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High voltage (HV) traction battery packs in electric-drive vehicles (HEV, PHEV, BEV)

consist of a large number of battery cells connected in series. As individual cells exhibit

mismatches in characteristics such as capacity, inner resistance, and run-time state-of-charge

(SOC), cell balancing must be incorporated into the battery management system (BMS).

Conventional passive cell balancing does not fully address the mismatch issues, which leads

to shorter battery lifetime, and the need to over-size the battery pack. To overcome the

problems associated with the conventional architecture, a modular battery management

system incorporating both active cell balancing and high voltage (HV) to low-voltage (LV)

dc-dc conversion has been developed. The HV-to-LV converter is a series-input, parallel-

output dc-dc system with inputs connected across the battery cells or cell modules, while

paralleled outputs supply loads on the LV bus. This thesis is focused on modeling, control

and design of the modular battery management system. Several critical issues are addressed:

(1) stability of the converter system with distributed control in energy storage application is

analyzed and simulated; (2) the steady-state model of the dual-active-bridge (DAB) isolated

converter with phase-shift modulation is refined and applied to the modular converter system

with cell balancing; (3) practical methods for estimation of the Lithium-ion battery state-of-

charge (SOC) and state-of-health (SOH) are developed in forms suitable for implementation

on low-cost microcontrollers. Finally, a modular hybrid balancing system with module-level

active balancing and cell-level passive balancing is developed and experimentally validated.

The techniques developed in this thesis can be applied to designs of large automotive battery

packs with improved performance, reduced size, reduced cost, and longer lifetime.
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Chapter 1

Overview of Lithium-Ion Battery Packs and Battery Management Systems

Along with increasing demand and rapid development of clean energy worldwide, mid-

to large-scale energy storage systems based on battery cells is becoming a key technology.

One of the most important applications for large battery packs is in electric drive vehicles:

hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and electric vehicles

(EV) or, more generally, xEV’s. In recent years, the more electrified drivetrain trend has been

accelerating. In addition to emerging EV companies, existing automotive manufacturers are

incresaingly offering various xEV’s. From year 2012 to year 2016, the number of electric

drive vehicles sold in the U.S. nearly doubled [11].

Among technologies in electric drive vehicles, the design of a safe and compact traction

battery pack with sufficient energy storage is critical. A traction battery pack typically

provides dc voltage at hundreds of volts and power at tens to hundreds of kilowatts to the

vehicle drivetrain. To meet the voltage and power specifications, a large number of battery

cells are connected in parallel and in series. However, the cells in a battery pack exhibit

mismatches in parameters, and dealing with the cell mismatch is a challenging issue in large

battery pack.

This chapter gives an overview of the battery management systems (BMS) for large

battery packs. In Section 1.1, the effect of cell mismatch and the necessity of balancing is

discussed. In Section 1.2, typical battery balancing methods, including passive and active

balancing, are reviewed. In Section 1.3, novel active balancing BMS incorporating other
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xEV functions are introduced. The focus and organization of the dissertation are given in

Section 1.4.

1.1 Effect of Cell Mismatch in Large Battery Packs

A large battery pack is shown in Fig. 1.1. Individual battery cells are limited in voltage

rating. The terminal voltage of a battery cell depends on cell chemistry, and is only in the

order of 3-4 V for lithium-ion cells commonly used in xEV battery packs. As a result, a

large number of cells should be stacked in series to achieve high battery pack output voltage.

An individual battery cell is also limited in current rating, usually expressed in the cell’s

C rate. The C rate is the ratio of the cell current expressed in amperes and the cell total

capacity value expressed in amp-hours. Several cells may be connected in parallel to achieve

high battery pack output current. Unlike series connection, parallel connection is relatively

immune to cell mismatch. A combination of paralleled cells is considered a super cell [63,64].

As the parallel connection does not make much difference in balancing, both a physical cell

and a super cell are referred to as a cell in this work.

State-of-charge (SOC) is used to evaluate the level of remaining charge left in a battery

cell or a battery pack, and is defined in Eq. (1.1). For example, SOC = 100 % represents the

case when the battery is fully charged and the remaining charge of the battery equals to the

battery total capacity. SOC = 0 % represents the case when the battery is fully discharged

and the remaining charge is zero.

SOC =
Current charge

Total capacity : Qtot

(1.1)

Ideally, all the cells in a battery pack are identical. Charging or discharging the battery

pack results in simultaneously charging or discharging of individual cells, so that the pack

SOC and all the cell SOC’s are ideally identical. However, practical cells exhibit mismatches

in characteristics such as capacity, inner resistance, and self-discharing rate. The mismatches

cause slow divergence in cell SOCs. The difference in SOC decreases the performance of the
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Figure 1.1: Large battery pack that consists of a large number of lithium-ion cells.
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Figure 1.2: Scenarios in which the battery pack is (a) unable to be discharged; (b) unable
to be charged; (c) unable to be either charged or discharged.

entire battery pack [49]. To understand the problem, three scenarios are examined. In all the

scenarios, it is assumed that all the cells have identical total capacity, the SOC difference is

caused by different self-discharging rate and leaking current. In the first scenario, shown in
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Fig. 1.2 (a), the remaining charge of the entire battery string is limited by the cell with the

lowest SOC. When any cell reaches 0 % SOC, the battery pack cannot be further discharged,

even if there are plenty of remaining charges in the other cells. In the second scenario,

shown in Fig. 1.2 (b), the battery charging process is limited by the cell with the highest

SOC. When any cell reaches 100 % SOC, the entire battery pack cannot be further charged.

In the extreme scenario shown in Fig. 1.2 (c), including both fully charged and discharged

cells, the battery pack cannot be charged or discharged, i.e., cannot be cycled any further.

For lithium-ion batteries [47, 84], neither overcharge or overdischarge are acceptable.

Violations of safety limits may not only cause irreversible capacity and power fade, but also

lead to dangerous accidents such as catching fire or leaking toxic materials. As a result,

simple balancing techniques used in lead-acid and nickel based batteries, known as extend

charging, cannot be adopted for use with the lithium-ion chemistry. Additional circuits are

necessary to achieve balancing in lithium-ion battery packs. Several balancing strategies are

briefly reviewed in the next section.

1.2 Conventional Cell Balancing Techniques

Battery balancing using additional circuits are typically categorized into two classes:

passive balancing and active balancing. Passive balancing is a dissipative process. If any

cell in the battery string develops more stored electrical charge than the other cells, the

excessive charge will be dumped and converted to heat. On the other hand, active balancing

is recognized as a non-dissipative process. Rather than simply converting electricity to heat,

the extra charge in a ’stronger’ cell is transferred to a ’weaker’ cell. As no electrical energy

is wasted, active balancing is considered more advanced than passive balancing. However,

the circuits for active balancing are usually more complicated due to the need for electrical

power conversion, which in practice adds extra cost, size, and weight to the battery pack.

Nowadays, passive balancing is still the most popular lithium-ion battery balancing strategy.

Battery management systems (BMS) with passive balancing is widely commercialized and
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Figure 1.3: Passive balancing with (a) shunt resistor connected all the time; (b) Zener diode;
(c) shunt resistor controlled by switch.

used in electric vehicles, and many other applications with large battery packs.

Several classical passive and active balancing methods are reviewed next.

1.2.1 Passive Balancing

A very simple passive balancing method is shown in Fig. 1.3 (a), with a shunt

resistor directly connected in parallel with the battery cell. As the terminal voltage of most

battery cells changes monotonically with its SOC, the cell with higher SOC also has a higher

terminal voltage, and naturally discharges faster than the cell with a lower SOC. However the

discharging process is not controllable. The cells will keep dumping energy even if balanced

or not. A low charging current is necessary to maintain the charge of the battery pack at all

times.

A Zener diode could be used as an alternative to the resistor, as shown in Fig. 1.3 (b).

The terminal voltage of each cell is limited by the Zener diode voltage in parallel. A major

disadvantage of this method is that the balancing process only happens at the end of charging,

and current sinking capability of the Zener diode limits the speed of charging.



6

Better passive balancing is achieved by adopting controllable power dissipation [28,49].

A switch is connected between the battery cell and a shunt resistor, as shown in Fig. 1.3 (c).

The switch closes if charge dumping is necessary and opens if not. As a result, less electrical

energy is wasted compared to the method in Fig. 1.3 (a), and faster charging is achieved

compared with the method in Fig. 1.3 (b). However, performance of a passive balanced

battery pack highly depends on the extent of cell parameter differences such as total capacity.

With good manufacturing, the total capacity of the cells in a battery pack could be controlled

within a narrow range, making the deficiency of passive balancing relatively small at the

beginning of battery life. However, as the battery ages, the total capacity fades differently

from cell to cell, making passive balancing increasingly wasteful and incapable of balancing

cells sufficiently quickly. Moreover, the performance of the entire battery pack remains

limited by the weakest cell.

1.2.2 Active Balancing

Due to the drawbacks of passive balancing, active balancing became a topic of interest.

One of the very first concepts of active balancing is based on step-up dc-dc converters

[25, 26, 28], as shown in Fig. 1.4 (a). The method significantly improved the battery charge

usage and balancing speed. However, a major drawback is the necessity for high-voltage

switches in each step-up converter. Another drawback, highlighted by other researchers in

1990s, is the necessity of precise cell monitoring and control. It should be noted that although

sensing and control was a concern, it is no longer a barrier today due the great improvements

and cost reductions in microelectronics technology. In fact, precise cell monitoring becomes

mandatory in mordern xEV battery management systems. The state-of-the-art commercial

lithium-ion BMS achieves less than 1 mV sensing error in cell voltage [44].

Another active balancing method without the need of precise cell voltage sensing was

proposed and developed in [38–41,73]. Fundamentally, a multi-winding coaxial transformer

is adopted to achieve voltage matching of the battery cells. A flyback converter with multi-
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Figure 1.4: Active balancing with (a) step-up converter; (b) multi-winding transformer; (c)
switched capacitor.

winding transformer is shown in Fig. 1.4 (b). Apparently, the multi-winding transformer

may cause significant assembly difficulties, and thus becomes less practical especially in

large batteries. In addition, a new transformer has to be designed whenever there is a

change in battery cell quantity. More importantly, most BMSs today require more advanced

SOC balancing rather than simple voltage balancing, the control scheme in 1.4 (b) actually

becomes a drawback.

Switched capacitor based active balancing system was proposed and developed in

[35, 56]. The architecture is shown in Fig. 1.4 (c). Going along the path of voltage bal-

ancing, neither sensing or closed-loop control, nor bulky magnetic devices are required. In

addition, the architecture is able to be quickly adapted to different battery size and chem-

istry, leveraging from the concept of modular design. However, a significant disadvantage is

the limitation in balancing speed. Charge has to be transferred through adjacent battery

cells. The performance of the system is predominantly decided by how close the imbalanced

cells are located in the battery string.

Motivated by the potential advantages of active balancing, many approaches have been
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investigated over the past few decades [5, 10, 20, 42, 51, 55, 85]. Benefits and drawbacks have

been claimed in different applications and aspects. For example, [5] proposed a double-

tied switch capacitor system to improve the balancing speed, but at the cost of using more

capacitors. Reference [51] proposed a converter based cell-to-cell balancing in which a buck-

boost converter connects adjacent cells with soft-switching, however the balancing speed is

still limited due to the necessity of shuttling charge through adjacent cells. Although these

methods achieve better balancing performance, none of them have demonstrated significant

practical advantages over passive balancing.

Before going deeper into the research of better active balancing methods, the critical

features of a practical BMS in xEV applications are summarized:

1. Accurate battery cell voltage (and current) monitoring is always mandatory to

guarantee safe operation. Although many works claim that cell voltage measurement is not

necessary in their balancing schemes, the elimination of cell voltage sensing has rarely been

adopted or demonstrated in any practical lithium-ion battery system.

2. Accurate online SOC and SOH estimation becomes more and more important,

motivated by potentials of prolonging battery lifetime. It should be noted that accurate

SOC and SOH estimation also greatly depends on the cell voltage monitoring mentioned

above.

3. In addition to SOC and SOH estimation, balancing speed is also playing an impor-

tant role in prolonging battery life [69].

4. Various ’modular’ concepts have received increasing attention. The BMS architec-

ture should be quickly adapted to different battery size, chemistry, and balancing algorithms,

without the need to re-designing hardware.

5. To demonstrate practical advantage over passive balancing, the additional cost, size,

and weight associated with active balancing must be considered.
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Figure 1.5: Conventional xEV battery and BMS architecture.

1.3 Novel Modular Active Balancing BMS

With the key points summarized above taken into consideration, it is found that novel

active-balancing approaches could pursued at the system level, by incorporating other xEV

functions in combination with BMS functions.

