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Online social networks(OSNs) enable real-time event discussion. Due to the word-of-mouth effect,

popular events are disseminated exponentially in a short period of time. With highly active public engage-

ment, new events are being self-reported and discussed live. Compared to traditional news event detection

and tracking, this huge volume of data, unstructured content, and variety of information in OSNs pose both

opportunities and challenges for event analysis in new environments. This thesis makes key contributions in

the following three aspects.

Event context identification helps to answer the question of who is interested in the events. It enables

applications like user participation prediction, relevant event recommendation and friendship recommenda-

tion. We incorporate anchor information into the traditional probability matrix factorization framework to

identify the group of users who are interested in given event. Our evaluation based on one-month of 461

events and 1.1 million users shows that our approach outperforms at least 20% over existing approaches.

Location inference addresses the problem of lacking location information in event analysis. It helps

to understand where the event is being discussed. We use both textual and structural information to predict

locations respectively, and finally use a learn-to-rank algorithm to effectively fuse the results. Evaluation

a three-month of 0.82 million users, 16.4 million messages, and 11.5 million friendships shows the perfor-

mance boost of 25% reduction in average error, and 66% reduction in median error over existing work.

Event modeling provides a solution for understanding the structure of the event. We first build a

hierarchical and incremental model for each event, and then identify the causal relationships within the

event structure. Our evaluation on 3.5 million messages over a 5-month period and demonstrate the high

effectiveness and efficiency of our approach.
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Chapter 1

Introduction

With the rapid development of Web 2.0 technologies, Online Social Networks(OSNs) have been

increasingly popular. From traditional online forums, blogs, to more recent Facebook, Twitter, various

kinds of OSNs are making social interactions much more convenient. Online forums and blogs make it

easy for social discussion and opinion exchange. To name a few, Facebook, Twitter and Google+ help

people to better follow their friends’ update and enable faster communication. Foursquare and Yelp enable

location-based services for better local interactions. Among all the characteristics OSNs have, we notice

that the real-time characteristic is very unique. It is one of the reasons that attract so many people to choose

OSNs as their favorite social interaction platforms. Furthermore, it makes possible to turn OSNs from social

interaction platforms to live content providers. People’s immediate updates, discussions and opinions can

be very informative and considered as personal social media. Thanks to the real-time user participation,

a huge amount of social media content is being generated by individual users in an instant fashion. For

instance, users of Twitter [69, 80], a popular microblogging social media site, send over 400 million tweets

per day [68]1 , meaning 4629 tweets per second on average. On the other hand, with the growing ubiquity

of GPS-enabled mobile devices, location information is becoming prevalent in today’s OSNs. As another

dimension of social networking, users can geotag their posts, and announce their current locations to friends

and the public at large. For instance, on Twitter, users are allowed to attach their location information to any

message they send. Foursquare encourages users to check in with their location and they have collected more

than 4.5 billion checkins in total [67]2 . The unique opportunity of anytime, anywhere user participation
1 Statistics in March, 2013.
2 Statistics in Oct, 2013
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makes it possible for event-centric analysis of OSNs.

Given this large amount of real-time, location enabled, user generated content, OSN platforms can

be viewed in a latent event-centric perspective. For instance on Twitter, despite the fact that users use the

platform for daily chats and conversations with friends, research shows that users even intended to share

information/URLs and to report events on Twitter [37]. Twitter shows significant non-social characteristics

and 85% of the trending topics on Twitter are related to headline news in nature [43]. As events happen

and evolve over time, users stay informed by seeking and sharing information through their social contacts

(e.g., “following” and “follower” networks in Twitter). As a result, OSNs have become the online gather-

ing place for public engagement when real-time events happen and offer valuable self-reported information

about events. This has been demonstrated in various application domains, such as disease surveillance [19],

hazardous situations [65], new product release, presidential campaign, so on and so forth. By sharing and re-

ceiving information among trusted and/or close social contacts, information related to specific events can be

generated and disseminated in a highly effective and efficient fashion. Twitter also enables the capability of

social filtering, in the sense that users are receiving recommendations filtered by their friends(e.g. retweets)

and they can recommend the same content again if they feel appropriate. This is a particular important char-

acteristic for efficient event dissemination. As shown in [43], once retweeted, a tweet gets retweeted almost

instantly on Twitter for the next couple of hops, a fascinating way of speeding up the diffusion of events.

State-of-the-art research mainly focuses on event detection in OSNs [77] [35] [14] [56] [47] [73].

Event detection techniques provide an automatic way of generating the important topics/keywords given

real-time message stream. For instance, one can quickly follow ongoing Haitian Earthquake events by

extracting keywords like haitian, haiti, earthquake, magnitude, etc. Essentially, event detection techniques

help to identify real-time events, but provide no further structure to the events. As a result, there are some

unsolved research problems in order to get event-driven perspectives of OSNs.

At the same time, existing infrastructures do not fully support the event centric perspective and have

the following missing components. Firstly, the context of an event is usually undefined. Given a detected

popular event, it is essentially hard to define the group of users who participate in the event. As a result, it

is even more difficult to characterize the users if they share similar interests or are from similar locations.
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Boulder420
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Figure 1.1: Overview of Event-centric Research Problems

Secondly, despite the usefulness, there is a relatively small percentage of location data compared to the non-

geotagged data volume. The analysis of our own dataset shows that there are only 0.5% to 1% geotagged

content currently on Twitter. This results in unknown information of where the events are being discussed.

Thirdly, user generated content is presented in an unstructured format and it is very difficult for users to read

these flat-viewed, self-reported messages. In most cases, during an event, users will never have the chance

to read them all. Overall, none of the three aspects are being supported in current OSNs.

Based on above observations, we identify and solve the following research problems in support of

event-driven knowledge discovery in real-time OSNs. An overview of the research problems is shown in

figure 1.1.
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1.1 Event Context Identification

The goal of event context identification problem in OSNs is to define the group of users who partic-

ipate in a certain event. Recent research [65] [64] has shown that event discussions in OSNs are diverse

and innovative and encourage public engagement in events. Although much research has been conducted

on OSNs to track and detect events, there has been limited research on detecting or understanding the event

context. Event context identification helps to predict users’ participation of in events, identify relations

among events, and recommend friends who share similar event context. We propose a matrix factorization

based technique that aims to identify event context by leveraging a prevalent feature in OSNs, the anchor

information. Our work makes three key contributions: (1) a formal definition of the event context identifica-

tion problem; (2) anchor selection and incorporation into the matrix factorization process for effective event

context identification; and (3) demonstration of applying event context for user-event participation predic-

tion, relevant events retrieval, and friendship recommendation. Evaluation based on 1.1 million Twitter

users over a one-month data collection period shows that our event content identification algorithm achieves

a 20.0% improvement in terms of user-event participation prediction.

1.2 Location Identification

We explore location identification problem in order to find where the events happen. Location in-

formation is becoming important in today’s online social networks. However, the amount of available data

is not much. We are trying to find a solution, with which even when no explicit location is disclosed by

a user, it is still possible to geolocate the user through his/her social context, e.g., status updates and so-

cial relationships in OSNs. To demonstrate this, we accurately identifies users’ geographic regions through

effective fusion (re-ranking) of (1) text-based ranking using geo-sensitive textual features and (2) structure-

based ranking using maximum likelihood estimation (MLE) of geotagged friends. Evaluation results using

0.8 million geotagged Twitter users over a 3-month period demonstrate that our approach outperforms state-

of-the-art techniques, with significant reduction of estimation error (25% of average error, 66% of median

error). As a side effect, the potential of improving location accuracy through the fusion of multiple data
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types calls for a re-examination of existing privacy protection policies and mechanisms.

1.3 Event Modeling

Effective event modeling helps understand the content of the event. Realtime online social networks

such as Twitter provide great opportunities for public engagement and event information dissemination.

Event-related discussions occur in real time and at the worldwide scale. However, these discussions are

in the form of short, unstructured messages and dynamically woven into daily chats and status updates.

Compared with traditional news articles, the rich and diverse user-generated content raises unique new chal-

lenges for tracking and analyzing events. Effective and efficient event modeling is thus essential for real-

time information-intensive OSNs. We propose such a solution for social media network sites. Targeting the

unique challenges of this problem, our solution consists of three key components: (1) an n-gram based con-

tent analysis technique for identifying core information blocks from a large number of short messages; (2)

an incremental and hierarchical modeling technique for identifying and constructing event theme structures

at different levels of granularity; and (3) an enhanced temporal analysis technique for identifying inherent

causalities between information blocks. Detailed evaluation using 3.5 million tweets over a 5-month period

demonstrates that our approach can efficiently generate high-quality event structures and identify inherent

causal relationships with high accuracy.



Chapter 2

Related Work

Event-driven knowledge discovery aims to fill the gap between social interaction perspective to event-

centric perspective. It draws upon research in several related fields, including traditional news event sum-

marization, evolution and detection, joint analysis of location and web content, and Twitter related research.

2.1 Event Context Identification

Event detection and tracking. There has been much event-related research in the literature. The field

of event detection and tracking can be traced back to [77] [3] [76]. Kleinberg defined and extracted bursts

of activity from emails using an infinite-state automaton [40]. Bursty events can also be detected from news

texts by identifying bursty features with a binomial distribution model and threshold-based heuristics [26].

Ihler et al. focused on time-series data such as logs and proposed Markov-Poisson models to detect anoma-

lous events [35]. A general probabilistic model was proposed to extract correlated bursty topic patterns

in [71]. Chen et al. used user tag information to identify events that involve browsing and searching photos

on Flickr [14]. Lappas et al. explored how bursty terms help enhance the search process [45]. These works

show the importance and effectiveness of event analysis using Web data.

Event analysis on Twitter. More research has been conducted on Twitter recently. Different crisis

events have been analyzed to identify generative and innovative properties of discussion on Twitter [44]

[65] [64]. Sakaki et al. developed an earthquake alarm system by extracting real-time earthquake events

on Twitter [60]. Petrović et al. presented a locality sensitive hashing approach to efficiently detect events

that have not been seen before based on tweets [56]. Weng et al. proposed wavelet-based signal clustering
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on Twitter text stream data to detect events [73]. Lin et al. leveraged interests of users and social relations

to track the evolution of popular events [47]. Event popularity can be predicted by considering a variety

of social features [31]. Such event detection techniques support algorithmic discovery of events on OSNs,

and help to build the foundation of event-related research. However, they do not solve the event context

identification problem directly.

Matrix factorization techniques. This work also builds upon existing matrix factorization tech-

niques. Salakhutdinov et al. proposed a probabilistic matrix factorization model, which factorizes the ex-

plicit user-item matrix to a user latent trait matrix and an item latent trait matrix [62]. A full Bayesian

version of the model was also proposed to provide generalized parameter tuning and avoid overfitting [61].

For implicit datasets, Hu et al. adopted more features from the original user-item matrix and proposed an im-

proved gradient descent method to solve the problem more efficiently [33]. More recent research considers

friendship information as a useful feature to incorporate into the current framework. Trust based approaches

consider friendship as trust to influence users’ latent factors. In [49], friendship information was modeled as

a linear combination of the basic model. Another approach was also proposed to model friends as a separate

latent matrix and used friendship as observations [50]. SoicalMF was proposed to incorporate friendship

into the same latent space as users and a user’s latent factor is represented as the average of all friends’

latent factors [36]. Gartrell et al. proposed to consider only close friends when combining friends’ latent

factors and used a Markov random field to aggregate latent factors [27]. Influence based models consider

users’ interests to be influenced by their friends. Huang et al. considered receiver interests, item qualities,

and interpersonal influences for final recommendation [34]. Jiang et al. incorporated interpersonal influ-

ences into the existing PMF model and showed significant performance improvement [38]. The assumption

of influence-based models is that items must be coming from their friends, which is not always the case.

Our work separates the anchor latent factor space from the user latent factor space with a feature selection

process, which shows better performance than existing solutions.
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2.2 Location Inference

In this work, we study the effectiveness of geolocating users through the fusion of textual and social

structure information in OSNs, as well as its implications on location privacy. As such, our work builds

upon research in several related fields, including location sharing and its privacy concerns, as well as geo-

graphically aware web mining and learn-to-rank techniques.

Joint Analysis of Location and Web Content. The joint analysis of location and web content has

been an area of active research. Previous works have investigated the spatio-temporal theme patterns in

weblogs [51], associations of geographic information with search engine queries [5], and relation between

location and content in large photo collections [20]. Yin et al. incorporated GPS information into topic mod-

eling to provide more accurate geographical topic discovery [79]. The relationship between location and

textual features has also been explored. Volz et al. introduced an ontology-based approach to disambiguate

geographical names in texts [59]. Buscaldi et al. suggested both WordNet and Naive Bayes based approaches

for the automatic identification of geographical articles in encyclopedic resources [10]. More recent studies

have focused on OSNs. Researchers have shown that user profile information can be inferred using social

graph and friendship information [8, 53]. Backstrom et al. proposed FindMe and measured the relationship

between location and friendship, and predicted the locations of individuals in Facebook [6]. Multiple tech-

niques have been proposed to predict Twitter users’ locations, including GeoLex, a cascaded topic modeling

approach based on users’ tweets [23], LocalTweet, a maximum-likelihood estimation (MLE)-based tech-

nique using local words in users’ tweets [15], and SimpGeo, a grid-based approach that leverages Kullback-

Leibler (KL) divergence [75]. In comparison, our solution focuses on location estimation through the fusion

of geo-sensitive textual features and the social structures of friendships, and achieves much better accuracy.

Location sharing and its privacy concerns. Location sharing and its privacy concerns have attracted

increasing attention recently. Various location sharing applications have been proposed, including friend-

ship estimation using location trail data [21], using location sharing to improve social conversation within

groups [7], and leveraging both social and geographical influences to recommend points of interest [78].

Significant privacy concerns are raised in location sharing environments. A personal daily life trail can be
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inferred by analyzing location data gathered from mobile devices [1]. Kostakos et al. proposed an attack

model by analyzing social network structures [42]. Anthony et al. discussed the privacy policy variation

with different places and social contexts [4]. The willingness of location sharing highly depends on who

was requesting [18] as well as the social context and activities [39]. While most research works assume that

users understand and have full control of their location sharing, our work demonstrates that users’ location

information can be inferred through the company they keep, even when no explicit location information

is disclosed by the users themselves. Our results may help to design better privacy control policies in the

future, or to better advise users on what information should or should not be disclosed.

Learn-to-rank techniques Learn-to-rank or machine-learned ranking techniques have also been

studied in recent years. The goal is to automatically construct a ranking model via (semi-)supervised learn-

ing. A systematic study of pointwise, pairwise, and listwise approaches are presented in [48]. In particular,

RankBoost [24] and RankNet [9] are two widely-used techniques, but perform worse than our re-ranking

algorithm (Section 4.5) when geolocating users in OSNs.

2.3 Event Modeling

This work aims to identify inherent event theme structures and causal relationships in real-time

information-intensive offline social media networks. It draws upon research in several related fields, in-

cluding text summarization, time-based event evolution, as well as recent research that is specific to the

Twitter social media network site.

Text summarization. Much research has been conducted in the area of text summarization, focus-

ing mostly on news data and email data. Summaries of news articles included temporal single-sentence

summaries [2], centroid-based summaries of multiple documents [57] and reference relationships among

distinctive phrases [46]. Fung et al. used traditional bisecting k-means clustering algorithm to model news

hierarchy [25]. The obtained event hierarchy may not be meaningful since news articles are always parti-

tioned into a fixed number of clusters (e.g., 2). Targeting email data, Carenini et al. investigated the problem

of discovering important hidden emails using fragment quotation graph and generating email summaries

using clue words [11]. Our solution differs from these works in that it handles short messages (tweets), gen-
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erates both summaries and hierarchical theme structures without the need to specify the number of themes

beforehand, and adjusts the event models incrementally as new content is continuously generated in a real-

time fashion.

Time-based event evolution. This line of work focuses on the temporal changes/relationships of

events. Kleinberg identified (emerging/changing) themes in document streams (e.g., emails, research papers)

based on their temporal burstiness and hierarchical structure [41]. To understand how an event emerges,

changes, and disappears, Subasic et al. separated each event into several stages with equal time period and

represented each stage by building a network of salient terms based on their co-occurrence frequency and

time relevance [66]. The problem of identifying event causal relationships has also been investigated by

researchers [55, 13]. These techniques consider both content similarity and temporal proximity in order

to identify possible causal relationships in events. Our work follows this rationale, but considers the more

precise temporal distribution information rather than the beginning and ending time of events. As a result,

our solution achieves higher precision and recall in causal relationship identification.

