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The use of near Earth space has increased dramatically in the past few decades, and op-

erational satellites are an integral part of modern society. The increased presence in space has

led to an increase in the amount of orbital debris, which poses a growing threat to current and

future space missions. Characterization of the debris environment is crucial to our continued use

of high value orbit regimes such as the geosynchronous (GEO) belt. Objects in GEO pose unique

challenges, by virtue of being densely spaced and tracked by a limited number of sensors in short

observation windows. This research examines the use of a new class of multitarget filters to ap-

proach the problem of orbit determination for the large number of objects present. The filters

make use of a recently developed mathematical toolbox derived from point process theory known

as Finite Set Statistics (FISST). Details of implementing FISST-derived filters are discussed, and

a qualitative and quantitative comparison between FISST and traditional multitarget estimators

demonstrates the suitability of the new methods for space object estimation. Specific challenges

in the areas of sensor allocation and initial orbit determination are addressed in the framework.

The sensor allocation scheme makes use of information gain functionals as formulated for FISST to

efficiently collect measurements on the full multitarget system. Results from a simulated network

of three ground stations tracking a large catalog of geosynchronous objects demonstrate improved

performance as compared to simpler, non-information theoretic tasking schemes. Further studies

incorporate an initial orbit determination technique to initiate new tracks in the multitarget filter.

Together with a sensor allocation scheme designed to search for new targets and maintain knowl-

edge of the existing catalog, the method comprises a solution to the search-detect-track problem.

Simulation results for a single sensor case show that the problem can be solved for multiple objects

with no a priori information, even in the presence of missed detections and false measurements.
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Collectively, this research seeks to advance the capabilities of FISST-derived filters for use in the

estimation of geosynchronous space objects; additional directions for future research are presented

in the conclusion.



“Art is partly communication, but only partly. The rest is discovery.”

-William Golding

“Personally, I liked the university.”

-Dr. Raymond Stantz
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Nicola Baresi, In-Kwan Park, Illán Garćıa Amor, and Nikhil Shetty for their work in deriving the

CPHD spawning model included in the appendix.

Partial funding for this project was provided by Air Force SBIR Contract Number FA9451-

14-M-0182 awarded to Orbit Logic Incorporated. I wish to thank Alex Herz, Ella Herz, Doug

George, and Ian Zeigler of Orbit Logic for their conversations and contributions to this work. I

additionally wish to acknowledge Dr. Ben Bradley for his contribution of software to generate the

catalog of objects from TLE data and to perform frame rotations per the latest IERS standard, and

Dr. Brandon Jones and Dr. Keric Hill for use of the TurboProp software for orbit prediction. This

document has been reviewed and approved for public release by the Air Force Research Laboratory

Space Vehicles Directorate.



vii

Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges in Space Situational Awareness . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Comparison of Multitarget Filtering Methods . . . . . . . . . . . . . . . . . . 6

1.3.2 Information Theoretic Sensor Allocation . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Initial Orbit Determination and Follow-On Tracking . . . . . . . . . . . . . . 8

1.3.4 Contributions of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Comparison of Multitarget Filtering Methods 11

2.1 Review of Single Target Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 AEGIS UKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Conventional Multitarget Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Multiple Hypothesis Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Joint Probabilistic Data Association . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Finite Set Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 PHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 CPHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



viii

2.4 Clutter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Optimal Subpattern Assignment Metric . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Test Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Information Theoretic Sensor Allocation 45

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Review of CPHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Development of Information Gain Equations . . . . . . . . . . . . . . . . . . 51

3.1.3 Sensor Tasking Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Evolution Of Information Gain In Time . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Test Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Initial Orbit Determination and Follow-On Tracking 77

4.1 Constrained Admissible Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 CPHD Filter Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Computation of New Target Probability . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Measurement-Based Birth Model . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Augmented CPHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 CPHD Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Incorporation of Sensor Allocation Scheme . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Review of Information Theoretic Sensor Tasking . . . . . . . . . . . . . . . . 90

4.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



ix

4.4.1 General Test Conditions and Sensor Parameters . . . . . . . . . . . . . . . . 93

4.4.2 Test Case 1: Single Thread CPHD . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Test Case 2: Augmented CPHD with Missed Detections . . . . . . . . . . . . 100

4.4.4 Test Case 3: Augmented CPHD with False Alarms . . . . . . . . . . . . . . . 103

4.4.5 Test Case 4: Augmented CPHD with Ten Objects . . . . . . . . . . . . . . . 106

4.4.6 Limitations of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusion 111

5.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Future Research Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 114

Appendix

A Nomenclature 121

A.1 Single Target Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Multitarget Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.3 Orbits and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.4 Sensor Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.5 Index Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B Filter Algorithms 124

B.1 AEGIS PHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 AEGIS CPHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C Information Gain Equations 135

C.1 Derivation of Rényi Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



x

C.2 Simplification of Single Target Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.3 Computation of Numeric Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.4 Interpreting Units of Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D Probabilities for the CPHD Filter Birth Model 143

D.1 Computation of False Alarm Probability . . . . . . . . . . . . . . . . . . . . . . . . . 143

D.1.1 Poisson Clutter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

D.1.2 GMM Clutter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D.1.3 Combined Clutter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

D.2 Computation of New Target Probability . . . . . . . . . . . . . . . . . . . . . . . . . 148

E Spawning Model for the CPHD Filter 149

E.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.2 Derivation of Poisson Spawning Model . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.3 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



xi

Tables

Table

2.1 Three Component GMM Splitting Library . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Sample Hypothesis Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Station Location in ECEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Initial State Parameters (EchoStar1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Initial State and Measurement Standard Deviations . . . . . . . . . . . . . . . . . . 37

2.6 Process Noise Standard Deviations in RIC Frame . . . . . . . . . . . . . . . . . . . . 37

2.7 Filter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Sensor Parameters [79] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 GEODSS Sensor Parameters [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Tasking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Initial State Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Initial State Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Search-Detect-Track Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Maui GEODSS Sensor Location and Parameters [79, 21, 35] . . . . . . . . . . . . . . 94

4.3 Orbital Elements and Longitude at Epoch . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Test Case 1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Test Case 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



xii

4.6 Test Case 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Test Case 3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Test Case 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xiii

Figures

Figure

2.1 Three Component GMM Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 MHT Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Hypothesis Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Measurement Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 MHT 10 Object OSPA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 MHT 10 Object Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 JPDA 10 Object Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 PHD 10 Object Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 CPHD 10 Object Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Illustration of Sensor Field of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Information Gain Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Information Gain Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Sensor Tasking Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Maui Reduced FOR Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Sensor Tasking and Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Sample Multistep Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Multistep Assignment Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



xiv

3.9 Evolution of Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Object Catalog Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Ground Station Coverage and Object Locations at Epoch . . . . . . . . . . . . . . . 69

3.12 Simulation Position Error Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.13 Number of Measurements and Objects Detected . . . . . . . . . . . . . . . . . . . . 72

3.14 Individual Object Errors and Average . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.15 Position Error Results of Detected Objects . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Constrained Admissible Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Augmented CPHD Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Search-Detect-Track Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Maui Reduced Box FOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Single Thread CPHD Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Test ST1C Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Test ST1D Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Missed Detection Test OSPA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 Missed Detection Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 Missed Detection pD=0.90 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 Clutter Test OSPA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Clutter Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.13 Clutter λκ = 0.01 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.14 Ten Object OSPA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.15 Number of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.16 Ten Object C = 5 OSPA Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.17 Ten Object C = 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 Numerical Integration Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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Chapter 1

Introduction

1.1 Motivation

The past several decades have seen dramatic advancements in space flight, from the first

satellite launches, to the Apollo program, to the near ubiquitous use of Earth orbiting satellites for

communications, weather, GPS, and other services critical to the functioning of modern society.

Along with this increased presence in space has come an increase in the amount of debris left in

orbit, due to collisions, planned and unplanned separation events, and retirement of satellites that

are no longer functional. This increase in debris poses a serious hazard to the continued use of near

Earth space.

Debris objects involved in collisions can damage or destroy active satellites, and repositioning

to avoid collisions requires fuel and reduces mission lifetimes. Smaller debris is dealt with by

adding shielding to spacecraft instead of performing avoidance maneuvers; however, this increases

spacecraft mass. Debris also affects mission planning by requiring an end of life strategy to deorbit

or reposition satellites to remove them from the operational environment. The net effect of orbital

debris is increased cost and risk to future spacecraft missions.

To mitigate the risks associated with orbital debris, it is essential to accurately determine

where objects are and their associated uncertainties. The problem of maintaining an up-to-date

catalog of this knowledge and characterizing the debris field for future missions comprises the basic



2

elements of Space Situational Awareness (SSA).1 The SSA problem is challenging because there

are a limited number of sensors available to gather information on the rapidly growing number of

debris objects. The ability to track a large number of objects when only sparse measurement data

are available is therefore fundamental to the orbital debris problem. As of 2016, the European

Space Agency (ESA) estimates that there are 29,000 objects larger than 10 cm in orbit, with

another 670,000 greater than 1 cm.2 The National Aeronautics and Space Administration (NASA)

orbital debris program office reports that of these, 17,700 are currently tracked by the U.S. Space

Surveillance Network (SSN) [54]. The catalog of tracked objects is expected to grow dramatically

over the next decade as more advanced sensors are brought online and new launches and breakup

events produce more objects to track.

The geosynchronous (GEO) orbit regime is of particular interest because it is heavily used

and densely populated by space objects. For satellite slot assignments, the GEO belt is divided into

bins of approximately 0.1 degrees in longitude and latitude, and it has become common practice

to place more than one satellite in each bin, with typical separation distances between 1 and

100 km [71, 69]. Observations are typically collected from ground-based optical sensors, which

are limited to tracking objects greater than one meter in size, though smaller objects have been

detected [67]. ESA has cataloged nearly 1500 objects in GEO orbit as of 2016 [22]. New space-

based space surveillance (SBSS) sensors such as the Geosynchronous Space Situational Awareness

Program (GSSAP) will provide additional and more accurate measurements from a variety of

viewing angles, allowing smaller objects to be tracked [39, 55, 7]. While increasing the number

and quality of measurements is desirable, it will also increase the number of debris objects in the

catalog and add to the complexity of the overall multitarget estimation problem.

1 This research is concerned with non-cooperative tracking of debris objects, and does not consider tracking
cooperative satellites.

2 Estimated orbital debris population from http://www.esa.int/Our Activities/Space Engineering Technology/
Clean Space/How many space debris objects are currently in orbit, retrieved 28 Sept 2016.
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1.2 Challenges in Space Situational Awareness

The main challenges in SSA arise from the fact that there are a large number of objects, a

limited number of sensors, and both the dynamical propagation and measurement relationships are

nonlinear. The problem is inherently computationally complex, so selection of a filtering scheme

must include consideration of computational burden. The limited number of sensors means there

are often long gaps between measurements for individual targets. Long gaps increase propaga-

tion uncertainty and exacerbate the effects of nonlinear dynamics, which make the assumption of

Gaussian state uncertainty less valid [17]. Additionally, the measurement errors themselves may

be non-Gaussian. The sensors produce noisy measurements and have limited fields of view, so they

must be tasked in a manner to gain as much information as possible on the full multitarget state,

while accounting for the need to detect and track newly discovered objects. They can also produce

false detections or miss detections of objects that are in the field of view.

Objects in the GEO orbit regime present further challenges, as they are far from ground-

based sensors and therefore difficult to observe using radar, precluding the availability of range

measurements to this point in time [75]. Optical telescopes provide only angle and angular rate

measurements and are further constrained by the lighting conditions on the sensor and objects,

i.e., they are generally tasked to observe objects at night and cannot detect objects in Earth’s

shadow [75]. This limits the length of observation windows, an issue compounded by the slow

evolution of GEO orbits relative to ground stations, which necessitates sufficient temporal distri-

bution of measurements to produce accurate estimates. These considerations make the allocation

of limited sensor resources more difficult and more important to the fundamental task of tracking

geosynchronous space objects.

Finally, the use of angles-only measurements complicates the process of initial orbit deter-

mination (IOD) for GEO objects as there is not enough information to compute an orbit solution

based on a single observation epoch. Traditional solutions to the problem require measurements

from at least three points in time, preferably separated by several hours [79]. In the context of
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multitarget filtering the problem becomes more complex, as such measurements have to be stored

and compared against subsets of other measurements to see if they yield a viable IOD solution.

Together the challenges of numerous and densely spaced objects, limited observation opportunities,

and the lack of information to easily initiate new tracks in the filter contribute to the difficulty of

solving the multitarget estimation problem for GEO SSA.

1.3 Overview of Research

Multitarget estimation itself is a multifaceted field of research with many applications, in-

cluding air traffic control, radar, sonar, oceanography, robotics, and image processing [5, 24, 14, 38].

The primary function of multitarget filtering is to resolve measurement ambiguity, determining the

correspondence between measurements and objects while accounting for the possibilities of false

measurements, or clutter, and missed detections due to imperfect sensors. A number of approaches

to the problem exist, including Bayesian and non-Bayesian estimation techniques, implemented in

batch, recursive, or fixed-lag processing schemes [62].

The simplest recursive Bayesian multitarget filter is the global nearest neighbor (GNN), or

2D assignment algorithm [4]. In this approach, the single most likely assignment of measurements

to targets is used to update individual object states. The assignment is determined by minimizing

a global association distance between measurements and targets, accounting for uncertainty. GNN

is easily implemented but does not perform well when target or clutter density is high, as is often

the case for SSA, due to the increased possibility for incorrect associations.

A more thorough approach to the multitarget estimation problem is Multiple Hypothesis

Tracking (MHT), which considers many hypothetical solutions to the 2D assignment problem. The

measurement-oriented MHT filter developed by Reid [63] considers all possible measurement-to-

track associations, creating a new hypothesis of object state updates for each permutation. Each

hypothesis is propagated to the next measurement time, and the process of generating new hypothe-

ses is repeated. If all permutations are kept, one hypothesis will contain the correct associations

through all times, and the resulting estimate will be optimal. However, the procedure can make



5

the problem computationally intractable if the number of objects is large. More recent advances

seek to reduce the number of hypotheses [14] or employ track-oriented MHT [41, 6] to address this

issue.

While the Reid algorithm considers measurement assignments at a single time, MHT can also

be formulated to consider assignments across multiple measurement epochs, or scans. Multi-scan

MHT has NP-hard computational complexity, meaning it scales exponentially with the number of

targets and measurements. Poore and Robertson have shown that implementation using Lagrangian

relaxation can reduce computational burden [60, 61], and in the best case reduces the problem to a

series of 2D assignments. Recent work has shown promising results for multi-scan MHT as applied

to SSA in terms of accuracy and computational efficiency [1]. In general, many forms of MHT exist

and a comparison of all of them is considered outside the scope of this dissertation, therefore the

use of multi-scan MHT is not examined in further detail.

Another common single scan approach, Joint Probabilistic Data Association (JPDA), uses

all measurements to update all object states, in proportion to the probabilities that individual

measurements are associated with each object [24]. By making use of all available information,

the method can potentially retain the accuracy of MHT while also being more computationally

efficient. However, JPDA filters suffer decreased performance in the presence of densely spaced

targets as a result of merging information from measurements other than those truly generated by

each target [5, 62].

The methods discussed thus far, GNN, MHT, and JPDA, comprise the basic forms of classical

multitarget estimators, though a number of variations have been introduced. The survey paper by

Pulford provides an overview of these conventional multitarget filters and their relative performance

[62]. More recent developments in multitarget estimation are based in point process theory, from

which a simplified mathematical framework known as Finite Set Statistics (FISST) has been derived

[47, 49]. FISST is a generalization of single target Bayesian estimation for the multitarget problem,

extending familiar concepts such as probability density functions (PDFs) and integral calculus to

account for multiple objects. The basic element of FISST is the Random Finite Set (RFS), an order-
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independent set of random vectors that is used to define the multitarget state or measurement set

at any given time. By defining multitarget PDFs and set integrals, FISST allows Bayes Theorem

to be applied directly to the multitarget problem.

From this framework, it is possible to make simplifications by taking moment approximations

of the multitarget PDF, similar to the Kalman filter in single target estimation. The first moment

approximation is known as the Probability Hypothesis Density (PHD), and produces a filter that is

computationally efficient and accurate in simple multitarget tracking scenarios [45]. As a result of

truncating information in the multitarget PDF related to target number, the filter is known to have

high variability in estimating the number of objects, an issue that is addressed in the Cardinalized

PHD (CPHD) filter [48]. The CPHD filter maintains an estimate of the cardinality in addition to

the PHD, allowing it to function in environments of densely spaced objects, missed detections, and

clutter, all of which are typical of the SSA problem. Both filters require further simplification to be

implemented, and the PHD is generally approximated using a Gaussian Mixture (GM) or particle

filtering approach [80, 83, 49].

Point process theory and FISST provide a mathematical framework to rigorously address

the challenges described above. FISST formalizes concepts from single target statistics for use in

multitarget problems, providing a top-down derivation of filters that are computationally efficient

and can explicitly account for clutter and missed detections. As explained below and in subsequent

chapters, FISST-based filters can also be augmented with initial orbit determination methods to

track newly discovered objects and can be used to optimally task sensors to gain information on

the multitarget system. The first task is to demonstrate that FISST is a viable approach to the

SSA problem by conducting a quantitative comparison against existing multitarget filters.

1.3.1 Comparison of Multitarget Filtering Methods

As discussed, a wide range of options exist to approach multitarget estimation problems.

Conventional filters such as MHT and JPDA rely on data association algorithms that can be

computationally expensive or error prone [49]. As an alternative, FISST provides a mathematical



7

framework to derive true multitarget filters from Bayes Theorem, using order-independent sets of

random vectors to describe object states and measurement sets. The filters do not require data

association algorithms to match measurements to individual objects, which limits their ability to

track specific objects of interest, but also produces filters that are more computationally efficient

than conventional multitarget methods, and therefore provides an excellent option for SSA [49].

Previous research has examined the application of FISST-based filters to orbit determina-

tion and SSA [34, 11], and a limited comparison study has been performed [27]. This dissertation

extends this work by providing a quantitative comparison between the FISST-based methods and

conventional multitarget filters, including test cases designed to challenge the filters with measure-

ment issues typical of the SSA problem, such as missed detections and clutter. Implementation

of the filters is discussed in Ch. 2 and simulation results are provided to demonstrate the relative

performance of each.

1.3.2 Information Theoretic Sensor Allocation

Tracking geosynchronous objects from ground-based sensors is a complicated task due to the

large number of objects and limited number of available sensors, which are further restricted in the

times they are operational. To maintain an accurate catalog, it is essential to collect measurements

efficiently, in a manner to maximize use of the limited information available. Recent advances

in information theory allow formulation of sensor allocation schemes in terms of information gain

functionals computed from the multitarget state and hypothesized measurements [66]. These func-

tionals quantify the difference between the prior and posterior PDF, and therefore account for the

reduction in uncertainty for each object as a result of computing a measurement update. Informa-

tion theoretic tasking schemes favor opportunities to observe multiple objects, as well as objects

with large uncertainties in the in-track and cross-track directions where angles-only measurements

provide the most benefit.

This dissertation develops a tasking scheme designed to take the fullest advantage of limited

observation opportunities by maximizing the information gain. Simulation results are presented
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in which a representative catalog of nearly 1000 geosynchronous objects are tracked using three

sensors, and demonstrate that the method is able to schedule observations of all objects successfully

where other ad hoc methods fall short.

1.3.3 Initial Orbit Determination and Follow-On Tracking

The final subject of research in this dissertation is solution of the search-detect-track problem,

in which sensors are tasked to find new objects, which are then initialized in the filter and sched-

uled for follow-on tracking. The initiation of tracks for newly discovered objects presents unique

challenges in FISST-based filters. Classical IOD solutions require measurements for a single object

from several different times in order to uniquely determine a six parameter orbit. However, the

time history of measurement-to-track associations is not generally available in FISST filters, so this

is not possible. Formulations exist to include track labeling in FISST [57], but to produce an IOD

solution the filters would need to solve a multi-scan assignment problem, which is not considered

in this study. Instead, the approach is to instantiate a set of potential initial orbit solutions based

on a measurement set at one point in time and use follow-on tracking to refine the estimate.

The proposed method is based on approximating a constrained admissible region (CAR) of

possible IOD solutions at the time when the new object is detected [19]. The filter is initialized with

a weighted mixture of these solutions, which are refined by future measurements. The previously

developed information theoretic tasking scheme is augmented by a threshold which allows it to

switch from searching for new objects to tracking known objects in the filter. The uncertainties

associated with newly initiated tracks automatically drive follow-on tracking due to the expected

information gain.

1.3.4 Contributions of Research

The primary contributions of the dissertation are therefore summarized as follows:

1. Finite Set Statistics is demonstrated as a viable framework for developing multitarget

filters for GEO SSA. Filters derived from FISST, in particular the CPHD filter, achieve
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comparable performance as compared to conventional multitarget filtering methods.

2. An information theoretic sensor allocation scheme is developed for use with the CPHD

filter. The scheme achieves superior performance relative to less rigorous approaches.

3. A solution to the search-detect-track problem is presented, leveraging the use of the con-

strained admissible region to initiate tracks and the previously developed information the-

oretic sensor tasking scheme to schedule follow-on tracking.

1.4 Thesis Overview

This dissertation is organized as follows. Chapter 2 discusses the implementation of four

multitarget filters, MHT, JPDA, PHD, and CPHD, and examines the relative performance of each

in a simulated SSA tracking scenario. The chapter begins with a review of single target filtering,

including an overview of the AEGIS Gaussian Mixtures scheme that forms the backbone of the

various multitarget filters [18]. A brief description of Finite Set Statistics is provided prior to

descriptions of the PHD and CPHD filters. Complete algorithms for the AEGIS PHD and CPHD

filters are included in Appendix B.

Chapter 3 describes the use of information theoretic sensor tasking for GEO SSA and provides

simulation results demonstrating the benefits of the scheme as compared to simpler ad hoc methods.

Two different information gain functionals are considered in a simplistic scenario, with the Rényi

divergence selected as more appropriate for the problem under consideration. The use of single-step

and multistep sensor tasking schemes are described, along with simple grid-based search approaches.

Derivations of relevant information gain formulas and specific implementation details are included

in Appendix C.

Chapter 4 demonstrates a solution to the search-detect-track problem in which tracks are

initiated for newly discovered objects and follow-on tracking is automatically scheduled using the

information theoretic tasking scheme. The principles of the constrained admissible region IOD

solution are provided, and different approaches to incorporating new targets in the filter are con-
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sidered in a simple tracking scenario. Simulations are included to demonstrate the viability of the

solution. Derivation and demonstration of an alternate IOD approach that models targets spawned

from known objects is presented in Appendix E.

Chapter 5 provides a summary of results and conclusions, as well as directions for future

research.



Chapter 2

Comparison of Multitarget Filtering Methods

This chapter provides a review of multitarget filtering techniques and a quantitative compar-

ison between the methods as applied to SSA. Multitarget estimation seeks to determine the most

likely number of objects and their states, based upon given measurements. The assumed equations

of motion for each object are

ẋ = F (x,v, t) (2.1)

where x is the state vector and v is a zero mean white noise process. The measurement relationship

is given by

zk = G(xk, tk) + εk (2.2)

where εk is a zero mean measurement noise vector, and the convention xk = x(tk) has been adopted.

For the orbital debris problem, both the dynamics and measurement relationships are nonlinear in

general.

The remainder of this chapter provides details on the implementation of several multitarget

filters, an explanation of metrics used to evaluate their performance, and results from a simulation

comparing the filters. In developing and implementing the filters, several simplifying assumptions

are made and held throughout this chapter. The number of objects in all cases is considered fixed,

no target birth or death is considered, though subsequent research presented in Ch. 4 does examine

estimation of new targets. Each target is assumed to produce at most one measurement at a given

time, and each measurement represents at most one target. To establish a common notation and
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framework for discussing multitarget estimation, a review of single target filtering is first included,

following the development in Mahler [49].

2.1 Review of Single Target Filtering

The most general formulation of the single target filtering problem is based on Bayes Theorem,

which provides a means to update the PDF of an object’s state, given the PDFs of the predicted

a priori state and measurements. Full Bayesian estimation is not generally practical; however, it

provides the basis to make simplifications, resulting in more easily implemented estimators such

as the Kalman filter. The development and nomenclature provided in this section will be used

as a starting point for discussion of conventional multitarget methods, which are based on using

multiple single target filters, as well as to draw parallels in the development of the FISST-based

filters discussed later.

The Bayes filter begins with the PDF, pk−1(xk−1|z1:k−1), describing the likelihood that the

target has state xk−1 at time tk−1, conditioned on the time series of measurements z1:k−1 =

z1, . . . ,zk−1. The first task is to define the Markov transition density, which describes the evo-

lution of the PDF due to system dynamics and is denoted fk|k−1(xk|xk−1). The a priori PDF is

computed by taking the product of the Markov transition density and prior PDF and integrating

over all possible prior states.

pk|k−1(xk|z1:k−1) =

∫
fk|k−1(xk|x)pk−1(x|z1:k−1)dx (2.3)

Next, the likelihood density function gk(zk|xk) is needed, which describes the probability that

the measurement zk is generated by state xk . The product gk(zk|xk) ·pk|k−1(xk|z1:k−1) conditions

the likelihood based on the a priori PDF. It must be normalized to produce the correct posterior

PDF, which results in the following realization of Bayes Theorem.

pk(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

(2.4)

The Kalman filter exists in many forms, but is most generally a second moment approximation

to the Bayes filter [31], which means it can be derived by assuming that the first and second moments
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(mean and covariance) sufficiently capture the information of the full Bayes posterior PDF.

pk(xk|z1:k) ≈ pk(xk; x̂k, Pk) (2.5)

The Kalman filter therefore propagates and corrects the estimated mean state x̂k and covariance

Pk defined by

x̂k =

∫
xk · pk(xk|z1:k)dxk (2.6)

Pk =

∫
(xk − x̂k)(xk − x̂k)T · pk(xk|z1:k)dxk (2.7)

The Kalman filter is a suitable option for linear dynamical systems because an exact closed-

form solution is available for mapping the mean and covariance under linear transformations. Varia-

tions of the Kalman filter have been derived to address nonlinear problems, including the Extended

Kalman Filter (EKF) [28] and the Unscented Kalman Filter (UKF) [36, 37]. However, both filters

assume that state and measurement errors are Gaussian-distributed, which is not generally the case

in orbit determination. The rest of this section describes the implementation of a modified UKF,

the Adaptive Entropy-based Gaussian-mixture Information Synthesis (AEGIS) filter, which uses

multiple Gaussian distributions to represent the uncertainty of a single object [17, 18]. The filter

is an appropriate choice for SSA problems because it is nonlinear and it allows for non-Gaussian

uncertainty propagation during long data gaps, which are common in SSA.

2.1.1 AEGIS UKF

The Kalman filter is derived by assuming state and measurement errors are well described

by the Gaussian, or normal, distribution. This assumption is justified by the central limit theorem

[74], which states that the distribution of the mean error of a large number of samples will tend to

be distributed normally. In addition, it produces a closed-form solution to predict and update the

state PDF in linear systems because Gaussian PDFs are maintained under linear transformations.

In a system with nonlinear dynamics, such as that encountered in orbit determination, the

evolution of a Gaussian PDF in time is non-Gaussian, and the prediction of the assumed distribution

departs from the true state uncertainty over long time intervals. This problem can be addressed
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by approximating the state PDF as a linear combination of Gaussian PDFs to produce a Gaussian

Mixture Model (GMM), which can be structured to converge to an arbitrary PDF by using an

increasing number of Gaussian components [72]. The GMM components are then propagated and

updated using the Kalman filter equations. The following development of the AEGIS UKF follows

that given by DeMars [17].

The Gaussian distribution of a random vector x with mean x̂ and covariance P is defined as

pg(x; x̂, P ) =
1√
|2πP |

exp
[
−1

2(x− x̂)TP−1(x− x̂)
]

(2.8)

The GMM approximation of an arbitrary PDF can be computed as a weighted sum of Gaussian

PDFs

p(x) ≈
J∑
j=1

wjpg(x; x̂j , Pj) (2.9)

where the weights wj must adhere to the properties wj ≥ 0 and
J∑
j=1

wj = 1.

In order to apply the GMM approach in a filter, a test is needed to determine when the

predicted state PDF is becoming non-Gaussian. This test can be implemented using the differential

entropy, which for a Gaussian distribution is defined as

H(x) =
1

2
log |2πeP | (2.10)

The linear time rate of change of the differential entropy is computed from

Ḣ(x) = trace{A(x(t), t)} (2.11)

A(x(t), t) =

[
∂F

∂x

]
x=x̂

(2.12)

The linearly propagated entropy can be compared to the entropy computed from the nonlinear UKF

propagation of the PDF. If the difference is above a threshold, it indicates that the state uncertainty

is becoming non-Gaussian. At this point, the initial Gaussian distribution can be split into several

components, the time evolution of which will produce a GMM PDF that is non-Gaussian and better

matches the state uncertainty.
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The procedure to split a single Gaussian PDF into several PDFs is implemented by defining

a splitting library for the univariate standard normal distribution, which can then be generalized

to all Gaussian distributions. The library provides the weights, means, and standard deviations for

a GMM approximation with J components, and is generated by solving a constrained optimization

problem to most accurately match the original PDF. The library for a 3-component GMM is

provided in Table 2.1 [17], and a simple illustration of the technique is provided in Figure 2.1, in

which three components are used to approximate the standard normal distribution.