The conventional xEV power supply architecture shown in Fig. 1.5 is examined first.

An xEV has two groups of loads. The primary load is the xEV drivetrain, which is directly

connected to the battery high-voltage output. The traction battery provides energy in

propulsion and absorbs energy during regenerative braking. In addition to the drivetrain,

the vehicle also contains a variety of auxiliary loads, such as lighting, air-conditioning, and

the vehicle controllers, and other systems. These loads require much lower voltage and are

typically connected to a vehicle low-voltage (LV) bus — commonly rated at 12 V nominal.

In a conventional internal combustion engine (ICE) vehicle, the main power for the LV bus

comes from an alternator, which transfers energy from the engine. In addition, an automotive

lead-acid battery is also tied to the LV bus to stabilize the voltage and provide engine start-

up power. In xEV, however, the alternator is replaced by an HV-to-LV step-down dc-dc

converter. The step-down converter transfers energy from the large traction battery to the

LV bus. In an xEV, the need of an automotive battery is also debatable, as the traction
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Figure 1.6: Modular BMS incorporating xEV LV bus voltage regulation.

battery already serves as an energy storage device. If the bandwidth of the HV-to-LV step-

down converter is high enough to damp load transient on the LV bus, the automotive LV

battery may be considered redundant.

A modular BMS incorporating xEV LV bus regulation was first proposed in [13]. The

system is shown in Fig. 1.6. Each cell in the traction battery string is connected to an

isolated low-power LV-to-LV modular converter, and the outputs of the modular converters

are connected to the LV bus. The series-input-parallel-output converter system not only

processes differential power for cell-level active balancing, but also supplies xEV auxiliary

loads and performs fast LV bus regulation. As a result, the conventional HV-to-LV step-

down converter and automotive battery are replaced by the novel BMS. A significant amount

of cost associated with the active balancing BMS is thus alleviated. Follow-up works also

report up to 40 % battery lifetime extension for BEV75 [67, 69, 77], which further reduces

the battery cost.

Another option consists of designing modular BMS incorporating battery pack output

voltage regulation. In many xEV drivetrains, a dc-dc converter is placed between the traction

battery and the traction inverter. The dc-dc converter boosts the battery voltage to a

higher value to improve the inverter and motor efficiency. In Fig. 1.7, the dc-dc function
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Figure 1.7: Modular BMS incorporating battery pack output voltage regulation.

is achieved by a group of series-output converters. Instead of directly connecting battery

cells in series, the battery cells are stacked through modular converters. The series-output

converter system combines both active balancing and the boost converter functions in xEV

drivetrain. Different from the BMS in Fig. 1.6, the modular converters need to process full

powertrain current for xEV cruising, increasing the importance of efficiency and reliability

of the modular converters. Some work in this area has been done in [20,48], however overall

system benefits are yet to be fully demonstrated.

1.4 Thesis Objectives and Organization

This dissertation focuses on different aspects of the modular battery management sys-

tem (BMS) with series-input-parallel-output converter system incorporating both cell-level

active balancing and LV bus regulation in electric drive vehicles (xEV). The system archi-

tecture is shown in Fig. 1.6. Chapter 2 analyzes the stability of the modular BMS with

autonomous converter control. Chapter 3 focuses on the modeling issue of the isolated

dual-active-bridge converter used in the system. Chapter 4 develops a 1st-order sigma-point

Kalman filter (SPKF) SOC estimation method for lithium-ion battery cells. Chapter 5 eval-

uates two state-of-the-art online state-of-health (SOH) estimation methods using data from
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long term aging tests. Chapter 6 extends the research in the direction of further reducing

system complexity and cost, focusing on a new hybrid balancing scheme with module-level

active balancing and cell-level passive balancing. Chapter 7 summarizes the contributions

of the thesis, and gives a brief overview of some potential future directions.

The work and the results reported in this thesis contributed to a multi-disciplinary

project focused on robust cell-level modeling and control of large battery packs. Sponsored

by ARPA-E AMPED program, the project was a collaboration between Utah State Univer-

sity (USU), University of Colorado Boulder (CU Boulder), University of Colorado Colorado

Spring (UCCS), National Renewable Energy Lab (NREL), and Ford Motor Company. The

results of this thesis were included in modeling, control, design and implementation of a

large prototype battery pack based on modifications of a commercial PHEV battery with

eighty-four lithium-ion cells in series. The modular active balancing BMS was applied to a

half pack with forty-two cells, while conventional passive balancing was applied to the other

half pack for comparison. The modular active balancing BMS demonstrated potentials for

significant improvements in battery lifetime, verified by a 15-month cycling and aging test

performed at NREL. The prototype also demonstrated potentials for cost and size reduc-

tion achieved by elimination of a separate high-voltage-to-low-voltage (HV-to-LV) step-down

converter in the conventional xEV architecture.



Chapter 2

Stability of the Modular BMS with Distributed Control of the

Series-Input-Parallel-Output Converter System

A modular active balancing BMS incorporating vehicle low votage (LV) bus has been

proposed in [13]. The system adopts a series-input-parallel-output converter architecture,

shown in 1.6. In the system, each cell in the battery string is connected to the vehicle LV bus

through a modular isolated dc-dc converter. The converters not only perform cell-level active

balancing, but also supply power to the auxiliary loads on the vehicle LV bus. High speed

balancing is achieved as energy is directly transferred among the target cells, without the

need of shuttling through adjacent cells. Different from the BMS using step-up converters in

Fig. 1.4 (a), the modular BMS in Fig. 1.6 does not require any high-voltage (HV) devices.

Both the input and output ports of the modular converter are connected to low-voltage (LV)

sources — the lithium-ion cell and the vehicle LV bus. Using only LV devices, the converter

system replaces the conventional kW-level HV-to-LV step-down converter in xEV. The kW-

level power conversion from the battery pack HV output to the vehicle LV bus is achieved

by the low-power LV-to-LV modular converters.

As there are a large number of converters in the system, practically controlling the

system with good stability and robustness becomes a challenge. Central control relies on

communication, and is therefore not practical for time-critical closed-loop regulation. Any

latency or signal drops on the communication bus could easily cause stability problems or

even compromise system safety. Moreover, with a central controller, performance of the
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Figure 2.1: Active balancing with series-input-parallel-output converter system in (a) pho-
tovoltaic (PV) application; (b) xEV application.

converter system becomes highly dependent on the communication speed, which in most

cases would be adversely affected by number of the converters, thus limiting scalability of

the system.

Autonomous control increases system performance and robustness, as no communica-

tion is required for time critical control. For a practical strategy, the local controller should

only access local converter variables such as its input/output current/voltage. In addition,

the algorithm must be simple enough to be implemented on a low-cost microcontroller, and

the computational effort for each local converter should not increase with the total number
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of converters in the system.

Automatic balancing could be achieved by distributed bus voltage regulation where

each converter regulates the bus voltage autonomously Depending on the form of the trans-

fer function of the bus voltage loop, the compenstator can be as simple as a standard

proportional-integral (PI) controller. A key to achieve automatic balancing is that the ref-

erence for each voltage regulation loop should be dictated by the balancing objective. For

example, in SOC balancing, the bus voltage reference can be mapped from the estimated

cell SOC. In system steady state, the bus voltage equals the reference. As all the converters

share the same bus voltage, the balancing targets also equal to each other. In another words,

the bus not only processes the power for balancing, but also serves as a common reference

for the balancing targets. As a result, balancing is naturally achieved through distributed

bus voltage regulation. This concept was firstly developed in [43, 52] for photovoltaic (PV)

cell balancing. The first attempts to apply a similar approach to xEV lithium-ion batteries

was presented in [13,67], as shown in Fig. 2.1 (a). As already mentioned, different from PV

application, a significant benefit in xEV applications is that the converter system can also

supply auxiliary loads in the vehicle and thus eliminate the need for the HV-to-LV step-down

converter.

While the control strategy successfully balances photovoltaic cells, stability issues de-

velop when the same approach is applied to lithium-ion batteries. The major focus of this

chapter is in analyzing stability of the modular BMS with series-input-parallel-output con-

verter system. The analysis is done in a design-oriented manner to enable simple design of

the distributed loop compensators. The work has been presented in a conference paper [68]

using slightly different terminology. The rest of the chapter is organized as follows: Sec-

tion 2.1 describes the original design process of the bus voltage regulation and introduces

the instability issues in SOC balancing. Section 2.2 reveals the reasons for the instability

by analysis of the SOC control loop. An intuitive loop-gain analysis is developed to help

understand the problem. Section 2.3 provides a more comprehensive loop-gain analysis, and
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a second-order simplified form of the SOC loop-gain is given. The simplified form is used in

the compensator design. Section 2.4 summarizes the chapter.

2.1 Automatic Balancing with Distributed Bus Voltage Regulation

First, system model used in bus voltage regulation design is introduced. The system

model is shown in Fig. 2.2. A battery string with n cells in series is considered. Both

the drivetrain and the LV bus load are modeled as constant current sources Idrv and Iaux,

respectively. As the terminal voltage of a battery cell does not change significantly during bus
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voltage regulation, the battery cell is thus modeled as a constant voltage source. Regarding

the isolated dc-dc converter, dual-active-bridge (DAB) converter with phase-shift modulation

is employed. The DAB topology is shown in Fig. 2.3. Without going through details of the

converter operation, which will be discussed in the next chapter, the steady-state model of

the converter is given as follows:

Iin =< iin >=
Vout

2πnTfsL
(Φ− sign(Φ)

Φ2

π
)

Iout =< iout >=
Vin

2πnTfsL
(Φ− sign(Φ)

Φ2

π
)

(2.1)

where Vin and Vout represent the DC input and output voltage, respectively, nT is the

transformer turns ratio, L is the tank inductance, fs is the converter switching frequency,

and phase-shift Φ is the control input of the converter. In a typical design, the phase-

shift, represented as an angle, is much smaller than 2π. As a result, the higher order term in

Eq. (2.1) is small enough to be neglected in analysis, and an approximated DAB steady-state

equation is given by Eq. (2.2):

Iin ≈
Vout

2πnTfsL
Φ

Iout ≈
Vin

2πnTfsL
Φ

(2.2)

The small signal model is derived by linearizing Eq. (2.2), as shown in Eq. (2.3):

îin =
Vout

2πnTfsL
ϕ̂+

Φ

2πnTfsL
v̂out ≈

Vout
2πnTfsL

ϕ̂ = KDABiϕ̂

îout =
Vin

2πnTfsL
ϕ̂+

Φ

2πnTfsL
v̂in ≈

Vin
2πnTfsL

ϕ̂ = KDABoϕ̂

(2.3)

where KDABi and KDABo are assumed to be identical from unit to unit.

For convenience, small signal variables are represented without hats in the rest of

the chapter, îin, îout, and ϕ̂ are written simply as iin, iout, and ϕ, respectively, but it is

understood that the dynamic model equations and frequency responses refer to small-signal

perturbations. Eq. (2.3) is then expressed as:

iin ≈ KDABiϕ

iout ≈ KDABoϕ

(2.4)
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Each cell and its corresponding converter together is referred to as a unit. A unit k

is selected for compensator design, the details of which are shown in Fig. 2.4. As all the

units have the same converter topology and parameters, unit k is also seen as a virtual

unit which represents the average of all the n units in the system. A compensator for bus

voltage regulation is designed based on the model of the virtual unit. The compensator is

then implemented on each physical unit in practice. A standard proportional-integral (PI)

controller with the form shown in Eq. (2.5) is used:

GC = Kp +
Ki

s
(2.5)

The reference of the voltage regulation in each unit comes from mapping the SOC of the cell
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Figure 2.6: Loop-gain Bode plot for the bus voltage loop.

in the unit:

Vmap,k = KmapSOCk + constant (2.6)

If all the converters are in linear operating mode without hitting any current or voltage

limits, the bus voltage value represents the average value of the balancing target. With

the unit model in Fig. 2.4, the control diagram of bus voltage regulation is shown in Fig. 2.5,

and corresponding loop-gain transfer function is given by Eq. (2.7):

Tv = GcKDABo
1

Couts
=
KiKDABo(1− Kp

Ki
s)

Couts2
(2.7)

The Bode plot of the loop-gain in Eq. (2.7) is given in Fig. 2.6. The PI controller parameters

are selected so that the crossover frequency of the voltage loop is at about 100 Hz.

The design is examined with a small battery system consisting of 3 units. The battery

string current is 0 and the LV bus current is constant at 3 A. The converter input current

is limited in a range from 0 A to 10 A. Simulation results are shown in Fig. 2.7. While the

PI controller successfully regulates the bus voltage, slow cell current oscillations with large

amplitude can be observed in the SOC balancing process.
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Figure 2.7: Converter input current oscillation.

