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Abstract

This thesis studies the interference performance of large-scale wireless communications systems. Math-

ematical models are developed for ad-hoc networks, cellular networks, multi-tier (heterogeneous cellular) net-

works, cognitive radio networks and the massive-MIMO networks based on stochastic geometry where the

nodes of the network are distributed in a space according to a spatial stochastic (random) process. Analyti-

cal characterizations for important performance metrics such as the distribution of the signal to interference

plus noise ratio, outage probability, average rate, etc. are obtained for the most general channel conditions

and system scenarios.

In the past the above mentioned wireless systems have been studied through large system simula-

tions which su�er from computational infeasibilities and provide limited insights about the system. The

mathematical models are shown to closely approximate the practical systems in scattering and fading rich

environments. Using the tools in stochastic geometry and stochastic ordering, we demonstrate analytical

tractability of these models and closed-form characterizations of important performance metrics of the sys-

tems. The tools developed in this work can be used to characterize the achievable performance gains with

interference mitigation techniques employed in 4G LTE such as fractional frequency reuse, relays, multi-cell

coordination and in the study of MIMO and secrecy networks.
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Chapter 1

Introduction

1.1 Background

Wireless communication involves the transfer of information between a set of sources (or transmitters)

and destinations (or receivers) over a common noisy medium (channel) as shown in Figure 1.1. Over the last

three decades, wireless communication networks have evolved in such a manner that it has been one of the

most striking successes in information technology. In this time, the wireless networks have proliferated to

ubiquity, and have totally changed our day-to-day living. This period has also seen a rapid increase in the

number of consumers and an even more dramatic increase in their demands.

To cope with such an ever increasing demand, we need to better understand the two fundamental

aspects that make wireless communications both challenging and interesting, namely, fading and interference.

The signal from the transmitter undergoes variation in the received power at the receiver with distance and

this phenomena is referred to as fading. It can be divided into three types, namely, path-loss, shadowing and

multi-path fading. A pictorial representation for the e�ect of fading is shown in Figure 1.2. Path-loss is the

attenuation of the received signal caused by the dissipation of signal power radiated by the transmitter as

well as the propagation channel, and causes received power variations over long distances, typically 100-1000

meters. Shadowing is caused by obstacles between the transmitter and receiver that attenuate signal power

through absorption, re�ection, scattering, and di�raction; leading to received power variations over distances

of 10-100 meters. Lastly, multi-path fading is the received power variations caused by the constructive and

destructive combination of several signal components at the receiver. Such power variations occur over
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very short distances (of the order of the wavelength of the transmitted signal) compared to path-loss and

shadowing, and as a result the in�uence of multi-path fading on the signal power is generally referred to

as small-scale propagation e�ect and the in�uence of path-loss and shadowing is collectively referred to as

large-scale propagation e�ect.

Another fundamental aspect of wireless communication is the interference. The interference in a

wireless communication network could be between transmitters communicating with a common receiver (for

example, the uplink of a cellular system), between signals from a single transmitter to multiple receivers (like

in the downlink of a cellular system), or between di�erent transmitter-receiver pairs as shown in Figure 1.3.

Understanding this interference and how to deal with it is central to the design of any wireless communication

system.

A wireless communication system (network) is any collection of transmitters and receivers (generally

referred to as nodes) that are interconnected wirelessly communicating over the channel to transfer informa-

tion from the source to the destination. There are several kinds of wireless communication systems that we

encounter in our daily lives, the most popular of which are shown in Figure 1.4. The conventional cellular

system (or macrocell network) is classically viewed as a network where the given cellular area is divided

into regular hexagonal grids (or cells) with a base-station (BS) placed at the center of each hexagonal cell.

The arrangement of TV towers could also be associated with a similar regular arrangement in the area

of coverage. The wireless LAN network is di�erent from the previous two networks as there is no regular

arrangement of the wireless routers or repeaters in general.

1.2 Contributions

The performance or the e�ectiveness of the above mentioned wireless communication systems are

generally assessed by the network operators, system designers and academicians via several metrics such

as the outage (or) coverage probability, average rate, spectral e�ciency, throughput, network capacity,

average load, transmission capacity and the transport capacity. Most of the above mentioned performance

metrics appear often in the system design documents, and the last two are of more academic and theoretical

importance. We defer the de�nition of these metrics to the later chapters, as and when they are relevant.
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Note that all these performance metrics are primarily a function of the signal-to-interference-plus-noise ratio

(SINR) at a given node in the system. As a result, in this thesis, we are primarily concerned about the

characterization of the SINR in the above mentioned list of wireless communication systems. We further

emphasize that once the SINR is characterized for a given system, all the performance metrics listed in the

beginning of this paragraph are known. For the sake of clarity, let us de�ne SINR in the context of the

cellular system downlink. In the downlink of a cellular system, the MSs act as the receivers and the BSs are

the transmitters, and vice versa is true in the uplink of a cellular system. In the cellular downlink, SINR at

a given MS is de�ned as the ratio of the received power from the serving BS to the sum of the interferences

from the other transmitting BSs and the background noise. As we have seen previously, the received power

at a given MS is equal to the transmitted power of the BS a�ected by large scale propagation e�ects such as

path-loss and shadow fading and small scale propagation e�ect called the multipath fading. Path-loss is a

decreasing function of the separation between the MS and the transmitting BS and is generally modeled by a

power-law path-loss function (R−ε) where R is the separation between the transmitter and the receiver and

ε (> 2) is the exponent. Shadow fading and multipath fading are generally modeled as a random variable

with a certain distribution. A thorough account of the stochastic as well as the statistical models for the

di�erent fading e�ects in a wireless environment can be found in [4, Chapters 2 and 3]. Further, the location

of the MS in the cellular area is random and hence the distances of the BSs (even for the case of regular

arrangement as in the hexagonal grid model) from the given MS is subject to randomness. Hence, it is clear

that, since the distances of each BS from the MS, the shadow fading and multipath fading coe�cients of

each BS are all random variables, SINR (which is a function of all these factors) is also a random variable.

Hence, the SINR in a wireless system is said to be completely characterized when we have computed either

the probability density function (p.d.f), cumulative density function (c.d.f.), tail probability (= 1 − c.d.f.)

or the characteristic function of the SINR.

In this report, we characterize the interference and SINR in a variety of wireless communication

systems such as the conventional cellular networks, heterogeneous and small-cell networks, cognitive radio

networks, massive MIMO networks and interference avoidance or mitigation strategies such as the fractional

frequency reuse and relay networks which are used in the fourth generation (4G) long term evolution (LTE)
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wireless standards. As the title of this document suggests, we model the above mentioned wireless commu-

nications systems using stochastic geometry, characterize and analyze the important performance metrics

(primarily the SINR) of these systems in terms of the system parameters. Before we go into further details,

a brief introduction to stochastic geometry is provided in the following paragraphs.

1.3 Stochastic Geometric Modeling of Wireless Systems

Stochastic geometry pertains to any random collection of geometric objects such as points, line-

segments, spheres etc. in a given space. It is an area of mathematical research that seeks to provide models

and statistical methods to study complicated geometric patterns that occur in many area of science and

technology, for example in several studies related to ecology, geology, etc. A rigorous account of the popular

stochastic geometric models and their applications may be found in [5]. Much like points are the basic

ingredients of geometry; random collection of points (point-patterns), also known as point processes play a

signi�cant role in stochastic geometry. The simplest and most important random point-pattern is the Poisson

point process. An excellent study of the properties of the Poisson point process can be found in [6, 7], and

will be presented is this document as and when they are applied.

The aspects of stochastic geometry that shall be witnessed in this thesis are the Poisson point processes

and the so-called Boolean model (see Chapter 6). It is well-justi�ed to model certain entities of wireless

systems as a Poisson point processes, for example, the distribution of mobile-stations (MSs) in the cellular

system, TV receivers in the TV network and the wireless nodes (laptops, notebooks, iPads, etc.) in wireless

LANs. Moreover, certain other entities such as BSs in a cellular system can also be modeled as being

distributed according to a Poisson point process. The arrangement of BSs is far from the classically studied

regular hexagonal grid model due to several reasons including the site-acquisition di�culties, variable tra�c

load and terrain. Figure 1.5 shows that the actual BS arrangement and the Voronoi tessellations of a major

service provider in a relatively �at urban area is visually similar to a BS arrangement according to a Poisson

point process than the regular hexagonal grid model. This example serves as a visual justi�cation for why

the BS arrangement is also well modeled as being distributed according to a Poisson point process.

Now, we provide a qualitative justi�cation for why the distribution of BSs according to a Poisson
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point process is a good model to study the cellular network. In [2, Figure 2], a system simulation compares

the signal-to-interference ratio (SIR) at a MS in a cellular system with BS arrangement according to a

regular hexagonal grid and another cellular system with Poisson-based BS arrangement. The case when

both the cellular systems employ frequency reuse with a reuse factor of 4, a power-law path-loss with a

path-loss exponent 4 and a zero-mean log-normal distribution for the shadow fading is considered for the

large scale propagation e�ects in Figure 1.6. It can be seen that the SIR at the 95th percentile of a hexagonal

cellular system converges to that of a cellular system with the Poisson-based BS arrangement in the limit

of strong shadow fading standard deviation. Moreover, shadow fading standard deviations of 8-15 dB have

been reported in indoor environments, in which case SIR performance of the two systems have a small gap.

Further, the performance of any practical BS arrangement lies between these two extremes, where on one

hand, the hexagonal grid model is the ideal arrangement for maximizing the coverage and on the other

hand, the Poisson-based model corresponds to BS arrangement with the maximum entropy for a given mean

number of BSs in a given cellular area [8, 9].

Recently, in [10, Theorem 3], it is proved that, in the limit of the shadow fading standard deviation

tending to in�nity, the set of received powers at any given MS from all the BSs in a cellular system distributed

according to a regular arrangement converges to a Poisson point process with a given intensity measure or

a density function. This is a very important theoretical result that justi�es the modeling of the previously

mentioned wireless communication systems as a Poisson point processes for the study of the important

metrics that quantify the system performance. It should be noted that all the wireless communication

systems that we are concerned with, in this thesis, have been studied so far primarily via large system

simulations. Furthermore, while catering to the rapidly growing data demands of the end users as a result of

the tremendous improvement in information technology, these wireless communication systems have grown to

be extremely complex networks that even system simulation is computationally infeasible. Such systems are

often studied by isolating and analyzing small sections of the entire network. The immediate shortcomings

of such studies are that they do not represent the overall behavior of the system as a whole, and they provide

limited insights about the dependence of the performance on various system parameters. In this thesis, we

model various popular and important wireless communication systems, previously studied solely through
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system simulations, using appropriate stochastic geometric models and demonstrate the extent of analytical

tractability that can be achieved in terms of characterizing the performance of these systems in terms of

the relevant system parameters. In the following section, we list the contributions of this thesis and the

organization of the various topics covered.

1.4 Organization of this thesis

Having motivated the idea of modeling the wireless communication systems to be a collection of nodes

according to a Poisson point process, we begin with the exploration of the interference characteristics and

SINR of the wireless system that has seen most development and growth, namely the cellular network.

We dedicate Chapters 2 and 3 to study the downlink performance characteristics of the so-called macrocell

network which is composed of large cell towers distributed in a given cellular area to provide coverage to the

MSs in the area.

As the number of MSs in the system grows, the tra�c and the demand for data in the system

increases. In order to cope with the demand and improve the data rate while not adversely a�ecting

the quality-of-service, several techniques are proposed and incorporated, for example, introducing more

spectrum, incorporating advanced modulation and coding schemes and spectral reuse. Figure 1.7 lists these

methods that the factor of capacity increase that they have been able to achieve since 1950. It is clear that

the spectrum-reuse or the spatial frequency reuse has been the dominant factor for achieving the capacity

increases.

Spatial frequency reuse means having smaller cell sizes compared to the large hexagonal grids repre-

senting the macrocells and a large number of low power BSs. As a result, the cellular system now consists

of multiple tiers of small cell networks such as the microcell, picocell and femtocell networks introduced

on top of the macrocell network, and the entire cellular networks is now called the heterogeneous network

(see Figure 1.8 and Figure 1.9). The modeling and analysis of the heterogeneous network is the subject of

Chapter 4, and it is demonstrated that improved coverage and data rate at the MS is achievable with the

help of hetnets.

Chapters 2 - 4 characterize the downlink SINR of a MS which is generally referred to as an interior-
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Figure 1.7: Methods to improve the cellular network capacity and their contribution in terms of factors of
capacity increase achieved.
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user. A MS is said to be an cell-interior user if there exists at least one BS in the entire cellular system, the

received SINR from which is above a given threshold to obtain connectivity with the BS. A MS to which

there is no BS with a received SINR above the threshold is called the cell-edge user. In a classical hexagonal

grid based cellular system, a cell-edge user is a MS at the edge of a given cell. This MS typically sees a poor

SINR from the serving BS because there exist a BS at approximately same distance from the MS as the

serving BS causing harmful interference at the MS. In the 4G LTE standard, fractional frequency reuse is

introduced as an interference mitigation (avoidance) technique to ensure uniformly high data-rates at both

the cell-interior user and the cell-edge user. In Chapter 5, we explore the SINR characteristics of a cellular

system modeled as a Poisson point process and employing fractional frequency reuse to improve the signal

quality at the cell-edge user.

Notice in Figure 1.7 that adding more frequency spectrum also leads to some capacity improvements.

Frequency spectrum is an extremely scarce resource and the majority of the spectrum is already allocated

for the existing radio application. Nevertheless, Federal Communications Commission (FCC) has identi�ed

the licensed televisions (TV) bands to have a very poor spectral e�ciency, and has allowed the operation of

unlicensed devices called the cognitive radio devices in the television (TV) band along with the legacy users

of this band with the goal of improving the spectral e�ciency. The cognitive radio network is a collection

of cognitive radio devices, that have the ability to search for unused frequency bands and communicate over

those bands. The TV band is occupied by the legacy users that are the TV transmitter-receiver pairs and

the wireless microphone systems. In Chapter 6, we study the interference caused by the cognitive radio

network on the legacy network in the TV white spaces, and characterize the SINR at the legacy users.

In Chapter 7, we consider the study of the so-called massive multiple input multiple output (MIMO)

cellular network which is a cellular network where each BS in the network has in�nitely many antennas and

each MS is equipped with a single antenna. In this chapter, unlike in Chapters 2 - 5, we analyze the SINR

distribution and the system performance of the cellular system in both the uplink and the downlink. Finally,

the concluding remarks and directions for future research are brie�y pointed out in Chapter 8.

In the following subsection, the summary of results corresponding to each chapter is given.
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Figure 1.8: Hetnet snapshot showing the macrocell BSs (red dots) and the femtocell BSs (black dots) [3]

Figure 1.9: Hetnet snapshot (closeup of a section in Figure 1.8) consisting of the macrocell BSs (red),
microcell BSs (green) and the femtocell BSs (black). [3]
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1.4.1 Summary of Chapter 2

Here, we analyze the SINR performance at a MS in a random cellular network. The cellular network

is formed by BSs placed in a one, two or three dimensional space according to a possibly non-homogeneous

Poisson point process, which is a generalization of the so-called shotgun cellular system. We develop a

sequence of equivalence relations for the SCSs and use them to derive semi-analytical expressions for the

distribution of SINR and the coverage probability at the MS when the transmissions from each BS may be

a�ected by random fading with arbitrary distributions as well as attenuation following arbitrary path-loss

models. For homogeneous Poisson point processes in the interference-limited case with power-law path-loss

model, we show that the SINR distribution is the same for all fading distributions and is not a function of

the base station density. In addition, the in�uence of random transmission powers, power control, multiple

channel reuse groups on the downlink performance are also discussed. The techniques developed for the

analysis of SINR have applications beyond cellular networks and can be used in similar studies for cognitive

radio networks, femtocell networks and other heterogeneous and multi-tier networks.

1.4.2 Summary of Chapter 3

Though a semi-analytical expression for the distribution of SINR is obtained for a cellular system

modeled as a non-homogeneous Poisson point process, insights obtained from the expression about the sys-

tem performance is limited. As a result, an analytical tool based on usual stochastic ordering is developed

to compare the distributions of SIR at the MS of cellular systems where the base stations are distributed

randomly according to certain non-homogeneous Poisson point processes. The comparison is done by study-

ing the base station densities without having to solve for the distributions of the SIR, which are often hard

to obtain.

1.4.3 Summary of Chapter 4

In this chapter, we consider the downlink SINR analysis in a hetnet with K open-access tiers and

a closed-access tier. Each tier is characterized by a BS arrangement according to a homogeneous Poisson

point process with certain BS density, random transmission power and random shadow fading factor with
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an arbitrary joint distribution, arbitrary path-loss exponent for the power-law path-loss model. The MS can

connect to any BS belonging to the open-access tiers, and is not allowed access to the closed-access tier. We

characterize the SINR distribution at the MS for both the max-SINR connectivity model and the nearest-BS

connectivity model. Further, analytical expressions for the coverage probability and ergodic average rate at

the MS, and the average fraction of users that are served by a given tier are also computed.

1.4.4 Summary of Chapter 5

In this chapter, we analyze the downlink SIR performance in an OFDMA cellular network where

the BSs are distributed according to a homogeneous Poisson point process on the two-dimensional plane.

We study two popular adaptive fractional frequency reuse (FFR) mechanisms, namely strict-FFR and soft

frequency reuse (SFR). We compute the coverage probability at the MS which chooses to communicate with

the BS with the maximum instantaneous SIR for the two FFR techniques. Comparison of these results with

those of the nearest BS connectivity model by Novlan et. al. show a surprising result that the maximum

SIR connectivity, which is known to be coverage optimal for static and no frequency reuse scenarios, is not

optimal anymore with FFR techniques. This shift from conventional wisdom demands further exploration

on which BS should the MS connects to for optimal downlink performance.

1.4.5 Summary of Chapter 6

In this chapter, we study the cognitive radio (CR) network where the CR devices opportunistically

communicate in the frequency bands occupied by the primary users in order to improve the spectral e�ciency

in these bands. By detecting the beaconing signals emitted by the primary users (both the television (TV)

transmitter-receiver pairs and the wireless microphone systems), each CR device determines whether or not

to operate in the band. The CR devices, due to erroneous detection capabilities, either misses the beaconing

signals causing excessive interference at the primary user or false-alarms causing it to remain silent in a

white-space band leading to poor spectrum utility. The impact of these imperfections on the primary user

operations in terms of the coverage probability (= 1 - outage probability) is characterized where the primary

users and the CR devices are distributed according to independent homogeneous Poisson point processes on
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the plane. The coverage probability at a TV receiver is the probability that there exists at least one TV

transmitter that has a signal-to-interference ratio (SIR) above a given threshold. At the wireless microphone

receiver (WMR), it is the probability that the transmitter corresponding to the WMR has an SIR above a

given threshold.

1.4.6 Summary of Chapter 7

We study a multiple input multiple output (MIMO) cellular system where each base-station (BS) is

equipped with a large antenna array and serves some single antenna mobile stations (MSs). With the same

setup as in [11], the in�uence of orthogonal and non-orthogonal pilot sequences on the system performance is

analytically characterized when each BS has in�nitely many antennas. Using stochastic geometric modeling

of the BS and MS locations, closed-form expressions are derived for the distribution of signal-to-interference-

ratio (SIR) for both uplink and downlink. Moreover, they are shown to be equivalent for the orthogonal

pilots case. Further, it is shown that the downlink SIR is greatly in�uenced by the correlations between

the pilot sequences in the non-orthogonal pilots case. Finally, the mathematical tools can be used to study

system performances with other general channel estimation methods and transmission-reception schemes.



Chapter 2

Downlink Performance Analysis for a Generalized Shotgun Cellular System

2.1 Introduction

The modern cellular communication network is a complex overlay of heterogeneous networks such

as macrocells, microcells, picocells, and femtocells. The BS deployment for these network can be planned,

unplanned, or uncoordinated. Even when planned, the BS placement in a region typically deviates from

the ideal regular hexagonal grid due to site-acquisition di�culties, variable tra�c load, and terrain. The

coexistence of heterogeneous networks has further added to these deviations. As a result, the BS distribution

appears increasingly irregular as the BS density grows and is outside standard performance analysis.

Two approaches of modeling have been widely adopted in the literature. At one end, the BSs are

located at the centers of regular hexagonal cells to form an ideal hexagonal cellular system. At the other end,

the BS deployments are modeled according to a Poisson point process which we refer to as shotgun cellular

system (SCS). In [2], we make a connection between these two models on a homogeneous two dimensional

(2-D) plane. It is shown that the SIR of the SCS lower bounds that of the ideal hexagonal cellular system

and, moreover, the two models converge in the strong fading regime. The BS deployment in the practical

cellular system lies somewhere in between these two extremes, and as noted in [2,12,13], signi�cant insights

about the cellular performance can be gained by thoroughly understanding the hexagonal cellular system

and the SCSs, especially in the strong fading regime. The hexagonal cellular systems are di�cult to study

analytically and hence, vast literature on the performance studies of such systems is purely simulation-based.

On the other hand, here we demonstrate that the SCSs are extremely amenable to mathematical analysis
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even for a very general system model. An in-depth analysis of the downlink performance of the SCS is

conducted by considering three levels of generality. Firstly, the BS arrangement in the SCS is according

to a non-homogeneous Poisson point process in an arbitrary dimension (l = 1, 2, 3), which can mimic the

BS arrangement in a real cellular system by the appropriate choice of the intensity function of the point

process. Secondly, a general model is considered for the path-loss su�ered by the BS transmissions, which

covers the most-popular power-law path-loss model as well as other models that more accurately capture

indoor propagation losses. Thirdly, the fading undergone by the transmitted signals of each BS is modeled

as a random variable with any arbitrary distribution that is independent and identically distributed (i.i.d.)

across all the BSs, that covers the most commonly used log-normal and exponential distributions, and more.

2.1.1 Prior work and our contributions

A Poisson point process has been adopted in the literature for the locations of nodes in the study of

sensor networks, wireless LANs, cognitive radios, ad hoc networks and other uncoordinated and decentralized

networks [14�30]. In the case of ad-hoc networks, bounds on the transmission capacity have been derived in

several di�erent contexts [19,20,23�25,31�34]. Finding the optimal bandwidth partitioning in uncoordinated

wireless networks is considered in [35]. Similar outage probability analysis in ad-hoc packet radio networks

is considered in [36,37].

An underlying assumption in all the previous work is that the density of transmitters is constant

throughout the cellular region, i.e. the Poisson point process is homogeneous; propagation model follows the

power law path-loss; and the fading models are log-normal, Rayleigh, or Rician distributions. In this chapter,

the three levels of generality mentioned in the previous subsection helps in more accurately modeling the

cellular system thereby making the results hold for a wide variety of practical scenarios. Moreover, the region

of interest need not be restricted to R2 as in prior work, and may be R1 or R3. Furthermore, the dependence

of the downlink performance on the MS location within the cellular region is also characterized. Hando�

features and correlations between the fading coe�cients corresponding to di�erent BS transmissions are out

of the scope of this work.
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The main results of this chapter are discussed below. As shown in Figure 2.1, we successively reduce

the actual SCS to a canonical model that is equivalent in terms of the SINR characteristics, and characterize

the SINR distribution for the simplest equivalent system, thereby solving the problem for the most general

network. These results are covered in Section 2.3 borrowing ideas from [38] for constructing the equivalent

canonical model. In [38], we looked at a qualitative comparison between the SINRs of two SCSs based on

usual stochastic ordering without actually computing the distribution of SINR, whereas in this chapter, the

main objective is to compute the SINR distribution for any given SCS and to systematically characterize

the in�uence of the model parameters on the downlink performance.

Next, for the special case of homogeneous SCSs, which is the most widely used model for random node

locations, the canonical model takes an extremely simple form in which the BS arrangement is according

to a unit mean homogeneous Poisson point process and where each BS has unity transmission power and

there is no fading. Further, the e�ect of the system parameters of the actual SCS (e.g., BS density, arbitrary

transmission power and fading distributions, background noise power) on the downlink SINR are all captured

in the background noise power term in the canonical model. Finally, simple closed form characterizations for

the distribution of SINR, downlink coverage (outage) probability, downlink average ergodic rate and several

insights about the cellular system are obtainable and are the topic of concern in Section 2.4.

Applications of the above results to speci�c wireless communication scenarios are brie�y described in

Section 2.6 where we point out the application of the ideas and results of this chapter to the performance

analysis of cognitive radio networks and heterogeneous and small-cell networks. Next, the system model and

the performance metric of interest are brie�y explained.

2.2 System Model

This section describes the various elements used to model the shotgun cellular system, namely, the

BS layout, the radio environment, and the performance metrics of interest.
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2.2.1 BS Layout

De�nition 1. The Shotgun Cellular System (SCS) is a model for the cellular system in which the BSs are

placed in a given l-dimensional plane (typically l = 1, 2, and 3) according to a non-homogeneous Poisson

point process on Rl [6, 7].

The intensity function of the Poisson point process is called the BS density function in the context of

the SCS. A 1-D SCS models, for example, the BS deployments along a highway. A 2-D SCS models planar

BS deployments, and the 3-D SCS models BS deployments in a dense urban area, or wireless LANs in an

apartment building. The 1-D, 2-D and 3-D SCSs are described using the BS density functions d (x) , d (r, θ) ,

and d (r, θ, ϕ) , where −∞ ≤ x ≤ ∞ represents a point in 1-D, and r, θ, ϕ are used to represent a point in

polar coordinates, in 2-D and 3-D.

A l−D SCS is said to be homogeneous if the BS density function is a constant over the entire l-D

space. A homogeneous 2-D SCS is a common model for the random node placement in many scenarios.

We consider the most general possible description for the wireless radio environment. Let the received

power at a distance r (≥ 0) from a given BS be given by

P (r) = KΨ/h (r) , (2.1)

where K represents the transmission power and the antenna gain of the BS, Ψ captures the channel fading,

and the function h (·) represents a path-loss that a signal experiences as it propagates in the wireless envi-

ronment. The most commonly used path-loss model is the power-law path-loss model, h (r) = rε, where ε is

called the path-loss exponent.

2.2.2 Performance Metric

In this chapter, we focus on the downlink performance of the SCS. In other words, we are concerned

with the signal quality at a mobile-station (MS) within the SCS. The MS is assumed to be located at the

origin of the l-D SCS unless speci�ed otherwise. The signal quality at the MS is de�ned as the ratio of the

received power from the serving BS to the sum of the interference powers (I or PI), and the background

noise power (η), and is called the signal-to-interference-plus-noise ratio (SINR). In an interference-limited
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system, I ≫ η and the signal quality is the signal-to-interference ratio (SIR).

Using (2.1), the SINR at the MS from a BS at a distance, say Ri, is

SINR =
KiΨi/h (Ri)∑∞

j=1
j ̸=i

KjΨj/h (Rj) + η
, (2.2)

where {Kj , Ψj}∞j=1 are independent and identically distributed (i.i.d) pairs of random variables representing

the transmission power and the channel gain coe�cients, respectively, of the jth BS, and {Rj}∞j=1 are random

variables that come from underlying Poisson point process that governs the BS placement. Also, the MS

associates itself with the BS that has the strongest received signal power (referred to as the serving BS),

and can successfully communicate with this BS, only if the corresponding SINR exceeds a certain operating

threshold, denoted by γ. In this chapter, we �nd the tail probability [i.e. the complementary cumulative

density function (c.c.d.f.)] of the SINR, which helps characterize an important performance metric for

wireless networks, namely, the coverage probability, i.e. the probability that a MS is able to successfully

communicate with the desired BS. The following section presents some necessary results that helps simplify

and solve the problem.

2.3 SINR Characteristics

As illustrated in Figure 2.1, this section presents several equivalence relations on BS density, path-loss

model, transmission power and fading that leads to an equivalent canonical SCS model. Then the equivalence

relations are used to simplify the analysis of the SINR. The equivalence is de�ned below.

De�nition 2. Two SCSs are equivalent if the joint distribution of the powers from all the BSs of a SCS

received at the MS located at the origin is the same as the joint distribution of the other SCS.

As a result, if the noise powers are equal, the SINRs at the MSs in two equivalent SCSs have the same

distribution.

The following proposition gives an equivalent 1-D SCS for any l-D SCS. It is a simple consequence of

the fact that the path-loss models considered in this chapter is a function of only the distance between the

MS and a BS, not of the orientation.
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Proposition 1. An l-D SCS, l = 1, 2, and 3 is equivalent to a 1-D SCS with a one-sided BS density

function λ (r) , r ≥ 0, calculated below, if other parameters are the same.

• For a 1-D SCS with density function d (x) , −∞ ≤ x ≤ ∞, λ (r) = d (r) + d (−r) .

∗ For a 2-D SCS with density function d (r, θ) , λ (r) =
´ 2π
θ=0

d (r, θ) rdθ.

∗ For a 3-D SCS with density function d (r, θ, ϕ) , λ (r) =
´ π
θ=0

´ 2π
ϕ=0

d (r, θ, ϕ) r2 sin (θ) dθdϕ.

Next, we show the equivalence between SCS's with path-loss model 1
h(R) and SCS's with path-loss

model 1
R , using the concepts of stochastic ordering [7, 39,40].

Theorem 1. If other parameters are the same, a 1-D SCS with a BS density function λ (r) and

path-loss model 1
h(R) is equivalent to a 1-D SCS with a BS density function λ̄(r) = λ(h−1(r))×

d
drh

−1(r), and path-loss model 1
R , where R is the distance between a BS and the MS, as long as

h (r) , r ≥ 0 is a monotonically increasing function with a derivative h′ (r) > 0, ∀ r > 0 and an

inverse h−1 (r) . As a result, if the noise powers are the same, the SINRs at the MSs located

at the origin in the two SCSs have the same distribution, i.e. the SINR of (2.2) satis�es

SINR|λ(r) =st
KiΨi/ R̃i∑∞

j=1
j ̸=i

KjΨj/ R̃j + η

∣∣∣∣∣∣∣∣
λ̄(r)

, (2.3)

where
{
R̃j

}∞

j=1
is the set of distances of BSs from the MS in the 1-D SCS with BS density

function λ̄ (r) and =st represents the equivalence in distribution.

Proof. See Appendix 2.8.1.

In the following theorem, we show the equivalence between SCS's with random transmission power

and fading and SCS's with deterministic transmission power and fading.

Theorem 2. A 1-D SCS with BS density function λ (r) , path-loss model 1
R , random transmission

power K and random fading Ψ that are i.i.d. across all BSs, is equivalent to another 1-

D SCS with a BS density function λ̄ (r) , 1
R path-loss model, unity transmission power and

unity fading . The above is true for arbitrary joint distributions of (K,Ψ) as long as λ̄ (r) =
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EK,Ψ [KΨλ (KΨr)] <∞ holds for all r ≥ 0, where EK,Ψ [·] is the expectation operator w.r.t. (K,Ψ) .

The distributions of the SINRs at the MSs located at the origin of the two SCS's are the same

if the noise powers of the MSs are equal.

Proof. See Appendix 2.8.2.

Combining Proposition 1, Theorem 1 and Theorem 2, without loss of generality, we can now restrict

our attention to the SINR characterization of the canonical SCS de�ned below.

De�nition 3. A canonical SCS is a 1-D SCS with a BS density function λ (r) , r ≥ 0, unity transmission

power and unity fading factors for all BSs in the SCS, and a path-loss model of 1
R .

For a canonical SCS, the BS closest to the origin is the serving BS and the rest of the BSs contribute

to the interference power. The following is an interesting fact.

Lemma 1. If the noise powers are the same, the distributions of SINRs at the MS in canonical

SCSs with BS density function of the form 1
aλ(

r
a ) are the same for all a > 0. In other words,

SINR|λ(r) =st SINR| 1
aλ( r

a ) .

Proof. See Appendix 2.8.3.

As a result, the appropriate scaling of the BS density function will not change the p.d.f. of SINR.

Next, we derive expressions for the tail probability of the SINR.

