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Wind turbines typically rely on feedback controllers to maximize power capture in below-

rated conditions and regulate rotor speed during above-rated operation. However, measurements

of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of

a preview-based, or feedforward, control system in order to improve rotor speed regulation and

reduce structural loads. But the effectiveness of preview-based control depends on how accurately

lidar can measure the wind that will interact with the turbine.

In this thesis, lidar measurement error is determined using a statistical frequency-domain

wind field model including wind evolution, or the change in turbulent wind speeds between the time

they are measured and when they reach the turbine. Parameters of the National Renewable En-

ergy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error

for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology,

designed to estimate rotor effective uniform and shear wind speed components. By combining the

wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview

distance that yield the minimum mean square measurement error, as well as the resulting minimum

achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is

found that relatively low measurement error can be achieved, but the attainable measurement error

largely depends on the wind conditions. In addition, the impact of the induction zone, the region

upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw

error on measurement quality is analyzed.

In order to minimize the mean square measurement error, an optimal measurement prefilter is

employed, which depends on statistics of the correlation between the preview measurements and the

wind that interacts with the turbine. However, because the wind speeds encountered by the turbine



iv

are unknown, a Kalman filter-based wind speed estimator is developed that relies on turbine sensor

outputs. Using simulated lidar measurements in conjunction with wind speed estimator outputs

based on aeroelastic simulations of the NREL 5-MW turbine model, it is shown how the optimal

prefilter can adapt to varying degrees of measurement quality.
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Chapter 1

Introduction

As one of the fastest growing sources of electricity production, wind energy generation ac-

counted for nearly 4% of global electricity demand by the end of 2013 [1]. According to statistics

provided by the Global Wind Energy Council, between 2004 and 2014 global installed wind capacity

has increased nearly eightfold from approximately 48 GW to 370 GW with average annual capacity

increases of 23% [2]. In the United States, wind power represented 33% of new generation capac-

ity between 2007 and 2013, allowing the technology to meet 4.5% of the U.S.’s current electricity

demand [3]. A 2008 report published by the U.S. Department of Energy proposed a roadmap for

achieving 20% of the U.S.’s electricity demand using wind generation by 2030 [4]. One factor that

can help reduce the cost of wind energy, facilitating the strong growth in wind generation capacity

necessary to achieve such a target, is the advancement in wind turbine control technology. Ad-

vanced control systems on wind turbines can help increase power capture and decrease structural

loads [5]. As wind turbines continue to grow in size, yielding large flexible rotors that encounter

inhomogeneous turbulent wind inflow, advanced control systems that reduce structural loads can

lower the cost of energy by decreasing operation and maintenance costs or allowing the turbine to

be constructed with less material [5]. The remainder of this chapter will introduce the basics of

wind turbine control, discuss recent research into control systems that utilize preview information

about the wind inflow, and outline the contributions of this thesis to the advancement of such wind

speed preview-based control systems.
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1.1 Wind Turbine Control Background

Modern horizontal axis wind turbines are designed to operate in different control regions

depending on the wind speed [5, 6]. For very low wind speeds, the available power in the wind is

too low to justify operating the turbine due to turbine system losses. These very low wind speeds

comprise control region 1. At the turbine’s “cut-in” wind speed, the turbine begins generating

power. For wind speeds between cut-in and the turbine’s “rated” wind speed, referred to as region

2, the control objective is to maximize power production. At the rated wind speed, the power

captured by the turbine matches the power output rating of the turbine’s generator. For wind

speeds above the rated wind speed, forming region 3, the control objective is to regulate the

generated power to its rated value, so that the generator and other turbine components are not

damaged. The power produced by a turbine can be described using the following simple formula

derived using momentum theory:

P =
1

2
ρAU3CP (λ, β) , (1.1)

where ρ is the air density, A represents the rotor area of the turbine, U is the wind speed, and CP

is the turbine’s power coefficient as a function of the tip-speed ratio λ and blade pitch angle β [7].

Tip-speed ratio is defined as the ratio between the speed of the blade tips as they rotate and the

wind inflow speed U . The coefficient of power CP determines the fraction of the available power

in the wind that is extracted by the turbine rotor, and cannot exceed the theoretical Betz limit of

∼ 0.59 [7].

The principle control actuators available on a typical variable-speed pitch-regulated wind

turbine are the generator, which can be commanded to produce a desired torque, the blade pitch

angle, which alters the rotor’s aerodynamic characteristics, and the yaw motor, which is used to

orient the turbine rotor into the wind direction to maximize power capture [5, 6]. In region 2,

blade pitch angle is kept at the optimal value (zero degrees) and generator torque is typically

controlled to sufficiently balance the aerodynamic torque to maintain the optimal tip-speed ratio,

thereby maximizing CP and producing power proportional to U3. In region 3, the control objective
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is to regulate power capture by keeping generator torque and rotor speed constant. The blade

pitch angle is controlled to reduce the aerodynamic efficiency of the rotor so that CP decreases

in proportion to the inverse of U3, maintaining constant power. When the wind speed exceeds

a “cut-out” wind speed, defining the upper limit of region 3, the turbine is shut down to avoid

damage to the turbine’s components. During turbine operation, the yaw motor is used to track

changes in wind direction, typically very slowly to avoid harmful gyroscopic forces [5].

The behavior of a turbine throughout the different control regions is illustrated in Fig. 1.1

for the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model [8], which

is used as the wind turbine model throughout the rest of this thesis. The power output, rotor

speed, generator torque command, and blade pitch command are plotted as a function of wind

speed from the NREL 5-MW reference turbine’s cut-in wind speed of 3 m/s through the rated

wind speed of 11.4 m/s to the cut-out wind speed of 25 m/s. The turbine signals were generated

using NREL’s FAST aeroelastic simulation code [9]. Note that the NREL 5-MW model’s baseline

control system further divides region 2 into regions 1.5, 2, and 2.5, where regions 1.5 and 2.5

are suboptimal transition regions between regions 1, 2, and 3 [8]. In region 2, generator torque

is controlled to achieve the optimal tip-speed ratio of ∼ 7.55. In region 3, generator torque is

held constant, and blade pitch angle is controlled to regulate the rotor speed to its rated value of

12.1 RPM, maintaining the rated power output of 5 MW.

A typical wind turbine control system relies on generator speed feedback, which is related

to the rotor speed through the drivetrain’s gear ratio, to control generator torque and blade pitch

angle, as shown in Fig. 1.2. The yaw motor, on the other hand, is typically used to correct the

turbine’s orientation after the yaw error, obtained from wind vane measurements on the turbine’s

nacelle, integrated over time exceeds a threshold [6]. In region 2, a control law is often employed

whereby the generator torque command is equal to the square of the generator speed multiplied

by a torque constant [5, 6]. When the torque constant is selected properly, this control law allows

the rotor speed to vary such that the optimal tip-speed ratio is tracked. In region 3, generator

torque is typically held constant and blade pitch angle is controlled to regulate rotor speed using
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Figure 1.1: Generated power and rotor speed as well as the steady-state generator torque and blade
pitch control actions throughout the operational range of the NREL 5-MW reference turbine [8]
from the cut-in wind speed of 3 m/s to cut-out at 25 m/s. All signals were generated using the
National Renewable Energy Laboratory’s FAST code [9]. The true generator torque command is
multiplied by a factor of 100 as presented. The turbine’s operational range is divided into regions
1.5, 2, 2.5, and 3.

a form of proportional-integral-derivative (PID) control [5, 6]. The baseline blade pitch controller

for the NREL 5-MW reference turbine uses proportional-integral (PI) control to regulate the error

between the true rotor speed and the rated rotor speed of 12.1 RPM to zero as the wind speed

fluctuates [8]. Thus in above-rated conditions, the wind speed acts not only as the source of power

for the turbine, but also as a disturbance, due to its turbulent nature.

+ Feedback 
Controller

Turbine

Regulated Outputs (Rotor 
Speed, Structural Loads, etc.)

Generator Speed (and possibly 
blade root bending moments, etc.)

-

Desired 
Set Points

Blade Pitch, 
Generator Torque

Wind

Figure 1.2: A typical wind turbine feedback control loop. Generator speed feedback is used to
control generator torque in below-rated conditions (region 2) to track the optimal tip-speed ratio.
Blade pitch control using generator speed feedback is employed in above-rated conditions (region
3) to regulate rotor speed to its rated value. Fluctuations in the wind speed act as a disturbance
at the turbine.
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Standard region 3 blade pitch control systems rely on collective pitch control. That is,

assuming a three-bladed turbine such as the NREL 5-MW model, all three blades are pitched

using the same command. However, as wind turbines grow larger, the wind inflow they encounter

becomes less homogenous; vertical wind shear, the increase in wind speed with height caused by

the atmospheric boundary layer, as well as spatially varying turbulent structures can result in the

three blades encountering significantly different wind speeds as they rotate. To address these issues,

a second category of blade pitch control, individual pitch control (IPC), has been explored [10, 11].

In IPC, the three blades are pitched independently to alleviate the time-varying structural loads

experienced by each blade as they rotate through the wind shear and spatially varying turbulence.

Measurements of bending moment loads at each blade, using sensors such as strain gauges, can be

used as inputs to IPC controllers.

1.2 Preview-Based Control of Wind Turbines using Lidar

A drawback to wind turbine control based on feedback only is that the wind disturbance

must first act on the turbine before a corrective control action can be made. To address this delay,

feedforward control has been proposed, whereby a preview measurement of the wind disturbance is

used directly as an input to the controller (see Fig. 1.3 (a)). Original work in feedforward control

focused on regulating power capture in fluctuating wind conditions using preview measurements

provided by an upstream meteorological tower [12]. Later, research concentrated on using Light

Detection and Ranging (lidar) technology to remotely sense the wind speeds from the turbine’s

nacelle [13]. Lidar anemometry, which uses the Doppler shift of laser light that scatters off of

aerosols in the wind to estimate wind velocities, was first demonstrated several decades ago. But

only in the past decade has the cost been reduced to the point where the technology can be

employed in wind turbine control applications due to the adoption of relatively inexpensive optical

fiber technology from the telecommunications industry [13].

Lidar-based control has been investigated for use in both below-rated and above-rated condi-

tions. In below-rated region 2 control, turbine-mounted lidar measurements have been proposed for
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Figure 1.3: Combined feedforward/feedback control scenarios using wind speed preview informa-
tion. (a) Ideal preview measurement scenario where the wind disturbance at the turbine is equal
to the input to the controller with a delay of d/U , where d is the preview distance and U is the
mean wind speed. (b) Realistic preview measurement scenario including lidar measurement errors
and wind evolution effects.

correcting yaw error [14, 15, 16] and increasing power capture [14, 17, 18, 19]. Through simulation,

Kragh et al. [15] found that a scanning lidar system can effectively estimate 10-minute average yaw

error with median errors of only a few degrees regardless of mean wind speed or turbulence intensity.

Recent field testing performed by Fleming et al. [16] showed that a bias in the yaw angle reported

by the wind vane could be identified using lidar measurements. After correcting for the bias, an

increase in power capture was observed, and it was estimated that annual energy production for

the turbine could be increased by 2.4%. As pointed out by Bossanyi et al. [18] and Fleming et

al. [16], lidars can be used to simply calibrate the turbine’s yaw measurement system once, and do
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not need to be employed for this purpose during the entire lifetime of the turbine. Lidar-assisted

feedforward control in below-rated conditions has been shown to provide a small increase in power

capture (0.1−2%) through better tracking of the optimal tip-speed ratio. However, as concluded by

Bossanyi et al. [18] the increased power and torque fluctuations caused by more aggressive tip-speed

ratio tracking would likely outweigh the modest increase in power. Furthermore, Schlipf et al. [19]

find that the additional structural loads caused by aggressively tracking the optimal tip-speed ratio

make lidar-based control in region 2 unattractive.

Recently, much of the lidar preview-based control research has focused on regulating rotor

speed and mitigating structural loads in region 3, where potential for significant load reduction

has been shown [18], [20]–[37]. As with feedback control, lidar-assisted control in region 3 can be

classified as either collective pitch or individual pitch control. Preview-based collective pitch control

strategies use the lidar measurements to estimate the effective wind speed that the entire rotor will

experience to regulate rotor speed and reduce loads [18, 22, 24], [29]–[33], [35, 36]. Individual

blade pitch control, however, allows for reduction of the loads experienced by each separate blade,

which could also be transferred to non-rotating components on the turbine [18, 21], [23]–[28],

[34, 37]. As discussed in Laks et al. [25] and Dunne et al. [28], IPC controller designs can either

use information from lidar measurements to estimate the wind speeds local to each individual

rotating blade independently [24, 26, 34], or to estimate “non-rotating” wind quantities such as the

effective collective (rotor average), linear horizontal shear, and linear vertical shear components of

the wind experienced by the rotor [18, 21, 37]. An advantage of using estimates of the non-rotating

collective and shear components is that it is easier to create linear time-invariant models of the

turbine dynamics, that can be used for model-based control, for these disturbances than for the

wind disturbances local to each blade [38]. Furthermore, simple PI controllers can be designed

to reduce once-per-revolution (1P) loads caused by horizontal and vertical shear disturbances,

whereas controllers that use wind measurements local to each blade must be designed to reject

cyclic disturbances [18, 25]. Control systems that incorporate non-rotating wind disturbances

often rely on the “multiblade coordinate transformation,” explained in Bir [38], to transform the
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non-rotating blade pitch commands to mitigate loads caused by the shear components into pitch

commands for each specific blade.

Lidar preview-based controller designs proposed in the literature range from simple “model-

inverse” feedforward controllers to more complex model predictive controllers (MPC). The simple

model-inverse feedforward collective pitch controller discussed in Schlipf et al. [30] essentially uses

a lookup table to determine the steady-state pitch angle that would result in zero rotor speed error

given the preview wind speed measurement (similar to the plot of pitch angle vs. wind speed in

Fig. 1.1). The preview information provided by the lidar is used to overcome the delay caused by

the pitch actuator dynamics, which is typically less than 1 s [28]. Additional preview time is used

to filter the lidar measurement signal to remove the components that are uncorrelated with the

wind disturbance at the rotor. As shown in Schlipf et al. [30] and Dunne and Pao [32], better rotor

speed regulation typically results in reduced structural loads as well.

More advanced controllers proposed in the literature are designed to explicitly reduce struc-

tural loads and to penalize blade pitch activity, so that rotor speed regulation and load reduction

do not come at the cost of excessive pitch actuator wear. For example, H2 optimal controllers

are designed to minimize a quadratic cost function of a vector of system variables [32, 34, 35].

The cost function used in Dunne and Pao [32] includes rotor speed error and pitch activity, the

H2 control design in Laks et al. [34] also penalizes flapwise blade bending, and the design pro-

posed in Kristalny et al. [35] places a penalty on the rotor thrust, so that tower oscillations will

be reduced. Finally, MPC controllers that incorporate lidar-based wind preview information are

designed to optimize the control actions using the predicted system dynamics over a finite horizon

time [23, 27, 30, 31, 36]. In addition to minimizing a cost function to reduce structural loads and

other system variables, MPC allows hard constraints to be imposed, such as pitch rate limitations

or the maximum allowable rotor speed [31]. While more advanced controllers such as H2 and MPC

designs can be formulated for any amount of preview time, Laks et al. [34] find that the performance

of an H2 optimal controller saturates at a preview time of 0.5 s for simulations of a 550 kW turbine.

Similarly, Bottasso et al. [36] discovered that a preview window of 1 s was sufficient for MPC using
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simulations of a 3 MW turbine. Despite the apparent advantages of more advanced controllers, as

revealed in Schlipf et al. [30], simple model-inverse feedforward controllers can nearly match the

performance of more advanced MPC controllers, yet require a much simpler design process.

Preliminary simulation-based research on lidar-based controllers included the assumption that

upstream wind speeds could be measured perfectly [20, 25, 26]). An additional assumption was

that the measured wind speeds would reach the turbine unchanged after a delay time of d/U , where

d is the preview distance and U is the mean wind speed (see Fig. 1.3 (a)). The next generation of

lidar-based control simulations contained realistic lidar models including spatial averaging of the

wind speeds along the lidar beam and the limitation to line-of-sight measurements (discussed in

Chapter 4) [15, 22, 23, 24, 39]. Recently, control simulations have included models of the important

source of error commonly referred to as “wind evolution” (discussed in Chapter 3) [34, 35, 36, 40].

Wind evolution describes how the wind speeds change, or evolve, as they travel downstream toward

the turbine. The more realistic lidar measurement scenario including wind evolution is shown

in Fig. 1.3 (b). An additional source of measurement error that has recently been included in

simulation is uncertainty in the time delay for the measured wind to reach the rotor [33, 41];

Dunne et al [41] determine the reduction in measurement error that is possible if knowledge of

the time-varying time delay is available. Many recent lidar-based control designs account for

measurement error by filtering the lidar signal to remove the components of the measurement

that are uncorrelated with the wind that arrives at the rotor [30, 42, 43, 44] or by including the

measurement correlation directly in the optimal control derivation, as in Dunne and Pao [32].

Although the previously discussed research on lidar-based control was performed using com-

puter simulations, recent field testing was performed at NREL’s National Wind Technology Center

(NWTC) to help determine whether the simulated load reductions could be realized in practice.

During 2012, simple model-inverse feedforward controllers designed to regulate rotor speed were

tested using nacelle-mounted lidars on NREL’s 2-bladed 600 kW CART2 turbine [44] as well as the

3-bladed 550 kW CART3 turbine [43]. In both studies, the feedforward control signals were added

to the baseline feedback control actions. In Schlipf et al. [44], the authors found that feedforward
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control resulted in a rotor speed standard deviation reduction of 30% on the CART2 turbine. Schol-

brock et al. [43] also found improved rotor speed regulation and additionally observed a decrease

in tower fore-aft bending. Scholbrock et al. [43] point out that with the improved rotor speed reg-

ulation at low frequencies provided by feedforward control, the feedback controller could be made

less aggressive by reducing its PI gains. Lower PI gains could result in less pitch activity, causing

reduced structural loads on the turbine, a strategy originally proposed by Bossanyi et al. [18].

1.2.1 Lidar Measurement Strategies

A number of lidar systems have been developed in the past decade, both commercially and for

research purposes, for use as part of preview-based control strategies. Harris et al. [45] performed

the first turbine-mounted lidar test using a continuous-wave (CW) lidar (see Chapter 4) mounted

on top of the nacelle. This lidar was simply configured to stare straight ahead into the wind and

focus at a particular distance. Rettenmeier et al. [46] employ a customized WindCube pulsed lidar

system (explained in Chapter 4) that is also mounted on top of the nacelle. The pulsed lidar

provides measurements at 5 ranges along the beam between 40 m and 200 m, can sample at a rate

of approximately 6 Hz, and can be aimed in any direction in front of the rotor using a mirror with

two axes of motion. This pulsed lidar was used for the field tests performed on the CART2 turbine

described in Schlipf et al. [44], where it was programmed to scan a circular pattern with a rotational

period of ∼1-2 s. A lidar developed by BlueScout Technologies, that measures the wind using three

fixed beam directions to estimate the horizontal wind speed and direction and vertical wind speed

at three different ranges, was used for the CART3 field experiments described in Scholbrock et

al. [43]. Mikkelsen et al. [47] have developed a circularly-scanning modified ZephIR CW lidar, with

a 50 Hz sampling rate and a 1 s scan period configured using either a 53 m focus distance with

a 30◦ cone angle or a 103 m focus distance with a 15◦ cone angle, that can be mounted in the

hub, or spinner, of a turbine. This lidar placement allows for continuous measurements without

periodic blockage from passing blades. A similar, but more complex, spinner lidar discussed in

Sjöholm et al. [48] relies on two beam-redirecting prisms rotating at different speeds to measure
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400 locations, distributed within the rotor disk area upstream of the turbine, every second. The

information provided by such a lidar can be used to determine two-dimensional spatial structures

in the wind inflow. Recently, Pedersen et al. [49] have tested a CW lidar mounted directly on a

turbine blade with a focus distance of only 5 m, allowing for direct measurement of the local wind

speed and angle-of-attack that a section of the rotating blade will experience.

1.3 Thesis Objectives and Contributions

The primary objective of the research presented in this thesis is to understand how accurately

lidar can be used to provide preview measurements of the wind speed disturbances that interact

with a wind turbine. This research objective was motivated by the need for more realistic analysis

of preview-based wind turbine control systems to determine if improvements in load reduction are

still achievable with realistic measurement errors. In general, the objectives of this research can be

divided into two categories: the development of realistic lidar measurement and wind field models,

which are used to determine the error between the preview wind speed measurements and the wind

that arrives at the turbine, and the optimization of the lidar measurement strategy to minimize

measurement error given the constraints imposed by the lidar and wind field models. The ultimate

goal of this research is to show that even when accounting for realistic preview measurement error

sources, through optimization of the measurement scenario and proper filtering of the preview

measurement signals, relatively low measurement errors can be achieved allowing the effective use

of preview-based control.

A diagram of the measurement scenario investigated in this research, including the major

sources of measurement error, is provided in Fig. 1.4, where the region enclosed by the dashed line

indicates the scope of the research discussed in this thesis. A lidar is used to measure the wind

upstream of the turbine, yielding the measurement signal wm. The wind that is measured by the

lidar will change as it travels downstream toward the rotor, denoted by the “wind evolution” block.

Error between the turbine’s yaw angle and the wind direction, when unaccounted for, produces

additional error between the lidar measurement and the wind encountered by the turbine. Finally,
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Figure 1.4: Combined feedforward/feedback control scenario including details of the preview mea-
surement process. After the lidar measures the wind speeds in front of the wind turbine, the wind
continues to be altered by wind evolution and the wind turbine’s induction zone before it inter-
acts with the rotor, where it is represented by wt. Potential yaw error creates another source of
measurement error. The lidar measurement wm is filtered using a minimum mean square error
prefilter Hpre which yields an estimate ŵt of the wind disturbance that will arrive at the rotor, and
ŵt is used as an input to the feedforward controller. The prefilter transfer function adapts based
on statistics of the correlation between wm and wt, where past values of wt are estimated using a
wind speed estimator relying on measured turbine outputs.

the induction zone, the region upstream of the turbine where the wind is influenced by the rotor,

creates additional potential for alteration of the wind inflow. A significant contribution of this

research is the development of methods to determine the error between wm and the wind wt that

arrives at the turbine by incorporating the aforementioned error sources. A further contribution

of this research is the design and implementation of a “prefilter” Hpre that is used to provide a

minimum mean square error (MMSE) estimate of wt, indicated by ŵt. As will be explained, the

MMSE prefilter transfer function depends on statistics of the correlation between wm and wt. To

determine the true wind disturbances that interact with the turbine, a wind speed estimator is

implemented, which uses a dynamic model of the wind turbine to estimate the wind disturbances

that produced the measured turbine outputs. As indicated in Fig. 1.4, information from the wind
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speed estimator is therefore used to adapt the measurement prefilter.

A more detailed list of the major contributions of this thesis is provided below, where the re-

lationship between the research and the work of other authors is explained and unique contributions

are highlighted.

• A framework is provided for calculating the power spectrum of a turbine variable of interest,

assuming ideal feedforward control and the use of a MMSE prefilter, as a function of

measurement coherence, which describes the correlation between the lidar measurement

and the true wind disturbance as a function of frequency. While the same MMSE prefilter

has also been proposed by Schlipf et al. [44, 50], the analysis presented in this thesis shows

how the filter minimizes the variance of the turbine variable of interest and how the resulting

controller performance is related to the measurement coherence.

• A statistical frequency domain model of wind evolution is developed based on the behavior

of turbulence simulated by researchers at NREL using computational fluid dynamics (CFD).

Other wind evolution models have been proposed [51, 52], as well as applied to lidar-based

control analysis [36, 40, 50], but either lack validation from realistic wind measurements or

do not include a dependence on the specific wind conditions. The model developed in this

thesis is a function of commonly-used wind speed and turbulence statistics and is based on

realistic physics-based CFD simulations, although field measurements are still required for

full validation.

• The impact of a wind turbine’s upstream induction zone on wind speed preview measure-

ment error is assessed using CFD simulation data produced by researchers at NREL. Little

previous work has been performed to assess how the induction zone impacts lidar preview

measurement quality aside from investigations of the mean velocity reduction upstream of

the rotor [53, 54, 55]. The work in this thesis additionally reveals how wind speed direc-

tion and turbulence are altered in the induction zone along with the implications for lidar

measurement quality.
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• A method is developed for determining the spectra of “rotor effective” wind speed quanti-

ties, i.e., the rotor average wind speed and the effective linear horizontal and vertical shears

across the rotor, by treating the rotor as three rotating blades and averaging wind speeds

along each blade weighted according to the spanwise contribution to a turbine variable of

interest, e.g., aerodynamic torque or the blade root bending moment. This wind speed

modeling strategy is in contrast to previous work, which treats the single rotor effective

wind speed as containing contributions from wind speeds over the entire rotor disk area,

neglecting blade rotational effects [50, 56].

• Methods are developed for calculating the measurement coherence between a circularly-

scanning lidar measurement and the wind encountered by a rotating blade, as well as the

coherence between estimates of rotor effective wind quantities based on three circularly-

scanning lidar measurements and the true wind quantities experienced by the rotor. The

frequency-domain methods used to calculate measurement coherence are similar to the

methods used in Schlipf et al. [50], although here the rotational effects of three discrete

blades are included, and measurement coherence for the shear components is additionally

investigated.

• Using the developed wind evolution model, a circularly-scanning lidar scenario (used to

estimate rotor effective wind quantities) is optimized to minimize mean square measurement

error. Although previous lidar scenario optimizations have been performed [50], here the

dependence of the optimal scan parameters as well as the measurement error on wind

conditions, such as mean wind speed and turbulence intensity, is determined. The impact

of yaw error on measurement coherence is also shown.

• A wind speed estimator that uses turbine outputs to estimate the rotor effective wind

disturbances is designed and implemented in simulation. Its merits and shortcomings are

discussed. The developed estimator is based on Kalman filtering, which has been employed

in previous wind speed estimation designs [57]–[60]. In this work, however, emphasis is
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placed on designing an estimator that can accurately determine the wind speeds in the

bandwidth of importance for blade pitch control applications, i.e., up to roughly 1 Hz for

the NREL 5-MW reference turbine model [28, 31].

• A method for determining the MMSE Hpre measurement filter coefficients using statis-

tics regarding the correlation between the lidar measurement signal wm and the “true”

wind disturbances wt at the turbine provided by the wind speed estimator is developed.

Previous lidar-assisted controller implementations used during field testing have included

similar adaptive filtering components by fitting first or second-order low-pass filters to the

estimated transfer function from the lidar measurement to the wind speed disturbance at

the turbine [43, 44]. In the work presented here, the filters are explicitly derived to mini-

mize mean square measurement error using time-domain statistics, while taking advantage

of all of the available preview time. The necessary time that it takes for the MMSE prefilter

coefficients to adapt to changing wind conditions is also analyzed.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows. Chapter 2, which is based on work

published in Simley and Pao [42], provides an analysis of the effectiveness of an ideal feedforward

controller incorporated into a feedback control loop as a function of the preview measurement

error. It is shown that for large measurement error, feedforward control can harm the system’s

performance. However, when a MMSE lidar measurement filter is introduced, feedforward control

will always reduce the variance of an output error variable of interest as long as the preview

measurement contains some correlation with the true wind disturbance. The dependence of the

spectrum of a turbine output variable, and its variance, on the measurement coherence is discussed.

