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Abstract

To unlock the potential of advanced manufacturing technologies like additive manufacturing,

an inherent need for sophisticated design tools exists. In this thesis, a systematic approach for

designing printed active structures using a combined level-set (LS) extended finite element (XFEM)

density topology optimization (TO) scheme is developed. This combined scheme alleviates the

downsides of both LS and density based TO approaches while building upon the advantages of

either method. Thus, a superior design optimization approach is created, which, when coupled

with the XFEM, yields a highly accurate physical modeling method. The unique capabilities of

this combined approach include hole nucleation and minimum feature size control while retaining a

crisp and unambiguous definition of the material interface. Different stabilization and regularization

schemes are developed to maximize the robustness of the proposed method. Ensuring sufficient

numerical stability during the TO process is especially critical when using large deformation nonlinear

elasticity models. Without sufficient stabilization, divergence in the analysis or optimization process

is frequently encountered. Therefore, a novel explicit LS regularization scheme, based on the

construction of a signed distance field (SDF) for every design iteration, is developed in this thesis.

It is also demonstrated that the obtained SDF can be used for minimum feature size control and

control of the mean curvature during a TO process. Numerical design examples in 2D and 3D

are presented to demonstrate the applicability of the proposed combined TO method. Physical

specimens of 4D printed samples are used to validate the accuracy of the predicted structural

performance by the developed thermomechanical large-strain XFEM model. Finally, conclusions

and recommendations for future work are presented and the original contributions made in this

thesis are summarized.
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Kurzfassung

Von Natur aus existiert ein Bedürfnis nach fortgeschrittenen Konstruktionsverfahren, um das

volle Potential von zukunftsweisenden Fertigungstechnologien zu erschließen. Nicht nur deshalb wird

in dieser Dissertation eine systematische Herangehensweise zur Auslegung von aktiven Strukturen

anhand einer kombinierten Level-Set (LS) Extended Finite Element (XFEM) Dichte Topologieop-

timierungs (TO) Methode präsentiert. Diese kombinierte Methode reduziert die Nachteile der

jeweilig einzelnen TO Verfahren und verbindet gleichzeitig die Vorteile von LS und Dichte Methoden.

Dadurch entsteht ein übergeordnetes TO Verfahren, welches in Kombination mit der XFEM ein

hochgenaues physikalisches Modellierungsverfahren liefert. Die Alleinstellungsmerkmale dieses

Designoptimierungsverfahrens beinhalten die Entstehung von Leerstellen, ein Kontrollmechanismus

über kleinstmögliche Kenngrößen, und eine klare und eindeutige Definition der Materialgrenzflächen.

Dabei werden verschiedene Stabilisierungs- und Regularisierungsmaßnahmen diskutiert, um die

Robustheit der neu entwickelten TO Methode zu maximieren. Hierbei muss vor allem ausreichend

numerische Stabilität gegeben sein, wenn große Verschiebungen und nichtlineare Phänomene während

eines TO Vorgangs in Betracht gezogen werden. Ohne eine ausreichende Stabilisierung tritt häufig

Divergenz während der Analyse oder des Optimierungsprozesses auf. Deshalb wird in dieser Arbeit

ein neuartiges Regularisierungsverfahren für explizite LS TO, basierend auf der Konstruktion einer

Signierten Distanz Funktion (SDF), entwickelt und getestet. Außerdem kann die SDF zur Kontrolle

der kleinstmöglichen Kenngröße und der mittleren Krümmung der Materialgrenzfläche während

eines TO Prozesses eingesetzt werden. Numerische Designbeispiele in 2D und 3D werden präsentiert,

um die Anwendbarkeit der vorgeschlagenen kombinierten TO Methode zu demonstrieren. Die

Gültigkeit und Genauigkeit des entwickelten thermomechanischen Modells unter großen Verschiebun-

gen werden anhand von 4D gedruckten Teststrukturen validiert. Zum Abschluss der Arbeit werden

ein Fazit gezogen und Empfehlungen für zukünftige Studien angeführt. Schlussendlich wird eine

Zusammenfassung der ursprünglichen Beiträge dieser Dissertation präsentiert.
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Chapter 1

Introduction

With the advent of novel manufacturing technologies like additive manufacturing (AM),

unprecedented design freedom is unlocked across various fields of engineering. Through the use

of multi-material 3D printing, active structural components can be manufactured with increased

accuracy. This is achieved by placing materials with different thermal, mechanical and “active”

properties on a build-tray with an accuracy in the order of tens of microns. The shape-changing

property of the structure is inherently built-in through the AM process and can be triggered by

an external stimulus like light, mechanical load, thermal load or a change in radiation conditions.

The concept of a 3D printed structure undergoing a subsequent shape change was introduced by

[184] and named “4D printing”, where time is seen as the fourth dimension. To date, this concept

has been used for designing shape-changing shape memory polymer (SMP) structures [65] and

active origami structures [64]. Building upon the shape-memory effect of 3D printed polymers,

[125] proposed a design methodology for SMPs using topology optimization (TO) combined with a

small strain linear elastic SMP model. More recently, [45] developed a direct 4D printing approach

where a built-in “printing” strain is responsible for the shape change, alleviating the need for a

complex training and activation cycle as required by classical SMPs. In essence, direct 4D printing

hinges on the fact that multiple materials with a tunable inelastic printing strain can be combined

through multi-material 3D printing, yielding an active structure upon activation. Direct 4D printing

was used by [199] and [44] for designing shape-changing 1D rod structures where the initial design
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layout, yielding a desired target shape, could be determined by intuition.

Exploring more complex designs, density-based TO with a small strain linear elastic mechanical

model has been applied by [61] for designing shape-changing liquid crystal elastomer structures.

To determine optimal folding lines of technical origami, a commonly used approach is the ground

structure approach as studied by [31], [59], [58] and [62]. While it reduces the number of design

variables and thus simplifies the design problem, only a subset of all possible designs is explored.

Similarly, [105] used a simplified TO approach for the determination of optimal crease patterns

of self-folding origami and kirigami structures. Just recently, [205] used the concept of moving

morphable components (MMC) to optimize cut patterns of post-buckled 3D kirigami structures.

Especially in the field of aerospace engineering, the advantages provided by 3D and 4D

printing are just starting to be exploited. Traditionally, deployable structures have been actuated

mechanically or electrically; however, the use of active structures or structural components to replace

classical hinges is promising. This is especially true for remote applications like space telescopes

or satellites, where high reliability of the deployment mechanism is required to guarantee mission

success. Moreover, active structures can be used in applications where a small volume is desired

during transportation (e.g., launch) but a large surface area is required in the deployed state (e.g.,

space antennas, drag sails).

The goal of this thesis is to combine state of the art simulation and optimization techniques

for developing a systematic design and analysis framework for active structures. This is achieved

through a hybrid formulation between density-based and level-set (LS)- based TO approaches in

combination with the extended finite element (XFEM) method. More details on the goals of this

thesis and the approaches taken to achieve them are provided in the following section.
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1.1 Goals and Approach

While 3D printing and, more recently, 4D printing are becoming established fabrication

technologies, systematic design approaches utilizing the vast design freedom are widely missing. To

address this issue, various simulation schemes have been proposed in literature. One commonality

to all those simulation approaches is the fact that they only focus on a subset of all feasible designs

due to the simplifications made either in the analysis method or the optimization scheme used. The

overarching goal of this thesis is therefore:

The Development of a systematic Design Approach for Active Structures

using combined LS-XFEM-Density Topology Optimization.

To achieve this, various aspects of computational modeling and design optimization are expanded in

terms of accuracy, robustness and applicability. In addition, a large deformation XFEM simulation

framework is developed for nonlinear thermoelastic structures. This is a key aspect for simulating

shape-changing structures which undergo large deformations and rotations. Using the XFEM versus

classical FEM provides advantages in terms of design freedom and modeling accuracy during TO.

The geometry description of the XFEM is naturally suited for 3D printing without the need for

post-processing. In order to accurately capture the physical response of active structures which

are oftentimes slender in shape, a higher-order XFEM scheme is used. To take advantage of the

benefits of both density-based and LS-based TO approaches, various combined TO schemes are

developed and applied in this thesis. Classically, both methods have been used by their respective

research communities where the drawbacks as well as the benefits of either method have been

studied extensively. Comprehensive reviews of both density-based and LS-based TO approaches are

provided in [188, 168, 43]. However, the combination of them has been largely unexplored to date.

In this thesis, complementary features of density-based and LS-based TO approaches are identified

and a superior TO approach building on the strengths of either method, while eliminating their

respective weaknesses, is developed. Moreover, to improve the stability of LS-based TO, an explicit

LS regularization scheme based on a signed distance function (SDF) is developed and applied to
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various optimization problems in 2D and 3D. This approach is further extended to minimum feature

size control via the skeleton method [78] and a scheme to control the mean curvature of optimized

structures using LS-XFEM TO is derived. Finally, a combined LS-XFEM-density approach is used

for solving multi-material TO problems to design active structures undergoing small and large

deformation. The obtained designs are 4D printed and activated to demonstrate the applicability of

the developed design approach for solving real-world design optimization problems in a structured

and systematic manner.

1.2 Thesis Organization

The remainder of this thesis is structured as follows: The physics models relevant for this thesis

are introduced in Chapter 2. Chapter 3 discusses relevant computational approaches, namely the

XFEM, higher-order XFEM and the enhanced assumed strain (EAS) method. The aim of Chapter

4 is to discuss design optimization, with a special focus on TO. After a review of density-based and

LS-based TO approaches, different combined LS-density TO schemes are proposed. In addition,

stability considerations are discussed and an explicit LS regularization scheme is introduced. After

that, a discussion on minimum feature size control as well as mean curvature control follows. A

brief introduction to design sensitivity analysis and to the formulation of an end-stiffness constraint

relevant for 4D printed active structures is given. The aim of Chapter 5 is to demonstrate the

applicability of the developed optimization methods for solving TO problems. This is achieved

through numerical studies and examples in 2D and 3D. First, the developed large strain thermoelastic

XFEM model is validated before a combined LS-density approach is used for TO of active structures.

Different features of the proposed combined LS-density approach are studied to demonstrate the

superiority of the novel TO scheme. Finally, the explicit LS regularization scheme, minimum

feature size control and the mean curvature control are applied to numerical examples. Conclusions

and future work are presented in Chapter 6. The original contributions made in this thesis are

summarized in Chapter 7 and publications leading up to this thesis are included in Appendices B -

D for completeness.



Chapter 2

Physics Models

The physics models relevant for this thesis are summarized in this chapter. These include

transient heat conduction, (static) linear elasticity and (static) nonlinear hyperelasticity in a total

Lagrangian setting.

All problems considered in this section are boundary value problems (BVP) defined over a volumetric

and boundary domain, Ω0 and Γ0, respectively. The domain boundary is further divided into a

Dirichlet (essential) boundary ΓD and a Neumann (natural) boundary ΓN such that ΓD ∪ ΓN =

Γ0 = ∂Ω0.

Figure 2.1: General BVP do-

main decomposition.

Graphically, this is illustrated in Figure 2.1. Prescribed Dirich-

let and Neumann boundary conditions for a general (scalar- or

vector-valued) state variable ϕ are denoted with ϕ̄D and ϑ̄N , re-

spectively. The unit normal on the Neumann boundary is denoted

with N, and B is a generic volumetric load. Following the notation

of [86], quantities in the undeformed (reference) configuration are

denoted by a capital letter (e.g., N) or a subscript 0 (e.g., Ω0).

Consequently, quantities in the deformed (current) configuration

are denoted by lower case letters (e.g., n) or have no subscript (e.g.,

Ω). More details regarding different configurations are discussed in

Section 2.3 and illustrated in Figure 2.2.
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2.1 Transient Heat Conduction

To model the diffusive process of a temperature field in space and time, the transient linear

parabolic heat partial differential equation (PDE) is solved. Referring back to the general description

of a BVP introduced in Figure 2.1, the temperature state variables are denoted by ϕ = θ. In

Cartesian coordinates, the strong form of the problem is:

Find θ(X) : Ω̄→ R, such that

ρcpθ̇ +∇ · (−κ∇θ) = 0 in Ω0

θ = θ̄D on ΓD

(−κ∇θ)N = q̄N on ΓN

(2.1.1)

where ρ is the physical density, cp is the specific heat capacity and κ is the thermal conductivity.

The prescribed Dirichlet and Neumann boundary conditions are denoted by θ̄D and q̄N = ϑ̄N ,

respectively. The time derivative of the temperature state variable is denoted by θ̇ = ∂θ/∂t. In this

thesis, a semi-discrete formulation (i.e., first discretization in space to then solve in time) is used.

The time derivative at the current time step q + 1 is obtained using an implicit Euler backward

scheme as:

θ̇q+1 =
θq+1 − θq

∆t
(2.1.2)

where θq is the temperature at the previous time step q and ∆t is the time step size.

Multiplying the strong form of the governing equation stated in Eqn.(2.1.1) with an arbitrary test

(weighting) function δθ, performing integration by parts and applying the divergence theorem yields

the weak form of the governing equation. It is stated as:

Find θ(X) ∈ S, such that

∫

Ω0

ρ cp δθ θ̇ dV +

∫

Ω0

δ∇θ(κ ∇θ) dV =

∫

ΓN

δθ(k ∇θ) N dA ∀ δθ ∈ V (2.1.3)

where S denotes the scalar-valued trail solution space defined as S = {θ(X) : Ω̄→ R; θ = θD on ΓD}.

The scalar-valued weighting function space is defined as V = {δθ(X) : Ω̄ → R; δθ = 0 on ΓD}.
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This classical weak form is augmented by additional terms to enable weak enforcement of Dirichlet

boundary conditions using Nitsche’s method [136]. A more detailed discussion of weak enforcement

of boundary conditions is presented in Section 3.1.2, along with the spatial discretization used in

this work.

2.2 Small Strain Elasticity

Cauchy’s first equation of motion is the governing equation for linear elasticity [86]. Assuming

accelerations to be zero, Cauchy’s equation of equilibrium for elastostatics is:

∇ · σ + B = 0 (2.2.1)

where σ is the Cauchy stress tensor and B is a body force vector. It should be noted that in linear

elastic small strain theory, no distinction is made between reference (Ω0) and current configuration

(Ω) as deformations and rotations are assumed to be infinitesimal (i.e., Ω0 ≡ Ω). Therefore, the

choice of stress measure is arbitrary. Most commonly, the Cauchy stress tensor, also called true

stress tensor, is used. This stress tensor is symmetric (i.e., σ = σT ) in the absence of body moments,

satisfying the conservation of angular momentum in a solid [23]. The strong form of the linear

elastic BVP for the vector valued state variables (i.e., displacements) ϕ = u can be formulated as:

Find u(X) : Ω̄→ Rd, such that

∇ · σ + B = 0 in Ω0

u = ūD on ΓD

σN = T̄ on ΓN

(2.2.2)

where the prescribed traction is T̄ = ϑ̄N for consistency with Figure 2.1. The Helmholtz free energy

function Ψ(εM ) for linear elastic materials is defined as [23]:

Ψ(εM ) =
1

2
εM D εM (2.2.3)
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where D denotes the fourth-order material tensor. When considering small strain thermoelasticity,

the mechanical small strain tensor εM is defined as:

εM = ε− εθ (2.2.4)

as a function of the infinitesimal strain tensor ε = 1/2(∇uT +∇u) and the thermal strain tensor εθ.

It should be noted, that the thermal strain is also referred to as inelastic eigenstrain in this thesis.

The thermal strain tensor is defined as:

εθ = α(θ − θ0)I (2.2.5)

where α is the linear isotropic coefficient of thermal expansion (CTE), θ0 is a reference temperature,

and the second-order identity tensor is denoted by I. The fourth-order material tensor for isotropic,

linear elastic homogeneous materials is defined in terms of the Lamé constants λL and µL as:

D = Dijkl = λLδijδkl + µL(δikδjl + δilδjk) (2.2.6)

where δij is the Kronecker delta (i.e., the equivalent of I in index notation). The Lamé constants

can be expressed as a function of the Young’s modulus E and the Poisson’s ratio ν as:

λL =
νE

(1 + ν)(1− 2ν)
, µL =

E

2(1 + ν)
(2.2.7)

Using Eqn.(2.2.6) and Eqn.(2.2.7), the Helmholtz free energy function for linear elastic isotropic

compressible solids (Eqn.(2.2.3)) can be re-written as:

Ψ(εM ) = µL tr((εM )2) +
λL
2

(tr(εM ))2 (2.2.8)

Finally, the Cauchy stress is obtained by differentiation of the free energy function with respect to

the mechanical strain tensor as:

σ(εM ) =
∂Ψ(εM )

∂εM
= 2µLεM + λL tr(εM )I (2.2.9)

Alternatively, the small strain constitutive relationship (Eqn. (2.2.9)) can be stated using the

fourth-order material tensor D. This yields the well-known linear elastic stress-strain relationship
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in 3D for small strains:

σ = DεM (2.2.10)

It should be noted that the thermal strain tensor εθ does not contribute to any mechanical stress in

the solid; therefore, the Cauchy stress is solely a function of mechanical strain tensor εM .

Applying the vector-valued test functions δu to the strong form of the linear elastic governing

equation (Eqn.(2.2.2)), performing integration by parts and applying the divergence theorem yields

the variational form of the linear elastic static problem. This can be stated as:

Find u(X) ∈ S, such that

∫

Ω0

δε : σ dV =

∫

Ω0

δu B dV +

∫

ΓN

δu T̄ dA ∀ δu ∈ V (2.2.11)

where S denotes the vector-valued trail solution space defined as S = {u(X) : Ω̄ → R; u =

uD on ΓD}. The vector-valued weighting function space is defined as V = {δu(X) : Ω̄→ R; δu =

0 on ΓD}.
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2.3 Finite Strain Hyperelasticity

Before formulating the strong and the weak form of the hyperelastic governing equations,

finite strain kinematics, different stress measures, and three hyperelastic constitutive models are

discussed.

2.3.1 Finite Strain Thermomechanical Kinematics

The nonlinear kinematic relationship between displacements and strains at large deformations

is discussed first. When considering elasticity at finite strains, it is crucial to (at least) distinguish

between quantities in the reference (undeformed) configuration Ω0 and in the current (deformed)

configuration Ω. In case of finite strain thermoelasticity an additional, intermediate, non-physical

configuration Ω̃ exists. See Figure 2.2 for a schematic illustration. The deformation of a point

between undeformed (X) and deformed configuration (x) is characterized by the deformation

gradient tensor F, defined as:

F =
∂x

∂X
(2.3.1)

Figure 2.2: Multiplicative decomposition of the total deformation gradient F into mechanical
deformation gradient FM and thermal deformation gradient Fθ.
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Note that in general F is not symmetric. The relationship between current coordinates (x) and

reference coordinates (X) is given by x = u + X. This leads to the definition of the deformation

gradient tensor in terms of the displacement gradient tensor H = ∂u/∂X as:

F = H + I (2.3.2)

In a total Lagrangian setting, the governing equations are evaluated in the undeformed configuration,

whereas other quantities like certain stress measures might be defined in the deformed configuration,

or even in the intermediate configuration. Considering the case of thermoelasticity, the total

deformation gradient F can be multiplicatively decomposed into a mechanical deformation gradient

FM and a thermal deformation gradient Fθ as:

F = FMFθ (2.3.3)

It should be noted that for the case of isotropic thermal swelling where Fθ only contains normal

(diagonal) components, the decomposition order of the deformation is arbitrary. In that case

Eqn.(2.3.3) is equivalent to F = FθFM . By definition, the thermal deformation leads to a stress-free

state and only the mechanical deformation leads to a mechanical stress in the body.

The thermal deformation for isotropic materials is described by [192, 86]:

Fθ = ϑ(θ)I (2.3.4)

where ϑ(θ) is the thermal stretch ratio in an arbitrary direction. Using an exponential thermal

expansion model, the thermal stretch ratio is defined as:

ϑ(θ) = e
∫ θ
θ0
α(θ)dT

(2.3.5)

where in general, the CTE α(θ) is a function of temperature. For materials with a constant CTE,

the thermal deformation gradient is determined as:

FT = eα(θ−θ0)I (2.3.6)
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Figure 2.3: Thermal deformation gradient component FθXX over temperature difference, for
α = 0.05.

Alternatively, a linear thermal expansion model, similar to the small strain equivalent of Eqn.(2.2.5)

can be considered. In this case, the thermal deformation gradient is computed as:

Fθ = (1 + α(θ − θ0))I (2.3.7)

A comparison of the exponential and the linear thermal expansion model, Eqn.(2.3.6) and Eqn.(2.3.7),

respectively, is shown in Figure 2.3. The FθXX component of each model is shown over temperature

difference for a constant CTE of α = 0.05.

Good agreement between the two models can be seen, especially if the temperature difference

is small. As the temperature difference increases, deviations between the linear and the exponential

temperature model are seen, as expected. Given that generally a maximum temperature difference

of 1 is considered in this thesis, combined with a CTE of, for example 0.05, the choice of thermal

expansion model is insignificant.

Using solely the mechanical deformation gradient obtained from Eqn.(2.3.3) as FM = F(Fθ)
−1,

the (symmetric) right Cauchy-Green deformation tensor is obtained as:

CM = (FM )TFM (2.3.8)
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Using that, the (symmetric) Green-Lagrange strain tensor is defined as:

EM =
1

2
(CM − I) (2.3.9)

which is the finite strain equivalent to the infinitesimal strain tensor introduced in Eqn.(2.2.4).

2.3.2 Stress Tensors

Various stress measures are associated with large strain kinematics. For completeness, they

are discussed in the following section. The Cauchy stress tensor, introduced in Eqn.(2.2.1), is a

symmetric stress tensor which is defined fully in the current (deformed) configuration. It physically

represents the force (in the deformed configuration) per unit area in the deformed configuration. It

is derived from Cauchy’s stress theorem as [86]:

t = σMn (2.3.10)

where t is the traction vector and n is the outward surface normal vector, both in the deformed

configuration.

Using the Piola transformation, the Cauchy stress can be transformed to the first Piola-

Kirchhoff stress tensor PM as:

PM = JMσM (FM )−T (2.3.11)

where JM is the determinant of the mechanical deformation gradient JM = det(FM ), indicating the

volume ratio between an undeformed and a deformed body. The first Piola-Kirchhoff stress tensor,

also referred to as nominal stress tensor, represents the force (in the current, deformed configuration)

per unit area of the mechanically undeformed solid (in the intermediate configuration). Due to

this duality, it has no real physical significance attributed to it. It should be noted that the first

Piola-Kirchhoff stress tensor is in general not symmetric (i.e., PM (FM )T = FM (PM )T [86]).

The second Piola-Kirchhoff stress tensor S is introduced here as a third stress tensor, which

is fully defined in the mechanically undeformed (thermomechanical intermediate) configuration. It

is related to the first Piola-Kirchhoff stress tensor by:
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PM = FMSM (2.3.12)

Combining Eqn.(2.3.12) and Eqn.(2.3.11) leads to the relationship between the second Piola-Kirchhoff

stress and the Cauchy stress tensor as:

σM = (JM )−1FMSM (FT
M ) (2.3.13)

It should be noted that SM is a symmetric stress tensor representing a force (in the mechanically

undeformed configuration) per unit area of the mechanically undeformed configuration.

2.3.2.1 Remarks on Notation

In general, the convention of [86] and [186] for the definition of the stress components of the

Cauchy stress is followed in this thesis. The Cauchy stress (in index notation) is defined as (σij)M

where the first index i corresponds to the component of the traction vector t (force) and the second

index j corresponds to the unit normal n characterizing the plane t is acting on. Therefore, Cauchy’s

formula is defined as presented in Eqn.(2.3.10). This is different from other authors, like [23] or [15],

who define the Cauchy stress tensor as the transpose of what is presented here. In general, this does

not affect the Cauchy stress tensor and the second Piola-Kirchhoff stress tensor in particular, since

both of them are symmetric. The first Piola-Kirchhoff stress tensor is not symmetric, which leads

to the fact that special care needs to be taken when referring to the notation of different authors.

2.3.2.2 Stress mapping into Thermomechanical Undeformed Configuration

Due to the existence of three configurations in the context of large strain thermomechanics

(see Figure 2.2), mechanical stresses are only defined with respect to the intermediate configuration

(Ω̃) or the deformed configuration (Ω). The Piola transformation (Eqn.(2.3.11)) is used for mapping

back the second Piola-Kirchhoff stress from the thermomechanical intermediate configuration (Ω̃)

to the true undeformed configuration (Ω0) as:

S = (Fθ)
−1SM (Fθ)

−TJθ (2.3.14)
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where Jθ is the Jacobian of the thermal deformation gradient Jθ = det(Fθ). It should also be noted

that from a global perspective, the mechanical second Piola-Kirchhoff stress SM is defined with

respect to the intermediate configuration. Only after the Piola transformation (Eqn.(2.3.14)) is

the second Piola-Kirchhoff stress defined in the true or global reference configuration. The first

Piola-Kirchhoff (nominal) stress in the undeformed configuration is computed similar to Eqn.(2.3.12)

as:

P = FS (2.3.15)

where F is the total deformation gradient defined in Eqn.(2.3.3).

2.3.3 Hyperelastic Constitutive Relations for Compressible Isotropic Solids

In general, a Helmholtz free energy function Ψ defined per unit volume exists for a hyperelastic

material [86]. Three hyperelastic constitutive relations are considered in this thesis, which in parts

are a second source of nonlinearity besides the nonlinear kinematics discussed in Section 2.3.1. As

the thermal deformation does not lead to stresses in the solid (for unconstrained isotropic thermal

expansion), only mechanical deformations are considered in the following.

2.3.3.1 Saint Venant-Kirchhoff Constitutive Model

The Saint Venant-Kirchhoff constitutive model is a simple extension of the linear elastic

material model (Eqn.(2.2.10)) to large strains. The Helmholtz free energy function in the undeformed

configuration Ω0 of the hyperelastic Saint Venant-Kirchhoff model is defined as [86]:

Ψ(EM ) = µL tr((EM )2) +
λL
2

tr(EM )2 (2.3.16)

where µL and λL are the Lamé parameters defined in Eqn.(2.2.7) and EM is the Green-Lagrange

strain tensor (Eqn.(2.3.9)). Using the fourth-order material tensor D (Eqn.(2.2.6)), the Helmholtz

free energy function for the Saint Venant-Kirchhoff material model can alternatively be written as:

Ψ(EM ) =
1

2
EM D EM (2.3.17)
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A similarity between Eqn.(2.3.17) and Eqn.(2.2.3) can be seen where the only difference lies in

the strain measures used. In the small strain case, the small strain tensor εM is used, which is

based on linearized displacement gradients. Large strains and rotation cannot be captured with this

infinitesimal strain measure. Therefore, the Green-Lagrange strain tensor EM is used in the large

strain extension of the model which more accurately captures large strains and large rotations.

Using Eqn.(2.3.16) or Eqn.(2.3.17), the second Piola-Kirchhoff stress tensor is obtained as:

SM (EM ) =
∂Ψ(EM )

∂EM
= D : EM = 2µLEM + λL tr(EM )I (2.3.18)

Alternatively, Eqn.(2.3.18) can be written in terms of the right Cauchy-Green deformation tensor as:

SM (CM ) = µL(CM − I) +
λL
2

tr(CM − 3)I (2.3.19)

Compressibility is assumed in the hyperelastic constitutive models treated in this thesis, which

means the material is not necessarily volume preserving during large deformations. Considering

the fact that the Saint Venant-Kirchhoff material is an extension of the linear elastic constitutive

model to large strains, it can only be applied in special cases, namely when small strains but large

rotations or displacements are present in a modeling situation.

2.3.3.2 Neo-Hookean Constitutive Model for isotropic compressible Solids

The Neo-Hookean material model is the simplest form of a hyperelastic material model

considering both geometric and material nonlinearities. The strain energy density function for it is

defined as [15]:

Ψ(CM ) =
λL
2

(ln(JM ))2 − µL ln(JM ) +
µL
2

( tr(CM )− 3) (2.3.20)

where, again, the Lamé parameters (Eqn.(2.2.7)) are used. From Eqn.(2.3.20) the second Piola-

Kirchhoff stress is obtained as:

SM (CM ) =
∂Ψ(CM )

∂CM
= (λL ln(JM )− µL) (CM )−1 + µLI (2.3.21)



17

The Cauchy stress follows from Eqn.(2.3.21) by a push-forward operation to the current configuration

as:

σ(bM ) =
1

JM
FMSM (CM )FT

M =
1

JM
[(λL ln(JM )− µL)I + µLbM ] (2.3.22)

where bM is the mechanical left Cauchy-Green deformation tensor bM = FMFT
M . Again, this

constitutive model implies compressibility and is therefore not fully volume-preserving.

2.3.3.3 Alternative Formulation of Neo-Hookean Constitutive Model

An alternative formulation of the Neo-Hookean material model, found in [180], is introduced

next:

Ψ(CM ) =
λL + 2

3µL

2
(JM − 1)2 +

µL
2

(
tr(CM )(JM )−

2
3 − 3

)
(2.3.23)

where λL + 2
3µL = K can also be represented as the bulk modulus K to yield a more compact form.

In some literature, the term tr(CM )(JM )−
2
3 = Ī1 is represented as the first modified invariant Ī1 of

the right Cauchy-Green deformation tensor. As before, the Lamé parameters defined in Eqn.(2.2.7)

are used. Using the modified version of the first invariant of the right Cauchy-Green deformation

tensor, Eqn.(2.3.23) can be re-stated in more compact form as:

Ψ(CM ) =
K

2
(JM − 1)2 +

µL
2

(
Ī1 − 3

)
(2.3.24)

From Eqn.(2.3.23) the second Piola-Kirchhoff stress is obtained as:

SM (CM ) = µL(JM )−
2
3 I +

(
−µL

3
tr(CM )(JM )−

2
3 +K((JM )2 − JM )

)
(CM )−1 (2.3.25)

2.3.3.4 Comparison of Constitutive Models

A comparison of the four constitutive models discussed previously (i.e., linear elasticity,

Saint Venant-Kirchhoff, Neo-Hookean, alternative Neo-Hookean) is presented next. For that, a

simplified 1D problem with a prescribed axial displacement gradient is simulated and the obtained

first Piola-Kirchhoff stress component PXX is plotted over the first component of the displacement

gradient (HXX) in Figure 2.4.
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Figure 2.4: Comparison of uniaxial stress obtained by a linear elastic, Saint Venant-Kirchhoff, and
two different Neo-Hookean constitutive models for a uniaxial displacement gradient.

It can be seen that the stresses obtained from all four constitutive models agree quite well for small

deformations (i.e., −0.01 ≤ HXX ≤ 0.01), both in tension and in compression. A significantly

different behavior is, however, observed for larger deformations. It is especially noticeable that

the Saint Venant-Kirchhoff material over-predicts the stress across the entire range compared to

both Neo-Hookean models and even the linear elastic material law. In addition, it is interesting to

observe a significant difference between the linear elastic small strain and the large strain material

model (Saint Venant-Kirchhoff) introduced solely by nonlinear kinematics.

It is also apparent from Eqn.(2.3.21) and Eqn.(2.3.25) that, as a compressible deformation of

-100% is approached, both Neo-Hookean materials approach a stress singularity (i.e., as JM → 0)

while the two other material models (i.e., linear elastic and Saint Venant-Kirchhoff) can capture

compression beyond that. However, a compressive deformation of 100% is physically meaningless,

as it means the body of interest has been compressed to zero volume in the deformed configuration.
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2.3.4 Strong Form and Weak Form of the Finite Strain BVP

The strong form of the finite strain hyperelastic BVP for the vector valued state variables

(displacements) ϕ = u can be formulated as:

Find u(X) : Ω̄→ Rd, such that

∇ · P + B = 0 in Ω0

u = ūD on ΓD

P N = T̄ on ΓN

(2.3.26)

where similar to the linear elastic case, the prescribed traction is T̄ = ϑ̄N for consistency with Figure

2.1. As before, applying the vector-valued test functions δu on the strong form of Eqn.(2.3.26),

performing integration by parts and applying the divergence theorem yields the variational form of

the finite strain hyperelastic problem. This can be stated as:

Find u(X) ∈ S, such that

∫

Ω0

δF : P dV =

∫

Ω0

δu B dV +

∫

ΓN

δu T̄ dA ∀ δu ∈ V (2.3.27)

where the same vector-valued trail solution space and weighting function space as in Eqn.(2.2.11)

are used.



Chapter 3

Computational Approaches

Computational approaches relevant to this thesis are discussed in this chapter. These include

the XFEM, for both first-order and higher-order spatial discretization and the Enhanced Assumed

Strain (EAS) method to avoid shear locking of slender structures.

3.1 The Extended Finite Element Method

The XFEM, an immersed boundary method, was originally proposed by [13] for applications

in crack modeling. Since then, the XFEM, or sometimes also called the CutFEM [26], has been

widely used in fracture mechanics, material modeling and design optimization [14, 188]. It enables

modeling of intra-element discontinuities on a non-conforming background mesh by enriching the

standard FE shape functions with additional shape functions [54]. A high geometric resolution is

enabled by this approach, on rather coarse background meshes. Multiple levels of enrichment are

required to avoid spurious coupling or load transfer between disconnected material sub-domains

[121, 185]. Enforcement of boundary and interface conditions is achieved by, for example, the

Lagrange multiplier method [70] or via Nitsche’s method [12, 29].

3.1.1 Heaviside-Enriched XFEM

A generalized Heaviside enrichment strategy [82, 183] is employed in this thesis, where the

degrees of freedom within each unique subphase are approximated using standard FE shape functions.

This approach is ideally suited for modeling of strong discontinuities due to the discontinuous nature
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of the Heaviside step function. Using this approach, the state variable vector ûi(X) at node i of a

two material problem (phase I, phase II) is approximated as:

ûi(X) =
L∑

l=1


H(−φ(X))

Ne
N∑

k=1

Nk(X)δklqu
k,I
il +H(φ(X))

Ne
N∑

k=1

Nk(X)δklqu
k,II
il


 (3.1.1)

where H is the Heaviside function as a function of the LS value φ(X) defined as:

H(φ) =





1, ∀ φ(X) > 0

0, ∀ φ(X) < 0

(3.1.2)

The maximum number of enrichment levels is denoted by L, Nk(X) is the elemental shape function

and δklq is the Kronecker delta which selects the active enrichment level q for node k. δklq ensures that

displacements at node k are only interpolated by a single set of degrees of freedom (DOFs) defined

at node position X such that the partition of unity principle is satisfied [109]. The number of nodes

per element is denoted by N e
N . For more details about the generalized Heaviside enrichment strategy

employed in this work, the interested reader is referred to [121], [183], and [185]. It should be noted

that the XFEM framework employed in this thesis uses bi-linear or tri-linear LS interpolation in 2D

and 3D, respectively. This means, from a geometrical point of view, every edge of a background

element can only be intersected at most once. More details about this simplification in combination

with higher-order spatial XFEM discretization are discussed in Section 3.2.

3.1.2 Weak Enforcement of Interface and Boundary Conditions

To achieve continuity of the solution field and the tractions across a discontinuous material

interface ΓI,II0 , Nitsche’s method [136] is used in this work. To that extent, the governing equation

(Eqn.(2.1.3), Eqn.(2.2.11) or Eqn.(2.3.27)) is augmented by an additional contribution. For the large

strain hyperelastic case (Eqn.(2.3.27)), the additional (unsymmetrical) interface Nitsche residual

contribution in vector form is:

RIF = −
∫

ΓI,II0

[[δu]]{P(u)}NdA+

∫

ΓI,II0

{P(δu)}N[[u]]dA+ γN

∫

ΓI,II0

[[δu]][[u]]dA (3.1.3)
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where the jump operator [[•]] is defined as:

[[u]] = uI − uII , [[δu]] = δuI − δuII (3.1.4)

and the state variables in phase I and phase II are denoted by uI and uII , respectively. The weighted

sum of the stresses is denoted by {•}, such that:

{P(u)} = wIP(uI) + wIIP(uII) (3.1.5)

Following the work of [91], the interface parameter γN is obtained from:

γN = 2cN
meas(ΓI,II0 )

meas(ΩI
0)/EI + meas(ΩII

0 )/EII
(3.1.6)

where cN is a user-defined penalty parameter and EI and EII denote the Young’s modulus of the

material in phase I and phase II, respectively. It should be noted that even though a higher penalty

parameter increases the enforcement of Eqn.(3.1.3), it may also lead to ill-conditioning of the linear

system [162]. The Lebesgue measure is denoted by meas(•) corresponding to a line length or surface

area in 2D and a surface area or a volume measure in 3D. Similar to Eqn.(3.1.6), the weights of

Eqn.(3.1.5) are obtained as:

wm =
meas(Ωm

0 )/Em

meas(ΩI
0)/EI + meas(ΩII

0 )/EII
(3.1.7)

where the superscript m denotes either material phase, i.e., m = [I, II]. The first term of Eqn.(3.1.3)

corresponds to the consistency term, the second one is the adjoint consistency and the final term is

a penalty on the jump in state variables.

A consistent tangent stiffness matrix is required for an iterative nonlinear solver and for

computations of shape sensitivities using the adjoint method (see Section 4.6.1). The derivative of

the Nitsche residual (Eqn.(3.1.4)) with respect to the discretized state variables û, i.e., Jacobian

matrix, is computed as:

∂RIF
∂û

= −
∫

ΓI,II0

[[δu]]

{
∂P(u)

∂û

}
NdA

+

∫

ΓI,II0

({
∂P(δu)

∂û

}
[[δu]] + {P(δu)} ∂[[δu]]

∂û

)
dA

+γN

∫

ΓI,II0

[[δu]]
∂[[u]]

∂û
dA

(3.1.8)
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It should be pointed out that the evaluation of Eqn.(3.1.8) requires the second derivative of the stress

tensor with respect to the state variables in order to compute ∂P(δu)
∂û . For small strain kinematics,

this term vanishes, but for large strain kinematics (see Section 2.3.1) this involves computation of a

fifth-order tensor which is non-trivial and can be computationally costly.

A simplified version of Eqn.(3.1.3) is used for application of Dirichlet boundary conditions

weakly. This is achieved by neglecting the second material phase and applying the jump operator

(Eqn.(3.1.4)) with respect to a prescribed Dirichlet boundary condition value.

Weak enforcement of Neumann boundary conditions is achieved by evaluation of the boundary

term in Eqn.(2.3.27) as:

RT =

∫

ΓN

δuT̄dA (3.1.9)

Alternatively, XFEM interface conditions can be enforced using a stabilized Lagrange multiplier

method [28]. This requires a local solve on an elemental level and therefore increases the computa-

tional cost of the XFEM approach. In this thesis, Nitsche’s method is used exclusively to apply

XFEM interface conditions and weak boundary conditions.

3.1.2.1 1D Bar Example

To illustrate the basic concept of Heaviside-enriched XFEM, a simple bar example in 1D is

presented in Appendix A. Nitsche’s method is used to enforce the XFEM interface condition and

the influence of the interface location on the different residual components is analyzed.

3.1.3 Face Oriented Ghost Stabilization

To prevent the occurrence of an ill-conditioned system, face-oriented ghost stabilization, as

introduced by [30], is used in the vicinity of the XFEM interface. Ill-conditioning arises when the

XFEM interface ΓI,II0 moves too close to a FE node, which leads to a vanishing zone of influence of

certain DOFs as well as significant jumps in the solution gradients. Face-oriented ghost stabilization

cures this, independent of the intersection configuration. In a general sense, all spatial gradients



24

up to the degree to which these are captured by the spatial interpolation of the underlying finite

element, need to be stabilized. This is formulated as [157]:

RG =
∑

F∈Fcut

k∑

p=1

∫

F
γGh

2(p−1)+1[[Dp(δu)]][[Dp(u)]]dA (3.1.10)

where h is the element edge length, k is the highest polynomial order and, Dp(•) denotes the normal

derivative of order p on the face between two adjacent elements Ωe1 and Ωe2 . The ghost penalization

parameter is denoted by γG and Fcut = F Icut ∪ F IIcut contains all element faces in the immediate

vicinity of the interface for which at least one of the two adjacent elements is intersected [190]. The

selection of the faces on which ghost penalization is applied is schematically illustrated in Figure 3.1.

Figure 3.1: Domain decomposition for ghost stabilization applied to a material-material XFEM
problem.
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3.2 Higher-Order XFEM

Combining the XFEM with higher-order spatial interpolation is an attractive means to

overcome limitations of linear element basis functions. These include, but are not limited to, element

locking, inability to compute higher-order spatial gradients, and the need for high levels of mesh

refinement to accurately capture physical phenomena. Additionally, a more accurate capturing

of (potentially curved) interfaces is enabled by higher-order XFEM [34, 47]. This has extensively

been studied in the context of fracture mechanics [181, 106, 172] and fluid-structure interaction

[126]. Higher-order XFEM for modeling and optimizing slender structures where shear locking

occurs in linear elements has been applied by [68, 69]. In the work considered in this thesis, linear

interpolation of the LS field defining the XFEM interface ΓI,II0 is assumed. This is true regardless

of the interpolation order of the background element. Therefore, only straight interfaces which

intersect a background element edge at most once are considered.

3.2.1 Different Higher-Order Ghost Penalization Formulations

Based on Eqn.(3.1.10), different ghost penalization formulations are derived. Representative for

higher-order ghost penalization, first and second-order ghost penalization expressions are discussed

in the context of this thesis. As before, large strain kinematics (see Section 2.3) and the associated

stress and strain measures are used for this purpose.

3.2.1.1 Displacement Gradient based Formulation

Using the displacement gradient based ghost formulation as originally proposed by [30], the

residual equation penalizing jumps in first and second-order spatial displacement gradients is stated

as:

RG =hγGE
∑

F∈Fcut

∫

F
[[δ∇uN]][[∇uN]] dA

+h3γGE
∑

F∈Fcut

∫

F
[[δ∇(∇uN)]][[∇(∇uN)]] dA

(3.2.1)
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where the normal derivative D(•) is explicitly written as the spatial gradient of a quantity dotted

with the normal vector. Scaling of Eqn.(3.2.1) with (in structural problems) the elastic modulus

E is performed in order to achieve consistent units of the residual equation. This is the simplest

formulation of ghost penalization; however it is only valid if the material within one phase is

homogeneous and not spatially varying.

3.2.1.2 Stress-based Formulation

The displacement gradient based ghost stabilization (Eqn.(3.2.1)) directly penalizes jumps in

displacement gradients, which need to vanish between elements of the same phase. When using a

spatially varying material within one phase, jumps in displacement gradients exist by construction.

In order to not falsely penalize jumps caused by varying material properties, but only by numerical

artifacts of the XFEM discretization, a stress-based ghost penalization is proposed. This, most

general form of ghost penalization is formulated as:

RG =
h

Ẽ
γG

∑

F∈Fcut

∫

F
[[P(δu)N]][[P(u)N]] dA

+
h3

Ẽ
γG

∑

F∈Fcut

∫

F
[[∇P(δu)N]][[∇P(δu)N]] dA

(3.2.2)

where Ẽ is a scaling parameter computed as the geometric mean of the Young’s moduli of the two

adjacent elements within one material phase (see Figure 3.1). Using Eqn.(3.2.2), no jumps caused by

varying material properties are taken into account as the scaling of the ghost residual contribution

is performed element-wise constant. This most general formulation has the drawback of requiring

the computation of a seventh-order tensor for linearization of the variation of the gradient of the

stress ∂(∇P(δu))/∂û. This significantly increases computational complexity and, therefore, the

stress-based ghost stabilization formulation is less suitable for practical means.

3.2.1.3 Virtual Work based Formulation

A hybrid formulation based on the principle of virtual work is adopted to combine the benefits

of the two previous stabilization formulations. The ghost stabilization contribution in residual form
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is:

RG =hγG
∑

F∈Fcut

∫

F
[[δ∇uN]][[P(u)N]] dA

+h3γG
∑

F∈Fcut

∫

F
[[δ∇(∇uN)]][[∇P(δu)N]] dA

(3.2.3)

This formulation is an extension of Eqn.(3.2.1) suitable for varying material parameters within a

phase. However it should be noted, that subphase constant material properties (within an element)

are assumed in any further treatment of Eqn.(3.2.3) in order to simplify the dependencies arising

from the spatial gradient of the stress tensor. If material properties would be spatially varying

within one element (i.e., below subphase resolution), derivatives of the stress tensor with respect

to the material parameters (E, α) arise when computing ∇P(u) and its derivative with respect

to the state variables u. This is of special importance when performing combined LS-Density

TO, as discussed in Section 4.1.3. It is also worth noting that both the displacement gradient

based formulation (Eqn.(3.2.1)) and the stress-based formulation (Eqn(3.2.2)) are guaranteed to

be strictly positive due to their formulation based on an L2 norm of the respective quantity. This

is an important property for ghost stabilization in order to act as a penalty on the jump terms.

The virtual work based formulation, as it is a hybrid formulation, does not necessarily exhibit this

property and, therefore, needs to be used with care. As its contributions can also become negative,

it can potentially be exploited by the solver to increase the ghost penalization jumps in order to

cancel out some other, equal but opposite residual contribution while reducing the overall residual.

3.2.1.4 Shape Function Derivatives

To compute higher-order ghost stabilization terms, higher-order spatial derivatives of dis-

cretized quantities are needed (see Eqn.(3.1.10)). Using the chain rule, derivatives of shape functions

with respect to natural coordinates and derivatives of natural coordinates with respect to physical

coordinates need to be computed. The (first-order) relationship between natural and physical
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coordinates for a 3D hexahedral element is defined by the geometric Jacobian J as [52]:

J =




∂X1

∂ξ

∂X2

∂ξ

∂X3

∂ξ

∂X1

∂η

∂X2

∂η

∂X3

∂η

∂X1

∂ζ

∂X2

∂ζ

∂X3

∂ζ




(3.2.4)

where ξ, η, ζ are the natural coordinates in X1, X2, and X3 direction, respectively. Consequently,

the first-order derivatives of shape functions with respect to physical coordinates are obtained from:




∂Ni

∂X1

∂Ni

∂X2

∂Ni

∂X3




= J−1




∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ




(3.2.5)

where the derivatives of shape functions with respect to natural coordinates are omitted here for

brevity.

A similar concept is applied to obtain second-order spatial derivatives of shape functions with

respect to physical coordinates. Following the work of [193], a second-order geometric Jacobian

matrix J̄ is defined as:

J̄ =




(
∂X1

∂ξ

)2 (
∂X2

∂ξ

)2 (
∂X3

∂ξ

)2

2
∂X1

∂ξ

∂X2

∂ξ
2
∂X1

∂ξ

∂X3

∂ξ
2
∂X2

∂ξ

∂X3

∂ξ
(
∂X1

∂η

)2 (
∂X2

∂η

)2 (
∂X3

∂η

)2

2
∂X1

∂η

∂X2

∂η
2
∂X1

∂η

∂X3

∂η
2
∂X2

∂η

∂X3

∂η
(
∂X1

∂ζ

)2 (
∂X2

∂ζ

)2 (
∂X3

∂ζ

)2

2
∂X1

∂ζ

∂X2

∂ζ
2
∂X1

∂ζ

∂X3

∂ζ
2
∂X2

∂ζ

∂X3

∂ζ

∂X1

∂ξ

∂X1

∂η

∂X2

∂ξ

∂X2

∂η

∂X3

∂ξ

∂X3

∂η

∂X1

∂ξ

∂X2

∂η
+
∂X2

∂ξ

∂X1

∂η

∂X1

∂ξ

∂X3

∂η
+
∂X3

∂ξ

∂X1

∂η

∂X2

∂ξ

∂X3

∂η
+
∂X3

∂ξ

∂X2

∂η

∂X1

∂ξ

∂X1

∂ζ

∂X2

∂ξ

∂X2

∂ζ

∂X3

∂ξ

∂X3

∂ζ

∂X1

∂ξ

∂X2

∂ζ
+
∂X2

∂ξ

∂X1

∂ζ

∂X1

∂ξ

∂X3

∂ζ
+
∂X3

∂ξ

∂X1

∂ζ

∂X2

∂ξ

∂X3

∂ζ
+
∂X3

∂ξ

∂X2

∂ζ

∂X1

∂η

∂X1

∂ζ

∂X2

∂η

∂X2

∂ζ

∂X3

∂η

∂X3

∂ζ

∂X1

∂η

∂X2

∂ζ
+
∂X2

∂η

∂X1

∂ζ

∂X1

∂η

∂X3

∂ζ
+
∂X3

∂η

∂X1

∂ζ

∂X2

∂η

∂X3

∂ζ
+
∂X3

∂η

∂X2

∂ζ




(3.2.6)

With that, the second-order derivatives of shape functions with respect to physical coordinates are
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obtained by solving the following linear system:




∂2Ni

∂X1∂X1

∂2Ni

∂X2∂X2

∂2Ni

∂X3∂X3

∂2Ni

∂X1∂X2

∂2Ni

∂X1∂X3

∂2Ni

∂X2∂X3




= J̄−1







∂2Ni

∂ξ∂ξ

∂2Ni

∂η∂η

∂2Ni

∂ζ∂ζ

∂2Ni

∂ξ∂η

∂2Ni

∂ξ∂ζ

∂2Ni

∂η∂ζ




−




∂2X1

∂ξ∂ξ

∂2X2

∂ξ∂ξ

∂2X3

∂ξ∂ξ

∂2X1

∂η∂η

∂2X2

∂η∂η

∂2X3

∂η∂η

∂2X1

∂ζ∂ζ

∂2X2

∂ζ∂ζ

∂2X3

∂ζ∂ζ

∂2X1

∂ξ∂η

∂2X2

∂ξ∂η

∂2X3

∂ξ∂η

∂2X1

∂ξ∂ζ

∂2X2

∂ξ∂ζ

∂2X3

∂ξ∂ζ

∂2X1

∂η∂ζ

∂2X2

∂η∂ζ

∂2X3

∂η∂ζ




·




∂Ni

∂X1

∂Ni

∂X2

∂Ni

∂X3







(3.2.7)

This approach is used in this thesis to compute the second-order shape function derivatives of

Lagrange and Serendipity elements in 2D and 3D (i.e., 4 node quadrilateral, 8 node quadrilateral, 8

node hexahedral, and 20 node hexahedral elements).

3.2.2 Mesh Refinement Studies

To verify the performance of higher-order XFEM, mesh refinement studies are conducted.

First, the effectiveness of face-oriented ghost stabilization introduced in Section 3.2.1 is demonstrated

and ghost stabilized XFEM results are compared against analytical solutions. Then an h-refinement

study is performed to investigate the convergence rates of first- and second-order XFEM simulations.

3.2.2.1 Verification of Higher-Order Ghost Stabilization

To verify the higher-order ghost stabilization introduced in Section 3.2.1 against analytical

solutions, a spherical inclusion of radius a = 0.5 embedded in an infinitely large host matrix is used.

The problem setup, with dimensions, is shown in Figure 3.2 (a). The L2 error norm of the solution

field and the H1 error semi-norm of the solution field gradient are computed in the entire domain.
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Figure 3.2: Spherical inclusion problem in cubical host matrix. (a) Problem setup, (b) linear
diffusion solution (cut-away view), and (c) warped mechanical solution (cut-away view).

Those (absolute) error norms are defined as:

Absolute L2 Error Norm = 2

√∫

Ω0

(u− ū)2dV (3.2.8)

and

Absolute H1 Error Semi-Norm = 2

√∫

Ω0

(∇u−∇ū)2dV (3.2.9)

where ū and ∇ū are the prescribed analytical solution and the prescribed solution gradient,

respectively. To demonstrate robustness of the face-oriented ghost stabilization, randomly perturbed

center locations of the spherical inclusion are used during the subsequent mesh refinement studies.

This shows the effectiveness of the stabilization in the presence of critical intersection configurations.

For both the linear heat conduction problem and the mechanical problems considered in this study,

analytical reference solutions defined on an infinitely large host domain are used. To draw correct

comparisons between analytical solutions and XFEM solutions, “infinity” boundary conditions need

to be applied in the numerical model. This is achieved by prescribing the analytical solution as a

Dirichlet boundary condition weakly along all six phases of the cubical simulation domain of size

2.0× 2.0× 2.0. For all subsequent studies discussed in the following, a ghost penalty parameter of

γG = 0.001 is used.
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Heat Conduction

For the heat conduction problem, the host matrix is a finite domain (phase II) with a

conductivity of κ = 0.125 and no volumetric heat flux (i.e., Q = 0.0). The inclusion is modeled by

a spherical domain (phase I) which has a conductivity of κ = 1.0 and a volumetric heat flux of

Q = 1.0. Within the XFEM framework, interface conditions and boundary conditions are applied

weakly using Nitsche’s method (see Section 3.1.2). An analytical solution is developed for a linear

heat conduction problem of a heated spherical inclusion in an infinite host domain.

In Cartesian coordinates, the strong form of the 1D heat conduction equation with constant

generation is:

d2θ

dX2
+
Q

κ
= 0 (3.2.10)

with the solution θ(X) = −QX2

2κ + AX + B. The integration constants are denoted by A and B

which depend on the boundary and interface conditions. In spherical coordinates, Eqn.(3.2.10)

becomes:

d

dR

(
dθ

dR

)
+R2Q

κ
= 0 (3.2.11)

The general solution of Eqn.(3.2.11) is θ(R) = −QR2

6κ + A
R + B and the integration constants are

determined by the following boundary conditions:

• Prescribed temperature at the origin: θ(R)|R=0 = 0.375

• Zero temperature gradient at the origin: dθ(R)
dR

∣∣∣
R=0

= 0.0

• Temperature continuity at the material interface: θI(R)
∣∣
R=a

= θII(R)
∣∣
R=a

• Temperature gradient continuity at the material interface: dθI(R)
dR

∣∣∣
R=a

= dθII(R)
dR

∣∣∣
R=a

Using the coordinate transformation between Cartesian and spherical coordinates, the analytical

temperature in phase I in spherical coordinates is:

θI(R) = −R
2

6
+

3

8
(3.2.12)



32

In phase II, the host matrix, it is:

θII(R) =
1

3R
− 1

3
(3.2.13)

where the radius is computed as R(X1, X2, X3) =
√

(X1 −X1c)
2 + (X2 −X2c)

2 + (X3 −X3c)
2.

The randomly perturbed center coordinates of the spherical inclusion are denoted by X1c , X2c and

X3c , respectively. Similarly, the analytical temperature gradient in phase I is obtained as:

dθI(R)

dX
=
dθI(R)

dR

dR

dX
(3.2.14)

where dθI(R)
dR = −R

3 and dR
dX = X−Xc

R . The analytical temperature gradient in phase II is obtained

by:

dθII(R)

dX
=
dθII(R)

dR

dR

dX
(3.2.15)

with dθII(R)
dR = − 1

3R2 .

Using the heat conduction problem setup and the analytical solution developed above as

a reference, a mesh refinement study is conducted. The goal of the study is to understand the

influence of the higher-order ghost stabilization on the temperature solution, its spatial gradient,

and the condition number of the linear system as linear and quadratic XFEM meshes are refined.

Element edge lengths of h = [0.5, 0.25, 0.125, 0.0625] are used.

As can be seen from Figure 3.3 (a) and (b), second-order ghost stabilization has no significant

effect on the convergence behavior of the L2 norm and the H1 semi-norm of the temperature

field, respectively. Also, comparing the convergence behavior of quadratic versus linear XFEM

elements shows only marginal differences. This is not expected and will be investigated in more

detail in Section 3.2.2.2. However, a significant effect of higher-order ghost stabilization on the

condition number is seen (see Figure 3.3 (c)). An increased condition number is expected when

using higher-order (e.g., HEX20) elements, due to the increased number of DOFs per element. This

drawback is almost entirely compensated through the use of second-order ghost stabilization, as can

be seen from Figure 3.3 (c), where reasonable condition numbers are achieved through face-oriented

ghost stabilization.
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Figure 3.3: Mesh refinement results for the heat conduction problem. (a) L2 error norm, (b) H1

error semi-norm, and (c) condition number with and without ghost stabilization.

Linear Elasticity

A similar approach as for the heat conduction problem is followed to study the effect of

higher-order ghost penalization for linear elastic problems. For that, both the inclusion material

and the host matrix have an elastic modulus of E = 10.0 and a Poisson’s ratio of ν = 0.3. The

inclusion material has a CTE of αI = 0.1, while the host matrix has no eigenstrain (i.e., αII = 0.0).

Interface and boundary conditions are weakly enforced via Nitsche’s method.

An analytical solution for stress and strain fields of a spherical inclusion embedded in an

infinite linear elastic isotropic solid was first derived by [194]. This approach is the basis for the

derivation of a linear elastic reference solution, which is summarized (in index notation) in the

following. A constant eigenstrain is assumed in phase I, defined as:

ε̄Iij = αIδij (3.2.16)

The uniform strain field within the spherical inclusion is obtained from the Eshelby tensor S∗ijkl as:

εIij = S∗ijklε̄
I
kl (3.2.17)
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where the (constant) fourth-order Eshelby tensor for a spherical inclusion is computed as:

S∗ijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (3.2.18)

The analytical reference displacement within the spherical inclusion (i.e., ΩI
0) is then obtained by

integration of the strain field (assuming zero displacement at the origin):

uIi (X) = εIijXj (3.2.19)

The spatial derivative of the displacement field is equal to the strain field:

∂uIi
∂Xj

= εIij (3.2.20)

Following the work of [133], an analytical solution for stress and strain fields outside the

spherical inclusion, in the infinite host matrix, can also be obtained. From that, the analytical

displacement field is obtained using Papkovich-Neuber potentials [149, 135]. A transformation stress

σ̄Iij is computed using the isotropic eigenstrain ε̄Iij as [23]:

σ̄Iij =
E

1 + ν

(
ε̄Iij +

ν

1− 2ν
ε̄Ikkδij

)
(3.2.21)

The resulting Papkovich-Neuber potentials (ΨPN )i and φPN are computed as:

(ΨPN )i =
a3σ̄ijXj

3R3
and φPN =

a3σ̄ij
15R3

(
(5R2 − a2)δij + 3a2XiXj

R2

)
(3.2.22)

where the distance from the origin is denoted by R =
√
XkXk and a = 0.5 is the inclusion radius.