Theorem 3. The tail probability of SINR at the MS in a canonical SCS, P ({SINRcanonical > γ})

is given by

P ({SINRcanonical > γ}) =


´∞
ω=−∞ Φ 1

SINRcanonical

(ω)

(
1−exp(− iω

γ )
iω

)
dω
2π , γ > 0

1, γ = 0

, (2.4)

where Φ 1
SINRcanonical

(ω) is the characteristic function of 1
SINRcanonical

given by

Φ 1
SINRcanonical

(ω) = ER1

[
exp (iωηR1)× ΦPI |R1

(ωR1|R1)
]

(2.5)

= ER1

[
exp (iωηR1) exp

(
R1 ×

ˆ ∞

u=1

(
exp

(
iω

u

)
− 1

)
λ (uR1) du

)]
, (2.6)
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where ER1 [·] is the expectation w.r.t. the random variable R1, which is the distance of the

BS closest to the origin, and with the probability density function (p.d.f.) fR1 (r) = λ (r) ×

e−
´ r
s=0

λ(s)ds, r ≥ 0.

Proof. See Appendix 2.8.4.

Now, we take a minor detour from studying the canonical SCS and consider a 1-D SCS a�ected by

i.i.d. random fading factor with unity mean exponential distribution. For this case, the following theorem

gives a simpler expression for the tail probability of SINR when γ ≥ 1.

Theorem 4. For a 1-D SCS with a BS density function λ̄ (r) , 1
R path-loss model, unity trans-

mission power, i.i.d. unity mean exponential random variable for fading at each BS, the tail

probability of SINR for γ ≥ 1 is given by

P ({SINR > γ}) =

ˆ ∞

r=0

λ̄ (r) exp

(
−ηγr −

ˆ ∞

s=0

λ̄ (s) ds

1 + (γr)
−1

s

)
dr. (2.7)

Proof. See Appendix 2.8.5.

The above result can be used for a canonical SCS under certain conditions. We brie�y investigate

this situation for which we de�ne L (f (x) , s) ,
´∞
x=0

e−sxf (x) dx to be the unilateral Laplace transform of

the function f (x) .

Lemma 2. A canonical SCS with BS density function λ(r) is equivalent to the 1-D SCS considered in

Theorem 4 if there exists a continuous BS density function λ̄ (r) ≥ 0 such that

L
(
λ̄ (x) ,

1

r

)
=

ˆ r

s=0

λ (s) ds, ∀ r ≥ 0. (2.8)

As a result, the tail probability of SINR for such canonical SCS is equal to (2.7) .

Proof. The above result is obtained as a consequence of Theorem 2 which says that the two SCSs considered

above are equivalent if λ (r) = EΨ

[
Ψλ̄ (rΨ)

]
, ∀ r ≥ 0, whereΨ is the unity mean exponential random variable

representing the fading factors in the latter SCS. By rewriting the expectation in the above equation as an

integral and simplifying, we obtain

λ (r) =

ˆ ∞

x=0

d

dr

(
e−

x
r

)
λ̄ (x) dx

(a)
=

d

dr

(
L
(
λ̄ (x) ,

1

r

))
,
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where (a) is obtained by exchanging the order of integration and di�erentiation, which is valid since λ̄ (r)

is continuous. Further, the resultant integral can be written in terms of the Laplace transform of λ̄ (x) .

Using L
(
λ̄ (x) , 1

r

)∣∣
r=0

= 0 as the initial condition, the above di�erential equation can be solved to obtain

the condition for equivalence between the two SCSs to be (2.8) .

The following shows examples for the existence of BS density functions
(
λ (r) , λ̄ (r)

)
that satisfy the

condition in (2.8) .

Example 1. Polynomial - polynomial equivalence: The pair
(
λ (r) , λ̄ (r)

)
=
(
α1r

δ, α2r
δ
)
satisfy the condi-

tion in (2.8) as long as δ + 1 > 0, and α1 = α2Γ (1 + δ) > 0, where Γ (·) is the Gamma function.

Example 2. Rational - exponential equivalence: The pair
(
λ (r) , λ̄ (r)

)
=
(

1
(1+αr)2

, e−αr
)
, ∀ α > 0 satisfy

the condition in (2.8) .

We will see in the following section that the equivalent 1-D BS density function for the homogeneous

l-D SCSs are polynomial functions, and using Example 1 and Theorem 4, simple analytical expressions for

the tail probability of SINR are obtained.

The results presented in this section can together accurately characterize the SINR in any arbitrary

SCS with arbitrary transmission and channel characteristics. The semi-analytical expressions presented above

might seem unwieldy at the �rst glance. But it turns out that several insightful results can be extracted

from this representation for a special class of SCSs that are practically important and popular in literature.

This special class of SCSs are the homogeneous l-D SCSs, l ∈ {1, 2, 3}, and we dedicate the next section to

studying this special class in detail.

2.4 Homogeneous l-D SCS

In this section, we focus on the analysis of the homogeneous l-D SCSs with a power-law path-loss

model h (R) = Rε. The homogeneous l-D SCS is the most widely used stochastic geometric model in the

literature for modeling arrangement of node locations. Especially, its validity in the study of the small-cell

networks is extremely appealing. Moreover, this model has the advantage of being analytically amenable

for a variety of situations that are of great importance in the modeling and analysis of any type of wireless



28

network. The results provide several insights about such large-scale networks that can be applied in the

design of actual networks in practice. Next, we apply the results of the previous section to the case of the

homogeneous l-D SCS.

Corollary 1. [of Proposition 1] A homogeneous l-D SCS with a constant BS density λ0 over the

entire space is equivalent to the 1-D SCS with a BS density function λ(r) = λ0blr
l−1, ∀ r ≥ 0,

where b1 = 2, b2 = 2π, b3 = 4π.

This is easily proved by letting d (x) , d (r, θ) , and d (r, θ, ϕ) be λ0 in Proposition 1.

For the power-law path-loss model h (R) = Rε, we have the following equivalent SCS using Corollary

1 and Theorem 2.

Corollary 2. [of Theorem 2] A homogeneous l-D SCS with BS density λ0 and path-loss model

1
Rε is equivalent to the 1-D SCS with a BS density function λ̄ (r) = λ0

bl
ε r

l
ε−1, r ≥ 0 and the

path-loss model 1
R .

Next, we characterize the e�ect of random transmission powers and fading factors, i.i.d. across BSs

in the homogeneous l-D SCS.

Corollary 3. [of Theorem 2] A homogeneous l-D SCS with BS density λ0, power-law path-

loss model
(

1
Rε

)
, random transmission powers and fading factors that have arbitrary joint

distribution and are i.i.d. across all the BSs is equivalent to another homogeneous l-D SCS

with a BS density λ̄ = λ0E
[
(KΨ)

l
ε

]
, same power-law path-loss model

(
1
Rε

)
, unity transmission

power and unity fading factor at each BS, where K, Ψ have the same joint distribution as the

transmission power and fading factors of the original homogeneous l-D SCS and E [·] is the

expectation operator w.r.t. K and Ψ, as long as E
[
(KΨ)

l
ε

]
<∞.

Proof. Using Corollary 1 and Corollary 2, we obtain a 1-D SCS with BS density function λ̃ (r) = λ0
bl
ε r

l
ε−1,

with a path-loss model 1
R . Now, from Theorem 2, the equivalent canonical SCS has a BS density function

λ̂ (r) = E
[
(KΨ)

l
ε

]
× λ̃ (r) . As a result, this can be traced back to the scaling of the BS density of the original

homogeneous l-D SCS by E
[
(KΨ)

l
ε

]
.
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As a result, we can restrict our attention to SINR characterization when all the BSs of the l-D SCS

have unity transmission power and fading factors. Now, we give the expression for the tail probability of

SINR in a homogeneous l-D SCS.

Corollary 4. [of Theorem 3] In a homogeneous l-D SCS with a BS density λ0, unity transmis-

sion power and fading factor at each BS, if the path-loss exponent of the power-law path-loss

model satis�es ε > l, the characteristic function of the reciprocal of SINR is given by

Φ 1
SINR

(ω) = ER1

[
eiωηR1 × e

λ0bl
l R

l
ε
1 (1−1F1(− l

ε ;1−
l
ε ;iω))

]
, (2.9)

where the p.d.f. of R1 is fR1 (r) = λ0
bl
ε r

l
ε−1 · e−λ0

bl
l r

l
ε , r ≥ 0. When η = 0, the SINR is equivalently the

signal-to-interference ratio (SIR), and

Φ 1
SIR

(ω) =
1

1F1

(
− l

ε ; 1−
l
ε ; iω

) , (2.10)

where 1F1 (. . . ) is the con�uent hypergeometric function of the �rst kind [41]. The tail probability of SINR

is given by (2.4) .

Proof. From Corollary 2, the SINR distribution is equivalent to the canonical SCS with BS density function

λ (r) = λ0
bl
ε r

l
ε−1, r ≥ 0. Now, by solving for (2.6) , in Theorem 3, we obtain (2.9) . Further, the expectation

in (2.9) reduces to (2.10).

Due to Corollary 3, the homogeneous l-D SCS satis�es the conditions in Theorem 4 and hence a simple

expression for the tail probability of SINR for γ ≥ 1 can be derived below.

Corollary 5. [of Theorem 4] For a homogeneous l-D SCS with BS density λ0, path-loss model
1
Rε , ε > l,

with unity transmission power and fading factor at each BS, the tail probability of SINR for γ ≥ 1 is

P ({SINR > γ}) =

ˆ ∞

r=0

λ0blr
l−1

Γ
(
1 + l

ε

) exp(−ηγrε − λ0blr
lπγ

l
ε

εΓ
(
1 + l

ε

)
sin
(
lπ
ε

)) dr, (2.11)

and when η = 0, the tail probability of SIR is

P ({SIR > γ}) =
sin
(
lπ
ε

)
γ− l

ε(
lπ
ε

) = sinc

(
l

ε

)
γ− l

ε . (2.12)
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Proof. Due to Corollary 3, the homogeneous l-D SCS is equivalent to another homogeneous l-D SCS with the

same path-loss model and transmission powers as the former, and with a BS density λ0

Γ(1+ l
ε )

and i.i.d. unity

mean exponential random fading factors at each BS. Using Corollary 2, the BS density function of the 1-D

SCS with 1
R path-loss model that is equivalent to the latter homogeneous l-D SCS is λ̄ (r) = λ0blr

l
ε
−1

εΓ(1+ l
ε )

, r ≥ 0.

An alternate approach to obtain the expression for λ̄ (r) is using Lemma 2 and Example 1.

For the 1-D SCS, Theorem 4 is used to obtain the expression for the tail probability of SINR to be

(2.11), using the identity
´∞
s=0

s
l
ε
−1ds

1+(γr)−1s
= π(γr)

l
ε

sin( lπ
ε )

. Finally, (2.12) is obtained by substituting η = 0 in (2.11)

and evaluating the outer integral. This completes the proof.

Using Corollaries 4 and 5, the expression for the tail probability of SINR in a homogeneous l-D SCS

with random transmission power and fading factor with an arbitrary joint distribution that are i.i.d. across

the BSs of the SCS can be obtained by merely scaling the BS density λ0 with an appropriate constant that

is given in Corollary 3.

The following lemma shows another interesting property of the SINR distribution in a homogeneous

l-D SCS.

Lemma 3. The SINR distribution in a homogeneous l-D SCS with a constant BS density λ0,

path-loss model 1
Rε , unity transmission power and fading factor at each BS with a background

noise power η is the same as in a homogeneous l-D SCS with the same path-loss model, unity

BS density, unity transmission power and fading factor at each BS and a background noise

power ηλ
− ε

l
0 . Equivalently,

SINR|(λ0,ε,η)
=st SINR|(

1,ε,ηλ
− ε

l
0

) . (2.13)

Proof. SINR|(λ0,ε,η)

(a)
=

R−ε
1∑∞

k=2 R−ε
k +η

∣∣∣
λl(r)

(b)
= st

(αR1)
−ε∑∞

i=2(αRi)
−ε+ηα−ε

∣∣∣
λl(r)

(b)
= st

(
R

′
1

)−ε

∑∞
k=2(R

′
k)

−ε
+η̄

∣∣∣∣∣
1
αλl( r

α )

, where

α = λ
1
l
0 ; η̄ = ηα−ε; (a) is obtained by expressing SINR in terms of the equivalent 1-D SCS with λl (r) =

λ0blr
l−1, r ≥ 0, and multiplying numerator and denominator with α−ε; (b) follows from Corollary 6; and

�nally, (2.13) is obtained by noting that the 1-D SCS with BS density function 1
αλl

(
r
α

)
in (b) corresponds

to a homogeneous l-D SCS with BS density 1.
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Therefore, it is su�cient to analyze a homogeneous l-D SCS with BS density λ0 = 1 and maintain

a lookup table for the tail probability of SINR for di�erent values of the noise powers and path-loss expo-

nents using (2.4). The lookup table is presented for a homogeneous 2-D SCS in Figure 2.2 as a plot of

P ({SINR > 1}) against noise powers for di�erent values of path-loss exponents. Further, in a homogeneous

l-D SCS with a high BS density λ0, the equivalent noise power ηλ
− ε

l
0 is small according to Lemma 3. Hence,

in an interference-limited system (large λ0), the signal quality can be measured in terms of SIR. Further

remarks on SIR of a homogeneous l-D SCS based on Corollaries 4 are given below.

Remark 1. The characteristic function of the 1
SIR does not depend on λ0, and hence the tail probability of

SIR at a MS in a homogeneous l-D SCS does not depend on λ0.

Remark 2. From Corollary 1 and Remark 1, the tail probability of SIR is invariant to random transmission

powers and fading factors with arbitrary joint distribution and i.i.d. across the BSs.

Remark 3. The expression for the characteristic function of 1
SIR for a homogeneous 2-D and 3-D SCS is same

as that of a homogeneous 1-D SCS with path-loss exponents ε
2 and ε

3 , respectively.

Remark 3 helps build an intuition of why the homogeneous 1-D SCS has a higher tail probability of SIR

than homogeneous 2-D and 3-D SCSs. As the path-loss exponent decreases, the BSs farther away from the

MS have a greater contribution to the total interference power at the MS, and this leads to a poorer SIR at

the MS and a smaller tail probability. Next, Figure 2.3a shows the tail probabilities of SIR in a homogeneous

1-D SCS as a function of the path-loss exponent ε; the squares (�) and the pluses (+) represent the values

computed analytically and by Monte-Carlo simulations, respectively. According to Remark 3, the same �gure

can be used for 2-D and 3-D systems using the scaling of ε
2 , and ε

3 respectively.

In the following, we present an approximation to SIR based on modeling the interference due to

the strongest few BSs accurately and the interference due to the rest by their ensemble average. The

approximation is expected to be tight for low BS densities. Due to Remark 1, the same approximation will

be tight for all BS densities. Now, we de�ne the so-called few BS approximation and derive closed form

expressions for the tail probability of SIR at MS in a homogeneous l-D SCS for both the SIR regions [0, 1)

and [1,∞).
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De�nition 4. The few BS approximation corresponds to modeling the total interference power at the MS

in a SCS as the sum of the contributions from the strongest few interfering BSs and an ensemble average of

the contributions of the rest of the interfering BSs.

Recall that the total interference power is PI =
∑∞

i=2 R
−ε
i , where {Ri}∞i=1 is the set of distances of

BSs arranged in the ascending order of their separation from the MS. The arrangement also corresponds

to the descending order of their contribution to PI , due to path-loss. In the few BS approximation, PI

is approximated by P̃I (k) =
∑k

i=2 R
−ε
i + E

[∑∞
i=k+1 R

−ε
i

∣∣Rk

]
, for some k, where E [·] is the expectation

operator and corresponds to the ensemble average of the contributions of BSs beyond Rk. The SIR at the

MS obtained by the few BS approximation is denoted by SIRk. The expectation is calculated as follows.

Lemma 4. For a homogeneous l-D SCS, with BS density λ0 and ε > l, for k = 1, 2, 3, · · · ,

E

[ ∞∑
i=k+1

R−ε
i

∣∣∣∣∣Rk

]
=

λ0blR
l−ε
k

ε− l
. (2.14)

Proof. Firstly, use Corollary 1 to reduce the l-D SCS to an equivalent 1-D SCS with BS density function

λ(r) = λ0blr
l−1, ∀ r ≥ 0. Next, given k, using the Superposition theorem of Poisson processes, the

original Poisson process is equivalent to the union of two independent Poisson processes de�ned in the

non-overlapping regions [0, Rk] and (Rk,∞) , respectively, with the same BS density function. Now, using

Campbell's theorem [6, Page 28] to the Poisson process de�ned in (Rk,∞) , we obtain (2.14) .

The following theorem gives the SIR tail probability approximation, using k = 2.

Theorem 5. In a homogeneous l-D SCS with BS density λ0 and path-loss exponent ε, satisfying

ε > l, the tail probability of SIR2 at the MS is given by

P ({SIR2 > γ}) =


γ− l

εC ε
l
, γ ≥ 1

1− e−u(γ)(1 + u(γ)) + γ− l
εD ε

l
(γ) , γ ≤ 1

, (2.15)

where C ε
l
= G(0) and D ε

l
(γ) = G(u(γ)) with G (a) =

´∞
v=a

ve−v(
1+v( ε

l −1)
−1
) l

ε
dv, and u (γ) ≡

(
ε
l − 1

) (
1
γ − 1

)
.

Proof. See Appendix 2.8.6.
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The above approximation can be further tightened by recalling that we already have a simple closed-

form expression in (2.12) for the tail probability of SIR for values in the range [1,∞) . Hence, the new

approximation is as follows

P ({SIRapprox > γ}) =


P ({SIR > γ}) , γ ≥ 1

P ({SIR2 > γ}) , γ ≤ 1

, (2.16)

where the relevant quantities are obtained from (2.12) and Theorem 5.

Notice that P ({SIR > γ}) =
sinc( l

ε )
C ε

l

P ({SIR2 > γ}) for γ ≥ 1. Figure 2.3a shows that the few BS

approximation (•) closely follows the actual behavior (�). Figure 2.3b shows the comparison of the tail

probabilities of SIR (computed using Corollaries 4 and 5) and SIR2 for a homogeneous 2-D SCS with path-

loss exponent 4. Notice that the gap between the two tail probability curves is negligible in the region

γ ∈ [0, 1], and further, both the curves are straight lines parallel to each other in the region γ ∈ [1,∞),

when the tail probability is plotted against γ, both in the logarithmic scale. This shows that the few BS

approximation characterizes the signal quality in closed form and is a good approximation for the actual

SIR.

Now, having characterized the SIR for the homogeneous l-D SCS, we look closely into what happens

when ε ≤ l. We will restrict ourselves to the case when l = 2, and the steps are similar for l = 1, and l = 3.

Theorem 6. A homogeneous 2-D SCS with BS density λ, where the signal decays according to

a power-law path-loss function with a path-loss exponent ε ≤ 2, the SIR at the MS is 0 with

probability 1.

Proof. See Appendix 2.8.7 for the case ε = 2. From [27, Corollary 5], P ({SIR > γ})|ε<2 ≤ P ({SIR > γ})|ε=2 =

0, ∀ γ ≥ 0. Hence we have proved the above result.

Note that once we have characterized the SINR distribution, the outage probability at the MS is

known. The event that the MS is in coverage is given by {SINR > γ} , where γ is the SINR threshold

that the MS should satisfy to be in coverage. Consequently, the coverage probability, P ({SINR > γ})

is precisely the tail probability of SINR computed at γ. Next, we study the average ergodic reception
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rate for an MS in coverage. This quantity, termed as the coverage conditional average rate, is given by

R = E [ log (1 + SINR)| {SINR > γ}] and is the average of the instantaneous rate achievable at the MS when

the interference is considered as noise. The coverage conditional average rate at the MS simpli�es to the

following expression.

R = log (1 + γ) +

ˆ ∞

t=Γ

P ({SINR > t})
(1 + t)P ({SINR > γ})

dt.

As a result, based on Proposition 1 and Theorems 1 - 4, we can compute the coverage conditional

average rate for any SCS. Speci�cally, in the interference-limited case, the following proposition provides the

expression for a homogeneous l-D SCS and when the popular power-law path-loss model is assumed. For

this case, the SIR characteristics are invariant to the randomness in the transmission powers and the fading

factors due to Remark 2. Hence, without loss of generality, we restrict our attention to the case of constant

transmission powers at all BSs and no fading.

Proposition 2. The ergodic average rate at the MS in a homogeneous 2-D SCS under the

power-law path-loss model, with constant transmission powers at all BSs and no fading is

given by

R = log (1 + γ) +

ˆ α

x=γ

P ({SIR > x})
P ({SIR > γ}) (1 + x)

dx+ α− 2
ε
ε

2
·2 F1

(
1,

2

ε
; 1 +

2

ε
;−α−1

)
,

where α = max (γ, 1) , where 2F1

(
1, 2

ε ; 1 +
2
ε ;−α

−1
)
is the Gauss hypergeometric function and the

probabilities are computed using (4) . Note that for γ ≥ 1, the middle term drops out.

2.5 Numerical Example and Discussion

In the �rst example, we consider a homogeneous 2-D SCS with λ = 0.01, a power-law path-loss model

with path-loss exponent 4, and a background noise power of -10 dB and unity transmission powers. We

compare the SINR tail probabilities for several cases where we vary the distributions of the fading factors as

well as the background noise power. Notice in Figure 2.4a that in the case when there is background noise,

the distribution of the fading greatly a�ects the SINR performance at the MS. We consider two examples

for the i.i.d. fading factors: one of them has an exponential distribution and the other has a log-normal
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distribution, and keep the same mean (=23.45) for both the cases, for a fair comparison. In the presence

of the background noise, the MS sees a better SINR performance for the exponential case compared to the

log-normal case and the SINR performance in both is far more superior than that without fading. This is

justi�ed by Corollary 3 and Corollary 3 where the equivalent homogeneous 2-D SCS with unity BS density

has an equivalent background noise power for the log-normal fading case that is strictly greater than that

for the exponential fading distributions. Further, in the no noise case, the SINR performance is invariant to

the fading distribution and is the same as in the no fading case. This is also depicted in Figure 2.4a.

In Figure 2.4b, we assess the few-BS approximation for the SIR characterization in the homogeneous

l-D SCS. This �gure shows that the SIR approximation derived in Section 2.4 based on the few-BS approx-

imation (Equation (2.16)) closely follows the exact SIR characterization. Moreover, this relationship holds

for a wide range of scenarios of interest such as for arbitrary fading and transmission power distributions,

and for all BS densities. In the following section, we discuss the usage of the results obtained thus far in the

analysis of other useful wireless communication scenarios.

2.6 Applications in wireless communications

We discuss several scenarios where the wireless communication systems are modeled by the homoge-

neous l-D SCS with BS density λ0, where l = 1, 2, and 3 correspond to highway, suburban, and dense urban

deployments, respectively.

2.6.1 BSs with sectorized antennas

In this example, we give a practical scenario where the transmission powers of the BSs are i.i.d.

random variables. For example, consider the case where each BS has an ideal sectorized antenna with gain

G and beam-width θ, such that BS's antenna faces the MS with probability θ
2π , in which case Ki = G, and

otherwise Ki = 0. In this case, in the absence of fading, from Corollary 3, λ0 = λ0G
2
ε

θ
2π is the BS density

of the equivalent homogeneous l-D SCS.
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2.6.2 Multiple Access Techniques

Next, we study the signal quality at the MS in a cellular system employing di�erent multiple access

techniques. For example, in a code division multiple access (CDMA) system, the goal is to maintain a

constant voice signal quality at the MS, which is done by power control. This goal is achievable by having

the serving BS increase its transmission power by α = γSIR−1 , where α is the power control factor or

the processing gain, SIR is the instantaneous signal quality at the MS, and γ is the desired constant signal

quality. In this formulation, α for each BS is a random variable and in general, the α's of nearby BSs are

correlated. But if the correlation is small, the SIR distribution computed here enables radio designers to

approximately model the power needs to communicate with a MS in a SCS. In another formulation, if α is

a constant factor by which the power of the serving BS is improved, its e�ect on the tail probability SIR at

the MS is obtained by straightforward manipulations as P ({α× SIR > γ| ε, l}) = sinc
(
l
ε

) (
γ
α

)− l
ε if γ > α.

Then, consider frequency division multiple access (FDMA) and time division multiple access (TDMA)

based cellular systems. Let the available spectrum (in frequency for FDMA and in time-slots for TDMA)

be divided into N channel reuse groups (CG), and indexed as k = 1, 2, · · · , N . Then, each BS is assigned

one of the N CGs, such that the kth CG is assigned with probability pk. In such a system, the MS chooses

a CG that corresponds to the best SIR; the BS in the CG that corresponds to the strongest received power

is the desired BS, and the MS chooses it as the serving BS. The SIR at the MS in such a SCS is of interest

to us. Note that this homogeneous l-D SCS is equivalent to N independent homogeneous l-D SCSs with

constant BS densities λ0p1, · · · , λ0pN , by the properties of Poisson point processes. The tail probability of

SIR at the MS in such a system is given by P ({SIR > γ| ε,N}) = 1 − [1− P ({SIR > γ| ε})]N , where the

tail probability on the right hand side is computed using Corollary 4.

2.6.3 Cognitive Radios

In cognitive radio technology, the cognitive radio devices (or secondary users) opportunistically op-

erate in licensed frequency bands occupied by primary users. The interference caused by secondary user

transmissions is harmful for primary users operation, and is not acceptable beyond certain limits. Studying

the nature of these interferences and formulating methods for addressing them has been an active area of
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research (see [42�45]). The results in this chapter are a rich source of mathematical tools for such studies.

In [28, 46, 47], we have extensively applied the ideas and results developed here to understand the role of

cooperation between the secondary users in ensuring that the interference caused by the secondary users are

within the acceptable limits. The secondary users are modeled analogous to BS placement in homogeneous

1-D and 2-D SCS, and the tail probability of C
I at the primary user is characterized. Further, in the context

of radio environment map (REM, [28, and references therein]), we have highlighted the practical signi�cance

of the study of 1-D SCS.

2.6.4 Overlay Networks

The modern cellular communication network is a complex overlay of heterogeneous networks, such as

macrocells, microcells, picocells and femtocells. This complex overlay network is seldom studied as is, due to

the analytical intractabilities. In [14,48], cellular systems consisting of macrocell and femtocell networks are

analyzed. Using the results in this chapter, the cumulative e�ect of all the networks constituting the overlay

network, on the signal quality at the MS can be studied. A detailed study on this is set aside as a future

work, while the preliminary results are presented in [29, 30, 49]. Other e�orts on the downlink performance

characterization for heterogeneous networks can be found in [3, 50�55].

2.7 Conclusions

In this chapter, we study the characterization of the SIR and SINR at the MS in shotgun cellular

systems where a SCS is de�ned as a cellular system where the BS deployment in a given region is according

to a Poisson point process. A sequence of equivalent SCSs are derived to show that it is su�cient to study

the canonical SCS that has unity transmission power and unity fading factors, and a path-loss model of 1
R .

Analytical expressions for the tail probabilities of the SIR and SINR at the MS are obtained for 1-D, 2-D and

3-D SCSs, where the 1-D, 2-D and 3-D SCS are mathematical models for BS deployments along the highway

(1-D), in planar regions (2-D) and in urban areas (3-D), respectively. Further, a closed form expression for

the tail probability of SIR is derived for the homogeneous cases of 1-D, 2-D and 3-D SCS. The results are

applicable for general fading distributions and arbitrary path-loss models. This makes the results useful
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for analyzing many di�erent wireless scenarios that are characterized by uncoordinated deployments. The

application of the results has been demonstrated in the study of the impact of cooperation between cognitive

radios in the low power primary user detection and can be found in [28], and in the study of heterogeneous

networks in [29]. Future work will further explore the applications of the SCS model in the context of indoor

femtocells, cognitive radios, and multi-tier or overlay networks.

2.8 Appendix

2.8.1 Proof for Path-loss Equivalence Theorem (Theorem 1)

Let R̄ = h(R) be the equivalent BS location. Using the Mapping Theorem in [6], BS with locations

R̄ is also a Poisson point process, whose density is obtained below. For any non-homogeneous 1-D Poisson

point process, E [N (r + s)−N (r)] =
´ r+s

r
λ(z)dz is the expected number of occurrences in the interval

(r, r + s). Thus,

E [N (r + s)−N (r)] = E
[
Number of BSs with R̄ ∈ (r, r + s)

]
(2.17)

= E
[
Number of BSs with R ∈

(
h−1 (r) , h−1 (r + s)

)]
=

ˆ h−1(r+s)

z=h−1(r)

λ (z) dz =

ˆ r+s

z=r

λ
(
h−1 (z)

)
h′ (h−1 (z))

dz.

Hence, the 1-D SCS with path-loss model 1
h(R) and a BS density function λ(r) is equivalent to the 1-D SCS

with path-loss model 1
R and BS density function λ̄ (r).

2.8.2 Proof for Arbitrary Fading Equivalence Theorem (Theorem 2)

Let R̄ = R (KΨ)
−1
, where R is the random variable representing the distance from the MS to a BS

in the 1-D SCS with a BS density function λ (r), K, Ψ are the transmission power and the fading factor

corresponding to the BS, respectively, and R̄ is the corresponding equivalent distance. Using the product

space representation and Marking Theorem in [6], R̄ also corresponds to the 1-D SCS with a BS density

function derived following (2.17) :

E [N (r + s)−N (r)]
(a)
= EK,Ψ

[ˆ (r+s)KΨ

rKΨ

λ (z) dz

]
(b)
=

ˆ (r+s)

r

EK,Ψ [KΨλ (KΨz)] dz,
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where (a) is obtained by rewriting the expectation with respect to each realization of Ψ and K, and (b) is

obtained by exchanging the order of integration and expectation in (b) as EK,Ψ [KΨλ (KΨz)] < ∞. Hence,

R̄′s corresponds to the 1-D SCS with a BS density function λ̄ (r) = EK,Ψ [KΨλ (KΨr)] .

2.8.3 Proof for Corollary 6

Let {Rk}∞k=1 correspond to the 1-D SCS with BS density function λ(r). Then, since the ordered

base station locations Rk's are determined by inter-base station distances, it follows that SINR|λ(r)
(a)
=

(aR1)
−1∑∞

k=2(aRk)−1+η

∣∣∣
λ(r)

(b)
= st

(
R

′
1

)−1

∑∞
k=2(R

′
k)

−1
+η

∣∣∣∣∣
1
aλ( r

a )

, where the SINR expression is obtained using (2.2) with

h (R) = R, (a) is obtained by multiplying the numerator and denominator by 1
a , a > 0 (b) follows from from

the properties of Poisson point processes. Further,
{
R

′

k

}∞

k=1
in (b) correspond to 1-D SCS with BS density

1
aλ
(
r
a

)
, a > 0.

2.8.4 Proof for the Tail Probability of SINR (Theorem 3)

The following are the sequence of step to derive the expression in (2.4) .

P ({SINRcanonical > γ}) = P
({

1

SINRcanonical
<

1

γ

})
(a)
=

ˆ 1
γ

x=0

ˆ ∞

ω=−∞
Φ 1

SINRcanonical

(ω) e−iωx dω

2π
dx,

where (a) is obtained by rewriting the c.d.f. of 1
SINRcanonical

in terms of the characteristic function of

1
SINRcanonical

, where the inner integration computes the p.d.f. of 1
SINRcanonical

, and the outer integration gives

the c.d.f. at 1
γ . When γ = 0, the above event occurs with probability 1, and otherwise, it is expressed in

terms of the integration in (2.4) which is obtained by exchanging the order of integrations in (a) , which

is valid in this case, and then evaluating the integral w.r.t. x. In the rest of this section, we derive the

expression for Φ 1
SINRcanonical

(ω) , by �rst noting that SINRcanonical =
R−1

1∑∞
k=2 R−1

k +η
.

Φ 1
SINRcanonical

(ω)
(a)
= ER1

[
Φ 1

SINRcanonical

∣∣∣R1
(ω|R1)

]
(b)
= ER1

eiωηR1Φ ∑∞
k=2

R
−1
k

R
−1
1

∣∣∣∣R1

(ω|R1)


= ER1

[
eiωηR1Φ∑∞

k=2 R−1
k |R1

(ωR1|R1)
]

(c)
= ER1

[
eiωηR1E

[ ∞∏
k=2

eiωR1R
−1
k

∣∣∣R1

]]
(d)
= ER1

[
eiωηR1 · exp

(
−
ˆ ∞

r=R1

(
1− eiωR1r

−1
)
λ (r) dr

)]
,
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where (a) is obtained due to the properties of expectation, and R1 is the random variable for the distance of

the closest BS from the origin, (b) is obtained by using the properties of the characteristic functions and noting

that in 1
SINRcanonical

=
∑∞

k=2 R−1
k +η

R−1
1

, conditioned on R1, the term
η

R−1
1

is a constant and hence separates out

as eiωηR1 from the original conditional characteristic function expression in (a) , (c) is obtained by rewriting

the exponential of summation in the characteristic function term in (b) as a product of exponentials, (d) is

obtained by �rst noting that conditioned on R1, the events in the two disjoint regions [0, R1] and (R1, ∞)

are independent of each other, and hence by the Restriction theorem [6, Page 17], all the points beyond

R1, represented by the set {Rk}∞k=1 can be regarded to be associated with a Poisson point process in 1-D

restricted to the region (R1,∞) , and with a density function λ (r) . As a result, now we can apply Campbell's

theorem [6, Page 28] to the inner expectation in (c) to obtain (d) , which is further simpli�ed to obtain (2.6) .