Motivated by the frequency-domain metric of measurement coherence, a statistical frequency-

domain wind field model is presented in Chapter 3. A spatial coherence model describing wind

evolution, also described in Simley and Pao [61] is presented in Section 3.2. Section 3.3, which
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includes results published in Simley et al. [62], contains a description of a wind turbine’s induction

zone, i.e., the region upstream of the rotor where wind speeds are reduced. In Section 3.4 the

concept of a “blade effective wind speed” is proposed, which allows the combined impact of the

wind speeds encountered along the entire length of a blade to be quantified using a single wind speed

value. The chapter concludes with a discussion of how rotor effective wind disturbances, including

the rotor average wind speed and horizontal and vertical shear components can be calculated using

the concept of blade effective wind speeds. All blade and rotor effective wind speed variables are

defined using parameters of the NREL 5-MW reference turbine model [8], which is the turbine

model that is assumed in all of the analyses throughout the thesis.

Chapter 4 is devoted to the lidar modeling process, where CW and pulsed lidar models based

on commercially-available designs are discussed. Lidar basics, including the spatial averaging of

wind speeds along the lidar beam which is inherent to the measurement process and is referred to

as “range weighting,” are discussed in Section 4.1. In Section 4.2, the sources of lidar measurement

error that are present in the hub-mounted circularly-scanning lidar scenario investigated in this

thesis are analyzed, including the limitation to line-of-sight measurements, wind evolution, range

weighting, and the use of a lidar measurement to estimate blade effective wind speed. For each

source of error, a derivation of the measurement coherence is included, based on methods published

in Simley et al. [63]. Many of the error sources discussed in this chapter were originally analyzed

using time-domain statistics in Simley et al. [39].

By combining the lidar measurement process described in Chapter 4 with the wind field

model discussed in Chapter 3, a method for calculating measurement coherence for a three-beam

circularly-scanning lidar scenario used to estimate the rotor average wind speed and the effective

shear components is presented in Chapter 5. Section 5.1 describes measurement coherence between

circularly-scanning lidar measurements and the wind encountered by a single rotating blade, based

on research originally presented in Simley and Pao [64], while Section 5.2 extends this approach to

the calculation of measurement coherence for rotor effective quantities using a unique lidar mea-

surement for each blade. In Section 5.3, calculations of measurement coherence are used to optimize
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the preview distance and scan radius of the lidar system to minimize measurement error. Addition-

ally, the impacts of the induction zone and yaw error on measurement error are analyzed. Finally,

Section 5.4 reveals the optimal scan parameters and achievable measurement error as a function of

mean wind speed and turbulence intensity, providing useful lidar system design guidelines.

Chapter 6, based on Simley and Pao [65], describes the development and analysis of a wind

speed estimator, which uses turbine sensor measurements to estimate the rotor effective wind

disturbances encountered by the turbine. The correlation between the lidar measurements and

the estimated wind disturbances at the turbine is used to determine the optimal MMSE prefilter

coefficients so that uncorrelated components of the measurement are filtered out. A description of

the developed Kalman filter-based wind speed estimator is given in Section 6.2. The performance

of the estimator, evaluated using aeroelastic simulations and analyzed in the frequency domain, is

presented in Section 6.4, where the impact of different aerodynamic models used in simulation is

discussed. Sections 6.6 and 6.7 show how the introduction of delay in the wind speed estimator as

well as the use of gain scheduling can reduce estimation error.

While much of the thesis focuses on determining lidar measurement error directly through

frequency-domain analysis, Chapter 7 contains results from time-domain simulations. Section 7.1

begins the chapter by showing the measurement error resulting from simulated lidar measurements

in a large-eddy simulation (LES) wind field generated by NREL, presented in Simley et al. [62].

The LES wind field includes the impact of the wind turbine’s induction zone, allowing the mea-

surement error caused by the induction zone to be assessed. In Section 7.2, which includes work

published in Laks et al. [34], a method for simulating wind fields including the effects of wind evo-

lution is described. Section 7.2.1 compares the measurement coherence obtained from time-domain

simulations in evolving wind fields with the coherence calculated directly using frequency-domain

techniques. An approach used to calculate the optimal measurement prefilter coefficients based on

the correlation between the lidar measurement signal and the estimated wind speed disturbances

at the turbine, briefly discussed in Simley and Pao [42], is presented in Section 7.3. Because some

estimation time is required to determine the measurement correlation statistics used to define the
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prefilter coefficients, Section 7.3.2 analyzes the effectiveness of the prefilter, in terms of the reduc-

tion in mean square measurement error, as a function of the time allowed to estimate the filter

coefficients.

Concluding remarks and recommendations for future research are included in Chapter 8.

Finally, an appendix is included, which describes lidar field measurements of the induction zone

upstream of a 225 kW turbine performed during Spring 2014 at the Danish Technical University

(DTU) Wind Energy department’s Risø campus (also presented in Simley et al. [66]).



Chapter 2

Simplified Feedforward Control Scenario and Optimal Measurement Filtering

In this chapter, the performance of a simplified ideal feedforward control scenario is analyzed

in terms of statistics describing the preview measurement quality. First, the conditions on mea-

surement error for which ideal feedforward control provides benefit over feedback-only control are

derived. Next, it is shown that by employing an optimal measurement filter, the feedforward control

scenario will always improve system performance as long as the correlation between the preview

measurement and the true disturbance at the turbine is non-zero and the feedforward controller

contains no modeling errors. The performance of the control system is characterized by the vari-

ance of an output variable of interest, and is determined using the coherence between the preview

measurement and the true disturbance, where coherence describes the correlation between the two

signals as a function of frequency. The analyses presented in this chapter motivate the use of the

coherence function as one of the primary metrics for preview measurement quality throughout the

rest of the thesis. Practical issues related to implementing the optimal measurement filter are also

discussed.

2.1 Simplified Ideal Feedforward Control

The derivation of feedforward controller performance presented in this chapter uses the

combined feedforward/feedback wind turbine control scenario for above-rated operation shown

in Fig. 2.1, where it is assumed that the wind turbine and controller dynamics are linear about

the operating point at the mean wind speed U . Blade pitch (β) and generator torque (τgen) con-
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trol loops using the feedback measurement yFF regulate an output variable y (such as generator

speed or power production error), which represents the deviation from a setpoint. Typically gen-

erator speed is used as the feedback measurement, but other measurements can be used for more

advanced control, such as blade root bending moment measurements for individual pitch control.

The feedback control loop is designed for the mean wind speed U such that any wind speed de-

viation acts as a disturbance wt on the turbine plant P . The feedback control loop, where CFB

indicates the controller, is augmented with a blade pitch feedforward controller CFF which uses the

preview wind disturbance measurement wm, provided by a lidar, to form a feedforward blade pitch

command βFF . As the original upstream wind worig, which is measured by the lidar, travels down-

stream toward the turbine it will change due to wind evolution, and potentially the other sources

of distortion indicated in Fig. 1.4, until it interacts with the turbine as wt after a delay of roughly

d/U where d is the preview distance upstream of the turbine. A prefilter Hpre can be introduced

between the lidar measurement stage and the feedforward controller to provide an estimate ŵt of

the wind disturbance. In this section, however, the feedforward controller is analyzed assuming

perfect measurements (wm = wt) and Hpre = 1 (ŵt = wm).

When feedforward is not used (CFF = 0), the output variable y is given by

y = Tywtwt, (2.1)

where Tywt represents the closed-loop transfer function from the wind disturbance to y, indicated

by the region inside of the dashed box in Fig. 2.1. With the introduction of feedforward control, y

becomes a function of both wt and wm:

y = Tywtwt + TyβFFCFFwm, (2.2)

where TyβFF represents the transfer function from the feedforward blade pitch command to y.

When the measurements are perfect (wm = wt) and there is perfect plant modeling, the feedforward

controller that completely cancels the effect of the disturbance wt on the turbine is given by

CFF = −T−1
yβFF

Tywt , (2.3)
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Figure 2.1: Feedforward control scenario block diagram. The dashed box encloses a blade pitch (β)
and generator torque (τgen) feedback control loop where P represents the wind turbine plant and
CFB indicates the feedback controller. The output y represents an output error variable, which is
intended to be regulated to 0. The feedforward controller is indicated by the CFF block and Hpre

is the prefilter used to form an estimate ŵt of the wind disturbance wt at the turbine based on
the LIDAR measurement wm. wm is formed by measuring the original upstream wind speed worig,
which becomes wt after experiencing wind evolution and arriving at the turbine.

which yields the output y = 0 in (2.2). In reality, possible non-minimum phase zeros in TyβFF can

cause CFF to be unstable [26]. Therefore, the ideal CFF often cannot be realized and model inverse

approximation techniques beyond the scope of this thesis must be used [24, 26]. Furthermore, plant

modeling errors and the desire for low-order controller dynamics can prevent the implementation of

the ideal feedforward controller. For the analyses in this chapter, however, it is simply assumed that

CFF = −T−1
yβFF

Tywt . When the ideal feedforward controller is used but the preview measurements

are imperfect (wm 6= wt), the output is given by

y = Tywt (wt − wm) . (2.4)

2.1.1 Power Spectral Density, Cross-Power Spectral Density, and Coherence Def-

initions

Before proceeding with the feedforward control analysis for imperfect measurements, some

statistical frequency domain functions that are used throughout the chapter and the rest of the
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thesis are defined in this section, for both continuous-time (CT) and discrete-time (DT) variables.

First, the definitions will be provided for CT variables. For wide-sense stationary (WSS) stochastic

processes a (t) and b (t), the cross-correlation function is defined as

Rab(t) = lim
T→∞

1

T

∫ T/2

−T/2
a(τ + t)b∗(τ)dτ, (2.5)

where t represents the time lag between the two variables and {}∗ indicates complex conjugation [67,

68]. Note that because a and b are WSS, the cross-correlation statistics depend only on the time

difference between a and b and not the absolute time. When a = b, (2.5) yields the autocorrelation

function of variable a. The cross-power spectral density (CPSD) between a and b is defined as the

Fourier transform of the two variables’ cross-correlation function:

Sab (f) = F{Rab(t)}, (2.6)

where the Fourier transform relating a time-domain variable a (t) to the frequency domain variable

A (f) [68, 69], represented by the operator F{}, is defined as

A(f) =

∫ ∞
−∞

a(t)e−j2πtfdt. (2.7)

When a = b, the CPSD is equivalent to the power spectral density (PSD) Saa (f), which describes

how the power contained in the signal a is distributed as a function of frequency. Finally, the

magnitude-squared coherence γ2
ab (f) [69], which relies on CPSD and PSD functions to describe the

correlation between two signals a and b as a function of frequency, is defined as

γ2
ab (f) =

|Sab (f)|2

Saa (f)Sbb (f)
. (2.8)

The magnitude-squared coherence, or simply coherence, takes on values between 0 and 1 where a

value of 0 indicates that a and b are completely uncorrelated at a particular frequency, while a value

of 1 indicates that a and b are perfectly correlated. A coherence value of 1 does not necessarily

mean that the magnitudes of the two variables are equivalent at a particular frequency, nor that

their phases are aligned.
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Many of the derivations presented in this thesis rely on an alternative definition of the CPSD

(and therefore PSD) [69], which is given as:

Sab(τ) = lim
T→∞

1

2T
E [AT (f)B∗T (f)] , (2.9)

where AT (f) is the Fourier transform of the time-windowed signal aT (t), defined as

aT (t) =

a(t), if |t| ≤ T
0, otherwise.

(2.10)

This alternative definition suggests that the CPSD between signals a and b can be estimated as

the mean of the product between the Fourier transforms of finite-length samples of signals a and b,

while applying the complex conjugate to the Fourier transforms of signal b. As the window length

of the finite-length samples, parametrized by T , approaches infinity, the CPSD estimate converges

to the true CPSD. Equation (2.9) provides a convenient definition of the CPSD because it allows

Sab (f) to be determined completely in the frequency domain using representations of the Fourier

transforms of signals a and b.

Some of the derivations presented in this thesis utilize DT representations of variables. The

discrete-time analogues to the spectrum definitions for CT variables are provided here. For WSS

random sequences a [n] and b [n], the CPSD as a function of the frequency ω in units of radi-

ans/sample [67, 68] is defined as

Sab (ω) = F{Rab [n]}, (2.11)

where the DT cross-correlation function Rab [n] is defined as

Rab [n] = lim
N→∞

1

2N + 1

N∑
m=−N

a[m+ n]b∗[m], (2.12)

and the DT Fourier transform F { } is given by

A(ω) =

∞∑
n=−∞

a [n] e−jωn. (2.13)

Note that as with the CT case, when a = b, (2.12) produces the DT autocorrelation function.

Similar to (2.9), the CPSD can be alternatively defined [69] as

Sab(ω) = lim
N→∞

1

2N + 1
E [AN (ω)B∗N (ω)] , (2.14)
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where AN (ω) represents the Fourier transform of the windowed DT function

aN [n] =

a [n] , if |n| ≤ N
0, otherwise.

(2.15)

2.1.2 Measurement Error with Imperfect Measurements

Due to the effects of the lidar measurement process, wind evolution, and other potential error

sources, along with the spatial averaging of the wind caused by the area of the turbine rotor, in

general wm 6= wt. Here, the variance of y will be derived in the discrete-time frequency domain

using (2.4) and the property that the integral over the power spectrum of a variable is equal to its

variance [67]:

Var (y) =
1

π

∫ π

0
|Tywt (ω)|2 E

[
|Wt (ω)−Wm (ω)|2

]
dω. (2.16)

Note that (2.16) relies on the alternative CPSD definition expressed in (2.14), where the notation

indicating the limit as the window length approaches infinity is excluded for simplicity. In general,

throughout the remainder of the thesis PSD and CPSD functions will be written as the expectation

of the product of Fourier transforms of variables by employing (2.9) for CT signals and (2.14) for

DT signals, while similarly leaving out the assumed limit as the window length approaches infinity.

In the frequency domain, the mean square error (MSE) of the measurement present in (2.16),

equivalent to the PSD of wt − wm, can be described as

E
[
|Wt (ω)−Wm (ω)|2

]
= Stt (ω) + Smm (ω)− 2<{Stm (ω)} , (2.17)

where Stt (ω) is the PSD of the wind disturbance wt, Smm (ω) is the PSD of the lidar measurement

wm, and Stm (ω) is the CPSD between wt and wm. Note that (2.17) relies on the linearity property

of the Fourier transform [67].

When feedforward is not used, the variance of y based on (2.1) is simply

Var (y) =
1

π

∫ π

0
|Tywt (ω)|2 Stt (ω) dω. (2.18)

By comparing (2.16) and (2.17) with (2.18), the frequencies where feedforward control with ŵt = wm

is beneficial can be found. Feedforward control reduces the variance of y at the frequencies where
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(2.19) is satisfied:

Stt (ω) + Smm (ω)− 2<{Stm (ω)} < Stt (ω) . (2.19)

Equation (2.19) can be rearranged into a simpler form:

1

2
<
<{Stm (ω)}
Smm (ω)

. (2.20)

2.2 Optimal Feedforward Controller for Imperfect Preview Measurements

By introducing the linear prefilter Hpre, shown in Fig. 2.1, to form an estimate of wt based

on the measured wm, the variance of the output variable y can be reduced below the variance

given by (2.16). Here it is shown that with imperfect disturbance measurements, the optimal

linear feedforward control scenario can be formed using the ideal feedforward controller in (2.3) in

series with an optimal prefilter. The optimal feedforward controller CFF,opt is found as the transfer

function CFF that minimizes the variance of y as described in (2.2):

CFF,opt = arg min
CFF

E
[
|Tywtwt + TyβFFCFFwm|

2
]
, (2.21)

where E
[
|Tywtwt + TyβFFCFFwm|

2
]

can be described in the frequency domain as

E
[
|Tywt (ω)Wt (ω) + TyβFF (ω)CFF (ω)Wm (ω)|2

]
= |Tywt (ω)|2 Stt (ω) + |TyβFF (ω)|2 |CFF (ω)|2 Smm (ω)

+Tywt (ω)C∗FF (ω)T ∗yβFF (ω)Stm (ω) + TyβFF (ω)CFF (ω)T ∗ywt (ω)S∗tm (ω) .

(2.22)

In the frequency domain, the solution to (2.21) is

CFF,opt (ω) = −T−1
yβFF

(ω)Tywt (ω)
Stm (ω)

Smm (ω)
. (2.23)

Equation (2.23) reveals that the optimal linear feedforward controller can be described by

the ideal feedforward controller CFF in (2.3) in series with the prefilter

Hpre (ω) =
Stm (ω)

Smm (ω)
. (2.24)
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The filter Hpre given in (2.24) is in fact the non-causal minimum mean square error (MMSE) Wiener

filter [70] for estimating a variable wt given wm. The use of the prefilter in (2.24) to improve lidar-

assisted feedforward control has also been proposed by Schlipf et al. [44, 50], where the filter is

meant to act as an estimate of the transfer function from the lidar measurement to the true wind

disturbance.

The optimal feedforward controller presented in (2.23) was derived under the constraint that

CFF is linear. Here, it will be shown that under the assumption that the closed-loop transfer

functions Tywt and TyβFF are linear and that wm and wt are jointly Gaussian random variables [68,

70], which they are modeled as throughout this thesis, CFF in (2.23) is the optimal controller that

minimizes output variance among all possible controllers, both linear and nonlinear.

A more general form of the output y with combined feedforward/feedback control can be

written as

y = Tywtwt + yFF (wm) , (2.25)

where yFF (wm) represents the additional output caused by the feedforward control action based

on the measurement wm. The variance of y will be minimized if yFF (wm) is a MMSE estimate

of −Tywtwt. Because wm and wt are jointly Gaussian random variables, wm and −Tywtwt are also

jointly Gaussian, since a linear combination of Gaussian random variables (resulting from the linear

operator −Tywt) is also Gaussian [68]. Therefore, the linear Wiener filtering operation (given in

(2.24) for variables wm and wt) can be used to provide the MMSE estimate of −Tywtwt based on

wm [70]. The resulting estimator can be written as the following filtering operation on wm:

yFF,opt (wm) =
S−Tywtwt,wm

Smm
wm

= −Tywt StmSmm
wm

= −TyβFF T
−1
yβFF

Tywt
Stm
Smm

wm

= TyβFFCFF,optwm.

(2.26)

The second line of (2.26) uses the following property: SHa,b (ω) = H (ω)Sab (ω) for any linear

transfer function H (ω) [68]. The third and fourth lines of (2.26) show that the optimal output
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y caused by feedforward control action is equivalent to the output that is produced using the

feedforward controller derived in (2.23).

2.2.1 Optimal Measurement Error with Imperfect Measurements

When the optimal feedforward controller (2.23) is utilized, the PSD of y using the optimal

prefilter Hpre (ω) = Stm(ω)
Smm(ω) is equal to

Syy (ω) = E
[
|F {Tywt (wt −Hprewm)}|2

]
= |Tywt (ω)|2 E

[
|Wt (ω)−Hpre (ω)Wm (ω)|2

]
= |Tywt (ω)|2 E

[∣∣∣Wt (ω)− Stm(ω)
Smm(ω)Wm (ω)

∣∣∣2]
= |Tywt (ω)|2 Stt (ω)

(
1− γ2

tm (ω)
)
,

(2.27)

where γ2
tm (ω) is the magnitude-squared coherence between the lidar measurement and the true

disturbance at the turbine:

γ2
tm (ω) =

|Stm (ω)|2

Stt (ω)Smm (ω)
. (2.28)

Using the optimal prefilter, the MSE, as a function of frequency, between ŵt and wt is given by

E
[
|Wt (ω)−Hpre (ω)Wm (ω)|2

]
= Stt (ω)

(
1− γ2

tm (ω)
)
. (2.29)

Integrating (2.27) yields the minimum output variance that can be achieved:

Var (y) =
1

π

∫ π

0
|Tywt (ω)|2 Stt (ω)

(
1− γ2

tm (ω)
)
dω. (2.30)

Comparing the optimal variance in the frequency domain from (2.30) with (2.18) reveals that as a

function of frequency, the relative reduction in the variance of y using optimal feedforward control

compared to no feedforward control is provided by the simple expression

Var
(
YCFF=CFF,opt (ω)

)
Var (YCFF=0 (ω))

= 1− γ2
tm (ω) . (2.31)

Equation (2.30) reveals that by employing the optimal prefilter, the variance of the output vari-

able will be reduced at all frequencies where the measurement coherence is greater than zero. At
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frequencies where the coherence is equal to zero, the prefilter removes all of the lidar measurement

content, and therefore the feedforward control action, to avoid harming the control system perfor-

mance. Thus by introducing the optimal prefilter to the feedforward control scenario, feedforward

control will never increase the output variance, even for very large measurement error.

2.3 Minimum Mean Square Error Measurement Filter with Preview Time

Constraints

In practice, the prefilter in (2.24) that produces the optimal Var (y) given in (2.30) cannot be

implemented because of finite preview time. The MMSE Hpre in (2.24) can result in a non-causal

impulse response requiring infinite preview time. However, time-domain techniques can be used

to find the MMSE Wiener filter for estimating wt with preview constraints imposed. Because the

lidar measures the upstream wind a time interval of approximately d/U before the wind reaches

the turbine, a maximum of fsd/U samples of filter preview exist, where fs is the lidar sampling

rate. If n = 0 represents the time sample when the wind speed of interest is measured, the prefilter

can operate on the lidar measurement from n = −∞ to n = fsd/U . Letting Np indicate the chosen

number of samples of filter preview and Nh represent the number of samples of filter history, or

memory, an estimate of wt can be formed using the finite impulse response filter hpre as

ŵt [n] =

Np∑
k=−Nh

hpre [−k]wm [n+ k] . (2.32)

Given the filter constraint of hpre [n] = 0 for n < −Np and n > Nh, the MMSE Wiener filter

is found by solving the discrete-time Wiener-Hopf [70] equation

hpre = R−1
mmRtm (2.33)

for the vector of filter coefficients hpre. The positive semidefinite Toeplitz matrix Rmm contains

values of the lidar measurement autocorrelation function Rmm [n]:

Rmm =


Rmm [0] · · · Rmm [Nh +Np]

...
. . .

...

Rmm [Nh +Np] · · · Rmm [0]

 . (2.34)
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The vector Rtm contains values of the cross-correlation function Rtm [n] between wt and wm:

Rtm =

[
Rtm [−Np] · · · Rtm [Nh]

]T
. (2.35)

When using the optimal prefilter hpre described in (2.33) with filter preview and memory con-

straints, the MSE in ŵt is easily calculated [70] using

E
[
(wt − ŵt)2

]
= Rtt [0]−Rtm

TRmm
−1Rtm. (2.36)

2.3.1 Minimum Output Variance Measurement Filter with Preview Time Con-

straints

While the optimal prefilter without preview time constraints (2.24) produces both the MMSE

estimate of the true wind disturbance and the minimum output variance when combined with

the ideal feedforward controller, the MMSE filter derived with preview time constraints (2.33) is

not guaranteed to achieve the minimum output variance. For example, because of preview time

constraints the filter in (2.33) cannot, in general, minimize measurement error at all frequencies.

Although the filter minimizes MSE as much as possible given the time constraints, it does not

necessarily minimize error at the frequencies that have the greatest impact on output variance, i.e.,

where |Tywt (ω)|2 is large.

Following the expression given in (2.4), the output variance can be written in the time domain

as

Var (y) = E
[
|tywt ∗ (wt − hpre ∗ wm)|2

]
= E

[
|tywt ∗ wt − hpre ∗ (tywt ∗ wm)|2

]
,

(2.37)

where tywt represents the impulse response of the closed-loop transfer function Tywt and ∗ indicates

convolution. Note that the second line of (2.37) uses the linearity and commutative properties of

the convolution operator [67].

The second line of (2.37) can be interpreted as the MSE between w̃t and hprew̃m using the
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following definitions:

w̃t = tywt ∗ wt (2.38a)

w̃m = tywt ∗ wm. (2.38b)

Therefore the variance of y can be minimized given filter time constraints using the traditional

Wiener filtering methods described in the previous section. Specifically, the minimum variance

filter can be found using the following Wiener-Hopf equation:

hpre = R−1
m̃m̃Rt̃m̃, (2.39)

where Rm̃m̃ and Rt̃m̃ are defined in terms of the variables w̃t and w̃m. Analogous to (2.36), the

variance of y resulting from the prefilter defined in (2.39) combined with the ideal feedforward

controller can be expressed as

Var (y) = Rt̃t̃ (0)−Rt̃m̃
TRm̃m̃

−1Rt̃m̃. (2.40)

2.4 Discussion and Conclusions

As discussed in this chapter, the performance of a feedforward control system strongly de-

pends on the accuracy of the preview disturbance measurements. A simple model-inverse feedfor-

ward control scenario was analyzed in this chapter, where the objective is to minimize the variance

of an output error variable. Such lidar-based feedforward control scenarios are of interest in the

wind turbine control community. For example, in the field tests discussed in Schlipf et al. [44] and

Scholbrock et al. [43] feedforward collective blade pitch controllers were added to existing feedback

loops to improve rotor speed regulation. The results of this chapter indicate that if a controller

is designed assuming perfect preview measurements, then under certain conditions the presence

of measurement error can cause the feedforward controller to harm the control system’s perfor-

mance. However, if a MMSE measurement prefilter formed using knowledge of the measurement

error statistics is employed, feedforward control will always reduce output variance at frequencies
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where the measurement coherence is non-zero; when coherence is zero, the filter blocks all feedfor-

ward control action so as not to harm the system’s performance. Even for control scenarios that

are more complex than the simple model-inverse feedforward scenario presented here, the MMSE

prefilter can still be employed to minimize measurement error, where the resulting MSE can be

characterized using the measurement coherence function. As a result, much of the remainder of

this thesis is devoted to determining values of measurement coherence and MSE, assuming optimal

prefiltering, that are likely to be achieved in realistic measurement scenarios. Finally, the optimal

prefilter discussed in this chapter depends on statistics of the error between the lidar measure-

ment and the true wind disturbance, yet the true wind disturbance that interacts with the turbine

cannot be directly measured. Instead, as explained in Chapter 6, a wind speed estimator using

measurable turbine outputs can be used to estimate the true wind disturbances. Part of Chapter 7

focuses on how the optimal prefilter with preview time constraints can be derived based on the

lidar measurements and wind speed estimator outputs.
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Chapter 3

Wind Field Modeling

The behavior of a wind field can be characterized using frequency-domain statistics describing

the power spectra of the wind speeds at individual points in space as well as the correlation between

wind speeds at different locations. A common assumption made in wind field modeling is that

turbulent wind speeds are distributed as Gaussian random variables [71]–[74], in which case the

wind field model can be completely described using power spectra and spatial coherence functions

for all points in space relevant to the wind turbine. Time-domain realizations of wind fields with

the chosen frequency-domain statistics can be generated using techniques described in Veers [72]

and Mann [74], where the Veers method is implemented in NREL’s TurbSim stochastic wind field

generator [71]. Commonly-used power spectra and spatial coherence functions for modeling the

wind field are described in Section 3.1. However, common wind field models do not include spatial

coherence in the longitudinal direction (mean wind direction), instead relying on the assumption

that wind speeds remains perfectly correlated as they travel downstream at the mean wind speed.