Figure 2.1: Three Component GMM Approximation

Table 2.1: Three Component GMM Splitting Library

i α̃j m̃j σ̃j
1 0.2252246249136750 -1.057515461475881 0.6715662886640760
2 0.5495507501726501 0 0.6715662886640760
3 0.2252246249136750 1.057515461475881 0.6715662886640760

To create a multivariate GMM approximation from the univariate splitting library, the spec-

tral factorization of the covariance is needed. The multivariate distribution can be split along a

single axis using the following equations. Assume the current Gaussian component has weight,
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mean, and covariance given by w, x̂, and P . The spectral decomposition is given by

P = V ΛV T (2.13)

where Λ is the diagonal matrix of eigenvalues and the columns of V are the corresponding eigen-

vectors. Splitting along the k-th eigenvector produces the following updated weights, means, and

and covariances.

wj = α̃jw (2.14)

x̂j = x̂+
√
λkm̃jvk (2.15)

Pj = V ΛjV
T (2.16)

Λj = diag{λ1, . . . , σ̃
2
jλk, . . . , λL} (2.17)

where λk and vk are the k-th eigenvalue and eigenvector, and L is the number of dimensions. The

distribution can be split along multiple dimensions by repeating the procedure above. For simplicity,

this research implements splitting in a single dimension, along the eigenvector corresponding to the

largest eigenvalue, which represents the direction of the greatest uncertainty.

The filter uses the UKF predictor equations, which require definition of the sigma point

matrix and weights associated with the unscented transform. The weights are given by [85]

Wm
0 = λ/(L+ λ) (2.18)

W c
0 = λ/(L+ λ) + (1− α2 + β) (2.19)

Wm
l = W c

l = 1/{2(L+ λ)} l = 1, . . . , 2L (2.20)

with associated tuning parameters 10−4 ≤ α ≤ 1, β = 2, κ = 3− L, and λ = α2(L + κ)− L. The

sigma point matrix is generated from the component’s mean and the square root of the covariance,

computed using the Cholesky decomposition such that P = (
√
P )(
√
P )T .

χk−1 =
[
x̂k−1 x̂k−1 + γ

√
Pk−1 x̂k−1 − γ

√
Pk−1

]
L×(2L+1)

(2.21)
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where γ =
√

(L+ λ). The a priori mean and covariance are computed by propagating the sigma

points according to the system dynamics.

χ̄k,l = φ(χk−1,l,vk−1, tk−1) (2.22)

x̄k =
2L∑
l=0

Wm
l χ̄k,l (2.23)

P̄k = Qk +

2L∑
l=0

W c
l (χ̄k,l − x̄k)(χ̄k,l − x̄k)T (2.24)

where φ(·) is the solution of the dynamics Eq. (2.1) and χ̄k,l is the l-th column of the sigma point

matrix. After incorporating the process noise covariance, the sigma points are recomputed from

the predicted mean and covariance.

χ̄k =
[
x̄k x̄k + γ

√
P̄k x̄k − γ

√
P̄k

]
L×(2L+1)

(2.25)

If at any point during the propagation nonlinearity is detected in a GMM component, it is split

according to the procedure above.

The measurement update equations are similarly based on the UKF, with a separate update

computed for each GMM component. The measurement sigma points and expected measurement

vector for component j are given by

ζ
(j)
k = G(χ̄

(j)
k , tk) (2.26)

z̄
(j)
k =

2L∑
l=0

Wm
l ζ

(j)
k,l (2.27)

The component mean and covariance updates are computed from the following equations.

P (j)
zz = Rk +

2L∑
l=0

W c
l (ζ

(j)
k,l − z̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (2.28)

P (j)
xz =

2L∑
l=0

W c
l (χ̄

(j)
k,l − x̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (2.29)

K
(j)
k = P (j)

xz [P (j)
zz ]−1 (2.30)

x̂
(j)
k = x̄

(j)
k +K

(j)
k (zk − z̄

(j)
k ) (2.31)

P
(j)
k = P̂

(j)
k −K

(j)
k P (j)

zz [K
(j)
k ]T (2.32)
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The final step is computation of the updated weights for the GMM. If the a priori component

weight is given by w̄
(j)
k , the updated weight is given by

g
(j)
k = pg(zk; z̄

(j)
k , P (j)

zz ) (2.33)

w
(j)
k =

g
(j)
k w̄

(j)
k∑Jk

l=1 g
(l)
k w̄

(l)
k

(2.34)

After the weights have been updated, the number of components can be reduced by removing

components with low weights or merging components that are close together. Merging GMM

components is also an important consideration in multitarget filtering, details of this procedure are

provided in Section 2.3.1.

2.2 Conventional Multitarget Filtering

Conventional multitarget filtering employs a bottom-up approach, in which the problem is

divided into many single target tasks, which can be solved using a filter such as the AEGIS UKF.

In order to perform the measurement update for each target, it is necessary to associate individual

measurements to targets. For a given set of objects and measurements, multiple measurement-to-

track associations can be hypothesized and then weighted using an association distance metric to

set the probabilities for each hypothesis.

Having formed the hypotheses, two of the most common association algorithms are Multi-

ple Hypothesis Tracking (MHT) [63] and Joint Probabilistic Data Association (JPDA) [24]. As

suggested by the name, MHT maintains a list of hypothetical associations along with an esti-

mate of their probabilities. For a given hypothesis, each object is updated using the appropriate

measurement and its state is then propagated to the next time. If all hypotheses are kept, the

correct association is guaranteed to be included and the associated state estimates will be optimal.

However, as the number of objects increases, the list of hypotheses grows to the point that the

problem becomes computationally intractable, therefore techniques are required to avoid generat-

ing unlikely hypotheses and remove those that decrease in probability over time. JPDA offers an

alternative approach by merging all hypotheses to perform the measurement update. Object states
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and uncertainties are updated using weighted residuals conditioned according to the hypotheses’

probabilities. In this manner, only one set of object states is propagated for each time step. How-

ever, the composite update does include incorrect hypotheses, and for densely spaced objects, state

estimate accuracy may be reduced [5].

The prediction step is the same for both filters, and within the AEGIS framework, each GMM

component is propagated using Eqs. (2.22)-(2.24), splitting into more components if needed. To

perform the measurement update, the data association problem must be solved, as discussed in the

following sections.

2.2.1 Multiple Hypothesis Tracking

A full MHT filter employs all permutations of measurement-to-track association, which guar-

antees the correct association is included, but can become computationally burdensome. The

method used in this dissertation is measurement-oriented MHT as originally developed by Reid

[63], augmented by N -scan pruning and the Murty algorithm for hypothesis generation in order to

manage the number of hypotheses [14, 5, 53]. MHT was originally developed considering only one

Gaussian PDF per object, but the implementation remains the same for AEGIS, with associations

determined for each measurement-to-component.

The main function of the Reid algorithm is the generation of a table of hypotheses and com-

putation of their associated probabilities. Each column of the table represents possible assignments

for a single component. Each row of the table represents one hypothetical assignment of measure-

ments to all components. To illustrate the computation of the hypothesis table and associated

probabilities, a simple example is provided for the case of two measurements and two components.

The association distance between a measurement z
(i)
k , and predicted component state x̄

(j)
k is

computed using the predicted measurement z̄
(j)
k and uncertainty P

(j)
zz .

d2
ij = [z

(i)
k − z̄

(j)
k ]T [P (j)

zz ]−1[z
(i)
k − z̄

(j)
k ] (2.35)

The association distance is used both to compute the probability of an association, and also to set
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gates to preclude unlikely associations from being considered. In this manner, if a measurement

is far from an object, it need not be included in the hypothesis table. For this example, assume

that both measurements fall within the gate for both components, i.e., all assignments are feasible.

The hypothesis table for this example is given in Table 2.2 and a simple illustration provided in

Figure 2.2. The estimated object components C1 and C2 and corresponding gates are mapped to

the measurement space to allow for comparison to the observations M1 and M2.

C1 C2 

Figure 2.2: MHT Example

Table 2.2: Sample Hypothesis Table

Hyp C1 C2 L(Hyp)

1 0 0 (1− pD)2λ2

2 1 0 g11pD(1− pD)λ
3 2 0 g21pD(1− pD)λ
4 0 1 g12pD(1− pD)λ
5 2 1 g21g12p

2
D

6 0 2 g22pD(1− pD)λ
7 1 2 g11g22p

2
D

The indices are defined such that 0 indicates no assignment, and 1 and 2 indicate assignment

of the appropriate measurement to the component. In this manner, the first row of the table,

[0 0], represents the hypothesis that both measurements are false alarms and are not assigned to

either component. The row [2 1] assigns measurement 2 to component 1 and measurement 1 to

component 2.

To compute the probability that a given hypothesis is correct, the likelihood of each assign-
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ment is needed. The likelihood of a non-assignment is a function of the number of detections within

the gate, ND, the probability of detection, pD, and the false alarm density, λ. The likelihood for

an assignment is additionally a function of the measurement likelihood, gij .

The likelihood results can be summarized in Eqs. (2.36)-(2.37), where i is the assignment

index from the hypothesis table. To compute the probability for each hypothesis, the likelihoods of

assignments in a row must be multiplied together. The likelihoods for each row in the hypothesis

table are then normalized to produce valid probabilities. Note that computation of the likelihoods

results in common factors of λ which have been canceled in Table 2.2 [5].

L(i) =


(1− pD)λND if i = 0

gijpDλ
(ND−1) if i ≥ 1

(2.36)

gij = pg(z
(i); z̄(j), P (j)

zz ) (2.37)

Having assigned measurements, components can be updated using the AEGIS UKF Eqs. (2.31)-

(2.32). In the case of a non-assignment, the a priori values of the state and covariance are retained.

For each hypothesis, the tracks are updated and propagated to the next epoch. At the new time,

a given hypothesis will spawn a new hypothesis table and the process to compute probabilities

repeats. Adhering to Bayes Theorem, the probabilities in the new hypothesis table must be multi-

plied by the probability of the original hypothesis that spawned them in order to keep the full list

of estimated probabilities correctly normalized.

In practice, as time progresses, one hypothesis should align better and better with the mea-

surements provided, and eventually emerge as having the highest probability. As mentioned earlier,

to keep the number of hypotheses from growing unreasonably large, techniques may be employed to

remove unlikely hypotheses and limit the number of new hypotheses spawned for each measurement

update. Hypotheses with probabilities below a certain threshold can be removed, as well as those

that do not produce additional hypotheses that pass the gate checks. This dissertation also employs

N -scan pruning and the Murty algorithm to achieve better computational efficiency [14, 5, 53].
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2.2.1.1 N-Scan Pruning

The purpose of N -scan pruning is to allow the filter to progress several steps before making

decisions regarding which hypotheses to keep [5]. This allows the assignment of additional mea-

surements to either confirm or disprove hypotheses before removal. The easiest way to visualize

the approach is through the creation of a hypothesis tree, as shown in Figure 2.3.

    

      

  
      

2 

SCAN 

K - 3 
1 

2 

2 5 

1 

1 

1 

3 

4* 

K - 2 

K - 1 

K  

* Most Likely Hypothesis at Scan K 

Figure 2.3: Hypothesis Tree

The branches in the tree represent the formation of new hypotheses. After scan K-1, hypoth-

esis 3 does not generate any new hypotheses and can therefore be removed. At scan K, there are 4

remaining hypotheses. N -scan pruning is implemented by finding the most likely hypothesis at the

current time, then going back N scans and removing any hypotheses that do not share a common

branch at that point. In this example, hypothesis 4 is the most likely at time K. By going back 2

scans, it is possible to remove all hypotheses that do not share a common branch with hypothesis

4, in this case 2 and 5. In this manner, the number of hypotheses can be reduced by regularly

removing branches that lead to less likely solutions. An alternate implementation uses the sum of

all hypotheses from each branch to determine which to remove [14]. In this case it would sum the

probabilities of hypotheses 1 and 4 and compare against the sum for hypotheses 2 and 5.
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2.2.1.2 Murty Algorithm

The Murty algorithm produces the k-best hypotheses for a given set of measurements and

tracks, rather than generating all possible hypotheses that pass the gate checks. This limits the

number of new hypotheses that are considered at any given time. The algorithm works by setting

up the measurement-to-component association as a 2D assignment problem. The single most

likely association can be determined from established methods, such as the auction algorithm [5].

Following this, individual assignments are removed one at a time from the table and the auction

algorithm is run again to produce the most likely association from the reduced problem. The process

is repeated until a set number of hypotheses have been returned, details of the implementation are

available in References [14] and [5].

2.2.2 Joint Probabilistic Data Association

An alternative approach to keep the multitarget problem computationally tractable is Joint

Probabilistic Data Association [24]. This method produces the same hypothesis table and proba-

bilities as MHT, but then merges hypotheses to perform a weighted measurement update, meaning

only a single set of component means and covariances are propagated to the next time step.

Having computed the probabilities of each hypothesis, the sum of probabilities of all hypothe-

ses matching a given measurement to a component are used to compute the weighted innovation.

Returning to the example above, both hypotheses 2 and 7 assign measurement 1 to component 1.

The total probability of this assignment is therefore p11 = p(H2) + p(H7). Denoting the innovation

y
(i,j)
k = z

(i)
k − z̄

(j)
k , the weighted innovation accounts for the contributions from all measurements

m that may be assigned to the j-th component.

y
(j)
k =

m∑
i=1

pijy
(i,j)
k (2.38)

The state can then be updated using

x̂
(j)
k = x̄

(j)
k +K

(j)
k y

(j)
k (2.39)
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where the Kalman gain K
(j)
k is computed from Eq. (2.30), and for simplicity it is assumed Rk is

the same for all measurements so Kk is only a function of the predicted component state. The

covariance update consists of two terms designed to account for the standard Kalman filter update

and to increase the covariance as a result of uncertainty in the association process.

P
(j)
k = P

(j)
k,0 + dP

(j)
k (2.40)

The first term accounts for the normal Kalman filter update, and includes the term p0j

denoting the probability of a missed detection. In the case a detection is certainly missed, the a

priori covariance is retained, while in the case a detection is certainly made, the standard covariance

update from Eq. (2.32) is used, denoted by P
∗(j)
k .

P
(j)
k,0 = p0jP̄

(j)
k + (1− p0j)P

∗(j)
k (2.41)

The second term inflates the covariance as a result of the uncertainty in data association. It is

computed from

dP
(j)
k = K

(j)
k

[
mk∑
i=1

pijy
(i,j)
k [y

(i,j)
k ]T − y(j)

k [y
(j)
k ]T

]
[K

(j)
k ]T (2.42)

As a result of this merging effect, JPDA may be considered an extension to MHT, in which

hypothesis management is accomplished by reducing the hypothesis table to a single set of update

equations. JPDA may also be used in conjunction with the Murty algorithm to limit the number

of hypotheses considered and improve computational efficiency. However, in regions of densely

spaced targets, JPDA may produce less accurate state estimates than MHT as a result of merging

information from incorrect hypotheses in the measurement update [62].

2.3 Finite Set Statistics

The drawback to conventional multitarget filters is their reliance on single target filters to

propagate and update object states. While single target filters are well understood, they can only

be used to process the measurement that is generated by their object, they have no ability to

process a set of measurements from multiple objects at once. This imposes a strict requirement to
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associate individual measurements to specific targets, which means the methods amount to a data

association algorithm with a bank of Kalman filters running underneath. Data association is the

most computationally expensive step of these methods, and can introduce errors if the association

is incorrect.

To address these issues, Finite Set Statistics seeks to generalize concepts from single target

filtering to multitarget problems, allowing for the development of true multitarget filters. The goal

is to apply multitarget statistics to process a set of measurements and update a set of object states

free from the data association problem. The full development of FISST and careful definition of

multitarget statistics can be found in Reference [49]. For this research, it suffices to say that there

exists a multitarget analog for many of the concepts and functions familiar in single target statistics,

the most important of which are summarized below.

The basic element of FISST is the Random Finite Set (RFS), which is an order-independent

set of random vectors. In the orbit determination problem, RFSs are used to represent sets of

object state vectors or measurements. The RFS allows for varying numbers of random vectors and

includes the null set to account for the possibility of no targets or measurements. Sample state and

measurement RFSs can be defined by

X = {x1, . . . ,xnk} (2.43)

Z = {z1, . . . ,zmk} (2.44)

To illustrate the core concepts of FISST, the rest of this section will provide examples for the state

RFS.

The statistical information about the state RFS is contained in a multitarget PDF, which is

easiest to define in conjunction with the belief-mass function and set integral. Begin by assuming

that the function p(X) ≥ 0 exists and represents the multitarget PDF. The belief-mass function

is the probability that X will be in some space S, and is therefore analogous to the cumulative

distribution function used in single target statistics. This function is defined as

βX(S) = Pr(X ∈ S) =

∫
S
p(X)dX (2.45)
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The integral in the above equation requires careful definition, because the RFS contains a discrete

number of continuous state vectors. The set integral is therefore defined as a sum of integrals, each

term accounting for a different possible number of targets. Over a region S, the set integral is

defined as ∫
S
p(X)dX =

∞∑
n=0

1

n!

∫
S×...×S

j(n)({x1, ...,xn})dx1 · · · dxn

= p(∅) +

∫
S
j(1)({x})dx+

1

2

∫
S×S

j(2)({x1,x2})dx1dx2 + . . . (2.46)

where j(n)(·) is the n-th order Janossy density, representing the spatial distribution of n targets.

The multitarget PDF can now be defined as a function whose set integral is 1 when integrated over

all states and possible number of targets.∫
p(X)dX = 1 (2.47)

From the above definition of the set integral, it is useful to define the cardinality distribution

p(n), which is the probability that there are exactly n targets in X, or that the cardinality |X| = n.

p(n) = Pr(|X| = n) =
1

n!

∫
j(n)({x1, . . . ,xn})dx1 · · · dxn (2.48)

Therefore, each term in the set integral is the cardinality distribution for that number of targets,

and the integral of the PDF can be rewritten as the sum of these probabilities.∫
p(X)dX = p(∅) + p(1) + p(2) + . . . = 1 (2.49)

The final concept which needs to be extended to the multitarget problem is that of statistical

moments. In single target statistics, the first moment of a PDF is the mean, defined by

m =

∫
x · p(x)dx (2.50)

For the multitarget case, the first moment is the Probability Hypothesis Density (PHD) function

[45], similarly defined by

ν(x) =

∫
p({x} ∪X)dX (2.51)
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The PHD represents target density in some region of space, making it possible to estimate the

number of targets in the space by integration.

N̂ =

∫
S
ν(x)dx (2.52)

Note that the PHD is defined in the single target state space instead of the full multitarget space,

making it an intuitively easier function to work with than the multitarget PDF.

2.3.1 PHD Filter

Having defined the concepts essential to FISST, this section provides the equations for the

simplest FISST-derived estimator, the PHD filter. The PHD filter is a moment approximation to

the multitarget Bayes filter, similar to how the Kalman filter is a moment approximation to the

single target Bayes filter. It reduces the full multitarget PDF at each step to the simpler PHD

function. The process is summarized as a two step predictor/corrector, depicted below [49].

predictor corrector

Bayes: . . . → pk−1(Xk−1|Z1:k−1) → pk|k−1(Xk|Z1:k−1) → pk(Xk|Z1:k) → . . .
↓ ↓ ↓

PHD: . . . → νk−1(xk−1) → νk|k−1(xk) → νk(xk) → . . .

The full PHD recursion is given by Eqs. (2.53)-(2.54), and as before, does not include terms

for target birth which will be considered in Ch. 4. The corrector equation here is for the single

sensor case, and can be extended to include multiple sensors.

νk|k−1(x) =

∫
pS(x)fk|k−1(xk|x)νk−1(x)dx (2.53)

νk(x) = [1− pD(xk)]νk|k−1(x) (2.54)

+
∑

zk∈Zk

pD(xk)gk(zk|xk)νk|k−1(x)

κk(zk) +
∫
pD(x)gk(zk|x)νk|k−1(x)dx

where pD(xk) is the probability of detection, κk(zk) is the PHD of false alarms, and pS(x) is the

probability of target survival from time tk−1 to tk, which accounts for all persisting targets and

implicitly the possibility of target disappearance.
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Generally speaking, the PHD is an arbitrary function, and computation of the integrals

necessary to implement the filter is a complicated if not intractable task. To simplify the problem,

Vo et al. proposed approximating the PHD as a Gaussian mixture [80], and the AEGIS UKF scheme

can be employed to predict and update the GMM components [11]. The GMM approximation of

the posterior PHD at time tk is given by

νk(x) ≈
Jk∑
j=1

w
(j)
k pg(xk; x̂

(j)
k , P

(j)
k ) (2.55)

where w
(j)
k are the weights, adhering to the property w

(j)
k ≥ 0, and x̂

(j)
k and P

(j)
k denote the mean

and covariance of the component. By substituting into Eq. (2.52), it is clear that in this scheme,

the number of targets can be estimated as

Nk ≈
Jk∑
j=1

w
(j)
k (2.56)

The predictor step is performed for each component using Eqs. (2.57)-(2.59), and components

may be split according to the procedure outlined for AEGIS. At the end of the prediction step, the

weights are multiplied by the probability of survival.

w̄
(j)
k = pS(x

(j)
k )w̄

(j)
k (2.57)

x̄
(j)
k =

2L∑
l=0

Wm
l χ̄

(j)
k,l (2.58)

P̄
(j)
k = Qk +

2L∑
l=0

W c
l (χ̄

(j)
k,l − x̄

(j)
k )(χ̄

(j)
k,l − x̄

(j)
k )T (2.59)

Computing the measurement update of the PHD function amounts to computing the updated

weights, means, and covariances of the GMM components. Each component from the predictor step

will produce mk + 1 components from the corrector step corresponding to each of the mk measure-

ments and the possibility of a missed detection. This discussion considers these two possibilities

separately.

In the event of a missed detection, the component means and covariances are the same as the

a priori values. The weights are scaled by the factor 1− pD, which causes the a priori components
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to be downweighted when the probability of detection is high, but retained when the probability

of detection is low.

w
(j)
k = [1− pD(x

(j)
k )]w̄

(j)
k (2.60)

x̂
(j)
k = x̄

(j)
k (2.61)

P
(j)
k = P̄

(j)
k (2.62)

For the case where an object is assumed to be detected, a measurement update is computed for

every GMM component using each measurement one at a time. The mean and covariance updates

are computed similarly to the AEGIS UKF, with additional notation indicating which measurement

is used. Note that throughout this dissertation, the index i is associated with measurements and j

is associated with GMM components.

P (i,j)
zz = R

(i)
k +

2L∑
l=0

W c
l (ζ

(j)
k,l − z̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (2.63)

P (j)
xz =

2L∑
l=0

W c
l (χ̄

(j)
k,l − x̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (2.64)

K
(i,j)
k = P (j)

xz [P (i,j)
zz ]−1 (2.65)

x̂
(iJ̄k+j)
k = x̄

(j)
k +K

(i,j)
k (z

(i)
k − z̄

(j)
k ) (2.66)

P
(iJ̄k+j)
k = P̄

(j)
k −K

(i,j)
k P (i,j)

zz [K
(i,j)
k ]T (2.67)

The updated weights must be multiplied by the probability of detection. The likelihood term

in Eq. (2.69) accounts for the association distance between the measurement and the a priori GMM

component. By scaling the weight by this value, the equation will effectively downweight updates

for components when the measurement is far from the predicted value, and keep the weight high

when the measurement is close. The normalization enforces the standard multitarget assumption

that each measurement is produced by only one target.

g
(i,j)
k = pg(z

(i)
k ; z̄

(j)
k , P (i,j)

zz ) (2.68)

w
(j)
k = pD(x

(j)
k )

g
(i,j)
k w̄

(j)
k

κk +
J̄k∑
l=1

g
(i,l)
k w̄

(l)
k

(2.69)
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After completing the missed detection and measurement update steps, the total number of

GMM components is J̄k · (mk + 1), and the full PHD function is the weighted sum computed

using Eq. (2.55). However, many of the components will have small weights, and some may be

very close to each other in the state space, indicating they actually represent the same object. A

simple three step procedure may be incorporated to keep the number of components from growing

to unmanageable numbers while retaining the accuracy and intent of the GM method [80]. First,

any components with weights below a threshold T are removed. Second, if two components have

a Mahalanobis distance within a merging threshold U , they are combined. Finally, if more than

Jmax components remain, only the Jmax components with the largest weights are kept. Following

this procedure, the component weights must again be normalized. The full AEGIS PHD algorithm

is summarized in Appendix B.

While the process above and the result may seem like a data association algorithm, the

fundamental difference is that at no point is it necessary to determine which measurement comes

from which object. The filter is capable of computing updates for all GMM components using all

measurements, and the resulting weights determine which components are kept. The filter does not

explicitly track which measurements come from which objects; if one is close, its information will

be used and the component will be kept. If the measurement is far away, the component will likely

be discarded. This marks a fundamental difference from the conventional algorithms, which must

know which measurement came from which object to compute the Kalman filter update. It makes

the PHD filter more computationally efficient while sacrificing the knowledge of specific target IDs.

Target IDs can be maintained along with the components using a separate track table, which is a

relatively simple and effective ad hoc modification [57].

Extraction of object states and uncertainties is a straightforward process, though a few similar

options exist. This dissertation takes each of the Nk highest peaks of the PHD function to represent

an object in space, where the number of objects is estimated from Eq. (2.56). Depending on the

application, the peak GMM component covariances are taken to represent the uncertainties for each

object, or a cluster is formed around each peak and the weighted mixture of GMM components
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in the cluster is taken to represent the object’s PDF. These methods are described in more detail

in the applicable sections of following chapters. Due to the truncation of information in forming

the PHD and the GMM approximation, there is no guarantee that the covariance of the GMM

component is an accurate reflection of the object’s uncertainty. With this consideration, it is noted

that in the literature [49, 80] and for the simulations included later, approximating the uncertainty

using the GMM covariance works reasonably well, and for the simulations in this chapter, the PHD

filter covariances generally match those reported by the MHT and JPDA filters.

2.3.2 CPHD Filter

One of the drawbacks of the PHD filter is that there can be a high variability in the expected

number of targets from one epoch to the next [49]. To address this issue, the CPHD filter propagates

and updates the cardinality distribution in addition to the PHD function. This produces a more

computationally complex filter, but also provides a more stable estimate of the number of objects

at each time.

The GM-CPHD recursion is provided below [83, 77], not including terms for target birth.

The prediction step is similar to the PHD filter, and includes an extra step to predict the cardinality

distribution,

νk|k−1(x) = pS

Jk−1∑
j=1

w
(j)
k−1pg(x; x̄

(j)
k , P̄

(j)
k ) (2.70)

pk|k−1(n) =

∞∑
l=n

C lnpk−1(l)pnS(1− pS)l−n (2.71)

where C ln = l!
n!(l−n)! is the binomial coefficient, and the probability of survival pS is assumed to be

independent of target state for simplicity.

The update equations for the cardinality distribution and PHD are coupled, introducing
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additional complexity,

νk(x) =
〈Ψ1

k[wk|k−1, Zk], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
(1− pD)νk|k−1(x) +

mk∑
i=1

Jk|k−1∑
j=1

w
(j)
k (z(i))pg(x;x

(j)
k , P

(j)
k ) (2.72)

pk(n) =
Ψ0
k[wk|k−1, Zk](n)pk|k−1(n)

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(2.73)

where the angle bracket 〈a, b〉 is used to denote the inner product of a and b and the following

definitions are used

Ψu
k [w,Z](n) =

min(mk,n)∑
j=0

(mk − j)!pκ(mk − j)Pnj+u
〈1− pD, ν〉n−(j+u)

〈1, ν〉n
σj(Λk(w,Z)) (2.74)

Λk(w,Z) =

 〈1, κk〉κk(z
(i)
k )

pD

Jk|k−1∑
j=1

w
(j)
k|k−1pg(z

(i)
k ; z̄

(j)
k , P (i,j)

zz ) : z
(i)
k ∈ Z

 (2.75)

w
(j)
k (z

(i)
k ) = pDw

(j)
k|k−1pg(z

(i)
k ; z̄

(j)
k , P (i,j)

zz )
〈Ψ1

k[wk|k−1, Zk\{z(i)}], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
〈1, κk〉
κk(z

(i)
k )

(2.76)

where mk is the number of measurements, pκ(·) is the cardinality of clutter, κk(·) is the PHD

of clutter, and σj(·) are the elementary symmetric functions, which can be computed using a

formulation from Mahler [49]. The probability of detection pD is assumed to be independent of

target state. At time tk, the number of targets can be estimated using the PHD as before, or using

the estimated cardinality distribution.

Nk =

∞∑
n=1

n · pk(n) (2.77)

Within the AEGIS framework, the weights, means, and covariances of the GMM components

are propagated using Eqs. (2.57) - (2.59), while the cardinality is propagated using Eq. (2.71). The

update step is similar to the AEGIS PHD, where a measurement update is computed for each

component using each of the mk measurements, and the a priori information is retained to account

for missed detections. For the case of missed detections, the weights are computed from the first

term of Eq. (2.72).

w
(j)
k =

〈Ψ1
k[wk|k−1, Zk], pk|k−1〉

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(1− pD)w
(j)
k|k−1 (2.78)

For detected objects, the updated weights are computed from the second term of Eq. (2.72), which

includes factors of pD and the individual likelihood of measurement to component associations gij .
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Following the measurement update, the GMM components can be pruned or merged following the

same procedure as the PHD filter. The full AEGIS CPHD algorithm is included in Appendix B.

2.4 Clutter Model

Throughout this chapter, references have been made to false alarms, or clutter, which are

incorporated in each filter model in slightly different ways. The MHT and JPDA filters both make

use of a number density λ, which indicates the expected number of clutter returns per unit volume

of the measurement space. The PHD filter requires an assumed distribution of the PHD of clutter,

κ(z), which is also needed for the CPHD filter. The CPHD filter further requires an assumed

distribution for the cardinality of clutter.