The displacement field outside the spherical inclusion is then obtained using:

uIIi (X) =
2(1 + ν)

E

(
(ΨPN )i +

1

4(1− ν) ∂
∂Xi

(φPN − (ΨPN )kXk)

)
(3.2.23)

Combining Eqn.(3.2.22) and Eqn.(3.2.23) finally yields the displacement field outside the spherical

inclusion (i.e., ΩII
0 ) as:

uIIi (X) =
(1 + ν)a3

2(1− ν)E

(
2σ̄ikXk + σ̄kkXi

15R5
(3a2 − 5R2) +

σ̄jkXiXjXk

R7
(R2 − a2) +

4(1− ν)σ̄ikXk

3R3

)

(3.2.24)



35

Figure 3.4: Mesh refinement results for the linear elastic problem. (a) L2 error norm, (b) H1 error
semi-norm, and (c) condition number with and without ghost stabilization.

The spatial derivative of Eqn.(3.2.24), ∂uIIi /∂Xj , is obtained using symbolic differentiation and

omitted here for brevity.

Similar to the heat conduction case, a mesh refinement study is conducted and compared

against the analytical solution developed above. The same mesh sizes as in the heat conduction case

are used. The results of the mesh refinement study for the linear elastic spherical inclusion with

eigenstrain embedded in an infinite host matrix are shown in Figure 3.4. In order to simulate an

infinite host domain, the analytical reference solution (Eqn.(3.2.24)) is applied to the six faces of the

domain boundary of the XFEM mesh as a weak Dirichlet boundary condition. Similar to Figure 3.3,

very little influence of higher-order ghost stabilization is seen on the convergence behavior of the L2

norm and H1 semi-norm. See Figure 3.4 (a) and (b), respectively. Since a much higher convergence

rate is expected when using quadratic elements, further analyses are performed in Section 3.2.2.2 to

understand the observed behavior. With respect to the condition number, a large improvement is

observed when using higher-order ghost stabilization in combination with quadratic XFEM elements

(see Figure 3.4 (c)).
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Nonlinear Hyperelasticity

To understand the impact of higher-order ghost stabilization on nonlinear hyperelasticity

considering large deformation, a similar mesh-refinement study is repeated. Due to the lack of an

analytical solution for a nonlinear hyperelastic case, the previously developed linear elastic reference

solution is used. In order for this to be valid, the isotropic eigenstrain in the spherical inclusion is

reduced to α = 0.01. The results of this mesh refinement study are presented in Figure 3.5. Mesh

sizes of h = [0.5, 0.25, 0.125] are used.

As in the previous studies, only marginal effects of higher-order ghost stabilization are observed

with respect to the convergence behavior of L2 norm and H1 semi-norm. The fact that no increased

convergence rates are obtained for higher-order XFEM with h-refinement has previously been

reported by [172, 130] for cases when an element is sub-divided only using straight faces. See Figure

3.5 (a) and (b), respectively. A drastic reduction in condition number is, however, seen for both

linear and quadratic elements when face-oriented ghost penalization is applied. This is especially

critical for nonlinear analyses as a well-conditioned matrix is crucial to facilitate convergence of an

iterative nonlinear solver (e.g., Newton-Raphson).

Figure 3.5: Mesh refinement results for the nonlinear hyperelastic problem. (a) L2 error norm, (b)
H1 error semi-norm, and (c) condition number with and without ghost stabilization.
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3.2.2.2 Mesh Refinement Studies using Higher-Order XFEM

The convergence behavior of higher-order XFEM elements with mesh refinement is studied in

this section. To achieve that, a pseudo-1D linear elastic bar problem is studied with a quadratic,

space dependent body force b = 2.0(X1)2 applied. The 1D bar governing equation is stated as:

EA

L

d2u

dX2
1

+ b = 0 (3.2.25)

with homogenous Dirichlet boundary conditions applied at X1 = 0.0. The Young’s modulus used

is E = 10.0, the Poisson’s ratio is ν = 0.0 (to have no 3D effects), and the cross-sectional area is

A = 0.25. A unit-length is assumed for the bar (i.e., L = 1.0). The analytical displacement solution

of this second-order differential equation is given by a fourth-order polynomial as:

u(X1) =
b

12EA

(
4L3X1 − (X1)4

)
(3.2.26)

From Eqn.(3.2.26) the analytical 1D displacement gradient is a third-order polynomial given as:

du(X1)

dX1
=

b

3EA

(
L3 − (X1)3

)
(3.2.27)

Using Eqn.(3.2.26) and Eqn.(3.2.27) as a reference solution, L2 error norms and H1 error semi-norms

are computed in the following sections for different interface geometries. In order for the previously

developed 1D reference solution to be valid, the same material properties are used in ΩI
0 and ΩII

0

and only the interface geometry in between them is varied.

Planar Interface Geometries

First, a set of simple (planar) interface geometries are considered for a mesh refinement study

as shown in Figure 3.6. Planar intersections in the X1, X2, and X3 plane are studied as shown in

Figure 3.6 (a), (b), and (c), respectively. Moreover, an inclined plane as depicted in Figure 3.6 (d)

is studied. Mesh sizes of h = [0.5, 0.25, 0.125, 0.0625, 0.03125] are used. The convergence rates of

the L2 error norm and H1 error semi-norm with mesh refinement are shown in Figure 3.7. It can

clearly be seen that regardless of the intersection configuration, the expected convergence rates of
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Figure 3.6: Simple planar interface geometries for the pseudo 1D bar problem. (a) Plane in X1

direction, (b) plane in X2 direction, and (c) plane in X3 direction, (d) inclined plane in X1 −X2

direction.

about 2.0 and 3.0 are obtained in the L2 error norms for linear and quadratic elements, respectively.

Similarly, the expected convergence rates of about 1.0 and 2.0 are achieved in the H1 semi-norms,

again for linear and quadratic elements, respectively. This first study successfully demonstrates the

expected convergence behavior of higher-order XFEM for a set of simple interface geometries.

Figure 3.7: Mesh refinement results for different planar intersection configurations using a pseudo
1D bar problem. (a) L2 error norm and (b) H1 error semi-norm.
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Spherical Interface Geometry

The same mesh refinement study is repeated for a spherical inclusion in the rectangular domain

used before. The domain decomposition for mesh sizes of h = [0.5, 0.25, 0.125, 0.0625] is shown in

Figure 3.8. Using the coarsest mesh (Figure 3.8 (a)) as a starting point, two different refinement

studies are performed. First, both the spatial discretization and the geometric representation of

the immersed sphere are refined simultaneously (see Figure 3.8 (b)). This is done by default when

using XFEM for geometric representation, as the accuracy at which an immersed geometry is

discretized highly depends on the discretization of the background mesh. Secondly, only the spatial

discretization of the XFEM is refined while the immersed sphere geometry is kept constant (see

Figure 3.8 (c)). This is achieved by interpolating the nodal LS field, which defines the material

interface ΓI,II0 , from the coarsest mesh (Figure 3.8 (a)) to all finer meshes, without re-computing

the nodal LS values using a new (finer) background mesh. The L2 norm and H1 semi-norm results

of both refinement strategies are shown in Figure 3.9 for linear and quadratic elements.

It can be seen that for linear background elements regardless of the refinement approach, the

Figure 3.8: Pseudo 1D bar problem with a spherical inclusion. (a) Coarsest mesh as a starting
point, (b) simultaneous mesh and geometry refinement, and (c) mesh refinement with constant
geometry.
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Figure 3.9: Mesh refinement results for the pseudo 1D bar problem with a spherical inclusion
using different refinement approaches. (a) L2 error norm and (b) H1 error semi-norm.

expected convergence rates of about 2.0 and 1.0 are obtained in the L2 norm and H1 semi-norm,

respectively. For quadratic elements, when the mesh and the geometry is refined simultaneously,

degenerated convergence rates are obtained (see Figure 3.9 (a) and (b)). When the geometry is kept

constant at the initial representation of the spherical inclusion stemming from the coarsest mesh,

expected higher-order convergence rates are obtained for quadratic elements. This can be explained

by the fact that the initial geometric representation has straight faces and only captures the spherical

geometry roughly in form of a diamond. As this interface representation is constant throughout

mesh-refinement, the interface geometry does not change and can be fully captured regardless of

the mesh size of the background elements. In case of a changing interface geometry, linear/planar

intersections insufficiently capture the geometry of the sphere and only converge to a truly spherical

representation of the shape with mesh refinement. This means, depending on the level of refinement

of the background mesh, a different representation of the spherical inclusion is captured. Therefore, a

different XFEM problem is solved at every step of the refinement process and a comparison between

the differently refined meshes is not meaningful. Higher-order convergence rates can, therefore, not

be expected if both the spatial discretization and the geometric representation are refined at the

same time. To mitigate this large dependency of the geometric representation on the background
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discretization, curved interface capturing is required when using higher-order XFEM. The identified

need for consistent geometric representation of an (in general curved) interface in order to obtain

improved convergence rates with higher-order XFEM discretization is in agreement with findings

reported by [113, 34]. The results of this study also explain why no higher-order convergence rates

were obtained in Section 3.2.2.1 where simultaneous refinement of the background mesh and the

spherical inclusion geometry was performed, despite the fact that quadratic XFEM elements were

employed.

3.2.3 Higher-Order XFEM for Slender Structures

Besides increasing accuracy, higher-order spatial interpolation also mitigates numerical artifacts

like shear locking when modeling slender structures [49, 87]. This is a well-known approach to

circumvent the modeling deficiency of low-order finite elements. When using the XFEM for modeling

slender structures, a similar effect is observed as shown in Figure 3.10. A bi-layer cantilevered beam

of dimensions 80.0× 2.5× 1.0 is modeled with linear and quadratic XFEM elements. The beam

consists of two distinct material layers where the top layer (ΩI
0) has a Young’s modulus of E = 0.6,

a Poisson’s ratio of ν = 0.0, and a uniaxial eigenstrain of 0.045 in X1 direction. The bottom layer

(ΩII
0 ) has a Young’s modulus of E = 6.0, a Poisson’s ratio of ν = 0.0 but no eigenstrain.

Isotropic expansion of the top layer due to its eigenstrain causes downward curling of the beam.

A strong influence of spatial discretization on the deformation of the beam is observed, especially

when using linear hexahedral elements (see Figure 3.10 beams in red). Even for a highly refined

mesh, the linear XFEM elements do not converge towards the analytical Timoshenko beam model

prediction. However, using quadratic 20 node hexahedral Serendipity elements leads to a much faster

convergence towards the analytical beam model prediction. Even for the coarsest mesh considered

in this study, a much better prediction by the XFEM is obtained. To quantify the superiority of

higher-order XFEM for modeling slender structures, a comparison of tip displacement L2 error

norms for both small strain and large strain kinematics models is shown in Table 3.1. It should

be noted that each kinematics model is only compared against a consistent beam model based on
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Figure 3.10: Deformation of a bi-layer cantilevered beam using linear and quadratic XFEM
element of different mesh sizes.

the same kinematics, as a cross-comparison between small strain and finite strain results would be

meaningless.

From Table 3.1 it can be seen that, irrespective of the kinematics model used, a significant

underperformance of linear elements is observed due to shear locking. This numerical artifact is

reduced with spatial mesh refinement, but never fully vanishes for HEX8 elements. When using

quadratic elements, a good prediction of the tip displacement is obtained even with coarse XFEM

meshes. Therefore, a strong need for higher-order XFEM is identified when modeling slender

structures with solid brick elements in order to obtain realistic performance predictions.

Table 3.1: Comparison of the tip displacement L2 norm against a 1D Timoshenko model using
small deformation and large deformation kinematics.

Small Deformation Large Deformation
Mesh Size HEX8 HEX20 HEX8 HEX20

h = 5.0× 2.5× 0.2 93.6 % 3.7 % 90.1 % 4.3 %
h = 0.5× 0.5× 0.1 14.7 % 2.6 % 6.3 % 1.2 %
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3.2.4 Local Interpolation Order Reduction

To address ill-conditioning of higher-order XFEM linear systems, local reduction of the spatial

interpolation order can be used in addition to higher-order ghost stabilization. This approach

initially applied to finite difference schemes [79, 179] was then adopted to XFEM problems for the

wave equation by [173]. While only marginally sacrificing convergence rates, a drastic decrease in

condition number was reported by [173] for 2D XFEM problems. In order to not have hanging

nodes (i.e., nodes which are not shared by all of its neighboring elements) at the transition between,

e.g., quadratic elements (p) and linear element (p− 1), a weakly enforced interpolation constraint is

proposed. This scheme allows for operating on a higher-order mesh (i.e., of order p) in the entire

domain and only adds additional residual components to elements close to the interface such that

their spatial interpolation order is reduced by one order (i.e., p− 1). Using the weak form of the

large strain hyperelastic problem (Eqn.(2.3.27)) as an example, this additional residual contribution

is formulated as:

RRed = γR

∫

Ω0

F (δũ) : P (ũ)dV (3.2.28)

where γR is a reduction penalty parameter and the modified displacements ũ are obtained from:

ũ =



Ne
N∑

i=1

Np
i −

Ne
N∑

i=1

Np−1
i


 ûi (3.2.29)

where Np
i is the vector of shape functions corresponding to the original interpolation order p and

Np−1
i is the vector of shape functions corresponding to the reduced interpolation order p − 1.

Similar to Eqn.(3.2.29), a constraint displacement gradient can be obtained, which is the basis for

computing the constrained deformation gradient F (δũ) and the constrained stress tensor P (ũ) used

in Eqn.(3.2.28). It should be noted that while, an increase in stability is seen through this approach,

numerical artifacts like shear locking are potentially still exhibited by the reduced-order elements in

the vicinity of the interface.
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3.3 Enhanced Assumed Strain Method

Before the EAS concept is introduced and applied to XFEM problems, a brief summary of

locking phenomena in 3D solid finite elements is given. It should be noted that within the scope

of this thesis, only 2D linear elastic problems are considered regarding the EAS method both for

classical FEM and for XFEM.

3.3.1 Locking of 3D Solid Finite Elements

Locking is a phenomenon experienced in FE when a severe underestimation of displacements

occurs due to overly stiff elements [53]. This is caused by the existence of parasitic strains and

stresses caused by the inability of a FE to correctly capture certain deformation modes. Different

types of locking exist:

• Volumetric Locking: Over-stiffening of a FE with respect to incompressibility of a

material (K → ∞, ν → 0.5). Where K is the bulk modulus and ν is the Poisson’s ratio.

One way to mitigate these effects is by applying the so-called Incompatible Modes approach

by [201] or the EAS method. Alternatively, the F-bar method proposed by [42] can be

employed to alleviate volumetric locking.

• Shear Locking: Inability of a FE to model pure bending without any shear since both

deformations are directly coupled through the element formulation. This is mainly caused

by high-aspect ratio elements. It can be cured by Selective Reduced Integration (SRI),

the Assumed Natural Strain (ANS) method, the Discrete Strain Gap (DSG) method, the

Incompatible Modes method, or the EAS method [98].

• Trapezoidal Locking: Occurs if curved structures are modeled using trapezoidal-shaped

elements. The driving parameter for this phenomenon is the element aspect ratio and the

curvature of the structure. It was first studied by [120, 19] and can be cured by the ANS

method and the DSG method.
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• Membrane Locking: Occurs if element faces of slender structures are warped (do not lay

within a plane), when, for example, double-curved structures are modeled. However, impli-

cations for tri-linear elements are relatively small. More details regarding this phenomenon

and measures to avoid it are found in [98, 99].

It should be noted that the last three locking types listed above are also categorized as geometric

locking effects where element over-stiffening occurs due to the violation of certain kinematic

constraints. More details regarding locking of 3D solid FEs and numerical approaches to mitigate

them can be found in [10, 20].

3.3.2 Classical Enhanced Assumed Strain Method

As the EAS method is most relevant for the work presented in this thesis, a more detailed

discussion follows. The EAS method was initially proposed by [171] for 2D linear elasticity and

extended to nonlinear kinematics by [169]. The method was then applied to 3D problems by [170]

and [9]. The EAS method is formulated based on the Fraeijs de Veubeke-Hu-Washizu (VHW)

three-field variational principle. It defines enhanced strains as a field of internal variables which are

discontinuous across element boundaries.

3.3.2.1 FE Formulation

The variational basis for the EAS method is the VHW formulation with independent variables

u, ε,σ, stated as [10]:

Uint(u, ε,σ) =

∫

Ω0

1

2
ε : D : ε − σ : ε + σ : εu dV (3.3.1)

where the internal energy is denoted by Uint and Dirichlet and Neumann boundary conditions are

assumed to be homogeneous. The displacement-based strain is denoted by εu and the remaining

quantities follow the small strain notation introduced in Section 2.2. Total strain ε is composed of

the displacement-based strain εu and an enhanced strain ε̃, such that:

ε = εu + ε̃ (3.3.2)
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Using Eqn.(3.3.2), Eqn.(3.3.1) becomes:

Uint(u, ε,σ) =

∫

Ω0

1

2
(εu + ε̃) : D : (εu + ε̃) − σ : ε̃ dV (3.3.3)

Considering the stress orthogonality condition between the independent stress field σ and the

enhanced strain ε̃:

∫

Ω0

σ : ε̃ dV = 0 (3.3.4)

Eqn.(3.3.3) reduces to a two-field variational form as:

Uint(u, ε) =

∫

Ω0

1

2
(εu + ε̃) : D : (εu + ε̃) dV (3.3.5)

where εu = 1/2(∇uT +∇u). The enhanced strain is interpolated from nodal internal variables α̂ as:

ε̃ = Mα̂ (3.3.6)

where the interpolation matrix M is defined as:

M =
det(Jc)

det(J)
T−Tc Mξ (3.3.7)

where J is the element Jacobian matrix of the isoparametric map and a subscript c denotes quantities

evaluated at the element centroid, i.e., ξ = η = 0. The properties of M are such that [182]:

∫

Ωe0

M dV = 0 (3.3.8)

where Ωe
0 denotes the domain of element e. Eqn.(3.3.8) states that enhanced strain contributions ε̃

vanish over an element when the strain field can exactly be represented by the displacement-based

strain εu. Moreover, the transformation matrix Tc is defined for the 2D case as:

Tc =




(J11)2 (J21)2 2J11J21

(J12)2 (J22)2 2J12J22

J11J12 J21J22 J11J22 + J12J21



ξ=η=0

(3.3.9)
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where Jij corresponds to the respective entry of the elemental Jacobian matrix in 2D. The interpo-

lation matrix Mξ for a 4 parameter EAS formulation is:

Mξ =




ξ 0 0 0

0 0 0 η

0 ξ η 0




(3.3.10)

It should be noted that the columns of Mξ are linearly independent and therefore their order is

arbitrary. Using the interpolation of the enhanced strains (Eqn.(3.3.6)) and the classical interpolation

of nodal state variables û, the extended discretized elemental linear system becomes:




Kuu Kuα

KT
uα Kαα







û

α̂


 =




R

0


 (3.3.11)

where the sub-matrices for linear elasticity under small strains are defined as:

Kuu =

∫

Ωe0

BTDB dV (3.3.12)

Kαu = KT
uα =

∫

Ωe0

BTDM dV (3.3.13)

Kαα =

∫

Ωe0

MTDM dV (3.3.14)

Due to the discontinuity of the internal variable field, static condensation can be used to eliminate

the enhanced strain parameters α̂ on an elemental level. This yields the elemental stiffness matrix

K as:

K = Kuu −KT
αuK

−1
ααKαu (3.3.15)

Because of the elemental condensation of the enhanced strain internal variables, the EAS formulation

can conveniently be included in any existing computational FEM framework.
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3.3.3 Enhanced Assumed Strain Method for XFEM

To extend the EAS method to XFEM, where intra-element discontinuities are considered,

the approach proposed by [46] for quadrilateral elements with discontinuous strain enhancement is

followed. A general review of enhanced element formulations with discontinuities can be found in

[92]. A generalized Heaviside enrichment strategy (see Section 3.1.1) is applied to both the state

variables and the EAS internal variables. Extending the EAS interpolation condition (Eqn.(3.3.8))

to allow for intra-element discontinuities, a piecewise constant stress field is assumed in intersected

elements, such that:

∫

ΩI
e

0

M dV = 0 ,

∫

ΩII
e

0

M dV = 0 (3.3.16)

where ΩIe
0 and ΩIIe

0 denote the complementary sub-regions of an intersected element corresponding

to phase I and phase II, respectively, such that Ωe
0 = ΩIe

0 ∪ ΩIIe
0 . For a sub-element of phase

m = [I, II], the enhanced strain field is interpolated by a shifted interpolation matrix M̄m
ξ . For a

four-parameter EAS formulation, it is:

M̄m
ξ =




ξ − ξ̄m 0 0 0

0 0 0 η − η̄m

0 ξ − ξ̄m η − η̄m 0




(3.3.17)

where ξ̄m and η̄m denote the subphase centroid coordinates in the local coordinate system of the

respective sub-domain. In vector notation these are obtained as:

ξ̄
m

=



ξ̄m

η̄m


 =

∫ 1
−1 ξ

mdξ̃
m

∫ 1
−1 dξ̃

m (3.3.18)

It should be noted that for unintersected elements, the standard interpolation matrix (Eqn.(3.3.10))

is recovered from Eqn.(3.3.17) as ξ̄m = η̄m = 0. In order to use the EAS method for XFEM, the

classical interpolation matrix Eqn.(3.3.10) needs to be replaced by a shifted interpolation matrix per

unique subphase (Eqn.(3.3.17)) for intersected elements. Furthermore, enrichments of EAS variables

needs to be performed just like for the global state variables (see Section 3.1.1). The remainder of

the formulation is identical to EAS for regular FEM as discussed in Section 3.3.2.1.



49

3.3.4 2D Beam Examples

To demonstrate the performance of the EAS method, the bending behavior of a set of slender

cantilevered beam examples is studied in 2D. The beam problems are analyzed under a plane stress

assumption using FEM and XFEM with linear and quadratic elements as well as linear elements

with EAS. As shear locking phenomena are mitigated on finer meshes, mesh refinement studies are

conducted to examine the improved convergence behavior of linear elements with EAS using coarse

spatial discretizations.

3.3.4.1 Intersections Aligned with Background mesh

First, a clamped beam of size 10.0× 1.0× 1.0 is considered, where a point load of TX2 = −1.0

is applied at the free end in vertical direction. The beam has a Young’s modulus of E = 5000.0 and

Poisson’s ratio of ν = 0.0. The coarsest FE mesh and the coarsest XFEM mesh of the same problem

is shown in the insert in Figure 3.11 (a) and (b), respectively. Figure 3.11 (a) also shows the tip

displacement for different levels of mesh refinement and different elements. These include 4 node

quadrilaterals (Q4), 4 node quadrilaterals with a 4 parameter EAS formulation (Q4-EAS), and 8

Figure 3.11: Tip displacement of a cantilevered beam over number of free DOFs for (a) FEM and
(b) XFEM using different plane stress elements.
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node quadrilaterals (Q8). In Figure 3.11 (b), these are complemented by their XFEM analogues. As

expected, a significant underestimation of the tip displacement is seen by linear elements on coarse

meshes, both using FEM (Q4) and XFEM (Q4-XFEM). Using higher-order spatial interpolation

alleviates this issue. This is in agreement with findings presented in Section 3.2. However, this comes

at the cost of a significant increase in number of DOFs. To avoid this, linear elements with EAS can

be used, which show superior performance both for FEM (Q4-EAS) and XFEM (Q4-XFEM-EAS).

From Figure 3.11 it can also be seen that all studied cases converge to the same tip displacement

for very fine meshes, regardless of the interpolation order or geometry description (FEM or XFEM).

3.3.4.2 Arbitrary Intersections

Next, 2D beam examples resulting in more complex intersection configurations with respect

to a regular background mesh are studied. First, a slender beam with comparable aspect ratio and

loading as the one studied in Section 3.3.4.1 is addressed. It is, however, aligned diagonally with

respect to the coordinate system, as shown in the insert in Figure 3.12 (a) for the coarsest XFEM

mesh. The bottom left edges are clamped and a diagonal tip load is applied at the top right. From

Figure 3.12 (a), it can be seen that Q4-EAS, Q8, and Q8-XFEM elements show good performance

Figure 3.12: Tip displacement of cantilevered beam examples over number of free DOFs. (a)
Diagonally aligned beam and (b) Cook’s beam example using different FEM and XFEM elements.
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for coarse meshes. In contrast, regular Q4 and Q4-XFEM elements show significant amounts of

locking and therefore largely underestimate the tip displacement as expected for a coarse spatial

discretization. Different than for the aligned beam presented in Section 3.3.4.1, the Q4-EAS-XFEM

elements also show poor behavior for coarse meshes. Their bad performance is almost unaffected

compared to regular Q4-XFEM elements.

Next, Cooks beam example [38], a classical benchmark problem for bending dominated

problems is studied using FEM and XFEM. The coarsest XFEM mesh is shown in the insert in

Figure 3.12 (b). A force of 1.0 is applied to the beam on the right edge in X2 direction and a Young’s

modulus of E = 1.0 along with a Poisson’s ratio of ν = 0.33 is used. The problem dimensions are

adopted from [32]. As in the previous example, superior convergence behavior is seen from Q4-EAS,

Q8, and Q8-XFEM elements. The expected element shear locking and the resulting underestimated

deformation of the linear Q4 and Q4-XFEM elements can also be seen. Again, the performance

Q4-EAS-XFEM is unsatisfactory, as almost no improvement is observed compared to the same

XFEM element without EAS.

Based on these results, it is assumed that the EAS XFEM formulation presented in Section

3.3.3 requires a close alignment of the XFEM interface ΓI,II0 with the background elements in order

to perform well. This is, in general, not the case and further studies are required to sufficiently

generalize the EAS concept for non-aligned XFEM intersections. One possibility is the introduction

of a local coordinate rotation between the EAS frame (which is aligned with the interface) and

the background element’s frame of reference such that the non-alignment of the interface and the

background mesh is accounted for. Another possibility is the formulation of the EAS contributions

directly on the triangles in 2D or tetrahedrons in 3D which are used for volume integration of

intersected XFEM elements. In this approach, a map between triangular/tetrahedral coordinates

and DOFs and quadrilateral/hexahedron coordinates and DOFs of the background elements is

required. More information regarding EAS for triangular elements is provided in [35]. The further

examination and generalization of the EAS for XFEM should be addressed in future work.
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3.4 Staggered Block Solution Approach

Block solvers are used to maximize efficiency of solving large multi-physics problems. Solving

a one-way or two-way coupled system, for example by using a Block Gauss Seidel method, has

multiple benefits. It is possible to make use of the symmetry of sub-matrices, as non-diagonal

matrices are transformed to the Right-Hand-Side (RHS). Furthermore, the (potential) linearity

of sub-systems can be taken advantage of, which enhances convergence. And lastly, the memory

requirements are drastically reduced as sub-matrices are significantly smaller in size compared to

the combined linear system [152]. In case of a two-way coupling between the sub-systems, the BGS

method is applied in an iterative fashion. As only one-way coupled systems are considered in this

thesis, it is the focus of the following discussion.

Suppose two linear fields, θ(X) and φSD(X) which are physically coupled in a one-way fashion.

The combined linear system can be summarized as:




Kθθ 0

KφSDθ KφSDφSD






θ

φSD


 =




Rθ

RφSD


 (3.4.1)

The first linear system is solved in a classical sense for θ as:

Kθθθ = Rθ (3.4.2)

where Kθθ is the tangent stiffness matrix and Rθ is the residual vector of θ. Next, the second linear

sub-system is solved for φSD as:

(KφSDφSD)φSD = RφSD −KφSDθθ (3.4.3)

where the coupling matrix KφSDθ multiplied with the solution vector of the previous linear system

(θ) is appended to the RHS. This block solution approach, which decomposes large linear systems

into smaller sub-systems based on coupled physics, can be seen as a domain-decomposition method

[152]. It is highly efficient when used with parallel linear solvers and therefore widely used in the

work of this thesis.



Chapter 4

Design Optimization

Design optimization is highly relevant to various fields of engineering and science. Especially

in aerospace engineering, increasing performance, reducing the number of parts, and the overall

weight of a design is of special interest. The origins of design optimization are found in structural

design optimization and can be traced back to the seminal work of Galileo and Hooke in continuum

mechanics [51]. Initially, analytical design optimization approaches however were very limited due

to the available, simplified physical models and analysis methods. This was drastically changed with

the advent of the FEM and numerical analysis techniques [140, 141]. Ever since, design optimization

has been applied to various fields of engineering, including but not limited to structural mechanics,

fluid mechanics, and heat transfer [17, 43, 168].

In general, a design optimization problem seeks to find the geometry, size, and shape of a body and/or

distribution of materials within that body such that an objective function is minimized/ maximized

and a set of given constraints is satisfied [124]. The objective function is formulated to quantify the

performance of the design and constraints are enforced to limit the design space in a certain manner.

Both, objective and constraints are formulated in terms of design criteria, like strain energy, power

dissipation, drag, manufacturability or cost of a part [191]. Based on their geometric design freedom,

different types of design optimization are being distinguished. The simplest form is size optimization,

where only a few, geometric design parameters (e.g., dimensions) exist. Shape optimization, allows

for more design freedom where not only the size of geometric components but also their shape is

subject to change. The most general form of design optimization is TO, which encompasses all
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Figure 4.1: Illustration of different types of structural design changes for a structure in compression.
(a) Initial design, (b) changes in size, (c) changes in shape, (d) changes in topology.

previously mentioned sub-sets of design optimization and in addition allows for topological changes

during the optimization process. Compared to size and shape optimization, TO does not require

a close to optimal initial design and is able to generate optimal designs where intuitive design

approaches fail [17]. However, this enhanced flexibility comes at the cost of increased complexity

in formulating and solving the design optimization problem [124]. A conceptual illustration of the

three approaches of design optimization is shown in Figure 4.1 for a simple structural optimization

problem in 2D. Figure 4.1 (a) shows the initial design which defines the design space ΩD
0 and

Figure 4.1 (b) shows a size optimized design where the width of the structure was altered. An

optimized shape of the same problem is shown in Figure 4.1 (c) while the design of Figure 4.1 (d)

also underwent topological changes.

Mathematically, a design optimization problem is formulated as a minimization problem of

some objective function z such that a set of Ng constraints gj are satisfied. This is stated as:

min
s

z(s,u(s))

s.t. gj(s,u(s)) ≤ 0 j = 1 ... Ng

s ∈ Π = {RNs |sL ≤ s ≤ sU}

u(s) ∈ RNu

(4.0.1)

where s is the vector of design variables of length Ns bounded by its lower bounds sL and its upper

bounds sU . The vector of state variables as a function of the design variables is denoted by u(s) and
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the number of state variables is Nu. In general, equality constraints could be enforced explicitly in

Eqn.(4.0.1) in addition to the inequality constraints gj . In the scope of this thesis, when necessary

to enforce an equality constraint, it is converted into a set of bounding inequality constraints which

for all practical means is equivalent.

A nested analysis and design (NAND) approach [11] is used in this thesis where the state

variables u are considered dependent variables of the design variables s satisfying the governing

equations for every design. This allows for the flexibility to use a different solution algorithm for

the “forward” analysis problem (see Chapter 2) and the optimization problem (Eqn.(4.0.1)).

To solve the parameter optimization problem at hand, different types of solution algorithms

can be employed. These can be grouped in gradient-free and gradient-based optimization schemes.

The advantage of gradient-free methods is their ease of use and the fact that they do not require a

differentiable formulation of objective and constraints. For a large number of design variables (like it

is the case in TO), the computational cost increases significantly when using gradient-free approaches

[167]. In contrast, gradient-based solution approaches use design sensitivity information of objective

and constraints with respect to the design variables for solving the optimization problem. This

requires a consistent linearization of the optimization problem and the forward problem, however

significantly increases convergence when compared to gradient-free methods [167]. For the work

presented in this thesis, the gradient-based nonlinear programming scheme Globally Convergent

Method of Moving Asymptotes (GCMMA) of [177, 178] is used without inner iterations. The

design sensitivities are obtained by the adjoint method which is an efficient means to obtain design

sensitivities for parameter optimization problems involving a large number of design variables. More

details regarding design sensitivity analysis are discussed in Section 4.6.
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4.1 Topology Optimization

TO, the design optimization approach allowing for the most design freedom, is a particular

class of mathematical optimization problems which uses the solution of a set of PDEs in order to

quantify the performance of the system to be optimized [124]. Referring back to the conceptual

example shown in Figure 4.1, this could mean to find the optimal geometry within the design space

ΩD
0 which minimizes the strain energy of the structure under a certain traction load T while subject

to a volume constraint on the structural domain. The origins of TO are found in the work by [128]

on minimizing the mass of quasi-continuous truss structures. This was later expanded by [85] and

[153] for solving similar truss structure optimization problems. Comprehensive reviews of recent

developments in TO are found in [17, 168, 43, 51, 188].

4.1.1 Density-based Topology Optimization

Using the concept of material homogenization, density-based TO has become one of the most

popular forms of TO, ever since it was introduced by [18]. In this approach, a nodal or elemental

design variable field, most commonly called fictitious densities 0 ≤ sρ(X) ≤ 1, is introduced for

interpolation of the physical material properties. This continuous interpolation of material properties

relaxes the original integer optimization problem which seeks to find the optimum design composed

of either material A (sρ(X) = 0) or material B (sρ(X) = 1) and makes it possible to use a nonlinear

programming algorithm to determine its solution. To penalize intermediate material associated

with intermediate fictitious densities (0 < sρ(X) < 1), different penalization schemes have been

introduced [17].

4.1.1.1 Solid Isotropic Material with Penalization

The most common one is called Solid Isotropic Material with Penalization (SIMP) [16, 211, 129]

which uses a nonlinear power-law to define the relationship between the design variables and the
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physical material properties. For a two material problem, the SIMP material interpolation is:

p(sρi ) = pA + (pB − pA)(sρi )
βS (4.1.1)

where p denotes a generic material property with the properties corresponding to material A and

material B being denoted by pA and pB, respectively. The nodal fictitious density design variables

are denoted by sρi , and βS is the so-called SIMP exponent. The penalization effect is not enforced

by the power-law (Eqn.(4.1.1)) itself, but only in combination with the appropriate definition of a

competing objective and constraint [124]. For example, for a compliance minimization problem,

a constraint on the allowable mass of the structure needs to be enforced to achieve the desired

penalization effect of intermediate material densities. This is usually achieved by using a linear

interpolation for the physical density of either material (i.e., βS = 1.0) and a nonlinear interpolation

for the stiffness of the material (i.e., βS = 3.0). Using βS = 3.0 for nonlinear material interpolation

has also been shown to lead to desirable density gradients in linear elasticity [8].

4.1.1.2 Rational Approximation of Material Properties

To alleviate convergence issues of the SIMP approach due to zero gradients for sρ(X) = 0,

the Rational Approximation of Material Properties (RAMP) approach was introduced by [175, 174].

For a two material problem the RAMP interpolation is stated as:

p(sρi ) = pA +
sρi

1 + qR(1− sρi )
(pB − pA) (4.1.2)

where the nonlinearity of the interpolation is determined by qR. For qR = 0 a linear interpolation

is achieved. As pointed out by [17], the RAMP interpolation is more physical than the SIMP

interpolation for a two material problem with respect to the Hashin-Shtrikman bounds [84].

4.1.1.3 Filtering and Projection

To increase numerical stability and to enhance convergence of the optimization problem,

filtering of nodal (or elemental) design variables was introduced. Filtering for examples mitigates
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checker-boarding and widens the area of influence of each design variable. The simplest filter, a

linear averaging filter of design variables within a certain filter radius [24, 22], is mathematically

formulated as:

ρ̃i =

∑Nn
j=1wijs

ρ
j∑Nn

j=1wij
, wij = max(0, rf − |Xi −Xj |) (4.1.3)

where Nn is the number of FE nodes within the filter radius, rf , and |Xi −Xj | is the Euclidean

distance between node i and j. Index i denotes the current node for which the filtered fictitious

density value ρ̃i is computed and index j denotes each node within the filter radius contributing to

ρ̃i. Alternatively, a similar filtering effect can be achieved using a Helmholtz-type PDE filter as

proposed by [111, 94]. Besides introducing smoothing into the field of (filtered) design variables,

numerical artifacts like checker boarding encountered in density-based TO with low-order elements

can be alleviated using a filter on the design variables [151]. Moreover, when using a constant filter

radius, mesh-independent designs are obtained.

To counteract the blurriness in the physical material properties introduced through linear

filtering, projection schemes are most commonly applied [165, 204]. Using a smoothed Heaviside

approximation for thresholding, [74] proposed the following projection scheme:

ρ̂i = 1− e−γP ρ̃i + ρ̃ie
−γP (4.1.4)

where γP is the projection sharpness parameter. Allowing also for a variable projection threshold, a

smoothed Heaviside projection scheme proposed by [112] can be used instead:

ρ̂i =
tanh(γP (ρ̃i − ηP )) + tanh(γP ηP )

tanh(γP (1− ηP )) + tanh(γP ηP )
(4.1.5)

where ηP is the projection threshold parameter. An advantage of filtering the density design variables

in combination with the appropriate projection scheme is minimum feature size control. This is

enforced due to the definition of Eqn.(4.1.3) and an appropriate projection scheme, along with the

material interpolation law which desires fictitious densities of either 0 or 1. It should however be

noted that when using the projection scheme of Eqn.(4.1.5) with intermediate projection threshold

values (i.e., ηP 6= 0 or ηP 6= 1) it does not allow for proper feature size control. To avoid additional
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nonlinearities in the optimization problem, a continuation approach is most commonly used to

gradually enforce the projection sharpness after a converged design is obtained [151].

In case linear filtering and projection of the design variables are used, the projected fictitious

density values ρ̂i are used for nonlinear material interpolation instead of the density design variables

sρi directly. See Eqn.(4.1.1) and Eqn.(4.1.2), respectively.

4.1.1.4 Discussion

In summary, certain advantages of density-based TO can be identified. First of all, its ease of

implementation and use within a FE framework lead to its great popularity especially in commercially

available TO codes [51]. Moreover, it is relatively simple to control the minimum obtained feature

size through appropriate filtering and projection. Another great advantage of density-based TO

methods is the fact that the optimization process is usually started from a homogeneous, initial

design variable field (e.g., sρ(X) = 0.5 in the entire design domain ΩD
0 ). This leads to the fact that

no dependency of the final, optimized design is created on the initial design, as no initial seeding of

the design space with distinct material phases is required.

A disadvantage of density-based TO can be the fact that an appropriate formulation of

the optimization problem is needed to achieve the required penalization effect. While this might

not be an issue for compliance minimization problems in structural mechanics, the formulation

of other (mostly purely geometrical) optimization problems might not be straightforward. The

major drawback of the density method is most certainly the blurry definition of the interface due

to a finite (i.e., at least the width of an element) transition zone between two material phases.

This is a limitation inherently built into the method which can only be mitigated but never fully

removed by for example local mesh refinement of the background mesh. The jagged boundaries

due to the density-based mapping of material properties on a fixed background mesh introduce

inaccuracies when modeling the physical response [161]. Modeling of interface phenomena like

fluid-structure interaction or contact is therefore hardly possible [124]. Due to the inexact definition

of the material interface, additional post-processing is required when extracting the optimized design
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geometry for manufacturing [68]. This does not only mean additional steps need to be performed

but interpretation of the optimized design in a post-processing step leads to deviations from the

determined optimum due to the manual extraction of the design geometry.

4.1.2 Level-Set-based Topology Optimization

Addressing some of the disadvantages of density-based TO, level-set (LS) TO is the second

most popular TO approach. Initially, the level set method (LSM) was introduced by [145] for

modeling moving boundaries. Since then, it has been widely used in image processing [144],

computer graphics, computational geometry and computational physics [71, 143]. Due to the ability

to implicitly describe a geometric boundary using a higher-order level-set function (LSF), the LSM

is naturally suited for describing topological changes in TO. The LSM was first applied to TO by

[81, 159, 41] and has gained great popularity since then. It is especially popular because of the crisp

and unambiguous definition of the material interface [168, 188]. A conceptual illustration of a LSF

φ(X), the corresponding material sub-domains ΩI
0, ΩII

0 , and the material interface ΓI,II0 in-between

is shown in Figure 4.2 (a) and (b), respectively. Moreover, Figure 4.2 shows how topological changes

are described using the higher-order implicit LSF. In a two-material TO context, the domain

decomposition is defined as:

φ(X) < 0, ∀ X ∈ ΩI
0

φ(X) > 0, ∀ X ∈ ΩII
0

φ(X) = 0, ∀ X ∈ ΓI,II0

(4.1.6)

where the entire design domain ΩD
0 is comprised of ΩD

0 = ΩI
0∪ΩII

0 and the interface between them is

obtained by ΓI,II0 = ∂ΩI
0 ∩ ∂ΩII

0 [163]. The external boundaries of either material domain is denoted

by ∂ΩI
0 and ∂ΩII

0 , respectively.

Following [188], two categories of LSMs can be defined, namely implicit and explicit LSMs

which are distinguished based on the update procedure and the interpretation of the design variables.

In implicit LSM, the solution of a Hamilton-Jacobi (HJ) PDE is used to update the material
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Figure 4.2: Higher-order LSF and corresponding zero iso-contour generated using LS primitives.
(a) LSF of two distinct geometric primitives, (b) zero iso-contour of the LSF of (a), (c) LSF of two
merged primitives, (d) corresponding iso-contour to the LSF of (c).

interface at every design step, using design velocities as design variables [5, 146]. While a PDE

solution-based evolution of the LSF has advantages with respect to the evolution of the interface,

stabilization techniques are required to limit the spatial gradient of the LSF [158]. If the HJ

equation is solved using an explicit time integration scheme, the design step size is limited by

the Courant-Friedrichs-Lewy (CFL) condition, which inherently limits the evolutionary speed of

the design problem [67]. Further examples of applications of implicit LSMs for TO are found in

[196, 200].

In contrast, explicit LSMs use a parametrized LSF and nodal LS values as design variables,

which are updated using mathematical programming techniques [137, 103, 189, 119]. Even though

no underlying PDE needs to be solved, and therefore no limitation on the design step size is given, a

strong need for regularization exists. Further details regarding explicit LS regularization are found

in [67] and are discussed in more depth in Section 4.3.



62

As identified by [189] and [101], design optimization using LS-based TO exhibits a large

dependency on the initial design. To mitigate this influence, a large number of initial holes is used

most commonly to initiate the TO process [125, 89, 78]. Alternatively, topological derivatives [7] or

an additional reaction term with the HJ equation [25] can be used to nucleate new holes during the

optimization process. For more details regarding implicit LSMs, the reader is referred to [63, 188].

4.1.2.1 Nodal LS Design Variables

As the work in this thesis exclusively uses the explicit, or parametric LSM, it is discussed in

more detail hereinafter. A nodally discretized LSF φi(X) is used to distinguish between different

material phases, according to Eqn.(4.1.6). Similar to Eqn.(4.1.3) a linear filter is used to define an

explicit relationship between the design variables sφ and the LSF:

φi =

∑Nn
j=1wijs

φ
j∑Nn

j=1wij
, wij = max(0, rf − |Xi −Xj |) (4.1.7)

Just as in density-based TO, linear filtering of the design variables enhances convergence due to

widening the zone of influence of every design variable [188] and introduces smoothing and stability

during the optimization process [102]. However, no feature size control is achieved by Eqn.(4.1.7) in

LS-based TO. More details on how to enforce minimum feature size control in LS-based TO are

presented in Section 4.4.

4.1.2.2 Geometric Primitives as Design Variables

Instead of using design velocities or nodal LS values as design variables, definition of geometric

primitives or MMCs as a function of a reduced set of parameters has been introduced recently.

The material layout is then defined by a density map [138] or mapped by a LSF [77]. This allows

for directly including minimum feature size control into the design optimization process [207] and

drastically reduces the number of design variables. This typically regularizes the optimization

problem. The LSF for a set of (spherical or cubical) primitives is defined as:

φ(X) = 1−min
i

(φPi(X)) (4.1.8)
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where i denotes the index over all primitives NP and the LSF of an individual primitive is denoted

by φPi(X). For spherical or cubical primitives the LSF is defined as:

φPi(X) =

((
X1 − X̃1i

r1i

)ni
+

(
X2 − X̃2i

r2i

)ni
+

(
X3 − X̃3i

r3i

)ni) 1
ni

(4.1.9)

where ri is the radius of the i -th primitive, and X̃i is the position of the center of the i -th primitive

in X1, X2 and X3 direction, respectively. The roundness parameter of a primitive is denoted by ni.

In case of primitives, the vector of design variables sφ contains explicit geometric properties like

center coordinates of the primitives, their orientation or their radii. For the 2D example of NP = 2

primitives shown in Figure 4.2 (a), n1 = 2.0 to obtain a circular primitive and n2 = 100.0 to yield a

rectangular primitive. To obtain a differentiable definition of the LSF, the non-differentiable min(•)

(or max(•)) operator is oftentimes replaced by a Kreisselmeier-Steinhauser (KS) function defined as

[100]:

φ(X) = 1 +
1

βKS
ln

(
NP∑

i=1

eβKSφPi (X)

)
(4.1.10)

where the sharpness of the min/max approximation is determined by βKS . More details and a general

overview over recent developments using geometric primitives can be found in [161]. Numerical

design optimization examples using LS primitives as design variables are presented in Section 5.2.

4.1.3 Combined Level-Set-XFEM-Density Approach

While comparisons of density-based and LS-based TO methods have presented by [189, 200, 88],

a combination of LS-based and density-based approaches for TO has been largely unexplored to date.

One work roughly related to this topic is by [93] where a classical SIMP approach is used for material

interpolation while a LSM is employed to include void domains into the TO process. However,

the shape and topology of the void domains described by LSFs is not subject to optimization.

Similarly, in the work of [27] where non-design spaces described by CutFEM are embedded into

the design space optimized by density-based TO. One key contributions of this thesis is therefore

the development and testing of combined LS-density TO approaches where both, the LSF and the
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Figure 4.3: Multi-material design domain decomposition into phase I (ΩI
0) and phase II (ΩII

0 )

sub-domains along the interface (ΓI,II0 ) using LS-XFEM. Within the phase I domain, a further

distinction is made between material A (ΩIA
0 ) and material B (ΩIB

0 ).

density field are being optimized simultaneously. An introduction and discussion of two different

combination methods is presented hereinafter. The point of departure are two independent sets

of design variables, denoted as sφ and sρ. These are related to the LS approach and the density

approach, respectively, and constitute the vector of design variables such that s = [sφ, sρ].

4.1.3.1 Uncoupled Level-Set and Density Fields

Assuming no relationship between the two sets of (independent) design variables, an uncoupled

LS-density approach can for example be used for solving multi-material design optimization problems.

Classically, multi-material TO using a pure density method has been demonstrated by [164] where

multiple sets of density design variables are combined in an extended SIMP interpolation scheme

to represent multiple material phases. Using a pure LS approach, color-LSs have been proposed

by [196] for representation of multiple materials. In the color-LS approach nm LSFs are needed in

order to distinguish between 2nm number of different phases.

Here, an uncoupled LS-density approach is proposed where the benefits of both density

methods and LSMs are exploited simultaneously. To this extent, a two-phase LSM and a two-

material density interpolation are combined in an uncoupled manner to demonstrate the approach.
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Without the loss of generality, this approach can be extended to incorporate both, multiple LSs

and/or multiple density interpolation schemes. A conceptual multi-material domain decomposition

using the combined LS-density approach discussed here is shown in Figure 4.3. A LSF (see Section

4.1.2) is used to distinguish between phase I (ΩI
0) and phase II (ΩII

0 ) along the interface ΓI,II0 . In

addition, a classical density interpolation scheme (see Section 4.1.1) is introduced to distinguish

between material A (ΩIA
0 ) and material B (ΩIB

0 ) within phase I.

Directly inheriting the properties of either method, the combined approach does not only

allow for an easy treatment of multi-material TO problems, but can efficiently be used to solve

solid void two-material TO problems. This was demonstrated by [68, 69] and further examples are

presented in Section 5.3. It should be noted that by introducing a material interpolation scheme

within a LS-XFEM approach, special care needs to be taken due to the spatially varying material

properties with a phase. This is a true deviation from classical LS-XFEM work where typically

homogeneous material properties are assumed with a phase. In practice, special considerations

need to be accounted for when using face-oriented ghost penalization in a combined LS-XFEM

density approach. As discussed in Section 3.2.1, the classical displacement gradient-based ghost

stabilization formulation is no longer valid and a, for example, virtual work-based formulation needs

to be employed. Furthermore, when using a combined LS-density approach assuming subphase

constant material properties greatly simplifies handling of material properties and their spatial

variation on a discretized XFEM mesh. Therefore, this assumption is used for all numerical examples

using a combined LS-density approach presented in Section 5.3.

4.1.3.2 Loosely-Coupled Level-Set and Density Fields

In contrast to the combined LS-density approach discussed in Section 4.1.3.1, a loosely-coupled

relationship between the two independent design variable fields sφ and sρ is proposed next. Loose

coupling between the two sets of design variables is achieved through the formulation of inequality

constraints. The advantage of this combined TO approach is the fact that benefits exhibited by

either method separately are combined in a sequential manner, in order to eliminate their mutual
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drawbacks and thus create a superior TO approach. The combined scheme is capable of hole

nucleation, minimum feature size control and LS regularization as design sensitivities exits in

the entire design domain (properties of density methods) while yielding a crisp material interface

(property of LS methods). For demonstration purposes, the approach is discussed in the following

using a single material, solid-void example problem where a SIMP scheme is combined with explicit

LS-XFEM TO for structural TO.

Coupling Penalty Formulations

To establish a hole nucleation capability for the LS field, a lower penalty coupling the filtered

and projected nodal densities ρ̂ with the nodal LS values φ is defined as:

pL = max((−ρ̂+ ρ̂TL), 0) ·max((−φ+ φTL), 0) (4.1.11)

where ρ̂TL is a lower density threshold and φTL is a lower LS threshold. The penalty landscape of

the lower penalty function (Eqn.(4.1.11)) is depicted in Figure 4.4 (a) for ρ̂TL = 0.1 and φTL = 0.1.

As can be seen from Figure 4.4 (a), the lower penalty function pL linearly penalizes any (negative)

LS values below φTL when low density values below ρ̂TL are present. In other words: in areas of

low density (i.e., weak material), a positive LS value (i.e., void) needs to be present which leads in a

TO process to the desired hole nucleation in areas of low density.

Similar to a penalty on the lower end of the density range, an upper penalty can be formulated as:

pU = max((ρ̂− ρ̂TU ), 0) ·max((φ− φTU ), 0) (4.1.12)

where ρ̂TU is an upper density threshold and φTU is an upper LS threshold. The corresponding

penalty landscape for the upper penalty as a function of the filtered and projected density and the

LS value is shown in Figure 4.4 (b). The upper penalty penalizes any (positive) LS value above

φTU in areas of high density above ρ̂TU . From a TO perspective, this means that areas occupied by

high density (i.e., strong) material, need to have a negative LS value (i.e., solid) which prevents the

LSF from undercutting high-density areas in the design domain.
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Figure 4.4: Penalization landscape for a loosely-coupled LS-density approach. (a) Lower penalty
function, (b) upper penalty function.

It should be noted that both the lower penalty (Eqn.(4.1.11)) and the upper penalty (Eqn.(4.1.12))

exhibit a non-constant penalty front both with respect to ρ̂ and with respect to φ. This can also

be seen in Figure 4.4, where a smooth (rounded) transition from zero penalization to a maximum

penalization in the respective corner of the penalization landscape is shown. This non-uniform

penalty function with its maxima in the respective extrema (corners) of the penalization space is

crucial, in order to provide non-zero design sensitivities which, in turn, lead to a hole nucleation (by

the lower penalty) or prevent under-cutting (by the upper penalty).

Smooth Coupling Penalty Formulations

To obtain differentiable penalty formulations, the lower penalty (Eqn.(4.1.11)) and the upper

penalty (Eqn.(4.1.12)) are approximated smoothly using a product of KS functions (see Eqn.(4.1.10)).

In particular, the lower penalty is approximated smoothly as

p̃L = m1
L ·m2

L (4.1.13)

where

m1
L =

1

βKS
ln(eβKS(−ρ̂+ρ̂TL) + 1) (4.1.14)
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and

m2
L =

1

βKS
ln(eβKS(−φ+φTL) + 1) (4.1.15)

Similarly, the upper penalty is approximated smoothly as:

p̃U = m1
U ·m2

U (4.1.16)

where

m1
U =

1

βKS
ln(eβKS(ρ̂−ρ̂TU ) + 1) (4.1.17)

and

m2
U =

1

βKS
ln(eβKS(φ−φTU ) + 1) (4.1.18)

It should be noted that for each of the smooth approximations of the max(•) operator presented

above, the KS parameter is typically set to βKS = 75.0.

Global Mass Measure considering Phase I and Phase II

The first approach explored is a combined LS-XFEM-density method where a mass constraint

is globally enforced, i.e., in phase I and phase II of the LS-XFEM problem. Using this method,

holes are initiated by virtue of the lower penalty of Eqn.(4.1.11) where in areas of low densities

positive LS values are obtained. The upper penalty (Eqn.(4.1.12)) is not active as undercutting is

globally prevented by the mass constraint on both, phase I and phase II. It is however observed, that

intermediate density values are obtained in phase I elements close to the XFEM interface. Since all

elements (in the solid and in the void) contribute to the total mass of the structure, intersected

elements are only filled as much as needed with high density (i.e., material), in order to not place

unnecessary mass into the void domain where no structural stiffness is gained. The optimizer rather

sacrifices a small loss of stiffness from intermediate material near the structural boundary, than to

unnecessarily contribute to the mass of the structure in phase II (void). This leads to the effect that

some blurry (intermediate) material is obtained near the crisp LS-XFEM intersection in phase I.
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Since both, phase I and phase II contribute to the total mass of the structure and therefore

no undercutting of the LSF is possible, minimum feature size control from filtering of the density

field is obtained. This enables feature size control of the LSF through filtering of the densities. Due

to the global mass constraint, a rather strong coupling effect between densities and LS variables is

seen and an independent evolution of one or the other is not possible. Numerical examples using a

loosely coupled LS-density approach with a global mass constraint are presented in Section 5.4.3.

Influence of Density Projection

A strong influence of the density projection parameter γP (Eqn.(4.1.4) or Eqn.(4.1.5)) on the

convergence of the combined LS-density approach has been observed. This is caused by the hole

nucleation process which is drastically sped up when projection is used. With projection, small

density values are projected to zero which means a positive LS field is obtained through the lower

penalty of Eqn.(4.1.11). A density projection removes small oscillations in the density values and

therefore yields a sharper and faster hole creation process. It should however be noted, that using

high projection values (even through a continuation approach) drastically increases the nonlinearity

of the design space and therefore inherently makes it harder for the optimization problem to be

solved. Once a local minimum is identified, the projection scheme most likely will prevent the

optimizer from leaving this locally optimal configuration. High projection values, by adding to

the increased non-convexity of the problem, can also cause instabilities in the design optimization

problem and in the worst case may prevent finding a solution at all.

The most practical strategy is therefore to only enable the LS-density penalty functions (i.e.,

start the hole nucleation process) after the density field has sufficiently converged, close to a 0-1

design. This can be achieved either with or without projection, only differing in the necessary

number of optimization iterations to create an XFEM interface.
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Figure 4.5: Different fields during a combined LS-XFEM density TO approach. (a) Nodal density
design variables, (b) nodal filtered densities, and (c) subphase constant or elementally constant
physical density.

Different Coupling Strategies

The choice of variables for coupling the density and the LSF through Eqn.(4.1.11) or

Eqn.(4.1.12) is not unique. Either the raw design variable fields (i.e., sφ and sρ) could be coupled or

any choice of filtered or projected quantity derived from them. On the LS side, using filtered LS

values (i.e., φ) is most advisable to operate on a smoothed field which is directly used for domain

decomposition (see Eqn.(4.1.6)). With regards to the density values, it is most advantageous to use

the nodally filtered and projected density field (i.e., ρ̂) since smoothness and feature size control is

gained through that. Compared to elemental density fields, a nodal density field greatly increases

the design freedom through increased spatial resolution. This, in turn, improves the smoothness

of the XFEM interface which closely traces the density design variable field. Especially, when the

density boundary is not aligned with the background mesh, a jaggedly tracing XFEM boundary

might be obtained when elementally constant densities are used for coupling the density field and

the LS field.

In order to use a SIMP type approach for material interpolation, the following sequence is used

to obtain elementally constant physical material properties from nodally defined density design

variables:

(1) The optimizer operates on nodal density design variables sρ.
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(2) Filtered nodal density values ρ̃ are obtained.

(3) Projected nodal density variables ρ̂ are calculated and used for coupling between the density

and the LSF.

(4) SIMP interpolation is used to compute nodal physical material properties.

(5) Evaluation of elementally constant material properties for XFEM computation at element

centroid (unintersected elements) or subphase centroid (intersected elements).

An example of three of the fields discussed above is shown in Figure 4.5. The (raw) nodal density

design variable field sρ(X) is shown in Figure 4.5 (a), the filtered density field ρ̃(X) is shown in

Figure 4.5 (b) and Figure 4.5 (c) shows the elementally constant physical density field ρe(X) after

projection and interpolation using SIMP.

It should be pointed out that for intersected elements, as noted in Section 4.1.3.1, elementally

constant material properties are used per unique subphase. This further increases the resolution of

the material property field as intra-elementally changing but subphase constant material properties

can be achieved in intersected elements.

Based on numerical experiments, it has been determined that during a combined LS-density

optimization problem, the physics drives densities and the densities control the LSF (which follows

closely). The reason for this one-way coupling is seen in the fact that the density field possesses

global design sensitivities while the LS sensitivities are localized and only non-zero in the vicinity

of the XFEM interface, once the hole-nucleation process has taken place. Initially, only design

sensitivities with respect to the density design variables exist.