A more realistic longitudinal coherence model, used in this research, is presented in Section 3.2. A

simple model of how the flow upstream of a turbine, in the turbine’s “induction zone,” is affected

by the presence of the rotor is included in Section 3.3. Finally, models of the effective wind speed

variables experienced by a wind turbine, which are relevant to control, are defined in Sections 3.4

and 3.5. Section 3.4 defines the effective wind speed experienced by a single blade, using the the

three-bladed NREL 5-MW reference wind turbine model analyzed in this thesis as an example,

while Section 3.5 describes how “rotor effective” wind speed variables can be described using three
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“blade effective” wind speeds for a three-bladed wind turbine.

3.1 Turbulence Models

The coordinate system used to define the wind field is shown in Fig. 3.1, where the longitudinal

x direction is aligned with the mean wind direction, the transverse y direction is perpendicular to

x in the horizontal direction, and the z direction is aligned vertically. These coordinate axes are

defined such that x is negative upstream of the rotor, y is positive on the left side of the turbine hub

when viewing the turbine from upstream, and the positive z direction points upward. Therefore, the

x, y, and z directions are identical to the commonly-used boundary-layer meteorology convention

of streamwise, cross-stream, and vertical directions. While some wind field definitions place the

origin of this coordinate system at the base of the turbine tower [71], in the definition used here

the origin is in the center of the rotor at the turbine’s hub. Wind speed values are described using

a three-dimensional vector where the longitudinal u, transverse y, and vertical w components are

aligned with the x, y, and z directions, respectively. The dimensions of the NREL 5-MW reference

wind turbine model used in this thesis are included in Fig. 3.1, where the turbine’s hub-height zHH

is 90 m above the base of the tower, the rotor diameter is D = 126 m, and therefore the rotor

radius, or blade span, is R = 63 m [8]. Although the NREL 5-MW reference model contains a

rotor shaft tilt angle of 5◦ and a rotor precone angle of 2.5◦ to avoid tower strikes by the blades [8],

these angles are ignored for simplicity in most of the analyses in this thesis. As a result, when the

turbine is aligned with the wind direction (zero yaw error), the x axis is perpendicular to the rotor

plane.

Frequency-domain wind field statistics are defined under the assumption that the wind speeds

remain stationary for the period of time when the wind field is analyzed. That is, the power

spectrum and spatial correlation statistics are time-invariant while the wind field is analyzed.

Wind speeds throughout the wind field are characterized by their mean values as well as their

turbulent fluctuations. Unless otherwise stated, the mean transverse and vertical wind speeds are

assumed to be zero, while the mean longitudinal wind speed at the turbine’s hub-height is denoted
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Figure 3.1: Coordinate system used for the wind field definition, where the positive longitudinal x
direction is aligned with the mean wind direction and the transverse y and vertical z directions are
perpendicular to x. The wind speed vector is comprised of the longitudinal u, transverse v, and
vertical w components, which are aligned with the x, y, and z directions, respectively. The origin
of the coordinate system is defined as the turbine’s hub location. Therefore, the base of the tower
is located at z = −zHH , where zHH is the height of the hub above the ground. When there is
zero yaw error and the vertical tilt angle of the rotor is ignored, which is assumed during most of
the analyses in this thesis, then the turbine’s rotor is perpendicular to the longitudinal x direction.
The dimensions of the NREL 5-MW reference turbine model used throughout this thesis are shown,
where zHH = 90 m and the rotor diameter is D = 126 m (the rotor radius is R = 63 m). Finally,
the azimuth angle ψ of a blade within the rotor plane is defined as 0 at the top of its rotation and
increasing in the clockwise direction when the rotor is viewed from upstream.

as U . Although the atmospheric boundary layer where wind turbines are located typically contains

vertical wind shear, i.e., the variation of mean wind speed with height, typically increasing with

height [71], wind shear is ignored in most of the analyses in this thesis. Instead, it is assumed that

the mean wind speed U applies to all locations in the wind field. This simplification is made because

lidar measurements of the mean shear component are perfectly correlated with the mean shear

that interacts with the turbine and therefore do not contribute to measurement error; only time-

varying wind speed components contribute to measurement error, assuming optimal measurement

prefiltering is employed. Furthermore, by ignoring mean wind shear wind fields can be potentially

treated as “axisymmetric,” which allows the frequency-domain calculations of measurement error
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to be greatly simplified, as explained in Section 5.1. However, by assuming zero mean wind shear,

measurement errors caused by wind speeds measured at different heights arriving at the rotor after

different time delays are not included.

3.1.1 Power Spectra

Power spectra are used to define the frequency content of turbulence. Two standard tur-

bulence definitions used throughout this thesis are provided here, including the Kaimal and von

Kármán models [71, 75]. The Kaimal turbulence model, defined in the International Electrotechni-

cal Commission (IEC) standard [75] and implemented in TurbSim [71], is described by the following

power spectrum:

SKK (f) =
4σ2

KLK/U

(1 + 6fLK/U)5/3
, (3.1)

where K ∈ {u, v, w} represents the wind component, σK is the standard deviation of the wind

speed, and LK is the integral length scale of the turbulence, defined as

LK =
U

σ2
K

∫ ∞
0

RKK (t) dt, (3.2)

with RKK (t) representing the autocorrelation function of the time-varying component of the wind.

As defined by the IEC standard [75], LK is determined as

LK =


5.67 ·min (60 m, zHH) , K = u

1.89 ·min (60 m, zHH) , K = v

0.462 ·min (60 m, zHH) , K = w,

(3.3)

where zHH is the turbine’s hub height. For the Kaimal model, the mean wind speed U and u

component standard deviation σu are free parameters, while the v and w component standard

deviations are defined as σv = 0.8σu and σw = 0.5σu.

The von Kármán turbulence power spectrum is defined as

Suu (f) =
4σ2

uLu/U(
1 + 71 (fLu/U)2

)5/6
(3.4)
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for the u component and

SKK (f) =
2σ2

KLK/U(
1 + 71 (fLK/U)2

)11/6

(
1 + 189 (fLK/U)2

)
(3.5)

for K ∈ {v, w}, where the integral length scale is defined as

LK = 2.45 ·min (60 m, zHH) (3.6)

for all three wind components. The turbulence standard deviations of all three components are

treated as being equal (σw = σv = σu), although in the atmospheric boundary layer it is more

realistic to have σu > σv > σw [71, 73]. As opposed to the Kaimal spectral model, the von Kármán

model contains isotropic turbulence in the transverse and vertical directions, i.e., the v and w

turbulence statistics are identical. Note that the Kaimal and von Kármán models use a single set

of power spectra to describe wind speeds at all points in the wind field. Other models such as

NREL’s Great Plains low-level jet model [71], analyzed in Simley et al. [39], contain turbulence

spectra that vary with height.

Fig. 3.2 provides plots of the power spectral densities of all three wind components for the

Kaimal and von Kármán turbulence models using the NREL 5-MW model’s rated wind speed

U = 11.4 m/s and u component turbulence intensity TIu = 15%, roughly equivalent to the IEC

Normal Turbulence Model Class C turbulence intensity [71]. Note, however, that the turbulence

intensity simply scales the power spectra. Turbulence intensity (TI) is defined as the ratio between

the turbulence standard deviation and the mean longitudinal wind speed expressed as a percentage.

Thus the corresponding u component standard deviation is σu = 1.71 m/s. The PSDs are normal-

ized by frequency in Fig. 3.2 (b). By multiplying a spectrum by frequency, the visible area under

the curve between any two frequencies represents the fraction of the turbulence power contained in

that frequency band when compared to the total area under the curve. As revealed in Fig. 3.2, the

primary differences between the turbulence spectra are at low frequencies; at high frequencies, the

spectra approach a f−5/3 slope. For the Kaimal model, the smaller length scales for the v and w

components result in smaller spatial scales, or more of the turbulence power being concentrated at
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Figure 3.2: Turbulence power spectral densities for the Kaimal and von Kármán models for all three
wind components. (a) Unaltered power spectral densities. (b) Power spectral densities multiplied
by frequency revealing the dominant frequencies of the turbulence. All spectra are generated with
U = 11.4 m/s and TIu =15%.

higher frequencies. The lower variance of the v and w components can be noted as well, keeping in

mind that the integrated power spectrum is equal to the variance. As defined in (3.1), (3.4), and

(3.5), the variance is equal to the one-sided integral of the power spectrum from 0 Hz to∞. For the

von Kármán turbulence model, the dominant frequencies for the v and w components are slightly

higher than for the u component, even though the variance is the same for all three components.

3.1.2 Spatial Coherence

To complete the frequency-domain wind field model, the correlation between wind speeds at

different spatial locations must be defined. In the IEC standard [75], the correlation as a function

of frequency between wind speeds at two points ~x1 and ~x2 is defined using the following magnitude-

squared coherence function:

γ2
yz,K~x1

K~x2
(f) = exp

−2α

√(
f∆yz

U

)2

+

(
β

∆yz

LK

)2
 , (3.7)
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where ~x = [x, y, z], ∆yz is the distance between the two points in the y and z directions:

∆yz =
√

(y2 − y1)2 + (z2 − z1)2, (3.8)

α = 12, and β = 0.12. Note that this spatial coherence formula does not include any dependence

on the spatial separation in the x direction, which will be discussed later. In the IEC standard,

(3.7) only applies to the u component (K = u), while the spatial correlation for K ∈ {v, w} is

defined as zero for any ∆yz > 0:

γ2
yz,K~x1

K~x2
(f) =

1, [y1, z1] = [y2, z2]

0, [y1, z1] 6= [y2, z2] .
(3.9)

However, for the analyses in this thesis, it is assumed that the spatial coherence formula presented

in (3.7) applies to all wind components (K ∈ {u, v, w}). Including non-zero spatial correlation for

∆yz > 0 is believed to be a more realistic approach, as confirmed by the field measurements that led

to the development NREL’s Great Plains-Low Level Jet model [71]. Following the suggestions in

the IEC standard [71, 75], the correlation between different wind speed components (i.e., K1 6= K2)

is assumed to be zero regardless of spatial separation.

Spatial coherence curves calculated using (3.7) are plotted in Fig. 3.3 for the u, v, and

w components, using the integral length scale values defined by the Kaimal and von Kármán

turbulence models in (3.3) and (3.6), for spatial separations of ∆yz = 15.75 m, 31.5 m, and 63 m

(0.25, 0.5, and 1 R for the NREL 5-MW reference turbine). In addition to decaying as frequency

increases, the spatial coherence decreases as the spatial separation ∆yz increases. As exhibited by

the coherence curves for the v and w components using the Kaimal turbulence models, the spatial

coherence decreases as the turbulence length scale becomes smaller as well.

The lack of any dependence on spatial separations in the x direction in the spatial coherence

formula in (3.7) stems from the traditional application of Taylor’s frozen turbulence hypothesis [76]

in wind field simulation [71]–[74]. Taylor’s hypothesis is a simplification used to relate the behav-

ior of wind speeds along the longitudinal direction to the time behavior of the wind speed at a

fixed point through the mean wind speed U , resulting in the following relationship between the
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Figure 3.3: Transverse and vertical spatial coherence curves for the u, v, and w components us-
ing parameters from the Kaimal and von Kármán turbulence models for spatial separations of
∆yz = 15.75 m, 31.5 m, and 63 m (0.25 R, 0.5 R, and 1 R) with U = 11.4 m/s.

longitudinal position of a wind speed variable and its time index:

~u[x+δx, y, z] (t) = ~u[x, y, z] (t− δx/U) , (3.10)

where ~u = [u, v, w]. Equation (3.10) states that for fixed y and z coordinates, the value of a wind

speed variable at a longitudinal location shifted by δx is equal to the value of the original wind speed

shifted in time by δx/U . In other words, by applying Taylor’s hypothesis, turbulent wind speeds

simply “march” downstream at the mean wind speed without changing. As a result, for fixed y

and z coordinates, the spatial coherence is equal to 1 regardless of the longitudinal separation. The

spatial coherence between wind speed component K at any two locations ~x1 and ~x2 is therefore

simplified as

γ2
K~x1

K~x2
(f) = γ2

yz,K~x1
K~x2

(f). (3.11)

While the spatial coherence is unaffected by the longitudinal separation, the phase between

wind speeds at two different locations depends solely on the longitudinal separation according to

traditional wind field modeling methods [71]–[74]. As long as wind speeds at two different locations
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have the same longitudinal position, the average phase difference between them is 0. By solving

the coherence equation (2.8) for the magnitude of the CPSD and applying the proper phase shift,

the cross spectrum between the wind speed component K at locations ~x1 and ~x2 can be expressed

as

SK~x1
K~x2

(f) =
√
SK~x1

K~x1
(f)SK~x2

K~x2
(f) γ2

K~x1
K~x2

(f)ej2π(x2−x1)f/U , (3.12)

where the phase is given by the time lag (x2 − x1) /U between the two wind speeds using Taylor’s

hypothesis multiplied by the angular frequency.

3.2 Wind Evolution Modeling

While Taylor’s frozen turbulence hypothesis is acceptable in traditional wind turbine simu-

lation, where the range of longitudinal locations experienced by the rotor is very small, it is less

appropriate for the analysis of preview-based control of wind turbines. Measurement error can

be underestimated by assuming that the measured wind simply marches toward the rotor with-

out changing or “evolving.” Thus models of “wind evolution” have been employed using spatial

coherence formulas for spatial separations in the longitudinal direction, denoted as γ2
x,K~x1

K~x2
(f).

Section 3.2.1 describes existing wind evolution models that have been used for lidar-assisted con-

trol investigations, including their potential shortcomings, while Sections 3.2.2 and 3.2.3 describe a

wind evolution model based on wind speed data from computational fluid dynamics (CFD) simu-

lations performed by researchers at NREL. Finally, Section 3.2.4 discusses methods for combining

longitudinal coherence formulas that describe wind evolution with the spatial coherence function

described in the previous section to form a complete three-dimensional spatial coherence definition.

3.2.1 Existing Longitudinal Coherence Models

A simple exponential decay coherence formula proposed by Davenport [77] and extended to

the longitudinal direction by Pielke and Panofsky [52], which depends on the product between

wavenumber, longitudinal separation, and a decay parameter α, has been used to introduce wind

evolution to calculations of the coherence between lidar measurements and the wind that reaches
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the rotor [50, 63]:

γ2
x,K~x1

K~x2
(f) = e−α∆xf/U , (3.13)

where ∆x = |x1 − x2|. The values of the unitless decay parameter α presented by Pielke and

Panofsky [52] for the exponential decay model range from approximately 10 to 50. Schlipf et al. [50]

find that a decay parameter of 0.4 matches field measurements quite well, but the specific wind

conditions that were analyzed are not specified. Furthermore, it is unclear how the α parameter

depends on turbulence statistics.

An analytic expression for longitudinal coherence in neutral atmospheric conditions, derived

by Kristensen [51], has been used to create four-dimensional stochastic wind fields for assessing

the impact of wind evolution on lidar-based control [34, 36, 40]. The Kristensen model for the u

component is given by

γ2
x,u~x1

u~x2
(f) = e−2αG(fLu/U)

(
1− e−(2αmin {α,1}(fLu/U)2)

−1)2

, (3.14)

where

G(fLu/U) = (33)−2/3 (33fLu/U)2(33fLu/U + 3/11)1/2

(33fLu/U + 1)11/6
(3.15)

and

α =
σ

U

∆x

Lu
. (3.16)

The Kristensen model depends on the mean wind speed U , the integral length scale Lu, the longi-

tudinal separation ∆x, and σ, which is defined as

σ =
√
σ2
u + σ2

v + σ2
w. (3.17)

The definition of σ is related to the turbulent kinetic energy (TKE):

TKE =
1

2

(
σ2
u + σ2

v + σ2
w

)
. (3.18)

While the Kristensen model depends on atmospheric parameters, it has not been validated by field

measurements or CFD simulations. Similar to the transverse-vertical spatial coherence formula in

(3.7), in both the Pielke and Panofsky as well as Kristensen longitudinal coherence formulas the
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coherence decays with increasing frequency, indicating that the high-frequency, small turbulence

scales decay faster than the low-frequency, large scales, and also with increasing spatial separation,

since the turbulent structures have more time to evolve.

In the remainder of this section, longitudinal coherence curves are calculated for a collection

of wind fields representing a variety of mean wind speeds, turbulence intensities, and atmospheric

stability categories generated using large-eddy simulation (LES), a type of CFD. The LES wind

fields were provided by NREL and were generated using NREL’s Simulator fOr Wind Farm Appli-

cations (SOWFA) tool [78]. A simple coherence model similar to (3.7) is then fit to the calculated

coherence curves to determine how the model parameters depend on atmospheric conditions.

3.2.2 Large-Eddy Simulation Wind Fields

A collection of twelve LES wind fields provided and generated by researchers at NREL is

used to determine longitudinal spatial coherence curves for a variety of wind conditions. The wind

fields were generated using NREL’s SOWFA tool [78], which combines a CFD solver based on

OpenFOAM [79] with NREL’s FAST aeroelastic code to simulate the two-way interaction between

the atmospheric boundary layer and a turbine. Note that in this section, only data produced by the

LES portion of SOWFA are utilized; there are no wind turbines located in the portions of the wind

fields analyzed. A domain volume of 3 km × 3 km × 1 km was used to develop the atmospheric

boundary layers. To reduce the computational time, a grid resolution of 12 m was used for most

of the domain, but the wind speeds analyzed are located in a 3 m-resolution grid refinement zone.

Although time steps of 0.02 s were used during simulation, the data analyzed here are only sampled

once per second. The final wind field segments used to calculate coherence curves in this section

are horizontal planes at the NREL 5-MW reference turbine’s hub height of 90 m, extending 385 m

in the longitudinal x direction and 370 m in the transverse y direction. While the original LES

simulations were generated for thousands of seconds to allow boundary layer development, the

segments used for analysis range from 470 to 670 s.

Of the twelve wind conditions simulated, half contain approximately 8 m/s mean wind speeds
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(wind field IDs 1–6) and half contain approximately 12 m/s mean wind speeds (IDs 7–12). For

the two mean wind speed categories, neutral, unstable, and stable conditions were simulated for

both a low turbulence case representative of offshore conditions [80], implemented using a surface

roughness of 2 · 10−4 m, and a high turbulence case representative of onshore conditions, using a

surface roughness of 0.2 m. Atmospheric stability is defined by the vertical gradient of potential

temperature, such that negative gradients, typical of daytime conditions onshore when the surface is

being heated, define unstable conditions while positive gradients, common at night onshore, describe

stable conditions [80, 81]. Neutral stability occurs when the potential temperature remains constant

with height and turbulence is primarily generated by shear caused by the interaction between the

wind flow and the rough surface. In unstable conditions, buoyancy forces tend to produce amplified

turbulence, while in stable conditions, disturbances in the flow are dampened, leading to lower

turbulence levels [80]. The unstable cases were generated using a surface heating rate of 1 K/hr

while the stable wind fields contain a heating rate of −1 K/hr. Further information about SOWFA

and the LES simulation environment can be found in [80] and [82].

Additional details for all LES wind fields are provided in Table 3.1, including the turbulent

kinetic energy, the integral length scale for all wind components, and the turbulence intensity values

for all wind speed components. The integral length scales were calculated by integrating RKK (t)

up to the first zero crossing as described in [83]. Examples of planes of instantaneous wind speeds

for all three stability classes in the U ≈ 12 m/s, high turbulence category are provided in Fig. 3.4,

where the different length scales can be compared.

3.2.3 Development of a Longitudinal Coherence Model

An attempt was made to validate the Pielke and Panofsky coherence model and the Kristensen

formula using the coherence curves calculated from the LES wind fields. However, the values of the

decay parameter α presented in Pielke and Panofsky [52] produce spatial coherence that is much too

low compared to the LES-based calculations, and it is unknown how the decay parameter depends

on specific atmospheric conditions. Contrarily, when using values of σ and Lu calculated from
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Table 3.1: Details of the twelve LES wind fields (IDs 1 through 12) including mean wind speed
(U), stability (N: neutral, U: unstable, S: stable), turbulent kinetic energy, u, v, and w component
integral length scales, and u, v, and w component turbulence intensities (TIu, TIv, and TIw). All
statistics are for a height of 90 m.

ID
U

(m/s)
Stab.

TKE
(m2/s2)

Lu
(m)

Lv
(m)

Lw
(m)

TIu
(%)

TIv
(%)

TIw
(%)

1 8.0 N 0.20 71 37 29 5.5 4.3 3.6

2 8.0 U 0.44 178 156 74 6.9 7.1 6.2

3 8.0 S 0.03 28 19 16 2.1 2.0 1.2

4 8.2 N 0.72 96 46 25 10.3 7.9 6.4

5 8.2 U 1.73 241 231 110 12.8 15.3 10.8

6 8.0 S 0.13 33 19 17 4.7 3.6 2.4

7 12.0 N 0.38 115 45 23 5.3 3.8 3.1

8 12.2 U 1.05 211 156 128 7.3 7.4 5.9

9 11.9 S 0.20 42 21 19 3.9 2.9 2.0

10 11.7 N 1.65 186 35 40 11.8 7.5 6.7

11 10.6 U 2.08 230 90 62 14.1 10.1 8.4

12 11.9 S 0.93 56 26 20 8.5 6.2 4.7

Figure 3.4: Examples of instantaneous u velocities in neutral, unstable, and stable LES wind fields
(IDs 10, 11, and 12) at a height of 90 m with mean wind speeds of approximately 12 m/s and u
component turbulence intensities of 11.8%, 14.1%, and 8.5%, respectively.
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the LES data, the Kristensen model [51] was found to overestimate the coherence. In Fig. 3.5, u

component coherence curves calculated using neutral LES wind field 1 are compared with coherence

curves based on the Kristensen model using U , σ, and Lu values calculated from the LES data for

longitudinal separations of 31.5 m, 63 m, 126 m, and 252 m (0.25, 0.5, 1, and 2 D for the NREL

5-MW model). The LES-based coherence curves shown in Fig. 3.5, as well as those discussed in

the rest of this section, were calculated using Welch’s modified periodogram method [84] with a

Hamming window and 120 s data segments. The spectra are calculated using 550 pairs of wind

speed time series separated by the desired longitudinal distance of ∆x within the wind fields. As

can be seen in Fig. 3.5, the Kristensen model clearly overestimates the LES-based coherence curves.

Examples of longitudinal coherence curves calculated for LES wind conditions representing

the three stability cases are shown by the black curves in Fig. 3.6, once again for pairs of wind

speeds with longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and 252 m. An additional

problem with the Pielke and Panofsky as well as Kristensen models is that as frequency approaches

zero, coherence always approaches 1, but as is evident in the stable coherence curves in Fig. 3.6, this

is not always realistic. A suitable coherence model should therefore allow for non-unity coherence
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Figure 3.5: Comparison between longitudinal u component coherence curves calculated using LES
wind field 1 (see Table 3.1) and coherence curves given by the Kristensen coherence formula for
longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and 252 m. The Kristensen formula
parameters, determined from the LES wind field are U = 8 m/s, σ = 0.63 m/s, and Lu = 71 m.
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at 0 Hz (DC).

The coherence formula similar to (3.7) developed by Thresher [85] for transverse and vertical

separations, and included in various forms in the IEC standard [75] and TurbSim [71] contains a

parameter that creates a bias at DC preventing coherence from approaching 1. This coherence

formula, with ∆x representing the separation distance between wind speeds at points ~x1 and ~x2

in the transverse and vertical plane in the original definition [85], but indicating a longitudinal

separation distance when applied here as a longitudinal coherence function, is defined as

γ2
x,K~x1

K~x2
(f) = exp

−a
√(

f∆x

U

)2

+ (b∆x)2

 , (3.19)

with a and b serving as tuning parameters. When b = 0, (3.19) is identical to the Pielke and

Panofsky model. To determine if (3.19) is a suitable formula, the expression is fit to the LES-based

coherence curves by tuning a and b. Note that only longitudinal coherence for the u component
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Figure 3.6: Longitudinal coherence curves for wind field IDs 10 (neutral, high wind speed, high
turbulence), 5 (unstable, low wind speed, high turbulence), and 3 (stable, low wind speed, low
turbulence). Coherence curves calculated from the LES wind fields are compared with the coherence
formula in (3.19), using the best fit a and b parameters for each wind field, and the coherence model
in (3.21) using a1 =8.4, a2 = 0.05, b1 = 0.25, and b2 = 1.24. Ordered from top to bottom in each
plot, the coherence curves represent longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and
252 m.
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is analyzed in this thesis. For each wind condition, a pair of a and b parameters is chosen by

minimizing the following objective function:

J (a, b) =
1∫ fmax

0 Suu (f) df

N∑
k=1

∫ fmax

0
Suu (f)

(
γ2
x,u~x1

u~x2
(f,∆x,k)− γ2

x,u~x1
u~x2

,LES (f,∆x,k)
)2
df.

(3.20)

The objective function in (3.20) sums the integrated square errors between the LES-based

calculated coherence curves and the longitudinal coherence formula γ2
x,u~x1

u~x2
(f,∆x,k) in (3.19),

weighted by the power spectrum Suu (f) of the u component calculated from the LES wind data,

over N different longitudinal separations. An integration limit of fmax = 0.5 Hz, equal to half

the sampling frequency of the LES data, is used. Weighting the errors by the PSD helps ensure

that error is low at the frequencies where most of the power in the wind is concentrated. The

sum of the errors is normalized by the integral of Suu (f) so that values of J (a, b) for different

wind conditions can be meaningfully compared. The three longitudinal separations of ∆x = 63 m,

126 m, and 252 m (0.5 D, 1 D, and 2 D for the NREL 5-MW reference turbine) were chosen for

the objective function because prior research indicates that the optimal measurement distance for

preview-based control applications is likely to fall in this range [39, 62]. Examples of the resulting

best fit coherence curves are shown by the blue curves in Fig. 3.6.

The best fit a and b parameters found using (3.20) were compared with several atmospheric

variables calculated from the LES wind fields to determine their relationship to the wind conditions.

It was found that a is a strong linear function of the ratio between σ and U . The b parameter,

which determines the value that the coherence approaches as frequency approaches 0, is strongly

proportional to the inverse of the integral length scale. Fig. 3.7 contains the best fit a and b

parameters organized by stability class as functions of σ/U and Lu, respectively. Along with the

best fit parameters, Fig. 3.7 shows the best fit curves relating a and b to σ/U and Lu. The a

parameter is described as a = a1σ/U +a2 and b is expressed in a power-law form: b = b1L
−b2
u . The

final form of the developed longitudinal coherence function is given as:

γ2
x,K~x1

K~x2
(f) = exp

−(a1
σ

U
+ a2

)√(f∆x

U

)2

+
(
b1L
−b2
u ∆x

)2

 , (3.21)
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Figure 3.7: Best fit a and b coherence parameters from (3.19) for all twelve wind fields separated by
stability class along with the best fit curves describing a as a function of σ/U and b as a function
of Lu.

where the best fit parameters relating a and b to σ/U and Lu are a1 = 8.4, a2 = 0.05, b1 = 0.25,

and b2 = 1.24. Examples of coherence curves using the model in (3.21) are provided by the red

curves in Fig. 3.6.