2.2 SOC Control Loop

As an energy storage device, the SOC of a lithium-ion battery cell slowly varies during

cycling, i.e. during charging and discharging. In Section 2.1, the SOC dynamic was consid-

ered to be so slow that it was neglected. The assumption is not problematic for the voltage

loop-gain compensator design, and the simulation results in Fig. 2.7 confirm stability of the

bus voltage regulation loop. However, automatic SOC balancing does not work as expected.

The converter input current oscillations not only prevent the system from reaching a bal-

anced state, but also significantly reduce efficiency in practice as large amounts of energy are

unnecessarily transferred back and forth through the converters. In addition to voltage loop

compensation, the stability of the balancing loop must be analyzed taking the slow SOC loop

dynamics into consideration. It should be noted that, unlike current or voltage, SOC is

not easily measurable in practice. SOC is an internal state of the battery. The information
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of SOC is usually obtained based on cell current, cell voltage, and cell temperature, which

is known as SOC estimation. The SOC estimation process is discussed in more detail in

Chapter 4. In this chapter it is assumed that the estimated SOC equals to the true SOC of

the battery cell. In addition, it is also assumed that all the cells have identical total capacity

of the nominal value. The SOC of cell k is thus expressed as:

SOCk = SOCinit,k +
1

Qtot

∫
icell,kdt (2.8)

in which Qtot represents the total capacity of the battery cell. SOCinit,k is the initial SOC

value at the beginning of current integration.
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The small signal model of Eq. (2.8) is shown in Eq. (2.9):

SOCk =
1

Qtots
icell,k (2.9)

With the slow SOC dynamics taken into account, an SOC loop is modeled in unit k, as shown

in Fig. 2.8. For a preliminary analysis of the SOC loop in unit k, the bus voltage is considered

perfectly regulated by the other units in the system. In practice, the more converters in the

system, the less unit k affects the bus voltage. As converter number approaches infinity, unit

k and the bus voltage become completely decoupled. Thus the bus voltage can be modeled

approximately as a constant voltage source for the analysis of the SOC loop. Under the

extreme condition with perfectly regulated bus voltage, a simple SOC loop model is shown

in Fig. 2.9, with the loop-gain transfer function given by Eq. (2.10).

Tsoc = GcKDABi
1

Qtots
Kmap =

KiKDABiKmap(1− Kp
Ki
s)

Qtots2
(2.10)

The loop-gain of the SOC loop has the same pole and zero as the loop-gain of the

voltage loop in Eq. (2.7). However, the DC gain of the SOC loop gain is much smaller,

predominately due to the fact that the battery cell total capacity value is commonly much

larger than the converter output capacitor value. With the same pole and zero but much

smaller DC gain, the SOC loop crossover frequency is much lower than the bus voltage loop.

As the PI parameters are specifically designed for the bus voltage loop in Eq. (2.7), the SOC

loop in Eq. (2.10) exhibits nearly zero phase margin, causing instability and converter input

current oscillations in the presence of even slight loop delays.

2.3 Comprehensive Analysis of the SOC Control Loop

In Section 2.2, a preliminary analysis is given to help understand the nature of the

instability and the oscillating converter currents. However, the bus voltage is considered

constant by assuming that an infinite number of units in the system perform bus voltage
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Table 2.1: Parameters in Eq. (2.11)

Parameter Expression

T0 (n− 1) +
KDABiKmapnCout

KDABo

a1
2Kp

Ki

a2
K2
p

K2
i

+
n

Ki

(
Cout
KDABo

+
1

KDABiKmap

)

a3
Kpn

K2
i

(
Cout
KDABo

+
1

KDABiKmap

)

a4
nCout

K2
iKDABiKDABoKmap

b1
Kp

Ki

b2
Kp

Ki

b3
nCout

Ki(KDABo(n− 1) +KDABiKmapnCout)

regulation together. In a more practical scenario, there is a certain finite number of converters

in the system. Thus bus voltage variation should be considered. A new system model is

given in Fig. 2.10. There are three parts in the system. When the SOC loop of unit k is

being examined, the other units are also modeled as a virtual unit replicated n − 1 times.

Different from Fig. 2.2 in voltage loop design, the output capacitors of all the converters

are modeled together on the LV bus. The control diagram of the entire system is shown in

Fig. 2.11.

The SOC loop-gain of unit k is derived by merging Loop: SOCv, Loop: vout,v, Loop: vout,k,

and Loop: SOCk one by one into each other, resulting in a high-order transfer function with

parameters given in Table 2.1:

Tsoc,k = T0
(1 + b1s)(1 + b2s+ b3s

2)

1 + a1s+ a2s2 + a3s3 + a4s4
(2.11)
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Considering the fact that the SOC loop bandwidth is much lower than the bus volt-

age loop bandwidth, high frequency dynamics from the bus voltage loop can be neglected.

Eq. (2.11) is thus simplified to a second-order transfer function:

Tsoc = (n− 1)
1

1 +
Kp

Ki

s+
nQtot

KiKDABiKmap

s2
(2.12)

As the number of converter approaches infinity, Eq. (2.12) becomes:

Tsoc =
KiKDABiKmap

Qtots2
(2.13)

Eq. (2.13) is almost the same as Eq. (2.10) in the frequency range of interest. The zero

1 + Kps/Ki in the PI controller is neglected in Eq. (2.13) though, as the zero is out of the

frequency range of interest. In other words, as the the PI zero is designed for the bus voltage

loop, the zero is in the high frequency range and does not have much effect on the SOC loop

stability. As a result, the SOC loop cannot be stabilized by tuning PI parameters.

Based on the analysis above, a method using droop control to compenstate the SOC

loop has been proposed in [68], a result of collaboration with researchers at the Utah Power
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Table 2.2: Parameters in Eq. (2.11), with Droop Control

Parameter Expression

T0 (n− 1) +
KDABiKmapnCout

KDABo

a1
2Kp

Ki

+
nRdrp

Kmap

(1 +
KDABiKmapCout

KDABo

)

a2
K2
p

K2
i

+
n

Ki

(
Cout
KDABo

+
1

KDABiKmap

)

+
nRdrp

Kmap

(
2Kp

Ki

(1 +
KDABiKmapCout

KDABo

) +
KDABiCoutRdrp

KDABo

)

a3
Kpn

K2
i

(
Cout
KDABo

+
1

KDABiKmap

)

+
nRdrp

Kmap

(
K2
p

K2
i

(1 +
KDABiKmapCout

KDABo
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Electronics Lab (UPEL). The droop control works simultaneously with the original PI regu-

lator, as shown in Fig. 2.12. The converter input current goes through a virtual droop resis-

tance Rdrp, the virtual voltage drop is then subtracted from the original reference mapped

from the cell SOC, the result of which becomes the new reference for the bus voltage regu-

lation. With droop control, a new SOC loop-gain diagram is shown in Fig. 2.13. The SOC

loop gain transfer function has the same form as Eq. (2.13), but the new expressions for the

parameters are shown in Table 2.2.

Again, by considering the fact that the SOC loop bandwidth is much lower than the bus

voltage loop bandwidth, high frequency dynamics from the bus voltage loop are neglected.
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Figure 2.13: Comprehensive SOC loop analysis with droop control.

Eq. (2.11) is thus simplified to a second-order transfer function:

Tsoc = (n− 1)
1

1 + (
Kp

Ki

+
nRdrp

Kmap

)s+
nQtot

KiKDABiKmap

s2
(2.14)

One may observe that the SOC loop is compensated through the virtual droop resis-

tance. With Eq. (2.14), the value of the droop resistance can be quickly calculated. The

stability is examined on a battery system consists of three units. The Bode plot of the SOC
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Figure 2.14: SOC loop loop-gain Bode plot with different droop resistance.

(a) (b)

Figure 2.15: 3-cell system with Rdrp = 6.4 mΩ, (a) simulation results; (b) experimental
results (experiment done by Mr. M. Muneeb Ur Rehman, Utah Power Electronics Lab, Utah
State University).
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loop loop-gain of unit k with different droop resistance is shown in Fig. 2.14. As droop

resistance increases, the phase margin of the SOC loop improves. However the crossover fre-

quency becomes lower, indicating slower balancing speed. In the battery system with 3 units,

6.4 mΩ is chosen to achieve both stable system operation and high balancing speed. The

simulation and experimental results are shown in Fig. 2.15 (a) and Fig. 2.15 (b), respectively.

2.4 Summary

This chapter analyzes stability of the modular BMS with distributed controlled series-

input-parallel-output converters. It is found that in lithium-ion battery cell balancing, the

SOC loop results in system instability and converter current oscillations. The SOC loop also

shares the PI controller designed for voltage loop compensation. As the bandwidth of the

SOC loop is much lower than the bandwidth of the bus voltage regulation loop, tuning PI

parameters cannot be used to stabilize the SOC loop without significantly sacrificing voltage

regulation performance. An alternative method, such as droop control, must be used to

compensate the SOC loop. A simplified second-order transfer function of the SOC loop is

derived, which allows simple design of the SOC loop compensator, and the results are verified

by simulations and experiments.



Chapter 3

Improved Steady-State Model of the Dual-Active-Bridge Converter

In the previous chapter, stability of the modular BMS with series-input-parallel-output

converter system is examined. In the system, dual-active-bridge (DAB) converter is used as

the isolated dc-dc converter module. This chapter focuses on steady-state modeling of the

DAB converter. The conventional DAB model is described and motivation for development

of an improved DAB model is then presented.

The DAB converter with phase-shift modulation was developed in early 1990s [16,

32]. The topology of the DAB converter is shown in Figure 3.1. It consists of two full

bridges, a transformer, and a series tank inductor L. In phase-shift modulation, the two full

bridges are both switching at 50 % duty cycle, and the phase-shift ϕ between the two bridges

controls the converter power flow. DAB advantages include low RMS current stresses, low

input and output current ripples, capability of zero-voltage switching (ZVS) in both bridges,

and bidirectional power flow. Numerous prior works have been devoted to DAB static

and dynamic modeling, as well as power-stage design and efficiency optimization in various

applications [16,22,32,36,37,50,53,54] Considering an ideal circuit model, the basic steady-

state characteristics of the DAB converter are obtained by averaging over a switching period

and are given in [32], where the symbols in the equations are defined in Table 3.1:

Iin =< iin >=
Vout

2πnTfsL
(ϕ− sign(ϕ)

ϕ2

π
)

Iout =< iout >=
Vin

2πnTfsL
(ϕ− sign(ϕ)

ϕ2

π
)

(3.1)
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Figure 3.1: Topology of the dual-active-bridge (DAB) converter.
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Figure 3.2: DAB switching waveforms with phase-shift modulation.

Note that the input dc current is a function of the phase-shift and the output voltage,

and is ideally not affected by the input voltage at all. Similarly, the output dc current is a

function of the phase-shift and the input voltage, and is not affected by the output voltage
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Table 3.1: Symbol Definition

Symbol Definition

Vin Converter dc input voltage (V)

Vout Converter dc output voltage (V)

vpri Tank input voltage (V)

v′sec Tank output voltage (V)

vsec Tank output voltage on transformer secondary-side (V)

Iin Converter dc input current (A)

Iout Converter dc output current (A)

iin Converter input current (A)

iout Converter output current (A)

iL Tank current (A)

nT Transformer turns ratio

L Tank inductance (H)

fs Switching frequency (Hz)

Ts Switching period (s): Ts = 1/fs

tϕ Phase-shift time (s)

ϕ Phase-shift angle (rad): ϕ = 2πtϕfs

at all. The ideal steady-state model in Eq. (3.1) is well known and has successfully been

used in many DAB applications. The work reported in this thesis is motivated by cases

where it is found that DAB steady-state characteristics may significantly depart from the

ideal steady-state model in Eq. (3.1). Consider, as an example, a DAB prototype shown

in Fig. 3.3, with the parameters given in Table 3.2, which correspond to the converter

parameters in the modular BMS discussed in the previous chapter. This is a relatively high-

frequency, relatively low-power prototype where the tank inductance L is based entirely on

the transformer leakage inductance, and is relatively small in value [13,67]. Fig. 3.4 compares

the steady-state characteristics predicted by Eq. (3.1) with the characteristics measured in
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Figure 3.3: DAB prototype designed for the modular active balancing BMS.