Other twitter specific research. Twitter has attracted much attention in the research community

during the recent years. Starbird et al. analyzed the rapid generation of Twitter communications in the

Red River flood event and identified generative, synthetic, derivative and innovative properties [65]. Sakaki

et al. utilized tweets as social sensors to successfully detect events like earthquake or typhoon [60]. By

analyzing the top trending topics, Kwak et al. found the fast information diffusion property [43]. User

intentions of using Twitter’s microblogging and community services have also been studied [37, 80]. A

recommendation system has been built based on both content and collaborative filtering techniques [32].

Users’ tweet history is used for determining their locations, enabling better personalized services [15].

These works are complementary to our work, as they did not consider the problem of event modeling at

Twitter, but nevertheless provided useful insights into the various properties of Twitter.



Chapter 3

Event Context Identification

3.1 Introduction

With the rapid growth of online social networks (OSNs), more and more real-world events are being

discussed on Web 2.0 platforms such as Facebook, Twitter, Tumblr, etc. Researchers have been using these

platforms as social sensors to detect events, analyze event-related discussions, and predict event popularity.

Despite much research on the aforementioned topics, there has been limited research that aims to detect or

understand the context of events. The context for an event is essentially represented by the group of users

who show inherent interests or willingness to participate in the event, such as people supporting their home

football team, residents affected by a local fire or flooding, or people interested in Oscar nominations. The

aggregated attributes of the group typically demonstrate commonalities in location, interests, age, gender,

etc.

Event context identification is an important research problem and has many real-world applications.

Successful event context identification will help to better predict the users who are going to participate in

an event, thus creating value for enterprises and organizations for better marketing and event management.

Event context also helps to identify relations among events if they share the same or similar context. In-

teresting patterns may be discovered even if events are not semantically related but otherwise share similar

context. For example, as we will show in the experiments, event Obama 2013 inauguration is related to

event The International Consumer Electronics Show (CES) 2013 according to identified context. Another

application is friendship recommendation based on the event context for past event participation. As we

will later show in the experiments described in Section 5.6, friendships are correlated with event context
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similarity among users.

Event context identification is a challenging problem for several reasons. First, it is difficult to define

event context properly. Context is a subjective concept and the same group of users may be interpreted

according to different common features. It is typically easier for a computer algorithm to discover a con-

textual pattern, rather than explain the cause for this pattern. Second, although other techniques may be

applied to solve the event context identification problem, their performance is not good [62] [36]. Given

historical event data, we can extract event contexts by characterizing events based on user participation, and

at the same time characterizing users by their event participation. This process is very similar to the idea

of matrix factorization [62]. Previous research mainly considered the original user-item rating matrix (i.e.,

the user-event matrix in our setting) and friendship information if available. However, as we show later in

our experiments, friendship information does not show significant performance improvement. Finally, users

interested in certain types of events tend to follow certain anchor accounts in OSNs. However, it is not clear

how these anchor accounts can be selected (among massive following/follower relations), nor is it clear how

to incorporate such anchor information into the overall event context identification process.

To address these challenges, we have developed AnchorMF, a unified solution for identifying event

context by utilizing both user-event participation information and anchor information in OSNs. Given obser-

vations of user-event and user-follower matrices, a probabilistic model is built to consider users, events, and

anchors as latent factors. An anchor selection algorithm is proposed to automatically identify informative

anchors for the model. Finally, a Gibbs sampler and a maximum a posteriori (MAP) estimator are proposed

to estimate the parameters of the model. AnchorMF is implemented and evaluated using a real-world Twitter

data set which we have collected over one month and contains 1.1 million Twitter users. Evaluation results

show that AnchorMF outperforms state-of-the-art techniques by 20.0% in terms of prediction accuracy. An-

chorMF can identify relevant events using an information retrieval process. We also show that event contexts

can be used for friendship recommendation.

To the best of our knowledge, this is the first work that aims to address the event context identification

problem. This work makes the following contributions: (1) a formal definition of the event context identi-

fication problem; (2) anchor selection and incorporation into the matrix factorization process for effective
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event context detection; and (3) application of event context to user-event participation prediction, relevant

events retrieval, and friendship recommendation.

3.2 Problem Formulation and System Overview

3.2.1 Definitions and Problem Formulation

Each event e = {m1,m2, . . .} is represented by a set of messages obtained by searching for specific

keywordsW = {w1, w2, . . .} in an OSN (e.g., Twitter) and corresponds to a real-world event. Each message

mi =< ui, ti >, meaning that the message was posted by user ui at time ti. ui is considered a “participant”

of event e in the cyber world.

The context of a given event is defined as a group of users who participate in the event because of

some inherent reasons, i.e., common attributes of the participants or latent event/user factors. For instance,

both location and interest are important attributes to represent event context: the context of a local basketball

game could be the group of local people who like their basketball team. Therefore, the context of event ej

can be jointly characterized by the event latent factor Ej and the set of user latent factors Uej of all the

participants of ej .

Anchors are popular users or public pages in OSNs, and their followers tend to participate in certain

types of events, e.g., the Twitter account of a local news venue or a user posting actively on a specific

topic. Usually, anchors are not directly identified by OSNs, and any user who has followers can be an

anchor candidate. Selecting anchors for effective event context identification is the key. Let Ua be the set of

followers of anchor candidate a, we select a as an anchor based on the following two factors:

(1) |Ua| ≥ threshold, i.e., the anchor must have at least threshold followers. threshold is set to 269

based on our modeling analysis shown in Section 3.3.

(2) The probability of a being an anchor depends on a’s concentration of events E, i.e., Ua participate

in similar events. This probability is used as a weight in the model to reflect the impact of this

anchor candidate.
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The problem of event context identification is then defined as follows. Given M events E =

{e1, e2, . . . , eM} participated by N users U = {u1, u2, . . . , uN}, the output of event context identifica-

tion is C = {c1, c2, . . . , cM}, where each ci is the context of ei. The event contexts capture the event latent

factors and user latent factors, which in turn can identify the subset of users who are likely to participate

in each event. The success of event context identification can be evaluated by comparing the user-event

participation predicted by the event contexts and the actual user participation in events. Detailed evaluation

results are presented in Section 5.6.

3.2.2 System Overview
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Figure 3.1: AnchorMF system overview.

Figure 3.1 illustrates the high-level process of AnchorMF for event context identification. Given a

set of events, we first select anchors from the candidate users (Section 3.3.1), then incorporate the selected

anchors into an extended probabilistic matrix factorization (PMF) model (Section 3.3.2), and finally through

model inference (Section 3.3.3) we obtain the event contexts represented by event and user latent factors.

3.2.3 Preliminary: PMF

Given a set ofN users U = {u1, . . . , uN}, a set ofM events E = {e1, . . . , eM}, and the binary matrix

R = [Rui]N×M representing users’ participation in events, the probabilistic matrix factorization (PMF)

model factorizes R into two latent matrices U ∈ RK×N and E ∈ RK×M , representing k-dimensional latent
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trait vectors for users and events. The graphical model is shown in Figure 3.2.
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Figure 3.2: Probabilistic matrix factorization (PMF).

PMF defines the following distributions:

p(R|U,E, σ2R) =
N∏
u=1

M∏
i=1

N (Ru,i|UTu Ei, σ2R)

p(U |σ2U ) =

N∏
u=1

N (Uu|0, σ2UI)

p(E|σ2E) =

M∏
i=1

N (Ei|0, σ2EI)

(3.1)

3.3 The AnchorMF Model

3.3.1 Anchor Selection

As discussed in Section 5.2, anchors are any user accounts which have at least a certain number of

followers and whose followers show a good concentration on similar events. Using a real-world Twitter

dataset we have collected (Section 3.4.1), we start with anchor candidates with at least 1 follower, and the

set of candidate anchors shrinks as the selection process progresses. For simplicity, we refer to the anchor

candidates in each round as anchors.
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3.3.1.1 Anchor and User Distribution

We first need to understand the relation between anchors and their followers. The problem can be

decomposed into the distribution of followers given anchors and the distribution of anchors given followers.
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Figure 3.3: Anchor and user distribution.

The dotted curve in Figure 3.3 shows the complementary cumulative distribution function (CCDF) of

the number of followers given anchors. The x-axis is the number of followers and the y-axis is the percentage

of anchors. This heavy-tailed distribution shows that many anchors are followed by few users and very few

anchors are followed by many users. The solid curve in Figure 3.3 shows the CCDF of the number of

anchors that users follow. Here, the x-axis is the number of anchors and the y-axis is the percentage of

users. This solid curve is also a heavy-tailed distribution and shows that many users follow few anchors and

very few users follow many anchors. We notice that the solid curve has a flat beginning; this indicates that

users tend to follow approximately 100 anchors at minimum. We also notice that there is an anomaly near

2,000 followers for the solid curve. This is likely due to the fact that Twitter’s policy [70] allows each user

to follow at most 2,000 anchors unless he/she is very active on Twitter. As we can see from the figure, less

than 5% of the users in our dataset follow more than 2,000 anchors. The gap between the dotted and solid
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#pairs(M) 16.32 7.86 4.64 3.04 3.69 2.81 4.25
#anchors 1 2 3 4 5.42 7.84 19.68
#events 2.47 2.68 2.82 2.92 3.02 3.13 3.35

Table 3.1: Number of user pairs and their average number of shared anchors and shared events.

curves is caused by the fact that when counting the number followers of anchors, we only consider the users

in our event dataset, and not all followers of the anchors at Twitter.

We use the goodness-of-fit based method proposed in [16] to fit the two CCDFs shown in Figure 3.3.

The power law model gives us two parameters α and xmin. α is the scaling parameter, which indicates how

skewed the distribution is (the slope of the CCDF). As described in [16], a typical value of α is between 2 and

3. Our estimated α is 2.24 for the anchor distribution and 2.26 for the user distribution. These results match

what we see in Figure 3.3 and the model shown in [43], which indicate that our dataset is representative. The

second parameter, xmin, indicates the minimum x-axis value that fits the power law. The xmin of the anchor

distribution is 269, and we use this number as the minimum frequency of an anchor candidate. Therefore, all

the anchor candidates must have at least 269 followers. With this parameter setting, the number of anchor

candidates is reduced to less than 1% of the original anchor candidate set size, which significantly reduces

the amount of computation in our modeling process.

3.3.1.2 Relation Between Anchors and Events

Before considering the event concentration of anchors, we first study the relation between anchors

and events, specifically, if users who follow the same anchors tend to participate in the similar events. We

randomly sampled 10,000 users from our dataset, and consider for each pair of users the number of shared

anchors and number of shared events. We separate all the user pairs into different buckets based on quantile

and ensure that all user pairs with the same number of shared anchors fall into the same bucket. Table 3.1

shows the aggregate results for each bucket, including the number of user pairs, average number of shared

anchors, and average number of shared events. As shown in the table, when users share more anchors, the

number of shared events also increases. Therefore, identifying the appropriate anchors can serve as good

indicators for event participation and event context identification.
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#users Pearson Correlation Spearman Correlation
10,000 0.11 0.12

Table 3.2: Correlation between #anchors and #events per user.

We further analyze for each user if the number of anchors he/she follows is correlated with the number

of events he/she participates in. We use both Pearson’s correlation to check linear correlation and Spear-

man’s correlation to check non-linear correlation. The formulas are shown in Eq. 3.2 and Eq. 3.3.

rA,E =
E[(A− µA)(E − µE)]

σAσE
(3.2)

ρA,E =
E[(a− µa)(e− µe)]

σaσe
(3.3)

As shown in Table 3.2, there is very little correlation between a user’s number of anchors and number

of events, showing that one is not a substitute for the other. These results indicate that anchor informa-

tion and event information are complementary signals, and adding anchor information on top of user-event

information can potentially boost the performance of event context identification.

3.3.1.3 Event Concentration and Anchor Weight

Based on the anchor-user distribution analysis, we prune anchor candidates with fewer than 269

followers. Next, we need to select candidates which show a good concentration of similar events. We solve

this problem by first looking at the users who follow an anchor and the events that those users participate in.

We compute an anchor-event matrix by multiplying the anchor-user and user-event matrices:

Mae = Mau ×Mue (3.4)

Each element Nki = Mae[k, i] is the number of anchor k’s followers who participate in event i. We

denote E′ as the set of events participated by anchor k’s followers, and each event i is duplicated Nki times

in the set, i.e., E′ = {e1,1, . . . , e1,Nk1
, . . . , eM,NkM

}. We then need to consider whether the events in E′ are
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similar to each other. The event concentration for each anchor k is defined as:

wk =
M∑
i=1

(
Nki

2

)
· 1 +

M∑
i=1,j>i+1

Nki ·Nkj · S(i, j) (3.5)

The formula above aims to compute the average pair-wise event similarity for events in E′, which

is used to represent the anchor’s concentration over events. If a pair contains two of the same events, the

similarity is 1, otherwise, the similarity is defined by S(i, j):

S(i, j) =

∫ iT j

−∞
N (iT j; 0, 1)d(iT j) (3.6)

The similarity function is the cumulative normal distribution of the inner product space given the i

and j event pairs [27]. The intuition is that the similarity should be defined in the inner product space and

lie between 0 and 1. Based on the similarity function and each anchor’s event concentration, we can then

select anchors and proceed with incorporating the anchor information in the AnchorMF model.

3.3.2 Incorporating Anchor Information into the PMF Framework
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Figure 3.4: AnchorMF graphical model.
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We incorporate anchor information into the PMF framework by factorizing the user-anchor matrix and

also considering the importance of the anchors. As illustrated in Figure 3.4, the AnchorMF model considers

a new observation F , which indicates what anchors each user follows. Correspondingly, we add a latent

factor A to represent the anchors’ latent influence on users. According to Equation 3.5, each anchor k has a

weight, and weight is the same for every user u, denoted as Wuk. Consistent with the PMF model, we also

add priors and hyper-priors into the model. U and E are latent variables for users and events, respectively,

and R is a binary observation matrix where each element indicates whether or not a user participates in an

event. We derive Equation 3.7 directly from Figure 3.4.

p(U,E,A|R,F, σ2R, σ2U , σ2E , σ2A, σ2F )

∝ p(R|U,E)× p(F |U,A)× p(U)× p(E)× p(A)

=
N∏
u=1

M∏
i=1

N (Ru,i|UTu Ei, σ2R)

×
N∏
u=1

P∏
k=1

[
N (Fu,k|UTu Ak, σ2A)

]Wuk

×
N∏
u=1

N (Ui|0, σ2UI)×
M∏
i=1

N (Ei|0, σ2EI)

×
P∏
k=1

N (Ai|0, σ2AI)

(3.7)

To facilitate model inference, we also derive the log of the posterior probability as follows:

ln p(U,E,A|R,F, σ2R, σ2U , σ2E , σ2A, σ2F )

= − 1

2σ2R

N∑
u=1

M∑
i=1

(Ru,i − UTu Ei)2

− 1

2σ2R

N∑
u=1

P∑
k=1

wu,k(Fu,k − UTu Ak)2

− 1

2σ2U

N∑
u=1

UTu Uu −
1

2σ2E

M∑
i=1

ETi Ei −
1

2σ2A

P∑
k=1

ATkAk + C

(3.8)

We denote− 1
2σ2

R
as λR, − 1

2σ2
U

as λU , − 1
2σ2

E
as λE , − 1

2σ2
A

as λA, and − 1
2σ2

F
as λF . We model
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{λR, λU , λE , λA, λF } as conjugate Gamma distributions with flexible hyperpriors similar to:

p(λU ) = G(λU ; au0, bu0) =
1

Γ
bau0u0 λ

au0−1
U e−bu0λU (3.9)

3.3.3 Model Inference

Given the Bayesian framework defined in the previous section, inference for this model can be per-

formed through Gibbs sampling [28]. Gibbs sampling generates a number of samples from an aperiodic and

irreducible Markov chain, and involves sampling from the conditional distribution for each latent variable

to approximate the joint distribution given that sampling from the joint distribution of the model is difficult.

In the above model, we denote the random variables by θ = {U,E,A, λU , λE , λA, λR, λF }, and we derive

the following conditional distributions for all the random variables based on Equation 3.8.

λU is sampled from a Gamma distribution:

λU |θ\λU ∼ G(λU ; aU , bU )

aU = aU0 +
|U|K

2

bU = bU0 +
1

2

∑
i∈U
‖Ui‖2

(3.10)

λE and and λA are sampled from similar conditional distributions.