A complete hand-over from a pure density problem (which does not need holes to initiate the

design, but produces intermediate density values and a jagged material interface at convergence)

to a pure LS-XFEM problem (which needs initial holes but converges to a pure binary material

problem with a crisply defined interface) can be performed in a continuation approach. After initial

holes were seeded by the density field creating a locally positive LSF, all density design variables
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within phase I can be fixed to 1, whereas all density design variables in phase II are set to 0. After

that, the LSF is evolving independently from the underlying initial density field and homogeneous

materials of pure solid (sρ = 1) and pure void (sρ = 0 ) are maintained in phase I and phase II,

respectively. The independent evolution of the LSF then also allows for drastic changes in topology

which were not possible by the density method, due to locking of the design into a local minimum.

However, feature size control obtained through a continuously coupled LSF to the underlying density

field is lost.

In summary, when a global mass measure considering both, the mass in phase I and in phase

II is enforced, hole nucleation and minimum feature size control are achieved. Holes are nucleated

through the lower penalty while preventing the LS field from undercutting the density field is

achieved through the global mass measure.

Local Mass Measure only on Phase I

Instead of considering contributions from both phase I and phase II in the evaluation of the

mass of a structure, it is physically more meaningful to only consider phase I (solid domain). Using

this approach, a nice 0-1 design is obtained from the density field, while the LS-XFEM takes care of

satisfying the mass constraint. The downside of this approach is that the density field (i.e., SIMP

problem) only sees a mass constraint until void areas emerge using LS-XFEM. Since the mass

constraint is not evaluated within those void areas, as much high density material as desired can be

placed there since it does not contribute to the overall mass of the structure. Therefore, material in

phase II does neither contribute to the mass nor to the stiffness of the overall design as this phase is

excluded from the structural analysis (void phase). Without any further treatment, undercutting of

the density field is not prevented and therefore feature size control of the LSF is lost as the interface

can move (somewhat) independently from density field. The upper penalty (Eqn.(4.1.12)) enforces

a coupling between the density and the LSF with respect to high density values and a negative

LSF (solid). This mitigates undercutting and ties back the LSF to the density field as global mass
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constraint did. Similar transition zones between purely solid and purely void elements are again

seen in the vicinity of the XFEM interface.

Without the enforcement of the upper penalty, the local mass measure in phase I in combination

with the lower penalty only yields the hole nucleation feature, as LS undercutting of the density

field is not prevented.

Numerical examples in Section 5.4.1 are used to illustrate the combined LS-density approach

with a mass constraint only enforced on phase I.

4.1.3.3 Other Level-Set and Density Field Coupling Approaches

In addition to the two combined LS-density approaches discussed above, a strongly coupled

LS-density approach could be envisioned. The strong coupling stems from the fact that, for example,

only a single field of design variables is used. If only a LSF is present, the material interpolation

can be performed as a function of the LSF, or alternatively if only a density field is used the

iso-contours of the density field could be used to define the material interface in a crisp manner.

Using this strongly coupled approach, only partial benefits exhibited by either method are obtained

and therefore this approach is not considered further in this thesis.
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4.2 Stability Considerations

To achieve the required robustness of the XFEM analysis model for TO applications, different

approaches and stability considerations are discussed. These include preconditioning, shifting of

the XFEM interface and ghost stabilization. Ill-conditioning of the linear system occurs with

Heaviside-enriched XFEM when the material interface gets too close to a FE node of the background

mesh. During a TO process or any other XFEM simulation where the interface evolves, this situation

is encountered frequently. As XFEM sub-domains reduce in area/volume, the area of influence of

the associated DOFs vanishes which results in an increased condition number of the associated

linear system. Ill-conditioning can harm or prevent convergence of the linear and nonlinear solve

and overall affects the convergence of the optimization problem.

Using a geometric preconditioner, as proposed by [107] largely mitigates this issue. In this

work, a preconditioning scheme is computed which balances the influence of all DOFs in the system

based on their area of influence. If the area of influence of a certain DOF is too small, i.e., its

contribution to the condition number of the system is too large, the respective DOF is eliminated.

This only slightly affects the accuracy of the solution while drastically improving stability.

Instead of a preconditioner, face-oriented ghost penalization as proposed by [30] can be

employed to achieve intersection-independent stabilization with XFEM. A discussion and an extension

of ghost stabilization for linear and higher-order XFEM is presented in Section 3.1.3 and Section

3.2.1, respectively.

An alternative approach for stabilization of higher-order XFEM is local interpolation order

reduction near intersected elements. It was first proposed by [173] and a brief discussion is presented

in Section 3.2.4.

In addition to the stabilization approaches discussed, a Jacobi preconditioner on the nonlinear

system, consistent LS shifting and selective structural springs are presented hereinafter to further

improve the robustness of the LS-XFEM framework for TO. The nonlinear Jacobi preconditioner is

discussed in the subsequent section.
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4.2.1 Jacobi Preconditioner

To improve the condition number of a nonlinear system, a Jacobi preconditioning scheme is

introduced. Following the work of [107], the original discretized FE problem K·u = R is transformed

and solved in a non-physical space. The consistent tangent stiffness matrix is K, u is the solution

vector containing all free DOFs and R is the global (free) residual vector including external forces.

After a solution is obtained, scaling it back to physical space provides the correct solution of the

initial, discretized problem. This is necessary for badly conditioned nonlinear systems which, if

purely solved in the physical space, would lead to high solution inaccuracies and/or divergence of

iterative nonlinear solvers. It should be noted that this purely algebraic preconditioner is commonly

performed by linear solvers. The distinction here is that preconditioning is applied on the nonlinear

system. This means the preconditioning matrix T0 is only computed once, using the first linearized

system, and then used for all subsequent linearized systems within the same Newton-Raphson solve.

The preconditioning matrix is obtained as:

T0 =
1√

diag(|K0|)
I (4.2.1)

such that T0 is a diagonal matrix (T0 = (T0)T ) containing the inverse of the absolute of the square

root of the diagonal entries of the initial stiffness matrix K0 as its entries. Taking the absolute is

necessary in case instable systems with negative entries on the diagonal of the Jacobian matrix

are considered. At this point in the algorithm, a check for strictly positive diagonal entries can be

added to ensure a non-singular linear system.

With Eqn.(4.2.1), the transformed stiffness matrix and residual vector in non-physical (solution)

space for any linearized system with a Newton-Raphson solve are obtained as:

K̃ = (T0)TKT0 (4.2.2)

R̃ = (T0)TR (4.2.3)

where •̃ denotes quantities in the transformed, non-physical space.

Using the Jacobian and the residual vector transformed into non-physical space, the new linear
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system to be solved is:

K̃ · ũ = R̃ (4.2.4)

After a solve in non-physical space, all quantities are scaled back to physical space using:

K = (T0)−T K̃(T0)−1 (4.2.5)

R = (T0)−T R̃ (4.2.6)

u = T0ũ (4.2.7)

This approach can be used in combination with face-oriented ghost stabilization to enhance conver-

gence of nonlinear systems during LS-XFEM TO.

4.2.2 Consistent Level-Set Shifting

As it was shown by [191], shifting of LS values is critical, in order to avoid intersections too

close to FE nodes of the background mesh. The reason that XFEM intersections cannot coincide

with or be close to a background node stems from the fact that the generalized Heaviside enrichment

function (Eqn.(3.1.1)) is singular in this case. Traditionally, simple shifting of LS values below a

certain critical LS threshold has been used. Since, in general, a unit gradient of the LSF is not

guaranteed, shifting of the LS value itself might not necessarily lead to the desired shifting of the

XFEM interface away from a FE node. If for instance, a very steep LSF is considered and a LS shift

of δφ is performed, the shifted distance might be much less than the anticipated δX. In turn, for

very flat LSFs, a shifting of δφ at a node might lead to a shift of the XFEM interface by much more

than the intended δX, see Figure 4.6 (b). Therefore, a consistent LS shifting approach is developed

hereinafter which is guaranteed to achieve the desired spatial shift through consistently shifting the

LS value while taking the local LS gradient into account. It is assumed that the LSF which is used

for XFEM decomposition is always interpolated linearly within a background FE, regardless of the

interpolation order of the background mesh. This leads to the fact that every element edge can at

most be intersected once by the XFEM. See Section 3.2 for more details.
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Figure 4.6: Critical intersection configurations with respect to the center (master) node nM . (a)
Violation of critical distance between master node nM and slave node 1 nS1 , (b), associated LS
values of master node nM and slave node 1 nS1 leading to a critical intersection, and (c) violation of
critical distance between master node nM and all four connected slave nodes leading to an isolated
inclusion.

For a consistent shifting scheme, only the LS values of element corner nodes need to be considered

because LS values of element middle nodes (if any exist) are always dependent variables of the

corresponding corner nodes. Within the scope of this thesis, middle node LS values are not

considered for XFEM triangulation and enrichment, therefore shifting with respect to those nodes

is not required.

The following LS shifting scheme is iterative in nature and repeated until no more shifts in

LS values occur in the entire domain, meaning that all criteria (e.g., minimum distance away from a

node) are satisfied.

4.2.2.1 Achievement of Critical Minimum Distance

The first characteristic of the consistent LS shifting scheme is the achievement of a critical

minimum (spatial) distance of the intersection away from a FE node. Consider the case depicted in

Figure 4.6 (a) where the XFEM interface violates the critical minimum distance with respect to the

master node in the middle (nM ) on the edge nS1–nM . Therefore, the LS value at the master node
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needs to be adjusted accordingly, in order to sufficiently shift away the XFEM interface from the

master node. The consistent LS shifting scheme therefore considers all (slave) nodes connected to

the current master node connected via shared edges and obtains their LS values. In 2D up to 4 slave

nodes are connected to a master node via the shared edges (see Figure 4.6 (a)) and in 3D up to 8

slave nodes are connected to a master node. To identify any edge on which the minimum critical

distance is violated, the LS value of each slave node is compared with the LS value of the master

node. If they are of the same sign, the edge is unintersected and therefore not treated further. If

they are of opposite sign, an intersection is present and the distance dΓ between the master node

and the XFEM intersection is computed using the intercept theorem as:

dΓ =
|φM | h

|φM |+ |φSi |
(4.2.8)

where φM is the LS value at the current master node, φSi is the LS value at the current slave node,

and h is the element edge length. If the obtained distance is below a minimum critical distance

εd, such that dΓ < εd, the master LS value needs to be updated, in order for the minimum critical

distance condition to be satisfied. The new LS value at the master node is computed as:

φ̃M = sign(φM )
|φSi | εd
h− εd

(4.2.9)

where φ̃M is the shifted LS value at the master node. In practice, the critical minimum distance is

defined as a function of the element edge length, e.g., εd = 1 · 10−5h.

4.2.2.2 Elimination of Isolated Inclusions

A second critical scenario, which is not addressed by solely shifting of the master LS value, is if

small isolated inclusions are encountered. This is conceptually shown in Figure 4.6 (c). Oftentimes,

isolated material inclusions arise in the presence of very shallow LSFs. In order to detect and

eliminate small isolated inclusions, a loop over all slave nodes connected to a master node is

performed, and the distance between the master node and the XFEM interface is summed over,

using Eqn. (4.2.8). In case an edge is not intersected, dΓ = h is added to the summation over all
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edges. The sum over all edge distances i is determined as:

SdΓ
=

nS∑

i=1

dΓi (4.2.10)

while the minimum required sum of distances is

Sεd =

nS∑

i=1

εd (4.2.11)

where nS is the number of slave nodes associated with the current master node. If the sum over all

distances is less than the sum over all critical distances, i.e., SdΓ
< Sεd , the mean of all slave node

LS values is used to update the master node LS value. Mathematically, this means:

φ̃M =

∑nS
i=1 φSi
nS

(4.2.12)

Eqn.(4.2.12) therefore eliminates small isolated inclusions by replacing the master LS value (which

is different in sign compared to all corresponding slave node LS values) with the mean of all slave

node LS values.

4.2.2.3 Discussion

After applying both, the consistent LS shifting scheme (Section 4.2.2.1) and the isolated

inclusions elimination scheme (Section 4.2.2.2), either critical situations shown in Figure 4.6 (a) and

(c) would be resolved. However, it should be noted that any shifting scheme introduces (slight) non-

differentiable design changes which are not seen by the optimization algorithm. Therefore it is crucial

to use a small thresholding value (εd � 1.0) which provides sufficient stability without impeding the

optimization process. This is especially important with respect to design sensitivity analysis. It has

been shown by [163], that globally finite differenced design sensitivities are meaningless as soon as

LS shifting is evoked for a certain design variable. When using the adjoint method, consistent design

sensitivities are obtained if LS shifting is accounted for properly. As mentioned before, consistent

LS shifting and elimination of isolated domains is especially critical when no LS regularization is

used (i.e., when no signed distance character of the design LSF can be guaranteed). More details

regarding a SDF regularization are discussed in Section 4.3.
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4.2.3 Selective Structural Springs

A special stability consideration in solid-void LS-XFEM TO is the stabilization of disconnected

solid sub-domains (ΩI
0) if the void domain (ΩII

0 ) is excluded from the XFEM analysis. It is crucial to

stabilize those unconstrained solid sub-domain embedded in the void to prevent rigid body motion

(RBM) and ill-condition of the linear system. This can be achieved by globally applying a small

stiffness contribution to the diagonal of the global stiffness matrix for every DOF. Physically, this

represents attaching weak springs globally to every DOF in the entire domain. This has successfully

been demonstrated by [189] for small strain linear elastic problems using linear brick elements.

Alternatively, disconnected material sub-domains can be identified and a spring stiffness is only

added to DOFs associated with isolated material domains. This is especially crucial for large

deformation structural problems using higher-order XFEM elements, where globally applied weak

springs heavily impede the deformation prediction using XFEM. Therefore, a selective springs

approach initially proposed by [190, 191] for fluid problems is adopted in this thesis for large strain

nonlinear structural problems.

To identify disconnected solid sub-domains in a solid-void LS-XFEM setting, an auxiliary

indicator field θ̃(X) is used. The indicator field is modeled as a linear diffusion problem with bulk

convection within the solid domain (ΩI
0).

The weak form of the governing equation of the auxiliary indicator field in residual form is:

RAux =

∫

ΩI0

δ∇θ̃ (κ∇θ̃) + δθ̃ hB(θ̃ − θ̃ref )dV (4.2.13)

where κ is the thermal conductivity, hB is the bulk convection coefficient, and θ̃ref is the reference

indicator value. Typical numerical values for the conductivity and bulk convection are κ = 30.0

and hB = 0.01, respectively. In order to identify mechanically disconnected solid sub-domains

surrounded by void (see Figure 4.7 (a)), Dirichlet boundary conditions of
¯̃
θ = 0.0 on the auxiliary

indicator field are applied everywhere where mechanical boundary conditions are applied to the

structural problem (i.e., on ΓD). Along with a reference indicator value of θ̃ref = 1.0, the solution of

Eqn.(4.2.13) yields indicator values of close to zero in mechanically connected domains and indicator
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Figure 4.7: Domain decomposition using LS-XFEM for a solid-void problem. (a) Mechanical
domain decomposition and boundary conditions, (b) auxiliary indicator field solution and boundary
conditions.

values of close to one in isolated solid domains, see Figure 4.7 (b). It should be noted that by adding

a bulk convection term to Eqn.(4.2.13), ill-conditioning of the auxiliary indicator problem in the

presence of disconnected sub-domains is prevented.

To project the indicator values, to either exactly 0.0 or exactly 1.0, a smoothed Heaviside

projection is used which is defined as:

θ̄ =
1

2
+

1

2
tanh(kw(θ̃ − ktθ̃ref )) (4.2.14)

where θ̄ is the projected indicator value, kw is the projection sharpness parameter, and kt is the

projection threshold. Typically a projection sharpness of kw = 1000.0 and a threshold of kt = 0.9

are used. After the auxiliary indicator field solution has been projected, the residual of the nonlinear

structural problem is augmented by the following selective spring stiffness term:

RSpr =

∫

ΩI0

u I rs E θ̄ dV (4.2.15)

where the relative spring stiffness ratio is rs, and E is the Young’s modulus of the solid material.

Typically, relative spring stiffness ratios in the order of rs = 1.0 · 10−10 or smaller are sufficient to

stabilize the structural problem.
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In this work, the auxiliary indicator field is solved separately and prior to the physical governing

equations using a one-way coupled block solver (see Section 3.4). Design sensitivities of the selective

structural springs are neglected as selectively enabled springs introduce a non-differentiability in the

design process. As isolated material inclusions are typically eliminated by the optimizer within a

few design iterations, constraining their deformation to stabilize the linear system has proven to not

hinder a proper design evolution. Numerical studies indicated the validity of this approach. More

details regarding structural selective springs are found in Appendix B and Appendix C.
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4.3 Explicit Level-Set Regularization

A strong need for LS regularization has been identified for both, implicit and explicit LSMs.

This is due to the fact that a locally too flat or too steep LSF negatively affects the stability and

the rate of convergence of an optimization problem. In turn, having a uniform, uniquely defined

LSF greatly improves those desired properties. To date, different regularization schemes have been

proposed [188]. Perimeter regularization is used to achieved a well-posed optimization problem [80]

and Tikhonov regularization is oftentimes employed to improve the smoothness of the LS gradient

[147, 206]. Uniqueness of the LSF is however not guaranteed by these regularization techniques and

a flat LSF may still be obtained. As identified by [188], a strong need for regularization schemes

still exists. For the case of explicit LSMs, a signed-distance field regularization scheme is therefore

developed and applied to multiple numerical design optimization examples in this thesis.

As a unit norm gradient of the LSF (i.e., |∇φ| = 1.0) is desired in the vicinity of the material

interface in LS-based TO, a SDF is commonly used for reinitialization, as it supports a unit norm

gradient by construction. During the evolution of the design optimization process, the signed

distance character typically vanishes [73] and therefore additional regularization terms need to

be incorporated into the optimization problem formulation to retain a SDF characteristic of the

LSF [36, 90, 114, 115, 176, 212, 213]. For implicit LSM, an auxiliary HJ equation is solved or fast

marching methods [158] are used for periodic reinitialization of the LSF during an optimization. The

intermittent reinitialization process however introduces discontinuities in the design optimization

process as the zero LS iso-contour is slightly shifted [83, 143]. This, in turn, negatively affects the

convergence of the optimization problem.

Alternatively, energy functionals have been proposed as penalty terms to the objective function

to penalize the deviation of the LSF from a SDF [36, 55, 114, 197, 212]. While the gradient in the

vicinity of the interface can somewhat be controlled via these energy functionals, gradient oscillations

away from the interface are observed [115, 213]. Therefore, double-well potential functions were

introduced [90, 115, 213] to not only enforce a unit norm gradient near the interface but also zero
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Figure 4.8: Drawback of local LS regularization, illustrated for two subsequent design iterations,
(a) and (b).

gradient of the LSF away from the interface. As identified by [67], a limitation of these local

regularization methods is the fact that they directly operate on the local LS value, or its gradient,

and have no notion about the global distance to the actual material interface. This can lead to

undesirable material inclusions away from the material interface, due to the inability of those

local methods to distinguish between points of the same LS value but with a different distance to

the interface. This limitation is conceptually illustrated in Figure 4.8 for two subsequent design

iterations. Using a simple 1D example, a unit gradient is enforced at all points where the LS

values are between some bounds −φBnd ≤ φ ≤ φBnd at design iteration n (see Figure 4.8 (a)). This

however leads to new material intersections in the subsequent design iteration n+ 1, regardless of

their benefit for improving the design (see Figure 4.8 (b)). Due to the lack of local measures to

distinguish between areas where −φBnd ≤ φ ≤ φBnd and an interface is present and areas where

−φBnd ≤ φ ≤ φBnd without any interface, spurious material inclusions are frequently created. This

is due to the enforcement of |∇φ| = 1.0 anywhere where the LS value is between certain bounds

±φBnd. Using energy functionals to achieve LS regularization as part of the objective is therefore

very challenging and requires careful tuning for a specific problem.

Addressing the limitations of the regularization schemes discussed, an explicit LS regularization

scheme which minimizes the difference between a globally defined target LSF and the design LSF



85

φ(X) is proposed. The target LSF is reconstructed at every design step using an extension of the

Heat Method (HM) [39, 40] for a given interface, which is in turn defined by the design LSF. The

target LSF is globally defined, unique, smooth, and treated as a prescribed field for a certain design

iteration. The proposed penalty formulation is differentiable and therefore alleviates the need for

discontinuous reinitialization during the design process.

4.3.1 The Heat Method

Classically, either fast marching approaches [158] or fast sweeping approaches [202] are

used for SDF computation. To circumvent the implementation challenges associated with those

classical approaches, and to alleviate the parallelization difficulties, the HM is used instead for SDF

computation. To obtain the SDF, a transient heat conduction problem is solved first. The strong

form of the governing equation is identical to the one discussed in Section 2.1 where all material

parameters are taken as unity. Moreover, zero initial conditions are applied and a unit Dirichlet

heat source is applied weakly at the XFEM interface, i.e., θ(ΓI,II0 ) = 1.0.

The distance field φD(X) is then obtained as a solution of a Poisson’s equation with the

negative normalized temperature gradient as the volumetric heat source. The strong form of the

governing equation of the distance field is:

∆φD = ∇ ·
(
− ∇θ|∇θ|

)
(4.3.1)

where the Laplacian is denoted by ∆ and ∇· is the divergence operator. The boundary conditions

on the distance field are homogeneous Dirichlet at the XFEM interface, i.e., φD(ΓI,II0 ) = 0.0. By

enforcing this homogeneous boundary condition at the interface, it is guaranteed that the distance

field φD(X) and the design LSF φ(X) are identical at the XFEM interface. This yields the desired

property that no spatial fluctuations are introduced when reconstructing the (signed) distance field.

Finally, the SDF φSD(X) is computed using the sign information of the design LSF φ(X), as:

φSD = sign(φ)φD (4.3.2)
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Figure 4.9: Computation of the SDF using the HM. (a) A heat conduction problem is solved with
a heat source (θ = 1) at the XFEM interface, (b) the distance field is obtained from normalized
temperature gradient, and (c) the SDF is computed using sign information of each phase.

The three steps are conceptually shown in Figure 4.9 (a), (b), and (c) for a simple 1D problem with

two interfaces. It is important to again point out the difference between design LSF φ(X) and

the reconstructed SDF φSD(X). The design LSF is an explicit function of the design variables (see

Eqn.(4.1.7)) and used for LS-XFEM domain decomposition, see Eqn.(4.1.6). The XFEM interface

ΓI,II0 is then the starting point for the HM from which the SDF φSD(X) is obtained.

The weak form of the transient heat conduction problem follows Eqn.(2.1.3) where an explicit

Euler backward scheme (Eqn. (2.1.2)) is used for time integration. To achieve maximum accuracy

of the SDF, a time step size of ∆t = h2 is recommended by [40]. On the other hand, in order

to increase the efficiency of the HM, solving the transient temperature problem for only a single

time step is recommended. In order to obtain a meaningful SDF, the time step size needs to be

sufficiently large to obtain a non-zero temperature gradient in the entire design domain. Solving

the heat conduction problem for only a single (sufficiently large) time step significantly reduces the

computational cost while only slightly impeding the accuracy of the SDF away from the interface.

Combining Eqn.(4.3.1) and Eqn.(4.3.2), the weak form of the governing equation for the SDF

is:

∫

ΩD0

δ∇φSD(∇φSD −G) dV −
∫

Γ0

δφSD(∇φSDN−GN) dA = 0 (4.3.3)

where δφSD is an admissible test function and the source term G is computed as:

G = −sign(φ)

( ∇θ
|∇θ|

)
(4.3.4)
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Assuming that the projected SDF and the projected normalized temperature field are identical

along external boundaries, the last term in Eqn.(4.3.3) vanishes. This corresponds to homogeneous

Neumann boundary conditions on the SDF.

Both, the temperature field θ(X) and the SDF φSD(X) are discretized using the XFEM (see

Section 3.1) and are evaluated over the entire design domain ΩD
0 = ΩI

0 ∪ ΩII
0 . Interface conditions

and boundary conditions are applied weakly using Nitsche’s method (see Section 3.1.2). In addition,

face-oriented ghost stabilization (Section 3.1.3) is employed for both, the temperature field and the

SDF.

4.3.2 Formulation of Regularization Penalty

To achieve continuous regularization of the design LSF, a penalty term is added to the

objective function which minimizes the squared difference between the design LSF φ(X) and a

target LSF φ̃(X) as well as the difference in spatial gradients. The regularization penalty term pReg

is formulated as:

pReg =

∫
ΩD0

(φ− φ̃)2dV
∫

ΩD0
(φBnd)2dV

+

∫
ΩD0

(|∇φ−∇φ̃|)2dV
∫

ΩD0
dV

(4.3.5)

where the target LSF φ̃(X) is obtained from the SDF. As the design LSF matches the target LSF,

both terms of Eqn.(4.3.5) vanish. Also, the sensitivities of pReg vanish at convergence. Minimizing

the difference in spatial gradients in addition to minimizing the difference in values between design

LSF and target LSF improves the effectiveness of the penalty (Eqn.(4.3.5)) as it reduces spatial

oscillations. Weighting both terms in Eqn.(4.3.5) equally yields a good balance between matching

the target LSF and avoiding spatial oscillations. To remove length-scale dependence, both terms in

Eqn.(4.3.5) are normalized.
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Figure 4.10: Construction of the target LSF, using either a piecewise linear or a smooth approxi-
mation.

To obtain a bounded design LSF away from the interface, the following piece-wise linear

truncated LSF is proposed:

φ̂(X) =





−φBnd ,∀ φSD(X) ≤ −φBnd

φSD(X) ,∀ − φBnd < φSD(X) < φBnd

φBnd ,∀ φSD(X) ≥ φBnd

(4.3.6)

Using Eqn.(4.3.6) the SDF is matched near the interface, whereas the lower bound −φBnd is matched

in ΩI
0 and the upper bound φBnd is assumed in ΩII

0 (see Figure 4.10). To retain differentiability of

the target LSF, a smooth target field is used to approximate Eqn.(4.3.6). Using a sigmoid function,

the smooth target field φ̃(X) is formulated as:

φ̃(X) =

(
2

1 + e

(−2φSD
φBnd

) − 1

)
φBnd (4.3.7)

A comparison between the piece-wise linear target field (Eqn.(4.3.6)) and the smooth approximation

(Eqn.(4.3.7)) is shown in Figure 4.10.

In order for the LS regularization term of Eqn.(4.3.5), not to dominate the overall objective and

therefore the evolution of the XFEM interface, an appropriate weighting of the penalty contribution

pReg is required. As shown in the work of [67], a penalty weight of w ≤ 0.1 yields good results.

However, implicit dependencies of the penalty term on the design variables through the SDF state

variables might hinder an unaffected evolution of the interface. The target LSF and therefore the
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reconstructed SDF should be treated as a prescribed target at every design iteration, and therefore

only explicit dependencies of pReg on the design variables sφ are considered. Unlike in classical

LS-XFEM TO, design sensitivities of pReg exist in the entire design domain. By neglecting implicit

design sensitivity contributions of Eqn.(4.3.5), the computational cost of the sensitivity analysis is

significantly reduced. More details about design sensitivity analysis are discussed in Section 4.6.

By treating the target LSF φ̃(X) as a prescribed field without any dependencies on the design

variables, makes the regularization penalty Eqn.(4.3.5) behave as a “clean-up” procedure which

follows the XFEM interface. It is important to note that the regularization mainly affects LS values

away from interface and maintains a unit slope in the vicinity of the interface. Therefore, it does

not influence the zero LS iso-contour which defines the material interface. As the target LSF is

achieved, the penalty contribution and its sensitivities vanish. Therefore, instead of formulating the

regularization term (Eqn.(4.3.5)) as a penalty, it could alternatively be used as a constraint, e.g.,

pReg ≤ εp where εp � 1.

Numerical examples in 2D and 3D for multiple physics using the explicit LS regularization

approach are presented in Section 5.5. Additional features like the influence of the penalty weight,

the number of time steps, and the influence of including implicit design sensitivities are studied. An

additional discussion of the regularization approach can be found in Appendix D.
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4.4 Feature Size Control

Controlling the size of minimum features within TO has been widely-discussed and is a

long-standing issue in TO. It is not only critical to prevent small features from a numerical point of

view in order to obtain sufficient stability, accuracy, and mesh-independence (e.g., robust design),

but also from a manufacturing point of view it is highly desirable to control the size of features.

While in density-based TO approaches feature size can be controlled by filtering and projection

[76, 74, 75, 165, 166], much less work is found for feature size control in LS methods. In implicit LS-

based TO, the SDF is obtained through re-initialization which, in turn, can be used for feature size

control. This can either be achieved though identification of the skeleton of a structure [78, 203, 116]

or by locating off-sets to the zero LS iso-contour [4, 127, 3, 198]. Alternatively, quadratic energy

functionals can be formulated to achieve control of features [33, 118] which regularize the design

problem. To obtain a well-posed optimization problem, control of features and regularization of the

design is critical. To date, a strong need still exists for better control of minimum features [168],

however keeping in mind that no feature size control method is (yet) perfect [4].

In this thesis, a novel approach to control minimum feature size in an explicit LS-XFEM TO

process is developed and studied in 2D and 3D, as this has not yet been addressed in literature.

Attempts to achieve minimum feature size control for explicit LS-XFEM TO were made by [191] and

[37] where explicit geometric distance measures were used to control the size of minimum features.

The proposed method utilizes the SDF obtained by the HM (see Section 4.3.1) to identify the shape

skeleton on which the value of the SDF is probed, in order to enforce minimum feature size. The

basic idea follows the work of [78] where it was applied to implicit LSMs for 2D structural problems.

Extending the approach by [78] to an explicit LS-XFEM framework requires to overcome a set

of challenges, including computation of higher-order derivatives, discontinuities introduced by the

XFEM, and the calculation of a well-resolved skeleton for every design iteration. Moreover, in the

work of [78], inconsistencies in the design sensitivities are present which might harm or even prevent

the convergence of the optimization problem. In this thesis, a local, fully differentiable minimum
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Figure 4.11: Illustration of minimum feature size measure where in (a) the feature size measure is
met and in (b) the minimum feature size is violated.

feature size measure is therefore developed and applied to several numerical examples.

As demonstrated by [78], the minimum size of geometric features described by a LSM can

be controlled by constraining the signed distance value at specific parts of the design domain. In

particular, this set of points is called the medial surface [50], structural skeleton or the ridge of the

SDF [4]. The set of all points belonging to the skeleton are denoted by Σ0 and a mathematical

definition of it is presented in Section 4.4.1. An explicit minimum feature size penalty within phase

I (ΩI
0) can therefore be formulated as:

pFS =

∫

ΩI0,Σ
I
0

max((φSD + rm), 0) dV (4.4.1)

where rm is the desired minimum feature size radius and the skeleton of phase I is denoted by ΣI
0.

The measure of Eqn.(4.4.1) is zero where ever the minimum feature size is met and non-zero where

the minimum feature size is violated. At points where the minimum feature size is not met, the

value of pFS corresponds to the signed distance value at the skeleton shifted by the minimum feature

size radius, i.e., φSD(ΣI
0) + rm. Visually, this is depicted in Figure 4.11, where in Figure 4.11 (a) the

minimum feature size is met and in Figure 4.11 (b) it is violated. In this 1D example, the skeleton

of the SDF ΣI
0 only consists of a single point which is located at the minimum of φSD. It should be

noted that even though the measure of Eqn.(4.4.1) is one single integral over the skeleton of phase

I, it is an explicit feature size measure which is enforced locally, i.e., at every integration point at

which the volume integral is evaluated. This is an important aspect as the minimum feature size
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penalty of Eqn.(4.4.1) can for example be enforced by a single penalty contribution to the objective

or by a single constraint.

As can be seen from the formulation of Eqn.(4.4.1), two issues arise. First, Eqn.(4.4.1) is

non-differentiable due to the max(•) operator and second, the identification of the skeleton of phase

I ΣI
0 is crucial for this formulation. Suppose the skeleton is described by some field λ(X) and points

of interested at which Eqn.(4.4.1) should be evaluated are defined where λ(X) > λ̄ (a more detailed

discussion of the skeleton is presented in Section 4.4.2 and 4.4.1). Then, a smooth and differentiable

formulation of Eqn.(4.4.1) reads:

p̃FS =

∫

ΩI0

1

βKS
ln(eβKS(φSD+rm) + 1)

(
1

2
+

1

2
tanh(γSH(λ− λ̄))

)
dV (4.4.2)

where the max(•) operator is approximated by a KS function (see Eqn.(4.1.10)). The condition

λ(X) > λ̄ for identifying points on the skeleton is approximated by a smoothed Heaviside function

which acts as a weight interpolating between zero and one. The projection sharpness for the KS

function is denoted by βKS and γSH denotes the weighting sharpness of the smoothed Heaviside

function. For the work presented in this thesis, these values are set to βKS = 5.0 and γSH = 75.0

which provides a sufficient approximation while maintaining differentiability and smoothness of the

feature size measure. The formulation of Eqn.(4.4.2) as a penalty or as a constraint will be explored

through numerical examples presented in Section 5.6.

4.4.1 Discussion on the Skeleton

The skeleton Σ0 or ridge of a shape is the location of discontinuities in the SDF gradients

[2, 96]. Alternatively, the skeleton of a shape is defined as a set of all points which have at least two

closest points on the material interface ΓI,II0 [78]. Yet another, geometry-based, definition of the

skeleton states: The skeleton is the location of centers of maximum circles (in 2D) or spheres (in

3D) contained in the shape, i.e., bounded by the zero LS iso-contour [4, 131]. Example skeletons for

different shapes described by the zero LS iso-contour ΓI,II0 are shown in Figure 4.12.

By definition, a skeleton exists in both phase I and phase II. Since feature size control only within

phase I is within the scope of this thesis, only the skeleton of phase I (ΣI
0) is considered here.
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Figure 4.12: Examples of skeletons for different phase I domains embedded in phase II, where the
external domain boundary is not described by the zero LS iso-contour.

Moreover, domain boundaries (e.g., the external boundaries of the boxes shown in Figure 4.12)

are not described by the zero LS iso-contour and therefore not considered for the skeleton. This is

apparent in Figure 4.12 (b) which has a drastically different skeleton than the very similar shape of

Figure 4.12. The important difference between shapes of Figure 4.12 (a) and (b) is however that the

zero LS iso-contour of Figure 4.12 (b) is open for which a vertical line is the skeleton. The skeleton

of a closed circle (Figure 4.12 (a)) is in contrast just a single point. For phase boundaries comprised

of straight edges (e.g., a rectangle), drastically different skeletons are obtained for slight boundary

perturbations, see Figure 4.12 (c) and (d) [4].

4.4.2 Laplacian of the SDF

The identification of the skeleton of phase I ΣI
0 is crucial for the minimum feature size measure

of Eqn.(4.4.1). Following the work of [50], the skeleton of a structure defined by a LSF can be

obtained by non-zero values of the Laplacian of the corresponding SDF. Mathematically, these are

the locations of discontinuities in the LS gradients which are defined by the Laplacian of the SDF

in phase I as [78]:

ΣI
0(X) = {X| φ(X) < 0, |∆φSD| > 0} (4.4.3)

To evaluate the Laplacian of the SDF, second-order spatial derivatives of the SDF need to be

computed. In the work of [78], this is done using a finite difference approach proposed by [50] in
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combination with a line sweep algorithm to compute the Laplacian and select all points which are

part of the skeleton. While conceptually simple, this approach is limited to operate on regular

(rectangular) background meshes and poses difficulties for parallelization. In addition, no explicit

control of boundary conditions on the LSF or its first and second spatial derivative are possible.

This limits the approach in selectively including domain boundaries in the feature size measure

calculation.

To circumvent these limitations, operator splitting is used in this thesis to compute higher-order

derivatives of the SDF on a linear background mesh using the HM (see Section 4.3.1). Additional

scalar and vector fields are solved to compute the gradient of the SDF and the Laplacian, as well as

the gradient of the temperature field used as a source in the HM. This allows for explicit control of

each field as it is obtained as the solution of a Helmholtz-type PDE. Using a Helmholtz-type PDE

for linear filtering has previously been applied to scalar design sensitivities by [110] and to scalar

design variable fields by [111, 123]. Solving for each derivative as a separate scalar or vector field

provides therefore additional smoothing and continuity across the XFEM interface which leads to

increased stability when identifying ΣI
0. For all fields based on a Helmholtz-type PDE, homogeneous

Neumann boundary conditions are assumed, as suggested in [111].

However, when computing higher-order derivatives of the SDF which is obtained by the

HM, boundary effects on the SDF are potentially amplified through spatial differentiation. To

mitigate boundary effects on the SDF stemming from boundary conditions on the temperature

field, it is suggested by [39] to use an average temperature field as the gradient source for the SDF

(see Eqn.(4.3.4)). The two averaged temperature fields are obtained from homogeneous Dirichlet

and homogeneous Neumann boundary conditions on the domain boundaries which yields the most

accurate SDF. The source term used in Eqn.(4.3.4) is therefore computed as:

θ =
1

2
(θN + θD) (4.4.4)

where θN and θD denote the solution of a homogeneous Neumann and homogeneous Dirichlet

temperature problem, respectively. While this adds the solution of an additional temperature field
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to the problem, boundary effects on the SDF are significantly reduced through Eqn.(4.4.4).

Alternatively, immersion of the design domain as for example performed by [78] can be used.

This approach is especially advantageous in combination with the HM, where boundary effects are

largely caused when an XFEM interface intersects with the domain boundary. This is prevented by

construction when using a fully immersed design domain. Due to the simplicity of this approach it

is the preferred choice for all numerical examples presented in Section 5.6.

4.4.2.1 Normalized Temperature Gradient Field

To obtain a smooth source term (using the normalized temperature gradient) for computing

the SDF using the HM (Eqn.(4.3.4)), a vector-valued field γ(X) is constructed. To mitigate boundary

effects on the SDF, the spatial gradient of the average temperature field (Eqn.(4.4.4)) is used. The

strong form of the Helmholtz-type governing equation is:

−r2
H∆γ + γ =

∇θ
|∇θ| (4.4.5)

where the Helmholtz filter radius is denoted by rH and related to a physical smoothing radius rs by

[111]:

rH =
rs

2
√

3
(4.4.6)

In the current thesis, the physical smoothing radius is set as a function of the mesh size h, e.g.,

rs = 1h. Alternatively, a spatially varying smoothing radius can be employed, as discussed in

Section 4.5.1.

After multiplying the strong form of the governing equation (Eqn.(4.4.5)) by admissible test

functions δγ, performing integration by parts and applying the divergence theorem, the weak form

of the governing equation of the normalized temperature gradient field is obtained. It is stated as:

r2
H

∫

Ω0

δ∇γ∇γ dV +

∫

Ω0

δγ

(
γ − ∇θ|∇θ|

)
dV = 0 (4.4.7)

where homogeneous Neumann boundary conditions are assumed.
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4.4.2.2 Signed Distance Normal Field

After the SDF is computed using the HM (Eqn.(4.3.3)), the normalized spatial gradient of

φSD(X) is solved for using the vector-valued field η(X). The normalized spatial gradient of the

SDF is also known as the LS normal [6] in LSM, i.e., η = ∇φSD
|∇φSD| . The strong form of governing

equation for the LS normal field η(X) is:

−r2
H∆η + η =

∇φSD
|∇φSD|

(4.4.8)

Applying the previously discussed steps leads to the weak form of the governing equation for the

signed distance normal field as:

r2
H

∫

Ω0

δ∇η∇η dV +

∫

Ω0

δη

(
η − ∇φSD|∇φSD|

)
dV = 0 (4.4.9)

where the admissible test functions are denoted by δη.

4.4.2.3 Signed Distance Laplacian Field

Finally, the Laplacian of the SDF λ(X) is computed as the divergence of the LS normal

field, i.e., λ = ∆φSD = ∇ · η. The scalar-valued governing equation in strong form for Helmholtz

smoothing and L2 projection of the Laplacian field is:

−r2
H∆λ+ λ = ∇ · η (4.4.10)

The weak form of Eqn.(4.4.10) is obtained as:

r2
H

∫

Ω0

δ∇λ∇λ dV +

∫

Ω0

δλ (λ−∇ · η) dV = 0 (4.4.11)

where the admissible test functions are denoted by δλ.

4.4.2.4 Skeleton Fields - Summary

In summary, six scalar and vector fields are used to obtain a smooth and continuous Laplacian

of the SDF within an XFEM framework, see Figure 4.13. Smoothing effects stem first of all from the



97

Figure 4.13: Computation of the SDF skeleton using 6 fields and the HM. (a) A homogeneous
Neumann temperature field is combined with (b) a homogeneous Dirichlet temperature field to obtain
(c) the normalized temperature gradient. From that, (d) the SDF is computed and subsequently (e)
the LS normal field and (f) the LS Laplacian field are obtained.

XFEM discretization and the operator splitting to compute higher-order derivatives. In addition,

employing Helmholtz smoothing on the projected quantities further introduces smoothing of sharp

discontinuities in spatial derivatives. This leads to approximation of step functions as observed for

the normalized temperature gradient field γ(X) (Figure 4.13 (c)) and the LS normal field η(X)

(Figure 4.13(e)). Furthermore, the Laplacian field, which mathematically is described by a Dirac

delta function, is smooth and finite in width in a discretized setting (see Figure 4.13(f)).

Mathematically, the linear system resulting from the 6 different fields and the coupling between

them can be summarized as:



KθNθN

KθDθD

KγθN KγθD Kγγ

Kφγ Kφφ

Kηφ Kηη

Kλη Kλλ







θN

θD

γ

φ

η

λ




=




RθN

RθD

Rγ

Rφ

Rη

Rλ




(4.4.12)

As most of those additional gradient fields have a similar structure, pre-factorization of the system

matrices (e.g., in LU-decomposition) can be used to significantly offset the additional computational
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cost. In addition, a block solver is used to take advantage of the linearity of each sub-system while

considering the coupling terms between each system. More details regarding a staggered block

solution approach are presented in Section 3.4.

4.4.3 Skeleton-based Feature Size Control

A clear identification and computation of a SDF skeleton without noise is a key characteristic

for skeleton-based feature size control. Since this is the goal of this thesis, see Eqn.(4.4.2), additional

numerical steps are required for this to be successful. Mathematically, any non-zero Laplacian in

phase I uniquely defines the skeleton ΣI
0, due to its Dirac delta character. In a discretized setting,

this would however require an infinitely fine mesh to properly resolve the discontinuity in the SDF

gradients and a perfectly smooth (non-oscillating) SDF as well as its higher-order derivatives. In

practice, numerical discretization leads to smoothing and therefore blurs sharply defined derivative

discontinuities, see Figure 4.13 (c) - (f). To obtain a sharply and unambiguously defined SDF

Laplacian in a discretized setting, two different approaches are discussed in the following. First, a

smooth Laplacian projection is considered and secondly a smooth Laplacian truncation strategy is

discussed.

4.4.3.1 Smooth Laplacian Truncation

Smooth truncation of the Laplacian is proposed in this work to regularize the discretized

Laplacian field. Alternatively, normalization of the Laplacian field by the global maximum/minimum

was used by [78, 203, 116] to achieve similar numerical stability.

The truncated Laplacian values λ̂T are therefore obtained as a function of λ as:

λ̂T (λ) = max(min(λ, λBnd),−λBnd) (4.4.13)

where λBnd denotes the bounding or truncation value of the Laplacian. Considering the fact that

min(a, b) = −max(−a,−b) and using a KS function to approximate the non-differentiable max(•)

operator, a smooth Laplacian truncation can be formulated as:



99

Figure 4.14: Truncation of the Laplacian field, either exact using min(•) max(•) operations or
approximate using KS functions.

λ̃T (λ) =
1

βKS
ln(eβKSms + e−βKSλBnd) , ms(λ) =

−1

βKS
ln(e−βKSλ + e−βKSλBnd) (4.4.14)

A comparison of the exact truncation (Eqn.(4.4.13)) and the smooth approximation (Eqn.(4.4.14))

is shown in Figure 4.14. With an increasing KS parameter βKS the approximation assumes the

exact truncation constructed from min(•) max(•) operations, while removing the discontinuities

at ±λBnd. Furthermore, Eqn.(4.4.14) maintains a unit gradient near the origin, which is a clear

distinction from, for example, a tanh(•) sigmoid function. While the smooth truncation used for

LS regularization (Eqn.(4.3.7)) does retain a unit gradient, its approximation sharpness cannot be

adjusted. The smooth approximation presented in Eqn.(4.4.14) exhibits both of these features and

is therefore superior.

4.4.3.2 Smooth Laplacian Projection

Instead of just truncating the Laplacian at certain bounds λBnd, a projection approach can

be used. This is a more intrusive way of introducing regularity into the Laplacian field using a

piecewise constant function defined as:

λ̂P (λ) =





−1.0, ∀ λ < −λP

0.0, ∀ − λP ≤ λ ≤ λP

1.0, ∀ λ > λP

(4.4.15)
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Figure 4.15: Projection of the Laplacian field, either exact using piecewise constant functions or
approximate using smoothed Heaviside functions.

where λP is a Laplacian projection threshold parameter at which the distinction between projection

to 0.0 and ±1.0 is made. Schematically, this function is plotted in Figure 4.15. In order to obtain

differentiability of this projection function, a product of smoothed Heaviside functions is used to

approximate Eqn.(4.4.15). The smooth projection is computed as:

λ̃P (λ) = tanh(γPSλ)

(
1

2
+

1

2
tanh(γPS(|λ| − λP ))

)
(4.4.16)

where γPS is a projection sharpness parameter which determines how close the approximation of

Eqn.(4.4.16) is to the exact projection of Eqn.(4.4.15). The first term in Eqn.(4.4.16) performs a

signed normalization of the Laplacian and the second term either selects the signed normalized

value or 0.0. An example of Eqn.(4.4.16) is compared in Figure 4.15 against the exact projection of

Eqn.(4.4.15). It should however be noted that when using the smooth projection, the Laplacian

field at the XFEM interface is projected to zero and therefore any mean curvature information is

lost. A more detailed discussion of mean curvature is presented in Section 4.5.

4.4.3.3 General Discussion of the SDF Skeleton

In addition to smooth truncation of the Laplacian field, a Laplacian threshold λ̄ is used in

Eqn.(4.4.2) to identify Laplacian values which are part of the phase I skeleton ΣI
0 on which minimum
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feature size is enforced. As pointed out by [78], a FEM discretized SDF necessarily yields a skeleton

band with a finite width as opposed to an infinitely thin ridge. This leads to the fact that the

minimum features are always greater than twice the minimum feature size radius, i.e., xmin > 2rm

and therefore exact feature size can only be achieved on infinitely fine meshes. The lower the

Laplacian threshold is set, the wider the skeleton band is and therefore the greater the practically

obtained minimum feature size is. Due to the operator splitting and smoothing applied in this thesis

for computing the SDF Laplacian (see Section 4.4.2.4), spreading of the skeleton cannot be avoided.

From numerical studies presented in Section 5.6, it is apparent that the minimum achievable feature

size rmin is:

rmin ≥ rm + 2h (4.4.17)

where rm is the minimum feature size radius specified in Eqn.(4.4.1) and h is the element edge

width. The increase in feature size by 2h comes from the operator splitting required to compute

higher-order spatial derivatives on a linear background mesh.

Despite the popularity of skeleton-based approaches for feature size control in both LS and

density-based TO methods [208] certain limitations of this approach can be identified. As discussed

above, smoothness and higher-order continuity of the SDF is required to construct a crisp and

regular skeleton. To achieve that, operator splitting and Helmholtz smoothing are employed in this

work. As pointed out by [40], boundary effects of the HM play a significant role on the SDF and its

higher-order derivatives. These boundary effects can successfully be addressed by immersion of the

design domain to avoid intersection of the domain boundary by the XFEM interface. Finally, as

discussed by [4] small perturbations of the zero LS iso-contour, i.e., ΓI,II0 lead to non-differentiabilities

in the SDF skeleton. This is conceptually illustrated in Figure 4.12. Comparing Figure 4.12 (a) and

(b) and comparing Figure 4.12 (c) and (d) illustrates this issue. While the interface is only slightly

changed, a drastically different skeleton is obtained. This might lead to oscillations in the design

evolution, especially on very fine meshes.
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4.5 Curvature Measure

To regularize the zero LS iso-contour during a LS-TO process, curvature measures are

commonly used in implicit LSM [188]. Using the previously discussed computation of the SDF and

its Laplacian, this concept is extended to explicit LS-XFEM TO in this thesis.

Mathematically, curvature quantifies the amount of change of a normal or tangent vector to a

curve or surface, when traveling along that object. This means, a perfectly flat curve or surface

have zero curvature, whereas at sharp changes (e.g., corners or kinks) the curvature is infinite. On

the other hand, a perfect circle or sphere has constant curvature everywhere.

In the context of LSM, the mean curvature Hκ can directly be obtained from the SDF as [196, 195,

119, 6]:

Hκ = −∇ · ∇φSD|∇φSD|
= −∇ · η|η| = −λ (4.5.1)

It should be noted that Eqn.(4.5.1) is only valid in 2D, whereas in 3D the mean curvature is defined

as Hκ = −2λ. Following the work of [142, 191], a squared mean curvature penalty at the material

interface can be formulated as:

pκ =

∫
ΓI,II0

λ2 dA
∫

ΓI,II0
dA

(4.5.2)

which is an integrated squared mean curvature measure over the entire material interface. The

mean curvature penalty pκ is normalized by the perimeter of the interface to achieve length-scale

independence. It is well-known that pκ regularizes the XFEM interface/perimeter during design

optimization [188], but so-far this concept has only been applied to implicit LSM using some form

of HJ equation. Instead of minimizing the mean curvature squared in Eqn.(4.5.2), a regularized

absolute of the (signed) mean curvature measure could alternatively be considered.

4.5.1 Spatially Varying Helmholtz Smoothing

As a curvature measure quantifies local spatial oscillations in the material interface, a large

degree of smoothness in the Laplacian field is required. This guarantees that Eqn.(4.5.2) truly only



103

measures oscillations of the XFEM interface and does not pickup numerical noise from the XFEM

discretization of the zero LS iso-contour. While continuity in the LS normal and LS Laplacian

field across the XFEM interface are enforced using Nitsche’s method (see Eqn.(3.1.3)), additional

smoothing is desired to guarantee stability in the Laplacian field. This could simply be achieved

by applying a larger Helmholtz smoothing radius to the LS normal field (Eqn.(4.4.9)) and the LS

Laplacian field (Eqn.(4.4.11)). This global smoothing approach would however drastically decrease

the sharpness at which the Laplacian is resolved for identification of the skeleton. To only apply

an increased smoothing in the vicinity of the interface, the following spatially varying Helmholtz

smoothing radius is defined:

r̃s = f̃ rs(1− (tanh(φSD))2) + rs (4.5.3)

which continuously increases the original smoothing radius rs by a factor of f̃ at the interface as a

function of the SDF φSD(X). Using a filter amplification factor of, for example f̃ = 1.5 delivered

a sufficient amount of smoothing at the XFEM interface, such that the mean curvature could be

obtained well. While Eqn.(4.5.3) smoothly increases the Helmholtz smoothing radius to a maximum

value at the interface, it should be noted that an additional (direct) dependency of the LS normal

field η(X) (Eqn.(4.4.9)) and the LS Laplacian field λ(X) (Eqn.(4.4.11)) on the SDF φSD(X) are

introduced. These appear as off-diagonal entries in the elemental stiffness matrix and are not yet

accounted for in Eqn.(4.4.12).

The previously developed mean curvature measure along with a spatially varying Helmholtz

smoothing is demonstrated in Section 5.7 through a numerical example.
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4.6 Design Sensitivity Analysis

In the context of gradient-based design optimization, the derivatives of objective and con-

straints with respect to the design variables need to be computed to update the design. This can

either be done by global finite-differencing, the direct method, the adjoint method or automatic

differentiation. Whereas global finite differencing is the most straight-forward approach to obtain

design sensitivities, it is computationally very costly, especially when a large number of design

variables are considered. As this is typically the case in TO, the design sensitivities of objective and

constraints are most efficiently computed using the adjoint method. Computing design sensitivities

using the adjoint method is therefore briefly discussed in the following for a static monolithic case

and a transient staggered example.

4.6.1 Static Monolithic Adjoint Method

Following the work of [102, 101, 72, 68], the derivative of the objective z with respect to the

vector of design variables s for a (quasi-) static case is:

dz

ds
=
∂z

∂s
+

(
∂z

∂u

)T du
ds

(4.6.1)

where the first term represents explicit dependencies while the second term represents the implicit

sensitivities. Considering the two sets of nodal design variables, sφ and sρ̃, and the filtering and

projection relationships defined in Section 4.1.1.3, the total derivative of Eqn.(4.6.1) can be further

expanded into:

du

ds
=





∂u
∂φ

dφ
dsφ

∂u
∂ρ̂e

∂ρ̂e

∂ρ̄e
∂ρ̄e

∂ρe
dρe

dsρ

(4.6.2)

A fundamental assumption of the NAND approach used in this work for solving the optimization

problem of Eqn.(4.0.1), is that a set of state variables u has been found which satisfy the governing

equations. In other words, the total residual R̃ =
∑NR

i Ri = 0 where Ri are the number of residuals

NR individual residual components. Under the assumption of R̃ = 0, the derivative du/ds can be
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computed from:

dR̃

ds
=
∂R̃

∂s
+
∂R̃

∂u

du

ds
= 0 (4.6.3)

Solving Eqn.(4.6.3) for du/ds and combining it with Eqn.(4.6.1) yields:

dz

ds
=
∂z

∂s
−
(
∂z

∂u

)T (∂R̃

∂u

)−1
∂R̃

∂s
(4.6.4)

where the following adjoint problem can be identified:

(
∂R̃

∂u

)T
a =

∂z

∂u
(4.6.5)

The adjoint solution is denoted by a, which is used to finally compute the expression for the design

sensitivities as:

dz

ds
=
∂z

∂s
− aT ∂R̃

∂s
(4.6.6)

It should be noted that in this thesis, the explicit contribution ∂z/∂s and the post-multiplication

term ∂R̃/∂s are obtained via finite differences on an elemental level. In a similar fashion as discussed

above, the design sensitivities of the constraints with respect to the design variables can be obtained.

For more details regarding the computation of design sensitivities with the XFEM, the interested

reader is referred to [163].

4.6.2 Transient Staggered Adjoint Method

In case of a time dependency in the forward analysis, additional contributions need to be

accounted for when computing design sensitivities via the adjoint method. This also applies in case

a staggered block solution approach is employed in the forward analysis, as discussed in Section 3.4.

The transient staggered solution approach is discussed in the following using the HM (Section 4.3.1)

as one specific example. Furthermore, only the evaluation of the adjoint problem (Eqn.(4.6.5) is

discussed, as the remainder of the computation is assumed to be identical to the one presented in

Section 4.6.1. The HM in its simplest form requires the solution of two fields. First, a (1) transient

temperature field θX is solved and using its solution, a (2) (static) signed distance field φSD(X)
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is computed. This simple example is therefore sufficient to discuss the transient staggered adjoint

analysis approach for two distinct fields which are one-way coupled. A more general treatment of

transient (monolithic) adjoint analysis is discussed in [102, 72].

The coupled adjoint system for time step q is therefore summarized as:




Kq
θθ 0

Kq
φSDθ

Kq
φSDφSD




T 

aqθ

aqφSD


 =




∂z
∂θq

∂z
∂φSD

q


 (4.6.7)

where the total adjoint solution vector aq at time step q is comprised of aq = [aqθ,a
q
φSD

].

Following the same structure as in a monolithic transient analysis, the performed time steps of

the forward analysis need to be evaluated backwards in the adjoint problem. A similar concept is

applied to the block solves of the forward problem, which also need to be evaluated backwards in

the sensitivity analysis. For a two system, two time step problem this yields for the first adjoint

problem (time step 2, linear system 2 (φSD(X))):

(
K2
φSDφSD

)T
a2
φSD

=
∂z

∂φ2
SD

(4.6.8)

where K2
φSDφSD

is the stiffness matrix of the signed distance field at time step 2, φ2
SD is the solution

of the signed distance state variables at time step 2 and a2
φSD

is the signed distance adjoint solution

at time step 2. Stepping back to linear system 1 (θ(X)), still at the second time step, the next

adjoint system to be solve is:

(
C2
θ

∆t
+ K2

θθ

)T
a2
θ =

∂z

∂θ2 −
(
K2
φSDθ

)T
a2
φSD

(4.6.9)

where C2
θ is the capacitance matrix at time step 2, ∆t is the time step size, and K2

θθ is the tangent

stiffness matrix of the temperature system at time step 2 and K2
φSDθ

is the coupling stiffness matrix

between SDF DOFs and temperature DOFs. Similar to a forward block solve, the solution of the

previous system a2
φSD

multiplied with the coupling matrix is added to the system’s RHS. With

Eqn.(4.6.9) the backward loop over both linear systems at time step 2 is complete. Next, looping

back in time, the adjoint solution of the SDF at time step 1 is solved for. It is computed as:

(
K1
φSDφSD

)T
a1
φSD

=
∂z

∂φ1
SD

(4.6.10)



107

Since the SDF is static, no contributions from the SDF adjoint vector of the previous time step

(a2
φSD

) are added to Eqn.(4.6.10). The quantities are therefore equivalent to Eqn.(4.6.8) except they

are evaluated at time step 1.

Finally, the adjoint solution of the temperature DOFs at time step 1 is computed. As the temperature

system is transient, it contains contributions from the temperature adjoint solution vector of the

previous time step (a2
θ) and from the SDF adjoint vector of the current time step (a1

φSD
) on the

RHS. It is computed as:

(
C1
θ

∆t
+ K1

θθ

)T
a1
θ =

∂z

∂θ1
−
(
K1
φSDθ

)T
a1
φSD
−
(
−C1

θ

∆t

)T
a2
θ (4.6.11)

where as before, the same quantities as in Eqn.(4.6.9) are used on the left-hand side, but evaluated

at time step 1. The last term on the RHS of Eqn.(4.6.11) is the coupling term from the previous

time step.

To be consistent with the staggered block solve used for forward analyses, within every time

step, a loop over all sub-systems is performed. Within one time step, coupling matrices and solutions

of previous systems are appended to the RHS, while in-between different time steps only coupling

information related to the transient part of system matrices is transferred to the previous time step.