(a) (b)

Figure 3.4: Mismatch between the ideal model in Eq. 3.1 and the experimental results with
the DAB prototype: (a) Iin vs. Vin (tϕ = 30 ns, Vout = 14.0 V); (b) Iin vs. Vout (tϕ = 35 ns,
V in = 4.0 V).

the experimental prototype. Note that the measured dc input current depends very strongly

on both the dc input voltage and the dc output voltage. The deviations with respect to

the ideal model in Eq. (3.1) are very significant. One may note that not even the slope of

Iin(Vout) is predicted correctly by the ideal model.

A number of more detailed static and dynamic models have been developed for the

DAB converter. For example, details of DAB converter losses are analyzed in [36, 54, 74],

while [65] develops a generalized current averaging model targeting high-frequency dynamics.

It has further been found that static and dynamic effects of zero-voltage switching become
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Table 3.2: DAB Prototype

Symbol Definition

fs 200 kHz

Vin 2.5 V - 4.1 V

Vout 10 V - 16 V

nT 1 : 4

L ≈ 30 nH

R ≈ 30 mΩ

Peak efficiency 94 %

Maximum power rating 40 W

Deadtime 16.7 ns

significant when the switching frequency is relatively high so that ZVS transitions take

significant portions of a switching period [14, 15]. None of the prior works, however, have

pointed to or explained the potential substantial discrepancies in steady-state characteristics

exemplified in Fig. 3.4. The objectives of this chapter are to explain limitations of the basic

ideal steady-state model Eq. (3.1), and to introduce an improved steady-state model capable

of more accurately predicting DAB converter steady-state characteristics. A new method to

derive the steady-state equations is developed in Section 3.1. An improved DAB steady-state

model is then derived in Section 3.2, where it is shown that conduction losses and the time

constant associated with the tank inductor play major roles in the converter steady-state

characteristics. Experimental results demonstrating improved model predictions are given

in Section 3.3, and a chapter summary is presented in Section 3.4.

3.1 A New Approach to Derivation of DAB Steady-State Model

Conventionally the ideal DAB steady-state equations in Eq. (3.1) are derived by an-

alyzing the waveforms in Fig. 3.2. The corner points Ia and Ib in the waveforms of iL are
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solved:

Ib = −Ia +
1

L

∫ t1

t0

(vpri − v′sec)dt = −Ia +
1

L

∫ tϕ

0

(Vin +
Vout
nT

)dt

Ia = Ib +
1

L

∫ t2

t1

(vpri − v′sec)dt = Ib +
1

L

∫ Ts
2

tϕ

(Vin −
Vout
nT

)dt

(3.2)

Then the dc values of iinand iout are calculated by averaging the waveform over half switching

period, which gives Eq. (3.1). The method is straightforward. However it does not give

intuitive insights into the form of the dc model expressions.

A new method to derive DAB steady-state equation is developed in this section. Con-

sider the DAB tank inductor in Fig. 3.5 (a) as a linear system. The primary-side voltage vpri

and the secondary-side voltage vsec are two independent inputs. The difference of the two in-

puts is then integrated to generate the inductor current iL, which is the output of the system.

Using superposition, the inductor current can be decomposed into two components:

iL,1 =
1

L

∫
vpridx

iL,2 =
1

L

∫
v′secdx

iL = iL,1 + iL,2

(3.3)

The component iL,1 is only affected by the tank primary-side voltage, while iL,2 is only

affected by the tank secondary side voltage. Since the duty cycle of both bridges is 50 %, vpri

is simply a square-wave waveform with magnitude equal to Vin; similarly, vsec is a square-

wave with magnitude equal to Vout. Both the current component waveform are triangular.

Adding the two components results in the familiar DAB tank inductor current waveform

shown in Fig. 3.6. The corresponding input and output current waveforms of each inductor

current component can be found as shown in Fig. 3.7. From Fig. 3.7 (a), it follows that

the input port voltage does not affect the input port current since the waveform of iin,1 is

symmetrical along the time axis, the area Sp above the time axis and the area Sn below the

time axis equals to each other. The input port current is then decided by iin,2 only and can

easily be calculated by measuring the area Se of the waveform in Fig. 3.7 (b). This approach
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Figure 3.5: (a) Ideal DAB tank model; (b) superposition: primary-side source; (c) superpo-
sition: secondary-side source.
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Figure 3.6: Superposition of the ideal DAB tank current waveform.

provides a new way to derive the ideal model equations given by Eq. (3.3). The advantage

of this analysis approach will become clear as it leads to extensions necessary to derive an

improved steady-state model in the next section.

3.2 Derivation of Improved DAB Steady-State Model

In this section, the analysis method of Section 3.1 is applied to the tank shown in

Fig. 3.8, where a lumped series resistance R models series conduction losses due to switch

on-resistances, tank and transformer resistances. In high-frequency switched-mode power

converters, inclusion of conduction losses typically results in relatively small, second-order
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Figure 3.7: Ideal tank waveform for (a) superposition: primary-side source; (b) superposition:
secondary-side source.

deviations with respect to converter ideal stead-state characteristics. In this section, it is

shown that this is not the case for the DAB converter: even relatively small conduction

losses can have profound effects on the steady-state characteristics.

With the lossy tank impedance model in Fig. 3.8, the inductor current waveform be-

comes distorted, as shown in Fig. 3.9. The deviation with respect to the ideal iL waveform

of Fig. 3.6 depends on the ratio of the tank time constant τ = L/R and the switching period

Ts:

δ =
τ

Ts
=
Lfs
R

(3.4)

Following the analysis method of Section 3.2, the component waveform for the lossy

tank are shown in Fig. 3.7. Note that averaging iin,1 over Ts/2 does not equal to 0 anymore,

which means that the dc input current is indeed affected by the input voltage, as seen in the

experimental results shown in Fig. 3.4. Averaging waveforms in Fig. 3.10 (a) and (b) for a
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Figure 3.8: (a) Lossy DAB tank model; (b) superposition: primary-side source; (c) super-
position: secondary-side source.
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Figure 3.9: DAB tank current waveform with conduction loss.

DAB converter with transformer turns ratio nT yields:

< iin,1 >=
2

Ts

∫ Ts
2

0

iin,1dt =
Vin
R

(1−K)

< iout,1 >=
2

Ts

∫ Ts
2

0

iout,1dt =
Vin
nTR

(1− fo(ϕ))

(3.5)

< iin,2 >=
2

Ts

∫ Ts
2

0

iin,2dt =
Vout
nTR

(fi(ϕ)− 1)

< iout,2 >=
2

Ts

∫ Ts
2

0

iout,2dt =
Vout
n2
TR

(K − 1)

(3.6)

where the parameters are summarized in Table 3.3. By adding Eq. (3.5) and Eq. (3.6),

the new improved steady-state model is obtained:

Iin =< iin >=< iin,1 > + < iin,2 >=
Vin
R

(1−K) +
Vout
nTR

(fi(ϕ)− 1)

Iout =< iout >=< iout,1 > + < iout,2 >=
Vin
nTR

(1− fo(ϕ)) +
Vout
n2
TR

(K − 1)

(3.7)
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Figure 3.10: Lossy tank waveform for (a) superposition: primary-side source; (b) superposi-
tion: secondary-side source.

Table 3.3: Parameters in the Improved DAB Steady-State Model

Parameter Value

fs
1

fs

τ
L

R

δ
τ

Ts

K 4δ
1− e−1

2δ

1 + e
−1
2δ

fi(ϕ)
2|ϕ|
π

+ 4sign(ϕ)δ
e

1
4δ − 2e−

sign(ϕ)
4δ

+ ϕ
2πδ + e−

1
4δ

e
1
4δ + e−

1
4δ

fo(ϕ)
2|ϕ|
π
− 4sign(ϕ)δ

e
1
4δ − 2e

sign(ϕ)
4δ

− ϕ
2πδ + e−

1
4δ

e
1
4δ + e−

1
4δ
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(a) (b)

Figure 3.11: Steady-state DAB characteristics based on the improved model in Eq. (3.7)
with different tank resistance R: (a) Iin vs. Vin (tϕ = 0 ns, Vout = 14.0 V); (b) Iin vs. Vout
(tϕ = 0 ns, Vin = 4.0 V). DAB parameters are as shown in Table 3.2.

From Eq. (3.7), it follows that dc current at each port of the converter is always

proportional to the voltage at the same port, with the slope decided by the conduction loss

parameter R and the tank coefficient δ. Given the tank inductance value in Table 3.2, the

input current as a function of input and output voltage with loss resistance R as a parameter

is shown in Fig. 3.11. In addition, the new steady-state model Eq. (3.7) is also able to predict

the fact that when ϕ is such that fi(ϕ) < 1, the input current becomes inversely proportional

to the output voltage, as exemplified in the experimental results of Fig. 3.4 (b). One may

note remarkably strong dependence of steady-state characteristics on conduction losses, even

when R is relatively small.

Eq. (3.7), which provide a more accurate steady-state model for a DAB converter, are

more complex and not easily applicable in design. Unlike the simple form of the ideal steady-

state equations in Eq. (3.1), variables and parameters in Eq. (3.7) are highly coupled and

dependences are not easily observed. Intuitively, when the tank inductance is large enough,

i.e. when δ is large enough, the ideal tank model and the simple steady-state equations in
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Eq. (3.1) should provide an accurate approximation for the converter characteristics. In the

limit, when conduction loss resistance tends to zero, the improved model Eq. (3.7) should

reduce to Eq. (3.1). The objective of the analysis that follows is to simplify Eq. (3.7) to an ap-

proximate form better suited for design purposes, and to allow more intuitive interpretation

of dependence in the DAB converter steady-state characteristics.

In Eq. (3.1), the steady-state input and output currents are second-order functions of

the phase-shift ϕ. In order to bring Eq. (3.7) to a similar form, Taylors series expansion is

applied to Eq. (3.7):

I = f(0) + f ′(0)ϕ+
f ′′(0)

2!
ϕ2 + ... (3.8)

Taking only the first three terms into account, and neglecting higher order terms,

an approximate form of the improved model Eq. (3.7) is obtained in Eq. (3.9), where the

coefficients in the equations are defined in Table 3.4 and plotted in Fig. 3.12 as functions of

the parameter δ. One may note that the approximation Eq. (3.9) to the improved model

Eq. (3.7) has a form very similar to the simple ideal steady-state equations Eq. (3.1).

Iin =
Vin

2πfsL
K0 +

Vout
2πnTfsL

(−K0 +K1ϕ−K2isign(ϕ)
ϕ2

π
)

Iout =
Vin

2πnTfsL
(K0 +K1ϕ−K2osign(ϕ)

ϕ2

π
)− Vout

2πn2
TfsL

K0

(3.9)

The coefficients K0 decides how strongly the same-port voltage affects the port current.

In the ideal model Eq. (3.1), K0 = 0. With K0 6= 0, it should be noted that a phase-shift

ϕ = 0 does not necessarily result in zero current. The power flow at ϕ = 0 can in fact be

significant, as shown in Fig. 3.13. This may have important implications in the system design

around the DAB converter. For example, start-up operation with the phase-shift initialized

to zero may result in unexpected start-up dynamics. Furthermore, to limit the current in a

DAB converter, a common approach is to set a limit for the phase-shift ϕ. However, if the

limit is calculated based on Eq. (3.1), the actual current in the DAB converter may go well

above the expected value.
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Table 3.4: Parameters in the Simplified Improved DAB Steady-State Model

Parameter Value

K0 2πδ − 8πδ2
1− e

−1
2δ

1 + e
−1
2δ

K1 4δ
1− e−1

2δ

1 + e
−1
2δ

K2i (
e−

1
4δ
−sign(ϕ) 1

4δ

1 + e
−1
2δ

)|sign(ϕ)|

K2o (
e−

1
4δ

+sign(ϕ) 1
4δ

1 + e
−1
2δ

)|sign(ϕ)|

The coefficient K1 affects dynamic characteristics of the DAB converter. Using the

ideal model in Eq. (3.1), DAB control-to-current small signal gains are:

îin
ϕ̂

=
Vout

2πnTfsL
ˆiout
ϕ̂

=
Vin

2πnTfsL

(3.10)

while the actual gains based on Eq. (3.9) are:

îin
ϕ̂

= K1
Vout

2πnTfsL
ˆiout
ϕ̂

= K1
Vin

2πnTfsL

(3.11)

A controller optimized based on the ideal steady-state model may not work well in

practice if K1 differs from 1 substantially.

When ϕ changes, K2 varies in a range from 0 to 2, which has little impact on the design

since the second-order term is usually much smaller than the first-order term.