λR is also sampled from a Gamma distribution:

λR|θ\λR ∼ G(λR; aR, bR)

aR = aR0 +
|R|
2

bR = bR0 +
1

2

∑
u,i∈R

(Rui − UTu Ei)2

(3.11)

We set aE0 = aU0 = aA0 =
√
K, bE0 = bU0 = bA0 = 1, and aR0 = bR0 = aF0 = bF0 = 1.5.

The parameter settings make sure the gamma distributions are flat and allow the model to be flexible when

learning.
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Uu is conditionally sampled from a multivariate Gaussian distribution:

Uu|R,F, θ\Uu
∼ N (Uu;µu,Σu)

µu = Σu(λR

M∑
i=1

RuiEi + λF

P∑
k=1

Wu,kFu,kAk)

Σu = (λR

M∑
i=1

Ei · ETi + λF

P∑
k=1

Wu,kAk ·ATk + λUI)
−1

(3.12)

Ei is conditionally sampled from a multivariate Gaussian distribution:

Ei|R,F, θ\Ei
∼ N (Ei;µi,Σi)

µi = Σi(λR

N∑
u=1

RuiUi)

Σi = (λR

N∑
u=1

Uu · UTu + λUI)
−1

(3.13)

Ak is also conditionally sampled from a multivariate Gaussian distribution:

Ak|R,F, θ\Ak
∼ N (Ak;µk,Σk)

µk = Σk(λF

N∑
u=1

Wu,kFu,kUu)

Σk = (λF

N∑
u=1

Wu,kUu · UTu + λUI)
−1

(3.14)

The Gibbs sampling approach described above computes an approximation of the posterior distribu-

tion, which allows us to infer users’ participation in events, but it does not find the maximum point of the

posterior. Therefore, it is difficult to compute a point estimate of the latent matrices U and E which result in

the maximum function value from the Gibbs sampling results. However, U andE describe the event context

we need, and thus we need good point estimate for these variables to calculate the similarities between users

and events. To this end, we also propose a maximum a posteriori (MAP) estimation for the model which

estimates the maximum point (mode) of the posterior distribution, and therefore generates point estimates

for U and E. The MAP estimator empirically converges faster than the Gibbs sampling approach.



23

MAP estimation works by maximizing the conditional distributions of U and E iteratively, where:

Uu = µu

Ei = µi

Ak = µk

(3.15)

Since all the conditional distributions are Gaussian distributions, the Gaussian’s mean will define the

curvature and how far to step towards the maximum point for each iteration. This approach is similar to the

inference algorithm described in [54].

The complete inference algorithm is shown in Algorithm 1 on page 24

3.3.4 Implementation Details and Computational Complexity Analysis

To save computational resources, we first consider how to reduce the complexity for sampling Uu ∼

N (Uu;µu,Σu). When calculating Σu, we need to compute λUI and λF I. Note that these two terms are

exactly the same for all the Uu samples, so they only need to be calculated once for each iteration. Also

λR
∑

iEie
T
i and λF

∑
k AkA

T
k are also independent of the samples, and these entries can also can be

computed only once for each iteration. When calculating µu, λR
∑

iRuiE
T
i , and λF

∑
u FukA

T
k , 90% of

the terms have default ratings, which are independent of the samples, and need to be computed only once in

each iteration. In summary, for each sample Uu only around 10% of full work for computing µu needs to be

conducted. This is also true for each Ei and Ak sample.

Although the sampling of Uu, Ei and Ak must be conducted sequentially, the sampling of different

Us, Es and As can be conducted in parallel. This saves significant computation time in practice. We imple-

mented a parallelized MAP estimator using the thread pool mechanism in the Java standard library. Empir-

ically, the MAP estimator converges within 100 iterations and finishes within 0.5 hours on 8 cores(2.4GHz

for each core) based on our own dataset described in Section 5.6. From figure 3.5, as the number of cores

increases, the speedup based on the running time of single core also increases in linear with a slope of 0.81.

The efficiency is less than 1.0 because of synchronization overhead. Compared to the traditional SocialMF

approach which takes 3.2 hours and is not parallelizable, AnchorMF is much more efficient and scalable.
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Algorithm 1 AnchorMF
for t = 1 to num of samples do

if Gibbs sampling and t < burn in samples then
{λU , λE , λA, λR, λF } = preset value

else
Sample {λU , λE , λA, λR, λF } (Eq. 3.10 and Eq. 3.11)

end if
for users u = 1 to N do

if Gibbs sampling then
Sample Uu in parallel (Eq. 3.12)

else if MAP then
Use mean to compute Uu in parallel (Eq. 3.15)

end if
end for
for events i = 1 to M do

if Gibbs sampling then
Sample Ei in parallel (Eq. 3.13)

else if MAP then
Use mean to compute Ei in parallel (Eq. 3.15)

end if
end for
for anchors k = 1 to P do

if Gibbs sampling then
Sample Ak in parallel (Eq. 3.14)

else if MAP then
Use mean to compute Ak in parallel (Eq. 3.15)

end if
end for

end for
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Figure 3.5: Speedup with the increasing number of cores

3.4 Experimental Evaluation

In this section, we evaluate AnchorMF, our proposed event context identification solution, using real-

world events that we have collected. Our evaluation aims to answer the following questions:

• Does AnchorMF provide good predictive performance for user participation in events?

• Is the identified event context interpretable?

• Is event context effective for retrieving relevant events?

• Is event context useful for friendship recommendation?

3.4.1 Experimental Setup

We collect data using the Twitter API. We monitor daily Twitter trending topics and get a list of

ranked popular keywords by considering both how long they stay on the trending topics and their rank. Then
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Category #Events

Sports 248
Entertain 134

Tech 17
Social 25

Politics 37

Table 3.3: Event categories.

Users 1.1M
Events 461

Anchors 0.59M
User-event pair 20.79M
User-achor pair 175.99M
friendship pair 92.72M

Table 3.4: Data statistics.

a human review process is used to review the top 200 keywords and identify the ones that match real-world

ongoing events. The selected keywords are then filtered on real-time Twitter streams to continue collection

of messages which contain the keywords. At the same time, we search for historical tweets which contain the

keywords for up to 7 days. Since the selected keywords are mostly filtered on the day they became popular,

we believe a 7-day look-back window is enough to collect complete events based on keywords. The data

collection process introduces some noise into the dataset, but we carefully choose representative keywords

to ensure events are not too general. For example, the 2013 Obama inauguration event was collected based

on the keywords Obama inauguration, rather than Obama, which tends to have a much broader scope. After

we collect all the desired events, we only consider users who have participated in at least 5 of these events.

This procedure helps us to remove much of the noise in the dataset. We believe most of our data consists

of complete and coherent events. After obtaining the users who participated in each event, we also collect

friends of the users, users’ profiles, and lists (a group of followed users with a group name). In total, over

a one-month period of time from Jan 4th to Feb 3rd, 2013, we collected 461 events consisting of 20.79M

tweets and 1.1M users. All the data are stored in MongoDB and the total volume of the data is 554 GB.

Statistics for this dataset are shown in Table 3.4. From Table 3.3 we can see that events are divided mainly

into five categories. Sports and Entertainment events dominate the event type distribution. The CDF of the

number of users per event is shown in Figure 3.6. We see that our event dataset consists of both large and

small events and event size follows a heavy-tailed distribution.

All the experiments have been conducted on a 2.4 GHz 16-core machine with 48GB of memory. This

machine runs Ubuntu 12.04.2 and JVM 1.6.0 27. All of the implementation and experiments are written in

Java.
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Figure 3.6: Event size distribution.

3.4.2 Prediction Performance

In this experiment we want to examine the effectiveness of our event context identification in terms

of predicting user participation in events. We run 10-fold cross validation and in each fold randomly select

10% of all the events in our dataset as test events and the remaining 90% as training events. For each test

event, we sort all the users according to the time they participated in the event, and use the top 10%, 20%,

30%, 40%, or 50% as training users for the test event. Our goal is to evaluate the predictions of the other

90%, 80%, 70%, 60% and 50% of users for test events.

In Table 4.3, each row represents a method of ranking test users for a test event. These methods are:

(1) Random ranking predicts testing users in a randomized order. This method is the baseline for

prediction.

(2) Popularity based ranking predicts test users who are popular in the training data as ranked higher

for test events. This method does not consider event context and is the baseline for contextual

prediction.
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Training Users 10% 20% 30% 40% 50%

Random 0.5 0.5 0.5 0.5 0.5
Popularity 0.349 0.349 0.349 0.349 0.349

Baseline PMF 0.313 0.276 0.258 0.247 0.240
SocialMF 0.313 0.277 0.258 0.246 0.240

AnchorMF-Gibbs 0.213 0.204 0.197 0.196 0.193
AnchorMF-MAP 0.212 0.202 0.197 0.193 0.192

Table 3.5: Prediction performance comparison.

(3) Baseline ranking makes prediction based on event context identified by the PMF matrix factoriza-

tion technique [62] using only user and event information. This method serves as the baseline for

prediction based on event context.

(4) SocialMF identifies event context based on the matrix factorization technique considering user

friendship information. This method shows better performance than the baseline PMF approach [36].

(5) AnchorMF is the model we propose to identify event context based on the matrix factorization

technique that leverages anchor information. We compare the performance of AnchorMF using

either the Gibbs sampler or the MAP estimator.

We use average rank percentile as our main evaluation metric, which is a recall-based metric from [33],

since the implicit dataset we use does not include complete data for precision based measurements. Users

who actually participated in the events should be ranked higher in the prediction results. The average rank

percentile is computed as follows:

rank =

∑
e(
∑

u rankue/ |u|)
|e|

, (3.16)

where rankue is the average rank percentile for each user u in the event e. 0 represents the highest rank,

while 1.0 represents the lowest rank so lower percentile means better performance.

As shown in Table 4.3, AnchorMF outperforms SocialMF by 20.0% when using 50% of the users as

training users for the test events. As the percentage of training users decreases, we see a larger performance

boost for AnchorMF compared to SocialMF, up to 32.2%. We also notice that for both SocialMF and

baseline PMF, in the case where we only use 10% of the training data, the performance is almost as bad as
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the non-contextual popularity-based method.1 However, AnchorMF with 10% training data performs better

than the best cases for both SocialMF and baseline PMF. This shows the effectiveness of the identified anchor

information, and indicates that it is particularly helpful to identify event context and predict user participation

in the early stage of an event. When we compare the SocialMF and the baseline PMF approaches, we do not

see much performance difference for our dataset. One possible explanation, as we will see in Section 3.4.5, is

that on Twitter users tend to have friends who are very dissimilar in terms of the latent trait space. Therefore

the use of aggregated friends’ interests, as performed in SocialMF, may not be beneficial. Additionally,

since we removed users who have participated in fewer than 5 events from our dataset, and since SoicalMF

has been proved to be most effective for cold start users in recommender systems, SocialMF is not effective

in our scenario since there are no cold start users.

3.4.3 Event Context Case Study

As shown above, our proposed event context identification algorithm is effective and outperforms

other existing related approaches. We would now like to see how to interpret the identified context. The ex-

periment described in this subsection examines three different scenarios, where each scenario has a different

event context. The results show that the identified event context is interpretable and meaningful.

We select 6 events from all predicted results we get from the experiment described in Section 3.4.2.

Each event consists of the predicted users for that event; the information for each user includes Twitter

profile and list data. We aggregate the user information for each event and use this data to populate a table,

as shown in Tables 3.6 through 3.11. Each column represents a source or dimension of user information

that we will examine, including location, the self-provided user profile description, and tags from users’ list

information. We extract all keywords from this aggregated user information and list the top five keywords

ranked by probability of occurrence (P = frequency count/total frequency). We study the context of

events by looking at these keywords and manually verify whether they have coherent semantic meaning.
1 We only consider the popularity of users in the training events, so the performance of popularity based ranking is independent

of the percentage of training users in testing events.
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Location P Description P Tags P

new orleans 0.42 sports 0.06 sports 0.08
LA 0.12 music 0.04 travel 0.05

Louisiana 0.05 world 0.03 politics 0.03
city 0.03 god 0.03 music 0.02
usa 0.02 football 0.03 entertain 0.01

Table 3.6: Event case study: #nola

3.4.3.1 Location Specific Event Context

First, we look at two cases where users discuss events on Twitter based on location. Table 3.6 shows

results from an event about a local famous cafe that moved to a new location, which happened on Jan 17,

2013. As we can see from the results, the location dimension has a concentration of probability on the

keywords new orleans, which matches the actual location of this event. The rest of the keywords, such as

LA and Louisiana in the location dimension also have coherent meaning. Although city and usa are general

location terms which do refer to a specific location, they have much lower probability compared with higher

ranked keywords. If we look at both the description and tag dimensions, the keywords all have fairly low

probability without much concentration, and they also lack coherent semantic meaning.

Table 3.7 shows results from an event about a local social club meetup in Harrisburg, Pennsylvania

that happened on Jan 21, 2013. The results are very similar to what we see from the #nola event. The

location dimension has a concentration and coherent meaning, while the tag dimension does not. We do

see that the description dimension has the social keyword with higher probability. The reason for this is the

type of the event is essentially a social event and people participating in the event are self-identified with the

keyword “social”.

Location P Description P Tags P
pa 0.31 social 0.12 twibes 0.07

lancaster 0.12 manager 0.05 pa 0.06
harrisburg 0.12 business 0.05 social 0.04

pennsylvania 0.06 marketing 0.05 local 0.04
county 0.06 foodie 0.05 leader 0.04

Table 3.7: Event case study: #hbgsmc
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Location P Description P Tags P
new york 0.08 media 0.05 news 0.37

ca 0.08 news 0.04 media 0.13
usa 0.06 tech 0.04 tech 0.09

canada 0.04 writer 0.03 marketing 0.02
tx 0.03 marketing 0.02 business 0.02

Table 3.8: Event case study: #2013ces

3.4.3.2 Interest Specific Event Context

We now look at two examples that are based on users’ interests. We focus on the description dimen-

sion and the tag dimension to see if the keywords extracted give us meaningful information.

Table 3.8 shows results from an event about the International Consumer Electronics Show from Jan 8

to Jan 11, 2013. As we can see from the results, the tag dimension has a concentration on news, media, and

tech, which match the event’s semantic meaning. Also as expected, the location dimension shows a broad

coverage of different locations and does not have a concentration as compared to location-specific events.

However, we do not see significant concentration in the description dimension, although the top keywords

have coherent semantic meaning. We will discuss this result further in Section 3.4.3.3.

Table 3.9 shows results from an event about the Oscar nominations which happened on Jan 10, 2013.

The results show the same pattern as what we find in the International Consumer Electronics Show event.

3.4.3.3 Location and Interest Specific Event Context

Next, we look at two events that are both location and interest specific. Good examples of these

types of events are local sports events. We will focus on all of the three dimensions to see if there are any

Location P Description P Tags P
new york 0.12 film 0.11 news 0.48

los angeles 0.06 tv 0.09 entertain 0.10
london 0.06 writer 0.09 tv 0.02
torronto 0.04 news 0.09 fashion 0.02
canada 0.03 movies 0.07 media 0.02

Table 3.9: Event case study: #oscarnoms
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Location P Description P Tags P

ca 0.15 sports 0.10 sports 0.32
los angeles 0.10 life 0.08 nba 0.08
california 0.05 love 0.08 basketball 0.03

tx 0.04 fan 0.06 fans 0.02
san antonio 0.03 music 0.03 lakers 0.02

Table 3.10: Event case study: #lakers

interesting patterns.

Table 3.10 shows the results of NBA basketball game event that involved the Los Angeles Lakers

vs. the San Antonio Spurs, which happened on Jan 9, 2013. The location dimension shows an interesting

concentration on both Los Angeles and San Antonio, which are the expected locations. The description

dimension shows a somewhat noisy results, but the sport keyword is apparent. The tag dimension shows

good concentration and gives us confidence that this is indeed a local sports event.

Table 3.11 shows the results of an event involving two English soccer teams in the Premier League,

Manchester United vs. Liverpool, which happened on Jan 13 , 2013. Similar to the results of the previous

example, the location and tag dimensions show the expected results, while the description is relatively noisy.

From all these event case studies, we find that it is relatively easy for humans to understand the event

context by looking at the location and tag dimensions. This results from the fact that the location field is

specifically designed for users to provide their location on Twitter, and most people tend to follow this rule.

Tags are provided by users’ followers and they serve identification purposes, and so tend to include location

and interest information. The results also indicate the usefulness of the textual data in these dimensions and

may lead us to incorporate this information into our model in the future. We also notice that the description

Location P Description P Tags P
london 0.16 fan 0.10 football 0.14

uk 0.08 football 0.07 sports 0.13
England 0.07 sports 0.05 sport 0.07

manchester 0.05 united 0.04 soccer 0.05
liverpool 0.02 arsenal 0.04 friends 0.03

Table 3.11: Event case study: liverpool
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dimension is noisy for all three types of events, because self descriptions are very informal and users do not

usually include their location and interest information in their self-provided profile description.