The clutter PHD is assumed to be uniformly distributed in the sensor field of view (FOV),

and can be defined as

κ(z) = λκ · U(z) (2.79)

U(z) =


1/Vs if z ∈ FOV

0 if z /∈ FOV

(2.80)

where Vs is the sensor volume. The cardinality of clutter is assumed to be Poisson-distributed,

with the mean number of clutter returns each scan given by λκ = λ · Vs.

pκ(n) =
(λκ)n

n!
exp(−λκ) (2.81)

The Poisson assumption is standard in the multitarget literature, and it allows for derivation of

the PHD and CPHD update Eqs. (2.54) and (2.72)-(2.76) [49, 80, 83]. The additional assumptions

regarding the clutter PHD simplify some of the terms in these update equations.

κk(z) = λ · Vs · 1/Vs = λ (2.82)

〈1, κk〉
κk(z)

=
λ · Vs

∫
U(z)dz

λ
= Vs (2.83)∫

U(z)dz = 1 (2.84)
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2.5 Optimal Subpattern Assignment Metric

Another concept from single target statistics that must be generalized to the multitarget

problem is the miss distance, or error, between the estimated and true state. In the context of

the RFS, the multitarget miss distance must provide the difference between two sets of vectors,

accounting for errors both in cardinality and the state estimates of individual objects. The Optimal

Subpattern Assignment (OSPA) metric addresses this need, and offers several advantages over

previous multitarget error metrics [68].

OSPA is a consistent metric on the space of finite sets, and provides a meaningful physical

interpretation of state and cardinality errors by assigning the largest possible subset of estimated

and true states, computing the error between them, and adding a fixed error for each point that is

not assigned. The computation can be summarized in three steps.

Given two random finite sets, X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}, the p-th order OSPA

metric with cutoff c is defined as

d(c)
p (X,Y ) =

[
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi,yπ(i))
p + cp(n−m)

)]1/p

(2.85)

d(c)(xi,yπ(i)) = min(c, d(xi,yπ(i))) (2.86)

where Πn represents the set of permutations on {1, . . . , n} and it is assumed m ≤ n. The term

d(xi,yπ(i)) represents a distance metric in the single target space, for instance, the Euclidean

distance ‖xi − yπ(i)‖2. For the case m > n, the metric can be computed as d
(c)
p (Y,X). The steps

to compute OSPA are as follows:

1. Find the optimal subpattern assignment between X and Y that minimizes the distance

metric d(x,y) between m vectors. This can be done using a 2D assignment algorithm such

as auction [5].

2. For each vector yi, let αi = c if no assignment is made, or the minimum of c and the single

target distance metric of the assignment.
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3. Compute the p-th order average d
(c)
p (X,Y ) = ((1/n)

∑n
i=1 α

p
i )

1/p.

OSPA is useful because it allows a single number to represent a combined state and cardinality

error. However, it can also be broken into separate state and cardinality components by reporting

the contributions of the largest matched subset and each additional penalty term separately. The

state errors can be further decomposed by considering portions of the state vector separately, which

may provide additional insight into filter performance. Results in this chapter consider position

and velocity errors in the state estimate, and report the estimated number of objects and GMM

components used in the filter to provide a detailed description of filter performance.

2.6 Numerical Simulation

To demonstrate the performance of the filters, a test case is developed for a varying number of

objects in geosynchronous orbit. The equations of motion used are those of the two-body problem.

r̈ =
−µ
r3

r (2.87)

where r is the position vector and µ is the gravitational parameter. The state vector consists of

the position and velocity in the Earth-Centered Inertial (ECI) frame.

x = [x y z ẋ ẏ ż]T (2.88)

To prevent the filter covariance from collapsing and causing measurements to be ignored, a

simple process noise model is implemented, in which fixed values are multiplied by the time interval

of propagation and added along the diagonal terms of the state covariance matrix. The σi values

are specified in the Radial/In-track/Cross-track (RIC) directions and rotated to the ECI frame,

values are provided in Table 2.6.

The measurements used are topocentric right ascension and declination taken from a single

ground station located in Maui at the coordinates given in Table 2.3. The transformation between

the ECI and Earth-Centered Earth-Fixed (ECEF) frames is modeled as a simple z-axis rotation

using the Earth rotation angle at each observation time. The sensor is assumed to have a 2 degree
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field of view in both axes, and white measurement noise is added with standard deviations provided

in Table 2.5.

Table 2.3: Station Location in ECEF

Station xs (km) ys (km) zs (km)

Maui -5465.210 -2403.610 2242.120

The measurement equations are given by

α = tan−1

(
y − ysi
x− xsi

)
δ = sin−1

(
z − zsi
ρ

)
(2.89)

where ρ =
√

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 is the range and the subscript si denotes a ground

station coordinate in ECI.

2.6.1 Test Case Description

The test case consists of estimating the states of objects in geosynchronous orbit, where the

number of objects is increased from 2 - 10. In each case the first object is the EchoStar1 satellite,

with starting positions for other objects randomly initialized by varying the inclination, eccentricity,

and mean anomaly from the EchoStar1 elements.1 The variations cause the objects to drift over

the course of the simulation, though with the sensor tasked to point at the EchoStar1 satellite each

epoch, none leave the field of view. A plot of the measurements in the field of view for the 10

object case is provided in Figure 2.4, with each color representing a different object. The satellite

elements and variations are provided in Table 2.4.

A dense measurement set of observations every 10 minutes over a 12 hour window is used,

including missed detections and a Poisson-distributed number of clutter returns each scan, according

to the parameters in Table 2.7. For each value of the number of objects in the simulation, two

instances of the test are performed using different measurements. Each filter is initialized with

the correct number of GMM components, with covariances specified in Table 2.5 and initial states

perturbed from the truth by these same values. The CPHD is additionally initialized with a uniform

1 TLE obtained from www.space-track.org



37

Table 2.4: Initial State Parameters (EchoStar1)

Parameter Value

a 42164.573 (km)
e 0.0002878
i 0.006 (deg)
Ω 278.657 (deg)
ω 139.8697 (deg)
M 181.4332 (deg)
σi 0.4 (deg)
σM 0.25 (deg)
σe 0.003

Table 2.5: Initial State and Measurement Standard Deviations

Parameter Value

σx = σy = σz 10 (km)
σẋ = σẏ = σż 0.01 (km/s)
σα = σδ 1 (arcsec)

Table 2.6: Process Noise Standard Deviations in RIC Frame

Parameter Value

σr = σc 1e-11 (km)
σi 1e-10 (km)
σṙ = σċ 1e-17 (km/s)
σi̇ 1e-16 (km/s)

Table 2.7: Filter Parameters

Parameter Value

pS 1
pD 0.9
λ 2.5 (#/deg2)
Gate 10
Murty k-best 10
N -Scan 3
MHT T 0.01 ∗ pmax(H)
PHD T 0.01 * wmax

PHD U 4
PHD Jmax 20

cardinality distribution over the range of 0 to 20 objects. Both the PHD and CPHD filters are

implemented with track labels as described in Reference [57]. Additional filter parameters described
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Figure 2.4: Measurement Visualization

in this chapter are provided in Table 2.7.

2.6.2 Results and Discussion

As a first analysis, the average execution times from the two measurement sets are plotted

against the number of objects for all four filters, shown in Figure 2.5. The graph shows that for

2-10 objects, the PHD, CPHD, and JPDA filters all require a similar level of computational effort.

The MHT filter, as implemented here, becomes markedly slower.

Beginning with 4 objects, the possibility of missed detections forces the MHT filter to generate

numerous additional hypotheses, which increases the computation required. With a probability of

detection less than one, missed detection hypotheses must be generated each epoch, and retained

until future measurements warrant their removal per the N -scan pruning method. As a result

of the gate checks discussed in Section 2.2.1, clutter is not of significant consequence, because

measurements far from objects are not considered and false measurements near objects do not
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Figure 2.5: Execution Times

affect state estimates significantly.

(a) MHT OSPA (b) MHT OSPA Close Up Last 4 Hours

Figure 2.6: MHT 10 Object OSPA Results

To further compare filter performance, individual results are provided for one of the 10

object cases, beginning with MHT. Figure 2.6 provides the 2nd order position and velocity OSPA,

computed using the Euclidean distance between the estimated target states and truth. The results
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presented are for the most likely hypothesis, which in this case correctly matches all measurements

to targets and is expected to provide the best achievable accuracy for any of the filters. From the

figures, it is clear that the filter significantly reduces the position and velocity errors over time.

The close up view shows position errors around 200 meters by the final time, which matches the

level of the measurement noise projected to Cartesian coordinates at GEO.

(a) MHT Cardinality (b) MHT Hypotheses

Figure 2.7: MHT 10 Object Results

Figure 2.7 provides the cardinality results and a plot of the number of hypotheses and their

associated probabilities at each time. From the figure on the left, it is clear that MHT maintains

the correct estimate of the number of objects, using only one component per object throughout. On

the right, the plot shows the reason MHT has a large computation time for this case. The number

of hypotheses fluctuates throughout the simulation, increasing to 20 at some points, which would

require much more time to propagate than the single hypothesis maintained by each of the other

methods. It is interesting to note that the probabilities all converge to the same value around the

10 hour mark, and only increase or decrease as the number of hypotheses changes. This indicates

that the filter estimates themselves in each hypothesis are very nearly, if not entirely, identical. An

additional step that could reduce these redundancies is to merge similar hypotheses, but this would

add to the complexity of the filter.

This issue speaks to a general problem of MHT, namely that trying to solve a multitarget
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problem with multiple single target filters requires more ad hoc modifications as the problem gets

more complex [49]. Merging hypotheses is a well-established technique which would likely address

the issue here and create a more efficient filter. Other techniques such as track-oriented or multi-

scan MHT could also remove these redundancies and reduce computational effort. Researchers

have developed a number of variations of MHT to approach problems and there is ongoing research

and application of MHT filters [6, 60, 1]. In this work, some modifications are used as a reasonable

point of comparison, but the objective is not to advance this research or exhaustively study available

options. For the comparison included, using measurement-oriented MHT with Murty hypothesis

selection and N -scan pruning, it is clear that the MHT filter will never be as efficient as techniques

maintaining a single hypothesis. Missed detections will always cause new hypotheses to be created,

some may never be pruned, and the filter will not converge to a single hypothesis in general without

further modification.

(a) JPDA OSPA (b) JPDA Cardinality

Figure 2.8: JPDA 10 Object Results

Figure 2.8 provides the results for the JPDA filter. The OSPA results shown only consider

the end of the simulation window, and the filter achieves the same level of accuracy as MHT. This

result confirms the above consideration that merging hypotheses produces a more efficient filter

without sacrificing accuracy in the state estimate. In addition, the filter maintains the correct

estimate of the number of targets throughout, using a single GMM component to represent each.
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(a) PHD OSPA (b) PHD Cardinality

Figure 2.9: PHD 10 Object Results

Figure 2.9 provides the results for the PHD filter. The OSPA results are similar to the

conventional filters and the state estimate accuracy is good. However, the estimated number of

targets fluctuates significantly through the course of the simulation, varying between 7 and 12, and

never settling or converging to any one value. The variability in target number is primarily driven

by missed detections and is a known issue in the PHD filter. In this instance, the issue is significant

enough to disqualify the PHD filter as a legitimate option for SSA problems.

(a) CPHD OSPA (b) CPHD Cardinality

Figure 2.10: CPHD 10 Object Results

Figure 2.10 provides the results for the CPHD filter. The CPHD filter was derived specifically

to address the issue of target variability in the PHD filter, and it is successful in this test. There
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are some small variations in the beginning, but this is because the filter is initialized with a uniform

cardinality and allowed to converge to the correct estimate of the number of targets. It should be

noted that it is the only filter to begin with this uncertainty, and so the short time to converge on

10 objects should not be considered a disadvantage as compared to MHT or JPDA. In addition,

the OSPA plot demonstrates that the filter performs comparably to the others in terms of the

estimated state accuracy.

2.7 Chapter Summary

The goal of this study is to establish FISST as a viable approach for the SSA problem. While

there are a large number of both conventional and FISST-based filters that could be implemented,

this study only considers a small set of options. Issues were found with both the PHD and MHT

approaches, in estimating the number of targets and computational burden respectively. The CPHD

and JPDA filters may be considered variations to these filters, addressing the issues as discussed.

Both filters achieved similar performance in term of state estimation accuracy and computational

burden.

In a more qualitative sense, there are many similarities between conventional and FISST-

derived multitarget filters. By virtue of combining information from the full measurement set into

a single update for all objects, the PHD filter is philosophically similar to JPDA. In fact, recent

work has established that a variant of PDA, known as Integrated Probabilistic Data Association

(IPDA), can be derived from FISST, and doing so provides a more rigorous process to model target

birth and death [43, 9]. Other researchers have developed variants of multi-Bernoulli filters using

FISST [82, 81], which closely resemble track-oriented MHT. This overlap is somewhat expected as

the filters are all Bayesian estimators, and underlying assumptions of Gaussian distributions and

the use of the unscented transform to propagate and rectify uncertainties are commonly applied.

The mathematical formalism of FISST does offer an advantage in making principled approximations

to derive filters with a specific purpose, such as the CPHD to address the poor estimate of target

number produced by the PHD. In reviewing the literature, no cardinalized equivalent of JPDA was
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found to match the CPHD. Ultimately, the CPHD filter appears to be a suitable approach for GEO

SSA. The remainder of this dissertation considers application of the CPHD filter to more advanced

problems in SSA, beginning with the allocation of sensor resources.



Chapter 3

Information Theoretic Sensor Allocation

One of the primary challenges in space situational awareness is tracking a large number of

objects using a limited number of sensors. The sensor limitation leads to sparse data scenarios,

in which long gaps occur between measurements of individual objects. Selection of an appropriate

sensor allocation (SA) scheme is essential to maintaining an accurate catalog of resident space

objects (RSOs). A good sensor allocation scheme will yield accurate state estimates and a consistent

representation of the uncertainty associated with each object, while additionally preventing the loss

of known objects from the catalog.

Sensor allocation schemes can be organized in a top-down, information theoretic manner, or

as a bottom-up composition of heuristic rules [50]. The first method is mathematically rigorous

and can be used to efficiently collect measurements on the full multitarget system, but it is also

more computationally intensive. The latter is simpler but may not achieve the desired performance

in estimation accuracy and catalog maintenance.

Schemes can further be classified in terms of temporal assignment as single-step or multistep.

Single-step algorithms use predicted information for the next time step to make a selection of

which targets to observe, while multistep systems allocate sensors through a future time window

and therefore account for targets entering and leaving the sensor field of regard (FOR). Multistep

approaches are generally more effective, provided target dynamics are well-known and targets are

not maneuvering unexpectedly [50].

A final classification of the sensor allocation approach is based on the objective function, for
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which many possibilities exist. One of the simplest is to maximize the posterior expected number

of targets (PENT), or the related PENTI, which accounts for targets of interest [46, 44]. PENT

was originally developed for use with the PHD filter [45, 80]. Higher order approximate filters

such as the CPHD [48, 83] and Cardinality Balanced Multitarget Multi-Bernoulli (CB-MeMBer)

[84] maintain an estimate of the cardinality distribution, and therefore admit more advanced SA

objective functions, such as regional variance [15] or cardinality variance [33]. While PENT seeks to

maximize the estimated number of targets, minimizing the estimated cardinality variance translates

to an expected minimization in the estimated cardinality error. The philosophy of both approaches

is similar. In the case that measurements provide sufficient information on object states, driving to

an accurate estimate of target number produces a correspondingly accurate estimate of individual

target states [33]. However, in the case of angles-only observations of GEO space objects, the

measurements do not provide direct information on the velocity or radial position states of the

object. Furthermore, neither PENT nor cardinality variance directly account for state uncertainties,

opening up the potential for better objective functions for GEO SSA based on information theory.

Information theory provides a means to quantify the difference between the prior and poste-

rior multitarget PDFs, such that maximizing the information gain functional produces the greatest

reduction in posterior uncertainty. A number of information functionals fall in the category of

Csiszár discrimination [89, 50], including the whole class of Rényi α-divergence [64], Kullback-

Leibler (KL) cross-entropy [40], Hellinger discrimination [89], and Shannon entropy [70]. In fact,

the Rényi divergence reduces to KL in the limit as α → 1 [30], or Hellinger discrimination for the

choice α = 0.5 [66, 30]. With additional and significant approximation, PENT can be shown to

derive from KL entropy [50]. An additional information functional outside the category of Csiszár

discrimination is the Cauchy-Schwarz divergence [32, 16]. This chapter considers the use of both

the Rényi and Cauchy-Schwarz divergences as potential information gain functionals to perform

sensor tasking, ultimately selecting the Rényi divergence as formulated for the CPHD filter for

application to the GEO SSA problem.

The remainder of this chapter is organized as follows. Section 3.1.1 summarizes the previously
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discussed CPHD filter, extending the probability of detection calculation for cases where objects

leave the sensor field of view. Section 3.1.2 provides the details of the information gain functionals

and examines the use of both the Rényi and Cauchy-Schwarz divergences as the reward function

in a simplified sensor tasking scenario. Section 3.1.3 provides an overview of the sensor tasking

methodology. A detailed SSA simulation is included in Section 3.2, in which a large number of

geosynchronous objects are scheduled to be tracked by a small number of ground-based sensors.

3.1 Background

3.1.1 Review of CPHD Filter

The GM-CPHD recursion equations are provided for reference below. In this chapter, target

birth is not considered and is once again omitted from the prediction equations. Following the

development of Vo et al. [83], the PHD at time tk is approximated as a weighted sum of Jk

Gaussian PDFs,

νk(x) ≈
Jk∑
j=1

w
(j)
k pg(x;x

(j)
k , P

(j)
k ) (3.1)

where w
(j)
k > 0 are the weights and pg(x;x

(j)
k , P

(j)
k ) is a multivariate Gaussian PDF with mean x

(j)
k

and covariance P
(j)
k . The prediction step for the PHD and cardinality is given by

νk|k−1(x) = pS

Jk−1∑
j=1

w
(j)
k−1pg(x;x

(j)
k|k−1, P

(j)
k|k−1) (3.2)

pk|k−1(n) =
∞∑
l=n

C lnpk−1(l)pnS(1− pS)l−n (3.3)

where pS is the probability of target survival, assumed to be independent of the target state, and

C lj = l!
j!(l−j)! is the binomial coefficient.

The update equations for the cardinality distribution and PHD are coupled,

νk(x) =
〈Ψ1

k[wk|k−1, Zk], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
(1− pD)νk|k−1(x) +

∑
z∈Zk

Jk|k−1∑
j=1

w
(j)
k (z)pg(x;x

(j)
k , P

(j)
k ) (3.4)

pk(n) =
Ψ0
k[wk|k−1, Zk](n)pk|k−1(n)

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(3.5)
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where Zk is the measurement set, the angle bracket 〈a, b〉 is used to denote the inner product of a

and b, and additional terms are given as follows:

Ψu
k [w,Z](n) =

min(mk,n)∑
j=0

(mk − j)!pκ(mk − j)Pnj+u
〈1− pD, ν〉n−(j+u)

〈1, ν〉n
σj(Λk(w,Z)) (3.6)

Λk(w,Z) =

〈1, κk〉κk(z)
pD

Jk|k−1∑
j=1

w
(j)
k|k−1pg(z; z

(j)
k , P (j)

zz ) : z ∈ Z

 (3.7)

w
(j)
k (z) = pDw

(j)
k|k−1pg(z; z

(j)
k , P (j)

zz )
〈Ψ1

k[wk|k−1, Zk\{z}], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
〈1, κk〉
κk(z)

(3.8)

where mk is the number of measurements, pκ(·) is the cardinality of clutter, κk(·) is the PHD of

clutter, σj(·) are the elementary symmetric functions, and z
(j)
k and P

(j)
zz are the predicted mean and

covariance of component j in the measurement space. The probability of detection, pD, is assumed

to be independent of the target state; however, this assumption will be revisited in the following

section. At time tk, the number of targets can be estimated using the PHD or the estimated

cardinality distribution.

Nk =

∫
νk(x)dx ≈

Jk∑
j=1

w
(j)
k (3.9)

Nk =
∞∑
n=1

n · pk(n) (3.10)

The PHD update Eq. (3.4) contains two terms, the first of which accounts for the possibility

of missed detections. In this case, the filter reweights the a priori PHD function. In the GMM

approximation, the a priori component means and covariances are kept and are not updated by

any measurement, and the updated component weights are computed from

w
(j)
k =

〈Ψ1
k[wk|k−1, Zk], pk|k−1〉

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(1− pD)w
(j)
k|k−1 (3.11)

This term produces Jk|k−1 GMM components whose weights are scaled by a factor including (1−pD).

The second term of Eq. (3.4) accounts for detected objects, and computes a measurement update

for each GMM component using each measurement, thereby producing Jk|k−1 · mk components.

The updated weights for these components are scaled by a factor including pD and the individual
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likelihood of measurement to component association pg(z; z
(j)
k , P

(j)
zz ). The net result of the mea-

surement update step is the creation of Jk|k−1 · (mk+1) components, many of which will have small

weights and not contribute significantly to the GMM approximated PHD. To keep the problem

computationally tractable, components are removed or merged based on user-defined thresholds

[80].

The individual component means, covariances, and predicted measurements in Eqs. (3.2)-

(3.8) are computed using the unscented transform [36, 85], as described in Chapter 2. In addition

to the GMM components of the PHD, the filter maintains a list of object identifiers from the

public Two-Line Element (TLE) catalog. Anytime a new component is added to the GMM as a

result of the measurement update, the identifier of the original component is added to the list as

well. The approach does not ensure a rigorous treatment of unique track labels incorporated in the

multitarget state [50], but in the case that no target birth or death is considered, it does provide

a practical means to reconstruct the time history of components and compute the average state

errors for each object as described in Section 3.2.3.

In this chapter, the cardinality is initialized using a binomial distribution [49],

p0(n) = CJn (1− q)J
(

q

1− q

)n
(3.12)

where J is the number of terms in the cardinality distribution and q is the individual probability

of existence for each object. If the true number of objects is N and the distribution is initialized

with the value q = N/J , then argmax
n

p0(n) = N and the estimated number of targets computed

from Eq. (3.10) is Nk = N .

3.1.1.1 Probability of Detection Calculation

Computing the correct probability of detection plays an important role in maintaining custody

of objects in the filter. The previous section applies a constant pD for all components, but this

is clearly problematic for objects that are outside the sensor field of view (FOV) at a particular

measurement time. In the case that objects are known to be outside the FOV and cannot be
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detected, assigning the same pD as for objects in the FOV will quickly cause GMM components

to be downweighted and knowledge of the object to be lost. Meaningful values of pD need to be

assigned for each object, properly accounting for their potential positions with respect to the FOV.

A simple approach to determining p
(j)
D for an individual component is to use the predicted

measurement and an indicator function [42]. The probability of detection can be modeled as a

product of two terms, a constant pD,sensor that accounts for the sensor’s imperfect ability to detect

objects in the FOV, and a state-dependent term

p
(j)
D,FOV =


1 if z(j) ∈ FOV

0 if z(j) /∈ FOV

(3.13)

where z(j) is the predicted measurement for component j computed using the unscented transform.

Assuming the two processes are independent, the overall p
(j)
D = pD,sensor · p(j)

D,FOV.

This approach addresses the issue, but may not be sufficient in cases where the object is

near the edge of the field of view. Consider the case illustrated in Fig. 3.1(a), in which a predicted

measurement lies in the FOV, but the actual object is not visible. In the limiting case that

pD,sensor = 1, the missed detection component weight will be zero and the filter will lose custody of

the object. Even in the case pD,sensor < 1, if the object remains at the edge of the FOV for several

measurement epochs, the component will be downweighted significantly and could be lost.

Sensor FOV 

Predicted Measurement 
& Uncertainty 

True Object 

(a) Single Component

Sensor FOV 

Predicted Measurements 
& Uncertainties 

True Object 

(b) Split Components

Figure 3.1: Illustration of Sensor Field of View
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A solution to this issue is to split GMM components near the edge of the FOV into several

new components prior to computing the probability of detection, as illustrated in Fig. 3.1(b). This

allows the means of some components to lie inside the FOV and others outside, thereby accounting

for the possibility of a missed detection while still maintaining a high pD in the FOV. A simple test

for splitting is to integrate the component PDF and check against a threshold, for example:

0.05 ≤
∫

FOV
pg(z; z

(j)
k , P (j)

zz )dz ≤ 0.95 (3.14)

where z
(j)
k and P

(j)
zz are the predicted mean and covariance in the measurement space computed

using the unscented transform. If the integral is between the inequalities, the component is taken

to be partially in the FOV and split according to a pre-determined library such as that used for

AEGIS [18]. Having determined a value of pD for each component, minor changes must be applied

in the measurement update equations above. In Eqs. (3.4) and (3.8), the appropriate p
(j)
D must be

used for each component, more easily seen in Eq. (3.11) for the missed detection case. In Eq. (3.7),

the p
(j)
D term must be moved inside the summation, and finally the modification to Eq (3.6) is most

easily simplified by writing out the inner product for the GMM approximation.

〈1− p(j)
D , ν〉 =

J∑
j=1

(1− p(j)
D )w(j) (3.15)

3.1.2 Development of Information Gain Equations

3.1.2.1 Methods

This section examines the use of Rényi α-divergence and Cauchy-Schwarz divergence as they

apply to the SSA sensor allocation problem. The general form of the Rényi divergence is given by

[66],

R(u) =
1

α− 1
log

∫
f1(X;u)αf0(X)1−αdX (3.16)

where u is the sensor control vector, and f0(·) and f1(·) denote the prior and posterior multitarget

PDFs, respectively. For the CPHD filter, the GMM approximation of the intensity function yields
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the following solution, see Appendix C for details.

ν0(x) ≈
J0∑
i=1

wipg(x;mi, Pi) ν1(x;u) ≈
J1∑
j=1

wjpg(x;mj , Pj) (3.17)

RC(u) ≈ −2 log
∑
n≥0

(
p1(n;u)

Nn
1

)1/2(p0(n)

Nn
0

)1/2

·

∫
 J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

dx


n

(3.18)

Ki,j = pg(mi;mj , Pi + Pj)

Pi,j =
[
P−1
i + P−1

j

]−1

mi,j = Pi,j

[
P−1
i mi + P−1

j mj

]
where the subscripts 0 and 1 refer to the prior and posterior distributions respectively, and the

value α = 0.5 has been used as it provides the best discrimination between PDFs [66, 30]. In the

case of the PHD filter, the multitarget PDF is modeled as a Poisson process, and the corresponding

Rényi divergence can be derived from Eq. (3.18) by substituting a Poisson cardinality distribution

p(n) =
e−λλn

n!
and noting that in the PHD filter the Poisson mean number of targets λ = N .

RP (u) ≈
J0∑
i=1

wi +

J1∑
j=1

wj − 2

∫  J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

dx (3.19)

While the final equation is simpler, note that both the PHD and CPHD Gaussian mixture forms

of Rényi divergence require numerical integration.

As an alternative, the Cauchy-Schwarz divergence admits a closed-form solution in the Gaus-

sian mixture PHD approximation. The general form of the Cauchy-Schwarz divergence can be

written as [16]

C(u) =
1

2
log

∫
f0(X)f0(X)dX +

1

2
log

∫
f1(X;u)f1(X;u)dX − log

∫
f0(X)f1(X;u)dX (3.20)

Applying the GMM approximation gives the closed form solution for the PHD [16, 32].

CP (u) ≈ 1

2

J0∑
i=1

J0∑
j=1

w0iw0jK0i,0j +
1

2

J1∑
i=1

J1∑
j=1

w1iw1jK1i,1j −
J0∑
i=1

J1∑
j=1

w0iw1jK0i,1j (3.21)
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No closed-form solution exists in the literature for the CPHD Cauchy-Schwarz divergence, therefore

subsequent discussion and comparison of the methods is confined to the PHD equations.

3.1.2.2 Hedging

The previous section makes use of a simplified notation that requires some further discussion.

The information functional R(u) or C(u) is also a function of the prior and posterior multitarget

PDFs in the measurement space. When computing the functional, the prior PDF f0(X) is prop-

agated to the desired time tk. A candidate posterior PDF is generated from the CPHD update

equations using a measurement set Zk, which is dependent on the sensor control vector u. The

information functional, in the case of Rényi divergence, is therefore denoted as R(u, f0(X), Zk(u)),

with a similar form for Cauchy-Schwarz. The desire is to select a sensor control vector that max-

imizes the information gain; however, the realized measurement set Zk(u) is unknown until this

selection is made. The unknown measurement set can be eliminated from the information func-

tional by taking the expected value with respect to the measurement set Zk(u), a process known

as hedging [50].

R(u, f0(X)) = E[R(u, f0(X), Zk(u))] (3.22)

The expected value can be computed using multiple representative samples of measurement

sets Zk(u) based on the given clutter intensity, probability of detection, and measurement like-

lihood. A simpler approach, used in this work and elsewhere in the literature [66, 3, 33], is to

compute Eq. (3.22) using a single sample in which Zk(u) is taken to be the predicted ideal mea-

surement set (PIMS) [44]. In this case, a single measurement set is computed assuming no clutter

or measurement noise and applying pD = 1 for all objects in the FOV, as determined from the

component means. The PIMS measurement set is therefore

ZPIMS
k (u) =

⋃
z
(j)
k ∈FOV

{z(j)
k } (3.23)

Use of the PIMS measurement set is an approximation to the expected value [50], such that
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the expected information gain is given by

R(u, f0(X)) = E[R(u, f0(X), Zk(u))] ∼= R(u, f0(X), ZPIMS
k ) (3.24)

The approximation is applied by simulating a measurement at the mean of each of the NFOV highest

weighted components. For example, if the FOV contains 10 components representing 3 estimated

objects, then 3 measurements are simulated and located at the 3 largest weighted component means.

