
Parametric Heap Abstraction for Dynamic Language

Libraries

by

Arlen Cox

B.S., University of the Pacific, 2005

M.S., University of Colorado Boulder, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical, Computer, and Energy Engineering

2014



This thesis entitled:
Parametric Heap Abstraction for Dynamic Language Libraries

written by Arlen Cox
has been approved for the Department of Electrical, Computer, and Energy Engineering

Prof. Bor-Yuh Evan Chang

Prof. Xavier Rival

Prof. Sriram Sankaranarayanan

Prof. Anders Møller

Prof. Jeremy Siek

Prof. Fabio Somenzi

Prof. Marc Pouzet

Prof. Jérôme Feret

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



Cox, Arlen (Ph.D., Computer Engineering)

Parametric Heap Abstraction for Dynamic Language Libraries

Thesis directed by Prof. Bor-Yuh Evan Chang, Prof. Xavier Rival, and Prof. Sriram Sankaranarayanan

Abstract For commercial development, dynamic languages are growing in popularity. Conse-

quently, dynamic language developers must consider the correctness of their code. Deployment of

correct or sufficiently correct code is critical to the success and adoption of that code. However, it

is challenging to ensure the correctness of dynamic language code when it is a library. Inputs to

dynamic language libraries are often not simple values. They can also be open objects, which permit

adding, removing, and iterating over attribute names, and they can be functions that may be called.

Furthermore, the result of running library functions on objects is often new objects derived from the

input objects.

To ensure the correctness of dynamic language libraries, this dissertation uses static analysis.

Static analysis is typically used to infer facts about programs’ values, but in these dynamic language

libraries, values can be objects and functions. These objects may be unknown and thus have an

unknown set of attribute names because they are inputs or these objects may be iteratively derived

from other objects. Functions may be stored, called, or wrapped in other functions, regardless of if

they are known or not. A static analysis for dynamic language libraries must handle these cases.

To support static analysis of libraries, this dissertation introduces local heap abstractions

suitable for representing parts of memory that library code may affect. These abstractions build

upon abstractions for sets that enable representing relations between attribute names of otherwise

unknown objects. Furthermore, the local reasoning is utilized to abstract the effect of calling

unknown functions.

The precision of these abstractions are demonstrated on a range of small, but complex

JavaScript-inspired examples. The examples are extracted from libraries such as Traits.js and Google

Closure.
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Résumé Dans le développement de logiciels, les langages dynamiques sont de plus en plus utilisés.

Les développeurs doivent s’assurer de la correction des leurs codes. Le déploiement de code correct

ou d’un niveau de qualité suffisant est essentiel au succès du code. Cependant, il est difficile de

garantir le correction du code écrit dans un langage dynamique lorsqu’il s’agit d’une bibliothèque.

Les paramètres des fonctions des bibliothèques des langages dynamiques sont souvent des valeurs

complexes. Ils peuvent être des objets ouverts, qui permettent l’ajout et la suppression de noms,

ainsi que l’itération sur des noms d’attributs, et ils peuvent être des fonctions qui peuvent être

appliquées. En outre, le résultat de l’application d’une fonction de la bibliothèque à des objets est

souvent un nouvel objet provenant des arguments.

Pour s’assurer de la correction des bibliothèques pour les langages dynamiques, cette thèse

s’appuie sur l’analyse statique. L’analyse statique est généralement utilisée pour déduire des

propriétés des valeurs produites par les programmes. Toutefois, dans ces bibliothèques des langages

dynamiques, les valeurs peuvent être des objets et des fonctions. Lors de l’analyse, ces objets peuvent

être inconnus et ont un ensemble inconnu de noms d’attributs parce qu’ils sont des paramètres ou

parce que ces objets peuvent être itérativement dérivés d’autre objets. Les fonctions peuvent être

stockées, appliquées, ou incluses dans d’autres fonctions, indépendamment de s’elles sont connues ou

non. Une analyse statique pour les bibliothèques des langages dynamiques doit fonctionner dans de

tels cas.

Pour améliorer l’analyse statique des bibliothèques, cette thèse étudie des abstractions du

tas local, appropriées pour la représentation des parties du tas que le code de la bibliothèque peut

modifier. Ces abstractions sont construites sur des abstractions pour les ensembles qui permettent

d’exprimer les relations entre les noms d’attributs des objets inconnus par ailleurs. En outre, les

abstractions du tas local permettent de représenter l’effet de l’application de fonctions inconnues.

La précision de l’abstraction est démontrée sur une gamme d’exemples JavaScript qui sont

petits mais complexes. Les exemples sont extrait de bibliothèques telles que Traits.js et Google

Closure.



Dedication

To Jenny



vi

Acknowledgements

Thank you from the bottom of my heart to everyone who helped me prepare for and write my

dissertation. It has been an incredibly challenging and rewarding experience and I would not have

made it through without the immeasurable support of my advisors, friends, and family. First, thank

you to my advisors Evan, Xavier, and Sriram. You taught me the ropes, got me excited about static

analysis, and generally motivated my work from beginning to end. I owe my style to their extensive

tutelage, proofreading, and constructive criticism. Thank you Aaron for getting me interested in

formal methods. You spotted my interest in formal techniques before I even knew what they were.

You taught me logic and your view of the world as logic carries on in my work today. Also, thanks

to Josh, Samin, and Christoph for the internship at Microsoft and for getting me out of the biggest

slump of my graduate studies. You had hope and faith in me when I did not and continue to support

and encourage me to this day.

Thank you to my friends from both Colorado and Paris: Aleks, Caterina, Dan, Devin, Geoff,

Huisong, Jiangchao, Joe, Jonathan, Pippijn, Sam, and Yi-Fan. You were there to listen to my ideas,

challenge me to do my best work, and to help me out of binds.

Thank you to my family for supporting me through this. To my parents, you were there to

talk to me whenever I needed to feel better. You encouraged me through the whole process and

guided me to make the right decisions. To Jenny, your never-ending love and support allowed me to

make it through some of toughest challenges of my life. You loved me every day no matter where

I was in the world and that by itself was enough get me through each challenging day. You were

willing to dive in and help when I did not know what to do. I love you so much for this.



Contents

Chapter

1 Introduction 1

1.1 Bug Elimination in Dynamic Language Libraries without Clients . . . . . . . . . . . 3

1.2 The Challenge and Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Handling Non-deterministic Inputs to Libraries . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Motivation: JavaScript Library Verification without Client Code 15

2.1 Class Library Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Implementing the JavaScript Class Library . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Analyzing the JavaScript Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Overview: Analysis of JavaScript Libraries 22

3.1 Open-Object-Focused JavaScript Language . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Real-World Open-Object-Focused JavaScript . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Abstraction: Representation of Program Facts . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Example Analysis: JavaScript Class Implementation . . . . . . . . . . . . . . . . . . 33

3.4.1 Unknown Attribute Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Object Attribute Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Set Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



viii

3.4.4 Unknown Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5 Bringing the Abstractions Together . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Heap Abstraction: Separation Logic with Open Objects 43

4.1 Abstract Interpretation Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Representation: Heap with Open Objects . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Single-State Heap with Open Objects . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Two-State Heap with Open Objects . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Materialization with Set Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Reading and Writing in Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Automatic Invariant Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Heap with Open Objects Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Function Abstraction: Desynchronized Separation 79

5.1 Representation of Desynchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Desynchronization with Reachability-based Frame Inference . . . . . . . . . . . . . . 82

5.3 Introduction Heuristics and Resynchronization . . . . . . . . . . . . . . . . . . . . . 85

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Desynchronized Separation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Discussion of Combined Analysis 89

6.1 Implementing the Combined Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Single-State HOO Performance/Precision . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Two-State HOO with Desynchronization . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Case Study: Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 Case Study: Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Boundaries of Analysis and Future Improvements . . . . . . . . . . . . . . . . . . . . 102



ix

7 Set Abstraction: Relational, First-Class Sets 106

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Set Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 QUIC Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.4 Lazy Inference Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 Domain Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.8 Summary of QUIC Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusions and Future Work 138

Bibliography 146

Appendix

A Full Example Analysis 152

B Detailed Proofs 159

B.1 HOO Materialization Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.2 HOO Transfer Function Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.3 HOO Join Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



x

B.4 HOO Inclusion Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.5 Desynchronization Introduction Soundness . . . . . . . . . . . . . . . . . . . . . . . . 166

B.6 QUIC Graphs Inference Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.7 QUIC Graphs Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C Inclusion Algorithm 169

D Detailed Tests for Single-State HOO and TAJS 172

E Detailed Tests for Two-State HOO with Attribute/Value Trackers and Desynchronization 176

F Detailed Tests for QUIC Graphs 187



Chapter 1

Introduction

Late bugs are bad and early bugs are good. In fact, studies have shown that the cost of

fixing a software bug before deploying it to users is from 5 to 200 times cheaper than fixing a bug

after deployment [BP88, BB01]. There are many reasons for this cost disparity, including the cost

of redistributing the patched software as well as the cognitive effort to modify an already mostly

working system to accommodate a fix. Additionally, the more widely deployed a piece of software is,

the more costly it is to make changes: users of the software may depend on subtle behaviors and

thus modifications may break compatibility. If compatibility is broken, users may choose not to use

the fixes and thus may experience losses due to already fixed bugs, leading to mistrust. In short,

software should be developed to optimize the total cost of development, meaning that heavily used

software should be carefully developed to ensure that not too many bugs occur after deployment.

Unfortunately, it’s not just whole programs that have bugs. Libraries have bugs, too. When

bugs occur in libraries, the cost of fixing them after deployment goes up because there are multiple

layers of fixes required. For example, the Heartbleed OpenSSL bug1 , which allowed unauthorized

access to sensitive information transmitted over an encrypted connection, demonstrated these high

costs with respect to a library. Even after the bug was fixed in OpenSSL, all of the client software

had to update their version of OpenSSL and then redeploy to their clients. It is not always cost

effective to do this and thus even months after the OpenSSL patch was released, 97 percent of

major servers remain vulnerable [Ven14]. Additionally, there is now significant mistrust of OpenSSL,
1 http://heartbleed.com/
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leading to two derivative versions LibreSSL and BoringSSL, along with increased popularity of

alternatives PolarSSL and MatrixSSL.

What is a well-intentioned library developer (henceforth developer) to do? She may wish

to create robust libraries that will not suffer from the problems of OpenSSL, but this is not easy

to achieve. The developer must simultaneously balance not having too many bugs with actually

shipping a library. To do so, a good approach used by others is to turn to automated techniques.

For example, researchers have created a special version of PolarSSL that has been verified to be free

of a number of common vulnerabilities (such as buffer overflows) using custom built static analysis2 .

Unfortunately, even well intentioned developers may run into difficulties if automated techniques are

unavailable or underdeveloped for their languages of choice as is the case with the popular [Pau07]

dynamic languages.

A dynamic language is a programming language that has features for and encourages the use

of run-time modification of program structures. For example, dynamic languages have open objects

— objects where attributes (field, property, etc.) names are first class and can be mutated, added

to objects, removed from objects, and iterated over. Also dynamic languages do not check types

before running the program and often do not require fixed types for any variable at any point in the

program. Additionally, dynamic languages typically combine features from both object-oriented and

functional programming languages. They are imperative and encourage mutation of data structures

and variables rather than reallocation with sharing and binding. Simultaneously, however, they

offer first-class functions with closures so that enclosing (mutable) environments are captured along

with functions for later use. Examples of dynamic languages include JavaScript, Python, Lua, and

Ruby. This dissertation focuses on a dynamic-language-inspired core calculus that offers many of

the dynamic-language-specific behaviors from all of the dynamic languages.
2 http://trust-in-soft.com/polarssl-verification-kit/
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1.1 Bug Elimination in Dynamic Language Libraries without Clients

Regardless of whether the language is dynamic or not, the goal of a library developer is to

produce a robust, reusable library. A library that is riddled with bugs will likely not be widely

adopted and will certainly not be robust. Consequently, the challenge is to identify bugs prior to

deploying the library to boost confidence in the library and thus allow it to be heavily reused.

Late Library 

Bug Found

Create Test 
Suite

Create 
Library

Test
Library

Deploy 
Library

Create Test 
Suite

Create 
Program

Test
Program

Deploy 
Program

Early Library Bug Found

Program Bug Found

Library Developer Process Library User Process

Figure 1.1 – If a library is deployed before it is free of bugs, late bugs may require fixes in and
redeployment of the library

Figure 1.1 shows the software development process for both libraries and programs together.

The creation of a library starts with a specification of the behavior of the library (formal or informal).

From this a developer can create a thorough test suite. Of course, the creation of a robust test suite

is a significant challenge by itself because it requires understanding not only exactly what the library

should do, but selecting key instances of inputs that will exhibit all of the potentially buggy behavior

of the library. Once the test suite has been completed (assuming a good test-driven development

strategy), the library can be written and then tested. Any bugs that the test suite reveals can be

fixed and this process can be iterated until there are no longer any bugs worth fixing. At this point

the library can be deployed.

Once the library has been deployed, it can be used by arbitrarily many users, who may follow
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the same process as the library. There is one difference in this process, however. Bugs in a program

can either be due to a flaw in the program itself, or a flaw in a library that the program depends

upon. If a bug is found to be due to the library, the process becomes much more complicated.

Information on the bug must be fed back to the library developer, who will extend the test suite, fix

the library, re-test the library, and re-deploy the library. When this happens, however, each user of

the library may also want to update to the latest version of the library and then the cycle repeats.

In this figure, there are two library bug detection phases and bugs can be caught at any phase.

The early library bug phase is the preferable phase as it eliminates any undue burden on potentially

many users and maintains trust. Of course, finding bugs in this phase relies upon specific knowledge

of what the library should do (i.e. a specification) and that can be a lofty goal. Alternatively, finding

bugs in the late phase relies only on the program test suite, which the library developer does not

have to create, but finding out about the bugs may be difficult. Users have to report them.

1.2 The Challenge and Existing Solutions

The challenge addressed in this dissertation is lowering the bar for robust early bug detection

for dynamic languages, making it easier to produce reliable libraries. Traditional testing does

not meet this goal simply because it is too dependent on developers’ abilities to select good tests

(examples of a specification). Alternatively, there are several approaches that can help eliminate the

need for developers to design good tests: types, random testing, extended static checking, and static

program analysis. This section discusses the current state of each of these techniques with regards

to JavaScript libraries.

Type Systems Arguably, the most popular way of eliminating bugs in programs is with type

systems [Car04]. Most non-dynamic languages have static-type checking that prohibits compilation

if the type of a value is inconsistent with the use of that value. Unfortunately, this is not typically

the case with dynamic languages. However, some dynamic languages (e.g. TypeScript [BAT14])

have type systems that can help find many simple but problematic bugs, even if the type systems

are unsound. Unfortunately, such type systems are incapable of dealing with many of the dynamic
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features of dynamic languages. For example, in the TypeScript community there is the definitely

typed repository 3 , which provides assumed type annotations for libraries that are too dynamic for

TypeScript’s built-in type inference. More generally, type systems are arbitrarily expressive [CH88].

The challenge is, as with any question of verification, finding a trade off between developer effort,

verification time, and likelihood of success. When type systems become sufficiently expressive, they

become similar enough to either extended static checkers or static program analyses that they might

as well be considered as such.

Randomized and Directed Testing As an alternative to simple type systems, more

robust testing is possible through variants of randomized testing. For example, there are several

fuzz testing tools for JavaScript4 . These tools randomly generate inputs to functions (including

randomly generated functions) and then run the functions on those inputs to see if they generate any

errors. Of course, this requires a form of specification: the random input values must be restricted

to valid inputs and outputs of the library must be checked to ensure that they are correct with

respect to the given input. Naturally, such approaches do not guarantee any coverage of the code

and they can be very bad for finding rare cases. For example, when dividing 32-bit integers, the

odds of randomly selecting the one integer than causes a divide-by-zero error is low.

As opposed to fully random testing, it is possible to use a more directed form of random-

ized testing approach such as concolic testing. Jalangi [SKBG13], or Kudzu [SAH+10] use SMT

solvers [dMB08, BCD+11, CGSS13] to guide the randomized testing to explore a wide range of paths

through the program. These SMT solvers produce inputs specially designed to cover a wide variety

of paths through the program. Thus, concerns about that random selection of that one bad value

are somewhat alleviated. These have been shown to be quite effective at locating many bugs, but,

for libraries, they not only require a specification, but because many programs have an unbounded

number of paths through the program, they also never give any guarantees about the absence of

bugs. Further exacerbating this problem is that they are limited by the capabilities of the SMT
3 https://github.com/borisyankov/DefinitelyTyped
4 jsfuzzer: https://code.google.com/p/jsfuzzer/ JavaScript-fuzz: https://github.com/NodeGuy/JavaScript-fuzz
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solvers, which are not currently well suited for the heap, objects, functions, and strings used heavily

by dynamic languages.

Extended Static Checkers While simple type systems can offer robustness, they lack the

expressivity to handle the complex programs that library developers often write. Random testers

suffer the opposite problem of having the expressivity, but without robustness. By trading away

automation, extended static checkers realize the benefits of both. Extended static checkers, such as

DJS [CHJ12] or JuS [GNS13] for JavaScript, require not only specification of inputs and outputs

for the library, but also loop invariants for the library. Loop invariants state what is true about

every iteration of a loop. Given sufficiently precise loop invariants for each loop in the program, a

constraint solver may be able to automatically verify the specification.

Unfortunately, while this can be an effective way to verify library functionality, the need for

loop invariants is problematic. The developer is no longer solely concerned with what goes into and

out of the library, but also with invariants of every loop. The inclusion of loop invariants in the

specification, in addition to making the specification significantly more complicated, means that the

specific implementation of a function is deeply tied to its specification.

Static Program Analysis If robustness, expressivity, and automation are all important,

static program analysis is a good option. Of course, there are trade-offs. It is impossible to construct

a fully precise, automatic analysis for Turing complete languages [Kle43]. However, it is possible to

construct usefully expressive and automated program analyses that are also robust. For example,

Astrée [BCC+03] solves this problem for embedded C programs. For non-dynamic languages, it is

even possible to develop powerful analyses for library code [FL10, CDOY11]. For dynamic languages,

existing analyzers are whole program analyzers [JMT09, LWJ+12, KSW+13, SDC+12]. These whole

program analyzers are effective at finding bugs in whole programs, where every piece of code is

known. Unfortunately, this means that whole program analyses are targeted at finding late bugs

and not early bugs.

While they are not designed to be used in this way, whole program analyzers can be applied

to try to find early bugs. Because whole programs assume knowledge of the whole program, it would
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Figure 1.2 – Analysis landscape comparing scalability and unknown attribute name and function
precision. Existing whole-program analyses are scalable, but do not effectively support unknowns as
are used by libraries. This dissertation focuses on precise analyses for unknowns.

be required to develop a driver program for the library that exercised all of the potential behavior of

the library. This may be easier than developing a robust test suite because specific values need not

be chosen. Instead, non-determinism can be used to select values. Such a driver is roughly equivalent

to giving a logical specification for the library.

The problem with adapting the whole program analysis to library verification is that on almost

all libraries, it will not work. As Figure 1.2 shows, existing whole-program analyses are designed to

scale to analyzing whole dynamic language programs, not to handle the amount of non-determinism

that occurs when creating a driver program to fully exercise a library. Non-determinism occurs in the

heap, in attributes of objects, in values, and in functions. Handling this non-determinism, whether

it comes from a logical specification or a driver program is the fundamental challenge of using static

program analysis to eliminate bugs early in the development of dynamic language libraries.

1.3 Handling Non-deterministic Inputs to Libraries

In this dissertation, the goal is to support analysis of libraries, which means that support

for unknowns at the inputs to library functions is required. Figure 1.2 shows the trade off that
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occurs. Scalability may be sacrificed to gain the ability to support non-deterministic unknown inputs

precisely throughout an analysis.

To illustrate the problem of non-deterministic inputs to libraries, consider Figure 1.3. This

shows a library function. This library function takes inputs in the form of objects in the heap such as

o1 and o2 and functions such as f1 and f2. It then manipulates these objects, other connected objects

in the heap, calls the functions and produces a new function f3 and new object o3. The problem

with this type of library function is that takes not just simple values such as integers as input. It

takes objects, functions, and the heap as input. Therefore analyzing a library by assuming the inputs

are non-deterministic requires allowing functions, objects, and the heap to be non-deterministic.

Library
Function

Function f1 Function f2

Object o1 Object o2

Function f3

Object o3

Input Output

Figure 1.3 – A dynamic language library takes inputs of functions and objects and produces
functions and objects as output.

Because inputs are non-deterministic and thus unknown, outputs must be specified relative to

the inputs. For example, o3 may be derived by combining parts of o1 and o2 whatever o1 and o2 may

be. Therefore a specification is often relational between objects. Additionally, the specification may

rely upon calling functions, such as f1, and constructing new functions, such as f3. Those functions

that are being called may be unknown and may have side effects, so the specification must be able

to represent the effects of function calls. Additionally, because the specification involves the heap, it

is important that only the part of the heap that can be affected by the library need be specified.

The portions of the heap that cannot be changed by the library should not affect the specification.

These aspects of the specification are also the key tenants of the analysis. If these assumptions

are made at the specification level, the analysis must necessarily cope with these aspects or it is

impossible for the analysis to validate a library with respect to its specification. Additionally the
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analysis must also be able to handle how the program arrives at the specification. For example,

even if first-class attribute names are not required to specify the behavior of a library, if first-class

attribute names are used to implement the library, analysis must support that feature or it cannot

validate the library.

Abstraction The cornerstone of verification is abstraction. Abstraction allows considering

an unbounded number of computations simultaneously and efficiently. In the case of non-determinism,

all possible cases for a non-deterministic input could be considered simultaneously with an appropriate

abstraction. Verification, whether it is with type systems, model checking [CES86, BR02, HJMS02],

or abstract interpretation [CC77] is fundamentally about finding good abstractions. This dissertation

is presented in the context of abstract interpretation. Abstract interpreters evaluate programs one

step at a time representing many states of the program simultaneously using an abstract domain.

An abstract domain implements a representation of an abstraction along with operations to

manipulate the representation. In abstract interpretation, the analysis necessarily completes, finding

an overapproximation of all realizable states in the program.

To develop an abstraction targeted at handling the non-determinism required for verifying a

dynamic language library without a specific client, there are a number of necessary features:

• Native relational open object support — Objects need to support addition, removal, mutation,

and iteration over attribute names. Additionally, when concrete values are unknown,

open objects should be related to other open objects and variables from which they were

constructed.

• Local heap abstraction — The heap is an important part of the input to a function. From

one object, many other objects can potentially be manipulated by following pointers in the

heap. The problem is that it is difficult to describe the entire heap going into and out of

a library. There are many possible heaps created by client code and modeling all of them

is problematic. Instead, a local heap abstraction requires that only the parts of the heap
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affected by or affecting the library be specified and manipulated. All other parts of the heap

can be reasoned about compositionally.

• Strong updates — When too many unknown variables are in a program, as is often the case

for libraries, where all inputs to the library are unknown, strong updates allow inferring

better relations. Rather than only adding a new value as a possibility to an abstraction, a

strong update removes the old value before adding the new one to keep better precision.

Critically, strong updates are needed in loops that manipulate objects to be able to prove

properties such as object copying.

• Unknown function abstraction — Dynamic language libraries often take functions as argu-

ments or have functions reachable in the heap from arguments that are then called by the

library. Developers construct their libraries so that when they accept functions as input that

there are few (if any) requirements on those functions. Analysis of libraries should work in

a similar way. If a function makes no assumptions, no assumptions should be needed to

complete the analysis.

• Flexible abstractions — Different programs have different needs. Abstractions should be

composable so that they can be used in as many different situations as possible. This allows

for abstractions to be tuned for certain libraries. This tuning allows improved efficiency

while allowing the extension of an analysis to support new libraries easier.

What unifies all of the various features is the concept of a heap for a dynamic language. Native

open object abstractions relate objects in the heap to other objects and values in the heap. Strong

updates can be achieved by ensuring that objects in the heap that are being modified are always

single, non-summary objects and attributes that are being modified are always single, non-summary

attributes. Function abstractions are about determining the portion of the heap that can be affected

by a function and how it can be affected. By parameterizing a heap abstraction by other abstractions,

a heap abstraction can have the flexibility to work in a wide variety of situations. In short, all of the
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features are closely tied to the heap abstraction.

1.4 Thesis Statement

Because dynamic language libraries manipulate and use objects in the heap and because they

call and construct functions with side-effects, there is a need for local heap reasoning along with a

way of relating objects to one another in that heap. The use of relation abstractions for sets provides

an answer:

The combination of local heap reasoning with sets provides a means to construct

direct, parametric abstractions suitable for automatically analyzing dynamic

language libraries.

A need for local heap reasoning suggests the use of separation-logic-based heap abstrac-

tions [IO01, Rey02, BCO05, CR08]. These abstractions are designed to allow local reasoning about

heaps with inductively defined data structures through (sometimes parametric) inductive predicates.

Instead of relying on inductively defined data structures, dynamic languages programs and libraries

typically rely on their objects to represent unbounded data structures.

Uniquely, this dissertation centers a new separation-logic-based heap abstraction on an ab-

straction for sets. These sets are used to relate sets of attribute names to other sets of attribute

names in other objects. They are used to define materialization and summarization in the heap, to

enable strong updates in both the heap and objects. They are also used to relate values to other

values.

Because of the fundamental dependence of dynamic language programs and libraries on the

extensibility of object objects, the resulting set-oriented, separation-logic-based heap abstraction

accomplishes precise abstractions in a wide range of dynamic language libraries. By using a relational

set abstraction, attributes of unknown objects passed to library functions can be related to objects
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generated by the library function. Consequently, even when objects are completely unknown, sets

allow directly abstracting open objects by using relations between objects.

To define this set-oriented, separation-logic-based heap abstraction, this dissertation not only

defines the separation-logic-based heap, but also defines a family of suitable, parametric relational set

domains. It also presents techniques based on the heap abstraction to abstract unknown functions.

As a result, this dissertation defines and demonstrates techniques suitable for automatically verifying

object-manipulating library routines.

The goal of this dissertation is to develop local heap reasoning abstractions such that when

combined with precise set abstractions address many of the key challenges of analyzing libraries.

Ideally, they would be able to fully precisely analyze dynamic language libraries. In practice, they

can be used to verify developer-specified assertions and pre/postconditions for dynamic language

libraries when common dynamic language development idioms are used, such as object copying,

object filtering, and calling user-supplied callbacks.

1.5 Summary

This dissertation describes four advances in the handling of unknowns that arise in the analysis

of dynamic language libraries. In Chapter 2 the need for analyzing dynamic language libraries is

motivated with code examples. Chapter 3 introduces by example the four contributions that are

shown in Figure 1.4. These contributions form three shown abstractions that work together to make

an analysis for dynamic language libraries.

Chapter 4 presents the heap with open objects (HOO) abstraction, which is the key analyzing

programs with unknown open object manipulation. It is an abstraction for dynamic language heaps

that includes support for open (extensible) objects. However, it is parameterized by an abstraction

for sets. This abstraction for sets controls the possible values stored in the heap as well as the

precision of the abstraction of those values. Chapter 4 also presents attribute/value trackers, which

extend object abstractions like HOO to increase precision when analyzing programs that copy objects

by providing a form of parametric polymorphism.
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QUIC Graphs
(Chapter 7)

Value Domain
(strings, etc)

Set Domain
(sets of strings, etc)

Set Domain
(sets of strings, etc)

Heap Domain
with Open Objects

Desynchronized Separation
(Chapter 5)

Heap Domain
(with Open Objects)

Heap Domain
with Unknown Functions

(and Open Objects)

HOO
(Chapter 4)

Attribute/Value Trackers
(Chapter 4)

Figure 1.4 – Abstractions introduced in this dissertation are parametric. The QUIC graphs
abstraction converts any abstraction for values (such as strings, integers, etc.) into an abstraction
for sets of values. The HOO abstraction (with and without attribute/value trackers) converts an
abstraction for sets representing addresses, attribute names, and values into an abstraction for
a dynamic language heap. Desynchronized separation converts an abstraction for heaps into an
abstraction for heaps with calls to unknown functions. The dashed lines show how these abstractions
work together for the implementation presented in this dissertation.
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Chapter 5 presents desynchronized separation, which is a means to analyze functions that call

unknown functions. Since side effects in the heap are the biggest concern when calling unknown

functions, it is a parametric abstraction for the heap. It takes an abstraction for heaps and transforms

it into an abstraction for heaps where calls to unknown functions are possible.

Chapter 6 combines the heap abstraction with the unknown function abstraction and discusses

the result of applying the analysis to dynamic language libraries. It combines the abstractions via the

dashed lines shown in Figure 1.4 building upon an abstraction for sets that is described in Chapter 7.

The application of the combined analysis is to demonstrate the combination of the abstractions in

analyzing a number of JavaScript-inspired functions, many of which are extracted from libraries

such as Traits.js and Google Closure.

Chapter 7 presents the QUIC graphs abstraction — a flexible, parametric abstraction for sets

that is used by HOO in the combined analysis. QUIC graphs take any abstraction for values, such

as strings or integers, and transform that into an abstraction for sets of strings or sets of integers. In

addition to its use as part of the HOO-based analysis, it is evaluated separately on set manipulating

python programs.



Chapter 2

Motivation: JavaScript Library Verification without Client Code

This chapter motivates the need for various kinds of analysis with concrete code examples.

To do this, it tells the story of a hypothetical JavaScript developer Jennifer who is an experienced

JavaScript developer who wants to improve not only her own development practices, but also other

JavaScript developers’. Right now, the best way she can think of improving her practice is to create

a class system for JavaScript. JavaScript does not have classes built in and everybody she works

with knows how to use classes, so it would be easier if JavaScript had classes.

Rather than creating a new language with classes that compiles to JavaScript, Jennifer realizes

that using built-in syntax to JavaScript, she can make something satisfactory that looks enough like

a native class implementation that it will be acceptable. To demonstrate the idea to her peers, she

writes the simple example shown in Figure 2.1. This use of the class implementation makes a class

for storing two-dimensional points.

From a JavaScript perspective the code is a call to a function called Class that takes a single

parameter. This parameter is a configuration object that determines what the resulting class will be.

Here, it has attributes 'x', 'y', 'init', and 'mag', which are associated with initial values. There is

no formal distinction between a member and a method. A member is a non-function value and a

method is a function value. The binding of this happens automatically through JavaScript’s object

system, so functions and methods can be the same. The one special value here is 'init', which is the

constructor for the class and should not appear in the instances because it is not simply a function.

The way this code is written admits some common JavaScript idioms. For example, because
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var Point = Class({

// member variables
x: 0,
y: 0,
// constructor
init: function(x,y) {

if(x) this.x = x;
if(y) this.y = y;

},
// methods
mag: function() {

return Math.sqrt(this.x * this.x +
this.y * this.y);

}
});

Figure 2.1 – The class Point looks similar to a class in a language like Java, but it is a JavaScript
function that is created by calling the Class function on a configuration object.

'init' takes two written parameters, but JavaScript does not enforce this, it checks the value of the

parameters and if they are provided (and not falsy) they are used, otherwise the default values are

kept. This allows the constructor to be called in several ways.

To help understand how classes created with Class might be used, Figure 2.2 shows the

instantiation and use of several Point objects. First, there is, in effect, a default constructor. Both

parameters to the constructor function are absent and thus are replaced with the value undefined,

a special value that is the result when reading absent object fields and elided function parameters.

Because undefined is falsy, it behaves as false when used in a Boolean context, such as the test

of an if statement. Consequently, in the constructor both if tests fail and the default values for

x and y are used. Similarly, when constructing pt_x5, the parameter y is not provided and is

thus undefined. Therefore y is assigned the default value. The pt_y6 example is a bit different

because it relies upon an explicit falsy value: false. It is used to select the default value for x,

while initializing y to 6. Finally, Point can be constructed with a fully specified parameter list.

The result of calling a class constructor is an object and behaves as such. A call to the mag

method, because it is called as a field of an object (in this case, using the dot notation), automatically
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// defaults kept
var pt_origin = Point();
// default value for y
var pt_x5 = Point(5);
// default value for x
var pt_y6 = Point(false,6);
// fully specified point
var pt_x2_y3 = Point(2,3);
// print the distance from the origin
print(pt_x2_y3.mag());
// print coordinates for pt_y6
print( pt_y6.x + "," + pt_y6.y );

Figure 2.2 – Construction of several instances of Point using the class system.

binds this to the object, which in this case is pt_x2_y3. Consequently, when inside the method,

the use of this to look up x and y behaves as if looking up x and y in pt_x2_y3. Similarly,

members x and y are directly accessible.

Given that this looks sufficiently close a class definition in other languages, Jennifer decides to

see if she can design a reusable library in JavaScript that implements this functionality. Like nearly

everything in JavaScript, it will rely on JavaScript’s flexible object system, combined with first-class

functions and closures.

2.1 Class Library Requirements

To ensure that the Class function is correctly implemented, Jennifer notes the following list

of requirements:

• Classes should be immutable. After a class is constructed, the definition should not be

allowed to change. This means that two objects instantiated from the same class using the

same parameters should result in identical objects regardless of when those two objects are

constructed.

• Objects instantiated from classes should be derived from the class. Of course, because

JavaScript is a dynamic language, the init function is free to add or remove attributes
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having started with those created from the class. This means that prior to calling init,

attributes and values of the class should match exactly the attributes and values initially

used to construct the class. However, because init is a constructor, it should not be a

method of the resulting class.

2.2 Implementing the JavaScript Class Library

The code for the resulting Class is shown in Figure 2.3. It transforms a configuration object

cfg into a function that when called creates an instance of the class. The Class function consists

of three parts: (1) the copy function that is responsible for making shallow partial copies of objects;

(2) the protected backup into variables attrs and init; and (3) the class constructor function

ctor, which initializes the instance object before running the client-supplied constructor init.

var Class = function(cfg) {
function copy (res,src,exc) {

for(var p in src)
if(!(p in exc))
res[p] = src[p];

return res;
}
var attrs = copy({},cfg,{});
var init = cfg.init;
function ctor() {

var result = copy({},attrs,{init:""});
init.apply(result, arguments);
var rv = result;

}
return ctor;

}

copy

protected
backup

constructor

Figure 2.3 – Class implementation using open objects, first-class functions and closures.

The copy function is responsible for partially copying objects that are passed to it. It takes

three objects as parameters res, src, and exc. The src parameter is the source object for the

copy. Each attribute and corresponding value of the src object will be considered for copy. The

exc parameter lists all of the exceptions to the copy. Each attribute in exc will be skipped during
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the copy. The copy process is shown in Figure 2.4, demonstrating the copying that occurs in the class

constructor during the construction of a Point object. In the code, there is a for-in loop that

iterates over each attribute in the src object. Because the iteration order is unspecified, Figure 2.4

shows one possible order of events. First, 1 , the attribute 'y' is compared with the attributes in exc.

Because it is not in the attributes of exc it is copied into result. Then, this process is repeated

for 'mag', 2 , and 'x', 3 . Finally, when it gets to 'init', 4 , it finds that the attribute is in exc and

thus it is not copied.

x 0

y 0

init �1

mag �2

src res

x 0

y 0

mag �2

1

2

3

4

init ‘’

exc

Figure 2.4 – Iteratively copying the attrs object to the result object, excluding attributes that
are also in the exc object.

The protected backup is responsible for ensuring that the class is immutable. By default,

all accessible objects in JavaScript are mutable. Consequently, it is possible that the definition of

a class could change over time if it is not in some way made inaccessible. This code implements

such protection. A local copy of the cfg object is created and a local copy of init is created for

easier access. Because these are local variables, they are inaccessible globally, and thus cannot be

externally mutated.

The class constructor is responsible for first, creating the object that is the instance of the

class, second, initializing the object with various attributes and default values, and third, delegating

to the init function, which is the client-supplied constructor. The creation of the object allocates

a new empty object on the heap, which is immediately passed to copy for initialization. The copy
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function performs initialization by copying from the protected backup (not the cfg object). This

automatically initializes all members to their default values and adds all methods to the object.

Since the client-supplied constructor is not a normal method, it should not be added to the resulting

object and thus is excluded from the copy operation. Finally, using the JavaScript indirect function

call syntax, the client-supplied constructor is called, passing it the newly constructed object as this.

Note that regardless of the value that the client-supplied constructor returns, the newly allocated

object is returned at the end of instance construction.

Now that the library has been created, Jennifer wants to deploy the library so that others

can start using it. But Jennifer is savvy. She knows that it could be a costly error to release the

library without making sure that it works. She can run tests like the example in Figure 2.2 and

check that the resulting values are correct, but she wants to know that in the future this code will

not go wrong — that she will not be responsible for the problems of other developers. To do this

she is going to use static analysis.

2.3 Analyzing the JavaScript Class Library

To gain assurance that the class library behaves as it should, Jennifer converts the requirements

of the class library into more specific intentions in the form of properties. These properties can

then be encoded as annotations in the program to inform the static analysis of the intended correct

behavior of the code:

1. The protected backup contains a full copy of the configuration object cfg, no matter which

attributes and values are present in the configuration object. This relies on copy behaving

correctly and making a full copy of cfg.

2. In the call to the generated ctor function, before the call to init, the result object has a

copy of all attributes and values from the protected backup except for init. The init attribute

is the client-supplied constructor and should not be present in the result.

3. The result of the call to the generated ctor function should be the result object whatever the
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call to init may do. The contents of the result object depend on the call to init.