3.4.4 Retrieval of Relevant Events based on Event Context

By looking at the common attributes of predicted users for some events, we can understand the mean-

ing of event context. The next important issue to investigate is how we can use the identified context to better

understand events. In this experiment, our goal is to demonstrate the feasibility of building an event-based

search engine by leveraging event context information. The challenge here is that we do not consider the

text of events and the relevance is only based on event context.

We have built a proof-of-concept system to evaluate the effectiveness of the relevant event retrieval

process. We construct queries from all of the 461 events in our dataset with different number of events.

We first randomly select 46 events as length-1 queries. Then 46 length-2 events are randomly selected by

combining any two of the length-1 queries. Next, 46 length-3 events are randomly selected by combining

any three of the length-1 queries. After this process, we have 138 queries in total. For each query, all of the

returned results are assessed as either relevant or irrelevant; there are 42,733 labeled judgment pairs in total.

Standard information retrieval evaluation metrics [72], including precision@3, precision@5, precision@10,

Mean Reciprocal Rank (mRR) and Mean Average Precision (mAP), are used to evaluate the results. The first

three precision based metrics are considered good metrics for results returned from mobile devices or Web

searches. mRR measures the rank of the first relevant result, and mAP considers recall as well as precision

in the measurement.

For each query, we divide the query q into separate events. Each potential result i has a relevance

score S(i, j) according to Equation 3.6 given event j. Therefore, the relevance score RSi is computed

according to:

RSi =

∑
j S(i, j)

|q|
(3.17)

The first three rows of Table 3.12 show three sets of contextual retrieval results based on length-1-to-3

queries. The last three rows show three sets of randomized retrieval results based on length-1-to-3 queries.



34
P@3 P@5 P@10 mRR mAP

Q1 0.717 0.625 0.555 0.889 0.691
Q2 0.725 0.675 0.586 0.855 0.668
Q3 0.759 0.722 0.623 0.856 0.683

Q1-Ran 0.017 0.010 0.013 0.057 0.028
Q2-Ran 0.012 0.011 0.012 0.064 0.029
Q3-Ran 0.021 0.019 0.019 0.079 0.032

Table 3.12: Event retrieval ranking results.

As we can see from Table 3.12, using event context, the retrieved results have very good top-K

accuracy and very high performance for first relevant result retrieval. By considering recall, the mAP also

shows high performance. We also see that queries with different length show very similar performance. This

means contextual retrieval is consistent for queries of different lengths. Compared to randomized retrieval

methods shown in the last three rows, contextual retrieval can return events that are much more relevant.

The results above show that the semantic relevance of events as labeled by a human. However, there

are some cases where, although human may think two events are semantically unrelated, they share the same

context. These cases show interesting results for relevant events that can not be captured by semantics. One

good example that we found in our dataset is the 2013 Obama inauguration event, which happened from Jan

19 to Jan 21, 2013 and the The 2013 International Consumer Electronics Show (CES) event happened from

Jan 8 to Jan 11, 2013. At a first glance by human, these two events are completely unrelated. However, our

model shows that these two events have a common context of people who like technology. The discovery of

non-semantic but contextually relevant events is the unique benefit of event context identification.

3.4.5 Friendship and Event Context

To emphasize the importance of identified event context, we will show another possible application.

In this experiment, we investigate the correlation of identified event context with user friendship. We will

demonstrate that users who belong to similar event context are more likely to be friends. This observation

allows us to build better friendship recommendation services.

We randomly sample 100,000 users and obtain all of their friends. For each user and friend pair,
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Figure 3.7: CDF of user-friend similarity based on event context.

we calculate the user-friend similarity of their latent factor vectors based on the similarity defined in Equa-

tion 3.6 that are generated from the matrix factorization. Let Rankf be the rank of a friend based on

similarity, the relative similarity is calculated for each user as:

Rankf/#friends (3.18)

The reason for defining the relative similarity is that the rank is important, and we want to normalize the

rank. A similarity value of 1 indicates the most dissimilar user-friend pair.

We plot the CDF of all the user-friend similarity pairs in Figure 4.9. As we can see from the solid

line in Figure 4.9, users tend to have many similar friends. 50% of the friends are within 0.2 similarity. The

dotted line shows the case where user-friend similarity is randomly calculated. At the end of the CDF curve,

we do see there is a trend of increasing dissimilarity. This means users also have many dissimilar friends.

This can affect performance when we consider the use of friends’ interests to help predict users’ interests;

we will verify this further in the next experiment.

The above analysis shows only aggregated similarity between users and their friends. In our second

experiment, we want to see the friendship similarity distribution for each user. In Figure 3.8, the x-axis
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Figure 3.8: Friend similarity distribution per user.

represents users, the y-axis indicates relative friendship similarity as defined above, and each dot represents a

friend. As we can see from the figure, there is high density around similarity of 1 and similarity of 0, meaning

that users have both similar and dissimilar friends. The dissimilar friends are likely to be loosely-connected

social friends and they may not share common interests with the user. This also explains why a direct average

of friends’ interests, as performed in the SocialMF model, will not help infer users’ interests. In reviewing

all of the results from the analysis in this subsection, we see that better friendship recommendation can be

made based on event context information.

3.5 Conclusions

In this work we have presented AnchorMF, a matrix factorization technique to solve the event context

identification problem. AnchorMF selects anchors from users’ followers and incorporates anchor informa-

tion into an extended PMF framework. We have also presented several applications of using identified event

context to predict users’ participation in events, retrieve relevant events, and recommend friends based on
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event context. Our evaluation using real-world Twitter data shows that AnchorMF outperforms existing ma-

trix factorization techniques by 20.0%. In our future work, we would like to explore other potential features,

such as location information in users’ profiles and tag information from users’ followers, and consider how

these features can be used in our model for better event context identification.



Chapter 4

Location Inference

4.1 Introduction

With the broad support of anywhere, anytime social interaction in today’s online social networks

(OSNs), location sharing is becoming prevalent. As another dimension of social networking, users can

geotag their posts, and announce their current locations to friends and the public at large. The benefits of

location sharing can be multi-fold. It facilitates more effective social networking, as well as producing better

location-based intelligence, which is useful for both business entities and end users. Studies have shown that

location sharing is useful for many social applications and recommendation services [7, 21, 78].

However, the disclosure of location information raises serious privacy concerns [18, 39, 1, 42]. Long-

term location trail can reveal a person’s location routines [1]. One key challenge is to determine who has

access to a user’s location information. This is particularly difficult in OSNs, where the sharing of various

types of context information makes it possible for privacy attackers to identify a user’s whereabouts. Even

when no explicit location information is disclosed by a user, the user’s location can be inferred from his/her

status updates and also friendship information.

To identify an OSN user’s geographic location1 , previous works have studied the use of either text

postings or social structure information [23, 15, 75, 6], and their estimation errors range from 700km–

1000km for average error and 140km–500km for median error. In this work, our goal is to investigate new

techniques that leverage both textual and social structural information, and understand to what extent users
1 If a user is associated with multiple GPS coordinates, the centroid (i.e., mean) of the coordinates is used as the user’s

groundtruth location. We assume that the centroid of a user’s location is relatively fixed while occasional travels might happen.
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can be geolocated when multiple types of data are fused together. This is a challenging problem due to the

following reasons:

• Although large amounts of data exist in OSNs, there are no strong or explicit geographic clues.

It is unclear how text postings and social structures can be used for stable and accurate location

estimation.

• Information in OSNs is very noisy. User-generated data are diverse in style and content, and there

can be various types of errors and/or inconsistencies.

• While geographic clues may be obtained from multiple types of features, their relative importance

or confidence are not clear, nor is the fusion strategy.

To address these challenges, we have developed GeoFind, a unified solution for identifying users’

geographic locations by utilizing both textual and social structural information in OSNs. GeoFind ranks

candidate geographic regions (clusters) in a three-stage ranking process: (1) text-based ranking using a com-

bination of geo-sensitive textual features; (2) structure-based ranking using maximum likelihood estimation

(MLE) of geotagged friendship information; and (3) fusion (or re-ranking) of text-based and structure-based

orderings of geographic regions.

To the best of our knowledge, this is the first work that aims to geolocate users in OSNs through the

fusion of text and social structure. This work makes the following contributions:

• Analysis and combination of geo-sensitive textual features for improved text-based location esti-

mation;

• Analysis of friendship versus geographic distance and maximum likelihood estimation for im-

proved structure-based location estimation; and

• Effective fusion (re-ranking) of both text-based and structure-based rankings for accurate location

estimation.
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We evaluated GeoFind using a public dataset and our own dataset containing 0.8 million geotagged

Twitter users collected through a 3-month period. Evaluation results demonstrate that GeoFind outperforms

state-of-the-art techniques with significant reduction in estimation error (25% reduction in average error, and

66% reduction in median error). In particular, our solution reduces the median error from 140km–500km to

47km. We further discuss the implications of location privacy given the improved location accuracy through

the fusion of multiple data types in OSNs and beyond.

4.2 Problem Formulation and System Overview

In this work, we aim to geolocate users by leveraging both text and social structure information in

OSNs. Using Twitter as our test platform, we first collect a large number of geotagged tweets and cluster

them into geographic regions. The details of the data collection process is described in Section 5.6. Given a

test user, our goal is to correctly retrieve one of the geographic regions which has the maximum similarity

to the actual location of the test user. A formal definition of the location identification problem is given as

follows:

Location Identification Problem: Let X be a list of geographic regions and

X = {X1,X2,X3, · · · },

where Xi refers to one of the geographic regions. For a given test user

u = (Tu, Gu, Su),

where Tu represents textual features, Gu represents friendship features, and Su is the groundtruth GPS

location. Our goal is to find a ranked list R(u), with

R(u) = {Xr1,Xr2, · · · },

where

Xr1 = argmax
i

similarity(Xi, Su).

To solve this problem, we firstly use the test user’ tweets as a query and obtain a textual ranking of all

geographic regions according to their textual relevance to the query. Secondly, we use the bidirectional
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Figure 4.1: GeoFind: Fusing textual and social structure information in online social networks to geolocate
users.

friendship links of the test user to obtain a friendship ranking of all geographic regions based on their

likelihood of containing the test user’s location. Finally, we obtain a re-ranking of the geographic regions

by boosting from both ranked results. We define the key concepts as follows:

• Geographic region Xi: Given geotagged tweets M = {(m1, S1), (m2, S2), · · · }, geographic re-

gions Xi are the result of clustering M based on GPS locations, i.e., each Xi represents a spatial

cluster of M .

• Similarity(Xi, Su): The Earth distance between the average GPS of Xi, and user u’s groundtruth

GPS location Su.

• Textual ranking RTu: ranking of geographic regions for a given user u based on textual features.
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• Friendship ranking RGu: ranking of geographic regions for a given user u based on friendship

features.

• Re-ranking RFu: ranking of geographic regions after fusing RTu and RGu .

4.2.1 Geographic Regions

Previous works focused mainly on building direct relation from tweet text to specific GPS coordinate.

Eisenstein et al. proposed an innovative geographic topic modeling technique to estimate location from a

Gaussian distribution [23]. Cheng et al. leveraged an MLE approach to identify location-specific terms and

then identify accurate GPS based on the combination of location-specific terms [15]. Wing et al. proposed

to cut the Earth surface into grids and map the test user’s tweets to one of the grids and the GPS estimation

is the center of each grid [75].

We expand the idea of text-to-GPS coordinate mapping and map text to a region on Earth. Note that

the regions do not correspond directly to geographic areas such as counties and states, since tweets density is

different in each geographic area, known as the sparse data problem. The benefits of mapping text to a region

instead of GPS coordinate are multi-fold. First, it is more intuitive to think someone is from a certain region

rather than a single point. Second, we can ensure that we have enough data within each region by controlling

the size of that region. Third, it is then easier to transform identifying people’s locations to retrieving the

most likely region for a given person. Fourth, region becomes the most basic element throughout our design,

simplifying our design yet still maintaining high accuracy.

Although various clustering techniques have been developed, we choose k-means clustering for both

effectiveness and efficiency reasons. This simple and intuitive clustering technique serves the purpose of

dividing the map into geographic regions according to all the geotagged data. As we can see from Figure 4.3,

k-means successfully divides US into reasonable regions. Here we set k to 200 empirically. The tradeoff of

setting different k values is discussed in Section 4.6.2.
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4.3 Text-based Location Ranking

Everyday, a huge amount of text data are generated in OSNs, e.g., over 200 million tweets per day on

Twitter. Even though only around 1% of the tweets are geotagged, we still have a large amount of text data

for location identification. The challenge is to identify geo-sensitive textual features despite the fact that

user inputs could differ significantly in content and style of writing. Specifically, we would like to select

textual features which correlate well with geographic locations, such as the mentioning of local restaurants

or sports teams. One other interesting fact we have observed in our textual analysis is that local users are

also mentioned in tweets, which motivated us to utilize the social structural information of friendship links

(discussed in detail in Section 4.4).

4.3.1 Relevance Ranking Based on Textual Features

Given the tweets of a test user, our goal is to rank geographic regions (each consists of geotagged

tweets in that region) based on textual and geographic similarity. Following the traditional bag-of-words

model, we first tokenize the tweets using the state-of-art TweetMotif tokenizer [17], which is specifically

designed for tweets. Also, a Twitter part-of-speech (POS) tagger [30] is utilized for mapping each token to

one of the POS tags. The main purpose of this step, as shown later, is to identify the effectiveness of each

POS categories in terms of geolocating users. As a design consideration, no stemming is used since we

do not want to destroy any possible proper nouns. In order to extract distinctive and geo-sensitive features

for each region, we use TF-IDF weighting [63], a well-known textual feature extraction scheme which uses

both local and global information to extract feature vectors.

After we have extracted feature vectors for all the geographic regions and test users, we calculate the

relevance of regions for each test user. The similarity metric we use is cosine similarity, which measures the

cosine of the angle between two feature vectors. The intuition is that, the more textually similar between

a test user and a region, the more likely the user belongs to that region. Based on the similarity scores, a

ranking of all geographic regions is obtained for each test user, with the first region being most textually

similar to the user’s tweets.
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Table 4.1: Combination of Different Textual Feature

FeatureSet # 1 2 3 4 5 6 7 8
common noun X X X X X X X
proper noun X X X X X X X

proper noun & possessive all∗ X X X X X X X
nominal & verbal X X X X X X X

hashtag X X X X X X X
at-mention X X X X X X X

median(km) 168 130 164 261 129 126 122 535

All textual tokens are used, not just the POS features listed in this table.

4.3.2 Geo-sensitive Textual Features

Although textural features are generally believed to be useful for location identification, it is unclear

which textual features are geo-sensitive and how useful they are. According to [30], there are potentially

25 part-of-speech (POS) features on Twitter. Many of them are obviously not correlated to geographic

locations, such as verbs, determiners(the, its, her), etc. Others are possibly geo-sensitive, e.g., proper

noun(Alcatraz, Lebron, NY), common noun, etc. In order to analyze the POS features effectively, we first

focus on a subset of key features which we believe are possibly geo-sensitive. By removing other features,

we create the baseline results which should not be worse than keeping all the features. Next, among the key

features, we remove each feature and use the remaining features as a combination feature set for location

identification, i.e, leave-one-out. If the results are significantly worse than the baseline, it means that the

feature removed is important and geo-sensitive.

As shown in Table 4.1, set #1 contains all the tokens we have extracted from each test user’s tweets,

and set #2 contains all the key POS features. For set #3 to set #8, we remove one key feature each time.

The bottom row shows the median distance error (see definition in Section 4.6.1) of all users’ location

estimations, i.e., 50% of the test users are located within a certain distance from their true locations. We

see that set #2’s result is actually slightly better than that of set #1 (130km vs. 168 km), which indicates

that the key features we select are appropriate. Compared to the baseline result (set #2), set #3, set #4, and

set #8 perform worse (164km, 261km, and 535km, respectively). The results indicate that, among all the

POS features, common noun, proper noun and at-mention are more geo-sensitive. The first two features
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are intuitive, as we can imagine the names of local sports teams or restaurants appear in the two features. It

is actually surprising to see at-mention phrases play a significant role in location identification. Table 4.1

shows that for set #8, feature combination without at-mention dramatically decreases the performance by

about 4 times. At-mentions represent conversations between users, which usually involve local users in the

same geographic region. This effect should be further explored to see who are following the local users and

the friendship structures.