2.8.5 Proof for Theorem 4

Here, we derive the expression for the tail probability of SINR for values greater than or equal to 1.

Due to [50, Lemma 1], there exists a unique BS within the 1-D SCS such that γ ≥ 1 holds true. Let the

index of this unique BS be i. The expression for the tail probability of SINR is derived as follows.

P ({SINR > γ}) (a)
= P

({
ΨiR

−1
i∑∞

j=1, j ̸=i ΨjR
−1
j + η

> γ

})

(b)
= E

exp (−ηγRi)

∞∏
j=1, j ̸=i

exp
(
−γRiΨjR

−1
j

)
(c)
= E

[
exp (−ηγRi) exp

(
−
ˆ ∞

r=0

(
1− EΨ

[
e−γRiΨr−1

])
λ̄ (r) dr

)]
(d)
= E

[
exp (−ηγRi) exp

(
−
ˆ ∞

r=0

(
1− 1

1 + γRir−1

)
λ̄ (r) dr

)]
,

where (a) is the expression for the tail probability of SINR of the 1-D SCS with BS density λ̄ (r) for which

{Rj}∞j=1 is the set of distances of BSs from the MS and `i' is the index of the unique BS that can satisfy

the constraint {SINR > γ} , (b) is obtained by evaluating the expectation w.r.t. Ψi and the expectation

operator E is w.r.t. to all other random variables in (a), (c) is obtained by �rst conditioning w.r.t. Ri and

noting that the Palm distribution of the BSs represented by {Rj}∞j=1, j ̸=i given a BS at Ri is still a Poisson

point process with density function λ̄ (r) , then applying the Marking theorem [6, Page 55] and Campbell's
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theorem [6, Page 28] where Ψ is the unity mean exponential random variable, (d) is obtained by evaluating

the expectation in (c) , and �nally (2.7) is obtained by simplifying (d) .

2.8.6 Proof for the Few-BS Approximation Theorem (Theorem 5)

First, using Corollary 4, SIR2 =
KR−ε

1

P̃I(2)
, with P̃I (2) = KR−ε

2

(
1 + λ0bl

ε−l R
l
2

)
. Next, notice that the

event {SIR2 > γ} is equivalent to the joint event
{
R1 ≤ R2, R1 <

(
γP̃I(2)

K

)− 1
ε

}
and thus, P

({
C
I2

> γ
})

=

P
({

R1 ≤ min

(
R2,

(
γP̃I(2)

K

)− 1
ε

)})
, where

min

R2,

(
γP̃I (2)

K

)− 1
ε

 =



(
γP̃I(2)

K

)− 1
ε

, γ ≥ 1(
γP̃I(2)

K

)− 1
ε

, γ < 1, R2 >
(

l×u(γ)
λ0bl

) 1
l

R2 , γ < 1, R2 ≤
(

l×u(γ)
λ0bl

) 1
l

.

Finally, (2.15) is obtained using the joint p.d.f., fR1,R2 (r1, r2) = (λ0bl)
2
(r1r2)

l−1
exp

(
−λ0bl

l rl2
)
, 0 ≤ r1 ≤

r2 ≤ ∞, due to the properties of Poisson point processes.

2.8.7 Proof for Theorem 6

Let us consider the probability of the event that the interference due to all the BSs beyond the signal

BS at a given distance R1 is below a certain value, say, δ, for the case ε = 2.

P

({ ∞∑
k=2

R−2
k ≤ δ

∣∣∣∣∣R1

})
= P

({
e−s

∑∞
k=2 R−2

k ≥ e−sδ
∣∣∣R1

})
(a)

≤ esδE
[
e−s

∑∞
k=2 R−2

k

∣∣∣R1

]
(b)
= esδe

−λ
´∞
r=R1

(
1−e−sr−2

)
2πrdr

(c)
= esδe

λ
´∞
r=R1

∑∞
k=1

(−sr−2)
k

k! 2πrdr

= esδe−λs2π· log(r)|∞r=R1
+λ2π

∑∞
k=2

(−s)k

k!

(R2−kε
1 )
kε−2

= esδ × 0× eα(R1) = 0,

where (a) is obtained by applying Markov's inequality, (b) is obtained by applying Campbell's theorem to

the homogeneous Poisson point process de�ned in the 2-D plane beyond R1 from the origin, (c) is obtained

after the Taylor's series expansion of the exponential function in (b) , and �nally the result is obtained by
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noting that the exponential of a sum of functions is a product of exponential and by showing that one of the

terms in the product is 0 while the others evaluate to a �nite number.

As a result,

P ({SIR > γ}) = ER1

[
P

({ ∞∑
k=2

R−ε
k < (γRε

1)
−1

∣∣∣∣∣R1

})]
= 0, ∀ γ ≥ 0.

and hence we have proved the result.

2.8.8 Simulation Methods

In this section, the details of simulating the SCS are presented. A single trial in simulating the BS

placement for the 1-D SCS with BS density function λ(r) in the region of interest which is a subset of the

1-D plane denoted by S, involves the following steps:

1) Generate a random number M , according to a Poisson distribution with mean
´
S
λ (s) ds, which is

the number of BSs to be placed in S for the given trial.

2) BS placement: For homogeneous 1-D SCS, generate M random numbers according to a uniform

distribution in the range of S. If λ(s) does not correspond to a homogeneous 1-D SCS, if λmax = sup
s∈S

λ(s),

then general a random number y which is uniformly distributed in the range [0, λmax] and another random

number x according to a uniform distribution in the range of S. A BS is placed uniformly at x, only if

y < λ0(x). This process is repeated until M BS are placed.

3) Compute the received power at the MS for each BS using the path-loss exponent ε. The fading

in the SCS is incorporated by multiplying each of the received powers with i.i.d. random number generated

according to the distribution of the fading factor. Finally, SINR at the MS corresponding to this trial, is

computed according to (2.2).

For all the simulations in this chapter T = 100, 000 trials are used unless speci�ed otherwise.



Chapter 3

Stochastic Ordering based SIR Analysis for the Shotgun Cellular Systems

3.1 Introduction

In the previous chapter, we have modeled the BS arrangement by non-homogeneous Poisson point

processes in Rl, l = 1, 2, and 3, and derived semi-analytical expressions for the distribution of SIR at a

given MS. This helped in quantifying the outage probability in a very general setting involving arbitrary

fading distribution and path-loss models, random BS transmission powers and user mobility. However, in the

absence of results in closed form, alternate approaches need to be explored to develop a clearer understanding

of such networks. Furthermore, growing interests in understanding networks like femtocells, cognitive radios

and heterogeneous networks have created a demand to consider more complex stochastic geometric models,

with little hope for complete analytical characterization.

Here, we pose the question: Is it possible to qualitatively compare two SIR distributions by only

examining the BS densities without having to obtain the SIR distributions? This chapter answers the

question a�rmatively for certain BS densities by developing a usual stochastic ordering based tool.

Concepts of stochastic ordering have been previously applied to scenarios of interest in wireless com-

munications. Recently, in [56], performances of communication systems are explored solely using stochastic

ordering. Further, [57] focuses on the study of directionally convex ordering of shot-noise �elds, and estab-

lishes the ordering of interferences in networks with nodes distributed according to di�erent point processes.

This chapter focuses on establishing usual stochastic ordering between the SIR at the MS in non-homogeneous

Poisson point process based BS arrangements, where the MS connects to the strongest BS, which is di�erent
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than the setup considered in [56, 57]. More examples on multi-tier networks and cognitive radios can be

found in [28,29].

The next section gives the system model. The main result of this chapter is Theorem 7 in Section 3.3.

The utility of this result is explored in Section 3.4, by considering several scenarios of interest in wireless

networks. Section 3.5 concludes the chapter.

3.2 System Model

The Shotgun Cellular System (SCS) is a model for the cellular system in which the BSs are distributed

in a l-dimensional plane (l−D, typically l = 1, 2, and 3) according to a non-homogeneous Poisson point

process in Rl. The intensity function of the Poisson point process is called the BS density function.

Without loss of generality, we restrict our attention to 1-D SCSs, because for the SIR analysis, the l-D

SCSs can be reduced to an equivalent 1-D SCS [58, Lemma 2] with a BS density function λ(r), where r ≥ 0

is the distance of the BS from a mobile-station (MS) located at the origin. For example, a homogeneous

l-D SCS with density λ0 (> 0) is equivalent to a 1-D SCS with density function λ (r) = λ0blr
l−1, r ≥ 0, b1 =

2, b2 = 2π, and b3 = 4π [58, Corollary 2].

The BSs are assumed to have independent and identically distributed (i.i.d.) random transmission

powers Ki's and shadow fadings Ψi's across BSs. The path-loss is R
−ε, ε > 0, where R denotes the distance

between the BS and the receiver. We assume an interference limited system and omit thermal noise. We

focus on the signal quality of a MS at the origin. The MS chooses to communicate with the BS, referred to

as the �serving BS,� that corresponds to the strongest received signal power, or equivalently strongest SIR.

All other BSs are the �interfering BSs�. The signal quality at the MS is measured by SIR =
KSΨSR−ε

S∑∞
i=1 KiΨiR

−ε
i

,

where S indexes the serving BS, i indexes the interfering BSs and the random variables RS ≤ R1 ≤ R2 ≤ · · ·

are ordered BS locations.

3.3 The Stochastic Ordering of SIR

In this section, we present the theoretical tools that are used to compare SIR tail probability by com-

paring the equivalent 1-D BS densities. Since the e�ect of i.i.d. shadow fading factors and i.i.d. transmission
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powers can be captured by modifying the BS density as shown in Section 3.4.4, they are assumed to be 1 for

all BSs. The generalization to arbitrary path loss model is given in [58, Section VI], which is also equivalent

to modifying the BS density λ(r). As a result, SIR =
R−ε

1∑∞
i=2 R−ε

i

.

De�nition 5. LetX and Y be two random variables such that P ({X > x}) ≤ P ({Y > x}) , ∀ x ∈ (−∞,∞),

then X is smaller than Y in the usual stochastic order and this is denoted by X ≤st Y . Further, X =st Y

means P ({X > x}) = P ({Y > x}) , ∀ x ∈ (−∞,∞) . [39, p. 3]

If X and Y are the C
I at the MS in two di�erent SCSs, X ≤st Y implies that the MS in the SCS

corresponding to Y is more likely to achieve better signal quality than in the SCS corresponding to X. Let

{Rk}∞k=1 represent the set of distances of BSs from the MS, indexed in the ascending order of the distance,

and let Dk+1 = Rk+1 − Rk be the distance between two adjacent BSs, and fDk+1|Rk
(d| r;λ(s)) be the

probability density function (p.d.f.) of Dk+1 conditioned on Rk = r, as a function of the BS density λ(s).

Lemma 5.

fDk+1|Rk
(d |r;λ(s) ) (A)

= e−
´ r+d
r

λ(s)dsλ(r + d), and

faDk+1|aRk
(d′ |r′;λ(s) ) (B)

= fDk+1|Rk

(
d′
∣∣∣∣r′; 1aλ( sa)

)
.

Proof. Equation (A) follows from the properties of Poisson processes [6, 7]. Equation (B) is proved by

faDk+1|aRk
(d′|r′;λ(s))

(a)
=

1

a
fDk+1|Rk

(
d′

a
|r

′

a
;λ(s)

)
(b)
=

1

a
λ

(
r′ + d′

a

)
exp

(
−
ˆ r′+d′

a

r′
a

λ(s)ds

)
(c)
=

1

a
λ

(
r′ + d′

a

)
exp

(
−
ˆ r′+d′

r′

1

a
λ

(
s′

a

)
ds′

)
,

where (a) is obtained by a variable change; (b) follows from (A); and (c) is obtained by a variable change

and gives (B).

Lemma 5 means that scaling Dk+1 and Rk by a is equivalent to scaling the BS density as 1
aλ(

r
a ). The

signi�cance of Lemma 5 is presented next, using the notation de�ned below.
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De�nition 6. SIR|λ(r) denotes the random variable of the SIR at the MS of a 1-D SCS with BS

density function λ (r) .

Corollary 6. SIR|λ(r) =st SIR| 1
aλ( r

a ) , ∀ a > 0.

Proof. Let {Rk}∞k=1 correspond to the 1-D SCS with BS density function λ(r). Then, since the ordered BS

locations Rk's are determined by inter-BS distances, it follows from Lemma 5 that

SIR|λ(r) =
(aR1)

−ε∑∞
k=2(aRk)−ε

∣∣∣∣
λ(r)

=st

(
R

′

1

)−ε

∑∞
k=2

(
R

′
k

)−ε

∣∣∣∣∣∣∣
1
aλ( r

a )

,

where R
′

k's corresponding to
1
aλ(

r
a ) have the same distribution as aRk's corresponding to λ(r).

The following special case is a direct corollary of the above result.

Corollary 7. In a homogeneous l-D SCS, SIR is not a function of the BS density.

Proof. Firstly, recall that the SIR at the MS in a homogeneous l−D SCS with BS density λ0 is the same

as that in a 1−D SCS with a BS density function λ (r) = λ0blr
l−1. Next, from Corollary 6, the distribution

of SIR in this SCS is the same as that in a 1-D SCS with the BS density function 1
aλ
(
r
a

)
= λ0αblr

l−1, α =

a−l, a > 0. Thus, distributions of SIR corresponding to αλ0 and λ0 are the same.

The above result was also observed in [58], but Corollary 7 provides a simpler and more fundamental

proof. Next, we de�ne a notation used in Theorem 7.

De�nition 7. For BS density function λ (r), the cumulative BS density function is de�ned as µ(r) ,
´ r
0
λ(s)ds, and its inverse function is de�ned as µ−1(q) , sup{r : µ(r) ≤ q}.

Since λ(r) ≥ 0, µ (r) is a non-decreasing function of r. In general, the inverse function is not injective

since λ(r) can be zero in arbitrary intervals of r ∈ [0,∞) . The above de�nition makes it injective. For

certain BS densities, it is possible to compare two C
I 's by comparing the densities without solving for the

distributions. This is facilitated by Theorem 7.

Theorem 7. Let
{
λ1 (r) , µ1 (r) , µ

−1
1 (q)

}
and

{
λ2 (r) , µ2 (r) , µ

−1
2 (q)

}
be the BS density functions,

cumulative BS density functions and their inverse functions for two 1-D SCSs, respectively.
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The SIR at the MS follows the usual stochastic order SIR|λ1(r)
≤st SIR|λ2(r)

, if for each q > 0

and a =
µ−1
2 (q)

µ−1
1 (q)

, 1
aλ1

(
r
a

)
≥ λ2(r), ∀ r ≥ µ−1

2 (q).

Proof. See Appendix 3.6.1 for the proof.

Outage probability P{SINR < γ} and ergodic rate E [log (1 + SINR)] are often used to measure the

performance for slowly varying and fast varying systems, respectively. For interference dominated systems,

if SIR|λ1(r)
≤st SIR|λ2(r)

, it is obvious that P
{
SIR|λ1(r)

< γ
}
≥ P

{
SIR|λ2(r)

< γ
}
, ∀γ. In addition,

for u (SIR) = log (1 + SIR) or any other non-decreasing function, E
[
u
(
SIR|λ1(r)

)]
≤ E

[
u
(
SIR|λ2(r)

)]
.

Applications of the above theorem are in the next section.

3.4 Applications of the SIR stochastic ordering

3.4.1 Comparison of Homogeneous l−D SCSs (l = 1, 2, and 3)

Here, we show that the signal quality degrades as the dimension l of the homogeneous l-D SCS

increases, for which we need the following corollaries.

Corollary 8. For each q > 0 and a =
µ−1
2 (q)

µ−1
1 (q)

, if ∆(r) , 1
aλ1(

r
a )−λ2(r) is a non-decreasing function

for all r ≥ 0, then SIR|λ1(r)
≤st SIR|λ2(r)

.

Proof. Note that

µ−1
2 (q)ˆ

0

1

a
λ1

( s
a

)
ds = q =

µ−1
2 (q)ˆ

0

λ2(s)ds.

Hence,
µ−1
2 (q)´
0

∆(s)ds = 0. Suppose ∆(µ−1
2 (q)) < 0, then ∆(r) < 0, r ∈ [0, µ−1

2 (q)], since ∆(r) is non-

decreasing. This is a contradiction. Thus, ∆(µ−1
2 (q)) ≥ 0. Using Theorem 7, the corollary is proved.

Corollary 9. For a homogeneous l-D SCS with BS density λ0 and its equivalent 1-D BS density

function λl (r) = λ0blr
l−1, r ≥ 0, multiplying λl (r) with a non-increasing function β(r) > 0 im-

proves the SIR, i.e., SIR|λl(r)
≤st SIR|β(r)λl(r)

. The inequality reverses if β(r) is non-decreasing.
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Proof. If β(r) is non-increasing, for any a > 0, the density di�erence

∆(r) =
1

a
λl(

r

a
)− β(r)λl(r) = λ0bl

(
1

al−2
− β(r)

)
rl−1

is non-decreasing. By Corollary 8, SIR|λl(r)
≤st SIR|β(r)λl(r)

holds. If β(r) is non-decreasing, the same proof

applies with ∆(r) = β(r)λl(r)− aλl(
r
a ).

Hence,

SIR|λ1(r)

(a)

≥st SIR|λ2(r)

(b)

≥st SIR|λ3(r)

by plugging l = 1, 2, 3 in λl (r) , respectively; (a) holds because λ2 (r) = β (r)λ1 (r), where β (r) = b2
b1
r is a

non-decreasing function; and similarly (b) also holds. Thus, the comparison between SIRs is done without

�nding their distributions.

3.4.2 A Qualitative Comparison between Two 1-D SCSs

Consider a homogeneous 1-D SCS with a BS density function λ1 (r) = λ, r ≥ 0, and another 1-D

SCS with a BS density function λ2 (r) =


α 0 ≤ r ≤ ρ

β r > ρ

, where α < β (see inset of Figure 3.1). Such λ2(r)

might describe, for example, a highway passing through a region of small population (BS density of α) and

then a region of greater population (BS density of β). Usually, such a scenario is approximated by a constant

BS density throughout the highway, which is represented by λ1 (r) . Corollary 9 gives the intuitive result

SIR|λ1(r)
≥st SIR|λ2(r)

and puts the intuition on solid foundation. Further, Figure 3.1 shows this stochastic

ordering using simulations, the steps for which can be found in [58, Appendix D]. On the other hand, if

α > β, SIR|λ1(r)
≤st SIR|λ2(r)

. Using Corollary 9, similar scenarios can be studied for 2-D and 3-D.

3.4.3 Comparison of Path-loss Models

Here, we compare the SIR at the MS in two 1-D SCSs with BS density functions λi (r) and path-loss

models 1
hi(r)

, ∀ r ≥ 0, for i ∈ {1, 2}. Assume the derivative h
′

i (r) exists and h
′

i (r) > 0 ∀ r > 0. In the proof

of the following corollaries, we use [58, Theorem 4] to reduce the 1-D SCS with BS density function λi (r)
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and path-loss model 1
hi(r)

to an equivalent 1-D SCS with BS density function

λ̄i (r) =


λi(h−1

i (r))
h
′
i(h

−1
i (r))

r ≥ hi(0)

0 r < hi(0)

and a path-loss model, 1
r , where h−1

i (·) is the inverse function. Although 1
r is singular at the origin, this

conversion works for any non-singular path-loss models 1
h(r) , such as 1

h(r) = 1
1+rε , ε > l, for which λ̄(r) = 0

for 0 ≤ r ≤ h(0) = 1, avoiding the singular point.

Corollary 10. In a homogeneous l−D SCS, if the path-loss follows a power-law parametrized

by a path-loss exponent, ε, the SIR at the MS improves as the path-loss exponent increases.

In other words, if hi (r) = rεi , i = 1, 2, such that ε1 > ε2 > l, then SIR1 ≥st SIR2, where SIRi

corresponds to the path-loss model 1
hi(r)

.

Proof. Using [58, Theorem 4], the equivalent 1-D SCSs with a path-loss model 1
r have the BS density functions

λ̄i (r) =
λ0bl
εi

r
l
εi

−1
. Further, λ̄2 (r) = β (r) λ̄1 (r) , where β (r) = ε1

ε2
r

l
ε2

− l
ε1 , r ≥ 0 is a non-decreasing function.

Hence, Corollary 9 applies and SIR|λ̄1(r)
≥st SIR|λ̄2(r)

.

Hence, a simple proof that does not require solving the distribution of SIR gives the expected result

that a system with a greater path-loss exponent has a better SIR. The following corollary establishes a

similar result between two popularly used path-loss models [59].

Corollary 11. In a homogeneous l−D SCS with a BS density λ0, the received signal of a MS

located at the origin satis�es SIR1 ≤st SIR2, where SIR1 corresponds to path-loss 1
h1(r)

with

h1 (r) = rε1 , r ≥ 0 and SIR2 corresponds to the path-loss 1
h2(r)

with

h2 (r) =


rε1 , r ≤ 1

rε2 , r > 1

,

where ε2 > ε1 > l. The opposite conclusion holds when ε1 > ε2 > l.

Proof. Using [58, Theorem 4], λ̄1 (r) = λ0bl
ε1

r
l
ε1

−1, r ≥ 0, and λ̄2 (r) satis�es the equation λ̄2 (r)β (r) =
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λ̄1 (r) , where

β (r) =


1 , r ≤ 1

ε1
ε2
r

l
ε2

− l
ε1 , r > 1

.

Since ε2 > ε1 > l, β (r) is a non increasing function. As a result, Corollary 9 holds and hence SIR|λ̄1(r)
≤st

SIR|λ̄2(r)
. Thus, the system with the path-loss model 1

h2(r)
has a better signal quality compared to that of

1
h1(r)

. When ε1 > ε2 > l, β (r) is a non decreasing function and SIR|λ̄1(r)
≥st SIR|λ̄2(r)

.

3.4.4 Shadow Fading and Random Transmission Powers

Shadow fading, random transmission powers, and arbitrary path-loss models together can be captured

by modifying the BS density function as follows [58, Theorem 3, 4]. Consider a 1-D SCS with BS density func-

tion λ (r), path-loss model 1
h(r) , random shadow fading factors {Ψi}∞i=1, and transmission powers {Ki}∞i=1.

Ψi and Ki can be correlated but are i.i.d. across i. For the C
I analysis, the SCS is equivalent to another 1-D

SCS with BS density function λ̄ (r) = EΨ,K

[
KΨλ̃ (KΨr)

]
, where λ̃ (r) =


λ(h−1(r))
h′ (h−1(r))

r ≥ h(0)

0 r < h(0)

; E is the

expectation operator w.r.t. Ψ and K; Ψ =st Ψi and K =st Ki, ∀ i. This holds as long as the expectation

converges.

Thus, after modifying the BS density function, Theorem 7 applies. The following corollary shows a

scenario where SIR distribution is una�ected by shadow fading and random transmission powers.

Corollary 12. In a homogeneous l−D SCS with a BS density λ0, and a path-loss model 1
rε , ε > l,

the SIR distribution at the MS does not depend on the random shadow fading factors {Ψi}∞i=1

and transmission powers {Ki}∞i=1 , if they are i.i.d. across BSs and
∣∣∣EΨ,K

[
(ΨK)

l
ε

]∣∣∣ <∞.
Proof. The equivalent 1-D density function λ (r) = λ0blr

l−1, and the path-loss model h(r) = rε gives

λ̃(r) = λ0bl
ε r

l
ε−1. We have

SIR 1
rε ,random Ψi,Ki,λ(r)

(a)
= st SIR| 1

r ,Ψi=Ki=1,λ̄(r)

(b)
= st SIR| 1

r ,Ψi=Ki=1, 1
α λ̃( r

α )
(c)
= st SIR| 1

r ,Ψi=Ki=1,λ̃(r)

, where (a) is obtained with

λ̄ (r) = EΨ,K

[
ΨKλ̃ (ΨKr)

]
= EΨ,K

[
(ΨK)

l
ε

]
λ̃ (r)
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; (b) is obtained by rewriting λ̄ (r) as 1
α λ̃
(
r
α

)
where α =

(
EΨ,K

[
(ΨK)

l
ε

])− ε
l

; (c) is obtained by applying

Corollary 6. Thus, the C
I distribution is una�ected by shadow fading and transmission powers.

This result was already proved in [58, Remark 4(a)]. Here, however, we have shown an alternative

proof that is based only on the concepts of usual stochastic ordering.

3.5 Conclusions

This chapter is an extension to our work in characterizing the SIR of SCS in [58]. We have developed

a tool based on stochastic ordering to compare the SIR at the MS in non-homogeneous Poisson processes.

With Theorem 7, we show that, by just comparing certain BS density functions of the SCSs, we can make

strong inferences such as, a MS in a given SCS achieves a SIR that is at least as good as that achieved in

another SCS without having to solve for the SIR distributions. Moreover, as a consequence of Theorem 7,

simple proofs are given to show that in a homogeneous l-D SCS, (1) a MS sees decreasing signal quality as

dimension l increases; (2) the SIR at the MS improves as the path-loss exponent of the channel increases;

and (3) SIR distribution is una�ected by shadow fading and random transmission powers.

3.6 Appendix

3.6.1 Proof of Theorem 7

Consider the 1-D SCS speci�ed by the set
{
λ (r) , µ (r) , µ−1 (q)

}
, as in De�nition 7. The following

remark relates SIR to the cumulative BS density.

If R1 denotes the distance between the serving BS and MS in the 1-D SCS,

P ({SIR > y})

(a)
=

ˆ ∞

r1=0

P (SIR > y|R1 = r) fR1(r)dr

(b)
=

ˆ ∞

q=0

P (SIR > y|Q = q) fQ(q)dq,

where Q , µ(R1), and Q is an exponential random variable with mean 1.
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Equation (a) is obtained by conditioning w.r.t. R1. Equation (b) is obtained by expressing (a) in

terms of Q, where the p.d.f. of R1 at R1 = µ−1 (q) is

fR1(r)dr|r=µ−1(q)
= e−

´ r
0
λ(s)dsλ(r)dr

∣∣∣
r=µ−1(q)

= e−qdq = fQ(q)dq,

which does not depend on λ(r).

To show that the BS density λ1(r) gives a worse SIR than λ2(r) does, one needs to show that

SIR|R1=µ−1
1 (q), λ1(r), r≥µ−1

1 (q) ≤st SIR|R1=µ−1
2 (q), λ2(r), r≥µ−1

2 (q)

for all q > 0, where the condition of the domain of the BS density is because the locations of interfering BSs

only depend on the BS density in that domain. Next, de�ne a =
µ−1
2 (q)

µ−1
1 (q)

. By Corollary 6, where R
′

k's are the

ordered BS locations of the SCS with BS density 1
aλ
(
r
a

)
. The equation means that the conditional SIR of

the SCS with a BS density λ1(r) is equivalent to an SCS with BS density 1
aλ1(

r
a ) with the same location of

the serving BS as the SCS with BS density λ2(r).

With the locations of the serving BSs equal and �xed, C
I is a decreasing function of the interference.

Theorem 1.A.3.(a) of [39] says that decreasing functions reverse the usual stochastic order. So, one only

needs to show that the interferences satisfy

∞∑
k=2

R−ε
k |R2≥µ−1

2 (q), 1
aλ1(

r
a ), r≥µ−1

2 (q)

≥st
∞∑
k=2

R−ε
k |R2≥µ−1

2 (q), λ2(r), r≥µ−1
2 (q). (3.1)

As shown in [58, Appendix B], the total interference power can be expressed as
∑∞

k=2 R
−ε
k = limrB→∞ limN→∞

∑N
i=2 Xi,

where Xi is a Bernoulli random variable de�ned by

P ({Xi = 0|R1 = r1}) = 1− pi,

P
({

Xi = r−ε
i + o (∆r)

∣∣R1 = r1
})

= pi,

pi = λ(ri)∆r+o(∆r), ri = r1+(i−1)∆r, ∆r = rB−r1
N , and r1 = µ−1

2 (q). Since the condition 1
aλ1(

r
a ) ≥ λ2(r)

holds for all r ≥ µ−1
2 (q), we have Xi| 1

aλ1(
r
a ) ≥st Xi|λ2(r), ∀i ≥ 2. As summation preserves stochastic

order [39, Theorem 1.A.3.(b)], (3.1) is proved, completing the proof.



Chapter 4

Downlink Analysis for a Heterogeneous Cellular Network

4.1 Introduction

The modern cellular communication network is an overlay of multiple contributing subnetworks such

as the macrocell, microcell, picocell and femtocell networks, collectively called the heterogeneous network

(or, in short, hetnets). The hetnets have been shown to sustain greater end-user data-rates and throughput

as well as provide indoor and cell-edge coverage, further leading to their inclusion as an important feature

to be implemented under the fourth-generation (4G) cellular standards [60�66].

Until recently, the analysis of such networks has been done solely through system simulations. Since

the hetnets consist of a combination of regularly spaced macrocell networks along with irregularly spaced

microcell and picocell networks and often randomly placed end-user deployed femtocell networks, it is di�cult

to study the entire network at once using simulations. Further, the base-stations (BSs) in each of these

networks have di�erent transmit powers, tra�c-load carrying capabilities and di�erent radio environment

that is based on the locations in which they are deployed. The many parameters involved in the design and

modeling of the individual networks makes it di�cult to narrow all the possibilities down to a limited set of

simulation scenarios based on which one can make the design decisions for the entire network. Under these

circumstances, the development of an analytical model that captures all the design scenarios of interest is of

great importance.

Towards this goal, a stochastic geometric model has been identi�ed as a plausible analytical model

as well as the most widely used one in academia. There is a rich set of results for studying the behavior of
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large systems with nodes deployed randomly (especially according to a homogeneous Poisson point process

on the plane) and can be found in [67�70]. For the cellular network, a strong motivation for viewing

the BS arrangement as a homogeneous Poisson point process can be drawn from the study of the cellular

systems in [2,12,13] which suggests that signi�cant insights can be gained by bounding the downlink cellular

performance between the ideal hexagonal grid model and the homogeneous Poisson point process based

model. More interestingly, in [2, Fig.2.], it is claimed with the help of Monte-Carlo simulations that in the

limit of strong log-normal shadow fading (standard deviation of the fading coe�cient σ →∞), the downlink

performance of an ideal hexagonal cellular system approaches the performance in a cellular system with

randomly deployed base-stations according to a homogeneous Poisson point process. Recently, the above

convergence has been analytically proved in [10, Theorem 3]. It is shown that the downlink performance

of a cellular network with any deterministic arrangement of BSs (not just the ideal hexagonal grid model)

converges to that of a Poisson point process based model as σ →∞, and moreover even for realistic values of σ

that are observed in the indoor environments, the latter model is a good approximation for the deterministic

model. Results in [27, 58, 71] demonstrates that, with the Poisson point process based BS arrangement, the

study of the cellular system sees a distinctive advantage of being analytically tractable, unlike the studies

based on the hexagonal grid model that are purely simulation-based.