4. After completing the call to Class, the protected backup is unreachable from the global object,

the cfg object, or the result object. This indicates that the protected backup is indeed protected.

If this does not hold, the Class is actually mutable.

5. The call to init should neither change the protected backup, nor provide a means for any other

code to change the protected backup. This ensures that no matter how many instances are created

from a single class, the class is always immutable.

These properties express the expectations that Jennifer has for the class library. In short,

despite the fact that the class system is created from mutable objects with functions and closures,

the class system should behave like a class system. Classes should be immutable and should produce

instance objects that are derived from the configuration object at the time the class was constructed.

Jennifer needs a static analysis that can prove the above properties. The correctness of

Property 1, the protected backup, is dependent on a native open object abstraction, strong updates,

and a relational heap abstraction. This is because the copy function does not know what the cfg

object has for attributes and values and yet the property must determine if an equality relationship

exists between the original cfg and the protected backup. Property 2, the initialization of result,

is similar, but more challenging. Not only must the analysis infer that a copy occurred, but it must

also infer that the init attribute is not in the result. Property 3, the result of calling init, must

reason about unknown functions. Whatever effects this call may have on reachable memory, the

property should hold. This requires a combination of local reasoning and an abstraction for the

behavior of unknown functions. Property 4, the unreachability of the protected backup, requires only

a simple heap abstraction since local variables are always unreachable and attrs is never stored in

any reachable objects. Simlarly, Property 5, the immutable protected backup, requires only a simple

heap abstraction as these variables are not written and not transferred to reachable objects. The

challenge with this property is reaching it when a call to an unknown function is called previously.

Otherwise, these last two properties can both be proven with existing whole program analyses.
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Overview: Analysis of JavaScript Libraries

This chapter introduces by example the analyses presented formally, in detail throughout the

rest of the dissertation. As an example, this chapter makes use of the Class function that was

detailed in Chapter 2. However, because of the focus on open objects, in Section 3.1 I define the

open-object-focused JavaScript variant that restricts the JavaScript syntax to statements pertinent

to open object manipulation. Then, in Section 3.2, I show how common JavaScript idioms can be

represented in open-object-focused JavaScript. In Section 3.3, I introduce the graphical representation

used throughout the paper to represent abstract states. Finally, in Section 3.4, I present an example

analysis of Class that demonstrates the three main challenges addressed by the analyses in this

dissertation: unknown attribute access, iteration over objects, and calls to unknown functions.

3.1 Open-Object-Focused JavaScript Language

JavaScript is a complex language. It is very much a dynamic language as typing is dynamic,

objects can be directly manipulated, lexical scoping can be dynamically manipulated, and strings

can be converted to code and back. All of these features make it exceedingly difficult to specify

a semantics [GMS12, BCF+14], let alone design a static analysis. In reality, developers do not

commonly abuse [RLBV10] these features of JavaScript and tend to use them in relatively structured

ways. In fact, popular tools such as JSLint1 actively discourage the use of many of the dynamic

features.
1 http://www.jslint.com
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To focus the dissertation on the core problems introduced by libraries such as Class, where

the primary operations are reading from, writing to, and iterating over unknown or partially unknown

objects along with calling unknown functions, I introduce open-object-focused JavaScript. The

syntax of the language is shown in Figure 3.1. The language is defined as commands k, where each

k can manipulate program variables x, y, z. Additionally, there are special program variables that

represent important information for functions: res for the result of the functions, glbl for the

global object, this for the object that is bound to this, clos for an object that represents variables

in the closure, and args for an object representing the arguments to a function.

k ::= x = c
| x = y
| x = {}
| x = y[z]
| x[y] = z
| for(x in y) { k }
| if(x in y) { k1 } else { k2 }
| k1; k2

| x = function(res, glbl, this, clos, args) { k }
| x(y1, y2, y3, y4, y5)

Figure 3.1 – Open-Object-Focused JavaScript Language

The language is intended to be like JavaScript with respect to objects, but simplified in several

ways. Conditions are restricted to those that have to do with object membership. The program

is in a-normal [SF92] form, where all commands only accept variables as operands and not nested

expressions. Functions are closure converted and lowered into a specific form with the five special

arguments as described previously. This closure-converted form allows most of the behavior of

JavaScript, but it makes explicit much of the behavior of function declaration and application so

that internal special variables can be referenced during analysis.

To define the semantics of this language, I first define four helpers for association lists. These

are shown in Figure 3.2. Association lists consist of the empty list [] and a constructor :: that builds

a list from an element and another list. Each element of an association list is a pair of key and a

corresponding value. I use the symbol r to represent an arbitrary association list and σ to represent
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Dom (r) = d

Dom ([]) = ∅

Dom (r) = d

Dom ((a, b) :: r) = a ∪ d

Lookup (a, r) = v

Lookup (a, (a, b) :: r) = b

a 6= b Lookup (a, r) = v

Lookup (a, (b, c) :: r) = v

Locals
(
σ, σ′

)
= σ′′

Locals
(
[], σ′

)
= σ′

Locals
(
σ, σ′

)
= σ′′

Locals
(
(x 7→ v) :: σ, σ′

)
= (x 7→ v) :: σ′′

Locals
(
σ, σ′

)
= σ′′ r 6= (x 7→ v)

Locals
(
r :: σ, σ′

)
= σ′′

Heap (σ) = σ′

Heap ([]) = []

Heap (σ) = σ′

Heap ((x 7→ v) :: σ) = σ′

Heap (σ) = σ′ r 6= (x 7→ v)

Heap (r :: σ) = r :: σ′

(x 7→ v) :: σ
def
= (x, ((), v) :: []) :: σ

(x 7→ v) ∈ σ def
= Lookup (x, σ) = ((), v) :: []

Figure 3.2 – Helper definitions for Open-Object-Focused JavaScript define the domain and a lookup
operation for association lists
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a heap, which is a nesting of association lists. The symbols used for keys and values depend on the

type of the information stored in the association list. Here a, b, and c are keys or values and v is a

value. The first operation Dom (r) = d gets the domain of an association list by collecting a set d of

all of the keys of the association list starting from r. The second operation Lookup (a, r) = v finds

a value v that corresponds to a particular key a. If the key is not in the association list, no value

v can be retrieved and no proof tree can be constructed. The third operation Locals (σ, σ′) = σ′′

extracts the local variables from the heap σ and adds them to σ′ giving σ′′ and similarly, the fourth

operation Heap (σ) = σ′ extracts everything that is not a variable from σ, leaving only objects in the

result σ′. Finally, the special value () is defined as the unit value. It is used to represent pointers in

the heap. An object that has the special unit value as an attribute can be treated as a basic pointer.

Consequently, no explicit stack or environment is required in the semantics. Only the helper syntax

x 7→ v is used to simplify the presentation of the semantics.

The semantics of each command in the language are given in Figures 3.3 and 3.4. The semantics

are defined as big-step operational semantics with a judgment of the form 〈σ〉 k 〈σ′〉, which evaluates

a command k on a heap σ, producing a heap σ′. Program variables x, y, or z are assumed to be

placeholders for object addresses, and thus no environment is necessary. A heap is an association list

that maps each address a to an object o. An object o is an association list that maps each attribute

(field, property, etc.) p to a value v. A value v can be an address a, a constant such as a string

constant, a command k (representing a function body), or the special undefined value undef.

Command Semantics The first command x = c assigns a constant c, including undef or

any k to the variable x by replacing the heap with a new version of the heap where the program

variable x maps to the constant c. This ensures that x is now included in the Dom (σ′) and that

(x 7→ c) ∈ σ′. This leaves the other objects in the heap unmodified, but effectively declares a variable

that exists until the end of the function scope.

The second command x = y assigns the value read from y to x. First, it looks up the value

v from the heap σ using a form of Lookup () and then it binds that value to x in the same way as

assigning a constant. Any value can be copied from one variable to another in this way.
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〈σ〉 k
〈
σ′
〉

〈σ〉x = c 〈(x 7→ c) :: σ〉 C-Cst
(y 7→ v) ∈ σ

〈σ〉x = y 〈(x 7→ v) :: σ〉 C-Var

Dom (σ) = d a /∈ d
〈σ〉x = {} 〈(x 7→ a) :: (a, []) :: σ〉 C-Alloc

(y 7→ a) ∈ σ (z 7→ p) ∈ σ Lookup (a, σ) = o Lookup (p, o) = v

〈σ〉x = y[z] 〈(x 7→ v) :: σ〉 C-Ld-P

(y 7→ a) ∈ σ (z 7→ p) ∈ σ Lookup (a, σ) = o Dom (o) = d p /∈ d
〈σ〉x = y[z] 〈(x 7→ undef) :: σ〉 C-Ld-N

(x 7→ a) ∈ σ (y 7→ p) ∈ σ Lookup (a, σ) = o Lookup (z, s) = v

〈σ〉x[y] = z 〈(a, (p, v) :: o) :: σ〉 C-St

(x 7→ v) ∈ σ
(y 7→ a) ∈ σ Lookup (a, σ) = o Dom (o) = d v ∈ d 〈σ〉 k1

〈
σ′
〉

〈σ〉if(x in y) { k1 } else { k2 }
〈
σ′
〉 C-If-P

(x 7→ v) ∈ σ
(y 7→ a) ∈ σ Lookup (a, σ) = o Dom (o) = d v /∈ d 〈σ〉 k2

〈
σ′
〉

〈σ〉if(x in y) { k1 } else { k2 }
〈
σ′
〉 C-If-N

〈σ〉 k1

〈
σ′
〉 〈

σ′
〉
k2

〈
σ′′
〉

〈σ〉 k1; k2

〈
σ′′
〉 C-Seq

(x 7→ k) ∈ σ
(y1 7→ v1) ∈ σ (y2 7→ v2) ∈ σ (y3 7→ v3) ∈ σ (y4 7→ v4) ∈ σ (y5 7→ v5) ∈ σ〈

(res 7→ v1) :: (glbl 7→ v2) :: (this 7→ v3) :: (clos 7→ v4) :: (args 7→ v5) :: σ′
〉
k
〈
σ′′
〉

Locals
(
σ, σ′′

)
= σ′′′ Heap (σ) = σ′

〈σ〉x(y1, y2, y3, y4, y5)
〈
σ′′′
〉 C-App

〈σ〉x = function(res, glbl, this, clos, args) { k } 〈(x 7→ k) :: σ〉 C-Fun

Figure 3.3 – Semantics of open-object-focused JavaScript
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` 〈σ〉 (x in d) k
〈
σ′
〉

` 〈σ〉 (x in ∅) k 〈σ〉 C-For-N
〈(x, v) :: s, h〉 k

〈
σ′
〉

`
〈
σ′
〉

(x in d) k
〈
σ′′
〉

` 〈σ〉 (x in {v} ] d) k
〈
σ′′
〉 C-For-P

(y 7→ a) ∈ σ Lookup (a, σ) = o Dom (o) = d ` 〈σ〉 (x in d) k
〈
σ′
〉

〈σ〉for(x in y) { k }
〈
σ′
〉 C-For

Figure 3.4 – Semantics of open-object-focused JavaScript for command

The command x = {} allocates a new object and assigns it to x. Allocating a new object

requires that the object exists at an address a that is distinct from any address already allocated. To

ensure that this is the case, a is constrained to be distinct from any address already in the domain d

of the heap. In the result, the heap is extended twice: once for the new empty object to the heap

and once for binding the newly allocated address to x.

The load command x = y[z] is broken up into two rules. The first rule applies if the

particular attribute from variable z exists inside the object referenced by y. The second applies if

this is not the case. In either case, the address a is retrieved from the heap and then the corresponding

object o is retrieved. If the attribute p, which came from y, is in the domain of the object o, the

C-Ld-P rule applies. Otherwise, the C-Ld-N rule applies. The difference is that if the attribute is

present, the corresponding value v is bound to x. Otherwise the value undef is bound to x. Note that

this load behavior differs from JavaScript in that there is no prototype chain that is automatically

followed. Any use of the prototype chain must be explicitly written in the code.

The store command x[y] = z mirrors closely that of the JavaScript store. It finds the

appropriate object o, and attribute p as in the load case and the appropriate value v and then adds

an updated version of the object with p bound to v in that object to the heap. This effectively

overwrites the previous object on the heap at address a. This is different from JavaScript only in

that it does no implicit conversion of the attribute. Attributes must always be strings.

The if command branches depending on the presence of a particular attribute in an object.
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If the attribute is present, the C-If-P rule applies and the first case command k1 is evaluated.

Otherwise the C-If-N rule applies and the second case command k2 is evaluated.

The sequencing of commands with the C-Seq rule threads the heap from one command to

another.

The declaration and application of functions through the C-Fun and C-App rules use

commands as values. Because all functions have the same signature taking five arguments respectively

representing the result, the global object, the this object, the closure, and the arguments object,

only the body of the function is important. Therefore, the body of the function is used as a value

and is written to variable x. Function application reverses this process by looking up all of the

arguments in the heap σ and then extending the heap with each of the parameter variables bound

to the respective values. The body of the function is also looked up, giving a command k, which

then can be evaluated on the extended heap.

The final operation of the language, shown in Figure 3.4, is the for-in loop. This loop

iterates over all attributes of an object, binding them to a given variable. To give the semantics

of this command, I introduce a new judgment that represents a partially completed loop. The

` 〈σ〉 (x in d) k 〈σ′〉 takes a step in the loop over a set of attributes d for an object. The rule

C-For-N applies if the set d is empty. In this case, the iteration is complete and the same heap

is in the result of the evaluation. In the other case, C-For-P applies and an element v is selected

from the set and bound to x before evaluating the body of the loop. Upon completion of the body,

the next iteration of the loop continues.

The for-in differs from the JavaScript equivalent in several ways. First, it selects the set

of attributes for iteration once when the iteration starts. JavaScript supports modification of the

object that is being iterated over and may visit newly added attributes. Additionally, JavaScript, by

default, iterates over not only the provided object, but also every object in the prototype chain.

I will use this open-object-focused JavaScript for the remainder of the dissertation with the

exception that I will not always present an a-normalized version of the code. The a-normalization

process is simple and thus will only be presented when interesting for a particular analysis. Addi-
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tionally, I will apply simplifications to the converted code eliminating unused elements. For example,

functions that do not need a closure, will not construct one. Lastly, I will use array notation

to represent the construction of an object with string attributes representing increasing numbers

starting from '0'.

Extending to Full JavaScript While open-object focused JavaScript is simplified com-

pared to regular JavaScript, it possesses much of the complexity. By adding simple expressions

that define other JavaScript operations such as type coercions, number and string operations, and

standard library operations, via a standard desugaring processes [GSK10], it is possible to reduce full

JavaScript down to a core calculus similar to this. For example, the addition operation may add two

numbers or concatenate two strings. To determine which is being performed, the types of the two

operands are checked. All of this can be made explicit through desugaring. Similarly, full support

for operations such as computed attributes can be added through a simple language extension.

3.2 Real-World Open-Object-Focused JavaScript

While open-object-focused JavaScript is not identical to real-world JavaScript, many real

world programs still work in this language. For example, the Class function detailed in Section 2

is entirely representable in open-object-focused JavaScript. Additionally, most libraries that offer

features similar to Class, such as implementations of traits and mixins fall into open-object-focused

JavaScript. As a result, it is possible to consider analyzing real JavaScript libraries that have been

translated into open-object-focused JavaScript by some simple preprocessing.

A version of Class converted to open-object-focused JavaScript is shown in Figure 3.5. The

same three parts exist as before: the copy function, the protected backup, and the constructor

function. The primary difference is that the functions have been closure converted. This means

that any variables that are non-local to the function are accessed through a closure object called

clos. This section gives a brief tour of the operations that are performed to transform JavaScript

to open-object-focused JavaScript.

The resulting Class now has functions that always take five parameters. In JavaScript
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Class = function(res, glbl, this, clos, args) {
// define the copy function
copy = function(res, glbl, this, clos, args) {

res = args[0];
src = args[1];
exc = args[2];
for(p in src) {
if(p in exc) { } else {
res[p] = src[p];

}
}

};

// make the protected backup
attrs = {};
copy({}, glbl, glbl, {}, [attrs,args[0],{}]);
init = args[0]["init"];

// create a closure object for the constructor
clos = {};
clos["attrs"] = attrs;
clos["init"] = init;
clos["copy"] = copy;

// define the constructor body
fun = function(res, glbl, this, clos, args) {
result = {};
exc = {};
exc["init"] = "";
clos["copy"]({}, glbl, glbl, {}, [result,clos["attrs"],exc]);
clos["init"]["fun"]({}, glbl, result, clos["init"]["clos"], args);
res["res"] = result;

}

// build the constructor object
ctor = {};
ctor["fun"] = fun;
ctor["clos"] = clos;

res["res"] = ctor;
}

Figure 3.5 – Open-object-focused JavaScript translation of Class makes explicit many of the basic
JavaScript operations
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functions are all variadic — the number of parameters is not fixed, so in this conversion, that

variadic list of parameters is converted into an object with successive numbers for the attributes

that correspond to the values. This is similar to how C uses the argv array to represent a variable

number of arguments on the command line. Consequently, all accesses to function arguments are

replaced with access to the appropriate index of the object.

Additionally, the global object, represented by glbl is an object that is accessible from any

function in JavaScript. To model this without having global variables explicitly as part of the

program, I thread the global object through function calls. Therefore, functions can all read from,

write to, or otherwise access and modify the global object by naming it explicitly. If the program is

truly lexically scoped, determining if the global object is being used is simply a matter of determining

if the variable being accessed is declared in any enclosing scope. In this code, glbl is not used, as

there are no global variables.

Similarly, the this object is explicitly named. JavaScript implicitly creates an object called

this within every function. The this object is the object to which a function is bound, so that if

a method is called on an object, the object on which it was called is passed as this. By explicitly

naming it, preprocessing causes the application of the init function in the constructor to have the

appropriate use of this for the result object.

The res argument is an object where the return value can be written. By convention, the

return value is written to the 'res' attribute. By making the result also a parameter, the analysis

need not consider return values, which simplifies the discussion. In this particular code, there is no

need for the use of return values and thus they are never accessed, but they will be described in the

specifications of these functions in the next section.

3.3 Abstraction: Representation of Program Facts

The program analysis process infers abstract facts about the program. Consequently, to discuss

the particular analyses introduced in this dissertation, this section introduces the representation

of program facts. The representation is used to both show the current state of an analysis at a
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particular point in the program as well as to specify expectations of the analysis. Expectations serve

as a specification for the behavior of the function that the analysis will attempt to verify.

The basic abstraction presented in this dissertation is the HOO abstraction, Heap with Open

Objects. This abstracts a heap along with open objects. Consequently, facts are represented

using the HOO notation. Figure 3.6 shows an abstract state represented with HOO, along with a

corresponding program. The program in the figure creates a new object pointed to by obj that

has two attributes: 'fld1' corresponds to the value 1 and 'fld2' corresponds to the value 2. The

corresponding abstract state comes in two parts: the pre-condition I and the post-condition II .

Because all states represented by this variant of HOO are relative to an annotated precondition,

HOO is a two-state abstraction; it abstracts a pair of states, one being the starting state, the other

being the current state of the program. The relative precondition abstracts the starting state and is

indicated in the lower right of the state (in this case I ). The abstract state shown at I highlights

the two components of the HOO domain. On the left there is a heap graph that shows that the

program variable obj (in an dotted box in typewriter font) starts out pointing to a set of possible

values, which is initially the singleton set containing undefined. On the right, in the dotted box,

are constraints that place restrictions on sets that occur in the heap graph. Here there are no such

restrictions.

I
[
obj {undef} True

]
I

obj = {};
obj["fld1"] = 1;
obj["fld2"] = 2;

II

obj A
F : t

V

F = {f1} ∪ {f2} ∧ f1 = 'fld1'
∧ f2 = 'fld2' ∧V = {v1} ∪ {v2}
∧ v1 = 1 ∧ v2 = 2 ∧A = {a}


I

Figure 3.6 – Demonstration of open object abstraction in a simple program

In the post-condition II the object has been created and its attributes initialized. Now an

abstract object exists, shown as a table. The shaded top row is the set symbol for the base address

of objects A. If this is not a singleton set, the object is a summary. In this case, I have constrained
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it to be a singleton set consisting of a single base address a. Below the shaded top row are rows each

describing a partition of attribute names for that object. Here I have decided to represent these two

attribute names 'fld1' and 'fld2' using a single partition that conflates the two attribute names. This

partition is represented with the set symbol F, where it is equated to the union of two singleton sets

with attribute names fi. Additionally, this partition has been assigned the attribute/value tracker t,

which can keep track of specific attribute/value pairs from the beginning of the function to the end,

as will be demonstrated in Section 3.4.1. Finally, the partition points to a set of values V that is

made up of individual values v. Note that this is not the most precise abstraction because the two

attributes have been summarized into a single partition. An alternative abstraction would construct

a separate partition for each known attribute name [CCR14].

While each abstract state can, in fact, be viewed as the pair of the pre-condition and the

current abstract state, for brevity, I show only the current abstract state along with the program

point for the pre-condition. The actual pre-condition is provided at the indicated program point. It

is important to note that symbols are shared between the pre-condition and current abstract state.

Consequently, if a symbol is the same in both the pre-condition and the current abstract state, this

means that the concrete values they represent are the same.

3.4 Example Analysis: JavaScript Class Implementation

This section demonstrates the analysis of the constructor of the Class example. To highlight

the various challenges that the analysis encounters and addresses, I have broken down the analysis

into three parts that are presented individually. For simplicity, each of these parts is presented

as a whole analysis without assuming context that may actually be provided in Class. First,

to demonstrate unknown attribute access, the read and write of objects in the copy function is

presented. Next, the iteration over objects that occurs during the copy function is presented. Third,

the call of the unknown client-supplied init function is analyzed. Finally, I present a summary of

the whole constructor as could be analyzed with the techniques presented here.
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3.4.1 Unknown Attribute Access

When the structure of an object is unknown, i.e. the attributes that the object may have, the

number of attributes the object may have, and the corresponding values are unknown, it is difficult

to determine what accessing attributes of these objects may do. To demonstrate how the HOO

abstract domain handles this situation, consider the code shown in Figure 3.7. It reads from one

object the value at attribute p and writes to another object also at attribute p.

1

[
res {a1}

F1 : t1
V1

src {a2}
F2 : t2

V2

p {f}
{f} ⊆ F2

]
1

res[p] = src[p];

2

res {a1}
F1 : t1

V1

src {a2}
F′
2 : t2
{f} : t2

V2

p {f} F′
2 ] {f} = F2


1

3

res {a1}
F′
1 : t1
{f} : –

V1

src {a2}
F′
2 : t2
{f} : t2

V2

p {f} F′
2 ] {f} = F2

∧ F′
1 = F1 \ {f}


1

4


res {a1}

F′
1 : t1
{f} : t2

V1

src {a2}
F′
2 : t2
{f} : t2

V2

p {f} {v} ⊆ V2

∧ F′
2 ] {f} = F2

∧ F′
1 = F1 \ {f}

{v}


1

Figure 3.7 – Reading and writing from/to open objects with unknown attributes

For the purposes of demonstration, I assume a precondition with two separate objects at

addresses a1 and a2. The structure of both of these object is completely unknown. The object at

address a1 has some attributes described by the set F1 with corresponding values described by the

set V1 and an unknown mapping function t1 from F1 to V1. The object at address a2 is similar.

The value of the attribute p is represented by the symbol f, but since f is unconstrained, it can take

on any value and thus does nothing to dictate which attribute will be read or written.

It is critical when doing reads and writes of unknown objects that the analysis performs strong

updates. By using strong updates, later if the same unknown attribute is accessed either by reading

or writing, the same value can be retrieved. For example, if the value res[p] were read following

this command, by performing strong updates the analyzer knows that the same value flowed from

src[p] to res[p] and is now being read from res[p].
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The result of evaluating this compound command (both a read and a write) is shown in three

steps, though in implementing the analysis the intermediate steps 2 and 3 need not be actually

produced. In 2 , the read operation has been started by materializing the attribute that is being

read. Because f is in F2, the read must come from one of the attributes of F2. Therefore, HOO

extracts from F2 the attribute f as a new partition of attributes in the object. This produces the

F′2, which is equal to F2 without f along with the brand new partition that has exactly the same

attribute/value tracker t2 and points to the same set of values V2.

Since this is also performing a write operation, the next step, shown in 3 , begins the write

operation by materializing exactly the attribute that is being written as its own partition in the

object at address a1. Unlike the read case, where the values and tracker are preserved, when writing

to an object the specific value will soon be replaced with a new value and thus the exact value is

unimportant. Because the object a1 is open and new attributes can be added, it does not matter

if the attribute already existed in the object before the write. Therefore, the new partition F′1 for

the existing attributes need not have contained f and thus f is removed from F1 only if it existed

already. This removal does not change the tracker t1. The fact that the domain of the tracker is a

superset of the set of possible attributes does not invalidate the tracker. However, the tracker is not

transferred to the new partition.

The final step of this read/write operation, shown in 4 , performs the actual read and write.

Because there is now necessarily one partition that is being read and necessarily one partition that

is being written, the value can now be transferred. Currently, however, there is only a summary

of the values. Therefore, an individual value v must be materialized from V2. Unlike the other

materializations, because multiple attributes may have shared a single value, the value should not be

removed from V2, but simply a new constraint that {v} ⊆ V2 is added. This minimizes case splits

that may be required throughout the analysis. Once this value is split, clearly the read object points

to this split off value because that is the value that was split off, and now the object at address A1

now also points to this value. This completes both the read and the write operation.

There are several other cases that can occur when reading and writing, such as case splits
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caused by the presence of multiple partitions or reading of an unknown attribute. These more

complex cases require careful handling and introduce a notion of complete and incomplete objects

and will be covered in detail in Chapter 4.

In the end, HOO achieves a precise analysis of a read and write from one object to another

even when the objects and attributes are completely unknown. It uses materialization to identify

specific attributes and values that are being written, and it uses attribute/value trackers to precisely

track which attributes map to which values. It thus performs relational abstraction and strong

updates on unknown objects.

3.4.2 Object Attribute Iteration

The next key feature of the analysis is support for iterating over an object’s attributes. In the

example code, this occurs in the copy function which copies all of the attribute/value pairs from a

source object pointed to by src to a result object pointed to by res, except for those attributes

that are defined in an exclusion object pointed to by exc. The key challenge when analyzing code

such as this is to be able to precisely infer a reasonable loop invariant that guarantees a precise

postcondition when the analysis completes. This requires support for unknown attribute access

along with support for iteration.

The main part of the copy function is shown in Figure 3.8. It contains the for-in loop

that iterates over the attributes of the object pointed to by src. This figure shows key analysis

states as would occur on the final iteration of abstract interpretation, when the already inferred

invariants are simply being checked. The precondition for this analysis, which is normally either a

developer-specified annotation, or provided by the context in a larger analysis is shown at program

point 1 . It describes three distinct objects at addresses a1, a2, and a3. Each of these objects has a

completely unknown structure, so this is a quite general precondition.

Appropriate partitioning of objects is vital for performing strong updates. To take advantage

of strong updates across loop iterations, 2 introduces two special attribute sets for iteration. The

set Fi is the set of all attributes that have not yet been visited by the loop and is thus initially equal
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1

[
res {a1}

F1 : t1
V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {undef}
True

]
1

2

[
res {a1}

F1 : t1
V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {undef} Fi = F2

∧ Fo = ∅

]
1

for(p in src)

i


res {a1}

F′
1 : t1

F′
2 : t2

V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {f} Fi ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ F′

2
∧ {f} ⊆ Fo ∪ {undef}


1

{

3


res {a1}

F′
1 : t1

F′
2 : t2

V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {f} ∧ Fi ] {f} ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ F′

2


1

if(p in exc) { } else {

4


res {a1}

F′
1 : t1

F′
2 : t2

V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {f} Fi ] {f} ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ F′

2
∧ {f} ∩ F3 = ∅


1

res[p] = src[p];

5


res {a1}

F′
1 : t1

F′
2 : t2
{f} : t2

V1

src {a2}
F′′
2 : t2
{f} : t2

V2

{v2}

exc {a3}
F3 : t3

V3

p {f} Fi ] {f} ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ (F′

2 ] {f})
∧ {f} ∩ F3 = ∅
∧ {v2} ⊆ V2

∧ F′′
2 ] {f} = F2


1

}

6


res {a1}

F′
1 : t1

F′
2 : t2

F4 : t2

V1

src {a2}
F′′
2 : t2
{f} : t2

V2

exc {a3}
F3 : t3

V3

p {f} Fi ] {f} ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ (F′

2 ] F4)
∧ F4 = {f} \ F3

∧ F′′
2 ] {f} = F2


1

7


res {a1}

F′
1 : t1

F′
2 : t2

V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {f} Fi ] Fo = F2

∧ F′
2 = Fo \ F3

∧ F′
1 = F1 \ F′

2
{f} ⊆ Fo


1

} .

8


res {a1}

F′
1 : t1

F′
2 : t2

V1

src {a2}
F2 : t2

V2

exc {a3}
F3 : t3

V3

p {f} F′
2 = F2 \ F3

∧ F′
1 = F1 \ F′

2
∧ {f} ⊆ F2 ∪ {undef}


1

Figure 3.8 – Iterating over objects with unknown attributes
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to F2, whereas the set Fo is the set of all attributes that have already been visited by the loop and

thus is initially empty. On each iteration an element is removed from Fi and placed into Fo, allowing

relationships to represent not just the initial iteration of the loop, but also any iteration. We see

these relationships in the loop invariant i .

The loop invariant i shows the two partitions of a1 that are inferred by the analysis. The

first partition F′1 is the initial set of attributes that were in a1 minus those attributes added by the

iteration process. The second partition F′2 is the set of attributes added by the iteration process.

Both partitions are constrained by Fo, because the overwritten portion of a1 can only be from the

elements that have already been visited by the loop. Additionally, relationship between Fi and

Fo can be more clearly seen in the loop invariant. They form a partition of the attributes of the

object a2. This loop invariant was inferred using a standard join/widening process in abstract

interpretation [CC77].

Upon entering the body of the loop, as shown in 3 , a new value f is bound to p. This value is

selected from Fi and is thus disjoint from Fo. As a result, it is always the case that Fi]{f}]Fo = F2.

This ensures the invariant that f is contained in F2 as well as ensuring that it is no longer included

in either iteration set.

Depending on the value of f, one of two possible cases occurs. If the value of f is in F3, it is in

the exclusion object and nothing should happen. This ensures that anything in the exclusion set is

not copied from the source to the result. In the other case, shown at 4 , where f is disjoint from the

exclusion object’s attributes F3, the attribute/value pair should be copied.

The copy itself proceeds like an unknown access as describe above. The key difference is that

there are two partitions of the destination object. Thus, as shown in 5 , a third partition for the

result is added and f is removed from both existing partitions. However, because the partition F′2

necessarily cannot contain f, it is only actually removed from F′1, as reflected in the constraints on

the side.

In 6 , the two cases are joined. As a result, the materialized value v2 is merged back into V2.

More important is the introduction of F4, which is a conditional version of {f}. It is equal to {f} if f
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is not in F3. Otherwise, it is equal to the empty set. This precisely encodes the condition of the

branch in the result of joining these two cases. The two different versions of the same objects are

merged into one by pushing the distinguishing cases into the set constraints on the side.

The final step 7 of the loop body prepares for the end of the loop. It moves f from being a

distinct element into Fo. This completes the transfer of a single unknown element from Fi to Fo.

However, to do so, partitions had to be merged. The fact that F4 was distinct from F′2 means that 6

can no longer be represented precisely without f, and since they have the same values, they can be

merged into a new F′2. Similarly, f is merged back into F′′2 to produce, once again F2. This merging

process summarizes the behavior of the loop into a form that is directly comparable with the loop

invariant and thus the loop completes.

This process of materializing a single element for iteration from the not-visited set Fi, evaluating

the loop body on that single element and then summarizing that element into the visited set Fo gives

strong updates across loops. Essentially, each iteration establishes more of a relationship between

objects where copies or other operations have occurred. Without separating out the visited set Fo,

these relationships cannot exist because they do not exist at the beginning of the loop and they do

not exist across the entirety of objects until the loop is complete.

3.4.3 Set Abstraction

The use of sets is central to the HOO abstraction. Every operation in some way manipulates

sets. I have shown all of these manipulations in a dotted box at the side of HOO, but this reasoning

is itself an abstraction. For HOO to function soundly, there are no requirements on what this

abstraction is capable of. HOO is parametric with respect to the set abstraction. However, to realize

the full benefits of HOO, the set abstraction has to be capable of a significant number of operations.

For example, in Figure 3.8, just to represent the loop invariant, the set domain must be capable

of representing disjoint union, set difference, union, subset, and singleton sets of not just strings,

such as attributes in JavaScript, but also special values such as undef. This is a significant number

of operations. Additionally, the set abstraction needs to be able to infer invariants about sets and to
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compute joins over constraints of sets.

Because JavaScript does not have sets explicitly as values in the language and because the

primary problem solved in this dissertation is not sets, I do not present the abstraction for sets here.

There is a multitude of possible abstractions for sets that could be used with HOO and one that I

use is presented in its entirety as a standalone analysis in Chapter 7. It supports not only all of the

above operations, but is parametric with respect to values, so that any values can be placed within

the sets and constraints on those values will be inferred.

3.4.4 Unknown Function Calls

Next, consider the analysis of the call to the user-supplied constructor. Here, I assume that the

user-supplied constructor is provided in init and that the behavior of this constructor is unknown.

In Figure 3.9, I show the abstract state immediately before, a , and immediately after, b , the

callback to that constructor.

a


result {a1}

F1 : t1
V1

glbl {a2}
F2 : t2

V2

c {a3}
F3 : t3

V3

args {a4}
F4 : t4

V4
other {a5}

F5 : t5
V5

init {k}

True


a

init({}, glbl, result, c, args); .

b



t
{a1}

F1 : t1
V1

{a2}
F2 : t2

V2
{a3}

F3 : t3
V3

{a4}
F4 : t4

V4

|

call {k}({a6}, {a2}, {a1}, {a3}, {a4})

result {a1} glbl {a2} c {a3}

args {a4} other {a5}
F5 : t5

V5
init {k}

True


a

Figure 3.9 – Desynchronized terms are introduced by function calls to unresolvable functions

Immediately before the call to the constructor, there are five objects of primary concern: a1 is

the result object that is the class instance that is currently in the process of being constructed;

a2 is the global object that is threaded through all functions in programs; a3 is the closure for this

particular function; a4 is the args object that is present for every function in JavaScript and stores

the list of arguments passed to the function; and a5 is another object that is local to the function
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and thus not accessible via a closure or the global object. This other object represents objects

like attrs, which are protected objects that should not be externally accessible. Because there are

many such objects in the program, I do no show all of them and instead show this other object as

a placeholder that potentially represents many objects.

Analyzing the call is problematic. There is no annotation that dictates the behavior of the

user-supplied constructor. To work around this, HOO splits the heap into two separate parts: (1)

the part that may be reachable by the client-supplied constructor and (2) the part that is definitely

not reachable by the client-supplied constructor. For the unreachable portion, there is no change and

thus it is directly represented in the post-state b . For the reachable portion, the analysis handles

the function call by desynchronizing the heap. This portion of the heap exists in a state prior to the

function call.

The desynchronization process introduces a new element in the representation called a desyn-

chronized term that is written JHK call {k}({a6}, {a2}, {a1}, {a3}, {a4}), where H is the portion

of the heap that is desynchronized and call {k}({a6}, {a2}, {a1}, {a3}, {a4}) is the function to be

called and the arguments to be passed to resynchronize this portion of the heap with the surrounding

portion. By introducing this desynchronized term, the post-state of the call can be written in such a

way that, when the user-supplied constructor becomes known, such as when a function summary

generated by HOO is reused, the now known function can convert the desynchronized heap back

into a synchronized heap.

Once the heap has become desynchronized, the portion that is not contained in a desynchronized

term is still accessible and usable. Consequently, it is possible to return {a1} even though the contents

of the object at address {a1} are unknown (desynchronized). Portions that are contained in the

desynchronized term are inaccessible until they are resynchronized by performing the corresponding

function call. Desynchronized memory should not be accessed as it could lead to incorrect analysis

results because that memory may have been updated, reallocated, deleted, or otherwise changed by

the function call.

While JavaScript does not have many language protection mechanisms, developers have learned
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how to use local function variables effectively to provide significant protection of critical internal

portions of code. The heap reachability query used when constructing a desynchronized term exploits

the little language protection that is provided. Protected backups, such as the copying of cfg into

attrs not only serve as protection from external mutation, but also ensure that objects like other

are not included in the desynchronized term, which is important to ensure that subsequent calls

to class instantiation behave the same (i.e. attrs after the call must match attrs before the

call). Similarly, all local variables, such as result will not be included. However, five objects

are desynchronized, due to their accessibility from the closure, the global object, or arguments as

anything that is accessible may be mutated by the client-supplied constructor.

3.4.5 Bringing the Abstractions Together

The combination of all of the above analyses is an analysis for the constructor for Class. I

elide the full preconditions and postconditions for the constructor due to their size. There are a

significant number of closure objects that are used, created, and manipulated that complicate the

representation.

As a result of support for unknown attribute access, attribute iteration, set abstraction, and

unknown function calls, the abstractions presented in this dissertation are sufficient to infer precise

postconditions and thus verify JavaScript library functions such as Class. The remainder of the

dissertation details each of these abstractions with additional examples.