4.4 Structure-based Location Ranking

Based on our analysis of geo-sensitive textual features, we found that many Twitter users’ names

appear in geotagged tweets, and the mentioning of these names reflect significant geographic relevance. The

intuition is that Twitter users in a given geographic region is likely to follow other local users, which may

be beneficial for estimating users’ locations. In traditional OSNs such as Facebook, it has been observed

that the social network structure is to some extent correlated with users’ geographic distribution [6]. Twitter,

however, exhibits some non-social properties similar to a news media [43]. It is not clear if and to what extent

Twitter users’ social structure correlates with their geographic locations. Furthermore, Twitter friendship

links are directional: user A following user B does not necessarily mean that user B follows user A, which

is different from Facebook’s friendship links.

Given the characteristics described above, we propose a structure-based location ranking method

which differs from FindMe [6] in the following important aspects. First, our method positions each user

based on the assumption that more of his/her friends are likely to be close by and fewer friends are further

away, i.e., smaller the distance, larger the fraction of friends in that distance. FindMe assumes a user should

be close to his/her friends as well as being further away from non-friends, which may be too restrictive given

that people in the same region are not necessarily friends and real-world friends in the same location are not

necessarily reflected in OSNs. Second, FindMe considers both friends and non-friends (i.e., all users in an

OSN) for each user, which has a high computation overhead and do not scale. Our method, on the other

hand, considers only friends for each user, which is much more efficient and scale well with the size of the

OSN. Finally, FindMe uses a linear regression approach to estimate its parameters, while we propose an
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MLE-based approach for parameter estimation with much better accuracy. Next, we explain in detail our

MLE-based ranking framework, friendship modeling and parameter estimation.

4.4.1 MLE-based Ranking Framework

Given the observations of friendship links in an OSN and some geotagged users, our goal is to de-

termine the geographic location of a given user. Let L(u, s) be the likelihood of user u being located at

location s, Gu be the set of geotagged friends of u, and sgi is the location of each friend gi ∈ Gu. Assuming

independence of the friends’ locations, we define

L(u, s) ∝
∏
gi∈Gu

P(u, s|gi, sgi), (4.1)

where P(u, s|gi, sgi) denotes the probability of u at location s given that a friend gi is located at sgi . To

avoid the underflow problem, we transform the equation as follows:

lnL(u, s) ∝ ln
∑
gi∈Gu

P(u, s|gi, sgi) (4.2)

To simplify the computation, we consider the distance between u and each friend gi instead of their exact

locations. The assumption is that the distance between u and his/her friends follows a certain distribution and

friends are more likely to occur at shorter distances from u. Therefore, the task of calculating P(u, s|gi, sgi)

can be replaced with the estimation of p(d), the probability of u having a friend who is distance d away

from u. This is achieved through friendship modeling and parameter estimation, described in the following

subsection. For each of the candidate geographic regions (Section 4.2.1), we calculate the corresponding

likelihood of user u being located at the center of that region by calculating the distance d between u and

each friend and summing up the corresponding p(d) values. All the geographic regions are then ranked in

descending order for user u based on the likelihood values.

4.4.2 Friendship Modeling and Parameter Estimation

Our first step is to model the friendship-distance relationship using a function that takes the distance

as input and outputs the probability of friendship between users. In other words, the function captures the
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Figure 4.2: Probability of Friendship vs. Distance in log-log scale. Dotted line is the fitted power-law
distribution.

probability of somebody’s friends occurring at a certain distance. Using our 0.8 million Twitter user data

set (Section 4.6.1, we calculate all the pairwise friendship distances (excluding the test users), and split the

range of distance evenly into 10,000 buckets between the minimum and maximum distance in the data set.

Next, we assign each distance to the corresponding bucket, count the number of friendship distances in each

bucket and divide the count by the total number of friendship distances as the probability of friendship for

that specific distance bucket. After plotting the probability of friendship as a function of distance in log-log

scale, it turns out that the line is a good fit to power-law distribution, as shown in Figure 4.2.

Following this observation, we fit our empirical friendship-distance data into a power-law model:

p(d) = Cd−α for d ≥ dmin, (4.3)

where C, dmin, and α are parameters whose values we will determine later. Since we are modeling the

probabilities of friends occurring at certain distances, the sum of the probability values should equal to 1

and the power-law function needs to be normalized before we estimate the parameters. Let
∫∞
dmin

p(d) = 1,

we can derive that C = (α − 1) dα−1min . Note that the derivation is only meaningful with α > 1, which is a
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requirement for a power-law function to normalize. Thus,

p(d) =
α− 1

dmin
(
d

dmin
)−α for d ≥ dmin (4.4)

Now that we have the normalized power-law model, we are ready to estimate parameters dmin, and α. Here,

dmin measures the minimum friendship distance we take into consideration. Mathematically, we can use

the minimum distance in our data set (which is very small and close to zero) as dmin, but in reality, it

would give us too much noise for extremely close GPS coordinates. On the other hand, if we choose a big

dmin, we may end up cutting off too many nearby GPS points that may be useful for location prediction,

resulting in a biased data sample and eventually poor estimation results. Hence, we want dmin to be small

enough to have enough precision but not too small to bring in much noise. Based on this reasoning, we

only consider distance values that are at least 10km. α represents the power of friendship: the smaller α

is, the more friendship links there are. Previous research in social networks shows that α is typically close

to 1 [22]. We now estimate the parameters from the empirical data using the goodness-of-fit test based on

Kolmogorov-Smirnov statistics and maximum-likelihood fitting methods [16].

Estimating dmin: In general people use MLE for parameter estimation, but this approach is not

directly applicable to the estimation of dmin because increasing dmin would actually decrease the number

of d values observed in our data set and thus the likelihood function will never decrease. One possible

approach is to choose dmin based on KS statistic. LetD be the set of friendship distances in the data set that

is at least dmin, the KS statistic is defined as below:

D = max | P (d|θ̂)− S(d) | for d ∈ D, (4.5)

where P (d|θ̂) is the theoretical CDF with parameter θ, and S(d) is the empirical CDF. The statistic measures

the largest deviation in cumulative density between the empirical data and fitted model. Minimizing KS

statistic allows us to find the dmin that has the closest fitted model to the empirical data. Each time we pick

a value for dmin, we have to resize the dataset, re-estimate α based on the new setting, and calculate the gap

between theoretical and empirical CDFs. After testing on different dmin values, we then choose the dmin

that gives the smallest KS statistic.
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Estimating α: Now that we have the estimated dmin, we can use the method of maximum likelihood

to derive an MLE for α. The derivation process is shown as below:

lnL(D|α) = ln
∑
di∈D

α− 1

dmin
(
di
dmin

)
−α

(4.6)

= n ln
α− 1

dmin
− α

∑
di∈D

(
di
dmin

) (4.7)

Let ∂L/∂α = 0 and we have:

α = 1 + n/
∑
di∈D

ln(
di
dmin

) (4.8)

4.5 Fusion (Re-ranking)

Two different orderings of geographic regions are obtained from (1) text-based ranking using a com-

bination of geo-sensitive textual features and (2) structure-based ranking using MLE of geotagged friendship

information. If we view the text- and structure- based rankings as the outputs of two basic models, the chal-

lenge is to determine when to put more trust on one model versus the other. While in some cases it is fine to

choose one out of the two, in most cases, the combined results of both models would achieve the best per-

formance. Therefore, to take advantage of both text- and structure-based models, we propose a re-ranking

algorithm under the learn-to-rank framework [48, 24, 9] to effectively fuse together the two ordered lists of

geographic regions.

4.5.1 Properties of Our Re-ranking Problem

Fusing the rankings of two different models to derive a new model is a non-trivial task. Although

specific combination rules may be defined, it is difficult to determine all the parameters and has the risk

of overfitting. Data in OSNs are diverse and change rapidly, and it is important for us to find an effective

way to automatically combine multiple evidences. The learn-to-rank framework is suitable in this case.

Essentially, results generated from previous stages can be treated as features to build a learn-to-rank model.

Features generated from test data can then be combined automatically and effectively. Here, we highlight

some important properties of our re-ranking problem:
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(1) Since we use the average GPS coordinates of a geographic region to predict a user’s location, we

only care about the top-ranked region in the final result. This means we want the top one result to

be the relevant result and all others irrelevant.

(2) For the evaluation step of learn-to-rank, it is only positive when the relevant result is the top one

result and the ordering of all other regions is not important.

(3) Relative order is important and there is no need to generate the actual score or value accurately.

However, the properties we identify above do not match the assumptions of existing learn-to-rank al-

gorithms. Pointwise approaches do not consider relative order between geographic regions and only predict

the relevance degree, which contradicts property 3. Pairwise approaches create highly imbalanced training

set based on property 1, since there is only one relevant region in our setting. Listwise approaches rely on

permutation-based evaluation, which is not applicable according to property 2.

4.5.2 Re-ranking Algorithm Design

Based on the analysis above, we design our re-ranking algorithm as follows. For a given user, each

geographic region is represented by a four-dimensional region feature vector consisting of text-based rank,

textual relevance value, structure-based rank, and the corresponding log-likelihood value. Given two differ-

ent regions, we compute the difference between their region feature vectors and try to determine if the first

region is more likely to be the true region than the second one. Our goal is then to map the region difference

vector to the 1 or 0 decision. We accomplish this in two stages. In Algorithm 2, we generate two sets of

training data (with 1 or 0 labels) based on the training users’ true region and its difference from all other

regions.

In Algorithm 3, we first use the training data to learn the parameter ~θ for the logistic function f(z).

Since the logistic function is monotonic, for each test user, we examine each region Xi = ~xi, and the region

with the maximum zi = ~θ ·~xi is selected as the test user’s relevant region Xmax = ~xmax. Note that pairwise

region comparison is not needed here, since for any other region Xi = ~xi, zmax − zi = ~θ · ~xmax − ~θ · ~xi =

~θ · (~xmax−~xi) ≥ 0, and f(~θ · (~xmax−~xi)) ≥ 0.5, so the label would be 1, meaning that region Xmax ranks
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Algorithm 2 TrainingData()
Input: Set of training users{ui}, each user has a list of possible regions {Xi|Xi = ~xi}, where Xr1 is the
user’s the true (relevant) region, Xr2 to Xrk are irrelevant regions, and ~xi is the region feature vector.
Output: Two sets of training data, {vi|vi = ( ~yvi, lvi)}, {wi|wi = ( ~ywi, lwi)}, where ~y is the region
(difference) feature vector and l is the label.
for each training user ui do

for each region Xi(i 6= r1) do
~yvi = ~xr1 − ~xi; lvi = 1
~ywi = ~xi − ~xr1; lwi = 0

end for
end for
return {vi}, {wi}

Algorithm 3 TrainingAndTesting()
Input: Two sets of training data, {vi|vi = (~yvi, lvi)}, {wi|wi = (~ywi, lwi)}, set of test users{uj}.
Output: Relevant region for each of the test users Xmax
~θ = LogisticRegression({vi, wi})
for each test user uj do

for each region Xi = ~xi do
zi = ~θ · ~xi

end for
Xmax[uj ] = Xi with the maximum zi

end for
return Xmax
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higher than any other region Xi.

Algorithm 3 is designed to learn a function, and given a pair of geographic regions, it determines

which region ranks higher. However, an arbitrary classifier might predict region j > region i, region i >

region k, and region k > region j, for i 6= j 6= k. Also if region a ranks higher than region b, the classifier

might also predict region v ranks higher than region u. In these cases we cannot get the highest ranked

region without conflict. Our algorithm guarantees that there is no conflict case. We can easily verify the

following theorem according to the monotonic property of logistic function:

Theorem 1. Let f be the logistic function learned by the algorithm. If f(a− b) = 1, f(b− c) = 1, then

f(a− c) = 1

If f(u− v) = 1, then

f(v − u) = 0

Proof. Since f is a logistic function, we know

f(z) =
1

1 + e−z
, z = β0 +

n∑
i=1

βixi

So

z(a− b) = z(a)− z(b) > 0, z(b− c) = z(b)− z(c) > 0

And

z(u− v) = z(u)− z(v) > 0

Then

z(a− c) = z(a)− z(c) > 0, z(v − u) = z(v)− z(u) < 0

which shows that

f(a− c) = 1, f(v − u) = 0
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4.6 Experimental Evaluation

In this section, we evaluate to what extent individual users can be geolocated using their textural

postings and social structure information in OSNs. Specifically, in comparison with existing state-of-the-art

methods, we want to evaluate how GeoFind perform overall and how the individual components perform,

including GeoFind text-only, structure-only, and fusion (re-ranking).

4.6.1 Experimental Setup

Two different data sets are used in our experiments. The first data set is from the authors of [23].

It contains one-week geotagged tweets within the U.S. from the Twitter Stream API. The dataset is also

used in [75]. The second data set contains data we collected from Twitter over a 3-month time period from

June to September 2011. This data set contains 0.8 million geotagged Twitter users within the U.S., which

have been obtained from the Twitter Stream API using a fixed geographic. We also obtain the users’ social

structure information and restrict the users to have more than 10 and fewer than 1000 friends and followers.

Users outside that range do not show consistent social behavior on Twitter [43]. For each user with multiple

geotagged tweets, the user’s true location is computed as the average GPS coordinates of the tweets we

collected from that user. In total, we have 0.82 million users. From these users, we randomly selected

10,000 users and collected all the tweets from these 10,000 users, giving us 16,436,545 tweets in total.

Table 4.2 summarizes the key characteristics of these two data sets. For data set 2, all the users are clustered

into 200 geographic regions, and their distribution in the U.S. is visually shown in Figure 4.3, where circles

with larger diameter represent clusters with more users.

From figure 4.4, we see the distribution again from a different source of data. There are 18 months of

all geo-tagged tweets from Twitter firehose, around 2.7 billion in total, provided by Gnip and Mapbox [29],

where brighter color (darker in grey color mode) represents places with more users. Compared to figure 4.3,

we find the two distributions are very similar to each other. It means our dataset is representative and follow

the distribution of real geo-tagged tweets distribution on Twitter.

We follow the same evaluation metrics using in [15, 23, 75]. For each test user ui ∈ U , we calculate
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Figure 4.3: Distribution of 200 geographic regions (clusters) obtained from data set 2. Bigger circles repre-
sent more users.

the Error Distance, errori, which represents the Earth distance between the estimated location, Sest and the

true location, Strue:

errori = EarthDist(Sest, Strue)

Given the large number of test users, we define Average Error Distance and Median Error Distance as

follows:

AvgErr =

∑|u|
i=1 errori
|u|

MedianErr = sorted(error)n/2

For our GeoFind solution, we consider three variations: text-only, structure-only, and fused. We

compare GeoFind to the following techniques:

• Text-based techniques: GeoLex [23] extends LDA to incorporate location information and derive

geographically correlated sub-topics. New tweets can then be mapped to the sub-topics for loca-

tion identification purposes. SimpGeo [75] is a grid-based approach which maps textual features
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Figure 4.4: Distribution of 18-month of all geo-tagged tweets from Twitter firehose. Brighter color (darker
in grey color mode) represents more users.

according to the language model they developed. Note that both techniques used data set 1 for their

evaluations, and their reported results are included in Table 4.3. LocalTweet [15] is an MLE-based

technique which captures local words for location identification. It was evaluated on a different

data set which we do not have access to. The results are also included in Table 4.3.

• Structure-based technique: FindMe [6] utilizes both friends and non-friends data to predict loca-

tion information on Facebook. The key difference between their approach and ours is described in

Section 4.4. We have implemented the FindMe method and compared it with GeoFind using data

set 2.

• Learn-to-rank techniques: We also compare our re-ranking algorithm to RankBoost [24] and

RankNet [9]. Both are well-known pairwise learn-to-rank algorithms and are implemented in

RankLib [58], a library of ranking algorithms, which we used for the comparison in Section 4.6.5.

All the tweets have been pre-processed in parallel using a 48-core machine, 2.2GHz for each core,
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Table 4.2: Data Set Properties

Data set #Users #Tweets #Friendships Duration Size

1 9,474 377,616 n/a 1 week 55MB
2 0.82M 16.4M 11.5M 3 months ∼7.5GB

78.2GB memory in total, running Ubuntu 10.04.3, with JVM 1.6.0 26 installed. All other experiments

have been conducted on a single core with 2.4GHz processor and 47.3GB memory available, on a ma-

chine equipped with 16 cores and running Ubuntu 10.04.3 and JVM 1.6.0 26. All the implementations and

experiments are written in Java.