In light of the above motivations, it is well-justi�ed to study the hetnet performance by viewing the

hetnet as composed of multiple tiers of networks (e.g. macrocell, microcell, picocell and femtocell networks),

each modeled as an independent homogeneous Poisson point process, and such studies have been done

in [3, 50�55, 72] and by us in [29, 30, 49]. These studies mathematically characterize important performance

metrics such as coverage probability (= 1 - outage probability), average ergodic rate, average load carried by

BSs of each tier and load-awareness. Furthermore, such studies have facilitated the characterization of the

improvements that techniques such as fractional frequency reuse and carrier aggregation bring to cellular

performance as well as hetnet performance. In the following subsection, we di�erentiate our work from the

other prior work on hetnets and list the contributions of this chapter.
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4.1.1 Prior work and Contributions of the chapter

In [3,50], the coverage probability results are obtained for the hetnets under the max-SINR connectiv-

ity, but are restricted to the case where the fading coe�cients corresponding to all the BS transmissions are

independent and identically distributed (i.i.d.) exponential random variables, and the path-loss exponents

are the same for all the tiers. Using an entirely di�erent approach, [54, 55, 72] derived the coverage proba-

bility for the hetnet with max-SINR and nearest BS connectivity models, but were again restricted to the

i.i.d. exponential distributed fading coe�cients for all BSs. In [53], the authors study the hetnet coverage

probability for the maximum average received power (MARP) connectivity model (which is a special case of

the nearest-BS connectivity model, as will be seen later), and again for the exponential fading assumption

for all BS transmissions. In [29, 30, 49], we derived the hetnet coverage probability for the case when the

i.i.d. fading coe�cients have an arbitrary distribution and the path-loss exponents are di�erent for di�erent

tiers, for the maximum instantaneous received power (MIRP) connectivity model, which is a special case for

the max-SINR connectivity model, as will be discussed later.

In this chapter, the hetnet is modeled to consist of open and closed access networks formed by the

arrangement of BSs according to homogeneous Poisson point process with a certain density for each tier,

and independent of the other tiers. The focus is on the downlink performance analysis, and the MS can

connect to one of the open-access networks; and the closed access networks only cause interference. Hence,

without loss of generality, we study the downlink performance where the hetnet consists of K tiers of open

access networks and a single closed access network. Signals from BSs of a given tier have a constant transmit

power, random fading coe�cient that is i.i.d. across all the BSs of the same tier and independent of those

of the other tiers with any arbitrary distribution, arbitrary path-loss exponent that is constant for all BSs

of the same tier and di�erent across di�erent tiers, and the SINR threshold for connectivity to a given kth

open-access tier's BS is βk, k = 1, · · · ,K. For such a general setting, expressions for the coverage probability

at the MS are derived for both the max-SINR connectivity model and the nearest-BS connectivity model.

In the former connectivity model, the MS is said to be in coverage if there exists at least one open-access

BS with an SINR above the corresponding threshold, and under the latter connectivity model, the MS is
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said to be in coverage if at least one among the nearest BSs of each open-access tier has an SINR above the

corresponding threshold.

When the SINR thresholds of all the tiers are above 1, the hetnet coverage probability under max-SINR

connectivity and MIRP connectivity are identical, nearest-BS connectivity and the MARP connectivity are

identical. Further, in these special cases, simple analytical expression are derived for the coverage probability,

average rate and the load carried by the BSs of each tier. The following section describes the system model

in detail.

4.2 System Model

This section describes the various elements used to model the wireless network, namely, the BS layout,

the radio environment, and the performance metrics of interest.

4.2.0.1 BS Layout

The hetnet is composed of K open-access tiers and one closed-access tier, and the BS layout in each

tier is according to an independent homogeneous Poisson point process in R2 with density λk for the k
th open-

access tier (k = 1, · · · , K) and a density λc for the closed-access tier. The MS is allowed to communicate

with any BS of the open-access tiers, but cannot communicate with any of the closed-access BSs.

4.2.0.2 Radio Environment and downlink SINR

The signal transmitted from each BS undergoes shadow fading and path-loss. The SINR at an

arbitrary MS in the system from the ith BS of the kth open-access tier is the ratio of the received power from

this BS to the sum of the interferences from all the other BSs in the system and the constant background

noise η, and is expressed as

SINRki =
PkΨkiR

−εk
ki∑K

m=1

∑∞
l=1

(m,l) ̸=(k,i)

PmΨmlR
−εm
ml +

∑∞
n=1 PcΨcnR

−εc
cn + η

, (4.1)

where {Pm,Ψml, εm, Rml}m=K, l=∞
m=1, l=1 are the constant transmit power, random shadow fading factor,

constant path-loss exponent and the distance from the MS of the lth BS of themth open-access tier. Similarly,
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Symbol Description

K Number of open-access tiers

{Pl}Kl=1 , Pc Constant transmission powers of the BSs
of the K open-access tiers and closed access tier, respectively

{εl}Kl=1 , εc Path-loss exponents of the open and closed - access tiers ( > 2).

{Ψl}Kl=1 ,Ψc i.i.d. fading gains of the open and closed-access tiers

(
EΨ

2
εl

l , EΨ
2
δ
c <∞

)
{βl}Kl=1 SINR thresholds for connectivity to a BS in the lth open-access tier

η Background noise power

{γl}Kl=1 =
{
1 + 1

βl

}K

l=1

Table 4.1: List of symbols used in the chapter

{Pc,Ψcn, εc, Rcn}∞n=1 lists the constant transmit power, random shadow fading factor, and the constant path-

loss exponent of the nth BS of the closed-access tier. The fading coe�cients {Ψml}∞l=1 are i.i.d. random

variables with the same distribution as Ψm, m = 1, · · · , K, and similarly, {Ψcl}∞l=1 are i.i.d. with the same

distribution as Ψc. Further, it is assumed that

{
E
[
Ψ

2
εm
m

]}K

m=1

, E
[
Ψ

2
δ
c

]
< ∞. Finally, Rml (Rcl) is the

distance of the lth nearest BS belonging to the mth open-access (closed-access) tier, and {Rml}∞l=1 , {Rcl}∞l=1

represents the sets of points distributed according to the homogeneous Poisson point process with density

λm, λc, respectively, where m = 1, · · · , K, as seen in Section 5.2.0.1. The various symbols introduced in

this section are listed in Table 4.1 for quick reference.

4.2.0.3 BS connectivity models

A MS is able to communicate with a BS of the kth open-access tier if the SINR corresponding to the

BS is above a certain threshold βk, k = 1, · · · , K, in which case, the MS is said to be in coverage. The BS

connectivity models provide a rule to determine which BS to connect to, and in this chapter, we focus on

the max-SINR connectivity model and the nearest-BS connectivity model. The MIRP connectivity model

and the MARP connectivity model are special cases of the max-SINR and nearest-BS connectivity models,

respectively, and will be discussed in detail in the later sections.

Under the max-SINR connectivity model, the MS is said to be in coverage if there exists at-least one

BS among all the open-access tiers that has an SINR at the MS above the corresponding threshold, and is
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mathematically expressed as follows.

Pmax−SINR
coverage = P

(
K∪

k=1

∞∪
i=1

{SINRki > βk}

)
= 1− P

(
K∩

k=1

∞∩
i=1

{SINRki ≤ βk}

)

= P

(
K∪

k=1

{SINRk (max) > βk}

)
, (4.2)

where SINRki corresponds to the i
th BS of the kth tier as de�ned in (4.1) and SINRk (max) is the maximum

SINR observed by the MS among all the kth open-access tier BSs. In other words, MS is in coverage under the

max-SINR connectivity model if there exists at least one of the K open-access tiers in which the maximum

SINR at the MS from that tier exceeds the corresponding threshold.

The MS is said to be in coverage under the nearest-BS connectivity model if there exists at least one

of the nearest BSs of the K open-access tiers with SINR at the MS above the corresponding threshold. This

is mathematically expressed as

Pnearest
coverage = P

(
K∪

k=1

{SINRk1 > βk}

)
, (4.3)

where SINRk1 (see (4.1)) is the SINR at the MS from the nearest BS among the kth tier BSs. In the following

section, we derive expressions for the hetnet coverage probability for the above mentioned connectivity

models.

4.3 Hetnet Coverage Probability

In [70], a technique to compute the downlink coverage probability in a single-tier network with BS

arrangement according to homogeneous Poisson point process under max-SINR connectivity model was

shown. In [3], the authors utilize this technique to compute the hetnet coverage probability for an open-

access case where the fading coe�cients for all the BSs in the system are i.i.d. unit mean exponential random

variables and the path-loss exponents are the same for all tiers. Here, we generalize the technique developed

in [70] to compute the hetnet coverage probability for both the max-SINR and nearest-BS connectivity

models for a general system model as explained in Section 4.2.
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The coverage probability expressions in (4.2) and (4.3) can be equivalently expressed as follows:

Pmax−SINR
coverage = P

(
K∪

k=1

{
Mk

Io + Ic + η −Mk
> βk

})
= P

({
max

k=1,··· , K
γkMk > Io + Ic + η

})
, (4.4)

Pnearest
coverage = P

(
K∪

k=1

{
Nk

Io + Ic + η −Nk
> βk

})
= P

({
max

k=1,··· , K
γkNk > Io + Ic + η

})
, (4.5)

where Mk = max
l=1,··· , ∞

PkΨklR
−εk
kl is the maximum of the received powers from all the kth tier BSs, Nk =

PkΨk1R
−εk
k1 is the received power from the nearest BS among all the kth tier BSs, Io =

∑K
k=1

∑∞
l=1 PkΨklR

−εk
kl(

Ic =
∑∞

l=1 PcΨclR
−εc
cl

)
is the sum of the received powers from all the open-access BSs (closed-access BSs)

in the system. In the following lemma, we derive expressions for two Laplace transforms that are useful to

obtain semi-analytical expressions for Pmax−SINR
coverage and Pnearest

coverage, respectively.

Lemma 6.

LIo+Ic+η, max
k=1,··· ,K

γkMk≤u (s) , E
[
exp (−s (Io + Ic + η))× I

(
max

k=1,··· ,K
γkMk ≤ u

)]

= LIc (s) e
−sη−

∑K
k=1 λkπ(sPs)

2
εk E

[
Ψ

2
εk
k

][
Γ
(
1− 2

εk

)
+ 2

εk
Γ
(
− 2

εk
, suγk

)]
, (4.6)

LIo+Ic+η, max
k=1,··· ,K

γkNk≤u (s) , E
[
exp (−s (Io + Ic + η))× I

(
max

k=1,··· ,K
γkNk ≤ u

)]

= LIc (s) e
−sη−

∑K
k=1 λkπ(sPs)

2
εk E

[
Ψ

2
εk
k

]
Γ
(
1− 2

εk

)
×

K∏
k=1

EΨk1

ˆ su
γkΨk1

x=0

λk
2π

εk
(sPk)

2
εk x

− 2
εk

−1
e
−Ψk1x−λk

2π
εk

(sPk)
2
εk EΨk

[
Ψ

2
εk
k Γ

(
− 2

εk
,xΨk

)]
dx

 , (4.7)

where LIc (s) = exp

(
−λcπ (sPc)

2
εc E

[
Ψ

2
εc
c

]
Γ
(
1− 2

εc

))
, and the random variables Ψk1 and Ψk are i.i.d.

for all k = 1, · · · ,K.

Proof. See Appendix 4.7.1.

When fading coe�cients are i.i.d. unit mean exponential random variables E
[
Ψ

2
εk

k

]
= Γ

(
1 + 2

εk

)
,

setting λc = 0 and {εk}Kk=1 = α, we get [3, (2)]. Further, using [70, Corollary 4], we get the joint p.d.f. of
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Io + Ic + η, max

i=1,··· ,K
γiMi

)
and

(
Io + Ic + η, max

i=1,··· ,K
γiNi

)
to be

fIo+Ic+η, max
i=1,··· ,K

γiMi (x, y) =

ˆ ∞

ω=−∞

∂

∂u
LIo+Ic+η, max

i=1,··· ,K
γiMi≤u (jω)

∣∣∣∣
u=y

ejωx

2π
dω, (4.8)

fIo+Ic+η, max
i=1,··· ,K

γiNi (x, y) =

ˆ ∞

ω=−∞

∂

∂u
LIo+Ic+η, max

i=1,··· ,K
γiNi≤u (jω)

∣∣∣∣
u=y

ejωx

2π
dω, (4.9)

∂
∂uLIo+Ic+η, max

i=1,··· ,K
γiMi (s)

LIo+Ic+η, max
i=1,··· ,K

γiMi≤u (s)
=

K∑
k=1

λk
2π

εk
(γkPk)

2
εk E

[
Ψ

2
εk

k

]
u
−1− 2

εk e
− su

γk , (4.10)

∂
∂uLIo+Ic+η, max

i=1,··· ,K
γiNi≤u (s)

LIo+Ic+η, max
i=1,··· ,K

γiNi≤u (s)
=

K∑
k=1

EΨk1

Ψ
2
εk
k1 e

−λk
2π
εk

(sPk)
2
εk EΨk

Ψ 2
εk
k

Γ

(
− 2

εk
,

suΨk
γkΨk1

)


ue
su
γk

´ 1
x=0

EΨk1

Ψ
2
εk
k1 e

−λk
2π
εk

(sPk)
2
εk EΨk

Ψ 2
εk
k

Γ

(
− 2

εk
,
xuxΨk
γkΨk1

)


x
2
εk

+1
e
sux
γk

dx

. (4.11)

Having computed the expressions for the joint p.d.f.'s in (4.8) and (4.9), the coverage probabilities can be

easily obtained, and is shown in the following theorem.

Theorem 8. The hetnet coverage probability max-SINR connectivity and the nearest-BS connectivity models

are as follows:

Pmax−SINR
coverage =

K∑
i=1

λi
2π

εi
(γiPi)

2
εi E

[
Ψ

2
εk

k

]
×

ˆ ∞

y=0

ˆ ∞

ω=−∞

LIo+Ic+η, max
i=1,··· ,K

γiMi≤y (jω)
(
ejωy(1−γ−1

i ) − ejω(η+y(κ−1−γ−1
i ))

)
2πjωy

1+ 2
εi

dωdy, (4.12)

Pnearest
coverage =

ˆ ∞

y=0

ˆ ∞

ω=−∞

∂

∂u
LIo+Ic+η, max

i=1,··· ,K
γiNi≤u (jω)

∣∣∣∣
u=y

ejωy − ejω(
y
κ+η)

jω2π
dωdy, (4.13)

where κ = max
i=1,··· , K

γi, all the other symbols are in Table 4.1, and the Laplace transform function in (4.12)

and the derivative of the Laplace transform function in (4.13) are given in (4.6) and (4.11), respectively.

Proof. Once the joint p.d.f. has been obtained (see (4.8) and (4.9)), the probability of the event in (4.4) can

be derived as follows:

Pmax−SINR
coverage = P

({
1

κ
× max

i=1,··· ,K
γiMi + η < I < max

i=1,··· ,K
γiMi

})
(a)
=

ˆ ∞

y=0

ˆ y

x= y
κ+η

fI, max
i=1,··· ,K

γiMi (x, y) dxdy

(b)
=

ˆ ∞

y=0

ˆ ∞

ω=−∞

∂

∂u
LIo+Ic+η, max

i=1,··· ,K
γiMi≤y (jω)

∣∣∣∣
u=y

ejωy − ejω(
y
κ+η)

jω2π
dωdy,
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where (a) expresses the probability of the coverage event in terms of the joint p.d.f., (b) is obtained by

substituting for the joint p.d.f. from (4.8), then interchanging the order of integrations of the variables x

and ω which is justi�ed by the boundedness of the integrals. Finally, the above expression can be further

simpli�ed to obtain (4.12).

The same steps can be followed for obtaining (4.13), and is not shown here.

Using an alternate approach, expressions for the hetnet coverage probability are obtained in [55],

again, when all the fading coe�cients are i.i.d. exponential random variables. For a general system model

as in this chapter, to the best of our knowledge, the hetnet coverage probability has not been characterized,

until now.

Nevertheless, the semi-analytical expressions are extremely complicated even for numerical computa-

tions, and little intuition and insights about the hetnet performances are obtainable from these expressions.

As a result, a more qualitative study is imperative to better understand these soon-to-be-prevalent cellular

networks. From now onwards, we conduct a more systematic study to expose the properties and depen-

dencies of the hetnet performance on the various parameters of the system. To begin with, an interesting

observation is made regarding the hetnet downlink performance under the max-SINR connectivity model.

Corollary 13. The hetnet performance under max-SINR connectivity with an arbitrary fading distribution

at each tier is the same as in another hetnet with BS densities

{
λiEΨ

2
εi
i

/
Γ
(
1 + 2

εi

)}K

i=1

and i.i.d. unit

mean exponential distribution for fading at all the BSs in the network.

The above result is obtained by noting that the e�ect of fading is equivalent to scaling the density of

BSs by the 2
ε

th
moment of the fading random variable, due to [58, Corollary 2]. A large body of work involving

the stochastic geometric study of networks predominantly assume fading coe�cients to be i.i.d. exponential

random variables, as this greatly simpli�es the analysis and renders itself to closed-form characterization

of coverage probabilities and other related performance metrics of several networks including the hetnets

(see [50]). A common criticism for all these works has been that the exponential distribution does not

accurately capture the slow fading environment. Interestingly, the above corollary shows an example of

a scenario wherein studies with the exponential fading assumptions completely characterizes the arbitrary
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fading scenario. Unfortunately, the same is not true for the nearest-BS connectivity model. In the following

section, we explore more properties for the hetnet downlink performance.

4.4 Qualitative study of hetnet downlink performance

We begin with some simple stochastic ordering results comparing the hetnet coverage probabilities

for the two connectivity models.

Proposition 3. For the same system parameters, Pmax−SINR
coverage > Pnearest

coverage.

The above result is easily proved by noting from (4.2) and (4.3) that
∪K

k=1

∪∞
i=1 {SINRki > βk} ⊃∪K

k=1 {SINRk1 > βk}, i.e. the coverage event corresponding to the nearest-BS connectivity is a subset of the

max-SINR connectivity model. In the special case when {βk}∞k=1 = β, commonly referred to as the unbiased

case in the literature, the hetnet coverage probabilities of the max-SINR and nearest-BS connectivity models

are identical to the MIRP connectivity and the MARP connectivity models, respectively. Under the MIRP

connectivity, the MS connects to the BS with the maximum received power among all the tiers, and under

the MARP connectivity, the MS connects to the BS with the maximum long-term averaged received power

obtained by ignoring the fading. As a result, the serving BS for the MIRP and MARP connectivity models

is identi�ed as

(T, I) = argmax
k=1,··· , K, i=1, 2,···

PkΨkiR
−εk
ki , and T = argmax

k=1,··· , K
PkR

−εk
k1 , (4.14)

respectively, where T refers to the tier-index and I refers to the BS-index. The corresponding hetnet coverage

probability expressions are

PMIRP
coverage = P ({SINRT,I > βT }) , PMARP

coverage = P ({SINRT,1 > βT }) , (4.15)

where SINRk,i is de�ned in (4.1), (T, I) for MIRP and T for MARP are from (4.14), respectively.

When {βk}Kk=1 = β, Pmax−SINR
coverage = PMIRP

coverage, Pnearest
coverage = PMARP

coverage and are equal to the complementary

cumulative density function (c.c.d.f.) of the corresponding SINRT,I random variables. We begin with

characterizing the c.c.d.f. of SINRT,I for the MIRP case, and several related important characteristics.



67

4.4.1 SINR characterization under MIRP connectivity

The following stochastic equivalence helps simplify the SINR characterization.

Lemma 7. The SINR at the MS is the same as in the two-tier hetnet where the tier to which the MS has an

open-access network with a BS density function λ̃ (r) =
∑K

k=1 λ̃k (r) with λ̃k (r) = λk
2π
εk
P

2
εk

k EΨ
2
εk

k r
2
εk

−1
, r ≥

0 and a closed-access network with a BS density function λ̂ (r) = λc
2π
εc
P

2
εc
c E

[
Ψ

2
εc
c

]
r

2
εc

−1. All the BSs in

the system have unity transmit power and unity fading coe�cients. The SINR is stochastically equal to

SINRT,I =st

R̃−1
T,1∑K

k=1

∑∞
l=1

(k,l)̸=(T,1)

R̃−1
kl +

∑∞
l=1 R̂

−1
l + η

∣∣∣∣∣∣∣∣(
{λ̃k(r)}K

k=1
,λ̂(r)

)
=st

R̃−1
1∑∞

k=2 R̃
−1
k +

∑∞
l=1 R̂

−1
l + η

∣∣∣∣∣
(λ̃(r),λ̂(r))

,

(4.16)

where =st indicates the equivalence in distribution; and
{
R̃i

}∞

i=1

({
R̂i

}∞

i=1

)
is the ascendingly ordered

distances of the BSs from the origin, obtained from a non-homogeneous 1-D Poisson point process with BS

density function λ̃ (r)
(
λ̂ (r)

)
de�ned above.

Proof. See Appendix 4.7.2.

The following lemma shows interesting stochastic equivalences when {εk}Kk=1 = εc = ε.

Lemma 8. The hetnet SINR under MIRP connectivity has the same distribution as that of a MS at the origin

of the following three networks. The �rst is a hetnet with BS densities
{
λkP

2
ε

k E
[
Ψ

2
ε

k

]}K

k=1
, λcP

2
ε

k E
[
Ψ

2
ε
c

]
for the K open-access tiers and the closed-access tier, respectively, unity transmit powers and shadow fading

factors for all tiers. The other two are two-tier networks with unity transmit powers and shadow fading factors

for all their BSs. The �rst two-tier network has the open-access tier BS density
∑K

l=1 λlP
2
ε

l E
[
Ψ

2
ε

l

]
, closed-

access tier BS density λcP
2
ε

k E
[
Ψ

2
ε
c

]
and experiences the same background noise as the hetnets. The second

two-tier network has a unity open-access tier BS density, closed-access tier BS density λ̂c =
λcP

2
ε
k E
[
Ψ

2
ε
c

]
∑K

l=1 λlP
2
ε
l E
[
Ψ

2
ε
l

]
and a background noise η̄ = η

(∑K
l=1 λlP

2
ε

l E
[
Ψ

2
ε

l

])− ε
2

. Equivalently,

SINRT,I =st SINR

(
K,
{
λkP

2
ε

k E
[
Ψ

2
ε

k

]}K

k=1
, λcP

2
ε

k E
[
Ψ

2
ε
c

]
, η, T

)
(4.17)

=st SINR

(
2,

K∑
l=1

λlP
2
ε

l E
[
Ψ

2
ε

l

]
, λcP

2
ε
c E

[
Ψ

2
ε
c

]
, η, 1

)
(4.18)

=st SINR
(
2, 1, λ̂c, η̄, 1

)
, (4.19)
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where =st indicates equivalence in distribution.

Proof. See Appendix 4.7.3.

Lemmas 7 and 8 are generalizations of [30, Lemma 1] and [27, Lemma 1], respectively, to the case

where the hetnet also contains a closed-access tier. Next, we compute the hetnet coverage probability.

Theorem 9. The hetnet coverage probability under MIRP is

PMIRP
coverage =

K∑
k=1

λkP
2
εk

k E
[
Ψ

2
εk

k

] ˆ ∞

r=0

2πr

ˆ ∞

ω=−∞

ejωηrεk
(
1− e−

jω
βk

)
jω2π

×

e
−
∑K

l=1 λlP

2
εl
l E

[
Ψ

2
εl
l

]
πr

2εk
εl 1F1

(
− 2

εl
;1− 2

εl
;jω
)
−λcP

2
εc
c E

[
Ψ

2
εc
c

]
πr

2εk
εc G(jω, 2

εc
)
dωdy, (4.20)

where G
(
jω, 2

εc

)
=
´∞
t=0

(
1− ejωt

)
2
εc
t−1− 2

εc dt.

Proof. The proof is along the same lines as [30, Theorem 1], and is not shown here.

The above expression can be greatly simpli�ed under certain special cases, and the following results

present these cases.

Corollary 14. When {εk}Kk=1 = εc = ε, the hetnet coverage probability is

PMIRP
coverage =

K∑
k=1

λkP
2
ε

k E
[
Ψ

2
ε

k

] ´∞
ω=−∞

(
1−e

− jω
βk

)
jω2π H (jω) dω∑K

l=1 λlP
2
ε

l E
[
Ψ

2
ε

l

] , (4.21)

where H (jω) =
´∞
r=0

2πrejωη̄rε−πr2( 1F1(− 2
ε ;1−

2
ε ;jω)+λ̂cG(jω, 2ε ))dr, H (jω)|η̄=0 = 1

1F1(− 2
ε ;1−

2
ε ;jω)+λ̂cG(jω, 2ε )

,

η̄ and λ̂c are from Lemma 8 and G (·, ·) is de�ned in Theorem 9. When {βk} = β, (4.21) is equal to

Pmax−SINR
coverage , and further, when there is no closed-access tier

(
λ̂c = 0

)
, (4.21) is equal to the single-tier

network coverage probability (see [58, Corollary 4]) and is independent of the transmission powers and fading

factors of the BSs in the system.

Proof. The result is obtained by exchanging the order of integrations in (4.20) and simplifying.

The following theorem shows another scenario when the hetnet coverage probabilities are identical for

the max-SINR and MIRP connectivity models.
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Theorem 10. When βk ≥ 1, ∀ k = 1, · · · ,K, the hetnet coverage probability is given by

Pmax−SINR
coverage = PMIRP

coverage =
K∑

k=1

λkP
2
εk

k E
[
Ψ

2
εk

k

]
β−εk
k

Γ
(
1 + 2

εk

) ×

ˆ ∞

r=0

2πr × e
−ηrεk−

λcπP

2
εc
c E

Ψ 2
εc
c

r 2εk
εc

Γ(1+ 2
εc )sinc(

2π
εc )

−
∑K

l=1

λlπP

2
εl
l

E

Ψ 2
εl
l

r 2εk
εl

Γ

(
1+ 2

εl

)
sinc

(
2π
εl

)
dr, (4.22)

and in the interference limited case (η = 0) when {εk}Kk=1 = ε

Pmax−SINR
coverage = PMIRP

coverage =
K∑

k=1

λkP
2
ε

k E
[
Ψ

2
ε

k

]
sinc

(
2π
ε

)
β−ε
k

λcP
2
ε
c E

[
Ψ

2
ε
c

]
+
∑K

l=1 λlP
2
ε

l E
[
Ψ

2
ε

l

] . (4.23)

Proof. Firstly, from [50, Lemma 1], when βk ≥ 1, there exists at most one open-access BS that can have

an SINR above the corresponding threshold. As a result, hetnet coverage probability in (4.2) becomes

Pmax−SINR
coverage =

∑K
k=1 P ({SINRk (max) > βk}) = PMIRP

coverage. See Appendix 4.7.4 to derive (4.22), which simpli-

�es to (4.23) when η = 0.

In the above result, (4.22) is an extremely simple integral to compute and is an extension of [50,

Theorem 1] to arbitrary fading and arbitrary path-loss case. The study of the MIRP connectivity has given

many interesting insights and simpli�cations for the max-SINR case. Now, we study the MARP connectivity

in further detail, and derive interesting results for the hetnet performance under nearest-BS connectivity.

4.4.2 SINR characterization under MARP connectivity

From the de�nition of the hetnet coverage probability under MIRP and MARP, the stochastic ordering

result can be extended beyond Proposition 3 as follows.

Proposition 4. For the same system parameters, when {βk}Kk=1 = β or {βk}Kk=1 ≥ 1, PMARP
coverage = Pnearest

coverage <

Pmax−SINR
coverage = PMIRP

coverage.

It is clear from equations (4.11) and (4.5) that it is not easy to compute the hetnet coverage probability,

even with numerical integration, for arbitrary fading case. With slight modi�cations to the approach in

Theorem 8 and [70, Theorem 1], hetnet coverage probability with MARP can also be derived. These

expressions do not simplify signi�cantly beyond that in (4.5) and hence is not presented here. Nevertheless,

the following stochastic equivalence is a useful simpli�cation that will be used in the rest of this section.
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Corollary 15. Under MARP connectivity, the following stochastic equivalences hold:

SINRT,1 =st

ΨT,1R̃
−1
T,1∑K

m=1

∑∞
l=1

(m,l) ̸=(T,1)

ΨmlR̃
−1
ml +

∑∞
n=1 ΨcnR̂

−1
cn + η

∣∣∣∣∣∣∣∣(
{λ̃k(r)}K

k=1
,λ̂(r)

)
, (4.24)

where the equivalent hetnet has BS distributions according to non-homogeneous Poisson process with

density functions

{
λ̃k (r) = λk

2π
εk
P

2
εk

k r
2
εk

−1

}K

k=1

, λ̂ (r) = λc
2π
εc
P

2
εc
c r

2
εc

−1, r ≥ 0, for the K open-access

tiers and the closed-access tier, respectively. In both the equivalent hetnets, the fading distributions are the

same as the original hetnet, all BSs have unity transmit power and hence, MARP is the same as the MS

communicating with the nearest BS of the K open-access tiers.

The result is yet another application of the Marking theorem of Poisson process, and can be proved

using the same techniques as developed in Lemma 7. In [53], Jo et. al. have demonstrated that simple

expressions for the hetnet coverage probability under MARP can be computed when the fading coe�cients

are i.i.d. exponential random variables. These results are restricted to the open-access case, and are extended

for a general hetnet below.

Theorem 11. The hetnet coverage probability under MARP connectivity with i.i.d. exponential fading

distribution at all BSs is

PMARP
coverage =

K∑
k=1

λkP
2
εk

k β
− 2

εk

k

ˆ ∞

r=0

2πr × e
−ηrεk−λcπP

2
εc
c r

2εk
εc

sinc( 2π
εc )

−
∑K

l=1 λlπP

2
εl
l F (βk,εl)r

2εk
εl

dr, (4.25)

where F (βk, εl) =
1

sinc
(

2π
εl

) + β
− 2

εl

k

[
1− 2F1

(
1, 2

εl
; 1 + 2

εl
;−β−1

k

)]
. When {εk}Kk=1 = ε and η = 0,

Pnearest
coverage = PMARP

coverage =
K∑

k=1

λkP
2
ε

k β
− 2

ε

k sinc
(
2π
ε

)
λcP

2
ε
c +

∑K
l=1 λlP

2
ε

l F (βk, ε) sinc
(
2π
ε

) . (4.26)

Proof. See Appendix 4.7.5.

The above is a generalization of [53, Theorem 1] to closed-access case. Further, comparing (4.23) and

(4.26), clearly, PMIRP
coverage ≥ PMARP

coverage, when {βk}∞k=1 ≥ 1 since F (βk, εl) sinc
(

2π
εl

)
≥ 1, ∀ βk ≥ 0, εl > 2.

4.5 Numerical Examples and Discussion

In this section, we provide some numerical examples that complement the theoretical results presented

until now. We restrict ourselves to the study of a two tier hetnet consisting of the macrocell and the femtocell
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networks, respectively, under the max-SINR connectivity model while reminding the reader that the theory

presented in this paper allows a similar analysis for arbitrary number of tiers and also carries over to the

nearest-BS connectivity model. Also, please refer to Appendix 4.7.6 for the algorithm to perform the Monte-

Carlo simulations. For all the studies in this paper, λ2 = 5λ1, P1 = 25P2, ε = 3, and β2 = 1 dB, where

the subscripts `1' and `2' correspond to macrocell and femtocell networks, respectively. Further, under the

closed-access BS association scheme, the MS has access to the macrocell network only.

In Figures 4.1, 4.2 and 4.3, we study the coverage probability, coverage conditional average rate and

the average fraction of users served by the macrocell network, respectively, for various con�gurations of

shadow fading distributions at the macrocell and the femtocell BSs. In all the �gures, T1 (T2) stand for tier

1, i.e. the macrocell network (tier 2, i.e. the femtocell network). Further, Exp(·) and LN(·) are abbreviations

for exponential distribution with a given mean and log-normal distribution with a zero mean and standard

deviation (when the random variable is expressed in dB), respectively, and they represent distribution of the

shadow fading factors of the corresponding tiers.

While the expressions in Theorem 10 clearly show that a MS has a better coverage probability under

open-access than closed-access, the plots in Figure 4.1 provides a quantitative justi�cation for the same.

The coverage probability curve corresponding to the exponential fading distribution at both the tiers 1 and

2 with means 40 and 1, respectively, also corresponds to the case where P1 = 1000P2, with the shadow

fading factors at both the tiers being unit mean exponential distributions. The open and closed access have

approximately the same coverage probabilities because the MS is almost always served by a macrocell BS,

as can been seen in the corresponding curve in Figure 4.2. As a result, blocking access to the femtocell BSs

altogether, has only a marginal in�uence on the coverage probability at the MS.