Fig. 3.12 shows how δ affects the coefficients in Eq. (3.9). For an ideal tank, δ ap-
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(a) (b)

(c) (d)

Figure 3.12: Coefficients for the simplified form of the improved DAB steady-state model in
Eq. (3.9) as functions of δ: (a) K0, (b) K1, (c) K2i, (d) K2o.

proaches infinity. The coefficients in this case are as follows:

lim
δ→∞

K0(δ) = 0

lim
δ→∞

K1(δ) = 1

lim
δ→∞

K2i(δ) = 1

lim
δ→∞

K2o(δ) = 1

(3.12)

and model Eq. (3.9) becomes exactly the same as the ideal steady-state equations
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Eq. (3.1). To have a design where the ideal steady-state model can be considered accurate, δ

should be sufficiently large. In other words, the equivalent series resistance R should satisfy:

R =
Lfs
δlim

(3.13)

where δlim is a minimum value of the tank coefficient δ, which may be decided based

on the plots in Fig. 3.12.

3.3 Experimental Results

This section presents experimental results to verify predictions of the improved steady-

state model developed in Section 3.2. The prototype and its corresponding controller are

designed to maximize efficiency over an operating range. Furthermore, the series tank induc-

tor consists only of the transformer leakage inductance. Since δ ≈ 0.2 in the experimental

prototype, the steady-state characteristics are substantially different from the ideal. Two

prototype boards have been tested and the testing results are shown in Fig. 3.13. While

the ideal model Eq. (3.1) completely fails to match the experimental results, the improved

model is able to correctly predict the observed proportionality between the port currents

and port voltages. The errors observed can be attributed to the effects dead times, body

diode conduction, and switching transitions have on the tank waveform and the resulting

steady-state solution. In the prototype, fixed dead-times are applied for both the primary

and the secondary side bridges, with zero voltage switching (ZVS) transitions obtained over

most of the operating range. After the switch voltage crosses zero, it reverses polarity as

the MOSFET body diode temporarily conducts until the MOSFET is turned on. The body

diode forward voltage drop Vf in combination with the ZVS transition contribute to ad-

ditional deviations of the inductor current waveform compared to the ideal, which further

affects the steady-state characteristics.
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(a) (b)

(c) (d)

Figure 3.13: Comparison of the ideal model, the improved model, the simulation, and the
experimental results with two prototypes: (a) Iin vs. Vin (tϕ = 0 ns, Vout = 14.0 V); (b) Iin
vs. Vout (tϕ = 0 ns, Vin = 4.0 V); (c) Iin vs. Vin (tϕ = 30 ns, V out = 14.0 V); (d) Iin vs. Vout
(tϕ = 35 ns, Vin = 4.0 V). DAB parameters are as shown in Table 3.2.

3.4 Summary

In this chapter, it is shown that even small conduction losses can have substantial effects

on the dual-active bridge (DAB) dc characteristics, especially when the DAB tank inductance

is relatively small. A new method is developed to derive the DAB steady-state equations,

leading to an improved steady-state model, which correctly predicts DAB dc characteristics.
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Furthermore, a simplified version of the improved steady-state model is derived, which has

a form similar to the ideal model, and which shows how DAB dc characteristics depend on

the tank coefficient δ defined as the ratio of the time constant τ = L/R and the switching

period Ts, where R is a conduction loss resistance. In the ideal case, R = 0, δ → ∞,

and the improved model reduces to the ideal DAB dc characteristics. It is shown how the

ideal model fails to predict DAB dc characteristics, and that differences in model predictions

compared to experimental results can be very large, especially in cases where the DAB series

tank inductance is relatively small, i.e., when δ is relatively small. The improved model

offers much better predictions of DAB dc characteristics and is validated by simulations

and experimental results on the prototype DAB converter used in the modular battery

management system.



Chapter 4

Microcontroller Implementation of Lithium-Ion Battery State-of-Charge

Estimation

Chapter 2 and Chapter 3 discuss the system stability and the converter modeling of

the modular BMS incorporating LV bus regulation. This chapter and the next chapter

focus on lithium-ion battery state-of-charge (SOC) and state-of-health (SOH) estimation,

respectively.

As introduced in Chapter 1, lithium-ion battery packs are widely used in electric and

hybrid electric vehicles (xEV). A typical battery pack consists of a number of cells connected

in series, which necessitates a BMS including passive or active cell balancing to fully exploit

the cells and prolong the battery life [49,67]. Advanced battery management techniques rely

on accurate state-of-charge (SOC) estimation. Various SOC estimation methods have been

developed. Simple methods based on current measurement or voltage measurement are used

in consumer and portable electronics. The current measurement based method is also referred

to as Coulomb counting, in which the battery charge is computed by integrating measured

current. While the method provide relative accurate SOC calculation over a short time

period, error accumulate due to limited sampling rate and resolution of current measurement

and limited knowledge of the change of cell capacity over time. Another group of methods are

based on cell voltage measurement, using the terminal voltage and a cell model to calculate

cell open-circuit voltage (OCV) and then use OCV to predict SOC based on an OCV (SOC)

curve obtained by cell characterization. The voltage based methods are adversely affected by
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the fact that OCV (SOC) curves of lithoum-ion cells are relatively flat over a wide range of

SOC values so that small errors or noise in voltage sensing result in large SOC errors. Overall,

simple methods based on only current or voltage measurements fail to provide accurate SOC

estimation in the harsh xEV environment with noisy measurements, model uncertainties,

and highly dynamic cycling.

To properly estimate SOC in xEV applications, more comprehensive methods employ-

ing both cell voltage and cell current measurements have been developed [8, 24, 33, 57–61].

Of particular interest are Kalman filter based approaches [57–61], which have demonstrated

excellent performance. The Kalman filter based methods rely on accurate cell modeling.

Higher order state-space models make it difficult for Kalman filter based methods to be

practically implemented on a low-cost microcontroller. The objectives in this chapter are to

develop a simplified Kalman filter estimator and to demonstrate practical implementation

of the algorithm on the same microcontroller that performs control functions around the

dc-dc converter in the modular cell balancing system shown in Fig. 1.6 and further discussed

in [13,19,67].

Each cell in the battery pack shown in Fig. 1.6 is connected to an isolated dc-dc

converter operating autonomously. The controller around each converter relies on the SOC

estimator to generate a control reference, as described in Chapter 2, and in [13,19,67].

Section 4.1 reviews three cell equivalent circuit models of varying complexity, together

with corresponding discrete-time state-space models. Section 4.2 provides an introduction

to SOC estimation using Kalman filtering, and benefits of the sigma-point Kalman filter

(SPKF) are discussed. The proposed simplified 1st order SPKF approach is described in

Section 4.3. The corresponding microcontroller implementation is presented in Section 4.4,

together with experimental results obtained on a twenty-one cell pack based on the system

shown in Fig. 1.6. The chapter conclusions are presented in Section 4.5.
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Figure 4.1: Battery cell equivalent circuit models: (a) simple model; (b) RC model; (c)
enhanced-self-correcting (ESC) model.

4.1 Battery Cell Modeling

The SOC estimation methods considered in this work are based on equivalent circuit

models of battery cells. An equivalent circuit model is an electric circuit that models the

relation between the cell terminal voltage and the cell current for a given state-of-charge

(SOC) and temperature. It should be noted that cell equivalent circuit models are behavioral

models, which attempt to reproduce the cell electrical characteristics. This section reviews

three equivalent circuit models shown in Fig. 4.1 [27,58].

Fig. 4.1 (a) shows a simple model, which consists of a dependent voltage source OCV

in series with a resistor R0. The dependent voltage source models the open-circuit voltage

(OCV) of the cell, which is a function of the cell SOC, denoted as z, and temperature T .
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Table 4.1: State-Space Forms for Different Cell Equivalent Circuit Models

Model Equations

Simple
State equation: zk = zk−1 +

Ti
Qtot

icell,k−1

Output equation: vcell,k = vOCV (zk) +R0icell,k

RC
State equation: zk = zk−1 +

Ti
Qtot

icell,k−1

vf,k = e
− Ti
RfCf vf,k−1 +Rf (1− e

− Ti
RfCf )icell,k−1

Output equation: vcell,k = vOCV (zk) +R0icell,k + vf,k

ESC
State equation: zk = zk−1 +

Ti
Qtot

icell,k−1

vf,k = e
− Ti
RfCf vf,k−1 +Rf (1− e

− Ti
RfCf )icell,k−1

vh,k = e
−
|icell,k−1|Tiγ

Qtot vh,k−1

+M(1− e−
|icell,k−1|Tiγ

Qtot )sign(icell,k−1)

Output equation: vcell,k = vOCV (zk) +R0icell,k + vf,k + vh,k

The OCV vs. SOC curve is different for cells of different chemistry, but is monotonically

increasing in general. The OCV vs. SOC characteristics can be measured by cycling the

cell at very low current rate at different temperature settings. The characteristic can be

expressed in a formula by numerical curve fitting, or as a look-up table. In the model, the

cell state-of-charge z, which is the only state in the model of Fig. 4.1 (a), is obtained by

integration of the cell current icell.

In Fig. 4.1 (b), an RC filter is added to the circuit model, which introduces a new state

variable vf to the state-space equations. The RC filter models the diffusion effect in the

terminal voltage and thus provides more detailed dynamics compared to the single resistor.

The RC filter shown in Fig. 4.1 (b) describes the diffusion effect as a first-order process. A
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higher-order RC network can be added to model higher-order diffusion dynamics.

Fig. 4.1 (c) shows the enhanced self-correcting (ESC) model [58], including both the

diffusion effect vf and the hysteresis effect vh in the cells terminal voltage.

Discrete-time state-space forms of the three aforementioned circuit models are shown

in Table 4.1 [58]. In the state-space model, Ti is the sampling period, Qtot is the cell total

capacity, and z is the cell state-of-charge (SOC).

4.2 SOC Estimation Using Kalman Filter

State estimation is used in cases when the state variable of interest, such as a battery

cell SOC, is not directly measurable. Given a system model in state-space form, consisting of

a state equation and an output equation, Kalman filtering provides optimal estimation of the

probabilistic mean and covariance of the state variables, with uncertainty in measurements

and modeling taken into account as process noise ω and sensor noise υ in the state equation

and the output equation, respectively [30]. The process noise and the sensor noise are

assumed to have zero mean.

4.2.1 Introduction to Kalman filter based SOC Estimation

There are two steps in the Kalman filter algorithm. In the first step, which is called a

time update, the state vector x is updated using the state equation, in which the a priori

estimate of the state vector x̂−k is a function of its previous a posteriori estimate x̂+k−1 and the

previous measured inputs uk−1. The covariance matrix Σx of the state vector is also updated

based on its previous value and the process noise covariance. In the second step, which is

usually called a measurement update, the outputs of the system are found using the output

equation and measurement. The error between the estimated and the measured outputs are

used to correct the a priori estimate obtained in the time update using the Kalman filter

gain K. The Kalman filter gain K is optimally calculated by minimizing the trace of the

a posteriori estimation of the covariance matrix Σ+
k [57]. The basic Kalman filter algorithm



52

Lithium-ion 
battery cell

High-order 
state-space 

model

z −1

KKF

icell (t)

icell,k vcell,k

vcell (t)

vcell,kˆ

− +

− 
+

[zk  vf,k  vh,k  ...]
Tˆ ˆ ˆ

Kalman filter algorithm

Physical plant

Figure 4.2: Kalman filter applied to a higher-order cell model.

is summarized in Table 4.2, where x is the vector of state variables, u is the vector of inputs,

y is the vector of outputs, ω and υ are the process and the sensor noise, respectively, while

Σ represent the corresponding covariance matrix.

The basic Kalman filter applies only to linear system models. Unfortunately, even the

simplest cell model shown in Fig. 4.1 (a) is nonlinear, because of the nonlinear OCV (z)

characteristic. To apply Kalman filter to nonlinear models, an Extended Kalman filter

(EKF) has been developed, with additional linearization steps in the algorithm, as shown in

Table 4.3.