4.6.2 Overall Quality

Table 4.3 compares the overall quality between our GeoFind solution and state-of-the-art techniques.

GeoFind significantly outperforms other approaches, achieving 534km average error and 47km median error

for data set 2 with 0.8 million users. Compared with FindMe, the next best-performing technique, GeoFind

reduces average error by 25% and median error by 66%. And the reductions are even bigger when compared

with the reported results of other text-based techniques. In addition, we can make the following observations

from the table: (1) GeoFind text-only outperforms other text-based techniques (GeoLex, SimpGeo, and Lo-

calTweet); (2) GeoFind structure-only outperforms other structure-based technique (FindMe); (3) GeoFind

structure-only outperforms GeoFind text-only; and (4) GeoFind fusion outperforms text-only and structure-

only, and has the best performance overall. The results demonstrate that in real-world OSNs, it is possible

Table 4.3: Overall Quality Comparison

Error Metric (km) Dataset1 Average Dataset1 Median Dataset2 Average Dataset2 Median

GeoLex 900 494 - -
SimpGeo 967 479 - -

LocalTweet 860 ≈ 160 - -
FindMe - - 715 140

G
eo

Fi
nd

Text 730 130 782 146
Structure - - 625 50
Fusion 730 130 534 47
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Figure 4.5: Conditional regression tree showing the estimation error under different situations, e.g., Node
14 with high estimation accuracy.

to geolocate users with reasonable accuracy by leveraging both textual and social structural information.

One important question to answer is — under what situations the prediction of GeoFind is accurate.

Figure 4.5 shows the conditional regression tree of 941 randomly-selected users based on features including

number of geotagged friends, number of friends, number of tweets, etc. Each node contains a subset of the

users satisfying specific conditions (e.g., Node 2: at most 2 geotagged friends). The bottom level shows a

boxplot of estimation errors for the users within each node. We can see that Node 14 outperforms all other

nodes and it represents situations when a user has enough geotagged friends (> 12) but not too many friends

in total (≤ 913). For all the test users belonging to Node 14, the average error is 263 km, and the median

error is 28 km – almost 50% boost compared with our overall results.

For a further inspection of highly populous areas, we show the results of top 10 most populous

counties in the U.S. (Table 4.4). GeoFind performs well for eight out of the ten counties, with median

error ranging from 8km to 23km. And the good results are achieved with only small number of samples

(i.e., number of training Twitter users in each county).

One important parameter in our design is the number of geographic regions (i.e., clusters) we set in
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Table 4.4: Results of Top 10 Most Populous Counties

County #Samples AvgError (km) MedianError (km)

Los Angeles 78 505 16
Cook 42 210 18
Harris 26 484 18

Maricopa 22 929 412
San Diego 24 347 105

Orange 45 281 23
Kings 14 255 8

Miami-Dade 20 674 22
Dallas 23 262 21
Queens 12 46 11
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the initial clustering procedure. As shown in 4.6, we experimented with different number of clusters between

50 and 300 with an interval of 50. Most of them performed similarly except for 50, in which case the number

of regions is too few to achieve reasonable accuracy. On the other hand, when the number of regions is too

many, structure-based ranking is not affected, but text-based ranking would have poor performance since the

amount of data is not sufficient in small regions. Empirically, the number of regions can be set to between

150 and 250.

We also observe that the median error goes down as the number of clusters goes up, but the average

error goes up as the number of clusters goes up in the end. This is because if the number of clusters is too

large, it will never hurt the effectiveness of structural ranking, and it dominates the median error in GeoFind.

On the other hand, the the number of clusters is too big, it will hurt the textual ranking performance, since

we may not have enough data in too small regions, and that is why the average error will eventually go up.
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Figure 4.6: Parameter Tuning on Number of Regions

4.6.3 Quality of Text-based Location Ranking

As shown in Table 4.3, for data set 1, which contains only text information, our GeoFind text-only

solution outperforms both GeoLex and SimpGeo, as well as the results reported by LocalTwitter on their
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own data set. GeoFind text-only also performed similarly for data set 2, with 0.8 million Twitter users and

16.4 million tweets. To further analyze how individual POS features contribute to the overall performance,

we consider different feature combinations and their corresponding results. As shown in Table 4.1, feature

sets 1, 3, 4, 8 perform worse than others. This shows that it is noisy to use all the tokens we have (set #1).

Also, common noun and proper noun play an important role for location identification (set #3 and set #4).

This is intuitive since we can imagine local restaurants, sports teams have strong geographic clues. Finally,

the most important feature (which we cannot drop) is the at-mention feature (set #8). This shows strong

local interactions among local users, i.e., local people tend to follow local information sources and interact

with them. This important finding motivated us to include social link structures for location identification.

4.6.4 Quality of Structure-based Location Ranking

In this sub-section, we use data set 2, since data set 1 does not contain any friendship information. We

randomly select 10,000 test users from the 0.8 million users and used the remaining ones as training users.

For each test user, we find all his/her geotagged friends from the training set. We compare our GeoFind

structure-only solution with FindMe, a recent structure-based location estimation mechanism. We compare

their performances when different percentage of samples (training users) are available, ranging from 100%

to 10% with 10% interval, as well as 5%, 3%, 1% and 0.1% to see the extreme cases. Results for 50%, 1%,

and 0.1% are shown in Figure 4.7.

From the results we can see that GeoFind structure-only outperforms FindMe when we have more

than 1% of the training set. The reason for the improvement is that GeoFind assumes more friends are

close by, while FindMe also restricts that non-friends have to be further away, which may not always be

true. However, with only 0.1% or even fewer data samples, FindMe outperforms GeoFind dramatically. The

reason is that FindMe utilizes non-friendship information and it helps when there are not enough friends for

each user.

We also compare the efficiency between GeoFind structure-only and FindMe. Shown in 4.8, as data

size increases, the running time of FindMe shows a slope of 1.37, while GeoFind structure-only shows a

slope of only 0.0001, i.e., GeoFind is almost constant while FindMe is linear. The main reason is that
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GeoFind considers only the number of friends of a user, which is almost constant, while FindMe needs to

consider all the existing users (friends and non-friends), so it is linearly correlated to the volume of the data

set. As such, GeoFind is much more efficient and scalable in practical usage. For example, with 0.8 million

users, GeoFind takes around 6 seconds while FindMe takes around 160,000 seconds. Both were run on the

same single 2.4GHz core with sufficient memory.

GeoFind FindMe

0
50

0
10

00
15

00

50% of Samples

E
rr

or
 (

m
)

GeoFind FindMe

0
50

0
10

00
15

00

1% of Samples

E
rr

or
 (

m
)

GeoFind FindMe

0
50

0
10

00
15

00

0.1% of Samples

E
rr

or
 (

m
)

Figure 4.7: Quality comparison of GeoFind structure-only and FindMe.

●●●●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
0

10
00

00
15

00
00

Percentage of data

C
om

pu
ta

tio
n 

tim
e 

(s
)

● FindMe
GeoFind

Figure 4.8: Efficiency comparison of GeoFind structure-only and FindMe.



62

Table 4.5: Re-rank Results

Metric Avg(km) Median(km)
RankBoost 1275 915
RankNet 1645 1093
GeoFind 534 47

4.6.5 Quality of Re-ranking

In this subsection, we evaluate the performance of our re-ranking algorithm and compare with two

other learn-to-rank algorithms, RankBoost [24] and RankNet [9].

Since both RankBoost and RankNet are pairwise algorithms, we need to adapt our problem to theirs.

We divide the training data by query, which is the test user. Each user has a list of geographical regions,

and each region is represented by a feature vector. We label the true region to be relevant and all others

irrelevant. The algorithms train all the region pairs according to MAP@1 (mean average precision at top 1

position). Given a test user, the algorithms predict the ranking of all the geographic regions related to this

user. Based on our experiments, as shown in 4.5, the average and median estimation errors are 1,275km

and 915km for RankBoost, 1,645km and 1,093km for RankNet, respectively. These results are much worse

than GeoFind’s results of 534km average error and 47km median error. Neither RankBoost nor RankNet

performs well, since there are too many irrelevant pairs for them to learn. On the other hand, our re-ranking

algorithm is specifically designed to solve this problem. Figure 4.9 shows the boosting results of GeoFind

when textual and structural features are fused together. We see that GeoFind benefits from structural features

in terms of median error and reduces the average error by considering textual features.

4.7 Discussions

Location sharing and location privacy have been topics of constant debate. As location sharing be-

comes more prevalent in OSNs, new issues arise. On one hand, OSNs are open and ubiquitous platforms,

which are beneficial for location sharing and location based services (LBS). Our GeoFind solution can po-

tentially be used to support automatic location sharing and better LBS. Our results show that in highly

populous counties within the U.S., most of the predictions are within a median error of 25km. This is a
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Figure 4.9: GeoFind: Text-only vs. structure-only vs. re-ranking.

quite reachable distance for LBS. Also, third-parties can easily retrieve geographic statistics from OSNs by

utilizing GeoFind. This can be beneficial in applications such as crisis management, disease surveillance,etc.

On the other hand, even when an OSN user does not disclose any of his/her location information, it is

possible to learn the user’s location through the company he/she keeps. Words from users’ posts, especially

words revealing location features like restaurants, local attractions will disclose the location. Interactions

with other users explicitly through at-mentions can potentially disclose more information since other users

may be geotagged or geolocated. Our results show that, by fusing textual and social structural information,

GeoFind can achieve a median error of 47km for users in the U.S., which is within city range. The fact that

the results are comparable to IP-based geolocation (57.2% users within 40km) raises new privacy concerns.

Although most people do not disclose their IP addresses in OSNs, the data needed for GeoFind is easily

accessible in OSNs, making the privacy concerns more serious. The results of our work call for a re-

examination of traditional privacy control policies which tend to only control the content the current user is

sharing. New privacy control policies and privacy protection mechanisms may be required.
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In this work, we consider the fusion of textual and social structural information in OSNs. There

are potentially other new ways to identify private location information that similar to or extend from the

techniques we propose in this work. For instance, video/photo data gathered from websites such as Flickr

can potentially be leveraged from both content and social structure perspectives. Networking activities,

when monitored closely, may also disclose important information make fine-grained location identification

possible.

4.8 Conclusions

As location sharing becomes more prevalent in OSNs, we show that even when no explicit location

information is disclosed by a user, his/her location can be learned through the company he/she keeps. To

demonstrate this, we have designed GeoFind, an effective location identification mechanism which lever-

ages both textual and social graph information in OSNs. GeoFind identifies the most likely geographic

region for a given user through (1) text-based ranking using geo-sensitive textual features; (2) graph-based

ranking using maximum likelihood estimation (MLE) of geotagged friendship information; and (3) fusion

(re-ranking) of the text- and graph-based orderings. Evaluation results using 0.8 million geotagged Twitter

users over a 3-month period demonstrate that GeoFind outperforms state-of-the-art approaches, with sig-

nificant reduction of estimation error (25% of average error, 66% of median error). Given the improved

location accuracy through the fusion of multiple data types in OSNs and possibly other data sources, new

location privacy concerns arise and existing location privacy policies may need to be revisited and adjusted

accordingly.



Chapter 5

Event Modeling

5.1 Introduction

With the fast growth of online population and rapid development of Web 2.0 technologies, online

social media networks (OSMNs), which leverage both media and social networking by supporting easy web

publishing and social interactions of online users, have become increasingly popular. A large amount of

social media content is being generated by individual users on a daily basis. For instance, users of Twit-

ter [69, 80], a popular microblogging social media site, send 140 million tweets per day. Moreover, OSMNs

provide great opportunities for users to participate anytime and anywhere. Such user-based, real-time con-

tent generation is usually event driven. As events happen and evolve over time, users stay informed by

seeking and sharing information through their social contacts (e.g., “following” and “follower” networks in

Twitter). As a result, OSMNs have become the online gathering place for public engagement when real-time

events happen and offer unique new opportunities for tracking and analyzing events. This has been demon-

strated in various application domains, such as disease surveillance [19] and hazardous situations [65]. By

sharing and receiving information among trusted and/or close social contacts, information related to specific

events can be generated and disseminated in a highly effective and efficient fashion.

However, such user-generated event-related information in OSMNs is usually unstructured, and it is

very difficult for individual users to capture a complete yet concise structural view of events using their so-

cial network-based information propagation channel. Moreover, as ongoing events evolve quickly and new

messages are generated, the structural view of events should be adjusted to reflect the new developments in

a real-time fashion. For instance, at Twitter, over 1 million tweets were generated by over 460,000 users in
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128 days about the movie Avatar and every second, there may be some new updates about the event. As

a result, users are constantly swamped by long streams of unstructured, redundant, and sometimes irrele-

vant messages, while at the same time lacking a comprehensive and well-organized view of events. Event

modeling, which aims to identify inherent, evolving event structures and potential causal relationships, has

become increasingly important for OSMNs and has the potential to significantly enhance our capabilities

for information and knowledge management.

Event modeling for OSMNs is a challenging problem due to the following reasons:

• First, messages posted by users at social media sites tend to be short. For example, each tweet

message has a maximal length of 140 characters. Also, messages generated by individual users

tend to be unstructured, informal and differ in writing style. Such data sparseness, lack of context,

and diversity of vocabulary make it difficult for traditional text analysis techniques to capture the

semantic similarity among different messages [52].

• Second, different events may enjoy different popularity among users, and can differ significantly in

content, number of messages and participants, time periods, inherent structure, and causal relation-

ships [55].

• Third, large amounts of event-related information are continuously generated by OSMN users in

real time. The event modeling process needs to be highly efficient, and incremental such that new

information can be quickly incorporated into the event structure model.

To address these challenges, we have developed ETree, an effective and efficient event modeling

solution targeting event-related information generated in OSMNs. Given all messages related to a specific

event, ETree identifies the major themes (different aspects) of the event, the key message clusters (informa-

tion blocks) and their hierarchical structure within each theme, as well as possible causal relationships (i.e.,

one led to the other) between information blocks. For example, people who are interested in the Haitian

earthquake event may want to track various aspects of the event, such as new statistics, rescue efforts, do-

nation information, etc. Our solution provides updated snapshot of the event in an easy-to-read hierarchical
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tree structure, along with identified causalities within the event structure. Specifically, our work makes the

following key contributions:

(1) An n-gram based content analysis technique for identifying core information blocks from a large

number of short messages;

(2) An incremental and hierarchical modeling technique to efficiently identify and construct event

theme structures at different granularities, which can be dynamically adjusted as events evolve;

(3) An improved event life cycle analysis technique for identifying potential causalities between infor-

mation blocks;

(4) A detailed evaluation study using 3.5 million tweets over a 5-month period, which demonstrates

the effectiveness and efficiency of the proposed solution.

5.2 Problem Formulation and System Overview

The problem of event modeling for OSMNs can be decomposed into several sub-tasks. Given a spe-

cific event, we first collect event-related information/messages via keyword-based search (more details of

this process is described in Section 5.6). How to detect events is beyond the scope of this work. With scat-

tered messages related to a certain event, we firstly cluster messages into information blocks (with high

efficiency) to gain a basic understanding of the various “pieces” of an event (i.e., fundamental information

units of semantically-similar messages). Next, to capture the overall structure of an event, we construct

hierarchical theme structures, which represent the various aspects of an event at different levels of details.

Using the identified information blocks as leaf nodes, we incrementally construct hierarchical theme struc-

tures for the event. Finally, we detect potential causal relationship between pairs of information blocks.

For instance, rain drenched quake survivors in the tent camps may lead to people appealing to help those

slum refugees. Identifying such causal relationships within an event structure helps us to better understand

how an event evolves over time. Figure 5.1 illustrates the workflow and key tasks of event modeling for

OSMNs. A formal definition of the event modeling problem is given as follows:
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Event Modeling Problem: Let E be an event and

E = {(m1, t1), · · · , (mi, ti), (mi+1, ti+1), · · · },

where (mi, ti) refers to a messagemi posted at time ti, and messages are sorted in ascending temporal order

(i.e., ti < ti+1). Our goal is to organize these messages into an augmented, hierarchical event tree structure,

i.e., E ⇒ X = {B,H,C} that consists of the following:

• Information blocks B: Each event contains a number of information blocks B = {b1, b2, · · · }

and each information block b ∈ B contains multiple messages that are semantically coherent, i.e.,

representing a specific semantic meaning.

• Hierarchical theme structures H: {B1, B2, · · · } are combined hierarchically and at the highest

level, an event can be represented by a set of theme structuresH = {h1, h2, · · · }, where h1, h2, · · ·

have zero or minimum similarity. Each theme structure h ∈ H is a hierarchical subtree of X with a

few information blocks as the leaf nodes. The whole hierarchical theme structures will be adjusted

as the event evolves.