The two curves following the aforementioned curve in Figures 4.1-4.3 complement the fact that all the

three performance metrics are identical irrespective of the distribution of the shadow fading factors, when

the shadow fading factors have the same distribution across all the tiers. The last two curves in Figures

4.1-4.3 show that all the performance metrics are identical as long as the shadow fading coe�cients of the

corresponding tiers have the same (2/ε)
th
moments. Note that E

[
Ψ

2
ε

]
is the same when Ψ has a log-normal

distribution with zero mean and 6 dB standard deviation or when Ψ is an exponential random variable with



72

−5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tier 1 SIR threhold (in dB)

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

 

 
Analytical result
Simulation result
Open Access
Closed Access
T1: Exp(40), T2: Exp(1)
T1: LN(4dB), T2: LN(4dB)
T1: Exp(1), T2: Exp(1)
T1: LN(4dB), T2: LN(6dB)
T1: LN(4dB), T2: Exp(230)

Figure 4.1: Two-tier hetnet: Comparing coverage probabilities for various shadow fading distributions
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mean 230.

A log-normal random variable with zero mean and a given standard deviation is a good model for

shadow fading factors. Note that the femtocell network is introduced to improve the indoor performance.

The shadow fading factors in the indoor environments are known to have a comparable or greater standard

deviation than otherwise. Such a situation is represented by last four curves in Figures 4.1-4.3. The gap

between the open and closed access coverage probability curves indicate the contribution of the femtocell

network in providing coverage to the MS. It is immediately clear that the dense low-power femtocell network

has a more critical role in providing coverage in realistic indoor models, when we look at the last 4 curves

in Figures 4.1 and 4.2.

Under open-access, the coverage probability and the coverage conditional average rate (see Figures

4.1 and 4.2) for all the 5 curves mentioned above intersect when the SIR threshold for the macrocell network

is equal to 1 dB. This brings us to an important point that when the SIR threshold is the same for all the

tiers, these metrics become independent of the transmission power and shadow fading factors of the di�erent

tiers, and collapses to the corresponding metrics in a single-tier network with the same path-loss exponent

and SIR threshold. Along the same lines, the coverage conditional average rate for a two-tier hetnet under

closed-access also collapses to that of a single-tier network, and is independent of the transmission power

and shadow fading factors of the di�erent tiers.

4.6 Conclusions

In this chapter, for the most general model of the hetnets, the downlink coverage probability and

other related performance metrics such as the average downlink rate and average fraction of users served

by each tier of the hetnet are characterized. Two important BS connectivity models are studied, namely,

the max-SINR and the nearest-BS connectivity, respectively. Semi-analytical expressions for the hetnet

coverage probability is obtained for both the cases. Further, several properties pertaining to the hetnet

downlink performance are analyzed, which provide great insights about these complex networks. As an

example, we identify the MIRP and MARP connectivity models to be equivalent to the former models

under certain special conditions. These models are much simpler to analyze and the results for these models
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expose interesting properties of the hetnet. The results in this chapter greatly generalize the existing hetnet

performance characterization results and are essential for better understanding of the future developments

in wireless communications that are heavily based on hetnets.

4.7 Appendix

4.7.1 Proof for Lemma 6

The proof for (4.6) is shown below.

LIo+Ic+η, max
k=1,··· ,K

γkMk≤u (s)

= E
[
exp (−s (Io + Ic + η))× I

(
max

k=1,··· ,K
γkMk ≤ u

)]
(a)
= LIc (s) e

−sηE

[
K∏

k=1

∞∏
l=1

e−sPkΨklR
−εk
kl I

(
γkPkΨklR

−εk
kl ≤ u

)]
(b)
= LIc (s) e

−sη
K∏

k=1

E

[ ∞∏
l=1

e−sPkΨklR
−εk
kl I

(
PkΨklR

−εk
kl ≤

u

γk

)]
(c)
= LIc (s) e

−sη
K∏

k=1

exp

(
−λk

ˆ ∞

r=0

(
1− E

[
e−sPkΨkr

−εkI
(
PkΨkr

−εk ≤ u

γk

)])
2πrdr

)
(d)
= LIc (s) e

−sη
K∏

k=1

exp

(
−λkEΨk

[ˆ ∞

t=0

(
1− e−tI

(
t ≤ su

γk

))
2π

εk
t−

2
ε−1 (sPkΨk)

2
εk dt

])
(e)
= LIc (s) e

−sη
K∏

k=1

exp

(
−λkπ (sPk)

2
εk E

[
Ψ

2
εk

k

] [
Γ

(
1− 2

εk

)
+

2

εk

ˆ ∞

t=0

e−tt−
2
ε−1I

(
t >

su

γk

)
dt

])
,(4.27)

where (a) is obtained by noting that Ic is independent of the random variables Io and max
k=1,··· ,K

γkMk ≤ u,

LIc (s) is a direct consequence of the Campbell's theorem [6], e−sη is a constant and

{
max

k=1,··· ,K
γkMk ≤ u

}
⇐⇒{

γkPkΨklR
−εk
kl ≤ u

}
, ∀ k = 1, · · · , K and l = 1, 2, · · · ; (b) is obtained since the random variables corre-

sponding to a given tier are independent of the other tiers; (c) is obtained by applying the Campbell's

theorem [6] to each tier of the hetnet; (d) is obtained by changing the variable of integration from r to

t = sPkΨkr
−εk ; (e) is obtained by rewriting the integral in (d) using special functions; and �nally (4.6) is

obtained by rewriting the integral in (e) in terms of the incomplete Gamma function.
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The proof for (4.7) follows along the same lines as above and we provide only a brief outline as follows.

LIo+Ic+η, max
k=1,··· ,K

γkNk≤u (s)

(a)
= LIc (s) e

−sηE

[
K∏
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∞∏
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where the maximization in (a) is only among the nearest BSs of the K tiers of the hetnet, LIc (s) is the same

as in (4.27); (b) is obtained by exchanging the order of expectation and product since the K tiers of the

hetnet are independent of each other, and further conditioning w.r.t. the fading coe�cient and the distance

of the nearest BS of each tier; (c) is obtained by applying the Campbell's theorem to the set of kth tier BSs

beyond Rk1, conditioned on Rk1; (d) is obtained by further simplifying (c); and �nally (4.7) is obtained by

evaluating the expectation w.r.t. Rk1 in (d) where the p.d.f. of Rk1 is fRk1
(r) = λk2πre

−λkπr
2

, r ≥ 0, and

further simplifying.

4.7.2 Proof for Lemma 7

Given a BS belonging to the kth open-access tier is at a distance Rk from the origin, then, due

to [30, Theorem 2], R̃
∣∣∣ k = (PkΨk)

−1
Rεk

k represents the distance of the BS from the origin where the BS

arrangement is according to a non-homogeneous 1-D Poisson point process with BS density function λ(k) (r),

as long as E
[
Ψ

2
εk

k

]
<∞, for each k = 1, 2, · · · , K. Similarly, for the closed-access tier, R̂ = (PcΨc)

−1
Rεc

c

the distance where the BS arrangement is according to a non-homogeneous 1-D Poisson point process with

BS density function λ̂ (r), as long as E
[
Ψ

2
εc
c

]
<∞. This is a consequence of the Mapping theorem [6, Page

18] and the Marking Theorem [6, Page 55] of the Poisson processes. Further, since the BS arrangements
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in the di�erent tiers were originally independent of each other, the set of all the BSs in the equivalent 1-D

non-homogeneous Poisson process is merely the union of all R̃′s
∣∣∣ k, ∀ k = 1, 2, · · · , K. By the Superposition

Theorem [6, Page 16] of Poisson process, R̃ (notice that it is not conditioned on k) corresponds to the distance

from origin of BS arrangement according to non-homogeneous Poisson point process with density function

λ̃ (r) =
∑K

k=1 λ
(k) (r) , r ≥ 0.

In summary, we have converted the BS arrangement on a 2-D plane of hetnet to a BS arrangement

of the equivalent 2-tier network along 1-D (positive x-axis), and hence, the SINR distributions of both these

networks are also equivalent. Further, by our construction, the MIRP BS in the hetnet corresponds to the

BS that is nearest to the origin (MS) in the equivalent 2-tier network. As a result, SINR may be written in

terms of the R̃'s and R̂'s indexed in the ascending order, and we get (4.16) .

4.7.3 Proof for Lemma 8

The hetnet SINR under MIRP can be computed as follows. For each tier m = 1, · · · , K, c (c refers

to the closed-access tier), form the set
{
(PmΨm,l)

− 1
ε Rm,l

}∞

l=1
and represent as

{
R̄m,k

}∞
k=1

where R̃'s are

ascendingly ordered. Now,
{
R̄−ε

m,k

}∞

k=1
represents the received powers of all themth tier BSs in the descending

order. Finally, the desired BS's power and tier index (T ) can be easily found by identifying the maximum in

the set
{
R̄−ε

m,1

}K
m=1

and the SINR can be computed. Using [58, Corollary 3] which is an application of the

Marking theorem [6, Page 55], it can be seen that
{
R̄m,k

}∞
k=1

represents the distances from origin of BSs

arranged according to homogeneous Poisson point process with BS density λmPmE
[
Ψ

2
ε
m

]
, where Ψm has

the same distribution as the mth tier shadow fading factors. As a result, the set
{
R̄−ε

m,l

}m=K, l=∞

m=1, l=1
represents

the set of received powers at the origin of the hetnet composed of K open-access tiers and a closed-acess tier

with BS densities
{
λkPkE

[
Ψ

2
ε

k

]}K

k=1
, λcPcE

[
Ψ

2
ε
c

]
, respectively, with unity transmit powers and shadow

fading factors at each BS. This is equivalent to the original hetnet and has the same SINR distribution,

hence proving (4.17) .

Further, using the Superposition theorem [6, Page 16], theK open-access tiers of the equivalent hetnet

can be combined to form a single tier network with a BS density equal to
∑K

l=1 λlP
2
ε

l EΨ
2
ε

l , thus proving the

SINR equivalence in (4.18) . The distribution of SINR of this two-tier network is the same as that of an MS
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in another two-tier network where the open-access tier has unity BS density, the closed-access tier has a BS

density
λcPcE

[
Ψ

2
ε
c

]
∑K

l=1 λlP
2
ε
l EΨ

2
ε
l

, unity transmit power and shadow fading factors at all BSs and a background noise

η(∑K
l=1 λlP

2
ε
l EΨ

2
ε
l

)− ε
2
, due to [58, Lemma 3] and hence we get the relation (4.19) .

4.7.4 Proof for Theorem 10

From Corollary 13 and Lemma 7, we get the following stochastic equivalence:

SINRT,I =st

hT,IR̃
−1
T,I∑K

k=1

∑∞
l=1

(k,l)̸=(T,I)

hklR̃
−1
kl +

∑∞
l=1 glR̂

−1
l + η

∣∣∣∣∣∣∣∣
({λ̃k(r)}∞

k=1
,λ̂(r))

,

where hkl's and gl's are i.i.d. unit mean exponential random variables, J = argmax
k=1,2,···

hT,kR̃
−1
T,k,

{
R̃kl

}∞

l=1
and{

R̂l

}∞

l=1
are from non-homogeneous 1-D Poisson processes with density functions λ̃k (r) = λk

2π
εk
P

2
εk

k r
2
εk

−1
,

k = 1, · · · , K and λ̂ (r) = λc
2π
εc
P

2
εc
c r

2
εc

−1, respectively. The following steps derive the hetnet coverage

probability and closely follows the proof techniques for [30, Theorem 4] and [50, Theorem 1]

Pmax−SINR
coverage = PMIRP

coverage =

K∑
i=1

P




hijR̃
−1
ij∑K

k=1

∑∞
l=1

(k,l)̸=(i,j)

hklR̃
−1
kl +

∑∞
l=1 glR̂

−1
l + η

> βi




(a)
=

K∑
i=1

ER̃ij

[
e−βiR̃ijηE

[
e
−βiR̃ij

∑K
k=1

∑∞
l=1

(k,l) ̸=(i,j)

hklR̃
−1
kl

∣∣∣∣∣ R̃ij

]
E
[
e−βiR̃ij

∑∞
l=1 glR̂

−1
l

∣∣∣ R̃ij

]]

(b)
=

K∑
i=1

ˆ ∞

r=0

λ̃i (r) e
−ηβir−

∑K
l=1

λlπ(Plβir)
2
εl E

Ψ 2
εl
l


Γ

(
1+ 2

εl

)
sinc

(
2π
εl

) −
λcπ(Pcβir)

2
εc E

Ψ 2
εc
c


Γ(1+ 2

εc )sinc(
2π
εc ) dr,

where R̃ij is the distance from the origin of an arbitrary point in the non-homogeneous Poisson process with

density function λ̃i (r), (a) is obtained by computing the probability of w.r.t. hij conditioned on all the

other involved random variables and noting that the two Poisson processes are independent of each other,

(b) is obtained by evaluating the inner expectations by applying Campbell's theorem [6] (same steps as in

the proof of [30, Theorem 4]) and expressing the expectation w.r.t. R̃ij by the integral where λ̃ (r) dr is the

probability that there exists a point in the interval (r, r + dr), and �nally (4.22) is obtained by simplifying

the integral in (b).



79

4.7.5 Proof for Theorem 11

Along the same lines as [30, Lemma 4], the c.c.d.f. and the p.d.f. of the distance from the MS of the

serving BS of the kth open-access tier is

P

{R̃k1 > r
}∩ K∩

l=1, l ̸=k

{
R̃l1 > R̃k1

} = ER̃k1

I (R̃k1 > r
)
P

 K∩
l=1, l ̸=k

{
R̃l1 > R̃k1

}∣∣∣∣∣∣ R̃k1


=

ˆ ∞

t=r

λ̃k (t) e
−
∑K

l=1

´ t
s=0

λ̃l(s)dsdt, (4.28)

fT,R̃T1
(k, r) = λ̃k (r) · e−

∑K
l=1 λlπP

2
εl
l t

2
εl , k = 1, · · · , K, r ≥ 0, (4.29)

where λ̃l (r) for l = 1, · · · , K is from Corollary 15 and the p.d.f. of R̃l1 is fT,R̃T,1
(l, r) = λ̃l (r) ·e−

´ r
s=0

λ̃l(s)ds,

r ≥ 0 using the properties of Poisson process. Then, the calculation of the expectation in the �rst equality

to obtain (4.28), and the derivative of (4.28) to obtain (4.29) are both straight forward. The the hetnet

coverage probability is

PMARP
coverage

(a)
=

K∑
k=1

ET,R̃T1

P



ΨT1R̃
−1
T1∑K

m=1

∑∞
l=1

(m,l)̸=(T,1)

ΨmlR̃
−1
ml +

∑∞
n=1 ΨcnR̂

−1
cn + η

> βT


∣∣∣∣∣∣∣∣T, R̃T1




(b)
=

K∑
k=1

ET,R̃T1

[
e−ηβkR̃T1E

[ ∞∏
n=1

e
−βkR̃T1Ψcn

R̂cn

∣∣∣∣∣T, R̃T1

]
K∏

m=1

E

[ ∞∏
l=1

e
−βkR̃T1Ψml

R̃ml I
(
R̃ml > R̃T1

)∣∣∣∣∣T, R̃T1

]]
,

where (a) is from the stochastic equivalence in Corollary 15, (b) is obtained due to the independence of

each tier in the hetnet given (T,RT1). Finally, (4.25) is obtained by computing each expectation in (b) by

applying the Campbell-Mecke theorem.

For {εk}Kk=1 = ε and η = 0, the integral in (4.25) simpli�es to (4.26).

4.7.6 Simulation Method

The kth tier of the hetnet with K tiers is identi�ed by the following set of system parameters:

(λk, Pk, Ψk, εk, βk) , where the symbols have all been de�ned in Section 4.2, and k = 1, 2, · · · , K, where

K is the total number of tiers. Now we illustrate the steps for simulating the hetnet in order to obtain the

SINR distribution and the coverage probability assuming the MS is at the origin. The algorithm for the

Monte-Carlo simulation is as follows:
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1) Generate Nk random variables according to a uniform distribution in the circular region of radius

RB for the locations of all the kth tier BSs, where Nk ∼ Poisson
(
λkπR

2
B

)
.

3) Compute the SINR at the desired BS according to Section 4.2.0.3 and record the tier index I of

the desired BS.

Repeat the same procedure T (typically, > 50000) times. Finally, the tail probability of SINR at η is

given by
{# of trials where SINR > η}

T , and the coverage probability is given by
∑K

k=1
{# of trials where I=k and SINR>βk}

T .



Chapter 5

OFDMA Cellular Network with Fractional Frequency Reuse under Maximum

SIR Connectivity

5.1 Introduction

The high data-rate targets at the MSs set by the ever-growing demands on the cellular networks to

support data-intensive applications have created the need for the development and deployment of orthogo-

nal frequency division multiplexing (OFDM) based 4G cellular networks like the third generation partner-

ship project - long term evolution (3GPP - LTE) and the worldwide interoperability for microwave access

(WiMAX) systems.

These 4G systems have recognized aggressive frequency reuse (which involves the simultaneous trans-

missions on all time-frequency resource blocks by all the BSs) as an approach to increase the system capacity.

Associated with this improved network capacity due to the availability of the entire operable frequency band

for transmission, is the issue of SIR degradation at all the MSs due to the interference from all the BSs in

the multi-cellular system. This inter-cell interference renders the operation of MSs at the edge of the cell

(referred to as cell-edge users) that already see a weak SIR, practically impossible unless proper interference

cancellation or mitigation techniques are adopted. Discussion and evaluation of the various interference

management techniques for the 4G systems can be found in [73,74].

In this chapter, we focus on one of the several inter-cell interference coordination techniques to manage

radio resources through adaptive fractional frequency reuse (FFR) mechanisms. The analysis of the FFR

mechanisms and their impact on the network throughput have been studied mainly through simulations.
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In [75, 76], Novlan et. al. have developed an analytical framework to study the impact of the two popular

FFR techniques, namely, the strict-FFR and the soft frequency reuse (SFR) on the downlink performance

by characterizing the coverage probability and average rate at any given MS within the cellular system.

The analysis in [75,76] is based on the assumption that the MS associates itself with a BS that is the

geographically closest one, which we refer to as nearest BS connectivity. Here, we consider the maximum

SIR connectivity where the MS chooses to associate itself with the BS with the best channel quality index

(CQI), which in turn corresponds to the BS with the highest SIR at the MS. In this chapter, using the

framework developed by Novlan et. al. and assuming an interference-limited system, we compute the

coverage probabilities of the cell-edge users and the cell-interior users (formally de�ned in Section 5.2.0.1)

with strict-FFR and SFR for the maximum SIR connectivity model. Further, we show that, unlike the case

of conventional cellular systems with static or no frequency reuse, where the maximum SIR connectivity

provides the best coverage probability for the MS, when the FFR techniques are employed, the coverage

probability for the MS is better with nearest BS connectivity (considered in [75, 76]) thereby posing a

question, what is the ideal BS to connect to in order to achieve the best coverage with FFR.

In Section 5.2, we describe the two adaptive FFR techniques and the system model. The coverage

probabilities for the cell-interior and cell-edge users with strict-FFR and SFR are computed in Sections 5.3

and 5.4, respectively. Finally, we provide the discussion of the results by taking relevant examples in Section

5.5.

5.2 System Model

This section brie�y describes the various elements in the downlink of a cellular system necessary for

our analysis.

5.2.0.1 BS and MS Layout

The BS arrangement in the cellular network is according to a homogeneous Poisson point process

on the two-dimensional (2-D) plane with density λ. The MS uses the maximum SIR connectivity criterion

where it chooses to communicate with the BS to which it has the highest SIR. The MS experiencing an
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SIR above a certain threshold, denoted by TFR, is termed as a cell-interior user. Otherwise, the MS is

termed as a cell-edge user. Further, we assume TFR > 0 dB for the sake of simplicity of analysis. For the

cell-edge user, the BS invokes the FFR mechanism to ensure that the MS experiences a reduced inter-cell

interference and therefore a better SIR. A MS with an SIR that exceeds a certain threshold denoted by T

is said to be in coverage. In this chapter, we are interested in characterizing the coverage probability. The

coverage probability for the cell-interior user is Pcov (int) = P ({SIR > T | SIR > TFR}) and for the cell-edge

user is Pcov (edge) = P ({SIRFFR > T | SIR ≤ TFR}) , where SIRFFR is the SIR experienced by the MS due

to the use of the FFR mechanism by the serving BS. The following paragraph brie�y explains the two FFR

mechanisms.

5.2.0.2 Adaptive FFR techniques

The two FFR techniques considered, that improve the cell-edge user's coverage, are strict-FFR and

SFR, respectively. These techniques ensure a greater spectrum utilization in addition to the advantage of

the traditional (or static) frequency reuse mechanisms of mitigating the inter-cell interference at the MS.

In strict-FFR, the entire available spectrum is divided into two partitions to serve the cell-interior and

the cell-edge users, respectively. In the spectrum allocated for the cell-interior users, the BS operates with a

frequency reuse of 1, justi�ed by the notion that the strong signal from the chosen BS at the MS is capable

of coping with the inter-cell interference from all the other BSs. In the second partition, the BS uses the

traditional frequency reuse with a reuse factor of ∆ (> 1) to talk to the MS. The cell-edge user experiences

reduced interference because each BS transmits in only one of the ∆ subbands such that the adjacent BSs

do not operate in the same subbands. This leads to an improved SINR and better coverage for the cell-edge

user, though at the expense of less e�cient spectrum usage.

In the SFR case, while the BS's interaction with the cell-edge user is the same as in the strict-FFR

case; in the unused ∆ − 1 subbands, the BS transmits with a smaller power which may be used to provide

coverage to cell-interior users. In this approach, the BSs of the adjacent cells cause lesser interference to

the cell-edge users due to the reduced transmit power. This approach is more bandwidth e�cient than

strict-FFR, but is inferior in terms of providing coverage to the cell-edge users. Please refer [73�75] (and
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references therein) for further details on the FFR techniques.

5.2.0.3 Radio Environment

The received power at the MS from a BS at a distance D (> 0) from the MS is given by PΨD−ε,

where P is the constant transmit power, Ψ is the random channel gain coe�cient which is an exponential

random variable with mean 1 and ε (> 2) is the exponent of the power-law path-loss model. Further, the

channel gain coe�cients for all the BSs in the system are independent and identically distributed (i.i.d.)

random variables across all BSs in the cellular system, and across all subbands.

5.2.0.4 Performance Metric

Without loss of generality, the MS is assumed to be at the origin. We consider an interference-limited

system where the background noise power is assumed to be zero. The corresponding performance metric is

the signal-to-interference ratio (SIR) at the MS de�ned as the ratio of the received signal power from the

desired BS to the sum of the powers from all interfering BSs. As a result, for the strict-FFR technique,

SIR =

PΨi

Rε
i∑∞

j=1
j ̸=i

PΨj

Rε
j

, SIRsFFR =

P Ψ̂i

Rε
i∑∞

j=1
j ̸=i

P Ψ̂jI(δj=δi)
Rε

j

(5.1)

where i is the index of the BS with the maximum received power at the MS in the frequency band with unity

reuse factor;
{
Rj ,Ψj , Ψ̂j

}
contains the list of distances from origin of each BS and its channel gains in the

cell-interior user's subband and the cell-edge user's subband, respectively; SIR is used to determine whether

the MS is a cell-interior/ cell-edge user based on the criteria mentioned in Section 5.2.0.1; SIRsFFR is the

SIR experienced at the cell-edge user when the chosen BS uses strict-FFR technique and {δj}∞j=1 are i.i.d.

random variables uniformly distributed in {1, 2, . . . , ∆}; and I(·) is the indicator function. The random

frequency assignment considered for the cell-edge user subband assignment for each BS ensures analytical

tractability and is a popular assumption made in such work. For the SFR technique, we use the same model

as in [75, 76] where the BSs use only one of the ∆ subbands for transmitting to a cell-edge users, and the

others for cell-interior users. Additionally, since the BS transmits on all subbands, it adopts a coarse power

control where it transmits at a constant power βP when communicating with the cell-edge user and at a
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constant power P otherwise, where β (> 1) is a design parameter. Consequently,

SIR =

PΨi

Rε
i∑∞

j=1
j ̸=i

ηPΨj

Rε
j

, SIRSFR =

βP Ψ̂i

Rε
i∑∞

j=1
j ̸=i

ηP Ψ̂j

Rε
j

, (5.2)

where η = β /∆ + 1 − 1 /∆ , and the other symbols are the same as in (5.1). Again, a cell-interior user

experiences a signal quality given by SIR from the desired BS and the cell-edge user experiences SIRSFR from

the desired BS in its assigned cell-edge frequency with a greater transmission power, βP . In the following

section, we delve into the coverage probability computations for the cell-interior and the cell-edge users for

the strict-FFR technique.

5.3 Coverage probability for Strict FFR

Recall from Section 5.2.0.1 that we assume TFR > 1, while T can take any arbitrary value. The

coverage probability for the cell-interior user is

PsFFR
cov (int) = P ({SIR > T | SIR > TFR}) , (5.3)

where SIR is de�ned in (5.1) and the following proposition gives the closed form expression for the same. It

is a direct consequence of the Baye's rule and the result P ({SIR > t}) = sin( 2π
ε )t

− 2
ε

( 2π
ε )

, ∀ t ≥ 1 from [30,50,58].

Proposition 5. For TFR ≥ 1 and T ≥ 0,

PsFFR
cov (int) =

(
max (T, TFR)

TFR

)− 2
ε

. (5.4)

Next, we move on to obtaining an analytical expression for the coverage probability for the cell-edge

user, denoted as

PsFFR
cov (edge) = P ({SIRsFFR > T | SIR ≤ TFR}) , (5.5)

where SIR and SIRsFFR are de�ned in (5.1) . The derivation of the expression for PsFFR
cov (edge) is the central

part of this chapter. The expression for the coverage probability for TFR > 1 is

PsFFR
cov (edge)

=

1−
sin
(
2π
ε

)
T

− 2
ε

FR(
2π
ε

)
−1

[P ({SIRsFFR > T})

−P ({SIRsFFR > T, SIR > TFR})] , (5.6)
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as a direct consequence of Baye's rule. The following theorems derive expressions for the two probability

terms in (5.6) .

Theorem 12. The tail probability of SIR at the MS when strict-FFR is employed is

P ({SIRsFFR > T}) =

ˆ ∞

t=0

t
2
ε e−t

Γ
(
1 + 2

ε

)
+ 1

∆g (Tt, ε)
dt

, F (T,∆, ε) , (5.7)

where g (a, ε) = 2π/εa
2
ε

sin( 2π/ε) −
2
ε

´∞
t=0

e−tt
2
ε
−1

1+a−1t , a, T ≥ 0.

Proof. Firstly, note that the numerator in the expression for SIRsFFR in (5.1) is the received power in the

cell-edge user subband from the BS indexed i that was chosen as best for communicating on the cell-interior

frequency subband. Taking care of the above fact, the expression for the tail probability of SIRsFFR becomes

P ({SIRsFFR > T}) = P (E1
∩
E2) , where the event E1 =

{∩∞
j=1, j ̸=i

{
ΨjR

−ε
j < ΨiR

−ε
i

}}
corresponds to the

event that the BS indexed i has the strongest received power at the MS in the frequency reuse 1 subband.

Event E2 =

{
Ψ̂iR

−ε
i∑∞

j=1, j ̸=i Ψ̂jR
−ε
j I(δj=δi)

> T

}
corresponds to the event that the SIR at the MS from the ith

BS in the subband allocated for the BSs transmissions to the cell-edge user exceeds the threshold T ; where{
Rj ,Ψj , Ψ̂j

}∞

j=1
is the set containing the distances of BSs from the origin, and the corresponding channel

gain coe�cients in the reuse factor 1 frequency subband and the cell-edge user frequency subband. The

evaluation of the probability of E1
∩
E2 is shown in Appendix 5.7.1.

Theorem 13. When TFR ≥ 1,

P ({SIRsFFR > T, SIR > TFR}) =
sin
(
2π
ε

) /
2π
ε

E (TFR, T,∆, ε)
, (5.8)

where T ≥ 0, ε > 2, and E (TFR, T,∆, ε) =


(
1 + 2

ε∆

)
T

2
ε

FR , T = TFR

(
1− 1

∆

)
T

2
ε

FR +
T 1+ 2

ε −T
1+ 2

ε
FR

∆(T−TFR) , T ̸= TFR

.

Proof. Recall the de�nition of SIR and SIRsFFR from (5.1). Note from [50, Lemma 1] that there exists a

unique Ri that satis�es the condition SIR > TFR, if TFR ≥ 1, where Ri is the distance of the MS and the BS

that it chooses to communicate with, in the frequency band with reuse factor 1. As a result, it must be the

same BS that must cause the event {SIRsFFR > T, SIR > TFR} to happen. Based on the above justi�cation,

Appendix 5.7.2 proves the derivation of the expression for the probability of the aforementioned event.
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Proposition 6. The coverage probability of the cell-edge user under strict FFR is

PsFFR
cov (edge) =

F (T,∆, ε)− sin( 2π
ε )

2π
ε E(TFR,T,∆,ε)

1− sin
(
2π
ε

)
T

− 2
ε

FR

/(
2π
ε

) , (5.9)

and is obtained by using Theorem 12 and 13 in (5.6) .

5.4 Coverage probability for SFR

In this section, we derive the coverage probabilities for the cell-interior user and the cell-edge user

when the SFR technique is employed by the BSs. The coverage probability for the cell-interior user is

PSFR
cov (int) = P ({SIR > T | SIR > TFR}) , (5.10)

where SIR is de�ned in (5.2) . The following remark shows a connection between the cell-interior user's

coverage probability for the strict FFR and SFR techniques.

Remark 4. The cell-interior user's coverage probability with SFR is the same as that with strict FFR as

shown in (5.1) in which T, TFR are replace with ηT, ηTFR, respectively.

The following result is an immediate consequence of the above remark.

Proposition 7. For TFR ≥ 1, the cell-interior user has the same coverage probability for both strict FFR

and SFR techniques, i.e.

PSFR
cov (int) = PsFFR

cov (int) , (5.11)

where PsFFR
cov (int) is given in (5.4) , and does not depend on the reuse factor ∆, and the power control factor

β corresponding to the SFR scheme de�ned in Section 5.2.0.4.

Next, let us denote the cell-edge user's coverage probability under SFR as

PSFR
cov (edge) = P ({SIRSFR > T | SIR ≤ TFR}) , (5.12)

where SIR and SIRSFR are de�ned in (5.2) . Notice that the expression for SIR given in (5.2) for the SFR

scheme di�ers from that in (5.1) by a scaling factor of 1
η . Similarly, the expression for SIRSFR in (5.2) is the

same as that for SIRsFFR in (5.1) with a unity frequency reuse factor (∆ = 1) and the latter is scaled by a

factor β
η . As a result, we obtain the following result.
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Remark 5. The cell-edge user's coverage probability under SFR is the same as that under strict FFR where

(T, TFR,∆) is replaced with
(

ηT
β , ηTFR, 1

)
.

Thus, we get the expression for the coverage probability in (5.12) as follows.

Corollary 16. The cell-edge user's coverage probability under SFR technique when TFR ≥ 1 is

PsFFR
cov (edge) =

F
(

ηT
β , 1, ε

)
− sin( 2π

ε )/
2π
ε

E(ηTFR,ηT/β ,1,ε)

1− sin
(
2π
ε

)
(ηTFR)

− 2
ε

/(
2π
ε

) , (5.13)

where the function F is de�ned in Theorem 12, and the function E () is de�ned in Theorem 13.

Hence, in Sections 5.3 and 5.4, we have completely characterized the SIR at the MS when the desired

BS employs strict-FFR and SFR. Further, we have derived cell-interior user and cell-edge user coverage

probabilities for both FFR techniques when TFR ≥ 1.With these results, the average ergodic rate expressions

can also be characterized. Due to lack of space, we leave the rate and resource allocation related discussions

to future work.

5.5 Numerical Examples and Discussion

In this section, we present some numerical examples to illustrate the coverage probability trends with

FFR. For all the examples, we assume λ = 1, P = 1, frequency reuse factor ∆ = 3, and TFR = 1 dB.

The cell-interior user coverage probability is the same for both strict-FFR and SFR, and independent

of β. The transition in the cell-interior user's coverage probability in Figure 5.1 happens at T = TFR, beyond

which the curve follows a log-linear behavior as pointed out in (5.4) .