Chapter 4

Heap Abstraction: Separation Logic with Open Objects

In this chapter I define the Heap with Open Objects (HOO) abstraction. It is an abstraction

for a dynamic language heap combined with open objects. The presentation starts with necessary

background on abstract interpretation sufficient to understand the purpose of HOO. Then, I introduce

two versions of the HOO abstraction. First, the single-state abstraction, as presented in [CCR14],

abstracts a single program state and thus is useful for verifying assertions in dynamic code. Second,

the two-state abstraction abstracts two program states: a precondition and a current state and is

thus suitable for inferring summaries of program behavior. After both abstractions are introduced,

the various operations are defined for the two-state abstraction. The single-state HOO is sufficiently

similar that it does not require a separate presentation.

Throughout this chapter I utilize the following symbols in the various definitions.

Address ⊆ Value

Attribute ⊆ Value

v ∈ Value

f ∈ Attribute

d ⊆ Attribute

o ∈ Object = Attribute ⇀ Value

σ ∈ State = Address ⇀ Object

Address is the set of all concrete addresses, Attribute is the set of all concrete attributes (strings),
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and Value is the set of all values including addresses and attributes. Object is the set of partial

functions from attributes to values, where unmapped attributes are not attributes in the object.

Similarly concrete states are a partial function from addresses to objects. Individual concrete values

v, attributes f , and object domains d are used in defining semantics. These partial functions are

represented as association lists as shown in Chapter 3.

4.1 Abstract Interpretation Background

Abstract interpretation [CC76, CC77, CC79] is based upon a concrete interpreter of the

language. A concrete interpreter takes program text and evaluates that program text starting

from some state, which represents the computer’s memory and input/output systems. In doing so, it

manipulates the state of the system. Each step in the interpretation transforms a concrete state

σ of a system into an updated state σ′ of the system via the 〈σ〉 k 〈σ′〉 relation that was given in

Section 3.1. Thus a concrete interpreter is a state transformer.

An abstract interpreter takes program text and evaluates that program text starting from

some abstract state, which is a mathematical model of some artifact of the program (typically the

set of reachable states). In doing so, it manipulates that mathematical model, producing a new

mathematical model. These mathematical models D and D′ respectively are elements of an abstract

domain that defines the meaning of those models and provides operations on those models such

as the abstract transfer functions [D] k [D′]. Thus, an abstract interpreter is a transformer for

elements of an abstract domain.

What abstract interpretation enables is the development of abstract domains that simulta-

neously reason about a large number of concrete states. Thus, the abstract interpretation can be

used to determine the possible effects of a program without considering each concrete evaluation

separately. When there are unboundedly or intractably many possible starting states to a program,

the abstract domain can represent all of the states and through abstract interpretation can determine

the behavior on any of the many inputs. Consequently, abstract interpretation gives a methodology

for reasoning about all executions of a program simultaneously.
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Of course, they key to doing this is abstraction. Abstraction means that it may not precisely

represent any set of concrete states, but rather, an overapproximation of a set of concrete states.

This overapproximation should be maintained throughout the abstract interpretation by ensuring

that the transfer functions in the domain are sound with respect to the corresponding concrete

transfer functions. Soundness is described by the following diagram:

�

D D0

�0

k

k

�
2

�

2

An abstraction D is related to a set of concrete states by the concretization function γ. The

concretization function γ defines the meaning of an abstraction in terms of the concrete states it

represents. This diagram shows that starting from an abstract domain element D and abstractly

interpreting command k gives D′. If the same command k is concretely interpreted starting from

any σ in the concretization of D, it produces a σ′ that is in D′. This means that the set of all σ′ are

a subset of those described by γ(D′) and thus this is an overapproximation and is considered sound.

Of course, defining sound transfer functions [D] k [D′] is a challenge because of possibility

of unbounded execution. When reasoning about any possible k, k can include loops. If the loop

is a function of an unbounded input, the abstract interpretation, because it considers any possible

input must consider the loop repeating unboundedly many times. This, however, is an undesirable

property because this means that performing an abstract interpretation may take an unbounded

amount of time. As a form of analysis, it is desirable for the analysis to complete on any program

regardless of its inclusion of loops.

The solution to this problem lies in the partial order that an abstract domain forms. The

partial order is formed from ordering v. This ordering must have the property that if D1 v D2 then

γ(D1) ⊆ γ(D2). This means that the ordering of the abstract domain elements is related to the

ordering of the subsets in the concrete through the γ function. With this partial order, it is possible
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to compute fixpoints [Tar55] for loops. A fixpoint, for the purposes of this discussion, is an element

of the partial order (of the domain) such that, after interpreting the body of the loop, gives the same

element of the partial order. In the following picture, a command k1 happens preceding the loop.

Then the loop body k` executes some number of times, followed by k2, which happens after the loop:

D
k1

k`

k2

The abstract domain element D is a fixpoint of this loop because k1 produces an abstract

domain element that is v D, and starting from D, k` produces exactly the same domain element D.

Therefore, the challenge in handling loops is computing fixpoints of the loops such as D.

In actuality, it is not necessary to compute a fixpoint of a loop. In fact, all that is required is a

post-fixpoint, which has the property that if [D] k` [D′], then D′ v D. Such a post-fixpoint D, if

viewed logically, is an inductive loop invariant [Flo67, Hoa69]. Therefore, I use the term invariant

generation to describe the process of computing these post-fixpoints.

The invariant generation process by abstract interpretation works like this: each command k is

evaluated abstractly starting from a specified precondition (represented as an element of the abstract

domain). If that command k is a loop, a loop invariant must be found. Initially, a candidate loop

invariant D0 is chosen to be the same as the abstract domain element immediately preceding the

loop. Then the loop body k` is interpreted starting from D0, giving D′0. If the result of interpreting

the loop body D′0 is included in the candidate loop invariant (D′0 v D), the candidate invariant was

inductive and is an actual invariant. Thus, the postcondition for the loop is the loop invariant. If

not, the reachable abstract states that were reached by evaluating the loop body can be added to

the candidate invariant via a join operation t, giving a new candidate invariant D1 = D0 tD′0. This

process can be repeated until a candidate D′i v Di.

Unfortunately, while each join operation t climbs the partial order, if the join operation is

actually the least upper bound of the two inputs and the partial order has infinite height (as many

do, such as intervals), this process may not terminate. There can be an unbounded number of
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iterations required to reach a fixpoint. To get around this, abstract interpretation requires a widening

operator O, which works like the join operator but climbs the partial order in potentially big leaps

ensuring that only a finite number of iterations is required to reach a post fixpoint. In doing so,

the guarantee that the most precise inductive invariant will be found is lost, but with appropriately

designed operators, many found invariants will be acceptably precise — precise enough that they

can prove interesting properties of the program.

As a result of the above process, an abstract domain is defined to be a partial order that has

the following key operations defined for it:

• Concretization: The function γ maps an abstract domain element to a set of concrete states.

• Transfer functions: The functions [D] k [D′] that soundly derive a domain element D′ from

a domain element D by abstractly interpreting the command k.

• Abstract inclusion: The D1 v D2 operation that determines if D1 is less than D2 in the

partial order defined by the abstraction partial order. Intuitively D1 is less than D2 if it is

more precise.

• Join: The D1 tD2 operation that yields a domain that is an overapproximation of the least

upper bound of D1 and D2.

• Widening: The D1OD2 operation that a domain that is an overapproximation of the least

upper bound of D1 and D2 and is guaranteed to converge (reach a post fixpoint) within a

finite number of loop iterations.

The definition of the HOO abstract domain contains all of these necessary elements starting

in the next section.

Non-standard abstractions Abstractions need not abstract a set of concrete program

states. They can, in fact, abstract any artifact of program execution. This means that anything that

can be described by a collecting semantics [Shi91] can be abstracted. Examples include complexity

analysis [GMC09], as well as abstracting program traces [RM07], and ranking functions [Urb13].
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In this thesis I am concerned with one particular variety of non-standard abstraction. The

abstractions used by the HOO come in two forms: The first is a single-state abstraction that is

standard according to the previously given definition. It abstracts a set of concrete program states.

The second is a non-standard, two-state abstraction. Rather than abstracting a standard concrete

semantics, it abstracts a special semantics that keeps track of two states. The first state is a pre-state

for the function being analyzed. This state is never updated. It is simply carried through the

program execution. The second state is a current state that may be reached from that particular

pre-state. Such an abstraction works as in the following diagram.

�

D D0

�0

k

k

�

2

�

2
�o, �o,

As before, the abstract domain element D transitions to D′ when k is interpreted. The key

difference is that γ gives a pair of concrete states σo, σ. The first state σo represents an initial

state whereas σ represents the current state in evaluation. By interpreting k starting from σ, the

interpreter gives σ′, which when paired with the same σo, must be in γ(D′).

4.2 Representation: Heap with Open Objects

In this section, I give the representation and concretization of the two variants of HOO.

This defines the meaning of each HOO abstraction and gives the idea of what each is capable of

representing. However, because all of the domain operations are essentially the same for both the

single-state and the two-state versions of HOO, I do not give two definitions of all of the operations.

In subsequent sections the operations are given in terms of the two-state version of HOO, but they

can be trivially adapted to the single-state version by ignoring all of the first state operations, which

are minimal.
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4.2.1 Single-State Heap with Open Objects

Single-state HOO is an abstraction for a dynamic language heap, which represents the state of

a dynamic language program. HOO has two components: a heap graph represented as separation

logic, and a pure constraint that restricts the values of symbols that appear in the heap graph. What

makes HOO unique is its pure component is second-order. It restricts symbols that represent sets of

values. These symbols can be any of the following:

{a}, {f}, {v},A,F,V ∈ Symbol

where A represents a set of addresses, F represents a set of attributes, and V represents a set of

values. The {a}, {f}, and {v} sets are the respective singleton forms.

Definition 1 (Heap with Open Objects). A heap with open objects is an abstraction represented

with the following logical syntax:

Heap 3 H ::= H1 ∗ H2 | A · 〈O〉 | Emp

Object 3 O ::= O1;O2 | F 7→ V | None

Domain 3 D ::= D1 ∨D2 | H |P

An abstract domain element D is either a disjunction of abstract domain elements, or a heap H

restricted by a pure domain element for sets P . This element is of a domain that is a parameter to

the abstraction. An individual heap H is a standard separation logic heap consisting of two disjoint

parts combined with separating conjunction, a set of objects A · 〈O〉 at addresses described by A with

structure O, or the empty Emp. Objects are also structured with a separating conjunction represented

with ; where attribute sets are known to be separate from all other attribute sets. Alternatively, objects

consist of a map from a set of attributes F to a set of values V or they are the empty object.

The resulting abstraction is a reduced product [CC79] between a heap abstract domain

element H and a set abstract domain element P . The set domain is used to represent relationships

between sets of attributes of objects. The information from the set domain affects points-to facts

A · 〈F : t 7→ V〉 by constraining the sets of addresses A, attributes F, and values V. Therefore the
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meaning of a HOO abstract state is closely tied to the meaning of set constraints. Since HOO is

parametric with respect to the abstract domain for sets (an example domain is given in Chapter 7),

its concretization is given in terms of a concretization for the set domain γP :

γP : SetDomain→ ℘(Valuation)

where Valuation = Symbol ⇀ ℘(Value)

A valuation η ∈ Valuation is a partial function that maps each symbol used in the heap to a

set of concrete values. These values are constrained by the abstract domain for sets, consequently,

any element of the set domain P concretizes to a set of possible valuations.

Based on this concretization for sets, Figure 4.1 shows the concretization of a single-state heap

based on HOO. As a result of its dependence on sets, the valuation η maps symbols to sets of values,

which are, in effect, summaries. Multiple objects can be summarized by representing their addresses

in the same set. Multiple attributes can be summarized by representing these attributes in the same

set and using that set to describe a partition of attributes in the object. Because these sets are

modeled as symbols and are not simply a result of expressing a collecting semantics of the analysis,

a separate pure domain for sets can relate set symbols to one another, constraining objects in the

heap. Consequently, HOO can abstract dynamic language heaps directly through separation logic

without requiring the object attribute names to be fixed.

Example 4.1 (HOO Parameterization). HOO is a parametric heap abstraction that takes a

set abstraction as a parameter and uses that to represent the various addresses, attributes, and

values in the heap. In Figure 4.2, HOO is shown instantiated with three different domains for

sets. On top, HOO is instantiated with a QUIC-graphs-based domain as described in Chapter 7.

This produces a heap graph with all addresses, attributes, and values represented as sets. In the

middle, FixBag [PTTC11] is a different representation of sets with a completely different internal

representation, but as long as its interface conforms, it can be used with HOO. Similarly, other

domains like, constants domains can be used along with HOO. In the end, each of these heaps has
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γ : Object→ ℘(Valuation× State× ℘(Attribute))

γ(O1;O2)=

 η, o, d

∣∣∣∣∣∣
∃o1, o2, d1, d2.(η, o1, d1) ∈ γ(O1)
∧ (η, o2, d2) ∈ γ(O2) ∧ o = o1 ] o2

∧ d = d1 ] d2


γ(F 7→ V)=

{
η, o, d

∣∣ d = η(F) ∧ ∃f. f ∈ η(F) ∧ o(f) ∈ η(V)
}

γ(None) ={ η, [], ∅ }

γ : Heap→ ℘(Valuation× State)

γ(H1 ∗ H2)=

{
η, σ

∣∣∣∣ ∃σ1, σ2. (η, σ1) ∈ γ(H1) ∧ (η, σ2) ∈ γ(H2)
∧ σ = σ1 ] σ2

}
γ(A · 〈O〉) =

{
η, σ

∣∣∣∣ ∀a ∈ η(A). ∃o, d.σ(a) = o
∧ (η, o, d) ∈ γ(O) ∧Dom (o) = d

}
γ(Emp) ={ η, [] }

γ : Domain→ ℘(Valuation× State× State)

γ(D1 ∨D2)=
{
η, σ

∣∣ (η, σ) ∈ γ(D1) ∨ (η, σ) ∈ γ(D2)
}

γ(H |P ) =
{
η, σ

∣∣ (η, σ) ∈ γ(H) ∧ η ∈ γP (P )
}

Figure 4.1 – Concretization of the HOO abstract domain
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HOOQUIC Graphs

FixBag HOO

Constants HOO

Heap Abstraction
Attributes/Values from QUIC Graphs

Heap Abstraction
Attributes/Values from FixBag

Heap Abstraction
Attributes/Values from Constants

Figure 4.2 – HOO is a parametric heap abstraction that can be instantiated with any abstraction
for sets of addresses, attributes and values.

different precision and different performance because HOO relies upon the underlying abstraction to

determine the representation it uses for a given set of heaps.

The single-state version of HOO is useful for proving properties about object structures.

Specifically it is ideal for representing relationships between multiple objects in the heap. If, for

example, two objects in the heap have the same attributes and the same values, HOO can represent

the equality of the attribute sets of those two objects and the value sets of those two objects. When

trying to prove that objects have certain attributes or values (as might be checked by an assertion),

this type of abstraction is ideal. However, if the goal is to infer summaries of functions or library

code, the single-state abstraction is insufficient.

4.2.2 Two-State Heap with Open Objects

To be able to infer function summaries, as would be useful for determining the behavior of a

function through analysis, two states must be abstracted. In the two-state abstraction, one state

is a key program point and the other state represents the current program point. For instance,

the first state could be the pre-condition to a library call and the second state could be the state

of the program relative to that pre-condition at its program point. In the concrete, a two-state

abstraction approximates a pair of states, where the second state may be reachable from the first

from an associated program point. While possible to extend abstractions to full traces [Riv05], the

two-state abstraction is sufficient for the problems tackled in this dissertation.



53

Definition 2 (Two-State HOO). Two-State HOO uses the same heap and object syntax as HOO,

but has a new definition of domain:

Domain 3 D ::= D1 ∨D2 | [H2]H1
|P

Instead of using a single heap H, there are now two heaps H1 and H2. The first state is H1 and

indicates the state at the pre-condition of the library function being analyzed. The second state H2

represents the state of the program at the current program point. These states can be related to one

another through the pure domain P .

In the two-state HOO, the parametric single pure domain element P is critical for representing

relationships. If the same symbol occurs in both states, because it is restricted by a single P , it must

be bound to the same value. Similarly P allows two different symbols appearing in two different

states to be related through set constraints.

Example 4.2 (Two-state abstraction). In the following state, there are two abstract heaps and

a single pure domain element.

[
{a} · 〈F′ 7→ {v}〉

]
{a}·〈F7→{v}〉 | F

′ ⊆ F

This represents two concrete states. This constrains the relationship between those states so that they

both refer to the same object because they use the same symbol {a} and the number of attributes

has been possibly reduced: an attribute may have been deleted. All other attributes remain the

same and no other attributes can have been observably added (added and then later removed is

acceptable).

In addition to extending HOO to abstract multiple states, I also extend HOO with a new

element called an attribute/value tracker. An attribute/value tracker relates specific attributes to

specific values within a partition of an object. An attribute/value tracker is a name that is associated

with a partial function from the attributes defined on a given partition to values that are contained

in the set of associated values. By associating a tracker name with multiple partitions in multiple
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objects in two states, allows particular relationships to be tracked from the beginning of a function

to a later point in a function, including the end.

Definition 3 (Attribute/value trackers). Attribute/value trackers modify objects in HOO adding

an optional tracker t to each mapping from sets of attributes F to sets of values V:

Object 3 O ::= O1;O2 | F : t 7→ V | F : – 7→ V | None

The tracker is an uninterpreted function that maps each element from the corresponding F to an

element represented by the corresponding V. An elided tracker – indicates an unidentified relationship.

The concretization of HOO with attribute/value trackers, due to both the multi-state abstrac-

tion and the presence of attribute/value trackers is different from basic HOO. First, a domain element

D concretizes to a set of triples, including two concrete states σ1, σ2 and valuation η. Because the

pure domain constrains relationships between the two abstract states, a common valuation is shared

between the two concrete states. Second, the symbol µ for the binding of the trackers is constrained

throughout the concretization:

t ∈ TrackSym

µ ∈ TrackerMap = TrackSym ⇀ Attribute ⇀ Value

An element µ ∈ TrackerMap maps a tracker symbol to a partial function from attributes to values.

The domain of that function is fixed when the tracker is introduced.

The definition of concretization is given in Figure 4.3. In addition to the standard separation

logic operations as defined by HOO, the tracker map µ is threaded throughout the concretization,

ensuring that it is shared between all partitions of attributes of all objects for both heaps that are

described by the two-state abstraction.

Points-to Shorthand Notation In JavaScript and other dynamic languages, there are

two classes of pointers: pure pointers and object pointers. Pure pointers are used to represent

stack-allocated local variables. Stack-allocated local variables point to either objects or directly to
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γ : Object→ ℘(Valuation× TrackerMap× State× ℘(Attribute))

γ(O1;O2) =

 η, µ, o, d

∣∣∣∣∣∣∣∣
∃o1, o2, d1, d2.

(η, µ, o1, d1) ∈ γ(O1)
∧ (η, µ, o2, d2) ∈ γ(O2)
∧ o = o1 ] o2 ∧ d = d1 ] d2


γ(F : t 7→ V)=

{
η, µ, o, d

∣∣∣∣ d = η(F) ∧ ∀f ∈ η(F).
o(f) ∈ η(V) ∧ µ(t)(f) = o(f)

}
γ(F : – 7→ V)=

{
η, µ, o, d

∣∣ d = η(F) ∧ ∀f ∈ η(F). o(f) ∈ η(V)
}

γ(None) ={ η, µ, [], ∅ }

γ : Heap→ ℘(Valuation× TrackerMap× State)

γ(H1 ∗ H2)=

{
η, µ, σ

∣∣∣∣ ∃σ1, σ2. (η, µ, σ1) ∈ γ(H1)
∧ (η, µ, σ2) ∈ γ(H2) ∧ σ = σ1 ] σ2

}
γ(A · 〈O〉) =

{
η, µ, σ

∣∣∣∣ ∀a ∈ η(A). ∃o, d.
σ(a) = o ∧ (η, µ, o, d) ∈ γ(O) ∧Dom (o) = d

}
γ(Emp) ={ η, µ, [] }

γ : Domain→ ℘(Valuation× State× State)

γ(D1 ∨D2) =
{
η, σ1, σ2

∣∣ (η, σ1, σ2) ∈ γ(D1) ∨ (η, σ1, σ2) ∈ γ(D2)
}

γ([H2]H1
|P )=

{
η, σ1, σ2

∣∣∣∣ ∃µ. (η, µ, σ1) ∈ γ(H1)
∧ (η, µ, σ2) ∈ γ(H2) ∧ η ∈ γP (P )

}

Figure 4.3 – Concretization of two-state HOO abstractions with attribute/value trackers
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values and as such they are simple pointers. Object pointers are the more complex form where an

object contains attributes and each attribute points to a corresponding value.

To simplify the abstraction and to unify these two classes of pointers, HOO uses a special unit

attribute that is written (). This unit attribute is used to represent a pure pointer as an object

pointer. Thus the only kind of pointer that need be represented by HOO is an object pointer.

However, because it is cumbersome and unhelpful to write this unit attribute everywhere, I write

pure pointers that can be translated into the equivalent object pointer using the unit value. For

example, consider the following bit of heap (in either single- or two-state HOO).

{a1} 7→ {v1} ∗ {a2} 7→ {v2}

These two pure pointers can be translated into the equivalent object pointer representation where

each source is actually an object with a single attribute () and each destination is the corresponding

value pointed to by that attribute. Trackers are unnecessary as the only attribute is the () attribute.

The resulting, equivalent form is the following:

{a1} · 〈{()} : – 7→ {v1}〉 ∗ {a2} · 〈{()} : – 7→ {v2}〉

In this way formulas are significantly simplified, while keeping the abstraction simpler to define

domain operations.

Graphical Notation For expository purposes, I most often use a graphical representation

of abstract states. This notation was used to introduce the problems solved in this dissertation

in Chapter 3. In this graphical notation, there are four kinds of boxes. (1) A dotted box with a

typewriter font symbol is a symbol representing a stack-allocated memory address and is thus a

representation of a local variable. Arrows out of these boxes represent pure points-to shorthand as

described above. (2) A double-lined box with an A, F, or V in the box represents a summary of

values. If those values are addresses (as in A), those addresses will not be dereferenced, as the target

object is undefined. Consequently, these boxes do not have arrows initiating at the box. (3) A table

represents an object and its partitions along with all of the mappings to values. The top row of a
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table, with a black background, indicates the symbol that is the address of the object. In each row,

there are two columns. The first column contains the symbol for the attribute set and the tracker, if

defined. The second column contains the value symbol, or an arrow to the box that contains the

value symbol. (4) A dotted box with a logical constraint inside is the pure constraints that restrict

the symbols used for addresses, attributes, and values using the set abstraction.

The graphical notation can be translated into the logical notation by transforming objects into

their logical equivalent, where multiple objects and points-to relationships are joined via separating

conjunction. The previous abstract state shown as the right-hand-side subscript only represents the

heap and not the pure part. The pure part is captured entirely within the second abstract state

shown in brackets. The following shows how points-to arrows are translated from the graphical

notation into the corresponding logical representation:

Graphical =⇒ Logical

r {a} =⇒ r 7→ {a}
A

F1 : t1
F2 : t2

V1

V2

=⇒ A · 〈F1 : t1 7→ V1; F2 : t2 7→ V2〉

Example 4.3 (Graphical Notation). In Figure 3.6, the following abstract state was shown graph-

ically:

obj A

F : t
V

F = {f1} ∪ {f2} ∧ f1 = 'fld1'

∧ f2 = 'fld2' ∧V = {v1} ∪ {v2}

∧ v1 = 1 ∧ v2 = 2 ∧A = {a}


obj {undef}

Previously, the pre-state was shown implicitly with a number, whereas here it is shown

explicitly. This is equivalent to the following separation logic formula that is represented by the

two-state HOO abstract domain:
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[obj 7→ A ∗ A · 〈F : t 7→ V〉]obj7→Vu

| F = {f1} ∪ {f2} ∧ f1 = 'fld1'

∧ f2 = 'fld2' ∧V = {v1} ∪ {v2}

∧ v1 = 1 ∧ v2 = 2 ∧A = {a}

∧Vu = {undef}

4.3 Materialization with Set Abstraction

The abstract transfer functions are defined to only operate on singleton objects and attributes.

Therefore, before defining the transfer functions, it is necessary to define materialization. Material-

ization is responsible for separating a single element out of a summary of possibly many elements.

This is critical because, when JavaScript manipulates an object, it does not manipulate a summary

of objects, but rather one object at a time. Similarly it manipulates one value at a time or one

attribute at a time. However, in HOO, which may lump many objects, attributes, and values together

into a single set symbol, that set symbol must be split into the necessary singleton symbol to be

transformed by the program and the remaining summary that is left after removing the singleton

symbol.

Without materialization, it is necessary to perform weak updates [Deu94] instead of strong

updates. A strong update replaces an old abstract value with a new one by first removing the old

value and then adding the new one. In contrast, a weak update simply adds a new abstract value as

a possibility without first removing the old. It is well known that weak updates can cause significant

precision loss during analysis [SRW02]. Fortunately, because HOO supports materialization, it is

possible to perform strong updates.

The following two examples demonstrate the combination of materialization with transfer

functions for storing to an object and loading from an object. They are intended to convey the

intuition of materialization before it is formally defined.
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Example 4.4 (Attribute Materialization for Store). Attribute materialization for store oper-

ations is simple. Since the value of the particular attribute is about to be overwritten, there is no

need to preserve the original value. The implementation of store is the following:

a b

x1 {a1}
F1 : t1

.

.

.
.
.
.

Fn : tn

{v1}
.
.
.

{vn}
x3 {v}

x2 {f}

P
x1[x2] := x3

x1 {a1}
F′
1 : t1
.
.
.

.

.

.

F′
n : tn
{f} : –

{v1}
.
.
.

{vn}

x3 {v}

x2 {f}

P
∧ F′

1 = F1 \ {f}
.
.
.

∧ F′
n = Fn \ {f}

Store looks up the corresponding objects to x1, x2, and x3 in a , which in this case are {a1},

{f}, and {v} respectively. Attribute materialization then iterates through each partition in {a1}

and reconstructs the partition by removing {f} from the partition. If {f} was not already present in

the partition, this represents no change; otherwise it explicitly removes {f}. Finally, after all of the

existing partitions have been reconstructed, a new partition for {f} is created and it is pointed to

the stored value {v} giving b . By performing this attribute materialization, subsequent reads of the

same property {f}, even if its concrete value is unknown, are guaranteed to be directed to {f} and

thus store performs strong updates.

Example 4.5 (Attribute Materialization for Load). Attribute materialization for load is sim-

ilar to store. The key difference is that there is a possible result for each partition of the read object.

The HOO abstract domain uses a finite disjunction to represent the result of this case split as shown

in Figure 4.4.

A load operation must determine which, if any, of the partitions the attribute {f} is in. In the

worst case, it could be in any of the partitions and therefore a result must be considered for each case.

In each case, {f} is constrained to be in that particular partition and therefore in no other partition.

If this is inconsistent under the current analysis state, the abstract state will become bottom for that

case and it can be dropped. The default case, which implicitly represents all attributes not currently

in the object, must be considered, as a possible source for materialization if there is a chance the
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a b c d

x1 {a1}
F1 : t1

.

.

.
.
.
.

Fn : tn

{v1}
.
.
.

{vn}

x2 {f}

P

let x = x1[x2]

x1 {a1}
F′
1 : t1
{f} : t1
F2 : t2

.

.

.
.
.
.

Fn : tn

{v1}

{v2}
.
.
.

{vn}

x2 {f}

x

P ∧ F1 = F′
1 ] {f}

· · ·
x1 {a1}

F1 : t1
.
.
.

.

.

.

Fn-1 : tn-1
f′n : tn
{f} : tn

{v1}
.
.
.

vn-1

{vn}

x2 {f}

x

P ∧ Fn = F′
n ] {f}

x1 {a1}
F1 : t1

.

.

.
.
.
.

Fn : tn

{v1}
.
.
.

{vn}

{vd}x2 {f}

x

P ∧
{f} 6⊆ F1 ∪ · · · ∪ Fn

∧ vd = undef

Figure 4.4 – Attribute materialization for loading from objects

attribute does not already exist in the object. Such a materialization does not explicitly cause any

repartitioning.

Note that when materialization splits a partition, it copies the attribute/value tracker into

each of the new partitions. This ensures that, if the set abstraction is precise, the materialization

operation is completely precise.

Materialization is typically applied before a transfer function so that the precondition of the

transfer function is met. The materialization operation attempts to split off a specific singleton

symbol from a summary symbol. If it succeeds, the abstraction has that singleton symbol explicitly

represented in the heap abstraction. If it fails, the singleton symbol does not exist and summary

symbols are constrained to definitely not contain the singleton symbol of interest. These two cases

are represented throughout the materialization rules shown in Figure 4.5. All of the rules support

multiple results in order to allow case splits that determine if a singleton symbol is definitely in or

definitely not in a summary symbol.

Materialization rules are of the form D1 ⇒ D2 and thus intended to be used with the rule of

consequence from Hoare logic [Hoa69] to allow a future rule to be applied. For example, rules for

assignment (next section) can only be applied to singleton object addresses, singleton attributes,

and often singleton values. By applying materialization correctly, an abstract heap element that

consists of summary object addresses, summary attributes, and summary values can be converted to

the appropriate singleton form without loss of precision, assuming a precise pure domain.
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O |P ⇒ ℘(O |P )

Mat-Value
v is fresh P ′ = P ∧ {v} ⊆ V

{f} : t 7→ V |P ⇒
{
{f} : t 7→ {v} |P ′

}
Mat-Attr
F′ is fresh P ′ = P ∧ {f} ] F′ = F P ′′ = P ∧ {f} ∩ F = ∅
F : t 7→ V |P ⇒

{
{f} : t 7→ V; F′ : t 7→ V |P ′, F : t 7→ V |P ′′

}
Mat-Obj-Frame

O2 |P ⇒ Ō

O1;O2 |P ⇒
{
O1;Oi |Pi

∣∣ Oi |Pi ∈ Ō }
H |P ⇒ ℘(H |P )

Mat-Obj
O |P ⇒ Ō

{a} · 〈O〉 |P ⇒
{
{a} · 〈Oi〉 |Pi

∣∣ Oi |Pi ∈ Ō }
Mat-Addr
A′ is fresh P ′ = P ∧ {a} ]A′ = A P ′′ = P ∧ {a} ∩A = ∅

A · 〈O〉 |P ⇒
{
{a} · 〈O〉 ∗ A′ · 〈O〉 |P ′, A · 〈O〉 |P ′′

}
Mat-Heap-Frame

H2 |P ⇒ H̄

H1 ∗ H2 |P ⇒
{
H1 ∗ Hi |Pi

∣∣ Hi |Pi ∈ H̄
}

D ⇒ D

Mat-Heap
H2 |P ⇒ H̄

[H2]H1
|P ⇒

∨{
[Hi]H1

|Pi
∣∣ Hi |Pi ∈ H̄

}
Mat-Disj

D2 ⇒ D′2

D1 ∨D2 ⇒ D1 ∨D′2

Figure 4.5 – Materialization of all of the parts of objects never produces fresh attribute/value
trackers. It reuses existing trackers.
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There are three different judgments forms that are responsible for materialization. The first

is responsible for materializing within a single object O given a pure set domain P . These rules

produce a set of possible object/pure set domain pairs that are utilized by the second judgment

form. The second judgment form is responsible for materialization that happens within a heap H

given a pure set domain P . The result of these judgments is a set of heap and pure set domain

pairs that represent the possible ways a particular element could be materialized. This set of pairs

is utilized by the third judgment form. The third judgment form performs materialization on an

abstract domain element D and yields another abstract domain element. Because abstract domain

elements can represent disjunctions, sets of results are not required in transfer functions.

There are three rules that follow the first judgment form. The Mat-Value rule materializes a

value from a summary. It is applied to a single attribute partition that has a singleton attribute {f}

and a tracker t that points to a summary value V. Any value that is contained within the summary

V can be materialized and as such some fresh v is introduced that is the sole value that corresponds

to this singleton attribute. The Mat-Attr rule materializes a specific attribute from an attribute

summary. Note that this rule does not require values to be non-summary elements, so it can be

applied to an attribute partition regardless of the corresponding value or attribute/value tracker.

This rule captures two cases. Either the required attribute f is in this particular attribute partition F

or it is not. In the first case, two new partitions are produced that take the place of the old partition.

A new attribute F′ is introduced that represents the residual after removing f from the F partition.

Note that attribute/value trackers are cloned in this case as both new partitions represent a subset of

the previous partition F, and thus the same tracker can be used. The second case assumes that f is

not from F and no new partitioning is produced. The final rule Mat-Obj-Frame is the intra-object

frame rule. Just like ∗ works for addresses, the ; operator works within objects. Therefore a frame

rule applies. Using the frame rule, materialization can be performed on an isolated part of an object.

All other parts of the same object remain untouched and unaffected by the materialization.

The second judgment form also has three rules. The Mat-Obj rule is responsible for material-

ization within an object. It makes use of the first judgment form to materialize within an object
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and it simply introduces the corresponding case splits at the heap level by making the object at the

singleton address a be an object in each of the results of object materialization. The Mat-Addr

rule is responsible for materializing a specific address from a summary address. It works much like

Mat-Attr producing two cases: one where the object is definitely part of the summary and the

other where the object is definitely not part of the summary. In the first case, there are two objects

(one singleton, one summary) in the resulting heap, whereas the second case does not perform

any materialization. Note that materialization may not lose any precision because the all of the

history of how materialization happened is stored in the resulting pure set domain. As a result,

with a precise enough domain, materialization can be completely undone. The Mat-Heap-Frame

is the traditional separation logic frame rule that allows applying some operation (in this case

a materialization) to a part of the heap and recombining the result of that with the remaining

untouched part of the heap.

The final judgment form has two rules. The first rule, Mat-Heap delegates to the second

judgment form to materialize a heap. This rule is the sole difference between materialization for

the two-state abstraction and the single-state abstraction. This rule applies materialization only to

the second (current) abstract state and leaves the special (precondition) abstract state alone, not

supporting materialization. This rule is responsible for introducing disjunctions in the abstraction for

each case split introduced by materialization. Consequently HOO makes extensive use of disjunctions

introduced during materialization. The second rule, Mat-Disj simply handles disjunctions by

allowing materialization to be applied to each disjunction separately.

Example 4.6 (Materializing a summary). Consider the following HOO abstraction:

[A · 〈F : t 7→ V〉]H1
|{a} ⊆ A ∧ {f} ⊆ F

If the analysis needs to read from a[f], this must be materialized. To achieve the following heap

abstraction first the Mat-Addr rule is applied, then the Mat-Attr rule is applied to the result,

then the rule Mat-Value is applied:

Materialization operations are designed to split summaries into a singleton and a new summary.
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A′ · 〈F : t 7→ V〉 ∗
{a} · 〈F′ : t 7→ V; {f} : t 7→ {v}〉

]
H1

|
{a} ]A′ = A
∧ {f} ] F′ = F
∧ {v} ⊆ V

When this occurs, the relationship between the singleton, new summary, and old summary is

added as a constraint in the set domain. Because the set domain overapproximates, the precise

materialization constraint may be lost. Regardless, it is sound to lose this constraint. It simply

means that materialization may not be reversed precisely. This is written by saying that if a state

and valuation that is in the concretization of a domain D1, and D2 can be materialized from D1, D2

should contain that state and valuation.

Theorem 1 (Soundness of Materialization). If D1 ⇒ D2, for all η, σ1, σ2, (η, σ1, σ2) ∈ γ(D1)

implies that (η, σ1, σ2) ∈ γ(D2).

4.4 Reading and Writing in Objects

The next part of a definition of an abstract domain is the transfer functions, which determine

how interpreting a command k starting from an abstract domain element D yields another abstract

domain element D′. The primary operations supported in open-object-focused JavaScript involve

reading from and writing to objects. In fact, even direct variable copy (x = y), because stack

allocated variables are represented as objects are in fact, object reads and writes with the selected

attribute being the unit attribute (). This covers the abstract domain transfer functions for reading

from and writing to objects.

To unify the presentation of these rules, I introduce a special variety of materialization rule.

The rule Mat-Addr-Env (shown below) produces a stack-allocated variable if the variable does

not already exist. This means that only a single write operation is required: one that assumes that

a particular variable exists and is being overwritten. If the situation occurs where the variable does

not already exist, it can be created with any value before immediately being overwritten. Because

the program variable x is required to be fresh, necessarily there can only be a single value of x in
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the heap. This allows this materialization to be applied using an appropriate frame rule. If x were

not fresh, the frame rule might not hold [Rey02].

Mat-Addr-Env
x is fresh

Emp |P ⇒ {x} · 〈{()} : – 7→ V〉 |P

The definition of the transfer functions for reading and writing objects is shown in Figure 4.6.

The rule T-Single unifies the single-state and the two-state versions of HOO. Because the special,

initial state H1 is simply maintained by the abstraction and all of the operations are applied to the

current state H2, applying the single-state abstract transfer relation to H2 and then reconstructing

the two state abstraction with the result H ′2 and the same H1 gives the expected result.

There are two rules for reading from an object. The first, T-Read-P reads the value contained

within an attribute f within the object a and then updates the simple pointer x with the read value.