Several interesting trends are revealed by the developed longitudinal coherence function.

First, if the impact of Lu is ignored, relative changes in U will affect coherence more than relative

changes in ∆x due to the dependence of the a parameter on mean wind speed. This behavior is

also present in the Kristensen model, but not in the Pielke and Panofsky formula, which depends

on ∆x and U only through ∆x/U . Second, as integral length scale decreases and more of the

energy in the wind is concentrated at small length scales, the value of coherence approached as f

approaches 0 decreases as well. Since stable boundary layers tend to produce small length scales,

as revealed by Fig. 3.7, low frequency coherence decreases during stable conditions. Finally, as can

be seen in Fig. 3.6, the coherence model is unable to capture the sharp decrease in coherence above

a certain frequency apparent in the stable condition as well as for the 31.5 m separation in the

neutral condition. To summarize the quality of fit for the developed coherence model, Table 3.2

contains errors based on the objective function in (3.20) for each wind condition.

As illustrated in Fig. 3.6 as well as Table 3.2, the developed wind evolution model matches

the measured coherence curves very well for certain wind conditions (e.g., unstable wind field 5),
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Table 3.2: Errors between the developed coherence model in (3.21) and the LES-based coherence
curves, calculated using (3.20).

ID 1 2 3 4 5 6 7 8 9 10 11 12

Model Error (×10−3) 3.4 4.2 11.4 17.8 7.3 6.9 2.4 12.4 3.6 7.7 7.5 10.7

and not as well for others (e.g., stable wind field 3). Additional improvements can be made to the

coherence formula, such as introducing a term to account for the sharp decline in coherence at high

frequencies visible for wind field 3. Furthermore, validation of the evolution model would benefit

from wind conditions with a larger range of mean wind speeds and larger ratios of σ/U .

3.2.4 Combining Transverse-Vertical and Longitudinal Spatial Coherence

It is unclear how the longitudinal coherence formula in (3.21) should be combined with

the transverse-vertical coherence formula in (3.7) to form a three-dimensional spatial coherence

function. Initial investigations of the effect of wind evolution on lidar measurement error used the

assumption that the spatial coherence between wind speeds at points ~x1 and ~x2 is equal to the

product of the longitudinal coherence and the transverse-vertical coherence [18, 34, 50, 64]:

γ2
K~x1

K~x2
(f) = γ2

x,K~x1
K~x2

(f)γ2
yz,K~x1

K~x2
(f). (3.22)

However, an alternate method for combining the two coherence formulas is discussed here, which is

inspired by the exponential decay form of the individual coherence functions. By representing the

longitudinal coherence at a specific frequency as exp (−ax) and the transverse-vertical coherence as

exp (−ayz), the exponents can be combined as exp
(
−
√
a2
x + a2

yz

)
to form the three-dimensional

coherence. In contrast, by combining the separate coherence functions using their product, the

three-dimensional spatial coherence is equivalent to exp (− (ax + ayz)). In a more general form, this

method, which creates a new exponent using the root-of-sum-of-squares (RSS) of the transverse-

vertical and longitudinal exponents is given by

γ2
K~x1

K~x2
(f) = exp

(
−
√

log
(
γ2
x,K~x1

K~x2
(f)
)2

+ log
(
γ2
yz,K~x1

K~x2
(f)
)2
)
. (3.23)
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The RSS method can be interpreted as an extension of the transverse-vertical coherence formula in

(3.7), where the decay exponent depends on the Euclidean distance between the two points in the

y and z directions. If the a and b parameters of the longitudinal coherence formula in (3.21) match

those of (3.7), then the RSS method would imply that the three-dimensional spatial coherence is a

function of the three-dimensional Euclidean distance. Since the parameters are different, though,

the RSS method represents a more general form for combining spatial coherences.

The product and RSS methods for combing spatial coherence curves are compared in Fig. 3.8.

Using neutral, high-turbulence LES wind field 4, described in Table 3.1, coherence curves calculated

at a fixed height of 90 m for all four combinations of ∆yz ∈ {7.875 m, 15.75 m} (0.125 R and 0.25 R)

and ∆x ∈ {15.75 m, 252 m} (0.125 D and 2 D) are compared with the product and RSS methods

for combining the individually calculated longitudinal and transverse-vertical coherence curves. As

can be seen in Fig. 3.8, the product method tends to underestimate the true spatial coherence,

while the RSS approach is much more accurate. Accordingly, the RSS method for creating three-

dimensional spatial coherence is used for the frequency-domain analyses in this thesis.

Finally, while combining a longitudinal coherence formula with an existing transverse-vertical

coherence model is convenient for forming a simplified statistical definition of a wind field, other

methods of defining spatial coherence in all three dimensions exist. For example, a spectral wind

field definition developed by Wilczek et al. [86] describes the u component coherence in the longi-

tudinal and transverse dimensions using one unifying analytic formula.

3.3 Induction Zone Modeling

Due to the extraction of energy from the wind by a wind turbine, the induced velocities both

upstream and downstream of the turbine are reduced compared to the freestream wind speed. As

derived using a simple actuator disk model of a horizontal axis wind turbine in steady flow [7], a

turbine’s power coefficient CP , defined in (1.1), is a function of the axial induction factor a, where

a is defined as the fraction of the freestream wind speed U∞ that the wind speed is reduced by at
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Figure 3.8: Combined transverse-vertical and longitudinal coherence curves for transverse-vertical
separations ∆yz = 7.875 m and 15.75 m with longitudinal separations ∆x = 15.75 m and 252 m
determined from LES wind field 4. The true coherence curves (black) are compared with the
product of the measured transverse-vertical and longitudinal coherence curves (blue) and the expo-
nential decay coherence formula using the root-of-sum-of-squares (RSS) of the transverse-vertical
and longitudinal decay constants (red).

the rotor disk:

a =
U∞ − Udisk

U∞
, (3.24)

where Udisk is the wind speed at the rotor disk. Specifically, using linear momentum theory [7], the

coefficient of power CP can be expressed as

CP = 4a (1− a)2 . (3.25)

The well-known optimal induction factor which maximizes power capture is a = 1/3. As explained

in Medici et al. [53], vortex sheet theory can be applied to the actuator disk model to determine the

velocities at all distances upstream and downstream of the rotor. Using this vortex sheet theory

formula [53], the wind speeds along the “symmetry axis”, which passes through the center of the

rotor disk perpendicular to the disk, are shown in Fig. 3.9 expressed in terms of a and plotted as a

function of the distance from the rotor in units of rotor diameters D. The region upstream of the
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Figure 3.9: Example of mean longitudinal velocities along the axis perpendicular to the rotor center
expressed in terms of freestream mean wind speed U∞ and axial induction factor a. The velocities
are calculated assuming an actuator disk in steady flow using the formula based on vortex sheet
theory presented in Medici et al. [53].

rotor where the induced wind speeds are reduced is called the “upstream induction zone” or simply

the “induction zone.” In addition to the reduction in longitudinal wind speed in the induction

zone, application of conservation of mass indicates that a streamtube passing around the rotor disk

expands as the distance upstream of the rotor decreases [7]. Thus the mean radial wind speeds

(perpendicular to the longitudinal direction, oriented away from the rotor center) are non-zero close

to the rotor to produce this expansion. The rest of this section is devoted to describing a model

of the induction zone for the full region upstream of the rotor, not confined to the symmetry axis,

that can be used to analyze the impact on lidar measurement quality.

3.3.1 Development of an Induction Zone Model based on Large-Eddy Simulation

The impact of the induction zone on lidar measurements is investigated using NREL’s

SOWFA code [78] with the NREL 5-MW reference turbine model [8]. As discussed in Section 3.2.2,

SOWFA models the two-way interaction between the wind and the turbine using LES coupled with

FAST. As opposed to FAST, which only calculates the induced velocities at the blade locations, this

allows an induction zone to develop upstream of the rotor. As explained in Simley et al. [62], the

wind turbine aerodynamic effects are modeled using an actuator line representation of the blades.

Each blade is treated as a line that rotates through the wind field. Each line is divided into small
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segments, each with a center point. Velocity is sampled at the center point of each line segment and

passed to FAST. The aerodynamics module in FAST uses airfoil lift and drag tables to compute

the aerodynamic forces at each blade section. Those forces are then passed both to the structural

dynamics module in FAST and also back to SOWFA’s CFD solver. The CFD solver applies the

computed blade forces along the actuator lines as body forces. These body forces create the axial

induction zone, the rotor wake, and blade root and tip vortices. The impact of the nacelle and

tower on the flow is not modeled however.

A 1000 s simulation of the rotor-wind field interaction was produced by researchers at NREL

using neutral, low-turbulence LES wind condition 1 with U = 8 m/s described in Table 3.1. At

the below-rated wind speed U = 8 m/s, the 5-MW reference turbine operates at its maximum

coefficient of power (CP = ∼0.48), yielding an axial induction factor of ∼ 0.18 according to (3.25).

More details about the specific simulation parameters can be found in Simley et al. [62]. The mean

velocity field near the turbine produced by this simulation, including the flow perturbed by the

turbine, is shown in Figure 3.10. The U component reductions upstream of the turbine clearly vary

with the radial distance from the rotor center. The U velocities also vary with height, due to the

vertical wind shear across the height of the rotor present in the LES wind field. The radial wind

speed components, which are oriented away from the rotor center, perpendicular to the longitudinal

direction, (V in the top view plot and W in the side view plot) illustrate the expansion of the wind

field around the rotor due to conservation of mass. As revealed by the mean W velocities in the top

view plot and the V velocities in the side view plot, the mean tangential velocities, aligned with

the rotor’s rotational direction, are zero upstream of the rotor, but strong downstream of the rotor

in the turbine’s wake. The non-zero tangential velocities indicate wake rotation, which is caused

by tangentially induced velocities at the rotor [7].

Whereas Fig. 3.10 revealed the behavior of the mean wind speeds upstream of the turbine,

Fig. 3.11 contains plots of the wind speed standard deviations in the induction zone for all three

wind components. While the standard deviation of the turbulence is heavily impacted by the rotor

in the turbine’s wake, there is little effect upstream of the rotor. The turbulence standard deviation
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Figure 3.10: Mean U , V , and W component wind speeds near the NREL 5-MW reference turbine
in neutral LES wind field 1, with freestream mean wind speed U = 8 m/s, generated using SOWFA.
The x coordinates are expressed in meters as well as rotor diameters (D = 126 m).

increases close to the rotor in the upstream induction zone, but in the region farther upstream of the

rotor where lidar preview measurements are likely to occur (43–154 m, or 0.34–1.22 D, upstream

of the rotor, as revealed in Chapter 5), there is very little change in the turbulence.

A model of the mean velocity changes in the induction zone based on the LES results shown

in Figs. 3.10 and 3.11 is created by averaging the mean longitudinal and radial wind speeds on both

sides of the rotor at hub height. Thus the induction zone model is a function of the longitudinal

location and radial distance from the rotor center, assuming symmetry about the x axis. Because the

mean tangential velocities and turbulence standard deviations are not significantly altered upstream

of the turbine, they are not included in the simplified induction zone model. Fig. 3.12 contains the

mean longitudinal wind speed reductions, expressed as a fraction of the freestream mean wind speed

U∞, and wind direction changes that comprise the induction zone model. Specifically, Fig. 3.12 (b)

illustrates the wind direction changes caused by non-zero mean radial wind speeds using streamlines

passing through the mean flow field.

Note that the induction zone behavior shown in Fig. 3.12 corresponds to a specific turbine
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Figure 3.11: Standard deviations of the u, v, and w components near the NREL 5-MW reference
turbine in neutral LES wind field 1, with freestream mean wind speed U = 8 m/s, generated using
SOWFA. The x coordinates are expressed in meters as well as rotor diameters (D = 126 m).

operating point, with an axial induction factor of a = ∼0.18. When the wind speed exceeds

11.4 m/s, the NREL 5-MW reference turbine’s rated wind speed, however, the axial induction factor

decreases in order to regulate power capture. Thus, the induction zone behavior for an arbitrary

mean freestream wind speed is determined by assuming that the mean wind speed changes are

linearly related to the axial induction factor. Note that while the vortex sheet theory formula

presented in Medici et al. [53] describes the velocity reductions along the symmetry axis as being

linearly related to the induction factor, further analysis using LES is required to determine if the

velocity reductions as well as radial wind speeds at all locations in the induction zone can be

reasonably approximated as being linearly related to a as well. If δx represents the longitudinal

position upstream of the rotor and δyz indicates the radial position, then the mean wind speed

U (δx, δyz) for a specific axial induction factor a corresponding to mean freestream wind speed U∞

is determined by

U (δx, δyz) = U∞

(
1− a

a0

(
1− U0 (δx, δyz)

U∞,0

))
, (3.26)
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(a) Mean velocity reductions in the induction zone.
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(b) Streamlines of the mean wind velocities in the induction zone.

Figure 3.12: Axisymmetric model of the induction zone based on the NREL 5-MW reference turbine
in neutral LES wind field 1, with freestream mean wind speed U = 8 m/s, generated using SOWFA.
(a) Mean longitudinal wind speed reductions normalized by the freestream wind speed U∞ = 8 m/s.
(b) Streamlines created using the mean longitudinal and radial wind velocities.

where U∞,0 = 8 m/s, a0 = 0.18, and U0 (δx, δyz) /U∞,0 corresponds to the velocity reductions plotted

in Fig. 3.12 (a). Similarly, the radial wind speed V (δx, δyz) is determined as

V (δx, δyz) =
a

a0

U∞
U∞,0

V0 (δx, δyz) , (3.27)

where V0 (δx, δyz) represents the mean radial wind speeds corresponding to a0 = 0.18 and U = 8 m/s.

The corrected radial velocity is then projected onto the proper transverse and vertical directions,

depending on the specific position (i.e., azimuth angle) in the wind field.

In addition to the CFD-based analysis of the induction zone presented in this section, Ap-

pendix A contains results, based on Simley et al. [66], from a field measurement campaign performed
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at the Danish Technical University’s Wind Energy department where three ground-based scanning

lidars were used to measure the mean velocities and turbulence characteristics in the induction

zone of a 225 kW 27 meter rotor diameter wind turbine for a range of mean wind speeds. The

field measurements confirm many of the trends identified in this section, particularly that non-zero

mean radial wind components are present near the rotor due to the expansion of the wind inflow

around the rotor, that the mean tangential velocities in the induction zone are zero, and that as the

mean wind speed increases, causing the turbine’s induction factor to decrease, the longitudinal ve-

locity reductions and wind direction changes in the induction zone become smaller. Measurements

of turbulence statistics upstream of the rotor show little change in the standard deviation of the

tangential wind component in the induction zone, but a slight decrease in the standard deviation

of the u component and a slight increase in the standard deviation of the radial component. Since

most of the change in turbulence statistics occurs within 0.5 D of the rotor, however, it is unlikely

that the change in turbulence standard deviation will significantly affect lidar measurement quality.

3.3.2 The Impact of the Induction Zone on Wind Evolution

Although there is very little change in the standard deviation of the turbulence components

in the induction zone, except very close to the rotor, the induction zone does affect the longitudinal

coherence describing wind evolution. The impact of the induction zone on wind evolution is assessed

by calculating longitudinal coherence in the SOWFA-generated LES wind field analyzed in this

section for different longitudinal separations along the streamlines shown in Fig. 3.12 (b), both

inside and outside of the induction zone. Specifically, the coherence curves are calculated using

wind speeds at pairs of points upstream of the rotor separated by the desired longitudinal distance

∆x such that the points farthest downstream are longitudinally located at x0 (thus the upstream

points are longitudinally located at x0−∆x). By varying the offset x0 from the rotor hub position,

the dependence of the longitudinal coherence within the induction zone on the proximity to the

rotor can be determined. For longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and 252 m

(0.25, 0.5, 1, and 2 D), Fig. 3.13 contains coherence curves for longitudinal offsets x0 between 0
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and -63 m (-0.5 D), as well as the freestream coherence, using pairs of wind speeds at hub height

across the entire transverse span of the rotor. The freestream coherence curves are calculated using

longitudinal offsets x0 between -252 m and -378 m (2 to 3 D upstream of the rotor).

As revealed by Fig. 3.13, the longitudinal coherence decreases as the offset x0 approaches

the rotor, indicating that wind evolution is more severe within the induction zone than in the

freestream flow. The decrease in measurement coherence is particularly large for offsets of x0 = 0,

at the rotor plane. Note that a peak in the coherence curve for ∆x = 31.5 m and x0 = 0 occurs at

0.45 Hz because this is the blade passage frequency at the below-rated mean wind speed U = 8 m/s;

the points in the wind field used to calculate the coherence curve are sufficiently close to the rotor

to experience periodic induced wind speeds at the blade passage frequency. Some reduction in
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Figure 3.13: Longitudinal coherence curves measured both inside and outside of the induction zone
of the NREL 5-MW reference turbine generated using SOWFA with neutral LES wind field 1 for
longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and 252 m. The coherence curves are
generated for different longitudinal offsets x0 from the hub location between 0 and -63 m using
wind speeds across the entire transverse span of the rotor at hub height. The freestream coherence
curves are generated using wind speed pairs with longitudinal offsets x0 between 252 and 378 m
upstream of the hub location.
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longitudinal coherence is expected within the induction zone, however, because of the reduced

mean wind speeds. As revealed by the developed coherence model in (3.21), as the mean wind

speed is reduced, the longitudinal coherence decays. Therefore, to correct for the mean wind speed

reduction in the induction zone, the developed longitudinal coherence formula is modified using the

effective mean wind speed

U ′ = ∆t~x1,~x2
/∆′x, (3.28)

where ∆t~x1,~x2
indicates the transit time between the wind at points ~x1 and ~x2, calculated by tracing

the point closest to the rotor upstream along its mean streamline to the same longitudinal position

as the other point. The modified ∆′x represents the distance that the point closest to the rotor

travels along its mean streamline beginning at the longitudinal location of the other point. Thus

U ′ yields a lower mean wind speed that slightly reduces longitudinal coherence.

Furthermore, it has been observed that the temporal frequency content of the turbulence

in the induction zone is roughly the same as in the freestream flow. Therefore, the assumption

is made that the spatial scale of the turbulence in the longitudinal direction is reduced, and the

integral length scale parameter used in the developed coherence model is modified by applying the

multiplicative factor U ′/U∞.

In Fig. 3.14, the longitudinal coherence based on the developed model in (3.21) using modified

mean wind speed and length scale parameters representative of the behavior in the induction zone

is compared to the true measured coherence curves. Specifically, the coherence formula in (3.19) is

fit to the measured freestream coherence curves by tuning the a and b parameters such that (3.20)

is minimized for each individual longitudinal separation. Next, the best fit coherence formulas

are corrected using the modified mean wind speeds and length scales in the induction zone for

each longitudinal separation and compared to the measured coherence curves. As can be seen in

Fig. 3.14, the drop in longitudinal coherence in the induction zone cannot be explained by the

change in the effective mean wind speed alone; additional characteristics of the induction zone

contribute to the loss of longitudinal coherence. However, since it is unknown how the longitudinal
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Figure 3.14: Longitudinal coherence curves measured both inside and outside of the induction zone
of the NREL 5-MW reference turbine generated using SOWFA with neutral LES wind field 1 for
longitudinal separations of ∆x = 31.5 m, 63 m, 126 m, and 252 m. The coherence curves inside
of the induction zone are generated for a longitudinal offset from the hub location of x0 = 0 using
wind speeds across the entire transverse span of the rotor at hub height. The freestream coherence
curves are generated using wind speed pairs with longitudinal offsets x0 between 252 m and 378 m
upstream of the hub location. Coherence curves given by the coherence formula in (3.19) are fit
to the longitudinal coherence curves measured outside of the induction zone using the best fit a
and b parameters for each individual longitudinal separation (blue). The best fit coherence curves
with modified mean wind speeds U , accounting for the true transit times along the longitudinal
distances ∆x in the induction zone are shown in red.

coherence loss changes for different wind conditions, the calculations of measurement error in this

thesis using the induction zone model will simply incorporate the modified mean wind speed and

length scale parameters.

3.4 Blade Effective Wind Speeds

Sections 3.1 and 3.2 provide a statistical description of the wind field in which a turbine

operates. This section and the next present approaches for modeling the wind speed variables

of interest for control purposes that a turbine experiences. One approach for modeling the time-
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varying “rotor effective wind speeds” experienced by a turbine is to calculate some spatial average

of the spatially-varying turbulent wind speeds over the entire rotor disk area. In Schlipf et al. [31],

the rotor effective wind speed is determined by averaging the cube of the longitudinal wind speeds

over the rotor disk area weighted by the radially-dependent local contribution to power capture at

each location. The wind speeds are cubed to reflect the dependence of the turbine’s power capture

on the cubed wind speed (see (1.1)). The final rotor effective wind speed is formed by taking the

cube-root of this average. In this section, an alternate way of defining the wind speeds encountered

by the rotor is proposed by treating the rotor as three discrete rotating blades rather than a solid

disk. Section 3.5 presents a method for determining rotor effective wind speed variables using three

“blade effective wind speeds.”

A blade effective weighting function is formed by averaging the wind speeds along the span of

the blade, where the spanwise weighting function is based on the local contribution of wind speed

changes to some variable of interest. For example, wind speeds could be weighted according to the

spanwise contribution to torque, thrust, or out-of-plane blade root bending moment produced along

the blade. First, the distribution of torque production along the blade will be calculated due to

the interest in regulating rotor speed during above-rated operation, which is heavily dependent on

the aerodynamic rotor torque. Following the same calculation approach, the spanwise contribution

to the out-of-plane blade root bending moment will be analyzed as well, due to the interest in

mitigating blade root bending moments using individual pitch control.

The spanwise dependence on torque production along a blade can be calculated using the

blade element momentum (BEM) theory approach implemented in NREL’s AeroDyn aerodynamics

solver [87] as well as NREL’s WT Perf rotor performance code [88]. For a given mean wind speed,

rotor speed, and blade pitch angle, WT Perf calculates a number of variables for different rotor

azimuth angles (indicated by the angle ψ in Fig. 3.1) as a function of the discrete spanwise blade

segment. At spanwise position q and azimuth angle ψi, AeroDyn and WT Perf use BEM methods

to calculate the local torque production δQ (q, ψi) and relate the torque to the local coefficient of
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torque CQ (q, ψi) through the following equation:

δQ (q, ψi) = 1
NbNψ

1
2ρU

2CQ (q, ψi)AAnn (q) q

≈ 1
NbNψ

1
2ρU

2CQ (q, ψi) 2πq2δq,

(3.29)

where U is the wind speed, ρ is the air density, and AAnn (q) is the area of the annulus swept out

by the blade segment centered at a distance q along the blade. For normalization purposes, Nb is

the number of blades comprising the rotor and Nψ is the number of azimuth angle segments that

the rotor is divided into for analysis. The second line of (3.29) results from linearization of the

annulus area as 2πqδq, where δq is the width of the spanwise segment.

Airfoil parameters for the NREL 5-MW reference turbine at 17 spanwise locations [8] are

used to calculate the torque production and coefficient of torque for 24 evenly spaced azimuth

angles using WT Perf. The torque and CQ values are then averaged over all azimuth angles to

form average torque values as a function of spanwise position:

δQ (q) =

Nψ∑
i=1

1

NbNψ

1

2
ρU2CQ (q, ψi) 2πq2δq

= 1
Nb

1
2ρU

2CQ (q) 2πq2δq.

(3.30)

After eliminating all constants in (3.30), the torque production as a function of spanwise position

q along the blade is proportional to

Q (q) ∼ CQ (q) q2. (3.31)

By employing the same approach using WT Perf, the spanwise contribution to the out-of-plane

blade root bending moment Mroot,y can be calculated by multiplying the spanwise contribution

to rotor thrust by the spanwise position q. Because the coefficient of thrust CT is defined in a

similar manner as the coefficient of torque in AeroDyn and WT Perf, the contribution to the out-

of-plane blade root bending moment as a function of spanwise position q along the blade is simply

proportional to

Mroot,y (q) ∼ CT (q) q2. (3.32)

Fig. 3.15 illustrates the spanwise contribution to torque production and blade root bending

moment using (3.31) and (3.32) calculated with WT Perf for a variety of mean wind speeds U
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using parameters for the NREL 5-MW reference turbine model. As plotted, the spanwise weighting

functions are normalized by the peak value of the U = 11.4 m/s curve. At the rated wind speed

11.4 m/s, the blade pitch angle is zero and the torque production is almost a linear function of

spanwise position, neglecting tip and root losses [7]. At the rated wind speed, the contribution to

blade root bending moment is approximately proportional to the square of the spanwise position

along the blade. As the wind speed increases above 11.4 m/s, rotor speed is held constant and the

blades are pitched to maintain 5 MW of power capture, resulting in more of the torque production

and contribution to blade root bending occurring closer to the inboard portion of the blades. At

the cut-out wind speed U = 25 m/s [8], the outboard region of the blade in fact produces enough

drag to negatively contribute to torque production; similarly, the rotor thrust is directed in the

upstream direction at the outboard section of the blades. Note that in below-rated conditions,

where blade pitch angle is held at zero and the tip-speed ratio is almost constant (near the optimal

value to maximize power capture), the spanwise weighting functions are very similar to the curves

shown for the rated wind speed U = 11.4 m/s.