The use of the highest weighted components is consistent with the approach used for state extraction

in Section 3.2.3 and in the literature [83]. The updated cardinality and PHD are computed using

Eqs. (3.4)-(3.5), and the Rényi divergence is computed numerically using Monte Carlo integration.

3.1.2.3 Analysis of Methods

Generally, the Cauchy-Schwarz divergence provides an attractive option for sensor allocation

because it yields an analytic solution in the GMM approximation. Previous research has examined

the use of the functional in instances where all objects are visible and the reward function is used

to determine the ideal location of the sensor to best detect and track all objects [32, 3]. However,

this is fundamentally different from the angles-only GEO SSA problem, in which only a select few

objects are visible in the FOV for a given sensor pointing task, and the purpose of the sensor

allocation scheme is to determine the best object or set of objects to observe at each time.

In order to better understand the behavior of the proposed information gain functionals,

the single target problem is considered, for which an analytic solution of the Rényi divergence is

available. The full derivation of these forms is given in Appendix C. Assuming an object represented

by a single Gaussian component such that the prior and posterior weights are unity, w0 = w1 = 1,

and noting that under the PIMS approximation no adjustment is made to the mean, m0 = m1,
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the divergence functions above reduce to

RC ≈ −2 log
∑
n≥0

p1(n)1/2p0(n)1/2

(
|4P0,1|
|P0 + P1|

)n/4
(3.25)

RP ≈ 2− 2

(
|4P0,1|
|P0 + P1|

)1/4

(3.26)

CP ≈
1

2

(
1

|4πP0|

)1/2

+
1

2

(
1

|4πP1|

)1/2

−
(

1

|2π(P0 + P1)|

)1/2

(3.27)

where the subscripts 0 and 1 denote the prior and posterior distributions respectively, and P0,1 is

the covariance of the product of the PDFs computed from Eq. (3.18). Note that for each formula,

the minimum value 0 is found when P1 = P0, with the additional requirement of p1(n) = p0(n) for

the CPHD Rényi divergence.

To examine the behavior and relative performance of the proposed information gain function-

als, a simple tasking scenario is considered in which the sensor must select one out of two objects

to observe at each time, see Fig. 3.2. The objects are separated such that the initial Mahalanobis

distance is 10, therefore only one object is considered to be in the field of view at each time and

the single target information gain equations are applied. At each time, the sensor selects one of

the two objects to observe and computes a bearing measurement and corresponding covariance

update using the Conventional Kalman Filter update [74]. The selection is based on maximizing

the expected information gain for the single object observed, as computed using the PHD form of

either the Rényi or Cauchy-Schwarz divergence, Eqs. (3.26)-(3.27).

The objects are modeled as moving with constant velocity, with state vector given by x =

[x y ẋ ẏ]T . Over the course of 20 time steps, the objects move past a sensor, which computes

bearing measurements α = tan−1
(
y−ys
x−xs

)
. The covariance is propagated using a state transition

matrix, and the hypothetical measurement update is computed assuming a measurement noise

covariance Rk = 1 deg2.

Both objects are initialized with the same starting covariance and at all times are the same

distance from the sensor, with corresponding equal magnitude measurement α. The desired sensor

management behavior is to alternately select each object, thereby producing an equal number of
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Object 1 

Object 2 

t = 0 t = 20 

Sensor  

𝜶 

Figure 3.2: Information Gain Test Case

measurements for each and driving the final uncertainties to similar values.

Figure 3.3 provides the trace of the covariance for each object, as well as the object ID

observed at each time step. The Rényi based tasking scheme performs as desired, alternately

observing each object and reducing the covariances. However, the Cauchy-Schwarz scheme only

gathers observations on object 1, and the covariance of object 2 grows significantly. The reason

becomes clear from the form of Eq. (3.27), in which each term contains the determinant of the

covariance in the denominator. When comparing the expected information gain for two objects

with different initial covariances, provided the relative change as a result of the measurement

update is the same for both objects, the one with the smaller initial covariance will also have the

smaller final covariance and yield a larger value for the Cauchy-Schwarz divergence. Conversely,

the Rényi divergence in Eq. (3.26) contains covariance terms in the numerator and denominator,

which ensures the objective function will favor measurements that produce the greatest relative

change in the covariance regardless of the magnitude of the initial covariance. The performance

of the tasking schemes reflects that noted in previous research comparing sensor tasking based on

the Fisher information matrix, a measure of absolute information gain, and Shannon entropy, a

measure of relative information gain [87, 86]. In fact, the Cauchy-Schwarz divergence is similar in
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form to the equation for Fisher information gain [87], and Rényi divergence and Shannon entropy

are both used to quantify relative information gain, therefore these findings are consistent with

previous results.

(a) Rényi Based Sensor Tasks (b) Cauchy-Schwarz Based Sensor Tasks

Figure 3.3: Information Gain Test Results

It should be noted that the Cauchy-Schwarz performance is highly dependent on the condi-

tions of the test. In this simulation, a velocity of 1 m/s is used with an uncertainty of σ = 0.5 m/s

and 1 second intervals between observations. Reducing the velocity, its associated uncertainty, or

the time interval between observations can all result in a simulation in which the Cauchy-Schwarz

based tasking alternately observes each object. The Rényi divergence shows no such dependen-

cies, and its performance is not affected or degraded by any similar changes. It is clear that

Cauchy-Schwarz is a suitable reward function for cases where all objects are visible, as the ex-

pected information gain for each object is compared against itself under different sensor conditions.

However, when attempting to compare the information gain of two different objects with different

initial covariances, there is potential for the Cauchy-Schwarz divergence to favor the object with

the smaller starting covariance, which is generally antithetical to desired sensor tasking. Initial

testing in an angles-only GEO SSA simulation demonstrated similar behavior, therefore the Rényi

divergence is selected as the tasking reward function for the simulation in Section 3.2.
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3.1.3 Sensor Tasking Definition

3.1.3.1 Coordinate Frames and Sensor Parameters

When considering methods to define potential sensor control vectors u, several coordinate

systems are of practical importance. Sensor constraints are often specified in azimuth and elevation

angles, which are defined in the local East-North-Up (ENU) frame. The elevation mask ensures

objects are sufficiently above the horizon to avoid obstructions and atmospheric attenuation, and

certain sensors may also be restricted in the range of azimuth angles they can reach. Since many

GEO objects are located in near-equatorial orbits, it can also be advantageous to provide a con-

straint on values of geodetic latitude, to restrict potential sensor pointing tasks to regions with a

high number of targets.

FOV 

N 

E 

U 

𝚽 

Sensor  
Frame 

𝚲 

Sensor FOR 

𝝆  

ECEF Frame 
Y 

Z 

X 𝝋𝑮𝑺 

𝝀𝑮𝑺 

Figure 3.4: Sensor Tasking Grid

The simplest way to define potential pointing assignments is to use known object locations,

provided they are visible and do not violate any sensor constraints. Another method is to divide

the sensor field of regard into a grid of evenly spaced bins, such that the center of each represents a

potential assignment and the field of view determines the area covered, as shown in Fig. 3.4. Defin-

ing the grid with no gaps or overlaps produces a minimal set of potential tasks to cover the entire

FOR. A grid defined in geodetic latitude and longitude will be distorted in ENU coordinates unless

the sensor is located at the equator, therefore a local spherical coordinate system is defined in the
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ENU frame. The angle Λ is measured east from the N-U plane, and the angle Φ is measured north

from the E-U plane. An even spacing of these angles produces the desired grid, and coordinates

can be mapped using Eqs. (3.28)-(3.31) to check against constraints.

The pointing task is defined by the line of sight (LOS) unit vector, u = ρ̂, which can be

defined in the ENU frame can using either (Λ,Φ) or (az, el) angles.

ρ̂ENU =


cos(Φ) sin(Λ)

sin(Φ)

cos(Φ) cos(Λ)

 =


cos(el) sin(az)

cos(el) cos(az)

sin(el)

 (3.28)

To compute the geodetic latitude and longitude, the position vector in Earth-Centered Earth-Fixed

(ECEF) coordinates is found by solving Eq. (3.29) for a value ρ that produces a geosynchronous

orbit radius r = 42164 km. The angles are then determined from Eqs. (3.30)-(3.31) [79],

rECEF = qECEF + ρρ̂ECEF (3.29)

tanλ =
y

x
tanφ =

z

pe

(
1− e2

e

Ne

Ne + h

)
(3.30)

pe =
√
x2 + y2 Ne =

ae

(1− e2
e sin2 φ)1/2

h =
pe

cosφ
−Ne (3.31)

where qECEF is the ground station position, and x, y, and z are the components of rECEF.

Figure 3.5 provides a sample FOR grid for the Maui Ground-based Electro-Optical Deep

Space Surveillance (GEODSS) sensor. The local (Λ,Φ) coordinates are staggered to produce a

range of geodetic latitude values between ±10 degrees. This reduced FOR grid is used for the box

scan tasking mode described in the following section, and achieves the desired sensor constraints

using a little over 1500 bins.

Three ground stations are modeled using the parameters provided in Table 3.1 [79]. The

measurements used are topocentric right ascension and declination,

α = tan−1

(
y − ysi

x− xsi

)
δ = sin−1

(
z − zsi

ρ

)
(3.32)

where all values are given in the ECI frame, ρ =
√

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 is the range,

and the si subscript denotes a ground station coordinate. Values for measurement noise and the
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(a) ENU Coordinates (b) Geodetic Coordinates

Figure 3.5: Maui Reduced FOR Grid

sensor FOV are provided in Table 3.2 [21]. The offset in hours from GMT is provided for the date

February 27, 2013 used as the initial epoch in the simulation.

Table 3.1: Sensor Parameters [79]

Site Latitude [deg] Longitude [deg] Altitude [m] Az Limits [deg] El Limits [deg]

Socorro, NM 33.82 -106.66 1510.2 [0,360] [20,90]
Maui, HI 20.71 -156.26 3058.2 [0,360] [20,90]

Diego Garcia -7.41 72.45 -61.2 [0,360] [20,90]

Table 3.2: GEODSS Sensor Parameters [21]

Site FOV Size [α, δ] Noise [α, δ] GMT Offset [hours]

Socorro, NM [1.61◦, 1.23◦] [2′′,2′′] -7
Maui, HI [1.61◦, 1.23◦] [2′′,2′′] -10

Diego Garcia [1.61◦, 1.23◦] [2′′,2′′] +6

3.1.3.2 Sensor Tasking Modes

This chapter considers several sensor tasking modes which can be grouped into two categories

based on whether they use a top-down information theoretic approach or bottom-up composition

of heuristic rules. The first bottom-up approach considered is a box scan, in which the sensor is

tasked to move through the reduced FOR grid one bin at a time until the entire grid is covered, and
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then the pattern is repeated. The baseline version of this scan schedules observations at 1 minute

intervals; however, the sensor only requires 6 seconds to generate an observation [21], so a faster

box scan is also employed. The fast box scan operates at a 10 second interval to allow for slew

rate and settling time, and is able to cover the reduced FOR about 2.5 times in a 12 hour tasking

window.

The information theoretic approaches define pointing tasks based on known object locations,

allowing for a continuous range of pointing angles within the FOR. They generally favor going after

opportunities to observe multiple objects, as well as objects with large uncertainties in the in-track

and cross-track directions where angles-only measurements provide the most benefit. The CPHD

Rényi divergence is used as the reward function, computed from the estimated multitarget state

within the field of view only. Therefore, the summation in Eq. (3.18) is taken over the components

with means in the FOV, not the full PHD. The cardinality p0(n) in the FOV is computed as a

multi-Bernoulli distribution [49], p0(n) =

(
JFOV∏
j=1

(1− qj)

)
· σn

({
q1

1−q1 , . . . ,
qJFOV

1−qJFOV

})
, where σn(·)

are the elementary symmetric functions, and the component weights are used for the values of qj ,

setting a maximum value qj = 0.999 for any case wj ≥ 1.

Figure 3.6 provides a conceptual diagram of the sensor tasking and filtering process. Begin-

ning with an estimated multitarget state X̂k at time tk, the sensor allocation algorithm computes

a predicted state at the next time step X̄i. Hypothetical pointing tasks are determined for each

known target in the field of regard, and the expected information gain in the FOV is computed

and stored in an assignment table. The process is repeated for each time step in the assignment

window, after which the table is processed by the auction algorithm [5] to determine a set of sensor

tasks. The simplest approach is a single-step algorithm, in which the length of the assignment

window Tw = 1, and the auction assignment outputs the target ID associated with the largest ex-

pected information gain. In a multistep algorithm, the auction assignment is used to maximize the

information gain over a window with Tw > 1, as described in detail below. With the sensor tasks

selected, measurements are simulated and processed by the filter prior to computing the expected

information gain for the next assignment window.
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Figure 3.6: Sensor Tasking and Filter Block Diagram

The multistep information theoretic sensor allocation scheme is designed to maximize infor-

mation gain over a given observation window without repeating tasks. If an object is expected to

drift out of the field of regard, the sensor will attempt to collect a measurement while the oppor-

tunity still exists, which is not a capability of the single-step algorithm. The ability to account for

objects leaving the field of regard is handled automatically by the auction algorithm, described in

detail below, and does not require any additional considerations or target priorities to be set as

part of the tasking reward function. Generally multistep sensor management is expected to out-

perform single-step methods, provided the system dynamics are well understood and target states

and uncertainties can be reliably predicted throughout the observation window [50]. This presents

an increased challenge for GEO SSA, due to the nonlinear dynamics which cause the predicted

uncertainties to become non-Gaussian over time. As the focus of this chapter is the application of

various sensor allocation schemes, the analysis presented is confined to the use of Gaussian uncer-

tainties propagated using the unscented transform, and does not make use of the AEGIS algorithm.

While noting that this may degrade the overall system performance as compared to more princi-
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pled nonlinear uncertainty propagation techniques, results in Section 3.2.3 indicate the information

theoretic approaches, and in particular the multistep methods, perform well in terms of the number

of measurements collected and the average estimated state error.

Several variations of the multistep algorithm are implemented to maximize information gain

over observation windows of different lengths. The problem is formulated as a 2D assignment as

shown in Fig. 3.7, where each row represents a pointing task defined by the location of a known

target and each column is a time step in the observation window. The score for each assignment

is the information gain, with a zero representing an object that is not in the field of regard.

Within the context of the auction algorithm, this indicates an assignment that is not allowed. The

algorithm runs until each column is assigned exactly once, without repeating any rows, such that

the total score from all assignments is the highest possible. After the assignment is completed,

measurements are simulated and processed for the whole observation window, then the process is

repeated as depicted in Figure 3.6.

Target ID

1 8 9 10

2 0 0 0

3 0 12 13

4 11 14 0

𝒕𝟎 𝒕𝟏 𝒕𝟐 

Figure 3.7: Sample Multistep Assignment

Figure 3.7 provides a simple example for 4 objects and 3 time steps. At the first time, target

1 is selected, even though it is the second highest score at the time. This assignment allows object

4 to be selected at the second time, when the expected information gain is high. The multistep

approach also ensures object 4 is observed before it leaves the field of regard at the final time.

Object 2 is not selected at any time as a result of not being in view.

Three different assignment window lengths are considered, corresponding to the value of Tw
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Figure 3.8: Multistep Assignment Windows

in Fig. 3.6. Each sensor is modeled as active for 12 hours per day, from local 6 PM to 6 AM,

denoted by the gray boxes in Fig. 3.8 with times given in GMT. The three sensors from Table 3.1,

Socorro (NM), Maui (HI), and Diego Garcia (DG) are all shown. The first case considered is a 60

minute assignment. At the end of each hour, measurements are simulated for each active sensor

and processed by the filter to produce an updated multitarget state estimate for use in the next

assignment block. The 180 minute assignment is similar, with the exception that in certain cases a

shorter 1 or 2 hour assignment window is used when a sensor transitions between active and inactive.

Measurements are processed by the filter in 3 hour blocks as shown in the figure, and the shorter

windows ensure that each assignment block for each sensor uses the same estimated multitarget

state, i.e., the input state X̂k in Figure 3.6 is synchronized between sensors and represents the

latest available estimate. The length of time between processing measurements in the filter may

also be referred to as the filter update interval.

The final assignment window considered is a variable length maximal assignment. The auction

algorithm requires at least as many non-zero rows as there are columns to compute an assignment.
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In this application, a maximal assignment corresponds to using exactly as many time steps as

there are objects visible to the sensor at some point in the observation window. For example, if

300 objects are visible from Socorro at some point over the course of 300 minutes, then a 5 hour

assignment is computed. Because the number of objects visible to each sensor is different and

changes throughout the day, the length of the assignment window is variable, and the completion

time of each assignment is not synchronized between sensors, as shown nominally in the figure. For

this reason, measurements are simulated and stored at the end of each assignment block, but the

filter is only used to process measurements at the end of a 24 hour day. This ensures each sensor

assignment is computed using the same estimated multitarget state, but prevents the algorithm

from using the latest available information on objects and uncertainties when computing the second

and third assignment blocks for a given sensor.

By its construction, the maximal assignment is designed to schedule all visible objects at least

once, as the auction algorithm will select each object at exactly one time step in the observation

window. In the case that the probability of detection is high and all objects are visible to the sensor

network at some point in time, this corresponds to a high likelihood of observing every known object.

Over a non-maximal assignment window, there is no guarantee that an object will be scheduled

prior to leaving the field of regard. As a point of comparison, a final sensor allocation scheme is

considered in which a maximal assignment is computed without using information gain, simply

using a fixed value as the score for all objects visible. The assignment windows are constructed

in exactly the same manner, but a score of 1 is used for all objects at any time they are visible.

This means the observations are collected in an arbitrary order, with no consideration for the best

possible conditions to observe each object, while still ensuring that each is scheduled at some point

in time. A summary of all the tasking modes is provided in Table 3.3.
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Table 3.3: Tasking Modes

Tasking Scheme Observation Interval Reward Function Filter Update Interval

Box Scan 1 Minute N/A 1 Minute
Fast Box Scan 10 Seconds N/A 10 Seconds

Max Assign Even 1 Minute 1 if in FOR 24 Hours
Single-Step IG 1 Minute RC in the FOV 1 Minute
60 Minute IG 1 Minute RC in the FOV 60 Minutes
180 Minute IG 1 Minute RC in the FOV 180 Minutes
Max Assign IG 1 Minute RC in the FOV 24 Hours

3.2 Numerical Simulation

3.2.1 Evolution Of Information Gain In Time

To demonstrate the behavior of the information gain calculation, a small sample of five

objects from the public TLE catalog are simulated over a one day period. Two objects are close

together and visible at the same time in the FOV, and the other three are separated such that only

one target is visible for a given sensor task, as illustrated in Fig. 3.9(a). Of the lone objects, one

is initialized with a large radial uncertainty, one with a large in-track uncertainty, and the final

with a large cross-track uncertainty. The mean and covariance matrix for a given object’s state are

propagated using the unscented transform and information gain computed at 10 minute intervals

using the PIMS approximation, though no actual measurement update is performed by the filter.

As noted above, the assumption of Gaussian uncertainty propagation is maintained and the results

are reflective of changes in information gain when assuming a Gaussian posterior distribution.

Table 3.4: Initial State Uncertainties

Parameter Value

σa 1.0 km
σe 10−4

σi (10−2)◦

σΩ (10−4)◦

σω (10−4)◦

σM (10−2)◦

To incorporate the increased uncertainties, the initial covariance is generated in two steps.
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First, a diagonal covariance matrix is created in orbital element space, using the standard deviations

in Table 3.4. This covariance is converted to Cartesian ECI using the unscented transform [85]. A

small value is chosen for the parameter α to ensure no eccentricity values below zero are computed

as part of the transform. A diagonal covariance matrix is created in the Radial/In-track/Cross-track

(RIC) frame, with a standard deviation of 10 km in the prescribed direction and zero elsewhere. This

covariance is rotated to the ECI frame and added to the original to produce the initial covariance

for the simulation. No additional uncertainty is added for the velocity states. The two close objects

are initialized with the covariance from the orbital elements only.
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In-Track 
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(a) Test Case Setup (b) Information Gain Over One Day

Figure 3.9: Evolution of Information Gain

As seen in Fig. 3.9(b), the information gain for the two close objects is the largest throughout

the day. At the initial time, the radial case yields the lowest expected information gain because the

angles-only measurements provide little information in the radial direction as a result of the line-

of-sight vector and radial position component being approximately parallel. The value increases

through the day as the large initial radial uncertainty produces increasing uncertainty in the in-

track direction. The in-track and cross-track cases are largely governed by a periodic effect, and

show only a modest increase as a result of the initial uncertainty in semi-major axis, which also

translates to increased in-track uncertainty over time. In all cases, the expected information gain

varies significantly over time, and the figure emphasizes the importance of its use as a reward
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function to intelligently select when to view each object. By observing objects at times when the

covariance is oriented to take the most advantage of angles measurements, the information theoretic

sensor allocation schemes provide a reasoned approach to efficiently collect data on the multitarget

state, which is expected to improve the estimation accuracy as compared to heuristic approaches.

3.2.2 Test Case Description

To verify the performance of the sensor allocation schemes described in Section 3.1.3.2, a

large scale simulation is included, in which tracking is scheduled for a total of 940 objects in near-

geosynchronous orbits over the course of four days using three GEODSS-like sensors. The objects

are selected from the public TLE catalog for the date February 27, 2013, and constrained by the

following criteria:

0 ≤ e ≤ 0.3 0◦ ≤ i ≤ 70◦ 0.9 ≤ nm ≤ 1.1

[
rev

sidereal day

]
The variations allowed in these orbital elements cause many of the objects to drift relative to the

FOR. The objects are additionally constrained to be visible from the box scan FOR at some point

in time during the simulation, so that if the box scan fails to detect certain objects, it is only due

to the failure of the scheme and not because the objects are not available. Of the 940 objects, 81

are visible in the box scan FOR throughout the course of the entire simulation, with the remaining

859 visible only at some times. Fig. 3.10 provides a visualization of the object catalog, showing the

variations in the radius of periapsis and apoapsis, as well as eccentricity and inclination.

Figure 3.11 provides a visual representation of each ground station and its full field of regard,

as well as the reduced FOR used in the box scan tasking mode. The three ground stations are

capable of near global coverage with a 20◦ elevation mask applied, with the exception of a gap over

the Atlantic Ocean. Note that due to its latitude, the Socorro FOR extends over the north pole,

and that there is a large overlap in the coverage from Socorro and Maui. Object locations at the

epoch time are also plotted, from which it is clear that most objects are located near the equator.

The filter is initialized with a PHD function of 940 components with the initial uncertainty
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(a) Object Periapsis/Apoapsis (b) Object Inclination/Eccentricity

Figure 3.10: Object Catalog Characterization

Figure 3.11: Ground Station Coverage and Object Locations at Epoch

for each specified in orbital elements in Table 3.5. The mean estimated state of each object is

randomly perturbed from the truth using these values, then both the mean and covariance are

converted to Cartesian ECI coordinates using the unscented transform as before [85]. The objects

are propagated assuming two-body dynamics, with perturbing forces modeled by a 2x2 spherical

harmonics gravity field based on the EGM2008 model [23], solar radiation pressure (SRP), and
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luni-solar perturbations using the JPL design ephemeris 430 [58, 10]. The SRP force is modeled

assuming all objects are spherical with area-to-mass ratio 0.05 kg/m2 and reflectivity Cr = 1.5. No

unmodeled accelerations are included in the filter. As before, the covariance is assumed Gaussian

and propagated using the unscented transform. A simple process noise model is used, in which a

diagonal process noise covariance matrix Q = Q0∆t is added to the predicted covariance at each

time. The matrix Q0 uses standard deviations of 10−4 km and 10−7 km/s for each of the positions

and velocities in ECI, and ∆t is the time interval.

Table 3.5: Initial State Uncertainties

Parameter Value

σa 1.0 km
σe 10−4

σi 0.01◦

σΩ 0.01◦

σω 0.01◦

σM 0.01◦

No target birth or death is considered, and the simulation does not model the sensor slew

rate or settling time, local weather conditions, or lighting conditions of the objects being observed.

The filter does model a 0.95 probability of detection for objects in the field of view and assumes a

Poisson clutter model with a mean rate of 20 returns each epoch uniformly distributed in the FOV.

The filter uses merging and pruning thresholds U = 9 and T = 0.001 to maintain the Gaussian

mixture approximation [80].

3.2.3 Simulation Results

Figure 3.12 provides the average 3D position error over all 940 objects for each of the sensor

allocation schemes considered. The position error is computed by taking the maximum weighted

GMM component mean for each object and computing the Euclidean distance between the estimate

and its true location. Velocity errors are similarly computed and observed to follow the same trends

as position errors, and are therefore omitted. From the figure, it is clear that the box scan performs

poorly, and it is the only case that does not produce a reduction in the average position error. By
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contrast, the remaining sensor allocation schemes converge on average position errors under 2 km

by the final time, shown in the close up view in Fig. 3.12(b). The information theoretic schemes all

outperform the fast box scan and evenly weighted maximal assignment, confirming the assertion

that the information gain reward function drives tasking to collect measurements efficiently to

reduce state errors. The best performance is achieved by the maximal information gain assignment

scheme, which produces a final multitarget estimate with average position errors of several hundred

meters, which is on the order of the prescribed measurement noise.

(a) Average Position Errors (b) Converged Average Position Errors

Figure 3.12: Simulation Position Error Results

Analysis of the number of measurements and objects detected by each scheme provides insight

into the varying levels of state estimate accuracy, as depicted in Fig. 3.13 and summarized in Table

3.6. The box scan produces the fewest measurements, and fails to detect a large portion of the 940

object catalog due to the lack of an objective function driving the sensor to collect measurements

at every epoch. Instead, the sensor spends a large amount of time looking at empty space and

only gathers useful data at arbitrary intervals. By increasing the rate of measurement collections,

the fast box scan produces approximately six times as many measurements and detects all but 14

objects, yielding a significant improvement in the average position error.

The remaining schemes are all driven by objective functions to ensure they never task the

sensor to observe empty space, and all produce correspondingly higher numbers of measurements
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(a) Number of Measurements (b) Detected Objects

Figure 3.13: Number of Measurements and Objects Detected

Table 3.6: Results Summary

Tasking Scheme Number of Objects Missed Number of Observations

Box Scan 185 1441
Fast Box Scan 14 8537

Max Assign Even 1 13512
Single-Step IG 3 14786
60 Minute IG 6 18689
180 Minute IG 7 18842
Max Assign IG 0 21032

and fewer missed objects than either box scan scheme. The information theoretic schemes produce

increasing numbers of measurements as the length of the assignment window increases, with the

maximal assignment producing the most measurements. In addition, it is the only method consid-

ered that detects all objects in the catalog. The evenly weighted maximal assignment scheme also

performs well, though it does miss detecting one object. The missed object is a GPS augmentation

satellite over the Pacific Ocean, visible from Maui for less than one hour at the end of each night

due to the constraints applied in the simulation. By the construction of the tasking windows, this

means it is never included in a maximal assignment window and there is no guarantee of its being

scheduled. To address the issue, the tasking windows could be constructed differently, or the evenly

weighted maximal assignment could be augmented by an additional rule to ensure that it attempts

to observe objects that have not been detected before considering other assignments. Note that
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the maximal information gain assignment handles this issue automatically. With other objects

visible from Maui having been observed, the expected information gain for the undetected object

is relatively high, causing the scheme to select the object.

While the evenly weighted maximal assignment yields the best average position error of

the non-information theoretic approaches, it still varies significantly over the last two days of the

simulation, as opposed to the maximal information gain assignment which has converged to a steady

value of several hundred meters. This behavior is partially explained by the fact that the information

gain method produces nearly twice as many measurements. It is also due to maximizing the effect

of measurements by scheduling opportunities to produce the greatest reduction in uncertainty, an

effect that is demonstrated in Fig. 3.14. The plots depict the position errors of all objects in the

catalog, with the average values indicated. On the left, the evenly weighted maximal assignment

shows a reduction in the number of objects with large errors, but over the last two days, many

are still varying in the tens of kilometers, producing a fluctuating average error greater than 1 km.

On the right, the maximal information gain assignment shows only a handful of objects varying

at this level, particularly by the 3 day mark, after which very few have errors greater than 5 km.

The result is a steady low average position error over the final two days, even though the largest

individual error is higher than that of the evenly weighted scheme.

(a) Evenly Weighted Maximal Assignment (b) Maximal Information Gain Assignment

Figure 3.14: Individual Object Errors and Average
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The information theoretic tasking schemes all produce similar average position errors and all

outperform the non-information theoretic schemes in both accuracy and number of measurements

collected. The biggest distinction between them is the number of objects missed in the course of

the simulation. The single-step method misses three objects, all of which are super-synchronous

and drift into the region that is not covered by any of the sensors. Two of the objects are not

scheduled at any point, a result of their having low expected information gain in the time they

are available in the field of regard. The third object is scheduled but missed due to the non-

unity probability of detection, and it is not rescheduled before drifting out of the FOR. The two

objects not scheduled demonstrate an important difference between the single-step and maximal

assignment, which has the capacity to anticipate future outages for objects and schedule them while

they are still available. The object missed detection is not something that multistep assignment

approaches are better suited to handle, it is simply a circumstance of the test. It should be noted

that if an additional sensor were used to ensure full global coverage, or if the duration of the test

were extended, the single-step method would be expected to detect all objects.