This transient staggered adjoint solution approach is used in this thesis when design sensitivities of

the HM considering multiple time steps are computed.
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4.7 End Stiffness Constraint

In the context of design optimization of active structure it is crucial to ensure the structural

integrity of the final design. Applying a perturbation load opposite to the desired deformation and

measuring the amount of deformation (e.g., in terms of change in strain energy) can be used to

achieve that. The formulation of a follower Neumann BC defined in the deformed configuration and

the formulation of an end-stiffness constraint are presented in this section.

4.7.1 Follower Pressure Load

A deformation dependent (i.e., follower) Neumann boundary condition is employed, which is

formulated in the deformed configuration and mapped back to the undeformed configuration for

integration purposes. Using Nanson’s formula [86], the relationship between surface areas in the

undeformed and deformed configuration is defined as:

da n = J F−TdA N (4.7.1)

where da is an infinitesimal surface area in the deformed configuration, n is the surface normal

corresponding to it, J = det(F) is the determinant of the deformation gradient F, dA is an

infinitesimal surface area in the undeformed configuration, and N is the surface normal corresponding

to the surface area in the undeformed configuration.

The non-conservative follower pressure can be evaluated in the deformed or the undeformed

configuration as follows:

RΓP = −
∫

Γ0
T̄

δu n p̄ da = −
∫

Γ0
T̄

δu (F)−T N J P̄ dA (4.7.2)

where p̄ is the surface pressure scalar in the deformed and P̄ is the surface pressure scalar in

the undeformed configuration. For simplicity it is assumed here that both p̄ and P̄ are not state

dependent. As the work in this thesis is based on a total Lagrangian approach, integration of

the governing equations is performed in the undeformed (reference) configuration. Therefore, the

second expression of Eqn.(4.7.2) is used. Since however the mapping from the deformed (where the
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Figure 4.16: Evolution of (a) pseudo temperature load, (b) follower pressure, and (c) structural
displacement response as a function of pseudo time.

follower pressure is applied) to the undeformed configuration (where the integration is performed) is

depending on the states, a non-zero stiffness matrix contribution exists. It is computed as:

∂RΓP

∂u
= −

∫

Γ0
T̄

(
∂F−T

∂u
det(F) + F−T

∂ det(F)

∂u

)
N P̄ dA (4.7.3)

where the contributions defined previously are used.

4.7.2 Adaptive Load Stepping Approach

To efficiently predict the nonlinear deformation of slender structures undergoing large defor-

mation, an adaptive load-stepping scheme is used for the XFEM analysis, as initially demonstrated

in [68]. Schematically, the evolution of an external traction load T̃ (t), an applied follower load P (t)

and the corresponding displacement response u(t) as a function of pseudo time t is depicted in

Figure 4.16. An adaptive pseudo time-stepping scheme is used such that the initially set pseudo

time step size ∆t0 is reduced by a factor fTS in case a Newton-Raphson solve does not converge to

an equilibrium solution for a set maximum number of nonlinear iterations. The pseudo time step

size of the current pseudo time step q is therefore computed as:

∆tq+1 = fTS∆tq (4.7.4)

where ∆tm is the pseudo time step size of the previous pseudo time step q. A pseudo time step

reduction factor of fTS = 0.25 is a good balance between stability and numerical efficiency. An

adaptive time step reduction is, for example, encountered when domains of intermediate (weak)
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material dominate the structural response during a combined LS-XFEM-density TO process. In

such an event, the pseudo time step is adaptively reduced until a specified number of (converged)

nonlinear solutions are obtained at the reduced pseudo time step. After that, the original time step

size is gradually restored. The total number of pseudo time steps is adjusted accordingly to reach

the final loading time tLoad. The external traction load T̃ (t) is increased linearly between t0 and

tLoad to achieve a maximum value T̄ while the follower surface pressure load P (t) is zero during

this time. Conceptually, this is shown in Figure 4.16 (a) and (b), respectively. Between tLoad and

tPert the external pseudo temperature load is kept constant at θ̄ while a constant non-zero follower

perturbation load P̄ is applied. The magnitude of the non-zero follower perturbation load is chosen

sufficiently small, in order to achieve fast convergence of the nonlinear solver, ideally in a single

iteration. This is valid for enforcing an end-stiffness constraint measuring the change in total strain

energy-based on a linear concept. Numerical design optimization examples exhibiting this adaptive

load stepping approach are presented in Section 5.3.2.

4.7.3 Formulation of End Stiffness Constraint

To control the stiffness of self-deforming structures in the activated state, an end-stiffness

constraint is enforced. Following the work initially proposed by [95], it is formulated as:

ge =

(U ′ − U
U

)2

− γs ≤ 0 (4.7.5)

where U is the strain energy of the system after activation (with no external load applied) and U ′

is the strain energy after applying an additional external perturbation load. The limit in relative

amount of change in strain energy with and without the final perturbation load is denoted by γs.

The end-stiffness constraint therefore requires a certain stiffness of the structure in the activated

configuration, in order to resist the perturbation pressure applied in the opposite direction of the

desired deformation. It should be noted that in case of a thermomechanical problem consisting

of homogeneous material under pure thermal expansion (without any mechanical loads applied),

the strain energy is zero. This is due to a stress-free state (no mechanical strains) under isotropic



111

thermal expansion which is the case at the beginning of a combined LS-XFEM-density design

optimization process where a uniform material is present in the entire solid domain. See Section 5.3

for numerical examples.

In case of a static and conservative the mechanical model, the adjoint problem only needs

to be solved at the end of the loading process [66]. When the end-stiffness constraint is enforced,

the design sensitivities for the displacement matching objective need to be evaluated at the load

increment tLoad while the sensitivities for the end-stiffness constraint are evaluated at tPert. For

more details on computing the design sensitivities for a quasi-static problem, the reader is referred

to Section 4.6.1. Further details and applications of the adaptive time stepping approach and the

end-stiffness constraint are presented in Appendix C.



Chapter 5

Numerical Studies and Examples

Numerical examples are presented in this chapter to demonstrate the applicability of the

previously proposed design optimization and regularization schemes.

5.1 Nonlinear Total Lagrangian Element

A nonlinear total Lagrangian thermomechanical element supporting both FEM and XFEM

was developed and implemented for the work presented in this thesis. The corresponding thermome-

chanical governing equations are presented in Chapter 2 while the XFEM specific considerations are

discussed in Section 3.1. To gain confidence in the XFEM implementation and to demonstrate its

performance, comparison studies are conducted. These include mesh refinement studies against the

commercial FEA package Abaqus [180], body-fitted FEM results, experimental results and a 1D

Timoshenko beam model.

5.1.1 Mesh Refinement Studies

A cantilevered beam of size 1.0× 2.0× 10.0 is used to conduct mesh refinement studies for

different constitutive models. The formulation of each of these hyperelastic material models is

presented in Section 2.3.3. The beam is clamped on one end, and a traction load in X1, X2, and X3

direction is applied to the free end. The beam is composed of two materials where phase II does

exhibit isotropic thermal expansion while phase I does not. The swelling inclusion which is tilted

with respect to the X3 axis in the center of the beam is either modeled by a body-fitted mesh or
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Table 5.1: Properties of the cantilevered beam problem.

Property ΩI
0 ΩII

0

Young’s Modulus [N/m2] E = 1.0 · 106 E = 5.0 · 105

Poisson’s Ratio [-] ν = 0.4 ν = 0.45

CTE [1/K] α = 0.0 α = 0.027

Surface Traction [N/m2] [TX1 , TX2 , TX3 ] = [9.0 · 104, 1.5 · 104, 9.0 · 103] -

immersed on a structured background mesh using XFEM. The problem parameters are summarized

in Table 5.1. Trilinear hexahedral elements are used to model the beam both using classical FEM

and XFEM.

A linear thermal expansion model (see Eqn.(2.3.7)) is used to model the isotropic thermal

expansion in phase II. Mesh sizes ranging from h = 1.0× 1.0× 1.0 to h = 0.0625× 0.0625× 0.0625

are used in this study. An adaptive load stepping approach as presented in Section 4.7.2 is used to

facilitate convergence of the nonlinear solver. This is especially critical for simulating the equilibrium

path of strongly nonlinear structures. A comparison of the displacement predictions obtained by

linear elasticity, a Saint Venant-Kirchhoff material, a Neo-Hookean material and an alternative

formulation of the Neo-Hookean material in the deformed configuration of the loaded beam is shown

in Figure 5.1.

Figure 5.1: Deformed cantilevered beam analyzed by different thermomechanical models.
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Figure 5.2: Convergence of the tip displacement with mesh refinement, using a Saint Venant-
Kirchhoff material model.

Figure 5.3: Convergence of the tip displacement with mesh refinement, using a Neo-Hookean
material model.
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Figure 5.4: Convergence of the tip displacement with mesh refinement, using an alternative
formulation of the Neo-Hookean material model.

As expected, significant differences between linear elastic and nonlinear kinematics predictions are

observed. The predictions of all hyperelastic material models considering nonlinear kinematics only

differ slightly from each other. A quantitative comparison of the displacement prediction of the free

end of the beam is studied next for each hyperelastic material model. Comparisons between Abaqus

(reference), body-fitted FEM, and XFEM predictions are made.

Using a Saint Venant-Kirchhoff material model (see Section 2.3.3.1), the tip displacement

components are shown in Figure 5.2 for different levels of mesh refinement. Moreover, displacement

predictions of Abaqus, FEM and XFEM are compared. Good agreement between all three approaches

is seen and fast convergence towards the Abaqus (reference) solution is obtained for all three

displacement components, UX1 , UX2 , and UX3 measured at the free end.

The same study is repeated for a Neo-Hookean material, as discussed in Section 2.3.3.2. As

no Abaqus solution is available for this constitutive model, a body-fitted FEM solution based on an

established FEM implementation is used as a reference. The results are presented in Figure 5.3. A
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Figure 5.5: Curling strips used for experimental verification using different ratios of expanding
(active) material. (a) XFEM results and (b) experimental results.

similar, quick convergence behavior is seen.

Finally, a mesh refinement study for the alternative formulation of the Neo-Hookean material

model as used by Abaqus (see Section 2.3.3.3) is performed. The comparison between Abaqus

results, FEM and XFEM are presented in Figure 5.4.

For all three investigated constitutive models quick convergence of the thermomechanical XFEM

prediction against body-fitted reference FEM solutions is seen. This establishes a first verification

of the implemented nonlinear total Lagrangian XFEM element, which is discussed in more detail in

the next sections.

5.1.2 Experimental Verification

Self-curling strips are studied next to compare the finite strain hyperelastic thermomechanical

model developed in Section 2.3 against experimental results and a 1D Timoshenko beam model

presented in [45]. Bi-layer strips, composed of a swelling (active) material at the top and a non-

expanding (passive) material at the bottom are modeled via XFEM, where the solid-void interface is

along the X1 direction, see Figure 5.5 (a). The same strips with a varying ratio of active material are

also printed and activated via 4D printing [184] which lead to different radii of curvature for different

material ratios, see Figure 5.5 (b). Due to the slenderness of the beams (80.0 × 5.0 × 1.0 mm),

quadratic HEX20 elements are used to alleviate element locking, as discussed in Section 3.2.3. For
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Figure 5.6: Comparison of mean curvatures obtained using the XFEM model, 1D Timoshenko
beam model, and experiments.

more details on the problem setup and on the experimental 4D printing approach, see Appendix

C. The mean curvatures obtained for five distinct ratios of active material are shown in Figure

5.6. Comparing the XFEM results with experiments and analytical curvature values obtained by a

Timoshenko beam model shows good agreement, especially for small ratios of active material. For

active material ratios greater 50%, an over-prediction of the curvature occurs by the analytical beam

model. This is due to the presence of the Poisson’s effect and transverse bending (i.e., cylindrical

bending) of the strips, effects which are not accounted for by the simplified 1D beam model. The

employed 3D thermomechanical large deformation XFEM model however captures both of these

effects and therefore predicts the curvature quite well.

5.1.3 Sensitivity Plateaus

To verify the consistency of the tangent stiffness matrix, insensitivity of the design shape

gradients with respect to the finite difference (FD) perturbation size needs to be verified. This is

established by changing the FD perturbation size εFD used on a local level in the adjoint method,

as discussed in Section 4.6. In addition, global FD is used to verify the obtained design sensitivity.
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Figure 5.7: Single design variable cantilevered beam setup used for generating sensitivity plateaus.

For this study, a two-material cantilevered beam problem similar to the one introduced in Section

5.1.1 is used. An element edge length of h = 0.5 mm is used and the inclusion angle αD is used as a

single design variable, as illustrated in Figure 5.7. The objective function in this sweep study is the

matching of a target displacement at the free end of the beam, where a traction load is applied.

The problem parameters listed in Table 5.1 are again used.

First, it is ensured that a smooth objective function is obtained when varying the inclusion angle

20.0◦ ≤ αD ≤ 40.0◦ as a single design variable in ten steps.

Figure 5.8: Influence of FD perturbation size on objective sensitivity, using a Saint Venant-
Kirchhoff material model.
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Figure 5.9: Influence of FD perturbation size on objective sensitivity, using a Neo-Hookean
material model.

Figure 5.10: Influence of FD perturbation size on objective sensitivity, using an alternative
formulation of the Neo-Hookean material model.
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Using a LS primitive (see Section 4.1.2.2) in combination with coordinate transformation defines

the LS value for each node of the XFEM mesh. Based on a smooth objective behavior, an inclusion

angle of αD = 30.0◦ is used as the starting point for the sensitivity analysis plateaus.

Insensitivity of the objective gradient with respect to the FD perturbation size needs to

be established for a range of εFD values. If the FD perturbation is too large, inaccuracies in the

derivative are expected. And if εFD is picked too small, the FD perturbation will be overpowered

by numerical noise and inaccuracies are introduced. For a Saint Venant-Kirchhoff material model,

the sensitivity plateau is shown in Figure 5.8. It can be seen that for 1.0 · 10−10 ≤ εFD ≤ 1.0 · 10−4

the objective sensitivity is not affected by the perturbation size. The same study is repeated for a

Neo-Hookean material model and an alternative formulation of the Neo-Hookean material model.

The resulting sensitivity plateaus are presented in Figure 5.9 and Figure 5.10, respectively. From

these studies, it can also be seen that the objective sensitivity matched the one obtained by global

FD within the plateau region.

This concludes the verification of the nonlinear total Lagrangian thermomechanical XFEM element

which is used for various design optimization studies in the following sections.
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5.2 Design of Self-Folding Origami Structures using LS Primitives

The ancient art of paper folding called “origami” has recently gained large popularity in

engineering applications. To maximize the potential offered by origami, systematic design approaches

are needed. This has for example been done by [150] where classical crease pattern design rules

are employed to design technical origami structures. The performance is predicted by FEA but

computationally expensive re-meshing is required to capture the pre-determined folding patterns.

Photo-induced self-folding origami structures were designed by [134] and [117] who incorporated

simple origami principles in the design process. Alternatively, TO can be used as a systematic origami

design tool. In most literature, the optimal folding lines for a desired structure are determined via

a ground structure approach, as shown by [60, 62, 57]. While this approach greatly reduces the

number of design variables and hence simplifies the design optimization problem, the majority of

the design space is largely unexplored. In addition, by modeling origami structures as rigid plates

connected by flexible hinges, simplifications, and limitations on the mechanical model are introduced.

This approach is called “rigid origami” and is also widely used in literature. Furthermore, TO has

also been used by [58] and [56] to design active liquid crystal elastomer origami structures.

However, due to the simplified mechanical modeling assumptions and the simplifications in

formulating the design optimization problem based on a ground-structure approach, a strong need

for a systematic design and modeling approach for finding optimal folding patterns for active origami

structures is identified. In this thesis, a most general LS-XFEM TO approach is adopted to find the

crease patterns of pre-stressed light-activated polymer (LAP) composites.

5.2.1 Pre-Stressed Light-Activated Polymer Composites

The use of pre-stressed polymer composites activated by light to create self-folding origami

designs was initially introduced by [132] using the name “photo origami”. Photo origami describes

self-folding structures which transform from a flat 2D shape into a complex 3D shape by non-contact,

light inducted activation as demonstrated by [117]. A photo origami composite consists of three
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Figure 5.11: Layers of a pre-stressed LAP composite, where void cuboids are used to simulate the
localized stress relaxation.

layers, where the outer two layers are made from LAP monomer material with embedded photo

initiators and the intermediate layer is made from, for example NOA65, a commercially available

elastomer. Initially, the core elastomer material is stretched to about 15.0% tensile strain and held

in this stretched configuration during adhesion of the outer two layers. One photo sensitive LAP

layer is then bonded to either side of the stretched intermediate layer of the composite. After the

composite has fully bonded, the prescribed strain is removed and the composite shrinks due to the

contraction of the middle layer. The pre-stressed composite, with the outer two layers in a state of

compression and the center elastomer layer in tension has been formed. A schematic illustration

discretized on an XFEM mesh is shown in Figure 5.11.

Once exposed to UV radiation, bond exchange reactions take place in the outer most layers which

lead to macroscopic relaxation of the compressive stress. If this exposure to UV light and therefore

the degradation of the polymer bonds is performed in a selective and unsymmetrical manner (with

respect to the three-layer LAP composite layup), the local stress-relaxation causes the laminate to

bend or fold. This way of initiating self-folding is contact less and can therefore be easily triggered

remotely. Since the eigenstrains are built into the material as it is deposited, no mechanical training

load needs to be applied to the structure once it has been fabricated. This enables a wide range of

application for pre-stressed self-folding composite structures, especially in aerospace systems. This
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is a key advantage of LAP structures since no mechanical loading needs to be removed to perform

activation as it is, for example, needed in classical, single layer self-folding origami structures [154].

Even though a sophisticated thermomechanical model is developed by [132], eigenstrains

as the internal driving force for self-folding is simulated by simple isotropic temperature induced

swelling in this thesis. This simplified modeling approach shows sufficient accuracy while being

computationally efficient at the same time. Both of which are critical factors in order to perform

design optimization of pre-stressed composites. To model a self-folding behavior, a non-zero positive

CTE is assigned only in the top and bottom layer of the LAP composite. Therefore, if crease patterns

are introduced in the top layer for example, upwards folding of the composite will be the result of

non-counteracted thermal swelling in the bottom layer. Employing a LS-XFEM framework, the

localized stress relaxations are modeled via void domains immersed into the structure, as illustrated

in Figure 5.11. For a first proof of concept, a small strain linear elastic thermomechanical model is

used to simulate the pre-stressed LAPs while solid-void LS-XFEM is used to model the activation

process through light-induced, localized stress relaxation.

To design self-folding origami structures from pre-stressed LAP composites, the following

optimization problem is solved:

min
s

z(s,u) = w1

∫

ΓTar

u dS + w2

∫

ΓI,II0

dS

s.t. g = γv −
ΩI

0

(ΩI
0 + ΩII

0 )
≤ 0

(5.2.1)

where the objective is to minimize/maximize displacements at a target set ΓTar with a weighted

perimeter penalty to prevent the emergence of irregular geometric features [188]. Furthermore, the

optimization problem of Eqn.(5.2.1) is subject to a minimum volume constraint on the volume of

phase I, limiting the amount of void inclusions permitted in the design domain.

5.2.2 2D Zig-Zag Pattern Example

As discussed in Section 5.2.1, out-of-plane deformation of the initially flat laminate is achieved

by locally relaxing the stress in the outer, optically active (receptive to light) layers. The goal of the
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optimization process is to find spatial patterns of stress relaxations (e.g., folding patterns) such that

the self-deforming laminate assumes a desired target deformation. The necessary stress relaxation

can be realized by selective exposure of the top and/or bottom layer to a laser. This approach

allows for rather complex and non-intuitive folding patterns which can be determined by solving the

optimization problem formulated in Eqn.(5.2.1). The localization of the light exposure by a laser

beam, and hence the stress relaxation, is modeled through LS primitives, e.g., cuboids as depicted

in Figure 5.11, representing void. The individual cuboids, of which the centroid X2 coordinate is

used as a design variable, are combined via a KS function (Eqn. (4.1.10)) to obtain a nodal LS field

for generating the XFEM intersections. The advantage of using LS primitives as design variables

is twofold. First, regularization of the design variable field (similar to LS filtering) is introduced

and second, explicit geometric control of for example the depth of the void cuts or their width is

formulated into the design optimization problem.

The first design example is a 2D pre-stressed composite beam of size 60.0×3.0×1.0 mm which

should deform into a zig-zag pattern when the stress is locally relaxed in the top and bottom layer.

Due to the symmetry of the design problem, only one half of the beam is modeled using bilinear

QUAD4 plane-strain elements with an element edge length of h = 0.5. The Young’s modulus of

the middle layer is EM = 1.0MPa and the Young’s modulus of the outer layers is EO = 10.0MPa.

The Poisson’s ratio is ν = 0.3. A pre-stress of 20.0% is modeled via a CTE of αM = −0.1 in the

middle layer and a CTE of αO = +0.1 in the outer layers. The objective of this design problem is to

Figure 5.12: Zig-Zag pattern obtained from unsymmetrical stress relaxation of a pre-stressed LAP
composite.
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Table 5.2: Properties of the 3D LAP examples.

Property Value

Domain Size 34.0× 34.5 mm

Element Size 0.5× 0.5× 0.05 mm

Young’s Modulus Middle EM = 6.7 MPa

Young’s Modulus Outer EO = 4.1 MPa

Poisson’s Ratio ν = 0.3

CTE Middle αM = 0.0

CTE Outer α0 = +0.15

maximize the vertical displacements at points A and C in negative X2 direction while maximizing

the vertical displacement in negative X2 direction at point B. The volume of stress relaxed material

(i.e., void) is constrained to less or equal than 10.0% of the total beam volume.

The final result is shown in Figure 5.12 in its activated, zig-zag configuration. It can be seen

that unsymmetrical stress relaxation (with respect to the two active outer layers) was utilized by

the optimizer to achieve the desired target deformation. Due to the applied volume constraint on

the void phase, locally confined areas of stress relaxation are used, which resemble the cutting lines

by a laser source. Alternatively, this multi-criterion optimization problem could be solved by a

bound formulation [139] where a single bound parameter is minimized to minimize or maximize

multiple sub-criteria.

5.2.3 3D Water Bomb Base Example

A similar design approach is used in 3D to find the crease patterns of the Water Bomb Base,

a classical origami example. The problem parameters are listed in Table 5.2 and due to symmetry

of the design problem only one quarter of the domain is modeled and optimized. The appropriate

mechanical boundary conditions are applied weakly via Nitsche’s method (see Eqn.(3.1.3)). The

quarter of the design problem is modeled using trilinear HEX8 brick elements and a linear elastic

small strain thermomechanical model. The design problem to achieve the Water Bomb Base structure

is formulated such that the X3 displacement in the center of the design domain is maximized while
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keeping the out-of-plane displacements of the corner points at a minimum. A volume constraint

of 10.0% is enforced on the maximum allowed amount of void domain (i.e., domains with relaxed

eigenstrain). The final design in the activated configuration obtained by identifying the appropriate

folding lines through LS-XFEM TO is shown in Figure 5.13. It should be noted that both mountain

folds (convex) and valley folds (concave) are identified during the optimization process which then

lead to the desired 3D structure. A singularity exists in the center of the design domain, where

mountain folds and valley folds intersect. To avoid numerical instabilities occurring at this point, a

center hole (void) is created and excluded from the design domain. This is a commonly performed

means to avoid this geometric singularity, as for example also done by [210].

A smooth evolution of objective and constraint is obtained, where convergence of the optimiza-

tion problem is achieved after about 350 design iterations. The evolution of normalized objective

and volume constraint is shown in Figure 5.14. The slight oscillations towards the end of the design

optimization process are attributed to the limits of the linear kinematics model which is used in

this design example.

Figure 5.13: Water Bomb Base structure obtained from design optimization of a pre-stressed LAP
composite. (a) Top view and (b) bottom view.
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Figure 5.14: Evolution of (a) normalized objective and (b) volume constraint for the Water Bomb
Base example.

5.2.4 3D Origami Chomper Example

The final design optimization example used to demonstrate the ability of LS-XFEM TO

to identity crease pattern is the origami Chomper [31, 160]. The objective of this example is to

maximize the X3 displacement in the center of the design domain while minimizing the out-of-plane

displacements at the ends of the design domain along the X1 axis. A 10.0% volume constraint on

Figure 5.15: Chomper origami structure obtained from design optimization of a pre-stressed LAP
composite in (a) top view and (b) bottom view.



128

Figure 5.16: Evolution of (a) normalized objective and (b) volume constraint for the Chomper
example.

the void phase is applied and symmetry of the design problem is exploited. The problem parameters

are listed in Table 5.2. The final design is depicted in Figure 5.15 where clear mountain and valley

folds can be identified. It should be pointed out that while the mountain fold is straight and along

the X2 axis, curved valley folds are identified. In the activated stage, these lead to upwards folding

of the structure resembling the origami Chomper. As before, a smooth evolution of objective and

constraint is observed (see Figure 5.16) where the converged design is obtained after about 350

design iterations.

5.2.5 Discussion

As demonstrated through design optimization examples in 2D and 3D, LS-XFEM TO was

successfully used to determine the folding lines of active origami structures made from pre-stressed

LAP composites. Even though small strain linear elasticity was used, crease patterns were successfully

identified without reducing the design space a-priori, as for example done in a ground-structure

approach. It was however also seen that using linear elasticity can only be employed for a first proof

of concept of this design approach. Due to the slenderness of the active structures, finite deformations

and rotations are experienced which naturally require the use of nonlinear kinematics. Also, locking

of low-order elements is experienced due to the high aspect ratios of the XFEM elements, which
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requires the use of higher-order XFEM to avoid shear locking effects. Moreover, eigenstrains of up

to 15.0% were employed which are far beyond the small strain limit. This is another reason why

hyperelastic models should be employed. Finally, structural instabilities commonly experienced

by slender structures under compressive stresses are not captured by linear kinematics but are

considered in a finite strain thermomechanical model. Through the design optimization examples

it was seen that finite width folds are obtained, in contrast to the infinite folds seen in classical

paper origami. This is mainly due to finite thickness of the composite sheets used for modeling

of the origami structures and can potentially be reduced by utilizing thinner sheets of LAPs. A

comprehensive review of state-of-the-art thickness accommodation techniques for technical origami

is presented in [108].

The aforementioned limitations of the current, initial design approach are subject to future

work as great potential of LS-XFEM TO for identifying non-intuitive crease patterns for active

origami structures was seen through this preliminary study.
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5.3 Combined Level-Set-XFEM-Density Topology Optimization of 4D Printed

Active Structures

Due to the rapid advancement of additive manufacturing technologies in recent years, an

increased amount of design freedom is provided which can be utilized to maximize the performance

of printed structures. This includes the variety of materials, the accuracy of deposition, and the

possibility to combine multiple materials to create active, shape-changing structures. The concept

called 4D printing [184] has recently gained great popularity and has, for example, been used by

[65, 64] to fabricate active origami structures susceptive to a thermal stimulus. A systematic design

approach using LS-XFEM TO was presented by [125] for designing 4D printed shape memory

polymer structures assuming a small strain linear elastic response. To alleviate the need for a

complex thermomechanical training and activation cycle, which is typically required for shape

memory materials, [45] introduced the concept of direct 4D Printing. In this approach, an inelastic

printing strain is embedded into parts of a multi-material structure during a polyjet printing process.

Once the printed part is heated beyond the glass transition temperature of the glassy polymer

(passive material), the printing strain in the rubbery polymer (active material) is released causing a

shape change. An overview of recent advancements in 4D printing is given by [104].

A strong need for a systematic design approach is identified, in order to unlock the full potential

of 4D printing. Previously, only simplified design approaches for 1D rod structures [199, 44] and

simplified geometric structures [45] have been explored. In these works, only intuitive material

layouts and geometries have been considered for which the determination of the initial material

composition was straightforward. A novel design approach combining LS-XFEM and density-based

TO for designing active 4D printed structures was therefore proposed by [69, 68] where small strain

linear elasticity is assumed in [69]. A strong need for considering finite deformation nonlinear

kinematics has been identified and a more accurate thermomechanical model was used by [68]. Both

of those reference are available in Appendices C and B, respectively. The combined LS-XFEM

density TO approach used for the subsequent design examples is presented in Section 4.1.3.1.
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Figure 5.17: Initial quarter design domain for the 4D printed active structures. (a) Initial LSF
and (b) XFEM mesh of the quarter domain.

Table 5.3: Properties of the 4D printed active structures.

Property Value

Young’s Modulus Active Material EA = 0.6 MPa

Young’s Modulus Passive Material EP = 8.0 MPa

Poisson’s Ratio νA = νP = 0.4

CTE Active Material αA = 0.05

CTE Passive Material αP = 0.0

The initial design of all subsequent design problems is shown in Figure 5.17, where only

one quarter of the full model is analyzed and optimized. The inclusion radius of the initial void

pattern is ri = [14.5, 14.5, 14.5]. The appropriate mechanical boundary conditions are applied weakly

using Nitsche’s method. The inelastic printing strain is modeled via an isotropic thermal strain, as

suggested by [45]. Quadratic twenty node hexahedral (HEX20) brick elements are used for modeling

the thermomechanical response while the density and LS design variables are discretized using

trilinear shape functions.

Nodal fictitious density values and nodal LS values are used as design variables for describing

the multi-material TO problem. For both sets of design variables a linear filter of radius rf = 4.0 mm

is used. The goal of each design problem is matching of a target displacement at certain target sets
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Table 5.4: Parameters used for each 4D printed design example.

Propeller Figure-8 Cylinder Gripper 4-Legged Gripper Elevated Plane

Quarter Domain Size 80.0× 80.0× 1.0 mm 80.0× 80.0× 1.0 mm 80.0× 80.0× 1.0 mm 80.0× 80.0× 1.0 mm 120.0× 120.0× 1.0 mm

Element Edge Length h 1.0× 1.0× 0.1 mm 2.5× 2.5× 0.1 mm 2.5× 2.5× 0.1 mm 2.5× 2.5× 0.1 mm 2.5× 2.5× 0.1 mm

Initial Void Pattern 4× 4× 1 4× 4× 1 4× 4× 1 4× 4× 1 6× 6× 1

Volume Constraint γv 0.15 0.15 0.20 0.10 0.10

Perimeter Penalty γper 0.01 0.05 0.05 0.05 0.05

Change in Strain Energy γs - 5.0 · 10−5 5.0 · 10−5 1.0 · 10−6 5.0 · 10−5

Perturbation Pressure P̄ - 1.0 Pa 0.1 Pa 1.0 Pa 1.0 Pa

GCMMA Step Size 0.05 0.04 0.03 0.03 0.03

ΓTar0 , in order to achieve a desired target deformation upon activation of the 4D printed structure.

The optimization problem is subject to a volume constraint on the maximum amount of solid

material and an end-stiffness constraint to ensure structural integrity. More details regarding the

end-stiffness constraint are presented in Section 4.7. A linear filtering and a projection scheme

is applied to the density design variables to obtain clearly defined active and passive material

sub-domains. The projection sharpness parameter is increased from γP = 0.01 to γP = 48.0 using a

continuation approach.

To avoid local reduction of the member thickness, independent LS design variables are only applied

to the top surface of the plate-like structures. All nodal LS values below the top surface are

dependent on the corresponding nodal LS value on the top surface, such that φ(X1, X2, X3) =

φ(X1, X2). To guarantee mechanical connection between the target sets and the base of the

structure, strips immediately bordering the mechanical symmetry planes are excluded from the

LS-XFEM optimization process, see Figure 5.17. These domains are however still subject to material

optimization through variation of the nodal density design variables. Selective structural springs,

as discussed in Section 4.2.3, are applied in all design examples. The partial differential equations

related to the selective structural springs and the structural mechanics are solved using a staggered

solution approach in a one-way coupled manner (see Section 3.4 for more details). The material

properties used for active and passive material as well as problem specific parameters are listed in

Table 5.3 and Table 5.4, respectively.



133

The optimization problem to be solved in order to achieve the desired target deformation is

formulated as:

min
s

z(s,u) = w1

∫

ΓTar0

(u− uTar)
2dA+ w2

∫

ΓI,II0

dS

s.t. g1 =
ΩI

0

(ΩI
0 + ΩII

0 )
− γv ≤ 0

g2 =

(U ′ − U
U

)2

− γs ≤ 0

(5.3.1)

where the first term of the objective function aims to achieve a target displacement uTar0 at a

certain target set ΓTar and the second term is a perimeter penalty for regularization of the design

optimization problem. Furthermore, the optimization problem is subject to a volume constraint

g1 limiting the amount of phase I material as well as an end-stiffness constraint g2. A detailed

discussion on the formulation of the end-stiffness constraint is presented in Section 4.7.3.

Finally, the optimized designs are fabricated and activated via direct 4D printing for qualitative

comparison with the XFEM prediction. For more details regarding direct 4D printing and the

described design approach, the interested reader is referred to the works of [45, 68, 69].

5.3.1 Small Deformation

First, a linear elastic small strain design example is considered to demonstrate the applicability

of the multi-material, combined LS-XFEM density TO approach. In accordance with the quadratic

XFEM approach used, higher-order ghost stabilization as discussed in Section 3.2.1 is employed. A

ghost penalization parameter of γG = 0.001 is used to provide numerical stabilization.

5.3.1.1 Active Propeller Example

Designing an active propeller from an initially flat plate is the goal of this first design example.

To achieve a target twisting angle of ωTar = 45◦ of four propeller arms, the geometry of the structure

(solid/void) and the material layout (active/passive) are optimized simultaneously. The design

optimization problem is furthermore subject to a volume constraint of γv = 0.15 on the amount of
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Figure 5.18: Final design in the activated stage for the twisting propeller example. (a) Density
field and (b) extracted distinct material phases.

solid material. To allow for the twisting of the propeller arms, simply-supported anti-symmetry

conditions are applied along the symmetry boundaries indicated in Figure 5.17.

The final design resembling a self-twisting propeller structure is shown in Figure 5.18 where

the quarter domain was reflected to illustrate the full structure. Both (a) the final density field and

(b) distinct material phases, which are extracted in a post-processing step, are shown. It can be

seen that overall four propeller arms are formed which connect the propeller blades with the center

of the structure. These arms are mostly comprised of passive material (red) with distinct strips of

active material (blue) aligned at 45◦. This special combination of passive and active material leads

to the desired twisting of the propeller blades from the base of the structure outwards. To enable

the final design to be 4D printed, distinct material phases are extracted along a density threshold of

ρ̂e = 0.5, as shown in Figure 5.18 (b).

The evolution of objective and volume constraint are shown in Figure 5.19. Periodic increases

in the objective function are seen, which are caused by an increase of the projection parameter

through continuation, to mitigate intermediate material densities. It is also seen that the objective

function converges to a non-zero value (i.e., z/z0 = 0.13) which means the target twisting angle
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Figure 5.19: Evolution of (a) normalized objective and (b) volume constraint for the twisting
propeller example.

of ωTar = 45◦ cannot be fully achieved by the active propeller blades. This is partially due to the

simplified linear elastic kinematics and a printing strain of only 5.0% which is insufficient to yield

the desired twisting angle.

To understand the error introduced by a linear kinematics model used for this design example,

the final design is analyzed using a nonlinear kinematics model for comparison. The deformation

results from both analyses are shown in Figure 5.20 in a side-on view. It can clearly be seen

Figure 5.20: Comparison of the deformation prediction for the final propeller design using linear
and nonlinear kinematics.
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that the linear kinematics assumption significantly over-predicts the twisting motion. Due to the

large discrepancy between linear and nonlinear model, it can be seen that the small strain limit is

surpassed in this example and using a linear kinematics model introduces a significant modeling

error. From this example, it is apparent that a strong need for a fully nonlinear XFEM model exists,

which needs to be employed throughout the entire TO process. This is addressed by the following

design examples.

5.3.2 Large Deformation

Design optimization of multi-material 4D printed active structures under finite deformation

is targeted in this section. As before, a combined LS-XFEM density approach is employed to

describe the multi-material TO problem. In addition, an end-stiffness constraint is enforced to

ensure sufficient structural rigidity of the final designs. More details on the formulation of the

end-stiffness constraint are presented in Section 4.7. For stabilization of the XFEM model, a

geometric preconditioning scheme originally proposed by [107] is used.

5.3.2.1 Twisted Figure-Eight Example

The first example studied using a finite deformation kinematics model is the design of a

twisted figure-eight structure. The goal of this example is to design a self-deforming structure where

two of the target points meet at the top and two target points meet at the bottom, in the center of

the design domain, creating a twisted figure-eight like structure. The problem parameters are listed

in Table 5.4 and the material parameters used in this example are provided in Table 5.3.

The final design, in the activated deformed configuration is shown in Figure 5.21 for both (a)

the XFEM prediction and (b) the printed sample. A clear distinction between areas of active and

passive material can be made due to the employed projection scheme using a continuation approach.

A slight asymmetry between the top and the bottom legs can be seen.

This is due to a local minimum identified by the optimization algorithm which was then

manifested through an increasingly nonlinear design space caused by an increasing projection
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Figure 5.21: Final design of the twisted figure-eight design problem. (a) XFEM prediction and
(b) printed and activated specimen.

sharpness parameter. Overall, the anticipated twisted figure-eight target deformation is achieved

reasonably well, both by the XFEM model and the activated 4D printed sample. Figure 5.22 shows

the initial, undeformed configuration of the final design where (a) distinct material phases were

extracted. (b) Shows the printed structure before activation.

Figure 5.22: Final design of the twisted figure-eight in undeformed state. (a) Extracted material
phases and (b) printed inactivated structure.
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Figure 5.23: Evolution of (a) objective, (b) volume constraint, and (c) end-stiffness constraint for
the twisted figure-eight example.

The evolution of objective function, volume constraint and end-stiffness constraint is shown

in Figure 5.23. As expected, periodic increases in the objective function are observed, caused by

the continuation approach. It should also be pointed out that the volume constraint is only active

initially, as the optimizer favors slender arms of the structure to achieve the required curling. This

reduces the cylindrical bending effect caused by the isotropic printing strain which, if too dominant,

reduces the desired curling effect. Moreover, the end-stiffness constraint is only activated after 100

design iterations, after an initial structural layout was identified.

5.3.2.2 Cylinder Gripper Example

The second example considering finite deformation is the design of a cylinder gripper. The

target deformation of the initially flat structure is such that a cylinder of radius RTar = 50.0 mm is

being enclosed at a depth of X3Tar = −45.0 mm. The activated structure thus resembles gripping

of a cylindrical object. The material parameters are listed in Table 5.3 while problem specific

parameters are given in Table 5.4.

The final design in the deformed configuration is shown in Figure 5.25. Both the XFEM

model and the activated 4D printed structure are shown, which achieve the target deformation very

well. Double curvature is used to form four gripping arms with enlarged gripping bars at their tips.

To achieve the required minimum stiffness, fillets of passive (stiff) material are placed at the tips of
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Figure 5.24: Final design of the cylinder gripper design problem. (a) XFEM prediction and (b)
printed and activated specimen.

the gripper. The extracted material phases of active and passive material along with the printed

specimen are depicted in Figure 5.25.

The evolution of objective and constraints is shown in Figure 5.26. As before, a smooth

evolution of the objective is seen, except when an increase of the projection sharpness parameter

momentarily causes oscillations. For this example, the volume constraint is active and so is the

end-stiffness constraint at convergence.

5.3.2.3 Four-Legged Gripper Example

Next, designing an active four-legged gripper structure is targeted. The initially flat structure

is designed to deform such that four gripping legs meet at the bottom center of the design domain.

Figure 5.25: Final design of the cylinder gripper in undeformed state. (a) Extracted material
phases and (b) printed inactivated structure.
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Figure 5.26: Evolution of (a) objective, (b) volume constraint, and (c) end-stiffness constraint for
the cylinder gripper example.

Again, the material parameters used for this design example are listed in Table 5.3 while problem

specific parameters are presented in Table 5.4. The final design as predicted by the XFEM model

as well as the printed and activated specimen of the four-legged gripper is shown in Figure 5.27 (a)

and Figure 5.27 (b), respectively.

Interesting design features, e.g., inverted convex-concave sections along the gripping legs, are

seen in the deformed structure. These are created in response to a target deformation of increased

complexity and help facilitate the required minimum stiffness of the gripper. Due to the lack of a

Figure 5.27: Final design of the four-legged gripper design example. (a) XFEM model and (b)
printed specimen.
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Figure 5.28: Final design of the four-legged gripper in the undeformed configuration. (a) Extracted
material phases and (b) printed inactivated structure.

contact formulation in the employed XFEM model, areas of self-penetration are experienced at the

tips of the gripper. In the physical specimen, this is alleviated by a slight overlap of the gripping

legs at different X3 depths (see Figure 5.27 (b)).

The evolution of objective and constraints is presented in Figure 5.29. It should be pointed

out that for this design example, the end-stiffness constraint is directly affected by an increase in

projection sharpness, unlike in the previous example problems. Which means that the optimizer uses

as much passive (stiff) material as possible to create the required stiffness of the structure. After

every continuation step, a few design iterations are needed before the appropriate re-arrangement of

material is performed and the required end-stiffness is again achieved.

Figure 5.29: Evolution of (a) objective, (b) volume constraint, and (c) end-stiffness constraint for
the four-legged gripper design problem.
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Figure 5.30: Final design of the elevated plane design example. (a) XFEM model and (b) printed
specimen.

5.3.2.4 Elevated Plane Example

The final design example discussed in the context of combined LS-XFEM-density-based TO

of active 4D printed structures is a self-elevating plane. The objective of this problem is to find

the optimal geometry and material layout such that an initially flat plane elevates its center by

+40.0 mm in the X3-direction while exhibiting no out-of-plane deformation at the tips. In order

to achieve this, the design space is enlarged as stated in Table 5.4. As before, Table 5.3 lists the

material parameters used here. The XFEM prediction and the 4D printed and activated structure

corresponding to the final design are depicted in Figure 5.30 (a) and (b), respectively.

The corresponding initial, flat structure is shown in Figure 5.31. Inverted sections of active

Figure 5.31: Final design of the self-elevating plane in the undeformed configuration. (a) Extracted
material phases and (b) printed inactivated structure.
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Figure 5.32: Evolution of (a) objective, (b) volume constraint, and (c) end-stiffness constraint for
the elevating plane design problem.

and passive material can be seen along all four legs which yield the concave/convex deformation

required to achieve the elevation of the center plane after activation of the printed structure. Figure

5.32 shows the evolution of objective function and constraint values. The end-stiffness constraint

in this design example tends to decrease with an increasing projection sharpness parameter, as

intermediate material domains are removed. At convergence, only the volume constraint limiting

the amount of solid phase is active.

5.3.3 Discussion

A multi-material TO approach was developed by combining LS-XFEM and density-based TO

approaches. The method was successfully applied to several design optimization problems where the

optimal geometry and the material layout were determined to achieve desired target deformations

upon activation of 4D printed active structures. An initial design example under the small strain

assumption clearly demonstrated the need for considering large deformation nonlinear kinematics.

Considering finite deformations in combination with quadratic HEX20 XFEM elements, yielded

good qualitative agreement between numerical predictions and experimental results.

However, some limitations of the current design approach were identified. A need for including

a contact formulation was seen due to the fact that self-penetrating domains tend to emerge during

the optimization process. Furthermore, structural instabilities like buckling and snap-though have
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not been considered yet. These are quite prevalent in slender structures with eigenstrains as shown

by [209, 48] and should be studied in future work. Finally, to achieve quantitative comparisons

between numerical results and experimental specimen, ambient effects like gravity, the viscosity

of water and anisotropies introduced through the 4D printing process need to be included in the

numerical model for future work.
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5.4 Loosely-Coupled Combined Level-Set-XFEM-Density Approach

As discussed in Section 4.1.3.2, introducing a loose coupling between density and LS design

variables can be used to create a combined LS-XFEM-density TO approach. Combining those two,

traditionally independent, TO approaches, the benefits of both methods can be taken advantage of

while mitigating the drawbacks of either approach. Namely, the benefits of the combined method

are no need for initial seeding, minimum feature size control, and a crisp definition of the interface

geometry. At the same time, downsides of either method (fuzzy interface, need for initial seeding)

are eliminated by coupling the density design variable field and the LS design variable field through

inequality constraints. More details regarding the loose coupling approach employed here are

discussed in Section 4.1.3.2. Linear elasticity is considered for demonstration of the combined

LS-XFEM-density TO approach. Solid-void numerical examples in 2D and 3D are presented in the

following. The material properties used for all examples are summarized in Table 5.5.

5.4.1 Mass Measure only in Phase I - Hole Nucleation

First, a mass constraint is only considered in phase I, which leads to the hole nucleation

property through the lower LS penalty discussed in Section 4.1.3.2. In the following, the initial

seeding dependency of a pure LS-XFEM TO approach is demonstrated and it is shown how the

hole nucleation ability of the proposed combined LS-XFEM-density approach mitigates this long

standing issue.

The strain energy minimization problem with a mass constraint only on the solid phase (i.e., phase

I) is therefore formulated as:

min
s

z(s,u) = w1 U + w2

∫

ΓI,II0

dS + w3

∫

ΩD0

pL dV + w4

∫

ΩD0

pReg dV

s.t. g =
MI

(ΩI
0 + ΩII

0 )
− γm ≤ 0

(5.4.1)

where the objective function consists of four weighted components, such that w1 +w2 +w3 +w4 = 1.0.

The first term minimizes the strain energy U , the second term minimizes the perimeter of the XFEM

interface, the third term is the lower penalty pL causing the hole nucleation, and the last objective
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Table 5.5: Properties of the combined LS-XFEM-density structures.

Property Value

Young’s Modulus Solid Material ES = 2.0 GPa

Young’s Modulus Void Material EV = 1.0 · 10−8 Pa

Poisson’s Ratio νS = νV = 0.4

Density Solid Material ρS = 1.0

Density Void Material ρV = 0.0

contribution is the LS regularization discussed in Section 4.3. It should be pointed out that the

different objective contributions are enabled sequentially, using a continuation approach. First, a

pure strain energy minimization problem is solved, until the lower LS penalty is added. After a

XFEM interface exists, the perimeter penalty and the LS regularization term are enabled. Every

time an additional objective contribution is added, a re-normalization of all objective contributions

is performed, in order to achieve the desired scaling as specified by the weights wi.

5.4.1.1 2D Short Beam

First, a short cantilevered beam in 2D is studied to demonstrate the hole nucleation capabilities

of the combined LS-density approach. The problem setup with loads and boundary conditions is

shown in Figure 5.33. It should be noted that domains at which the traction load and the clamped

Figure 5.33: Problem setup of the short beam in 2D.
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Figure 5.34: Dependency of a LS-XFEM TO final design on the initial hole seeding for the short
beam in 2D. (a) Initial design with 4 void inclusions, (b) corresponding final design. (c) Initial
design with 6 holes, (d) obtained final design. (e) Initial hole pattern for 12 holes and (f) final
design obtained from it. (g) Initial seeding with 48 inclusions and (h) corresponding final design. (i)
Initial hole pattern with 96 inclusions, (j) obtained final structure. (k) Initial seeding pattern with
192 holes and (l) obtained final design.

boundary conditions are applied, are excluded from the design domain to ensure a mechanically

connected structure. Also, design symmetry about the X1 axis is assumed in the middle of the

design domain. A vertical traction load of TX2 = −60 is applied over a length of 2 along the right

side of the design domain. A mass constraint of γm = 0.6 is enforced and the objective weights are

wi = [0.93, 0.01, 0.05, 0.01].

The initial design dependency of LS-XFEM TO is illustrated using the 2D short beam example.

It is well known, that a large dependency of the final design on the initial guess exists in LS-XFEM

TO when no hole nucleation strategies are employed [188, 187]. This dependency is typically

mitigated by using a sufficiently large number of initial void inclusions as an initial guess [189].

Figure 5.34 shows different designs obtained from initial seeding patterns of 4, 6, 12, 48, 96, and

192 holes. As can be seen, final designs with increasingly more sophisticated micro structures are
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Figure 5.35: Final density distribution of the short beam in 2D obtained by (a) a classical SIMP
approach and (b) a combined LS-density approach. The domain decomposition in solid (ΩI

0) and
void (ΩII

0 ) obtained by the LS-density approach is shown in (c).

obtained when the design optimization process is initialized with an increasing number of holes.

Even though the design features get more refined when the number of initial holes is increased, the

structural performance (i.e., strain energy) stays largely unaffected by these more complex design

features. It is also observed that no convergence is obtained towards one specific final design (and

topology), even for a large number of holes.

In contrast, density methods suffer much less from this dependency [188]. The final density

field obtained by a SIMP TO approach with an initial density field of sρ = 0.5 is shown in Figure

5.35 (a). The final design obtained by the loosely-coupled combined LS-density approach is depicted

in Figure 5.35 (b). The lower LS penalty discussed in Section 4.1.3.2 is used in order to create

domains of a positive LSF (ΩII
0 , void) in areas of low density. Initially, the LS design variables are

all negative (ΩI
0, solid) and the coupling penalty is only enabled after 60 design iterations using

a continuation approach. The hole nucleation process takes about 20 design iterations until the

LS regularization and the perimeter penalty are activated as additional objective contributions

(see Eqn.(5.4.1)). It is important to point out that the hole seeding process (lower LS penalty) is

only enabled after a first, converged density field is obtained. This guarantees a fast and clean

hole nucleation without leading to oscillating void islands and a very irregular XFEM interface.

Moreover, during the hole seeding process, no LS regularization is performed. This ensures that

during this stage of the design optimization process, the advancement of the LSF is dominated by
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Figure 5.36: Comparison of (a) evolution of strain energy and (b) mass constraint on phase I of
pure density TO with combined LS-density TO.

the coupling term (lower LS penalty) and void domains are introduced properly in all areas of low

density.

As only the mass in phase I is considered in the mass constraint of Eqn.(5.4.1), an arbitrary amount

of high density material can be placed by the optimizer in phase II without violating the prescribed

mass ratio γm. This can be seen in Figure 5.35 (b) where high density values are obtained even

in the void phase (ΩII
0 ). This shows that as soon as void domains are introduced in the design

domain, the SIMP penalization effect is lost and solely the XFEM interface is used to enforce the

mass constraint. Undercutting of the density field by the XFEM interface is not prohibited when

only the mass of phase I is considered in the mass constraint. This means, the XFEM interface

can evolve somewhat independently of the density field as soon as the hole nucleation process is

complete. This can be seen by comparing the pure SIMP design shown in Figure 5.35 (a) with the

final design obtained by the combined approach shown in Figure 5.35 (c), where one of the internal

vertical bars has disappeared leading to a slightly different topology than in the SIMP design.

The evolution of strain energy and mass constraint enforced in phase I is shown in Figure

5.36, for both classical SIMP TO and combined LS-density TO. It can clearly be seen that initially
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identical curves are obtained, until the lower LS penalty is enabled at design iteration 60. A

few iterations after that, the XFEM interface is introduced in the combined LS-density approach

which causes a deviating behavior of the strain energy. As a complete hand-over from a pure

SIMP problem to a pure XFEM problem is performed, the strain energy quickly converges to a

significantly lower value than in the classical density problem. This difference is attributed to

areas of intermediate (weak) material which can never be fully eliminated in a pure density TO

approach. A quantitative comparison of the structural performance of the pure density design and

the combined LS-density design is not meaningful, as different analysis techniques were employed.

The density design is analyzed by classical FEM while the combined LS-density design is analyzed

by XFEM, where stabilization techniques (e.g., face-oriented ghost stabilization) and an increased

number of integration points in intersected elements may lead to slight differences in the prediction

of the physical response. A direct comparison between FEM and XFEM is therefore only possible

in the limit of mesh refinement, as performed in Section 5.1.1. To mitigate blurriness in the density

field introduced by the linear filter, the projection sharpness parameter and the SIMP exponent are

increased in a continuation approach. This leads to periodic increases in strain energy and mass

constraint as seen in Figure 5.36 for the pure density-based approach.
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5.4.1.2 3D Short Beam

A similar study, as performed in Section 5.4.1.2, is repeated in 3D in this section. For that,

the design space is increased to 60.0× 40.0× 40.0 while similar load and boundary conditions as

shown in Figure 5.33 are used. To increase computational efficiency, only one-half of the design

domain in X3-direction is modeled and optimized. The centrally applied traction load at the right

domain boundary is TX2 = −60.0 and a mass constraint of γm = 0.11 is enforced.

Unlike in the 2D case, the dependency of the final design obtained by pure LS-XFEM TO

on the initial seeding pattern is insignificant. This can be seen in Figure 5.37 for design studies

initiated with 24, 48, 192 and 378 void inclusions. Independent of the initial seeding, the expected

shear-web design connecting the centrally applied load (on the right) to the four areas of support

(on the left) is obtained. The reason for this insensitivity of the 3D short beam to the initial hole

seeding stems from the fact that the LSF can evolve much more freely in 3D and has the ability to

create holes by “punching” through a solid member in thickness direction. This is not possible in

2D and therefore a much larger dependency of the final design on the initial hole pattern is observed

Figure 5.37: Dependency of a LS-XFEM TO final design on the initial hole seeding for the short
beam in 3D. (a) Initial design with 24 void inclusions, (b) corresponding final design. (c) Initial
design with 48 holes, (d) obtained final design. (e) Initial hole pattern for 192 holes and (f) final
design obtained from it. (g) Initial seeding with 378 inclusions and (h) corresponding final design.
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Figure 5.38: Final density distribution of the short beam in 3D obtained by (a) a classical SIMP
approach (extracted iso-volume along sρ = 0.5) and (b) solid domain (ΩI

0) obtained by the combined
LS-density approach.

in Section 5.4.1.1. No significant difference in physical performance is seen between all final designs

shown in Figure 5.37.

A distinctly different final design is obtained when solving this short beam TO problem in

3D with the density method. Figure 5.38 (a) shows the final design obtained by a SIMP approach

combined with a continuation scheme to incrementally increase the projection sharpness parameter

and the SIMP exponent. As a small filter radius of rf = 1.8 h is used, a jagged density boundary

closely tracing the underlying background mesh is obtained. In general, 3D SIMP designs are

mostly comprised of truss-like features, whereas pure LS-XFEM designs in 3D are dominated by

very thin shear-webs (see Figure 5.37). The built-in minimum feature size control through filtering

and projection in density methods (see Section 4.1.1) leads to concentrated areas of solid material

(truss members), versus the LS-XFEM approach (where no minimum feature size control is achieved

through filtering and projection) yields extremely thin walls of continuous material. A similar effect

is also observed by the combined LS-density approach, where the density field is only followed

initially by the XFEM interface. After the hole nucleation process is complete, an independent



153

Figure 5.39: Comparison of (a) evolution of strain energy and (b) mass constraint on phase I of
pure density TO with combined LS-density TO for the 3D short beam problem.

evolution of the XFEM interface finally leads to the expected shear-web structure (see Figure 5.38

(b)). This happens because the XFEM interface is not tied to the density field and undercutting of

the density field is permitted in the formulation of the optimization problem presented in Eqn.(5.4.1).

The evolution of strain energy and the applied mass constraint on phase I are shown in Figure

5.39 for the SIMP design and the combined LS-density design depicted in Figure 5.38. As in the 2D

short beam problem, a continuation approach is employed to incrementally increase the projection

sharpness as well as the SIMP exponent. This causes periodic increases in strain energy and mass

constraint for the classical density design problem. Again, the behaviors of the pure density problem

and the combined LS-density problem are identical until the hole nucleation process is initiated

at design iteration 70. The combined TO problem then quickly converges to a lower strain energy

value as the XFEM interface can evolve independent from the underlying density field.
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Figure 5.40: Problem setup of the support structure in 2D.

5.4.1.3 2D Support Structure

To gain more insight in the performance of the combined LS-density TO approach, a support

structure under a distributed load is studied next. A similar problem was previously studied by [1]

using a classical SIMP approach. The roof support structure problem was initially based on the

work of [155]. The 2D problem setup with the distributed load at the top and boundary conditions

is shown in Figure 5.40. Due to the symmetry of the design problem, only half of the domain is

modeled and optimized. Symmetry boundary conditions are applied weakly in the vertical direction.

As before, the loading and the support domains are excluded from the design domain. The applied

traction load over the entire top edge is TX2 = −6.0 and a mass constraint of γm = 0.4 is enforced.

As in the previous examples, the dependency of the final design obtained by pure LS-XFEM

TO on the initial hole pattern is investigated. The initial seeding pattern for 8, 12, 24, 96, 192

and 384 holes is shown in Figure 5.41 along with the corresponding final designs (full, reflected

design domain). Initially, when increasing the number of void inclusions, an increasingly finer

structural layout is obtained. This behavior was previously observed for the short beam example

in 2D discussed in Section 5.4.1.1. In contrast to this behavior is however the fact that for the

current example, a coarser micro structure is again obtained when increasing the number of initial
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Figure 5.41: Dependency of a LS-XFEM TO final design on the initial hole seeding for the support
structure in 2D (reflected design). (a) Initial design with 8 void inclusions, (b) corresponding final
design. (c) Initial design with 12 holes, (d) obtained final design. (e) Initial hole pattern for 24 holes
and (f) final design obtained from it. (g) Initial seeding with 96 inclusions and (h) corresponding
final design. (i) Initial hole pattern with 192 inclusions, (j) obtained final structure. (k) Initial
seeding pattern with 384 holes and (l) obtained final design.

holes beyond 96. This is counter-intuitive and can be explained by the fact that when the number

of initial holes is too large, lots of small features quickly disconnect which, in turn, coarsens the

obtained final structure. Due to this coarsening effect, the structural performance (e.g., strain

energy) is worse for designs seeded with an extremely large number of holes compared to designs

seeded with an intermediate number of holes. Determining the optimal number of holes is therefore

extremely difficult and requires problem specific (iterative) tuning of parameters.

The final density distribution corresponding to a design obtained by a classical SIMP approach

is shown in Figure 5.42 (a). A fine micro-structure is obtained which connects the loaded top edge

of the structure with the supported domain in the bottom center of the domain. A continuation

approach to incrementally increase the projection sharpness and the SIMP exponent is used to

minimize the areas of intermediate densities. Figure 5.42 (b) shows the density distribution obtained

by the combined LS-density approach at the final design iteration. Similar to the short beam
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Figure 5.42: Final density distribution of the support structure in 2D obtained by (a) a classical
SIMP approach and (b) a combined LS-density approach. The domain decomposition in solid (ΩI

0)
and void (ΩII

0 ) obtained by the LS-density approach is shown in (c).

example, a uniform density of 1.0 is obtained in the solid (ΩI
0) while also a significant amount of

high density material is placed in the void domain (ΩII
0 ). This stems from the fact that a mass

constraint is only enforced within phase I which allows the XFEM interface to undercut the density

field.