While the curves in Fig. 3.15 show how the torque production and contribution to out-of-
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Figure 3.15: Normalized spanwise contribution to torque production and the out-of-plane blade
root bending moment for the NREL 5-MW reference turbine for mean wind speeds between the
rated wind speed U = 11.4 m/s and the cut-out wind speed U = 25 m/s.
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plane bending moment is distributed along the blade for different above-rated operating points, the

weighting variable used to define the time-varying blade effective wind speed in this thesis is the

spanwise contribution of the deviation of the wind speed to changes in the torque or blade root

bending along the blade. Because of the need to use linear weighting functions when performing

the power spectrum and measurement coherence calculations in Chapters 4 and 5, a linearized

blade effective wind speed definition is used, neglecting the dependence of the blade aerodynamics

on the square of the wind speed. The torque produced by a blade, for example, can be expressed

in linearized form as the mean torque produced at a specific mean wind speed U , mean rotor speed

ωrot, and mean pitch angle β plus the linearized change in torque caused by deviations of the wind

speeds along the blade (u′(q)), rotor speed (ω′rot), and pitch angle (β′) from their mean values:

Q(u, ωrot, β) = Q(U, ωrot, β) +

∫ R

0

δQ(q)

δu
u′(q)dq +

δQ

δωrot
ω′rot +

δQ

δβ
β′, (3.33)

where u′(q) represents the deviation of the wind speed as a function of the spanwise position along

the blade, R is the rotor radius, and δQ(q)
δu represents the partial derivative of the torque production

at spanwise position q with respect to changes in the wind speed. The linearized blade effective

wind speed ub is defined as the single effective wind speed deviation from U present along the entire

span of the blade that would produce the same linearized aerodynamic torque as the actual spatial

distribution of wind speeds at a given time. By replacing u′(q) with ub in (3.33) such that the

linearized torque production remains unchanged, the linearized blade effective wind speed can be

expressed as

ub =

∫ R

0

δQ(q)

δu
u′(q)dq∫ R

0

δQ(q)

δu
dq

. (3.34)

In a more general form, the linearized blade effective wind speed for azimuth angle ψ in the

rotor plane, formed by treating the blade as an infinitely thin line in space and ignoring the vertical

tilt angle of the rotor as well as the rotor precone angle, can be written as

ub,ψ =

∫ R

0
Wb (q)u

q~b
dq, (3.35)
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where Wb (q) is the spanwise dependent blade effective weighting function and u
q~b

represents

the longitudinal wind speed at q~b with ~b defined as the azimuth angle-dependent unit vector

~b = [0,− sinψ, cosψ]. The torque-based blade effective weighting function described in (3.34)

is equivalent to

Wb (q) =
δQ(q)
δu∫ R

0

δQ(q)

δu
dq

. (3.36)

In a similar manner, the blade effective weighting function based on the spanwise sensitivity of the

contribution to the out-of-plane blade root bending moment along the blade to changes in the wind

speed can be written as

Wb (q) =
δMroot,y(q)

δu∫ R

0

δMroot,y(q)

δu
dq

. (3.37)

Note that for simplicity, the transverse v and vertical w wind speed components are not included in

the calculation of blade effective wind speed because they do not affect the rotor aerodynamics as

much as the dominant u component [87]. However, as the mean wind speed increases in above-rated

conditions, the sensitivity of the torque and thrust produced by the rotor to changes in angle-of-

attack along the blade becomes larger. Therefore, the v and w wind components are expected to

have more of an impact on the rotor aerodynamics at higher mean wind speeds during above-rated

operation.

The blade effective weighting functions based on spanwise sensitivity of torque production

or contribution to the out-of-plane blade root bending moment to wind speed deviations given

in (3.36) and (3.37), calculated using WT Perf, are provided in Fig. 3.16 for the same rated and

above-rated mean wind speeds (and corresponding pitch angles) for which the curves in Fig. 3.15

are shown. Although the blade effective weighting functions are defined such that they integrate

to 1 over the span of the blade, they are plotted normalized by the peak value of the U = 11.4 m/s

curves. Contrary to the behavior of the weighting functions plotted in Fig. 3.15 based on the

total spanwise contribution to torque and blade root bending at the mean operating conditions,

the blade effective weighting functions based on the sensitivity of these variables to wind speed
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Figure 3.16: Normalized blade effective weighting functions for the NREL 5-MW reference turbine
model based on the sensitivity of both the spanwise torque production, as well as the spanwise con-
tribution to the out-of-plane blade root bending moment, to changes in wind speed for mean wind
speeds between the rated wind speed of U = 11.4 m/s and the cut-out wind speed of U = 25 m/s.

fluctuations, shown in Fig. 3.16, do not vary significantly as the mean wind speed increases above

the rated wind speed. Essentially, while the spanwise contribution to torque and blade root bending

varies considerably as the wind speed increases and the blades are pitched more to regulate power

capture, thus shifting more of the contribution to the inboard section of the blades, the spanwise

sensitivity to changes in the wind speeds remain almost constant, with the emphasis remaining on

the outboard region of the blade regardless of the operating condition. The largest exception is for

the torque sensitivity-based weighting functions close to the rated wind speed of U = 11.4 m/s,

where the outboard section of the blade is emphasized even more than at higher wind speeds.

Note that the blade effective weighting functions in below-rated conditions, where the blade pitch

angle is kept at zero and the tip-speed ratio is approximately constant, are very similar to the

weighting functions at the rated wind speed, resulting in similar aerodynamic behavior regardless

of the specific mean wind speed.
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3.5 Rotor Effective Wind Speeds

In this section, it is shown how three blade effective wind speeds can be used to determine

rotor effective wind speed variables including the effective uniform wind speed and linear horizontal

and vertical shear components. The individual blade effective wind speeds are converted into rotor

effective variables because it is more common to design control systems that mitigate the effect

of rotor-scale wind disturbances rather than disturbances local to individual rotating blades. For

example, the multiblade coordinate (MBC) transform [38] allows individual pitch control to be

used to reject rotor effective shear disturbances [10, 11] in addition to the effective uniform wind

speed across the rotor. Furthermore, linear models of wind turbine dynamics used for model-based

control are more accurate when calculated in the “non-rotating” frame after applying the MBC

transform [38]. The three blade effective wind speed variables are therefore transformed into an

equivalent rotor effective uniform, or hub-height, component uhh and variables describing the slope

of the linear horizontal (∆h) and vertical (∆v) shears across the rotor in units of m/s/m or 1/s.

Thus the wind speed at a point in space ~x can be written as u = uhh + ∆hy + ∆vz, where uhh is

the wind speed at the hub location, which is also the origin.

By treating the wind field as consisting only of uhh, ∆h, and ∆v components and applying

(3.35), the blade effective wind speed for blade i and rotor azimuth angle ψ can be written as

ubi,ψ = uhh +

∫ R

0
Wb (q)

(
cos

(
ψ +

(i− 1) 2π

3

)
∆vq − sin

(
ψ +

(i− 1) 2π

3

)
∆hq

)
dq, (3.38)

where the azimuth angle of blade i is defined as ψ + (i− 1) 2π/3. Using (3.38), the three blade

effective wind speeds can be related to uhh, ∆h, and ∆v through the following matrix equation:
ub1,ψ

ub2,ψ

ub3,ψ

 = T (ψ)


uhh

∆h

∆v

 , (3.39)
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where

T (ψ) =



1 −
∫ R

0
Wb (q) sin (ψ)qdq

∫ R

0
Wb (q) cos (ψ)qdq

1 −
∫ R

0
Wb (q) sin

(
ψ +

2π

3

)
qdq

∫ R

0
Wb (q) cos

(
ψ +

2π

3

)
qdq

1 −
∫ R

0
Wb (q) sin

(
ψ +

4π

3

)
qdq

∫ R

0
Wb (q) cos

(
ψ +

4π

3

)
qdq


(3.40)

is similar to the MBC transformation matrix discussed in Bir [38].

Because T (ψ) in (3.40) is an invertible matrix, the effective uhh, ∆h, and ∆v components

can be found for any three blade effective wind speeds:
uhh

∆h

∆v

 = T−1(ψ)


ub1,ψ

ub2,ψ

ub3,ψ

 , (3.41)

where

T−1(ψ) =



1
3

1
3

1
3

− 2 sin (ψ)

3

∫ R

0
Wb (q) qdq

− 2 sin (ψ+ 2π
3 )

3

∫ R

0
Wb (q) qdq

− 2 sin (ψ+ 4π
3 )

3

∫ R

0
Wb (q) qdq

2 cos (ψ)

3

∫ R

0
Wb (q) qdq

2 cos (ψ+ 2π
3 )

3

∫ R

0
Wb (q) qdq

2 cos (ψ+ 4π
3 )

3

∫ R

0
Wb (q) qdq


. (3.42)

Equation (3.41) reveals that for a given azimuth angle ψ, three arbitrary blade effective wind speeds

can be transformed into equivalent rotor effective hub-height and linear shear components. Thus

any spatial distribution of wind speeds encountered by the rotor at a particular instance can be

equivalently described as uhh, ∆h, and ∆v components through the use of linear blade effective

wind speeds. As the blades rotate through the spatially-varying turbulent wind field, the blade

effective wind speeds change, producing time-varying rotor effective wind components. Finally,

the shear components are transformed into the alternate definitions used in the AeroDyn [87] and

FAST [9] simulation codes:

δh = D ·∆h/uhh (3.43a)

δv = D ·∆v/uhh, (3.43b)
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where δh and δv describe the difference in the wind speeds across the rotor disk in the horizontal

and vertical directions normalized by the hub-height wind speed.

In the remainder of this thesis, the blade effective weighting function based on the spanwise

sensitivity of torque production to changes in wind speed, defined in (3.36), is used to determine

the rotor effective hub-height component, to reflect the impact of uhh on rotor torque, and therefore

rotor speed fluctuations, which can be addressed using collective pitch control. On the other hand,

the horizontal and vertical shear components are determined using the blade effective weighting

function based on the sensitivity of the out-of-plane blade root bending moment to wind speed

deviations, given in (3.37), since shear has a larger impact on blade root bending moments, which

can be addressed using individual pitch control, than on rotor torque.

3.6 Discussion and Conclusions

This chapter presented a statistical frequency-domain wind field definition including wind

evolution through a developed longitudinal coherence model based on CFD simulations. A simpli-

fied model of the mean wind speed behavior in the turbine’s upstream induction zone was created

based on results from NREL’s SOWFA code, which simulates the two-way interaction between

wind turbines and the atmospheric boundary layer. This induction zone model will be applied in

Chapter 5 to determine how lidar measurement quality is affected by the induced velocities up-

stream of the rotor. Further induction zone results based on field measurements can be found in

Appendix A. Although it was observed that the induction zone also causes the severity of wind

evolution to increase close to the rotor, further work is required to determine how the change in

wind evolution depends on the specific turbine operating conditions and wind conditions. Finally,

the rotor effective hub-height and linear horizontal and vertical shear components that are of inter-

est in wind turbine control applications, and which are to be estimated using lidar measurements,

are defined using the concept of blade effective wind speeds. In order to create this rotor effective

wind speed model, however, the blade effective wind speed definition is simplified by assuming that

the aerodynamic torque is a linear function of the wind speeds along the blade and that the v and
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w components do not affect the torque production. In Chapter 7, the accuracy of the simplified

linear rotor effective wind speed modeling approach is assessed through comparison with the esti-

mated hub-height and shear components resulting from aeroelastic wind turbine simulations using

the wind speed estimator described in Chapter 6. The frequency-domain wind field model and the

rotor effective wind component definitions are applied in Chapter 5 to determine lidar measurement

coherence for different wind conditions and lidar configurations using the lidar model described in

the next chapter.
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Chapter 4

Lidar Modeling

4.1 Lidar Background

Various optical and acoustical methods exist for remotely measuring wind speeds, including

incoherent “direct detection” lidar (light detection and ranging), coherent Doppler lidar, and sodar

(sonic detection and ranging) [13]. Sodar relies on detecting the echo from emitted sound waves

reflecting off of temperature and velocity fluctuations in the wind [13]. The Doppler shift of the

echo is then used to determine the velocity of the wind. However, the background noise as well as

the presence of spurious echos from the ground, etc. make sodar an unattractive option for turbine-

mounted wind speed measurements [13]. Both incoherent and coherent lidar technologies rely on

detecting the light emitted along a laser beam that is backscattered off of aerosols flowing in the

wind, using the basic assumption that the aerosols travel at the same speed as the wind. Incoherent

lidar relies on measuring the intensity of the backscattered light along the beam direction [13, 89].

By tracking how the distribution of the backscattered light intensity along the beam changes over

time, the velocity of the aerosols, and thus the wind, can be determined. However, due to the cost

and size of direct detection lidars, coherent Doppler lidar technology, which is relatively inexpensive

and accurate, has comprised the majority of commercial and research lidars developed for wind

energy applications [13, 89, 90].

Coherent lidar uses the Doppler shift of light that is backscattered off of aerosols in the

wind and collected by the lidar’s telescope to determine the velocity of the wind projected along

the lidar beam direction, also known as the “line-of-sight” velocity [13, 89, 90]. Representing the
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line-of-sight velocity detected by the lidar as ulos, the frequency of the backscattered light is equal

to the frequency of the emitted laser beam plus the following Doppler shift:

δf =
2ulos
λ

, (4.1)

where λ is the laser wavelength, typically in the infrared around 1.5 µm [89]. A heterodyne receiver

is used to mix the transmitted reference laser signal with the backscattered signal. An intensity

proportional to the square of the sum of these two signals is measured by a photodetector, yielding

a constant term as well as a term that is proportional to cos (δf) [89]. By mixing the THz-band

backscattered signal down to the baseband, the heterodyne receiver allows the cos (δf) term to be

digitally sampled so that the Doppler shift frequency can be determined [89, 90]. Through (4.1),

the magnitude of the line-of-sight wind velocity can be estimated in a straightforward manner.

The two main coherent lidar technologies that are widely used in wind turbine control appli-

cations are continuous-wave (CW) lidar [89] and pulsed lidar [90], which can both be implemented

using relatively inexpensive fiber technology developed for the telecommunications industry. In

CW lidar systems, continuously emitted laser light is focused at a specific distance along the beam,

and the majority of the backscattered light is reflected off of aerosols near the focus distance. By

changing the focus distance using a focus motor which moves the end of the laser-emitting fiber rel-

ative to the telescope lens, CW lidars can measure the wind at multiple ranges [89]. Pulsed lidars,

by contrast, can measure the wind at multiple ranges along the beam simultaneously. A pulsed

lidar emits a short pulse of laser light (on the order of 200 ns [91]) and collects the backscattered

light for some duration of time [90]. The wind speed at a particular distance F can be determined

by measuring the Doppler shift of a segment of the backscattered signal measured 2F/c s after the

pulse was emitted, where c is the speed of light and 2F/c is the round-trip travel time from the

lidar to the range of interest. By separating the measured backscattered signal into multiple time

segments, the velocities at a corresponding set of “range gates” can be estimated.

In this section, models of two commercially available lidars are compared: a CW lidar model

based on the ZephIR 300 lidar [89, 91] and a pulsed lidar model similar to the WindCube WLS7 [90,
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91]. Both manufacturers have developed lidars designed for measuring the wind profile using an

upward-oriented ground-based configuration as well as for control applications using a forward-

staring nacelle-mounted configuration. The ZephIR 300 CW lidar technology is capable of providing

velocity measurements at a rate of 50 Hz, but is limited to focus distances of less than approximately

200 m [89]. On the other hand, the pulsed lidar is capable of measuring wind velocities at 30 m-wide

range gates for distances from 40 m to several hundred meters, but samples the wind velocity at a

slower rate, on the order of 1 Hz [90]. In general, however, pulsed lidars can measure at distances

on the order of several km, while CW lidars are limited to a few hundred meters due to inherent

optical limitations [89, 90]. In the remainder of this thesis, a model of the ZephIR CW lidar is used

to analyze preview measurement error for control applications because of the higher sampling rate

and the need to only measure up to 100-200 m upstream of the turbine. However, further details

of the WindCube pulsed lidar are provided in Section 4.1.1 for comparison.

4.1.1 Range Weighting

Neither CW nor pulsed lidar technologies are capable of measuring the wind speed at a single

point in space. Rather than only detecting the wind speed at the focus distance (CW) or the center

of the range gate (pulsed), wind speed values in a volume along the entire length of the laser beam

contribute to the detected line-of-sight velocity, forming a “range-weighted” measurement. Since

the transverse dimension of the laser beam is very narrow compared to the along-range length

of the sampling volume, the sampling volume can be treated as an infinitely thin beam. The

range weighting measurement process can be described as the integral of line-of-sight wind speeds

along the lidar beam weighted according to a range weighting function W` (F, s), where F is the

measurement distance and s represents the range along the beam:

u` =

∫ ∞
0

ulos(s)W`(F, s)ds, (4.2)

with u` representing the lidar measurement [92].

For a CW lidar, when the effects of refractive turbulence on laser propagation are ignored [92],
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the CW range weighting function for a focus distance F is given by

W`(F, s) =


KN

s2 + (1− s
F )2R2

R

, if s ≥ 0

0, otherwise,

(4.3)

where RR is the Rayleigh range and KN is a normalizing constant so that∫ ∞
−∞

W`(F, s)ds = 1. (4.4)

The Rayleigh range, which is defined here as the distance it takes for the cross-sectional area of a

collimated Gaussian beam emitted from the lidar telescope to double, is given by

RR =
πa2

2

λ
, (4.5)

where λ is the laser wavelength and a2 is the e−2 intensity radius of the Gaussian laser beam [92].

The analyses in this thesis assume λ = 1.565 µm and a2 = 2.8 cm, which are similar to the

parameters of the ZephIR 300 Doppler lidar system [89].

Although pulsed lidar systems do not rely on focusing a laser at the range of interest as CW

systems do, their spatial averaging can be similarly described by a range weighting function. The

shape of the pulse emitted by a pulsed system can usually be approximated as Gaussian:

In(F, s) =
1√
πrp

e
− (F−s)2

r2p , (4.6)

where F , although not the “focus distance” as it is for CW lidars, represents the distance to the

center of the range gate of interest and the e−1 half-width of the pulse rp is given by

rp =
∆r

2
√

ln(2)
, (4.7)

where ∆r is the Full-Width-at-Half-Maximum (FWHM) pulse width [93]. Backscattered light

returns are integrated as the Gaussian pulse travels through the range gate volume according to

the range weighting function

W`(F, s) =
1

∆p

∫ + ∆p
2

−∆p
2

In(F, s+ p)dp, (4.8)
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where ∆p is the size of the range gate. After integrating (4.8), in terms of the “Erf” function, the

range weighting function for a range gate centered at a distance F away from the lidar [91, 93] is

given by

W (F, s) =
1

2∆p

{
Erf

(
s− F + ∆p

2

rp

)
− Erf

(
s− F − ∆p

2

rp

)}
. (4.9)

The approximate parameters for the commercially available WindCube WLS7 lidar are ∆r = 30 m

and ∆p = 30 m [91]. The Windcube lidar is actually a hybrid focused/pulsed system with the focus

at a range of about 100 m. This hybrid nature alters the range weighting function slightly from the

derivation in (4.6) through (4.9), but the range weighting function in (4.9) is a good approximation

for the range gate near F = 100 m.

Examples of the range weighting functions in (4.3) and (4.9) for the CW lidar model based

on the ZephIR 300 with focus distances of F = 50 m, 125 m, and 200 m and the pulsed lidar

model based on the WindCube WLS7 are provided in Fig. 4.1. The full-width-at-half-maximum

(FWHM) of the CW lidar’s range weighting function scales with the square of the focus distance

and can be approximated as 0.0013 · F 2. For very short focus distances the lidar measurements

are close to point measurements, but at distances greater than 200 m the lidar beam cannot be

focused effectively, leading to the limitation on the measurement distance of approximately 200 m.

The pulsed lidar’s range weighting function, on the other hand, is constant regardless of the range

gate distance. As discussed in Simley et al. [39], the error caused by range weighting is roughly

equivalent for the CW and pulsed lidars at a focus distance of F = 135 m. For greater focus

distances, the CW lidar measurement spatially averages the wind more than the pulsed lidar. In

Sections 4.2.3 and 4.2.4, the impact of range weighting on measurement coherence will be analyzed.

4.1.2 Determining Velocities from Lidar Doppler Spectra

The lidar wind speed measurement process is not as simple as the weighting integral in

(4.2) suggests. In reality, a Doppler spectrum is calculated which contains energy at Doppler shift

frequencies corresponding to the velocities encountered along the lidar beam weighted by the range

weighting function, as well as background noise. Background noise sources include dark noise
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Figure 4.1: Normalized lidar range weighting functions for a CW lidar with focus distances of
F = 50 m, 125 m, and 200 m and a pulsed lidar with range weighting that is independent of
measurement distance.

produced by the photodetector and signal amplifier during the detection process and photon shot

noise due to the random generation of photons at the photodetector [89, 92], both discussed in

Pitter et al. [89]. Note that the signal-to-noise ratio of the Doppler spectrum is independent of

the focus distance [89], which is not the case with pulsed lidars. Because the backscattered light

detected by the lidar is very weak, many Doppler spectra are averaged together to reduce the noise

level, forming a spectrum that can be used to estimate the true wind velocity. For the ZephIR CW

lidar with a sampling rate of 50 Hz, approximately 4,000 individual spectra calculated from 5 µs

segments of data are averaged during each sample period [91]. By sampling the baseband signal

using an analog-to-digital converter with a 100 MHz sampling rate, 512 samples yielding 256 discrete

frequency bins contribute to each Doppler spectrum [89, 94]. The resulting frequency resolution of

0.195 MHz produces a velocity resolution of ∼0.15 m/s using the Doppler shift formula (4.1). As

explained in Angelou et al. [94], the Doppler spectrum obtained at each time step is normalized

by the mean background noise spectrum, which, for example, can be calculated over a period of

∼60 s, resulting in a whitened noise floor, i.e., equal noise power in each frequency bin.
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Once a Doppler spectrum with a whitened noise floor is obtained, the line-of-sight velocity

needs to be estimated. Fig. 4.2 contains a whitened Doppler spectrum (in blue) obtained during one

sampling period using the short-range WindScanner lidar [95] developed by the Danish Technical

University Wind Energy department (DTU Wind Energy). Note that the Doppler frequency axis is

represented in terms of the equivalent velocity using (4.1). The WindScanner lidar, which is based

on a modified ZephIR CW lidar, mixes the detected signal during the heterodyne process such

that zero Doppler shift results in a detected frequency of 27 MHz rather than 0 Hz [94]. This way,

negative velocities produce frequencies less than 27 MHz while positive velocities cause detected

frequencies greater than 27 MHz. Without the use of an intermediate frequency in the heterodyne

process, the lidar cannot distinguish the sign of the velocity, as is the case in the commercially

available ZephIR lidar [89]. To separate the true velocity Doppler spectrum from the remaining

noise floor, a threshold above the mean value of 1 is defined, such that values of the spectrum

greater than the threshold level are attributed to the detected wind velocities. The threshold value

can be as high as five times the standard deviation of the noise floor above the mean value of

1 [94], which is a conservative value used in the ZephIR lidar [89]. The threshold value shown in

Fig. 4.2 (solid black) is defined as twice the noise standard deviation above the mean spectrum

level, resulting in the true Doppler spectrum estimate shown in red.

Given the thresholded Doppler spectrum shown in Fig. 4.2, there are three common ways

of estimating the line-of-sight velocity. The simplest method, the maximum (max.) estimate,

represented as the dashed black line, treats the location of the peak of the Doppler spectrum as

the measured velocity. The centroid estimation method, indicated by the dashed green line, treats

the spectrum values as masses and uses the centroid velocity based on the mass distribution as the

line-of-sight velocity estimate. Finally, the median method, shown as the dashed magenta line, finds

the Doppler velocity that divides the integrated spectrum into two equal areas. These estimation

methods are compared in more detail in Angelou et al. [94]. The max. method is susceptible

to spurious spikes in the spectrum, and does not necessarily represent the velocity region where

most of the spectrum’s energy is concentrated. The centroid method, which is appropriate for
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Figure 4.2: Example of a Doppler spectrum used to estimate the line-of-sight velocity measured by
a DTU Wind Energy Short-Range WindScanner lidar with F = 61.4 m. The spectrum normalized
by the mean noise floor (blue) is used to estimate the standard deviation of the remaining noise.
Spectrum values above a threshold, defined here as twice the noise standard deviation plus the mean
value of 1 (solid black), are treated as the part of the Doppler spectrum caused by detected wind
speeds. The thresholded Doppler spectrum (red) is used to estimate the line-of-sight velocity using
the max. method (dashed black), centroid method (dashed green), and median method (dashed
magenta).

very high signal-to-noise ratios, is susceptible to spurious noise at Doppler velocities far from the

main concentration of spectrum energy (e.g., the spike near -11 m/s), and can produce distorted

velocity estimates. The median method is recommended as a more robust estimation technique [94].

It should be noted that while the range weighting equation in (4.2) corresponds to the centroid

method, the median method produces similar estimates in the absence of noise [96]. Therefore, the

lidar measurement process will still be analyzed using the range weighting integral in (4.2), which

is easily described analytically.

In addition to the noise floor in the Doppler spectrum, an additional source of measurement

noise exists, called spectral broadening [96, 97]. If a single discrete wind velocity is detected along

the lidar beam, then the bandwidth of the Doppler spectrum will be inversely proportional to the

sampling period. In the general case where different velocities along the beam contribute to the

spectrum, spectral broadening will still occur, which increases as the sampling period becomes
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smaller. Since the Doppler spectra are calculated using a short sampling period of ∼5 µs, the

resulting spectrum will be somewhat broadened. Additionally, for a scanning lidar beam or a

beam direction that is not aligned with the wind direction, the time that an aerosol is illuminated

by the laser beam could be reduced to less than the sampling period, causing further spectral

broadening [96]. When determining the line-of-sight velocity from the Doppler spectrum, spectral

broadening causes additional uncertainty in the velocity estimate [97]. In Simley et al. [39], the

white noise floor of the velocity measurement signal caused by spectral broadening and other

spectral noise present in measurements obtained using a spinner-mounted circularly-scanning CW

lidar [47] is estimated. The resulting standard deviation of the measurement noise is estimated to

be between 0.02 and 0.2 m/s. While this noise is dominant at high frequencies, other error sources,

such as wind evolution, are dominant in the bandwidth of interest for wind turbine control (up to

∼1 Hz). Therefore lidar measurement noise is ignored in the rest of the analyses in this thesis.

4.2 Lidar Measurement Scenario and Error Sources

In the remainder of this chapter, various sources of lidar measurement error are discussed us-

ing the hub-mounted circularly-scanning lidar measurement scenario shown in Fig. 4.3 and demon-

strated on a utility-scale wind turbine by Mikkelsen et al. [47]. The lidar is used to estimate the

longitudinal u component of the wind by measuring the line-of-sight velocity at a preview distance

d upstream of the turbine along a circle with scan radius r. It is assumed that the scan circle is

centered around the x axis, (i.e., zero yaw error is assumed). The CW range weighting function is

illustrated using the magenta curve along the lidar beam. Rotating lidar measurements are ana-

lyzed in Chapter 5, while stationary measurements are assumed in the rest of this chapter. Lidar

measurement quality is analyzed using parameters for the NREL 5-MW reference turbine with

rotor diameter D = 126 m (and rotor radius R = 63 m). However, the 5◦ rotor shaft tilt and 2.5◦

rotor precone angle are ignored [8].

In the following sections, various lidar measurement error sources are analyzed in terms of

their impact on measurement coherence. Section 4.2.1 discusses the error caused by estimating
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Figure 4.3: Hub-mounted circularly-scanning lidar scenario for a CW lidar showing the preview
distance d, scan radius r, and measurement cone angle θ.

the u component of the wind at a single point from a line-of-sight measurement. Section 4.2.2

additionally includes the impact of wind evolution, while the effect that range weighting has on

measurement quality is analyzed in Section 4.2.3. Finally, in Section 4.2.4, measurement error

is analyzed for lidar measurements of blade effective wind speed. The strategy used for deriving

measurement coherence given a frequency domain wind field model is to express all power spectra

or cross-spectra involving lidar measurements or blade effective wind speeds as linear combinations

of individual cross-spectra between wind speeds at two discrete points, using the definitions in

Chapter 3. This general strategy for “semi-analytically” determining measurement coherence was

originally developed in Schlipf et al. [50] and expanded upon in Simley et al. [63] and Simley and

Pao [64].