Similarly, the 60 and 180 minute information gain assignments miss several objects. Both

schemes fail to schedule the same two objects as the single-step method. This results from the

expected information gain being outside the highest range of values for the assignment window

length, i.e., if an object is available for less than 60 minutes and the expected information gain

is not in the 60 highest values, it will not be scheduled in the 60 minute assignment. The other

objects are scheduled but missed detections; they are all super- or sub-synchronous and drift into

the region of no coverage before they can be rescheduled. The fact that more missed objects

occur for the multistep cases is likely due to the length of the assignment window, which prevents

quick rescheduling. While the single-step method can reschedule a missed object immediately, the

multistep methods must wait until the entire assignment window is complete before computing a

new set of tasks. There is no guarantee an object will be rescheduled before leaving the field of

regard for any scheme, and as before, with full global coverage or a longer simulation, all information

gain schemes would be expected to detect all objects. For these reasons, the effects of missed objects
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should not be weighed too heavily against a scheme’s performance, and a final analysis is considered

in which the position errors have been averaged over only the objects detected for each case.

(a) Average Position Errors (b) Converged Average Position Errors

Figure 3.15: Position Error Results of Detected Objects

Figure 3.15 provides the average position errors for each scheme using only the objects that

are detected in the course of the simulation. While the box scan is still the worst case, the

average fast box scan position error matches that of the evenly weighted maximal assignment

by the final time, an indication that for the objects they detect, the two approaches achieve similar

performance. The maximal information gain assignment still outperforms the evenly weighted

maximal assignment, meaning the differences observed in Fig. 3.12 are not caused by the missed

object but rather by the reduction of the majority of individual object errors depicted in Fig. 3.14.

Most significantly, the various information theoretic schemes all converge to the same error level.

Given a set of sensors to provide full global coverage, any of these schemes would be expected to

detect all objects and thereby produce equivalent accuracy in state estimation. The final difference

between the information theoretic and non-information theoretic average position errors is several

hundred meters, and it is clear that to achieve the best possible accuracy, the information theoretic

approaches provide an advantage.
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3.3 Chapter Summary

The theory and application of information theoretic sensor tasking has been presented.

Through simple demonstration, justification has been provided for the selection of the Rényi di-

vergence, a measure of relative information gain, as a more appropriate reward function for GEO

SSA than the Cauchy-Schwarz divergence. Several sensor tasking schemes of varying complexity

were proposed and tested in a large scale simulation. The results indicate that a small number of

sensors is sufficient to maintain an object catalog if tasked efficiently, and that information theo-

retic schemes are well suited to this application. While less efficient at collecting measurements,

the box scan may be useful as a search mode for new objects, and provided tasks are scheduled

at a sufficient rate, it can produce a large number of measurements to help maintain the existing

catalog. The box scan tasking mode also poses less computational burden due to its simplicity and

the fact that it does not require computing a numerical integral. With full coverage of the geosyn-

chronous belt, either single-step or multistep information gain methods are expected to produce

similar performance. It should be noted that the schemes considered can all be used to generate

an advance schedule for future time windows, but if real-time or near real-time filtering and sensor

allocation is possible, the single-step method offers an advantage in being able to retask sensors

quickly. This capability is utilized in the next chapter, in conjunction with the box scan search

mode, to detect and schedule follow-on tracking for newly discovered objects.



Chapter 4

Initial Orbit Determination and Follow-On Tracking

Another key problem in SSA research is generating tracks for newly created or discovered

objects. Within the context of the CPHD filter, different methods exist to initiate new tracks. The

classical derivation of the CPHD filter employs a birth model to account for the appearance of new

targets [48], which requires knowledge of the birth process PHD and cardinality distribution as

part of the prediction step. Early implementations such as those of Vo et al. [83] assume a Poisson

number of new targets originating from predetermined locations designed to cover the entire single

target state space. More recent work has relaxed this assumption, determining the birth PHD and

cardinality based on measurements, with distributions in state space approximated as Gaussian [65]

or partially uniform [2]. Measurement-based birth models offer the advantage of ensuring sufficient

density in the PHD function at likely locations of new targets without having to cover the entire

state space, which for the orbital debris problem is prohibitively expansive. An alternate approach

to reduce the region considered for new targets is to augment the CPHD filter with a spawning

model to initiate new tracks in the vicinity of known targets [8]. The spawning model simplifies the

track initiation process by taking advantage of knowledge of existing targets; however, it is a less

general approach, and offers no means to account for new objects due to space vehicle launches.

A simplified version of the CPHD spawning model is presented in Appendix E, but its use is not

considered further here. Instead, this chapter seeks to apply a measurement-based birth model to

initiate new tracks in the CPHD filter, and to apply the previously developed information theoretic

sensor tasking scheme to schedule follow-on measurements for newly discovered objects.
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Application of the measurement-based birth model for tracking geosynchronous space objects

requires a solution to the initial orbit determination (IOD) problem for angles-only measurements.

Classical approaches such as double-r iteration [79] and the methods of Gauss, Laplace, and Gooding

[79, 20, 29] rely on having a set of angular measurements from at least three different times,

providing at least six independent values to produce a six parameter initial orbit description.

However, these approaches are not well suited for application to the measurement-based birth

model of the CPHD filter, which is designed to instantiate new tracks based on measurements

from a single point in time. They also fail to account for measurement ambiguity due to clutter or

misidentified targets.

More recent work considers solutions to the too short arc problem, performing a regression on

a single arc of angular measurements to produce a 4D set of angles and rates at one point in time [51].

The 4D measurement set can be used to define an admissible region (AR) in range/range-rate space

corresponding to objects captured in Earth orbit [52, 76]. Admissible regions generated from two

separate measurement arcs can be correlated to determine if they represent the same object, and if

so, produce an initial orbit estimate [51, 26]. In the context of multitarget filtering, both the classical

and AR correlation methods pose the challenge of maintaining knowledge of measurement-to-track

associations through time, in effect requiring a solution to the multiscan assignment problem [60].

Alternately, the admissible region from a single arc can be approximated using a GMM and used

to initiate a filter, which refines the estimate based on subsequent measurements [18]. This latter

approach fits the needs of the CPHD filter birth model, and its use has been demonstrated in

simulated multitarget GEO SSA scenarios involving clutter and missed detections [35, 73].

This chapter extends previous work by incorporating a sensor allocation scheme to produce

the follow-on measurements necessary to refine the initial AR solution, and by implementing a track

confirmation process to preclude spurious tracks generated by clutter measurements. In conjunction

with the IOD and filtering steps, the scheme is responsible for searching for new objects, and for

scheduling measurements to improve and maintain knowledge of new and existing catalog objects,

a set of tasks collectively known as the search-detect-track (SDT) problem. To accomplish these
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objectives, this research combines the box scan search mode and single-step information theoretic

tasking described in Chapter 3. The scheme is designed for applications in which a single sensor is

available to perform both the search and track functions, making use of a switch point to transition

between tasking modes. This ensures the sensor is able to scan through the field of regard at regular

intervals to find new targets while also maintaining sufficient knowledge of objects in the catalog

to allow for their reacquisition following gaps in sensor availability.

The remainder of this chapter is organized as follows. Section 4.1 summarizes the constrained

admissible region (CAR) IOD technique and provides an example for a geosynchronous object.

Section 4.2 provides details on incorporating new targets in the CPHD filter using the CAR and

track confirmation process. Section 4.3 reviews previously introduced concepts for information

theoretic sensor tasking and describes the overall approach to the search-detect-track problem.

Section 4.4 provides results using simulated data to demonstrate the efficacy of the method.

4.1 Constrained Admissible Region

The admissible region approach introduced by Milani et al. [52] is a means to limit the

possible initial state of a space object to a subset of six dimensional space by using the information

available from a single arc of measurement data. The approach presented here uses measurements

of topocentric right ascension and declination and their associated rates to define a region in the

range/range-rate space. The initial orbit is parameterized using the following state vector:

x0 = [ρ ρ̇ α α̇ δ δ̇]T (4.1)

In this formulation, realistic limits on the semi-major axis and eccentricity of the orbit can be

mapped to limits on range and range-rate to further constrain the solution. To initialize the

filter, this region is approximated by a GMM, and mapped to Cartesian ECI coordinates using the

unscented transform [85]. The development here follows that presented by DeMars and Jah [19].
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The Cartesian position and velocity of a space object can be written as

r = q + ρ (4.2)

ṙ = q̇ + ρ̇ (4.3)

where q is the ground station position, ρ is the range vector from the ground station to the object,

and q̇ and ρ̇ are their respective rates, all in the ECI frame. The range and range-rate vectors can

be written in terms of unit vectors as follows

ρ = ρuρ (4.4)

ρ̇ = ρ̇uρ + ρα̇uα + ρδ̇uδ (4.5)

with the unit vectors defined by

uρ =


cosα cos δ

sinα cos δ

sin δ

 , uα =


− sinα cos δ

cosα cos δ

0

 , uδ =


− cosα sin δ

− sinα sin δ

cos δ

 (4.6)

The first constraint on the admissible region is applied using the semi-major axis, or equiva-

lently orbital energy. The two-body orbital energy equation is

E =
‖ṙ‖2

2
− µ

‖r‖
(4.7)

The objective is to map the orbital energy and given angles and angle-rates into range/range-rate

space. It is first necessary to parameterize orbital energy in terms of the state vector Eq. (4.1).

Define a set of scalar coefficients using the ground station and measurement parameters:

w0 = ‖q‖2, w1 = 2(q̇ · uρ), w2 = α̇2 cos2 δ + δ̇2,

w3 = 2α̇(q̇ · uα) + 2δ̇(q̇ · uδ), w4 = ‖q̇‖2, w5 = 2(q · uρ)

From Eqs. (4.2)-(4.3), the orbit radius and velocity can then be defined in terms of the unknown

range and range-rate.

‖r‖2 = ρ2 + w5 + w0 (4.8)

‖ṙ‖2 = ρ̇2 + w1ρ̇+ w2ρ
2 + w3ρ+ w4 (4.9)
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From Eq. (4.7), it is possible to substitute and produce a quadratic solution for ρ̇ in terms of ρ, E ,

and the scalar coefficients.

2E = ‖ṙ‖2 − 2µ

‖r‖
(4.10)

2E = ρ̇2 + w1ρ̇+ F (ρ) (4.11)

F (ρ) = w2ρ
2 + w3ρ+ w4 −

2µ√
ρ2 + w5ρ+ w0

(4.12)

ρ̇ = −w1

2
±
√(w1

2

)2
− F (ρ) + 2E (4.13)

The result Eq. (4.13) produces the first constraint on the admissible region. Given a value of the

orbital energy, it is possible to compute an upper and lower limit on range-rate for any value of

range for which the right ascension, declination, and their rates are equal to the values measured.

This constraint is easily reformulated in terms of semi-major axis using the identity E = −µ/2a,

and produces a quadratic curve in the range/range-rate space of constant energy (or semi-major

axis) for a given 4 parameter measurement set. An example of this curve is shown in Figure 4.1(a),

which applies a minimum and maximum constraint in semi-major axis.

The second constraint is placed on eccentricity, derived in similar fashion using the relation-

ship

e =

√
1 +

2E‖h‖2
µ2

(4.14)

The eccentricity is therefore a function of the orbital energy and specific angular momentum,

h = r × ṙ. To parameterize the angular momentum in terms of the state vector, define a new set

of vector and scalar coefficients:

h1 = q × uρ, h2 = uρ × (α̇uα + δ̇uδ),

h3 = uρ × q̇ + q × (α̇uα + δ̇uδ), h4 = q × q̇

c0 = ‖h1‖2, c1 = 2(h1 · h2), c2 = 2(h1 · h3),

c3 = 2(h1 · h4, ) c4 = ‖h2‖2, c5 = 2(h2 · h3),

c6 = 2(h2 · h4) + ‖h3‖2, c7 = 2(h3 · h4), c8 = ‖h4‖2
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The angular momentum vector and magnitude can be computed from the definition above, using

Eqs. (4.2)-(4.3) and the coefficients.

h = h1ρ̇+ h2ρ
2 + h3ρ+ h4 (4.15)

‖h‖2 = c0ρ̇
2 + P (ρ)ρ̇+ U(ρ) (4.16)

P (ρ) = c1ρ
2 + c2ρ+ c3

U(ρ) = c4ρ
4 + c5ρ

3 + c6ρ
2 + c7ρ+ c8

The eccentricity Eq. (4.14) can be rearranged, and the quantities 2E and ‖h‖2 replaced with

expressions in terms of range and range-rate.

2E‖h‖2 = −µ2(1− e2) (4.17)

(ρ̇2 + w1ρ̇+ F (ρ))(c0ρ̇
2 + P (ρ)ρ̇+ U(ρ)) = −µ2(1− e2) (4.18)

The resulting constraint is a quartic equation for range-rate as a function of range for constant

values of eccentricity, defined using a final set of scalar coefficients.

a4ρ̇
4 + a3ρ̇

3 + a2ρ̇
2 + a1ρ̇+ a0 = 0 (4.19)

a4 = c0, a3 = P (ρ) + c0w1, a2 = U(ρ) + c0F (ρ) + w1P (ρ),

a1 = F (ρ)P (ρ) + w1U(ρ), a0 = F (ρ)U(ρ) + µ2(1− e2)

The equation therefore yields 4 roots, with any imaginary solutions discarded, and the solution

produces a curve for constant values of eccentricity corresponding to the 4 parameter measurement.

The net result of applying both constraints is the definition of a region in the range/range-rate

space, the boundaries of which produce an orbit with the limiting values of semi-major axis and/or

eccentricity when the given measurement set is used to fill in the state vector.

To illustrate the concept of the constrained admissible region, a simple example is provided

using an observation of the Viasat 1 satellite from a ground station in Maui. Simulated angle

and angle-rate measurements are computed, and the range/range-rate space is constrained in semi-

major axis, a ∈ [41764, 42565] km, and eccentricity, e ∈ [0, 0.1]. The only available values of range
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(a) CAR Boundaries (b) CAR GMM Approximation

Figure 4.1: Constrained Admissible Region

and range-rate that agree with the measurements and fall within the constraints are those bounded

by the black curve in Figure 4.1(a), denoting the CAR.

In the constrained admissible region approach, each point in the CAR is assumed to be

equally likely to represent the correct range/range-rate measurement pair. Therefore, the CAR is

modeled as a bivariate uniform distribution of possible range and range-rate values. The uniform

distribution can be approximated using a GMM, which is then transformed to the ECI frame to

produce a suitable input for the CPHD filter. Computing the GMM approximation requires solving

a constrained optimization problem with input design parameters to specify the desired variance

in range and range-rate, as detailed in Reference [19]. In this example, the design parameters

σρ = 5 km and σρ̇ = 0.02 km/s are used, producing a representation of the CAR using a little over

100 GMM components. Figure 4.1(b) provides a close-up view of the CAR with the means of the

GMM components indicated.

In this manner, an observation set of four parameters at one time can be used to generate a

GMM consisting of many components, at least one of which will be sufficiently close to the truth

to produce a good estimate. Subsequent measurements are used to merge and remove components,

until a GMM with very few components is left representing the object.
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4.2 CPHD Filter Implementation

Having established an approach to initiate tracks based on measurements at a single point in

time, it is necessary to develop a method to incorporate new targets in the filter. Without a priori

information regarding which measurements represent new targets as opposed to existing targets or

clutter, all measurements are treated as potential new targets. At time tk−1, each measurement

is used to generate a CAR. The combined CAR GMMs then form the basis for the filter birth

process used in the prediction step to time tk. To prevent the accumulation of probability mass

as objects are scheduled for repeated observations, this research develops an approach to compute

a probability that a given measurement represents a new target based on the estimated target

and assumed clutter distributions. The CAR GMM weights for a given measurement are then

multiplied by the new target probability, which keeps the sum of new component weights low in

the case a measurement is not likely generated by a new target.

This section provides an overview of the measurement-based CPHD filter birth model and a

discussion of an augmented version of the filter using a PHD to pre-screen measurements as part

of the update. The first topic is development of the new target probability for later inclusion in

the birth model.

4.2.1 Computation of New Target Probability

Given a set of measurements and knowledge of the assumed clutter and estimated target

distributions, it is possible to compute a probability that a given measurement represents a new

target. The proposed method makes use of a ratio of Gaussian likelihoods for existing targets and

GMM clutter, and should only be taken as an approximation of the probability that the measure-

ment is generated by a new target. With this caveat, results in Section 4.4 demonstrate that the

method functions as desired. The full development of the equations is given in Appendix D, the

main results are summarized here. Beginning with the assumption that each measurement repre-

sents at most one target, it is possible to define a constraint on the probabilities that measurement
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zi is generated by an existing target, a new target, or a false alarm.

pexist(zi) + pnew(zi) + pFA(zi) = 1 (4.20)

Assuming the Poisson clutter model described in Chapter 2, the clutter cardinality is given by

pκ(m) =
(λκ)m

m!
e−λκ (4.21)

A cardinality distribution can be computed for the existing targets in the field of view using a

multi-Bernoulli distribution.

pe(m) =

JFOV∏
j=1

(1− pDwj)

 · σm({ pDw1

1− pDw1
, . . . ,

pDwJFOV

1− pDwJFOV

})
(4.22)

The combined cardinality distribution representing clutter and existing targets can then be com-

puted from the convolution of the previous cardinalities.

pκe(m) = (pκ ∗ pe)(m) =
m∑
i=0

pκ(i)pe(m− i) (4.23)

Using the existing target GMM and the assumption that false alarms are uniformly distributed in

the FOV, it is possible to compute a conditional probability that zi represents an existing target

or false alarm, given that m out of mk−1 measurements are generated by such,

pFAE(zi| m
mk−1

) =
m∑
j=0

pκ(j)pe(m− j)
m∑
l=0

pκ(l)pe(m− l)

 j

mk−1
+

1

C
mk−1

j

∑
π⊆Zk−1:
|π|=j

pexist(zi| m−j
|Zk−1\π|)

 (4.24)

where pexist(·) is computed using a ratio of measurement likelihood functions as discussed in Ap-

pendix D. With the conditional probability and cardinality distribution, it is possible to compute

the probability that zi is generated by either an existing target or false alarm.

pFAE(zi|Zk−1) =

mk−1∑
m=1

pκe(m) · pFAE(zi| m
mk−1

) (4.25)

Finally, the probability that zi represents a new target is computed by applying the constraint in

Eq. (4.20). The incorporation of this value into the CPHD birth model is discussed next.

pnew(zi|Zk−1) = 1− pFAE(zi|Zk−1) (4.26)



86

4.2.2 Measurement-Based Birth Model

This section provides a review of the CPHD filter predictor equations, including the target

birth model ignored in previous chapters. The filter corrector is unaffected by inclusion of the birth

model, and its discussion is therefore omitted. As before, the PHD is approximated using a GMM.

νk(x) ≈
Jk∑
j=1

w
(j)
k pg(x;x

(j)
k , P

(j)
k ) (4.27)

where w
(j)
k > 0 are the weights and pg(x;x

(j)
k , P

(j)
k ) is a multivariate Gaussian PDF with mean x

(j)
k

and covariance P
(j)
k . The prediction step for the PHD and cardinality is given by

νk|k−1(x) = γk(x) + pS

Jk−1∑
j=1

w
(j)
k−1pg(x;x

(j)
k|k−1, P

(j)
k|k−1) (4.28)

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)
∞∑
l=j

C ljpk−1(l)p
(j)
S (1− pS)(l−j) (4.29)

where γk(x) represents the PHD of birth targets and can be approximated by a GMM as in

Eq. (4.27), pS is the probability of target survival, pΓ,k(·) represents the cardinality of target birth

and C lj = l!
j!(l−j)! is the binomial coefficient.

The computation of new target probabilities lends itself well to modeling target birth as a

multi-Bernoulli process. Given the measurement set and associated probabilities for time tk−1, the

multi-Bernoulli birth cardinality for time tk is computed from

pΓ,k(n) =

mk−1∏
i=1

(1− pnew,i) · σn
({

pnew,1

1− pnew,1
, . . . ,

pnew,mk−1

1− pnew,mk−1

})
(4.30)

where the abbreviation pnew,i = pnew(zi|Zk−1) has been adopted. The birth PHD is generated by

computing a CAR for each measurement in Zk−1 and propagating the mean and covariance to tk.

The weights of the CAR for a given measurement are multiplied by the new target probability,

which keeps the added probability mass consistent with the predicted cardinality and minimizes

the contribution of new components spawned by measurements that are likely associated to existing

targets or clutter.

γk(x) =

mk−1∑
i=1

pnew,i

JCAR,i∑
j=1

w
(j)
k−1pg(x;x

(j)
k|k−1, P

(j)
k|k−1) (4.31)
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Note that the probability of survival does not affect either the predicted cardinality or PHD of

birth targets because the CPHD prediction step is predicated on the assumption that birth and

target survival are independent processes.

The multi-Bernoulli birth model and CAR IOD technique provide a straightforward means

to introduce new targets in the CPHD filter. However, as will be demonstrated in subsequent test-

ing, the method does not produce a reliable estimate of the number of objects. Previous research

has noted a tendency for the measurement-based birth model to produce a bias in the cardinality

estimate, unless the CPHD measurement update is adjusted [65]; however, the implementation is

different from that given here. Ristic et al. instantiate the birth model at the same time measure-

ments are collected, whereas this chapter makes use of measurements from the previous time step to

generate new targets at the current time. As a result, the standard CPHD filter update equations

are used and a different method is proposed to address the inaccurate cardinality estimate. In this

research, the filter is restructured in a two-tier approach, in which new targets are maintained in

an unconfirmed PHD mixture until sufficient follow-on measurements warrant their inclusion in

the CPHD for existing targets. The approach is similar to other applications of the PHD filter to

pre-screen measurements prior to estimation using MHT [56], and produces an estimate of target

number robust against the effects of clutter and missed detections.

4.2.3 Augmented CPHD Filter

The methodology of the augmented CPHD approach is provided in Figure 4.2. At time tk−1,

a set of mk−1 measurements are collected. A measurement update is performed for all objects

in the unconfirmed PHD mixture, with the GMM representing confirmed objects incorporated

as part of the clutter model. In this manner, measurements generated by confirmed objects are

treated as likely false alarms during the unconfirmed PHD measurement update. Subsequently, the

measurements are used to update the estimate of objects in the confirmed CPHD, this time taking

the GMM of the unconfirmed objects to be clutter. Both update steps use the combined clutter

model described in Appendix D to include the standard Poisson false alarms.
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Figure 4.2: Augmented CPHD Filter

As part of the measurement update, a new target probability and CAR GMM are computed

for each measurement. In the scenario depicted above, measurement z2 is not located near any

known objects, and spawns a new object with a weight of nearly 1, reduced only by the probability

that it is generated as a Poisson false alarm. Measurement z1 is located near an unconfirmed target

x1, which results in a reduced probability of representing a new object. Similarly, measurement z3

is located near a confirmed target. It should be noted that the calculation of pnew,i incorporates

both the confirmed and unconfirmed multitarget states.

During the prediction step, newly generated targets are moved to the unconfirmed PHD as

shown. A test is performed to determine if previously unconfirmed targets should be incorporated

in the confirmed target CPHD. When targets are confirmed, the birth cardinality prediction for

the confirmed CPHD is formed as a multi-Bernoulli distribution from the weights of the newly

confirmed objects.

The following measurement update at time tk is performed in the same manner. In the case

that no measurements are present near newly initialized objects, the original measurement is likely

a false alarm and the weights are reduced. Eventually, if no measurements update the estimate,
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the components will be removed as part of the filter update. New CAR GMMs are initiated for

both measurements in Zk; however, since there are both confirmed and unconfirmed tracks near

each, the resulting pnew,i is low. If the new target probability is below the pruning threshold, it

indicates the components are not needed as they would be removed anyway. Computation of the

probability therefore prevents unnecessarily adding components to the unconfirmed PHD mixture

indefinitely. The unconfirmed PHD filter then serves as an effective screen against clutter, and is

also a way to aggregate information from multiple CAR GMMs into refined estimates of targets

before being introduced to the main CPHD filter tracking known objects.

4.2.4 CPHD Clustering

In addition to the birth model and PHD pre-filter, the CPHD filter is implemented using

a clustering technique to mitigate against an issue known as ‘spooky action at a distance,’ in

which missed detections cause probability mass to shift from undetected to detected objects, even

if they are physically separated to the point of noninteraction [50, 25]. The feature results from

the inherent design of the filter, in which the multitarget state is represented as a density from

which likely target states are later extracted, as opposed to strictly enforcing track identities as

in MHT. The simulation in Chapter 3 avoids this issue by ignoring target birth and death and

maintaining a simple list of track identities; however, this is not sufficient for the newly introduced

measurement-based birth model.

The CPHD implementation in this chapter forms clusters using the Mahalanobis distance,

such that any GMM components within a threshold Uc of a peak in the intensity function are

considered to be part of the same cluster [59]. A CPHD measurement update is performed for

each cluster, taking all other clusters and the unconfirmed PHD mixture as a GMM clutter model

as described in Appendix D. By performing a measurement update for each cluster separately,

weights are not allowed to shift to other clusters, and the spooky action effect is avoided.
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4.3 Incorporation of Sensor Allocation Scheme

The final component of the search-detect-track algorithm is the sensor allocation step, which

must perform both the search and track functions. The box scan mode discussed in Chapter 3 is

used to perform the search, at a time interval of one minute in order to allow computation of the

4D angle and angle-rate measurement vector needed to generate the CAR. To schedule follow-on

tracking, the single-step information theoretic approach is used, with the CPHD form of the Rényi

divergence as the objective function. The switch point between modes is defined as a threshold in

the expected information gain. At each time step, the Rényi divergence is computed for all known

objects, from the confirmed and unconfirmed mixtures in the case of the augmented CPHD filter,

as described in detail below. If the maximum information gain is below the threshold, the sensor

is tasked to observe the next bin in the search grid. If one or more options yield information gain

above the threshold, the sensor is tasked to achieve the maximum information gain.

4.3.1 Review of Information Theoretic Sensor Tasking

The expected information gain is computed using the CPHD form of the Rényi divergence

evaluated in the FOV, as described in Section 3.1.3.2. Recall that this involves computing a cardi-

nality p0(n) for GMM components in the FOV, and is therefore applicable for both the confirmed

and unconfirmed state spaces modeled in the augmented filter. The cardinality is computed as a

multi-Bernoulli distribution [49], p0(n) =

(
JFOV∏
j=1

(1− qj)

)
· σn

({
q1

1−q1 , . . . ,
qJFOV

1−qJFOV

})
, where σn(·)

are the elementary symmetric functions, and the component weights are used for the values of qj ,

setting a maximum value qj = 0.999 for any case wj ≥ 1.

The Rényi divergence is computed from Eq. (3.18), reprinted here for reference,

ν0(x) ≈
J0∑
i=1

wipg(x;mi, Pi) ν1(x;u) ≈
J1∑
j=1

wjpg(x;mj , Pj) (4.32)
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RC(u) ≈ −2 log
∑
n≥0

(
p1(n;u)

Nn
1

)1/2(p0(n)

Nn
0

)1/2

·

∫
 J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

dx


n

(4.33)

Ki,j = pg(mi;mj , Pi + Pj)

Pi,j =
[
P−1
i + P−1

j

]−1

mi,j = Pi,j

[
P−1
i mi + P−1

j mj

]
where the subscripts 0 and 1 refer to the prior and posterior distributions respectively.

At each time, potential tasks are determined from the estimated target number and peaks

of the PHD function. In the case of the augmented filter, the number of tasks considered for the

unconfirmed PHD is computed from the EAP target number estimate by taking the sum of weights

of the GMM. For the CPHD filter, the number of tasks considered is taken as the MAP of the

cardinality. In both cases, pointing tasks are evaluated for the Nk highest weighted components of

the GMM representing the PHD.

EAP:Nk =

Jk∑
j=1

w
(j)
k (4.34)

MAP:Nk = argmax pk(n) (4.35)

Suppose at time tk the sum of weights in the unconfirmed PHD is 3, and the MAP of

the confirmed cardinality is 1. The SDT algorithm evaluates 4 potential tasks, 3 at the peaks

of the unconfirmed PHD and 1 at the peak of the confirmed PHD. The PIMS approximation is

applied, simulating a measurement at each of the NFOV highest peaks within the field of view

for each potential task. The expected information gain is computing using the combined GMM

models representing both the confirmed and unconfirmed state spaces, so if one target is modeled

in each, two measurements are simulated and the information gain reflects the combined CPHD

measurement update. Following computation of the expected information gain, if no value is above

the user-defined information gain cutoff C, the sensor is scheduled to observe the next bin in the

search grid. If some of the tasks exceed the cutoff, the maximum value task is scheduled per the
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single-step information theoretic scheme. No multistep assignments are considered in the course of

this chapter.

With the sensor task determined, measurements are simulated and processed by the filter.

The full search-detect-track algorithm steps are depicted in Figure 4.3 and summarized in Table

4.1.

Simulate Measurements
(Noise, Clutter, Missed Det)

Unconfirmed PHD
Predictor

Confirmed CPHD
Predictor

Information Gain 
Calculated Using PIMS

Single Step
IG Tasking

Box Scan
Search

Unconfirmed PHD
Corrector

Confirmed CPHD
Corrector

CAR IOD

Confirmation
Test

𝑿𝒌|𝒌−𝟏,𝐮𝐧𝐜𝐨𝐧𝐟

𝑿𝒌|𝒌−𝟏,𝐜𝐨𝐧𝐟

𝑿𝒌,𝐜𝐨𝐧𝐟
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2
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Figure 4.3: Search-Detect-Track Algorithm

Table 4.1: Search-Detect-Track Algorithm

Step 1: At the current time, compute measurement update for all known objects
(confirmed and unconfirmed).

Step 2: Compute the new target probability for all measurements.
Initiate new target estimates using CAR GMM.

Step 3: Perform test to confirm targets and move to confirmed state space.
Step 4: Compute the prediction step for confirmed and unconfirmed targets.
Step 5: Compute the expected information gain for confirmed and unconfirmed targets.

a. If above threshold, schedule maximum value target for observation.
b. If below threshold, task sensor to observe next bin in search grid.