By employing the density field for the hole nucleation process, a highly sophisticated micro

structure is obtained through the combined LS-density approach (see Figure 5.42 (c)). The

hole seeding capability obtained through the lower LS penalty (Eqn.(4.1.11)) places the void

inclusions optimally after a first density field was obtained. This does not only circumvent the

large computational burden present when using a large number of initial holes, but also eliminates

the parameter tuning required to determine the “right” number of initial voids. This is especially

critical for structures under distributed loads, where simply increasing the number of initial holes

does not necessarily yield finer structures with better physical performance (see Figure 5.41).

The evolution of strain energy and mass constraint on phase I is shown in Figure 5.43. Again,

the behavior of the pure density problem and the combined LS-density problem is compared. While

initially identical behaviors are seen, the combined LS-density problem quickly converges to a more

optimal design once the hole seeding process is complete. The evolution of the density problem

is influenced by a periodic increase of the projection parameter and the SIMP exponent using

continuation.
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Figure 5.43: Evolution of (a) strain energy and (b) mass constraint on phase I for a classical
density approach and the combined LS-density approach for the support structure in 2D.

5.4.1.4 3D Support Structure

The same study as conducted in Section 5.4.1.3 is repeated in 3D. The problem setup shown

in Figure 5.40 is extended accordingly and due to the mechanical symmetry of the problem, only

one quarter of the full domain is analyzed and optimized in 3D. The applied traction load over the

entire top face is set to TX2 = −2.0 and the mass constraint is reduced to γm = 0.125.

First, the initial design dependency of the LS-XFEM TO approach is studied for the 3D

support structure problem. The initial void patterns of 24, 48, 192 and 756 inclusions along with

their corresponding final designs are shown in Figure 5.44. It should be noted that all designs shown

in Figure 5.44 are reflected and turned upside down for illustration purposes. For this 3D example,

no converging trend towards one design can be identified when increasing the number of initial void

inclusions. The obtained final structures vary arbitrarily and therefore a strong dependence of the

final design on the initial seeding exists, even in 3D. One common feature of all support structures

obtained by pure LS-XFEM TO is the fact that a central shear-web exists. Depending on the initial

seeding, more or less pronounced fingers appear from that, connecting the loaded top surface with

the base support. In some designs, these fingers are less pronounced (blended into each other),
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Figure 5.44: Dependency of a LS-XFEM TO final design on the initial hole seeding for the support
structure in 3D (reflected design, upside down). (a) Initial design with 24 void inclusions, (b)
corresponding final design. (c) Initial design with 48 holes, (d) obtained final design. (e) Initial hole
pattern for 192 holes and (f) final design obtained from it. (g) Initial seeding with 756 inclusions
and (h) corresponding final design.

such that additional shear-webs are formed. Since no minimum feature size control is imposed on

the LS-XFEM design problem, these shear-webs typically tend to have a thickness in the order of

the mesh size h. While the XFEM attempts to geometrically resolve those minimum features, the

analysis accuracy drastically decreases and the spatial oscillations are observed along the XFEM

interface. Moreover, the applied LS regularization suffers in those insufficiently discretized small

features. For a more detailed discussion on this, the reader is referred to the discussion in Section

5.5.

The final design obtained by a classical density method is shown in Figure 5.45 (a). Similar to

the short beam problem in 3D (Section 5.4.1.2) a drastically different design is obtained compared

to the previously discussed LS-XFEM TO results. This is again due to the built-in minimum feature

size control exhibited by the density method. Due to that, bar-like features which concentrate the

available amount of material are preferred over mass-distributing shear-webs. The close tracing

of background elements by the iso-volume extracted along sρ = 0.5 is again due to a small filter

radius and a high projection sharpness. As before, the projection sharpness parameter and the

SIMP exponent are increased incrementally by a continuation approach. The final design obtained
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Figure 5.45: Iso-volume of the final density distribution of the support structure in 3D obtained
by (a) a classical SIMP approach and (b) the extracted solid phase obtained through a combined
LS-density approach. Both designs are reflected and depicted upside down for clarity.

by the combined LS-density approach is shown in Figure 5.45 (b). Great similarities between this

design and the pure LS-XFEM designs shown in Figure 5.44 can be seen. Even though the truss-like

density field is used for hole nucleation, the XFEM interface quickly departs from the original

density field and evolves independently, creating again a shear-web type structure. Without any

form of feature size control enabled on the LS-XFEM problem, these thin-walled structures are

preferred because of their optimal physical performance.

Figure 5.46: Evolution of (a) strain energy and (b) mass constraint on phase I for a classical
density approach and the combined LS-density approach for the 3D support structure.
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Figure 5.47: Comparison of the support structure final designs obtained by (a) classical density-
based TO, (b) density-based TO on a refined mesh, (c) combined LS-density TO and (d) pure
LS-XFEM TO.

The evolution of strain energy and mass constraint on phase I is shown in Figure 5.46 for the 3D

support structure. As before, an identical behavior of the pure SIMP problem and the combined

LS-density problem is seen until the hole nucleation process is initiated. From design iteration 70

onward, the combined LS-density problem quickly convergences to a lower strain energy value than

the density problem. The evolution of the density problem is periodically affected by the incremental

increase in SIMP exponent and projection sharpness parameter via a continuation approach.

A comparison of final designs obtained for the support structure problem in 3D is shown in

Figure 5.47. Figure 5.47 (a) shows different perspectives of the final design obtained by a classical

density approach. The reason that this design looks less jagged as the density design shown in

Figure 5.45 (a) is due to the fact that for all designs shown in Figure 5.47, no projection and no

feature size control is enforced. This leads to a smoother iso-volume extracted from the density field

and finer fingers attaching to the loaded surface. Using the same mesh size (i.e., h = 1.0× 1.0× 1.0)

and solving the 3D support structure via a pure LS-XFEM approach (initial design with 192 holes),

yields the final design shown in Figure 5.47 (d). As discussed before, a centrally located shear-web
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with fine structural features connecting to it is obtained. This design is drastically different than

the one obtained by a classical density-based TO approach. However, the density methods tends

to converge towards the same shear-web type structures as produced by the LS-XFEM approach

with mesh refinement. This can be seen in Figure 5.47 (b), where a background mesh of size

h = 0.5 × 0.5 × 0.5 was used. It is apparent that the centrally located shear web has increased

compared the same design on a coarser background mesh (see Figure 5.47 (a)). Also, the obtained

fingers have been greatly refined in terms of spatial resolution. This trend, that density-based TO

yields similar results as obtained by LS-XFEM TO was also found by [189]. The computational

cost associated with this increased geometrical resolution is however significant. When comparing

computational cost, the LS-XFEM approach is by far more efficient while yielding mechanically

more meaningful designs due to its increased spatial resolution on coarser meshes. The combined

LS-density approach yields a designs which also benefits of the increased geometrical resolution

(see Figure 5.47 (c)), while not suffering from the initial design dependence exhibited by classical

LS-XFEM TO.

5.4.2 Mass Measure in Phase I - Hole Nucleation and Prevention of Undercutting

To not only introduce void domains but also prevent the XFEM interface from undercutting

the density field, both the lower LS penalty and the upper LS penalty (Eqn.(4.1.11) and Eqn.(4.1.12),

respectively) are used. For that, a strain energy minimization problem subject to a mass constraint

within phase I and a LS regularization constraint is formulated as:

min
s

z(s,u) = w1 U + w2

∫

ΓI,II0

dS + w3

∫

ΩD0

pL dV + w4

∫

ΩD0

pU dV + w5 MII

s.t. g1 =
MI

(ΩI
0 + ΩII

0 )
− γm ≤ 0

g2 =

∫

ΩD0

pReg dV − εReg ≤ 0

(5.4.2)

In addition, a penalty on the mass in phase II is added to the objective. The objective weights

are wi = [0.839, 0.01, 0.05, 0.01, 0.1, 0.001], a mass ratio of γm = 0.35 is enforced, and the

LS regularization tolerance is εReg = 0.05. It should be pointed out that in Eqn.(5.4.2) the LS
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Figure 5.48: Problem setup of the MBB beam in 2D with load and boundary conditions. Due to
mechanical symmetry, only one half of the full domain is modeled and optimized.

regularization penalty pReg is applied as an additional constraint with a tolerance εReg. This ensures

a more strict enforcement of the LS regularization compared to formulating it as an additional

penalty term on the objective.

The MBB beam [17, 97], a classical benchmark problem in structural TO, is used to study the

formulation of Eqn.(5.4.2) in 2D. The problem setup with load and boundary conditions is shown in

Figure 5.48. The final density field is shown in Figure 5.49 (a), while the final LSF is depicted in

Figure 5.49 (b). It is observed that the XFEM interface follows the density field much closer, than

it did without the upper LS penalty (see Section 5.4.1). Also, any high density values have been

Figure 5.49: Final design of the 2D MBB beam. (a) Nodal density field, (b) nodal LS field warped
for illustration purposes, and (c) the domain decomposition into solid (ΩI

0) and void (ΩII
0 ) domains.
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Figure 5.50: Evolution of (a) normalized objective, (b) mass constraint on phase I, and (c) the LS
regularization constraint for the 2D MBB beam problem.

removed from the void domain due to the mass phase II penalty added to the objective formulation.

However, local undercutting of the density field by the XFEM interface is still observed in some parts

of the design domain (see highlighted regions in Figure 5.49 (a)). These are predominately found

near sharp, reentrant corners where the XFEM interface favors undercutting and does not follow

the density field. The LSF shown in Figure 5.49 (b) is very well regularized, except in areas where

the interface undercuts the density field. In those localized regions, the upper LS penalty (which

prevents undercutting) is competing with the LS regularization (which enforces a unit gradient of

the LSF in the vicinity of the interface). Since neither of them can be achieved fully, a degenerated,

flat LSF is obtained in those domains. As discussed in [67], a degenerated LSF leads to spurious

oscillations of the interface and may lead random material inclusions in the void domain. This is

the case in this 2D MBB beam example and shown in the highlighted regions in Figure 5.49 (c).

This instability caused by the formulation of the optimization problem is also reflected in the

evolution of the objective, shown in Figure 5.50 (a). As the design space becomes more nonlinear due

to an increased projection sharpness and SIMP exponent, large oscillations appear in the objective.

These are caused by the competing formulation of upper LS penalty (to prevent undercutting) and

LS regularization (to assure a smooth LSF). Since both of those measures are formulated in the

absence of any physical quantity (e.g., strain energy, mass of the structure), the optimizer is unable

to properly account for both of them while still satisfying the mass constraint and minimizing
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strain energy. This leads eventually to divergence of the optimization problem, because of a locally

degenerated LS field causing spurious material inclusions in the void phase. Therefore, using the LS

upper penalty to prevent the XFEM interface from undercutting the density field is not further

explored in this thesis.

5.4.3 Global Mass Measure - Hole Nucleation and Minimum Feature Size Control

In this section, a globally enforced mass measure (i.e.,M =MI +MII) is applied to combine

the hole nucleation process with minimum feature size control. Control of minimum features is

achieved by preventing the XFEM interface from undercutting the density field. Therefore, minimum

feature size on the LS field can be controlled through filtering and projection of the density design

variables.

5.4.3.1 Mass Minimization - 2D MBB Beam

First, a global mass minimization formulation subject to a strain energy constraint is explored.

It is stated as:

min
s

z(s,u) = w1 (M) + w2

∫

ΓI,II0

dS + w3

∫

ΩD0

pL dV + w4

∫

ΩD0

pReg dV

s.t. g =
U
UTar

− 1.0 ≤ 0

(5.4.3)

where the target strain energy is denoted by UTar. In this formulation, an initial, uniform density

field of sρ = 1.0 is used to initially satisfy the strain energy constraint. The formulation of Eqn.(5.4.3)

can be used to achieve designs with small volume/mass fractions without using a continuation

approach on the volume or mass constraint. Moreover, the formulation of Eqn.(5.4.3) is advantageous

for design studies involving minimum feature size, as no conflict between the minimum feature size

measure and the enforced mass constraint is created. The only drawback of the mass minimization

formulation presented above is that a proper target strain energy value UTar needs to be know a priori.

In general, this can be challenging, but can be achieved by first solving a strain energy minimization

problem (Eqn.(5.4.1)) to obtain this value. For the subsequent studies, a value of UTar = 20.0 is

used. The weights of the individual objective contributions are wi = [0.93, 0.01, 0.05, 0.01].
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Initially, a classical LS-XFEM approach is used to solve the MBB beam TO problem in 2D,

using the formulation of Eqn.(5.4.3). The problem setup shown in Figure 5.48 is used. The initial

design and the final design (both reflected to show the full domain) are presented in Figure 5.51

(a) and (b), respectively. The initial design is seeded with 186 void inclusions and a filter radius

of rf = 1.6 h is used for the LS design variables. As expected, a network of trusses is obtained

as the final design, which transfers the centrally applied load from the top edge to the supported

corners at the bottom edge. However, as discussed in Section 4.1.2, minimum feature size cannot be

controlled by linear filtering of the LS design variables.

Minimum feature size control through linear filtering and projection is possible in density-based

TO, and this feature is also inherited by the combined LS-density approach when a global mass

measure is used. The resulting designs show different refinement levels of the obtained micro structure,

depending on the employed linear filter radius used on the density design variables. Figure 5.51 (d),

(f), (h) and (j) show the final designs obtained by filter radii of rf = [1.6 h, 2.4 h, 3.2 h, 6.4 h]

using the combined LS-density approach. The corresponding density fields are shown in Figure

5.51 (c), (e), (g) and (i). It can be seen that the density field is nowhere undercut by the XFEM

interface. This is achieved by using a global mass measure, which not only accounts for the mass

in phase I (ΩI
0, solid), but also includes the mass of phase II (ΩII

0 , void). This formulation makes

it unattractive for the optimizer to place any high-density material in phase II, as it does not

contribute towards the stiffness of the structure but only towards the mass measure. On the other

hand, it is not advantageous to undercut the density field, as it results in a harm of the stiffness,

while still contributing to the mass measure enforced in the entire domain. This penalization effect

(similar to the SIMP penalization but now enforced through the XFEM interface which distinguishes

between solid and void domain) leads to the fact that the XFEM interface strictly traces the density

field without ever undercutting it. Different minimum feature sizes caused by different filter radii on

the density field are therefore directly translated to the XFEM interface and therefore the LS field.

Increasing the filter radius removes small structural members from the final design and regularizes

the overall final geometry (see Figure 5.51). The fact that the minimum achieved features (indicated
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Figure 5.51: Solutions of the 2D MBB beam formulated as a mass minimization problem (reflected
for illustration purposes). (a) Shows the initial design of a pure LS-XFEM approach and (b) is
the corresponding final design obtained with a filter radius of rf = 1.6 h. (c) Shows the final
density field obtained by the combined LS-density approach with a filter radius of rf = 1.6 h, (d)
is the corresponding solid-void domain decomposition. (e) Shows the final density field obtained
by the combined approach with a filter radius of rf = 2.4 h, (f) is the domain decomposition
corresponding to it. (g) Shows the elemental density field obtained with a filter radius of rf = 3.2 h
and the combined LS-density approach, (h) is the corresponding solid-void layout. (i) Final density
field obtained through the combined LS-density approach with a filter radius of rf = 6.4 h, the
corresponding domain layout is shown in (j).

by red circles) are slightly smaller than the applied filter radii, is due to a well-known limitation of

density-based TO. Due to the nodal density design variables, it is possible to achieve structural

members of reduced thickness when only selected design variables are active (before filtering and

a projection) at the final design. In order to achieve exact minimum feature size, controlled by

the linear filter radius on the density design variables, a so-called robust optimization approach

[166, 76] needs to be employed. In this approach, multiple designs with different filter radii are

optimized simultaneously, such that the exact prescribed minimum feature size is achieved globally.
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Figure 5.52: Evolution of (a) the global mass measure and (b) the strain energy constraint for the
pure LS-XFEM approach and the combined LS-density approach for a filter size of rf = 1.6 h.

It should also be pointed out that a small fraction of elements with intermediate densities

remains in the vicinity of the interface, even at the converged stage. This finite transition region

between high-density and low-density material is inherited from the density-based approach and can

only partially be mitigated by the XFEM where subphase constant material properties are used.

The evolution of the global mass measure and the strain energy constraint for a classical

LS-XFEM approach and the combined LS-density approach are shown in Figure 5.52 (a) and (b),

respectively. It can be seen that while the pure LS-XFEM design quickly converges to a lower overall

mass, the mass of the combined approach is influenced by the applied continuation approach on

the SIMP exponent and the projection sharpness parameter. The reason that the pure LS-XFEM

design converges to a much lower mass is the fact that arbitrarily fine features are allowed as no

minimum feature size control is imposed. In contrast, the combined LS-density approach inherits

the minimum feature size control from classical density methods. The overall mass is therefore

higher, to the benefit of a more regularized and feature size controlled final design.
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5.4.3.2 Strain Energy Minimization - 3D MBB Beam

The final example used to demonstrate the capabilities of the combined LS-density approach

is the MBB beam problem in 3D. Unlike before, a strain energy minimization formulation subject

to a global mass constraint is used. The optimization problem is formulated as:

min
s

z(s,u) = w1 U + w2

∫

ΓI,II0

dS + w3

∫

ΩD0

pL dV + w4

∫

ΩD0

pReg dV

s.t. g =
M
γm
− 1.0 ≤ 0

(5.4.4)

where a mass constraint of γm = 0.15 is enforced. An extension of the problem setup shown in

Figure 5.48 to 3D is used. Due to the symmetry of the design problem, only one quarter of the full

design space is analyzed and optimized.

The final design obtained by classical LS-XFEM TO is shown Figure 5.53 (b) and (c), using

the initial void seeding, depicted in Figure 5.53 (a), as a starting point. Similar to the 3D short

beam example studied in Section 5.4.1.2, the typical shear-web designs is obtained. While it seems

advantageous to use continuous walls connecting the two flanges at the top and bottom of the beam,

the wall thickness typically is in the order of the element edge length h. This does not only reach the

limit of the geometric resolution of the XFEM, but also leads to reduced analysis accuracy. When

using the combined LS-density approach with feature size control, truss-like features are preferred

over shear-webs. Figures 5.53 (e) and (f) show the final design obtained by the LS-density approach

with a filter radius of rf = 2.4 h on the density design variables. The elemental density distribution

of the same design is depicted in Figure 5.53 (d). While this design still exhibits a centrally located

shear-web, increasing the filter radius to rf = 3.6 h fully eliminates this feature. This is shown in

Figures 5.53 (h) and (i), where a network of trusses constitutes the final design. Figure 5.53 (g)

shows the corresponding density layout.

Identical to the 2D examples, undercutting of the density field by the XFEM interface is

successfully prohibited by a global mass measure (see Eqn.(5.4.4)). The XFEM interface essentially

extracts an iso-volume along the ρ̂ = 0.5 iso-volume of the density field. This is a common post-

processing step performed (manually) in density TO after a converged design is found. As it is
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Figure 5.53: Final designs obtained for the MBB beam TO problem in 3D. (a) Initial design
and (b) and (c) final design obtained by classical LS-XFEM TO. (d) Elemental density field of the
final design obtained by combined LS-density TO for a filter radius of rf = 2.4 h. (e) and (f) are
side-view and front-view of the same final design. (g) Density field on the final design obtained by
LS-density TO with a density filter radius of rf = 3.6 h, (h) and (i) are show the corresponding
solid phase of the final design.

done in a post-processing step, the analysis model operates on the jagged, approximated domain

boundary. Since in the combined LS-density approach the XFEM interface continuously follows the

density field, a highly accurate structural analysis and sensitivity analysis is performed throughout

the full design process. Once a converged design is found, the zero LS iso-contour can easily be

extracted for manufacturing without the need for additional manual post-processing.

The evolution of strain energy and global mass constraint for the two designs obtained by

the combined LS-density approach discussed previously is shown in Figure 5.54. Again, due to the

strong coupling of the XFEM interface to the density field, both strain energy and global mass

constraint are influenced by the continuation scheme. No significant influence of the employed filter

radius on the structural performance of the final designs is observed.
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Figure 5.54: Evolution of (a) strain energy and (b) global mass constraint for designs obtained by
the combined LS-density approach for different filter radii.

5.4.4 Discussion

Multiple aspects of the proposed combined LS-density TO approach have been demonstrated

through the previous numerical examples in 2D and 3D. By combining density-based and LS-XFEM-

based TO, the advantages of either method are exploited to eliminate their mutual drawbacks.

This leads to a superior TO method. The advantages of the combined approach are that no initial

seeding is required, minimum feature size can be achieved through linear filtering and projection of

the density field, and a crisp and unambiguous material interface is obtained by the XFEM.

The increased computational cost due to twice the number of design variables is partially

offset by the fact that, for example, the void inclusions are placed optimally in the design space

through a penalty formulation. This eliminates the drawback of pure LS-XFEM TO where a large

number of arbitrarily placed initial holes as a starting point is typically used, which significantly

increases the computational cost due to a large number of intersected elements.

It was shown that a physics-based formulation is required in order to prevent undercutting of

the density field by the XFEM interface (e.g., global mass constraint). Using the upper LS penalty

leads to divergence of the optimization problem as a non-physics-based regularization formulation
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competes with the mass constraint on phase I, which is solely enforced by the XFEM interface.

When using a global mass measure, a small fraction of elements with intermediate material is

obtained in the vicinity of the XFEM interface. This however can be mitigated by mesh refinement

or a higher projection parameter on the density field.

Overall, the combined LS-density method showed excellent performance in terms of computa-

tional efficiency, robustness and analysis accuracy when compared to either classical density-based

TO or pure LS-XFEM TO in both 2D and 3D.
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5.5 Explicit Level-Set-XFEM Regularization

The explicit LS regularization approach discussed in Section 4.3 is applied towards numerical

examples in 2D and 3D in the following. The optimization problem solved in the subsequent design

examples is formulated as:

min
s

z(s,u) = w1
z1(s,u)

z1(s0,u0)
+ w2

∫
ΓI,II0

dS
∫

(ΓI,II0 )0 dS
+ w3

pReg(s)

pReg(s0)

s.t. g =
ΩI

0

(ΩI
0 + ΩII

0 )
− γv ≤ 0

(5.5.1)

where the objective function depends on a physical performance quantity z1(s,u) (e.g., strain

energy), a perimeter penalty and the LS regularization penalty pReg introduced in Section 4.3.2.

Each of these contributions is weighted, such that w1 +w2 +w3 = 1.0. The optimization problem is

furthermore subject to a volume constraint γv on the volume of phase I. It should also be noted that

all objective contributions in Eqn.(5.5.1) are normalized by their initial value to achieve appropriate

scaling of the individual contributions. For design problems discussed in this study, the design

variables only consist of LS design variables, such that s = sφ.

The parameters used for all numerical studies in this section are listed in Table 5.6, where the

bounds and the target LS value are specified as a function of the element edge length h. It should be

pointed out that the design variable bounds are chosen such that the target LSF φBnd is contained

within. The temperature field for the HM is solved in a single time step unless noted otherwise. For

Table 5.6: Problem parameters for all LS regularization examples.

Parameter Value

Weak BC Penalty γN = 100/h

Ghost Penalty γG = 0.001

Perimeter Penalty Weight w2 = 0.01

Lower Bound of s sL = −3h

Upper Bound of s sU = +3h

Target of LSF φBnd = 2h

Filter Radius in 2D rf = 1.6h

Filter Radius in 3D rf = 2.4h
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all structural problems, selective structural springs as discussed in Section 4.2.3 are employed. All

systems (i.e., HM, selective structural springs and physics) are solved using a staggered solution

approach in a one-way coupled fashion. For more details regarding a block solution approach, see

Section 3.4.

5.5.1 Linear Elasticity

As a first set of examples, linear elastic hanging bar design problems are solved in 2D and 3D.

These problems are modified versions of the two bar truss example presented in [168] where it is

solved with the density method. The problem parameters used for linear elasticity are summarized

in Table 5.7.

5.5.1.1 Hanging Bar in 2D

The problem setup and the initial design for the hanging bar problem in 2D, discretized

with four-node plane stress XFEM elements is shown in Figure 5.55 (a). The symmetry of the

design problem is taken into account, such that only one half of the design domain is modeled and

optimized. Symmetry boundary conditions are applied weakly using Nitsche’s method. The top of

the design domain is clamped while a traction load of TX2 = −30.0 N/mm is applied over a width

of 12.0 mm at the bottom center. A volume constraint of γv = 0.16 on phase I is applied to the

design problem, where minimization of the strain energy is the objective. In addition, a perimeter

penalty and the LS regularization penalty as formulated in Eqn.(5.5.1) are minimized.

Table 5.7: Properties for the linear elastic LS regularization design problems.

Parameter Value

Young’s Modulus E = 2.0 · 103 MPa

Poisson’s Ratio ν = 0.0

LS Regularization Weight w3 = 0.01

Element Edge Length h = 1.0 mm

Selective Spring Ratio rs = 1.0 · 10−12
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Figure 5.55: Problem setup with load and boundary conditions for the 2D hanging bar problem.
(a) Initial design and (b) final design.

Figure 5.55 (b) shows the final design, which consists only of a single vertical bar. A comparison of

the evolution of objective and constraint with and without LS regularization is shown in Figure

5.56. Initially, significant oscillations are seen in both objective and volume constraint when no

LS regularization is applied. These are almost fully removed through the LS regularization. In

addition, faster convergence of the optimization problem is seen when the LSF is regularized. Since

the regularization contribution vanishes at convergence, the same objective and constraint values

are obtained as in the case where no regularization is applied.

Figure 5.56: Evolution of (a) normalized objective and (b) volume constraint on phase I for the
2D hanging bar problem.
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Figure 5.57: (a) Snapshots of the design LSF with and without LS regularization during the
optimization process. (b) Final design LSF without LS regularization and (c) with LS regularization.

Snapshots of the design LSF φ(X) taken during the optimization process are shown in Figure

5.57 (a), where a large effect of the LS regularization on the design LSF is observed. The line at

X2 = 40.0 at which these snapshots are taken is highlighted in red in Figure 5.55 (b). It can be seen

that LS regularization maintains a unit normal slope of the LSF in the vicinity of the interface while

upper and lower LS bounds are assumed away from it. Without any regularization, oscillations in

the LSF are seen and a degenerated slope in the vicinity of the interface is observed. A LSF close to

zero near the XFEM interface oftentimes leads to isolated material domains in the void caused by

numerical noise in the design LSF. These, in turn, lead to ill-conditioning, oscillations in objective

and constraint, and potentially to divergence of the optimization problem when no LS regularization

is employed. With LS regularization, greater numerical stability of the optimization problem is seen

which means larger optimization step sizes can be used without leading to divergence.

Figure 5.57 (b) and (c) show the design LSF at the final design iteration without LS regu-

larization and with LS regularization, respectively. Similar zero LS iso-contours are obtained, but

away from the interface, a large effect of the LS regularization is seen. The imprint of the initial
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Figure 5.58: Problem setup with load and boundary conditions for the 3D hanging bar problem.
(a) Initial design and (b) final design.

design is completely removed in Figure 5.57 (c), while in 5.57 (b) the initial LSF is still observable

at convergence. In addition, a smooth unit normal gradient is achieved by the LS regularization in

the vicinity of the interface ΓI,II0 .

5.5.1.2 Hanging Bar in 3D

The design study of Section 5.5.1.1 is extended to 3D next. The initial design along with load

and boundary conditions is shown in Figure 5.58 (a). Due to the symmetry of the design problem,

only one quarter of the domain is modeled and optimized. The appropriate symmetry boundary

conditions are applied weakly. A volume constraint of γv = 0.035 is enforced and the strain energy

of the four bar truss is minimized. The final design, comprised of a single cylindrical bar with a

nearly constant cross section is shown in Figure 5.58 (b). The evolution of objective and constraint

for the 3D hanging bar problem is shown in Figure 5.59 where an effect of LS regularization can

be seen. A much smoother design evolution is obtained when the LSF is regularized. Oscillations

in objective and constraint, especially early in the design process, are largely mitigated. It is also

worth pointing out that with LS regularization a slightly smaller objective value is obtained at

convergence. This can potentially be attributed to a local minimum, identified by the optimizer
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Figure 5.59: Evolution of (a) normalized objective and (b) volume constraint on phase I for the
3D hanging bar problem.

Figure 5.60: Comparison of (a) the final design LSF without LS regularization and (b) with LS
regularization for the 3D hanging bar problem.

when no LSF regularization is applied.

Figure 5.60 shows a comparison of the LSFs obtained at convergence, with and without LS
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Table 5.8: Properties for the hyperelastic LS regularization design problems.

Parameter Value

Young’s Modulus E = 2.0 · 103 MPa

Poisson’s Ratio ν = 0.4

LS Regularization Weight w3 = 0.01

Element Edge Length h = 1.0 mm

Selective Spring Ratio rs = 1.0 · 10−12

regularization. As in the 2D case, a smooth design LSF is obtained which has a unit norm slope

in the vicinity of the interface and assumes φBnd away from it. Without any regularization, the

initial design LSF is still imprinted at convergence and spatial oscillations in the LSF are seen. In

addition, the slope of the LSF near the interface is not guaranteed to be of unit magnitude. While

yielding similar zero LS iso-contours, significant improvements in terms of stability and robustness

of the LS-XFEM optimization approach have been observed.

5.5.2 Nonlinear Hyperelasticity

After an initial applicability of the novel LS regularization approach was demonstrated for

linear elastic structural problems, finite strain hyperelasticity is considered next. The problem

parameters for the beam problems studied in 2D and 3D using a hyperelastic Saint Venant-Kirchhoff

material model are listed in Table 5.8.

5.5.2.1 Beam in 2D

First, a beam structure in 2D is optimized, where the initial design with load and boundary

conditions is presented in Figure 5.61 (a). A traction load of TX2 = −10.0 N/mm is applied to the

top center of the structure. Mechanical and design symmetry is used to reduce the model domain

to one half. Plane strain 4 node quadrilateral nonlinear XFEM elements are used for modeling

in 2D, as suggested by [162]. The objective is again strain energy minimization with a perimeter

penalty and a LS regularization penalty. The optimization problem is furthermore subject to a
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Figure 5.61: 2D beam problem setup with load and boundary conditions. (a) Initial design and
(b) zero LS iso-contours of the final designs with and without LS regularization.

volume constraint of γv = 0.6. A comparison of the zero LS iso-contours obtained with and without

LS regularization is shown in Figure 5.61 (b). While overall similar designs are obtained, slight

differences in the final geometry are observed. These stem from the continuous LS regularization

which facilitates convergence of the optimization problem and increases stability of the TO approach.

When comparing the performance of the final designs, a slight decrease in strain energy by 0.1% is

seen when LS regularization is applied. A similar effect was observed in Section 5.5.1.2 where a

local minimum is identified when no LS regularization is used, causing an increased objective value

at convergence.

The warped design LSF obtained at convergence with and without LS regularization is shown

in Figure 5.62 (a) and (b), respectively. Clear differences can be seen in terms of spatial regularity,

smoothness and uniformity of the spatial gradient of the LSF in the vicinity of the XFEM interface.

While no specific LS values are obtained without regularization, the target LS value (±φBnd with

zero LS gradient) is obtained away from the interface through LS regularization. In the vicinity of

the interface, a smooth and unit normal gradient is obtained. Figure 5.62 (c) shows the warped SDF

corresponding to the final design obtained with LS regularization. As discussed in Section 4.3, the
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Figure 5.62: Comparison of the warped final design LSF. (a) Without LS regularization and (b)
with LS regularization. (c) Shows the corresponding SDF for the final design.

SDF is the starting point for constructing the smoothly truncated LS target field for regularization

of the design LSF. Overall, the SDF is well resolved. Except in areas of small geometric features (in

the order of the element edge length h), the resolution of the SDF is insufficient and therefore the

accuracy of the reconstructed target field (see Enq.(4.3.7)) suffers.

Influence of the LS Regularization Penalty Weight

A common challenge of penalty formulations as the one used in the formulation of the objective

in Eqn.(5.5.1) is determining an appropriate weighting of the individual objective contributions.
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Figure 5.63: Influence of the LS regularization penalty weight on the evolution of (a) the strain
energy and (b) the LS regularization penalty.

The influence of the LS regularization penalty weight is therefore studied next. The influence of

different penalty weights, i.e., w3 = [0.01, 0.05, 0.1, 0.5] on the evolution of strain energy and the LS

regularization penalty is shown in Figure 5.63 (a) and (b), respectively. With an increasing penalty

weight, the minimization of the LS regularization term is favored by the optimizer at the cost of

minimizing strain energy. Small increases of the LS regularization penalty are due to disconnecting

members of the structure, which occur earlier for higher penalization weights. Based on numerical

experiments, a penalization weight of 0.01 ≤ w3 ≤ 0.1 leads to a good balance between regularization

and optimization of the structural performance of the beam. When the regularization weight is

set too large (e.g., w3 = 0.5), the regularization term dominates the overall objective at the cost

of minimization of the strain energy. This essentially leads to a drastically different optimization

problem which is not driven by physics anymore and therefore converges to a larger strain energy

value. See Figure 5.63 (a).

Influence of Implicit Design Sensitivities on LS Regularization

As discussed in Section 4.3.2, implicit design sensitivities of the LS regularization formulation
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Figure 5.64: Spurious void inclusions in the 2D MBB beam structure for a penalty weight of
w3 = 0.1 and consideration of implicit design sensitivities.

(Eqn.(4.3.5)) on the design variables are neglected, as the target LSF φ̃(X) is seen as a prescribed

target field without any dependencies on the design variables. Therefore, only the explicit depen-

dencies of the LS regularization penalty on the design variables are accounted for in the sensitivity

analysis. The advantage of this approach is demonstrated by a counter example in this section,

where implicit design sensitivities of the LS regularization penalty are computed via the adjoint

method and included in the optimization process.

The final design of the optimized beam in 2D, obtained through considering both explicit

and implicit design sensitivities together with a large LS regularization penalty weight of w3 = 0.1,

is shown in Figure 5.64. The fairly large penalty weight causes insufficient advancement of the

XFEM interface by the physical response as a significant influence of the regularization portion is

driving the design evolution. This leads to spurious void inclusions in the vicinity of the interface

which cause poor structural performance of the beam. When a much smaller penalty weight, e.g.,

w3 = 0.01 is used, these effects are not seen and the converged structural design is indistinguishable

from the one where no implicit design sensitivities are included. This shows that it is advantageous

and computationally more efficient to not include the implicit design sensitivities while using a

small LS regularization penalty weight.
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Figure 5.65: Problem setup with load and boundary conditions for the 3D beam problem. (a)
Initial design and (b) final design.

5.5.2.2 Beam in 3D

The previously studied 2D beam example is re-addressed in 3D here where significant changes

in topology are expected during the design process. The initial design along with load and boundary

conditions is shown in Figure 5.65 (a) where an element edge length of h = 2.0 mm is used. Due to

Figure 5.66: Evolution of (a) normalized objective and (b) volume constraint of the 3D beam
problem.
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Figure 5.67: Comparison of the design LSF of the final design of the 3D beam, (a) without LS
regularization and (b) with LS regularization.

the symmetric design problem, only one quarter of the full domain is modeled and optimized.

The appropriate symmetry boundary conditions are again applied weakly. A traction load of

TX2 = −2.0 N/mm is applied over a circular domain of radius 2.0 mm at the top center of the

beam. A volume constraint limiting the amount of phase I (solid) domain to γv = 0.3 is enforced

through a continuation approach.

The final design obtained after about 400 design iterations is shown in Figure 5.65 (b). The

corresponding evolution of objective and volume constraint is depicted in Figure 5.66 (a) and (b),

respectively. The effect of the continuation scheme on the volume constraint results in periodic

increases of the objective function. Overall, a smooth and quick convergence of the design problem

is seen, especially when LS regularization is employed. A slightly better design (i.e., lower final

objective value) is found when using LS regularization during the design process.

A comparison of the final design LSF along the center plane of the 3D beam (see red plane

in Figure 5.65 (b)) is shown in Figure 5.67. It can be seen that without any LS regularization,

the design LSF is shallow (see Figure 5.67 (a)), while a regularized LSF is obtained through the
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Table 5.9: Properties for the fluid LS regularization design problems.

Parameter Value

Reynolds Number Re = 66.0

Fluid Density ρ = 1.0

LS Regularization Weight w3 = 0.05

Element Edge Length h = 0.25 mm

proposed regularization scheme. See Figure 5.67 (b). As in the 2D beam problem, thin structural

members limit the applicability of the regularization scheme due to an insufficiently resolved SDF.

This is also the case for the 3D beam, where thin vertical members are formed. From Figure 5.67 (b),

it can be seen that in these areas the target LS value φBnd cannot be achieved, due to insufficient

spatial resolution. A strong need for minimum feature size control is therefore seen to provide

appropriate spatial discretization and regularization of the LSF. This is an inherent limitation of

the XFEM approach as it is unable to properly resolve geometric features on the order of h.

5.5.3 Incompressible Navier-Stokes Flow

A flow problem modeled by the incompressible Navier-Stokes equations at steady state is

considered as the final design example to demonstrate the LS regularization scheme. The formulation

of the governing equations and the stability terms of the velocity and pressure equations are beyond

the scope of this thesis. More details regarding XFEM modeling of incompressible Navier-Stokes

flow can be found in [190, 67]. The problem parameters for the fluid design example are listed in

Table 5.9.

5.5.3.1 Fluid Nozzle in 3D

A fluid-void nozzle design problem is studied next which is an extension of a similar design

problem in 2D presented by [21, 102, 122]. The initial design, with boundary conditions and

dimensions is shown in Figure 5.68. A non-design domain of size 0.75 × 5.0 × 5.0 is enforced

downstream from the inlet domain. A parabolic inflow with a maximum inlet velocity of 30.0 mm/s
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Figure 5.68: Problem setup with boundary conditions for the 3D fluid nozzle problem. (a) Initial
design and (b) final design.

in X1 direction is applied at the inlet. Zero pressure is enforced weakly at the outlet. Both the inlet

and the outlet domain are non-design domain. Quarter symmetry of this design problem is used

and slip conditions are applied along the symmetry planes. The objective of this design problem is

the minimization of the total pressure drop between inlet and outlet, subject to a volume constraint

of γv = 0.3 on the fluid phase.

The final design is shown in Figure 5.68 which shows a straight channel upstream from the outlet

which blends into the rectangular inlet domain. As the minimum total pressure drop would be

obtained from a straight channel, the optimizer tries to achieve such a channel design as good as

possible, considering the non-design space at the inlet and outlet domains. This design agrees well

with the results presented in literature.

A comparison of the final design LSF along the diagonal plane highlighted in red in Figure

5.68 (b) is shown in Figure 5.69. As in the structural problems, a significantly more regularized

LSF is obtained when LS regularization is employed. As before, the target LS value together with a
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Figure 5.69: Comparison of the final design LSF (a) without LS regularization and (b) with LS
regularization for the 3D fluid nozzle example.

zero LS gradient is achieved away from the interface while a unit norm LS gradient is obtained in

the vicinity of the XFEM interface. Without regularization, a rather flat LSF is obtained. While no

significant difference in final designs is seen, a drastic increase in robustness and stability of the

optimization approach was observed when LS regularization is used.

Influence of the number of Time Steps in on LS Regularization

The effect of temporal discretization on the HM used for LS regularization is studied next.

As proposed by [40], a single time step for time integrating the transient heat conduction equation

(Eqn.(2.1.3)) provides a sufficiently accurate SDF when using the HM. This statement is investigated

through variation of the number of time steps used in the Euler backward scheme (Eqn.(2.1.2)) for

time integration.

Figure 5.70 shows the evolution of normalized objective function and the LS regularization penalty

contribution for different number of time steps. It should be noted that while the number of time
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Figure 5.70: Effect of different number of time steps for the HM on (a) normalized objective and
(b) LS regularization penalty.

steps was varied, the total simulation time for this example was kept constant at tmax = 1.0 s.

As can be seen from Figure 5.70, no significant differences are observed when varying the number

of time steps used for the HM. This confirms the statement by [40] and significantly reduces the

computational effort when using LS regularization based on the HM with only a single time step.

5.5.4 Discussion

In summary, a robust and generally applicable LS regularization scheme based on an ex-

tension of the HM was presented. By constructing a smooth and globally unique target LSF,

limitations of previously proposed, local regularization schemes are overcome. The performance of

the physics-independent regularization scheme was demonstrated using numerical examples in linear

elasticity, nonlinear hyperelasticity and fluid flow in 2D and 3D. The influence of the penalty weight,

consideration of implicit design sensitivities and the number of time steps used for the HM was

investigated. Overall, improved stability and robustness of the LS-XFEM-based design optimization

approach was seen when explicit LS regularization was employed. Due to the improved stability,

faster convergence was seen and larger optimization step sizes could be used.
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However, a strong need for controlling small geometric features was identified. Minimum

geometric features in the order of the element edge length h are not only insufficiently resolved

and analyzed by the XFEM, but also the accuracy of the HM and therefore the LS regularization

scheme suffers. In addition, the added computational cost from solving two additional PDEs needs

to be considered when using the proposed LS regularization scheme.
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5.6 Minimum Feature Size Control

The approach to control minimum feature size in LS-XFEM TO using the SDF skeleton as

discussed in Section 4.4 is studied next. Different numerical examples in 2D and 3D are considered.

The basis of the minimum feature size measure defined in Eqn.(4.4.1) is the notion of the skeleton

of the SDF and the SDF values at those skeleton locations. A more detailed discussion on the

computation of the SDF skeleton using the Laplacian of the SDF is presented in Section 4.4.3. To

mitigate boundary effects of the HM on the SDF, immersion of the design domain is performed.

Significant boundary effects are exhibited by the HM when the XFEM interface (location of the

temperature source) exits the design domain. When the design domain is immersed, this is prevented

by construction. Alternatively, averaging a Dirichlet and Neumann temperature solution field as

the source for the SDF (see Eqn.(4.4.4)) could be used to mitigate boundary effects on the HM.

In addition, as pointed out by [116, 203], boundary effects on the skeleton can lead to unintended

design features where feature size is artificially enforced. [116, 203] therefore perform a trimming

of the SDF skeleton before using it to enforce feature size. This extra step is not required in the

presented approach where the corners of the immersed design domain are sufficiently rounded in

order to avoid undesired skeletons. Numerical studies have demonstrated general applicability of

this approach.

5.6.1 Effect of Discretization on Skeleton

First, the effect of spatial discretization on the obtained SDF skeleton is studied. It is crucial

to understand the relationship of XFEM discretization on the computation of the SDF and the SDF

skeleton as both fields are key for the minimum feature size measure presented in this thesis. An

immersed bar as shown in Figure 5.71 (a) is used in combination with a sweep over its rotation

angle αRot to study this effect. Initially, the bar is immersed vertically in the quadratic domain.

The corresponding SDF and the Laplacian of the SDF are depicted in Figure 5.71 (b) and (c),

respectively. It can be seen that initially, when the valley of the SDF φSD(X) is aligned with the
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Figure 5.71: Rotating immersed bar example. The initial, vertical configuration (a) leads to (b) a
uniform SDF and (c) a uniform skeleton. For a rotated configuration (d), (e) the SDF and (f) the
skeleton become non-uniform.

background mesh, a clear and uniform skeleton (i.e., ridge of ∆φSD(X)) is obtained. The fact that

the ridge has a finite width of 4h is caused by the operator splitting technique used to compute the

SDF normal field η(X) and the SDF Laplacian field λ(X), as discussed in Section 4.4.2.2 and Section

4.4.2.3, respectively. In addition, Helmholtz smoothing is applied to mitigate spatial oscillations on

both of those fields across the XFEM interface which also contributes to a spreading of the skeleton.

For a non-zero rotation angle (e.g., αRot = 10.0◦), the obtained valley of the SDF and therefore

the skeleton (i.e., Laplacian of the SDF) is not anymore aligned with the background mesh. This is

illustrated in Figure 5.71 (d), (e), and (f), respectively. It can clearly be seen that the minimum

of the SDF cannot be properly represented by the regular (linear) background grid. This, in turn,

leads to spatial oscillations, i.e., non-uniformity of the skeleton. Depending on the rotation angle of

the bar this effect may be more or less pronounced.



192

Figure 5.72: Dependency of the feature size measure on the rotation angle of the immersed bar
using different SDF computations.

This change in resolution of the extremum of the Laplacian however causes significant oscillations of

the feature size measure in this example where the immersed bar is rotated, such that 0◦ ≤ αRot ≤ 90◦.

The variation of the feature size measure (Eqn.(4.4.1)) over the rotation angle is shown in Figure

5.72 for a SDF obtained by the HM with a Helmholtz smoothing radius of rH = 1h and rH = 3h

and a prescribed analytical (i.e., exact) SDF. A similar non-uniform magnitude of the feature size

measure depending on the rotation of the bar is seen, for both HM SDF with rH = 1h and the

analytical SDF. A more uniform feature size measure with respect to the investigated rotation

angles is obtained when using rH = 3h. Ideally, a constant measure would be expected, as in fact

the width of the bar remains unchanged and only the orientation of the bar with respect to the

total design domain is changed. The cause for these oscillations is two-fold and does not stem from

using the HM to obtain the SDF (since a similar oscillating feature size measure is seen when using

a perfect, analytical SDF).

The first cause for the high dependency of the feature size measure on the spatial discretization

stems from the non-uniformity of the SDF Laplacian, as shown in Figure 5.71 (c) and (f) when

a Helmholtz smoothing radius of rH = 1h is used. This, in turn, comes from the inability of the
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uniform (linear) background mesh to accurately capture the discontinuities in the SFD when these

are not aligned with the regular background elements. As discussed above, this causes a non-uniform

magnitude of the SDF skeleton and thus oscillations in the feature size measure. Secondly, the

SDF value itself is used to compute the feature size measure at the location of the skeleton, see

Eqn.(4.4.1). Since also the SDF value is not captured accurately on a non-aligned background mesh,

see Figure 5.71 (e), additional variations in the feature size measure are introduced.

When a larger smoothing radius (e.g., rH = 3h) is used, spatial variations in both the SDF

and the Laplacian are reduced and a more uniform feature size measure is obtained, regardless of

the rotation angle. This however comes with the drawback of a spatially more spread skeleton,

which then leads to wider features as the sharp definition of the skeleton is sacrificed. In order to

obtain both a pronounced skeleton and a smooth, discretization independent behavior, extremely

fine background meshes are required. Alternatively, adaptive mesh refinement could be used to

accurately capture discontinuities in the SDF gradient which define the LS skeleton. Numerical

studies have shown, that the finer the background mesh, the better the Dirac-delta-like skeleton is

resolved. In combination with a large Helmholtz filtering, the required smoothness of the feature

size measure is obtained. Alternatively, XFEM triangulation of the background mesh not only along

the zero LS iso-contour but also along the ridge of the Laplacian (i.e., skeleton) could potentially be

performed to obtain discretization independence of the proposed feature size measure.

5.6.2 Minimization of Volume Phase I - A purely geometric Example

As a first design optimization example, a volume minimization example under a minimum

feature size constraint in 2D is considered. This purely geometrical example has previously been

studied by [191, 4, 78]. Mathematically, the constrained optimization problem is formulated as:

min
s

z(s,u) = w1
ΩI

0

(ΩI
0)0

+ w2

∫
ΓI,II0

dS
∫

(ΓI,II0 )0 dS
+ w3

pReg(s)

pReg(s0)

s.t. g =
pFS

(ΩI
0 + ΩII

0 )
− εFS ≤ 0

(5.6.1)
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Table 5.10: Properties for the geometric minimum feature size design problems.

Parameter Value

Objective Weights wi = [0.89, 0.01, 0.1]

Minimum Feature Size Epsilon εFS = 1.0 · 10−4

Minimum Feature Size Radius rm = 1h

Helmholtz Smoothing Radius rH = 1h

Element Edge Length h = 0.5 mm

Figure 5.73: Problem setup for the 4 inclusion geometrical example. (a) Initial design and (b)
final design.

where the objective components are weighted and normalized. The first component minimizes the

volume of phase I (ΩI
0), the second component is a perimeter penalty, and the last component is the

LS regularization term discussed in Section 4.3.2. The minimum feature size constraint is normalized

by the total design domain volume to avoid any length scale dependence and it is enforced using a

tolerance εFS . The parameters used for this geometrical design example are summarized in Table

5.10.

The initial design with four phase II inclusions is shown in Figure 5.73 (a). It should be pointed

out that the design domain is immersed and rounded corners are used to eliminate any undesired
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Figure 5.74: Smoothly projected Laplacian of the SDF for (a) the initial design and (b) the final
design.

boundary skeleton effects. Three-fold symmetry is enforced on the design variable field. The final

design is shown in Figure 5.73 (b). It can be seen that a phase I domain with almost constant

width is obtained, resembling the shape of a rounded window. The obtained result matches results

found in literature for this problem, however it is only a local minimum. An equally valid solution

with even less phase I volume would be a circle of minimum feature size in the center of the design

domain, or no phase I volume at all. Since the minimum feature measure is (strictly) enforced as a

constraint, topological changes are prohibited and the initial topology of four inclusions is retained

at the final design. The width of the obtained features is of radius rmin = 3h, which is indicated by

a red disc in Figure 5.73 (b). The increase in minimum feature size from rm = 1h to rmin = 3h is

caused by the spreading of the skeleton as discussed in Section 5.6.1. This widening of the enforced

minimum feature size is described by Eqn.(4.4.17).

The skeleton (i.e., Laplacian of the SDF) for the initial design and the final design are depicted

in Figure 5.74. Smooth Laplacian projection is used for this design example, which greatly improves

the uniformity of the skeleton and thus the robustness of the skeleton-based feature size approach.
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Figure 5.75: Evolution of (a) objective and (b) minimum feature size constraint for the four
inclusion geometrical example.

Since the overall topology stays unchanged during the design optimization process, the skeleton only

changes slightly, between the initial and the final design. The effect of smooth Laplacian projection

can clearly be seen where the Laplacian in the majority of the design space is projected to zero,

except at the skeleton it is either plus or minus one.

Figure 5.75 shows the evolution of the normalized objective function and the minimum feature

size constraint. A converging behavior of the optimization problem with only minor oscillations is

seen. These stem from the discretization dependence of the skeleton and the SDF as discussed in

Section 5.6.1. Oscillations appear as long as the XFEM interface evolves during the optimization

process. Once a converged design is obtained, the feature size constraint is satisfied and therefore

constant in magnitude.

5.6.2.1 Enforcement of Minimum Feature Size Control along Domain Boundaries

To (partially) offset the computational cost stemming from additional fields and from the

need for rather fine meshes for the skeleton-based minimum feature size control, selectively enforcing

feature size control along domain (e.g., symmetry) boundaries is investigated. This is a unique

capability of the proposed approach and only possible because a Helmholtz-type PDE is solved to

obtain the Laplacian of the SDF. Therefore, boundary conditions can be enforced weakly on the
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Figure 5.76: Problem setup for the 4 inclusion geometrical example using quarter symmetry. (a)
Initial design and (b) final design.

Laplacian field λ(X) to selectively enforce feature size along the respective boundary.

To demonstrate the effectiveness of the selectively applied feature size control along symmetry

boundaries, the geometric four inclusion problem discussed in Section 5.6.2 is re-addressed. The

initial design using only one quarter of the full design domain with symmetry boundaries is shown

in Figure 5.76 (a). Along the symmetry boundaries, a prescribed Laplacian value of λ = 1.0 is

enforced weakly using Nitsche’s method. Through that, a skeleton is created along the symmetry

boundaries which leads to enforcement of feature size control. The final design is shown in Figure

5.76 (b) which is very similar to the one obtained on the full domain (see Figure 5.73 (b)).

The corresponding Laplacian fields are shown in Figure 5.77 (a) and (b), respectively. Com-

pared to the Laplacian fields for the full domain shown in Figure 5.74, slight differences can be seen.

The weakly enforced skeleton along the symmetry boundaries in Figure 5.77 (a) slightly extends

past the outer skeleton in vertical and horizontal direction, respectively. See domains highlighted by

the red circles in Figure 5.77 (a). This is due to the fact that the selectively enforced Laplacian

is formulated such that it only enforces feature size normal to the respective boundary, but not

tangential to it. In other words, the weakly enforced Laplacian value can be reduced in tangential,
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Figure 5.77: Laplacian of the SDF for (a) the initial design and (b) the final design using quarter
symmetry. The extension of the weakly enforced Laplacian along the symmetry boundaries is circled
in red.

but not in normal direction by an approaching XFEM interface and the corresponding SDF. During

the design optimization process, the Laplacian enforced along the symmetry boundaries is shortened

towards the center of the design domain such that it does not extend past the outer skeleton in

the final design (Figure 5.77 (b)). The evolution of normalized objective and minimum feature size

Figure 5.78: Evolution of (a) objective and (b) minimum feature size constraint for the four
inclusion quarter symmetric geometrical example.
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Table 5.11: Properties for the 2D short beam design problems.

Parameter Value

Objective Weights wi = [0.98, 0.01, 0.01]

Minimum Feature Size Epsilon εFS = 1.0 · 10−4

Minimum Feature Size Radius rm = 1h

Helmholtz Smoothing Radius rH = 1h

Element Edge Length h = 0.5 mm

Volume Constraint γv = 0.5

Young’s Modulus Phase I E = 2.0 GPa

Poisson’s Ratio Phase I ν = 0.4

constraint is shown in Figure 5.78. A similar behavior as observed for the same design problem

solved on the full domain (see Figure 5.75) is seen.

5.6.3 Short Beam in 2D

Next, a solid-void linear elastic cantilevered short beam problem is studied in 2D. The main

problem parameters are summarized in Table 5.11. The strain energy minimization problem subject

to a volume constraint on phase I and a minimum feature size constraint is formulated as:

min
s

z(s,u) = w1
U
U0

+ w2

∫
ΓI,II0

dS
∫

(ΓI,II0 )0 dS
+ w3

pReg(s)

pReg(s0)

s.t. g1 =
ΩI

0

(ΩI
0 + ΩII

0 )
− γv ≤ 0

g2 =
pFS

(ΩI
0 + ΩII

0 )
− εFS ≤ 0

(5.6.2)

The initial design with load and boundary conditions is shown in Figure 5.79 (a) where a traction

load of TX2 = −3.0 · 101N/mm is applied at the free end. As before, the design domain is immersed

and loading and boundary condition domains are prescribed to strictly be solid, thus excluded

from the design domain. In addition, design symmetry along the X1 axis is enforced. This is valid

as under linear elasticity a compressional load case is equal and opposite of a tensional load case.

The initial design is seeded with six circular void inclusions. The corresponding Laplacian field

identifying the skeleton of the SDF is shown in Figure 5.79 (b). To improve stability of the feature
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Figure 5.79: Different designs for the short beam problem in 2D. (a) Initial design, (b) correspond-
ing Laplacian field, (c) final design without feature size control and (d) corresponding Laplacian
field. (e) - (f) are designs with feature size control enforced.

size measure, smooth Laplacian projection is used. Therefore, gaps in the skeleton can be identified.

The final design, without any feature size constraint is shown in Figure 5.79 (c), along with its

Laplacian field shown in Figure 5.79 (d). It should be pointed out that the skeleton is clearly

identified both in phase I (in red) and in phase II (in blue).

Using the skeleton-based feature size control, different design studies are conducted. First, a

minimum feature size radius of rm = 1h is enforced in a continuation approach after 150 design

iterations. The result is shown in Figure 5.79 (e). Only slight differences between the design without

feature size control (Figure 5.79 (c)) and the one where a feature size constraint of rm = 1h was

enforced after 150 design iterations (Figure 5.79 (e)) can be seen. If the feature size constraint of

rm = 1h is enforced from the beginning of the design process, the design shown in Figure 5.79 (f) is

obtained for this short beam design problem. As discussed before, topological changes are prevented

by the feature size constraint and therefore a total of six void inclusions is retained at the final
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Table 5.12: Relative change in strain energy of different 2D short beam designs using feature size
control compared to a design without feature size control.

Problem
rm = 1h rm = 1h rm = 3h rm = 3h

Continuation From Beginning Continuation From Beginning

Relative Change
-0.3 % +12.7 % +0.1 % +191.7 %

in Strain Energy

design. It should be noted that even though a minimum feature size radius of rm = 1h is specified,

the minimum obtained feature size radius is rmin = 3h. This is again due to the spreading of the

skeleton by virtue of operator splitting for computing the SDF normal field and the SDF Laplacian

field. For more details regarding this, see Section 4.4.3.3. The same studies are repeated with a

minimum feature size of rm = 3h, both using a continuation approach and enforcing the feature size

constraint from the beginning. The results are shown in Figure 5.79 (g) and (h), respectively. While

enforcing a minimum feature size of rm = 3h does not lead to a significantly different final design

when employed in a continuation approach, enforcing it from the beginning significantly influences

the final design.

The influence of enforcing a minimum feature size constraint on the strain energy of the final

design is compared in Table 5.12. The relative change in strain energy of all designs with minimum

feature size is computed with respect to the nominal design without feature size control, shown in

Figure 5.79 (c). As expected, enforcing a minimum feature size constraint which leads to significant

design changes drastically reduces the mechanical performance of the design. This can be mitigated

if the feature size constraint is enforced after an initial geometry has been determined and enforcing

a minimum feature size is only used to slightly modify the design, in a shape optimization sense. It

is however not trivial to determine when to enable this additional constraint, as through this, the

design space becomes inherently more non-convex and local minima are more likely to be identified.
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5.6.4 Short Beam in 3D

The short beam design problem studied in Section 5.6.3 is repeated in 3D in this section.

Design symmetries are enforced along the X2 plane and the X3 plane and mechanical symmetry

along the X3 plane is used to only analyze one half of the domain. The main problem parameters of

Table 5.11 are used, whereas the element edge length is h = 1.0 mm. Smooth Laplacian truncation,

as discussed in Section 4.4.3.1, is used for all 3D examples using feature size control.