Consider the simple cell circuit model of Fig. 4.1 (a). In this case, there is only one state

equation and one output equation. All the matrix calculations in the Kalman filter reduce

to scalar equations. The state equation in this model updates z = SOC by integrating the

cell current, while the output equation describes the output voltage variation. In the EKF

time update, the SOC estimate is calculated as:

ẑ−k = ẑ+k−1 +
Ti
Qtot

icell,k−1 (4.1)
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Table 4.2: Basic Kalman Filter Equations

Parameters:

State equation: xk = Axk−1 +Buk−1 + ωk−1

Output equation: yk = Cxk +Duk + υk

State vector: xk = [x1,k, x2,k, ..., xn,k]
T

Input vector: uk = [u1,k, u2,k, ..., ul,k]
T

Output vector: yk = [y1,k, y2,k, ..., ym,k]
T

Process noise: ωk = [ω1,k, ω2,k, ..., ωm,k]
T

Measurement noise: υk = [υ1,k, υ2,k, ..., υm,k]
T

Time update:

Σ−x,k = AΣ+
x,k−1A

T + Σω

x̂−k = Ax̂+k−1 +Buk−1

Measurement update:

KKF,k = Σ−x,kC
T [CΣ−x,kC

T + Συ]
−1

Σ+
x,k = (I −KKF,kC)Σ−x,k

ŷk = Cx̂−k +Duk

x̂+k = x̂−k +KKF,k(yk − ŷk)

which is the same equation that would be used in simple Coulomb counting. In the

measurement update, the terminal voltage of the cell is estimated using the output equation:

v̂cell,k = vocv(ẑ
−
k ) +R0icell,k (4.2)

The terminal voltage is also measured and the error between the measurement vcell,k

and the estimate v̂cell,k is used to make a correction in the SOC estimate:

ẑ+k = ẑ−k +Kk(vcell,k − v̂cell,k) (4.3)

Correction in Eq. (4.3) effectively prevents accumulation of error commonly observed

in simple Coulomb counting. It is well known that the simple model in Eq. (4.2) does not

accurately represent the cell terminal voltage, especially when the cell is exposed to highly

dynamic charging or discharging current. As a result, correction in Eq. (4.3) is compromised,

which adversely affects performance of the estimator [7-9]. For better performance, the EKF
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Table 4.3: Extended Kalman Filter Equations

Parameters:

State equation: xk = f(xk−1, uk−1) + ωk−1

Output equation: yk = g(xk, uk) + υk

State vector: xk = [x1,k, x2,k, ..., xn,k]
T

Input vector: uk = [u1,k, u2,k, ..., ul,k]
T

Output vector: yk = [y1,k, y2,k, ..., ym,k]
T

Process noise: ωk = [ω1,k, ω2,k, ..., ωm,k]
T

Measurement noise: υk = [υ1,k, υ2,k, ..., υm,k]
T

Time update:

Âk−1 =
∂f(xk−1, uk−1)

∂xk−1
|xk−1=x̂

+
k−1

Ĉk =
∂g(xk, uk)

∂xk
|xk=x̂+k

Σ−x,k = ÂΣ+
x,k−1Â

T + Σω

x̂−k = f(x̂+k−1, Buk−1)

Measurement update:

KKF,k = Σ−x,kĈ
T [ĈΣ−x,kĈ

T + Συ]
−1

Σ+
x,k = (I −KKF,kĈ)Σ−x,k

ŷk = g(x̂−k , uk)

x̂+k = x̂−k +KKF,k(yk − ŷk)

can be applied to more detailed, higher-order circuit models shown in Fig. 4.1 (b) and

Fig. 4.1 (c). The EKF-based SOC estimation algorithm is summarized in the block diagram

shown in Fig. 4.2. A further improvement, using the sigma-point Kalman filter (SPKF) is

discussed next, based on [60,61].

4.2.2 SOC Estimation using the Sigma-Point Kalman Filter (SPKF)

In the EKF, the model is linearized through Taylor series expansion under the as-

sumption that the higher order terms are negligible. An improved approach for non-linear

systems is the sigma-point Kalman filter (SPKF) [15]. Instead of linearizing the system un-

der assumptions that may not be well justified, the SPKF keeps the non-linear form of the
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model as is. The SPKF algorithm begins with generating sigma-points of the state variables.

Firstly, the state vector and the state covariance are augmented with the process noise and

the sensor noise. The augmented state vector x̂a,+k−1 is one of the sigma-points, while the rest

of the sigma-points are generated by adding each column of the Cholesky decomposition of

the augmented state covariance Σa,+
x,k−1 to the augmented state vector x̂a,+k−1 (or subtracted

from). This result in a sigma-point matrix Xa,+
k−1 in which each column is a sigma-point for

the state vector. The sigma-points in Xa,+
k−1 are then mapped through the non-linear state

equation and output equation, resulting in a priori estimation of the state and system out-

put. The new a priori estimation of the sigma-points of the state vector are in matrix Xx,−
k,i

and those for the system outputs are in Yk,i. These mapping results are then used to calcu-

late the optimized Kalman filter gain Kk. Finally, the estimated mean and covariance of the

state variables are the weighted mean and covariance of the new a posteriori estimation of

the sigma-points. The SPKF algorithm is summarized in Table 4.4, and its very successful

applications to SOC estimation using high-order cell models have been described in [60,61].

4.3 1st-Order SPKF Approach Using Higher-Order Cell Model

An implementational challenge when using nonlinear Kalman filters is that both EKF

and SPKF have computational complexity that scales with the cube of the number of states

due to the required matrix operations. In SPKF, this includes the necessity of finding the

Cholesky decomposition of the state covariance matrix in generating sigma-points. As a

result, implementation of the SPKF based on a higher-order cell models is very challenging

in the system shown in Fig. 1.6 where the bypass dc-dc controller is preferably based on a

low-cost microcontroller. The implementation can be simplified by applying SPKF to the

simple, 1st-order cell model of Fig. 4.1 (a), since all matrix computations then become scalar

and thus the algorithm complexity is minimized. However, the performance is compromised

by inaccuracies introduced by the simple model, as discussed in Section 4.2 4.2.1. The SOC
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Table 4.4: Sigma-Point Kalman Filter (SPKF) Equations

Parameters:

State equation: xk = f(xk−1, uk−1, ωk−1)

Output equation: yk = g(xk, uk, υk)

State vector: xk = [x1,k, x2,k, ..., xn,k]
T

Input vector: uk = [u1,k, u2,k, ..., ul,k]
T

Output vector: yk = [y1,k, y2,k, ..., ym,k]
T

Process noise: ωk = [ω1,k, ω2,k, ..., ωm,k]
T

Measurement noise: υk = [υ1,k, υ2,k, ..., υm,k]
T

Generating sigma-points:

x̂a,+k−1 = [(x̂+k−1)
T , (ω̄)T , (ῡ)T ]T

Σa,+
x,k−1 = diag(Σ+

k−1,Σω,Συ)

Xa,+
k−1 = [x̂a,+k−1, x̂

a,+
k−1 + η(Σa,+

x,k−1)
1
2 , x̂a,+k−1 − η(Σa,+

x,k−1)
1
2 ] = [(Xx,+

k−1)
T , (Xω,+

k−1)
T , (Xυ,+

k−1)
T ]

Xx,+
k−1 = [Xx,+

k−1,0, X
x,+
k−1,1, ..., X

x,+
k−1,2n]

Xω,+
k−1 = [Xω,+

k−1,0, X
ω,+
k−1,1, ..., X

ω,+
k−1,2n]

Xυ,+
k−1 = [Xυ,+

k−1,0, X
υ,+
k−1,1, ..., X

υ,+
k−1,2n]

* (Σa,+
x,k−1)

1
2 represent Cholesky decomposition

Time update:

Xx,−
k,i = f(Xx,+

k−1,i, uk−1, X
ω,+
k−1,i)

x̂−k =
2n∑
i=0

Wm,iX
x,−
k,i

Σ−x,k =
2n∑
i=0

Wc,i(X
x,−
k,i − x̂

−
k )(Xx,−

k,i − x̂
−
k )T

Measurement update:

Yk,i = g(Xx,+
k,i , uk−1, X

υ,+
k−1,i)

ŷk =
2n∑
i=0

Wm,iYk,i

Σy,k =
2n∑
i=0

Wc,i(Yk,i − ŷk)(Yk,i − ŷk)T

Σxy,k =
2n∑
i=0

Wc,i(X
x,−
k,i − x̂

−
k )(Yk,i − ŷk)T

KKF,k = Σxy,kΣ
−1
y,k

x̂+k = x̂−k +KKF,k(yk − ŷk)
Σ+
x,k = Σ−x,k +KKF,kΣy,kK

T
KF,k
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Figure 4.3: 1st-order SPKF with high-order cell model.

estimates produced by this simple cell model of Fig. 4.1 (a) could be sufficient for balancing

purposes, but a more detailed higher-order model should be considered when making SOC

estimates for other purposes, e.g., calculating power and energy.

An improved method of simplifying the SPKF is introduced next. Considering the

higher-order, more accurate models shown in Fig. 4.1 (b) and (c), it can be observed that the

problem of accumulation of error in the state estimate is only associated with the z = SOC

state variable. The other state variables do not have such problem. For the diffusion voltage

vf and the hysteresis voltage vh, Kalman filter may provide adequate accuracy without

the correction step. The proposed improved, but still computationally simple approach is
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illustrated in Fig. 4.3, inspired by the fact that the full Kalman filter may not be essential in

maintaining convergence of vf and vh estimation. In the new approach, a higher-order cell

model, such as the model in Fig. 4.1 (b) or (c), including diffusion and hysteresis effects, is

used only in the output equation in the SPKF algorithm. The SPKF algorithm only updates

the SOC with its corresponding state equation and the output equation, while the rest of the

state variables are updated outside the Kalman filter using the state equations only, without

correction. Since the output equation in the higher-order models predicts the cell dynamics

more accurately, the SOC estimation can be improved significantly. On the other hand, in

the new approach, the SPKF algorithm is always of 1st order no matter what cell model is

applied, which gives the designer the flexibility to increase or decrease state number while

minimizing the computational effort.

4.4 Experimental Results

The improved 1st order SPKF algorithm shown in Fig. 4.3 is implemented on each

microcontroller in the 21-cell battery pack of Fig. 4.4. The system parameters are shown in

Table 4.5.

The microcontroller performs autonomous dc-dc converter controls, and LV bus voltage

regulation, as described in Chapter 2 and in [13, 68]. The SPKF algorithm is programmed

in C language, with different cell models shown in Fig. 4.1. The cycling of the battery pack

is performed to record the cell voltages and cell currents. The recorded cell voltages and

cell currents are then fed to the micro-controllers in each time step to emulate the on-line

operation. In this way, SOC estimation experiments can be repeated several times using

different algorithms, which allows comparisons of the performance of the improved 1st order

SPKF algorithm using different cell models.

The testing current profile is shown in Fig. 4.5. The testing begins and ends with a

constant charging at 1C rate (25 A). Discharging and charging based on US06 drive cycles

occurs in between, with a peak current of 100 A.
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Figure 4.4: 21-cell battery pack at Utah Power Electronics Lab, Utah State University.

Figure 4.5: Battery cell current profile. Each color represents a different cell.

The true SOC of each cell is obtained by calibrated high-resolution Coulomb counting.

The initial value is found by treating cells terminal voltage as OCV, which is acceptable since

the pack is kept at rest for sufficiently long time before the start of cycling. The cell capacity
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Figure 4.6: True SOC of each cell. Each color represents a different cell.

Table 4.5: Experimental Setup

Hardware Setup

Microcontroller TMS320F28027 (Texas Instrument)

Cell nominal total capacity 25 Ah

Cell initial SOC ≈ 78 %

1st-order SPKF Estimation Setup

Updating period 1 second

Cell nominal total capacity 25 Ah

Initial SOC 30 %

Initial SOC standard deviation 20 %

Process noise (current) standard deviation 0.3 A

Sensor noise (voltage) standard deviation 50 mV

value is assumed to be the nominal capacity of the cell, while the true capacity of each cell

varies in a range of less than 5 % around the nominal value. The true SOCs of the 21 cells

are shown in Fig. 4.6. The 1st order SPKF SOC estimation values are recorded from each
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(a)

(b)

(c)

Figure 4.7: Experimental results of 1st-order SPKF SOC estimation errors: (a) simple model;
(b) RC model; (c) ESC model. Each color represents a different cell.
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microcontroller and compared to the true SOC. The differences are shown in Fig. 4.7 (a)-

(c) for three different cell models used in the output equation in the improved 1st order

SPKF based on Fig. 4.3. Fig. 4.7 (a) shows the results for the simple model: a maximum of

3.6 % SOC estimation error is achieved for all 21 cells. For most cells, the largest estimation

error is around 2 %. Fig. 4.7 (b) and (c) show the testing results for the improved 1st order

SPKF using the RC model and the ESC model, respectively. The maximum SOC estimation

error with the RC model is 3.1 %, and for most cells the largest error is around 1.5 %. The

maximum SOC estimation error with the ESC model is 2.6 %, and for most cells the largest

error is around 1 %. In all cases, the complexity of the algorithm is low enough so that it can

easily be implemented on the same microcontroller that performs dc-dc control and voltage

regulation functions.