The cell-edge user experiences a superior coverage probability with strict-FFR because the overall

interference at the MS is reduced by a factor of∆, the frequency reuse factor for the cell-edge user frequencies.

In contrast, with SFR, all the BSs in the cellular system cause interference and the power control factor β

needs to be adjusted to achieve a certain coverage probability. Further, Figure 5.1 shows that SFR attains

cell-edge user coverage probability comparable to that of strict-FFR only when the desired BS transmits

in the cell-edge user subband at a transmit power at least 10 dB above the value it would transmit for a

cell-interior user, i.e. for β > 10, where the typical values for β are in the range 2-20. The main advantage
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of SFR is in the e�cient spectral utilization front and the design of β in order to strike a balance between

the coverage probability and spectrum utilization for the model studied will be considered in the future.

The overall coverage probability for a given MS with strict-FFR and SFR, denoted by PsFFR
cov (MS)

and PSFR
cov (MS) , respectively, are given below.

PsFFR
cov (MS) = P ({SIR > T})PsFFR

cov (int) + (1− P ({SIR > T}))PsFFR
cov (edge) , and (5.14)

PSFR
cov (MS) = P ({SIR > ηT})PSFR

cov (int) + (1− P ({SIR > ηT}))PSFR
cov (edge) , (5.15)

where P ({SIR > T}) (P ({SIR > ηT})) is the probability that the MS is determined to be a cell-interior user

for strict-FFR (SFR), and its expression is given in Section 5.3. Further, the overall coverage probability for

a given MS is also superior for the strict-FFR technique compared to SFR, for all practical values of β, as

can be seen in Figure 5.2, by observing the plots corresponding to the maximum SIR connectivity.

In Figure 5.2, we also compare the overall coverage probabilities with strict-FFR and SFR between

the maximum SIR connectivity model considered in this chapter, and the nearest BS connectivity model

considered by Novlan et. al. using the results in [75, Section 3], respectively. Note the strictly better coverage

provided to the typical MS by the nearest BS connectivity model for both strict-FFR and SFR techniques.

This is surprising because the maximum SIR connectivity model, which is coverage optimal for static or no

frequency reuse cases, is not optimal with FFR.

A heuristic explanation for such a behavior is as follows. Since we assume that the channel gains

for the cell-interior and the cell-edge frequencies are i.i.d. random variables, this gives us two chances to

get a favorable channel. Under the maximum SIR connectivity model, the desired BS is likely to have an

above average channel gain. Further, by the principle of return to mean, the channel gain in the cell-edge

frequency is not likely to be better than the average. In other words, if the desired BS does not satisfy the

SIR constraint in the cell-interior frequency, then it is less likely that the desired BS do so in the cell-edge

frequency. On the other hand, under the nearest BS connectivity model, the desired BS not satisfying the

SIR constraint in the cell-interior frequencies is likely a below average channel gain scenario, and so, by going

to the cell-edge frequency, the desired BS is likely to see a better channel gain. Nevertheless, there is a need

to explore other connectivity models and assess the coverage and rate achieved at the MS with the available
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results.

For instance, the following BS connectivity models may be considered. Firstly, one in which the MS

uses the maximum SIR connectivity criterion to communicate with the desired BSs in the cell-interior and

cell-edge user subbands may be considered. In such a model, there is a hando� between BSs when the MS

switches from the cell-interior user subband to the cell-edge user subband, when the SIR is insu�cient for

coverage in the former frequency band. Another model may be considered where the MS chooses to connect

to a BS that has the maximum SIR in its cell-edge user subband, instead of the maximum SIR connectivity

criterion being used in the cell-interior user subband. While it is clear that this strategy ensures maximum

coverage to the cell-edge user, its impact on the cell-interior user's performance is still not known.

The above mentioned approaches are merely two of the perhaps many such approaches conceivable,

but we lack adequate understanding in this front due to analytical intractability. The proof techniques shown

in this chapter will be useful for characterizing the coverage probability and average rate for the MS when

such connectivity models are employed, and this shall be considered in greater detail elsewhere.

5.6 Conclusions

We have studied the coverage probability at the MS in an OFDMA cellular network where the BS,

distributed according to a homogeneous Poisson point process on the plane, employ FFR to provide improved

coverage to the cell-edge users. The MS chooses to connect to the BS with the maximum SIR. The distribution

of SIR at the MS when the chosen BS employs FFR is completely characterized for both the strict-FFR

and SFR techniques (Theorem 12). Further, the cell-edge user's coverage probability as well as the overall

coverage probability for a typical MS are computed for the case when TFR > 0 dB, thereby characterizing

the improvement in the coverage experienced by the MS with strict-FFR compared to SFR.

By comparing the results in this chapter with the corresponding ones for the nearest BS connectivity

model considered in [75], we obtain a surprising result that the nearest BS connectivity model provides better

coverage than the maximum SIR connectivity with FFR. For the design of the OFDMA cellular system with

FFR, this poses an additional requirement to choose the right BS for optimal downlink performance, which

is no more the BS chosen based on the conventional maximum SINR connectivity criterion. Further, the
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analytical tools developed in this chapter make the study of such networks with di�erent connectivity models

including those with hando� possible and this shall be considered elsewhere.

5.7 Appendix

5.7.1 Derivation for the tail probability of SIRsFFR

The sequence of steps for the derivation of the expression for P ({E1
∩
E2}) is given below.

P
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E1
∩
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})
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)
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, (5.16)

where (a) is obtained by �rst noting P ({E1
∩
E2}) is the same for all realizations of δi and then recalling

the de�nitions of E1 and E2, (b) is obtained by noting that E1 and E2 are independent events conditioned

on {Rj}∞j=1 , and
{
Ψ̂j , δj

}∞

j=1, j ̸=i
, and then computing the probability for Ψ̂i after conditioning w.r.t. the

above mentioned random variables, (c) is obtained by evaluating the expectation w.r.t. δj 's, Ψ̂j 's, and Ψj 's,

j ̸= i, (d) is obtained by �rst conditioning on (Ri,Ψi) and noting that the Palm distribution of the BSs

represented by Rj 's (j ̸= i) given a BS at Ri is still a homogeneous Poisson point process with density λ, then

applying the Campbell's theorem [6, Page 28] and simplifying, (e) is obtained by evaluating the integrals

in (f) where
´∞
r=0

2πrdr
1+α−1rε = πα

2
ε

sinc( 2π
ε )

, sinc (x) = sin(x)
x , and Γ (·) is the Gamma function, (f) represents

the expectation w.r.t. Ri, which is the distance of any point in a homogeneous Poisson point process on
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the plane, (g) is obtained by evaluating the integral in (f) and �nally (5.7) is obtained by rewriting the

expectation w.r.t. to Ψi (exponential random variable with mean 1) in terms of the integral.

5.7.2 Proof for Theorem 13

The sequence of steps for the derivation of the expression for P ({SIRsFFR > T, SIR > TFR}) is

provided below.

P ({SIRsFFR > T, SIR > TFR})
(a)
= ERi [P ({SIRSFFR > T, SIR > TFR| δi = 1})]

(b)
= P




Ψ̂iR
−ε
i∑∞

j=1
j ̸=i

Ψ̂jR
−ε
j I (δj = 1)

> T,
ΨiR

−ε
i∑∞

j=1
j ̸=i

ΨjR
−ε
j

> TFR




(c)
= E

P
Ψ̂i >

∞∑
j=1, Rj ̸=Ri

TRε
i Ψ̂jR

−ε
j I (δj = 1)


× P

Ψi >
∞∑

j=1, Rj ̸=Ri

TFRR
ε
iΨjR

−ε
j




(d)
= E

 ∞∏
j=1, Rj ̸=Ri

e−Rε
iR

−ε
j (T Ψ̂jI(δj=1)+TFRΨj)

∣∣∣∣∣∣Ri


(e)
= E

 ∞∏
j=1, Rj ̸=Ri

(
1− 1

1 + (TFRRε
i )

−1
Rε

j

)(
1− 1 /∆

1 + (TRε
i )

−1
Rε

j

)
(f)
= ERi

exp
−λˆ ∞

r=0

 1

1 + (TFRRε
i )

−1
rε

+
1/∆

1 + (TRε
i )

−1
rε
− 1 /∆(

1 + (TRε
i )

−1
rε
)(

1 + (TFRRε
i )

−1
rε
)
 2πrdr


(g)
= ERi

[
exp

(
− λπR2

i

sinc (2π /ε )

[(
1− 1

∆

)
T

2
ε

FR +
T 1+ 2

ε − T
1+ 2

ε

FR

∆(T − TFR)

])]
(h)
= ERi

[
exp

(
−λπR2

iE (T, TFR,∆, ε)

sinc
(
2π
ε

) )]
(5.17)

where (a) follows due to the same argument as in (5.16− a) , (b) rewrites (a) using (5.1) , (c) is obtained

by �rst taking the expectation w.r.t. all the random variables except Ψ̂i and Ψi, which are themselves

independent of each other, (d) is obtained by evaluating the expectations w.r.t. Ψ̂i and Ψi which are

independent exponential random variables with mean 1, (e) is obtained by �rst evaluating the expectation

w.r.t. δ′js and then w.r.t. Ψj 's and Ψ̂j 's, (f) is obtained by applying the Campbell's theorem [6, Page 28]

to (e) , and (g) is obtained by simplifying the last fraction in (f) using partial fraction expansions assuming

T ̸= TFR, and then evaluating the integrals using
´∞
r=0

2πrdr
1+α−1rε = πα

2
ε

sinc( 2π
ε )

. Further, note that the result of

the integral in (f) when T = TFR is obtained by evaluating the corresponding expression in (g) in the limit

T → TFR, using L'Hospital's rule. Then, (h) rewrites (g) in terms of the function E () de�ned in Theorem
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13 and �nally (5.7) is obtained by evaluating the expectation w.r.t. Ri in the same way as in (5.16− f, g) .



Chapter 6

On the Primary User Coverage Probability and Faulty Cognitive Radios

6.1 Introduction

The FCC has allowed the operation of cognitive radio (CR) devices in the ultra high frequency (UHF)

television (TV) bands which have been identi�ed to have a low spectrum usage and excellent propagation

characteristics. The operation of these unlicensed CR devices is allowed under the condition that they do not

cause harmful interference to the operation of the primary users [77�79]. The primary users of these bands are

the TV transmitter-receiver pairs, radio astronomy service and the low-power wireless microphones systems,

among other incumbent services [80]. Further, the CRs can operate in the same band as the primary users

only if they are located outside the protected region of the primary users, so as to not hinder the primary

user operations.

The CR devices sense for white spaces (or available channels) via spectrum sensing or beaconing

techniques or by geo-location and database lookup techniques. Under spectrum sensing, the CRs use a

threshold-based hypothesis testing of the primary user signals to �nd the white spaces [81]. Under the

beaconing approach, the beacons can either be explicitly attached to the primary receivers [82�84] or some

indirect means. For instance, the cognitive radio might be detecting the TV receiver local oscillator [85]

which acts like a beacon. Further, the geo-location and database schemes provides general information for

usage in a region. Notice that, in all these schemes, the CRs are prone to make mistakes in identifying the

white spaces, such as failing to detect the primary user operation while being located inside the protected

region of the primary user (referred to as miss-detection), or falsely concluding that an available channel
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is busy while being outside the protection region of all primary users (referred to as false-alarm). Further,

miss-detection causes harmful interference to the primary users and false-alarms lead to ine�cient usage

of the white spaces. In this chapter, we adopt a stochastic geometric approach to study the interference

characteristics at the primary users in the presence of CR devices with imperfect detection capabilities.

6.1.1 Literature survey and Contributions of the chapter

By modeling the CR arrangement as a homogeneous Poisson point process, a characteristic function

based interference analysis at the primary receiver has been considered in [28,45,86,87]. For a similar system

model, [42] derives expressions for the primary user outage probability due to the interference by the CRs

in the system employing various dynamic spectrum sharing techniques. All these studies are restricted to a

single primary user case.

Models where the CRs and the primary users are both distributed over the plane according to inde-

pendent homogeneous Poisson point processes have been studied extensively for establishing transmission

capacity bounds for the coexistence of the primary users and CRs [88�90], but these do not consider the

scenario that the CRs perform spectrum sensing.In [43], the CRs perform a location based sensing, and

engages in transmission over the channel only when they detect a free channel, and is the most realistic of

the models. Closed form lower bounds and an approximations for outage probability at the primary receiver

and the CR receiver are computed for the case when the transmitter-receiver pairs corresponding to both

the primary users and the CRs are collocated. Notice that, although these studies hold relevance for the

wireless microphone system where the transmitters and the receivers are separated by a small distance, they

do not necessarily represent the scenarios involving the TV transmitters and receiver, whose arrangement

in an area are essentially independent of each other, and could be separated by large distance, as a TV

transmitter typically provide coverage for TV receivers in a large geographical area, much like the macrocell

base-stations in the conventional cellular system.

In this chapter, we introduce some important features into the system model which makes the study

more generally applicable. Firstly, we introduce imperfections to the CR detection capability which have

not been studied before. Secondly, these studies also include the case where the primary receiver is provided
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coverage by some transmitter in the entire system which has a signal-to-interference ratio (SIR) at the receiver

above a given speci�ed threshold, instead of a collocated transmitter which is the subject of all the prior

studies. Further, we develop a systematic approach to study the various characteristics of the interference to

a given primary user due to the presence of the other primary users and the CRs in the network and obtain

a series of bounds for the same (see Section 6.3). Speci�cally, in Theorem 15, we decompose the original

spatial point process of the interfering CRs with imperfect detection capabilities to two independent spatial

point processes that are easy to study, and the CRs in these have perfect detection capabilities. Further, we

obtain tight upper and lower bounds for the coverage probability at a typical primary receiver (see Section

6.4 for the TV receiver case and Section 6.5 for the WMR case). Finally, Section 6.7 discusses the various

bounds derived in the chapter with numerical examples. The following section describes the system setup.

6.2 System Model

Firstly, we describe the arrangement of the primary users and the cognitive radio transceivers. We

focus on the spatial arrangement of the two types of primary users, namely, the television (TV) transmitter-

receiver pairs and the wireless microphone systems, respectively.

The TV transmitters and the TV receivers are assumed to be distributed in the entire two-dimensional

(2-D) plane according to independent homogeneous Poisson point processes with densities λt and λr, respec-

tively. Further, any TV transmitter that has a signal-to-interference ratio (SIR, de�ned later) at the TV

receiver above a given threshold, say β is said to provide coverage to the TV receiver. In other words, the

TV receiver is in coverage if there exists at least one TV transmitter with an SIR above β, which happens

if-and-only-if the TV transmitter with the strongest signal at the TV receiver has an SIR above β.

Next, in the case of the wireless microphone systems, the receivers are distributed according to a

homogeneous Poisson point process on the 2-D plane with the density λr and the transmitter corresponding

to each receiver is located at a �xed distance rt from the receiver in an arbitrary direction. The cognitive

radio transceivers are assumed to be distributed according to another independent homogeneous Poisson

point process on the 2-D plane with a density λs, where 's' stands for the secondary users.

Figures 6.1 and 6.2 gives a pictorial representation of the primary user and cognitive radio arrangement.
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Note that the mutual interferences caused by TV systems and the wireless microphone systems on each other

is not considered here. It is assumed that the wireless microphone systems are operating in the TV white

spaces corresponding to their locations. If necessary, the interference between these systems could also be

considered, but is not done here for the sake of simplicity. In Figures 6.1 and 6.2, the green arrows represent

the signals from the serving primary transmitter(s), and the red arrows represent the interferences at any

arbitrary primary receiver. The total interference power at any given primary receiver is the sum of the

powers from the rest of the primary transmitters and all the secondary transmitters.

6.2.1 Primary receiver beaconing and Detection range

In order to protect the primary receiver from the harmful interference caused by the secondary user

operations, each primary receiver transmits a beacon signal that can be detected by all the cognitive radios

(CRs) that are upto a distance d from the receiver. In essence, each primary receiver at ξi ∈ R2 has a

corresponding detection region ξi ⊕ Si, where Si = {x| ∥x∥2 ≤ d} and ⊕ represents the Minkowski sum of

the two sets involved. In Figures 6.1 and 6.2, this is represented by the dotted circular patch around each

primary receiver. Each CR has an imperfect detection capability. In other words, any CR lying with the

detection region misses detecting the beacon signal from the primary receivers in its range with a probability

pMD and any CR lying outside the detection regions of all the primary users stops operating in the band

with a false-alarm probability pFA. Upon the (true/ false) detection of the beacon signals, the CR switches

to a di�erent channel and hence does not cause interference at the primary receiver. In Figures 6.1 and

6.2, the solid red arrows from the CRs correspond to those CRs that are transmitting in the same band,

and the dashed red arrows correspond to those CRs that have switch to a di�erent channel and do not

cause any interference at the primary receivers. Ideally, when all the CRs have a perfect detection capability

(pMD = pFA = 0), the CRs lying within the detection region of some primary user switches to a di�erent

channel in order to protect the primary user operations, and all the other CRs communicate in the same

band leading to improved spectrum usage.

Note that the beacons described here can either be explicit beacons attached to the receivers [82]

or some indirect means. For instance, there may be no explicit beacon but the cognitive radio might be
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Figure 6.1: Primary user and cognitive radio arrangement with TV transmitter-receiver pairs as the primary
users
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Figure 6.2: Primary user and cognitive radio arrangement with wireless microphone systems as the primary
users
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detecting the TV receiver local oscillator [85] which acts similar to a beacon. Or, a large `d' can model a

geo-location and database scheme that provides general information for usage in a region. In this chapter,

errors in this scheme are labeled as misdetection. Further, we are concerned with computing the probability

of successful communication between the primary transmitter-receiver pairs in the presence of the additional

interfering cognitive radios with imperfect operational capabilities. In the following subsection, we formally

set up the problem.

6.2.2 Interference Modeling and Coverage (Success) Probability

Firstly, the received power at the primary receiver from any given transmitter in the system is modeled

as P = KΨR−ε where K captures the transmission power and the antenna gains of the transmitter at a

distance R from the receiver. The signal from the transmitter is subjected to a power-law path-loss R−ε, with

ε (> 2) as the path-loss exponent, and fading represented by the multiplicative factorΨ which is independent

across the transmitters and identically distributed according to a unit mean exponential distribution. For

convenience, we restrict ourselves to the interference-limited case and assume that the background noise

power is zero. All the results presented in this chapter can be easily extended to the non-zero background

noise power case easily as done in [47]. The performance metric of interest is the SIR at the primary receiver.

For the case where the primary receivers are the TV receivers, the SIR is

SIRTV R =
Pthk ∥xk∥−ε

2

ITV + ICR
, (6.1)

ITV =
∑
l ̸=k

Pthl ∥xl∥−ε
2 , and (6.2)

ICR =
∞∑

m=1

Psgm ∥ym∥−ε
2

(
I
(
ym ∈ B

∪
S, Mm = 1

)
+ I

(
ym /∈ B

∪
S, Fm = 0

))
(6.3)

where ITV is the sum of received powers from the interfering TV transmitters,
{
Pthl ∥xl∥−ε

2

}∞

l=1
represents

the set of received powers at the TV receiver located at the origin from the TV transmitters located at xl's

in R2 with constant transmission power Pt and i.i.d. random fading gains hl's with unit mean exponential

distribution. The subscript `k' in the numerator of (6.1) corresponds to the TV transmitter with the strongest

signal at the TV receiver. Further, ICR is the total received power from all the interfering CRs, and{
Psgm ∥ym∥−ε

2

}∞

m=1
is the corresponding set of received powers at the TV receiver from all the CRs in R2.



102

Further, {xl}∞l=1 and {ym}∞m=1 are points drawn from independent homogeneous Poisson point processes

with densities λt and λs, respectively.

The imperfect operational capabilities of the CRs are modeled as follows. The cognitive radios in

the system are assigned i.i.d. random marks {Mm, Fm}∞m=1 where Mm is Bernoulli(pMD) and Fm is

Bernoulli(pFA) random variable, respectively.

The set of miss-detecting cognitive radios may be represented as {ym| ym ∈ B
∪
S, Mm = 1}, where

B =
∪∞

n=1 {zn ⊕ Sn} is the union of the detection regions of all the primary receivers in the system, and

is the random set corresponding to the popular Boolean model [5, 91] in stochastic geometry. Further, the

Palm distribution of the Boolean model B conditioned on the typical primary receiver is the same as the set

B
∪
S [91, Page 202], where S is the detection region corresponding to the primary receiver at the origin.

The set of false-alarming cognitive radios may be represented as {ym| ym /∈ B
∪
S, Fm = 1}. In Figures 6.1

and 6.2, the miss-detecting and false-alarming CRs have a yellow background. Finally, (6.3) represents the

interference from all the CRs that have either miss-detected or have not false-alarmed. In the special case

when the CRs have perfect detection capability (pMD = pFA = 0), ICR is the sum of the interference powers

from all the CRs belonging to the set {ym| ym /∈ B
∪
S}. Further, ITV as well as the signal power at the TV

receiver at the origin (numerator in (6.1)) are both independent of ICR.

Next, for the case when the primary receivers are the wireless microphone receivers, the SIR is

SIRWMR =
Pthkr

−ε
s

IWM + ICR
, (6.4)

IWM =
∑
n ̸=k

Pthn ∥zn + x̃n∥−ε
2 , (6.5)

and ICR is the same as in (6.3),
{
Pthn ∥zn + x̃n∥−ε

2

}∞

m=1
is the set of interference powers from all the wireless

microphones. Recall that the wireless microphones are located at a distance rs from the corresponding

wireless microphone (or primary) receiver in a uniformly randomly chosen direction. Further, as in the case

of the TV transmitter-receiver pairs, the sets B and S have the same meaning, except that the primary

receivers here are the wireless microphones receivers and their locations are given by the set {zn}∞n=1. Notice

that, unlike the TV transmitter-receiver case, the interferences IWM and ICR are not independent. Further,

notice that the interference IWM is not considered in SIRTV R and the interference from the TV transmitters
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is not considered in SIRWMR.

Finally, the success probability (or the coverage probability ) at the primary receivers are de�ned as

Pcoverage (TVR) = P ({SIRTV R > β}), Pcoverage (WMR) = P ({SIRWMR > β}) at the TV receiver and the

wireless microphone receiver, respectively, where β is the SIR threshold.

In [43, 46], we have seen that characterizing the interference exactly is not possible, and the SIR

can be characterized only via approximations and tight upper and lower bounds. Here, we delve further

on the notions developed in the above mentioned references to the case when the cognitive radios have

imperfect detection capabilities. Towards this goal, in the following section, we study the characteristics

of the interferences at the primary receiver in detail by computing bounds on the mean, variance and the

moment generating function (or Laplace transform) of each interference term individually.

6.3 Interference characteristics

We �rst consider the Laplace transform of IWM , denoted as LIWM
(s) = E

[
e−sIWM

]
, s > 0. This

quantity can be computed in closed form (see [43]) and can be expressed as

LIWM
(s) = exp

(
−λsG

(
(sPt)

−1
, ε, 0

))
, (6.6)

G (α, ε, δ) ,
ˆ ∞

r=δ

2πrdr

1 + αrε

=
2π2α− 2

ε

ε sin
(
2π
ε

) − πδ2 × 2F1

(
1,

2

ε
; 1 +

2

ε
;−αδε

)
, (6.7)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function. Further, the variance of the random variable

e−sIWM is

var
(
e−sIWM

)
= LIWM

(2s)− [LIWM
(s)]

2
. (6.8)

Lemma 9. The probability that an arbitrary CR located at ξ ∈ R2 does not lie in the detection region of

any primary receiver in the system is P ({ξ /∈ B}) = exp
(
−λpπd

2
)
= ρ and is the same irrespective of the

location of the CR.
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Proof.

P ({ξ /∈ B}) = P ({no primary receiver in ξ ⊕ Sξ})

= exp (−λp ∥Sξ∥) = exp
(
−λpπd

2
)
,

where ξ⊕Sξ is the set of all points upto a distance d from ξ, ∥Sξ∥ is the measure of the set which is exactly

the area occupied by the set.

Now, we characterize the Laplace transform of ICR, denoted as LICR
(s) . As this quantity cannot

be characterized in closed form, we obtain lower and upper bounds for the same. When we study the

interference from the CRs, we are interested in the interference from CRs belonging to two disjoint sets

B
∪
S and (B

∪
S)c, where the interference due to the CRs in the former set is due to those that have missed

detecting the presence of primary users in its vicinity, and the CRs belonging to the latter set that correctly

detect the absence of any primary user in its vicinity and are transmitting.

If (pFA, pMD) corresponds to the tuple with the false-alarm and missed-detection probabilities for

each cognitive radio, it is clear that the case 1− pFA < pMD is practically irrelevant since this corresponds

to extremely faulty cognitive radios. The above scenario means that cognitive radios in the detection region

are more likely to communicate than those outside the detection region. This leads to harmful interferences

as well as ine�cient utilization of the white-spaces by the CRs. As a result, we will focus on the case

1− pFA ≥ pMD.

Theorem 14. The lower-bounds for LICR
(s) are listed below:

Ll1
ICR

(s) = exp
(
−λspMD

[
G
(
(sPs)

−1
, ε, 0

)
− pFAG

(
(sPs)

−1
, ε, d

)]
−λspMDpFAG

(
(sPs (1− ρ))

−1
, ε, d

)
−λs (1− pMD) (1− pFA)G

(
(sPsρ)

−1
, ε, d

))
. (6.9)

When 1− pFA ≥ pMD,

Ll2
ICR

(s) = exp
(
−λs

[
pMDG

(
(sPs)

−1
, ε, 0

)
+ (1− pMD − pFA)G

(
(sPs)

−1
, ε, d

)])
×[

1 + λs (1− pFA − pMD) (1− ρ)G
(
(sPs)

−1
, ε, d

)]
. (6.10)
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Proof. Equation (6.9) is obtained by applying Jensen's inequality. Equation (6.10) is obtained by suitable

lower-bounding the conditional Laplace transform of ICR conditioned on B leading to a simple closed form

expression. See Appendix 6.9.1 for the complete proof.

The following theorem uses the basic properties of a homogeneous Poisson point process to translate

the original system where the cognitive radios have imperfect detection capability to an equivalent system

where all the cognitive radios have perfect detection capability.

Theorem 15. Let ΠMD , {xi|xi ∈ PPP (λs) , xi ∈ B
∪
S, Mi = 1} be the set of cognitive radios in the

system that cause interference at the origin due to missed detection whereMi
i.i.d.∼ Bernoulli (pMD). Similarly,

let ΠFAc , {xi|xi ∈ PPP (λs) , xi /∈ B
∪
S, Fi = 0} be the set of cognitive radios that communicate in

the regions where there are no primary receivers in the vicinity and cause interference at the origin, with

Fi
i.i.d.∼ Bernoulli (pFA) such that 1− pFA ≥ pMD. Then,

ΠMD

∪
ΠFAc = Π1

∪
Π2, (6.11)

where Π1 , {xi|xi ∈ PPP (λ1)}, Π2 , {xi|xi ∈ PPP (λ2) , xi /∈ B
∪
S}, λ1 = pMDλs, λ2 = (1− pFA − pMD)λs,

Π1 and Π2 are independent of each other and cognitive radios represented by the sets Π1 and Π2 all have

perfect detection capabilities.

Proof. See Appendix 6.9.2 for the proof.

Corollary 17. The total interference at the primary receiver due to the CRs, ICR has the same distribution

as the sum of the interferences due to points belonging to two independent spatial point processes Π1 and

Π2 (de�ned in Theorem 15), denoted by I1 and I2, respectively. In other words, ICR =st I1 + I2 where

I1 =
∑

xi∈Π1
Psg1i ∥xi∥−ε

2 , I2 =
∑

xi∈Π2
Psg2i ∥xi∥−ε

2 are independent of each other, g1i, g2i are i.i.d. unit

mean exponential random variables ∀ i and =st corresponds to equivalence in distribution.

Due to Theorem 15, the original stochastic geometric model (or spatial point process) can be decom-

posed into two independent stochastic geometric models that are relatively easy to study. Further, it follows

from Corollary 17 that LICR
(s) = LI1 (s)LI2 (s), where LI1 (s) can be obtained in closed form along the
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same lines as LIWM
(s) in (6.6). A new set of bounds for LICR

(s) are obtained by deriving bounds for LI2 (s)

in the following two theorems.

Theorem 16. Another lower-bound for LICR (s) is listed below:

Ll3
ICR

(s) = LI1 (s)×max
(
E
[
e−sI

′
2

]
, e−sE[I2]

)
(6.12)

where LI1 (s) = exp
(
−λ1G

(
(sPs)

−1
, ε, 0

))
, E
[
e−sI

′
2

]
= e−λ2G((sPs)

−1,ε,d) and E [I2] =
λ2ρPs2πd

2−ε

ε−2 .

Finally, we have

Ll
ICR

(s) = max
({
Lli
ICR

}3
i=1

)
. (6.13)

Proof. Note that Π2 ⊆ Π
′

2 = {xi|xi ∈ PPP (λ2) , xi /∈ S} by de�nition. As a result, the total interference

power corresponding to Π2 is upper bounded by the total interference power corresponding to Π
′

2. This

implies I2 ≤st I
′

2 =
∑

xi∈Π
′
2
Psg1i ∥xi∥−ε

2 and hence LI2 (s) ≥ LI
′
2
(s), and LI

′
2
(s) can be computed in closed-

form along the same lines as LIWM
(s) in (6.6). The second lower bound for LI2 (s) can be obtained using

Jensen's inequality. Combining these two bounds, we get a new lower bound for LICR
(s) in (6.12).

Theorem 17. The upper bounds for LICR (s) are listed below:

Lu1
ICR

(s) =


LI1 (s)

(
1− λ2ρG( 1

sPs
,ε,d)

2

)
, 0 ≤ λ2G

(
1

sPs
, ε, d

)
≤ 1.5916

LI1 (s) , otherwise

, (6.14)

Lu2
ICR

(s) = LI1 (s)
2∏

i=1

(
1− ρHi

(
λ2, (2sPs)

−1
, ε, d

)) 1
2

, (6.15)

Lu3
ICR

(s) = LI1 (s)

1− 2∑
i=1

ρHi

(
λ2, (2sPs)

−1
, ε, d

)
2

 , (6.16)

Lu4
ICR

(s) = LI1 (s)
[
1− ρH1

(
λ2, (sPs)

−1
, ε, d

)]
, (6.17)

Lu
ICR

(s) = min
({
Lui
ICR

(s)
}4
i=1

)
, (6.18)

where E
[
e−sI

′
2

]
is as in Theorem 16, ρ = e−λrπd

2

from Corollary 9,

Hk

(
λ, (2sPs)

−1
, ε, d

)
=

ˆ ∞

r=d

(λπ)
k
2r ×

(
r2 − d2

)k−1
dr(

1 + (2sPs)
−1

rε
)
eλπ(r2−d2)

. (6.19)
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Proof. As in Theorem 16, upper bounds for LICR
(s) are obtained by deriving upper bounds for LI2 (s) due

to Theorem 15 and Corollary 17. The upper bound (6.14) is obtaining using the inequality, exp (−x) ≤ 1− x
2 ,

∀ x ∈ [0, 1.5916]. The upper bounds (6.39) - (6.41) are obtained by lower bounding I2 by the interference

caused by the nearest few active CRs. See Appendix 6.9.3 for the complete proof.

Finally, based on the upper and lower bounds for LICR
(s), we can derive the corresponding upper

and lower bounds for var
(
e−sICR

)
as shown below.

Proposition 8. Upper and lower bounds for var
(
e−sICR

)
are

varu
(
e−sICR

)
= max

(
0,Lu

ICR
(2s)−

[
Ll
ICR

(s)
]2)

, (6.20)

varl
(
e−sICR

)
= max

(
0,Ll

ICR
(2s)−

[
Lu
ICR

(s)
]2)

. (6.21)

The max operation ensures that the bounds are non-negative. Further, the upper (lower) bound is

obtained by upper (lower) bounding each term in var
(
e−sIpc

)
= LIpc (2s)−

[
LIpc (s)

]2
, which is due to the

de�nition of variance of a random variable.

Now, we study the characteristics of an approximation for ICR, denoted by ĪCR which is obtained by

independent thinning of the points belonging to Π
′

2 (de�ned in the proof of Theorem 16) with a probability

ρ, the probability that an arbitrary point lies outside the detection region of all primary receivers. The

following remark de�nes ĪCR and computes its Laplace transform.