4.2.1 Line-of-Sight Measurement Errors

Without range weighting, the line-of-sight wind speed measurement u` at the location

~x2 = [−d,−r sin (ψ), r cos (ψ)] (4.10)
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along the scan circle, assuming a hub-mounted lidar, can be written as the projection of the wind

speed vector onto the lidar beam direction:

u` = −`xu~x2
− `yv~x2

− `zw~x2
, (4.11)

where

~̀= [`x, `y, `z] (4.12)

is the unit vector oriented in the direction that the lidar beam is pointing using the coordinate

system shown in Fig. 3.1. Note that the negative signs appear in (4.11) because the velocity vector

is projected along the direction opposite the direction the lidar is pointing to form the line-of-

sight velocity. Using the line-of-sight measurement, an estimate of the longitudinal u component,

which generally has the greatest impact on the aerodynamic response of the rotor, is formed. By

assuming that the typically smaller v and w components are zero, the u component can be estimated

by dividing the line-of-sight measurement by −`x:

û~x2
= − 1

`x
u`

= u~x2
+

`y
`x
v~x2

+ `z
`x
w~x2

.

(4.13)

As revealed in (4.13), the transverse and vertical wind speed components act as error sources during

estimation of the u component. As the lidar cone angle θ = arctan (r/d) increases, the ratios `y/`x

and `z/`x become larger causing the line-of-sight errors to increase. As the cone angle approaches

zero (r/d→ 0), the line-of-sight errors become negligible.

If the objective is to estimate the u component at the point ~x2, then the measurement

coherence between û~x2
and u~x2

, using CT Fourier transform theory, is defined as

γ2
u~x2

û~x2
(f) =

∣∣∣Su~x2
û~x2

(f)
∣∣∣2

Su~x2
u~x2

(f)Sû~x2
û~x2

(f)
. (4.14)

The cross-spectrum Su~x2
û~x2

(f) can be calculated using the CPSD definition in (2.9), with the

implicit expectation operation and limit as the window length approaches infinity excluded for

simplicity, as

Su~x2
û~x2

(f) = U~x2
(f)
(
U∗~x2

(f) +
`y
`x
V ∗~x2

(f) + `z
`x
W ∗~x2

(f)
)

= Su~x2
u~x2

(f) ,

(4.15)



82

where the second line is a result of the assumed zero correlation between the u and v as well as u

and w components discussed in Chapter 3. Similarly, the PSD Sû~x2
û~x2

(f) can be written as

Sû~x2
û~x2

(f) =
(
U~x2

(f) +
`y
`x
V~x2

(f) + `z
`x
W~x2

(f)
)(

U∗~x2
(f) +

`y
`x
V ∗~x2

(f) + `z
`x
W ∗~x2

(f)
)

= Su~x2
u~x2

(f) +
`2y
`2x
Sv~x2

v~x2
(f) + `2z

`2x
Sw~x2

w~x2
(f) ,

(4.16)

where the nine individual Fourier transform products comprising the first line simplify to three

power spectra, defined by the turbulence model, since it is assumed that different components of

the wind vector are uncorrelated with each other.

By combining the derived spectra, the measurement coherence resulting from line-of-sight

errors is given by

γ2
u~x2

û~x2
(f) =

S2
u~x2

u~x2
(f)

Su~x2
u~x2

(f)
(
Su~x2

u~x2
(f) +

`2y
`2x
Sv~x2

v~x2
(f) + `2z

`2x
Sw~x2

w~x2
(f)
) . (4.17)

As the lidar cone angle θ approaches zero, resulting in perfect lidar alignment with the longitudinal

direction, the ratios `y/`x and `z/`x approach 0 and the measurement coherence approaches 1. On

the other hand, as the measurement angle θ approaches 90◦, yielding a beam direction perpendicular

to the longitudinal direction, `y/`x and `z/`x approach infinity and the measurement coherence

diminishes to zero.

4.2.2 Combining Line-of-Sight Errors and Wind Evolution Errors

If instead of estimating the u component upstream of the turbine at the same location

as the measurement point ~x2 = [−d,−r sin (ψ), r cos (ψ)], an estimate of the u component at

~x1 = [0,−r sin (ψ), r cos (ψ)], downstream of the measurement point at the rotor plane, is desired,

then the measurement coherence will depend on the amount of wind evolution. The resulting mea-

surement coherence can be expressed by replacing the CPSD Su~x2
û~x2

(f) in (4.15) with Su~x1
û~x2

(f)

and the PSD of the true u component Su~x2
u~x2

(f) with Su~x1
u~x1

(f):

γ2
u~x1

û~x2
(f) =

∣∣∣Su~x1
u~x2

(f)
∣∣∣2

Su~x1
u~x1

(f)
(
Su~x2

u~x2
(f) +

`2y
`2x
Sv~x2

v~x2
(f) + `2z

`2x
Sw~x2

w~x2
(f)
) , (4.18)
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where the individual CPSD functions are formed using the definition in (3.12). As a result, the

CPSDs in (4.18) are functions of the wind speed PSDs and the longitudinal coherence model

describing wind evolution provided in Chapter 3.

Measurement coherence curves illustrating the individual and combined effects of line-of-sight

errors and wind evolution on measurement quality are shown in Fig. 4.4. Coherence is calculated

for three scan geometries containing preview distances d = 31.5 m, 63 m, and 126 m (0.25 D,

0.5 D, and 1 D for the NREL 5-MW reference model), all with a scan radius of r = 44.1 m (0.7 R).

The von Kármán turbulence model is used along with the developed longitudinal coherence for-

mula described in Section 3.2.3 for the rated mean wind speed U = 11.4 m/s, turbulence intensity

TI = 15%, and integral length scales Lu = Lv = Lw =147 m. The solid curves represent the com-

bined effects of line-of-sight and wind evolution errors given by (4.18), while the dashed curves are

calculated for line-of-sight errors only, as in (4.17), and the dotted curves represent the longitudinal

coherence loss due to wind evolution alone.

The dashed coherence curves for line-of-sight errors in Fig. 4.4 show that as the preview
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Figure 4.4: Lidar measurement coherence between the u component at a point with spanwise
position 44.1 m and lidar measurements with r = 44.1 m and d = 31.5 m, 63 m, and 126 m for
both line-of-sight and wind evolution errors (solid), line-of-sight errors only (dashed), and wind
evolution errors only (dotted). Lidar range weighting is not included. The von Kármán turbulence
model is used with U = 11.4 m/s, TI = 15%, and Lu =147 m.
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distance increases for a fixed scan radius (causing the measurement angle θ to decrease) the mea-

surement coherence increases, as explained in the previous section. Note that the coherence is

higher at low frequencies because the power spectrum of the v and w components is lower rela-

tive to the spectrum of the u component at these frequencies, as shown in Fig. 3.2. Therefore,

the v and w components corrupt the u component estimate less at low frequencies than at high

frequencies where the v and w components contain more energy than the u component. In con-

trast, the coherence curves representing wind evolution decrease as the preview distance increases.

Thus two opposing trends contribute to measurement coherence. As preview distance increases,

the measurement angle becomes smaller and line-of-sight errors are reduced, but coherence drops

due to wind evolution. As shown by the solid curves that include both error sources, as preview

distance increases the low-frequency coherence becomes larger due to less line-of-sight error, but

the coherence begins to decay at lower frequencies because of greater wind evolution effects. For

large measurement angles measurement coherence is dominated by line-of-sight errors, while for

large preview distances and small cone angles coherence is dominated by wind evolution.

When analyzing the impact of measurement coherence on the mean square measurement

error, the power spectrum of the wind speed to be estimated must be taken into account, as

discussed in Section 2.2.1. Since the energy in the power spectra of wind is concentrated at low

frequencies, it is advantageous to decrease the measurement angle in order to increase low-frequency

coherence and reduce the overall MSE. Beyond a certain optimal preview distance, however, the

additional benefit of reducing the measurement angle diminishes and wind evolution causes the

overall measurement error to increase.

4.2.3 The Effect of Range Weighting on Measurement Error

By combining the range weighting equation in (4.2) with the line-of-sight measurement equa-

tion in (4.11), a range-weighted line-of-sight lidar measurement can be described as

u` = −
∫ ∞

0
W` (F, s)

(
`xus~̀ + `yvs~̀ + `zws~̀

)
ds. (4.19)
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An estimate of the u component at the lidar’s focus point ~x2 = [−d,−r sin (ψ), r cos (ψ)] using

(4.13) can therefore be represented as

û~x2
=

∫ ∞
0

W` (F, s)

(
u
s~̀

+
`y
`x
v
s~̀

+
`z
`x
w
s~̀

)
ds. (4.20)

In order to calculate the measurement coherence between a lidar measurement at ~x2 and the wind

speed at a point directly downstream at the rotor plane ~x1 = [0,−r sin (ψ), r cos (ψ)], given by

γ2
u~x1

û~x2
(f) =

∣∣∣Su~x1
û~x2

(f)
∣∣∣2

Su~x1
u~x1

(f)Sû~x2
û~x2

(f)
, (4.21)

the CPSD Su~x1
û~x2

(f) and PSD Sû~x2
û~x2

(f) involving the range weighting integral need to be es-

tablished.

Using the linearity property of the Fourier transform [67], the CPSD Su~x1
û~x2

(f) can be

written as

Su~x1
û~x2

(f) = U~x1
(f)

∫ ∞
0

W` (F, s)

(
U∗
s~̀

(f) +
`y
`x
V ∗
s~̀

(f) +
`z
`x
W ∗
s~̀

(f)

)
ds

=

∫ ∞
0

W` (F, s)Su~x1
u
s~̀

(f) ds,

(4.22)

where the second line is made possible by distributing the Fourier transform U~x1
(f) inside of the

integral and by the modeling assumption that the u component is uncorrelated with the v and

w components. The individual CPSDs Su~x1
u
s~̀

(f) in (4.22) can be determined using the CPSD

definition in (3.12) and the three-dimensional spatial coherence formula given by (3.23). The PSD

Sû~x2
û~x2

(f), again using linearity of the Fourier transform, can be expressed as a double integral

over the range along the lidar beam:

Sû~x2
û~x2

(f) =

(∫ ∞
0

W` (F, s)

(
U~x2

(f) +
`y
`x
V~x2

(f) +
`z
`x
W~x2

(f)

)
ds

)
. . .

. . . ·
(∫ ∞

0
W` (F, s)

(
U∗~x2

(f) +
`y
`x
V ∗~x2

(f) +
`z
`x
W ∗~x2

(f)

)
ds

)
=

∫ ∞
0

∫ ∞
0

W` (F, q)W` (F, s)

(
Su

q~̀
u
s~̀

(f) +
`2y
`2x
Sv

q~̀
v
s~̀

(f) +
`2z
`2x
Sw

q~̀
w
s~̀

(f)

)
dqds,

(4.23)

where the product of two integrals in the first line is equivalently expressed as a double integral over

the product of the integrands in the second line. As in (4.16), the presence of only three CPSDs
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in the integrand of the second line results from the assumption that different components of the

wind are uncorrelated with each other. While the measurement coherence curves without range

weighting are presented analytically, since they depend only on the PSD and spatial coherence

functions presented in Chapter 3, the integrals in the CPSD and PSD equations (4.22) and (4.23)

with range weighting are difficult to solve. Therefore, the measurement coherence calculations are

performed “semi-analytically,” as discussed in Schlipf et al. [50], by discretizing the integration

variables and approximating the integrals as summations. For the calculations performed in this

thesis the range weighting range variables are discretized using a 2 m step size, which was found

to only significantly distort the spectral calculations above ∼2 Hz.

In Fig. 4.5, the calculations of measurement coherence including line-of-sight errors and wind

evolution without range weighting are compared with measurement coherence calculations including

range weighting using (4.22) and (4.23) for a fixed scan radius r = 44.1 m and the three preview

distances d = 31.5 m, 63 m, and 126 m for TI = 15% (Fig. 4.5 (a)) as well as a low turbulence

intensity case with TI = 2% (Fig. 4.5 (b)). The range weighting functions are calculated using the

CW weighting function presented in (4.3), and plotted in Fig. 4.1.

For TI = 15%, Fig. 4.5 (a) shows that with the addition of lidar range weighting the mea-

surement coherence increases. For the low turbulence intensity TI = 2%, however, measurement

coherence decreases when range weighting is introduced. The turbulence intensity only influences

the coherence calculations through the longitudinal coherence formula (3.21) describing wind evo-

lution, where coherence decreases as turbulence intensity increases. For the high turbulence case,

range weighting improves measurement coherence by averaging over the spatially-varying v and w

components along the beam, effectively reducing their impact on the line-of-sight errors. Although

spatial averaging of the u component along the beam degrades the measurement coherence, the

benefit of reducing the impact of the v and w components outweighs the resulting coherence drop.

However, when the turbulence intensity is very low and wind evolution is not as severe, range

weighting causes a slight degradation in measurement coherence. When wind evolution is not as

significant of an error source, the drop in measurement correlation due to spatial averaging of the
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Figure 4.5: Lidar measurement coherence between the u component at a point with spanwise
position 44.1 m and lidar measurements with r = 44.1 m and d = 31.5 m, 63 m, and 126 m for line-
of-sight and wind evolution errors both without (solid) and with (dashed) lidar range weighting.
Measurement coherence curves for two different wind conditions are provided: (a) TI = 15% and
(b) TI = 2%. The von Kármán turbulence model is used with U = 11.4 m/s and Lu =147 m.

u component becomes more pronounced compared to the benefit gained by averaging the v and w

components along the beam, causing the slight drop in coherence. In general, lidar range weighting

has a much smaller impact on measurement coherence than line-of-sight effects or wind evolution,

and should not necessarily be thought of as an error source.

It should be noted that if the objective is to use the lidar to measure the mean wind speed,

range weighting can potentially lead to incorrect measurements when non-zero mean vertical wind

shear is present. For example, if the lidar is oriented such that wind speeds at different heights are

detected along the beam, the mean wind speed measured by the lidar might not correspond to the

true mean wind speed at the focus location in the presence of nonlinear mean shear. If the mean

wind shear is linear, on the other hand, the range weighted average mean wind speed detected

along the lidar beam will be equal to the true mean wind speed. However, since the analyses of

measurement error in this thesis focus on the time-varying turbulent components of the wind, errors
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due to mean wind shear are not investigated further.

4.2.4 Measurement Errors for Blade Effective Wind Speeds

In the previous sections measurement coherence was derived assuming that the objective was

to estimate the longitudinal wind velocity at a single point. But measurements of the blade effective

wind speed, which includes the approximate effects of how the wind field interacts with the turbine

aerodynamically, are more useful for wind turbine control applications. Repeating the definition

in Section 3.4 for reference, the linear blade effective wind speed at azimuth angle ψ in the rotor

plane can be expressed as

ub =

∫ R

0
Wb (q)u

q~b
dq, (4.24)

where ~b = [0,− sinψ, cosψ] and u
q~b

indicates the longitudinal wind component at the location q~b.

If a lidar measurement at point ~x2 = [−d,−r sin (ψ), r cos (ψ)] is used to provide an estimate ûb of

ub, then the measurement coherence

γ2
ubûb

(f) =
|Subûb (f)|2

Subub (f)Sûbûb (f)
(4.25)

can be calculated by determining the CPSD Subûb (f) and the PSD Subub (f). Note that the lidar

measurement PSD Sûbûb (f) is given by the formula in (4.23).

By combining the definitions in (4.19) and (4.24), the CPSD Subûb (f) can be written as

Subûb (f) =

(∫ R

0
Wb (q)U

q~b
(f) dq

)(∫ ∞
0

W` (F, s)

(
U∗
s~̀

(f) +
`y
`x
V ∗
s~̀

(f) +
`z
`x
W ∗
s~̀

(f)

)
ds

)
=

∫ R

0

∫ ∞
0

Wb (q)W` (F, s)Su
q~b
u
s~̀

(f) ds,

(4.26)

again using the property that the product of two integrals can be expressed as the double integral

over the product of the integrands. The second line of (4.26) results from the assumed zero corre-

lation between u and either v or w. Following the approach used in (4.23), the PSD Subub (f) can
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be written as

Subub (f) =

(∫ R

0
Wb (q)U

q~b
(f) dq

)
·
(∫ R

0
Wb (q)U∗

q~b
(f) dq

)
=

∫ R

0

∫ R

0
Wb (q)Wb (s)Su

q~b
u
s~b

(f) dqds.

(4.27)

Similar to the spectrum calculations for range weighted lidar measurements described in Sec-

tion 4.2.3, spectra involving blade effective weighting function integrals must be solved semi-

analytically by discretizing the spanwise integration variable. For the results presented in this

thesis the spanwise variable q in (4.24) is discretized using a step size of 1 m. Furthermore, the

range weighting function is truncated at 5% of its peak value to limit the length along the beam

over which wind speeds are integrated.

For the same two turbulence intensity values analyzed in Fig. 4.5, blade effective wind speed

measurement coherence curves calculated for scan parameters d = 31.5 m, 63 m, and 126 m with

r = 44.1 m, are shown in Fig. 4.6 both with and without lidar range weighting included. The torque

sensitivity-based blade effective weighting function Wb (q) defined in (3.36) and shown in Fig. 3.16

for the mean wind speed U = 11.4 m/s is used in the calculations. The coherence curves reveal the

same general trends as in Fig. 4.4, i.e., as the measurement angle θ decreases, the low-frequency

coherence becomes higher, but as the the preview distance increases the coherence begins to decay

at lower frequencies due to additional wind evolution. However, unlike the measurement coherence

curves in Fig. 4.5, lidar range weighting improves measurement coherence for both turbulence inten-

sity cases. While it can’t necessarily be concluded that range weighting is always beneficial when

measuring blade effective wind speeds, the results in Fig. 4.6 suggest that range weighting helps

approximate the spatial averaging of wind speeds along the blade, thereby enhancing measurement

coherence.

4.3 Discussion and Conclusions

The first half of this chapter provided a description of the lidar measurement process including

the estimation of velocity from a detected Doppler spectrum. Lidar range weighting, the spatial
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Figure 4.6: Lidar measurement coherence between blade effective wind speeds and lidar measure-
ments with r = 44.1 m and d = 31.5 m, 63 m, and 126 m for line-of-sight and wind evolution errors
both without (solid) and with (dashed) lidar range weighting. Measurement coherence curves for
two different wind conditions are provided: (a) TI = 15% and (b) TI = 2%. The von Kármán
turbulence model is used with U = 11.4 m/s and Lu =147 m.

averaging of wind speeds along the lidar beam, was presented for CW and pulsed lidar technologies.

Various measurement noise sources inherent to the lidar technology were discussed, but it was

concluded that other error sources including line-of-sight effects and wind evolution are dominant,

and that it is not necessary to include the lidar measurement noise in calculations of measurement

error. In the second half of the chapter, the process through which measurement coherence can

be determined, including line-of-sight effects, wind evolution, range weighting, and the spatial

averaging caused by the blade effective wind speed definition, was described. Measurement and

blade effective wind speed power spectra as well as measurement coherence can be calculated

using only the statistical frequency-domain wind field definition presented in Chapter 3 together

with definitions of the lidar range weighting function and the blade effective weighting function.

Examples of measurement coherence were provided, illustrating the effects of various error sources

assuming a CW lidar based on the commercially developed ZephIR system, which is the model
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assumed in the rest of this thesis.

The relative impacts of the different error sources investigated in this chapter are summarized

in Table 4.1 for measurements of the u component at a single point with a spanwise position of

44.1 m, as in Sections 4.2.1 through 4.2.3, as well blade effective wind speed, as in Section 4.2.4,

using the von Kármán turbulence model with U = 11.4 m/s, TI = 15%, and Lu =147 m. Specifi-

cally, normalized mean square measurement errors are provided for the following combinations of

error sources: line-of-sight effects only, wind evolution effects only, line-of-sight and wind evolution

effects together, line-of-sight effects with lidar range weighting, and finally line-of-sight and wind

evolution effects together with range weighting. As will be explained more in Chapter 5, the mean

square measurement error values are calculated by integrating the power spectrum of the measure-

ment MSE given by (2.29), assuming the optimal MMSE measurement filter is employed, up to a

bandwidth of 1 Hz (the approximate bandwidth of interest for blade pitch control applications for

the NREL 5-MW reference turbine model). The MSEs are then normalized by the variances of the

true wind speed variables that are being estimated with lidar measurements, similarly calculated

by integrating the power spectra of the wind speed variables up to a bandwidth of 1 Hz.

Table 4.1 shows the tradeoff between the dominant line-of-sight and wind evolution error

sources, revealing the importance of decreasing the measurement angle θ to reduce measurement

error. Although not shown in Table 4.1, beyond some preview distance greater than 126 m, mea-

surement error including both line-of-sight effects and wind evolution effects will begin to increase

due to the intensification of wind evolution. The measurement error values with all error sources

included underscore the idea that lidar range weighting can help reduce measurement error, espe-

cially for measurements of blade effective wind speed, and should not necessarily be considered as

an error source.

It should be noted that while the general trends of the dependence of measurement error on

measurement angle, preview distance, etc. are expected to hold for arbitrary wind conditions, the

specific normalized measurement errors listed in Table 4.1 are only valid for the particular wind

conditions analyzed here. Depending on the specific wind field parameters, the magnitudes of the
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Table 4.1: Normalized mean square measurement errors, assuming optimal measurement filtering,
between lidar measurements and point wind speeds at a spanwise position of 44.1 m as well as blade
effective wind speeds for different combinations of error sources with r = 44.1 m and d = 31.5 m,
63 m, and 126 m. All mean square measurement errors are normalized by the variance of the
wind speed variable of interest. The von Kármán turbulence model is used with U = 11.4 m/s,
TI = 15%, and Lu =147 m.

Point Wind Speeds

d (m) Line-of-Sight Wind Evo.
Line-of-Sight
+ Wind Evo.

Line-of-Sight
+ Range Weighting

All Error
Sources

31.5 0.64 0.18 0.69 0.65 0.68

63 0.31 0.28 0.49 0.35 0.47

126 0.10 0.53 0.46 0.19 0.43

Blade Effective Wind Speeds

d (m) Line-of-Sight Wind Evo.
Line-of-Sight
+ Wind Evo.

Line-of-Sight
+ Range Weighting

All Error
Sources

31.5 0.67 0.16 0.67 0.65 0.66

63 0.39 0.20 0.43 0.35 0.40

126 0.22 0.29 0.35 0.16 0.30

errors can change. For example, the magnitude of the errors caused by line-of-sight effects will grow

as the ratio between the turbulence intensity of both the v and w components and the u component

of interest increases. Furthermore, the magnitude of the errors caused by wind evolution will in-

crease as the turbulent kinetic energy increases, since TKE determines how quickly the longitudinal

coherence decays as a function of longitudinal separation as well as frequency. For fixed turbulence

length scales, changes in mean wind speed are expected to have a relatively small impact on mea-

surement error, however; higher values of U shift more of the energy in the wind speed variables

to higher frequencies, as revealed by the power spectrum definitions in Section 3.1.1, but the longi-

tudinal coherence function describing wind evolution, given by (3.21), decays at higher frequencies

as well, such that that the overall measurement error is not expected to change significantly.

Although a circularly-scanning lidar scenario (see Fig. 4.3) was assumed in this chapter, only

measurement coherence between stationary lidar measurements and wind speeds or blade effective

wind speeds at fixed locations was described. However, in addition to illustrating the basic trends

of various measurement error sources, the stationary power spectra and coherence calculations pre-
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sented in this chapter form the building blocks of the calculations of mean square measurement error

between circularly scanning lidar measurements and rotor effective hub-height and shear compo-

nents, based on three rotating blades, described in Chapter 5. Finally, by calculating measurement

coherence for different scan radii and preview distances, the lidar scenario can be optimized for

different wind conditions, as is discussed in the next chapter.
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Chapter 5

Frequency Domain Calculations of Rotor Effective Wind Speed and Lidar

Measurement Coherence

In Section 4.2 of the previous chapter, lidar measurement coherence calculations were pre-

sented for stationary lidar measurements as well as point wind speeds or blade effective wind speeds

at fixed azimuth angles ψ in the scan circle and rotor plane. To model the rotor effective hub-height

and linear shear components relevant to control applications outlined in Section 3.5, however, wind

speed spectra must be calculated for rotating blade effective wind speeds. Similarly, the spectra of

circularly-scanning lidar measurements must be determined. A method for calculating the power

spectra and measurement coherence for a single rotating lidar measurement/blade effective wind

speed pair is described in Section 5.1, using the assumption that the lidar measurement and blade

rotate at the same fixed speed, i.e., the desired rotor speed at the specific turbine operating point

analyzed. As with the derivation provided in Section 4.2, the rotational spectra and coherence

are calculated using the frequency-domain wind field definition provided in Chapter 3 along with

specific range weighting and blade effective weighting functions. This method for calculating ro-

tational spectra is extended in Section 5.2 to the calculation of power spectra and measurement

coherence for the rotor effective uhh, δh, and δv components, defined using three rotating blade

effective wind speeds. Lidar-based estimates of the rotor effective wind speeds are formed using

three circularly-scanning lidar measurements, one corresponding to each blade. This measurement

scenario is shown in Fig. 5.1 where ψt represents the azimuth angle of the turbine rotor and ψm

indicates the azimuth angle of the lidar measurements. Note that the three lidar measurement
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Figure 5.1: Hub-mounted circularly-scanning three-beam lidar scenario using CW lidars with pre-
view distance d and scan radius r resulting in measurement cone angle θ. The three beam directions
are separated by 120◦ azimuth intervals. The instantaneous azimuth angle of the turbine rotor is
indicated by ψt while the lidar measurement azimuth angle is represented by ψm.

points are evenly spaced in the scan circle and that the rotor (and thus the lidar measurement

locations) rotates clockwise when viewing the turbine from upstream.

In the second half of the chapter, the developed methods for calculating the spectra and

measurement coherence for rotor effective wind components are used to optimize the lidar mea-

surement scenario for different wind conditions. Section 5.3 presents an optimization over the lidar

scan radius and preview distance variables for a specific wind condition by finding the scan con-

figuration that minimizes mean square measurement error. In Sections 5.3.1 and 5.3.2, the impact

of the induction zone model presented in Section 3.3 as well as degradation in measurement error

caused by turbine yaw error are discussed. Finally, the dependence of the optimal scan param-

eters and the corresponding achievable measurement error on the wind condition is analyzed in

Section 5.4. Specifically, the influence of mean wind speed, turbulence intensity, and turbulence

length scale on the optimized scan scenario is investigated, providing guidelines that can be used

for the development of lidar systems for preview-based control.
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5.1 Calculating Rotating Blade Effective Wind Speed Spectra and Measure-

ment Coherence

A method for calculating the rotational power spectra and cross-spectra necessary to deter-

mine lidar measurement coherence is described in this section, based on work presented in Simley

and Pao [64]. All calculations are derived assuming discrete-time signals and the DT Fourier

definitions provided in Section 2.1.1. Treating the wind speeds and lidar measurements as DT

signals allows the rotational spectra to be determined computationally, by replacing integrals with

summations. To simplify the spectrum calculations, the rotational speed of the blades and lidar

measurements is assumed to be fixed at 12.1 RPM, the NREL 5-MW reference turbine’s rated

rotor speed. The sampling frequency of all DT signals is assumed to be approximately that of the

ZephIR CW lidar, which the lidar model used for analysis is based on. Although the commer-

cially available ZephIR lidar samples at a rate of 50 Hz [89], a slightly faster sampling frequency

of 50.82 Hz is assumed for the calculations in this chapter. This sampling frequency results in an

integer number (N = 252) of discrete azimuth angles per rotational period of ∼4.96 s corresponding

to the 12.1 RPM rotor speed. Furthermore, selecting a number of discrete azimuth angles N that

is divisible by 6 allows some of the calculations to be simplified. Although sampling the CT wind

speed signals can result in aliasing, the sampling frequency of 50.82 Hz is high enough to capture

most of the energy in the wind time series, and any aliasing effects that might occur are ignored

for simplicity.

