrode structures. Further
optimization studies over a full charge/discharge cycle and over
multiple cycles, including degradation mechanisms, additional
design variables of the electrode thicknesses, and at higher
discharge rates are recommended.

Nevertheless, the results presented in this paper suggest that
functionally grading the electrode can improve the overall battery
performance allowing for greater usable energy density in a bat-
tery. Furthermore, this study has demonstrated the utility of
computational design optimization as an efficient tool for the
development of battery cells. As our optimization approach can
incorporate a large number of design variables and can be extended

Fig. 10. Initial and optimal electrode designs for dual electrode optimization. The
additional dashed lines in the cathode region are the optimal designs for the Li foil
anode optimization problem.

Fig. 9. Ragone plot for initial and optimal configurations for the carbon anode opti-
mization problems.
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onto more complex micro- and macro-scale models, this method
could be applied to simulations investigating the overall battery cell
design such as those in Ref. [11].
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