This can only be applied to a singleton object, attribute, and value, so appropriate materializations

must have been applied before applying this rule. The second rule, T-Read-N reads the default,

undef value when the attribute does not exist within the object A. In order to apply this rule,

materialization must have added the constraint that f is not in the object O. This is proven through

the exclusion rules.

The rule for writing, T-Write assumes that a target object at address a exists and then writes

to that object. The write has two critical parts: the overwrite and the extension. The overwrite

modifies the target object O producing a new object O′ that no longer has the written attribute f in

it. This works through the overwriting rules described below. The extension part of the rule adds a

new partition with the singleton attribute f as its sole constituent and the corresponding value for

the write. Note that the write operation does not propagate attribute/value trackers. To do that

requires the use of the copy operation.

Transferring attribute/value trackers Attribute/value trackers are transferred from

one object to another by assignment. For simplicity, I assume here that all assignments between
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T-Single
[H2 |P ] k

[
H ′2 |P ′

][
[H2]H1

|P
]
k
[[
H ′2
]
H1

|P ′
] [

[H2]H1
|P
]
k
[[
H ′2
]
H1

|P ′
]

[H |P ] k
[
H ′ |P ′

]
T-Read-P

[x 7→ Vx ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉 |P ]
x = y[z]

[x 7→ {v} ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉 |P ]

T-Read-N
P ` {f} 6⊆ O

[x 7→ Vx ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈O〉 |P ]
x = y[z]

[x 7→ {undef} ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈O〉 |P ]

T-Write
O \ {f} |P ⇒ O′ |P ′

[x 7→ {a} ∗ y 7→ {f} ∗ z 7→ {v} ∗ {a} · 〈O〉 |P ]
x[y] = z[

x 7→ {a} ∗ y 7→ {f} ∗ z 7→ {v} ∗ {a} · 〈O′; {f} : – 7→ {v}〉 |P ′
]

T-Copy-P
O1 \ {f} |P ⇒ O′1 |P ′

[x 7→ {a1} ∗ y 7→ {f} ∗ z 7→ {a2} ∗ {a1} · 〈O1〉 ∗ {a2} · 〈{f} : t 7→ {v};O2〉 |P ]
x[y] = z[y][

x 7→ {a1} ∗ y 7→ {f} ∗ z 7→ {a2} ∗ {a1} · 〈O′1; {f} : t 7→ {v}〉 ∗ {a2} · 〈{f} : t 7→ {v};O2〉 |P ′
]

P ` {f} 6⊆ O

Exc-Sep
P ` {f} 6⊆ O1 P ` {f} 6⊆ O2

P ` {f} 6⊆ O1;O2

Exc-None

P ` {f} 6⊆ None

Exc-Part
P ` {f} ∩ F = ∅

P ` {f} 6⊆ F : t 7→ V

O \ {f} |P ⇒ O′ |P ′

Over-Sep
O1 \ {f} |P ⇒ O′1 |P ′ O2 \ {f} |P ′ ⇒ O′2 |P ′′

O1;O2 \ {f} |P ⇒ O′1;O′2 |P ′′

Over-None

None \ {f} |P ⇒ None |P

Over-Part
P ′ = P ∧ F′ = F \ {f} F′ is fresh
F : t→ V \ {f} |P ⇒ F′ : t→ V |P ′

Figure 4.6 – Reading and writing objects
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objects are transformed into the form of a simultaneous read from an object and a write to another

object. When the attribute being read and written matches so that an attribute/value pair is being

copied, there is an opportunity to transfer that attribute/value pair from one object to the other.

When this transfer happens, the attribute/value tracker can be transferred as well.

The T-Copy-P rule in Figure 4.6 shows the of the transfer relation that enables an attribute/-

value tracker transfer. Note that it only applies when the attribute being read exists within the

object. If it does not exist, the default, unknown attribute will be retrieved and thus does not have

an attribute/value tracker associated with it. In this case, a sequence of T-Read-N and T-Write

achieves the same goal. When the attribute does exist in the source object a2 and a tracker t exists

for that attribute, when that attribute is copied to the first object a1, the tracker t is also copied

because the particular attribute/value relationship can remain across a copy operation.

Introducing attribute/value trackers Attribute/value trackers should be introduced at

chosen program points where the first of the paired states is selected. For example, when constructing

an initial abstract state it would be normal to express it as [H]H |P where the two described heaps

are identical. In this instance, fresh attribute/value trackers should be introduced for each partition

in H. This establishes the initial relationship between the initial abstract state and the current

abstract state and then any attribute/value trackers that are preserved strengthen the relationship

between the two states.

Additionally, attribute/value trackers can be introduced at other times. The benefits of

doing so are less significant as freshly introduced trackers cannot relate objects from one time

to another, but instead are limited to relating multiple objects in the same time. However, as

trackers are incomparable unless they are syntactically equal, freely introducing fresh trackers can

prevent inclusion checking from succeeding and thus prevent the analysis from terminating. To

avoid this problem in two-state HOO, one acceptable strategy is to not introduce trackers after the

pre-condition of the analysis. This ensures that the analysis can terminate while still preserving the

key benefit of relating objects in the pre-condition to objects in the current state.

Excluding attributes Attribute exclusion checks the pure set constraints P to ensure that
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a given attribute f is not in an object. It does this through three rules Exc-Sep, Exc-None, and

Exc-Part. The purpose of the first two rules is to allow the third rule to be applied to every

partition within an object O. The third rule checks that {f} 6⊆ F by checking if P implies that the

constraint that these two sets are disjoint, which works because the attribute is always a singleton

attribute.

Overwriting attributes Overwriting attributes works similarly to excluding attributes. It

produces a fresh object and pure set domain where each partition is constrained to be the same as

the old partition minus the particular attribute that is being overwritten. There are three rules

to accomplish this. The first, Over-Sep applies overwriting to each sub-partition. If an empty

partition is found, nothing happens as described by Over-None. Finally, if a base-level partition is

found, a fresh attribute set F′ is introduced that is constrained to be equal to the original attribute

set F minus the singleton set {f}. The resulting object no longer has f as one of its attributes.

Theorem 2 (Soundness of Transfer Functions). Transfer functions are sound because:

∀k, σ0, σ, σ
′, D,D′. 〈σ〉 k

〈
σ′
〉
and [D] k

[
D′
]
and ∃η. (η, σ0, σ) ∈ γ(D)

implies ∃η′. (η′, σ0, σ
′) ∈ γ(D′)

4.5 Automatic Invariant Inference

In this section I give the join, widening, and inclusion check algorithms that are required for

automatically and soundly generating loop invariants. Here the focus is inferring loop invariants

for for-in loops — the primary kind of loop for object-manipulation. In effect, for-in loops are

interpreted as a more traditional while loop that iterates over the elements within the attribute

sets in the object that is being iterated over. Critical to this process is the introduction of iteration

progress variables Fo and Fi to keep track of which attributes of the object have been visited over

the course of the iteration and those that have not.

The analysis of for-in loops first translates these loops into while loops. This allows

HOO to follow the standard abstract interpretation procedure for loops, while introducing iteration-
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progress variables to aid the analysis in inferring precise loop invariants. The translation of

for(x in y) { k } uses several additional commands not defined as part of the open-object-

focused JavaScript:

Fi = attr(y);
Fo = ∅;
while(Fi 6= ∅) {
x = choose(Fi);
Fi = Fi \ {x};
k
Fo = Fo ∪ {x};

}

The attr command constrains the Fi set to be equal to the union of all of the partitions of

the object, while assigning Fo to the empty set constrains it to be initially empty. Then on each

iteration of the loop, an element is selected from the Fi set, bound to x, and then removed from the

Fi set. The original body of the for loop is then executed. Finally, the selected element x is added

to Fo. The purpose of this iterative process is to allow relationships between objects to iteratively

form. Initially there may be no relationships between objects, but if the attribute x is copied to

another object, that makes a relationship between those two objects on just that attribute x. At the

end of the loop body that attribute x is folded into Fo, which happens in all objects where x occurs.

This makes the relationship between objects over all of Fo, which then iteratively grows until it is

equal to the full set of attributes of the object pointed to by y.

These iteration-progress variables are essential for performing strong updates. When analyzing

an iteration of a loop, partitions that arise from attribute materialization arise simultaneously with

partitions that arise in iteration-progress variables. Thus, these partitions become related and

even when partitions from attribute materialization must be summarized, the relationship with the

iteration progress variable is maintained. The summarization process occurs as part of join and

widening.

Join Algorithm: The join algorithm takes two abstract states D1 and D2 and computes

an overapproximation of all program states described by each of these abstract states. The rules
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for the join algorithm are shown in Figure 4.7. When joining disjunctions, either the join can be

converted to another disjunction via the Join-Disj rule, or appropriate pairs of disjuncts can be

matched and joined via the Join-Upper rule. When joining two heaps as in the Join-Heap rule,

the two heaps require matching initial heaps H0, but then the current heaps are joined via the heap

join rules Join-Emp and Join-Obj. When joining heap abstractions, the algorithm must match

objects in H1 and objects in H2 to objects in a resulting abstract memory H3. This matching of

objects can be described by two mapping functions M1 and M2, where M1 : Symbol1
fin→ Symbol3

maps symbols from H1 to symbols from H3 and M2 : Symbol2
fin→ Symbol3 maps symbols from H2

to symbols from H3. However, because HOO abstracts open objects, the join algorithm must match

partitions of objects as well. This matching is represented with a relation PJ ⊆ ℘(F1)× ℘(F2)× F3

that relates sets of partitions from objects in H1 and H2 to partitions in H3. However, join can only

be completed if the initial heap H0 matches between the two abstract states. Because partitions can

be split and because new, empty partitions can be created, join can produce an unbounded number

of partitions.

The fundamental challenge for the HOO abstraction’s join algorithm is computing these

symbol matchings M1, M2, and PJ . To construct the matchings, in the Join-Heap rule, the join

algorithm begins at the symbolic addresses of stack allocated variables found via roots(). It adds

equivalent variables from the three graphs to M1 and M2, and then it begins an iterative process.

The Join-Obj rule starts from a matching that already exists in M1 and M2; it derives additional

matchings that are potential consequences. To derive these additional matchings, a template system

is used. The templates consume corresponding parts of a memory abstraction, producing a resultant

memory abstraction that holds under the matchings. This iterative process is applied until no more

templates can be applied. It is assumed that all heap will be matched, however an alternative is to

add True to the result for any unmatched parts. The result of join is complete matchings M1, M2,

and PJ , as well as, a memory abstraction H3. To get the resulting set abstraction P3, the sets are

joined under the same matchings, where multiple matchings are interpreted as a union.

To complete the join process, it is required that disjuncts and object summaries are matched
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D1 tD2 ; D3

Join-Disj

D1 ∨D2 tD3 ∨D4 ; D1 ∨D3 ∨D2 ∨D4

Join-Upper
D1 tD3 ; D5 D2 tD4 ; D6

D1 ∨D2 tD3 ∨D4 ; D5 ∨D6

Join-Heap
M1I ,M2I , {} ` H1 |P1 tH2 |P2 ; H3 |P3

M1I =
⋃

A1∈roots(H1)

[A1 7→ A1] M2I =
⋃

A2∈roots(H2)

[A2 7→ A2]

[H1]H0
|P1 t [H2]H0

|P2 ; [H3]H0
|P3

M1,M2, PJ ` H1 |P1 tH2 |P2 ; H3 |P3

Join-Emp
M1,M2, PJ ` P1 t P2 ; P3

M1,M2, PJ ` Emp |P1 t Emp |P2 ; Emp |P3

Join-Obj
M ′1 = [A1 7→ A3] ∪M1 M ′2 = [A2 7→ A3] ∪M2

M ′1,M
′
2, PJ ` O1, P1 tO2, P2 ; O3,M

′′
1 ,M

′′
2 , P

′
J M ′′1 ,M

′′
2 , P

′
J ` H1 |P1 tH2 |P2 ; H3 |P3

M1,M2, PJ ` A1 · 〈O1〉 ∗ H1 |P1 tA2 · 〈O2〉 ∗ H2 |P2 ; A3 · 〈O3〉 ∗ H3 |P3

Figure 4.7 – Rules for joining two heaps. The Join-Disj rule permits joining by disjunction, which
should be omitted for widening. The Join-Obj rule applies the templates given in Table 4.1 to join
two objects together.
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Weaken-Heap
[], [], {} ` H1 |P tH2 |P ; H3 |P ′

H1 ∗ H2 |P ⇒ H3 |P ′

Weaken-Disj
D1 tD2 ; D3

D1 ∨D2 ⇒ D3

Figure 4.8 – Rules for weakening heaps prior to join. These unify the heaps so that object can be
appropriately matched or so that disjuncts can be appropriately matched.

one to one. To ensure that this happens, weakening rules are applied. These rules are shown in

Figure 4.8. The Weaken-Heap rule merges two parts of the heap into a single heap by using rules

for join within a heap. Similarly the Weaken-Disj rule merges two disjuncts using a join rule so

that disjuncts can be matched pair-wise in the Join-Upper rule.

There are two templates described in Table 4.1. The first template joins any two objects that

have only one partition. The values from that partition are added to the mapping as well as the

default values. The second template is parametric. If some number of partitions can be matched

with some number of partitions then those can all be merged into a single partition in the result.

This template requires applying other rules to complete the joining of the objects. If it is unknown

how to match partitions for all of an object, this template allows matching part of the object. If the

result is that remaining partitions are single partitions, even if there is no natural way to match

them, they will be matched by applying template one.

Example 4.7 (Joining objects). Here, two a1 objects that are extracted from an example imple-

Table 4.1 – Join templates match objects in two abstract heaps, producing a third heap that
overapproximates both. Matchings M1, M2, PJ are generated on the fly and used in the set domain
join after the heaps are joined.

Prerequisites H1, P1 t H2, P2 ; Result

M1(A1) = A3

M2(A2) = A3

A1

F1 V′
1

t A2

F2 V′
2

; A3

F3 V′
3

M1(V′1) = V′3, M2(V′2) = V′3
({F1}, {F2},F3) ∈ PJ

M1(A1) = A3

M2(A2) = A3

remainder of
object matches

A1
.
.
.

.

.

.

Fi
1 Vi

1.
.
.

.

.

.

Fm
1 Vm

1.
.
.

.

.

.

t

A2
.
.
.

.

.

.

Fj
2 Vj

2.
.
.

.

.

.

Fn
2 Vn

2.
.
.

.

.

.

;
A3

.

.

.
.
.
.

Fk
3 Vk

3.
.
.

.

.

.

({Fi1, · · · ,Fm1 }, {Fj2, · · ·Fn2},Fk3) ∈ PJ
M1(Vi

1) = Vk
3 , M2(Vj

2) = Vk
3

.

.

.
.
.
.

M1(Vm
1 ) = Vk

3 , M2(Vn
2 ) = Vk

3
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menting traits as in traits.js are joined. The objects to be joined look like the following:

a1
F′
r

F′
out'conflict'
f 'conflict'

F′′
out

a2

a4

t

a1
F′
r

F′
out'conflict'
f

F′′
out

a2

a4

The join constructs matchings M1, M2, and PJ . Initially M1 = [a1 7→ a1], M2 = [a1 7→ a1], and

PJ = ∅. If F′out were matched with F′out or F′′out were matched with F′′out, the result would be an

imprecise join because it would be forced to match f with itself even though it has two values that

should not be joined. Instead, the second template can be applied to merge partitions with like

values, thus merging f with F′out in first object and with F′′out in second object. Since the only

remaining partition is F′r, F′r and F′r are matched giving the following matchings and join result:

M1 = [a1 7→ a1, a2 7→ a2, a4 7→ a4]

M2 = [a1 7→ a1, a2 7→ a2, a4 7→ a4]

PJ = {({F′r}, {F′r},F′r), ({F′out, f}, {F′out},F′out), ({F′′out}, {F′′out, f},F′′out)}

a1
F′
r

F′
out'conflict'
f 'conflict'

F′′
out

a2

a4

t

a1
F′
r

F′
out'conflict'
f

F′′
out

a2

a4

;

a1
F′
r

F′
out'conflict'

F′′
out

a2

a4

In the implementation, join is implemented using the Join-Disj rule which introduces a case

split for each join. To maximize precision, this works well. Only when widening are the other join

rules used.

Widening algorithm: In HOO, the join and widening algorithms are nearly identical.

However, unlike join, widening must select matchings that ensure convergence of the analysis, by

guaranteeing that the number of disjuncts and the number of partitions do not grow unboundedly and

that the arrangement of the disjuncts and partitions are ultimately fixed (i.e. there is no oscillation in

which partitions are matched during widening). While there are many possible approaches that meet

these criteria, the implementation of HOO utilizes allocation site information to resolve decisions

during the matching process. Only objects from the same allocation site may be matched, which

causes only attribute sets whose corresponding values are from the same allocation site to be matched.
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To ensure convergence, after some number of iterations, all objects from the same allocation site can

be forced to be matched. This bounds the partitions per abstract object to one per allocation site

and bounds the number of abstract objects to one per allocation site, so as long as the underlying

set domain converges on an abstraction for each partition, the analysis will converge.

The implementation of widening constructs initial mappings using the allocation site informa-

tion retrieved for an address or value symbol using the alloc-id () function. A new symbol for each

used allocation site is produced using the symbol () function. The initial mappings are defined as

M1 =
⋃

A∈Dom(H1)

[A 7→ symbol (alloc-id (A))]

M2 =
⋃

A∈Dom(H2)

[A 7→ symbol (alloc-id (A))]

where Dom (H) retrieves all of the address symbols in a portion of a heap H. Then in the application

of the object joining rules, the second rule in Table 4.1 is applied for each different allocation site for

each value.

Theorem 3 (Join Soundness). Join is sound under matchings M1, M2, PJ because

if P ` [H1]H0
|P1 t [H2]H0

|P2 ; [H3]H0
|P3 then

∀σ0, σ, η1, η2. (η1, σ0, σ) ∈ γ([H1]H0
|P1) ∨ (η2, σ0, σ) ∈ γ([H2]H0

|P2)

∧ ∀(V̄1, V̄2,V3) ∈ P.
⋃{

η1(V1)
∣∣ V1 ∈ V̄1

}
=
⋃{

η2(V2)
∣∣ V2 ∈ V̄2

}
⇒

∃η3. (η3, σ0, σ) ∈ γ([H3]H0
|P3)

∧ ∀(V̄1, V̄2,V3) ∈ P.
⋃{

η1(V1)
∣∣ V1 ∈ V̄1

}
= η3(V3)

where P is a uniform, combined version of M1, M2, and PJ and is defined as

P
def
=

 (V̄1, V̄2,V3)

∣∣∣∣∣∣∣
V3 ∈ Codom (M1) ∪ Codom (M2)

∧ V̄1 = {V1 |M1(V1) = V3 } ∧ V̄2 = {V2 |M1(V2) = V3 }

 ∪ PJ
The purpose of the soundness theorem is to state that not only does every single concrete

state that is in the concretization of both [H1]H0
|P1 and [H2]H0

|P2, occur in the concretization of

[H3]H0
|P3, but also there is a relationship between the valuations η1, η2, and η3.
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Properties other than soundness are not stated due to the dependence of HOO’s behavior on

its instantiation. Because of the non-trivial interaction between the set domain and HOO, properties

of HOO are affected by properties of the set domain. More precise set domain operations typically

yield more precision in HOO. Additionally, the choice of heuristics for template application can

affect the results of join, widening, and inclusion check, thus leading to a complex dependency

between precision and heuristics. While this dependence can affect many properties, it does not

affect soundness.

Inclusion Check Algorithm: Inclusion checking determines if an abstract state is already

described by another abstract state. The process for deciding if an inclusion holds is similar to the

join processes and is described formally in Chapter C. If M,PI ` [Ha]H0
|P a v [Hb]H0

|P b, all pairs

of concrete states described by [Ha]H0
|P a must be contained in the set of all pairs of concrete states

described by [Hb]H0
|P b. It works in a fashion similar to join by constructing matchings M and PI

from symbols in Ha, P a to symbols in Hb, P b. It employs the same methodology as join. Objects

are matched, one-by-one, until no more matches can be made. This matching builds up the mapping

M that is then used for an inclusion check in the set domain. If the mapping was successfully

constructed and the inclusion check holds in the set domain, the inclusion check holds on the HOO

domain. The templates for augmenting the mapping are essentially the same as those for join shown

in Table 4.1, except with only M1 and with PI only using the first and third components and where

H2, P 2 is ignored with H1, P 1 corresponding to Ha, P a and the result corresponding to Hb, P b.

Theorem 4 (Inclusion Soundness). Inclusion checking is sound under matchings M , PI because

assuming that P is defined as follows:

P
def
=
{

(V̄a,Vb)
∣∣ Vb ∈ Codom (M) ∧ V̄a = {Va |M(Va) = Vb }

}
∪ PI

If M,PI ` Ha, Pa v Hb, Pb then

∀ηa, σ0, σ. (ηa, σ0, σ) ∈ γ([Ha]H0
|Pa)⇒

∃ηb. (ηb, σ0, σ) ∈ γ([Hb]H0
|Pb) ∧ ∀(V̄a,Vb) ∈ P.

⋃{
ηa(Va)

∣∣ Va ∈ V̄a

}
= ηb(Vb)
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4.6 Related Work

Analyses for dynamic languages: Because one of the main features of dynamic languages

is open objects, all analyses for dynamic languages must handle open objects to a degree. As opposed

to directly abstracting open objects, TAJS [JMT10, JMT09], WALA [SDC+12], JSAI [HWCK14,

KSW+13], and SAFE [LWJ+12, BCLR14] extend standard field-sensitive analyses to JavaScript by

adding a summary field for all unknown attributes. They employ clever interprocedural analysis tricks

to propagate statically known object attributes through loops and across function call boundaries.

Consequently, with the whole program, they can often precisely verify properties of open-object

manipulating programs. Without the whole program, these techniques lose precision because they

conflate all unknown object attributes into a single summary field and weakly update it through

loops.

Type systems for dynamic languages: There has been a recent push to add more types

support to dynamic languages. For example TypeScript [BAT14] adds a gradual type system [ST07]

to JavaScript. Similarly, there are now type systems for Python [VKSB14], Ruby [FAFH09], and

Scheme [TF08]. All of these type systems support extensible records to a degree. The Python

type system supports them through a variety of flow-sensitivity and monotonic objects. The Ruby

system supports them through record combinators, such as explicit support for mixins. The Scheme

system supports extensible records through a form subtyping. Additionally, some static languages

support extensible records through row-polymorphism [Rém89]. Regardless, they all lack the ability

to use complex hand-written loops to manipulate objects, freely adding and removing attributes all

while keeping track of where attributes and values originated. Furthermore, many type systems for

dynamic languages (such as the Ruby one) elect to be unsound, thus both raising errors where there

are none and not raising errors when they exist. Additionally, type systems typically try to avoid

reasoning explicitly about the heap.

Local heap analyses: Much of the work on HOO has been inspired by a plethora of work on

separation-logic-based analysis. Over the years this work has ranged from inclusion checking with fixed
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inductive definitions [BCO05], to invariant inference with fixed inductive definitions [BCC+07, BCI11],

to invariant inference with user-specified inductive definitions [CR08, Cha08], to modular analysis

with fixed inductive definitions [CDOY11]. HOO does not currently incorporate inductive definitions.

It uses set-based summaries to represent unbounded data structures. The inspiration comes in

the form of local reasoning. Local reasoning allows framing, which allows the definition of the

behavior of operations only on the portion of memory that can be affected by the operation. Further,

HOO’s inference of partitions of objects is related to inferring inductive definitions because inferring

the relational structure between an unbounded number of objects is the essence of the inductive

definition inference problem.

Analyses for containers: Because objects in dynamic languages behave similarly to con-

tainers, it is possible that a container analysis could be adapted to this task. Powerful container

analyses such as [DDA11] and [GMT08] can represent and infer arbitrary partitions of containers.

This is similar to HOO except that they do not use set abstractions to represent the partitions,

but instead use SMT formulas and quantifier templates. For some applications these are excellent

choices, but for dynamic languages where the key type of the containers is nearly always strings,

this suffers. HOO can use abstract domains for sets [CCS13, PTTC11] and thus if these domains

are parametric over their value types, HOO can support nearly any key-type abstraction.

Arrays and lists are restricted forms of containers on which there has been a significant amount

of work [CCL11, KV09, HP08, JM07, GRS05, DDA10, BDES12]. The primary difference between

arrays and more general containers and open objects is that arrays typically contain related values

next to one another. Partitions of arrays are implicitly ordered and because array keys typically do

not have gaps, partitions are defined using expressions that identify partition boundaries. Because

open objects have gaps and are unordered, array analyses are not applicable. Regardless, array

abstraction inspires the partitioning of open objects that we use.

Decision procedures: In addition there are analyses that do not handle loops without

annotations for both dynamic languages and containers. DJS [CHJ12, CRJ12] is a flow-sensitive

dependent type system for JavaScript. It can infer intermediate states in straight-line code, but it
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requires annotations for loops and functions. Similarly JuS [GMS12] supports straight-line code for

JavaScript. Jahob and its brethren [Kun07] use a battery of different decision procedures to analyze

containers and the heap together for Java programs. Finally, array decision procedures [dMB09,

BMS06] can be adapted to containers, but all of these approaches require significant annotation of

non-trivial loop invariants to be effective on open-object-manipulating programs.

4.7 Heap with Open Objects Summary

The HOO abstract domain is capable of automatically inferring facts about object manipulating

programs even when objects are completely unknown. This is due to HOO’s use of multiple partitions

where each is named with a unique symbol that is tracked externally in a relational domain for sets.

Therefore these symbols can be related to one another. Critically HOO achieves strong updates by

materializing partitions on the fly and by using iteration progress sets to incrementally establish

relationships between multiple objects. HOO exists in both a single-state and two-state version,

where the two-state version can be used to infer function summaries. Further, due to the use of

attribute/value trackers, two-state HOO can be completely precise for programs that solely rely

upon copying attributes and values from one object to another, even if the objects were completely

unknown at the start.



Chapter 5

Function Abstraction: Desynchronized Separation

JavaScript libraries do not only take objects as inputs. It is common for inputs to include

callback functions as parameters. These parameters cause problems for static analysis because when

these callback functions are called, the effects are unknown with respect to the library. Desynchronized

separation is a mechanism for keeping track of assumptions about the scope of effects when calling

callbacks.

Desynchronization works by representing different parts of the heap at different points in

the execution. In effect, parts of the abstract state are desynchronized from other parts of the

abstract state. This allows regions of the heap that may have been affected by a callback whose

behavior is unknown to be halted in the analysis at the point when the callback occurs. When this

desynchronization happens, the portion of the heap that may be affected by the callback is locked in

time, but is tagged with enough information to resynchronize it with the rest of the heap should the

need arise.

Example 5.1 (Desynchronization). To demonstrate the power of desynchronization, Figure 5.1

shows the process pictorially. The program being considered has four separate regions of memory A,

B, C, and D that can be identified by some analysis and the program is about to evaluate three

function calls whose bodies are unknown in sequence: fun1(D); fun2(B); fun3(C,D). Figures 5.1 (a),

(b), and (c) show the state of desynchronization after each of these calls. Initially, at time 1, all

memory is synchronized and represented at time 1.

When analyzing the call to fun1(D), which can only affect region D, the body is unknown
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(c) After call to fun3(C,D)

Figure 5.1 – Three separate desynchronizations after calling three successive functions on four
regions of memory. In (c) A is the current analysis state where as regions B, C, and D have all been
desynchronized. The D region has been desynchronized twice.

and thus the analysis cannot continue. However, because the function can only affect the memory

region D, it is possible to proceed if the heap is desynchronized. The result of the desynchronization

is shown in Figure 5.1a. Regions A, B, and C are allowed to proceed on to time 2, but region D

stays locked at time 1 and becomes inaccessible. This inaccessibility is critical because any of that

memory in region D may have been mutated by the call to fun1(D), and without any knowledge of

what fun1 did, it is impossible to say what the effect of accessing such memory would be.

Even though D has been desynchronized, there is still a lot of information about it in the

abstraction. Specifically, desynchronization saves which function was supposed to have been evaluated,

thus it knows not only the state of the program before the function call, but also which function

was called. With this information, if the function body was provided later, the analysis could easily

resynchronize D with A, B, and C by applying the analysis to that function body starting from D.

This is possible because the function symbol was saved along with the region of the heap that it is

allowed to affect.

Figure 5.1b shows the result after the call to fun2(B). The only accessible region is B and

thus it is desynchronized from the A and C regions. Because D is still inaccessible, it just becomes

farther in time from being synchronized. However, since the time is not stored as part of the

abstraction, and only what is required for resynchronization is stored, it is no more challenging to
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resynchronize D. Because B and D are completely distinct regions, there is no effect on B (or A or

C) when resynchronizing D and thus even though B and D were desynchronized at different times,

the resynchronization is no different.

Finally, Figure 5.1c shows the result after the call to fun3(C,D). Because it is possible that

the result of region D is accessed here, the same region must be desynchronized again. This results

in a nested desynchronization as shown in the dashed box. Both C and D are desynchronized from

A, which D is also now desynchronized from C.

To resynchronize everything after Figure 5.1c, the three functions must be evaluated. How-

ever, the order in which the functions are evaluated is irrelevant. Evaluating fun1(D) first would

resynchronize D with C (but not with A). Evaluating fun2(B) first would resynchronize B with A.

Evaluating fun3(C,D) first would resynchronize C with A and would allow D to be resynchronized

with A by only evaluating fun1(D).

5.1 Representation of Desynchronization

Definition 4 (Desynchronized Separation). Desynchronized separation extends a separation-

logic-based abstraction, such as HOO, with a desynchronizing term, an extra kind of heap H that

represents a desynchronized portion of the heap along with the function to call and the arguments

to pass to resynchronize that portion of the heap with the surrounding heap. The heap H is now

extended with the following grammar:

Heap 3 H ::= JHK call Vf (V1, . . . ,Vn) | . . .

To define the concretization of a desynchronized term, concrete values must be extended with

functions. These functions do not have any specific semantics, but it is assumed that while they can

mutate the heap, they can only mutate the portion of the heap reachable from global variables, local

variables or any closed variables. For unsafe languages such as C this would not be sound, as it is

possible to access any object from any other through pointer arithmetic. Essentially, the functions

adhere to the standard framing conditions of separation logic [Rey02]. The evaluation of a function
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is described by the relation

〈σ〉call v(v1, . . . , vn)〈σ′〉

which evaluates a call to the function v starting from state σ, passing arguments v1 to vn and results

in state σ′. Note that all arguments to the function call are fully evaluated before desynchronization,

so there is no unnecessary expression evaluation captured here. This minimizes the reachable heap,

which, depending on the analysis used to compute the region, may reduce the footprint of the

desynchronized term. This is desirable because if less memory is desynchronized, more memory is

accessible to the analysis without further desynchronization.

The concretization of HOO with desynchronization is defined as an extension to the concretiza-

tion of the heap abstraction. Because the signature of the function is not required to change, only

the concretization of the new desynchronized terms is provided (where µ may be added as needed):

γ(JHK call Vf (V1, . . . ,Vn))
def
=

η, σ

∣∣∣∣∣∣∣∣∣∣∣
(η, σo) ∈ γ(H) ∧ v ∈ η(Vf )

∧ (v1, . . . , vn) ∈ η(V1)× . . .× η(Vn)

∧ 〈σo〉call v(v1, . . . , vn)〈σ〉


The concretization concretizes the embedded heap H to a pre-state σo and its corresponding valuation.

Then for each possible concrete value of the function and each argument, the state σ is the result of

evaluating that function on those arguments starting from σo. Of course, what makes it possible to

reason about applying a function to a portion of the heap is separating conjunction. This dictates

that the portion of the heap σo was disjoint from the rest of the heap when the desynchronization

was created and thus, after this call to a possibly unknown function, σ must be disjoint from the

rest of the heap as well.

5.2 Desynchronization with Reachability-based Frame Inference

Desynchronized terms can be introduced at any function call. They are automatically derived

by evaluating all of the arguments to symbols, possibly eliminating already existing desynchronized
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terms to do so. Once this has been completed, a special function reach() is used to determine the

desynchronized region.

reach : ℘(Symbol)×Heap→ Heapu ×Heapr

The function reach() returns a partitioning (Hu, Hr) of the passed heap. The partition Hr is the

part possibly reachable from the arguments of the function, including the global object and any

closed variables. The partition Hu is the part unreachable from the arguments of the function.

With reach(), a frame Hu is inferred. The introduction of desynchronization is given with a transfer

function judgment and then relates a pre abstract state [H]H0
|P to a post abstract state [H ′]H0

|P ′

via a command k: [
[H]H0

|P
]
k
[[
H ′
]
H0

|P ′
]

Desync-Intro

H = x 7→ f ∗ y1 7→ V1 ∗ . . . ∗ yn 7→ Vn

reach({Vf ,V1, . . . ,Vn}, H) = (Hu, Hr) H ′ = Hu ∗ JHrK call Vf (V1, . . . ,Vn)[
[H]H0

|P
]
call x(y1, . . . , yn)

[[
H ′
]
H0

|P
]

If function footprint Hr is over-approximated, i.e. all memory possibly modified by the function

call is contained in Hr, the result is fully general. Any client-supplied function can be soundly

substituted when resynchronizing. Note that any memory that has been desynchronized is no longer

accessible in the analysis, so it may be that, with an imprecise reach(), the analysis cannot proceed.

However, it is also possible to not over-approximate the footprint. Doing so means possibly not

every function could be substituted for that computation.

Example 5.2 (Desynchronization introduction). Figure 5.2 replicates the example showing

the call to the client-supplied constructor in the class implementation. This is a function that

originated outside the class library and thus is necessarily undefined. When this call occurs, a

desynchronized term is introduced to represent the effects of this constructor. The analysis uses

an “arrow-following” reach() function that determines that four objects are reachable in the heap

and thus in Hr at a : {a1}, {a2}, {a3}, and {a4}. This leaves all other objects including result, c,
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a


result {a1}

F1 : t1
V1

glbl {a2}
F2 : t2

V2

c {a3}
F3 : t3

V3

args {a4}
F4 : t4

V4
other {a5}

F5 : t5
V5

init {k}

True


a

init({}, glbl, result, c, args); .

b



t
{a1}

F1 : t1
V1

{a2}
F2 : t2

V2
{a3}

F3 : t3
V3

{a4}
F4 : t4

V4

|

call {k}({a6}, {a2}, {a1}, {a3}, {a4})

result {a1} glbl {a2} c {a3}

args {a4} other {a5}
F5 : t5

V5
init {k}

True


a

Figure 5.2 – Desynchronized terms are introduced by function calls to unresolvable functions

init, args, glbl, other {a5}, and other in Hu. The resulting introduced desynchronized term

is as shown in b .

In other abstract domain operations such as transfer functions, join, widening, or inclusion

checking on a domain constructed with desynchronized separation, desynchronized terms must be

treated as unknown, but separate portions of the heap. As a consequence, desynchronized memory

is inaccessible, as part of transfer functions and any transfer function that must access it may not

proceed.

There is a risk that there will be interaction between the library code and the part of the

heap accessed by the unknown callback. When this happens, desynchronization is ill-suited for the

task. However, in most systems, it is easy (and common) to design programs with encapsulation.

When internal library data is fully encapsulated, desynchronization will not include it for client code,

which cannot access it.

The inaccessibility of desynchronized terms means that memory that may be modified by a

callback cannot be read or written by the other portions of the program. However, by the separation

logic frame rule, if a program can be proven without the desynchronized part, it can be proven with

a desynchronized part:
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Desync-Frame

[H |P ] k
[
H ′ |P

]
[H ∗ JHdK call Vf (V1, . . . ,Vn) |P ] k

[
H ′ ∗ JHdK call Vf (V1, . . . ,Vn) |P

]
This Desync-Frame rule is a special case of the separation logic frame rule that frames out

the desynchronized part of memory and applies the transfer function to the remainder of memory. If

this is not well defined because memory in the result of the desynchronized term must be accessed,

either a different definition of reach() should be used or the code must be changed to ensure that

the needed memory is not in a desynchronized region.

Similarly to the transfer functions, join, widening, and inclusion checking are unable to do

much with desynchronized terms. They are treated as syntactic terms and thus join and widening are

only allowed to persist only if each desynchronized term is matched with an identical desynchronized

term. If they cannot be matched, they must be replaced with a True if the logic supports it. This

represents any possible heap soundly. Similarly inclusion checking can only succeed if there is a

syntactic match.

Theorem 5 (Soundness of Desynchronization Introduction). The desynchronization intro-

duction transfer function is sound because

∀k, σ, σ′, D,D′. 〈σ〉 k
〈
σ′
〉
and [D] k

[
D′
]
and ∃η. (η, σ) ∈ γ(D)

implies ∃η′. (η′, σ′) ∈ γ(D′)

5.3 Introduction Heuristics and Resynchronization

For the purposes of analyzing JavaScript libraries, there is a simple introduction heuristic

for desynchronized terms: if a function call can be resolved to a known function, a desynchronized

term should not be introduced. This policy has the effect that desynchronized terms only represent

unknown functions and thus these should never be eliminated from the heap. In fact, they nicely

represent the callback behavior that occurs in the library in the library’s inferred post-condition.
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However, there are circumstances where such a simple heuristic may be non-optimal, and it

may be desirable to introduce desynchronized terms even when the code for a called function is

available. For example, sufficiently surjective functions [SKK11] are functions where, after a number

of recursions, the effect of continued recursion does not matter. In these situations desynchronization

can represent the behavior of the unbounded number of recursive calls without actually evaluating

all of those calls. Another situation where desynchronization can benefit is in speedup of analysis

when known functions may take too long to analyze. If a known function does not affect the heap

needed by a piece of code, that function, even though it is known, can be desynchronized to save

having to analyze it. In these situations, the post-condition includes a desynchronized term that

refers to the known function, but the result of that function has not been evaluated.