4.5 Summary

In this chapter, an improved 1st-order sigma point Kalman filter (SPKF) approach

is proposed to perform real-time state of charge (SOC) estimation in battery packs with

the modular active balancing system considered in this thesis. The method is practically

implemented on a low-cost microcontroller that performs control and regulation functions

around balancing dc-dc converters in the modular system. The approach is verified on a

21-cell battery pack cycled over a period of 120 minutes through realistic charge/discharge

currents based on US06 driving cycles, with a peak current of 100 A. When applied in

combination with the enhanced self-correcting cell model, the improved 1st order sigma-

point Kalman filter (SPKF) yields a maximum SOC estimation error of 2.6 % for all of the

21 cells in the experimental prototype.
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Lithium-Ion Battery State-of-Health Estimation Using Long Term Aging Data

The change in lithium-ion battery performance over lifetime is often evaluated through

battery state-of-health (SOH). There is no consensus on how SOH is defined. However, it

is widely agreed that SOH is closely related to battery cell total capacity and inner cell

resistance. Cell total capacity takes a significant part in SOH evaluation, and it also plays

an important role in SOC estimation, as discussed in the previous chapter.

The total capacity of a cell is typically measured through a reference performance

test (RPT). In RPT, the battery cell is fully charged and discharged. The total capacity

is calculated by integrating cell current over a certain period. To make the integration as

accurate as possible, the cycling current is kept constant. RPT requires certain equipment

for battery cell cycling and measurement. It also takes long time to complete. While RPT

is a good way to measure battery cell total capacity in research and lab experiments, it is

difficult to apply RPT online in xEV applications. An xEV battery has large formation and

requires much more energy for an RPT.

Online total capacity estimation, using data from daily driving, does not require critical

testing conditions associated with RPT. However, the approach must deal with dynamics

and noise present in the battery cell voltage and current. As the cell total capacity changes

slowly over time, recursive-least-squre (RLS) based algorithms can be used to estimate total

capacity in the noisy environment. The model used in capacity estimation is based on cell
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Figure 5.1: Curve fitting with weighted-total-least-square method.

current integration and SOC estimation:

y = Qtotx (5.1)

in which

x ≈ zend − zstart

y ≈
∫ tend

tstart

icelldt
(5.2)

zstart is the cell SOC at time tstart, zend is the cell SOC at time tend, and Qtot is the cell total

capacity to be estimated.

As both the current integration and the SOC estimation contain noise, weighted-total-

least-square (WTLS) algorithm with both uncertainty in x and y taken into account, shown

in Fig. 5.1, has demonstrated improved performance in capacity estimation [1,21,79]. How-

ever, it is difficult to implement the WTLS method in a recursive manner with reasonable

computational effort.
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Two state-of-the-art WTLS based online total capacity estimation have been developed

in [62] and [34], respectively. In [62], a recursive approximated weighted-total-least-square

(RAWTLS) method is developed. The method significantly reduces the computational com-

plexity, which makes it practical for implementation on low-cost microcontrollers. Inspired

by the work in [62], [34] comes up with a Rayleigh-quotient based recursive total-least-square

(RQ-RTLS) method, which improves speed of convergence, and computational complexity

is reduced further.

This work examines the performance of the two state-of-the-art WTLS based online

total capacity estimation methods described above. Section 5.1 describes the experimental

setup and provides the estimation results, while Section 5.2 gives a summary of this chapter.

5.1 Experimental Results

Long term lithium-ion battery aging data is obtained from collaborators at the Na-

tional Renewable Energy Lab (NREL) [77]. In the aging test at NREL, a modified commer-

cial PHEV battery pack, shown in Fig. 5.2, with eighty-four cells underwent repeated daily

cycles over a period of 15 months. The battery pack employed a standard passive balancing

approach in one half of the pack, and the modular active balancing BMS described in Chap-

ters 2-4 in the other half of the pack. Each half pack contains one quarter pack with new

cells and another quarter pack with pre-aged cell. The battery pack configuration aims at

verifying that the modular active balancing BMS is capable of controlling the degradation

rate of individual cell SOH and thus significantly prolonging battery lifetime. In the daily

aging cycles, the charge/discharge current patterns correspond to standard driving cycles.

The cell voltages and cell currents are recorded every second. The RPT was performed every

month to accurately measure the total capacity and inner resistance of each cell.

In this work, six cells in the half pack with modular active balancing BMS are selected

to evaluate the online capacity estimation using RAWTLS and RQ-RTLS methods. Cells 2,

3, and 4 are in the quarter pack with new cells, and cell 25, 26 and 27 are in the quarter pack
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(a)

(b)

Figure 5.2: The modified commercial PHEV battery pack tested at NREL, photos taken by
Dr. Ying Shi: (a) entire battery pack setup; (b) modular active balancing BMS in one half
pack. [77]

with pre-aged cells. The recorded cell voltages and cell currents of 9 months are shown in

Fig. 5.3. 1st-order SPKF based SOC estimation is performed using the recorded cell voltages

and cell currents. The SOC estimation was performed as discussed in Chapter 4. However,

the process noise standard deviation is enlarged to further decouple the effects of the cell

total capacity in SOC estimation. The SOC estimation setup is summarized in Table 5.1.
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Figure 5.3: NREL lithium-ion battery aging data for 9 months. Cells 2, 3, 4, 25, 26, and 27
in the modular active balancing BMS are selected.

Table 5.1: SOC Estimation Setup

SOC Estimation Setup

Method 1st-order SPKF

Updating period 1 second

Cell nominal total capacity 25 Ah

Initial SOC based on cell terminal voltage

Initial SOC standard deviation 20 %

Process noise (current) standard deviation 10 A

Sensor noise (voltage) standard deviation 50 mV

The estimated SOC is used in total capacity estimation based on Eq. (5.1). The

capacity estimation setup is summarized in Table 5.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Total capacity estimation results (a) cell 2; (b) cell 3; (c) cell 4;(d) cell 25; (e)
cell 26; (f) cell 27.



69

Table 5.2: Total Capacity Estimation Setup

Total Capacity Estimation Setup

Method RAWTLS and RQ-RTLS

Updating period 200 second

Initial capacity 25 Ah

Forgetting factor 0.999

Cell current noise standard deviation 0.3 A

Cell SOC noise standard deviation 5 %

The total capacity estimation results are shown in Fig. 5.4. The capacities estimated

by RAWTLS and RQ-RTLS are represented by the blue and red lines, respectively, while

the RPT measurements are shown as the black dots. The RAWTLS and RQ-RTLS results

eventually equal to each other after a certain period. RQ-RTLS has a relatively higher

convergence speed than RAWTLS, as expected. For cells 2 and 3 (in the quarter pack with

new cells), the estimation results match very well with the RPT measurement. For cells

4 (in the quarter pack with new cells), 25, 26, and 27 (in the quarter pack with pre-aged

cells), although the estimation results follow the battery cell degradation trend, there are

mismatches between the estimation and the RPT measurements.

The experimental results demonstrate promising performance of RAWTLS and RQ-

RTLS in a more practical scenario with a large quantity of cells under long term aging.

However, the potential offset error deserves further investigation.

5.2 Summary

In this chapter, online capacity estimation algorithms are evaluated for lithium-ion

battery cells tested in a 84-cell battery pack which underwent cycling tests over a period of 15

months, performed by collaborators at the National Renewable Energy Laboratory. Standard

passive balancing was performed in one half of the pack, while the modular active balancing
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system considered in Chapters 2-4 was applied in the other half of the pack. Two state-of-the-

art weighted-total-least-square (WTLS) based methods, RAWTLS and RQ-RTLS [34, 62],

are examined based on the long term battery aging data of 9 months. The estimation

results are compared with the measured cell total capacity from reference performance tests.

The experimental results show that both methods are capable of successfully estimating cell

total capacity. However, observed offset mismatches between the estimation results and the

measurements for some cells deserve further investigation.



Chapter 6

Hybrid Balancing in a Modular Battery Management System

The previous chapters and [13, 67] discuss a modular active-balancing system with

incorporated vehicle low-voltage (LV) bus, in which both active cell balancing and high-

voltage-to-low-voltage (HV-to-LV) dc-dc conversion are achieved by a set of low-power, LV-

to-LV isolated dc-dc converters. As the system eliminates the need for the high-power, HV-

to-LV stepdown converter in a conventional power supply architecture shown Figure.6.1, the

approach mitigates the cost penalty associated with active balancing.

In this chapter, the approach proposed in [13, 67] is further extended in the direction

of finding the best trade-off between active-balancing benefits and the number of dc-dc

converters. A modular BMS with hybrid balancing is proposed as shown in Fig. 6.2. The

system reuses much of the hardware in a passive balancing BMS and thus significantly

reduces the complexity and cost in development. Section 6.1 discusses the system concept

and the hybrid balancing approach. Section 6.2 describes the modular BMS implementation,

and Section 6.3 presents experimental results.

6.1 Hybrid Balancing Approach

In the hybrid modular system shown in Fig. 6.2, the battery cells in the battery pack

are grouped into modules, each containing a subset of cells. Active balancing is applied at

the module level by isolated dc-dc converters, while conventional passive balancing is applied

at the cell level within a module. The module-level dc-dc converters combine to perform the
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HV-to-LV conversion function.

6.1.1 Module-Level Active Balancing

Battery life extension is one of the most important benefits of active balancing in

xEV applications. In a physically large xEV battery pack, inevitable temperature variations

across the pack lead to uneven degradation among the cells, which is one of the major causes

of shortened battery life. With specially designed active balancing algorithms enabled by

the modular BMS considered in this thesis, up to 40 % battery life extension on a BEV75

(battery electric vehicle with 75 miles range) has been reported in [69]. The hybrid approach

presented here is motivated by the fact that adjacent cells in a battery pack have much

smaller temperature variations and thus degrade in a more uniform manner [78]. As a

result, adjacent cells can be grouped into modules for module-level active balancing, while

cell-level passive balancing can be performed within each module. Such system retains much

of the life extension benefits of cell-level active balancing. On the other hand, as illustrated

in the hybrid-balancing modular system shown in Fig. 6.2, the number of dc-dc converters

required is significantly reduced compared to cell-level active balancing, leading to reduced

overall hardware complexity.

6.1.2 Cell-Level Passive Balancing

While active balancing is performed at the module-level, ancillary passive balancing

must be employed within each module using one of standard passive balancing algorithms

[2,82,83]. Since the number of cells within a module is relatively small, as shown in Fig. 6.2,

the cell-level passive balancing results in much lower energy dissipation compared to the

conventional BMS with passive balancing applied across the entire battery pack shown in

Fig. 6.1.
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Figure 6.1: Conventional passive balancing system.

6.1.3 Module-Level SOC and SOH

Module-level state-of-charge (SOC) and state-of-health (SOH) must be known if active

balancing is to be applied at the module-level. As noted in Chapters 4 and 5, a variety of

advanced cell-level SOC and SOH estimation methods have been developed [2,62,69,82,83].

However, as the SOC and SOH are different from cell to cell in a module, extraction of

module-level information must be carefully considered, especially during times when the

cells within a module are not completely balanced by the slow passive balancing action.

As passive balancing is applied to the subset of cells in a module, the module SOH

should be based on the worst-case cell within the module. The inner resistance and total

capacity of Module i are given by Eq. (6.1) and (6.2), where n and j are the total number

and the index of cells within a module.

Rmodule,i = n ·max(Rcell,j) (6.1)
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Figure 6.2: Modular system with hybrid balancing.

Qmodule,i = min(Qcell,j) (6.2)

The calculation of module SOC requires more careful considerations. Suppose that the

highest and the lowest cell SOC are SOCmax > SOCmin. If the module SOC is considered to

be equal to the highest cell SOC (SOCmax), safety limits for the SOCmin cell may be violated

during module discharging; similarly, if the module SOC is considered to be SOCmin, safety

limits may be violated for the SOCmax cell during charging.

To properly accommodate different module-level active balancing schemes under dif-

ferent cell-level passive balancing conditions, the SOC of Module i is calculated as shown in

Eq. (6.3),

SOCmodule,i =
min(SOCcell,jQcell,j)

min(SOCcell,jQcell,j) +min((1− SOCcell,j)Qcell,j)
(6.3)

When the cells in a module are balanced, SOCcell,1 ≈ SOCcell,2 ≈ ... ≈ SOCcell,n, and
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Table 6.1: Comparison of Converter Specifications for An 84-Cell Lithium-Ion Battery Pack

HV-to-LV step-down LV-to-LV modular

converter converter

in the system of Fig. 6.1 in the system of Fig. 6.2

Power-stage isolation Yes Yes

Stackable No Yes

Local controller Current/voltage regulation Current regulation

Input voltage 210 V - 350 V 15 V - 24.6 V

Output voltage 9 V - 16 V(12 V nominal) 9 V - 16 V(12 V nominal)

Converter power 6.7 kW max 480 W max

Converter quantity 1 14

Eq. (6.3) then becomes:

SOCmodule,i ≈
SOCcell,jmin(Qcell,j)

SOCcell,jmin(Qcell,j) + (1− SOCcell,j)min(Qcell,j)
≈ SOCcell,k (6.4)

where index k represents the cell with the least total capacity.