5.6.4.1 Minimization of Strain Energy under Volume Phase I Constraint

The formulation of the optimization problem of Eqn.(5.6.2) is used where a volume constraint

of γv = 0.12 is gradually enforced using a continuation approach. The initial design setup along with

load and boundary conditions is shown in Figure 5.80 (a). A traction load of TX2 = −3.0 ·101N/mm

is applied at the free end of the cantilevered beam. The final design, obtained without feature size

control is shown in Figure 5.80 (b).

When in addition to the volume constraint a minimum feature size constraint is enforced (using a

continuation approach), the final design shown in Figure 5.80 (d) is obtained. It can be seen that

while the nominal design (Figure 5.80 (b)) is comprised of two vertical shear-webs resembling a

shell-like structure, the design with a feature size constraint is made from a set of trusses arranged

in a cross shape. When using LS-XFEM-based TO, it is well known that thin-walled structures

are favored in 3D, while density-based TO typically forms truss-like structures [189]. It has been

speculated by [189] that when enforcing minimum feature size control in combination with a LS-

XFEM TO approach, similar truss-structures as obtained with density-based methods are obtained

in 3D. This has however not been shown until this thesis. The clear difference between the final

design without and with minimum feature size control can also be seen in the sliced view in Figure

5.80 (c) and (e) which are colored by the SDF Laplacian. It can also be seen that in Figure 5.80 (e)

minimum feature size is enforced where the Laplacian (i.e., skeleton) is clearly developed in the

center of the truss. When comparing the structural performance of both final designs (with and
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Figure 5.80: Short Beam problem in 3D, (a) initial design with boundary conditions, (b) final
design under a volume constraint only, and (c) corresponding Laplacian field on the sliced final
design. (d) Final design obtained with a volume constraint and a minimum feature size constraint,
and (e) corresponding Laplacian field on the sliced final design.

without feature size control), a 9.0% increase in strain energy is observed when minimum feature

size is enforced using a continuation approach.

The evolution of the normalized objective, the volume constraint and the minimum feature size

Figure 5.81: Evolution of (a) normalized objective, (b) volume constraint, and (c) minimum
feature size constraint for the 3D short beam problem.
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constraint is shown in Figure 5.81 where periodic increases of the volume constraint are due to

the applied continuation scheme. Initially, a volume constraint of γv = 0.6 is enforced which is

then reduced by 0.1 every 30 design iterations until a volume constraint of γv = 0.1 is reached at

design iteration 150. At design iteration 180, the minimum feature size constraint is enabled. As it

is however not possible to achieve both the minimum feature size constraint along with a volume

constraint of γv = 0.1 (see violated volume constraint between design iteration 200 and 280), the

volume constraint is relaxed to γv = 0.12 at design iteration 280. By doing so, both, the volume

constraint and the minimum feature size constraint, can be satisfied. Overall, a smooth convergence

of the design optimization problem is observed.

5.6.4.2 Minimization of Volume Phase I under Strain Energy Constraint

The drawback of formulating the short beam optimization problem as minimizing the strain

energy subject to a volume constraint and a minimum feature size constraint is the need to use a

continuation approach in order to gradually reduce the volume constraint, as discussed in Section

5.6.4.1. An alternative to this formulation is a volume phase I minimization problem subject to a

strain energy constraint, which is studied in this section. In addition, the minimum feature size

control is formulated as an objective penalty as opposed to a second constraint. The optimization

problem is formulated as:

min
s

z(s,u) = w1ΩI
0 + w2

∫
ΓI,II0

dS
∫

(ΓI,II0 )0 dS
+ w3

pReg(s)

pReg(s0)
+ w4

pFS

(ΩI
0 + ΩII

0 )

s.t. g = U − Ū ≤ 0

(5.6.3)

where the strain energy threshold is set to Ū = 2.3 · 103 N/mm. This reference value was chosen

based on the results obtained in Section 5.6.4.1. The same initial design with load and boundary

conditions as depicted in Figure 5.80 (a) is used for this study.

The final designs obtained without any minimum feature size penalty, with a feature size penalty

applied through a continuation approach, and with minimum feature size penalty applied from

the beginning of the optimization process are shown in Figure 5.82 (a), (c), and (e), respectively.



205

Figure 5.82: Short beam problem in 3D, where the volume of phase I is minimized under a
strain energy constraint. (a) Final design obtained without minimum feature size penalty and
(b) corresponding Laplacian field. (c) Final design obtained with a minimum feature size penalty
using a continuation approach with (d) the Laplacian field for it. (e) Final design obtained with a
minimum feature size penalty from the beginning and (f) it’s Laplacian field on the sliced design.

The corresponding Laplacian field on the sliced designs are depicted in Figure 5.82 (b), (d), and

(f), respectively. As can be seen, the alternative formulation of Eqn.(5.6.3) leads to a similar final

design when no feature size is enforced. Comparing the final design shown in Figure 5.82 (a) with

the corresponding one in Figure 5.80 (b) yields a decrease in volume of phase I of about 6.0% for

the final design obtained by solving Eqn.(5.6.3). This can also be seen by the fact that the design

in Figure 5.82 (a) has holes near the front of the beam while the design of Figure 5.80 (b) has

continuous vertical shear-webs.

The design in Figure 5.82 (c), which was obtained by enforcing a minimum feature size penalty

of 10.0% after 150 design iterations does exhibit a less pronounced truss structure compared to

Figure 5.80 (d). This is due to the less restrictive formulation of the feature size control as a penalty

(versus a constraint) in combination with minimizing the volume of phase I. The corresponding
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Figure 5.83: Evolution of (a) normalized objective and (b) strain energy constraint for the 3D
short beam problem using a continuation approach for the feature size penalty.

evolution of normalized objective and strain energy constraint is shown in Figure 5.83. An increase

in objective and constraint at design iteration 150 caused by the enforcement of the minimum

feature size penalty can be seen. Compared to the design without any feature size penalty, the

volume of phase I of this final design has only increased by about 7.0%.

The third final design shown in Figure 5.82 (e) is obtained by solving the optimization problem

formulated in Eqn.(5.6.3) whereas a minimum feature size penalty of 5.0% is enabled from the

beginning. This allows only for minimal changes in topology and leads to a final structure comprised

of a network made of curved rods. Due to the strain energy constraint and the minimum feature size

penalty, the overall volume of phase I cannot be minimized as much as in the previous two examples.

Compared to the design without any feature size penalty (Figure 5.82 (a)), the volume of phase I

has significantly increased by about 245.0%. It should also be pointed out that the minimum feature

size obtained in Figure 5.82 (e) (indicated by a red sphere) is much larger than the one obtained

in Figure 5.82 (c). This is attributed to a more pronounced Laplacian (i.e., skeleton) and more

available volume which is preserved when the feature size penalty is enforced from the beginning

on. As the feature size control is enforced as a penalty, it is looser than when employed through

an additional constraint. This however results in the fact that local violations can occur. The
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Figure 5.84: Evolution of (a) normalized objective and (b) strain energy constraint for the 3D
short beam problem enforcing a feature size penalty from the beginning.

enforcement of different objective components thus highly depends on their weighting parameters

wi which are non-trivial to per-determine. The evolution of normalized objective and strain energy

constraint is shown in Figure 5.84. While a smooth convergence behavior is seen, it should be

pointed out that the converged objective value is significantly higher than the one obtained in Figure

5.83 (a) where the feature size penalty is enforced only after 150 design iterations.

5.6.5 Discussion

A minimum feature size measure for explicit LS-XFEM TO based on the SDF skeleton

has been developed and demonstrated through numerical examples in 2D and 3D. While the

skeleton approach comes with its own set of advantages and disadvantages (see Section 4.4.1), a

wide applicability of the feature size control method was shown. The skeleton is identified by the

Laplacian of the SDF which is computed using operator splitting and the SDF computed by the HM

as a starting point. For a more detailed discussion, see Section 4.4.2. The applicability of the feature

size control scheme was demonstrated via a purely geometrical example and linear elastic short

beam examples in 2D and 3D. It was also shown that minimum feature size control can be achieved

along domain boundaries if desired. This is especially useful when exploiting design symmetries in
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order to reduce the computational cost. In addition, a long standing claim of obtaining truss-like

structures in 3D LS-XFEM TO was proven, when minimum feature size is enabled. Typically,

shear-web-type structures are obtained for 3D structural TO problems when a LS-XFEM is used,

unlike density methods, which naturally favor truss-like designs. Through numerical examples, it

was shown that the discretization dependency of the SDF Laplacian discussed in Section 5.6.1 is

of minor importance for physics-driven problems. While slight oscillations in the evolution of the

purely geometrical optimization problem (see Section 5.6.2) were observed, smooth behaviors were

seen for all linear elastic examples in 2D and 3D. Smoothness in the SDF skeleton was introduced

by smooth Laplacian truncation and smooth Laplacian projection, as discussed in Section 4.4.3.1

and 4.4.3.2, respectively.

As with most feature size approaches, a few open issues remain. The first one is the question of

when to enable it and how to enforce it. It was shown that when using it from the beginning, local

minima are identified and topological changes are prohibited. This oftentimes leads to clumsy and

structurally low performing structures, especially when the feature size measure is enforced through

a constraint. This can be avoided by only enabling the minimum feature size measure after a first

design is found and topology changes have been performed. Then, the minimum feature size measure

acts in a shape-optimization sense where only slight modifications of the design are made. It was

seen that in those cases, the structural performance remains relatively unaffected. Alternatively,

minimum feature size can also be enforced using a penalty method. Using this approach, topological

changes are permitted to a certain degree, as the feature size measure enforcement is less strict.

However, local violations of the feature size measure are also possible and the success of enforcing

minimum feature size via an objective penalty largely depends on the weighting of the individual

objective contributions. Since the current approach is based on computation of the SDF Laplacian

via operator splitting, spreading of the SDF skeleton cannot be avoided. This means, exact feature

size, as specified as a parameter in Eqn.(4.4.1) can never be achieved. In practice, a spreading of

the skeleton to a minimum width of 4h was observed which was in parts caused by the applied

Helmholtz smoothing required to achieve sufficient smoothness of higher-order spatial derivatives.
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Finally, the proposed scheme requires rather fine background meshes in order to properly capture

the SDF skeleton. This becomes however computationally costly, especially in 3D. In addition,

discretization dependence of the SDF Laplacian on the orientation within the background mesh

was seen. This may lead to undesired oscillations in the evolution of objective and constraints and

needs to be addressed in future studies.
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Figure 5.85: Mean curvature squared minimization problem. (a) Initial design and (b) final design.

5.7 Mean Curvature Measure

The mean curvature measure discussed in Section 4.5 is applied for regularization of a

geometrical design optimization problem in this section. In order to compute the mean curvature

at the XFEM interface, the smooth Laplacian projection scheme discussed in Section 4.4.3 cannot

be used, since all Laplacian (i.e., mean curvature) information is projected to zero at the interface.

Instead, the smooth truncation approach of the Laplacian field (see Section 4.4.3.1) is used. The

purely geometric design optimization problem considered here is formulated as:

min
s

z(s,u) = w1pκ + w2
pReg(s)

pReg(s0)

s.t. g = ΩI
0 − (ΩI

0)0 ≤ 0

(5.7.1)

where pκ is the squared mean curvature measure and (ΩI
0)0 is the phase I domain volume at the

initial design. The initial design of this geometrical design optimization problem is shown in Figure

5.85 (a). The initial design is chosen such that a non-uniform curvature is obtained along the XFEM

interface. It should be pointed out that both positive and negative curvatures are represented well

by the Laplacian field evaluated at the XFEM interface. As minimization of the mean curvature
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Figure 5.86: Evolution of (a) normalized objective and (b) volume constraint for the 2D mean
curvature squared minimization problem.

squared is the main objective of Eqn.(5.7.1), a uniform interface geometry is obtained as shown in

Figure 5.85 (b). The corresponding evolution of normalized objective and a volume constraint on

phase I is shown in Figure 5.86.

While a smooth objective evolution is seen, it should be pointed out that the volume constraint

is not active. This is due to the fact that the solution of the posed optimization problem is not

unique. While the solution of Eqn.(5.7.1) only yields a regularized, i.e., uniform or circular interface

geometry, neither the radius of this circle nor its center position are uniquely determined.

As presented by the numerical example considered in this section, minimizing the mean

curvature squared based on the Laplacian of the SDF largely yields a regularized interface geometry.

However, a closer look at the interface curvature of Figure 5.85 (b) needs to be taken. Slight

oscillations of the mean curvature at the circular interface can be seen, even though the optimization

problem has converged. These oscillations in the Laplacian field most likely stem from the fact

that only straight XFEM interfaces are considered in this thesis. This means, the evaluation of the

mean curvature by numerical integration of Eqn.(4.5.2) is in reality always slightly inward from

the true, curved interface, as the triangulated XFEM interface is a straight line. From a numerical

perspective, this leads to a small discrepancy between the true interface geometry and the desired
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one, which is a perfect circle for the current problem.

Even though future work is needed to further study the oscillatory behavior of the regularized

geometry obtained by minimization of the mean curvature squared, its applicability within LS-

XFEM TO was successfully demonstrated. Since the mean curvature can directly be obtained from

the Laplacian field, which is also used for minimum feature size control (see Section 4.4.3), it is

computationally efficient to use mean curvature-based interface regularization in combination with

skeleton-based minimum feature size control.



Chapter 6

Conclusions and Future Work

A design and analysis framework based on combined LS-XFEM-density TO was developed and

presented in this thesis. Motivated by the goal to systematically design and predict the performance

of active, self-folding structures, several aspects regarding computational design optimization have

been studied and extended in this work. The main ideas are summarized in the following and areas

of future work are identified.

In order to design active structures using TO, a most general analysis framework needed to

be established. The work presented in this thesis is based on a multi-physics XFEM TO framework

previously used for fluid-structure interaction problems [89], contact problems [109], optimization of

flow problems [191, 190], and small strain structural mechanics [189].

A need for finite deformation kinematics is inherently present when simulating active structures

that exhibit large deformations. Typically, self-deforming structures undergo large deformations

and rotations either during the training process in the case of shape memory structures, during the

activation or deployment process, or both. To accurately capture these phenomena, a finite strain

computational XFEM framework was developed and tested in this thesis. The finite deformation

model includes thermoelasticity at large strains which is essential for modeling inelastic printing

strains as suggested by [45]. In order to obtain correct design sensitivities via the adjoint method,

consistent tangent stiffness matrices needed to be derived. Moreover, XFEM interface conditions

and weak boundary condition formulations using Nitsche’s method [136] were developed for the

large strain thermomechanical model. The finite strain thermomechanical model was validated
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against a commercial FE package for three different nonlinear constitutive models. In addition, an

experimental validation of the XFEM model for slender beam structures was performed.

To accurately capture the deformation of slender structures, locking phenomena of low

order FEs need to be alleviated. This can either be achieved by reduced integration, shell element

formulations or by higher-order spatial discretization. Similar locking phenomena are also experienced

by low-order XFEM interpolation. A need for higher-order XFEM discretization in order to accurately

predict the deformation of slender structures was identified in this thesis. With that, higher-order

stabilization techniques need to be employed. A strong need for higher-order ghost stabilization in

combination with higher-order XFEM was demonstrated in order to obtain well-conditioned linear

systems. Through mesh refinement studies, it was demonstrated that higher-order convergence rates

of the XFEM are only achieved if the geometric interface representation is increased in accordance

with the underlying spatial discretization order of the background mesh. This means, for higher-order

XFEM, capturing of curved interface geometries is necessary to obtain higher-order convergence

rates with mesh refinement. Future studies should therefore address the currently lacking ability of

the employed XFEM framework to capture curved interfaces in order to accurately resolve arbitrary

interface geometries with improved accuracy.

As an alternative to higher-order XFEM discretization, an EAS method was studied for

XFEM. The work initially proposed by [46] was followed and successfully applied to simple immersed

geometries in 2D. An extension to more complex, arbitrarily intersected geometries however showed

the limitations of the originally proposed approach. A need for a generally applicable EAS formulation

for XFEM where the intersections are not aligned with the background mesh was identified and

should be developed in future work.

During a solid-void TO process, isolated material domains may be present when features

merge or disconnect. To stabilize these disconnected domains and to prevent rigid body motion,

[190] proposed a selective springs approach based on an auxiliary indicator field for fluid flow

problems. This approach was extended to structural mechanics in this thesis and successfully

applied to stabilize small strain and large strain structural TO problems. Alternatively, globally
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applied weak springs can be used which do not require the solution of an additional indicator field.

It was however observed, that especially under consideration of finite deformations, global springs

significantly influence the displacement prediction. It is therefore crucial to use selective springs for

structural solid-void TO of active structures under consideration of finite deformations.

To further stabilize the XFEM framework, a nonlinear Jacobi preconditioner was proposed.

Similar to a classical diagonal preconditioner, the Jacobi preconditioner is used on the nonlinear

system to facilitate convergence of the nonlinear problem. Moreover, a consistent LS shifting scheme

was developed in this thesis which should be studied in more depth in future work.

The developed LS-XFEM TO framework was used in this thesis for the design of self-folding

origami structures. LS primitives were used to model the crease pattern which were determined

through TO. While an initial applicability of TO as a systematic design tool for self-folding origami

structures was shown, further studies are needed. Large strain kinematics should be included and

higher-order XFEM discretization needs to be used to properly predict the physical performance

of the origami structures. Moreover, the final designs should be printed and activated in order to

validate the feasibility of the computationally determined origami designs.

Development and testing of combined LS-density TO approaches is a core part of this thesis.

An uncoupled LS-density approach was used for solving multi-material TO problems. Optimizing

the geometric layout of active structures and simultaneously the material distribution within the

structure was successfully demonstrated. Active structures of various complexities were designed via

the developed large strain LS-XFEM-density TO framework. The final designs where then printed

and activated via direct 4D printing. While overall a good match between numerical predictions

and experimental results was obtained, a strong need for including a contact formulation into the

TO framework was identified. This is especially crucial when considering more complex self-folding

structures where the unfolding sequence of multiple parts plays a critical role. As this was not the

case in the presented work, a significant amount of self-penetration was seen for some structures. In

addition, structural instabilities (e.g., buckling and snap-through) should be considered in future

design studies of active structures. As studied by [148, 209, 48], accounting for structural instabilities
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is crucial when analyzing slender structures subject to large amounts of compressive stress. These

instabilities should be captured during the optimization process and either avoided or leveraged as

a desired design feature.

In addition to the uncoupled LS-density approach, a loosely coupled combined approach was

used to eliminate the mutual drawbacks of both pure density-based and pure LS-based TO. It

was shown that by introducing a loose coupling between density and LS design variables through

inequality constraints, hole nucleation is facilitated. This has been a long standing issue in explicit

LS-XFEM TO where a large dependency of the final design on the initial hole seeding is typically

observed. The newly proposed combined approach fully eliminates this issue. In addition, combining

density-based and LS-based TO can be used for minimum feature size control, while retaining a

crisp material interface modeled by the XFEM. While this superior TO approach was successfully

applied to small strain structural TO problems in 2D and 3D, an extension to large strain kinematics

and other physics should be considered in a next step.

A regularization scheme for explicit LS-XFEM TO was developed and studied in this thesis.

It was demonstrated that a regularized and uniquely defined LSF is critical to ensure stability of

the optimization problem. The novel regularization approach is based on the SDF obtained by the

HM. General applicability of the regularization approach was shown for a wide range of physics

through numerical examples in 2D and 3D. Moreover, a significant improvement in stability and

convergence behavior of TO problems was seen when the explicit LS regularization scheme was used.

However, more efficient distributed linear solver technologies should be explored in future work to

offset the added computational cost by solving additional fields and degrees of freedom in order to

reconstruct the SDF at every design iteration.

The SDF obtained though the HM can furthermore be used for minimum feature size control

in LS-based TO. This is achieved through the skeleton approach by computing the Laplacian of the

SDF. The work of [78] was followed and extended in this thesis to formulate a minimum feature size

measure along the skeleton of the SDF. Moreover, the Laplacian of the SDF was used to obtain

a penalty formulation on the mean curvature of the XFEM interface. It was shown that design
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regularization can be obtained by that. A strong need for local (adaptive) mesh refinement was

identified in order to more accurately resolve the SDF gradient and its discontinuities. This is

crucial in order to unambiguously identify the SDF skeleton on which the minimum feature size

measure is based. Moreover, a more robust skeleton identification method should be developed

which is independent of the background discretization and the alignment of the XFEM intersections.



Chapter 7

Contributions

The original contributions made in the field of combined LS-XFEM-density TO of structural

problems through the work presented in this thesis are summarized in the following:

(1) Study of higher-order XFEM for TO of slender structures. Higher-order XFEM

discretization was studied in this thesis to accurately model the structural response for

TO of slender structures. It is critical for both small strain and large strain kinematics, to

use higher-order spatial discretization as one means to alleviate shear locking of low-order

XFEM elements. More details on this are discussed in Section 3.2.3 and in Appendix B.

In addition, mesh refinement studies of higher-order XFEM elements were conducted in

Section 3.2.2.2. It was shown that higher-order convergence rates are only obtained when

the order at which the interface geometry is captured corresponds to the discretization order

of the background mesh. To achieve higher-order convergence rates with the XFEM, it is

crucial to allow for a curved interface representation.

(2) Extension of higher-order face-oriented ghost stabilization to problems with

non-homogeneous materials. The face-oriented ghost stabilization scheme originally

proposed by [30, 156] was extended to a more generally applicable formulation in this

thesis. Since the original, displacement gradient-based, penalty formulation is limited to

homogeneous materials within a domain, an extension for combined LS-density-based TO

was required. A novel stress-based and a virtual work-based ghost penalty formulation were
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developed in Section 3.2.1. A verification of and application towards higher-order XFEM

problems is presented in Section 3.2.2.1 and in Appendix B.

(3) Extension of selective structural springs to linear elastic and nonlinear hyper-

elastic TO problems. The selective spring concept originally proposed by [190] was

extended and applied to structural problems in linear elasticity and nonlinear elasticity in

this thesis. The formulation of the auxiliary indicator field and the selectively applied struc-

tural stabilization were discussed in Section 4.2.3. It was shown that selectively applying

structural springs to only floating material domains is crucial when considering nonlinear

kinematics for slender structures. This stabilization scheme was successfully applied for TO

of active structures as presented in the publications listed in Appendices B and C.

(4) Application of LS-XFEM TO for finding optimal crease patterns for self-folding

origami structures. LS-based TO using void primitives for modeling origami crease

patterns was demonstrated in this thesis. As discussed in Section 4.1.2.2 and in Section

5.2, a unique LS-XFEM TO approach was proposed to solve design problems of self-

folding origami structures made out of pre-stressed LAP sheets. The design approach was

successfully applied towards traditional origami structures where the required folding lines

were identified by the optimization scheme.

(5) Combination of LS and density-based TO methods for optimization of multi-

material problems. A novel multi-material TO approach was proposed through the

combination of density-based and LS-based TO schemes. Two sets of independent design

variables are introduced to simultaneously optimize the geometric layout and the material

distribution of active structures. This approach was applied towards several design problems

of self-deforming active structures as presented in Section 5.3 and in the publications

included in Appendices B and C. It was shown that non-intuitive design layouts are obtained

through the additional design freedom provided by the combined LS-density TO approach.
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(6) Experimental validation of optimized active structures through 4D printing.

The optimized active structures presented in Section 5.3 and in Appendix C were fabricated

and activated via direct 4D printing. This provided additional confidence in the performance

of the developed LS-XFEM TO approach and demonstrated the applicability of the design

methodology towards real-world design optimization problems. Furthermore, 4D printed

physical samples were used for validation of the developed finite strain thermoelastic XFEM

model. For more details, see Section 5.1.2.

(7) Development of a combined LS-density-based TO approach for hole nucleation

and minimum feature size control. A coupled LS-density TO approach was proposed

yielding a superior TO scheme which builds on the advantages of pure density-based TO

and pure LS-XFEM-based TO (see Section 4.1.3.2). The novel method has the ability to

nucleate holes during the TO process, removing the need for initial seeding. This has been

a long-standing issue in explicit LS-XFEM TO as pointed out by [191]. Moreover, a physics-

based coupling approach can also be used to include minimum feature size control through

the density design variable field onto the LS field. Multiple design examples illustrating the

unique capabilities of this combined LS-density approach are presented in Section 5.4.

(8) Development of a regularization scheme for explicit LS XFEM TO using the

HM. A LS regularization scheme for explicit LS-XFEM TO was developed and tested in this

thesis. The regularization scheme is based on a penalty formulation between the design LSF

and a globally constructed target LSF (see Section 4.3). The target LSF is obtained from

the SDF which is computed using the HM [39, 40] at every design iteration. It was shown

that a significant amount of stability and increased convergence of optimization problems is

obtained when a smooth and regularized LS field is retained throughout the optimization

process. Numerical examples demonstrating the capabilities of the regularization scheme in

2D and 3D are discussed in Section 5.5 and in the publication presented in Appendix D.
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(9) Development of a feature size and curvature measure for explicit LS-XFEM

TO based on the skeleton approach. Using the SDF obtained by the HM, a minimum

feature size measure is developed in this thesis. The approach originally proposed by [78] is

applied to explicit LS-XFEM TO, where the Laplacian of the SDF is used for identification

of the SDF skeleton. Operator splitting and L2 projections are used in this thesis to

compute higher-order spatial derivatives of the SDF. In addition, Helmholtz smoothing

as originally proposed by [110] is used to introduce regularity into the SDF normal and

Laplacian fields. The formulation of the feature size measure and the computation of the

SDF Laplacian are presented in Section 4.4. Through numerical examples shown in Section

5.6, the applicability of the minimum feature size measure for explicit LS-XFEM TO was

demonstrated. It was also shown for the first time that truss-like designs are obtained by

LS-XFEM TO for 3D structures when a constraint on the minimum feature size is imposed.

Without this constraint, shear-web designs are obtained. This claim was originally posed by

[189] and was verified for the first time in this thesis. Moreover, an approach to selectively

apply minimum feature size control along domain (symmetry) boundaries was developed.

Finally, the computed Laplacian field of the SDF was used to control the mean curvature

of the XFEM interface during TO. The formulation of the mean curvature measure and a

numerical example demonstrating the applicability are presented in Sections 4.5 and 5.7,

respectively.
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Appendix A

XFEM 1D Bar Example

To illustrate the enforcement of interface conditions using Nische’s method, a single element,

linear elastic 1D bar example is discussed. The problem setup along with loads and boundary

conditions is shown in Figure A.1 (a). The modeling problem consists of two distinct material phases

(i.e. ΩI
0 and ΩII

0 ) with a material interface at XΓ. A generalized Heaviside enrichment strategy

(Eqn.(3.1.1)) is used. Two enrichments levels (l = [1, 2]) are required in this example to represent

two distinct material phase (m = [I, II]), leading to two DOFs per node. Figure A.1 (b) shows the

associated 1D shape functions where solid lines indicate active areas and dashed lines denote areas

in which the corresponding shape function is (physically) inactive. These are identical to a classical

1D FEM bar problem and stated here for completeness as:

Ni =



NA

NB


 =




1− x
L

x
L


 (A.0.1)

where i denotes the node index (i.e. i = [A,B]). The global, enriched nodal displacement solution

vector for two enrichment levels is:

û =




û1
A

û1
B

û2
A

û2
B




(A.0.2)

It should be noted that only displacement components û1
A and û2

B have a physical meaning whereas

the remaining two (enriched) DOFs (û2
A, û1

B) solely serve the purpose of representing an intra-element
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Figure A.1: 1D bar example decomposed into two material sub-domains using XFEM. (a) Problem
setup and (b) shape functions.

discontinuity using Heaviside-enriched XFEM.

Bulk and Interface Contributions

In order to enforce continuity of displacements and traction at the interface via Nitsche’s

method, the total elemental residual consists of three terms. Two bulk contributions (i.e. one from

each material phase) and an interface contribution. It can be stated as:

R = RI
B + RII

B + RIF

∣∣
XΓ

(A.0.3)

where the bulk residual contributions are denoted by Rm
B for phase m, respectively. The bulk

contributions are computed using the weak form of the linear elastic governing equation (Eqn.(2.2.11))

as:

Rm
B =

∫ Xu

Xl

εm(δu)Emεm(u) dX (A.0.4)

where Em denotes the Young’s modulus of phase m and the integration limits are determined by Xm
l

and Xm
u for the respective material phase. The 1D strain tensor for enrichment level l is computed

as ε(ul) =
NB û

l
B−NAû

l
A

L and the variation of strain is ε(δul) = NB−NA
L . Evaluating Eqn.(A.0.4)
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yields the bulk residual contributions for phase I and phase II as:

RI
B =

EIAI

L2
XΓ




û1
A − û1

B

−û1
A + û1

B

0

0




, RII
B =

EIIAII

L2
(L−XΓ)




0

0

û2
A − û2

B

−û2
A + û2

B




(A.0.5)

where L denotes the total length of the bar element and Am is the cross sectional area of the bar

within each material phase.

Nitsche’s interface residual (Eqn.(3.1.3)) simplifies in the 1D case to:

RIF = −[[δu]]{Eε(u)}N
∣∣
XΓ

+ {Eε(δu)}N[[u]]
∣∣
XΓ

+ γN [[δu]][[u]]
∣∣
XΓ

(A.0.6)

where it should be noted that Eqn.(A.0.6) is evaluated at the interface (point) XΓ only and therefore

the normal vector N on the interface degrades to a unit scalar. Expanding Eqn.(A.0.6) leads to:

RIF = −(δu1
i − δu2

i )(
EIAI

2

û1
B − û1

A

L
+
EIIAII

2

û2
B − û2

A

L
)

−(
EIAI

2

δû1
B − δû1

A

L
+
EIIAII

2

δû2
B − δû2

A

L
)[[u]]

+γ(δu1
i − δu2

i )[[u]]

(A.0.7)

where i = [A,B], umi = Niû
m
i and δumi = Ni. The displacement jump at the interface is computed

as:

[[u]] =
∑

i

Niû
1
i −

∑

i

Niû
2
i = (NAû

1
A +NBû

1
B)− (NAû

2
A +NBû

2
B) (A.0.8)

It should be noted that in Eqn.(A.0.7) an equal traction weighting of wI = wII = 0.5 is used

for simplicity. Separating out the interface residual equation for each nodal DOF, Eqn. (A.0.7)
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becomes:

RIF = −E
IAI

2L




NA( û1
B − û1

A)

NB( û1
B − û1

A)

NA(−û1
B + û1

A)

NB(−û1
B + û1

A)




− EIIAII

2L




NA( û2
B − û2

A)

NB( û2
B − û2

A)

NA(−û2
B + û2
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NB(−û2
B + û2
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− 1

2L
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EIAI ( [[u]])

EIIAII(−[[u]])

EIIAII( [[u]])




+γN




NA( [[u]])

NB( [[u]])

NA(−[[u]])

NB(−[[u]])




(A.0.9)

Finally, the total elemental tangent stiffness matrix is computed by linearization of Eqn.(A.0.3) as:

K =
∂RI

B

∂û
+
∂RII

B

∂û
+
∂RIF

∂û
(A.0.10)

As in a classical FE case, the nodal (physical and enriched) displacement DOFs are obtained by

solving the master stiffness equation:

Kû− F̂ = R (A.0.11)

where F̂ is some external force vector. It should be noted that if the same material is used in phase

I and phase II, an identical solution is obtained for each enrichment level. The solution is then also

identical to a classical FE problem, as no discontinuity and therefore no intra-element interface

exists.
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Influence of interface position XΓ on the Residual R

An investigation of the influence of the interface position XΓ on the total elemental residual

(Eqn.(A.0.3)) is studied next. The total sensitivity is computed from three terms as:

∂R

∂XΓ
=
∂RI

B

∂XΓ
+
∂RII

B

∂XΓ
+
∂RIF

∂XΓ
(A.0.12)

The sensitivities of the phase I and phase II bulk residuals of Eqn.(A.0.12) are computed as:

∂RI
B

∂XΓ
=
EIAI

L2




û1
A − û1

B

−û1
A + û1

B

0

0




,
∂RII

B

∂XΓ
= −E

IIAII

L2




0

0

û2
A − û2

B

−û2
A + û2

B




(A.0.13)

The sensitivity of the interface residual (Eqn.(A.0.9)) with respect to the interface position XΓ is

computed as:

∂RIF

∂XΓ
= −E

IAI

2L2




−( û1
B − û1
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B + û1

A)




− EIIAII
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(A.0.14)

where the sensitivity of the interface jump with respect to the interface position XΓ is obtained
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from:

∂[[u]]

∂XΓ
=
∑

i

∂Ni

∂xΓ
û1
i −

∑

i

∂Ni

∂xΓ
û2
i =

1

L
(−û1

A + û1
B)− (−û2

A + û2
B) (A.0.15)

It should be noted that if the same material is used in phase I and phase II, just as before, there is

no influence of the intersection on the element sensitivity as the element can be treated as a regular,

non-intersected element. This is accounted for in Nitsche’s formulation such that the sensitivities of

the bulk contributions and the interface sensitivity cancel each other out. For different materials in

phase I and phase II, a non-zero ∂R
∂XΓ

is obtained since the (different) stresses in each domain do not

fully cancel out.
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat
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rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
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accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl

hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque

penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla

ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing

semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie

nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum.

Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim.

Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec

bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu

enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer

tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut

imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.
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Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.
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Topology Optimization of Active Structures using a
Higher-Order Level-Set-XFEM-Density Approach

Markus J. Geiss*, Kurt Maute†, University of Colorado Boulder, Boulder, CO 80309

To fully use the potential of emerging manufacturing technologies like additive manufacturing (AM),
a need for novel design tools is inherently created. In this work, topology optimization (TO) is used
to automate the design process of active, 3D structures. A linear elastic thermomechanical model
together with higher-order finite elements (FE) is utilized to capture the physical behavior of a self-
deforming structure where self-actuation is caused by internal swelling strains. A gradient-based
level-set (LS) TO approach is adopted to describe the evolving interface geometry between a solid
and void domain. Simultaneously, a density-based TO approach is used within the solid domain to
define the distribution of different materials. The extended finite element method (XFEM) is em-
ployed to predict the structural response using a well-resolved geometry representation and spatial
discretization. In addition, the need for higher-order XFEM elements is identified in order to accu-
rately predict the deformations of slender structures. Face-oriented ghost stabilization is studied for
stabilization of the higher-order XFEM. Finally, a stabilization scheme to suppress rigid body motion
of isolated solid sub-domains appearing during the optimization process is investigated. An exam-
ple of an optimized shape-changing structure is presented and the performance of the final design is
analyzed. Potential aerospace applications of this design methodology are discussed.

I. Introduction
With emerging manufacturing technologies like additive manufacturing (AM) providing unprecedented design

freedom, design tools are needed that take advantage of the increased flexibility of these novel manufacturing tech-
niques. Multi-disciplinary design optimization has the potential to unlock the full capabilities of AM, in particular
3D printing. Topology optimization (TO), being the most general form of design optimization, is used in this work to
automatically generate the design of shape-changing 3D structures. A level-set (LS) extended finite element method
(XFEM)-based TO approach is combined with a density-based TO approach to create a multi-material optimization
framework, which leverages the advantages of each method. The focus of this work is on slender active structures
where locking of low-order finite elements (FE) prevents the accurate prediction of the structural response. Therefore,
a higher-order element interpolation is used to improve the deformation prediction using the XFEM. Another chal-
lenge being addressed in this work is the need for numerical stabilization of the higher-order XFEM in the vicinity of
the material-void interface. Therefore, a face-oriented ghost penalization scheme is employed and verified against an
analytical example. Selective structural springs are utilized to provide numerical stability while having no effect on
the deformation prediction of the remaining, connected solid domain.

II. Extended Finite Element Modeling of Slender Structures
The XFEM, initially used by [1] for capturing crack growth phenomena, is an accurate approach to describe evolv-

ing interfaces on a fixed background mesh. It is therefore popular in combination with a LS geometry description
to capture changing designs throughout a TO process [2]. In this work, a generalized Heaviside enrichment strat-
egy is used to enhance the classical FE interpolation with additional shape functions which allow for independent
interpolation into disconnected sub-domains. Triangulation of material sub-domains for volume and surface integra-
tion is performed and interface conditions need to be enforced in order to achieve a continuous solution across the
discontinuous material interface.

*Graduate Research Assistant, Ann and H.J. Smead Department of Aerospace Engineering Sciences, AIAA Student Member,
Markus.Geiss@Colorado.edu

†Professor, Ann and H.J. Smead Department of Aerospace Engineering Sciences, Kurt.Maute@Colorado.edu
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Figure 1. Domain decomposition into solid (Ω0
S ) and void (Ω0

V ) sub-domains along the material-void interface Γ0 using LS-XFEM. Within
the solid domain, a further distinction is made between two different materials (Ω0

1 and Ω0
2). The hatched lines on the left and bottom edge

of the design domain represent Neumann and Dirichlet boundary conditions, respectively.

A. Linear Elastic Thermomechanical Model
Static equilibrium is considered, enforcing balance of linear momentum within the solid domain Ω0

S (see Figure 1).
The weak form of the linear elastic governing equation is stated as:

Rlin =

∫

Ω0
S

(δεijσij − δuiρBi) dV −
∫

Γ0
T̄

δui · T̄i dA = 0 (1)

where εij is the total strain tensor, σij is the symmetric Cauchy stress tensor, and ui are the nodal displacements. The
density is denoted by ρ, Bi is the body-force vector, and T̄i is the prescribed traction vector on the surface Γ0

T̄
. The

isotropic eigenstrain causing a shape-change in active structures is modeled by a residual, isotropic thermal swelling
strain. The total strain εij is computed as:

εij = (εu)ij − (εs)ij (2)

where (εu)ij denotes the symmetric infinitesimal strain tensor defined as:

(εu)ij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
(3)

and (εs)ij is the isotropic thermal swelling strain defined as:

(εs)ij = αm∆Tδij (4)

where αm is the coefficient of thermal expansion (CTE) of Material 1 or Material 2 (i.e.m = 1, 2), ∆T = 1 is a
pseudo temperature increment and, δij is the Kronecker delta. The Cauchy stress is finally computed using Eqn. (2)
as:

σij = Dijklεkl (5)

where the fourth-order constitutive tensor Dijkl is defined as:

Dijkl =
Em

2(1 + νm)
(δilδjk + δikδjl) +

Emνm
(1 + νm)(1− 2νm)

δijδkl (6)

The elastic modulus of material m is denoted by Em and νm is the Poisson’s ratio of an isotropic, linear elastic
material.
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B. Nonlinear Hyperelastic Thermomechanical Model
For verification purposes of the optimized design, a nonlinear kinematics model is used which is briefly introduced
here for completeness. The weak form of the governing equation is formulated as:

RNonLin =

∫

Ω0
S

(δFijPij − δuiρBi) dV −
∫

Γ0
T̄

δui · T̄i dA = 0 (7)

where Fij = ∂xi/∂Xj is the total deformation gradient tensor with xi = ui + Xi defining the relation between
spatial coordinates in the undeformed (Xi) and deformed (xi) configurations Ω0

S and ΩS , respectively. The first
Piola-Kirchhoff stress tensor is denoted by Pij . A multiplicative decomposition of the total deformation gradient
into a mechanical and thermal deformation gradient is used, where a linear thermal expansion model is assumed for
calculation of the thermal deformation gradient. Moreover, a Saint-Venant Kirchhoff hyperelastic material model is
used. For more details on the nonlinear kinematics model, the interested reader is referred to [3].

C. XFEM for Slender Structures
Just like in classical FE, element locking needs to be considered when modeling slender structures with the XFEM.
Element locking is an artifact of low-order FEs occurring when the interpolation order is too low to properly capture
the displacement field. This introduces artificial element strains which lead to over-stiffening of the FE approximation
and hence to a large under-prediction of the displacements. In particular shear locking, caused by high aspect ratio
elements, is a major problem when modeling slender structures. The artificial element locking can, for example,
be mitigated by using shell formulations, reduced-order integration or by increasing the interpolation order of the
elements.

In order to illustrate the effect of shear locking, a simple bi-layer beam example is modeled using linear and
quadratic XFEM elements for different levels of mesh refinement as well as linear and nonlinear kinematics models.
The obtained tip displacements are then compared against the results from a 1D Timoshenko beam model outlined
in [4]. A bi-layer, slender 3D beam is considered where the XFEM is used to decompose a slender beam into two
different materials layers (see Figure 2). The material in the top layer has an elastic modulus of E1 = 0.6 MPa, a
Poisson’s ratio of ν1 = 0, and a uniaxial swelling strain of α1 = 0.045 in X1-direction. The material in the bottom
layer is stiffer with an elastic modulus of E2 = 6 MPa, the same Poisson’s ratio but no swelling strain (i.e. α2 = 0).
The beam of dimensions 80 mm x 2.5 mm x 1 mm is clamped on the left end. Boundary conditions are applied weakly
using Nitsche’s method [5]. Isotropic swelling of the active material at the top of each beam leads to downward curling
of the structure, as depicted in Figure 2.

Figure 2. Nonlinear deformation prediction of a cantilevered bi-layer beam using different order XFEM elements and different element
sizes. The insert shows the XFEM mesh of the two-layer beam. Deformation predictions using the linear kinematics model are not shown.

The linear and the nonlinear kinematics models introduced previously are used for the XFEM analysis where a
strong influence of the spatial discretization on the accuracy of the XFEM prediction is observed. However, even for the
finest mesh with a mesh size of h = 0.5x0.5x0.1 and 10 elements through the thickness, a large discrepancy between
the 1D analytical model (indicated by the dashed circle in Figure 2) and the nonlinear XFEM solution is observed when
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trilinear HEX8 elements are used (shown in red). Using higher-order serendipity HEX20 elements with 20 nodes and a
total of 60 degrees of freedom (DOF) in 3D in combination with a nonlinear analysis (shown in green), a much better
agreement and convergence towards the analytical Timoshenko beam theory-based radius of curvature RTimosh =
15.5 mm is obtained. It can also be seen that even the coarsest spatial discretization shown in Figure 2 performs
much better using HEX20 elements compared to the finest HEX8 mesh considered here. A quantitative comparison
of the tip displacement L2 norm between HEX8 and HEX20 elements using linear and nonlinear kinematics is shown
in Table 1. It should be noted that the comparison shown in Table 1 is only made within each kinematics model, as
a cross-comparison of displacements between linear and nonlinear kinematics for large deformations and rotations is
physically meaningless.

Table 1. Comparison of the tip displacement L2 norm against a 1D Timoshenko model using linear and nonlinear kinematics.

Linear Nonlinear
Mesh Size HEX8 HEX20 HEX8 HEX20

h = 5.0x2.5x0.2 93.6 % 3.7 % 90.1 % 4.3 %
h = 0.5x0.5x0.1 14.7 % 2.6 % 6.3 % 1.2 %

It can clearly be seen that when using coarse meshes for modeling slender structures, low-order FEs exhibit large
amounts of locking. For both, linear and nonlinear kinematics, the difference in tip displacements between a coarse
XFEM prediction and the respective analytical reference solution is over 90%. With mesh refinement, these discrep-
ancies reduce, however the computational cost increases. When using a higher-order spatial discretization, locking
effects are largely mitigated for both, linear and nonlinear kinematics. Therefore, a closer match between the XFEM
predictions and the respective Timoshenko model predictions is obtained. These results demonstrate the need for
higher-order spatial discretization to accurately predict the displacement behavior of slender structures modeled by
solid brick XFEM elements.

III. Higher-Order Face-Oriented Ghost Stabilization
To stabilize the higher-order XFEM approach described in Section II, face-oriented ghost stabilization as proposed

by [6] is adopted for linear elastic structural problems. Instabilities of the XFEM approach arise when the material-void
interface Γ0 moves too close to a FE node in the background mesh, which may lead to a vanishing zone of influence
of a DOF. Numerically, this leads to ill-conditioning of the linear system and to inaccuracies in the linear solve. To
cure this issue, face-oriented ghost stabilization is applied in the vicinity of the solid-void interface by augmenting the
linear elastic governing equation with a penalty term. The most simple ghost formulation as originally proposed by
[6] penalizes the jump in the displacement gradient and is stated as:

RG = hγGE
∑

F∈Ξ

∫

F

[[
∂vi
∂Xj

nj

]] [[
∂ui
∂Xj

nj

]]
dS + h3γGE

∑

F∈Ξ

∫

F

[[
∂

∂Xk

(
∂vi
∂Xj

nj

)]] [[
∂

∂Xk

(
∂ui
∂Xj

nj

)]]
dS

(8)

where h is the element edge length, γG is a constant ghost penalization parameter, and E is the elastic modulus of
the solid material. The subset Ξ contains all element facets F in the immediate vicinity of the solid-void interface,
for which at least one of the two adjacent elements is intersected [7]. The admissible test functions are denoted by
vi = δui. The jump operator is defined as:

[[•]] = •|Ω0
e1

− •|Ω0
e2

(9)

and is evaluated along the face between two adjacent elements, Ω0
e1 and Ω0

e2 . The outward facing normal between
element Ω0

e1 and Ω0
e2 is denoted by nj . The first term in Eqn.(8) penalizes the jump in the first-order spatial gradients

of the displacements while the second term penalizes the jump in the second-order spatial gradients of the displace-
ments. Because the integration domain of Eqn.(8) is always an entire face, regardless of the intersection configuration,
face-oriented ghost stabilization overcomes numerical issues associated with small intersections and the associated
vanishing zone of influence of certain DOFs.

For general applications, where a uniform, homogeneous material is present within the solid domain, the dis-
placement gradient-based ghost formulation presented in Eqn.(8) is sufficient. However, if the solid domain consists
of a non-uniform material, as it is the case in combined LS-XFEM-Density TO, a more general ghost penalization
formulation is required. The originally proposed formulation directly penalizes jumps in the spatial displacement
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gradients, which need to vanish between elements of the same phase. However, if spatially varying material prop-
erties are present within the solid phase, displacement gradient jumps exist by construction. Using the displacement
gradient-based ghost formulation presented in Eqn.(8) would therefore falsely penalize jumps which are not caused
by numerical instabilities but by spatially varying material properties. To address this issue and to correctly apply
face-oriented ghost stabilization only to jumps caused by the XFEM discretization, a stress-based ghost stabilization
is proposed. It is formulated as:

RG =
h

Ẽ
γG
∑

F∈Ξ

∫

F

[[σij(v) nj ]] [[σij(u) nj ]] dS +
h3

Ẽ
γG
∑

F∈Ξ

∫

F

[[
∂σij(v)

∂Xk
nj

]] [[
∂σij(u)

∂Xk
nj

]]
dS (10)

where Ẽ a scaling factor based on the geometric mean of the elastic moduli of the two adjacent elements. The ad-
vantage of this stress-based formulation is that the scaling of the individual contributions by the Young’s modulus is
performed elementally, which eliminates jumps in the displacement gradients solely caused by varying material prop-
erties. Even though the ghost penalization formulation stated in Eqn.(10) is most general, computing the linearization
of the variation of the gradient of the stress ∂/∂ul(∂σij(v)/∂Xk) needed for stabilizing second-order spatial gradi-
ents leads to a significant increase in computational efforts. Therefore, a hybrid formulation based on the principle of
virtual work is proposed. The ghost penalization residual contribution is formulated as:

RG = h γG
∑

F∈Ξ

∫

F

[[
∂vi
∂Xj

nj

]]
[[σij(u) nj ]] dS + h3γG

∑

F∈Ξ

∫

F

[[
∂

∂Xk

(
∂vi
∂Xj

nj

)]] [[
∂σij(u)

∂Xk
nj

]]
dS (11)

This formulation is computationally efficient while still being accurate for non-uniform material distributions within
the solid domain.

A. Verification against an Analytical Spherical Inclusion Problem
To verify the performance of the face-oriented ghost stabilization formulation for higher-order XFEM elements, as
proposed in Section III, a mesh refinement study is performed. The convergence behavior of the L2 error norm, the
H1 error semi-norm, and the effect on the condition number is studied for the virtual work-based formulation presented
in Eqn.(11). A cubic domain with a spherical inclusion as depicted in Figure 3a is considered. Both, the inclusion
material (Phase I) and the matrix material (Phase II) have an elastic modulus of E = 10 MPa and a Poisson’s ratio of
ν = 0.3. The inclusion material has a CTE of α = 0.1, while the matrix material has no eigenstrain. Isotropic linear
elasticity is assumed for each material phase and the interface conditions along the Phase I/Phase II material interface
are enforced weakly using Nitsche’s method [8]. The interface condition ensures continuity of the displacements and
the traction across the interface in material-material problems. Details of the formulation are omitted here for brevity,
but the interested reader is referred to [9] for further information.

a) Setup of spherical inclusion problem. b) Deformation due to expansion of spherical inclu-
sion (cut-away view)

Figure 3. Verification problem of a spherical inclusion in cubical host matrix.

5 of 13

American Institute of Aeronautics and Astronautics

251



An analytical solutions for the strain and stress fields within a spherical inclusion embedded in an infinite isotropic
linear elastic solid were first proposed by [10]. Due to the existence of a uniform eigenstrain εIs within the spherical
inclusion (Phase I), a uniform strain field is obtained as:

εIij = S∗ijkl(ε
I
s)kl (12)

where S∗ijkl is the constant, fourth-order Eshelby tensor. For a spherical inclusion, it is defined as:

S∗ijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (13)

The displacement field inside the spherical inclusion uIi (X) is obtained by integration of Eqn.(12) whereas the spatial
gradient of the displacement field ∂uIi (X)/∂Xj equals the strain defined in Eqn.(12).

Based on the work of [11], an analytical expression for the displacement field outside the spherical inclusion (Phase
II) can be obtained as well. For that, a transformation stress σ̄Iij is computed from the eigenstrain as [12]:

σ̄Iij =
E

1 + ν

(
(εIs)ij +

ν

1− 2ν
(εIs)kkδij

)
(14)

The transformation stress is then used in combination with the Papkovich-Neuber potentials [13, 14] to compute
the displacements. The Papkovich-Neuber potentials reduce for a spherical inclusion case to:

Ψi =
a3σ̄ijXj

3R3
and φ =

a3σ̄ij
15R3

(
(5R2 − a2)δij + 3a2XiXj

R2

)
(15)

where the radial distance from the origin is compute as R =
√
XkXk and a is the inclusion radius. The displacements

outside the spherical inclusion are calculated by using:

uIIi (X) =
2(1 + ν)

E

(
Ψi +

1

4(1− ν) ∂
∂Xi

(φ−ΨkXk)

)
(16)

Substituting Eqn.(15) into Eqn.(16) yields the final expression for the displacements in Phase II, stated as:

uIIi (X) =
(1 + ν)a3

2(1− ν)E

(
2σ̄ikXk + σ̄kkXi

15R5
(3a2 − 5R2) +

σ̄jkXiXjXk

R7
(R2 − a2) +

4(1− ν)σ̄ikXk

3R3

)
(17)

The calculation of the spatial derivatives of the outside displacements ∂uIIi (X)/∂Xj is straightforward and omitted
here for brevity.

a) Comparison of L2 error norms. b) Comparison of H1 error semi-norms. c) Comparison of condition numbers.

Figure 4. Convergence of linear and quadratic hexahedral elements over mesh size, with and without ghost stabilization.

In order for the aforementioned analytical solutions to be a valid reference, an infinite host matrix needs to be
modeled using XFEM. To achieve this, “infinity” boundary conditions are applied to all six faces of the cubical matrix
domain shown in Figure 3a. These are location dependent Dirichlet boundary conditions applied along the domain
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a) Initial design and problem setup. b) Selective springs during the design process.

Figure 5. Problem setup for self-twisting propeller.

boundaries which prescribe the analytical displacement values computed using Eqn.(17). This approach allows for
a finite simulation domain while simulating a swelling spherical inclusion within an infinite host matrix. Using the
previously discussed problem setup and the derived analytical solutions within and outside the spherical inclusion as a
reference, a mesh-refinement study is conducted. The aim of the study is to determine the effect of higher-order ghost
stabilization on the displacement solution, the spatial gradient of the displacement solution, and the condition number
of the linear system when using quadratic XFEM elements. The results are presented in Figure 4.

From Figure 4a it can be seen that using quadratic HEX20 elements versus linear HEX8 elements leads to a slightly
smaller L2 error in the displacement solution. The convergence behavior with respect to mesh refinement is however
not affected by employing face-oriented ghost penalization. A similar effect is observed with respect to the H1 error
semi-norm in the displacement gradients, depicted in Figure 4b. Therefore, using higher-order spatial discretization
leads to an improved convergence rate with mesh refinement. Regarding the condition number, a significant improve-
ment is observed when using higher-order ghost penalization in combination with HEX20 XFEM elements (see Figure
4c). Compared to HEX8 elements, an increase in condition number is naturally expected due to the increased number
of DOFs. This effect is however almost entirely mitigated by employing second-order face-oriented ghost stabilization,
as shown in Figure 4c.

IV. Definition of the Multi-Material Design Optimization Problem
To take advantage of the benefits of both a LS-XFEM-based approach and a density-based TO approach, a com-

bined strategy is used in this work. This approach follows the work of [3] and is applied to linear elastic structural
problems in this paper. For completeness, a brief overview of the definition of the multi-material topology optimiza-
tion problem is stated here. A discretized nodal LS function φ(X) is used in order to represent the solid and void
domains. The distinction is defined as:

φ(X) < 0, ∀X ∈ Ω0
S

φ(X) > 0, ∀X ∈ Ω0
V

φ(X) = 0, ∀X ∈ Γ0

(18)

where Ω0
S and Ω0

V denote the solid and void domain respectively and Γ0 denotes the interface between them (see Figure
1). Just as in classical LS-XFEM, the nodal LS values are introduced as design variables. In addition, continuous nodal
design variables 0 ≤ ρ(X) ≤ 1 are introduced within the solid domain ΩS defining the material distribution by the
Solid Isotropic Material with Penalization (SIMP) [15] law as:

E(ρ) = Emin + (Emax − Emin)ρβ (19)

where the elastic modulus is interpolated between a minimum and maximum property value using a SIMP exponent
of β = 3. The minimum and maximum material properties represent Material one (Ω0

1) and Material two (Ω0
2),

respectively. A schematic illustration of this distinction is shown in Figure 1. A similar interpolation with a SIMP
exponent of β = 1 is used for interpolating the nodal densities ρ. A slightly modified SIMP interpolation scheme is
used for interpolating the CTE of the two materials. It is defined as:

α(ρ) = αmin + (αmax − αmin)(1− ρ)β (20)
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where the SIMP exponent is β = 3.
The combined LS-XFEM and SIMP optimization problem can be formulated as:

min
s

z(s,u)

s.t. gj(s,u) ≤ 0 j = 1...Ng

s ∈ Π = {RNs |sL ≤ s ≤ sU}
u ∈ RNu

(21)

where the design variables s include both the nodal LS values φ(X) and the nodal densities ρ(X). Target shape
matching is the main objective of this work. The objective function is defined as:

z(s,u) =

∫

Γ0
tar

(û− utar)
2dA+ γper

∫

Γ0

dA (22)

where û are the nodal displacements and utar is the target displacement defined over the target surface Γ0
tar (see Figure

5a). The perimeter penalty factor is denoted by γper. The first term of Eqn.(22) corresponds to a measure of how well
the target shape is matched and the second term is a perimeter penalty. The perimeter penalty is applied to regularize
the optimized design and to avoid small, irregular geometric features. A volume constraint is applied to the LS-XFEM
problem in order to only allow for a maximum amount of solid phase within the entire design domain. A constraint on
the maximum amount of solid phase is needed in order for the structure to achieve its desired target shape. This is not
possible with the initial, plate-like design shown in Figure 5a. Mathematically, this inequality constraint is formulated
as:

g1(s,u) =
Ω0
S

(Ω0
S + Ω0

V )
− γv ≤ 0 (23)

where γv is the maximum allowed amount of solid phase. In this work, a nested analysis and design approach, also
known as NAND [16] is used. In this approach the equilibrium equations are solved separately from the optimization
problem. Therefore, different solution algorithms are utilized for solving the “forward” problem and the optimization
problem.

It should also be noted, that in addition to the interpolation schemes defined in Eqn.(18), Eqn.(19), and Eqn.(20)
linear filtering techniques are used to regularize the design variable fields and to accelerate convergence. This also
provides the ability for controlling the minimum feature size within the solid domain. The nodal density design vari-
ables are averaged for each FE to compute elementally constant material properties. A smoothed Heaviside projection
[17] is used to obtain a well-defined material interface between Ω0

1 and Ω0
2 removing intermediate densities introduced

through the linear filter.

V. Selective Structural Springs
As reported by [18], during a material-void TO process, isolated material islands can occur which will then lead

to ill-conditioning of the linear system due to rigid body motion (RBM). Conceptually this is illustrated in Figure 1

Table 2. Parameters of the twisting propeller problem

Value
Mesh Size 80 x 80 x 10 (Quarter Domain)
Element Size h = 1 x 1 x 0.1 mm
Elastic Modulus Material 1 E1 = 8.0 MPa
CTE Material 1 α1 = 0.0
Poisson’s Ratio ν1 = ν2 = 0.4
Elastic Modulus Material 2 E2 = 0.6 MPa
CTE Material 2 α2 = 0.054
Ghost Penalization Parameter γG = 0.001
Smoothing Filter Radius 4 mm
Number of Design Variables 286,900 (Quarter Domain)
Number of initial free DOFs 626,500 (Quarter Domain)
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a) Evolution of normalized objective. b) Evolution of volume constraint.

Figure 6. Evolution of objective and constraint.

where a sub-domain of Ω0
2 is disconnected from the bulk of the solid domain Ω0

S and unconstrained. It was therefore
suggested to add a small perturbation to the diagonal of the global stiffness matrix in order to prevent ill-conditioning
of the linear system. Physically, this perturbation represents the attachment of weak linear springs to every DOF in
the entire system. This was proven to be a simple and effective means to prevent RBM when using trilinear HEX8
elements. For quadratic elements which do not suffer from shear locking effects, a significant influence of the globally
applied springs was seen on the deformation prediction.