If desynchronized terms are introduced anywhere, it may be necessary for the term describing

that memory to be eliminated, due to access of desynchronized memory. This can be done if,

for example, the synchronizing function’s code is available. The resynchronization process takes

advantage of the separation logic frame rule by running the analysis on the synchronizing function

starting from the desynchronized term:

Desync-Elim

[Hd |P ] call Vf (V1, . . . ,Vn)
[
H ′d |P

] [
H ∗ H ′d |P

]
c
[
H ′ |P

]
[H ∗ JHd |P K call Vf (V1, . . . ,Vn)] c

[
H ′ |P

]
With such an elimination rule it is possible to eagerly introduce desynchronized terms on every

function call and then lazily eliminate them as portions of the heap are needed.

When employing such an elimination rule, it is possible to consider the variety of ways in

which the [Hd |P ] call Vf (. . .) [H ′d |P ] judgment could be satisfied. One way is if each function in

Vf can be resolved to known code. In this case the analyzer can be run on each resolvent and a

disjunction of post-conditions considered. Alternatively, the formula H could carry the information

to satisfy this judgment in the form of a nested Hoare triple [SBRY11].

Example 5.3 (Desynchronization elimination). A region of the heap can be resynchronized

by eliminating a desynchronized term:



87

A

B

C1
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3
fun2(B, C)

fun1(C)

A B C
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e

A

B C

1
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3
fun2(B, C)

A B C

Ti
m
e

Here, the region C is resynchronized with B by analyzing the call to fun1(C) starting from

the memory state C. Note that this resynchronization does not require analyzing fun2(B,C). This

combined region can stay desynchronized so long as none of the desynchronized memory is required

to proceed with the analysis.

5.4 Related Work

Desynchronized separation is closely tied to the concept of nested Hoare triples [SBRY11] and

higher-order separation logic [Kri11]. However, there are several key differences.

The goal of desynchronized separation is fundamentally different from that of nested Hoare

triples. Nested Hoare triples are intended to be used in program logics and not for automated

reasoning. While there are efforts to automate some amount of reasoning [CHR12], current techniques

require significant annotation overhead and perform no inference, only inclusion checking.

The other significant difference is that nested Hoare triples strive for complete generality. A

desynchronized term carries the following correspondence with nested Hoare triples:

JH1K call Vf (V1, . . .Vn) ∗ Ho ⇔ ∃H2. [H1] call V1(V1, . . .Vn) [H2] ∧H2 ∗ Ho

where Ho is here to illustrate the key differentiating factor. A nested Hoare triple is a pure part of a

formula that describes a value, whereas a desynchronized term describes a heap that results from

calling a function. The ∗Ho illustrates which parts of the description are heap and which are pure.

The process of inference using desynchronization is significantly simpler than using nested

Hoare triples. This is due to the fact that desynchronization is less expressive than nested Hoare

triples. There are fewer existentially quantified variables, and there is no need to treat portions of the
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heap that are simply passed through the unknown function call as separate portions of the heap that

are manipulated. As a result, it is possible to (1) easily adapt existing separation-logic-based analyses

to higher-order tasks and (2) easily perform necessary heap splits during the analysis because there

are two possible ways the heap can be split.

The key idea of nested Hoare triples is also similar to static contract checking for higher order

languages [XJC09, NTHH14], which requires a pure specification of any callback’s behavior up front.

It is also similar to [MRV12], except that it relies on separation logic and is applied to a stronger

heap abstraction.

The goal of desynchronized separation is to not require a specification for callbacks at all, if

the developer is judicious with built-in language protection mechanisms. In the event that memory

is insufficiently protected, or the reachability analysis is too coarse, desynchronized separation can

be trivially extended with nested Hoare triples. In such case, the nested Hoare triple is practically

the same as a resolvable function call and no desynchronization is required. However, it is possible to

imagine a simpler version of nested Hoare triples where only a footprint for the function is specified.

In such a case, desynchronization would be required, but it would be applied only to the supplied

footprint.

5.5 Desynchronized Separation Summary

Desynchronized separation extends an existing separation-logic-based analysis with a means for

reasoning about calls to unknown functions. This facility supports sound abstraction by incorporating

assumptions and the called function symbol into the abstraction itself. This allows any assumptions

to be made, including conservative. Thus it can be tuned to support developer-friendly assumptions

without significant complexity. As a result, an analysis extended with desynchronized separation is

able to precisely abstract a variety of complex function call behaviors.



Chapter 6

Discussion of Combined Analysis

To analyze JavaScript libraries such as the class library presented in Chapter 3, the set-based

HOO abstraction from Chapter 4 combines with desynchronization from Chapter 5. For the analysis

of many libraries this is not only a sufficient abstraction, but also a fully precise abstraction, able to

infer complete summaries of library behavior. Here, it is targeted at inferring summaries of libraries

that extend the base language with new features. These extensions add features such as mixins,

traits, classes, and memoization.

This chapter seeks to accomplish four tasks. First, it demonstrates the effectiveness of

single-state HOO by comparing its precision with the abstraction used by TAJS, an off-the-shelf

abstraction designed for whole programs. Second, it demonstrates the benefits of two-state HOO by

showing it can infer summaries of JavaScript libraries. Third, by extending two-state HOO with

desynchronization, it shows that libraries that make callbacks, which were previously impossible

to analyze with any precision, can now be analyzed. And lastly, it discusses the limitations of the

combination of domains.

6.1 Implementing the Combined Analysis

All of the abstractions described in this dissertation are implemented as part of the JSAna

static analyzer. JSAna is an analyzer for an extension of the Open-Object-Focused subset of

the JavaScript language that is described in Chapter 3. In addition to the formalized subset, it

implements other operations supported by the set abstraction such as string concatenation and



90
JavaScript OCaml
Frontend

Esprima 
JavaScript 

Parser
+

Annotations

Simplifiers

Rewriter Abstract Interpreter

Disjunction

Heap

One-/Two-
state Heap 

Graph

Set 
Abstraction

Desync
Separation

QUICr
BDD

Closure 
Conversion

Flattening

Figure 6.1 – Architecture of the JSAna static analyzer

string constants. This section briefly describes the implementation of the analyzer to give some

insight into the architecture.

Figure 6.1 shows an architectural diagram of JSAna. JSAna consists of two main parts: the

frontend and the analyzer. The frontend is implemented in JavaScript and runs on a server-side

JavaScript engine such as node.js1 . The frontend converts the textual JavaScript into an intermediate

representation more suitable for analysis. It parses the JavaScript with Esprima2 , an ECMAScript

5.1/JavaScript compatible parser that is itself written in JavaScript. Esprima has been extended

with support for parsing annotations to indicate preconditions for the analysis. Additionally, some

simplification can be performed at this stage, getting rid of extra syntactic structures.

The analyzer part is implemented in OCaml and consists of a rewriter and an abstract

interpreter. The rewriter is primarily responsible for converting JavaScript functions into Open-

Object-Focused JavaScript functions, including handling binding of functions to objects, converting

arguments into an arguments object, and closure conversion. In addition, the rewriter flattens the

abstract syntax tree into a-normal form [SF92], so that each statement performs a single action such

as looking up an attribute in an object. This process ensures that the abstract interpreter only has
1 http://nodejs.org/
2 http://esprima.org/
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to handle the simplest language constructs.

The abstract interpreter is responsible for interpreting the program resulting from the previously

described transformations using an abstract domain. The abstract interpreter is implemented as an

OCaml functor and an abstract domain is an OCaml module, so the abstract interpreter takes an

abstract domain as an argument to produce the actual interpreter. This means that it is easy to

swap abstract domains for other domains by simply changing which module is passed to the abstract

interpreter.

However, the abstract interpreter is also responsible for managing calls to functions. Function

calls can be made to either known functions or unknown functions. If an unknown function is called,

desynchronization is triggered.

Many functions in programs, even libraries, however, are known and resolvable. Because

JSAna operates on a single function, it is necessary to provide annotations that inform the analysis

which functions are bound to certain names. Each known non-nested function can be labeled with an

identifier. This identifier can be used as a constant in the constraints representing the precondition.

This is able to handle the late binding that JavaScript offers via annotation. If a late binding changes

which function is bound to a particular name, the precondition would not be met and the verification

would be invalid. The goal of JSAna is to be able to perform verification of libraries that manipulate

open objects, not necessarily programs that perform other operations. Specifically, programs and

libraries that rely significantly on late binding and functional paradigms are not intended to be

supported.

When a function is known and resolved, JSAna performs a fully context-sensitive analysis.

It looks up the function in the heap, finds the corresponding code, and runs that code starting

from the heap at the time of the call. It does not perform any generalization or summarization of

known functions and consequently does not support recursion. There are many methods for resolving

the interprocedural analysis problem [Pnu81, RHS95, RC11], but this problem is not the focus of

the dissertation. The fully-context-sensitive approach controls the experiments to ensure that no

precision loss occurs due to interprocedural analysis. The annotations provided to the library must
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supply enough information about the library to resolve any of the library’s internal functions.

Resolving functions to determine if they are unknown is a problem that also must be solved.

There are three sources of functions:

• Internal functions — Internal functions are functions that are defined within the library

function that is being analyzed. That is, they are within the module. These functions are

handled precisely by tracking the function symbol and the closure as a symbolic value.

• Library functions — Library functions are functions that are known because they are in the

library, but are not defined within the functions that are analyzed. The closures and function

symbols must be specified in annotations if calls to these functions should be analyzed.

• Client functions — Client functions exist outside the entire library and are necessarily

unknown. They must be handled with desynchronization.

Similarly to the abstract interpreter, the abstract domains are parametric as well. This means

that they are also implemented as OCaml functors to ensure that swapping domains is as trivial

as possible. For example, the disjunction domain, the heap domain, and the set domain are all

parametric abstract domains. This hierarchy of domains forms the final domain that is passed to

the abstract interpreter.

Disjunctions are not tracked internally within the heap as described previously. These

disjunctions are tracked by a separate disjunction domain at the top level of the hierarchy. In

addition to keeping track of the list of disjuncts, the disjunction domain keeps track of the history of

how disjunctions were introduced as this gives a good initial guess of how disjunctions should be

combined with each other when performing widening. As the number of disjunctions is bounded,

when widening, the number of disjunctions is fixed, and then disjuncts will be joined in the heap

abstraction, potentially introducing some imprecision.

The heap domain is responsible for managing the heap graph and the set abstraction. As the

heap graph is simply the underlying data structure for representing the heap, the heap domain is
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responsible for manipulating that data structure by adding, removing, and iterating over points-to

relationships. The implemented heap graph is a hybrid of the one-/two-state heap graph, where the

two states are tracked implicitly as the operations are applied to only the current state throughout

the analysis. The desynchronized separation is implemented with tags on the various parts of the

heap, where the tags contain the appropriate resynchronization information.

The pure domain, which is responsible for set and value reasoning, is implemented as a slightly

specialized version of the QUICr library (described in Chapter 7). This version uses binary decision

diagrams [Bry86] to represent QUIC edges and employs only limited use of the base domain inference

rules. For applications where there is limited use of constraints on base domain values, this is a

significantly faster domain capable of scaling to many more symbols than the fully general QUICr

that is described in Chapter 7.

6.2 Single-State HOO Performance/Precision

This section evaluates several hypotheses about single-state HOO: first, that it is fast enough

to be useful; second, that it is at least as precise as other open-object abstractions when objects have

unknown attributes; and third, that it infers partitions and relations between partitions of unknown

attributes precisely enough to verify properties of intricate object-manipulating programs. I used the

single-state mode within the JSAna analyzer to analyze a number of small diagnostic benchmarks,

each of which consists of one or more loops that manipulate open objects. These benchmarks are

drawn from real JavaScript frameworks such as JQuery, Prototype.js, and Traits.js3 . I chose them

to test commonly occurring idioms that manipulate open objects in dynamic languages. To have

properties to verify, I developed partial correctness specifications for each of the benchmarks. I then

split the post-conditions of the specifications into a number of properties to verify that belong in one

of two categories: memory properties assert facts about pointers (e.g., r 6= s), and object properties

assert facts about the structure of objects (e.g., if the object at a1 has attribute f, then object at a2

also has attribute f). The full benchmarks and corresponding properties are shown in the Appendix.
3 http://jquery.com, http://prototypejs.org, and http://traitsjs.org
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Table 6.1 – Analysis results of diagnostic benchmarks. Time compare analysis time excluding JVM
startup time. Memory properties compares TAJS and HOO in verifying pointer properties. Object
properties compares TAJS and HOO in verifying object structure properties. The # Props columns
are the total number of properties of that kind.

Time (s) Memory Properties Object Properties

Program TAJS HOO TAJS HOO # Props TAJS HOO # Props

static 0.06 0.09 1 1 1 3 3 3
copy 0.13 0.02 1 1 1 0 3 3
filter 0.40 0.10 0 0 0 0 6 6
compose 0.71 0.54 0 0 0 0 7 7
merge 0.19 0.06 2 2 2 0 5 5

I use these benchmarks to compare HOO with TAJS [JMT09], which is currently the most

precise (for open objects) JavaScript analyzer. Because TAJS is a whole-program analysis, it is

not intended to verify partial correctness specifications and consequently, it adapts a traditional

field-sensitive object representation for open objects. However, it employs several features to

improve precision when unknown attributes are encountered during analysis: it implements a recency

abstraction [BR06] to allow strong updates to objects (but not attributes) on straight-line code, and

it implements correlation tracking [SDC+12] to allow statically known attributes to be iteratively

copied using for-in loops.

The results in Table 6.1 show that TAJS and HOO are able to prove the same memory

properties. The diagnostic benchmarks are not designed to exercise intricate memory structures, so

all properties are provable with an allocation site abstraction. Because both TAJS and HOO use

allocation site information, both prove all memory properties.

For object properties, single-state HOO is always at least as precise as TAJS, and significantly

more so when unknown attributes are involved. The static benchmark is designed to simulate the

“best-case scenario” for whole program analyses: it supplies all attributes to objects before iterating

over them. Here, TAJS relies on correlation tracking to prove all properties. HOO can also prove

all of these properties. It infers a separate partition for each statically known attribute, effectively

making it equivalent to TAJS’s object abstraction.
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The other benchmarks iterate over objects where the attributes are unknown. Here, HOO

proves all properties, while TAJS fails to prove any. TAJS’s imprecision is unsurprising because

correlation tracking does not work with unknown attributes and recency abstraction. However, even

if it worked for attributes, recency abstraction does not enable strong updates in loops. HOO, on the

other hand, succeeds because it infers partitions of object attributes and relates those partitions to

other partitions. In the copy benchmark, attributes and values are copied one attribute at a time

to a new object. HOO infers that after the iteration is complete, the attributes of both objects are

equal. HOO can also verify the filter benchmark that requires conditional and partial overwriting

of objects. Additionally, HOO continues to be precise, even when complex compositions are involved,

as in the compose and merge benchmarks, which perform parallel and serial composition of objects.

For these benchmarks HOO infers relationships between multiple objects and sequentially updates

objects through multiple for-in loops.

While the results indicate that HOO is of comparable performance to TAJS, this is untrue.

TAJS has much more complete JavaScript semantics and is thus considering cases that HOO is

not. Additionally, HOO’s ability to scale is limited by the scalability of the set abstraction, which

can be exponential. Here, the performance is good because (1) the benchmarks are small and have

relatively few symbols and (2) the exponential cases are not being heavily exercised. This means

that the performance is good, even when the constraints are complex. The potentially exponential

cost of set abstractions does not mean, however, that HOO cannot scale. Currently, the performance

of the set domain is the primary limiting factor because it is not well optimized. This and other

limitations will be discussed in Section 6.4.

This evaluation demonstrates that single-state HOO can be effective at representing and

verifying properties of open objects, both with statically known attributes and with entirely unknown

attributes. Additionally, for cases when objects are fully unknown, shows that HOO provides

significant precision improvement over existing open-object abstractions. Furthermore, it shows that

HOO does not need to take a significant amount of time to verify complex properties.
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6.3 Two-State HOO with Desynchronization

This section extends the single-state HOO abstraction in two ways. It adds the two-state

variant so that full function summaries can be inferred. This includes the addition of attribute/value

trackers. Additionally, it includes desynchronized separation building on top of the abstraction

provided by HOO. The goal of this section is to evaluate the effectiveness of attribute/value trackers

along with desynchronization as extensions to HOO in order to infer precise function summaries for

JavaScript libraries that add language features through object manipulation and call backs. This

evaluation tests three hypotheses about desynchronization and attribute/value trackers. First, in

practice, desynchronization allows summarizing function behavior even when there are callbacks.

Second, the reach() function based on heap reachability is sufficient for callbacks made in feature-

adding libraries. Finally, attribute/value trackers allow fully precise inference of relations between

objects in common object copying and overwriting cases.

To evaluate these hypotheses, I studied a wide variety of JavaScript libraries including JQuery,

Prototype.js, Traits.js, MS AJAX, JS.Class, Joose, Classy, Base2, qooxdoo, MooTools, jstraits, light-

traits, Closure, and Memoize. I identified several features that are commonly added to JavaScript

via libraries: classes, traits, mixins, and memoization. For each of these features, I selected a

representative library and extracted one of the core functions of that library, annotating that

functionality with pre-conditions. These preconditions indicate aliasing in the heap as well as give

names to sets of attributes. Then, on each library, I compared expected postconditions against those

generated by the JSAna analyzer.

The summary of results is in Table 6.2. The results are shown across the various libraries

and across the properties of the libraries that were checked. For Class, which is similar to the class

from the introduction and inspired by a number of the JavaScript class systems, two properties were

checked: resulting object verifies that the attribute/value pairs are copied from the configuration

object without the 'init' attribute precisely; constructor call verifies that the constructor calls

the user-supplied constructor, with an appropriate portion of the heap such that the result of class
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construction, which is not returned by the client-supplied constructor, is appropriately constrained

in the post-condition. Both of these properties are proven automatically by JSAna.

Two variants of a memo function, one of which is synthetic, the other having been extracted

with some c changes from the Google Closure library4 , takes a function and returns a memoized

version of that function by wrapping it with a function that checks a memoization table first. To

extract the code, among other things (fully explained in Appendix E), the use of logical operations

was eliminated for simplicity, considering only the case where the local cache is used. What remains

is the core functionality of a memoization routine. The first property, in table, checks that if a

particular set of arguments was memoized, the return value is read from the table and the memoized

function is not called. The second property, call saved, checks that if a particular set of arguments

was not memoized, the return value is computed by calling the argument function and inserting the

result into the memoization table. Both properties are automatically proven by JSAna.

There extend function from Prototype.js5 , which implements mixins, the synthetic trait

composition, and the Traits.js6 compose function copy an object’s attributes/values over another

object’s attributes/values. Only the Traits.js code requires any modification for analysis. It requires

changes to avoid the use of arrays and complex boolean operations that are not supported by

the analyzer today. The mixin function overwrites another object’s attributes/values, requiring

attribute/value trackers to precisely manage the values and partitions simultaneously. The compose

function copies two objects onto a new object except that when the attribute names conflict a

special conflict value is written to the new object. This requires a more complex partitioning scheme,

but exercises attribute/value trackers equivalently. Modulo the additional precision provided by

attribute/value trackers, the support for callbacks via desynchronized separation, and the additional

cost required from analyzing significantly more complete JavaScript, the results for mixins and

traits are comparable to those presented with HOO [CCR14]. The object extended property is

true if the resulting object has an appropriate partition from each source object and the conflict
4 https://developers.google.com/closure/library/
5 http://prototypejs.org/
6 http://soft.vub.ac.be/˜tvcutsem/traitsjs/
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managed property is true if conflicting attributes are correctly assigned their own partition. JSAna

automatically proves all of these properties.

Conclusions and understanding the results These results demonstrate that desynchro-

nization can enable analysis of code after a call to an unknown function if the desynchronized region

can be determined precisely enough. Of course it is possible to easily construct examples that can

defeat the analysis by always passing (possibly useless) memory to the unknown function. However,

from manual inspection, it seems that developers do not intend to do this. Typically, they write

their code so that there are clean lines of separation, which can be used as part of this discovery

process like reach() does.

The results also indicate that attribute/value trackers are critical to the precision of analyses.

While HOO is capable of inferring precise partitions of attribute names and values, the addition

of attribute/value trackers makes proofs of all of these library properties possible. Only the in

table and conflict managed properties were proven by HOO by itself because these properties

reason about a single value and thus strong updates are sufficient to prove them. By using multiple

states representing the same trackers from input to output, inferred post-conditions are precisely

represented with respect to the trackers used in the pre-condition.

Like single-state HOO, the performance is not tremendous. However, once again, performance

problems can be attributed to one component: the set domain. As the number of variables grows, the

performance of join worsens. The memoization benchmark avoids this problem by not performing

any joins. Profiling the slow analyses confirms this by revealing that approximately 95% of the

time is spent in the set abstract domain. Discussion about the cause of this slowness can be

found in Section 7.6. However, despite this current slowness, because the set abstract domain is

easily swappable, it is expected that newer set domains would be easily usable and possibly more

performant.
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Table 6.2 – Results of running HOO with desynchronized separation and attribute/value trackers
on JavaScript meta-feature libraries. Benchmarks above the line are functions constructed to be
a simple representative of JavaScript libraries. Below the line are benchmark functions are taken
directly from their respective libraries. The following columns indicate which properties were proven
with HOO: basic HOO; D: basic HOO + desynchronization; T: basic HOO + attribute/value trackers;
D+T: basic HOO + desynchronization + attribute/value trackers. Vars is the peak number of pure
symbols used in the analysis. Stmts is the number of statements in the analyzed part of the program
(after preprocessing and lowering)

Test Property HOO D T D+T Time (s) Vars Stmts

Class (syn) Resulting Object 7 7 7 3 8.13 118 128
Class (syn) Constructor Call 7 3 7 3 8.13 118 128
Memo (syn) In table 3 3 3 3 0.24 179 149
Memo (syn) Call saved 7 3 7 3 0.24 179 149
Compose (syn) Object extended 7 7 3 3 7.20 111 131
Compose (syn) Conflict managed 3 3 3 3 7.20 111 131

memo In table 3 3 3 3 3.28 357 369
memo Call saved 7 3 7 3 3.28 357 369
extend (mixin) Object extended 7 7 3 3 0.16 52 33
compose Object extended 7 7 3 3 0.98 69 69
compose Conflict managed 3 3 3 3 0.98 69 69
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6.3.1 Case Study: Class

The class benchmark is shown in Figure 6.2. It is similar to the function Class presented in

Chapter 3. The purpose of this section is to analyze the similarities between the actual analysis of

this function and the one presented in detail in Chapter 3.

function() {
var copy = function(res,src,exc) {

for(var p in src) {
if(!(p in exc))
res[p] = src[p];

}
};
var result = {}
copy(result,attrs,{init:""});
init.apply(result, arguments);
return result;

};

Figure 6.2 – Class instantiation as analyzed

Because this is JavaScript and what was presented in the overview was simplified, there is a

great number of extra variables introduced from preprocessing, desugaring, and closure conversion.

Modulo these extra variables, the analysis state prior to the call to init is exactly as expected

given the starting condition. Critically, the result and attrs objects are the same:
[
attrs {a1}

F1 : t1
V1

result {a2}
F2 : t1

V1 F1 = F2

]
attrs {a1}

F1 : t1
V1

Evaluating the call to init, the analysis determines that function that init points to is

unknown. This triggers a heap traversal to evaluate reach(). Because attrs is not reachable and

because of the call to copy, attrs and the object it points to are appropriately protected from the

reachability query. As a result, essentially the only memory remaining outside the desynchronized

region is local variable declarations and the object pointed to by attrs. This corresponds nicely

with the Chapter 3 example.

Throughout the analysis from the beginning of the program to the call of init, objects

are manipulated materializing individual attributes, performing selective copies and summarizing
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attributes. During materialization trackers are appropriately replicated across both new partitions

of the object. When the copy is performed, the attribute is transferred from one object to another.

Due to the fact that the target object ({a2}) materializes the attribute that is being written and

removes the old attribute in the process, the attribute/value tracker is safely transferred. As a result,

by the time the analysis reaches the call to init it has a fully precise view of the heap up to the

point of desynchronization.

6.3.2 Case Study: Memoization

function() {
var key = uid(arguments);
if(!(key in memo))
memo[key] = f.apply(null,arguments);

return memo[key];
}

Figure 6.3 – Inner code for memoization function

The memo benchmark (Figure 6.3) transforms a function into a memoized version of that

function. To accomplish this, it first translates the arguments array into a unique identifier by calling

a uid() function passing it the entire arguments object. Then it determines if that unique identifier

is already in the memoization table. If so, it returns the value from the table. Otherwise, it calls

the function to be memoized f passing it arguments (via JavaScript’s apply functionality) and then

memoizes the result.

Each of the function calls is challenging. The uid() function is essentially a hash function. It

is responsible for converting data of any type into a unique string suitable for use in indexing into

an object. Because hash functions are typically hard to analyze and this is a hash function that

hashes to strings, this function presents a problem for analysis. Even if we had the code for it, it

would be undesirable to analyze it.

The second function call is also challenging because it is a callback into client-supplied code.

The behavior of the function could be anything. It could have side effects or it could be pure. Its only
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restriction is from JavaScript being memory safe (it cannot create pointers to previously unreachable

parts of the heap).

Both of these problems are addressed by desynchronization as shown in Figure 6.4. This figure

shows the representation of the post-condition of the function returned by calling the memo() function.

In it we can see that not only was the callback to the client-supplied function f() desynchronized,

but also the call to uid() was desynchronized. Additionally, because the arguments object may have

been modified by the uid() function, it is necessary to nest the desynchronizations to represent the

result.

memo table

other

arguments

uid(arguments)

f(arguments)

Ti
m

e

Figure 6.4 – Desynchronization phases of the memoization example

Nested desynchronization allows continuation-like behavior to be analyzed over parts of the

program. Here the arguments object was possibly modified by the uid() function before being

possibly modified by the callback. The benefit of this nested structure is even if there is a sequence

of functions that all touch the same memory, analysis can proceed by nesting all of these individual

functions.

6.4 Boundaries of Analysis and Future Improvements

Precision Limitations While the results suggest that all of single-/two-state HOO along

with desynchronization and attribute/value trackers can be effective on JavaScript code, there are

limitations to the precision. Without attribute/value trackers, HOO is unable to keep precise track

of which values in some value set V each attribute in some attribute set F points to. Attribute

trackers remedy this situation, but only in certain circumstances. For example, complex, nested
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copies are not currently supported by these trackers; the following code wraps each value inside a

newly allocated object.

result[a] = {value: attrs[a]};

Without the ability to reason about intermediary objects, full precision cannot be maintained and

such abstractions fall back to what HOO can do. However, this behavior does not appear to occur

in most libraries and thus may not be a significant issue. Adding support for this particular case is

simply another form of tracker, but the inference of such trackers remains challenging.

Another solution to this problem would be to require a richer value domain that is not simply

sets, but one that supports maps. The problem here is that maps are difficult to precisely abstract.

HOO is, in essence, an abstraction of maps that sometimes loses specific key/value relationships by

abstracting a collection of keys as a set and a collection of corresponding values as a set. Requiring

a value domain accomplishes nothing because it is currently unknown how to construct such a value

domain without techniques such as those already employed by HOO.

Another cause for concern is the capabilities of desynchronization. It was intentionally chosen

to be simple so as to be easy to infer. However, there are a number of possible extensions to consider.

One is to allow read-only portions of memory to be accessed by a function. Right now

desynchronization does not distinguish between read-only and read-write memory, that is memory

that may only be read by the unknown function versus memory that may be both read and written by

the unknown function. Adding such functionality is likely not difficult, but it significantly complicates

the reach() function.

Another possible extension is to enable accessing desynchronized memory after desynchro-

nization. Because JavaScript is a safe language, this is always possible, but many commands might

raise exceptions, which could cause a massive explosion in (probably spurious) program paths after

desynchronization. It is possible to make assumptions about those paths, once again saving those

assumptions into the desynchronization, but it is unclear at this point how many tangible benefits

this will provide.
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While the current reach() implementation appears to be suitable for the analysis of many

libraries, it may be overly pessimistic. In certain situations developers intentionally make portions

of libraries globally mutable, but mutation is still not the common case. Consequently, it may be

desirable to develop a reach() that makes use of annotations provided in the precondition to restrict

certain parts of memory to not be desynchronized. Doing so will improve the precision of the analysis

and cause fewer nested desynchronizations to occur as a result of inaccessible memory.

Performance Limitations In its current state, HOO does not scale. With small inner

loops, HOO can be very fast, as shown in Table 6.1. Unfortunately, as the number of symbols in the

heap climbs, HOO’s join performance suffers significantly as Table 6.2 shows. This is due to two

problems that revolve around the set domain: the join makes too many queries to the set domain

and the set domain is too slow at both handling queries and performing domain operations.

The use of the matching algorithm in the join requires the use of many set queries. Because,

in nearly all cases, the implementation resorts to using the allocation site information, it is entirely

unnecessary to perform all of these queries. If the allocation site information were not so necessary

for the join algorithm, the join algorithm would benefit from all of these queries, but as is it today,

these queries are largely unnecessary. It is likely that removing this would improve performance.

However, most of the performance cost is in performing the join in the set domain.

One other problem with scalability is how the set domain is utilized. HOO introduces a set

symbol that must be handled by the set domain for nearly everything. The number of these symbols

is as follows:

#syms ≥ #vars + #objs + #attrs + #vals

where #vars is the number of program variables active in the program, #objs is the number of

abstract objects (at least the number of allocations sites), #attrs is the total number of partitions

for all abstract objects, and #vals is the total number of abstract values in the program. If the set

abstraction cannot cope with a large number of symbols this use is prohibitively costly.

JavaScript Feature Limitations The analysis today is designed to work on a core language
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of JavaScript. This language does not support all of JavaScript’s features. For example, the language

does not support numbers, Booleans, dates, and arrays. As a result it also does not support many

operations such as type coercions, eval, and implicit prototype behavior. Adding support for this

functionality to the analysis varies in difficulty. Adding support for new values requires replacing the

set domain with a domain that represents sets of values of the appropriate types (such as strings,

numbers, and Booleans simultaneously).

Improving support for prototypes could significantly enhance support for fully modular

JavaScript analysis. The challenge is summarizing a function for any prototype chain. If the

prototype chain is unimportant to the function (because all accessed attributes necessarily exist

within the first objects of prototype chains), the HOO abstraction already supports this. However,

more complicated situations can arise that require extensions beyond the separation logic used

here [GMS12]. However, the automation of such extensions remains unclear.

Support for arrays is mostly a question of adding all of the array manipulating library routines.

HOO’s representation of objects is sufficient for also representing arrays. However, it might be

advantageous to consider adapting a specialized array analysis [CCL11] for the job. Such a specialized

array analysis is designed to take advantage of the fact that arrays indexes are typically consecutive

to aid the abstraction.



Chapter 7

Set Abstraction: Relational, First-Class Sets

A significant part of the HOO abstraction is the use of a set abstraction to represent relationships

between sets of addresses, attributes, and values. In previous chapters, it was assumed that a precise

representation of sets was provided as a parameter. However, this abstraction for sets was not

detailed. This chapter is an extended version of [CCS13], which presents an analysis that abstracts

containers by the set of elements contained in them to infer facts about (a) the possible set of values

in a container; and (b) how these values relate to values stored in other containers. In general, one

may envision two main types of static analyses: (1) content-centric analyses that infer assertions

for the possible sets of values in each container, in isolation; or (2) analyses that infer relations

between the values stored in various containers, as-a-whole.

def extendClass(F1):
F2 = set([f for f in F1

if f >= c])
return F2

Figure 7.1 – Sample program that filters a set F1, producing a set F2

To illustrate this difference, consider the Python code function extendClass in Figure 7.1

(the name of this function will become clearer below). This function takes a set F1 and returns

a set F2 where F2 is the subset of elements from F1 such that each element is greater than or

equal to some variable c. An important post-condition of extendClass is F2 ⊆ { ν ∈ F1 | ν ≥ c },

but neither the content-centric nor the as-a-whole analyses can produce this post-condition. The

content-centric analysis, which represents each set F1 and F2 as individual variables in a domain for
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reasoning about values, would produce F2 ⊆ { ν | ν ≥ c } where ν ranges over the universe of values.

Because all values of F1 are not related to all values of F2 in some way, a content-centric analysis

cannot represent any relationship between F1 and F2. As-a-whole analyses, which reason only about

the relationships between sets, can produce F2 ⊆ F1, but fail to infer anything about the individual

elements of F2. By combining these two classes of analyses, our analysis finds the desired invariant:

F2 ⊆ { ν ∈ F1 | ν ≥ c }.

def extendClass(D):
E = {k:v for k,v in a.iteritems()

if k >= "%"}
return E

Figure 7.2 – extendClass function extracted from Processing.js

The extendClass function is abstracted from a function in Processing.js1 . A simplified

version of the original function is shown in Figure 7.2 (in Python for consistency with the evaluation);

the original set version models the key set of this dictionary version. This function copies a dictionary

containing a number of values to another dictionary. It only copies those elements that start with

letters higher than % in the ASCII table, specifically excluding keys starting with $. These dictionaries

are used as objects, and in the context of this framework, $ is interpreted as private and thus should

not be copied. Functions like this one are pervasive in programs written in dynamic languages

because most run-time structures are implemented using dictionaries (or objects, maps, or tables) and

those run-time structures are directly accessible by the developer and can be modified. As a result,

previously simple operations such as inheriting a class become complex dictionary manipulations

involving copy operations. To statically analyze programs written in dynamic languages, this chapter

presents powerful new static analysis techniques that can reason about these kinds of functions.

This analysis tracks (subset) inclusion relations between expressions involving set abstractions

of containers through a special graph structure called a QUIC graph. A QUIC graph is a succinct

encoding of set expressions and inclusion relations between them. The expressions represented
1 http://processingjs.org/
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by a QUIC graph are (1) basic, atomic sets that abstract the set of values stored in a container

and singletons created by scalar expressions; (2) restricted unions and intersections of the atomic

sets; and (3) comprehensions of set expressions through first-order predicates. The predicates are

captured by an arbitrary base domain, which can reason about program variables and formal bound

variables that represent the scalar-valued contents of a basic set. The QUIC graph is thus a compact

structure for storing a conjunction of subset constraints between set expressions. This chapter defines

QUIC graphs and builds abstract domain operations over these graphs. The QUIC graph domain is

designed to yield a tight integration between the base domain and the QUIC graph domain so that

the resulting analysis can transfer facts from one domain to another, quite seamlessly.

The content-centric analysis of containers is rather well understood (e.g., [GRS05, CCL11,

DDA11]). Such analyses focus on strategies for partitioning or splitting summary variables that

smash the contents of the container into an essentially weakly-updated scalar variable. These

techniques are orthogonal and complementary to QUIC graphs. With summary variables, one

might capture independent comprehensions, such as F1 ⊆ { ν | p(ν) } ∧ F2 ⊆ { ν | p′(ν) } for some

predicates p and p′. If the predicates p and p′ are the same or related, then these facts may indirectly

imply a relation between F1 and F2 but essentially only through their contents. On the flip side,

the pure container-as-a-whole approach would track relations directly between F1 and F2 without

characterizing their contents. Some existing containers-as-a-whole approaches incorporate some

fixed content reasoning (e.g., [PTTC11]). This chapter presents a tight integration of these two

approaches with domains for reasoning about scalar variables and their relations to the set elements.

As a result, the QUIC graph domain promises to be a lot more powerful than a simple conjunction

of both individual domains.

The QUIC graph domain is implemented for a simple imperative programming language with

integers and sets (of integers) in addition to being integrated with the HOO domain presented in

prior chapters. This language captures basic arithmetic over integers and operations over sets such as

union, intersections, difference, insertion/deletion of elements, and iteration over sets. The resulting

analyzers use the QUIC graph domain, as well as two domains representing the content-centric and
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container-as-a-whole approaches. The evaluation was carried out by translating a variety of set

manipulating programs from the Python test suite. The results are quite promising: the QUIC graph

domain is more precise than the other domains, proving more properties than a simple combination

of a content-centric approach and a container-as-a-whole approach.

This chapter describes the following aspects of QUIC graphs:

• It identifies the need for simultaneous reasoning about containers as-a-whole and their con-

tents to enable modular, precise reasoning of container-manipulating programs (Section 7.1).

• It describes QUIC graphs to represent universally-Quantifed Union and Intersection set

Constraints in a canonical manner using a hypergraph data structure. It builds an abstract

domain (functor) based on QUIC graphs. A novel aspect of the domain is the use of predicate

edge labels to capture set comprehensions (Section 7.2).

• It presents a framework for inference using QUIC graphs. It shows how to utilize the

structure of QUIC graphs to compute all logical implications of a given QUIC graph. It

presents the inference procedure for strengthening base domain invariants within a QUIC

graph. Finally, it shows how laziness significantly improves the cost of inferring consequences

of QUIC graphs, and describe an efficient implementation (Section 7.3).