6.2 Modular Hybrid-Balancing System Implementation

The modular hybrid balancing system is shown in Fig. 6.2. Compared to the conven-

tional system shown in Fig. 6.1, which includes a BMS and a HV-to-LV dc-dc converter

as separate functional blocks, the modular hybrid-balancing system incorporates the LV dc

output capability. The key change in the system architecture is that the original high-power,

HV-to-LV stepdown converter is replaced by multiple low-power, module-level LV-to-LV dc-

dc converters.

Table 6.1 compares the conventional system of Fig. 6.1 with the modular hybrid balanc-

ing system in Fig. 6.2 for the case when each module consists of six battery cells. Although

the number of converters is higher, the LV-to-LV converters (referred to as modular convert-

ers in the rest of the chapter) have proportionally reduced power ratings, and employ only
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low-voltage components. In addition, the modular system can be easily adapted to different

battery pack sizes. High-voltage high-power conversion can be achieved through stacking

more modular converters.

The control architecture of the modular active-balancing system has been referred to

in Chapter 2, and the particular version applied here is described in more detail in [70].

As shown in Fig. 6.4, each modular converter has a standard proportional-integral (PI)

controller to accurately regulate its input current locally. The bus voltage compensator is

implemented in the central BMS controller. The bus voltage compensator outputs a common

current reference for the current loop in each modular converter. In addition to the voltage

compensator, a delta SOC compensator runs simultaneously in the central BMS controller.

The delta SOC compensator outputs differentiated current references to achieve module

balancing.

The modular converter adopts dual-active-bridge (DAB) for the power-stage. The

measured converter prototype efficiency as a function of power is shown in Fig. 6.3. Maximum

measured efficiency is 95 %. Efficiency remains higher than 94 % for absolute values of output

power down to 80 W or 17 % of the dc-dc module power rating.

Another significant advantage of the proposed hybrid system architecture is that the

system can be constructed as an upgrade of a conventional BMS with passive balancing by

reusing the majority of existing BMS functions in the conventional design, and by adding

functions of module-level active balancing. These shared BMS features are further described

in the following sub-sections.

6.2.1 Shared Battery Cell Measurements

In EV/HEV applications, cell-level monitoring is mandatory for battery pack state

estimation and to ensure safe operation, regardless of whether passive or active balancing are

employed. Typical measurements include cell voltage, cell current, and cell temperature. Cell

voltage and cell temperature measurements are usually integrated into commercial battery
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Figure 6.3: Efficiency of the dual-active-bridge (DAB) converter in the modular hybrid
balancing system.

Figure 6.4: Control architecture for the active balancing system. [70]

monitoring ICs. Cell current is usually calculated by adding up the string current and

the passive balancing current. The string current is centrally measured, while the passive

balancing current is derived by dividing cell voltage by the nominal passive balancing shunt

resistance. These measurements are reused to achieve module-level active balancing in this

work, without the need for any additional sensors.
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6.2.2 Shared Central BMS Controller

A conventional BMS with passive balancing typically operates with a central BMS

controller and a number of battery monitoring ICs, as shown in Fig. 6.1. The central BMS

controller collects cell information from the battery monitoring ICs, performs state-of-charge

(SOC) and state-of-health (SOH) estimation, and runs necessary BMS algorithms including

passive balancing. Typically, the BMS controller also extracts high-level battery pack in-

formation from the individual cells within the pack, and serve as an interface between the

battery pack and a vehicle system controller. For the modular BMS with hybrid balancing,

the active-balancing algorithms in [69,70] can be integrated into the same central BMS con-

troller within computational capability of the existing controller hardware. As shown in this

work, the central BMS controller for the hybrid balancing system can be achieved using a

low-cost micro-controller: TMS320F28035 (Texas Instruments).

Following the work described in Chapters 4 and 5, advanced SOC and SOH estimation

are also implemented in the central BMS controller. A 1st-order sigma-point-Kalman-filter

(SPKF) SOC estimation method of [60,61] has been adapted to micro-controller implemen-

tation as discussed in Chapter 4 and in [86]. The method demonstrates a worst-case SOC

estimation error of 1.5 % for twenty-one nickel-manganese-cobalt (NMC) Lithium-ion cells.

The same method is applied to all eighteen pack cells individually. The inner resistance and

capacity estimation methods are as described in Chapter 5, with reference to [60,62].

6.2.3 Shared Communication Bus

In the conventional BMS with passive balancing, communication between the central

BMS controller and the battery monitoring ICs is required to collect cell information and send

necessary commands. Many commercial battery monitoring ICs have built-in functions for

easy and robust communication. The IC used in this work, LTC6802-2 (Linear Technology)

[44], also supports interface for one additional local device, which makes it possible to add
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(a)

(b) (c)

Figure 6.5: (a) 1.7 kWh modular hybrid system prototype assembled by collaborators at the
Utah Power Electronics Lab; (b) modular LV-to-LV converter with battery monitoring IC;
(c) central BMS controller.

the modular converters onto the already available communication bus without any additional

hardware. To achieve the control algorithm developed in [70], a 16-bit time-critical control

signal is broadcast to the modular converters every one millisecond, while all other necessary

data are communicated at the rate of one second.
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Figure 6.6: Module-level active balancing for 3 modules.

Figure 6.7: Cell-level passive balancing for the 6 cells within one module.

6.3 Experimental Results

The hybrid system is demonstrated on a battery pack that consists of eighteen 25 Ah

NMC cells, grouped in three 6-cell modules, each including a dc-dc converter, as summarized

in Table 6.1. The complete system is shown in Fig. 6.5 (a). The modular LV-to-LV converter

and the central BMS controller are shown in Fig. 6.5 (b) and Fig. 6.5 (c), respectively.

In the experiment, active balancing is demonstrated on the three modules, while passive
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balancing is demonstrated on the six cells within each module. In the active balancing

demonstration, the modules are charged from about 20 % SOC to 70 % SOC, with 8 %

difference in SOC at the beginning. A constant current load is applied to the LV bus. The

load is shared by the modular converters in such a manner that the module with higher SOC

takes a larger share of the load. The resulting SOC and current waveforms of module-level

active balancing are shown in Fig. 6.6. In the passive balancing demonstration, the cells with

higher SOC dissipate energy through a 27 Ω per-cell shunting resistor — value selected to

achieve average balancing speed of 0.5 % SOC per hour. The SOC convergence of cell-level

passive balancing is shown in Fig. 6.7.

6.4 Summary

A hybrid modular battery management system with module-level active balancing

and cell-level passive balancing is presented in this chapter. Module-level active balancing is

performed by dc-dc converters, which simultaneously perform the high-voltage-to-low-voltage

(HV-to-LV) dc-dc conversion required in electric-drive vehicles. Concepts for sharing BMS

hardware resources for the active and passive balancing subsystems are described. The hybrid

system features favorable cost/performance tradeoffs, and is capable of implementing a range

of system and module-level control strategies. The system is experimentally demonstrated

on a Lithium-ion battery pack, which consists of eighteen 25 Ah cells grouped in three 6-cell

modules, each including a 480 W dc-dc converter simultaneously performing active balancing

and supplying power to the vehicle 12 V LV bus.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation focuses on modeling, control, and design of a modular battery man-

agement system (BMS) using a series-input-parallel-output converter system incorporat-

ing both cell-level active balancing and low-voltage bus regulation in electric drive vehicles

(xEV).

Stability of the system with autonomous control applied to cell-converter units is an-

alyzed, and stability issues related to the state-of-charge (SOC) control loop are identified.

The SOC loop and the bus voltage loop share the same proportional-integral (PI) compen-

sator. The SOC loop bandwidth is much lower than the bus voltage control loop mainly

due to the fact that the lithium-ion battery cell total capacity value is much larger than the

capacitance at the converter output. As the PI parameters are designed for the bus voltage

regulation, the SOC loop exhibits poor phase margin leading to instability and oscillating

converter currents. A comprehensive analysis of the SOC loop is performed. The loop-gain

transfer function is further simplified to second-order for simple SOC loop compensator de-

sign. The stability analysis leads to a droop-resistance approach, which results in stable

system operation.

In the system prototype, the converter modules are based on the isolated dual-active-

bridge (DAB) topology, controlled using phase-shift modulation. It is found that conven-

tional DAB steady-state equations fail to model the low-voltage prototype converter in the
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system. A new DAB steady-state modeling method using superposition is developed. The

new method makes it possible to directly visualize the DAB steady-state operating based on

the switching waveforms. Based on the new method, an improved DAB steady-state model

is derived, which takes into account conduction losses in the converter. The improved model

successfully predicts the converter currents as functions of converter voltages and the phase-

shift. Furthermore, a simplified form of the improved model decouples critical variables.

Conditions are formulated in terms of the converter parameter values: the series tank induc-

tance and the equivalent series resistance, which allow the designer to evaluate how well the

conventional steady-state model represents the converter steady-state characteristics, and to

employ the improved model if necessary.

In order to achieve autonomous control of cell-converter units, each unit in the system

must estimate state-of-charge (SOC) of the corresponding lithium-ion battery cell. Sigma-

point Kalman filter (SPKF) based SOC estimation has demonstrated excellent performance

in xEV environments. This work significantly reduces the required computational complexity

by introducing a simplified 1st-order SPKF SOC estimation method. With the simplified

1st-order SPKF, a high-order matrix computation becomes a simple scalar computation,

which allows the method to be implemented on a low-cost micro-controller. The approach is

tested on the prototype system with 21 cell-converter units using 25Ah Panasonic lithium-ion

nickel-manganese-cobalt (NMC) cells.

In addition to SOC, state-of-health (SOH) estimation is also critically important in

advanced BMS. Performance of two state-of-the-art online capacity estimation methods are

examined using long term aging data obtained by prototype system testing performed at the

National Renewable Energy Laboratory. The experimental results demonstrate performance

of the two methods, and reveal the need to further investigate offset errors in estimated

capacity values.

The modular BMS is extended in the direction of further reducing system complexity

and cost. A hybrid balancing approach with module-level active balancing and cell-level
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passive balancing is introduced. Module-level active balancing aims at improving battery

lifetime for modules with large temperature variation, while cell-level passive balancing tar-

gets aims at reducing system complexity and cost for cells with small temperature variation.

A hardware prototype of the system is developed and demonstrated.

The work and the results reported in this thesis contributed to a multi-disciplinary

project focused on robust cell-level modeling and control of large battery packs. Sponsored

by ARPA-E AMPED program, the project was a collaboration between Utah State Univer-

sity (USU), University of Colorado Boulder (CU Boulder), University of Colorado Colorado

Spring (UCCS), National Renewable Energy Lab (NREL), and Ford Motor Company. The

results of this thesis were included in modeling, control, design and implementation of a large

format prototype battery pack based on modifications of a commercial PHEV battery with

eighty-four lithium-ion cells in series. The modular active balancing BMS was applied to a

half pack with forty-two cells, while conventional passive balancing was applied to the other

half pack for comparison. The modular active balancing BMS demonstrated potentials for

significant improvements in battery lifetime, verified by a 15-month cycling and aging test

performed at NREL. The prototype also demonstrated potentials for cost and size reduc-

tion achieved by elimination of a separate high-voltage-to-low-voltage (HV-to-LV) step-down

converter in the conventional xEV architecture.

7.2 Future Work

The work presented in this thesis can be extended in several directions, including

development of a system control architecture when the lead-acid battery is present on the

low-voltage bus, evaluation of cost/performance trade-offs in the hybrid system architecture,

further refinements of the SOC and SOH algorithms and their practical implementations, as

well as full system evaluations in the xEV environment.

Investigation of other possible system architectures is another topic for future work. In

particular, another modular BMS incorporating both active balancing and battery output
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Figure 7.1: Modular BMS incorporating both active balancing and battery output voltage
regulation.

Figure 7.2: Hardware demonstration of the modular BMS incorporating both active balanc-
ing and battery output voltage regulation.

voltage regulation is shown in Fig. 7.1. In this system, which is well suited for dc microgrid

applications, simple non-isolated converter such as the non-inverting buck boost converter

can be used. Each converter processes the full battery current. A hardware prototype has

been developed, shown in Fig. 7.2. Future work will include development of the system

control architecture and evaluation of the system performance.
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