One way to mitigate this problem is to apply the weak structural springs only to selective sub-domains which are
isolated and need to be constrained in order to suppress RBM. To identify disconnected sub-domains, the solution
of an auxiliary indicator field is used. Prior to solving the structural problem, a linear diffusion problem with bulk
convection is solved. This determines whether a sub-domain is disconnected from mechanical boundary conditions
or not. Dirichlet boundary conditions of θ̃ = 0 are applied to the same boundaries where the structural problem is
constrained (indicated by hatched lines in Figure 1). In addition, a volumetric flux is applied to those boundaries. The
residual equation for the auxiliary indicator field can be formulated as:

RDiff =

∫

Ω0
S

∂δθ̃

∂Xi

(
k
θ̃

∂Xi

)
+ δθ̃(κ(θ̃ − θ̃ref ))dV (24)

where k is the thermal conductivity set to 20, θ̃ is the scalar indicator value, κ is the bulk heat transfer coefficient set to
0.01, and θ̃ref is the reference indicator value set to 1. The solution of Eqn.(24) will lead to indicator values of close
to 0 in sub-domains connected to mechanical boundary conditions and indicator values close to 1 in disconnected sub-
domains. Note that a non-physical “bulk” convection term in Eqn.(24) prevents ill-conditioning of the linear diffusion
system due to disconnected sub-domains. To project the indicator values, to either exactly 0 or exactly 1, a smoothed
Heaviside projection is used and defined as:

θ̄ =
1

2
+

1

2
tanh(kw(θ̃ − ktθ̃ref )) (25)

where θ̄ is the projected indicator value, kw is the projection sharpness parameter, and kt is the projection thresh-
old. After the auxiliary indicator field solution has been obtained, the residual of the linear structural problem (1) is
augmented by the following selective spring stiffness term:

RSprj =

∫

Ω0
S

uiδij rEm θ̄ dV (26)

where the relative spring stiffness ratio is r = 1.0 · 10−6, and Em is the elastic modulus of either solid material. An
illustration of selectively applied structural springs for stabilization of isolated material domains is shown in Figure
5b. It can clearly be seen that a non-zero spring stiffness value is only applied to solid sub-domains disconnected from
any mechanical boundary condition, which naturally arise during a solid-void LS-XFEM TO process.
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a) XFEM model of the final design of the active propeller. b) Extracted material phases of the active propeller.

Figure 7. Final design of the active propeller. Reflected to obtain the full design (void phase is not shown).

VI. Numerical Example
A numerical example is presented to demonstrate the applicability the proposed combined LS-XFEM and density-

based TO framework for designing 3D self-deforming structures. For simplification of the numerical design process,
the linear kinematics model introduced in Section A combined with higher-order XFEM elements is used. In order
to meet a certain target shape, the topology of the solid domain as well as the material distribution within are altered
during the optimization process. The linear “forward” problems are solved using the Multifrontal Massively Parallel
Solver (MUMPS) [19, 20]. The optimization problem is solved using the Globally Convergent Method of Moving
Asymptotes (GCMMA) [21] for which the objective and constraint gradients are obtained through the adjoint method.
For more details regarding the computation of shape sensitivities using the XFEM, the interested reader is referred to
[22].

A shape-changing propeller structure is designed by optimizing the arrangement of an active material (with a non-
zero eigenstrain) and a passive material (with zero eigenstrain) within a solid domain. Simultaneously, the geometry of
the solid domain itself is also subject to the optimization. The symmetry of the mechanical problem is taken advantage
of and only one quarter of the domain is modeled and analyzed (see Figure 5a). Anti-symmetry boundary conditions
are applied by clamping a single row of nodes along the internal edges to only allow for rotations about the respective
axes. In addition, the center of the design domain is constrained in X3-direction. The objective of this problem is to
match a ω = 45◦ twisted target shape of the target domains Γ0

tar. A perimeter penalty of γper = 0.01 and a volume
constraint of γv = 0.15 are enforced.

The design variables defining the LS field exist only on the top surface of the domain which leads to constant nodal
LS values through the thickness of the plate in X3-direction (e.g. φ(X1, X2, X3) = φ(X1, X2)). This ensures straight
cuts through the thickness and prevents the optimizer from reducing the plate thickness in X3-direction. Moreover,
to prevent disconnection of the tips where the target displacement is measured from the base at the center of the
propeller, the domain immediately bordering the anti-symmetry boundaries is prescribed to be solid phase throughout
the optimization process. The parameters used for this design problem are listed in Table 2. An initial uniform density
distribution of ρ = 0.5 is used to initialize the SIMP design variables. To initialize the LS design variables, an initial
seeding with four square holes within one quarter of the entire domain is used as shown in Figure 5a.

The TO is performed using HEX20 XFEM elements with higher-order ghost stabilization and a linear elastic
constitutive model. In addition, selective structural springs are employed. The evolution of objective and constraint is
depicted in Figure 6. A quick drop in the objective function is seen, while initially the volume constraint is violated.
Initial oscillations in the objective disappear after about 100 design iterations as an optimum material arrangement and
solid-domain topology is identified. At this point, a continuation approach is enabled which increases the projection
parameter every 50 design iterations, from initially 3 to 96 after 400 design iterations. This is reflected in slight
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increases in the objective every 50 iterations, as shown in Figure 6a. The objective converges to a non-zero value of
about 0.13, which means the desired target rotation angle of ωtar = 45◦ cannot be full achieved (see Figure 8). This
is due to the simplified linear elastic model used in the analysis in combination with an eigenstrain of 4.5% which is
insufficient to fully reach the target angle.

The final, converged design in the deformed configuration is shown in Figure 7a where the solution of the quarter
domain was reflected to complete the entire propeller for illustration purposes. The final design exhibits interesting
features in order to assume the desired twisting of its tips. The overall shape corresponds to a cross structure with
perpendicular tips forming the propeller “blades”. The four arms are comprised of mostly passive material (red) with
distinct strips of active material (blue) braided from the center outward. The alignment of these bands of active material
is about 45◦ and they are placed at three ”bulges” where the width of the propeller arms increases locally. These three
areas at which twisting occurs are connected by two sections of purely passive material leading to incremental twisting
of the propeller in the outward direction. Overall, the target shape of a twisting propeller comprised of four arms is
achieved reasonably well. Figure 7b shows the extracted distinct material phases highlighting the interwoven active
and passive material regions. The extracted geometries of each of the material phases could for example be used for
AM of this active structure comprised of active and passive material.

Figure 8. Comparison of the final design analyzed with a linear kinematics model and a nonlinear kinematics model with the desired target
rotation angle ωtar = 45◦ indicated by a dashed line.

To understand the error introduced in the design optimization process by employing a simplified linear elastic
mechanical model, the final design is analyzed with the nonlinear kinematic model of Eqn.(7). Figure 8 shows the
deformed twisted propeller in side view analyzed by both a linear kinematics model (red) and a nonlinear kinematics
model (green). It can be seen that the linear elastic model significantly over-predicts the twist angle compared to a
more realistic prediction by the nonlinear model using the same optimized material layout. Since the linear elastic
model served as the basis during the design optimization process, the performance of the identified optimal design
is worse than predicted by the linear model. This shows the need for using a nonlinear analysis during the entire
optimization process, as performed by [3] in order to provide the proper guidance towards a more accurate optimal
design.

VII. Conclusions and Outlook
This work employed a combined LS-XFEM and density-based multi-material TO framework for the design of

shape-changing slender structures. The solid-void distinction is described by using LS-XFEM while the distribution
of two different materials within the solid domain is modeled by a SIMP interpolation. A need for higher-order XFEM
elements to accurately predict the deformation of slender structures was identified. To provide numerical stabilization
of the XFEM, higher-order face-oriented ghost stabilization was employed. The originally proposed displacement
gradient-based stabilization formulation was extended to a more general case and a verification against a 3D linear
elastic, analytical solution was performed. Moreover, a scheme to selectively apply linear springs to isolated solid
sub-domains was discussed. This approach prevents RBM and ill-conditioning of the global linear system as isolated
solid sub-domains appear during the TO process. The identification of disconnected solid areas is achieved through
the solution of a linear diffusion problem. Finally, a design optimization example was presented which demonstrates
the applicability and the performance of the proposed framework. An active twisting propeller was designed and
the respective target shape matched reasonably well. Moreover, a comparison of the performance of the optimized
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design between a linear elastic and a nonlinear analysis was performed. Overall, robustness and applicability of
the proposed framework using higher-order XFEM elements with higher-order ghost stabilization to design slender,
self-deforming structures was demonstrated in this work. The need for incorporation of nonlinear kinematics during
the entire optimization process was identified. Various applications, especially within the aerospace sector, can be
considered for using the proposed design optimization framework. These include deployable space mechanisms such
as solar sails, antennas or reflectors where a shape-change is triggered remotely. Alternatively, shape changing gripper
structures or holding mechanisms can be designed and fabricated through AM using the interplay between active and
passive materials.
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Combined Level-Set-XFEM-
Density Topology Optimization
of Four-Dimensional Printed
Structures Undergoing Large
Deformation
Advancement of additive manufacturing is driving a need for design tools that exploit the
increasing fabrication freedom. Multimaterial, three-dimensional (3D) printing allows
for the fabrication of components from multiple materials with different thermal, mechan-
ical, and “active” behavior that can be spatially arranged in 3D with a resolution on the
order of tens of microns. This can be exploited to incorporate shape changing features
into additively manufactured structures. 3D printing with a downstream shape change in
response to an external stimulus such as temperature, humidity, or light is referred to as
four-dimensional (4D) printing. In this paper, a design methodology to determine the
material layout of 4D printed materials with internal, programmable strains is intro-
duced to create active structures that undergo large deformation and assume a desired
target displacement upon heat activation. A level set (LS) approach together with the
extended finite element method (XFEM) is combined with density-based topology optimi-
zation to describe the evolving multimaterial design problem in the optimization process.
A finite deformation hyperelastic thermomechanical model is used together with an
higher-order XFEM scheme to accurately predict the behavior of nonlinear slender
structures during the design evolution. Examples are presented to demonstrate the unique
capabilities of the proposed framework. Numerical predictions of optimized shape-
changing structures are compared to 4D printed physical specimen and good agreement
is achieved. Overall, a systematic design approach for creating 4D printed active struc-
tures with geometrically nonlinear behavior is presented which yields nonintuitive mate-
rial layouts and geometries to achieve target deformations of various complexities.
[DOI: 10.1115/1.4041945]

1 Introduction

Advanced additive manufacturing technologies like three-
dimensional (3D) printing have improved vastly in recent years in
terms of accuracy, material variety, and reliability. Recently, the
concept of four-dimensional (4D) printing was introduced by Tib-
bits [1], where external stimuli are used to trigger shape changes
after a structure is 3D printed. The shape change over time is
therefore seen as the fourth dimension. In Ref. [2], this concept
was used to design transforming shape memory polymer struc-
tures utilizing the thermomechanical response of a glassy polymer
within an elastomer matrix. A similar material response was stud-
ied in Ref. [3] to create active origami structures. Exploiting the
shape memory behavior of a 3D printed glassy polymer, Maute
et al. [4] used level set (LS) topology optimization to create
printed active composites, which assume a target shape after a
thermomechanical training and activation cycle. As stated by
Ding et al. [5], the drawback of these traditional approaches of 4D
printing is the fact that a complex thermomechanical training and
activation cycle is required through which a shape change can be
triggered. To alleviate this issue, [5] introduced a novel approach
called “direct 4D printing” where no external training cycle is
required before the shape change occurs upon printing. The so
called “printing strain” used in this method for creating a shape
change is an inelastic eigenstrain that is programmed into the 3D

printed structure during the printing process. This strain is com-
pressive, and its magnitude can be designed by controlling the
time and intensity of the UV-curing of photo polymers in the pol-
yjet process. In the current work, two polymers with different
magnitudes of eigenstrain and different glass transition tempera-
tures are used to achieve a desired shape change upon release of
the built-in eigenstrain. A component fabricated in this manner
therefore consists of multiple well-bonded polymers with a high-
fidelity geometry, and with each polymer containing a spatially
variable eigenstrain. Upon printing, the component is heated to
release the built-in eigenstrain of the rubbery polymer (active
material) by lowering the stiffness of the glassy polymer (passive
material). This is achieved through heating of the printed structure
beyond the glass transition temperature of the passive material
causing a permanent shape change. Alternatively, a frontal poly-
merization process has been proposed by Zhao et al. [6] and Zhao
et al. [7]. This process uses the change in intensity of photo poly-
merization to create spatially varying material parameters leading
to 4D printed self-folding origami structures. Shape changes are
triggered by a solvent entering a loose polymer matrix which then
causes isotropic swelling. In this work, the direct 4D printing
method is employed as a convenient way to incorporate spatially
varying eigenstrains during fabrication of self-actuating plate-like
structures. For a more detailed study of the process of direct 4D
printing, the interested reader is referred to Ref. [5].

In order to exploit spatially varying inelastic strains to obtain
complex target displacements upon activation, an inverse design
problem is formulated and solved. Given a desired target deforma-
tion, the optimal geometry and material layout of active 4D
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printed components are determined in a systematic manner. In
previous works [8] and [9], this has only been done for one-
dimensional (1D) rod structures or for simple target shapes [5]
where it was possible to predetermine the optimal material layout
intuitively. A similar approach based on classical origami designs
is demonstrated in Ref. [10] for self-folding composite structures.
In this paper, a new multimaterial topology optimization formula-
tion is used to determine the material arrangement of shape-
changing 4D printed structures undergoing large deformation. The
proposed computational design framework accurately captures the
physical response of the structure by employing a hyperelastic
thermomechanical model combined with an higher-order
extended finite element method (XFEM) formulation. The shape
of the structure is defined by a LS method. A hybrid approach
combining LS-XFEM and density-based topology optimization is
introduced to solve the multimaterial design problem. These
topology optimization schemes have each demonstrated individu-
ally a wide range of applicability. An overview of LS and density
topology optimization methods is given in Refs. [11–13], respec-
tively. Some applications of topology optimization can also be
found in the field of design optimization of self-folding structures,
for example: Fuchi et al. [14] used a density-based method to opti-
mize the layout of monolithic liquid crystal elastomers in order to
create folding liquid crystal elastomer actuators. However, a sim-
plified linear elastic model operating in the small strain regime
greatly limits the accuracy of this approach. A different simplified
approach was taken by Kwok et al. [15] where shape optimization
is employed to determine the optimal layout of cuts to design
active 3D origami and kirigami structures using 4D printing. And
just recently, Xue et al. [16] applied the concept of moving
morphable components [17] in combination with a genetic algo-
rithm for topology optimization of post-buckled 3D kirigami
structures. Even though each of these approaches greatly reduces
the number of design variables and hence the complexity of the
optimization problem, only a subspace of all possible designs is
explored. To take advantage of the entire design space while con-
sidering a fully nonlinear structural response, a combined LS-
XFEM and density topology optimization framework for design-
ing 4D printed active structures is proposed in this paper.

The design, fabrication, and activation process of 4D printed
structures as proposed in this work are conceptually shown in
Fig. 1, where target displacement matching is the objective. This
can be achieved by either specifying the desired target shape, i.e.,
position of points of the structure in the deformed (activated)

configuration, or by specifying the required displacement of cer-
tain points of the structure to achieve the desired deformation. In
this work, the displacement of target points on the domain bound-
ary is specified to achieve target deformations, see Fig. 1(a). Start-
ing from an initially flat plate (b), a level set function (LSF) is
used to define an initial arrangement of solid and void domains.
Within the solid domain, a fictitious density field is used to inter-
polate the different properties of an active and a passive material.
Both the LSF and the density distributions are discretized on the
XFEM background mesh. The resulting parameter optimization
problem is then solved by a nonlinear programming method. After
a final design (i.e., geometry and material distribution) has been
found (c), subdomains of active and passive material are extracted
in a postprocessing step (d). Once the flat structure has been
printed (e), the shape change is activated through relaxation of the
compressive printing strain in the active material in a hot water
bath. This is achieved by heating up the structure above the glass
transition temperature of the passive, stiff material at which its
stiffness is significantly reduced. At this state, the eigenstrains of
the active material can relax leading to the desired change in
shape. After a subsequent cool-down, the passive material stiffens
and a permanently deformed structure is obtained (f).

The theoretical background of the physical model, the spatial
discretization of state and optimization variables, and the optimi-
zation problem along with examples are presented in the remain-
der of this paper, which is organized as follows: Section 2
introduces the continuum model of the nonlinear thermomechani-
cal phenomena. Section 3 provides details on the optimization
approach and the XFEM model. Section 4 describes the validation
of the thermomechanical model, and design optimization exam-
ples are presented in Sec. 5 along with experimental results. A
summary of the work is presented in Sec. 6.

2 Hyperelastic Thermomechanical Model

The total design domain X0
D is comprised of solid and void sub-

domains (i.e., X0
S and X0

V), such that X0
D ¼ X0

S [ X0
V . Within the

solid domain X0
S (see Fig. 2(a)), balance of linear momentum in

the undeformed configuration is described by the static equilib-
rium. The weak form of the governing equation using a total
Lagrangian formulation is stated as

R ¼
ð

X0
S

ðdF : P� duq0BÞdV �
ð

C
T

0

duTdA ¼ 0 (1)

Fig. 1 Conceptual steps of the design process from (a) the definition of a target displacement to (f) an activated
structure using direct 4D printing
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where F ¼ @x=@X is the total deformation gradient tensor with
x ¼ uþ X defining the relation between spatial coordinates in the
undeformed (X) and deformed (x) configurations X0

S and XS,
respectively. The displacements are denoted by u and du are the
admissible test functions. The first Piola-Kirchhoff stress tensor is
denoted by P, and B is the prescribed body force vector in the
undeformed configuration. The density is denoted by q0 and u is
the prescribed displacement field on C0

u , see Fig. 2(a). The pre-
scribed traction vector on C0

T
is T and the total design domain

boundary C0 is comprised of C0 ¼ C0

T
[ C0

u . A hyperelastic Saint
Venant-Kirchhoff constitutive model for isotropic compressible
solids is used in the current work. The hyperelastic Saint Venant-
Kirchhoff material model is suitable for large deformations at
small strains, which is the case for the slender structures targeted
in this work. The proposed design optimization framework can
easily be extended to operate on nonlinear constitutive models for
both compressible and incompressible materials. This is especially
relevant for simulating rubbery, nearly-incompressible polymers
and therefore should be studied in future work. The Saint Venant-
Kirchhoff material model is defined as

~S ¼ 2lEM þ ktrðEMÞI (2)

where ~S is the second Piola-Kirchhoff stress tensor in the interme-
diate configuration (see Fig. 2(b)) and EM is the Green-Lagrange
strain tensor defined as the deformation of the intermediate config-
uration to the thermomechanical deformed configuration. The
second-order identity tensor is denoted by I. The Lam�e constants
are denoted by l and k which are related to the Young’s modulus
E and Poisson’s ratio � as follows:

l ¼ E

2 1þ �ð Þ and k ¼ E�

1þ �ð Þ 1� 2�ð Þ (3)

In the context of topology optimization using the density method,
the Young’s modulus is manipulated as a function of the design
variables whereas the Poisson’s ratio is kept constant. A more
detailed discussion of the optimization problem is presented in
Sec. 3.1.

To model the inelastic printing strain built into the elastomer, a
residual thermal strain model is used as suggested by Ding et al.
[5]. In a finite deformation case, special consideration with respect
to the decomposition of the total deformation gradient is required.
As indicated in Fig. 2(b), a multiplicative decomposition of the
total deformation gradient F into an inelastic thermal deformation
gradient FT and an elastic mechanical deformation gradient FM is
used. The multiplicative decomposition of the total deformation
gradient can be stated as

F ¼ FMFT (4)

For the thermal deformation gradient tensor, a linear thermal
expansion model is assumed

FT ¼ ð1þ ak½T � T0�ÞI (5)

where ak is the linear coefficient of thermal expansion (CTE) of
either solid material (k¼ active or passive) representing the amount
of inelastic expansion. The externally applied temperature is T ,
which is a linear function of pseudo time of the deformation pro-
cess, and T0 is the reference temperature. Using the previously
defined relationships, the Green-Lagrange strain tensor is defined as

EM ¼
1

2
CM � Ið Þ (6)

where the right Cauchy–Green deformation tensor is
CM¼ (FM)TFM.

For integration of the governing equation stated in Eq. (1) in
the undeformed configuration, the second Piola-Kirchhoff stress
tensor ~S is pulled back from the intermediate configuration ~XS to
the undeformed configuration X0

S using the Piola-transform. This
transformation is defined as

S ¼ ðFTÞ�1~SðFTÞ�TJT (7)

where JT is the Jacobian of the thermal deformation gradient ten-
sor JT ¼ detðFTÞ. The first Piola-Kirchhoff stress tensor in the
undeformed configuration is finally computed as

P ¼ F S (8)

2.1 Follower Pressure Load. In order to enforce an end-
stiffness constraint on the final, deformed structure, a follower
pressure load is introduced and added to the weak form of the gov-
erning Eq. (1). To this end, a deformation-dependent (i.e., follower)
Neumann boundary condition is employed, which is formulated in
the deformed configuration and mapped back to the undeformed
configuration. Using Nanson’s formula [18], the relationship
between surface areas in the undeformed and deformed configura-
tion is defined. The follower pressure can simply be evaluated in
the undeformed configuration as follows:

RCP
¼ �

ð
C0

T

duðFÞ�T
N J PdA (9)

Fig. 2 (a) Design domain decomposition into solid (X0
S) and void (X0

V ) subdomains using LS-XFEM along the
interface C0

S;V . Within the solid domain, a further distinction is made between an active material (X0
SA

) and a pas-
sive material (X0

SP
). (b) Multiplicative decomposition of the total deformation gradient into thermal and mechani-

cal deformation gradient.
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where dA is an infinitesimal surface area in the undeformed con-
figuration, J ¼ detðFÞ is the determinant of the total deformation
gradient, and N is the surface normal in the undeformed configu-
ration. The surface pressure scalar reformulated in the unde-
formed configuration is denoted by P. For simplicity, it is
assumed that P is not state dependent. A more detailed discussion
of the end-stiffness constraint is presented in Sec. 3.4.

2.2 Adaptive Load-Stepping Approach. To efficiently pre-
dict the nonlinear deformation of 4D printed self-deforming struc-
tures, an adaptive load-stepping scheme is used for the XFEM
analysis. Schematically, the evolution of the temperature load
T(t), applied follower load P(t), and displacement response u(t) as
a function of pseudo time t are depicted in Fig. 3. An adaptive
time-stepping scheme is used such that the initially set time-step
size Dt0 is reduced by a factor f in case a Newton–Raphson solve
does not converge to an equilibrium solution for a set maximum
number of nonlinear iterations. This is, for example, encountered
when domains of intermediate (weak) material dominate the struc-
tural response during the topology optimization process. In such
an event, the time-step is adaptively reduced until a specified
number of (converged) nonlinear solutions are obtained at the
reduced time-step. After that, the original time-steps size is gradu-
ally restored. The total number of time-steps is adjusted accord-
ingly to reach the final loading time tLoad. The temperature load T
is increased linearly between t0 and tLoad to achieve a maximum
value T while the follower surface pressure load P is zero during
this time. Conceptually, this is shown in Figs. 3(a) and 3(b),
respectively. The maximum value of T corresponds to the inelastic
printing strain. Between tLoad and tPert, the external temperature
load is kept constant at T while a constant nonzero follower pertur-
bation load P is applied. The magnitude of the non-zero follower
perturbation load is chosen sufficiently small in order to achieve
fast convergence of the nonlinear solver, ideally in a single itera-
tion. This is valid for enforcing an end-stiffness constraint meas-
uring the change in total strain energy based on a linear concept.

3 Multimaterial Topology Optimization

A multimaterial topology optimization approach is adopted to
determine the geometry and the spatial material arrangement of
4D printed active structures. This approach builds on a LS-XFEM
optimization framework previously used to study problems in struc-
tural mechanics [4,19,20] and fluid mechanics [21,22]. This section
provides an overview of the multimaterial topology optimization
approach, while more details regarding immersed boundary techni-
ques used for design optimization are provided in Ref. [23].

3.1 Combined Level Set-Density Geometry and Material
Description. The three-material problem depicted in Fig. 2(a) is
described by a combined LS-density approach. A nodally discre-
tized LSF is used to distinguish between a solid and a void domain
where negative LS values (/i< 0) represent the solid domain X0

S
and positive LS values (/i> 0) represent the void domain X0

V .
The zero LS iso-contour (/i¼ 0) represents the phase boundary
C0

S;V between the solid and the void domain. Nodal LS values /i

are explicitly defined in terms of nodal design variables s/
j using a

linear filtering scheme as proposed by Kreissl and Maute [24].
This linear filtering technique enhances convergence of the opti-
mization problem by increasing the zone of influence of each
design variable and is formulated as

/i ¼

XNn

j¼1

wijs
/
j

XNn

j¼1

wij

; wij ¼ max 0; rs � jXi � Xjj
� �

(10)

where Nn is the number of finite element (FE) nodes within the
smoothing radius, rs, and jXi � Xjj is the Euclidean distance
between node i and j measured in the undeformed configuration
(indicated by a superscript 0). Index i denotes the current node for
which the LS value is computed and index j denotes each node
within the smoothing radius contributing to the LS value /i.

Combining the level set method with the XFEM yields a crisp
solid–void interface, which is naturally suited for additive manu-
facturing reducing the need for postprocessing. However, as men-
tioned in Refs. [12] and [24], a strong influence of the final
solution on the initial guess is observed in LS-XFEM topology
optimization. Moreover, since LS-XFEM topology optimization is
solely driven by localized sensitivities along the interface, the
appearance of new holes within the solid domain is not possible
[4]. One way to mitigate this issue and the dependency of the final
design on the initial guess is to use topological derivatives, as sug-
gested by Norato et al. [25]. In the current work, a sufficiently
large number of initial void inclusions are used to mitigate this
dependency.

In addition, a density-based topology optimization approach is

used within the solid domain X0
S in order to distinguish between

an active material (X0
SA

) and a passive material (X0
SP

). This com-

bined approach allows for the description of the multimaterial
topology optimization problem at hand. Nodally discretized, ficti-

tious density design variables 0 � s~q
i � 1 are used to track the

material distribution within the solid phase. A standard solid iso-
tropic material with penalization (SIMP) approach [26] is
adopted. Considering an element-wise constant density interpola-
tion, the material property within an element is defined as

peðq̂e
i Þ ¼ pe

min þ ðpe
max � pe

minÞðq̂e
i Þ

b
(11)

where pe represents any elemental material property like the
Young’s modulus, density, or CTE. Physical properties corre-
sponding to the active material and passive material are denoted
by pe

min and pe
max, respectively, and b is the so-called SIMP expo-

nent used to achieve different interpolation behavior. Different
SIMP exponents are used for interpolation of different material
properties. Elementally averaged fictitious density values ~qe

j are
obtained from nodal fictitious density design variables s~q

i as

~qe
j ¼

XNe
n

i¼1

s~q
i

Ne
n

(12)

Fig. 3 Adaptive load-stepping technique used to solve the nonlinear problem: (a) tempera-
ture load profile, (b) follower load profile, and (c) displacement response over pseudo time
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where Ne
n is the number of nodes per element j. A linear elemental

filter similar to the one stated in Eq. (10) is then used to compute
a smoothed fictitious elemental density qe

i from the elementally
averaged fictitious densities ~qe

j . In addition, a smoothed Heaviside
projection scheme proposed by Lazarov et al. [27] is used subse-
quently to mitigate the blurriness introduced by the linear filtering
scheme. The projection function used to compute the fictitious
projected elemental density q̂e

i is stated as

q̂e
i ¼

tanh c qe
i � gð Þð Þ þ tanh cgð Þ

tanh c 1� gð Þð Þ þ tanh cgð Þ
(13)

where c is the projection sharpness parameter and g is the projec-
tion threshold parameter. The projection (13) is applied through a
continuation approach where the projection sharpness parameter
is gradually increased in the optimization process. More details
regarding this approach are found in the discussion of the results
in Sec. 5.

3.2 Extended Finite Element Method Model. The XFEM is
used in this work to discretize the weak form of the governing Eq.
(1) on nonconforming subdomains. This immersed boundary
method is utilized to distinguish between the solid (X0

S) and the
void (X0

V) subdomains along the interface (C0
S;V) defined by the

zero LS iso-contour as depicted in Fig. 2(a). The advantage of this
discretization method is that a high spatial resolution of the inter-
face described by the level set method is retained throughout the
optimization process while operating on a fixed background mesh,
thus avoiding the need for remeshing. The XFEM approach, how-
ever, requires enriching the classical FE approximation spaces
with additional shape functions [28] in order to avoid spurious
coupling and load transfer between physically disconnected
domains. Note that, in general, enrichment functions are also
needed to capture weak and strong discontinuities across material
phases. However, this requirement does not apply here, as the

XFEM is applied to distinguish only between the solid (X0
S) and

the void (X0
V) phase. Thus, the displacement field only exists

within the solid subdomain and any element within the void phase
can be omitted. A generalized Heaviside enrichment approach
[29] is used where the displacements in the solid phase are
approximated by standard FE shape functions. The nodal displace-

ments uiðXÞ of node i within the solid domain X0
S are approxi-

mated as [22]

uiðXÞ ¼
XM

m¼1

Hð�/ðXÞÞ
XNe

n

k¼1

NkðXÞdk
mquk

im

0
@

1
A (14)

where H is the Heaviside function as a function of the LS value
/ðXÞ defined as

Hð/Þ ¼ 1 if /ðXÞ > 0

0 if /ðXÞ < 0

�
(15)

The maximum number of enrichment levels is denoted by M,
Nk(X) is the elemental shape function and dk

mq is the Kronecker
delta which selects the active enrichment level q for node k. dk

mq
ensures that displacements at node k are only interpolated by a
single set of degrees-of-freedom (DOFs) defined at node position
X such that the partition of unity principle is satisfied [20]. The
Heaviside function H is used to only activate shape functions
within the solid phase as displacement solutions in the void
domain would be physically meaningless. For more details about
the generalized Heaviside enrichment strategy employed in this
work, the interested reader is referred to Refs. [23], [30], and [31].

For stabilization of the XFEM discretization, a geometric pre-
conditioning scheme as proposed by Lang et al. [32] is used. This
geometric preconditioner ensures that DOFs with vanishing zones

of influence, which arise when the LS intersection is too close to a
FE node, are rescaled or eliminated in order to provide numerical
stability.

Dirichlet boundary conditions applied to the solid subdomain
X0

S are enforced weakly using Nitsche’s method [33]. The weak
form of the governing Eq. (1) is augmented with the weak bound-
ary condition residual contribution RD

C stated as

RD
C ¼ �

ð
C0

u

½½du�� PðuÞ NdA

�
ð

C0

u

PðduÞ N ½½u��dA

þcD

ð
C0

u

½½du�� ½½u��dA (16)

where the jump operator ½½•�� is defined as

½½u�� ¼ u� u; ½½du�� ¼ du� du (17)

The penalty factor to enforce the prescribed Dirichlet boundary
condition u is denoted by cD. The first term in Eq. (16) corre-
sponds to the standard consistency term, the second term to the
adjoint consistency, and the last term is the Nitsche penalty term
which explicitly controls the accuracy at which the Dirichlet
boundary condition is enforced.

3.3 Selective Structural Springs. To avoid ill-conditioning
of the linear system due to rigid body modes of disconnected solid
subdomains surrounded by the void phase (see Fig. 2(a)), selec-
tive structural springs are introduced. This approach was initially
proposed by Villanueva and Maute [21] for fluid problems and is
extended to nonlinear structural mechanics in this work. To iden-
tify disconnected solid domains “floating” within the void
domain, an auxiliary indicator field modeled as a linear diffusion
problem is introduced within the solid domain. The weak form of
the governing equation for the auxiliary scalar indicator field ~h is
formulated as

RAux ¼
ð

X0
S

dr~hðjr~hÞ þ d~hhð~h � ~hrefÞdV (18)

where d~h are the admissible test functions and j denotes the ther-
mal conductivity. The bulk heat transfer coefficient is denoted by
h and ~href is the reference indicator value. The diffusion problem
(18) along with the appropriate boundary conditions will lead to
indicator values of close to 0.0 in domains that are connected to
where the Dirichlet boundary condition of ~h ¼ 0:0 is applied and
indicator values close to 1.0 in disconnected subdomains. It
should be noted that a nonphysical “bulk” convection term in Eq.
(18) prevents ill-conditioning of the linear diffusion system even
if disconnected subdomains exist. After the auxiliary indicator
field solution has been obtained, a smoothed Heaviside projection
function is used to enforce a 0–1 indicator field. The weak form of
the governing equation of the nonlinear structural problem (1) is
augmented by the following selective spring stiffness term

RSpr ¼
ð

X0
S

du I u r Ekh dV (19)

where r is the relative spring stiffness ratio, h is the projected indi-
cator field value, and Ek is the Young’s modulus of either solid
material (k¼ active or passive). For more details regarding selec-
tive structural springs, the reader is referred to Ref. [34].

In summary, the governing equation in weak form is composed
of the following terms which have been introduced above, see
Eqs. (1), (9), (16), (18), and (19):
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~R ¼ Rþ RCP
þ RD

C þ RAux þ RSpr ¼ 0 (20)

3.4 Formulation of Optimization Problem. The combined
LS-XFEM and density approach introduced in Sec. 3.1 describes
the geometry and the material distribution in parameterized form.
These parameters define the optimization variables s. The optimi-
zation problem considered here can be written as follows:

min
s

zðs;uÞ ¼ ztarðs; uÞ þ zregðsÞ

s:t: gjðs; uÞ � 0 j ¼ 1…Ng

s 2 P ¼ fRNs jsL � s � sUg
u 2 RNu

(21)

where the nodal displacements u satisfy the discretized governing
equation ~R ¼ 0 and implicitly depend on the design variables s.
The number of design variables is denoted by Ns and the number
of state variables is Nu. The design variables include both the

nodal LS values s/
i and the fictitious nodal SIMP densities s~q

i ,

such that si ¼ ½s/
i ; s

~q
i �. The lower and upper bounds of the optimi-

zation variables are denoted by sL and sU, respectively. The num-
ber of inequality constraints gj is denoted by Ng. In this work, a
nested analysis and design approach [35] is used where the dis-
placements u are considered dependent variables of s and satisfy
the governing equations for a given design. The advantage of this
approach is that different solution algorithms can be utilized for
solving the “forward” analysis problem and the optimization
problem.

Displacement matching of active structures is the main objec-
tive of this work. The first part of the objective function is there-
fore formulated as a minimization of the squared difference
between the nodal displacements u and the target displacements
utar at a specified target set C0

tar � C0

ztarðs;uÞ ¼
ð

C0
tar

ðu� utarÞ2dA (22)

It should be noted that even though a target displacement is speci-
fied a priori, no constraints with respect to the required geometry
and material layout are imposed. The resulting, in general, nonin-
tuitive geometry and material layout required to achieve a defor-
mation that best matches the target displacements utar is solely a
result of solving the optimization problem of Eq. (21). Selecting

the target set C0
tar, which in this work is defined as a subset of the

design domain boundary C0, is in general nontrivial and dependent
on the desired target deformation. Mechanical constraints like self-
penetration or nonuniqueness of geometric mappings of planar
structures onto the desired target deformation need to be consid-
ered in order to define a well-posed optimization problem. More
details on the target displacements and the corresponding target
sets considered in this work are provided in Sec. 5.

In addition to target displacement matching, a regularization
term is added to the objective function in order to avoid the emer-
gence of irregular geometric artifacts [11]. Here, regularization is
introduced through a perimeter penalty that is formulated as

zregðs;uÞ ¼ cper

ð
C0

S;V

dA (23)

where cper is the perimeter penalty factor chosen such that
smoothing of the interface geometry is obtained while not allow-
ing Eq. (23) to dominate the overall objective.

Besides the objective contributions defined in Eqs. (22) and
(23) two inequality constraints are imposed. The first one is a vol-
ume constraint bounding the maximum amount of solid phase
allowed within the entire design domain

g1 s; uð Þ ¼
X0

S

X0
S þ X0

V

� �� cv � 0 (24)

where cv controls the maximum allowed solid volume X0
S relative

to the entire design domain volume X0
D ¼ X0

S [ X0
V . To control

the stiffness of the structure in the activated state, an end-stiffness
constraint is enforced. Following the work of Kemmler [36], it is
formulated as:

g2 s;uð Þ ¼
S0 � S
S

� �2

� cs � 0 (25)

where S is the strain energy of the system after activation (with
no external load applied) and S0 is the strain energy after applying
an additional external perturbation load. The limit in relative
amount of change in strain energy with and without the final per-
turbation load is denoted by cs. The end-stiffness constraint there-
fore requires a certain stiffness of the structure in the activated
configuration in order to resist the perturbation pressure applied in
the opposite direction of the desired deformation.

3.5 Design Sensitivity Analysis Using the Adjoint Method.
Due to a large number of design variables, the design sensitivities
of objective and constraints are computed using the adjoint
method. Since the mechanical model is static and conservative,
the adjoint problem only needs to be solved at the end of the load-
ing process [37]. When the end-stiffness constraint is enforced,
the design sensitivities for the displacement matching objective
need to be evaluated at the load increment tLoad while the sensitiv-
ities for the end-stiffness constraint are evaluated at tPert.

Following the work of Refs. [24] and [38], the derivative of the
objective z with respect to the vector of design variables s for a
quasi-static case is:

dz

ds
¼ @z

@s
þ @z

@u

� �T
du

ds
(26)

where the first term represents explicit dependencies while the
second term represents the implicit sensitivities. Considering the
two sets of nodal design variables, s/ and s~q , and the filtering and
projection relationships defined in Sec. 3.1, the total derivative of
Eq. (26) can be further expanded into

du

ds
¼

@u

@/
d/
ds/

@u

@q̂e

@q̂e

@qe

@qe

@~qe

d~qe

ds~q

8>>><
>>>:

(27)

Satisfying the governing Eq. (20) for every design, i.e., ~R ¼ 0,
the derivative du=ds can be computed from

d ~R

ds
¼ @

~R

@s
þ @

~R

@u

du

ds
¼ 0 (28)

Solving Eq. (28) for du=ds and combining it with Eq. (26) yields

dz

ds
¼ @z

@s
� @z

@u

� �T
@ ~R

@u

� ��1
@ ~R

@s
(29)

where the following adjoint problem can be identified:

@ ~R

@u

� �T

k ¼ @z

@u
(30)

The adjoint solution is denoted by k, which is used to finally com-
pute the expression for the design sensitivities as
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dz

ds
¼ @z

@s
� kT @

~R

@s
(31)

It should be noted that in the current work, the explicit contribu-
tion @z=@s and the post-multiplication term @ ~R=@s are obtained
via finite differences on an elemental level. In a similar fashion as
discussed above, the design sensitivities of the constraints with
respect to the design variables can be obtained. For more details
regarding the computation of design sensitivities with the XFEM,
the interested reader is referred to Ref. [39].

4 Validation of the Hyperelastic Thermomechanical

Model

The finite deformation thermomechanical model introduced in
Sec. 2 is validated against experimental results and an analytical
beam model to establish confidence in the XFEM model for
design optimization. The test specimen for model validation are
rectangular, bilayer strips with different volume ratios of active
versus passive material, leading to different curvature values. The
bilayer composite is made out of Tangoþ as the active elastomer

in the top layer (X0
SA

) and Vero as the passive glassy polymer in

the bottom layer (X0
SP

) printed on a Stratasys Keshet J750 multi-

material 3D printer, with a printing layer thickness of 27 lm. The
XFEM predictions of the bilayer strips are shown in Fig. 4(a)
while the printed and activated specimen are shown in Fig. 4(b).

The model parameters and the material parameters of the
XFEM model are given in Tables 1 and 2, respectively. Only one
quarter of the domain is simulated and mechanical symmetry
boundary conditions are applied along the X1�X3 and X2�X3

plane using the weak boundary condition formulation stated in
Eq. (16). The XFEM is used to describe the solid-void boundary
of the bilayer strips along the X1 axis as highlighted in the insert
in Fig. 4(a). Note that the void domain is not shown in Fig. 4(a)
for clarity. This approach replicates a nonconforming mesh for
analyzing the solid domain just as it is present during the subse-
quent design optimization process. The varying volume fraction of
active material (Tangoþ in the top layer) and passive material (Vero
in the bottom) is modeled by uniformly changing the material ratios,
respectively. The computational mesh consists of 1630 HEX20
XFEM elements of which 400 are intersected resulting in a total of
26,227 DOFs. HEX20 elements are 20 node hexahedral serendipity
elements with a total of 60 DOFs.

The bending behavior of the bilayer strips due to different ther-
mal expansion of the layers is studied for five distinct volume
fractions of active material. The curvature is measured at the mid-
plane of the strips in the X2�X3 symmetry plane. A comparison of
the curvature values obtained by the 3D XFEM model, a 1D
Timoshenko beam model as outlined in Ref. [5] and physical
experiments for different Tangoþ volume fractions is presented in
Fig. 5. It should be noted that due to a small sample size of 8 sam-
ples per volume fraction, error bars are not meaningful and there-
fore omitted when plotting the mean curvature in Fig. 5. Good
agreement is achieved between the 3D XFEM model and the

physical experiments, whereas the 1D model tends to overestimate
the curvature, especially for large volume fractions of Tangoþ.
This is due to assumptions made by the Timoshenko beam model
which do not account for Poisson effect as well as transverse ther-
mal expansion. Both of those phenomena are, however, present in
the physical experiments where a double curvature (i.e., cylindrical
bending) is observed for Tangoþ volume fractions greater than
50%. These phenomena are accurately captured in the 3D XFEM
model where the curvature along the X1 direction is in fact reduced
due to an increasing effect of curvature along the X2 direction.

5 Design Optimization Examples

The proposed design methodology for finding the optimal
design of 4D printed active structures is applied to four design

Fig. 4 Bilayer strips with different active material ratios (in %) used for XFEM model valida-
tion. The solid–void interface of the strips along the X1 axis is cut by the XFEM and tetrahed-
ralized for volume integration: (a) simulation results and (b) experimental results.

Table 1 Extended finite element method model of bilayer vali-
dation strips

Dimensions 80.0� 5.0� 1.0 mm
Mesh size 80� 5� 10
Weak BC penalty cD¼ 250.0
Prescribed thermal load T ¼ 1.0 K
Reference temperature T0¼ 0.0 K

Table 2 Material parameters of Tango1 and Vero

Young’s modulus Tangoþ ET¼ 0.6 MPa
Young’s modulus Vero EV¼ 8.0 MPa
Printing strain Tangoþ aT ¼ 0:05ð1=KÞ
Printing strain Vero aV ¼ 0:0ð1=KÞ
Poisson’s ratio of Tangoþ, Vero �T¼ �V¼ 0.4

Fig. 5 Comparison of mean curvatures obtained by simula-
tions and experiments for different Tango1 volume ratios
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problems. The LSF and the nodal densities for all design examples
are discretized using trilinear shape functions. The material prop-
erties are approximated element-wise constant and are obtained
using an elemental average of all nodal fictitious density values
(12) together with the SIMP power law (11). In this work, b¼ 3.0
is used for interpolating the Young’s modulus and CTE while
b¼ 1.0 is used for interpolating the physical density. The values
of the SIMP exponent b have been chosen such that a good con-
vergence toward either active or passive material is achieved.

The projection (13) is applied through a continuation approach
which represents a trade-off between convergence behavior and
computational efficiency of the optimization process. Initially, the
projection threshold parameter is set to g¼ 0.5 and the sharpness
parameter is c¼ 0.01. After a converged initial design is obtained,
(e.g., after 100 design iterations), the sharpness parameter is
increased to c¼ 3.0 and the end-stiffness constraint is enforced.
The projection sharpness parameter is then doubled every 100
design iterations. This procedure is repeated four times until
c¼ 48.0 and a sufficient approximation to a bimaterial design
within the solid domain is obtained. After the overall geometry
has converged to an optimum (e.g., after 100 design iterations),
the LS design variables stay unchanged while the material distri-
bution within the solid domain is further optimized, to yield a
bimaterial design with a certain end-stiffness. For both sets of
design variables (nodal LS values s/

i and nodal fictitious densities
s~q

i ), a smoothing radius of rs¼ 4.0 mm is used.

The optimization problem (21) is solved using the convergent
method of moving asymptotes (GCMMA) [40] without inner iter-
ations. The parameters of the optimization problem are listed in
Table 3. The optimization problem is considered converged once
a relative residual norm drop of the Karush–Kuhn–Tucker (KKT)
conditions [41] greater 1.0� 1010 is achieved and all constraints
are satisfied.

For all examples, the initial design is a flat square plate com-
posed of uniform, intermediate material of density s~q ¼ 0:5 in X0

S
with an initial seeding of square holes representing X0

V , see
Fig. 6(b). The size of the cuboid inclusions is ri¼ [14.5, 14.5,
14.5] mm for all examples. Different target displacements are pre-
scribed to certain subsets of the domain boundary C0 in order to
achieve target deformations of varying complexities. A design
with the desired mechanical response is found through optimizing
the solid-void geometry as well as the active–passive material dis-
tribution within the solid domain by solving the optimization
problem outlined in Sec. 3.4. The material properties used for all
design examples are listed in Table 2 and parameters specific for
each design example are listed in Table 4.

For all subsequent design problems, quarter symmetry of the
mechanical problem about the X1�X3 and the X2�X3 plane is
exploited by analyzing only one quarter of the design domain and
enforcing appropriate mechanical boundary conditions weakly via
Nitsche’s method (16). In addition, for the design problems of
Secs. 5.2–5.4, design symmetry about the X1 – X2 diagonal is
introduced by assigning a set of independent nodal LS values and
nodal fictitious density values to only one eighth of the total
design domain. The initial design used for all design optimization
examples along with the symmetry boundary conditions is
depicted in Fig. 6(b).

The LSF of the initial design is shown in Fig. 6(a) and com-
puted as a signed-distance function from an array of cuboids
defined as

/ Xð Þ¼1�min
i

X1� ~X1i

r1i

 !n

þ X2� ~X2i

r2i

 !n

þ X3� ~X3i

r3i

 !n
0
@

1
A

1
n

(32)

Table 3 Optimization problem parameters

Perimeter penalty cper ¼ 5:0� 10�2

Lower bound for LS design variables s
/
L ¼�1.25

Upper bound for LS design variables s
/
U ¼þ1.25

Lower bound for density design variables sL~q ¼ 0.0

Upper bound for density design variables sU~q ¼ 1.0

GCMMA initial asymptote adaption parameter 0.5

GCMMA asymptote adaption parameter 0.7

Fig. 6 Initial design of a quarter of the self-deforming structure with (a) the initial LSF and (b) the
mechanical boundary conditions

Table 4 Parameters used for each design example

Twisted figure-eight Cylinder gripper Four-legged gripper Elevated plane

Initial void pattern 4� 4� 1 4� 4� 1 4� 4� 1 6� 6� 1
Volume constraint, cv 0.15 0.20 0.10 0.10
Change in strain energy, cs 5.0� 10�5 5.0� 10�5 1.0� 10�6 5.0� 10�5

Perturbation pressure, P 1.0 Pa 0.1 Pa 1.0 Pa 1.0 Pa
GCMMA step size 0.04 0.03 0.03 0.03
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where i is the number of individual cuboids, ri is the radius of the
ith cuboid, and ~Xi is the position of the center of the ith cuboid in
X1, X2, and X3 direction, respectively. The roundness parameter is
set to n¼100.0. The parameters of this arbitrary initial design
have been determined through numerical studies to minimize the
dependence of the final design on the initial geometry.

The plane creating the zero LS iso-contour is shown in gray
(Fig. 6(a)) and the corresponding solid-void material layout is
depicted in Fig. 6(b). It should be noted that LS design variables
are only defined on the top surface of the initially flat plate, such
that /ðX1;X2;X3Þ ¼ /ðX1;X2Þ. The LS values of all nodes which
are not on the upper surface are dependent on the corresponding
design variable hosted by the respective node on the top surface.
This guarantees to always have a vertical cut in X3 direction repre-
sented by the XFEM (see insert in Fig. 6(b)) and it prevents the
optimizer from locally reducing the plate thickness during the
optimization process.

The target displacements are monitored at target sets C0
tar

defined at the tips of the structure (along the symmetry bounda-
ries). To guarantee that these tips are mechanically connected to
the base of the structure, the LS field along the symmetry bounda-
ries is fixed to be negative (see Fig. 6(a)). This means, strips along
the symmetry boundaries are excluded from the LS-XFEM design
domain and remain solid throughout the optimization process.
However, regarding the density optimization, this domain is still
considered design domain in which the material distribution can
be altered.

The nonlinear thermomechanical model is discretized by quad-
ratic HEX20 XFEM elements. While the in-plane discretization
varies for each example, 10 HEX20 brick elements are used for
discretization in thickness direction in order to accurately capture
the bending behavior of the slender structures and to avoid shear
locking exhibited by lower-order brick elements. An iterative
Newton–Raphson scheme is used to solve the nonlinear problem
that is considered as converged when a relative nonlinear residual
norm drop greater 1.0� 106 is achieved. Convergence is facili-
tated by the adaptive load-stepping approach discussed in Sec. 2.2
where the time-step reduction factor is set to f¼ 0.25 and the max-
imum number of nonlinear iterations is set to 40. Again, the
importance of the adaptive load-stepping scheme with respect to
the convergence of the nonlinear problem during the optimization
process should be emphasized. Especially for designs with large
amounts of weak material, i.e., material with intermediate den-
sities, adaptively reducing the load step is crucial in order to facil-
itate convergence of the Newton–Raphson scheme. The linearized
subsystems are solved using the Multifrontal Massively Parallel
Solver (MUMPS) [42,43].

To improve the computational efficiency of the optimization
approach, the converged nonlinear solution of the state variables
of the previous design is used as an initial guess for analyzing the
current design. This approach is well suited for problems with
static conservative mechanical models and incremental design
changes where the displacement solution of the current design
only differs slightly from the displacement behavior of the previ-
ous design [44]. If the design change and the resulting change in
the displacement response is too large, i.e., no equilibrium config-
uration is obtained using the converged solution of the previous
design as an initial guess, the design is analyzed by simulating the
entire load path.

In order to stabilize disconnected solid subdomains throughout
the optimization process, selective structural springs as introduced
in Sec. 3.3 are used. The thermal conductivity in this auxiliary dif-
fusion problem is set to j¼ 10.0, the bulk heat transfer coefficient
is h¼ 0.01 and the reference indicator value is ~href ¼ 1:0. A uni-
form initial indicator value of ~h0 ¼ 1:0 is applied to the entire
domain and a relative spring stiffness ratio of r¼ 1.0� 10–6 is
used. Adiabatic boundary conditions on the auxiliary indicator
field are assumed on boundaries where no displacements are pre-
scribed. To further improve the numerical stability of the pro-
posed approach, a staggered solution algorithm is employed. First,

the linear diffusion problem of the auxiliary indicator field (18) is
solved and subsequently the nonlinear thermomechanical problem
(1) is solved in a one-way coupled manner.

The final design for each example problem is fabricated and
activated using the direct 4D printing method introduced by Ding
et al. [5]. As described in Sec. 4, for fabrication of the optimized
shape-changing structures, a Stratasys Keshet J750 multimaterial
3D printer is used to deposit the Tangoþ and Vero material accu-
rately onto a build tray. The zero LS iso-contour is used to extract
the solid-void boundary of the final design, while an iso-volume
created along a fictitious density threshold of q̂e ¼ 0:5 is extracted
to create distinct active and passive material domains. These post-
processing steps are performed in ParaView [45], as it provides a
convenient interface between the ExodusII mesh format and
many computer-aided design file types. In the current work, a
stereo-lithography mesh file is extracted from the converged opti-
mization result (provided in ExodusII format by the employed
LS-XFEM optimization framework) for each material subdomain.
The stereo-lithography file format is commonly supported by 3D
printing software and therefore used to import the computer-aided
design data into the Stratasys printing software. In the Stratasys
preprocessing environment, Tangoþ is assigned to the active
material domain represented by 0 � q̂e < 0:5, while Vero is
assigned to the passive material domain corresponding to 0:5
� q̂e � 1. The active structures are printed in a flat configuration
and only deform upon release of the inelastic printing strain in the
Tangoþ material. This is triggered by submerging the initially
flat, bimaterial structures into a water bath of 65.0 �C which
causes the stiffer Vero material to soften due to its glass transition
temperature at around 53.0 �C. This allows the built-in compres-
sive printing strain in Tangoþ to be released resulting in a shape
change. The deformation is made permanent after the structure
has cooled off to room temperature. A more detailed discussion of
the direct 4D printing process as well as the activation steps can
be found in Ref. [5].

It should be noted that all experimental results are shown for
qualitative comparison only as a quantitative comparison is
beyond the scope of this paper. The experimental verifications
show the feasibility of the numerically determined designs and
demonstrate the applicability of the proposed design framework to
solving real-world design problems in a systematic manner.

5.1 Twisted Figure-Eight Example. The first example dem-
onstrates the proposed computational design framework with the
design of an initially flat plate that deforms into a twisted figure-
eight like structure. The target displacement is tracked at the fol-
lowing target set C0

tar ¼ ½X1;X2�; at X1¼ [80.0, 0.0, 0.0] mm the
target displacement is set to utar¼ [–80.0, 0.0, þ50.0] mm and at
X2¼ [0.0, 80.0, 0.0] mm the target displacement is set to
utar¼ [0.0, –80.0, –50.0] mm (see Fig. 6(b)). This target displace-
ment corresponds to a structure where two of the target points
meet at the top center, and the other two target points meet at the
bottom in the center of the full domain. The dimensions of the
(quarter) design space and the mesh size used for this example are
listed in Table 5. Representative for the first three design optimi-
zation problems, a total number of 47,200 design variables result
from the problem setup shown in Fig. 6. The number of DOFs of
the XFEM model reduces from initially about 126,000–30,500 at
the lowest due to an expanding void phase which is excluded
from the XFEM analysis.

The final design, obtained after 624 design iterations is shown
in Fig. 7(a) in the activated, deformed stage. A clear solid-void
interface defined by the zero iso-contour of the LS field can be
seen along with an almost binary material layout within the solid
phase. A small fraction of elements with intermediate fictitious
densities remains which is attributed to the finite transition regions
between active and passive material. Using a yet higher projec-
tion, smaller filter radius or finer background mesh would help to
further reduce those intermediate density domains, however, their
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effect on the performance of the final design is negligible. Figure
7(b) shows the corresponding printed and activated structure with
good qualitative agreement compared to the XFEM prediction.
Both the numerical XFEM model as well as the physical sample
assume the twisted figure-eight target deformation well. A slight
overlap of the tips of the four legs is seen in the numerical predic-
tion. This is due to the lack of a self-contact formulation which is
beyond the scope of this work. Intuitively, a perfectly symmetric
design is expected in order to meet the twisted figure-eight target
deformation. A slight asymmetry can, however, be observed in
Fig. 7, for both the XFEM simulation and the physical experi-
ment. This is attributed to a local minimum identified by the
GCMMA during the design optimization process. The increasing
projection parameter then locks the design into this local mini-
mum as the design space becomes increasingly more nonconvex
with a higher projection parameter c.

The evolution of the normalized objective z/z0, where z0 is the
objective value of the initial design, the volume constraint (24)

and the end-stiffness constraint (25) are shown in Fig. 8 for this
first design optimization example. A similar behavior is also
observed for all other numerical examples. After initial oscilla-
tions in the objective, which are due to the violation of the volume
constraint, a smooth and converging behavior is seen. The slight
increase of the objective every 100 iterations is due to an increas-
ing projection parameter c which makes the design space increas-
ingly more nonlinear. Therefore, the optimization algorithm needs
a few design iterations to minimize the objective again until con-
vergence is obtained. It is observed that even though initially the
volume constraint is active, it becomes inactive within the first 20
design iterations. The motivation for the solid strips to become
thinner is to reduce the effect of double curvature due to the iso-
tropic inelastic printing strain which impedes on the primary
bending behavior. Therefore, the volume constraint stays inactive
for the remainder of the optimization process. As mentioned
before, the end-stiffness constraint is not enabled during the first
100 design iterations. Once enabled, it is initially violated but
quickly becomes inactive after about 50 design iterations. Using
the smoothed Heaviside projection in combination with the end-
stiffness constraint greatly benefits the final stiffness of the struc-
ture as intermediate material is mitigated with an increasing pro-
jection parameter c.

Figure 9(a) shows the final design in the undeformed configura-
tion after two distinct material phases have been extracted in a
postprocessing step. In the current and in future examples,
Tangoþ is printed transparent while Vero is printed in either
white or magenta, see Fig. 9(b). Overall, this example shows a
first application of the proposed method and it demonstrates that
desired target deformations can be achieved upon activation of an
initially flat, plate-like structure.

5.2 Cylinder Gripper Example. A similar design study as
performed in Sec. 5.1 is repeated for finding the optimal design of
an initially flat structure which deforms into a gripper enclosing a
cylinder as its target. The target displacement of the gripper is
monitored at the target set C0

tar which is comprised of X1 ¼ ½0 �
X1 � 30:0; 75:0 � X2 � 80:0;�0:5�mm and X2 ¼ ½75:0 � X1 �
80:0; 0 � X2 � 30:0;�0:5�mm spanning the tips of the gripper.
The desired deformation of the tips of the structure is described
by a surface of a cylinder aligned with the X3 axis, with radius
Rtar¼ 50.0 mm and a depth of X3tar

¼ �45:0 mm. The XFEM
model parameters listed in Table 5 are used. Parameters specific
to this example are found in Table 4.