Step 6: Process measurement update for next time step.
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4.4 Numerical Simulation

4.4.1 General Test Conditions and Sensor Parameters

To demonstrate the performance of the search-detect-track algorithm, a series of test cases

are developed to track an unknown number of objects from a single GEODSS-like sensor located

at Maui, using simulated angle and angle-rate measurements. Much of the test setup is similar to

Chapter 3, but the scale has been reduced due to the added complexity of initiating new tracks. The

single ground station is modeled using the parameters provided in Table 4.2 [79]. The measurements

used are topocentric right ascension and declination and their rates,

α = tan−1

(
y − ysi

x− xsi

)
δ = sin−1

(
z − zsi

ρ

)
(4.36)

α̇ = 1

1+
( y−ysi
x−xsi

)2
[

(ẏ − ẏsi)(x− xsi)− (ẋ− ẋsi)(y − ysi)

(x− xsi)2

]
(4.37)

δ̇ = 1√
1−
(
z−zsi
ρ

)2
[
ż − żsi

ρ
− (ρ · ρ̇)(z − zsi)

ρ3

]
(4.38)

where all values are given in the ECI frame and the si subscript denotes a ground station coordinate.

While the generation of angle-rate measurements is not considered in detail here, the process

involves a linear regression over an arc of angle measurements, which produces a reduction in the

measurement noise dependent on the length of the arc and the sampling frequency [51]. The values

used in this research are consistent with those expected from fitting a dense measurement arc of

20 seconds in length, as proposed elsewhere in the literature [19, 35]. The sensor schedules tasks

at 1 minute intervals to allow for slew rate and settling time between generating measurement

arcs, though none of these processes are explicitly modeled. At each time, the angles and rates are

simulated using Eqs. (4.36)-(4.38) and corrupted by zero mean Gaussian noise with the standard

deviations provided in Table 4.2. Poisson clutter is simulated with a mean number of λκ returns

that varies in each test case.

The offset in hours from GMT is provided for the date February 27, 2013 used as the initial

1 The value given for the altitude here is slightly different from that in Ch. 3. The previous chapter inadvertently
uses the location parameters for the Maui MSS sensor instead of the GEODSS. The difference is only 0.4 m and is
therefore not expected to influence the results significantly.
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Table 4.2: Maui GEODSS Sensor Location and Parameters [79, 21, 35]

Maui, HI

Latitude [deg] 20.71
Longitude [deg] -156.26

Altitude [m] 3058.61

Az Limits [deg] [0,360]
El Limits [deg] [20,90]

GMT Offset [hours] 10
FOV Size [α, δ] [deg] [1.61,1.23]

FOV Size [α̇, δ̇] [deg
sec ] [0.001, 0.001]

Noise [α, δ] [a-sec] [0.8, 0.8]

Noise [α̇, δ̇] [a-sec
sec ] [0.07, 0.07]

epoch in the simulation. The start time for all test cases has been advanced to 04:00 GMT to

coincide with 6 PM local time when the sensor is modeled as first being active. As in Chapter 3,

the sensor is online for 12 hours followed by 12 hours offline. In order to cover the search space

at regular intervals using the 1 minute box scan mode, the effective field of regard is reduced to

a range of ±2 degrees in geodetic latitude, corresponding to approximately 340 bins as shown in

Figure 4.4. This allows the box FOR to be scanned twice in the course of a 12 hour tasking session.

(a) ENU Coordinates (b) Geodetic Coordinates

Figure 4.4: Maui Reduced Box FOR

The objects considered in the study are limited to low inclination geostationary orbits to

ensure they will be discovered as the sensor steps through the grid and can be accurately represented
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by the prescribed CAR IOD parameters. A total of 10 objects are modeled, with the osculating

orbital elements and geodetic longitude values provided in Table 4.3 for the initial epoch time. The

search grid begins at the easternmost point; objects in the table are listed in the order in which

they are expected to be found. Certain test cases model only two objects, as identified in the table.

Object states are initialized from the public TLE catalog, transformed to osculating elements.2

Table 4.3: Orbital Elements and Longitude at Epoch

Object NORAD ID Longitude a [km] e i Ω ω M

Echostar 10 28935 110.2◦ W 42165.3 1.55e-4 0.069◦ 106.2◦ −148.6◦ 89.1◦

Mexsat 3 39035 114.8◦ W 42165.7 3.10e-4 0.059◦ 109.2◦ −73.5◦ 6.35◦

Viasat 13 37843 115.1◦ W 42165.7 3.02e-4 0.095◦ 96.2◦ −120.5◦ 65.9◦

XM-2 26724 115.2◦ W 42165.4 3.62e-4 0.011◦ 88.1◦ −128.7◦ 82.2◦

Anik F33 31102 118.7◦ W 42165.7 2.78e-4 0.108◦ 99.5◦ −113.8◦ 52.5◦

AMC-21 33275 124.9◦ W 42165.5 2.62e-4 0.034◦ 98.4◦ −113.8◦ 47.3◦

Galaxy 14 28790 125.0◦ W 42165.9 2.87e-4 0.038◦ 105.4◦ −120.3◦ 46.8◦

AMC-8 26639 139.0◦ W 42165.8 2.91e-4 0.030◦ 89.6◦ −88.7◦ 16.9◦

AMC-23 28924 172.0◦ E 42165.5 3.01e-4 0.052◦ 106.0◦ −135.0◦ 357.9◦

Beidou G4 37210 160.0◦ E 42165.6 3.29e-4 0.520◦ 10.1◦ −140.5◦ 87.2◦

Objects are propagated using the same dynamical model as Chapter 3, which includes the

two-body force and perturbations due to a 2x2 spherical harmonics gravity field based on the

EGM2008 model [23], solar radiation pressure (SRP), and luni-solar perturbations using the JPL

design ephemeris 430 [58, 10]. The SRP force is modeled assuming all objects are spherical with

area-to-mass ratio 0.05 kg/m2 and reflectivity Cr = 1.5. No unmodeled accelerations are included

in the filter. As before, the covariance is assumed Gaussian and propagated using the unscented

transform. A simple process noise model is used, in which a diagonal process noise covariance

matrix Q = Q0∆t is added to the predicted covariance at each time, using larger values than those

of Chapter 3. The matrix Q0 uses standard deviations of 10−3 km and 10−6 km/s for each of the

positions and velocities in ECI, and ∆t is the time interval.

In all cases, the filter is initialized with no prior knowledge of the objects; the cardinality is set

to exactly zero targets and the PHD contains no GMM components. New components are created

2 TLE obtained from www.space-track.org
3 Object used in 2 object cases
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for each measurement using the CAR IOD technique with the parameters described in Section

4.1. Component weights are multiplied by the probability that the measurement represents a new

target. In the case of the single thread CPHD filter, the CAR components and birth cardinality are

incorporated into the filter birth model for the next prediction step. For the augmented CPHD filter,

the GMM components are added to the unconfirmed PHD mixture. Subsequently, a confirmation

test is performed for GMM components in the unconfirmed PHD. In this research, a target is

confirmed if the GMM representing it contains a component with a weight wj > 0.9. In this case, a

cluster is formed for all components within Uc of the new peak and the whole cluster is moved to the

confirmed CPHD as part of the birth model. The birth cardinality is modeled as a multi-Bernoulli

process using the sum of the weights of the confirmed GMM cluster, for each confirmed target in

the case there are multiple confirmations at a given time.

As implemented, the CAR IOD technique produces approximately 100 components for each

measurement, which quickly drift apart from one another and become less useful as a probabilistic

description of likely object locations. The approach is best suited for prompt follow-on measure-

ments to refine the estimate and confirm targets. Extraneous components in the unconfirmed

PHD mixture can negatively impact the validity of the information gain calculation, subsequent

sensor tasking decisions, and computation of the new target probability. To mitigate against the

accumulation of GMM components that no longer provide useful information on new targets, the

unconfirmed PHD mixture is deleted any time the sensor transitions from active to inactive, mean-

ing targets must be confirmed during the same 12-hour observation window in which they are first

detected. Any targets dropped before confirmation can simply be detected and confirmed during

the next search period.

The GMM mixture is maintained as before by pruning and merging targets, in this case using

a pruning threshold T = 10−5 and merging threshold U = 4. In addition, a maximum number of

components is specified, Jmax = 1000, separately for the confirmed and unconfirmed mixtures. The

pruning and merging steps are implemented as described in Appendix B.
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4.4.2 Test Case 1: Single Thread CPHD

The first test case considers use of the single thread CPHD filter in conjunction with the SDT

sensor tasking algorithm. Two objects, NORAD 37843 and 31102, are modeled over the course of

a single 12-hour observation window. Position and velocity errors are computed using the 1st order

OSPA of the Euclidean distance between the true and estimated state values corresponding to the

Nk highest peaks in the filter. The OSPA metric does not include cardinality errors, it simply

represents the average 3D position and velocity errors at each time. The estimated target number

Nk is computed as the MAP of the cardinality and reported separately for comparison to the true

number of objects detected.

To demonstrate the behavior of the filter birth model, different values of the clustering thresh-

old, mean clutter rate, and probability of detection are considered. Four sets of values are used,

with parameters summarized in Table 4.4. In the first case, denoted ST1A, the clustering threshold

is set to Uc = 36 while no clutter or missed detections are included in the measurements, though

the filter is initialized with the values pD = 0.99 and λκ = 0.01 to avoid numerical issues. The

second test case, ST1B, increases the clustering threshold to Uc = 100 while maintaining the same

measurement conditions of no clutter or missed detections. Tests ST1C and ST1D set the clus-

tering threshold Uc = 100, while adjusting the mean clutter rate and probability of detection to

(λκ = 0.01, pD = 0.99) and (λκ = 0.05, pD = 0.95) respectively. The information gain switch point

is set to C = 5 for all cases.

Table 4.4: Test Case 1 Parameters

ST1A ST1B ST1C ST1D

Measurement λκ 0.0 0.0 0.01 0.05
Filter λκ 0.01 0.01 0.01 0.05

Measurement pD 1.0 1.0 0.99 0.95
Filter pD 0.99 0.99 0.99 0.95

Clustering Uc 36 100 100 100

Figure 4.5(a) provides the OSPA position errors for all cases. The top plot shows large

OSPA errors for case ST1A throughout the observation window, as well as large initial errors
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(a) OSPA Position Errors (b) Number of Objects

Figure 4.5: Single Thread CPHD Test Results

for the remaining three cases at the times the objects are first detected. The close up view in

the lower plot demonstrates that for all cases with the larger clustering threshold Uc = 100, the

filter converges to state estimate errors under 10 km by the final time. The increased clustering

threshold also produces a better cardinality estimate, as shown in Figure 4.5(b). In the figure, the

blue line indicates the number of objects that have been detected, while the black line represents the

estimated cardinality. Case ST1B quickly converges on the correct number of targets and maintains

its value as there are no missed detections or clutter returns. Case ST1C also performs well, despite

the occurrence of five false alarms. Following each, the estimated cardinality increases as a result

of the newly added CAR components, but these are quickly discarded and the filter returns to the

correct value. Case ST1D overestimates the number of objects as a result of processing more than

40 false alarms during the course of the observation window.

Table 4.5 provides a summary of the test results, including the number of missed detections

and false alarms. Note that the occurrence of two missed detections during the ST1D case causes

no jump in the OSPA errors, an indication that the clustering technique is successfully mitigating

the previously discussed spooky effect. All cases demonstrate the ability of the algorithm to locate

and schedule follow-on measurements for objects with no a priori information, with the sensor

spending the majority of its time in search mode.
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Table 4.5: Test Case 1 Results

ST1A ST1B ST1C ST1D

Real Measurements 16 34 16 20
Missed Detections 0 0 0 2

False Alarms 0 0 5 41
Detected Objects 2 2 2 2

Estimated Cardinality 2 2 2 9
Search Mode (%) 98.3 95.83 97.64 93.61

Track Mode Real (%) 1.7 4.17 1.67 2.50
Track Mode Clutter (%) 0.0 0.0 0.69 3.89

Figure 4.6 gives a more detailed review of the ST1C test case. On the left, Figure 4.6(a)

shows the number of measurements, missed detections, false alarms, and the sum of new target

probabilities at each time. The sum of pnew,i values demonstrates the computed probability func-

tions as desired, with values near 1 at the times corresponding to new targets and false alarms,

and smaller values at times when measurements are collected near existing targets. On the right,

Figure 4.6(b) provides insight on the tasking mode, including the expected information gain RC ,

and the identity of the search grid point, object, or false alarm (denoted FA) scheduled for follow-on

observation. The estimated number of objects is also included for reference.

(a) Measurements (b) Tasking Mode

Figure 4.6: Test ST1C Results

While case ST1C is generally successful, increasing the number of false alarms causes issues

in case ST1D. As shown in Figure 4.7, the filter overestimates the number of objects present due
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(a) Measurements (b) Tasking Mode

Figure 4.7: Test ST1D Results

to the large number of clutter returns in the measurement set. For each false alarm, a set of

CAR GMM components with a collective weight close to one are added to the filter, and while

the follow-on measurements prevent the estimated cardinality from growing too large, the filter is

unable to recover the correct estimated target number as it did previously. In order to deal with

increasingly challenging measurement conditions, subsequent test cases consider the use of a PHD

filter to pre-screen measurements and refine CAR estimates prior to confirming targets for inclusion

in the CPHD filter.

4.4.3 Test Case 2: Augmented CPHD with Missed Detections

The second test case examines the capabilities of the augmented CPHD filter, considering

the effect of missed detections on the ability of the filter to estimate the multitarget state and

cardinality. The same two objects are modeled as before, but over a time period of 36 hours to

evaluate whether the algorithm can maintain custody of targets identified the first night following

a 12-hour gap in sensor availability. Several values are considered for the probability of detection

while no false alarms are simulated, again using λκ = 0.01 for the Poisson clutter model in both

the PHD and CPHD filter updates. The information gain cutoff C = 5 and clustering threshold

Uc = 36 are used for all cases. Clustering is applied in the confirmed CPHD filter only.
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Figure 4.8: Missed Detection Test OSPA Results

(a) Missed Detections (b) Number of Objects

Figure 4.9: Missed Detection Test Results

Figures 4.8-4.9 provide the results of the missed detection test case. The OSPA position and

velocity errors are given for the confirmed track CPHD filter, and for all cases converge to the

km level by the final time. No unexpected peaks or jumps occur in the OSPA errors; the steady

increase for most of the cases between 12 and 24 hours results from the sensor being inactive. Upon

collecting new measurements at the 24-hour mark, the errors are quickly corrected.

Figure 4.9 provides information on the number of missed detections, as well as the number of

detected and estimated objects, according to the MAP of the cardinality of the confirmed CPHD

filter. The results demonstrate the reliable performance of the filter, correctly confirming exactly 2

objects in all cases, even in the presence of missed detections. Both the pD = 0.90 and pD = 0.80
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cases experience missed detections at times when 2 objects are confirmed in the filter, but no large

OSPA errors are observed as the spooky effect is mitigated by clustering.

In general, the filter performs well in terms of maintaining the estimated number of objects,

though the pD = 0.80 case drops one confirmed object around the 6-hour mark. The object is

quickly recovered and reconfirmed. Since the occurrences of missed detections are highly variable

and can produce different results, a total of 5 instances of each probability of detection case are

simulated. The results presented here are for one instance in which measurements for all cases

are generated by the same initial state for the random number generator, and are taken to be

representative of the algorithm behavior in the presence of missed detections. The pD = 0.99 case

provides the expected results in an ideal scenario, in which no missed detections occur, which is

true across all 5 instances of this case. Two of the pD = 0.80 instances include an object dropped by

the CPHD filter, though at the final time, both correctly estimate that two objects are present. No

objects are dropped in any pD = 0.95 or pD = 0.90 case. Through all scenarios tested, knowledge of

any confirmed objects are maintained across the 12 hour period of inactivity, allowing the system to

schedule observations for known objects without having to rediscover them by scanning the search

region. A summary of the SDT algorithm performance is provided in Table 4.6.

Table 4.6: Test Case 2 Results

pD = 0.99 pD = 0.95 pD = 0.90 pD = 0.80

Real Measurements 26 25 24 24
Missed Detections 0 1 3 6

False Alarms 0 0 0 0
Detected Objects 2 2 2 2

Estimated Cardinality 2 2 2 2
Search Mode (%) 98.8 98.8 98.7 98.5

Track Mode Real (%) 1.2 1.2 1.3 1.5
Track Mode Clutter (%) 0.0 0.0 0.0 0.0

Figure 4.10 presents additional results from the pD = 0.90 case. Figure 4.10(a) shows the

number of measurements, missed detections, false alarms, and the sum of new target probabilities

at each time. The sum of pnew,i values demonstrates the computed probability functions as desired,
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with values near 1 at the times new objects are discovered, and generally close to 0 at times when

measurements are collected near existing targets. The low values observed for measurements near

existing targets are notably much better than for the single thread CPHD filter.

(a) Measurements (b) Tasking Mode

Figure 4.10: Missed Detection pD=0.90 Test Results

Figure 4.10(b) provides details on the tasking mode, including the expected information

gain, and the appropriate search bin or target ID scheduled depending on the selected sensor

tasking mode. A missed detection occurs for object 37843 during the first search window, and

therefore no follow-on tracking is scheduled until it is observed during the second pass through the

search region. On the second night, with both objects already confirmed, the sensor continues to

alternately observe each one to maintain the filter estimate.

4.4.4 Test Case 3: Augmented CPHD with False Alarms

The third test case considers the effect of false alarms on the ability of the filter to estimate

the multitarget state and cardinality. The same two objects are modeled, again over a time period

of 36 hours. Several values are considered for the Poisson clutter rate while no missed detections are

simulated, using the value pD = 0.99 for both the PHD and CPHD filter updates. The information

gain cutoff C = 5 and clustering threshold Uc = 36 are used for all cases.

Figure 4.11 provides the OSPA results for the position and velocity estimates from the con-
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(a) OSPA Errors (b) OSPA Errors Closeup

Figure 4.11: Clutter Test OSPA Results

firmed track CPHD filter, with the closeup view showing errors at the km level for all cases by

the final time. No unexpected peaks or jumps occur in the OSPA errors, the steady increase for

most cases between 12 and 24 hours coincides with the sensor being inactive. Figure 4.12 provides

the number of false alarms and estimated number of objects for each case, from which it is clear

the filter maintains the correct number of targets throughout, even for cases including hundreds of

false measurements.

(a) False Alarms (b) Number of Objects

Figure 4.12: Clutter Test Results

The use of the PHD pre-filter is a substantial improvement in terms of mitigating the effects of

clutter on the cardinality estimate, as expected because the confirmation process requires multiple
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measurements for a given object before it is incorporated in the CPHD mixture. Assuming clutter is

uniformly distributed in the field of view, it is unlikely for false alarms to occur in such a pattern as

to produce a confirmed target. A summary of the test case results is provided in Table 4.7, showing

an increasing amount of time spent in clutter tracking as the number of false alarms increases,

though all cases spend the majority of time in search mode.

Table 4.7: Test Case 3 Results

λκ = 0.01 λκ = 0.05 λκ = 0.10 λκ = 0.20

Real Measurements 23 23 22 26
Missed Detections 0 0 0 0

False Alarms 13 68 129 283
Detected Objects 2 2 2 2

Estimated Cardinality 2 2 2 2
Search Mode (%) 98.0 94.5 90.4 81.0

Track Mode Real (%) 1.0 1.0 1.0 1.2
Track Mode Clutter (%) 1.0 4.4 8.6 17.8

(a) Measurements (b) Tasking Mode

Figure 4.13: Clutter λκ = 0.01 Test Results

Figure 4.13 presents additional results from the λκ = 0.01 case. Figure 4.13(a) provides details

on the measurements collected. The sum of pnew,i values demonstrate the computed probability

functions as desired, with values near 1 corresponding to new objects or false alarms. In particular,

at times when real measurements are collected, pnew,i is close to zero with the exception of the

original first two detections. Figure 4.13(b) provides details on the expected information gain and
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sensor tasking mode. Despite routinely following up on false alarms, the SDT algorithm still spends

the majority of its time in search mode, while continuing to schedule observations of both confirmed

objects to maintain well localized estimates of them following the gap in sensor availability.

4.4.5 Test Case 4: Augmented CPHD with Ten Objects

The final test case considers the effect of missed detections and false alarms while simulating

all ten objects listed in Table 4.3. The value of the information gain cutoff is varied, while the

probability of detection and clutter rates are held fixed at pD = 0.95 and λκ = 0.20. The simulation

is performed for a total of 60 hours, covering two 12-hour gaps in sensor availability.

(a) OSPA Errors (b) OSPA Errors Closeup

Figure 4.14: Ten Object OSPA Results

Figure 4.15: Number of Objects
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Figure 4.14 provides the OSPA results for the position and velocity estimates. From the

closeup view, both the C = 1 and C = 5 cases perform well, achieving errors at the km level by the

final time. The C = 10 and C = 20 cases produce large spikes in the OSPA errors during the final

observation window, and in general, appear to be less reliable. Figure 4.15 provides the estimated

number of objects for each case, and confirms the poor performance of these cases, which produce

several occurrences of dropped objects. The C = 1 case gets stuck following up on the first few

objects, and fails to complete the search grid even once. The C = 5 case performs well, however,

as discussed in detail below. Results for all cases are summarized in Table 4.8.

Table 4.8: Test Case 4 Results

C = 1 C = 5 C = 10 C = 20

Real Measurements 5952 406 172 94
Missed Detections 345 23 10 5

False Alarms 427 418 446 432
Detected Objects 3 10 10 10

Estimated Cardinality 3 10 10 9
Search Mode (%) 2.1 75.3 82.6 98.6

Track Mode Real (%) 96.9 8.3 2.6 0.6
Track Mode Clutter (%) 0.9 16.4 14.8 0.8

Figure 4.16: Ten Object C = 5 OSPA Errors

As the most successful case, the C = 5 results are examined more closely. The OSPA errors

in Figure 4.16 demonstrate the desired behavior, eventually converging to the km level. Despite

the fact that over 20 detections are missed and over 400 false alarms occur, the filter does not
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(a) Measurements (b) Tasking Mode

Figure 4.17: Ten Object C = 5 Results

produce any unexpected peaks in OSPA errors due to shifting GMM weights, nor are any objects

dropped or false alarm tracks incorrectly confirmed. The filter confirms 9 objects the first night,

and maintains the correct estimate of 10 objects from the 32-hour mark forward. In total, the filter

spends approximately 75% of its time in search mode, a good indication that the SDT algorithm

could continue to find and maintain tracks of additional objects if needed. The time spent in

tracking mode favors following up on clutter, though it is clear that follow-on measurements of real

objects are scheduled regularly through all 3 observation windows, as shown in Figure 4.17(b).

4.4.6 Limitations of the Method

The results presented demonstrate a viable solution to the single-sensor SDT problem, in

which a filter initialized with no a priori knowledge is able to find and track all objects in the

scene in the presence of clutter and missed detections. The proposed solution does exhibit some

limitations, and could be improved to approach the problem in a more general or abstract way.

As a whole, the method is computationally complex, and involves a large parameter trade space.

Fortunately, the parameters have different effects on the algorithm performance and can therefore be

grouped and considered separately from one another, simplifying any tuning or analysis necessary.

User-defined boundaries on the CAR and uncertainties used to generate the GMM approximation
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from it are generally concerns to computational burden only. Thresholds for GMM component

pruning, merging, and clustering affect the tendency of the filter to confirm or drop objects. Finally,

the ad hoc information gain cutoff proposed to switch between search and track mode affects the

amount of time spent in each and the ability of the algorithm to produce sufficient measurements

to confirm all objects present.

A simplified analysis on the interpretation of information gain for the single object case is

included in Appendix C.4, but it is too limited to provide a comprehensive approach for determining

a useful switch point. A more principled approach would be to characterize the information gain

associated with maintaining the multitarget errors of known objects to a certain precision, while

also defining a discrete value based in information theory for instantiating a new track. The sensor

allocation scheme could then weigh the relative benefit of catalog maintenance against the value

of discovering new objects, assuming some probability of finding new targets in a given region.

However, this still produces a solution that is highly dependent on the problem, as the number

of objects in the field of view affects the expected information gain. A switch point defined to

maintain a catalog of objects distributed through the search space such that only one is visible

at a time may not be appropriate for a problem in which objects are grouped closely together.

Generalizing the method to address these issues is considered a task for future study.

4.5 Chapter Summary

The theory and application of an IOD method based on the admissible region has been

presented, as well as details of its use to instantiate new targets in the CPHD filter. The method

was combined with previously discussed sensor allocation techniques to search for new objects

and perform follow-on tracking to improve and maintain estimates of targets after their inclusion

in the filter. Simulation results demonstrate the ability of the method to find and track objects

with no a priori information, other than the assumption that they are in geostationary orbits

visible to the sensor. Despite the limitations discussed, the method generally localizes targets well

enough to maintain custody of them following gaps in sensor availability, and use of the PHD
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augmented filter provides a degree of robustness estimating the target number in the presence of

sparse clutter and missed detections. The combination of the IOD, filtering, and sensor allocation

methods demonstrates the ability to solve the search-detect-track problem within a FISST-derived

framework.



Chapter 5

Conclusion

5.1 Research Summary

This dissertation presented results from the application of Finite Set Statistics filtering meth-

ods to the problem of estimating geosynchronous space objects. Chapter 2 provided background

and motivation for the problem and examined the use of several multitarget filters for GEO SSA.

In particular, the CPHD filter was determined to be a suitable approach, a conclusion further

exemplified by the study in Chapter 3, in which a catalog of nearly 1000 objects was maintained

using simulated measurements from three ground stations. The proposed sensor allocation scheme

based on maximizing the Rènyi divergence produced superior performance as compared to simpler

grid-based search methods, and both single-step and multistep approaches were deemed successful.

Single-step sensor tasking offers the additional advantage of being able to quickly retask sensors, a

feature utilized in Chapter 4 to perform follow-on tracking for newly discovered objects.

The primary contribution of this research is the application of the information gain reward

function for sensor allocation. Through simple demonstration, the choice of Rényi divergence

was shown to be a more appropriate objective function than the Cauchy-Schwarz divergence for

tasking in which a subset of objects are scheduled for observation. This conclusion confirmed

previous research studying the use of relative and absolute information gain functionals to drive

sensor tasking for SSA. The large scale simulation included a realistic set of objects from the TLE

catalog, on the same order of magnitude as the number of objects currently tracked at GEO. The

results indicate the benefits of efficient sensor tasking, which allows for better catalog maintenance
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and alleviates the sparse data condition that drives many other challenges in SSA. Additional

constraints on real-world sensors driven by local weather conditions or the apparent magnitudes of

space objects further emphasize the need for efficient measurement collection.

Use of information theoretic tasking was explored further in Chapter 4, which used the

Rényi divergence to drive follow-on tracking for newly discovered objects. Implementation of a

measurement-based birth model for the CPHD filter was discussed using the CAR IOD technique.

The standard CPHD filter was augmented by a PHD mixture to maintain unconfirmed tracks,

and a method was developed to approximate the probability that measurements represented new

targets. The combination of these techniques was successful in finding and tracking a small number

of geostationary objects in the presence of sparse clutter and missed detections.

5.2 Future Research Considerations

The findings presented in this research suggest a number of possible improvements and direc-

tions for future research. As discussed in Chapter 4, one of the drawbacks of the CPHD filter is its

tendency to shift probability mass from undetected to detected objects, also known as the spooky

effect or spooky action at a distance. Augmenting the CPHD filter with a clustering technique

alleviated this issue [59], but the behavior suggests better alternatives may be available. Namely,

the multi-Bernoulli filter is not impacted by this issue. The latest incarnation, the δ-Generalized

Labeled Multi-Bernoulli (δ-GLMB) filter, resembles track-oriented MHT, and may provide a better

approach to SSA than the CPHD filter while still utilizing the full rigor of Finite Set Statistics as

a mathematical framework [81, 82]. In general, the field of multitarget estimation is still evolving

rapidly, and new techniques may provide advantages in representing the orbital debris catalog and

filtering noisy and ambiguous measurements.

Many simplifying assumptions were employed in the sensor allocation study, most fundamen-

tally the implicit assumption that the sensors were centrally networked and operating from a shared

object catalog, which was updated in real time. New research has examined the use of distributed

control sensor networks and information fusion using FISST [78], which would be highly applicable
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to the SSA problem. The use of the Rényi divergence as an objective function is computationally

burdensome due to the need for a numeric solution of the integral. The Cauchy-Schwarz divergence

would make a better option if it can be modified to properly compare the expected information

gain for objects with different initial covariances. As a measure of absolute information gain, it

may also lead to a more principled technique to optimize sensor tasking between searching for new

objects and maintaining the catalog of known objects. To initiate tracks for new objects, the CAR

IOD technique is suitable for the 4D measurement set presented, but may not extend easily to other

measurement types, such as range and range-rate. A more general solution to the IOD problem for

multitarget filtering, for instance using a solution to the multiscan assignment problem [60], may

be more useful.

Finally, the incorporation of target priorities in the sensor tasking objective function is an

important consideration, both to the reflect the needs of the SSA user community and to solve

pressing issues such as collision avoidance. In particular, a predicted collision should cause the

system to increase the tasking priorities of the objects involved, prompting additional measurements

and refinement of the prediction. The goal in sensor allocation should be to automate the process as

much as possible, as the increasing size of the catalog mandates efficient collection of measurements.
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Appendix A

Nomenclature

This appendix provides a guide to some of the notation used throughout this dissertation.

Some symbols, particularly greek letters, are reused in different chapters and sections, though the

quantities represented should be clear from context.