By breaking the scan circle and rotor into N discrete azimuth angles, rotating signals can

be formed by sequentially sampling N different “stationary” signals around the circle such that

each signal corresponding to a fixed azimuth angle is sampled once every N time steps. If aψ [n]

represents a stationary signal at azimuth angle ψ, then a signal formed by sampling aψ [n] every

N -th time step, with values at all other time steps defined as 0 and with the first non-zero sample

for n ≥ 0 beginning at n = ψN/2π, can be written as

as,ψ [n] =

( ∞∑
k=−∞

δ

[
n− ψN

2π
− kN

])
· aψ [n] , (5.1)
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where δ [n] is the Kronecker delta function:

δ [n] =


1, if n = 0

0, otherwise.

(5.2)

Using (5.1), the rotational signal ar [n] formed by sequentially sampling the N stationary signals

aψm [n] around the scan circle or rotor for m ∈ {1, . . . , N}, with sample n = 0 corresponding to

an azimuth angle of 0, can simply be described as

ar [n] =
N−1∑
m=0

as,ψm [n] . (5.3)

By applying the Fourier property equating the Fourier transform of the product of two signals

to the convolution of the individual Fourier transforms, as well as the time shift property [67], the

Fourier transform of the sampled stationary signal aψ [n] in (5.1) is given by

As,ψ (ω) = 1
N

∫ π

−π

e−j(ω−φ)ψN
2π

N
2∑

k=−N
2

δ

(
ω − φ− 2πk

N

)Aψ (φ) dφ

= 1
N

N
2∑

k=−N
2

e−jkψAψ

(
ω − 2πk

N

)
.

(5.4)

The first line of (5.4) is formed by taking advantage of the following Fourier transform pair [67]:

F

{ ∞∑
k=−∞

δ [n− kN ]

}
=

2π

N

N
2∑

k=−N
2

δ

(
ω − 2πk

N

)
, (5.5)

where δ (ω) is the CT Dirac delta function:

δ (ω) =


1, if ω = 0

0, otherwise.

(5.6)

Finally, letting ψm = 2πm/N and utilizing the derivation of As,ψ (ω) in (5.4), the Fourier transform

of the rotating signal ar [n] defined in (5.3) is given by

Ar (ω) =
1

N

N−1∑
m=0

 N
2∑

k=−N
2

e−jψmkAψm

(
ω − 2πk

N

) . (5.7)
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While (5.7) provides a method for calculating the Fourier transform of a rotational signal

using the Fourier transforms of N stationary signals, the CPSD between two rotating signals must

be derived in order to calculate rotational power spectra and measurement coherence based on the

frequency-domain wind field definition presented in Chapter 3. By implicitly applying the CPSD

definition in (2.14) and using the Fourier transform Ar (ω) derived in (5.7), the CPSD between two

rotating signals ar [n] and br [n] can be expressed as

Sarbr (ω) = 1
N2

N−1∑
m=0

 N
2∑

i=−N
2

e−jψmiAψm

(
ω − 2πi

N

)
·
N−1∑
n=0

 N
2∑

k=−N
2

ejψnkB∗ψn

(
ω − 2πk

N

)


= 1
N2

N−1∑
m=0

N−1∑
n=0

 N
2∑

k=−N
2

ej(ψn−ψm)kSaψmbψn

(
ω − 2πk

N

) ,

(5.8)

where the double summation over i and k in the first line collapses to a single summation in

the second line using the assumption that different frequency components of the two signals are

uncorrelated with each other, i.e., Aψm (ω1) is uncorrelated with B∗ψn (ω2) unless ω1 = ω2 for all m

and n. This assumption is also made in common stochastic wind field simulation techniques [71, 74].

The formula presented in (5.8) allows the calculation of the CPSD of two rotational signals,

but requires the calculation of the fixed-azimuth angle CPSDs Saψmbψn (ω) for every pair of az-

imuth angles. Calculating N2 individual fixed-azimuth angle CPSDs can be very computationally

expensive because each CPSD corresponding to lidar measurement and blade effective wind speed

variables can further require double summations over the number of discrete points along the blade

or lidar beam, as shown in (4.23), (4.26), and (4.27). However, under the condition that each

fixed-azimuth angle CPSD Saψmbψn (ω) only depends on the absolute difference between the two

azimuth angles |n−m|, the following simplification can be made to the formula in (5.8):

Sarbr (ω) = 2
N2

N−1∑
m=1

(N −m)

N
2∑

k=−N
2

cos ((ψm − ψ0) k)Saψ0
bψm

(
ω − 2πk

N

)
+ 1
N

N
2∑

k=−N
2

Saψ0
bψ0

(
ω − 2πk

N

)
,

(5.9)
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where ψ0 = 0 can be assumed without loss of generality. The simplified rotational CPSD for-

mula in (5.9) requires only a single summation over the N azimuth angles, greatly reducing the

computational complexity of the required calculations. More importantly, only N fixed-azimuth

angle CPSDs need to be determined to calculate the rotational CPSD, reducing the computational

burden by a factor of N .

While not all wind fields and measurement scenarios lend themselves to the necessary con-

dition that Saψmbψn (ω) depends only on |n−m| for all m and n allowing the simplified formula

in (5.9) to be used, the following wind field characteristics are sufficient, assuming the circularly-

scanning lidar scenario shown in Fig. 5.1:

• All turbulence power spectra and spatial coherence functions are independent of location

in space.

• The transverse v and vertical w component turbulence power spectra and spatial coherence

functions are identical.

• Zero yaw error is present, i.e., the turbine rotor is aligned with the longitudinal x direction.

• No wind shear or wind veer (height-dependent wind direction) are present.

Wind fields satisfying these properties are referred to as “axisymmetric,” because the cross-spectrum

between wind speeds at any two points remains unchanged if the points are rotated by any amount

around the longitudinal x axis. The von Kármán turbulence model discussed in Chapter 3 meets

these requirements because the v and w component spectra are identical, while the Kaimal model

does not, since the transverse and vertical component spectra are different. So that the Kaimal

spectral model, which is more widely utilized in the wind turbine control community, can be used

with the simplified formula in (5.9), it is modified for the calculations in this chapter. Specifically,

the power spectrum of the v and w components is treated as the average of the original individual

v and w component power spectra. Additionally, the integral length scale describing the v and w

components is treated as
(
0.5
(
L−1
v + L−1

w

))−1
, where Lv and Lw are the original separate length
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scales, to reflect the dependence of the spatial coherence formulas on the inverse of the length scale.

Finally, the formula presented in (5.9) can be used to calculate the rotational blade effective

wind speed PSD Sub,rub,r (ω), rotational lidar measurement PSD Sûb,rûb,r (ω), and rotational CPSD

Sub,rûb,r (ω) necessary to calculate the measurement coherence between a rotating lidar measurement

and rotating blade effective wind speed.

5.2 Calculating Rotating Rotor Effective Wind Speed Spectra and Measure-

ment Coherence

Building on the rotational CPSD formula developed in the previous section, a method for

calculating the spectra of the rotor effective uhh, δh, and δv components derived from three rotating

blade effective wind speeds is provided in this section. The formulas for calculating the effective

hub-height and linear shear components derived in (3.41) and (3.42) are provided again here:

uhh,ψ =
1

3
(ub1,ψ + ub2,ψ + ub3,ψ) (5.10a)

∆h,ψ = − 2

3

∫ R

0
Wb (q) qdq

(
sin (ψ)ub1,ψ + sin

(
ψ +

2π

3

)
ub2,ψ + sin

(
ψ +

4π

3

)
ub3,ψ

)
(5.10b)

∆v,ψ =
2

3

∫ R

0
Wb (q) qdq

(
cos (ψ)ub1,ψ + cos

(
ψ +

2π

3

)
ub2,ψ + cos

(
ψ +

4π

3

)
ub3,ψ

)
, (5.10c)

where ubi,ψ indicates the blade effective wind speed for blade i when the rotor, or equivalently

blade 1, is at azimuth angle ψ. The ∆h and ∆v components represent the slope of the linear shear

across the rotor disk in units of 1/s. Using the three lidar measurements illustrated in Fig. 5.1,

one for each blade denoted as ûb1,ψ, ûb2,ψ, and ûb3,ψ, lidar-based estimates of these variables can

be formed using

ûhh,ψ =
1

3
(ûb1,ψ + ûb2,ψ + ûb3,ψ) (5.11a)

∆̂h,ψ = − 2

3r

(
sin (ψ)ûb1,ψ + sin

(
ψ +

2π

3

)
ûb2,ψ + sin

(
ψ +

4π

3

)
ûb3,ψ

)
(5.11b)

∆̂v,ψ =
2

3r

(
cos (ψ)ûb1,ψ + cos

(
ψ +

2π

3

)
ûb2,ψ + cos

(
ψ +

4π

3

)
ûb3,ψ

)
, (5.11c)
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where dividing the shear component measurements by the scan radius r serves the purpose of

providing estimates of the slope of the shear.

Relying on the uhh,ψ, and ûhh,ψ definitions in (5.10) and (5.11), for fixed azimuth angles

ψm and ψn, the CPSD between any two rotor effective or lidar-estimated hub-height component

variables can be expressed using CPSDs between individual blade effective or lidar measurement

variables as

Sauhh,ψmbuhh,ψn (ω) =
1

9

3∑
i=1

3∑
k=1

Sabi,ψmbbk,ψn (ω) , (5.12)

where auhh , buhh ∈ {uhh, ûhh} and ab, bb ∈ {ub, ûb}. Similarly, using the shear component defi-

nitions in (5.10) and (5.11), the cross-spectrum for rotor effective or lidar-based horizontal shear

variables a∆h
, b∆h

∈
{

∆h, ∆̂h

}
at fixed azimuth angles ψm and ψn is given by

Sa∆h,ψm
b∆h,ψn

(ω) = CaCb

3∑
i=1

3∑
k=1

sin

(
ψm +

(i− 1) 2π

3

)
sin

(
ψn +

(k − 1) 2π

3

)
Sabi,ψmbbk,ψn (ω) ,

(5.13)

where the constants

Ca, Cb ∈


2

3

∫ R

0
Wb (q) qdq

,
2

3r

 (5.14)

depend on the specific combination of rotor effective and lidar measurement variables for which

the spectrum is being determined. Finally, the CPSD between any two vertical shear variables

a∆v , b∆v ∈
{

∆v, ∆̂v

}
at azimuth angles ψm and ψn can be written as

Sa∆v,ψmb∆v,ψn
(ω) = CaCb

3∑
i=1

3∑
k=1

cos

(
ψm +

(i− 1) 2π

3

)
cos

(
ψn +

(k − 1) 2π

3

)
Sabi,ψmbbk,ψn (ω) .

(5.15)

The rotor effective wind speed component CPSDs for all necessary combinations of fixed

azimuth angles determined with the formulas given in (5.12), (5.13), and (5.15) can be used in

(5.8) or (5.9) to calculate rotational spectra for rotor effective or lidar-based uhh, ∆h, and ∆v

components. These rotational spectra can then be used to determine rotor effective measurement

coherence given the three-rotating lidar measurement scenario proposed in Fig. 5.1.
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5.2.1 Power Spectrum Calculations for Axisymmetric Wind Conditions

Under the condition that the combined wind field and lidar measurement scenario satisfies

the axisymmetric properties listed in the previous section, i.e., if Saψmbψn (ω) depends on m and n

only through |n−m|, the CPSD formulas in (5.12), (5.13), and (5.15) can be simplified, reducing

the computational requirements. For axisymmetric conditions, the cross-spectrum between two

hub-height components at azimuth angles ψm and ψn can be simplified as

Sauhh,ψmbuhh,ψn (ω) = 1
9

3∑
i=1

3∑
k=1

Sabi,ψmbbk,ψn (ω)

= 1
3

3∑
k=1

Sab,ψmb
b,

(
ψn+

(k−1)2π
3

) (ω)

= 1
3

3∑
k=1

Sab,ψ0
b
b,

(
ψn−ψm+

(k−1)2π
3

) (ω)

= 1
3

3∑
k=1

Sab,ψ0
b
b,

(
|ψn−ψm|+

(k−1)2π
3

) (ω) ,

(5.16)

where ψ0 = 0. The second line of (5.16) is possible because blades 1, 2, and 3 are offset by 2π/3

radians from each other, resulting in the following equivalence:

Sabi,ψmbbk,ψn (ω) = Sa
b,ψm+

(i−1)2π
3

b
b,ψn+

(k−1)2π
3

(ω) . (5.17)

In other words, blade i at azimuth angle ψ can be described equivalently as a blade at azimuth

angle ψ + (i− 1) 2π/3. Furthermore, due to axisymmetry,

Sa
b,ψm+

(i−1)2π
3

b
b,ψn+

(i−1)2π
3

(ω) = Sab,ψmbb,ψn (ω) , (5.18)

and the nine CPSDs in the first line contain only three unique CPSDs, each repeated three times.

The third line, where the azimuth angles of signals ab and bb are both shifted by ψm, is also possible

because of axisymmetry. Finally, for the case when ψm > ψn the fourth line of (5.16) relies on

the following property due to axisymmetry: Saψ0
bψm

(ω) = Saψ0
bψ−m

(ω), as well as the property:

Saψmbψn+2π
(ω) = Saψmbψn (ω). Equation (5.16) reveals that in axisymmetric wind conditions,

Sauhh,ψmbuhh,ψn (ω) = Sauhh,ψ0
buhh,ψ|n−m|

(ω) . (5.19)
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Thus the simplified rotational spectrum formula in (5.9) can be used to calculate rotating hub-height

component spectra.

To simplify the shear component spectrum calculations in (5.13) and (5.15), assuming ax-

isymmetry, the following trigonometric identities are utilized:

sinψ1 sinψ2 =
cos (ψ1 − ψ2)− cos (ψ1 + ψ2)

2
(5.20a)

cosψ1 cosψ2 =
cos (ψ1 − ψ2) + cos (ψ1 + ψ2)

2
, (5.20b)

and

cos (ψ) + cos

(
ψ +

2π

3

)
+ cos

(
ψ +

4π

3

)
= 0. (5.21)

With axisymmetric conditions, the cross-spectrum between two horizontal shear components at

azimuth angles ψm and ψn, presented in (5.13), can be simplified as

Sa∆h,ψm
b∆h,ψn

(ω) = CaCb

3∑
i=1

3∑
k=1

sin

(
ψm +

(i− 1) 2π

3

)
sin

(
ψn +

(k − 1) 2π

3

)
Sabi,ψmbbk,ψn (ω)

= CaCb
3
2

3∑
k=1

cos

(
ψm − ψn −

(k − 1) 2π

3

)
Sab,ψmb

b,

(
ψn+

(k−1)2π
3

) (ω)

= CaCb
3
2

3∑
k=1

cos

(
ψm − ψn −

(k − 1) 2π

3

)
Sab,0b

b,

(
ψn−ψm+

(k−1)2π
3

) (ω)

= CaCb
3
2

3∑
k=1

cos

(
|ψn − ψm|+

(k − 1) 2π

3

)
Sab,ψ0

b
b,

(
|ψn−ψm|+

(k−1)2π
3

) (ω) .

(5.22)

The second line of (5.22) relies on the same properties that were used to form the second line of

(5.16) as well as the identities in (5.20) and (5.21). The product of two sines appearing in the

first line can be expressed as a sum of two cosines using (5.20a). However, by applying (5.21), the

second cosine in the pair is eliminated during the double summation. In the third line, the azimuth

angles of the signals ab and bb are simply shifted by ψm. In the final line, the simplification made

to the cross-spectra follows the same logic as described for the hub-height component derivation

in (5.16), with the simplification made to the cosine term resulting from the following symmetry:

cos (−ψ) = cos (ψ). As with the hub-height component term, (5.22) shows that in axisymmetric

conditions Sa∆h,ψm
b∆h,ψn

(ω) = Sa∆h,ψ0
b∆h,ψ|n−m|

(ω), once again allowing the simplified rotational
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spectrum formula in (5.9) to be applied to the rotational horizontal shear component.

Following the same approach used to simplify the horizontal shear component cross-spectra

in (5.22), and utilizing the cosine product-to-sum identity in (5.20b), the cross-spectrum between

two vertical shear components at azimuth angles ψm and ψn, originally presented in (5.15), can be

rewritten as

Sa∆v,ψmb∆v,ψn
(ω) = CaCb

3∑
i=1

3∑
k=1

cos

(
ψm +

(i− 1) 2π

3

)
cos

(
ψn +

(k − 1) 2π

3

)
Sabi,ψmbbk,ψn (ω)

= CaCb
3
2

3∑
k=1

cos

(
ψm − ψn −

(k − 1) 2π

3

)
Sab,ψmb

b,

(
ψn+

(k−1)2π
3

) (ω) .

(5.23)

However, the second line of (5.23) is equivalent to the second line of the horizontal shear formula

in (5.22), resulting in equivalent cross-spectra for the horizontal and vertical shear components for

azimuth angles ψm and ψn:

Sa∆v,ψmb∆v,ψn
(ω) = Sa∆h,ψm

b∆h,ψn
(ω) . (5.24)

Since the horizontal and vertical shear component cross-spectra are equivalent for any pair of

azimuth angles, the rotational horizontal and vertical shear components are equivalent as well:

Sa∆v,rb∆v,r
(ω) = Sa∆h,r

b∆h,r
(ω) . (5.25)

The fact that the horizontal and vertical shear components have the same spectral characteristics is

expected due to the axisymmetry of the wind field. The vertical shear calculations can be thought

of as equivalent to the horizontal shear calculations after rotating the wind field by an azimuth

angle of 90◦. Assuming axisymmetry, the frequency-domain wind field statistics remain the same

even after a constant shift in azimuth angle is applied to all locations.

Although the modified linear shear terms δh and δv given in (3.43), describing the differ-

ence in the wind speed across the rotor disk normalized by the hub-height wind speed, are the

standard definitions used in NREL’s aeroelastic simulation and turbine model linearization code

FAST [9], spectra involving these components are difficult to calculate. All of the frequency-domain

calculations described in this thesis rely on the wind speed variables being linear functions of the
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wind speeds at different points in the wind field. Since the definitions of δh and δv are nonlinear

due to the normalization by the hub-height component, their spectra cannot be calculated using

the developed techniques. The spectra of these components can be approximated, however, by

fixing the hub-height component at its mean value U . By applying the definitions in (3.43), this

approximation is equivalent to

Saδh,rbδh,r (ω) =
D2

U2
Sa∆h,r

b∆h,r
(ω) (5.26a)

Saδv,rbδv,r (ω) =
D2

U2
Sa∆v,rb∆v,r

(ω) . (5.26b)

Using the techniques for calculating stationary and rotating power spectra and measurement

coherence described in Section 4.2 and in this chapter, examples of the power spectra and measure-

ment coherence for a stationary blade effective wind speed and corresponding lidar measurement, a

rotating blade effective wind speed and lidar measurement, and rotating rotor effective hub-height

and linear shear components and lidar-based estimates using (5.11) are shown in Fig. 5.2. For all

three scenarios the NREL 5-MW reference turbine parameters are used, and the lidar measurements

rely on a scan radius of r = 40.95 m (0.65 R) and preview distance of d = 113.4 m (0.9 D). The

axisymmetric Kaimal spectral model, described at the end of Section 5.1 is used in the spectrum

calculations for an above-rated mean wind speed of U = 13 m/s and u component turbulence in-

tensity TIu = 10%. Instead of using the turbulence standard deviation and length scale parameters

defined for the Kaimal model in Section 3.1, the parameters belonging to unstable LES wind field

11, listed in Table 3.1, are applied. Specifically, the ratios σv/σu = 0.72 and σw/σu = 0.59 as well

as the length scales Lu = 230 m, Lv = 90 m, and Lw = 62 m are used to determine the underlying

power spectra and spatial coherence functions.

As explained in Section 3.5, the torque-based blade effective weighting functions shown in

Fig. 3.16 (a) are used to calculate the rotor effective hub-height component spectra in Fig. 5.2 as

well as the rest of this thesis, given the interest in using collective pitch control to regulate rotor

speed, which is heavily dependent on the torque produced by the hub-height wind component. On
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Figure 5.2: Power spectra and measurement coherence curves for a stationary blade effective wind
speed (black), a rotating blade effective wind speed (blue), and rotating rotor effective hub-height
(red) and shear (green) components for a lidar scan radius of r = 40.95 m and preview distance of
d = 113.4 m using the NREL 5-MW reference turbine parameters. The power spectra are plotted
in both unaltered form as well as multiplied by frequency. The axisymmetric Kaimal turbulence
model based on LES wind field 11 is used, with U = 13 m/s, TIu = 10%, and Lu = 230 m.
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the other hand, since wind shear has a greater impact on time-varying out-of-plane root bending

moments experienced by the blades as they rotate through the wind field, which can be reduced

using individual pitch control, than on rotor torque, the blade root bending moment-based weighting

functions shown in Fig. 3.16 (b) are used to calculate the rotor effective shear components. Note

that the torque-based blade effective weighting function is used to calculate the spectra for the

single-rotating blade scenario in Fig. 5.2.

In order for the lidars to measure the wind at azimuth angles where the blades will be

located by the time the measured wind reaches the rotor plane, the lidar measurement azimuth

angle ψm, shown in Fig. 5.1, should be chosen as ψt + (d/U) · (2π/60) · ωrot, where ωrot is the

rotor speed in RPM and d/U gives the time it takes for the measured wind to reach the rotor. In

the spectrum calculations performed to determine rotational measurement coherence, however, the

phase shift due to the transit time d/U is subtracted from the phase of the cross-spectra between

lidar measurements and wind speeds at the rotor, and the measurement azimuth angle is simply

chosen as ψm = ψt. This simplification yields the same values of coherence that would result if the

transit time were accounted for by choosing ψm = ψt + (d/U) · (2π/60) · ωrot.

Note that in Fig. 5.2 the power spectra of the blade effective and rotor effective quantities

are displayed in their unaltered form as well as by multiplying the PSDs by frequency. As in

Fig. 3.2, the latter form allows the area under the curves between any two frequencies to reflect

the true fraction of the total power of the wind variable in that frequency band, i.e., to allow the

dominant frequencies to be revealed. Also note that the power spectrum of the δh and δv quantities

is normalized by

(
3 · U

∫ R

0
Wb (q) qdq

)2

/ (2 ·D)2 so that its shape can be more easily compared

to that of the hub-height component power spectrum.

The power spectrum of a rotating blade effective wind speed, as shown in Fig. 5.2, differs

greatly from that of a stationary blade effective wind speed. While much of the energy is concen-

trated at low frequencies, strong peaks occur at the once-per-revolution (1P) frequency of ∼0.2 Hz,

corresponding to a rotor speed of 12.1 RPM, and its harmonics, due to rotational sampling of the

turbulent structures in the wind field. The measurement coherence for a rotating lidar measure-
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ment also peaks at the 1P frequency and its harmonics, and decays much more slowly than the

coherence for a stationary blade and lidar measurement. When three rotating blade effective wind

speeds are combined to form rotor effective hub-height and linear shear components, much of the

energy is similarly concentrated at low frequencies, but with peaks occurring at the three-times

per-revolution (3P) frequency of ∼0.6 Hz and its harmonics. Peaks occur at the 3P frequency and

its harmonics because three blades are sampling the turbulent structures in the wind field every

rotor revolution. A comparison between the uhh component and the δh and δv components reveals

that a greater fraction of the energy in the shear components is concentrated at higher frequencies

such as the peak at the 3P frequency. Measurement coherence curves using the three-rotating lidar

scenario follow the same trend as the power spectra. Coherence is high at low frequencies as well

as the peaks at the 3P frequency and its harmonics. At low frequencies the measurement coher-

ence for the shear components is lower than for the hub-height component, partly because the ûhh

calculations tend to average out any uniform transverse and vertical components across the wind

field, while the shear component estimates are more susceptible to the presence of transverse and

vertical wind speeds.

5.3 Rotating Lidar Measurement Scenario Optimization

Similar to Fig. 4.6, which contains measurement coherence curves between stationary lidar

measurements and blade effective wind speeds for different preview distances, Fig. 5.3 contains

measurement coherence curves between rotating lidar-based estimates of the hub-height and shear

components and the true rotor effective components based on three rotating blade effective wind

speeds. Measurement coherence is calculated for the three preview distances d = 37.8 m, 113.4 m,

and 189 m (0.3, 0.9, and 1.5 D) with fixed scan radius r = 40.95 m (0.65 R) using the same

wind conditions that were used for the results in Fig. 5.2. As with the stationary measurement

coherence curves, when the preview distance increases the low frequency coherence becomes larger

because line-of-sight errors are reduced. But as preview distance increases, wind evolution becomes

more severe and the coherence begins to decay at lower frequencies. However, the coherence at the
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Figure 5.3: Measurement coherence for hub-height (solid) and shear (dashed) component measure-
ments for a lidar scan radius of r = 40.95 m and preview distances of d = 37.8 m, 113.4 m, and
189 m. The axisymmetric Kaimal turbulence model based on LES wind field 11 is used, with
U = 13 m/s, TIu = 10%, and Lu = 230 m.

3P frequency and its harmonics tends to reflect the low frequency behavior. As preview distance

increases, thereby reducing the measurement angle indicated by θ in Fig. 5.1, the coherence at 3P

and its harmonics increases, but the peaks become narrower. For all scenarios the low frequency co-

herence for the shear component measurements is lower than the hub-height component coherence,

reflecting the larger impact that line-of-sight errors have on the shear component estimates.