• It defines an abstract domain using QUIC graphs with inference and show how all domain

operations and reductions are easily implemented using lazy inference (Section 7.4).

• It evaluates the effectiveness of the abstract domain on a set of benchmarks from the Python

test suite. For a reasonable performance overhead, the QUIC graphs abstract domain is

significantly more precise than either a content-centric or a container-as-a-whole approach

and unlike the content-centric and container-as-a-whole approaches can automatically prove

most properties specified in the Python test suite for set operations (Section 7.5).
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7.1 Overview

This section walks through inferring the desired post-condition for the extendClass example

to highlight the main challenges in obtaining precise combined content-as-a-whole invariants that

motivate our design of the QUIC graph domain. At a high-level, deriving the desired post-condition

for the extendClass function requires the careful application of transitive closure of inclusion

constraints, an effective reduction [CC79] strategy with base domain elements, and a non-trivial join

operator.

7.1.1 Set Language

For the purposes of evaluating sets, this chapter uses an imperative programming language

with scalar values and set values whose elements are scalars, shown in Figure 7.3. scalar operations

(e.g., addition, subtraction, multiplication, and division) are assumed to be given as unary or binary

operators (scalarUnary or scalarBinary, respectively). For convenience, a single scalar type (integers)

is fixed in the language. Unless otherwise mentioned, sets are assumed to range over this type

(integers). However, the framework is quite general. Because it only assumes the base domain is a

sound abstract domain, it can handle a variety of types including integers, floats, and strings by

using base domains designed to reason over scalar variables of those types. This chapter does not

address sets of sets or complex structures such as lists. However, the framework can be extended to

handle these types by instantiating with more complex base domains such as another domain for

sets.

For the purposes of analysis, an input program is lowered introducing additional instrumentation

variables. The lowering converts all loops (e.g., for-in) into a single non-deterministic loop construct

and all conditional statements into a non-deterministic branch construct. The havoc statement is

an arbitrary value assignment for modeling unknown effects, and the assume statement is used to

encode the conditions in each branch. One key instrumentation transforms each for-in loop over a

set F1 to introduce two sets Fo,Fi that are assumed to partition F1 (i.e., F1 = Fi ] Fo). The set Fo
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program ::= decl∗ stmt∗
decl ::= int scalarVar | set setVar
stmt ::= scalarVar := scalarExpr

| setVar := setExpr
| loop stmt∗
| branch stmt∗ orelse stmt∗
| havoc setVar
| assume conditional | assert conditional

setExpr ::= ∅ |{scalarExpr}| setVar | setExpr∪setExpr
| setExpr∩setExpr | setExpr\setExpr

scalarExpr ::= scalarVar | scalarConst | scalarUnary(scalarExpr)
| scalarBinary(scalarExpr, scalarExpr) | choose(setExpr)

conditional ::= scalarConditionals | setExpr⊆setExpr | scalarVar in setVar
setVar ::= F

scalarVar ::= f
scalarConst ::= c

Figure 7.3 – An imperative, set-manipulating programming language. A sequence of a symbol α is
written as α∗.

represents all variables that have been iterated over thus far. Likewise, Fi represents the elements of

F1 that remain to be iterated over. The iteration order is assumed to be non-deterministic. The

loop exits when Fi = ∅ or alternatively Fo = F1. It is assumed that iterations over a set F1 do not

modify F1 in the body of the loop (as is the standard semantics for container iteration).

Example 7.1. Figure 7.4 (left) shows a translation of the Python extendClass example from

Section 7 to an imperative, set-manipulating program. This program filters elements from an input

set F1 greater than or equal to c into a set F2. The set F2 is a variable introduced in the translation

to name the set being constructed by the comprehension. The lowered version of this program is

also shown alongside (right).

7.1.2 Motivating Example

Figure 7.5 shows an annotated lowered version of the extendObject from Figure 7.1. In

first three commands, set Fi is initialized to F1, while Fo and F2 are initialized to the empty set ∅.

The extendObject loop begins before point 1 . An arbitrary element f is chosen out of set F1

after point 1 with the choose statement and removed from set Fi. The element f is added to set
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def extendClass(F1) {
F2 := ∅;
for (f in F1) {
if (f > c) {

F2 := F2 ∪ {f};
}

}
return F2;

}

def extendClass(X) {
Fo := ∅; Fi := F1; F2 := ∅;
loop {

assume Fi 6= ∅;
f := choose(Fi); Fi := Fi \ {f};
branch {

assume f > c; F′2 := F2 ∪ {f};
F2 := F′2;

}
orelse {
}
Fo := Fo ∪ {f};

}
assume Fi = ∅;
return F2;

}

Figure 7.4 – Left: the extendClass example that filters positive elements from a set F1 into a
set F2. Right: its lowered version.
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Fo = ∅;
Fi = F1;
F2 := ∅;
loop {

1 [F1 = Fi ∪ Fo ∧ F2 ⊆ { ν ∈ Fo | ν > c }]
assume Fi 6= ∅;
f = choose(Fi);
Fi = Fi \ {f};
branch {

assume f > c;
F′2 = F2 ∪ {f};

2

F1 = Fi ∪
{

f
}
∪ Fo ∧ F2 ⊆ { ν ∈ Fo | ν > c }

∧ F′
2 = F2 ∪

{
f
} f > c


3

F1 = Fi ∪
{

f
}
∪ Fo ∧ F2 ⊆ { ν ∈ Fo | ν > c }

∧ F′
2 = F2 ∪

{
f
}
∧
{

f
}

=
{
ν ∈

{
f
} ∣∣∣ ν > c } f > c


F2 = F′2;

4

[
F1 = Fi ∪

{
f
}
∪ Fo ∧ F2 ⊆

{
ν ∈ Fo ∪

{
f
} ∣∣∣ ν > c } f > c

]
}
orelse {
assume f <= c;

5
[
F1 = Fi ∪

{
f
}
∪ Fo ∧ F2 ⊆ { ν ∈ Fo | ν > c } f ≤ c

]
}
Fo := Fo ∪ {f};

}
assume Fi = ∅; .

6 [F2 ⊆ { ν ∈ F1 | ν > c }]

Figure 7.5 – Inferring QUIC graph invariants on the extendClass example.
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F2 in the first case of the non-deterministic branch, while set F2 is left unchanged in the other.

The final assignment in the loop simply moves the element f into set Fo to continue the iteration.

The boxed formulas in Figure 7.5 are program invariants that are inferred (under the pre-

condition True), that is, the fixed-point result of an abstract interpretation. Our goal is to be

able to derive the post-condition F2 ⊆ { ν ∈ F1 | ν > c }, that is, output set F2 is a subset of the

positive elements of the input set F1, at program point 6 . Here and in the rest of this chapter, ν is

used as the bound variable for all comprehensions. This figure selectively shows the key constraints

needed to derive this post-condition. The first observation is that although inclusion constraints

plus comprehension expressions are sufficient to state the desired post-condition, the inferred loop

invariant at point 1 requires a more expressive set expression language (i.e., union expressions). It

is straightforward to see that this loop invariant F1 = Fi ∪ Fo along with the loop exit condition

Fi = ∅ implies the desired post-condition and that the initial state where Fi = F1 ∧ Fo = F2 = ∅

implies the loop invariant.

Consider the fixed point iteration of the loop (i.e., showing that loop invariant is inductive

and thus consecutes) and focus on the transition to invariant 2 —the difference with respect to the

loop invariant is shown shaded. This transition begins with the addition of element f to set F2. The

assume is reflected in the invariant with a base domain constraint f > c shown to the right in the

box. It is necessary to transfer the relationship between F2 and Fo to F′2 and Fo to generate the

desired function post-condition. Knowing when to transfer these relationships by transitivity is

critical to both performance and precision. The QUIC graph representation allows us to limit the

guesswork of when to apply the various transitivity rules to derive additional facts.

Invariant 3 shows a reduction step that transfers information from the base domain to the

QUIC graph domain. In particular f > c, so it is also the case that ∀ν ∈ { f } . ν > c (i.e., applying

a ∀-introduction rule). In terms of QUIC graphs, any constraint of the form { f } ⊆
{
ν ∈ T̄

∣∣ B[ν]
}

can be strengthened to { f } ⊆
{
ν ∈ T̄

∣∣ B[ν] ∧ ν > c
}
where B is a predicate described by the base

domain and T̄ is any basic set expression, including { f }. For abstract interpretation, the conjunction

∧ becomes a meet operator u on base domain elements. Thus, { f } ⊆ { ν ∈ { f } | ν > c } is shown in
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invariant 3 . This “seed” constraint is sufficient to derive other ones, such as { f } ⊆ { ν ∈ F′2 | ν > c },

by transitivity on demand. The QUIC graph structure with singleton known-scalar sets enables an

eager transfer of information from the base domain coupled with lazy propagation of this information

(see Section 7.3).

This reduction step is used for deriving the invariant at point 4 . Point 4 shows the invariant

derived from 3 by projecting out F2 (and then renaming F′2 to F2). From invariant 3 , intuitively

F′2 ⊆ { ν ∈ Fo | ν > c } ∪ { ν ∈ { f } | ν > c } is true by applying transitivity (and that union with

any set is monotonic), so that F′2 ⊆ { ν ∈ Fo ∪ { f } | ν > c }, which gets to the desired result after

projecting the old F2 and renaming F′2 to F2. It is not difficult to check this step; rather, the main

challenge in an automated analysis is guessing that these are the appropriate steps to obtain the

desired invariant. For example, both F′2 ⊆ { ν ∈ F1 ∪ { f } | ν > c } and F′2 ⊆ Fo ∪ { f } are sound

over-approximations of the projection that are syntactically close, but nowtoo much precision has

been lost to get the desired post-condition. From the QUIC graph perspective, this derivation is a

propagation of facts across nodes and edges that can be done on demand by the lazy closure (see

Section 7.3).

The invariant at point 5 in the unchanged case entails the invariant that was just computed

at point 4 (except for the base domain constraint), so the result of the join at program point 21 is

the invariant at point 4 without the base domain constraint f > c, and after the assignment, the

result is exactly the loop invariant at point 1 .

In summary, it is difficult to derive enough constraints via transitivity and strong enough ones

via reduction from the base domain. On the flip side, transitive closure, even with restricted union

and intersection constraints, is exponential (see Section 7.3). The QUIC graph representation eases

this tension by representing inclusion constraints over unions, intersections, and comprehensions in a

canonical manner that facilitates on-demand propagation of information.
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7.2 QUIC Graphs

A Quantified Union/Intersection Constraint graph is a graph data structure that

represents inclusions between set expressions. Throughout the rest of the chapter the notation F

is used with subscripts to represent set variables and f with subscripts to represent base domain

variables. The special variable ν will be used as a formal bound variable for set comprehensions, as

will be explained in this section. The symbol T represents atomic set expressions – one of three

possible elements: the empty set ∅, a singleton set containing a base domain variable { f } or a set

variable F1. The symbols T̄ i, T̄ u represent a number of T s in an intersection or a union respectively.

Definition 5 (QUIC edge). Let T i1, . . . , T
i
m = T̄ i and T u1 , . . . , T

u
n = T̄ u be symbols representing

finite sets and B be a base domain abstract state involving a bound variable ν, acting as a predicate

where > is true and ⊥ is false. A QUIC edge is a constraint

m⋂
i=1

T ii ⊆

ν ∈
m⋃
j=1

T uj

∣∣∣∣∣∣B[ν]

 represented using the notation
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
B

which is an edge in an edge labeled hypergraph.

Dots above the set operators make clear that set operators are part of the syntax of a QUIC constraint

or a QUIC edge. Graphically a QUIC edge is represented as a hyperedge:

T i
m

...
...

T i
1

Tu
n

Tu
1

∪∩
B[ν]

For convenience, if there is only one T in the union (respectively intersection), the union

(respectively intersection) is elided from the figure. Additionally, if the label B[ν] is top in the base

domain, the label is elided from the edge.

Definition 6 (QUIC graph). A QUIC graph G ∈ G̃ is an edge labeled hypergraph constructed of

QUIC edges. It represents a conjunction of constraints where each constraint corresponds to one
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QUIC edge in the graph. A QUIC graph has the following syntax:

G ::= G1 ∧ G2

|
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
B

A QUIC graph is a canonical representation of the set of conjoined constraints. It is designed

to be compact and to allow efficient inference operations (see Section 7.3).

Following is a series of examples to demonstrate the QUIC graph representation.

Example 7.2 (Basic QUIC graphs). Consider that would be produced after line 1 from the

example in Figure 7.5:

Fo ⊆ ∅ ∧ Fi ⊆ F1 ∧ F1 ⊆ Fi ∧ F2 ⊆ ∅

This is represented as a QUIC graph:

Fo ∅ F2 F1 Fi

Unlike the constraint formula, the symbols F1, Fi, and ∅ only occur once in the graph. This makes

the relationships more clear and eliminates possible redundancy.

Conjoining multiple constraints produces a QUIC graph with multiple edges and including

unions or intersections requires a hypergraph to show the relationships:

Example 7.3. To encode the formula:

⋂̇
F1 ⊆̇

⋃̇
F2

∣∣∣∣
ν≥5

∧
⋂̇

F1,F3 ⊆̇
⋃̇

F4

∣∣∣∣
ν≤10

.

The following hypergraph is used:

F1 F2

F3 ∩ F4

ν ≥ 5

ν ≤ 10
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To be practical, a representation for set constraints cannot stand alone. There must be a way

to represent relationships between sets and base domain variables as well. To do this one constructs

a combined domain where elements are pairs (G,B) ∈ S̃ = G̃× B̃ where G is a QUIC graph domain

instance and B is a base domain instance. Note that the base domain has two roles: (a) it labels

edges in the QUIC graph and (b) it captures invariants on base domain variables.

To specify the concretization for both QUIC graphs and QUIC graphs combined with an

external base domain, a concretization (where γ is overloaded for all concretizations) for the base

domain is required:

γ : B̃ → ℘((BaseVar→ BaseVal)× ℘(BaseVal))

The symbol BaseVar is all base domain variables, BaseVal is all base domain values. This is a

non-standard concretization because given some abstraction, it returns a set of functions that map

base domain variables to base domain values and for each function, there is a corresponding set that

contains the base domain values to which the bound variable ν can be assigned. This is used to

define concretization for QUIC graphs

Definition 7 (Concretization). The concretization γ of a QUIC graph G has the following type,

given that SetVar is all set domain variables:

γ : G̃→ ℘((SetVar→ ℘(BaseVal))× (BaseVar→ BaseVal))

Where the result is a set of pairs of functions (η, ηB), where η maps set variables to sets of base

domain values and ηB maps base domain variables to base domain values. These two functions

mappings are valid with respect to constraints both on the sets and on the base domain.
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The concretization function is then defined as such:

γ(G1 ∧G2)
def
= { (η, ηB) | (η, ηB) ∈ γ(G1) and (η, ηB) ∈ γ(G2) }

γ

(⋂̇ [
T i1, · · · , T in

]
⊆̇
⋃̇

[T u1 , · · · , T um]

∣∣∣∣
B

)
def
=

(η, ηB)

∣∣∣∣∣∣∣∣∣∣∣
(ηB, b̄) ∈ γ(B) and

for all ν.
(
ν ∈ η(T i1) and · · · and ν ∈ η(T in)

)
implies

(
ν ∈ b̄ and (ν ∈ η(T u1 ) or · · · or ν ∈ η(T um))

)


The concretization for a combined domain S is the same set of pairs (η, ηB), so the type and

concretization follow:

γ : G̃× B̃ → ℘((SetVar→ ℘(BaseVal))× (BaseVar→ BaseVal))

γ((G,B))
def
=
{

(η, ηB)
∣∣ (η, ηB) ∈ γ(G) and (ηB, b̄) ∈ γ(B)

}

Expressivity: Now, the expressivity limitations of QUIC graphs are discussed. As such,

QUIC graphs allow unions, intersections and comprehensions of sets but in a restricted manner. The

design choices are motivated with the following.

The first expressivity restriction arises from the manner in which comprehension is introduced

in our language. For instance, QUIC graphs are able to express inclusions of the form F1 ⊆ {ν ∈

F2 | B[ν]} through a QUIC edge. However, QUIC graphs as presented here cannot express the

reverse inclusions of the form {ν ∈ F1|B[ν]} ⊆ F2. There are two main reasons for this restriction:

(a) Representing reverse inclusions requires a new type of edge relation along with fresh reduction

rules for this edge. Additionally, there are many interactions between this new type of relation and

existing relations that need to be captured. (b) Reverse inclusions require an abstract domain that

implements the underapproximate semantics whereas the inclusions used in QUIC graphs use the

standard overapproximate abstract semantics. This ensures that existing abstract domains can be

integrated with QUIC graphs without introducing new domain operations. A full theory of QUIC

graphs that captures both types of relations will be tackled in the future.
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Set Operation Operation using Union/Intersection

F1 ⊆ F2 ] F3 ⇔ F1 ⊆ F2 ∪ F3 ∧ F2 ∩ F3 ⊆ ∅
F2 ] F3 ⊆ F1 ⇔ F2 ⊆ F1 ∧ F3 ⊆ F1 ∧ F2 ∩ F3 ⊆ ∅
F1 ⊆ F2 \ F3 ⇔ F1 ⊆ F2 ∧ F1 ∩ F3 ⊆ ∅
F2 \ F3 ⊆ F1 ⇔ F2 ⊆ F1 ∪ F3

Figure 7.6 – Encoding set difference and disjoint union in QUIC graphs.

The other expressivity limitation arises from the introduction of union and intersection

operations. Note that the relation F1 ∪ F2 ⊆ F3 can be equivalently expressed simply as F1 ⊆

F3 ∧ F2 ⊆ F3. Likewise the intersection F3 ⊆ F1 ∩ F2 ⇔ F3 ⊆ F1 ∧ F3 ⊆ F2. This motivates

the direction of the union and intersection hyperedges in QUIC graphs. Relations between nested

unions and intersections are not directly represented unless special existentially quantified variables

are permitted in the graph.

Example 7.4. For instance, the relation (F1 ∪ F2) ∩ F3 ⊆ F4 cannot be expressed unless a special

existentially quantified set variable F5 is introduced with the constraints

⋂̇
F5 ⊆̇

⋃̇
F1,F2

∣∣∣∣
>
∧
⋂̇

F1 ⊆̇
⋃̇

F5

∣∣∣∣
>

∧
⋂̇

F2 ⊆̇
⋃̇

F5

∣∣∣∣
>
∧
⋂̇

F5,F3 ⊆̇
⋃̇

F4

∣∣∣∣
>

Finally, relations involving disjoint unions and set difference can also be represented directly

using QUIC graph as shown in Figure 7.6.

Self Loops: Self-loops on QUIC graphs are quite useful to encode assertions that are true

of the contents of F1 in relation to the scalar program variables f1, . . . , fn.

Example 7.5. Let F1 be a set and f be a program variable. One wishes to express that every

element in F1 is between f and f + 10. It can be done in the QUIC graph domain using the self-loop

from F1 to itself labeled by the assertion ν ≥ f ∧ ν ≤ f + 10. In effect, the loop represents the

containment relation written

F1 ⊆ {ν ∈ F1 | ν ≥ f ∧ ν ≤ f + 10} or ∀ν ∈ F1. ν ≥ f ∧ ν ≤ f + 10 .
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QUIC graphs naturally represent relationships between set variables, singleton sets and the

empty set. However, QUIC graphs do not necessarily represent all possible relationships. The next

section shows how to derive other relationships from those already in a QUIC graph.

7.3 Closure

The closure of a QUIC graph adds all of the implied logical facts to both the QUIC graph

and the base domain. Most of the domain operations of a QUIC graph are defined in terms of

the closure by the application of inference rules to add edges to a QUIC graph and strengthen the

existing edge labels.

Inference rules are shown in full in Figure 7.7. There are three judgment forms. One states

when given a combined domain of a QUIC graph and a base domain, S = (G,B), a particular

containment relationship is derivable. If the relationship is derivable, the inference judgment provides

a predicate Be that holds on that relationship. The judgment takes the form

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

,

where T̄ i is the set of intersected vertices and T̄ u is the set of unioned vertices. This judgment relies

on an auxiliary judgment B ` f1 = f2 where f1 and f2 are base domain variables. This judgment

states when an equality between variables is derivable from a base domain element (and is supplied

by the base domain). There is also a judgment (G,B) ` f1 = f2 that states when an equality can be

derived from set constraints.

7.3.1 Inference Rules

Following is an explanation of the inference rules for QUIC graphs in detail.

The (Emp) inference rule generates QUIC graph edges from the empty set to any node, labeled

with the bottom base domain element ⊥ (i.e., with the ∅ concretization or is equivalent to the

predicate false).
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(G ∧
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

, B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

(In-Graph-R)

(G,B) `
⋂̇
∅ ⊆̇

⋃̇
T̄ u
∣∣∣∣
⊥

(Emp)

(G,B) `
⋂̇
T ⊆̇

⋃̇
T

∣∣∣∣
>

(Self-Loop)

(G,B) `
⋂̇
T ⊆̇

⋃̇
T̄ u
∣∣∣∣
Ba

(G,B) `
⋂̇
T ⊆̇

⋃̇
T

∣∣∣∣
Bb

(G,B) `
⋂̇
T ⊆̇

⋃̇
T

∣∣∣∣
BauBb

(Self-Prop)

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

(G,B) `
⋂̇
T, T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

(Add-Left)

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T, T̄ u

∣∣∣∣
Be

(Add-Right)

(G,B) `
⋂̇
T i ⊆̇

⋃̇
T u1 , · · · , T um

∣∣∣∣
B0

(G,B) `
⋂̇
T uj ⊆̇

⋃̇
T uj

∣∣∣∣
Bj

, for j = 1 · · ·m

(G,B) `
⋂̇
T i ⊆̇

⋃̇
T u1 , · · · , T um

∣∣∣∣
B0u(

⊔m
j=1Bj)

(Union-Prop)

(G,B) `
⋂̇
T ij ⊆̇

⋃̇
T ij

∣∣∣∣
Bj

, for j = 1 · · ·m (G,B) `
⋂̇
T i1, · · · , T in ⊆̇

⋃̇
Tu

∣∣∣∣
B0

(G,B) `
⋂̇
T i1, · · · , T in ⊆̇

⋃̇
T u
∣∣∣∣
B0u(

dm
j=1Bj)

(Inter-Prop)

(G,B) `
⋂̇
T̄ ia ⊆̇

⋃̇
T, T̄ ua

∣∣∣∣
Ba

(G,B) `
⋂̇
T, T̄ ib ⊆̇

⋃̇
T̄ ub

∣∣∣∣
Bb

(G,B) `
⋂̇
T̄ ia, T̄

i
b ⊆̇

⋃̇
T̄ ua , T̄

u
b

∣∣∣∣
Ba

(Union-Trans)

(G,B) `
⋂̇
T̄ ia ⊆̇

⋃̇
T

∣∣∣∣
Ba

(G,B) `
⋂̇
T, T̄ ib ⊆̇

⋃̇
T̄ u
∣∣∣∣
Bb

(G,B) `
⋂̇
T̄ ia, T̄

i
b ⊆̇

⋃̇
T̄ u
∣∣∣∣
BauBb

(Inter-Trans)

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
BeuB

(Base-Str)

B ` f1 = f2

(G,B) `
⋂̇
{ f1 } ⊆̇

⋃̇
{ f2 }

∣∣∣∣
ν=f1

(Eq-Base)

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Ba

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Bb

(G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
BauBb

(Double-Edge)

(G,B) `
⋂̇
{ f1 } ⊆̇

⋃̇
{ f2 }

∣∣∣∣
Ba

(G,B) `
⋂̇
{ f2 } ⊆̇

⋃̇
{ f1 }

∣∣∣∣
Bb

(G,B) ` f1 = f2
(Eq-Set)

Figure 7.7 – Inference rules for closure of QUIC graphs. Notation: T̄ i, T̄ u are sets of vertices, T
are individual vertices of the graph, B,Ba, Bb are base abstract states and x, y are base domain
variables.
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Example 7.6. Consider the QUIC graph G

∅ F1

By applying (Emp), one gets the QUIC graph G′:

∅ F1

⊥

The (Self-Loop) and (Self-Prop) inference rules generate and strengthen the labels present

on self loops in QUIC graphs. The strengthening takes information from an outgoing edge and

propagates it back to the self loop.

Example 7.7. Consider the QUIC graph G

F3

F2

F1

∪
ν < 17

Evaluating the (Self-Loop) rule on F3 gives G′ on the left. Evaluating the (Self-Prop) rule on

F3 and F1 ∪ F2 pushes the predicate ν < 17 onto the self loop at F3, giving G′′ on the right:

F3

F2

F1

∪
ν < 17

F3

F2

F1

∪
ν < 17

ν < 17

The (Add-Right) rules allows adding extra elements to the union on the right-hand side of

an inclusion. (Add-Left) is the dual rule for intersection.

Example 7.8. Consider the QUIC graph G on the left. Applying (Add-Right) to F3 and F1,

adding F2, gives the QUIC graph G′ on the right:

F3

F2

F1

ν > 0 F3

F2

F1

∪
ν > 0

The (Union-Prop) rule pushes information from self loops backward onto edges. (Inter-

Prop) performs the same operation on intersections.
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Example 7.9. Consider the QUIC graph G on the left. Applying (Union-Prop) to F3, F1 and F2

yields the graph shown to the right.

F3

F2

F1

∪
ν < 12

ν > 5

ν > 3

F3

F2

F1

∪
ν < 12 u (ν > 5 t ν > 3)

ν > 5

ν > 3

The (Union-Trans) rule combines two union edges to produce a single union edge. This rule

loses information from one of the edges, but that information can be regained through the application

of (Union-Prop). The symbols u and t are used for the meet and join operator in the base domain,

respectively. (Inter-Trans) does the same for intersection without losing information.

Example 7.10. Consider the QUIC graph G on the left. The two union edges are combined to

produce the union edge on the right. Even though ν < 1 is a stronger constraint than ν < 2, the

resulting constraint is the weaker ν < 2.

F0

F1

F2

∪

F3

F4

∪
ν < 2

ν < 1
F0 ∪

F1

F3

F4

ν < 2

The (Double-Edge) rule merges two edges between the same vertices into a single edge.

QUIC graphs do not track multiple edges between the same two vertices, so a duplicate edge must

immediately be converted to a single edge with this rule.

Example 7.11. Consider the two edges on the left. Since QUIC graphs cannot represent these,

they are combined into the single edge on the right.

F1 F2

B2

B1

F1 F2

B1 uB2

The rule (Base-Str) strengthens any edge in the graph with the current facts from the base

domain B. The rule (Eq-Base) strengthens relationships in the set domain by adding a constraint

on the bound variable. The latter also uses equality in the base domain to infer equalities in the set

domain. Oppositely, (Eq-Set) uses equalities in the set domain to infer base domain equalities.
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Definition 8 (Closure). Let (G,B) be a QUIC graph and a base domain predicate. The closure

(G∗, B∗) is the conjunction of all

⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

such that (G,B) `
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
Be

and the constraining of B with all equalities f1 = f2 given by the judgment (G,B) ` f1 = f2.

7.3.2 Soundness

First, soundness for systems of inference rules must be defined. For a QUIC graph analysis to

be sound, the underlying system of inference rules must be sound.

Definition 9 (Inference Soundness). An inference is sound if the following two conditions hold:

(1) if (G,B) ` ⋂̇ T̄ i ⊆̇ ⋃̇ T̄ u∣∣∣
Be

, then γ((G,B)) ⊆ γ
(⋂̇

T̄ i ⊆̇ ⋃̇ T̄ u∣∣∣
Be

)
.

(2) if (G,B) ` f1 = f2, then for all (η, ηB) ∈ γ((G,B)), it is that ηB(f1) = ηB(f2).

Let us assume that B̃, the base domain, is a sound abstract domain [CC77].

Theorem 6 (Inference Soundness). The inference rules in Figure 7.7 are sound according to

Definition 9.

7.3.3 Complexity

Closure of a QUIC graph is potentially expensive since the number of edges in the closure can

be exponential in the worst case.

Theorem 7 (Inference Complexity). There are O(2n) possible hyperedges in a QUIC graph with

n vertices.

Without “tactics” to apply the rules cleverly in an implementation, the inference over QUIC

graphs is intractable.
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7.3.4 Lazy Inference Implementation

Now is discussed how the inference operation is implemented with the QUIC graph approach.

The goal of the implementation is to avoid a blowup in the number of graph edges and running

time each time a closure is to be computed. Lazy inference is a tactic that computes an effective

closure on demand. It is composed of many strategies. Here, the most important concepts used in

our implementation are described.

(1) Simplification: many simplification passes keep the QUIC graph in a canonical form. This

automatically takes into account many of the inference rules from Fig. 7.7.

(2) Lazy inference: Instead of computing the closure eagerly and adding a set of extra edges

to the graph, QUIC graphs do so lazily whenever edge membership queries are issued by the

abstract domain.

(3) Partial closure: Note that many of the edges that are generated by a closure are not

necessarily useful as invariants for proving properties. Therefore, QUIC graphs uses heuristics

that choose edges to query. This process is called candidate generation since it affects

which invariant candidates are considered by our analyzer at each step.

Simplification: Simplification consists of many different parts. The first simplification

deals with edges from the empty set ∅. As such, they do not contribute to the inference. It is

assumed that these edges implicitly exist but do not represent them.

Next, simplication considers equivalence classes of set variables. Two sets F1,F2 are

equivalent if F1 ⊆ F2 ∧ F2 ⊆ F1. Equivalence classes are identified using a maximal strongly

connected component algorithm on the QUIC graph. Equivalence classes of sets can be compacted

and one representative is chosen using a pre-defined variable ordering. All membership queries

involving members of equivalence classes are first rewritten in terms of the representative members

of the classes.



127

The (Double-Edge) rule is implicitly implemented by the data structure whenever there is an

attempt to add two edges between the same set of nodes. Finally, the (Self-Loop), (Self-Prop),

(Union-Prop) and (Inter-Prop) rules are used to propagate labels and add new edges between

representatives of equivalence classes. These rules also strengthen the labels on edges.

Lazy Inference: Next, inference on demand is implemented by applying the inference rules

to decide if a queried edge is present in the graph. This is performed by iterating the (Union-Trans)

and (Inter-Trans) rules to compute transitive closures.

Candidate Generation: The computation of a lazy inference is driven by the choice of

candidate query edges that might be added to the graph. To this end, a candidate generation

heuristic is used in the implementation to choose candidate invariant facts. There are many possible

heuristics for generating candidate query edges. The implementation uses set expressions that appear

in the program including properties to be proved as a source of edges to keep in the partial closure.

Another choice includes edges that are generated through transfer functions such as assignments.

Once generated, an edge is kept as a candidate edge for future inference computations.

7.4 Domain Operations

This section discusses the abstract domain operations over the reduced product domain of

QUIC graphs and the base domain B̃ for base domain variables.

Notation: Let G be a QUIC graph. The notation G[F1 � F0] denotes the graph obtained

by changing the label of vertex F1 to F0. The notation is extended to set expressions so that

T [F1 � F0] denotes the substitution of F1 by F0 for each occurrence in the expression T .

Abstract domain transition functions are defined using semantic functions:

JstmtKS : S̃ → S̃

These functions are parameterized by stmt, which is a command in the language of sets and base

domain operations. It takes an abstract state S = (G,B) ∈ S̃ composed of a graph G and a base

domain element B and returns an abstract state S′ that represents the state after having executed
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command stmt on S.

Simple Transfer Functions: The transfer functions for some basic assignment states are

represented below. In each case, the result may not be closed. Therefore, inference may be applied

on the result, if necessary.

Jhavoc F1KS(G,B)
def
= (G[F1 � F0], B) F0 is fresh

JF1:=∅KS(G,B)
def
=

(
G[F1 � F0] ∧ F1 ∅

⊥ , B

)
F0 is fresh

JF1:=T KS(G,B)
def
=

G[F1 � F0] ∧ F1 T , B

 F0 is fresh

The command havoc F1 assigns F1 to a non-deterministic value. Rather than projecting

the vertex F1 from the graph, it renames the existing vertex to a fresh variable F0. The vertex F0

remains in the graph as a history variable. Operations such as join and widening will eliminate

the necessary history variables, ensuring that they do not propagate out of scope. However history

variables will exist for as long as possible as this may allow additional relationships to be inferred.

The command F1:=∅ assigns F1 to the empty set. Because it is performing a destructive

update to F1, F1 is renamed to a history variable F0 as is standard when performing a destructive

update. This leaves the symbol F1 completely unconstrained so that when constraints are added to

F1, those are the only constraints on F1. The added constraint here is F1 ⊆ ∅, labeling it with the

strongest possible predicate ⊥.

The command F1:=T assigns a set element T to F1. This creates the two edges representing

both F1 ⊆ T and T ⊆ F1. The edge labels are set to > and thus not shown as all the information

from B can be added to these edges through the inference procedure.

Meet (Intersection): The meet of two abstract states (G1, B1)u(G2, B2) is the conjunction

of the set constraints and meet in the base domain (i.e., (G1 ∧G2, B1 uB2) where the u notation is

overloaded for both the QUIC graph and the base domain). Note that viewing the set constraints as

graphs, meet is the union of two graphs.

Set Assignment Rule: The domain operation for assignments of the form F1:=T1∪T2 · · ·∪
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Tn (similarly for F1:=T1 ∩ · · · ∩ Tn) builds upon the already defined operations. The basic idea is to

replace F1 by a history variable F0 and introduce hyper-edges to capture the new relations formed.

For simplicity, consider the case n = 2

JF1:=T1 ∪ T2KS(G,B)
def
=

G[F1 � F0] ∧ F1

T2[F1 �F0]

T1[F1 �F0]

∪ , B


F0 is fresh

Intersection, disjoint union and set difference operations are similar. They rename F1 to a fresh

variable F0 and rename T1 and T2 similarly, if appropriate. Then a constraint that represents the

appropriate equality is added to the QUIC graph.

Base Domain Assignment: An assignment to the base domain variables f1 := e will result

in three changes: (a) applying the assignment to the base domain element B, (b) applying the

assignment to each edge label in the QUIC graph G and (c) any singleton node in the graph that

involves f1 needs to be updated either by computing its post-condition w.r.t to the assignment, if

invertible or renamed to a fresh set variable F0 for a destructive assignment. All applications invoke

the base domain transfer function and thus rely on the base domain for introduction (or not) of

history variables. This is illustrated through a simple example.

Example 7.12. Consider the QUIC graph G

F1 F2 {f2}
ν ≥ f1 − 2

and let B : f2 ≥ f1. Consider the destructive assignment f1 := f2 + 1. The transfer function yields

the QUIC graph G′:

F1 F2 {f2}
>

with the assertion B′ : f1 = f2 + 1. A partial closure on the result is computed, which effectively

pushes the constraint f1 = f2 + 1 on the edges of the graph G′.
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Choose: The choose command selects an element from a set and assigns it to a base

domain variable. It takes quantified information from the set domain and applies it to the resulting

base domain variable. The strategy to handle f1 := choose(T ) for an abstract state (G,B) is the

following:

(1) Perform an inference operation on (G,B) giving (G∗, B∗).

(2) Extract the base domain constraint Be from a self-loop on T :

G∗ = G′ ∧
⋂̇
T ⊆̇

⋃̇
T

∣∣∣∣
Be

.

(3) Replace the bound variable ν in Be with a fresh base domain variable f2 giving B2. This

process transfers all the facts that apply to elements in set T and applies them to the variable

f2.

(4) Compute the meet B′ = B∗ uB2. This transfers those facts about f2 to the base domain.

(5) Perform the destructive update f1 := f2 on (G∗, B′) to get the result of choose.

Projection: The projection of a base-domain variable f1 from (G,B) is performed by (a)

projecting f1 from B and (b) projecting f1 from each label in G. These are performed by calling the

projection defined in the base domain B̃.

The projection of a vertex T from the QUIC graph G first computes its partial closure (G∗, B∗).

Next, all conjuncts involving the vertex T are removed from G∗ to obtain the projection.

Join: Let (G1, B1) and (G2, B2) be the arguments for the join operation. First, the partial

closure of (G∗1, B
∗
1) of G1 and likewise the partial closure (G∗2, B

∗
2) of (G2, B) are computed. The

join (G,B) is then defined where B = B∗1 tB∗2 and G is all conjuncts

⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
B1tB2

where there exists some G′1 and G′2 such that

G∗1 = G′1 ∧
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
B1

and G∗2 = G′2 ∧
⋂̇
T̄ i ⊆̇

⋃̇
T̄ u
∣∣∣∣
B2

.
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Widening: As such the QUIC graph domain is a product of a finite graph domain and

an abstract base domain. Widening is required iff the base domain does not satisfy the ascending

chain condition. The basic widening algorithm is precisely the same as the join operation with the

modification that the base domain widening operation is applied for each QUIC edge instead of

widening.

7.5 Evaluation

The section presents a preliminary evaluation of the prototype analyzer. The QUIC graphs

domain introduced in this paper has two main aspects: (a) it enables relational reasoning between

sets to prove that one set (expression) is contained in another; and (b) it allows us to qualify relations

between sets using base domain predicates, in effect allowing us to reason with set comprehension.

The evaluation in this section is intended to answer the following questions:

(1) How much does each of the two ingredients (relations between sets + set comprehensions)

add to the ability of the analysis to prove properties of commonly encountered use cases?