A smooth evolution of objective and constraints is observed as
discussed before. The convergence history plots are omitted here
for brevity. Figure 10 shows the final design (a) in the deformed
configuration next to (b) the experimental result for the cylinder
gripper. Qualitatively, the structure fabricated and activated
through direct 4D printing assumes the anticipated target deforma-
tion well. From the predicted XFEM simulation it can clearly be
seen that the optimizer took advantage of the possibility to use
double curvature in order to achieve the cylindrical target

Table 5 Extended finite element method model parameters for
design optimization problems

Dimensions (quarter domain) 80.0� 80.0� 1.0 mm
Mesh size (quarter domain) 32� 32� 10
Weak BC penalty cD¼ 250.0
Prescribed thermal load T ¼ 1.0 K
Reference temperature T0¼ 0.0 K

Fig. 7 Final design of the twisted figure-eight example in
deformed configuration: (a) XFEM prediction and (b) activated
4D printed sample

Fig. 8 Evolution of (a) normalized objective, (b) volume constraint, and (c) end-stiffness constraint for the
twisted figure-eight example
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deformation. Moreover, a nonuniform curvature in the outward
pointing legs is used to best match the target deformation at the
tips of the gripper. The optimal curvature is controlled by the
amount of stiff, passive Vero material along the top of the gripper.
Pure Vero is also placed as filets at the tips of the gripper to con-
trol the bending behavior and to also contribute toward a higher
stiffness of the overall structure.

In Fig. 11 the corresponding initial, flat configuration of the
optimal design is shown. As before, distinct material phases were
extracted from the final fictitious density field in a postprocessing
step; see Fig. 11(a). Figure 11(b) shows the printed physical speci-
men for the self-deforming cylinder gripper. This example suc-
cessfully demonstrates that the proposed design method is not
limited to finding the optimal geometry of simple target deforma-
tions, but also handles more sophisticated ones. Nonuniform dou-
ble curvature is used in the optimized gripper design to obtain the
desired deformation upon activation.

5.3 Four-Legged Gripper Example. The design of an active
four-legged gripper is the aim of the third design optimization
example. The target displacement is formulated such that gripping
of an object is simulated. In order to achieve this, a target dis-
placement of utar¼ [–80.0, 0.0, –50.0] mm is defined at X1¼ [0.0,
80.0, 0.0] mm and a similar target displacement of utar¼ [0.0,
–80.0, –50.0] mm is prescribed at X2¼ [80.0, 0.0, 0.0] mm. This
target displacement describes a structure where all four target

points coincide in the center of the design domain below its initial,
flat configuration. As in previous examples, the XFEM model
parameters listed in Table 5 are used and the parameters specific
to this four-legged gripper example are found in Table 4.

The optimal design layout in the deformed configuration is
depicted in Fig. 12 showing (a) the XFEM prediction and (b) the
physical sample of the four-legged gripper. Due to the increased
complexity of the target deformation, this design problem exhibits
design phenomena previously not observed in Secs. 5.1 and 5.2.

Fig. 9 Final twisted figure-eight design in undeformed configuration: (a) extracted material
phases and (b) printed structure

Fig. 10 Final design of the cylinder gripper in deformed configuration: (a) XFEM prediction
and (b) activated experiment

Fig. 11 Final cylinder gripper design in undeformed configuration: (a) extracted material
phases and (b) printed specimen

Fig. 12 Final design of the four-legged gripper example in
deformed configuration: (a) XFEM prediction and (b) activated
experiment
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The final design of the gripper consists of four legs, which deform
to match the target deformation in a nonintuitive manner. Since an
end-stiffness constraint is enforced, convex–concave curvature
sections are created to increase the stiffness of the four legs. These
interesting features demonstrate how geometry features triggered
by a mechanical stiffness constraint yield a meaningful, complex
active gripper structure. Due to the finite width of the legs, self-
penetration of all four gripper legs is observed at the bottom cen-
ter of the structure. This is caused by inability of the XFEM model
to account for contact. In the physical experiment, self-
penetration is avoided by overlapping of the four gripper legs at
different X3 depths. However, in order to more accurately account
for a behavior like this, contact should be included in future work.
Overall, good qualitative agreement between the XFEM predic-
tion and the direct 4D printed four-legged gripper is observed.

Figure 13 shows the corresponding initial, undeformed design
for the four-legged gripper. The distinct domains of
convex–concave curvature can be identified in both the XFEM
model (Fig. 13(a)) as well as the printed specimen (Fig. 13(b))
where the bilayer beam composition is locally inverted at about
the half-way point of each gripper leg.

5.4 Elevated Plane Example. The last example used to dem-
onstrate the capabilities of the proposed multimaterial topology
optimization framework is the design of a self-elevating plane.
For this design example, the domain size is increased to
120.0� 120.0� 1.0 mm for the quarter domain. This increase in
in-plane domain size improves the ability to capture double

curvature with the given eigenstrain provided by the active mate-
rial. A mesh size of 48� 48� 10 elements is used to discretize
one quarter of the design domain, leading to initially 276,000 free
DOFs. To achieve self-elevation of the domain in the center of the
design space by 40.0 mm in the X3 direction, a target displacement
of utar¼ [0.0,0.0, þ40.0] mm is defined at the center of the
domain spanned by
X1 ¼ ½0:0 � X1 � 15:0; 0:0 � X2 � 15:0; 0:0�mm. In addition,
the out-of-plane displacement is fixed at the tips along the symme-
try planes defined by X1 ¼ ½105:0 � X1 � 120:0; 0:0 � X2 �
5:0; 0:0�mm and X2 ¼ ½0:0 � X1 � 5:0; 105:0 � X2

� 120:0; 0:0�mm. The remaining XFEM model parameters for
this example are listed in Table 5 and all other problem specific
parameters are listed in Table 4.

The final design of the self-elevating plane in the deformed
configuration is shown in Fig. 14. Both (a) the XFEM prediction
and (b) the direct 4D printed physical specimen are depicted. The
target deformation is achieved well in both simulation and physi-
cal experiments. A cross-shaped structure attached to the platform
at the center is created. Each member of the cross exhibits a non-
uniform active–passive material layout to yield distinct domains
of concave–convex bending upon activation. This change in cur-
vature is necessary to elevate the center of the structure in X3

direction while introducing no out-of-plane displacement and
rotation at the tips.

Figure 15 shows the undeformed structures of the elevated
plane corresponding to (a) the XFEM simulation and (b) the
printed sample before activation. A thresholding scheme is
employed to eliminate any remaining intermediate densities and

Fig. 13 Final four-legged gripper design in undeformed configuration: (a) extracted material
phases and (b) printed sample

Fig. 14 Final design of the self-elevating plane in the deformed configuration: (a) XFEM pre-
diction and (b) direct 4D printed specimen

Fig. 15 Final elevated plane design in undeformed configuration: (a) extracted material
phases and (b) printed sample
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to clearly identify active and passive material domains required
for direct 4D printing.

6 Conclusions

A topology optimization approach for designing direct 4D
printed, shape-changing structures undergoing large deformations
was proposed. A combined LS-XFEM and density-based topology
optimization approach was introduced in order to describe the
multimaterial optimization problem. The LS-XFEM was
employed to describe the solid-void domains in a crisp manner,
while the SIMP method was used within the solid domain to dis-
tinguish between active and passive material subdomains. The
hyperelastic thermomechanical model was discretized by quad-
ratic displacement elements using an XFEM formulation. The
inelastic printing strain introduced through the direct 4D printing
process was modeled as a residual isotropic eigenstrain. Accurate
prediction of the behavior of self-deforming structures by the pro-
posed large strain thermomechanical XFEM model was verified
by comparing numerical results against physical experiments and
an analytical beam model.

The capabilities of the proposed design optimization methodol-
ogy were demonstrated through four example problems. The
objective was to match a given target displacement subject to a
volume constraint and an end-stiffness constraint in order to
assure structural integrity of the final design. Optimal designs
matching target displacements of a twisted figure-eight design, a
cylinder gripper, a four-legged gripper, and a self-elevating plane
were successfully obtained using the proposed framework. Geo-
metries and material arrangements of increasing complexity
were created that take advantage of mechanical phenomena such
as double curvature, locally concave–convex curvatures, and
domains of uniform passive material in order to meet the end-
stiffness constraint.

To further improve the capabilities of the proposed framework,
a few shortcomings should be addressed in future work. These
include the simplifications made with regards to structural insta-
bilities, such as buckling and snap-through, which are a common
phenomenon in slender structures. These structural instabilities
have been avoided by using sufficiently thick structures in the cur-
rent work, but need to be considered in general, when large com-
pressive stresses are present in the structure initiated by the active
material. Previous works in the field of modeling of slender struc-
tures incorporating eigenstrains include [44] and [46] where espe-
cially [46] and [47] consider fully nonlinear behavior including
instabilities. Future work should study the influence of structural
instabilities on the optimal design of 4D printed structures and
develop a systematic optimization approach to either leverage
them as a desired design feature or to avoid them in order to
increase design robustness.

Moreover, the third example experienced a significant amount
of self-penetration in the activated stage due to the lack of a self-
contact formulation within the employed XFEM framework.
Incorporating an XFEM contact formulation with multimaterial
topology optimization as studied by Lawry and Maute [20] into
the proposed design framework is another topic, which needs to
be addressed in future work.

This paper has presented an initial demonstration of a system-
atic design approach for 4D printed structures undergoing large
deformations. In addition, design problems with more complex
target displacements should be studied in future work.

Physical specimen for all design examples were fabricated
using direct 4D printing. Upon activation, qualitatively good
agreement between the XFEM prediction and the physical
response was seen. Discrepancies between the numerical results
and the experiments are mainly attributed to minor anisotropy of
the material properties with respect to the print direction, ambient
effects like gravity, and viscosity of the water bath on the soft
structures during the activation process. None of those physical
effects have been accounted for in this work. However, in order to

achieve better agreement between XFEM simulations and 4D
printed specimen, all of those effects should be accounted for in
future studies.
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Abstract Regularization of the level-set (LS) field is a
critical part of LS-based topology optimization (TO)
approaches. Traditionally this is achieved by advancing
the LS field through the solution of a Hamilton-Jacobi
equation combined with a reinitialization scheme. This
approach, however, may limit the maximum step size and
introduces discontinuities in the design process. Alterna-
tively, energy functionals and intermediate LS value
penalizations have been proposed. This paper introduces
a novel LS regularization approach based on a signed
distance field (SDF) which is applicable to explicit LS-
based TO. The SDF is obtained using the heat method
(HM) and is reconstructed for every design in the
optimization process. The governing equations of the
HM, as well as the ones describing the physical response of
the system of interest, are discretized by the extended finite
element method (XFEM). Numerical examples for pro-
blems modeled by linear elasticity, nonlinear hyperelasti-
city and the incompressible Navier-Stokes equations in
two and three dimensions are presented to show the
applicability of the proposed scheme to a broad range of
design optimization problems.

Keywords level-set regularization, explicit level-sets,
XFEM, CutFEM, topology optimization, heat method,
signed distance field, nonlinear structural mechanics, fluid
mechanics

1 Introduction

Topology optimization (TO), with its large design free-
dom, has emerged as a powerful design tool for a variety of
applications including structural mechanics, fluid flow and
heat transfer [1–3]. The two most commonly used TO
approaches are density-based methods and level-set (LS)-
based implicit boundary methods. Since the introduction of
the level-set method (LSM) [4], the method has gained
great popularity in the areas of image processing, computer
graphics, computational geometry and computational
physics [5–7]. LSMs describe geometry changes by
evolving an implicit boundary, conventionally defined as
the zero-level iso-contour of a level-set function (LSF),
fðXÞ. When applied to TO, LSMs enable a clear and
unambiguous definition of the material interface [2,8]. van
Dijk et al. [8] classified LSMs into two broad categories
based on the LSF update procedure: i) Implicit methods
where some form of the Hamilton-Jacobi (HJ) equation is
used to evolve the LSF based on a velocity field defined by
shape sensitivities that are in turn governed by the physics
[9–12], and ii) explicit methods where a parametrized LSF
is updated using mathematical programming techniques
[8,13–17].
By construction, shape sensitivities only exist in the

vicinity of the domain boundary, i.e., zero iso-contour of
the LSF, and depend on the spatial LSF gradient.
Furthermore, locally too flat or too steep LSF gradients
affect the stability and the rate of convergence of LSMs,
while a uniform and uniquely defined LSF improves those
features. To this end, several regularization schemes for
LSMs have been proposed [8]. Perimeter regularization is
used to obtain a well-posed optimization problem [18]
whereas Tikhonov regularization is used to control the
smoothness of the LSF gradient [19,20]. These methods,
however, do not guarantee a unique LSF and may lead to a
flat LSF [8]. For both, explicit LS descriptions and implicit
LSMs using the HJ equation, there exists a strong need for
better regularization schemes to improve convergence of
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the optimization process and avoid convergence to local
minima [8].
An LSF with a uniform gradient along the interface, e.g.,
jrfðXÞj ¼ 1, is desired for both explicit and implicit
approaches [5,8]. A uniform, unit norm gradient is a
unique property of the signed distance function (SDF), and
hence the SDF is commonly used to reinitialize the LSF.
However, as it evolves, the LSF quickly loses its SDF
characteristics [21]. To alleviate this issue, several SDF
regularization techniques have been proposed [22–29]. For
the implicit LSMs, typically an auxiliary HJ equation [25]
is solved, or a fast marching method [26] is used to
reinitialize the LSF intermittently during the optimization
process. For a more detailed discussion of HJ methods, the
interested reader is referred to Refs. [5,30]. Even though
LSF reinitialization is widely used, it slightly moves the
zero LS iso-contour during the reinitialization process
[5,31] and therefore affects the convergence of the design
optimization process. Moreover, if the HJ equations are
solved by an explicit time integration scheme, the design
step size is limited by the Courant-Friedrichs-Lewy
stability criterion.
To overcome the LSF reinitialization issues discussed

above, an energy functional that penalizes the deviation
from a unit norm LSF gradient is most commonly added to
the objective function [13,22–24,32]. However, these
measures do not allow for sufficient control of the LSF
gradient away from the interface and may lead to
oscillations [27,28]. Double-well energy functionals were
introduced in Refs. [27–29] to enforce a unit norm gradient
near the interface and a zero LSF gradient away from the
interface, thus leading to an LSF that has an SDF
characteristic near the interface and is constant away
from it. The fundamental limitation of these local LS
regularization approaches is that they operate directly on
the local design LS value, or its gradient, and lack
information about the minimum distance of a point to the
interface. Thus, they cannot distinguish between points
that have the same LS value but differ in their distance to
the interface. This inability may cause undesirable material
inclusions away from the original interface as illustrated in
Fig. 1. Enforcing a unit norm gradient of the LSF at points
with LS values close to zero but away from the interface at
iteration n (Fig. 1(a)) may create new intersections at
iteration nþ 1 (Fig. 1(b)), without these intersections
being necessarily beneficial for improving the performance
of the design.
Using the local design LS value, either a zero gradient is

achieved away from the interface or a unit norm gradient is
enforced in the vicinity of it (see Fig. 1(a) for a simplified
one-dimensional LSF and the corresponding interface).
Due to the local enforcement of the different targets, the
local measure lacks the ability to distinguish between areas
where the LSF is within the LS bound fBnd (i.e.,
–fBnd£f£fBnd) at which an interface exists and areas
at which no interface is present. The local regularization

scheme enforces jrfj ¼ 1 anywhere, where –fBnd£f£
fBnd and thus has the tendency to create spurious material
inclusions (Fig. 1(b)). Limiting the enforcement of the unit
norm gradient to only intersected elements does not
reliably alleviate this issue. Based on the authors’
experience, adding energy functionals to the objective
while formulating a well-posed optimization problem is
challenging and requires problem dependent fine-tuning of
parameters defining the regularization.
To overcome the shortcomings of the previously

discussed regularization schemes, this paper introduces a
novel LS regularization approach for explicit LS-based
TO. This approach penalizes the difference between the
design LSF fðXÞ and a target LSF. The target LSF is
constructed at every design iteration from the SDF, which
is obtained using an extension of the heat method (HM)
[33,34]. The SDF is computed at every design iteration for
the current interface geometry and treated as a prescribed
target field for the design LSF. The governing equations of
the physics models and the HM are discretized in space by
the extended finite element method (XFEM). The
advantage of this novel approach is that a smooth and
unique target field is used as reference for a locally
enforced LS regularization. Using a differentiable penalty
formulation to match the design LSF with the computed
target LSF alleviates the need for reinitialization and
therefore does not introduce discontinuities in the
optimization process. The implementation of the HM is
straightforward and can easily be coupled with explicit
LSMs. The effectiveness of the proposed scheme is
demonstrated via LS-based TO numerical examples in
two (2D) and three (3D) spatial dimensions. Linear
elasticity, nonlinear hyperelasticity and fluid flow exam-
ples are studied to demonstrate the general applicability of
the novel LS regularization scheme.
The remainder of the paper is organized as follows:

Section 2 gives a brief summary of the explicit LS-based
TO framework; Section 3 introduces the HM; Section 4

Fig. 1 Effect of a local LS regularization scheme on a simplified
one-dimensional design problem for two distinct design iterations:
(a) n and (b) n+ 1
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discusses the XFEM discretization; Section 5 provides
details of the explicit LS regularization scheme; numerical
examples are presented in Section 6; and Section 7
concludes and summarizes the paper.

2 Explicit level-set topology optimization

The LSM implicitly describes the geometry of a body and
its evolution using a scalar LSF fðXÞ. The material layout
within a design domain ΩD composed of two distinct
phases is given by

fðXÞ < 0, 8X 2 ΩI

fðXÞ > 0, 8X 2 ΩII

fðXÞ ¼ 0, 8X 2 ΓI,II

,

8><
>: (1)

where ΩI and ΩII are the material domains of Phases I and
II, respectively, such that ΩD ¼ ΩI[ΩII. The interface
between them is denoted by ΓI,II which corresponds to the
zero LS iso-contour fðXÞ ¼ 0. In explicit LS-based TO,
the nodal values of the discretized LS field fiðXÞ are
defined as an explicit function of the design variables.
Here, the design variable field is discretized using linear
finite element (FE) shape functions, and each node j is
assigned one design variable sj. The LSF function is
defined by filtering the discretized design variable field as
follows:

fi ¼

PNn

j¼1
wijsj

PNn

j¼1
wij

, wij ¼ maxð0, rf – jX i –X jjÞ, (2)

where Nn is the number of nodes within a filter radius rf
and jX i –X jj is the Euclidean distance between Nodes i
and j. This linear filtering scheme Eq. (2) initially proposed
by Ref. [35] for LSMs increases the area of influence of
every design variable and therefore enhances convergence
of the optimization problem. The LSF is then used to
discretize distinct physical sub-domains using the XFEM
(see Section 4). The optimization problems considered in
this work are formulated as

min
s

z s,uð Þ ¼ w1
z1ðs,uÞ
z1ðs0,u0Þ

þ w2

!
ΓI,II

dA

!
Γ0
I,II

dA
þ w3

pðsÞ
pðs0Þ

s:t: g1 sð Þ ¼ ΩI

ΩI þ ΩII
– γV£0

s 2 Π ¼ fℝNs jsL£s£sUg

u 2 ℝNu

,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(3)

where s denotes the vector of design variables and u is the
vector of state variables. The objective function consists of
a weighted contribution z1 that characterizes the physical
performance (e.g., strain energy, total fluid pressure drop)
and two weighted penalty contributions, such that
w1 þ w2 þ w3 ¼ 1. All objective function contributions
are normalized by their values of the initial design, denoted
by the superscript 0. The first penalty contribution
minimizes the perimeter to avoid the emergence of
irregular geometric features, and the second penalty is
the newly introduced LS regularization that is discussed in
detail in Section 5. When no LS regularization is used,
w3 ¼ 0. All optimization problems considered in this work
are subject to a volume constraint γV on ΩI which prevents
trivial solutions. The lower and upper bounds of the design
variables are denoted by sL and sU, respectively. The
number of design variables is denoted by Ns and the
number of state variables is Nu. The state variables u are
governed by a set of discretized partial differential
equations. These equations are satisfied for each design
in the optimization process.

3 The heat method

The basis of the proposed regularization scheme for
explicit LSMs is the construction of the SDF at every
design iteration. Most commonly used approaches to
obtain the SDF are fast marching methods [36] and fast
sweeping approaches [37]. These methods however
require non-trivial implementations within an FE-based
software platform and present issues with parallelization
[33]. In the current work, the SDF is obtained using an
extension of the HM. First, a transient heat conduction
equation is solved on the entire design domain, with a heat
source at the material interface (Fig. 2(a)). The strong form
of the governing equation of the temperature field �ðXÞ is

_� ¼ Δ�, (4)

where Δ is the Laplace operator, and the temperature time
derivative is denoted by _�. The initial and Dirichlet
boundary conditions at the XFEM interface are �0ðXÞ ¼ 0
and �ðΓI,IIÞ ¼ 1, respectively. Adiabatic boundary condi-
tions are applied to the temperature field at the domain
boundary.
The distance field fDðXÞ is obtained by solving a

Poisson’s equation with a volumetric flux that depends on
the normalized gradient of the temperature field �ðXÞ. The
governing equation of the distance field fDðXÞ is

ΔfD ¼ r⋅ –
r�
jr�j

� �
, (5)

with the Dirichlet boundary condition fDðΓI,IIÞ ¼ 0 at the
material interface and homogeneous Neumann boundary
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conditions at the domain boundary. The solution of Eq.
(5) is illustrated in Fig. 2(b). The SDF fSDðXÞ is then
computed by multiplying the distance field with the sign of
the original design LSF fðXÞ (Fig. 2(c)). Mathematically,
this is stated as

fSD ¼ signðfÞfD: (6)

Note that due to enforcing fD ¼ 0 at the interface,
constructing the SDF from the distance field via Eq. (6)
does not introduce spurious fluctuations.
From a design optimization point of view, it is important

to distinguish between the design LSF fðXÞ which is an
explicit function of the design variables s (Eq. (2)) and the
reconstructed SDF fSDðXÞ. The design LSF fðXÞ
determines the decomposition of the design domain into
distinct phases and the material interface, which is the
starting point of the HM and the SDF computation.
The weak form of the residual equation of the

temperature field �ðXÞ is

R� ¼ !
Ω
δ� _�dV þ!

Ω
δr�r�dV ¼ 0, (7)

where the admissible test functions are denoted by δ�. The
time derivative at the current time step m+ 1 is
approximated using an implicit Euler backward scheme as

_�
mþ1 � �mþ1 – �m

Δt
, (8)

where �m is the temperature field at the previous time step
m and Δt is the time step size. To obtain an accurate
distance field, Crane et al. [33] recommended a time step
size in the order of Δt ¼ h2 where h is the element edge
length. To increase computational efficiency of the HM,
only a single time step is used for solving the temperature
field �ðXÞ of Eq. (7). The time step size Δt is set
sufficiently large to obtain a non-zero temperature gradient
in the entire design domain and a meaningful SDF. This
greatly reduces the computational overhead compared to a
fully transient problem while only slightly effecting the
accuracy of the obtained SDF away from the interface. For
selecting a sufficiently large, single time step size, the
following guideline can be used:

Δt³
L

ln�L

� �2

, (9)

where L is defined as L ¼ Lmax

ffiffiffi
d
p

and �L represents a
small temperature value at the far end of the design
domain, e.g., �L ¼ 1�10 – 4. The maximum side length of
the design domain bounding box is denoted by Lmax and d
is the spatial dimensionality, e.g., d ¼ 2 in 2D. When
employing the HM within a TO process, computational
efficiency is more important than a high accuracy of the
SDF. As discussed in Section 6.3.1, numerical studies have
shown that solving Eq. (7) only for a single time step does
not impede the functionality of the LS regularization but
significantly simplifies the application of the HM for TO.
It is not necessary to compute the distance field fDðXÞ

and the signed distance field fSDðXÞ in two sequential
steps. The residual equation for the signed distance field
fSDðXÞ is obtained by integration by parts of Eq. (5) and
stated as

RfSD
¼ !

Ω
δrfSDðrfSD –GÞdV ¼ 0, (10)

where the coupling term G is computed as the normalized
temperature gradient times the negative of the sign of the
design LS field:

G ¼ – sign fð Þ r�jr�j: (11)

It should be noted that Eq. (10) does not contain any
boundary contribution, as rfSD ¼ G is assumed over the
outer domain boundary.

4 The extended finite element method

The XFEM [38] is used for discretization of the physics
and the HM governing equations on a non-conforming
background mesh. Being an immersed boundary method, it
alleviates the need for re-meshing, which can be challen-
ging and computationally costly during an optimization
process.
Enrichment of the classical FE approximation spaces

with additional shape functions is used for interpolation
into disconnected sub-domains [39]. Multiple levels of
enrichment are used to avoid spurious coupling or load
transfer between disconnected material sub-domains. In
this work, a generalized Heaviside enrichment strategy
[40] is employed where the degrees of freedom within each

Fig. 2 Construction of the SDF using the HM. (a) A heat distribution is obtained from heat sources at the material interface; (b) the
normalized temperature gradient is utilized to compute a distance field; from that, (c) the SDF is obtained
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unique sub-domain are approximated by standard FE
shape functions. The HM state variables u ¼ f�, fSDg at
Node i are therefore approximated as

uiðXÞ ¼
XM
m¼1

Hð –fðXÞÞ
XNe

n

k¼1
NkðXÞδkmquk,Iim

 

þHðfðXÞÞ
XNe

n

k¼1
NkðXÞδkmquk,IIim !, (12)

where the Heaviside function H is a function of the LS
value and is defined as

HðfðXÞÞ ¼
1 if fðXÞ > 0

0 if fðXÞ < 0

(
: (13)

The maximum number of enrichment levels is denoted
byM, Ne

n is the number of nodes per element and NkðXÞ is
the elemental shape function. The Kronecker delta δkmq
selects the active enrichment Level q for Node k such that
the partition of unity principle is satisfied. More details
regarding Heaviside enriched XFEM can be found in Refs.
[41,42].
Face-oriented ghost penalization, as proposed by Refs.

[43,44], is used to stabilize the XFEM discretization.
Numerical instabilities arise in the XFEM when the
material interface ΓI,II moves too close to a FE node,
leading to a vanishing zone of influence of certain degrees
of freedom. Face-oriented ghost stabilization cures this ill-
conditioning independent of the intersection configuration.
For stabilization of the solution fields, face-oriented ghost
penalization is applied in the vicinity of the interface. It is
formulated as

RG ¼ hγG
X

F 2Fcut

!
F
〚δruN e〛〚ruN e〛dA ¼ 0, (14)

where γG is the ghost penalization parameter and Fcut
contains all element faces in the immediate vicinity of the
material interface for which at least one of the two adjacent
elements is intersected [45]. The jump operator is defined
as〚�〛¼ �jΩe1

– �jΩe2
. The ghost penalty is evaluated along

all faces between two adjacent elements, Ωe1 and Ωe2 . The
outward facing normal vector between Ωe1 and Ωe2 is
denoted by N e. This form of stabilized XFEM is also
referred to as CutFEM in Ref. [46].
Boundary conditions and interface conditions are

applied weakly in this work using the unsymmetrical
version of Nitsche’s method [47]. Weakly enforced
boundary and interface conditions are essential in LS-
based XFEM TO where the material phase of a domain
boundary at which Dirichlet boundary conditions are
applied may change. The weakly enforced conditions are
applied using

Rp
N ¼ –!

Γ
〚δup〛rupNdAþ!

Γ
rδupN〚up〛dA

þ γN!
Γ
〚δup〛〚up〛dA

¼ 0, (15)

where the phase index is denoted by p ¼ fI,IIg and N
denotes the normal vector on the domain or interface
boundary. The first term in Eq. (15) is the standard
consistency, the second term is the adjoint consistency, and
the last term is a penalty term on the jump of the state
variables. The Nitsche penalty parameter is denoted by γN.
The same XFEM approach, stabilization and application

of Dirichlet boundary conditions via Nitsche’s method as
outlined in this section is also used for discretization of all
physics governing equations discussed in Section 6.

5 Explicit level-set regularization

The SDF obtained by the HM is used for regularization of
the design LSF during the optimization process. Instead of
reinitializing the design LSF fðXÞ with the SDF fSDðXÞ,
the following penalty formulation is proposed to achieve a
continuous LS regularization:

p ¼
!
ΩD

ðf – ~fÞ2dV

!
ΩD

f2
BnddV

þ
!
ΩD

jrf –r~fj2dV

!
Ω
dV

, (16)

where fBnd denotes an upper (lower) bound for the target
LSF. The penalty measures the difference between the
design LSF fðXÞ and a target LSF ~fðXÞ, as well as the
difference in the spatial gradients. The target LSF ~fðXÞ is
constructed from the SDF fSDðXÞ. As the design LSF
fðXÞ converges to the target LSF ~fðXÞ, both contributions
in Eq. (16) vanish. Penalizing the difference in the spatial
gradients of the design and target LSFs, in addition to the
difference in their values, increases the accuracy and
avoids spatial oscillations. Both contributions are inte-
grated over the entire design domain ΩD¼ ΩI[ΩII. In the
authors’ experience, equal weighting of the two contribu-
tions in Eq. (16) provides a good balance between
matching the target LS value and avoiding oscillations.
To avoid length scale dependence, the penalty terms are
normalized.
In this work, upper and lower bounds are imposed on the

design LSF. To obtain a bounded design LSF away from
the material interface, the following piecewise linear LSF
is proposed as a target:

f̂ðXÞ ¼

fBnd

–fBnd

if fSDðXÞ³fBnd

if fSDðXÞ£ –fBnd

fSDðXÞ else

8>><
>>: : (17)
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The truncated target LSF f̂ðXÞ matches the SDF in the
vicinity of the interface. Away from the interface, the lower
bound –fBnd is matched inΩI and the upper bound fBnd is
matched in ΩII. To avoid the non-differentiability of the
piecewise linear target LSF f̂ðXÞ, a smooth target LSF
~fðXÞ is used to approximate Eq. (17). This is achieved by
the following sigmoid function:

~f ¼ 2

1þ e
– 2fSD
fBnd

– 1

0
@

1
AfBnd: (18)

A comparison between the piecewise linear target LSF
and the smooth target LSF is illustrated in Fig. 3 for a one-
dimensional interface configuration.
The target LSF ~fðXÞ depends implicitly on the

geometry of the interface, defined by the zero iso-contour
of the design LSF fðXÞ that depends explicitly on the
optimization variables. The implicit dependence of ~fðXÞ
is described by the governing equations of the HM. In
general, these implicit and explicit dependencies need to be
considered for computing consistent design sensitivities of
the LS regularization penalty Eq. (16). However, if the
weight w3 for the LS regularization term in the formulation
of the objective function Eq. (3) is large and the implicit
dependency of the target LSF ~fðXÞ on the optimization
variables is accounted for, the evolution of the design may
be dominated by the LS regularization and the optimiza-
tion process may converge to a design with poor physical
performance. To overcome this issue, the LS regularization
weight should be chosen small, e.g., w3<0:1; a motivation
for this recommendation will be presented in Section
6.2.1.1.
In addition, the authors found it advantageous to

consider the target LSF ~fðXÞ as a prescribed field which
is reconstructed at every design iteration of the optimiza-
tion process. Using this interpretation of ~fðXÞ, the penalty
term Eq. (16) depends only explicitly on the optimization
variables and the implicit sensitivities are ignored. As it
will be shown in Section 6.2.1.2, this approach reduces the
influence of the LS regularization term on the evolution of
the design LSF in the vicinity of the zero iso-contour, i.e.,

the interface geometry. In addition, ignoring the implicit
sensitivity contributions enhances the convergence of the
optimization process to a design with optimized physical
performance. Furthermore, the computational cost is
noticeably reduced by omitting the computation of the
adjoint solution of the HM. The LS regularization mainly
controls the slope of the LSF along the interface and
ensures that the LSF converges to either upper or lower
bounds, �fBnd, away from the interface. The reader may
note that the LS regularization penalty Eq. (16) provides
non-zero sensitivities in the entire design domain. This is
usually not the case in LS-based TO using the XFEM,
where shape sensitivities only exist in the vicinity of the
interface [8].
Instead of introducing the LS regularization by the

penalty term Eq. (16) into the formulation of the
optimization problem, one could also add a constraint in
the form of p£ε with ε<<1. As the authors obtained
satisfactory results with the penalty formulation for a wide
range of penalty weights (see Section 6), the constraint
formulation has not been considered in this work.

6 Numerical examples

Numerical examples considering different physical phe-
nomena in 2D and 3D are presented in this section to study
the characteristics of the proposed regularization approach.
The examples include structural design problems modeled
by linear and nonlinear elasticity and a flow problem
described by the incompressible Navier-Stokes equations
at steady-state.
Common to all examples is that the governing equations,

including the ones of the HM, are discretized by the
XFEM. An iterative Newton-Raphson scheme is used to
solve the nonlinear problems that are considered as
converged when a relative nonlinear residual norm drop
greater than 106 is achieved. A single load increment is
used in all numerical examples. The linearized sub-systems
are solved using the Multifrontal Massively Parallel Solver
(MUMPS) [48]. Bilinear four node quadrilateral elements
are used in 2D, and trilinear eight node hexahedral

Fig. 3 Piecewise and smooth approximation of the design LSF
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elements are used in 3D. The same discretization is used
for the design LSF. The parameter optimization problem
Eq. (3) is solved using a gradient-based nonlinear
programming scheme, namely the Globally Convergent
Method of Moving Asymptotes (GCMMA) [49], with no
inner iterations.
The optimization problem is considered converged if the

constraint is satisfied and the relative change in objective
between two consecutive design iterations is less than
1�10 – 5. The design sensitivities are obtained using the
adjoint method. For more details on design sensitivities
using XFEM, the interested reader is referred to Ref. [50].
Selective structural springs [51] are applied for all
structural problems to suppress rigid body motion of
isolated material domains that may emerge in solid-void
LS-based TO. The initial seeding of the design domain
with holes is performed using primitives in the form of
squares in 2D and cubes in 3D.
The parameters used for the following numerical

examples are listed in Table 1. Self-consistent units are
used for all numerical examples and therefore not stated
explicitly. The bounds for the design and target LSF are set
as a function of the element edge length h. Note that the
bound fBnd for the target LSF ~fðXÞ is within the range of
values of the discretized design LSF fðXÞ. As discussed in
Section 3, the temperature field in the HM is advanced in
time by a single time step, unless otherwise stated. A
staggered solution approach is used to separately solve the
two partial differential equations of the HM in a one-way
coupled fashion. This improves computational efficiency
as each sub-problem is linear and of smaller size.

6.1 Examples for linear elasticity

The physical response in the first set of examples is
described by linear elasticity. The weak form of the
governing equation is

R ¼ !
ΩI

δεσdV –!
ΓT

δuTdA ¼ 0, (19)

with u ¼ u on Γu, where the displacement vector is
denoted by u. The surface traction applied on ΓT is T . The

infinitesimal strain tensor is defined by ε ¼ 1

2
ðruT þruÞ,

and the Cauchy stress is σ ¼ Dε. The fourth-order material
tensor is denoted by D, and for isotropic, linear elastic
homogeneous materials considered in this work it is
defined in terms of the Lamé constants l and � as follows:

Dijkl ¼ lδijδkl þ �ðδikδjl þ δilδjkÞ, (20)

where δij is the Kronecker delta. The Lamé constants can
be expressed in terms of the Young’s modulus E and the
Poisson’s ratio � as

l ¼ E�

ð1þ �Þð1 – 2�Þ , � ¼
E

2ð1þ �Þ: (21)

The problem parameters used for linear elastic problems
are listed in Table 2. For more details about the linear
elastic XFEM formulation used in this section, the reader is
referred to Ref. [52].

6.1.1 Hanging bar in 2D

As a first design example, a 2D linear elastic plane stress
“hanging bar” design optimization problem is solved. This
example problem is a modified version of the two-bar truss
solid-void problem that was studied in Ref. [2] with the
density method. The initial design of size 80� 40 with
boundary conditions is shown in Fig. 4(a). Only one half of
the design is analyzed and optimized, with weakly
enforced symmetry boundary conditions along the vertical
center line. The top edge of the domain is clamped while a
traction load of TX2

¼ – 30 is applied in X2 direction at the
center of the bottom edge over a length of 12. The region at
the center of the bottom edge, at which the load is applied,
is excluded from the design domain. The optimization
problem Eq. (3) is to minimize the strain energy with a
perimeter penalty and an LS regularization penalty subject
to a volume constraint of γV ¼ 0:16. A relative GCMMA
optimization step size of 0.1 and a time step size of Δt ¼ 4
is used in the HM.
The final design is shown in Fig. 4(b) and consists of

only a single vertical bar, to transfer the applied traction
load at the bottom to the support at the top of the domain.

Table 1 Parameters used for all numerical examples with h denoting
the element size
Parameter Value

Weak boundary condition penalty Eq. (15) γN ¼ 100=h

Ghost penalty Eq. (13) γG ¼ 0:001

Perimeter penalty weight Eq. (3) w2 ¼ 0:01

Lower bound of s sL ¼ – 3h

Upper bound of s sU ¼ þ3h

Target bound of LSF fBnd ¼ 2h

Filter radius used in 2D rf ¼ 1:6h

Filter radius used in 3D rf ¼ 2:4h

Table 2 Parameters used for the linear elastic design problems

Parameter Value

Young’s modulus E ¼ 2� 103

Poisson’s ratio � ¼ 0

LS regularization weight w3 ¼ 0:01

Element edge length h ¼ 1
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Figure 5 shows a comparison of the evolution of objective
and constraint with and without LS regularization. Early on
in the design process, oscillations are observed without LS
regularization, while with LS regularization a smooth
design evolution is obtained. Moreover, the design
problem converges significantly faster when LS regular-
ization is applied: About 300 design iterations versus about
500 design iterations. Since the LS regularization con-
tribution vanishes at the optimum, the regularized design
problem converges to the same objective and constraint
values as without regularization.
Figure 6(a) shows snapshots of the design LSF at

discrete steps during the optimization process, comparing
the evolution of the design LSFs with and without LS
regularization. The LSFs are plotted over X1 at the top
of the design domain, i.e., X2 ¼ 40. When no LS
regularization is used, irregularities of the design LSF are
observed as the design is changed and a quick degradation
of the slope of the LSF at the interface is seen. With
regularization, a non-oscillatory LSF is obtained in the
entire design domain. Even though the design problem
without regularization also eventually converges, the LSF
is noisy and at some locations close to zero. Due to
numerical noise, LS values close to zero often create
unintended isolated material islands in the vicinity of the
interface. These may cause ill-conditioning of the analysis

and potential divergence of the design problem. Thus,
when using the proposed LS regularization, a much larger
optimization step size can be used, owing to the enhanced
stability of the optimization problem.
Figure 6 on the right shows the design LSFs at design

iteration 200 without regularization applied (Fig. 6(b)) and
with LS regularization (Fig. 6(c)). Even though the same
zero iso-contour is obtained, the non-regularized LSF is
noisy, and the initial design can still be observed even at
convergence. In contrast, LS regularization achieves a
design LSF with LS values at the target boundary values
fBnd and a unit norm gradient in the vicinity of the
interface. Due to the exclusion of the bottom center from
the design domain, slight irregularities in the final iso-
contour and in the regularized LSF are seen in this region.

6.1.2 Hanging bar in 3D

A 3D configuration of the 2D problem discussed in Section
6.1.1 is considered here. The initial design with loads and
boundary conditions is shown in Fig. 7(a). Due to the
symmetry of the design problem, only one quarter of the
domain is modeled and optimized. Again, the area at the
bottom of the domain at which the traction load is applied
(circular area of radius 8.5) is excluded from the design

Fig. 4 (a) Initial design of the 2D hanging bar problem; (b) final design with boundary conditions and dimensions

Fig. 5 Evolution of (a) objective and (b) constraint with and without regularization for the 2D hanging bar

8 Front. Mech. Eng.

283



domain. The dimensions of the design domain are
80�40�80. A volume constraint of γV ¼ 0:035 is
enforced, and a relative GCMMA step size of 0.2 is
used. A time step size of Δt ¼ 6 is used in the HM.
As in the 2D problem, the optimization process

converges to a single vertical bar (Fig. 7(b)). Figure 8
shows the design LSFs of the final design obtained without
and with LS regularization. The 2D plane shown here is
taken along the diagonal of the design domain as indicated
in red in Fig. 7(b).
It can clearly be seen that when LS regularization is used

the LS values are at the target bounds away from the
interface, while a smoothed LSF with a unit norm gradient
is obtained near the solid-void interface. Without regular-
ization, the LSF of the initial design is clearly preserved at
convergence, and large spatial oscillations exist throughout
the entire design domain. As before, slight oscillations in

the design LSF are observed in the vicinity of the loaded
edge since this domain is excluded from the design
domain. Overall, increased stability and higher conver-
gence rates are observed for this initial set of design
problems when the LS regularization is applied.

6.2 Examples for nonlinear hyperelasticity

To demonstrate the applicability of the proposed LS
regularization scheme to design problems with increased
complexity, examples are considered next where the
structural response is described by a finite strain
hyperelastic model. The weak form of the governing
equation is stated as

R ¼ !
ΩI

δFPdV –!
ΓT

δuTdA ¼ 0, (22)

Fig. 6 (a) Comparison of the design LSFs with and without regularization at different snapshots during the optimization process (see
Fig. 4), final design LSF (b) without regularization and (c) with regularization

Fig. 7 (a) Initial design of the 3D hanging bar problem and (b) final design with boundary conditions and dimensions. The diagonal area
highlighted in red represents the plane in which the design LSFs with and without regularization are being compared in Fig. 8
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where F ¼ ∂x=∂X is the deformation gradient tensor, and
x ¼ uþ X describes the relationship between reference
X and current x coordinates. The first Piola-Kirchhoff
stress is denoted by P. A hyperelastic Saint Venant-
Kirchhoff constitutive model for homogeneous, isotropic
compressible materials is used, which is formulated as

S ¼ 2�E þ ltrðEÞI , (23)

where S is the second Piola-Kirchhoff stress tensor and E
is the Green-Lagrange strain tensor. The second order
identity tensor is denoted by I . The Lamé constants defined
in Eq. (21) are used.
The Green-Lagrange strain tensor is defined as:

E ¼ 1

2
ðC – IÞ, (24)

where the right Cauchy-Green deformation tensor C is
computed as C ¼ FTF. Finally, the first Piola-Kirchhoff

stress is obtained from

P ¼ FS: (25)

For more details on the formulation and verification of
the nonlinear XFEM formulation used in this work, the
interested reader is referred to Ref. [53]. The parameters
listed in Table 3 are used for all hyperelastic design
optimization problems, unless stated otherwise.

6.2.1 Beam in 2D

First, we consider the design of a beam-type structure in
2D. The initial design with loads and boundary conditions
is shown in Fig. 9(a). The design domain is of size
240�40. A traction load of TX2

¼ – 10 is applied at the top
center of the domain over a length of 3 while the structure
is simply supported on either ends on the bottom of the
domain. Due to the symmetry of the design problem, only
half of the domain is modeled and optimized. Symmetry
boundary conditions are applied weakly. The structural
response is described by the hyperelastic model outlined
above and discretized by the XFEM. Following the work
of Ref. [54], a plane strain model is used in 2D. The
objective of the optimization problem is to minimize the
strain energy with a 1% penalty weight on the perimeter
and a 1% penalty weight on the LS regularization. The
optimization problem is subject to a volume constraint of

Fig. 8 Comparison of the final design LSFs (a) without LS
regularization and (b) with regularization

Table 3 Parameters used for the hyperelastic design problems

Parameter Value

Young’s modulus E ¼ 2� 103

Poisson’s ratio � ¼ 0:4

LS regularization weight w3 ¼ 0:01

Element edge length h ¼ 1

Fig. 9 (a) Initial design of the 2D beam problem with boundary conditions and dimensions; (b) comparison of the zero LS iso-contours
of the final designs without and with LS regularization
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γV ¼ 0:6, and an optimization step size of 0.025 is used. A
single time step of size Δt ¼ 35 is used in the HM.
Figure 9(b) shows a comparison of the zero LS iso-

contour of the final beam designs obtained without and
with LS regularization. The typical truss-like structure is
obtained for both methods with only slight differences in
the final geometries. These differences can be attributed to
different evolutions of the LSFs during the optimization
process. The proposed LS regularization scheme leads to
an increased convergence behavior due to a uniform LS
gradient in the vicinity of the interface. This is also
reflected in a slightly (0.1%) lower strain energy of the
regularized design versus the non-regularized design.
The design LSFs, fðXÞ, at the final optimization

iteration are shown in Figs. 10(a) and 10(b) without LS
regularization and with regularization, respectively. Both
LSFs are warped for illustration purposes. An oscillatory
LSF is obtained without regularization, while with LS
regularization the optimization process converges to a
smoothly truncated design LSF. The regularized LSF
shows a unit norm gradient in the vicinity of the material
interface while having a zero gradient away from the
interface. Figure 10(c) shows the SDF obtained by the HM
for the final design of the 2D beam. It can be seen that
overall the SDF is well resolved. Only in areas with small
geometric features, with a size of h, the XFEM discretiza-
tion insufficiently resolves the SDF. Consequently, the LS
regularization suffers in these areas from a degraded
target LSF due to the limited resolution of spatial
discretization.

6.2.1.1 Influence of the LS regularization penalty weight

The influence of different weights w3 for the LS
regularization penalty is studied in Fig. 11. Figure 11(a)
shows the evolution of strain energy and Fig. 11(b) shows
the LS regularization penalty for regularization weights of
w3 ¼ f0:01,0:05,0:1,0:5g. With an increased LS regular-
ization penalty weight, the minimization of the LS
regularization term is favored early in the design process,
while the minimization of strain energy is given less
importance. The reader may note small jumps in the
evolution of strain energy and the LS regularization
penalty, for example, at iteration 350 and iteration 400.
The jumps are caused by thin structural members
disconnecting. The design iteration at which this
happens depends on the weight of the LS regularization
term.
For a weighting parameter in the range of

1%£w3£10%, both the strain energy and the regulariza-
tion penalty assume similar values after about 200 design
iterations. If the LS regularization weight is too large (e.g.,
50%), the optimization problem changes noticeably and
the physical performance of the optimized design is
affected. The LS regularization term then dominates the
overall objective and the physics contribution is of lesser
importance (Fig. 11 (a)). In the authors’ experience with
the current problem and other design problems, an LS
regularization weight up to 10% provides a good balance
between sufficient regularization while not impairing the
performance of the optimized design.

Fig. 10 Comparison of the warped final design LSFs (a) without LS regularization, (b) with regularization, and (c) SDF of the 2D beam
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6.2.1.2 Influence of implicit design sensitivities on LS
regularization

As discussed in Section 5, the proposed regularization
scheme considers the target LSF ~fðXÞ as a prescribed field
and ignores the implicit contributions of the penalty term
Eq. (16) to the design sensitivities. Only the explicit
dependency of the design LSF on the optimization
variables is accounted for in the sensitivity analysis. To
illustrate the benefits of this approach, the influence of
including the implicit design sensitivities is investigated.
The implicit contributions are computed by the adjoint
approach.
Figure 12 shows the optimized beam design obtained

with an LS regularization weight of w3¼0:1 and including
implicit sensitivities of the target LSF. Due to a fairly large
weight of the regularization on the objective, the implicit
design sensitivities influence significantly the evolution of
the zero LS iso-contour. The design evolution is
predominantly influenced by the regularization scheme
and insufficiently driven by the physics performance. This
leads to spurious void inclusions, premature convergence,
and poor physical performance of the optimized structure
(Fig. 12). For a sufficiently low regularization penalty
(e.g., w3¼0:01) these issues are not observed, and the

design convergence is indistinguishable from the one
where the implicit design sensitivities are omitted. Thus, to
prevent an undesired influence of the regularization on the
design evolution and to gain computational efficiency, it is
recommended to ignore design sensitivities of the target
LSF on the design variables and to use a low penalty
weight for the regularization term.

6.2.2 Beam in 3D

The hyperelastic beam example is studied next in 3D to
demonstrate the applicability of the proposed LS regular-
ization scheme to 3D problems where the geometry
undergoes significant changes during the optimization
process. Figure 13(a) shows the initial design with
boundary conditions for a design domain of size
240�40�40. An element edge length of h¼2 is used for
this example, along with a time step size of Δt ¼ 51 in the
HM. Analogous to the 2D configurations, a traction load of
TX2
¼ – 2 is applied within a circular region of radius 2 at

the center of the top face of the domain. The structure is
simply supported at all four corners at the bottom face of
the design domain. The loading and the support domains
are excluded from the design domain, respectively.

Fig. 11 Evolution of (a) strain energy and (b) regularization penalty for different penalization weights

Fig. 12 Spurious void inclusions within the structure as a result of including implicit design sensitivities of the target LSF with a
regularization penalty weight of 10%
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Two-fold symmetry is exploited for the mechanical and the
design problem. A relative optimization step size of 0.0125
is used and a volume constraint of γV¼0:3 is enforced
through a continuation approach.
Figure 13(b) depicts the final design obtained after 400

optimization iterations, using the proposed LS regulariza-
tion. As before, a smooth evolution of objective and
constraint is achieved when employing the LS regulariza-
tion scheme.
Figure 14 shows the design LSFs at convergence

obtained without the LS regularization and with LS
regularization, extracted in the center of the design domain
(indicated by the red plane in Fig. 13(b)). As before, a clear
difference can be observed with respect to the smoothness
of the LSF and the uniformity of the spatial gradient along
the zero LS iso-contour. While the non-regularized LSF is
shallow, the regularized LSF quickly approaches the LS
bounds away from the interface.
Figure 14 shows thin vertical members in the optimal

design, which represent shear webs in between the top and
bottom flanges of the beam. Because their thickness is in
the order of the mesh size h, the XFEM discretization
provides insufficient resolution of both the stress and strain
fields, as well as the SDF. Due to the inability of the
discretization to capture the SDF in areas of small features,
the target LSF is not well developed and, therefore, the LS
regularization suffers. The result of this can be seen in
Fig. 14(b) where the lower LS bound of –fBnd¼ – 2 is not
reached by the design LSF within the thin vertical
members of the structure. While this effect has already
been observed in the 2D beam example (Section 6.2.1) this
issue is more pronounced here. This is not an inherent
drawback of the proposed LS regularization scheme, but
rather stems for the underlying XFEM discretization and
its limitations to resolve features with a size in the order of
h. Minimum feature size control (e.g., Ref. [55]) or local
mesh refinement would be required to properly regularize
the design LSF.

Fig. 13 (a) Initial design of the 3D beam problem with boundary conditions and dimensions; (b) final design. The central area
highlighted in red represents the plane in which the design LSFs are being compared in Fig. 14

Fig. 14 Comparison of the design LSFs at the mid-plane of the beam (a) without and (b) with LS regularization
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6.3 Example for incompressible Navier-Stokes flow

The goal of the final example is to demonstrate the
applicability of the proposed LS regularization scheme to a
flow problem, modeled by the incompressible Navier-
Stokes equations at steady state. Furthermore, the influence
of the accuracy with which the HM is time integrated is
studied.
The non-stabilized weak form of the volumetric

contribution (R) of the governing equation is stated as

R ¼ !
ΩI

½δv�ðvrvÞ þ εðδvÞσðv,pÞ�dV

þ!
ΩI

δprvdV ¼ 0, (26)

where v is the velocity vector, p is the pressure, and � is the
density. The admissible test functions for velocity and
pressure are denoted by δv and δp, respectively. The
infinitesimal strain rate tensor εðvÞ is defined as

εðvÞ ¼ 1

2
ðrvT þrvÞ: (27)

The Cauchy stress tensor for Newtonian fluids is
denoted by σðv,pÞ and is defined as

σðv,pÞ ¼ – pI þ 2�DεðvÞ, (28)

where �D is the dynamic viscosity. The governing Eq. (26)
is augmented by sub-grid stabilization to suppress spurious
velocity and pressure oscillations, as well as by ghost
penalization. For more details on the XFEM discretization
and the corresponding stabilization techniques, the reader
is referred to Ref. [45]. The fluid domain boundary is
decomposed into the fluid-void interface ΓI,II, and Dirichlet
and Neumann external boundaries, Γu and ΓT , respectively.
No-slip conditions are applied weakly at the fluid-void

interface; the other boundary conditions are problem
dependent and are specified below.
An extension of the fluid nozzle problem studied by

Refs. [56–58], to 3D is studied here. The design domain
with boundary conditions and the initial design are shown
in Fig. 15(a). The computational domain is a 5�5�5 cube
with a 0:75�5�5 non-design domain downstream from
the inlet face. A parabolic velocity profile with a maximum
inlet velocity of 30 in X1 direction is applied to the inlet
face, and zero pressure is enforced weakly at the circular
outlet of radius 1.25. Both, the inlet domain and the
circular outlet face are excluded from the design domain.
Only one quarter of the design domain is modeled. Slip
conditions are imposed on the X1 –X2 and X1 –X3
symmetry planes.
Assuming a constant density of �¼1 and a dynamic

viscosity of �D¼1, the flow conditions correspond to a
Reynolds number of Re ¼ 66 with the reference velocity
being the average inlet velocity and the reference length
being the edge length of the design domain, i.e., LRef¼5. A
ghost stabilization parameter of 0.005 is used for
stabilization of the pressure and a ghost penalization
parameter of 0.05 is used for stabilization of velocities; for
details see Ref. [45].
The objective of this nozzle design problem is the

minimization of the total pressure drop between inlet and
outlet along with a 1% perimeter penalty and a 5% LS
regularization penalty. The optimization problem is subject
to a γV¼0:3 volume constraint on the fluid phase. A
relative GCMMA step size of 0.01 and a single time step of
Δt¼0:1 is used for the HM. The main problem parameters
are listed in Table 4.
The final design obtained after 90 design iterations is

shown in Fig. 15(b). These results agree with the ones
presented in the literature. As before, a smooth evolution
of objective and constraint is obtained when LS

Fig. 15 (a) Initial design of the 3D fluid nozzle with boundary conditions and dimensions; (b) final nozzle design. The diagonal
highlighted in red represents the plane in which the design LSFs are being compared
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regularization is used. The design LSFs at convergence
without and with the LS regularization are compared in
Fig. 16. Again, a rather oscillatory LSF with flat gradients
near the interface is obtained when no LS regularization is
employed. With LS regularization, the design LSF
assumes the target bounds away from the interface while
having a unit norm gradient in the vicinity of the fluid-void
interface. The final designs obtained without and with the
HM do not differ significantly. However, improved
numerical stability and robustness during the optimization
process was observed due to the regularization of the LSF.
To provide insight into the dependence of the optimiza-

tion results on the accuracy with which the temperature
field in the HM is time integrated (Eq. (7)), the number of
time steps in the Euler backward scheme Eq. (8) is varied.
The total time is kept constant at tmax¼1. Comparisons of
objective and LS regularization penalty evolution for
different number of time steps of the HM Eq. (7) are shown
in Fig. 17. No significant differences are observed when
solving the HM with multiple time steps and reduced time
step sizes. This confirms the observations by Ref. [33], and
shows that a single time step is sufficient for LS
regularization using the HM.

7 Conclusions

A regularization scheme for explicit LS XFEM design

optimization in 2D and 3D was presented. The regulariza-
tion scheme augments the objective function by a penalty
term that measures the difference between the design LSF
and a target LSF, both in regard to the field value and its
spatial derivatives. The target LSF has a unit norm gradient
in the vicinity of the interface and assumes either an upper
or lower bound away from the interface, depending on the
material phase. The target LSF is constructed from the SDF
that is computed by an XFEM discretization of the HM at
every design iteration for the current interface geometry.
Numerical experiments on 2D and 3D problems in solid
and fluid mechanics showed that the proposed regulariza-
tion scheme is largely insensitive to the penalty weight for
the regularization term. As long as the weights are less than
10%, the LS regularization does not influence noticeably
the final design. A small influence on the design evolution
has been observed for larger penalty weights. Furthermore,
it was observed that it is beneficial to ignore the
dependence of the target LSF on the interface geometry
for computing the design sensitivities.
Omitting the sensitivities of the target LSF on the design

variables leads to an improved convergence to a design
with improved physical performance and reduces the
computational cost. The numerical results further suggest
that the temperature field of the HM can be computed by a
single time step without significantly affecting the
accuracy of the SDF. The time step size is a function of
the domain length. Good results were obtained with a time
step size determined by Eq. (9).
Comparing the results obtained with and without the

proposed regularization scheme suggests that the proposed
scheme significantly improves the convergence of the
optimization process and mitigates issues in the XFEM
analysis due to the emergence of small inclusions of one
phase within a domain occupied by another phase. The
scheme mitigates irregular interface evolution and pro-
motes a uniform LS gradient at the zero LS iso-contour. It

Table 4 Parameters used for the fluid design problem

Parameter Value

Reynolds number Re ¼ 66

Fluid density � ¼ 1

LS regularization weight w3 ¼ 0:05

Element edge length h ¼ 0:25

Fig. 16 Comparison of the design LSFs across the diagonal of the fluid nozzle final design (a) without and (b) with LS regularization

Markus J. GEISS et al. A regularization scheme for explicit level-set XFEM topology optimization 15

290



eliminates the need for reinitialization. Furthermore, the
proposed method mitigates robustness issues observed
with regularization schemes that solely operate on the
value or the spatial gradients of the design LSF. The
capabilities of the proposed method were demonstrated
through numerical examples in 2D and 3D, including
problems in linear and nonlinear elasticity and fluid
mechanics.
The numerical studies presented in this paper have

revealed a few shortcomings of the proposed method that
need to be addressed in future work. These include
overcoming the limited resolution of a fixed XFEM
background mesh with linear interpolation. When features
of dimensions in the order of the element edge length of the
background mesh emerge in the optimization process, the
resolution of a linear interpolation is insufficient to
accurately compute the target LSF. Therefore, the
performance of the regularization is reduced. This could
be addressed by adding feature size control to the design
problem, locally refining the background mesh or by using
higher order spatial discretizations. In addition, an increase
in computational cost was observed due to the need for
solving two additional partial differential equations in the
HM. Depending on the complexity of the physics model,
this additional cost may become significant when com-
pared to runs without the LS regularization scheme.
However, the additional cost is partially offset by an
increased convergence rate and by the ability to use larger
optimization step sizes. Future work needs to address ways
to improve the computational efficiency of the scheme. For
example, the temperature and SDF fields in the HM could
be solved only approximately, using a few iterations of an
iterative linear solver. Finally, due to the regularization of
the LSF, the nucleation of new holes is impaired. In order
to mitigate the dependency of the final design on the initial
seeding, systematic approaches for the creation of new
holes during the optimization process need to be explored
in combination with the proposed LS regularization. This
includes but is not limited to using additional LSFs [59] or

topological derivatives.
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