Remark 6. ĪCR = I1 + Ī2, where Ī2 =
∑

xi∈Π
′
2
Psg2i ∥xi∥−ε

2 Ti, and Ti's are i.i.d. Bernoulli(ρ) random

variables. As a result, the Laplace transform of ĪCR is

LĪCR
(s) = LI1 (s)LĪ2 (s) = LI1 (s)× exp

(
−λ2ρG

(
(sPs)

−1
, ε, d

))
. (6.22)

The independent thinning of the points in Π
′

2 is represented by Ti's. The above approximation

is motivated by the fact that the higher order statistics, that captures the e�ects of two or more points

belonging to the detection region of the same primary receiver, become less signi�cant, as demonstrated

in [43, 92]. Further, the Laplace transform is easily derived by noting that I1 and Ī2 are, by construction,

independent of each other, LI1 (s) is derived in Theorem 16, and LĪ2 (s) can be derived along the same lines

as LIWM
(s) in (6.6).
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Having studied the characteristics of the individual interferences that a�ect the primary user at the

origin (both the wireless microphone receiver and the TV receiver), we move on to characterizing the success

probabilities at any given primary receiver. We begin with characterizing the success probability for the TV

receivers.

6.4 Coverage probability bounds for the TV receiver

Recall that (6.1) gives the expression for the coverage probability where the interferences to the TV

receiver, namely, ITV and ICR are both independent of each other. The bounds for the Laplace transform

of ICR (Equations (6.13) and (6.18)) derived in the previous section shall be utilized to bound the coverage

probability denoted by Pcoverage (TVR) = P ({SIRTV R > β}) in the following theorems.

Theorem 18. The lower bound for the coverage probability at the TV receiver located at the origin is

Pl
coverage (TVR) = λt

2π

ε
(γPt)

2
ε Γ

(
1 +

2

ε

)
×

ˆ ∞

y=0

ˆ ∞

ω=−∞
LI1 (jω)E

[
e−jωI

′
2

]
Ly
I (jω)

(
e

jωy
β − 1

2πjωy1+
2
ε

)
dωdy, (6.23)

Ly
I (s) = e−λtπ(sPt)

2
ε Γ(1+ 2

ε )[Γ(1−
2
ε )+

2
εΓ(−

2
ε ,

sy
γ )], (6.24)

where γ = 1 + β−1, LI1 (jω) and E
[
e−sI

′
2

]
are obtained from Theorem 16 and I is the sum of the received

powers from all the TV transmitters in the system. Further, based on Remark 6, an approximation for the

coverage probability, denoted by Papprox
coverage (TVR) can be obtained by replacing E

[
e−jωI

′
2

]
with LĪ2 (jω) shown

in (6.22).

Proof. We use [70, Theorems 2 and 3] to show this result. See Appendix 6.9.4 for the proof.

Theorem 19. For β ≥ 1,

Pcoverage (TVR) = P ({SIRTV R > β}) = β− 2
εP ({SIRTV R > 1}) . (6.25)

By bounding P ({SIRTV R > 1}), the upper and lower bounds for the coverage probability (Pu
coverage (TVR)

and Pl
coverage (TVR) respectively) at the TV receiver located at the origin are obtained as shown below.

Pu
coverage (TVR) = β− 2

ε

ˆ ∞

r=0

λt2πrLu
ICR

(
rε

Pt

)
exp

(
− λtπr

2

sinc
(
2π
ε

)) dr, (6.26)
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where Lu
ICR

(s) is obtained from Theorem 17. The lower bound for the coverage probability at the TV receiver

is given by replacing Lu
ICR

(s) in (6.26) with Ll
ICR

(s) that can be obtained from Theorem 14 and Theorem

16. Further, Papprox
coverage (TVR) also reduces to the simple form shown in (6.26) where Lu

ICR

(
rε

Pt

)
is replaced

with LĪCR

(
rε

Pt

)
derived in (6.22).

Proof. See Appendix 6.9.5 for the proof.

Notice that the integral in the above equation is not a function of β, the SIR threshold, which means

that they need to be computed only once each for the upper bounds, lower bounds and the approximation

respectively. Also, the results in this section hold for unit mean exponential fading distributions at the TV

transmitters. Next, we generalize these results for arbitrary fading distributions at the TV transmitters

using the following corollary.

Corollary 18. When the i.i.d. fading factors corresponding to each TV transmitter in the system has an

arbitrary distribution, same as that of a random variable, Ψ, the coverage probability at the TV receiver is

the same as in the case where the i.i.d. fading factors at the TV transmitters are unit mean exponential

random variables, and the density of the TV transmitters is
λtE

[
Ψ

2
ε

]
Γ(1+ 2

ε )
, as long as E

[
Ψ

2
ε

]
<∞.

Proof. This result is a direct consequence of [58, Corollary 3].

As a result, by appropriately scaling λt, Theorems 18 and 19 provide the coverage probability bounds

for arbitrary fading distributions at the TV transmitters.

6.5 Coverage probability bounds for the wireless microphone receiver

The probability of successful communication between the wireless microphone receiver and its wireless

microphone transmitter separated by a distance rs is

Pcoverage (WMR) = P ({SIRWMR > β}) = P
({

Pthkr
−ε
s

IWM + ICR
> β

})
(a)
= E

[
e−s(IWM+ICR)

]
, (6.27)

where IWM is de�ned in (6.5), ICR is de�ned in (6.3), s = β

Ptr
−ε
t

and (a) is obtained when the fading

gains for all the wireless microphone transmitters and the cognitive radio transmitters are i.i.d. unity mean

exponential random variables. Unlike the TV receiver case, the interferences IWM and ICR at the wireless
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microphone receiver are correlated random variables, and again the Laplace transform of their sum cannot

be characterized in closed form. As a result, we focus on �nding their upper and lower bounds.

Theorem 20. Upper bounds for Pcoverage (WMR) are

Pu1
coverage (WMR) = min

(
LIWM (s) ,Lu

ICR
(s) ,

√
LIWM (2s)× Lu

ICR
(2s)

)
, (6.28)

Pu2
coverage (WMR) = LIWM

(s)Lu
ICR

(s) +
√
var (e−sIWM ) varu (e−sICR), (6.29)

Pu
coverage (WMR) = min

(
Pu1
coverage (WMR) ,Pu2

coverage (WMR)
)
, (6.30)

where s = β

Ptr
−ε
t

, LIWM (s) and var
(
e−sIWM

)
are from (6.6) and (6.8), Lu

ICR
(s) and varu

(
e−sICR

)
are from

Theorem 17 and (6.20), respectively.

Proof. Firstly, notice that IWM+ICR ≥ max (IWM , ICR) , and as a result, Pcoverage (WMR) ≤ min
(
LIWM

(s) ,Lu
ICR

(s)
)
.

Next, Pcoverage (WMR) ≤
√
E [e−2sIWM ]E [e−2sICR ] using the Cauchy-Schwartz inequality. By upper bound-

ing the second expectation term in the product and combining the above mentioned bounds, we get (6.28).

Further, from the de�nition of the correlation coe�cient between two dependent random variables X

and Y, we get

−1 ≤ E [XY ]− E [X]E [Y ]√
var (X)× var (Y )

≤ 1. (6.31)

Hence, using the upper bound in (6.31) , we get

Pcoverage (WMR) ≤ LIWM
(s)LICR

(s) +
√

var (e−sIWM ) var (e−sICR)

and by further upper bounding LICR (s) and var
(
e−sICR

)
, we get (6.29) . Finally, (6.30) is obtained since

the minimum of (6.28) and (6.29) is a tighter upper bound.

Theorem 21. Lower bounds for Pcoverage (WMR) are

Pl1
coverage (WMR) = max

(
0,LIWM (s)Ll

ICR
(s)−

√
var (e−sIWM ) varu (e−sICR)

)
, (6.32)

Pl2
coverage (WMR) = LIWM

(s)LI1 (s)E
[
e−sI

′
2

]
, (6.33)

Pl
coverage (WMR) = max

(
Pu1
coverage (WMR) ,Pu2

coverage (WMR)
)
, (6.34)

where s = β

Ptr
−ε
t

, LIWM (s) and var
(
e−sIWM

)
are from (6.6) and (6.8), Ll

ICR
(s) is from Theorem 14 and

Theorem 16, varu
(
e−sICT

)
is from (6.20), and E

[
e−sI

′
2

]
is as in Theorem 16.
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Proof. Equation (6.32) is proved along the same lines as (6.28) using the lower bound in (6.31) . A tight lower

bound for Pcoverage (WMR) is obtained as follows. IWM +ICR
(a)
= IWM +I1+I2

(b)

≤ IWM +I1+I
′

2 where (a)

is obtained by applying Theorem 15 where I1 and I2 are the total interferences from the points belonging

to Π1 and Π2 in Theorem 15 and I
′

2 upper bounds I2. Notice that IWM , I1 and I
′

2 are all independent of

each other and their respective Laplace transforms can be obtained in closed form, we get (6.33) . Further,

since the maximum of the lower bounds is also a lower bound, we get (6.34) .

Due to Remark 6, an approximation for the Pcoverage (WMR), denoted by Papprox
coverage (WMR) can be

computed as follows.

Theorem 22. An approximation for the coverage probability at an arbitrary wireless microphone receiver

is Papprox
coverage (WMR) = LIWM

(s)LI1 (s)LĪ2 (s), where s = β

Ptr
−ε
t

, and is obtained by replacing ICR in (6.27)

with ĪCR, and noting that IWM and ĪCR are independent random variables by construction. The above

expression follows from (6.6) and Remark 6.

Having thoroughly studied the interference characteristics and the coverage probabilities at the TVR

and the WMR, we take a closer look at the primary user performance in the presence of CRs with imperfect

operational capabilities.

6.6 CR Imperfections

From the discussion so far, we realize that, with increase in pMD, the amount of harmful interference

increases as the CRs becomes more likely to operate within the detection region of the primary receivers.

On the other hand, with increase in pFA, more and more CRs that see a white-space frequency band fail

to make use of the opportunity, thereby leading to lowered spectrum utilization. Let us de�ne a spectrum

utilization �gure-of-merit, F as the fraction of active CRs operating in the white space bands. Further, F =

ρ(1−pFA)
ρ(1−pFA)+(1−ρ)pMD

, where the numerator is the probability that an arbitrary CR that is outside the detection

region of all the primary receivers operates, and the denominator is the probability that an arbitrary CR

operates, either because of successful identi�cation of a white space or due to missed detection. Accordingly,

possible values taken by the tuple (pMD, pFA) can be divided into 4 quadrants as shown in Figure 6.3.
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In the previous sections, we have characterized the coverage probabilities for the case when pFA +

pMD ≤ 1. It turns out that, for extremely faulty CRs i.e. when pFA+ pMD > 1, a simple strategy can cause

the CRs to operate in more practically desirable region of pFA + pMD ≤ 1, as explained in the following

remark.

Remark 7. When 0.5 ≤ pFA (pMD) < 1, each CR can incorporate the strategy of switching its decisions.

As a result, each CR now false-alarms (miss-detects) with a probability 0 < 1− pFA (1− pMD) ≤ 0.5. Also,

the analysis in the previous sections now provide us the coverage probability characterizations.

Also, for the special case that pFA + pMD = 1, the coverage probability at the primary receivers can

be computed in closed form. The following corollary lists the results.

Corollary 19. When pFA+pMD = 1, Π2 = {ϕ} with probability 1. As a result, I2 = I
′

2 = 0 with probability

1, in which case (6.23) gives the expression for the exact coverage probability. Further, when β ≥ 1,

Pcoverage (TVR) =
λtP

2
ε
t β− 2

ε sinc
(
2π
ε

)
λtP

2
ε
t + λspMDP

2
ε
s

. (6.35)

The exact coverage probability at the WMR is Pcoverage (WMR) = LI
WM

(
β

Ptr
−ε
t

)
LI1

(
β

Ptr
−ε
t

)
.

Notice that the coverage probability could not be characterized exactly in general because the inter-

ference I2 could not be characterized exactly. In the above special case, I2 has a point mass at 0 and hence

the coverage probabilities can be computed exactly. The above results can also be proved by showing that

the upper and lower bounds for coverage probabilities coincide for pFA + pMD = 1.

Now, we will consider some numerical examples for some realistic scenarios.

6.7 Numerical Examples and Discussion

We begin with assessing the Laplace transforms of the various interference terms that were studied in

Section 6.3. Recall that the interference from the other primary transmitters can be characterized exactly,

and the closed-form expression LIWM
(s) is shown in (6.6). In the case of the interference at the primary

receiver due to CRs, a series of upper and lower bounds are derived for LICR (s). The lower bound for

LICR (s) based on I
′

2 (see Theorem 16) ignores the e�ect of the multiple primary users in the system, and
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is a good estimate only for small λr, while the other lower bounds dominate in the high λr regime. Next,

Lu1
ICR

(s) is a good upper bound when λr is small. As λr increases, more primary receivers are likely to lie

near the origin expanding the e�ective detection region around the origin. Given that signals decay sharply

with distance, the interference caused by a few strong CRs contributing to I2 can be a good estimate for I2.

This premise is used to derive Lu2
ICR

(s) , Lu3
ICR

(s) , and Lu4
ICR

(s). Further, the approximation ĪCR studied in

Remark 6 well-models ICR, and LĪCR
(s) closely follows LICR

(s) for all cases. Moreover, this approximation

gives a simple intuitive way of understanding the interference caused by the CRs.

Now, we move on to studying the coverage probability at the TVR and the WMR, respectively.

We provide some simulation results and verify the bounds and approximations for the coverage probability

that we have derived in Sections 6.4 and 6.5 against the simulation results. For the study of the coverage

probability at the TVR, the system parameters for the Monte-Carlo simulations are λr = 0.1, λt = 0.01,

λs = .1, Pt = 250, Ps = .1, and d = 1. For the WMR case, the system parameters are Pt = 1, Ps = .2,

rt = .5, ε = 4, d = 5, λt =
1

πd2 and λs = .5. From Figures 6.4 and 6.5, notice that the coverage probability

at the TVR is more robust to imperfect operations of the CRs compared to the WMR, which shows erratic

changes in performance with varying imperfections at the CRs. Further, notice that the coverage probability

approximation at the TVR and the WMR are uniformly tight for all cases. Also, notice from the curves

in Figure 6.5 that, with a small increase in pMD, the nearby CRs are more likely to interfere with the

primary receiver and cause harmful interference, and therefore causes a signi�cant reduction in the coverage

probability. Further, when pFA+pMD = 1, coverage probability can be characterized in closed form as soon

in the last two curves of Figure 6.5.

Next, for a given system parameters, a system designer may be interested to �nd the SIR that a

primary user can expect to see with a high reliability, say with a coverage probability of 95%. Notice from

Figure 6.5 that the bounds for the coverage probability are tight especially at the 95th percentile. As a result,

system design decisions made based on the bounds and approximation studies in this chapter are likely to

be of reasonable accuracy.
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6.8 Conclusions

In this chapter, we study the impact of imperfections in the ability of the CRs in detecting primary

user operations by characterizing the interference characteristics and coverage probability at the primary

receivers. The primary users and CRs are assumed to be distributed according to independent homogeneous

Poisson point proceses. Further, we study the performance at two types of primary users, namely, the TV

transmitter-receiver pairs and the wireless microphone systems. A stochastic-geometry based study of the

performance at the TV transmitter-receiver pairs has been done before this. We derive tight upper and

lower bounds and an intuitive approximation for the Laplace transforms of the interference. These results,

are then used to derive the corresponding bounds and approximation for the coverage probability.

6.9 Appendix

6.9.1 Proof for Theorem 14

The proof for (6.9) is as follows:

LICR
(s)

(a)
= E

[
e−s

∑∞
m=1 Psgm∥ym∥−ε

2 I(ym∈S)I(Mm=1)
]
×

E
[
e−s

∑∞
m=1 Psgm∥ym∥−ε

2 I(ym∈Sc)[I(ym∈B)I(Mm=1)+I(ym /∈B)I(Fm=0)]
]

(b)

≥ E
[
e−s

∑∞
m=1 Psgm∥ym∥−ε

2 I(ym∈S)I(Mm=1)
]
×

E
[
e−s

∑∞
m=1 Psgm∥ym∥−ε

2 I(ym∈Sc)EB[I(ym∈B)I(Mm=1)+I(ym /∈B)I(Fm=0)]
]

(c)
= T1× exp

(
−λs

ˆ ∞

r=d

(
1− E

[
e−sPsgr

−ε[(1−ρ)I(Mm=1)+ρI(Fm=0)]
])

dr

)
, (6.36)

where (a) is obtained by rewriting I (ym ∈ B
∪
S) = I (ym ∈ S) + I (ym ∈ B) I (ym /∈ S) and noting that

the Poisson point processes de�ned in S and Sc are independent of each other [7], (b) is obtained applying

Jensen's inequality for the second term in (a) w.r.t. B,(c) is obtained by applying Campbell's theorem [6]

for the �rst term to get

T1 = exp
(
−λspMD

[
G
(
(sPs)

−1
, ε, 0

)
−G

(
(sPs)

−1
, ε, d

)])
,

computing the expectation w.r.t. B in the second term of (b) and then applying Campbell's theorem, and

�nally, (6.9) is obtained by evaluating the expectation in (c) and then representing the result in terms of the
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G ().

The proof for (6.10) is as follows:

LICR (s)
(a)
= T1× E

[
e−s

∑∞
m=1 Psgm∥ym∥−ε

2 I(ym∈Sc)[I(ym∈B)I(Mm=1)+I(ym /∈B)I(Fm=0)]
]

(b)
= T1× EB

[
exp

(
−λs

ˆ
y∈R2

∩
Sc

(
1− E

[
e−sPsg∥y∥−ε

2 [I(y∈B)I(M=1)+I(y/∈B)I(F=0)]
])

dy

)]
(c)
= T1× EB

[
exp

(
−λs

ˆ
y∈R2

∩
Sc

I (y ∈ B)
(
1− E

[
e−sPsg∥y∥−ε

2 I(M=1)
])

dy

)
×

exp

(
−λs

ˆ
y∈R2

∩
Sc

I (y /∈ B)
(
1− E

[
e−sPsg∥y∥−ε

2 I(F=0)
])

dy

)]
(d)
= T1× EB

[
exp

(
−λs

ˆ
y∈R2

∩
Sc

I (y ∈ B) pMD + I (y /∈ B) (1− pFA)

1 + (sPs)
−1 ∥y∥ε2

dy

)]
(e)
= T1× e−λs(1−pFA)G((sPs)

−1,ε,d)EB

[
exp

(
λs (1− pFA − pMD)

ˆ
y∈R2

∩
Sc

I (y ∈ B)
1 + (sPs)

−1 ∥y∥ε2
dy

)]
(f)

≥ T1× e−λs(1−pFA)G((sPs)
−1,ε,d) ×

EB

[
1 + λs (1− pFA − pMD)

ˆ
y∈R2

∩
Sc

I (y ∈ B)
1 + (sPs)

−1 ∥y∥ε2
dy

]
, when 1− pFA ≥ pMD

= T1× e−λs(1−pFA)G((sPs)
−1,ε,d)

[
1 + λs (1− pFA − pMD) (1− ρ)G

(
(sPs)

−1
, ε, d

)]
, (6.37)

where (a) follows from (6.36)-(a), (b) is obtained by evaluating the expectation w.r.t. the Poisson point

process conditioned on B, (c) is obtained by rewriting (b), (d) is obtained by applying Campbell's theorem

to the second term in (c), (e) is obtained by rewriting I (y /∈ B) = 1 − I (y ∈ B) and simplifying, (f) is

obtained using the inequality eλ ≥ 1 + λ, ∀ λ ≥ 0.

6.9.2 Proof for Theorem 15

Firstly, notice that ΠMD and ΠFAc are independent of each other since restrictions of homogeneous

Poisson point processes to disjoint regions are independent of each other. Using the Coloring theorem [6, Page

53], we get

ΠMD =
{
xi|xi ∈ PPP (λspMD) , xi ∈ B

∪
S
}

ΠFAc =
{
xi|xi ∈ PPP (λs (1− pFA)) , xi /∈ B

∪
S
}
,

where PPP (λ) refers to a homogeneous Poisson point process on the plane with density λ. Further, since

the homogeneous Poisson point process is an in�nitely divisible point process [93, Page 87], we can rewrite
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ΠFAc as a superposition of two independent homogeneous Poisson point processes as shown below.

ΠFAc =
{
xi|xi ∈ PPP (λspMD) , xi /∈ B

∪
S
}∪

Π2.

Finally,

ΠMD

∪
ΠFAc =

{
xi|xi ∈ PPP (λspMD) , xi ∈ B

∪
S
}∪

{
xi|xi ∈ PPP (λspMD) , xi /∈ B

∪
S
}∪

Π2

and hence, by applying the Superposition theorem [6, Page 16], we get (6.11) where Π1 and Π2 are by

construction independent of each other.

6.9.3 Proof for Theorem 17

Recall that LICR
(s) = LI1 (s)LI2 (s), and LI1 (s) is known to us in closed form. In the rest of this

section we derive upper bounds for LI2 (s).

Proof for (6.14):

LI2 (s) = EB

[
E
[
e−
∑∞

i=1 sPshi∥xi∥−ε
2 I(xi∈Bc∩Sc)

∣∣∣B]]
(a)
= EB

[
e
−λ2

´
x∈Sc

I(x/∈B)

1+(sPs)−1∥x∥ε2
dx
]
,

where the �rst equality is obtained by rewriting the Laplace transform by �rst conditioning w.r.t. the

random set B, (a) is obtained by applying the Campbell's theorem for the homogeneous Poisson point

process de�ned in the space B⌋∩S⌋, and �nally, (6.14) is obtained by using the inequality exp (−z) ≤ 1− z
2 ,

∀ z ∈ [0, 1.5916],
´
x∈Sc

λ2I(x/∈B)

1+(sPs)
−1∥x∥ε

2

dx ≤ z ,
´
x∈Sc

λ2dx
1+(sPs)

−1∥x∥ε
2

= λ2G
(

1
sPs

, ε, d
)
and then evaluating the

expectation w.r.t. B.

Proof for (6.15) − (6.17) : Several upper bounds for LI2 (s) can be obtained by lower bounding I2

by considering the interference caused by a few active CRs that are closest to the origin (typical primary

receiver) and are the dominant interferers. For this we consider the nearest and the next nearest potential

CRs in the region R2
∩
Sc, and denote their distances from the origin by R1 and R2, respectively. The p.d.f.

of R1 and R2 denoted by fRk
(r) , for r ≥ d are

fRk
(r) =

(
λ2π

(
r2 − d2

))k−1
λ22πre

−λ2π(r2−d2)

k!
, (6.38)
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for k = 1, 2. Now, we can obtain the upper bounds (6.15) and (6.16) by considering only the interference

from the nearest two CRs in the region R2
∩
Sc. The �rst bound is

LI2 (s)
(a)

≤ E
[
e−
∑2

i=1 sPshi∥xi∥−ε
2 I(xi /∈B

∪
S)
]

(b)

≤

√√√√ 2∏
i=1

E
[
e−2sPshi∥xi∥−ε

2 I(xi /∈B
∪

S)
]

(c)
=

√√√√ 2∏
i=1

E

[
1

1 + 2sPs ∥xi∥−ε
2 I (xi /∈ B

∪
S)

]

(d)
=

√√√√ 2∏
i=1

1− ρ+ ρE

[
1

1 + 2sPs ∥xi∥−ε
2

]
, (6.39)

where xi in (a) corresponds to the ith nearest CR in R2
∩
Sc, with ∥xi∥ = Ri, whose p.d.f. is given in (6.38) ,

(b) is obtained by applying Cauchy-Schwartz inequality on (a) , (c) is obtained by evaluating the expectation

with respect to the i.i.d. unit mean exponential random variables h1 and h2, respectively, (d) is obtained by

evaluating the expectation w.r.t. the random set B, with P ({xi /∈ B}) = ρ from Lemma 9 and �nally (6.15)

is obtained by evaluating the expectations w.r.t. the random variables R1 and R2, and rewriting in terms of

the function Hk (·) as de�ned in (6.19) . The second upper bound based on the same idea is as follows.

LI2 (s)
(a)

≤ E

[
1

2

2∑
i=1

e−2sPshi∥xi∥−ε
2 I(xi /∈B

∪
S)

]
, (6.40)

where the expression in (6.39)− (a) is now upper bounded by applying the Young's inequality to obtain (a),

and the upper bound in (6.40) is obtained by taking the expectation inside the summation, repeating the

steps (6.39)− (c) and (d), and representing the result in terms of the Hk (·) function.

Next, the upper bound in (6.17) is obtained by considering the interference caused by only the nearest

CR in (B
∪
S)c .

LI2 (s) ≤ E
[
e−sPsh1∥x1∥−ε

2 I(x1 /∈B
∪

S)
]
, (6.41)

and the expression in (6.41) is obtained by evaluating the above expectation in the same way as shown in

(6.39) and (6.40) .

Finally, minimum of the upper bounds (6.14) − (6.17) is also an upper bound which is tighter than

all of these, and hence we get (6.18) .
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6.9.4 Proof for Theorem 18

Recall that the TV receiver connects to the strongest TV transmitter in the system and the interference

at the TV receiver is due to the other TV transmitters and the active cognitive radios. Let us denote

I =
∑∞

l=1 Pthl ∥xl∥−ε
2 and M = max

l=1,2,···
Pthl ∥xl∥−ε

2 denote the sum of the received powers from all the

TV transmitters and the received power from the TV transmitter communicating with the TV receiver,

respectively. The expression for the coverage probability is P ({SIRTV R > β}) = P
({

M
I−M+ICR

> β
})

=

P ({γM > I + ICR}) ≥ P
({

γM > I + I1 + I
′

2

})
, where ICR is de�ned in (6.3), γ = 1 + 1

β , I + ICR =

I + I1 + I2 ≤ I + I1 + I
′

2 where the equality is obtained due to Theorem 15 with I1 and I2 representing

the total received power from all the points in Π1 and Π2, respectively and the inequality is apparent from

the de�nition of I
′

2 in Theorem 16. Further, I, I1and I
′

2 are all independent of each other. Consider the

following Laplace transform term:

L
I+I1+I

′
2

γ ,M≤z
(s) = E

[
e
− s

γ

(
I+I1+I

′
2

)
I (M ≤ z)

]
(a)
= LI1

(
s

γ

)
LI

′
2

(
s

γ

)
E
[
e−

s
γ II (M ≤ z)

]
(b)
= LI1

(
s

γ

)
LI

′
2

(
s

γ

)
Lz
I (s) (6.42)

where Lz
I (s) is de�ned in (6.24), (a)(M, I) are independent of

(
I1, I

′

2

)
and (b) is obtained by evaluating the

expectation in (a) using [70, Theorem 1].
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6.9.5 Proof for Theorem 19

The following steps derive the steps to obtain the upper bound for the coverage probability.

P ({SIRTV R > β}) = P

({
Pthk ∥xk∥−ε

2

ITV + ICR
> β

})
(a)
= E

[
exp

(
−
β ∥xk∥ε2

Pt
(ITV + ICR)

)]
(b)
= Exk

LICR

(
β ∥xk∥ε2

Pt

)
E

 ∞∏
l=1,

exp
(
−β ∥xk∥ε2 hl ∥xl∥−ε

2

)∣∣∣∣∣∣xk


(c)
= Exk

[
LICR

(
β ∥xk∥ε2

Pt

)
exp

(
−λt

ˆ
x∈R2

(
1− E

[
e−β∥xk∥ε

2h∥x∥
−ε
2

∣∣∣xk

])
dx

)]
(d)
= Exk

[
LICR

(
β ∥xk∥ε2

Pt

)
exp

(
−
λtπβ

2
ε ∥xk∥22

sinc
(
2π
ε

) )]
(e)
=

ˆ ∞

r=0

λt2πrLICR

(
βrε

Pt

)
exp

(
− λtπβ

2
ε r2

sinc
(
2π
ε

)) dr (6.43)

where (a) is obtained by noting that there exists a unique TV transmitter that can satisfy the SIR constraint

(β ≥ 1) according to [50, Lemma 1], (b) is obtained by recalling that ICR is independent of (ITV , xk) and

then by upper bounding the resulting Laplace transform term LICR

(
β∥xk∥ε

2

Pt

)
, (c) is obtained by applying

the Campbell's theorem [6], (d) evaluates the integral in (c) and �nally, (e) is obtained by rewriting the

expectation in (d), and upon simplication, we get (6.25).

Further, since LICR
(s) is not known exactly, the upper bound, lower bound and approximation for

the coverage probability are obtained by replacing LICR

(
β∥xk∥ε

2

Pt

)
with Lu

ICR

(
β∥xk∥ε

2

Pt

)
, Ll

ICR

(
β∥xk∥ε

2

Pt

)
and

LĪCR

(
β∥xk∥ε

2

Pt

)
, derived in Section 6.3, respectively.



Chapter 7

Stochastic Geometric Modeling and Interference Analysis for Massive MIMO

Systems

7.1 Introduction

Massive multiple input multiple output (MIMO) systems are multiuser MIMO cellular systems where

each BS is equipped with a large number of antennas compared to the number of MSs it serves. The

study of such systems has gained immense attention due to their potential for achieving high data rates

and throughput gains while ensuring a low transmission powers in both the forward link and reverse link

[11,94,95].

In [11], a low complexity transmission-reception scheme is studied for the uplink and downlink perfor-

mance of such a system. All BSs reuse the same set of orthogonal pilot sequences that they assign to the MSs

for reverse link pilot signaling. Using these pilot sequences, the BSs estimate the reverse link channel to the

corresponding MS, and extract the subsequent data symbols via maximum ratio combining. Further, due to

channel reciprocity enforced by time division duplexing (TDD) operation, the BS also has an estimate of the

forward channel, using which the BS does linear precoding prior to downlink data transmission. In the limit

as the the number of BS antennas tend towards in�nity, in both the uplink and downlink, it was observed

that the e�ect of uncorrelated noise and fast fading is completely eliminated and the desired signal is only

corrupted by the interferences caused by a phenomena termed `pilot contamination', which is due to the reuse

of the same set of pilot sequences by all the BSs. Consequently, the distributions of SIR and rate achievable

for a given BS-MS pair in both uplink and downlink is studied for the ideal hexagonal cellular system using
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Monte-Carlo simulations. Further studies in this topic have analyzed di�erent precoder/detector designs

with the goal of minimizing the pilot contamination to as low as possible and to analyze the resulting SIR

and rate expressions obtained in the uplink and the downlink [96�98].

In this chapter, we study the massive MIMO system of [11] under stochastic geometric settings and

demonstrate that the uplink and downlink performance can be analytically characterized in terms of the

key system parameters. Towards this goal, the BS arrangement is modeled according to a homogeneous

Poisson point process on the plane, the MSs served by a given BS are uniformly distributed within a circle

of a certain �xed radius centered at the BS location and the number of MSs served by each BS is an i.i.d.

Poisson random variable with a given mean. This system is depicted in Fig. 7.1.

The stochastic geometric modeling and analysis of wireless networks has gained increased popularity

since they are amenable to rigorous analytical studies [27, 30, 43, 50, 58, 70, 83]. For the cellular network, a

strong motivation for viewing the BS arrangement as a homogeneous Poisson point process can be drawn

from the study of the cellular systems in [2,12,13] which suggests that signi�cant insights can be gained by

bounding the downlink cellular performance between the ideal hexagonal grid model and the homogeneous

Poisson point process based model. More interestingly, in [2, Fig. 2.], it is shown with the help of Monte-

Carlo simulations that in the limit of strong log-normal shadow fading (standard deviation of the fading

coe�cient σ →∞), the downlink SIR distribution of an ideal hexagonal cellular system approaches that of

a cellular system with BSs deployed according to a homogeneous Poisson point process.

Recently, the above convergence has been analytically proved in [10, Theorem 3]. It is shown that the

downlink performance of a cellular network with any deterministic arrangement of BSs (not just the ideal

hexagonal grid model) converges to that of a Poisson point process based model as σ → ∞, and moreover

even for realistic values of σ (i.e. 8 dB) that are observed in cluttered environments, the latter model is a good

approximation for the deterministic model. In the massive MIMO system, the uplink-downlink performance

is completely determined by the shadow fading coe�cients and the location of the BSs and the MSs in the

cellular system, thus making a strong case for a rigorous study of these performance metrics using stochastic

geometric models.