• Causal relationshipsC: For two information blocks bi, bj ∈ B, if bj is caused by bi, then (bi, bj) ∈

C.

5.3 Information Block Identification

Given a stream of messages that are related to a specific event, our first step is to group these mes-

sages into information blocks such that each block contains messages that share (almost) the same semantic

meaning. Combining similar messages efficiently, as the goal of this step, will reduce the number of infor-

mation units which will be used in the next two steps and is essential for real-time event modeling. Note

that users of OSMNs can generate a huge number of messages (e.g., 140 million tweets per day at Twitter).

Moreover, these messages are usually short, unstructured, and represent different writing styles of individual

users. Simply clustering messages based on their cosine similarity is infeasible due to its low efficiency in
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large-scale message processing. To address this issue, we propose a technique that considers key phrases

in event-specific messages.

5.3.1 N-Gram Based Block Identification

As messages are propagated in OSMNs and new messages are generated, people tend to reuse the

key phrases about an event. This is similar to the traditional “word of mouth” model, in which information

is passed from one person to another. While the exact wording may be different, the key phrases remain the

same. This is particularly true in online publishing, as users can easily copy-and-paste digital content. By

identifying such key phrases in event-specific messages, we can then identify the core information blocks of

an event.

Specifically, we propose an n-gram based content analysis technique, which works in two stages.

The first stage detects frequent word sequences (i.e., n-grams, or key phrases) among a large number of

event-related messages; each frequent sequence represents an initial information block. In the second stage,

messages that are semantically coherent are merged into the corresponding information blocks. N-gram

based techniques have been studied previously and are considered effective and efficient for identifying

word patterns in documents [12]. Given the short length of the messages people generate at OSMNs, it is

important that we choose the appropriate n, which is the minimum word sequence length. Similar to the

work by Leskovec et al. on identifying key phrases from news articles [46], we choose n = 4 as it performs

well in our experiments.

Once we have identified the frequent n-grams and their corresponding information blocks, we con-

sider the remaining messages, i.e., messages that do not contain any of the frequent n-gram patterns. For

each of these messages mi, to measure the similarity between message mi and an information block bj , we

consider the words that belong to both mi and bj and calculate their TF-IDF [63] weights in bj . We then

compute the weighted cosine similarity between each message and each information block. Messages that

have high similarity with some information blocks are merged into the corresponding information block. In

addition, messages that belong to a specific “conversation thread” (e.g., tweets “in reply to” other tweets)

are merged into the corresponding information block.



70

It is important to note that the addition of messages into information blocks changes the list of words

in each block and the TF-IDF weights of later messages. To address this issue, we design a staged and

iterative merging process that considers messages in the order of descending similarity. In other words, we

consider different ranges of similarity values. Starting from the highest similarity range, we merge messages

in batches and update the similarity values of remaining messages at the end of each batch. This process

helps to ensure that messages are merged into the most similar information blocks.

For merging raw data into basic information blocks, there are still two issues: one is how to define the

similarity between raw data and information unit; and the other is as to more and more raw data are assigned

to some information blocks, the similarity between raw data and information unit may change.

But in a document, there are both key information and noise words existing. So it’s necessary to

differentiate them when calculating similarity.

In this iterative process, we need to decide how much raw data merged in every pass and when to stop

the whole process. A changing similarity threshold is used to control this process: Firstly, the similarity

threshold won’t go down to very low because low similarity may mean the raw data don’t belong to any

information blocks; Secondly, we hope getting enough highly confident raw data merged firstly to make

sure the keywords’ similarity become stable as soon as possible, so the high similarity threshold should

decrease slowly in initial stages; At last, the highest similarity threshold depends on different events which

at least make sure there are raw data assigned.

Based on these conditions, we define the changing similarity threshold as a arccotangent trigonomet-

ric curve (seen in Equation 5.1).

min+
arccot [x ∗ k + cot(max−min)π]

π
(5.1)

where min and max are two parameters stand for lowest and highest similarity threshold. and to let the

granularity adjustable, we add another parameter k.
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5.3.2 Conservation-Based Block Identification

The above n-gram based block identification focuses mainly on the textual content of event-related

messages, and may miss out messages that are syntactically different yet semantically similar. In particular,

in OSMNs, as users interact with each other and participate in event-related discussions, many messages

are created in reply to existing messages. Recall that the messages provided as input to our system contain

not only timestamp information, but also “conversation” information. Starting from an initial message,

all other messages are (directly or indirectly) in reply to that message can be identified easily. This set

of messages can be referred to as a “conversation thread”. Such conversation-style relationships between

messages provide valuable information with regard to the semantic similarity of messages.

Based on this observation, we propose to further enhance the n-gram based information blocks we

have identified by considering messages with conversation information. We first identify messages that be-

long to the same thread of conversation. For each cluster of conversation messages, if most of the messages

already belong to a certain information block identified by n-gram based algorithm, the remaining messages

in this cluster are also merged into that block. Otherwise, this cluster of conversation-thread messages forms

a new information block. While the n-gram based content analysis step leverages the syntactic text similar-

ity, this conversation-based block identification step complements the n-gram based step with more semantic

information, and improves the overall coverage and quality of the information blocks we can identify.

5.4 Incremental Hierarchical Theme Structure Construction

In this section, we present our design for constructing hierarchical theme structures using the infor-

mation blocks we have identified. We describe first the static construction process, then the incremental

process which integrates newly-generated messages into the hierarchical theme structure to keep the event

structure up to date.

As we have mentioned, each event may consist of multiple themes representing the different aspects

of the event, such as “rescue” and “donation” of the Haitian earthquake event; “cast”, “animation” and

“reviews” of the movie Avatar. Generally it is difficult to discover themes agreed by everyone, since themes
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could be defined differently by different people. So again a simple clustering approach does not meet the

needs. Instead, each theme can be represented as a tree structure with information blocks as the leaf nodes

and subtopics as the internal nodes. Such hierarchical theme structures enable a systematic organization

of event-related information that is comprehensive yet concise, and allow users to explore an event from

different aspects and at different granularities.

Algorithm 4 HierarchicalStructure(B)

Input: set of information blocks B
Output: hierarchical theme structures H
H = φ
for each block bj ∈ B do

create node nj = 〈bj ,Mj〉; add nj to H
end for
< ni, nj , si,j >= maxSim(H)
while similarity si,j > 0 do

create a new parent node np for ni and nj
ReStructure(np); add np to H
< ni, nj , si,j >= maxSim(H)

end while
add a virtual root node; return H

5.4.1 Static Theme Structure Construction

In a hierarchical theme structure, child nodes contain more specific information while parent nodes

are more general and may represent the common topic of its child nodes. For instance, a parent node about

“donation for earthquake” may have child nodes talking about “U.S. donation for earthquake” and “China

donation for earthquake”. Intuitively, the desired hierarchical theme structures should satisfy the following

properties:

(1) A parent node’s meaning should be more general than that of its child nodes and the difference

should be significant enough;

(2) Nodes with similar meanings should be sibling nodes;

(3) Meanings of sibling nodes should not be the same or the subset of one another.
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Algorithm 5 ReStructure(np)

Input: a new parent node np
for each internal child node ni of np do

if Mi == Mp then
remove ni and attach all its children to np

end if
end for
for each child pair 〈ni, nj〉 of np do

if Mi ⊃Mj then
attach node ni to nj as its child

else if Mi == Mj then
if ni and nj are both internal nodes then

attach ni’s children to nj ; remove ni
else if ni is leaf node ∧ nj is internal node then

attach ni to nj as its child
end if

end if
ReStructure(nj) if nj has new child

end for

Definition 1. A leaf node’s Meaning Mi is the set of keywords Ki of its corresponding information block

bi; and an internal node’s Meaning Mi is the intersection of its child nodes’ meanings.

The set of keywords for each information block can be obtained by selecting the words with high

TF-IDF weights. Two nodes are considered different if their Meaning contain different sets of keywords.

Algorithm 4 shows the process of constructing the hierarchical theme structures. Starting with the

information blocks as the leaf nodes, this process iteratively selects two nodes (i 6= j and nodes ni, nj have

no parent node) with the highest similarity using the maxSim(H) procedure, and merges the two nodes

into a new parent node, thus ensuring Property 2. This new parent node is then restructured (Algorithm 5) to

ensure Property 1 and 3. First, if an internal child node has the same meaning as the parent node, that child

node is removed and its children are attached to the parent node. Next, we examine sibling nodes. If one

node’s meaning is more specific than that of its sibling node, that node becomes the child of its sibling. If

two sibling nodes have exactly the same meaning, then the two sibling nodes and their children are merged

into one. This restructuring process continues until all nodes in the hierarchical theme structures satisfy all

three properties discussed above.
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The most time-consuming operation of this algorithm is the recursive restructuring process. Neverthe-

less, it is a local update process (only the subtree of np need to be restructured), which makes the algorithm

more efficient than techniques that require global updates, where the whole tree need to be restructured

every time a new node is added [74].

5.4.2 Incremental Structure Construction

As events happen and evolve over time, a large amount of event-related information is continuously

generated by the users of OSMNs. To keep the event models up to date, newly-generated messages need

to be integrated into the models in a timely fashion. It would be time-consuming and extremely wasteful if

we have to reconstruct the whole structure from scratch each time a new message is added. To address this

issue, we propose an incremental modeling process to maintain dynamic hierarchical theme structures.

Newly-generated messages about an event either focus on some existing topics, or contain new topics

about the event. In the former case, these new messages can be easily merged into existing information

blocks. While in the latter case, new information blocks need to be created; we then need to determine

where to (in the hierarchical theme structure) to place the new blocks and adjust the overall hierarchical

theme structures as needed.

To handle these changes, our incremental structure construction algorithm is designed to utilize a top-

down update process: (Algorithm 6): Given a new message m, we first check np (initially, np is the root

node), and its child nodes to select the one that is most similar to m. Note that the Similarity() function

is the same as the weighted cosine similarity we define in Section 5.3. If the most similar child node is an

internal node, this process continues recursively until the node most similar to m is either np or a leaf node.

If the similarity value is higher than a threshold δ, message m is merged into that node. Otherwise, a new

node is created that contains only the new message, and the new node is added as a child (or grandchild) of

np. After m is inserted, the ReStructure() procedure is called on np to restructure its subtree and ensure

that the three properties are still maintained.
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5.5 Causal Relationship Detection

Given the information blocks we have identified and the hierarchical theme structures we have con-

structed, one more question we want to answer in the event modeling process is whether there exists any

causal relationships between information blocks. Understanding such causal relationships is important as

it provides insights into how an event evolves through multiple stages and how these stages impact each

other. However, finding exact causal relationships is a very difficult task without incorporating domain

knowledge [55]. Previous research [55, 13] has shown that two pieces of information are more likely to

be causally related if they are similar in content. Also, the study by Yang et al. [77] shows that the rele-

vancy of two pieces of information increases when they are temporally closer to each other. Based on these

observations, we aim to tackle our problem of causality detection in OSMNs by considering both content

similarity and temporal relevance.

Given two information blocks bi and bj , let S and T be the content similarity and temporal relevance

between these two blocks, respectively, we define the causal relationship C as a function of S and T , i.e.,

C = S × T (5.2)

For content similarity S, we use the same weighted cosine similarity as defined in Section 5.3. Next, we

focus on defining the temporal relevance T .

Using the timestamped messages belonging to each information block, we can calculate the following

temporal information of the block: (1) start/end time, which correspond to the timestamps of the earliest

and latest messages in the block; and (2) temporal life cycle, which is a temporal distribution reflecting

the number (or percentage) of messages posted within each time period. As the examples shown in Fig-

ure 5.2, by examining the temporal intersection of two information blocks, we can determine their temporal

relevance in 2 stages. Considering two blocks, one on the left and one on the right of the time line, are

approaching towards each other from far away. Let critical point be the point when two blocks overlap with

each other and have the maximal temporal relevance, then

• Stage 1: Before the intersection reaches the critical point, the temporal relevance should gradually

increase from minimum to maximum. In addition, the increasing speed should be different when
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there is no overlap (called stage 1(a)) and when the intersection is smaller than the critical point

but greater than 0 (called stage 1(b));

• Stage 2: After passing the critical point, the temporal relevance should gradually decrease. And

when they become completely parallel (i.e., happening at the same time), the temporal relevance

(and the causal relationship) decreases to minimum.

Then the question is how to determine the changing speed in different stages. Based on the analysis by Chen

et al. [13], we assume that stage 1(b) and stage 2 have the same linear changing speed as to the intersection

but the former is positive and the latter is negative. And the changing speed in stage 1(a) follows the inverse

proportion curve.

Based on this intuition, we define the temporal relevance T between block bi and bj in Equation 5.3,

where bsi and bei are the start and end time of block bi, ft is defined as the intersection frequency of two

blocks at time point t, and the range of the temporal relevance is (0,1]. Parameter 2 ∗ θ (0 < θ < 1) defines

the value of the critical point. In our experiments, θ is set to 0.2 based on the power law property analysis

of message generation frequency in the life cycle of information blocks.

T =



1/
(
bsj − bei + θ−1

2θ−1
)
, bsj > bei

1
θ−1 ∗ (F2 − 1), 2θ ≤ F < 2

1
θ−1 ∗ (2θ − 1− F

2 ), 0 < F < 2θ

(5.3)

where intersection

F =
∑min(bei ,b

e
j)

t=bsj
ft (5.4)

One work that is closely related to our causality relationship detection design is the TSCAN method

proposed by Chen et al. [13]. Here, we highlight the difference between our method and theirs. Firstly,

the causal relationships defined in TSCAN are based on blocks in two different themes and blocks within

one theme are connected as a causal time line. Usually, blocks in different themes can be very different in
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content and most of the causal relationships identified across themes may not be useful. While within the

same theme, potential actual causality between concurrent blocks is ignored by TSCAN . Secondly, when

defining the time relevance, TSCAN only utilizes the start and end time information of blocks, while in our

design, we leverage the detailed temporal life cycle information of blocks. Our design can achieve better

characterization of temporal relevance and causal relationships than TSCAN , as demonstrated in the two

cases in Figure 5.2.

In the left part of Figure 5.2, two blocks appear in chronological sequence which tells us these two

blocks probably have strong temporal relevance. However, according to the definition in TSCAN , these

two blocks are very close to each other when only considering their start and end time, so they are thought to

be parallel and their temporal relevance is considered weak. But our design can correctly capture the strong

temporal relevance by considering the small intersection of the two blocks’ life cycles. In the right part of

Figure 5.2, according to the definition in TSCAN , the temporal relevance is strong because the bottom

block seems to appear directly after the top one. Actually their climax almost overlap, which means they

probably happened in parallel, and therefore unlikely to contain causal relationship.

5.6 Experimental Evaluation

In this section, we evaluate ETree, the proposed event modeling solution for OSMNs, using real-

world events and event-related messages generated by individual users. Our evaluation aims to answer the

following questions:

• Does our n-gram based information block identification algorithm generate coherent information

blocks with good content coverage of each event?

• Does the hierarchical theme structure capture the various aspects of an event at the appropriate

granularities?

• Does the incremental modeling process achieve high efficiency and generate good-quality interme-

diate results?
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• Does our causal relationship detection algorithm achieve high accuracy with regard to the identified

causalities?

5.6.1 Dataset Description

The data used in our experiments are real-world messages gathered from Twitter, one of the most

popular online social media networks. Using Twitter’s APIs, we have collected event-related information

over a 5-month period. To ensure diversity and scalability of the evaluation data set, we manually selected

20 events spanning 7 different categories, including World, Politics, Business, Health, Entertainment, Sci-

ence/Technology and Sports. The messages related to each event are collected using the keyword-based

text search API provided by Twitter. Specifically, for each event, we handpick a set of keywords and use

the Twitter API to collect all tweets that match at least one of the keywords. We also collected tweets that

belong to the same conversation threads as the tweets returned by the search API. A summary of the 20

events is listed in Table 5.1. In total, our data set is around 75GB in size and consists of 3.5 million tweets.

5.6.2 Quality of Information Blocks and Theme Structures

First, we evaluate whether our n-gram based information block identification algorithm can capture

the main content of an event, and whether the identified hierarchical theme structures have good quality.

We use Coverage as the metric to evaluate the effectiveness of the information block identification

algorithm. Coverage of an event is defined as the percentage of messages which are captured into one of

the identified information blocks. To calculate Coverage of an event, we calculate the sum of the number of

messages in all the information blocks of that specific event, and divide it by the total number of messages

retrieved for that event. For the 20 events used in the evaluation, the information blocks identified by our

method has high Coverage, ranging from 71% - 92% (84.2% on average).