A.1 Single Target Estimation

A(x, t) = linearized dynamics matrix

α̃, m̃, σ̃ = AEGIS splitting library weight, mean, standard deviation

F (x,u, t), f(x) = single target nonlinear dynamics function, Markov transition density

G(x, t), g(x) = single target nonlinear measurement likelihood function, density

H(x) = differential entropy

J,w = number of GMM components, component weight

K,Pxz, Pzz = Kalman gain, cross-correlation covariance, innovation covariance

Λ, V, λk,vk = eigenvalue matrix, eigenvector matrix, k-th eigenvalue, eigenvector

L,W,α, β, κ, λ, γ = state dimension, UKF weights, parameters

p(x), pg(x;m, P ) = single target PDF, Gaussian PDF, mean m, covariance P

P̄k, Pk|k−1 = a priori estimated state covariance

Pk = a posteriori estimated state covariance

σ = standard deviation

x, z = single target state, measurement
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ε, R = measurement noise, measurement noise covariance

x̄k,xk|k−1 = a priori estimated state vector

x̂k,xk = a posteriori estimated state vector

χ, ζ = state sigma point matrix, measurement sigma point matrix

v, Q = zero mean white noise process, process noise covariance

z̄ = predicted measurement

z1:k = time series of measurements z1, . . . ,zk

A.2 Multitarget Estimation

dij = association distance

G[h] = multitarget probability generating functional (PGFl)

J,w = number of GMM components, component weight

λ, λκ = clutter number density, Poisson mean number of clutter returns

Nk, NFOV = estimated number of targets, number of targets in field of view

p(X), βX(S) = multitarget PDF, belief-mass function

p(n), pΓ(n), pκ(m) = cardinality distribution, birth cardinality, clutter cardinality

pS , pD = probability of survival, probability of detection

s(x), j(n)({x1, . . . ,xn}) = single-object spatial density, n-th order Janossy density

σj(·) = elementary symmetric function

t = time

u = process noise vector

ν(x), γ(x), κ(z) = PHD function, birth PHD, clutter PHD

X,Z = multitarget state, multitarget measurement set

U, T = merging threshold, pruning threshold

Vs = volume of sensor FOV

y
(j)
k = weighted innovation
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A.3 Orbits and Measurements

a, e, i,Ω, ω,M, nm = Keplerian orbital elements, mean motion

h, ae, ee, pe, Ne = geodetic height, Earth reference ellipsoid parameters

E ,h = specific orbital energy, angular momentum

q = ground station position vector

r, r = position vector, orbit radius

µ = gravitational parameter

x, y, z = position coordinates

α, δ = topocentric right ascension, declination

λ, φ = geodetic longitude, latitude

Λ,Φ = ENU spherical coordinates

ρ̂, ρ = LOS unit vector, range

A.4 Sensor Allocation

α = Rényi divergence parameter

C(·), R(·) = Cauchy-Schwarz divergence, Rényi divergence

f0(X), f1(X) = prior and posterior multitarget PDFs

pnew(z), pexist(z), pFA(z) = probability of new target, existing target, false alarm

u = sensor control vector

A.5 Index Conventions

i, j, k = measurement, GMM component, time index

m,n = measurement index, target number index

l, q = integer indices



Appendix B

Filter Algorithms

This appendix details the implementation of the AEGIS PHD and CPHD filters. The steps

given here comprise the basic forms of the filters. They assume constant values of pD and pS that

are the same for all objects, do not model target birth, and do not perform clustering to mitigate

effects of shifting GMM weights due to missed detections.

Equations of Motion:

ẋ = F (x,u, t) (B.1)

Linear time rate of change of differential entropy:

Ḣ(x) = trace{A(x(t), t)} (B.2)

A(x(t), t) =

[
∂F

∂x

]
x=x̂

(B.3)

Measurement model:

zk = G(xk, tk) + εk (B.4)

B.1 AEGIS PHD Filter

1. Initial GMM approximation of PHD at time t0 with track labels T0.

ν0(x0) ≈
J0∑
j=1

w
(j)
0 pg(x0; x̂

(j)
0 , P

(j)
0 )

T0 = {τ (j)
0 }

J0
j=1
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2. Compute sigma points and entropy for each component.

χ
(j)
0 =

[
x̂

(j)
0 x̂

(j)
0 + γ

√
P

(j)
0 x̂

(j)
0 − γ

√
P

(j)
0

]
L×(2L+1)

(B.5)

H
(j)
0 =

1

2
log |2πeP

(j)
0 | (B.6)

3. Prediction Step t ∈ [tk−1, tk]

3.A. Step through time in increments of ∆ts ≤ ∆tk. For t ∈ [ts−1, ts], propagate the sigma

points and linear PDF entropy for the j-th component to compute χ̄
(j)
s and H̄

(j)
lin,s.

χ̇
(j)
s−1 = F (χ

(j)
s−1, ts−1), χ(j)(ts−1) = χ

(j)
s−1 (B.7)

Ḣ
(j)
lin = trace{A(j)

s−1}, H
(j)
lin (ts−1) = H

(j)
lin,s−1 (B.8)

3.B. Compute the component a priori mean and covariance, retain track label.

x̄(j)
s =

2L∑
l=0

Wm
l χ̄

(j)
s,l (B.9)

P̄ (j)
s =

2L∑
l=0

W c
l (χ̄

(j)
s,l − x̄

(j)
s )(χ̄

(j)
s,l − x̄

(j)
s )T (B.10)

τ̄ (j)
s = τ

(j)
s−1 (B.11)

3.C. Compute the entropy from the nonlinear PDF propagation.

H̄
(j)
nlin,s =

1

2
log |2πeP̄ (j)

s | (B.12)

3.D. Check for nonlinearity. If |H̄(j)
nlin,s − H̄

(j)
lin,s| > Tsplit, split along the r-th eigenvector

(corresponding to the largest eigenvalue).

3.D.i. Replace the j-th component with Q new components, retain track label of j-th

component.

w̄(j)
s pg(xs; x̄

(j)
s , P̄ (j)

s ) ≈
Q∑
q=1

w̄(q)
s pg(xs; x̄

(q)
s , P̄ (q)

s ) (B.13)

{τ̄ (q)
s }

Q
q=1 = τ̄ (j)

s (B.14)
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where the component weights, means, and covariances are computed using the

splitting library given in Table 2.1.

w̄(q)
s = α̃qw̄

(j)
s (B.15)

x̄(q)
s = x̄(j)

s +
√
λrm̃qvr (B.16)

P̄ (q)
s = V ΛqV

T (B.17)

Λq = diag{λ1, . . . , σ̃
2
qλr, . . . , λL} (B.18)

3.D.ii. Compute the sigma points and entropy for each new component using Eqs. (B.5)-

(B.6).

3.E. Repeat for all components until time tk is reached.

3.F. Multiply component weights by the probability of survival.

w̄
(j)
k = pS,k(x

(j)
k )w̄

(j)
k (B.19)

3.G. Add process noise to the covariance and recompute sigma points for each component.

P̄
(j)
k = Qk + P̄

(j)
k (B.20)

χ̄
(j)
k =

[
x̄

(j)
k x̄

(j)
k + γ

√
P̄

(j)
k x̄

(j)
k − γ

√
P̄

(j)
k

]
L×(2L+1)

(B.21)

There are now J̄k components.

4. Correction Step

4.A. Missed Detections - Loop through all components j ∈ [1, J̄k].

4.A.i. Downweight components based on the probability of detection.

w
(j)
k = [1− pD,k(x(j))]w̄

(j)
k (B.22)
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4.A.ii. Retain a priori component information.

x̂
(j)
k = x̄

(j)
k (B.23)

P
(j)
k = P̄

(j)
k (B.24)

χ
(j)
k = χ̄

(j)
k (B.25)

H
(j)
lin,k = H̄

(j)
lin,k (B.26)

τ
(j)
k = τ̄

(j)
k (B.27)

4.B. Detected Objects

4.B.i. Compute the expected measurement and cross covariance for each component.

ζ
(j)
k = G(χ̄

(j)
k , tk) (B.28)

z̄
(j)
k =

2L∑
l=0

Wm
l ζ

(j)
k,l (B.29)

P (j)
xz =

2L∑
l=0

W c
l (χ̄

(j)
k,l − x̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (B.30)

4.B.ii. For measurement z
(i)
k ∈ Zk, i ∈ [1,mk], compute the update for each component.

P (i,j)
zz = R

(i)
k +

2L∑
l=0

W c
l (ζ

(j)
k,l − z̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (B.31)

K
(i,j)
k = P (j)

xz [P (i,j)
zz ]−1 (B.32)

x̂
(iJ̄k+j)
k = x̄

(j)
k +K

(i,j)
k (z

(i)
k − z̄

(j)
k ) (B.33)

P
(iJ̄k+j)
k = P̄

(j)
k −K

(i,j)
k P (i,j)

zz [K
(i,j)
k ]T (B.34)

τ
(iJ̄k+j)
k = τ̄

(j)
k (B.35)

4.B.iii. Compute the updated sigma points and entropy.

χ
(iJ̄k+j)
k =

[
x̂

(iJ̄k+j)
k x̂

(iJ̄k+j)
k + γ

√
P

(iJ̄k+j)
k x̂

(iJ̄k+j)
k − γ

√
P

(iJ̄k+j)
k

]
L×(2L+1)

(B.36)

H
(iJ̄k+j)
lin,k =

1

2
log |2πeP

(iJ̄k+j)
k | (B.37)
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4.B.iv. Normalize weights across measurement i and multiply by the probability of de-

tection.

g
(i,j)
k = pg(z

(i)
k ; z̄

(j)
k , P (i,j)

zz ) (B.38)

w
(iJ̄k+j)
k =

pD,k(x
(j)
k )g

(i,j)
k w̄

(j)
k

κk +
∑J̄k

q=1 pD,k(x
(q)
k )g

(i,q)
k w̄

(q)
k

(B.39)

There are now Jk,0 = (1 +mk)J̄k components.

5. Merge and Prune GMM Components

5.A. Remove components whose weight is below a threshold. Discard information of com-

ponents that don’t meet the criteria.

wk,1 = {w(j)
k,0 : w

(j)
k,0 ≥ Tprune ∗max(wk,0)} (B.40)

5.B. Renormalize the weights for the current number of components Jk,1.

w
(j)
k,1 = w

(j)
k,1

∑Jk,0
i0

w
(i0)
k,0∑Jk,1

i1
w

(i1)
k,1

(B.41)

5.C. Merge components that are close together.

5.C.i. Set I = {1, . . . , Jk,1}.
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5.C.ii. Repeat until I = {} :

j∗ = argmax(w
(j)
k,1) (B.42)

L = {i ∈ I : (x̂
(i)
k − x̂

(j∗)
k )T (P

(j∗)
k )−1(x̂

(i)
k − x̂

(j∗)
k ) ≤ Tmerge} (B.43)

w
(j)
k =

∑
l∈L

w
(l)
k,1 (B.44)

x̂
(j)
k =

1

w
(j)
k

∑
l∈L

w
(l)
k,1x̂

(l)
k (B.45)

P
(j)
k =

1

w
(j)
k

∑
l∈L

w
(l)
k,1[P

(l)
k + (x̂

(j)
k − x̂

(l)
k )(x̂

(j)
k − x̂

(l)
k )T ] (B.46)

χ
(j)
k =

[
x̂

(j)
k x̂

(j)
k + γ

√
P

(j)
k x̂

(j)
k − γ

√
P

(j)
k

]
L×(2L+1)

(B.47)

H
(j)
lin,k =

1

2
log |2πeP

(j)
k | (B.48)

τ
(j)
k = τ

(j∗)
k (B.49)

I = I\L (B.50)

5.C.iii. If there are more than Jmax components, keep only the Jmax highest weights.

Renormalize weights after pruning.

There are now Jk components.

B.2 AEGIS CPHD Filter

1.A. Initial GMM approximation of PHD at time t0 with track labels T0.

ν0(x0) ≈
J0∑
j=1

w
(j)
0 pg(x0; x̂

(j)
0 , P

(j)
0 )

T0 = {τ (j)
0 }

J0
j=1

1.B. Initialize cardinality distribution.

1.B.i. Option 1: Uniform cardinality distribution at time t0.

p0(n) = 1/(nobj,max + 1) n ∈ {0, . . . , nobj,max} (B.51)
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1.B.ii. Option 2: Multi-Bernoulli cardinality distribution at t0.

p0(n) = C
nobj,max
n (1− q)nobj,max

(
q

1− q

)n
(B.52)

where q = N/nobj,max and N is the true number of objects.

2. Compute sigma points and entropy for each component.

χ
(j)
0 =

[
x̂

(j)
0 x̂

(j)
0 + γ

√
P

(j)
0 x̂

(j)
0 − γ

√
P

(j)
0

]
L×(2L+1)

(B.53)

H
(j)
0 =

1

2
log |2πeP

(j)
0 | (B.54)

3. Prediction Step t ∈ [tk−1, tk]

3.A. Predict cardinality and number of objects (non-spawning case).

pk|k−1(n) =

n∑
j=0

pΓ,k(n− j)
nobj,max∑
l=j

C ljpk−1(l)p
(j)
S (1− pS)(l−j) (B.55)

n ∈ [0, . . . , nobj,max] (B.56)

C lj =
l!

j!(l − j)!
(B.57)

Nk|k−1 =

nobj,max∑
n=1

n · pk|k−1(n) (B.58)

3.B. Step through time in increments of ∆ts ≤ ∆tk. For t ∈ [ts−1, ts], propagate the sigma

points and linear PDF entropy for the j-th component to compute χ̄
(j)
s and H̄

(j)
lin,s.

χ̇
(j)
s−1 = F (χ

(j)
s−1, ts−1), χ(j)(ts−1) = χ

(j)
s−1 (B.59)

Ḣ
(j)
lin = trace{A(j)

s−1}, H
(j)
lin (ts−1) = H

(j)
lin,s−1 (B.60)

3.C. Compute the component a priori mean and covariance, retain track label.

x̄(j)
s =

2L∑
l=0

Wm
l χ̄

(j)
s,l (B.61)

P̄ (j)
s =

2L∑
l=0

W c
l (χ̄

(j)
s,l − x̄

(j)
s )(χ̄

(j)
s,l − x̄

(j)
s )T (B.62)

τ̄ (j)
s = τ

(j)
s−1 (B.63)
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3.D. Compute the entropy from the nonlinear PDF propagation.

H̄
(j)
nlin,s =

1

2
log |2πeP̄ (j)

s | (B.64)

3.E. Check for nonlinearity. If |H̄(j)
nlin,s − H̄

(j)
lin,s| > Tsplit, split along the r-th eigenvector

(corresponding to the largest eigenvalue).

3.E.i. Replace the j-th component with Q new components, retain track label of j-th

component.

w̄(j)
s pg(xs; x̄

(j)
s , P̄ (j)

s ) ≈
Q∑
q=1

w̄(q)
s pg(xs; x̄

(q)
s , P̄ (q)

s ) (B.65)

{τ̄ (q)
s }

Q
q=1 = τ̄ (j)

s (B.66)

where the component weights, means, and covariances are computed using the

splitting library given in Table 2.1.

w̄(q)
s = α̃qw̄

(j)
s (B.67)

x̄(q)
s = x̄(j)

s +
√
λrm̃qvr (B.68)

P̄ (q)
s = V ΛqV

T (B.69)

Λq = diag{λ1, . . . , σ̃
2
qλr, . . . , λL} (B.70)

3.E.ii. Compute the sigma points and entropy for each new component using Eqs. (B.53)-

(B.54).

3.F. Repeat for all components until time tk is reached.

3.G. Multiply component weights by the probability of survival.

w̄
(j)
k = pS,k(x

(j)
k )w̄

(j)
k (B.71)

3.H. Add process noise to the covariance and recompute sigma points for each component.

P̄
(j)
k = Qk + P̄

(j)
k (B.72)

χ̄
(j)
k =

[
x̄

(j)
k x̄

(j)
k + γ

√
P̄

(j)
k x̄

(j)
k − γ

√
P̄

(j)
k

]
L×(2L+1)

(B.73)

There are now J̄k components.
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4. Correction Step

4.A. Compute update information for each measurement to component

4.A.i. Compute the expected measurement and cross covariance for each component.

ζ
(j)
k = G(χ̄

(j)
k , tk) (B.74)

z̄
(j)
k =

2L∑
l=0

Wm
l ζ

(j)
k,l (B.75)

P (j)
xz =

2L∑
l=0

W c
l (χ̄

(j)
k,l − x̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (B.76)

4.A.ii. For measurement z
(i)
k ∈ Zk, i ∈ [1,mk], compute the measurement to component

likelihood.

P (i,j)
zz = R

(i)
k +

2L∑
l=0

W c
l (ζ

(j)
k,l − z̄

(j)
k )(ζ

(j)
k,l − z̄

(j)
k )T (B.77)

K
(i,j)
k = P (j)

xz [P (i,j)
zz ]−1 (B.78)

g
(i,j)
k = pg(z

(i)
k ; z̄

(j)
k , P (i,j)

zz ) (B.79)

4.B. Compute likelihood functions

Ψu
k [w,Z](n) =

min(mk,n)∑
j=0

(mk − j)!pκ(mk − j)Pnj+u
〈1− pD, ν〉n−(j+u)

〈1, ν〉n
σj({Λ(i)

k (w,Z)}mki=1)

(B.80)

Λ
(i)
k (w,Z) =

〈1, κk〉κk(z)
pD

Jk|k−1∑
j=1

w
(j)
k|k−1g

(i,j)
k

 (B.81)

n ∈ [1, . . . , nobj,max] u = 0, 1

An efficient way to compute the σj(·) coefficients is provided in Reference [49] P. 641.

4.C. Cardinality Update

pk(n) =
Ψ0
k[wk|k−1, Zk](n)pk|k−1(n)

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(B.82)

n ∈ [1, . . . , nobj,max]
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4.D. Missed Detections - Loop through all components j ∈ [1, J̄k].

4.D.i. Downweight components based on the probability of detection.

w
(j)
k =

〈Ψ1
k[wk|k−1, Zk], pX,k|k−1〉

〈Ψ0
k[wk|k−1, Zk], pX,k|k−1〉

(1− pD)w̄
(j)
k (B.83)

4.D.ii. Retain a priori component information.

x̂
(j)
k = x̄

(j)
k (B.84)

P
(j)
k = P̄

(j)
k (B.85)

χ
(j)
k = χ̄

(j)
k (B.86)

H
(j)
lin,k = H̄

(j)
lin,k (B.87)

τ
(j)
k = τ̄

(j)
k (B.88)

4.E. Detected Objects

4.E.i. Compute the updated mean and covariance, retain track label.

x̂
(iJ̄k+j)
k = x̄

(j)
k +K

(i,j)
k (z

(i)
k − z̄

(j)
k ) (B.89)

P
(iJ̄k+j)
k = P̄

(j)
k −K

(i,j)
k P (i,j)

zz [K
(i,j)
k ]T (B.90)

τ
(iJ̄k+j)
k = τ̄

(j)
k (B.91)

4.E.ii. Compute the updated sigma points and entropy.

χ
(iJ̄k+j)
k =

[
x̂

(iJ̄k+j)
k x̂

(iJ̄k+j)
k + γ

√
P

(iJ̄k+j)
k x̂

(iJ̄k+j)
k − γ

√
P

(iJ̄k+j)
k

]
L×(2L+1)

(B.92)

H
(iJ̄k+j)
lin,k =

1

2
log |2πeP

(iJ̄k+j)
k | (B.93)

4.E.iii. Compute the updated weights

w
(iJ̄k+j)
k = pDw

(j)
k|k−1g

(i,j)
k

〈Ψ1
k[wk|k−1, Zk\{z(i)}], pX,k|k−1〉
〈Ψ0

k[wk|k−1, Zk], pX,k|k−1〉
〈1, κk〉
κk(z(i))

(B.94)

There are now Jk,0 = (1 +mk)J̄k components.
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5. Merge and Prune GMM Components

5.A. Remove components whose weight is below a threshold. Discard information of com-

ponents that don’t meet the criteria.

w
(j)
k,1 = {w(j)

k,0 : w
(j)
k,0 ≥ Tprune ∗max(w

(j)
k,0)} (B.95)

5.B. Renormalize the weights for the current number of components Jk,1.

w
(j)
k,1 = w

(j)
k,1

∑Jk,0
i0

w
(i0)
k,0∑Jk,1

i1
w

(i1)
k,1

(B.96)

5.C. Merge components that are close together.

5.C.i. Set I = {1, . . . , Jk,1}.

5.C.ii. Repeat until I = {} :

j∗ = argmax(w
(j)
k,1) (B.97)

L = {i ∈ I : (x̂
(i)
k − x̂

(j∗)
k )T (P

(i)
k )−1(x̂

(i)
k − x̂

(j∗)
k ) ≤ Tmerge} (B.98)

w
(j)
k =

∑
l∈L

w
(l)
k,1 (B.99)

x̂
(j)
k =

1

w
(j)
k

∑
l∈L

w
(l)
k,1x̂

(l)
k (B.100)

P
(j)
k =

1

w
(j)
k

∑
l∈L

w
(l)
k,1[P

(l)
k + (x̂

(j)
k − x̂

(l)
k )(x̂

(j)
k − x̂

(l)
k )T ] (B.101)

χ
(j)
k =

[
x̂

(j)
k x̂

(j)
k + γ

√
P

(j)
k x̂

(j)
k − γ

√
P

(j)
k

]
L×(2L+1)

(B.102)

H
(j)
lin,k =

1

2
log |2πeP

(j)
k | (B.103)

τ
(j)
k = τ

(j∗)
k (B.104)

I = I\L (B.105)

5.C.iii. If there are more than Jmax components, keep only the Jmax highest weights.

Renormalize weights after pruning.

There are now Jk components.
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Information Gain Equations

C.1 Derivation of Rényi Divergence

Beginning with the general form of the Rényi divergence [66],

R(u) =
1

α− 1
log

∫
f1(X;u)αf0(X)1−αdX (C.1)

Writing out the set integral in terms of the Janossy densities gives

R(u) =
1

α− 1
log
∑
n≥0

1

n!

∫ [
j

(n)
1 ({x1, . . . ,xn};u)

]α [
j

(n)
0 ({x1, . . . ,xn})

]1−α
dx1 . . . dxn (C.2)

In the case of the CPHD filter, the multitarget PDF is modeled as an independent and identically

distributed (i.i.d.) cluster process, in which the Janossy density can be represented by a spatial

single object density, s(x), and a cardinality distribution. Note that s(x) defines a spatial density

for all objects that integrates to one over the single object state space, it is not a PDF representing

an individual object.

j(n)({x1, . . . ,xn}) = n! · p(n)

n∏
i=1

s(xi) (C.3)

Substitution into Eq. (C.2) yields

R(u) =
1

α− 1
log
∑
n≥0

1

n!

∫ [
n! · p1(n;u)

n∏
i=1

s1(xi;u)

]α [
n! · p0(n)

n∏
i=1

s0(xi)

]1−α

dxi (C.4)

Canceling the n! and rearranging terms produces

R(u) =
1

α− 1
log
∑
n≥0

p1(n;u)αp0(n)1−α
n∏
i=1

∫
s1(xi;u)αs0(xi)

1−αdxi (C.5)
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Each term in the product is equal, allowing it to be replaced by an exponent to produce the final

form of the CPHD Rényi divergence as given in Eq. (14) of Reference [66].

R(u) =
1

α− 1
log
∑
n≥0

p1(n;u)αp0(n)1−α
[∫

s1(x;u)αs0(x)1−αdx

]n
(C.6)

To apply the GMM approximation, note that the density s(x) is related to the PHD by

ν(x) = s(x)
∞∑
n=1

n · p(n) (C.7)

This allows the Rényi divergence to be written in terms of the cardinality and PHD function,

R(u) =
1

α− 1
log
∑
n≥0

(
p1(n;u)

Nn
1

)α(p0(n)

Nn
0

)1−α [∫
ν1(x;u)αν0(x)1−αdx

]n
(C.8)

where Nk is the expected target number. Note that in Ch. 3 a reduced cardinality distribution is

computed for components in the field of view. The weights of the components are truncated to a

maximum value of 0.999 in order to compute the multi-Bernoulli distribution for the cardinality. In

order for the equation above to normalize correctly, the expected target number must be computed

using the true component weights, Nk =
JFOV∑
j=1

wj , as opposed to using the truncated weights or

cardinality within the FOV.

The choice of α = 0.5 provides the best discrimination between PDFs [66, 30]. With this

selection and assuming a Gaussian mixture approximation of the PHD, the final equation is given

by

ν0(x) ≈
J0∑
i=1

wipg(x;mi, Pi) ν1(x;u) ≈
J1∑
j=1

wjpg(x;mj , Pj) (C.9)

R(u) ≈ −2 log
∑
n≥0

(
p1(n;u)

Nn
1

)1/2(p0(n)

Nn
0

)1/2

·

∫
 J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

dx


n

(C.10)

Ki,j = pg(mi;mj , Pi + Pj)

Pi,j =
[
P−1
i + P−1

j

]−1

mi,j = Pi,j

[
P−1
i mi + P−1

j mj

]
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Derivation of the PHD form is straightforward. The PHD filter assumes a Poisson distributed

number of targets, replacing the cardinality with p(n) =
e−NNn

n!
. Substituting in Eq. (C.8) gives

R(u) =
1

α− 1
log
∑
n≥0

(
e−N1

n!

)α(
e−N0

n!

)1−α [∫
ν1(x;u)αν0(x)1−αdx

]n
(C.11)

After rearranging terms, the expression can be simplified by making use of the identity ex =
∑
n≥0

xn

n!

and computing the logarithm.

R(u) =
1

α− 1
log e−N1αe−N0(1−α)

∑
n≥0

1

n!

[∫
ν1(x;u)αν0(x)1−αdx

]n
(C.12)

R(u) =
1

α− 1

[
−N1α−N0(1− α) +

∫
ν1(x;u)αν0(x)1−αdx

]
(C.13)

This yields the final form of the PHD Rényi divergence, as given in Eq. (18) of Reference [66].

R(u) = N0 +
α

1− α
N1 +

1

α− 1

∫
ν1(x;u)αν0(x)1−αdx (C.14)

Making use of the GMM approximation and setting α = 0.5 yields

R(u) ≈
J0∑
i=1

wi +

J1∑
j=1

wj − 2

∫  J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

dx (C.15)

C.2 Simplification of Single Target Case

In the case that a single target is present, the equations above can be simplified to produce

an analytic result. Both the PHD and CPHD forms require computing the following integral,

I =

∫
[w0w1K0,1 · pg(x;m0,1, P0,1)]1/2 dx (C.16)

where the subscripts are used to indicate quantities from the prior and posterior distributions as

opposed to GMM component indices. Using the PIMS approximation, the mean m1 = m0, and

the following simplification can be made.

K0,1 =
1√

|2π(P0 + P1)|
(C.17)
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Rearranging terms and writing out the Gaussian PDF explicitly gives

I =

(
w0 · w1√
|2π(P0 + P1)|

)1/2 ∫ (
1√
|2πP0,1|

exp

[
−1

2
(x−m0,1)TP−1

0,1 (x−m0,1)

])1/2

dx (C.18)

I =

(
w0 · w1√
|2π(P0 + P1)|

)1/2(
1√
|2πP0,1|

)1/2 ∫
exp

[
−1

4
(x−m0,1)TP−1

0,1 (x−m0,1)

]
dx (C.19)

The remaining integral has an analytic solution.∫
exp

[
−1

4
(x−m0,1)TP−1

0,1 (x−m0,1)

]
dx = |4πP0,1|1/2 (C.20)

Substituting and rearranging terms produces the final value of the integral.

I =

(
w0 · w1√
|2π(P0 + P1)|

)1/2(
1√
|2πP0,1|

)1/2

|4πP0,1|1/2 (C.21)

I =
√
w0w1

(
|4πP0,1|1/4 · |4πP0,1|1/4

|2π(P0 + P1)|1/4 · |2πP0,1|1/4

)
(C.22)

I =
√
w0w1

(
|4πP0,1|1/4

|π(P0 + P1)|1/4

)
(C.23)

I =
√
w0w1

(
|4P0,1|
|P0 + P1|

)1/4

(C.24)

This leads to the final form of the single target equations for Rényi divergence, where the PHD has

been approximated using a single Gaussian PDF.

RC ≈ −2 log
∑
n≥0

(
p1(n)

Nn
1

)1/2(p0(n)

Nn
0

)1/2

(w0w1)n/2
(
|4P0,1|
|P0 + P1|

)n/4
(C.25)

RP ≈ w0 + w1 − 2
√
w0w1

(
|4P0,1|
|P0 + P1|

)1/4

(C.26)

In the CPHD equation, it is necessary to compute the expected target number Nk using the true

weights or cardinality distribution in the case that w0 and w1 are not unity, i.e., do not assume

Nk = 1.

C.3 Computation of Numeric Integral

In the case that multiple targets are present, the integral must be computed numerically. An

appropriate technique is Monte Carlo integration, using importance sampling to reduce the number
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of points needed for a given level of accuracy. The integral is computed from

I =
1

NMC

NMC∑
m=1

f(xm)

p(xm)
(C.27)

where f(x) is the function to be integrated, p(x) is the sampling function, and NMC is the total

number of points sampled. For the GMM approximated Rényi divergence, the integrand is

f(x) =

 J0∑
i=1

J1∑
j=1

wiwjKi,jpg(x;mi,j , Pi,j)

1/2

(C.28)

The sampling function is chosen to produce a large number of points that contribute significantly

to the integral while precluding points that make little or no contribution. Choosing an appropriate

function is important to reduce the number of points needed, but any choice will produce a correct

result provided there are a sufficient number of points in every region where f(x) > 0. To compute

the Rényi divergence, the posterior PHD provides a good option, as it guarantees a large number

of points around the peaks of the function. Notably, it is a better choice than the prior PHD which

is more spread out. Points sampled from the prior PHD in regions where the posterior PHD is near

zero will not contribute to the integral of the product. The function must be normalized such that∫
p(x) = 1, yielding two similar alternatives.

p(x) =
1

J1

J1∑
j=1

pg(x;mj , Pj) (C.29)

p(x) =
1

N1

J1∑
j=1

wjpg(x;mj , Pj) (C.30)

where N1 =
J1∑
j=1

wj . The results presented in Ch. 3 are computed using Eq. (C.29) with a fixed

number of points for each GMM component, though it should be noted that Eq. (C.30) will generally

require fewer points by reducing the number needed for components where wj < 1. This feature

prompted the use of Eq. (C.30) to compute information gain in Ch. 4, which involved a large

number of low weight components as a result of the CAR IOD method. In testing, both methods

produced the same result, as expected.