The contributions of this chapter are brie�y described here. Note that the transmission-reception
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schemes studied in [11] are restricted to the case where all the pilot sequences were orthogonal to each other.

In practice, orthogonality between pilot sequences is hard to ensure in the uplink (downlink) as the MS (BS)

transmissions are never perfectly synchronized. In Section 7.3, we have extended it to the more practical case

when the pilot sequences have a small correlation with each other, and derived the expressions for the SIR

and the achievable rate in both the uplink and downlink for an arbitrary BS-MS pair. Next, in Section 7.4,

closed-form expressions for the distribution of SIR and rate are derived based on the stochastic geometric

model. Further, when all the pilot sequences are orthogonal to each other, it is shown that the distribution

of SIR and rate in the uplink and downlink are identical. This analytical result is consistent with [94, Fig.

4-7] where the uplink and downlink SIR and rate have nearly identical behavior (see Section 7.4.1). For

the non-orthogonal pilot sequence case (see Section 7.4.2), closed form expressions for the distribution of

the downlink SIR and rate are derived and simple approximations are derived for the corresponding uplink

performance. It is shown that the downlink SIR is strictly upper-bounded by the inverse of total pilots

correlation.

Next, we introduce the system model.

7.2 System Model

The cellular system is composed of BSs distributed according to a homogeneous Poisson point process

on the plane with BS density λb. The BSs employ ∆-frequency reuse (∆ =1, 3, 4, 7 etc.) where each BS is

randomly assigned one of the {1, 2, · · · , ∆} frequency bands with equal probability and the BSs in di�erent

bands do not interfere with each other [59]. Further, the MSs served by a BS are assumed to be uniformly

distributed in a circle of radius R centered at the BS and independent of the other MS or BS arrangements.

The number of MSs served by a given BS is a Poisson random variable with mean λuπR
2, where λu is

the average number of MSs per cell area. Each MS has a single antenna and each BS is equipped with M

antennas (M →∞). Fig. 7.1 illustrates the scenario.

All the BSs in the system share the same set of P pilot sequences and can serve at most P MSs

simultaneously. Each pilot sequence is a K length unit-norm vector denoted as ai ∈ CK×1, i = 1, 2, · · · , P ,

and the correlation between two pilot sequences ai, aj is a
†
iaj = αij , such that 0 ≤ |αij | ≤ 1 and αii = 1,
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∀ i = 1, · · · , P . The pilots are said to be orthogonal if the correlation is zero for i ̸= j and non-orthogonal

otherwise. The BSs and the MSs communicate with each other via time division duplexing (TDD) such

that the in-band uplink and downlink transmissions are su�ciently separated in time and do not cause

interference to one another. Further, the TDD operation induces channel reciprocity causing the forward

and reverse-link channels for a given BS-MS pair to be identical.

7.3 Transmission-Reception Schemes

This section generalizes the results in [11] to the case when the pilot sequences are non-orthogonal and

when the number of MSs in each cell is an independent and identically distributed (i.i.d.) random variable

as mentioned in Section 7.2.

7.3.1 Pilot signaling and channel estimation

The communication begins with the training phase when all the MSs in the cell transmit their re-

spective pilot sequences to the serving BS. The BSs utilize the reverse-link pilot transmissions to estimate

the reverse-link channel to each of its MSs. We denote the kth BS by BSk and its nth MS by MSkn. The

received signal at BSk corresponding to one pilot sequence transmission period (consisting of K symbols)

may be represented by Yk ∈ CM×K :

Yk =
√
ρP

∞∑
l=1

P∑
n=1

bklhklna
†
nI (n, l) +Wk (7.1)

where M is the number of BS antennas, K is the length of a pilot sequence, bkl = 1 if BSl operates in

the same frequency band as BSk and bkl = 0 otherwise, hkln ∈ CM×1 is the channel corresponding to the

wireless link from MSln to BSk, ρP is the pilot signal-to-noise ratio (SNR), Wk is the i.i.d. zero-mean noise

at BSk, and I (n, l) is the indicator function

I(n, l) =


1, nth pilot is used in lth cell

0, otherwise

.

Further, hkln = β
1
2

klnR
− ε

2

klngkln, gkln ∈ CM×1 represents the fast fading coe�cients between the MSln and

the antennas of BSk with i.i.d. zero mean and unit variance entries, βkln is the shadow fading coe�cient,



127

B
S


B
S
 B
S
����������������
B
S


M
S


M
S


M
S


M
S


M
S


2


1
 3


4


1
1


2
1


3
1


3
2


4
1


Figure 7.1: User distribution and pilots assignments. BSs in the circles with di�erent background patterns
operate in di�erent frequency bands. The di�erent pilot sequences assigned to MSs are indicated by di�erent
line patterns. Solid line represents desired signal while dotted line represents interference to others.
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generally modeled as a log-normal random variable with 0 mean and variance σ2 dB, Rkln is the distance

between MSln and BSk and ϵ (ϵ > 2) is the path-loss exponent of the power-law path-loss model.

From the received signal in (7.1), BSk estimates the channel to the MS transmitting the mth pilot

sequence as

ĥkkm =
Ykam√

ρP
= hkkm +

P∑
n=1, n ̸=m

αnmhkknI (n, k)

+
∞∑
l=1

P∑
n=1

l ̸=k

αnmbklhklnI (n, l) +
Wkam√

ρP
, (7.2)

where m = 1, 2, · · · , P , the �rst term is the desired channel, the second term is the contamination due

to non-orthogonal pilots used by other MSs served by BSk, the third term is the contamination due to the

pilot transmissions of the MSs belonging to the other cells and the last term corresponds to the background

noise. Next, we focus on the uplink data transmission and decoding scheme used by each BS to recover the

data transmitted by each of its MSs.

7.3.2 Uplink Data Transmission and Maximum Ratio Combining

Following the pilot signaling stage is the reverse link data transmission stage, when all the MSs

transmit data symbols to their corresponding BS, and the composite signal as received by BSk is given by

yk =
√
ρU

∞∑
l=1

P∑
n=1

bklhklndlnI (n, l) +wk, (7.3)

where ρU is the uplink SNR, dln is the data symbol transmitted by MSln, and wk is the i.i.d. zero mean

and unit variance background noise at BSk's antennas and all other symbols are the same as in (7.1). From

the above received signal, BSk recovers the symbols corresponding to each of its MSs using maximum-ratio

combining, by left-multiplying the received signal by the conjugate-transpose of the channel estimate of the

corresponding MS. Further, in the limit as M →∞, the recovered data symbol d̂km corresponding to MSkm
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takes a relatively simple form as shown below.

d̂km = lim
M→∞

ĥ†
kkmyk

M
√
ρU

(a)
= lim

M→∞

1

M

( ∞∑
l=1

P∑
n=1

α∗
nmbklh

†
klnI (n, l) +

a†mW†
k√

ρP

)

·

( ∞∑
s=1

P∑
t=1

hkstbksdstI (t, s) +
wk√
ρU

)
(b)
=

βkkmdkm
Rϵ

kkm

+
P∑

n=1, n ̸=m

α∗
nmβkkndkn
Rϵ

kkn

I (n, k)

+

∞∑
l=1, l ̸=k

P∑
n=1

α∗
nmbklβklndln

Rϵ
kln

I (n, l) , (7.4)

where m = 1, 2, · · · , P , (a) is obtained by substituting for ĥkkm and yk from (7.2) and (7.3), respectively,

and (b) is obtained by noting that lim
M→∞

h†
klnhkst

M =
√

βklnβkst

R
ϵ
2
klnR

ϵ
2
kst

lim
M→∞

g†
klngkst

M = bklβklnR
−ϵ
klnδ (l = s, n = t),

limM→∞
h†

klnwk

M = 0, limM→∞
W†

khkst

M = 0, and limM→∞
W†

kwk

M = 0 by applying the law of large numbers,

since gkln, wk, Wk all contain i.i.d. zero mean unit variance entries. Further, the �rst term in (b) is the

desired data symbol, the second is the intra-cell interference term and the third is the inter-cell interference

term. Next, we study the downlink transmission scheme in detail.

7.3.3 Precoding and Downlink Data Transmission

In the downlink, the BS precodes the data symbol intended for each MS with the channel estimate of

the corresponding wireless link, and transmits the sum of the precoded signals of all its MSs through the M

antennas. The received signal at MSkm is

ykm =
√
ρD

∞∑
l=1

bklh
†
lkmxl + wkm,

where ρD is the downlink SNR, xl =
∑P

n=1 ĥllndlnI (n, l) is the signal transmitted by BSl, dln is the data

symbol intended to MSln and is precoded by the corresponding channel estimate ĥlln. Due to channel

reciprocity induced by the TDD operation, the channel between BSl and MSkm is h†
lkm, and lastly, wkm is a

zero mean, unit variance random variable representing the background noise. Each MS performs a relatively

simple processing to recover the data symbol transmitted by the serving BS. The recovered data symbol in
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the downlink is

d̂km = lim
M→∞

ykm
M
√
ρD

= lim
M→∞

1

M

∞∑
l=1

h†
lkm

P∑
n=1

ĥllndlnI (n, l) +
wkm

M
√
ρD

=
∞∑
l=1

(
P∑

n=1

α∗
nmdlnI (n, l)

)
bklβlkmR−ϵ

lkm, (7.5)

where m = 1, 2, · · · , M , lim
M→∞

h†
lkmĥlln

M = αmnβlkmR−ϵ
lkm, αmn = α∗

nm, and lim
M→∞

wkm

M
√
ρD

= 0. Notice that

the resultant system is again interference-limited and the following lemma provides the expressions for the

uplink and downlink SIR for a given BS-MS pair.

Lemma 10. The uplink and downlink SIRs are

SIR
(UL)
km =

β2
kkmR−2ϵ

kkm

I
(UL)
km

and SIR
(DL)
km =

β2
kkmR−2ϵ

kkm

I
(DL)
km

, (7.6)

where I
(UL)
km =

∑∞
l=1

∑P
n=1

(l,n) ̸=(k,m)

bkl |αnm|2 β2
klnR

−2ϵ
kln I (n, l) and I

(DL)
km =

∑∞
l=1

(· ∑P
n=1

(l,n)̸=(k,m)

|αnm|2 I (n, l)
)
bklβ

2
lkmR−2ϵ

lkm

are the corresponding interference powers.

Notice that, when each BS serves a �xed number of user equal to P using a set of P orthogonal pilot

sequences, the resultant expressions for SIR
(UL)
km and SIR

(DL)
km are identical to those obtained in [11].

In the following section, we systematically evaluate the system performance in the uplink and downlink.

7.4 Interference characteristics and SIR

In this section, we derive closed-form expressions for the Laplace transform of interference and the

SIR distribution for both uplink and downlink. We �rst consider the case when all the P pilot sequences are

orthogonal to each other. Since each pilot sequence is of length K, at most K orthogonal pilot sequences

can be designed, and hence P ≤ K.

7.4.1 Case of orthogonal pilot sequences

In this case, the pilot sequences a1, · · · , aP are such that the correlation αij = 1, if i = j and 0

otherwise. From Lemma 10, it can be seen that the intra-cell interference is completely eliminated and the
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inter-cell interference is only due to the transmissions corresponding to the same pilot sequence as the desired

signal.

Theorem 23. With orthogonal pilot sequences, the Laplace transform of the interference in the uplink and

downlink are

L
I
(UL)
km

= L
I
(DL)
km

(s) = exp

− λbπηE
[
β

2
ϵ

]
s

1
ϵ

Γ
(
1 + 1

ε

)
∆sinc

(
π
ϵ

)
 , (7.7)

where Γ (·) is the Gamma function, I
(UL)
km and I

(DL)
km are obtained from Lemma 10, η =

∑P−1
n=1

n
P

(λuπR2)
n

n! e−λuπR
2

+∑∞
n=P

(λuπR2)
n

n! e−λuπR
2

is the probability that two BSs in the system use the same pilot sequence, β is the

random variable with the same distribution as the set of i.i.d. random variables {βklm}∞l=1, E
[
β

2
ϵ

]
<∞, ∆

is the frequency reuse factor and sinc (x) = sin(x)
x . Also,

SIR
(UL)
km =st SIR

(DL)
km , (7.8)

where =st is the equivalence in distribution. Further, in the special case when {βklm}∞l=1 is a set of i.i.d.

unit mean exponential random variables, the complementary cumulative density function (c.c.d.f.) of SIR is

P
({

SIR
(UL)
km > γ

})
= P

({
SIR

(DL)
km > γ

})
=

1− e−T

T
, (7.9)

where γ ≥ 0 and T = ηλbπR
2γ

1
ϵ

∆sinc(π
ϵ )

.

Proof. See Appendix 7.7.1.

Further, when the number of users in each cell is equal to K at all times, all P = K orthogonal pilot

sequences are used by each BS, η (de�ned in Theorem 23) is 1 and hence the c.c.d.f. of SIR is obtained

using (7.9) with η = 1. Note that the above is exactly the scenario considered in [11] where the uplink

and downlink SIRs could only be analyzed via Monte-Carlo simulations. Here, with the help of stochastic

geometry, we are able to obtain closed form expressions for the relevant performance metrics in terms of the

critical system parameters. In Section 7.5, we further demonstrate its signi�cance with numerical examples.
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7.4.2 Case of non-orthogonal pilot sequences

Now, we consider the case when the pilot sequences are not orthogonal to each other. Such a scenario

arises under two conditions. Firstly, when the pilot signaling by various transmitters are not perfectly

synchronized. Secondly, in an overloaded system where the BS serves a large number of users. Particularly

when P > K, all P pilot sequences of length K cannot be orthogonal to each other. In this section, we

consider an extreme case when all the P pilot sequences are used by each BS. The uplink and downlink

interferences ar

I
(UL)
km =

∞∑
l=1

P∑
n=1

(l,n) ̸=(k,m)

bkl |αnm|2 β2
klnR

−2ϵ
kln , (7.10)

I
(DL)
km =

ᾱmβ2
kkm

R2ϵ
kkm

+ (ᾱm + 1)
∞∑

l=1, l ̸=k

bklβ
2
lkm

R2ϵ
lkm

, (7.11)

where ᾱm ,
∑P

n = 1

n ̸= m

|αnm|2. By substituting in (7.6), we obtain the corresponding SIR expressions. The

following theorem derives the Laplace transform of interference and the distribution of SIR in the downlink.

Theorem 24. When all BSs in the system serve P MSs using the P non-orthogonal pilot sequences, the

Laplace transform of the I
(DL)
km is

L
I
(DL)
km

(s) = Eβ

(sᾱmβ2
) 1

ϵ Γ
(
−1

ϵ ,
sᾱmβ2

R2ϵ

)
ϵR2

×
exp

−λbπE
[
β

2
ϵ

]
s

1
ϵ (ᾱm + 1)

1
ϵ

Γ
(
1 + 1

ε

)
∆sinc

(
π
ϵ

)
 , (7.12)

where Γ (·, ·) is the incomplete Gamma function, Γ (·) is the Gamma function, β is a random variable with

the same distribution as the i.i.d. random variables βklm's in (7.11), ∆ and sinc (·) are as in Theorem 23.

When {βklm}∞l=1 is a set of i.i.d. unit mean exponential random variables, the c.c.d.f. of downlink

SIR is

P
({

SIR
(DL)
km > γ

})
=

∆sinc
(
π
ϵ

)
λbπR2γ̄

1
ϵ

1− e
−λbπR2γ̄

1
ϵ

∆sinc(π
ϵ )

 , (7.13)

∀ 0 ≤ γ ≤ ᾱ−1
m and γ̄ = γ(1+ᾱm)

1−ᾱmγ .

Proof. See Appendix 7.7.2.
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An important implication of Theorem 24 is that the downlink SIR in the non-orthogonal case cannot

exceed 1
ᾱm

as can be seen from (7.19), and hence shows how the design of the set of pilot sequences determines

the system performance.

Next, we characterize the uplink performance with non-orthogonal pilot sequences. Accurate closed-

form characterizations of the performance metrics in the uplink is not possible, and hence, we consider the

following approximations to (7.10) that make the analysis tractable.

(1) Replace the instantaneous correlation between the pilot sequences with the average of the correlations

with all pilot sequences, i.e. replace |αnm|2 of the intra-cell interference terms with ᾱm

P−1 and |αnm|2

of the inter-cell interference terms with ᾱm+1
P .

(2) Upper bound the distance between MSln and BSk, Rkln with Rkl+R, for (l, n) ̸= (k,m), where Rkl

is the radial distance between BSk and BSl. By doing so, it can be shown that the point process of

the resultant inter-cell interferer is a homogeneous Poisson point process in the entire plane except

the circle of radius R about the origin. Further, the resultant interference after this operation is a

lower bound for the actual uplink interference.

(3) In order to achieve a mathematically tractable approximation, we extend the interferer point process

obtained by the previous operation to the entire plane.

With the above three modi�cations, a reasonable estimate for the uplink interference is obtained as

Î
(UL)
km =

ᾱmR−2ϵ

P − 1

P∑
n=1, n̸=m

β2
kkn +

(ᾱm + 1)

P

∞∑
l=1, l ̸=k

bkl

(
P∑

n=1

β2
kln

)
R−2ϵ

kl , (7.14)

where Rkkn's are i.i.d. random variables with a probability density function (p.d.f.) fRkkn
(r) = 2r

R2 , 0 ≤

r ≤ R, Rkl's are from the homogeneous Poisson point process on the plane with density λb and βkln's are

i.i.d. random shadow fading factors, and the corresponding uplink SIR is

ˆSIR
(UL)

km =
β2
kkmR−ε

kkm

Î
(UL)
km

. (7.15)

Using (7.14) and (7.15), next we derive analytical expressions for the uplink performance metrics.
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Theorem 25. The Laplace transform of Î
(UL)
km is

L
Î
(UL)
km

(s) =

(
Eβ

[
e−

sᾱmR−2ϵβ2

P−1

])P−1

×

exp

−λbE
[(∑P

n=1 β
2
n

) 1
ϵ

]
s

1
ϵ (ᾱm + 1)

1
ϵ

P
1
εΓ
(
1 + 1

ε

)
∆sinc

(
π
ϵ

)
 , (7.16)

where β, {βn}Pn=1 are i.i.d. random variables with the same distribution as βkln's in (7.14), ∆ and sinc (·)

are as in Theorem 23. When {βklm}∞l=1 is a set of i.i.d. unit mean exponential random variables, the c.c.d.f.

of uplink SIR using the approximation (7.14) is

P
({

ˆSIR
(UL)

km > γ
})

= ERkkm

[
L
Î
(UL)
km

(
γR2ϵ

kkm

)]
. (7.17)

Proof. Equation (7.16) can be obtained by following the same steps as for the derivation of (7.12), and (7.17)

is obtained by substituting for ˆSIR
(UL)

km from (7.15) and then evaluating the probability w.r.t. β2
kkm, given

all other random variables.

Next, the per-user achievable rate (in bits/secs/user) in the uplink and downlink are

R
(UL)
km =

Bρ

∆
log2

(
1 + SIR

(UL)
km

)
and

R
(DL)
km =

Bρ

∆
log2

(
1 + SIR

(DL)
km

)
,

respectively, where B is the entire allocated bandwidth, ρ is the scaling factor for the rate-loss from training,

guard interval, etc. and ∆ is the frequency reuse factor. The above are the uplink and downlink Shannon

rates obtained by treating interference as noise.

The c.c.d.f. of R
(UL)
km and R

(DL)
km for both the orthogonal and non-orthogonal pilots cases can be

obtained from Theorems 23-25 by replacing γ in equations (7.9), (7.13) and (7.17) with exp
(

γ∆
Bρ

)
− 1.

Next, we provide some numerical examples that further demonstrate the utility of the analytical study

carried out in this section.

7.5 Numerical Results

In order to facilitate a fair comparison between the analytical results obtained in the previous section

with the empirical results in [11, Section VI], we restrict our attention to the orthogonal pilots case (Section
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7.4.1) and assume the same system parameters as in [11, Section VI]. From Theorem 23, the uplink and

downlink performances are identical and the hence the conclusions drawn in this section hold true for both.

7.5.1 Simulation setting

The cellular area of interest is a circle with a radius 50 kilometers with the radius of each cell R = 1600

meters and BSs distributed according to a homogeneous Poisson point process with density λb =
1

πR2 . The

total system bandwidth B = 20 MHz, and the rate scaling factor ρ = (3/7) × (66.7/71.4) ≈ 0.4. Three

di�erent values for the frequency reuse factors are considered, ∆ = 1, 3 and 7, and all the BSs reuse K = 42

orthogonal pilot sequences among themselves. For the shadow-fading, two cases are considered: (a) βklm's

follow i.i.d. log-normal distribution with 8.0 dB standard deviation as in [11], and (b) β2
klm's follow i.i.d.

unit mean exponential distribution, and �nally the path-loss exponent ϵ = 3.8.

7.5.2 Fully loaded case

Fig. 7.2 and Fig. 7.3 show the cumulative distributions for the SIR (7.8) and the average achievable

rate per user, respectively, when every cell is fully loaded and serving its maximum capacity of P users.

Note that the analytical results obtained from (7.9) with η = 1 �ts the simulation result perfectly. Further,

the performance characteristics of the the exponential and the log-normal fading cases are similar. The SIR

performance strictly improves as ∆ increases because the average interferer distance increases with ∆. The

net achievable rate per terminal doesn't necessarily increase as shown in Fig. 7.3 since larger∆means smaller

e�ective bandwidth per cell. Hence, ∆ should be accordingly chosen based on the minimum or average rate

and SIR requirements.

Further, comparing Figs. 7.3 - 7.5 with [11, Figs. 2-5], we see that the performances in the hexagonal

grid model and the stochastic geometric model are very close to each other. Hence, stochastic geometry

based model can provides accurate analytical performance characterizations for these cellular systems.
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7.5.3 Random MS case with orthogonal pilots

Now, consider the case when the number of MSs in each cell is a Poisson random variable with mean

P . When there are more than P MSs in the cell, only P of them are served. Thus, the desired BS will only

receive interference from the cells that are using the same pilot as the desired MS.

Fig. 7.4 and Fig. 7.5 show the cumulative distributions for the SIR and the average achievable rate

per user, respectively. Again, the analytical results using (7.9) �ts the simulation perfectly. Also noticed

that although the average number of MSs in the cell are same for both cases, the average served MS number

is smaller for the random MS case since we can only serve at most P MSs at the same time. Therefore, the

overall performance of this case is better than the fully loaded case considered previously.

7.6 Conclusion and Future Works

Massive MIMO system in which base stations are equipped with large numbers of antennas has the

potential to deliver enhanced throughput and reliably on both the uplink and downlink in a fast-changing

propagation environments [11]. As the number of antennas in the BS tends to in�nity, one BS can serve an

arbitrary number of MSs at arbitrary high rate as long as accurate channel state information is available.

The capacity of the massive MIMO system is highly limited by the accuracy of channel state information

and hence the channel estimation method plays a key role. Trade-o�s such as total number of pilots vs their

correlations between each other need to be thoroughly understood to achieve the best overall performance.

Good mathematical tools are necessary to evaluate the system performance with di�erent settings and

schemes.

We adopt stochastic geometry to model the BS and MS locations in the cellular system and derive

analytical characterizations for the cellular performance in terms of the key system parameters. When using

orthogonal pilots, the closed-form expressions for the Laplace transform of interference and the distributions

of SIR and achievable rates are obtained and a duality between the distributions of uplink and downlink SIR

is revealed. For non-orthogonal pilots case, it is shown that downlink SIR is strictly limited by the inverse

of the total pilot correlation and a reasonable estimates for the uplink performance are derived.
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Finally, note that the uplink-downlink performance is mainly determined by the interference caused

to the link due to pilot contamination. The mathematical tools developed here can be used to study the

system performance under other di�erent channel estimation methods and transmission-reception schemes,

such as those studied in [96�98].

7.7 Appendix

7.7.1 Proof for Theorem 23

In the orthogonal pilots case, αij =


1, i = j

0, i ̸= j

. By substituting for αij in Lemma 10, we get

I
(UL)
km =

∑∞
l=1, l̸=k

bklβ
2
klmR−2ϵ

klmI (m, l), I
(DL)
km =

∑∞
l=1, l ̸=k

bklβ
2
lkmR−2ϵ

lkmI (m, l) and by substituting these into

(7.6), the uplink and downlink SIR expressions are obtained. Note that I
(DL)
km is the interference at MSkm

due to BSl transmissions (l ̸= k) to MSlm. Using Slivnyak's theorem [67], the Palm distribution of all the

BSs conditioned on the location of BSk serving MSkm is also a Poisson point process and using Campbell's

theorem [6, Page 57], the Laplace transform of I
(DL)
km is equal to (7.7).

On the other hand, I
(UL)
km is the interference at BSk (assumed to be at the origin) from MSs using the

mth pilot sequence served by other BSs that operate in the same frequency band as BSk. Using the same

argument as before, all the other BSs in the cellular system given BSk is at the origin is also a homogeneous

Poisson point process with BS density λb. Hence, the Laplace transform of I
(UL)
km can be expressed as

L
I
(UL)
km

(s)

(a)
= E

 ∞∏
l=1, l ̸=k

e−sbklβ
2
klm∥Xl+Ylm∥−2εI(m,l)


(b)
= exp

(
−λbη

∆

ˆ
x∈R2

Eβ,Y

[
1− e−sβ2∥x+Y ∥−2ε

]
dx

)
(c)
= exp

(
−λbη

∆
Eβ,Y1,Y2

[¨ x1=∞, x2=∞

x1=−∞, x2=−∞(
1− e−sβ2[(x1+Y1)

2+(x2+Y2)
2]

−ε)
dx1dx2

])
(d)
= e

−λbη

∆ Eβ

[´∞
r=0

(
1−e−sbkβ2r−2ϵI(m,l)

)
2πrdr

]

(e)
= exp

(
−πηλb

∆
s

1
ϵ · E

[
β

2
ϵ

]
·
ˆ ∞

0

(
e−t−ϵ

− 1
)
dt

)
, (7.18)
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where (a) is obtained by rewriting I
(UL)
km in terms of the locations of BSl denoted byXl ∈ R2, and the location

of MSlm around BSl denoted by {Ylm}∞l=1 ∈ R2 which is i.i.d. uniformly distributed in the circle of radius R

around the origin, (b) is obtained by �rst evaluating the expectation w.r.t. bkl's that are i.i.d. Bernoulli
(

1
∆

)
random variables and the indicator functions I (m, l) such that E [I (m, l)] = η =

∑P−1
n=1

n
P

(λuπR2)
n

n! e−λuπR
2

+∑∞
n=P

(λuπR2)
n

n! e−λuπR
2

is the probability that BSl is currently using the mth pilot sequence ∀ l ̸= k and

then applying Campbell's theorem [6, Page 57] to the Poisson point process of the BS arrangement where

the expectation operator is w.r.t. the random variable β which has the same distribution as βklm's, (c) is

obtained by exchanging the order of expectation and integration and expressing the integral over R2 in the

Cartesian coordinate system, (d) is obtained by the following variable changes: x1 ← x1+Y1 and x2 ← x2+Y2

and rewriting the integrals in the polar coordinate system, (e) is obtained by a variable change t ← β− 2
ϵ r2

and then evaluating the expectation w.r.t. β, and �nally, (7.7) is obtained by rewriting the integral in (e) in

terms of sinc (·).

Now, since L
I
(UL)
km

(s) = L
I
(DL)
km

(s), the I
(UL)
km and I

(DL)
km have the same distribution. Further, since the

numerator and denominator in the SIR expressions in (7.6) are independent of each other, it is clear that

the distribution of SIR in the uplink and downlink are also identical, and hence we have (7.8).

Next, if
{
β2
klm

}∞
l=1

is a set of i.i.d. unit mean exponential random variables, the c.c.d.f. of SIR
(DL)
km is

P
({

SIR
(DL)
km > γ

})
(a)
= E

[
e
−γR2ϵ

kkm

∑∞
l=1, l ̸=k

bklβ
2
klmR−2ϵ

klmI(m,l)
]

(b)
= ERkkm

[
e
−λbη

∆

´∞
0

(
1−Eβ2

[
e−γR2ϵ

kkmβ2r−2ϵ
])

2πrdr
]

(c)
= ERkkm

[
exp

(
−ηγ

1
ϵ λbπR

2
kkm

∆sinc
(
π
ϵ

) )]
,

where γ ≥ 0, (a) is obtained by evaluating the probability w.r.t. the unit mean exponential random variable

β2
kkm conditioned on all other random variables, (b) is similar to (7.18-(b)), (c) is obtained by evaluating the

expectation w.r.t. β2 which is a unit mean exponential random variable and then evaluating the integral

in (b) and �nally, (7.9) is obtained by evaluating the expectation w.r.t. Rkkmwith the probability density
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function fRkkm
(r) =


2r
R2 0 ≤ r ≤ R

0 otherwise

. From (7.8), the above is also the c.c.d.f. of SIR
(UL)
km .

7.7.2 Proof for Theorem 24

The Laplace transform of the downlink interference I
(DL)
km is derive below.

L
I
(DL)
km

(s) = E
[
e−sᾱmβ2

kkmR−2ϵ
kkm

]
×

E

 ∞∏
l=1, l ̸=k

e−s(ᾱm+1)bklβ
2
lkmR−2ϵ

lkm

 ,

is obtained by noting that the two terms in (7.11) are independent of each other. Further, (7.12) is obtained

by evaluating the expectation w.r.t. Rkkm in the �rst term of the above product, and then using the

Campbell's theorem to evaluate the second theorem. Now, notice that the downlink SIR can be expressed

as

SIR
(DL)
km =

1

ᾱm + ᾱm+1
SIRkm

, (7.19)

where SIRkm denotes the SIR for the orthogonal pilots case studied in Section 7.4.1. Hence, the c.c.d.f. of

SIR
(DL)
km is

P
({

SIR
(DL)
km > γ

})
= P

(
{SIRkm > γ̄} ∩

{
γ <

1

ᾱm

})
(7.20)

where γ̄ =
(

γ(1+ᾱm)
1−ᾱmγ

)
, and using the c.c.d.f. of SIRkm is obtained from (7.9) with η = 1.



Chapter 8

Conclusions

We analyzed the characteristics of interference and the SINR in di�erent types of large-scale wireless

communication systems such as the cellular networks, heterogeneous networks, cognitive radio networks and

the massive MIMO networks. The importance of the analysis done in this thesis lies in the fact that all the

above mentioned large scale networks have been studied mainly via system simulations. As a result, these

systems are poorly understood in terms of the dependence of their performance on the channel conditions,

the con�guration of the nodes in the network and other system parameters.

The goal of this thesis has been to study the above mentioned networks using a suitable model

in order to obtain analytical characterizations of important metrics that quantify the performance of the

systems. Note that all the metrics that determine the performance of the system such as the coverage

(outage) probability, average rate, spectral e�ciency, throughput, network capacity, average load carried by

the network, transmission capacity and the transport capacity are basically a function of the interference

and the SINR at the receiver in the network, and hence the focus has been to thoroughly understand these

metrics in terms of the channel conditions and the other system parameters.

Further, we have identi�ed that these networks are well-modeled as consisting of nodes distributed

in a given space randomly according to a suitable stochastic geometric model. This is motivated by results

in [2, 10] that the stochastic geometric models are a good approximation for these networks in a scattering

and fading rich wireless environment. In this thesis, the stochastic geometric study of the above mentioned

wireless system is demonstrated to be bene�cial because the performance of complex wireless networks such

as the heterogeneous networks have been thoroughly characterized for the most general channel settings.
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These results have provided numerous insights that are bene�cial for the system designers to understand the

dependence of the performance of the various system parameters involved.

The mathematical tools developed in this thesis can also be used to attack several other topics in

wireless communications. Firstly, the coverage improvements attainable by the introduction of relay networks

can be characterized. The idea of secrecy in the networks can be explored, where the nodes involved in

the secure communications as well as the eavesdropper nodes are randomly distributed in a given area.

The performance improvements achievable with many of the interference avoidance (mitigation) techniques

incorporated in the 4G LTE standard such as multi-cell cooperation and interference cancellation can also

be studied. The study of the performance improvements with the introduction of MIMO into the networks

using stochastic geometric modeling is also catching wide-spread interest in the research community. The

results that have been developed in this work will be useful in the further exploration of these topics.
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