Besides information blockCoverage of an event, another measure of the quality of the event structure

is the relevance of the information blocks. Intuitively each theme in an event should represent a certain

aspect. To evaluate the quality of identified themes of an event, we define Coherence as the percentage of

coherent themes in an event and a theme is considered coherent if more than half of its information blocks
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are relevant. To calculate Coherence of an event, we manually examine the relevance of information blocks

in each theme. ETree has identified highly coherent themes for almost all the 20 events, with Coherence

values ranging from 63% to 82% (76.9% on average).

5.6.3 Efficiency of Incremental Event Modeling

Next, we evaluate whether the incremental modeling process of ETree achieves high efficiency and

generates high-quality intermediate theme structures at the same time.

We compare the computation time of generating hierarchical theme structures, using three different

algorithms: ETree, ETree without incremental modeling (ETree-NI), and TSCAN [13]. TSCAN is a popular

algorithm widely used, which derives an event’s major themes from the eigenvectors of a temporal block

association matrix. Because neither ETree-NI nor TSCAN supports incremental modeling, each increment

of the tweets would cause the system to re-compute the entire hierarchical structure. While in ETree, we only

update the original structure by incorporating the newly-created data. Since the non-incremental algorithms

take a long time to run for each event, we choose three events with different size, content and structure for

this evaluation, including Event 7, 12 and 19.

Figure 5.3, 5.4, 5.5 shows the computation time in seconds for the three event modeling algorithms.

The results suggest that the computation time of ETree is stable and much lower because the main influential

factor is the number of newly-created tweets, while the computation time increases very quickly for ETree-

NI and TSCAN. For example, for event 12, the computation time of ETree is between 100 seconds to 800

seconds for any 10% of the tweets, while the computation time of ETree-NI increases from 300 seconds

to 12600 seconds and TSCAN from 2,000 seconds to 83,700 seconds as the number of tweets increases.

Apparently, this dramatic increase makes it difficult for ETree-NI or TSCAN to generate up-to-date theme

structure in short time intervals when the number of messages about an event becomes large. Note that

we are evaluating the efficiency of the algorithms on a single core machine with limited memory, which

means the absolute value of excecution time will be improved significantly within state-of-art hardware

environment.
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5.6.4 Quality of Detected Causal Relationships

We also evaluate how well our causal relationship detection algorithm works for different events.

Since it is difficult to manually label all actual causal relationship pairs as the ground truth, we use TSCAN

and ETree to compute causal relationship pairs first, then manually verify these pairs. To reduce the influence

of subjective factors in the verification process, two researchers worked independently to cross check the

results. When we consider the quality of the identified causal relationship pairs, events with a small number

of identified causalities are prone to random noises (due to the limited size and information) and may easily

skew the overall results. Instead, we only consider 11 popular events (event ID from 10 to 20) and report

their F1−measure values in Figure 5.6. We can see that ETree outperforms TSCAN by 49% on average

for all these events.

5.6.5 Case Study

Next, we use the “Haitian earthquake” event as an example to demonstrate the quality of our theme

hierarchy in more detail.

5.6.5.1 Hierarchical Theme Structures

We choose several easy-to-understand themes in this event and show the structures in Figure 5.7. Two

observations can be drawn from the theme structures: (i) most information blocks in a theme have relevant

content; and (ii) the hierarchical theme structure clearly reflects the level of granularity of the theme. For

example, the theme chosen in the event “Haitian earthquake” talks about the rainy season after earthquake.

It contains four pieces of detailed information: scientists’ prediction, rain adding to misery, camps needed

and only one piece plastic for every Haitian family. Each piece of the information is followed by more

detailed messages. For example, block 6, 7 and 8 are more specific discussions about the content of “rain

adding misery”.
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5.6.5.2 Causal Relationships

Next, we examine the causal relationship pairs that ETree has detected in this event. From the themes

shown in Figure 5.7, we can easily find some causality pairs by reading the content. For example, block

7 talks about survivors in Haiti suffering from the rain and block 6 talks about people appealing for help.

Block 7 began on Feb 12th and ended on March 14, while block 6 was from Feb 15th to March 20th. When

only considering the start and end time, these blocks seem to have happened in parallel. However, when

considering the life cycle distribution, we can see that the climax of block 7 was from Feb 12th to March

1st and the climax of block 6 was from March 14th to March 18th. This means when block 7’s popularity

began to decrease, block 6 began to become popular. These two blocks actually did not occur in parallel.

This causal relationship pair clearly demonstrates the improved accuracy of ETree, compared with prior

mechanisms such as TSCAN (see the first case in Figure 5.2, Section 5.5).

5.7 Conclusions

This work presents ETree, an effective and efficient event modeling solution for real-time and information-

intensive online social media networks. ETree utilizes an n-gram based content analysis technique to group

a large number of event-related messages into semantically-coherent information blocks, an incremental

modeling process to construct hierarchical theme structures, and a life cycle-based temporal analysis tech-

nique to identify potential causal relationships between information blocks. Detailed evaluation results using

20 real-world events and 3.5 millions tweets demonstrate that ETree can generate high-quality event struc-

tures with high efficiency. We anticipate to apply ETree to larger and more noisy dataset and identify new

research problems. We are also interested in exploring more usage of social ties to improve the quality of

ETree.
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Figure 5.1: ETRee: Effective and efficient event modeling for real-time online social media networks —
System overview.
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Algorithm 6 IncrementalStructure(np,m)

Input: a node np in event structure H; a new message m
if np == root then

for each leaf node ni in H do
if m belongs to a conversation in ni then

merge m into ni and algorithm ends
end if

end for
end if
xSim = Similarity(m,np); xNode = np
for each child node ni of np do

if Similarity(m,ni) > xSim then
xSim = Similarity(m,ni); xNode = ni

end if
end for
if xNode is an internal child node then
IncrementalStructure(xNode,m)

else
if xSim > minimum similarity threshold δ then

merge m into xNode
else

create a new leaf node nj , only containing m
if xNode == np then

attach nj to np as its child
else

create a new internal child nk of np
attach xNode and nj to be nk’s children

end if
ReStructure(np)

end if
end if

Frequency
Frequency

Time

Frequency
Frequency

Time

Figure 5.2: Two cases demonstrating when ETree outperforms TSCAN.
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Figure 5.7: Partial hierarchical theme structures constructed by ETree for the event “Haitian earthquake”.



Chapter 6

Applications and Usage Scenarios

Event analysis in online social networks has broad applications and usage scenarios. In the following

sections, we demonstrate them by going through all three research problems as we explained above. At

the end, we show some full usage scenarios with the combination of all the problems for proof-of-concept

purpose.

6.1 Event Context Identification

As described in section 3, we can successfully characterize a group of users who participate a certain

event. Event context has potentially the following applications and usage scenarios.

6.1.1 Event Correlation

There are enormous discussions on OSNs when presidential related events happen. From section 3,

in our evaluation dataset, we find 2013 Obama inauguration is highly correlated with event 2013 The Inter-

national Consumer Electronics Show (CES) after identifying event context. This interesting finding reveals

the fact that the group of people who discusses the Obama inauguration event is similar to the group of

people who are interested in technology and discuss the CES event often. Usage scenarios include better

understanding of voters and election policy improvement.

There are also many brands or organizations related events. When companies keep track of events

related to them and figure out their contextual correlation, potential value can be produced. For instance,

we imagine that a new generation of tablets were released and being sold well on Amazon.com covered
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by some media. At the same time, lots of people were discussing the massive amount of tablet pictures

from Pinterest.com. Events are monitored by two companies on their sides and by applying the event

context identification techniques, they can discover the correlation between these two events and potentially

increase the possibility of business collaboration.

Celebrities may constantly follow events happening on OSNs. They are especially interested in at-

tracting fans with public exposure in the right direction. Imagine that people are discussing several top

entertainment shows they like watching on OSNs and it would be very useful for celebrities to know which

show to attend to maximize the influence on their fans. With the help of identified event context, the group

of users who are talking about certain show can be easily identified, and one can find the right entertainment

show to attend by matching fans’ interests.

6.1.2 User Recommendation

During crisis situations, there is a common need to find relevant people and keep them updated.

Based on a set of identified event contexts from a collection of events, we can quickly extract the context of

a particular on-going crisis event. Then relevant users can be recommended to receive updates of the event.

For instance, during Haitian Earthquake event, family members or friends of the people live in Haiti would

be kept updated if event context identification techniques are applied. One way to evaluate the accuracy of

the recommendation is the prediction accuracy of users. As shown in section 3.4.2, we achieve 90% of the

best prediction performance with only 10% of the training users.

6.1.3 Friendship Recommendation

Friendship recommendation is a popular task in OSNs. Either the platform itself, or third-party

applications want to intelligently find users potential friends to recommend. Existing approaches focus

on understanding either social structure of users or based on some detected communities. A new idea is

to leverage users’ participation of event discussion on OSNs and recommend new friends to a user if they

participated in similar events. In other words, in order to recommend friendship, one can identify the event

context of a set of events and identify users who are related to similar event context. As shown in 3.4.5,
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users are more likely to be friends if they share similar event context.

6.2 Location Inference

The location inference technique helps to identify users’ location when events happen. With city-level

inference accuracy, we can apply the technique into different scenarios.

6.2.1 Event Discussion Location

Brands or companies follow events mentioning their name on OSNs for analytics purposes. In most

cases, they want to know where they are being discussed. There are a lot of benefits to identify event

participants’ location with the help of location inference techniques. For marketing purpose, knowing event

participants’ location can help company build better advertising policies, which will further affect sales.

For instance, if a company discovers their product being discussed in certain areas before the release of the

product, it may make sense to find a local influential person to make advertisement. The company sales

people may tune their sale policy to meet the requirement of that area. Furthermore, location can be used

for supply chain optimization and customer service policy change. Company may have better idea of where

to store their products and where they should set up their customer service center.

6.2.2 Event Reaction

During crisis situations, it is very important to know where the event happens. With the help of

location inference on OSNs, organizations can quickly find out the location of the crisis and take further

actions. For instance, people may feel the earthquake earlier than news report in some areas like Japan, and

publish the information on OSNs. Accurately identifying the location of the earthquake is very useful to

send alert to people coming to this area, and deploy resources for the situation.

6.3 Event Modeling

Event modeling techniques help organize the hierarchical structure and causal relationships of the

events. As a result, one can understand different aspects of events and how events evolve. This is particular
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useful for scenarios where we need to dig into the event.

6.3.1 Event Story Analysis

Brands always want to keep track of events which mention their name. One important task is to follow

the story of the events and have a good understanding of the structure. With the help of event modeling

techniques, companies can conveniently decompose the events they are interested in into a hierarchy, from

the most important themes to every detail. From the hierarchy, it is very intuitive to understand the whole

event with the organized structure. Also, it makes the opinion analysis task easier by following the hierarchy

of the event. By understanding the related events better, companies can potentially improve their product

quality with consideration of customers’ feedback.

6.3.2 Event Tracking and Prediction

Event prediction is one of the most challenging tasks in event analysis domain. By tracking historical

events, it may be possible to extract some patterns when new similar events happen and predict the next step.

This require to understand how historical events evolve and the internal causal relationships of the events.

Event modeling techniques enable all the required analysis. For instance, in the Haitian Earthquake event,

since from historical events we had learned that some tragedy was caused by heavy rain after earthquake,

we can predict the next step was to deploy water-resist resources for the crisis situations.

6.4 Usage Scenarios

From the above description, we see many applications of our proposed event analysis techniques in

OSNs. In this section, we will focus on two concrete usage scenarios which utilize all the techniques we

propose in the thesis.

6.4.1 Company Brand Construction

With the rapid growth of OSNs, more and more companies are focusing on OSNs for their brand

construction. Leveraging event analysis techniques, one can construct their brand more effectively.
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Firstly, it is possible to build better marketing strategies. Event context identification techniques will

help to extract the group of people who are interested in their brand. Also, their locations can be inferred via

location inference techniques. With good understanding of whom and where the potential customers are,

companies can make accurate advertising and potentially help to boost the popularity of their brand.

Secondly, companies can utilize event analysis techniques to help improve their product. By apply

event modeling, different aspect of the event will be display and companies can conveniently conduct opin-

ion analysis of the feedback from their customer on OSNs. Companies will have clear understanding of

different opinion about their products and potentially improve the quality. As a result, their brands may

become more popular.

Thirdly, better sales and customer service can be provided. Knowing the location of people who

participate the brand discussion help to make decisions of where to put the customer service center. Also it

helps to optimize supply chain for effective sales. Overall better brand will be constructed based on above

factors.

6.4.2 Disaster Response

Recent research show that when crisis happens, OSN platforms are effective for event updates, public

discussions and engagement. In particular, with event analysis techniques, better disaster response can be

provided by monitoring the ongoing event. There are two cases as explained below.

Accurate updates delivery can be provided. By applying event context identification and location

inference, it is possible to identify who to contact when crisis happens and where those people are. This is

very useful when the disaster is not publicly available in news or other traditional media. Then local updates

can be rapidly spreaded on OSN platforms based on identifies people and location information.

Better action taking and resource deployment policy can be made. With location inference, the loca-

tion information of a event can be quickly identified and can be publicly available very quickly due to the

real-time characteristics of OSNs. As a result, actions can be taken rapidly and resource can be deployed in

time. By using event modeling, historical crisis situations can be analyzed and the evolution of the situations

can be replayed. When new disaster happens, historical knowledge may be useful for better prediction of
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next events and actions can be taken even before crisis situations happen.



Chapter 7

Conclusion

In this chapter, we summarize major contribution and components of the thesis and explore future

directions along the line of this research.

7.1 Summary

With the growing popularity of Online Social Networks, massive amount of user-generated content

is showing the willingness of event-related discussions. However, traditional social network infrustructures

better support social interation better than presenting the disscussion in an event-centric view. This is a

unqiue opportunity for creating event analysis techniques to support the transformation.

In this thesis, we propose three event analysis techniques in online social networks which aim to

fill the gap between social interaction perspective to event-centric perspective. It consists of three major

components:

• Event context identification. Given needed events, we can extract event context i.e. the groups of

people who are interested in the events. We have presented a matrix factorization algorithm to solve

the event context identification problem. It selects anchors from users’ followers and incorporates

anchor information into an extended PMF framework. Our evaluation using real-world Twitter data

shows that our proposed technique outperforms existing matrix factorization techniques by 20.0%.

We also show potential applications including users’ participation in events, retrieval of relevant

events, and friend recommendation based on identified event context.
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• Location identification. Location identification aims to solve the problem of lacking geo-tagged

content in OSNs. It geolocates OSN users by leveraging both textual and social structual informa-

tion in OSNs. It then fuses results from the two sources to give a final, boosted result. Detailed

evaluation results based on 0.8 million Twitter users and 21 million Tweets over a three-month

period shows our approach outperforms previous methods.

• Event modeling. Event modeling aims to provide a structured view of user generated content related

to a given event. It identifies information blocks, creates an incremental and hierarchical structure

and discovers internal causal relationships. Detailed evaluation results using 20 real-world events

and 3.5 millions tweets demonstrate that ETree can generate high-quality event structures with high

efficiency.

7.2 Future Directions

We have proposed key techniques when transforming from social interaction perspective to event-

centric perspective. In order to make the techniques more general to use in real world systems, we have

several future directions to explore.

7.2.1 Richer Feature Set

All current approaches are based on most representative existing features. As the development of

OSNs, it is possible that other features keep growing and worth adapting. For the event context identi-

fication problem, we would like to explore other potential features, such as location information in users’

profiles and tag information from users’ followers, and consider how these features can be used in our model

for better event context identification. In the location inference framework, it is possible to explore location

information in users’ profiles, as users are putting more and more correct location in their profiles. Conver-

sation information are more retrievalable recently. So during the event modeling process, we would leverage

conversation context to generate more consistent event structures.
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7.2.2 Larger Scale

As the number of OSNs is growing, we would like to explore new challenges when our proposed

techniques use in larger scale. This require the algorithms to be highly robust, reliable and efficient. It

would be interesting to deploy event context identification techniques to a cloud environment to run the

algorithm in paralell. We anticipate to apply location inference to larger scale and explore the possibility of

utilizing real-time properties of online social media networks. We would like to apply our event modeling

solution to more events and expect more noise in the dataset and make sure the algorithm is robust and

reliable enough. Larger scale will potentially help us identify new research problems.
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