In order to determine the appropriate number of points, the results of numerical integra-

tion are compared against the analytic solution for a single object case. One hundred trials are
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Figure C.1: Numerical Integration Test Case

conducted, in which the prior and posterior covariances are randomly generated, and the average

relative errors and execution times are plotted as a function of the number of points used. Figure

C.1 provides the results of the test case. The choice of NMC = 105 produces an average relative

error of approximately 0.5%, which is sufficiently accurate for the sensor tasking reward function.

It also requires significantly less time than using NMC = 106 and is therefore selected for all test

cases presented in this dissertation.

C.4 Interpreting Units of Information Gain

The output of computing Rényi divergence is a number given in units of nats, the conceptual

equivalent of bits but for base e logarithms instead of base 2. The objective function accounts for

changes in both the cardinality and PHD function, but does not readily admit a simple physical

interpretation for how much information is contained in a given measurement. The following anal-

ysis is included to demonstrate, at least to the order of magnitude, the information gain expected

for a simplified update to the multitarget PDF.

Assume a single object is present, represented by a single GMM component. Assume the

update produces w0 = w1 = 1, m0 = m1, and that the updated covariance can be defined as a
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scalar multiple, 0 < r ≤ 1, of the original, such that

P1 = rP0 (C.31)

In this case, the ratio

|4P0,1|
|P0 + P1|

=

(
(4r)p

(r + 1)2p

)
(C.32)

where p is the dimension of the covariance matrix. If there are no changes in the cardinality, the

expected information gain becomes

RC ≈ −2 log

(
(4r)p

(r + 1)2p

)1/4

(C.33)

For the 2D angles-only measurement, the information gain can therefore be computed as a function

of the ratio r, given in Figure C.2(a). From the figure, one natural unit of information gain

corresponds to approximately a factor of 10 reduction in the covariance.

(a) Covariance Ratio (b) Cardinality and Covariance

Figure C.2: Rènyi Divergence

This is an incomplete analysis, however, as changes in the cardinality also affect the expected

information gain. On the right, Figure C.2(b) provides the expected information gain for the case

where the initial GMM contains multiple components, which are merged into a single component

as part of the update. The cardinality for both the prior and posterior distributions is taken

to be a multi-Bernoulli distribution, computed from the component weights, which are evenly

distributed, i.e. wj = 1/J . The final covariance is computed by merging the original components
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and multiplying by the ratio r. The figure includes results for several values of the covariance

reduction ratio.

The blue curve shows the effect of merging components and changing the cardinality without

producing any changes in the covariance. For the case of a single initial component and no change

in the covariance, no information is gained, as expected. However, even for a small change in the

cardinality resulting from a reduction from 2 components to 1, the information gain increases to

nearly one natural unit. For the case of a factor of 10 reduction in the covariance, a change in

the number of components and associated cardinality can produce an expected information gain

greater than 2 nats.

Neither of these tests demonstrate the effects of a realistic measurement update on the ex-

pected information gain calculation, however they do provide a rough order of magnitude analysis

regarding the changes in cardinality and covariance that correspond to a natural unit of infor-

mation gain. For a more thorough analysis of the expected information gain due to simulated

measurements, please refer to the results of Chapter 4.



Appendix D

Probabilities for the CPHD Filter Birth Model

When implementing a measurement-based birth model for the CPHD filter, an important

consideration is the amount of probability mass to associate with new targets as they are introduced

to the filter. This appendix seeks to develop an approach to approximate the probability that a

measurement represents a new target, which is then used to weight the CAR GMM incorporated in

the birth model. The ratio of Gaussian likelihoods used for existing targets and the GMM clutter

model is similar to the probability functions developed in Reference [88] for occluded targets.

At time tk, the multitarget measurement set is represented by the RFS Zk = {z1, . . . ,zmk}.

Each measurement zi is assumed to represent at most one target, and must therefore originate

from an existing object, a new object, or a false alarm, producing the following constraint on the

probabilities of each.

pexist(zi) + pnew(zi) + pFA(zi) = 1 (D.1)

D.1 Computation of False Alarm Probability

Given the measurement set Zk and the cardinality and PHD of clutter, it is possible to

compute a probability that zi represents a false alarm.

pFA(zi|Zk) =

mk∑
m=1

pκ(m) · pFA(zi| mmk ) (D.2)

where pκ(·) is the clutter cardinality and pFA(zi| mmk ) is the probability that zi is a false alarm given

that there are m false alarms out of mk measurements, as computed from the clutter PHD. Note
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that by definition

pFA(zi| 0
mk

) = 0 pFA(zi|mkmk ) = 1 (D.3)

as they respectively represent the cases of zero and all false alarms. The probability that m > mk

measurements are false alarms is zero, producing the upper limit on the summation above.

D.1.1 Poisson Clutter Model

The standard clutter model assumes a Poisson number of false alarms distributed uniformly

in the field of view. The clutter cardinality and PHD are defined by

pκ(m) =
λmκ
m!

exp(−λκ) (D.4)

κ(z) = λκ · U(z) (D.5)

U(z) =


1/Vs if z ∈ FOV

0 if z /∈ FOV

(D.6)

where Vs is the sensor volume and λκ is the mean number of clutter returns each scan. Given mk

measurements, there are Cmkm subsets of m false alarms, each of which is equally likely. The false

alarm probability is determined from the sum of the subsets that contain zi,

pFA(zi| mmk ) =
1

Cmkm

∑
π⊆Zk:
|π|=m

1(zi) (D.7)

where 1(zi) is the indicator function

1(zi) =


1 if zi ∈ π

0 if zi /∈ π
(D.8)

There are Cmk−1
m−1 subsets of dimension m that contain zi. The probability is therefore given by,

pFA(zi| mmk ) =
Cmk−1
m−1

Cmkm
=

m

mk
(D.9)

which yields the full probability that zi is a false alarm.

pFA(zi|Zk) =

mk∑
m=1

pκ(m) · m
mk

(D.10)
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D.1.2 GMM Clutter Model

Alternately, the clutter PHD can be represented by a GMM, including the probability of

detection.

κ(z) =
J∑
j=1

p
(j)
D wjpg(z; z̄j , P

(j)
zz ) (D.11)

Applying the state-dependent probability of detection as described in Ch. 3 retains only terms

within the FOV, all of which are detected with the same constant value pD.

κ(z) = pD

JFOV∑
j=1

wjpg(z; z̄j , P
(j)
zz ) (D.12)

Similarly, the cardinality can be computed as a multi-Bernoulli distribution using components in

the FOV.

pκ(m) =

JFOV∏
j=1

(1− pDwj)

 · σm({ pDw1

1− pDw1
, . . . ,

pDwJFOV

1− pDwJFOV

})
(D.13)

The probability that measurement zi is a false alarm is computed by considering the measurement

likelihood, and computing a ratio from the measurement-to-component associations that include zi

over all possible measurement-to-component associations. As an example, consider the case m = 1

false alarm, and apply the state-dependent probability of detection calculation.

pFA(zi| 1
mk

) =

JFOV∑
j=1

pDwjpg(zi; z̄j , P
(j)
zz )

mk∑
l=1

JFOV∑
j=1

pDwjpg(zl; z̄j , P
(j)
zz )

(D.14)

Note that the constant pD term will cancel, and is therefore omitted going forward. For the case

m = 2, the number of successful trials are the choices of 2 out of mk measurements that contain

zi. The abbreviation gij = pg(zi; z̄j , P
(j)
zz ) is adopted for the measurement likelihood.

pFA(zi| 2
mk

) =

mk∑
l=1
l 6=i

JFOV∑
j=1

(wjgij + wjglj)

mk∑
q=1

mk∑
l=1
l 6=q

JFOV∑
j=1

(wjgqj + wjglj)

(D.15)

The terms in the above equation can be regrouped. There are (mk − 1)! measurement pairs that

contain the term gij , while the remaining glj : l 6= i terms only appear (mk − 2)! times in the
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numerator. By extension of the first statement, each glj term appears (mk − 1)! times in the

denominator.

pFA(zi| 2
Zk

) =

(mk − 1)!
JFOV∑
j=1

wjgij + (mk − 2)!
mk∑
l=1
l 6=i

JFOV∑
j=1

wjglj

(mk − 1)!
mk∑
l=1

JFOV∑
j=1

wjglj

(D.16)

The equation can now be generalized for m false alarms.

pFA(zi| mmk ) =

Cmk−1
m−1

JFOV∑
j=1

wjgij + Cmk−2
m−2

mk∑
l=1
l 6=i

JFOV∑
j=1

wjglj

Cmk−1
m−1

mk∑
l=1

JFOV∑
j=1

wjglj

(D.17)

The binomial coefficients can be canceled to produce the final form of the equation, written with

the measurement likelihoods included explicitly.

pFA(zi| mmk ) =

JFOV∑
j=1

wjpg(zi; z̄j , P
(j)
zz ) + m−1

mk−1

mk∑
l=1
l 6=i

JFOV∑
j=1

wjpg(zl; z̄j , P
(j)
zz )

mk∑
l=1

JFOV∑
j=1

wjpg(zl; z̄j , P
(j)
zz )

(D.18)

In any case where m < 2, the term m−1
mk−1 is taken to be zero as a result of the definition of the

original binomial coefficient, see [50], Eq. 2.1.

Cni =


n!

i!(n−i)! if 0 ≤ i ≤ n

0 if otherwise

(D.19)

The final probability for the GMM clutter model is computed as before.

pFA(zi|Zk) =

mk∑
m=1

pκ(m) · pFA(zi| mmk ) (D.20)

D.1.3 Combined Clutter Model

In the case that both the Poisson and GMM clutter models are used, the clutter PHD is

given by the sum.

κ(z) = λκ · U(z) + pD

JFOV∑
j=1

wjpg(z; z̄j , P
(j)
zz ) (D.21)
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The combined cardinality is the convolution of the Poisson and GMM cardinalities,

pκ(m) = (pκ,p ∗ pκ,g)(m) =
m∑
i=0

pκ,p(i)pκ,g(m− i) (D.22)

where the subscripts p and g denote the Poisson and GMM model respectively. The probability

pFA(zi| mmk ) is computed from the individual contributions of the Poisson and GMM clutter. In the

case that m = 1 false alarm is present, it may be due to either the Poisson or GMM model.

pFA(zi| 1
mk

) =
pκ,p(1)pκ,g(0)

pκ,p(1)pκ,g(0) + pκ,p(0)pκ,g(1)
pFA,p(zi| 1

mk
)

+
pκ,p(0)pκ,g(1)

pκ,p(1)pκ,g(0) + pκ,p(0)pκ,g(1)
pFA,g(zi| 1

mk
) (D.23)

To develop the more general form, consider the case of 3 measurements, Zk = {z1, z2, z3}, 2 of

which are false alarms.

pFA(z1| 2
mk

) =
pκ,p(2)pκ,g(0)

2∑
l=0

pκ,p(l)pκ,g(2− l)
pFA,p(z1| 2

mk
)

+
pκ,p(1)pκ,g(1)

2∑
l=0

pκ,p(l)pκ,g(2− l)
pFA,pg(z1| 2

mk
)

+
pκ,p(0)pκ,g(2)

2∑
l=0

pκ,p(l)pκ,g(2− l)
pFA,g(z1| 2

mk
) (D.24)

The middle term accounts for the possibility of 1 false alarm due to each model, and requires further

examination. Given that there is 1 Poisson false alarm, there is an equal probability that it is z1,

z2, or z3. In the case that z1 is the Poisson false alarm, pFA(z1) = 1. In the case that one of the

other measurements is the Poisson false alarm, pFA(z1) is computed from the GMM model, with

the Poisson false alarm removed from the measurement set. The probability is therefore given by

pFA,pg(z1| 2
mk

) =
1

3
· 1 +

1

3
· pFA,g

(
z1| 1
|Zk\{z2}|

)
+

1

3
· pFA,g

(
z1| 1
|Zk\{z3}|

)
(D.25)

The general form is

pFA(zi| mmk ) =
m∑
j=0

pκ,p(j)pκ,g(m− j)
m∑
l=0

pκ,p(l)pκ,g(m− l)

 1

Cmkj

∑
π⊆Zk:
|π|=j

(
1(zi) + pFA,g(zi| m−j|Zk\π|)

) (D.26)
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where the convention pFA(zi|00) = 0 is applied. Using Eq. (D.9), the equation may be rewritten

equivalently as

pFA(zi| mmk ) =
m∑
j=0

pκ,p(j)pκ,g(m− j)
m∑
l=0

pκ,p(l)pκ,g(m− l)

 j

mk
+

1

Cmkj

∑
π⊆Zk:
|π|=j

pFA,g(zi| m−j|Zk\π|)

 (D.27)

The final probability for the combined clutter model is computed as before.

pFA(zi|Zk) =

mk∑
m=1

pκ(m) · pFA(zi| mZk ) (D.28)

D.2 Computation of New Target Probability

The previous section can be extended to compute the probability that a measurement repre-

sents either a false alarm or an existing target by including the GMM model of existing targets with

the clutter model. As before, the cardinality of existing targets is computed as a multi-Bernoulli

distribution over components in the FOV.

pe(m) =

JFOV∏
j=1

(1− pDwj)

 · σm({ pDw1

1− pDw1
, . . . ,

pDwJFOV

1− pDwJFOV

})
(D.29)

The combined GMM cardinality is the convolution of the clutter and existing GMM cardinalities,

pκg,e(m) = (pκ,g ∗ pe)(m) =
m∑
i=0

pκ,g(i)pe(m− i) (D.30)

The conditional probability is computed from Eq. (D.27), with the GMM model including all clutter

and existing components in the FOV.

pFAE(zi| mmk ) =

m∑
j=0

pκ,p(j)pκg,e(m− j)
m∑
l=0

pκ,p(l)pκg,e(m− l)

 j

mk
+

1

Cmkj

∑
π⊆Zk:
|π|=j

pFA,ge(zi| m−j|Zk\π|)

 (D.31)

where pFAE(zi| mmk ) denotes the probability that a measurement originates from a false alarm or an

existing target. The final probability is computed from the sum.

pFAE(zi|Zk) =

mk∑
m=1

pκp,g,e(m) · pFAE(zi| mmk ) (D.32)

The probability that zi represents a new target can be determined from the constraint in Eq. (D.1).

pnew(zi|Zk) = 1− pFAE(zi|Zk) (D.33)



Appendix E

Spawning Model for the CPHD Filter

This appendix presents the development of a simple CPHD spawning model that can be used

to initiate tracks for new objects in the filter. Spawning models assume that new targets originate

from known targets, and therefore provide a useful alternative to the target birth model discussed

in Chapter 4 because they do not require a solution to the IOD problem. Instead, tracks for new

objects are initialized using the estimated state of the original object, with a small deviation added

to the state. The spawning model is also highly applicable to the orbital debris problem, as many

new objects result from satellite breakups, collisions, or mission-planned separation events, all of

which produce new objects in the vicinity of known objects.

The following sections provide a limited mathematical background in Finite Set Statistics and

derivation of a simple CPHD spawning model, valid for the assumption that spawning is a Poisson

process. A more thorough treatment of the subject is presented in Bryant et al. [8], which provides

a detailed derivation based on point process theory and includes several variations of spawning

processes. The work presented here is the direct output of a course taught by Dr. Daniel Clark,

and with inputs from Daniel Bryant, Nicola Baresi, In-Kwan Park, Illán Garćıa Amor, and Nikhil

Shetty, all of whom I thank for their contributions.

E.1 Mathematical Background

The derivation in this appendix makes use of Probability Generating Functionals (PGFls),

which are related to the PHD and cardinality distribution through derivatives. The n-th order
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functional derivative is taken with respect to a function in n directions, similar to the Gâteaux

derivative. Given a PGFl G[h], the PHD is found by taking the first derivative and setting h = 1.

ν(x) = δG(h; δx)|h=1 (E.1)

To determine the cardinality from a PGFl, the n-th order Janossy density is first computed by

taking the n-th order derivative and setting h = 0.

j(n)({x1, . . . ,xn}) = δnG(h; δx1 , . . . , δxn)|h=0 (E.2)

Recalling the previous definition, Eq. (2.48), the cardinality of n targets is computed by integrating

over the multitarget state space.

p(n) =
1

n!

∫
j(n)({x1, . . . ,xn})dx1 . . . dxn (E.3)

In order to compute the derivatives above, the chain rule and product rule for functional derivatives

need to be defined. The chain rule is based on Faá di Bruno’s formula [13, 8].

δn(F ◦G)(h; η1, . . . , ηn) =
∑

π∈Π(η1,...,ηn)

δ|π|F (G(h); δ|w|G(h; ξ : ξ ∈ w) : w ∈ π) (E.4)

The product rule is based on Liebniz’s formula [12, 8].

δn(F (h)G(h); η1, . . . , ηn) =
n∑
k=0

δ(n−k)F (h;π)δkG(h; {η1, . . . , ηn}\π) (E.5)

π ∈ {η1, . . . , ηn}

|π| = n− k

Given the above definition of Janossy density, any PGFl may be approximated with the following

equation, even if its exact form is not known [13].

G(h) =

∞∑
n=0

1

n!

∫ n∏
i=1

h(xi)j
(n)({x1, . . . ,xn})dx1 . . . dxn (E.6)

The n-th order derivative of this approximation is given by [13]

δnG(h; η1, . . . , ηn) =
∑
m≥n

1

(m− n)!

∫
η1(x1) . . . ηn(xn)

m∏
i=n+1

h(xi)j
(m)({x1, . . . ,xm})dx1 . . . dxm

(E.7)
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E.2 Derivation of Poisson Spawning Model

With the above definitions, it is possible to derive the cardinality prediction for the CPHD

filter with spawning. The prediction of new GMM components to represent spawned objects is the

same as for the PHD filter, provided in Vo et al. [80], and is therefore not included. Implementation

details are discussed in the following section. This section provides the cardinality prediction for a

Poisson spawning model, with the following additional assumptions:

1. Target birth is ignored.

2. Probability of survival is not state dependent, pS(x) = pS .

3. Target survival is modeled as a Bernoulli process.

The predicted PGFl is assumed to take the form

Gk|k−1(h) = Gk−1(GM (h|·)Gβ(h|·)) (E.8)

and the target survival and spawning PGFls are defined by

GM (h|x) = 1− pS + pS

∫
fk|k−1(y|x)h(y)dy (E.9)

Gβ(h|x) = exp

[
β

(∫
b(y|x)h(y)dy − 1

)]
(E.10)

The density fk|k−1(y|x) is the Markov transition density of individual targets, β is the Poisson

mean rate for spawning, and spawned targets are distributed according to b(y|x). For simplicity,

the substitution Gc(h|x) = GM (h|x)Gβ(h|x) is used at times.

To compute the Janossy density, find the n-th order derivative of Gk|k−1(h) and set h = 0.

The first step is to apply the chain rule, Eq. (E.4).

δnGk|k−1(h; δx1 , . . . , δxn)|h=0 =
∑

π∈Π(δx1 ,...,δxn )

δ|π|Gk−1

[
Gc(0|·); δ|w|Gc(0|·;w) : w ∈ π

]
(E.11)

The exact form of the prior PGFl Gk−1(·) is not known, so it is approximated with Eq. (E.6).

The derivative is then given by Eq. (E.7), with the following substitutions for the function h and
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directions ηi.

h(xi) = Gc(0|·) = e−β(1− pS) (E.12)

ηi(xi) = δ|wi|Gc(0|xi;wi) (E.13)

The Janossy density is now given by

j
(n)
k|k−1({x1, . . . ,xn}) =

∑
π∈Π(δx1 ,...,δxn )

∑
m≥|π|

1

(m− |π|)!
(E.14)

×
∫
δ|w1|Gc(0|x1;w1) . . . δ|w|π||Gc(0|x|π|;w|π|)

×
m∏

l=|π|+1

[
e−β(1− pS)

]
j

(m)
k−1({x1, . . . ,xm})dx1 . . . dxm

Assuming the targets are independent and identically distributed (i.i.d.), the prior Janossy density

j
(m)
k−1(·) can be replaced by

j
(m)
k−1({x1, . . . ,xm}) = m! · pk−1(m)

m∏
j=1

sk−1(xj) (E.15)

Substituting and reorganizing terms produces

j
(n)
k|k−1({x1, . . . ,xn}) =

∑
π∈Π(δx1 ,...,δxn )

∑
m≥|π|

m!

(m− |π|)!
pk−1(m) (E.16)

×
∫ |π|∏

i=1

δ|wi|Gc(0|xi;wi)

×
m∏

l=|π|+1

e−β(1− pS)
m∏
j=1

sk−1(xj)dxj

The final product has terms in the range j ∈ [1,m] which may be split among the first two products,

which cover the ranges i ∈ [1, |π|] and l ∈ [|π|+ 1,m] respectively. Additionally, because
∏

and
∫

are linear operators, their order may be switched. The equation can therefore be rewritten as

j
(n)
k|k−1({x1, . . . ,xn}) =

∑
π∈Π(δx1 ,...,δxn )

∑
m≥|π|

m!

(m− |π|)!
pk−1(m) (E.17)

×
|π|∏
i=1

[∫
δ|wi|Gc(0|xi;wi)sk−1(xi)dxi

]

×
m∏

l=|π|+1

[∫
e−β(1− pS)sk−1(xl)dxl

]
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The derivative δ|wi|Gc(0|·;wi) is found by applying the product rule, Eq. (E.5). At this point, all

derivatives will be given in terms of the n-th order and appropriate substitutions will be made later.

δn(GMGβ)(h|·;w) =

n∑
k=0

δ(n−k)GM (h;π)δkGβ(h; {δx1 , . . . , δxn}\π) (E.18)

π ∈ {δx1 , . . . , δxn}

|π| = n− k

Given the Bernoulli target survival process, only two terms from the summation are needed. This

can be seen from the derivatives of Eq. (E.9).

δ(n−k)GM (h;π) =



1− pS if n− k = 0

pS · fk|k−1(x|·) if n− k = 1

0 if n− k > 1

(E.19)

Therefore only the terms k = n and k = n− 1 are retained. The derivative in Eq. (E.18) becomes

δn(GMGβ)(h|·;w)|h=0 =
[
GM (h|·)δnGβ(h; δx1 , . . . , δxn) + δGM (h;π)δ(n−1)Gβ(h; {δx1 , . . . , δxn}\π)

]
h=0

(E.20)

The second term must consider all subsets {δx1 , . . . , δxn}\π and since |π| = 1, can be replaced by

the summation

δGM (h;π)δ(n−1)Gβ(h; {δx1 , . . . , δxn}\π) =
n∑
i=1

δGM (h; δxi)δ
(n−1)Gβ(h; {δx1 , . . . , δxn}\δxi) (E.21)

The following individual derivatives are used to simplify Eqs. (E.20)-(E.21).

GM (h|·)|h=0 = 1− pS

δnGβ(h; δx1 , . . . , δxn)|h=0 = βne−β
n∏
i=1

b(xi|·)

δGM (h; δxi)|h=0 = pS · fk|k−1(xi|·)

δ(n−1)Gβ(h; {δx1 , . . . , δxn}\δxi)|h=0 = βn−1e−β
n∏
j=1
j 6=i

b(xj |·)
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The final result of applying the product rule is the n-th order derivative

δn(GMGβ)(h|·;w)|h=0 = βne−β(1− pS)
n∏
i=1

b(xi|·) + βn−1e−βpS

n∑
i=1

fk|k−1(xi|·)
n∏
j=1
j 6=i

b(xj |·) (E.22)

Returning to the Janossy density Eq. (E.17), and again switching the order of
∏

and
∫

where

appropriate produces

j
(n)
k|k−1({x1, . . . ,xn}) =

∑
π∈Π(δx1 ,...,δxn )

∑
m≥|π|

m!

(m− |π|)!
pk−1(m)

×
|π|∏
i=1

[
β|wi|e−β(1− pS)

|wi|∏
j=1

∫
b(xj |xi)sk−1(xi)dxi

+ β|wi|−1e−βpS

|wi|∑
j=1

∫
fk|k−1(xj |xi)

|wi|∏
l=1
l 6=j

b(xl|xi)sk−1(xi)dxi

]

×
m∏

l=|π|+1

[
e−β(1− pS)

∫
sk−1(xl)dxl

]
(E.23)

Assume that all the distributions fk|k−1(·), b(·), and sk−1(·) are Gaussian. From Lemma 1 in

Reference [80], the integral of a product of Gaussian distributions is another Gaussian distribution.

The following simplifications can therefore be made.∫
b(xj |xi)sk−1(xi)dxi = pg(xj) (E.24)∫

fk|k−1(xj |xi)
|wi|∏
l=1
l 6=j

b(xl|xi)sk−1(xi)dxi =

|wi|∏
l=1
l 6=j

pg(xj) (E.25)

∫
sk−1(xl)dxl = 1 (E.26)

The final Janossy density is therefore

j
(n)
k|k−1({x1, . . . ,xn}) =

∑
π∈Π(δx1 ,...,δxn )

∑
m≥|π|

m!

(m− |π|)!
pk−1(m)

×
|π|∏
i=1

[
β|wi|e−β(1− pS)

|wi|∏
j=1

pg(xj) + β|wi|−1e−βpS

|wi|∑
j=1

|wi|∏
l=1
l 6=j

pg(xj)

]

×
m∏

l=|π|+1

[
e−β(1− pS)

]
(E.27)
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The cardinality is computed from Eq. (E.3), which involves integrating over the multitarget state

space. The only terms with dependency on the state are the Gaussian distributions, which are

integrated out as follows:

|wi|∏
j=1

∫
pg(xj)dxj =

|wi|∏
j=1

1 = 1 (E.28)

|wi|∑
j=1

|wi|∏
l=1
l 6=j

∫
pg(xj)dxj =

|wi|∑
j=1

1 = |wi| (E.29)

The predicted cardinality is therefore

pk|k−1(n) =
1

n!

∫
j

(n)
k|k−1({x1, . . .xn})dx1 . . . dxn

pk|k−1(n) =
∑

π∈Π(δx1 ,...,δxn )

∑
m≥|π|

m!

n!(m− |π|)!
pk−1(m) (E.30)

×
|π|∏
i=1

[
β|wi|e−β(1− pS)︸ ︷︷ ︸

Spawn and Die

+ |wi|β|wi|−1e−βpS︸ ︷︷ ︸
Spawn and Survive

]

×
m∏

l=|π|+1

[
e−β(1− pS)︸ ︷︷ ︸
Target Death

]
: wi ∈ π

E.3 Implementation and Results

To demonstrate the approach, a simulation is included, in which one object is tracked and

two new objects are added. The simulation follows the same basic structure as Ch. 2, using dense

measurements over a 12 hour window, and with objects randomly initialized near the EchoStar1

satellite. At the beginning of the observation window, one object is present, and two spawned

objects are added at the two hour mark. The filter is assumed to have perfect knowledge of the

time of the spawning event and the filter parameters are the same as used in Ch. 2, with the

exception that there are no missed detections or clutter measurements. While this is an overly

idealized case for SSA, it demonstrates that the spawning model functions correctly.

The cardinality prediction makes use of Eq. (E.30) with a mean rate of β = 2 spawned targets

and no target birth. With this prediction for cardinality, the PHD prediction need only add one

GMM component for each new target, near the original target and offset by some deviation in
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the state vector. In this simplified scenario, the deviation in state vector is assumed to be known

exactly, which is unrealistic in general, but again serves to demonstrate the functionality of the

approach.

(a) CPHD Spawning OSPA (b) CPHD Spawning OSPA Close Up

Figure E.1: CPHD Spawning OSPA Results

Figure E.1 provides the OSPA results for the spawning test case. At the two hour mark,

there is an increase in the state errors due to the new objects, resulting in a position error of 70

km. By the end of the observation window, the filter has converged to estimation errors of around

200 m, which is similar to that observed in the Ch. 2 simulations.

(a) CPHD Spawning Components (b) CPHD Spawning Cardinality

Figure E.2: CPHD Spawning Cardinality Results

Figure E.2 provides results related to the estimated number of objects and cardinality. The
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filter is quickly able to identify the correct number of objects and converges to using a single GMM

component to represent each object. The extraneous components at the time of target spawning

are due to the AEGIS implementation, in which the propagation step is split into smaller time

intervals and spawning GMM components are generated in each of the shorter intervals, instead

of only once at the end. This is an implementation choice, and could be changed in the future,

however, the filter quickly corrects itself and converges to three components. In longer data gaps,

if the time of spawning is not known, it may be best to assume spawning events at each of the

intermediate times and allow the filter to update when measurements are received, as is the case

here. The cardinality prediction and correction function as desired, immediately identifying three

objects after the spawning event.

While overly simplified, this simulation demonstrates that the cardinality prediction equation

derived in Eq. (E.30) can be used to model new targets in the CPHD filter. Extension of this method

to more realistic spawning models has already been undertaken [8], and offers a promising direction

for future research. The approach may provide advantages over IOD techniques by using knowledge

of existing object states to quickly and accurately initiate tracks for newly generated objects in

orbit.