(2) What is the added cost due to each of the two ingredients to the overall domain?

For comparison in the evaluation, there are two simplified versions of the QUIC graphs

domains: the ‘set’ and ‘elem’ domains. (A) The ‘set’ domain allows relations between sets but no

comprehensions. This is a realization of a container-as-a-whole approach. This domain is created

using the trivial two element (⊥,>) base domain. (B) The ‘elem’ domain disallows relations between

sets but allows us to reason about the contents of the set using a summary variable. This is a

realization of a content-centric domain. To simulate this domain, the original QUIC graphs domain

is modified to just allow self loops on nodes as the only possible edge. In effect, the predicate on

such an edge must be true of every element in the set. Furthermore, the process is exactly equivalent

to introducing a summary variable for each set variable and performing a base-domain analysis

using this summary variable.
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Benchmarks: The next step is to choose a series of benchmarks that represent common

motifs for set (container) usage in dynamic languages. To evaluate the approach two sets of

benchmarks were used. The analysis was designed using the first set of benchmarks, which exercise

four commonly occurring operations on containers ‘copy’, ‘filter’, ‘partition’ and ‘merge’. Next, the

analysis was run, unmodified, on translated versions of all of the programs from the Python test

suite [Pyt12] for dictionaries and sets. Extraneous parts of these tests were removed and simply the

core part of each program was translated to an equivalent program in the input language. Each test

has a set of pre-defined assertions to be established by the analyzer.

Results: Figure 7.1 summarizes the results of the analysis run on these benchmarks on an

Apple MacBook Pro, on a 2.2GHz Intel Core i7 with 8GB RAM running Mac OS X 10.8.2. Now,

the precision and running time are compared. The memory required by most analysis runs was

under 150 MB. It is quite clear from the results table that the combination of relational reasoning

and comprehension using base domain predicates is quite powerful. Whereas the QUIC graphs

domain can prove a majority of the properties, restricting it either by removing the comprehensions

(set) or removing the relations between sets (elem) are both able to prove much fewer properties.

Furthermore, every property proved by these domains is also proved by the QUIC graphs domain.

The comparison of costs indicates that the QUIC graphs domain is 1.2× slower than the set

domain. However, it is 9× slower than the elem domain. The difference in performance is entirely

expected since the QUIC graphs domain has to perform a lot more reasoning steps. Additionally,

one example times out (after 600 seconds).

7.6 Limitations.

Precision While QUIC graphs are an effective abstract domain, but some properties were

not proven due to imprecision in the analysis. There are four sources of this imprecision: (1)

incomplete candidate generation, (2) imprecise base domain, (3) no cardinality reasoning, and (4)

syntactic restrictions within QUIC graphs.

To reduce needless inference in many examples, QUIC graphs uses candidate generation



133

Table 7.1 – Results on a set of small benchmarks. Base Vars: # of base domain (numerical)
variables, Set Vars: # of set variables, Num Prp: # of assertions to be proved, T: Time taken
(seconds), #I: number of iterations of abstract interpreter before convergence. – represents a time
out (600 seconds)

Base Set Num # Proved Time Taken (Iterations)

ID Vars Vars Prp QG set elem QGT #I setT #I elemT #I

copy 1 6 2 2 2 0 0.2 2 0.2 2 0 2
filter 4 6 2 2 1 0 0.6 3 0.5 3 0.1 2
generic_max 3 8 6 3 0 0 0.9 6 0.6 6 0.2 4
merge 2 14 2 1 1 0 0.6 4 0.6 4 0.1 4
partition 4 8 4 4 2 0 1.1 3 0.9 3 0.2 2
b_filter 6 6 2 2 0 0 0.7 3 0.6 3 0.1 2
b_map 9 7 2 2 2 2 0.2 5 0.3 5 0.1 4
b_max_min 3 4 1 1 1 1 0.4 3 0.3 3 0.1 2
b_reduce 7 4 1 0 0 0 0.4 3 0.3 3 0.1 2
iter_ind 20 12 1 1 0 0 84.4 39 67.9 39 6.8 14
mul_ret 9 2 2 2 0 0 0.2 6 0.1 6 0.1 6
nest_dep 5 7 1 0 0 0 2.2 12 2.2 12 0.4 6
resize1 15 5 5 4 0 0 1.7 18 1.1 18 1 18
simp_cond 11 5 4 3 0 0 4.6 12 1.6 12 1.3 12
simp_nest 9 10 2 0 0 0 – 1399 – 1612 0.7 6
srange 6 2 2 2 0 0 0.1 6 0.1 6 0.1 6

Total 37 29 9 3 98.3 125 77.3 125 11.4 92
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(Section 7.3) to reduce the number of rule applications. Because candidate generation reduces the

potential edges that can result from a join, it can cause the join to lose more information than is

strictly necessary. This is this cause for many of the failures in Table 6.2, including the failure to

prove one of the properties in ‘merge’. Further work on candidate generation is quite important.

Because the base domain is also an abstract domain, it is imprecise and may not be able to

represent some necessary relationship. This is especially the case when there is a transformation

applied to all elements of a set. The base domain must be able to represent that transformation

that occurs to each element as a relation. In this test suite there is only one test that exercises this

ability and the relations are all representable as linear relationships, so this imprecision does not

affect the results. However, if this were a problem, a new base domain could be selected because

QUIC graphs are agnostic to the base domain.

The QUIC graphs domain does not track the cardinality of sets beyond empty, singleton, and

unknown. As has been previously shown [Kun07], cardinality can strengthen relationships, and

therefore in QUIC graphs, cardinality constraints would create additional closure rules. For example,

if for some set F there is the constraint that {1, 3, 7} ⊆ F and that |F| = 3, then F ⊆ {1, 3, 7} can

be inferred. It is possible that cardinality information could provide sufficient information to prove

properties that failed in this test suite, but this information could likely be inferred in another way

(such as better candidate generation) because most sets in the test suite have unknown cardinality.

QUIC graphs are syntactically restricted to allow comprehensions only on one side of a subset

relationship. Reverse inclusions (Section 7.2) are not supported. It is expected that the ability to

know that an element exists in a set will be beneficial when abstracting other containers using sets.

Scalability Despite all of the techniques here, the theoretical complexity of computing a

join or inclusion check in QUIC graphs has not improved beyond exponential. In practice, this may

not be a problem with appropriate use of additional lazy techniques, as used in satisfiability solvers.

However, with current implementations, the sometimes exponential cost can be a detriment to an

analysis.

As a result of the complexity of the join, even with the candidate generation techniques, there
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are scalability problems when the number of symbols increases. This was seen in the application of

QUIC graphs to the HOO abstract domain for objects. When the number of variables increased, the

performance worsened significantly. However, there are approaches that may improve scalability

beyond what QUIC graphs has today.

First, scalability could be improved by tracking equalities separately from the set domain. In

practice, there are many constraints of the form F1 = F2 and these simply make all computations

more difficult. They introduce many more ways inference can happen and they introduce many

more join possibilities. Alternatively, these could be tracked with a disjoint union data structure

that maintains equivalence classes. Only the representative from each equivalence class would be

present in the QUIC graph. For situations when many equalities are used, this could eliminate many

redundant cases that could cause a divergence in the analysis.

Second, scalability could be improved by only keeping track of relations between symbols that

are explicitly formed in the program. To do this, multiple domain instances would be used for each

abstract state. Each domain instance would keep track of a subset of all of the set symbols. By

doing this, the overall number of symbols per domain goes down. Since the exponential behavior

is of the form 2n, dividing that into m different parts, produces a complexity of m · 2 n
m , which is

significantly better because the exponential is reduced in exchange for a simple multiplication.

7.7 Related Work

There exists a large number of container analyses, mostly focused on arrays. Although there

are many different approaches, the problem is fundamentally the same: partitioning an array in

order to summarize different segments. Gopan et al. [GRS05], Halbwachs et al. [HP08] and Cousot

et al. [CCL11] use an abstract interpretation framework with materialization and summarization.

Therein, the partitions are inferred from the structure of the program. Seghir et al. [SPW09] perform

this in the context of predicate abstraction, similarly to abstract interpretation. Jhala et al [JM07],

McMillan [McM08], Kovacs et al. [KV09], and Dillig et al. [DDA10, DDA11] use theorem provers to

perform this partitioning. Our approach does not use a partitioning scheme except for the special
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case of loops that iterate over sets. Furthermore, these approaches do not, in general, reason about

comprehensions or relate the contents of different arrays.

There are several alternative approaches to reasoning about container manipulations. Marron

et al. [MSHK07, MMLH+08] used a shape analysis to emulate data storage of containers. They used

appropriate inductive predicates with carefully tuned, simplified implementations of the containers

to get an automatic analysis. Dillig et al. [DDA11] extended their previous work on arrays to more

generic containers. Their approach uses base domain predicates as constraints on the sets of keys

for maps. This is a highly tuned example of what a content-centric domain. Their approach does

not directly infer relationships between containers. However, they can indirectly infer relations

through data invariants that relate their contents. Finally, Pham et al. [PTTC11] introduced a

relational domain for sets. Their domain is similar to QUIC graphs in that it is designed to directly

represent relations between sets. Their approach represents the as-a-whole approach for the most

part. It does support a base domain of uninterpreted functions and can be precise for a restricted

class of programs. Because they support only uninterpreted functions for the base domain, they

have been able to implement some under-approximations required to infer equalities with predicate

comprehensions, but this base domain does not support any manipulation or reductions and thus is

weaker than domains that QUIC graphs supports.

The invariant generation procedure of [GMT08] could infer many of the invariants that QUIC

graphs infers given a sufficiently expressive list of predicate templates. They select from templates to

use for quantified facts. As a result, their analysis requires user input and guidance for success, but

the approach does offer some additional generality. Bouajjani et al. [BDES12] present a similar, more

automatic approach to dealing with quantified invariants, by pre-selecting appropriate templates

for many applications. They apply their work to linked list structures and support multiple bound

variables to be able to maintain sortedness properties. Like the work of [MSHK07], they use a shape

analysis framework to approximate the shape and data of lists, while maintaining quantified side

conditions on an integer base domain.

The QUIC graph data structure is similar to a formalization of constraint graphs [AFFS98,
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Fla97] use to prove complexity of satisfaction of constraints [AKVW93]. While the encoding is

similar, there is no need for base domain labels since constraint graphs are unable to place quantified

restrictions on the contents of the sets they constrain. In general, constraint graphs do represent

sets, but they are intended to use sets to analyze programs rather than analyzing set-manipulating

programs.

The decision procedures community has largely solved this problem of relational containers,

but only for the problem of entailment checking. Decision procedures do not perform invariant

generation. Bradley et al. [BMS06] demonstrated decision procedures for arrays and other containers.

The Z3 SMT solver implements an optimized version [dMB09] of these decision procedures to

speed up these problems. Also, Lam et al. [LKR05] and Kuncak [Kun07] developed a system that

simultaneously reasons about sets and their cardinalities relationally. Since these tools solve the

decision problem rather than the inference problem, they are incomparable, however the optimizations

used in [dMB09] are similar to operations that are defined in QUIC graphs closure because they are

Boolean algebra-like operations.

7.8 Summary of QUIC Graphs

This chapter has demonstrated a relational abstract domain for sets that combines a content-

centric analysis with a container-as-a-whole approach. This is achieved through a new representation

for set constraints called QUIC graphs that simplifies the representation of set expressions and

inclusion relations that use comprehensions. Our evaluation of this domain shows that a combined

approach using QUIC graphs is quite effective in practice. It outperforms weaker alternatives such

as a content-centric approach and a container-as-a-whole approach.

By integrating the QUIC graphs domain with a heap domain such as HOO, set-based ab-

stractions have opened up a wide range of new abstractions for heaps and containers. By mixing

content-centric and as-a-whole reasoning, dependent domains such as HOO are able to reason about

both individual values as well as completely unknown sets of values, making the resulting analysis

both more efficient and more flexible.
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Conclusions and Future Work

In this dissertation, I have presented a different way of tackling the dynamic language

verification problem. Rather than approaching whole programs once they have been completed, the

approaches presented here are targeted at libraries that are under development and have not yet

been deployed. These techniques can allow library developers to understand and debug their code

before it is deployed, avoiding the problems of late bugs that are found after deployment and thus

saving money, reducing risk, and creating better relationships with clients who use their libraries.

To be able to analyze library code and other partial programs, this dissertation presented the

following thesis statement:

The combination of local heap reasoning with sets provides a means to construct

direct, parametric abstractions suitable for automatically analyzing dynamic

language libraries.

This dissertation developed a heap abstraction (Chapter 4) that supported local reasoning

with separation logic. This abstraction is based on an abstraction for sets (Chapter 7) that provides

a way represent relationships that form between the unknown objects (Chapter 4) and calls of

unknown functions (Chapter 5) that arise when analyzing libraries. The four main contributions

that support this these are:
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(1) Heap with Open Objects – The HOO abstraction embodies the core of the thesis statement.

It is a separation-logic-based abstraction and therefore it supports local heap reasoning via

the standard separation logic frame rule. Its use of sets to represent abstract addresses,

abstract values, and most importantly abstract attribute partitions gives it the expressiveness

to represent the incremental changes to objects that occur when adding, removing, and

iterating over open objects. Because it is parameterized by an abstraction for sets, it is a

tunable abstraction that can be tailored to suit a variety of different applications.

By itself, HOO supports the thesis statement. If the purpose of the analysis is to find

assertion failures in dynamic language libraries that do not have clients, even when those

libraries manipulate objects that were unknown inputs, HOO is well suited to the task.

(2) Desynchronized Separation – If the library code also includes functions as input or in

the starting heap, HOO is insufficient. As many dynamic language libraries do this, it is

often necessary to use desynchronized separation. Desynchronized separation builds upon a

separation-logic-based analysis and thus is also a local heap abstraction. It partitions the

heap into the part that can be modified or accessed by the unknown function and parts that

cannot be modified or accessed by the callback function.

(3) Attribute/Value Trackers – Attribute/value trackers extend an abstraction for open

objects or containers to improve precision when attributes/values are copied from one object

to another. This relies upon the partitioning of attributes that is provided by the underlying

abstraction. For HOO this partitioning is provided by the set abstraction. Consequently,

attribute/value trackers depend on the set abstraction.

(4) QUIC graphs – QUIC graphs provide a flexible set abstraction. Prior to QUIC graphs

very little work had been done on relational abstraction for sets. No work had been done

on abstractions that simultaneously considered the contents of sets along with relations

between sets. QUIC graphs utilizes a domain for values to provide abstractions of set

contents (content-centric reasoning) combined with a relational abstraction for sets (as-a-
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whole reasoning) to get a result that is better than each of two parts alone. Since objects in

dynamic languages have attributes that are constrained both by relationships with other

objects and in their contents, QUIC graphs is ideally suited for use with HOO and the

analysis of dynamic languages.

By combining the above four abstractions, the analysis provides a number of significant benefits

including (1) native relational open object support, (2) local heap abstraction, (3) strong updates,

(4) unknown function abstraction, and (5) flexibility. As a result, it provides a general framework for

abstractions that can be used for partial dynamic language programs.

The first significant benefit is native open object support. The HOO abstraction does not

build upon existing abstractions of objects in non-dynamic languages. Instead, it directly handles

the issue of dynamically adding, removing, and iterating over attributes of objects by representing

them in a summarized form using sets.

Sets are the central element of native open object support in HOO. Unknown attributes of an

open object are represented by partitioning the potentially unbounded number of attributes into

a finite number of sets of attributes. These sets of attributes can then be related to other sets of

attributes in other objects using an abstraction for sets. This abstraction for sets is a parameter for

constructing HOO, so it can be tuned.

The second benefit is local heap abstraction. Local heap abstraction is critical for analyzing

libraries. Libraries will not affect the entire heap because libraries are always run with a client that

also allocates memory. In the absence of that client, it is critical to bound the behavior of the library

to the portion of the heap that it can affect. Because HOO is based on separation logic, it naturally

provides this local heap abstraction and thus an analysis performed with HOO can be composed

with an analysis of code that affects a different part of the heap transparently.

The third benefit is strong updates. HOO provides strong updates in two forms: at the object

level and at the attribute level. At the object level, before an object is read or updated, if the

object being referenced is a summary, a single object and a new summary object are split out of that
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object. At the attribute level, before an attribute is read or written, if the attribute being referenced

is a summary, a single attribute and a new summary attribute are split out of the old summary.

Furthermore, using attribute/value trackers, if materialized attributes are solely copied from object

to object, the analysis can be completely precise. Using the power of the set abstraction, when HOO

materializes a single object or attribute from a summary object or attribute, that split that occurs

is encoded into the set abstraction, giving the potential to not only undo the operation, but to know

exactly how one set was derived from another. This is useful for all varieties of precise reasoning

about objects and the heap.

The fourth benefit is unknown function abstraction. Building upon local heap abstraction,

desynchronized separation provides a means for reasoning about the behavior of code that calls a

function, even if the function that is called is unknown. It splits the heap and records an optimistic

view of the portion of the heap that may be modified by the function along with the function that

modifies it. This allows desynchronized separation to represent the heap in an intuitive way where

the portion of the heap that may have been affected by the function call is represented as what it is:

the portion of the heap that may have been affected by the function call.

The final benefit is flexibility. While flexibility does not play a direct roll in analyzing any

given JavaScript or other dynamic language program, it is critical for making general frameworks

that are applicable across a wide range of programs and a wide range of languages. The HOO

abstraction is a mechanism for reasoning about dynamic language programs. It is parameterized by

a set abstraction, which means that all of the relational reasoning that HOO provides can be tuned

for both performance and precision by selecting an appropriate set abstraction. Additionally, extra

values can be trivially added to the abstraction by exchanging the underlying value abstraction

without changing anything else.

Further, desynchronized separation is flexible because it is parametric with respect to a

separation-logic-based abstraction. Existing abstractions can be extended with support for callback

functions by extending them with desynchronization. Similarly, attribute/value trackers are flexible

because they can be added to any partition-based abstraction for containers or open objects. These
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Figure 8.1 – Analysis landscape comparing scalability and unknown attribute name and function
precision. The abstractions presented in the dissertation are in a completely different precision/scal-
ability class than existing analyses.

extensions provide flexibility by extending existing abstractions with support for new operations and

improved precision.

A final and closely-related contribution of this dissertation is the creation of a flexible ab-

straction for sets. Because the abstractions for objects and the heap depend so heavily on an

abstraction for sets, it is important to have a general, flexible abstraction for sets that combines the

ability to reason about contents of sets simultaneously with the ability to reason about relationships

between sets as-a-whole. The QUIC graphs abstraction provides exactly this. It provides the rules

for combining content-centric and as-a-whole reasoning in a way that allows automatically verifying

programs that manipulate sets and contents. It is parameterized by an abstraction for values that is

then transformed into an abstraction for sets of those values.

There are actually two classes of static analyzers for dynamic languages as Figure 8.1 shows.

Whole-program analyzers such as TAJS, WALA, JSAI, and SAFE focus on scalability and attempt

to add enough precision to prove properties about programs when the whole program is there. These

analyzers do not require high precision for unknowns much of the time because, with the full context

provided by the client code, sufficient precision is possible with simpler non-relational abstractions
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for unknowns. The abstractions presented in this dissertation occupy a completely different position

in the space of analyzers. They are precise first. They are focused on the challenging problems of

unknown open objects and unknown function calls that arise in the verification of libraries in the

absence of clients. As a result, for now, they do not scale well. Despite this, they provide tools

to verify small but complex libraries written in dynamic languages. Furthermore, there are many

possible methods to explore to move towards high precision for unknowns and increased scalability.

Limitations and Possible Future Directions

As Figure 8.1 shows, there is an obvious possible improvement to the work presented here.

The upper-left corner of analyses that are scalable, yet precise for unknowns is conspicuously empty.

The reason for this is that it is not yet clear how to make this analysis scalable. However, there are

a number of ways in which the analysis could be made faster.

It is possible to take more advantage of the significant number of string constants that are

commonly available in JavaScript programs. While input objects may be fully unknown and require

the use of HOO to precisely analyze, internal objects that are constructed as part of object-oriented

programming may be largely constant and thus not require the full generality of HOO. Handling

such objects with a specialized abstraction could improve performance without sacrificing precision.

The trick to accomplishing this would be creating a mechanism for promoting an object that uses

the specialized abstraction to the more general HOO abstraction if unknown attributes start being

used with the object.

Furthermore, to improve the general HOO, there are innumerable different set abstractions

that could be used. I presented QUIC graphs, which is a general framework for designing set

abstractions that simultaneously reason about set contents and set relationships. This approach

achieves a reasonable level of efficiency by lazily inferring derived relationships between set symbols

and values. However, lazy inference does not solve the problem of computing join and widening.

The techniques presented here use heuristics for candidate generation where each candidate can be

then checked using lazy inference. This approach is neither as precise nor as scalable as possible for

many applications.
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Regardless of the optimality of QUIC graphs as implemented, it provides an effective basis

for sharing information between an abstraction for values and an abstraction for sets. By removing

features from QUIC graphs and then specially optimizing it for particular applications, it may be

possible to get it to significantly better performance and precision. An example of this would be

disabling much of the content-centric reasoning, leaving mostly as-a-whole reasoning, which can be

performed for efficiently using constraint solvers. Only when significant value reasoning is required

is the full power of QUIC graphs needed.

Additionally, there are many ways in which the analyzer itself could be improved. Currently

support for JavaScript is limited. Many basic language features such as arrays and numbers are left

unimplemented as they were not needed to demonstrate the abstractions. Practically, these things

must be supported. In addition, many control structures such as exceptions and different varieties of

loops are not supported. To widely support most real JavaScript, support for these structures is

necessary.

Furthermore, there are ways in which both precision and performance may be able to be

increased. The HOO abstraction is incredibly flexible. This comes with some good parts and bad.

By exchanging the underlying set domain and the join and widening heuristics, it is possible to

completely change the behavior and expressivity of the abstraction. The join and widening heuristics

determine which objects get merged into summaries and which partitions of objects’ attributes

get merged into summaries of partitions. Throughout this work, we have utilized allocation site

information to guide this summarization. However, it is likely that a variety of different useful

heuristics exist.

Finally, with appropriately tuned abstractions, and possibly through the use of techniques

such as bi-abduction [CDOY11], it is possible that fully modular analysis for dynamic languages

could be realized. With such analyses it may be possible to scale beyond the 1000 to 10000 line

programs that are currently possible with whole program analyses, all while maintaining better

precision. Of course realizing such goals will require significant engineering and additional research.

Regardless, the HOO abstraction, desynchronized separation, attribute/value trackers, and QUIC
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graphs pave the way for such advances.
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Appendix A

Full Example Analysis

In this chapter, I give the details and decisions that go into a full analysis based on the

abstractions presented in this dissertation. This chapter uses an analysis like used by JSAna as

explained in Chapter 6. To ensure that this example stays useful in explaining how the various

abstractions work together, I have made some simplifications to eliminate extra indirections that are

required in a JavaScript analysis. As a result, the structure of the analyzer for this example does

not utilize the same simplification. This version is shown in Figure A.1.

Abstract Interpreter

Disjunction

Heap

One-/Two-
state Heap 

Graph

Set 
Abstraction

Desync
Separation

QUICr
BDD

Figure A.1 – Architecture of the abstractions as used for the full example analysis

Because only the abstractions are being considered here, the program that is going to be

analyzed is already lowered and simplified. The code that will be analyzed is shown in Figure A.2.

The code here is an adapted version of Class that eliminates many of the complexities introduced
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function /* id:@1 */ copy(result, cfgc, exc) {
for(var p in obj)
/* point 2 */

{
if(p in exc) { } else {
result[p] = cfgc[p];

}
/* point 3 */

}
}

function constructor(copy,cfgc,args) {
var init = cfgc.init;
var result = {};
var exc = {};
exc.init = '';
/* point 1 */
copy(result, cfgc, exc);
/* point 4 */
init(result, args);
/* point 5 */
return result;

}

Figure A.2 – Adapted and simplified version of the Class function to be analyzed
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along with JavaScript. Most significantly, it is assumed that a different call function that is more

flexible can be used. It has lambda-calculus-style, pass-by-value semantics rather than JavaScript

semantics. All other commands are presented as they would be analyzed and as given in the

open-object-focused JavaScript.

The precondition for this function is given in Figure A.3. It consists of constraints on the three

input variables. The copy variable points to a function value @1. This function value is the identifier

of the copy function also given in Figure A.2. This precondition asserts that the copy variable

is necessarily bound to the copy function. If this assumption is changed, then the precondition

is not satisfied and any resulting inference cannot be relied upon. The cfgc variable points to a

non-summary object at address a1. It has an initial set of attribute names F1, an attribute/value

tracker t1, and an initial set of values V1. This represents a mostly unknown object because there

are is only one constraint on F1, that it must have an 'init' attribute. Finally, the args variable

points to an object at address {a2}. This is a different object from {a1} because of the separation

constraints implicit in these heap graphs. However, similar to {a1} is is an unknown object with

attribute names F2, attribute/value tracker t2, and values V2.

0

[
copy @1 cfgc {a1}

F1 : t1 V1

args {a2}
F2 : t2 V2

{'init'} ⊆ F1

]
0

Figure A.3 – Precondition for analysis of constructor shown in Figure A.2

Up to program point 1, there are three simple statements. The first materializes the init

function from the object pointed to by cfgc. This materialization splits F1 into two partitions F11

and {'init'}, each of which gets a copy of the attribute/value tracker. This also materializes a value

{V1} from V1. Note that when values are materialized, it does not produce a partition like when

attributes are materialized. This is because there is no separation requirement on values and thus

it is not important to remove the materialized value from the set of values when it is materialized.

Additionally, the result, and exc variables and corresponding objects were created. The object

pointed to by exc is initialized with the attribute 'init'. The result is shown in Figure A.4
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1



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

{'init'} ] F′
1 = F1

∧ {v1} ⊆ V1

init {v1} result {a3}
— —

exc {a4}
{'init'} : – {''}


0

Figure A.4 – Analysis state at point 1 shown in Figure A.2

To reach program point 2, the function copy has to be called. To resolve this call, the analysis

relies upon the given precondition for the analyzed function. This precondition indicates that copy

points to function with id @1. Because the code for function id @1 is available, there is no need

to desynchronize this function call. Instead the analysis (as it is today) does a context sensitive

analysis. For simplicity, here, the parameters in the copy function are the same as the variables

that are used. In general, a new environment is added that adds new variables that point to the

objects that were passed as parameters.

In the copy function, an iteration runs. To perform this iteration, the attributes of the object

that are being iterated over are partitioned into two: Fi, a variable that keeps track of the attributes

still to visit, which is initially all of the attributes and Fo, a variable that keeps track of all of

the already visited attributes, which is initially empty. The initial candidate invariant is shown in

Figure A.5.

2



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

{'init'} ] F′
1 = F1

∧ {v1} ⊆ V1

∧ F1 = Fi ] Fo
∧ Fo = ∅

init {v1} result {a3}
— —

exc {a4}
{'init'} : – {''}


0

Figure A.5 – Analysis state at point 2, iteration 1 shown in Figure A.2

Within the loop, there is a case split that occurs. Either the attribute is 'init' or not. If it is

not 'init', the attribute/value pair and the attribute/value tracker is copied from A1 to A3. If it is

init, nothing happens. After completing this branch, they case split is maintained. Only immediately

before the end of the loop need they be joined. At this point, the analysis produces Figure A.6,
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which shows the conditional addition of the attribute f to the result object.

3



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

{'init'} ] F′
1 = F1

∧ {v1} ⊆ V1

∧ F1 = Fi ] Fo
∧ Fo = ∅
∧ {f} ⊆ F′

1
∧ F = {f} \ {'init'}init {v1} result {a3}

F : t1 V1

exc {a4}
{'init'} : – {''}


0

Figure A.6 – Analysis state at point 3, iteration 1 shown in Figure A.2

Coming back to the head of the loop, the analysis finds that the candidate loop invariant is

insufficient and thus it performs a widening to infer a new candidate loop invariant. This widening

drops the constraint that Fo is empty, which allows for a more general candidate loop invariant.

This more general result is shown in Figure A.7.

This widening requires significant manipulation of the set abstraction. The set abstraction must

determine that the abstraction in Figure A.5 and the end of the loop body imply that F′o = Fo ∩ F′1.

2



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

{'init'} ] F′
1 = F1

∧ {v1} ⊆ V1

∧ F1 = Fi ] Fo
∧ F′

o = Fo ∩ F′
1

init {v1} result {a3}
F′

o : t1 V1

exc {a4}
{'init'} : – {''}


0

Figure A.7 – Analysis state at point 2, iteration 2 shown in Figure A.2

Program point 3 in the second iteration of the loop is shown in Figure A.8. The important

change is that there is now a second partition in the result object a3. One partition contains all

attributes added by previous iterations, the other contains the attribute added this iteration, if any.

Once again, because the two cases are joined, this addition is conditional upon whether the attribute

is also in a4.

The analysis checks to see if the state at the end of the loop body is contained in the candidate

loop invariant. It is, so the candidate loop invariant is an actual loop invariant. Figure A.9 shows

this loop invariant.

Upon exiting the loop, the set Fo is equal to the set of attributes of object A1. Therefore, Fo
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3



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

{'init'} ] F′
1 = F1

∧ {v1} ⊆ V1

∧ F1 = Fi ] Fo
∧ {f} ⊆ F′

1
∧ F = {f} \ {'init'}

init {v1} result {a3}
F′

o : t1 V1

F : t1 V1

exc {a4}
{'init'} : – {''}


0

Figure A.8 – Analysis state at point 3, iteration 2 shown in Figure A.2

can be replaced with F1, causing the sole partition of object A3 to be F′1. After exiting the function,

the analysis returns to the previously used environment. This is shown in full in Figure A.10.

To proceed beyond program point 4, the analysis calls the function pointed to by init. Unlike

the previous function call that could be resolved to @1, this call can only be resolved to a symbol

V1. Because the effect of this function is unknown, the analysis will use desynchronized separation

of capture those effects. To introduce a desynchronized separation, it is necessary to first frame

the function to separate the part of the heap that is assumed to be unmodified by the function

call from the the part that may be modified by the function call. To do this, the analyzer uses a

simple heuristic analysis. The heuristic analysis determines that anything that is reachable from the

arguments of the called function may be modified by the function (more generally, it also includes

anything reachable from the global object). This means that the only object that are not in the frame

are A2 and A3, which are the arguments to the function. Desynchronized separation is introduced

with these objects to get the analysis state at program point 5, which is shown in Figure A.11

As a result of the desynchronization, the analysis is able to compute that the result of the

function is A4 even though A4 itself is desynchronized. This is because result is not desynchronized

and thus the value of result can be accessed. Since this value is a pointer, it is valid to return

2



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

private({a1})
∧ {'init'} ] F′

1 = F1

∧ {v1} ⊆ V1

∧ F1 = Fi ] Fo
∧ F′

o = Fo ∩ F′
1init {v1} result {a3}

F′
o : t1 V1

exc {a4}
{'init'} : – {''}


0

Figure A.9 – Analysis state at point 2, fixpoint shown in Figure A.2
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4



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2}
F2 : t2 V2

private({a1})
∧ {'init'} ] F′

1 = F1

∧ {v1} ⊆ V1

init {v1} result {a3}
F′
1 : t1 V1

exc {a4}
{'init'} : – {''}


0

Figure A.10 – Analysis state at point 4 shown in Figure A.2

that pointer without knowledge of what it points to.

Because it is not desynchronized the analysis, the analysis proves (assuming a resynchronization

is possible because the framing was sufficiently precise, which in this case it is) that object a1 is

unchanged by calling the constructor. This means that the class itself is not mutated by the call.

Additionally, the analysis proves that the appropriate copy happened into the result object a3 prior

to running the init function. This represents the desired behavior of a class.

5



copy @1 cfgc {a1}
F′
1 : t1 V1

{'init'} : t1 {v1}

args {a2} private({a1})
∧ {'init'} ] F′

1 = F1

∧ {v1} ⊆ V1

init {v1} result {a3} exc {a4}
{'init'} : – {''}

t
{a2}

F2 : t2 V2

{a3}
F′
1 : t1 V1

|

call {v1}({a3}, {a2})


0

Figure A.11 – Analysis state at point 5 shown in Figure A.2
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Detailed Proofs

B.1 HOO Materialization Soundness

Theorem 8 (Soundness of Materialization). Restatement of Theorem 1.

If D1 ⇒ D2, for all η, σ1, σ2, (η, σ1, σ2) ∈ γ(D1) implies that (η, σ1, σ2) ∈ γ(D2).

Proof. By induction on a derivation of D1 ⇒ D2. By inversion there are two cases:

Case Mat-Disj Assume an arbitrary η, σ1, and σ2 and that (η, σ1, σ2) ∈ γ(D1 ∨ D2).

Show (η, σ1, σ2) ∈ γ(D1 ∨D′2). Unfolding the definition of γ gives either that (η, σ1, σ2) ∈ γ(D1) or

(η, σ1, σ2) ∈ γ(D2).

Sub-Case (η, σ1, σ2) ∈ γ(D1) Unfolding the definition of γ gives the goal (η, σ1, σ2) ∈

γ(D1) ∨ (η, σ1, σ2) ∈ γ(D′2). The first disjunct matches the case, completing this sub-case.

Sub-Case (η, σ1, σ2) ∈ γ(D2) Unfolding the definition of γ gives the goal (η, σ1, σ2) ∈

γ(D1) ∨ (η, σ1, σ2) ∈ γ(D′2). By the I.H. (η, σ1, σ2) ∈ γ(D2) implies that (η, σ1, σ2) ∈ γ(D′2), which

matches the second disjunct, completing this sub-case and this case.

Case Mat-Heap Assume an arbitrary η, σ1, and σ2 and that (η, σ1, σ2) ∈ γ([H2]H1
|P ).

From this there exists a tracker map µ such that (η, µ, σ1) ∈ γ(H1) and (η, µ, σ2) ∈ γ(H2) and

η ∈ γ(P ).

Show that (η, σ1, σ2) ∈ γ
(∨{

[Hi]H1
|Pi
∣∣ Hi |Pi ∈ H̄

})
. Or by unfolding γ, show that there

exists an (Hi |Pi) ∈ H̄ such that (η, µ, σ1) ∈ γ(H1) and (η, µ, σ2) ∈ γ(Hi) and η ∈ γ(Pi).

Because (η, µ, σ1) ∈ γ(H1) does not depend on any of the existentially quantified variables, it
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can be lifted outside the existential and follows immediately from the hypothesis. The remaining

existential follows trivially from Lemma 1, completing this case and the proof.

Lemma 1 (Soundness of Heap Materialization). If H |P ⇒ H̄, for all η, µ, σ, (η, µ, σ) ∈

γ(H), η ∈ γ(P ), there exists a (H ′ |P ′) ∈ H̄ such that there exists a η′ such that (η, µ, σ) ∈ γ(H ′)

and η′ ∈ γ(P ′) and η ⊆ η′.

Proof. By induction on the derivation of H |P ⇒ H̄. By inversion there are three cases:

Case Mat-Heap-Frame This case is a standard separation logic frame rule. It relies

upon the fact that any new symbols introduced are fresh and thus do not interfere with existing

symbols. See (author?) [Rey02].

Case Mat-Addr The assumptions for the Mat-Addr rule take indicate that γ(P ) is

being partitioned. By Lemma 3, γ(P ′) and γ(P ′′) are those partitions that correspond respectively

to the two result cases: γ({a} · 〈O〉 ∗ A′ · 〈O〉 |P ′) and γ(A · 〈O〉 |P ′′). Because {a} ]A′ = A from

partitioning, the first case trivially holds. Similarly, the second case is implied directly by the

hypothesis.

Case Mat-Obj By Lemma 2 there exists at least one element in Ō such that

Lemma 2 (Soundness of Object Materialization). If O |P ⇒ Ō, for all η, µ, o, d, (η, µ, o, d) ∈

γ(O), η ∈ γ(P ), there exists a (O′ |P ′) ∈ Ō such that there exists a η′ such that (η, µ, o, d) ∈ γ(O′)

and η′ ∈ γ(P ′) and η ⊆ η′.

Proof. By induction on the derivation of O |P ⇒ Ō. By inversion there are three cases:

Case Mat-Obj-Frame Like the Mat-Heap-Frame rules, this follows from standard

separation logic [Rey02]. This is, in effect, a nested heap within an object, where the heap maps

attributes to values (that include attributes).

Case Mat-Attr Like the Mat-Addr case above, this follows directly from Lemma 3.

The partitioning establishes the two result cases.

Case Mat-Value In γ({f} : t 7→ V |P ), there can only be one and only one element of V

that is mapped to by f. The introduction of a fresh v specifies which element of V that is mapped to.
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Lemma 3 (Partitioning). For any pure domain instance P , and for any symbols f and F, there

exists an F′ such that

P ⇒
(
P ∧ {f} ] F′ = F

)
∨ (P ∧ {f} ∩ F = ∅)

where F′ is fresh.

Proof. By rules of distribution get that

P ⇒ P
(
{f} ] F′ = F ∨ {f} ∩ F = ∅

)
Prove ({f} ] F′ = F ∨ {f} ∩ F = ∅) is a tautology. Do a case split on {f} ∩ F = ∅:

Case {f} ∩ F = ∅ Reflexivity with second disjunct.

Case {f} ∩ F 6= ∅ Trivially, {f} ⊆ F. Choose F′ = F \ {f}. From this get {f} ∪ F′ = F and

F′ ∩ {f} = ∅. Therefore {f} ] F′ = F, which is reflexive with the first disjunct.

B.2 HOO Transfer Function Soundness

Theorem 9 (Soundness of Transfer Functions). Restatement of Theorem 2.

Transfer functions are sound because:

∀k, σ0, σ, σ
′, D,D′. 〈σ〉 k

〈
σ′
〉
and [D] k

[
D′
]
and ∃η. (η, σ0, σ) ∈ γ(D)

implies ∃η′. (η′, σ0, σ
′) ∈ γ(D′)

Proof. By induction on the derivation of 〈σ〉 k 〈σ′〉 and by induction on the derivation of [D] k [D′].

Consider a case for each k:

Case k = x = y[z] By inversion consider follow rules for concrete evaluation and abstract

evaluation:

Sub-Case C-Ld-P and T-Read-P

From the hypothesis we have

(η, σ) ∈ γ(x 7→ Vx ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉 |P )
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so by the rules of ∗ , this is equivalent to:

(η, σx) ∈ γ(x 7→ Vx)

∧ (η, σr) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉)

∧ η ∈ γ(P )

∧ σ = σx ] σr

Applying a similar option to the goal of:

(η′, σ′) ∈ γ(x 7→ {v} ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉 |P )

gives a new goal of (choosing η′ = η):

(η, σ′x) ∈ γ(x 7→ {v})

∧ (η, σ′r) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉)

∧ η ∈ γ(P )

∧ σ′ = σ′x ] σ′r

From which the η ∈ γ(P ) can be immediately dispatched. By Lemma 4, we know that σr = σ′r and

therefore, we have the following hypothesis:

(η, σx) ∈ γ(x 7→ Vx)

∧ (η, σ′r) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉)

∧ η ∈ γ(P )

∧ σ = σx ] σ′r

which allows the (η, σ′r) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈{f} : t 7→ {v};O〉) portion of the goal to be

dispatched, which leaves the following two parts of the goal to prove:

(η, σ′x) ∈ γ(x 7→ {v})

∧ σ′ = σ′x ] σ′r
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Again, by Lemma 4, we know that σ′x = σx where x’s value has been replaced by v. Since this is the

only portion of σx, σ′x is therefore in the concretization of γ(x 7→ {v}) and similarly σ′ = σ′x ] σ′r,

completing this sub-case.

Sub-Case C-Ld-N and T-Read-N From the hypothesis, we have:

(η, σ) ∈ γ(x 7→ Vx ∗ y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈O〉 |P )

which can be rewritten as:

(η, σx) ∈ γ(x 7→ Vx)

∧ (η, σr) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈O〉)

∧ η ∈ γ(P )

∧ σ = σx ] σr

The same rewrite can be performed on the goal giving:

(η′, σ′x) ∈ γ(x 7→ {undef})

∧ (η′, σ′r) ∈ γ(y 7→ {a} ∗ z 7→ {f} ∗ {a} · 〈O〉)

∧ η′ ∈ γ(P )

∧ σ′ = σ′x ] σ′r

Similar to above, if we can prove the first conjunct, the remaining follow trivially. The first conjunct

is proven simply by the concrete evaluation, which dictates the value corresponding to x is undef.

Other Sub-Cases These trivially do not apply. The abstract evaluation that assumes the

attribute is present cannot be matched to the concrete evaluation that assumes the attribute is not

present. Similar for other cases.

Case k = x[y] = z By inversion, the rule C-St applies for concrete and T-Write applies

for the abstract. Most of this case proceeds as the above two subcases. The portion of the abstract

heap x 7→ {a} ∗ y 7→ {f} ∗ z 7→ {v} is trivially maintained in the concrete. The portion that

represents the object is replaced in the concrete (via Lemma 4) with a new object that has the
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attribute/value replaced with p and v respectively. In the abstract, the same operation applies. Via

Lemma 5, the object is replaced with the same object with the abstract values that correspond to p

and v.

Other Cases Other cases are either similar to the above two cases or are standard control

flow operations and follow abstract interpretation for imperative languages.

Lemma 4 (Lookup Array). For any a, b, r, and r′, r′ = (a, b) :: r implies that Lookup (a, r′) = b

and for any a′ and b′, if a 6= a′, Lookup (a′, r′) = b′ if and only if Lookup (a′, r) = b′.

Proof. This is a simple instantiation of McCarthy’s array axioms [McC62].

Lemma 5 (Object Overwrite). For all η, o, d, O, O′, P , and f, assuming (η, o, d) ∈ γ(O),

(η′, o′, d′) ∈ γ(O′), and O \ {f} |P ⇒ O′ |P ′, implies that η{f} 6∈ d′ and for all p ∈ d, v, d(p) = v and

p 6= f implies d′(p) = v.

Proof. By induction over the derivation of O \ {f} |P ⇒ O′ |P ′.

B.3 HOO Join Soundness

Theorem 10 (Join Soundness). Restatement of Theorem 3.

Join is sound under matchings M1, M2, PJ because

if P ` [H1]H0
|P1 t [H2]H0

|P2 ; [H3]H0
|P3 then

∀σ0, σ, η1, η2. (η1, σ0, σ) ∈ γ([H1]H0
|P1) ∨ (η2, σ0, σ) ∈ γ([H2]H0

|P2)

∧ ∀(V̄1, V̄2,V3) ∈ P.
⋃{

η1(V1)
∣∣ V1 ∈ V̄1

}
=
⋃{

η2(V2)
∣∣ V2 ∈ V̄2

}
⇒

∃η3. (η3, σ0, σ) ∈ γ([H3]H0
|P3)

∧ ∀(V̄1, V̄2,V3) ∈ P.
⋃{

η1(V1)
∣∣ V1 ∈ V̄1

}
= η3(V3)

where P is a uniform, combined version of M1, M2, and PJ and is defined as

P
def
=

 (V̄1, V̄2,V3)

∣∣∣∣∣∣∣
V3 ∈ Codom (M1) ∪ Codom (M2)

∧ V̄1 = {V1 |M1(V1) = V3 } ∧ V̄2 = {V2 |M1(V2) = V3 }

 ∪ PJ
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Proof. The purpose of P is to unify the three different matchings M1, M2, and PJ . The purpose of

these three mappings is to enable algorithm inference of the mappings. Once they are inferred, they

say the same thing. This is what P represents. Each element (V̄1, V̄2,V3) maps the union of the

symbols in V̄1, which is a set of symbols, and the union of the symbols in V̄2, which is also a set of

symbols, to a symbol in the join result V3. This is unification is responsible for the complexity of

the theorem. In short the theorem states that if there is a σ in the concretization of H1 |P1 or in

H2 |P2, then σ is in the join result H3 |P3.

By induction on the derivation of join, and by inversion there are two join rules from Table 4.1

that can be applied to partial objects.

Case Empty Objects This case is trivial. The two input objects are empty and the result

object is empty. The concretizations are identical.

Case Matched Attribute Sets The unified matching P dictates which partitions shall

be merged. By the induction hypothesis, the concretization of the merged partitions from H1 |P1

and H2 |P2 are identical. In the join result, the resulting single partition V3, constrained by P3 is

selected to have an identical concretization to the merged partitions. Thus the joining partitions is

sound.

The join of objects is similar. Because the matching pushes merged objects into the set

abstractions P1, P2, and P3, any matching produces a valid join.

B.4 HOO Inclusion Soundness

Theorem 11 (Inclusion Soundness). Restatement of Theorem 4.

Inclusion checking is sound under matchings M , PI because assuming that P is defined as follows:

P
def
=
{

(V̄a,Vb)
∣∣ Vb ∈ Codom (M) ∧ V̄a = {Va |M(Va) = Vb }

}
∪ PI
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If M,PI ` Ha, Pa v Hb, Pb then

∀ηa, σ0, σ. (ηa, σ0, σ) ∈ γ([Ha]H0
|Pa)⇒

∃ηb. (ηb, σ0, σ) ∈ γ([Hb]H0
|Pb) ∧ ∀(V̄a,Vb) ∈ P.

⋃{
ηa(Va)

∣∣ Va ∈ V̄a

}
= ηb(Vb)

Proof. This follows the same pattern as join soundness above. Once again P serves as a unification

between the object mapping M and the partition mapping PI . The inclusion version of the above

rules are applied in the same way.

B.5 Desynchronization Introduction Soundness

Theorem 12 (Soundness of Desynchronization Introduction). Restatement of Theorem 5.

The desynchronization introduction transfer function is sound because

∀k, σ, σ′, D,D′. 〈σ〉 k
〈
σ′
〉
and [D] k

[
D′
]
and ∃η. (η, σ) ∈ γ(D)

implies ∃η′. (η′, σ′) ∈ γ(D′)

Proof. The only k of concern for desynchronization is the function call. By inversion the Desync-

Intro rule can apply. Here this case is considered.

The Desync-Intro rule evaluates reach(), which effectively splits the abstract heap, but

correspondingly the concrete heap into two parts σ = σu ] σr. The σu part is trivially in the

concretization of the resulting heap. The remaining σ′r of the resulting heap is derived from σr by

the concretization itself, which has an embedded concrete transition of 〈σr〉 k 〈σ′r〉.

B.6 QUIC Graphs Inference Soundness

Theorem 13 (Inference Soundness). Restatement of Theorem 6.

Inference is sound because the following two conditions hold:

(1) if (G,B) ` ⋂̇ T̄ i ⊆̇ ⋃̇ T̄ u∣∣∣
Be

, then γ((G,B)) ⊆ γ
(⋂̇

T̄ i ⊆̇ ⋃̇ T̄ u∣∣∣
Be

)
.

(2) if (G,B) ` f1 = f2, then for all (η, ηB) ∈ γ((G,B)), it is that ηB(f1) = ηB(f2).
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Proof. For clarity, this proof is presented using the logical correspondence. From the logical

perspective, this theorem shows that starting with a G ∧B, applying a rule yields a G′ ∧B′ that

should be logically equivalent.

Case Emp For any T , ∅ ⊆ T , so this is trivially true.

Case Self-Loop For any T , T ⊆ T , so this is trivially true.

Case Self-Prop If T ⊆ { ν ∈ T | Bb[ν] }, for all ν ∈ T , Bb[ν] holds. Also, If T ⊆{
ν ∈ ⋃ T̄ ∣∣ Ba[ν]

}
, then for all ν ∈ T , Ba[ν]. Consequently, for all ν ∈ T , Ba[ν] and Bb[ν] holds.

Case Add-Left If an element ν that is in each of T̄ i is also in one of T̄ u, considering

fewer elements by adding an additional T to T̄ i does not restrict the contents of any T̄ u.

Case Add-Right If an element ν that is in each of T̄ i is also in one of T̄ u, it is also in

one of T̄ u, T .

Case Union-Prop If an element ν ∈ T i and meeting B0[ν] is therefore in at least one of

T i1, . . . , T
i
n where each ν1 ∈ T1 meets B1[ν1], . . ., νn ∈ Tn meets Bn[νn], that element ν is also in the

disjunction of B0[ν] ∧ (B1[ν] ∨ . . . ∨Bn[ν]).

Case Inter-Prop Trivial. Like Union-Prop.

Case Union-Trans This rule states the following:∀ν. ∧
T1∈T̄ i

a

ν ∈ T1 → ν ∈ T ∨
∨

T2∈T̄u
a

ν ∈ T2


∧

∀ν.ν ∈ T ∧ ∧
T1∈T̄ i

b

ν ∈ T1 →
∨

T2∈T̄u
b

ν ∈ T2


implies that

∀ν.
∧

T1∈T̄ i
a

ν ∈ T1 ∧
∧

T2∈T̄ i
b

ν ∈ T2 →
∨

T3∈T̄u
a

ν ∈ T3 ∨
∨

T4∈T̄u
b

ν ∈ T4

Fix ν and introduce
∧
T1∈T̄ i

a
ν ∈ T1 and

∧
T2∈T̄ i

b
ν ∈ T2. By the first conjunct in the hypothesis,

ν ∈ T ∨∨T2∈T̄u
a
ν ∈ T2.

Case ν ∈ T : from second conjunct and introduced terms, get that ν ∈ ∨T2∈T̄u
b
ν ∈ T2, which

matches the second disjunct.
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Case ν ∈ ∨T2∈T̄u
a
ν ∈ T2: matches first disjunct.

Base constraints follow the above.

Case Inter-Trans Like Union-Trans.

Case Base-Str Because ν does not occur in B, adding B to each comprehension just

repeats the external constraint that already exists.

Case Eq-Base For any f1 = f2 this trivially implies that {f1} = {f2}.

Case Eq-Set Same as Eq-Base.

Case Double-Edge Trivial: T1 ⊆ { ν ∈ T2 | Ba[ν] } ∧ T1 ⊆ { ν | T2|Bb[ν] } implies that

T1 ⊆ { ν ∈ T2 | Ba[ν] ∧Bb[ν] }

B.7 QUIC Graphs Complexity

Theorem 14 (Inference Complexity). Restatement of Theorem 7.

There are O(2n) possible hyperedges in a QUIC graph with n vertices.

Proof. Each edge starts from a subset of n vertices and each edge ends at a subset of n vertices.

There are therefore 2n sources for each edge and 2n destinations for each edge. Therefore, there are

22n possible edges in a QUIC graph with n vertices.



Appendix C

Inclusion Algorithm

Inclusion checking is similar to join in its specification and algorithm. Figure C.1 gives the

rules for checking inclusion of abstract states. The Le-Disj rule allows multiple disjuncts to be

included in a single disjunct. Whereas, the Le-Disj-Dir rule directly matches disjuncts, assuming

that disjuncts can be freely rearranged. The main rule is Le-Heap which checks inclusion of two

heaps by matching roots and setting an initial mapping based on those roots, which can guide the

rest of the matching process.

The actual matching of heap elements takes place in two rules: Le-Emp and Le-Obj, which

match empty heaps and partial heaps respectively. Once a portion of a heap is matched, the

remaining parts are matched extending the matchings. The Le-Obj rule is responsible for delegating

to the table of object matching rules like join uses. These object matching rules produce new

matchings as a result and those resulting matchings are used for the remainder of the heap.

The inclusion checking templates work like their join-templates counterparts. The first template

matches a single partition with a single partition. The second template matches some number

of partitions in the first object with a single partition in the second object. When this occurs,

those partitions are not considered in future template applications. The application of templates is

repeated until no partitions remain in the matched objects.

The algorithm for inclusion checking works the same way as the join algorithm. It uses

allocation site information to determine possible valid matchings. These are used to seed the initial

matching:
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D1 v D2

Le-Disj
D1 v D3 D2 v D3

D1 ∨D2 v D3

Le-Disj-Dir
D1 v D3 D2 v D4

D1 ∨D2 v D3 ∨D4

Le-Heap
MI , {} ` H1 |P1 v H2 |P2 MI =

⋃
A1∈roots(H1)∩roots(H2)

[A1 7→ A1]

[H1]H0
|P1 v [H2]H0

|P2

M,PI ` H1 |P1 v H2 |P2

Le-Emp
M,PI ` P1 v P2

M,PI ` Emp |P1 v Emp |P2

Le-Obj
M ′ = [A1 7→ A2] ∪M M ′, PI ` O1, P1 v O2, P2 ; M ′′, P ′I M ′′, P ′I ` H1 |P1 v H2 |P2

M1, PI ` A1 · 〈O1〉 ∗ H1 |P1 v A2 · 〈O2〉 ∗ H2 |P2

Figure C.1 – Rules for checking inclusion of two heaps. The Le-Disj rule permits checking inclusion
of disjunction. The Le-Obj rule applies the templates given in Table C.1 to check inclusion of two
objects.
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Table C.1 – Inclusion checking templates match objects in two abstract heaps. Matchings M , PI
are generated on the fly and used in the set domain join after the heaps are compared.

Prerequisites H1, P1 v H2, P2 ; Result

M(A1) = A2
A1

F1 V′
1

v A2

F2 V′
2

;
M(V′1) = V′2,
({F1},F2) ∈ PI

M1(A1) = A3

M2(A2) = A3

remainder of
object matches

A1
.
.
.

.

.

.

Fi
1 Vi

1.
.
.

.

.

.

Fm
1 Vm

1.
.
.

.

.

.

v
A2

.

.

.
.
.
.

F2 V2
.
.
.

.

.

.

;

({Fi1, · · · ,Fm1 },F2) ∈ PI
M(Vi

1) = V2,
.
.
.

M(Vm
1 ) = V2,

M =
⋃

A∈Dom(H1)

[A 7→ symbol (alloc-id (A))]

Under these assumptions, a matching is produced. If it passes the inclusion check for the set

domain once there is no heap left to match, the inclusion check succeeds.



Appendix D

Detailed Tests for Single-State HOO and TAJS

This section shows the code evaluated in each test and the pre-condition used to initialize the

state. Due to differences between TAJS and HOO, the code given here is simply the main loop,

rather than the whole program. Each system requires special initialization. Additionally, the HOO

implementation only accepts abstract syntax as input, so the AST was translated to abstract syntax

by hand for these tests.

The properties that follow each test are checked against the inferred post-condition. These

results are extracted through a combination of manual inspection of post-conditions and through

test code. This extraction/test code is not shown. A ! is shown to indicate a property that can

be proven given the post-condition and a % is shown to indicate a property that cannot be proven

given the post-condition.

There is an implicit assumption that hasOwnProperty is actually looked up in the global

space and is correctly resolved. In absence of surrounding code, it is impossible to know that this

functionality has not been shadowed. The assumption that this has not occurred is implicit in all of

the preconditions.
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Listing D.1 – Static
[EMP]
s = {
x:"a";
y:"b";

};
r = {};
for(var p in s) {
if(s.hasOwnProperty(p))
r[p] = s[p];

}

Property TAJS HOO
r 6= s ! !

r["x"] = s["x"] ! !

r["y"] = s["y"] ! !

p 6= 'x' ∧ p 6= 'y'→ r[p] = s[p] = undefined ! !

Listing D.2 – Copy
[s 7→ {a1} ∗ {a1} · 〈F 7→ A2〉]
r = {};
for(var p in s) {
if(s.hasOwnProperty(p))
r[p] = s[p];

}

Property TAJS HOO
r 6= s ! !

p ∈ Fr → p ∈ Fs % !

p ∈ Fs→ p ∈ Fr % !

p ∈ Fr ∩ Fs→ r[p] ∈ A2 % !
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Listing D.3 – Filter
[r 7→ {a1} ∗ {a1} · 〈F1 7→ V1〉 ∗ s 7→ {a2} ∗ {a2} · 〈F2 7→ V2〉 ∗ c 7→ {a3} ∗ {a3} · 〈F3 7→ V3〉]
for(var p in s) {
if(s.hasOwnProperty(p)) {
if(c.hasOwnProperty(p))

r[p] = "conflict";
else

r[p] = s[p];
}

}

Property TAJS HOO
p ∈ Fs→ p ∈ Fr % !

p ∈ Fr → p ∈ Fs ∪ F1 % !

p ∈ Fr ∧ p 6∈ Fs→ p ∈ F1 % !

p ∈ Fr ∧ p ∈ Fs ∧ p ∈ Fc→ r[p] = 'conflict' % !

p ∈ Fr ∧ p ∈ Fs ∧ p 6∈ Fc→ r[p] ∈ V2 % !

p ∈ Fr ∧ p 6∈ Fs→ r[p] ∈ V1 % !

Listing D.4 – Compose

r 7→ {a1} ∗ {a1} · 〈F1 7→ V1〉
∗ a 7→ {a2} ∗ {a2} · 〈F2 7→ V2〉
∗ b 7→ {a3} ∗ {a3} · 〈F3 7→ V3〉
∗ c 7→ {v4}
∗ s 7→ {a4} ∗ {a4} · 〈F4 7→ v4〉
∧ F4 = F2 ∪ F3


for(p in s) {

if(s.hasOwnProperty(p)) {
if(a.hasOwnProperty(p) && !b.hasOwnProperty(p))

r[p] = a[p];
else if(b.hasOwnProperty(p) && !a.hasOwnProperty(p))

r[p] = b[p];
else

r[p] = c;
}

}

Property TAJS HOO
p ∈ Fr → p ∈ Fa ∪ Fb ∪ F1 % !

p ∈ Fa→ p ∈ Fr % !

p ∈ Fb→ p ∈ Fr % !

p ∈ Fa ∧ p ∈ Fb→ r[p] = v4 % !

p ∈ Fa ∧ p 6∈ Fb→ r[p] ∈ V2 % !

p 6∈ Fa ∧ p ∈ Fb→ r[p] ∈ V3 % !

p ∈ Fr ∧ p 6∈ Fa ∧ p 6∈ Fb→ r[p] ∈ V1 % !
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Listing D.5 – Merge
[s 7→ {a2} ∗ {a2} · 〈F2 7→ V2〉 ∗ t 7→ {a3} ∗ {a3} · 〈F3 7→ V3〉]
var r = {};
for(var p in a) {
if(a.hasOwnProperty(p))
r[p] = a[p];

}
for(p in b) {
if(b.hasOwnProperty(p))

r[p] = b[p];
}

Property TAJS HOO
r 6= a ! !

r 6= b ! !

p ∈ Fr → p ∈ Fa ∪ Fb % !

p ∈ Fa→ p ∈ Fr % !

p ∈ Fb→ p ∈ Fr % !

p ∈ Fb→ r[p] ∈ V3 % !

p ∈ Fa ∧ p /∈ Fb→ r[p] ∈ V3 % !



Appendix E

Detailed Tests for Two-State HOO with Attribute/Value Trackers and

Desynchronization

This chapter contains the open-object-focused JavaScript programs that were analyzed as part

of the evaluation in Chapter 6. Specifically, it focuses on four categories of benchmarks: classes,

memoization, mixins, and traits. Each of the analyzed examples are given in two parts. The first

part is the code that was analyzing with possibly a small amount of context. The second part is a

precondition for the analysis.

The preconditions that are given are specified in a special language that documents the

structure of the heap at the beginning of the function. There are four main parameters in each

precondition: global, this, closure, and arguments, which represent the global object, the

object pointed to by the this keyword, the closure object, and the object containing arguments

respectively. Inside these objects, there specifications for objects. Single quotes specify constant

attribute names. Attribute names without single quotes specify sets of unknown cardinality. The--

specifier gives a handle to an object that cannot be accessed. This is used for specifying parts of the

heap that the function does not make use of.

Note that the preconditions are written in a form that mimics the internal structure of the

program after preprocessing. Consequently, variables that are captured by the closure require an

extra pointer dereference to access. This means that there can be many empty string attribute

names, which represent simple pointers.

There is a single classes example that is synthetic. The reason for using a synthetic benchmark
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here as opposed to one or more of the myriad of class systems available for JavaScript is the number

of language features used by real class systems exceeds the capabilities of the JSAna analyzer

today. Instead a synthetic class example is used that incorporates many of the features of the real

class systems used by JavaScript. Note that it does not rely upon prototype-based inheritance

to implement the class system like many libraries do. The primary reason for this is that adding

prototype support for this purpose is simple and not overly problematic. Object copies (which are

still often used in the prototype-based class systems) are quite problematic, however, so the example

folds in that functionality. This example is shown in Listing E.1.

There are both synthetic and non-synthetic memoization examples. The synthetic example

(Listing E.2) is similar in structure to the real code available in the Google Closure library (version

5fbc334ce7f86018da9fb5e673d2518143aa999e) shown in Listing E.4. The primary difference is the

number of options that are made available in the code. However, to analyze the code offered in the

Google Closure library, some small changes had to be made from the original shown in Listing E.3.

The biggest changes are due to missing features in the analysis. The standard technique of using

falsiness and the logical-or operator is unsupported right now. As a result, one option is hard

coded. Additionally, the ternary operator is unsupported, so it is replaced with a normal if-then-else

structure. Finally, the return statement is omitted and the result is accessed through the result

variable.

The mixins example is exactly the extend function from the Prototype.js library version 1.7.2

(Listing E.5). This function uses very few features of the language and does not need additional

simplifications.

The final benchmark is an implementation of the composition function for an implementation

of traits. There are two versions of this considered: a synthetic version and an adapted version of the

compose function from Traits.js. The functions are quite similar in structure, but once again, there

are many more options available in the Traits.js code. Listing E.6 shows the synthetic version of

traits made by extending the mixins functionality to the purpose of constructing traits. Listing E.7

shows the version of traits composition that is provided by Traits.js from the date October 24,
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Listing E.1 – Class (synthetic)
var Class = function(cfg) {
// outer copy
var copy = function(res,src,exc) {
for(var p in src) {
if(p in exc) {
} else {

res[p] = src[p];
}

}
};
// save the configuration
var attrs = {};
copy(attrs,cfg,{});
// save off init
var init = cfg.init;
// construct the result
var result = function()
//<precondition>
@pre [
global = {};
this = global;
closure = {

'init': {'': [@init,{}]},
'attrs': {'': {Fattrs: --}}

};
arguments = {Fo: --};

]
//</precondition>

{
// inner copy
var copy = function(res,src,exc) {

for(var p in src) {
if(p in exc) {
} else {

res[p] = src[p];
}

}
};
var result = {}
copy(result,attrs,{init:""});
init(result, arguments);
var rv = result;

};
}
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Listing E.2 – Memo (synthetic)
var memo = function (f)
{

// memoization table
var memo = {};
var memoized = function()

//<precondition>
@pre [

global = {
'get_key': [@gk,{}]

};
this = global;
closure = {

'memo': {'': {Fm: --}},
'f': {'': [@f,{Ff: --}]}

};
arguments = {...};

]
//</precondition>

{
var result;
// get the unique identifier
var key = get_key(arguments);

if(key in memo) {
// result is in memoization table
result = memo[key];

} else {
// result is not in memoization table
result = f(arguments);
memo[key] = result;

}
}

}
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Listing E.3 – Google Closure memoize (original)
goog.memoize = function(f, opt_serializer) {

var serializer = opt_serializer || goog.memoize.simpleSerializer;

return function() {
if (goog.memoize.ENABLE_MEMOIZE) {

// In the strict mode, when this function is called as a global function,
// the value of 'this' is undefined instead of a global object. See:
// https://developer.mozilla.org/en/JavaScript/Strict_mode
var thisOrGlobal = this || goog.global;
// Maps the serialized list of args to the corresponding return value.
var cache = thisOrGlobal[goog.memoize.CACHE_PROPERTY_] ||

(thisOrGlobal[goog.memoize.CACHE_PROPERTY_] = {});
var key = serializer(goog.getUid(f), arguments);
return cache.hasOwnProperty(key) ? cache[key] :

(cache[key] = f.apply(this, arguments));
} else {

return f.apply(this, arguments);
}

};
};
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Listing E.4 – Google Closure memoize (modified)
(function () {

var serializer;
var f;

return function()
//<precondition>
@pre [

global = {
'goog': {

'memoize': {
'ENABLE_MEMOIZE': {Fe: --},
'CACHE_PROPERTY_': 'cache'

},
'getUid': [@uid,{}]

}
};
this = { };
closure = {

'f': {'': [@f,{}]},
'serializer': {'': [@serializer,{}]}

};
arguments = {Fo: --};

]
//</precondition>
{

var result;
if ('enable' in goog.memoize.ENABLE_MEMOIZE) {

var thisOrGlobal = this;
var cache;
if(goog.memoize.CACHE_PROPERTY_ in thisOrGlobal) {
cache = thisOrGlobal[goog.memoize.CACHE_PROPERTY_];

} else {
cache = {};
thisOrGlobal[goog.memoize.CACHE_PROPERTY_] = cache;

}
var key = serializer(goog.getUid(f), arguments);
if(key in cache) {
result = cache[key];

} else {
result = f(this, arguments);
cache[key] = result;

}
} else {

result = f(this, arguments);
}

};
});
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Listing E.5 – Prototype.js extend (mixins)
var extend = function (destination,source)
//<precondition>
@pre [

global = {};
this = global;
closure = {};
arguments = [
/* destination */ {Fo: --},
/* source */ {Fs: --}

];
]
//</precondition>

{
// iterate over attributes doing copy
for(var property in source) {

destination[property] = source[property];
}

}
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2011. However, this version differs in a number of ways from the adapted version in Listing E.8.

The adaptations once again come from the lack of support for certain features. For example, array

support is limited, so this benchmark unrolls the outer loop to check a binary compose. Functions

are inlined to work around a bug that sometimes affects calls to known functions. Additionally,

some branches are eliminated that depend on functionality (such as booleans) that are not directly

supported by the analysis at this time. Further, the conflict value generator is replaced with a

conflict value 'conflict' because the conflict value generator relies upon unsupported object and string

operations.
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Listing E.6 – Traits compose (synthetic)
var compose = function (a,b)

//<precondition>
@pre [

global = {};
this = global;
closure = {};
arguments = [
/* a */ {Fo1: --},
/* b */ {Fo2: --}
];

]
//</precondition>

{
// create result object
var r = {};
// create conflict value
var c = "conflict";
// iterate through a placing
// conflicts and a values into r
for(p in a) {

if(p in b) {
r[p] = c;

} else {
r[p] = a[p];

}
}
// iterate through b placing
// values into r
for(p in b) {

if(p in a) {}
else {
r[p] = b[p];

}
}

}
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Listing E.7 – Traits.js compose (original)
function compose(var_args) {

var traits = slice(arguments, 0);
var newTrait = {};

forEach(traits, function (trait) {
forEach(getOwnPropertyNames(trait), function (name) {
var pd = trait[name];
if (hasOwnProperty(newTrait, name) &&

!newTrait[name].required) {

// a non-required property with the same name was previously
// defined this is not a conflict if pd represents a
// 'required' property itself:
if (pd.required) {
return; // skip this property, the required property is
// now present

}

if (!isSameDesc(newTrait[name], pd)) {
// a distinct, non-required property with the same name
// was previously defined by another trait => mark as
// conflicting property
newTrait[name] = makeConflictingPropDesc(name);

} // else,
// properties are not in conflict if they refer to the same value

} else {
newTrait[name] = pd;

}
});

});

return freeze(newTrait);
}
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Listing E.8 – Traits.js compose (modified)
var compose = function ()

//<precondition>
@pre [

global = {};
this = global;
closure = {};
arguments = [

{Fo1: --},
{Fo2: --}

];
]
//</precondition>

{
var traits = arguments;
var newTrait = {};
var trait;

trait = traits['0'];
for(var name in trait) {
var pd = trait[name];
if (name in newTrait) {
newTrait[name] = "conflict";

} else {
newTrait[name] = pd;

}
}
trait = traits['1'];
for(var name in trait) {
var pd = trait[name];
if (name in newTrait) {
newTrait[name] = "conflict";

} else {
newTrait[name] = pd;

}
}

}
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Detailed Tests for QUIC Graphs

This chapter contains the raw input files for use with the QUIC Graphs demonstration program.

These are the result of hand translating the corresponding tests from the Python test suite from

Python version 2.7.3. The language used here is intended to look like JavaScript. The key difference

is that curly braces denote sets instead of objects and the language is strongly typed.

The operators include union | and common math operators for addition subtraction and

comparison. The assertion language overloads the comparison operators for both numbers and set

operations.

Listing F.1 – copy
var s: set;
var x: num;
var r: set;

r = {};

for(x in s) {
r = r | {x};

}

assert(r <= s);
assert(s <= r);
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Listing F.2 – filter
var s: set;
var r: set;
var x: num;
var t: num;

r = {};

for(x in s) {
if(x > 10) {

r = r | {x};
}

}
assert(r <= s);
t = choose(r);
assert(t > 10);

Listing F.3 – generic_max
var max: num;
var x: num;
var d: set;

max = 0;

for(x in d) {
assume(x < 100);
if(x > max) {

max = x;
}

}

d = d - {max};

for(x in d) {
assert(x <= max);
assert(x < max);

}
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Listing F.4 – merge
var x: num;
var y: num;
var l: set;
var u: set;
var r: set;
var ref: set;

r = {x};
for(y in l) {

r = r | {y};
}

for(y in u) {
r = r | {y};

}

ref = {x} | l | u;

assert(r <= ref);
assert(ref <= r);

Listing F.5 – partition
var s: set;
var l: set;
var u: set;
var x: num;
var y: num;

l = {};
u = {};
x = choose(s);
for(y in s) {

if(y < x) {
l = l | {y};

} else {
if (y > x) {

u = u | {y};
}

}
}
assert(choose(l) < x);
assert(choose(u) > x);
assert(l <= s);
assert(u <= s);
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Listing F.6 – test_builtin_filter
var seq: set;
var res: set;
var x: num;

res = {};
for(x in seq) {

if(x == 0) {
res = res | {x};

}
}
assert(choose(res) >= 0);
assert(choose(res) <= 0);

Listing F.7 – test_builtin_map
var d: set;
var r: set;
var x: num;
var i: num;

d = {};
i = 1;
while(i <= 3) {
d = d | {i};

}

r = {};
for(x in d) {

r = r | {x+7};
}

assert(choose(r) <= 10);
assert(choose(r) >= 8);
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Listing F.8 – test_builtin_max_min
var min: num;
var max: num;
var seq: set;
var x: num;

min = 0;
max = 1;
for(x in seq) {

if(x < min) {
min = x;

}
if(x > max) {

max = x;
}

}
assert(max > min);

Listing F.9 – test_builtin_reduce
var d: set;
var s: num;
var x: num;

assume(choose(d) >= 1);
assume(choose(d) <= 3);

s = 0;
for(x in d) {

s = s + x;
}

assert(s >= 1);

Listing F.10 – test_difference
var s1: set;
var s2: set;
var s3: set;
s3 = s1 - s2;
assert({choose(s3)} <= s1);
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Listing F.11 – test_has_key
var d: set;
var x: num;
var y: num;

d = {};
if({1} <= d) {

assert(1 <= 0);
} else {
}

d = {x, y};
assert(d == {x, y});

Listing F.12 – test_intersection
var s1: set;
var s2: set;
var s3: set;
s3 = s1 & s2;
assert({choose(s3)} <= s1);
assert({choose(s3)} <= s2);

Listing F.13 – test_iter_independence
var seq: set;
var res: set;
var i: num;
var j: num;
var k: num;
var sum: num;

res = {};
for(i in seq) {

assume(i >= 0);
for(j in seq) {

assume(j >= 0);
for(k in seq) {
assume(k >= 0);
sum = i+i+i+i+i+i+i+i+i + j+j+j + k;
res = res | {sum};

}
}

}
assert(choose(res) >= 0);
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Listing F.14 – test_keys
var d: set;
var x: num;
var y: num;
d = {};
assert(d == {});
d = {x, x};
assert({x} <= d);
assert({y} <= d);

Listing F.15 – test_multi_return
var d: set;
var i: num;
var n: num;
assume(n > 0);
d = {};
i = 0;
while(i < n) {
d = d | {0};
i = i + 1;

}
assert(choose(d) <= 0);
assert(choose(d) >= 0);

Listing F.16 – test_nested_dependent
var d: set;
var s: num;
var x: num;
var y: num;

s = 0;
for(x in d) {

for(y in d) {
if(y < x) {

s = s + x + y;
}

}
}
assert(s >= 0);
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Listing F.17 – test_pop
var d: set;
var s: set;
var t: set;
var x: num;
var y: num;
d = {};
d = d | s;
x = choose(d);
d = d - s;
assert({x} <= s);
d = d | t;
assume(x == x);
y = choose(d);
assume(x == x);
assert({y} <= t);
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Listing F.18 – test_resize1
var d: set;
var i: num;
var n: num;
var m: num;

assume(n > 0);
assume(m > n);

d = {};
i = 0;
while(i < n) {
d = d | {i};
i = i + 1;

}

assert(choose(d) >= 0);
assert(choose(d) <= n);

i = 0;
while(i < n) {
d = d - {i};
i = i + 1;

}

assert(d == {});

i = n;
while(i < m) {
d = d | {i};
i = i + 1;

}

assert(choose(d) >= n);
assert(choose(d) <= (m + -1));
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Listing F.19 – test_simple_conditional
var d: set;
var i: num;
var s: num;
var x: num;
var n: num;

d = {};
i = 0;
while(i < n) {
d = d | {i};
i = i + 1;

}
assert(choose(d) >= 0);
assert(choose(d) < n);

s = 0;
for(x in d) {

if(x < 50) {
s = s + x;

}
}
assert(s >= 0);
assert(s <= 1225);

Listing F.20 – test_simple_nested
var r: set;
var x: num;
var y: num;
var s1: set;
var s2: set;
var a: num;
var b: num;
r = {};
s1 = {a};
s2 = {b};
for(x in s1) {

for(y in s2) {
r = r | {x + y};

}
}
assert(choose(r) <= (a+b));
assert(choose(r) >= (a+b));
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Listing F.21 – test_simpler_nested
var r: set;
var x: num;
var y: num;
var s1: set;
var s2: set;
var a: num;
var b: num;
r = {};
s1 = {a};
s2 = {b};
for(x in s1) {

for(y in s2) {
r = r | {x + y};

}
}
assert(choose(r) <= (a+b));
assert(choose(r) >= (a+b));

Listing F.22 – test_srange
var d: set;
var n: num;
var i: num;

d = {};
i = 0;
while(i < n) {
d = d | {i};
i = i + 1;

}
assert(choose(d) < n);
assert(choose(d) >= 0);

Listing F.23 – test_union
var s1: set;
var s2: set;
var s3: set;
s3 = s1 | s2;
assert({choose(s1)} <= s3);
assert({choose(s2)} <= s3);