By calculating measurement coherence for many different combinations of scan radius and

preview distance, the dependence of the mean square measurement error on the scan parameters

can be found. The optimal scan parameters that minimize MSE can then be determined for a

particular wind condition. Assuming that the lidar measurements are optimally filtered using the

prefilter with transfer function Hpre (f) = Stm(f)
Smm(f) described in Section 2.2, the measurement MSE

can be calculated by integrating the measurement error power spectrum given in (2.29), which

depends on the PSD of the true wind speed variable Stt (f) as well as the measurement coherence

γ2
tm (f), up to a maximum frequency fmax of interest:

E
[
(wt −Hprewm)2

]
=

∫ fmax

0
Stt (f)

(
1− γ2

tm (f)
)
df. (5.27)
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Since the analysis of lidar measurement error is primarily meant to aid the design of preview-based

blade pitch control systems in above-rated conditions, fmax is chosen as the bandwidth of the

pitch actuators, i.e., the maximum frequency for which blade pitch control can be used. The blade

pitch actuator dynamics for the NREL 5-MW reference turbine are often modeled as second-order

systems with a natural frequency of 1 Hz [28, 31]. Therefore, fmax is chosen as 1 Hz. In practice,

controllers are typically designed using a lower bandwidth. For example, the baseline collective

pitch controller for the NREL 5-MW reference turbine has a bandwidth of 0.25 Hz [8], while the

IPC controller described in Bossanyi et al. [11] relies on 1P and 2P pitch control actions, i.e.,

∼0.2 Hz and ∼0.4 Hz for the NREL 5-MW model’s rated rotor speed of 12.1 RPM. But a value of

fmax = 1 Hz is used for the measurement error calculations in this thesis to reflect the maximum

possible control bandwidth that could potentially be implemented. For the majority of the MSE

comparisons in this chapter, MSE is expressed not by its true value, as in (5.27), but as a fraction

of the variance of the true wind component, using the following formula:

E
[
(wt −Hprewm)2

]/
σ2
t =

∫ fmax

0
Stt (f)

(
1− γ2

tm (f)
)
df

/∫ fmax

0
Stt (f) df, (5.28)

where the variance of the true wind component σ2
t is calculated by integrating the power spectrum

Stt (f).

It should be noted that blade pitch control signals used to address the horizontal and vertical

shear components in the non-rotating frame discussed in this thesis need to be converted into

individual blade pitch commands in the rotating frame, using the MBC transformation [38], before

being implemented as control actions. After applying the MBC transformation, the individual pitch

commands will contain components at frequencies that are ± 1P (0.2 Hz) from the frequencies in

the non-rotating frame. Therefore, given the pitch actuator bandwidth of 1 Hz, the maximum

shear component frequency that can be addressed using blade pitch control is actually ∼0.8 Hz.

But since there is very little power in the shear component spectra between 0.8 Hz and 1 Hz, as

shown in Fig. 5.2, the integration limit of 1 Hz in (5.28) is employed without significant loss in

accuracy.
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Using the MSE formula in (5.27), the optimal scan radius r∗ and preview distance d∗ for a

particular wind condition can be found according to the following formula:

(r∗, d∗) = arg min
r,d

∫ fmax

0
Stt (f)

(
1− γ2

tm (f)
)
df, (5.29)

where Stt (f) and γ2
tm (f) are replaced by the calculated PSD and measurement coherence functions

corresponding to uhh, δh, or δv. A brute-force approach for a range of r and d values is used to find

the approximate optimal solution to (5.29) due to the complexity of the underlying spectrum and

coherence formulas.

Fig. 5.4 contains the normalized measurement MSE for the hub-height and shear components

as a function of scan radius and preview distance for the U = 13 m/s, TIu = 10% wind condition

used for the results in Figs. 5.2 and 5.3, based on LES wind field 11. For the hub-height component

the optimal scan parameters are r∗ = 37.8 m (0.6 R) and d∗ = 100.8 m (0.8 D), producing a

normalized MSE of 0.061, i.e., 6.1% of the true hub-height component variance. Slightly different

optimal scan parameters of r∗ = 44.1 m (0.7 R) and d∗ = 113.4 m (0.9 D) yield a normalized

MSE of 0.203 for the shear components. Measurement error is minimized for scan radii near 2/3 of

the blade span, in the region where the blade effective weighting functions weight the wind speeds

heavily, as can be inferred from Fig. 3.16. Although the peaks of the blade effective weighting

functions for U= 13 m/s are closer to 80% blade span, measurements at the optimal scan radii

correlate well with the overall weighted distribution of wind speeds along the blade. Measurements

at 80% blade span would lose much of their correlation with wind speeds at the inboard section of

the blade due to the sharp decrease in transverse and vertical spatial coherence.

As shown in Fig. 5.4, for preview distances less than the optimal preview distance, measure-

ment error increases, due to greater line-of-sight errors caused by the larger measurement cone

angle. For preview distances beyond the optimal value, on the other hand, measurement error

increases due to more wind evolution. In general, close to the optimal value, measurement error is

more sensitive to changes in scan radius than to variations in the preview distance. Therefore, when

choosing a lidar scan scenario it is more important to measure near the optimal scan radius than
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Figure 5.4: Normalized MSE as a function of scan radius r and preview distance d for the hub-
height (uhh) and shear (δh, δv) components using the axisymmetric Kaimal turbulence model based
on LES wind field 11, with U = 13 m/s, TIu = 10%, and Lu = 230 m. The contour interval, in
terms of the variance of the true wind components, is 0.01 in both plots.

to select the precise optimal preview distance, as long as the measurement angle is not too large.

The hub-height component results reveal that for a scan radius of r = 0, equivalent to a forward

staring lidar scenario, measurement error is much higher than at the optimal r value, but is still

only ∼1/3 of the variance of the true hub-height component. However, for the shear components,

scan radii close to 0 yield almost no meaningful information, i.e., a normalized MSE close to 1. This

is because shear estimates require knowledge of how the wind speeds vary across the rotor area,

while a point measurement at the rotor center is still a reasonable approximation of the average

wind speed over the rotor disk due to the highly-correlated nature of low-frequency components

of the wind over the rotor area. Note that the measurement quality for the shear components is

much lower than for the hub-height component. This is partially due to line-of-sight errors affecting

the shear estimates more than the hub-height component estimates, where the detected v and w

components are reduced more through averaging. Another large source of the higher error is that
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more of the energy in the shear components is concentrated at higher frequencies (see Fig. 5.2),

which are more adversely affected by wind evolution.

5.3.1 The Impact of the Induction Zone on Rotating Measurement Coherence

The impact of the induction zone on lidar measurement quality can be assessed by includ-

ing the axisymmetric induction zone model described in Section 3.3.1 in the frequency-domain

power spectrum and coherence calculations. Specifically, the velocity reductions and wind direc-

tion changes illustrated in Fig. 3.12 and described in (3.26) and (3.27) are incorporated into the

frequency-domain wind field model. The particular modifications to the wind field model are de-

scribed below.

First of all, the corrected longitudinal wind component u′~x1
that interacts with the rotor

at location ~x1 with azimuth angle ψ, longitudinal distance δx upstream of the rotor, and radial

distance δyz from the symmetry axis is calculated as

u′~x1
= cos (θind (δx, δyz))u~x1

+ sin (θind (δx, δyz)) (sin (ψ)v~x1
− cos (ψ)w~x1

) , (5.30)

where θind (δx, δyz) represents the wind direction angle in the induction zone:

θind (δx, δyz) = arctan (V (δx, δyz) /U (δx, δyz)), (5.31)

with U (δx, δyz) representing the reduced mean longitudinal wind speed and V (δx, δyz) indicating

the mean radial wind speed at the longitudinal and radial distances δx and δyz (see Fig. 3.12).

Equation (5.30) assumes that the wind speed vectors rotate along with the change in mean wind

direction.

Secondly, the lidar-detected line-of-sight velocities are affected by the wind speed direction

change; for a given measurement cone angle θ, the effective measurement angle at which the lidar

measures the wind is larger due to the rotation of the wind speed vector in the radial direction.

This change in the detected line-of-sight velocity can be described using the modified lidar direction

vector `′~x2
=
[
`′x,~x2

, `′y,~x2
, `′z,~x2

]
, which is a function of the intended lidar vector ` = [`x, `y, `z] and
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measurement azimuth angle ψ as well as the wind direction angle at the particular longitudinal

and radial distances δx and δyz corresponding to the measurement point ~x2:

`′x,~x2
= cos (θind (δx, δyz))`x − sin (θind (δx, δyz))

√
`2y + `2z (5.32a)

`′y,~x2
= −

(
sin (θind (δx, δyz))`x + cos (θind (δx, δyz))

√
`2y + `2z

)
sin (ψ) (5.32b)

`′z,~x2
=
(

sin (θind (δx, δyz))`x + cos (θind (δx, δyz))
√
`2y + `2z

)
cos (ψ). (5.32c)

The corrected line-of-sight velocity u′`,~x2
detected by the lidar at the location ~x2 along the lidar

beam is then given by

u′`,~x2
= −`′x,~x2

u~x2
− `′y,~x2

v~x2
− `′z,~x2

w~x2
. (5.33)

Finally, following the strategy used in (4.13), the estimate of the longitudinal u component is given

by

û′~x2
= − 1

`x
u′`,~x2

=
`′x,~x2
`x

u~x2
+

`′y,~x2
`x

v~x2
+

`′z,~x2
`x

w~x2
.

(5.34)

The presence of the induction zone also influences the transverse and vertical spatial coherence

within the wind field. As shown by the streamlines of the mean flow field in Fig. 3.12 (b), the wind

field expands as it approaches the rotor because of conservation of mass. An assumption is made

that the transverse and vertical coherence γ2
yz,K~x1

K~x2
(f) in the induction zone is a function of the

separation distance ∆yz between the points ~x1 and ~x2 prior to the wind field expansion. Therefore,

the coherence parameter ∆yz is calculated by first tracing the points ~x1 and ~x2 upstream outside

of the induction zone and determining their freestream separation distance.

Due to the radial dependence of the mean wind speeds in the induction zone, illustrated in

Fig. 3.12 (a), the time that it takes for turbulent wind speeds located the same distance upstream

of the rotor, but with different radial positions, to reach the rotor can be different. In general, this

variable arrival time produces non-zero mean phases between wind speeds at the same longitudinal

position in the induction zone, and alters the formula relating phase to longitudinal separation

described in (3.12). It is assumed that the phase of the CPSD between two wind speeds at locations

~x1 and ~x2 is a function of the different arrival times that the two wind speeds experience after
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originating at the same freestream longitudinal position:

]SK~x1
,K~x2

(f) = 2πf
(
∆tfr,~x2

−∆tfr,~x1

)
, (5.35)

where ∆tfr,~x indicates the transit time for a point in the wind field at ~x to travel from some fixed

freestream longitudinal location.

Finally, the assumption is made that the longitudinal coherence describing wind evolution

is affected by the reduced mean wind speeds in the induction zone, as described in Section 3.3.2.

Specifically, the modified mean wind speed parameter U ′ is used, where U ′ describes the longitudinal

distance traveled by the wind speeds between the two points of interest divided by the transit time.

Similarly, the integral length scale parameters are scaled by U ′/U . As discussed in Section 3.3.2,

these wind parameter modifications do not account for the entire drop in longitudinal coherence

in the induction zone calculated using the SOWFA-generated LES wind field. But because of

uncertainty in how the true decrease in coherence varies for different wind conditions, only these

simple mean wind speed and integral length scale modifications are made, which may yield a slight

overestimation of the longitudinal coherence in the induction zone.

By incorporating the abovementioned wind field modifications, the impact of the induction

zone on measurement error as a function of scan radius and preview distance is shown in Fig. 5.5,

once again for wind conditions based on LES wind field 11 with TIu = 10%, but at the NREL 5-MW

reference turbine’s rated wind speed U = 11.4 m/s. At the rated wind speed, the axial induction

factor, calculated using NREL’s WT Perf tool [88] is ∼0.17, close to the maximum induction factor

of ∼0.18 in below-rated conditions [8], for which the results in Section 3.3 were created. For higher

wind speeds, when the relative power capture of the turbine is reduced to maintain rated power

production, the impact of the induction zone reduces rapidly; at U = 13 m/s, for example, a = 0.1.

In Fig. 5.5, measurement error contours calculated by including induction zone effects are compared

with the error contours calculated without incorporating the induction zone model. Note that the

contour intervals are not constant, as they are in Fig. 5.4.

The contour plots in Fig. 5.5 reveal that the presence of the induction zone shifts the optimal
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Including the Induction Zone Model without the Induction Zone

Figure 5.5: Normalized MSE as a function of scan radius r and preview distance d for the hub-height
(uhh) and shear (δh, δv) components with (solid) and without (dashed) the developed induction
zone model using the axisymmetric Kaimal turbulence model based on LES wind field 11, with
U = 11.4 m/s, TIu = 10%, and Lu = 230 m.

scan radius and preview distance to shorter values for both the hub-height and shear components.

For uhh, the induction zone causes the optimal scan radius to move from r = 40.95 m (0.65 R)

to r = 37.8 m (0.6 R) and the optimal preview distance to shift from d = 113.4 m (0.9 D) to

d = 88.2 m (0.7 D). Likewise, the inclusion of the induction zone model causes the optimal scan

radius for shear component measurements to move from r = 44.1 m (0.7 R) to r = 40.95 m (0.65 R)

and the optimal preview distance to relocate to d = 100.8 m (0.8 D) from d = 113.4 m (0.9 D).

The shorter optimal scan radii with induction zone effects is a product of the expansion of the

approaching wind field around the rotor, illustrated by the streamlines in Fig. 3.12 (b). In order

to measure the wind that will interact with the rotor at a given radial position, the lidar should

be focused at a smaller scan radius to account for the wind direction change. Shorter scan radii

allow for shorter optimal preview distances, thereby reducing wind evolution without significantly
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impacting line-of-sight errors. As a result of the shorter preview distances, the minimum achievable

normalized MSE in the presence of the induction zone decreases slightly, even though the slower

mean wind speeds cause a minor drop in longitudinal coherence. By including the induction zone,

the minimum normalized MSE for the hub-height component changes from 0.063 to 0.061, while

the error for the shear components drops from 0.2 to 0.19.

Because the developed induction zone model produces only a small change in the achievable

measurement error, with diminishing impact as the wind speed increases in above-rated conditions,

it is not included in the rest of the analyses in this thesis. However, it can be assumed that slightly

shorter optimal scan radii and preview distances should be employed close to rated wind speed due

to induction zone effects. Additional CFD data is required to determine how the true decrease in

longitudinal coherence in the induction zone is related to the wind conditions.

5.3.2 The Impact of Yaw Error on Rotating Measurement Coherence

Most of the analyses in this thesis use the assumption that the turbine is perfectly aligned

with the wind direction, that is, the longitudinal wind direction is perpendicular to the rotor

plane. However, since yaw control on large turbines is typically performed on very long time scales

compared to pitch and generator torque control [5, 6], wind turbines often operate with yaw error,

or error between the longitudinal wind direction and the orientation of the rotor. If the same

circularly-scanning lidar scenario explored throughout this chapter is maintained, then yaw error

can lead to increased lidar measurement error. A simple top view of a turbine with a hub-mounted

circularly-scanning lidar experiencing a yaw error γ is provided in Fig. 5.6. Two error sources are

apparent based on the simple illustration. First of all, the wind measured by the lidar will reach

the rotor at a different transverse position than anticipated. For example, the wind that interacts

with the right side of the rotor, when viewing the turbine in Fig. 5.6 from upstream, is very poorly

measured by the lidar. Secondly, the line-of-sight velocities measured by the lidar will contain a

bias due to the yaw error. Using the specific yaw error shown in Fig. 5.6, the detected line-of-sight

velocities will, on average, be higher for azimuth angles from 0 to 180◦, when the lidar beam is
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wind 
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y 

Figure 5.6: Top view of a wind turbine and lidar scan pattern with yaw error γ.

more aligned with the wind direction, than for azimuth angles between 180◦ and 360◦, when the

angle between the lidar beam and the wind direction is larger.

The effects of yaw error on measurement quality can be determined with a few simple modi-

fications to the wind field model. First, new coordinates [x′, y′, z] within the wind field are defined

for all rotor positions and lidar measurement locations by rotating the longitudinal and transverse

locations: [
x′, y′, z

]
= [(cos (γ)x− sin (γ)y) , (sin (γ)x+ cos (γ)y) , z] , (5.36)

where x, y, and z are the original coordinates assuming zero yaw error. Next, the modified longitu-

dinal wind component that interacts with the rotor at point ~x1, perpendicular to the rotor plane,

that is used to calculate the rotor effective wind speeds, is given by

u′~x1
= cos (γ)u~x1

− sin (γ) v~x1
, (5.37)

where u~x1
and v~x1

are the true longitudinal and transverse wind components at point ~x1. Therefore,

both the longitudinal and transverse wind components are used to form the rotor effective wind

speeds.

Finally, the lidar direction vector is modified to reflect the projection of the velocity vector

onto the lidar beam direction in the presence of yaw error. The modified lidar vector is formed as

~̀′ = [(cos (γ)`x − sin (γ)`y) , (sin (γ)`x + cos (γ)`y) , `z] , (5.38)

where ` = [`x, `y, `z] is the intended lidar direction assuming zero yaw error. Similar to (5.33), the
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modified velocity u′`,~x2
detected by the lidar at point ~x2 along the lidar beam is equivalent to

u′`,~x2
= −`′xu~x2

− `′yv~x2
− `′zw~x2

. (5.39)

Assuming that the true yaw error is unknown, the strategy used in (4.13) to estimate the longitu-

dinal u component is once again applied, yielding the following lidar-based longitudinal wind speed

estimate:

û′~x2
= − 1

`x
u′`,~x2

= `′x
`x
u~x2

+
`′y
`x
v~x2

+ `′z
`x
w~x2

.

(5.40)

Using the U = 13 m/s, TIu = 10% wind condition based on LES wind field 11, and the

wind field modifications described above, the impact of yaw error on measurement coherence for

the uhh, δh, and δv components is shown in Fig. 5.7 for yaw errors between 2.5◦ and 25◦. The lidar

scan parameters are chosen as the optimal parameters for the hub-height and shear components

with zero yaw error illustrated in Fig. 5.4: r∗ = 37.8 m (0.6 R), d∗ = 100.8 m (0.8 D) for uhh

and r∗ = 44.1 m (0.7 R), d∗ = 113.4 m (0.9 D) for δh and δv. While the power spectrum and

measurement coherence computations used to determine measurement quality earlier in Section 5.3

relied on the simplified rotational CPSD formula for axisymmetric wind fields in (5.9) along with

the simplifications discussed in Section 5.2.1, the presence of yaw error violates the axisymmetry

property. The cross-spectrum between lidar measurements and/or blade effective wind speeds

at two different azimuth angles no longer depends solely on the absolute difference between the

azimuth angles. Therefore, the more computationally-intensive formula for calculating rotational

CPSDs in (5.8) is employed. As a result, it is computationally prohibitive to calculate measurement

error for as many different scan scenarios and wind conditions as are used for measurement quality

analysis with zero yaw error. But the results in Fig. 5.7 illustrate the detrimental impact that yaw

error has on measurement quality.

The coherence curves in Fig. 5.7 reveal that measurement quality is effected differently by

yaw error depending on the particular wind component. Note that as a consequence of the lack of

axisymmetry in the wind field, the coherence curves for the δh and δv components are different for

γ > 0. Measurement coherence for the shear components suffers much more due to yaw error than
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Figure 5.7: Measurement coherence for the uhh, δh, and δv components as a function of yaw error
using the optimal scan radii and preview distances for zero yaw error: r∗ = 37.8 m (0.6 R),
d∗ = 100.8 m (0.8 D) for uhh and r∗ = 44.1 m (0.7 R), d∗ = 113.4 m (0.9 D) for δh and δv. The
axisymmetric Kaimal turbulence model based on LES wind field 11 is used, with U = 13 m/s,
TIu = 10%, and Lu = 230 m.

for the hub-height component. Furthermore, yaw error degrades the quality of the δh component

much more than δv, likely in part because of the disparity in how the wind speed vector is projected

onto the lidar beam, forming line-of-sight measurements, across the scan circle in the horizontal

direction. In contrast, the projection of the wind vector onto the lidar beam is much more similar

across the scan circle in the vertical direction, where measurements contributing to the vertical

shear estimate are formed. Additionally, measurement coherence near the peak at the 3P frequency

decreases at a much faster rate because of yaw error than the low-frequency coherence, especially

for the uhh and δv components.

So that the impact of yaw error on measurement error can be more directly evaluated, Fig. 5.8

contains the normalized MSE, calculated using (5.28), for the three wind component measurements
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corresponding to the coherence curves displayed in Fig. 5.7. Clearly, measurement error for the

shear components increases more than the hub-height component error, although the hub-height

MSE is much lower to begin with when yaw error is zero. While MSE for the horizontal and vertical

shear components is identical with zero yaw error, the normalized δh component MSE increases

faster as yaw error becomes greater, approaching 1 for γ = 25◦. For a moderate yaw error of 10◦,

the normalized uhh component MSE increases from 0.061 to 0.15, while it increases from 0.20 to

0.57 for δh and from 0.20 to 0.47 for δv.

While the impact of yaw error on measurement quality was analyzed in this section assuming

that the lidar measurement scenario was the same as the scenario used for zero yaw error, it is pos-

sible to reduce measurement error by including a yaw error variable in the wind field measurement

model. For example, as shown in Raach et al. [98], by using lidar measurements to estimate the hub-

height component, horizontal and vertical linear shear, and yaw error using nonlinear techniques,

the measurement coherence for the shear components is higher than when only the hub-height and

shear components are estimated using linear techniques, assuming zero yaw error. However, given
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Figure 5.8: Mean square measurement error for the uhh, δh, and δv components normalized by the
variance of the rotor effective wind speed variables as a function of yaw error using the optimal scan
radii and preview distances for zero yaw error: r∗ = 37.8 m (0.6 R), d∗ = 100.8 m (0.8 D) for uhh
and r∗ = 44.1 m (0.7 R), d∗ = 113.4 m (0.9 D) for δh and δv. The axisymmetric Kaimal turbulence
model based on LES wind field 11 is used, with U = 13 m/s, TIu = 10%, and Lu = 230 m.
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the three-beam circularly-scanning lidar scenario explored in this thesis, it is difficult to estimate

both yaw error and horizontal shear. With only three unique lidar measurements each time step,

only three wind field variables can be determined; either horizontal shear or yaw error can be in-

cluded, but not both. In order to estimate yaw error in addition to horizontal shear using this lidar

scenario, measurements over multiple time steps would have to be combined.

5.4 Rotating Lidar Measurement Scenario Optimization for Different Wind

Conditions

In Section 5.3, the process of using frequency-domain measurement error calculations to

optimize a scan scenario for a particular wind condition was described. The measurement error

that results from a particular scan geometry varies with the wind condition, though, and the optimal

scan scenario for one wind condition is not necessarily the best approach for another wind condition

with a different mean wind speed, turbulence intensity, or length scale.

Measurement coherence curves and wind component power spectra are illustrated in Fig. 5.9

for four different wind conditions based on the length scales and turbulence standard deviation

ratios from LES wind field 11: a mean wind speed of U = 13 m/s together with two different u

component turbulence intensities TIu = 5% and TIu = 30% as well as a higher mean wind speed of

U = 23 m/s paired with the same two turbulence intensities. The scan parameters chosen to create

the measurement coherence curves consist of the optimal r and d that minimize measurement MSE

for the particular wind condition. The power spectra reveal that for a fixed length scale Lu, a

higher mean wind speed shifts the energy in the rotor effective wind speed components to higher

frequencies. As shown in Fig. 3.16, for different mean wind speeds the blade effective weighting

functions change only slightly, and thus the impact of the different blade effective weighting function

shapes on the power spectra is expected to be relatively minor. As turbulence intensity increases

for a given mean wind speed, measurement coherence decreases due to the additional longitudinal

coherence decay from wind evolution. For a fixed turbulence intensity, increasing U causes the

coherence to increase because the longitudinal coherence describing wind evolution becomes higher
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Figure 5.9: Power spectra and optimized measurement coherence for the uhh as well as δh and δv
components for all four combinations of low (U = 13 m/s) and high (U = 23 m/s) mean wind speeds
and low (TIu = 5%) and high (TIu = 30%) u component turbulence intensities. The axisymmetric
Kaimal turbulence model based on LES wind field 11 is used, with Lu = 230 m. Note that only
the TIu = 5% power spectra are shown because varying the turbulence intensity simply scales the
PSDs by a constant.

as U increases.

By finding the optimal scan parameters for a variety of wind conditions, essentially by per-

forming the optimization illustrated in Fig. 5.4 for each wind condition, the impact of the mean

wind speed, turbulence intensity, and turbulence length scale on the minimum achievable MSE

and corresponding optimal scan parameters can be found. In this section, however, rather than

using the MSE objective function in (5.29), which assumes that the frequency-domain definition

of the MMSE prefilter can be implemented, the preview time available to the prefilter is explicitly

included in the optimization.

Following the derivation given in Section 2.3, the impulse response of the prefilter can be

written as

hpre =

[
hpre [−Np] , . . . , hpre [Nh]

]T
, (5.41)

where Np is the number of samples of “preview” available to the filter and Nh is the number of

samples into the past on which the filter operates. For simplicity, it is assumed that Nh = Np. The

preview time that is available to the prefilter is restricted by the preview time provided by the lidar
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measurements: d/U . The number of samples of filter preview is then determined using

Np = b(d/U − tc) · fsc, (5.42)

where fs is the sampling frequency of the control system and tc is a fixed preview time required by

the controller. As explained in Dunne et al. [28], preview time is required by a feedforward controller

primarily to overcome the pitch actuator delay. For the NREL 5-MW reference turbine model, the

required preview time is less than 0.5 s [28], and a value of tc = 0.5 s is used to calculate the results

in this thesis. Note that more sophisticated controllers, such as model predictive controllers, can

require preview information over some finite horizon, and could therefore require greater values of

tc.

Relying on the definitions provided in Section 2.3, particularly the MSE formula presented in

(2.36), the measurement error resulting from the use of the MMSE prefilter with Np and Nh con-

straints given in (2.33), normalized by the variance of the true wind component, can be calculated

as

E
[
(wt −Hprewm)2

] /
σ2
t =

(
Rtt [0]−Rtm

TRmm
−1Rtm

) /
Rtt [0] , (5.43)

where Rtt [0] yields the variance of the true wind component. With implicit filter preview time

constraints governed by (5.42), the scan pattern optimization objective is defined as

(r∗, d∗) = arg min
r,d

(
Rtt [0]−Rtm

TRmm
−1Rtm

)
. (5.44)

Since only the frequency-domain statistics of measurement error are calculated using the techniques

described in Section 4.1 and earlier in this chapter, the time domain statistics required by (5.43) and

(5.44) must be determined. The cross-correlation function between the lidar measurement and true

wind speed signals Rtm [n] is calculated using the inverse Fourier transform of the corresponding

CPSD following the definition in (2.11). Similarly, the lidar measurement autocorrelation function

Rmm [n] is determined by computing the inverse Fourier transform of the lidar measurement PSD.

To reflect the interest in frequencies up to 1 Hz for blade pitch control purposes, the CPSD from

which Rtm [n] is calculated contains zero power above 1 Hz. But the lidar measurement PSD used to
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calculate Rmm [n] contains higher frequencies so that the prefilter is forced to remove the undesired

high frequencies of the measurement through low-pass filtering.

Using the optimization objective in (5.44) including filter preview time constraints, the three-

beam lidar scan scenario is optimized for mean wind speeds from U = 11 m/s to the NREL 5-MW

model’s cut-out wind speed of U = 25 m/s, and for u component turbulence intensities between

TIu = 2% and TIu = 35%. The resulting optimal scan radii, preview distances, and corresponding

minimum achievable normalized MSE values given by (5.43) are shown in Fig. 5.10, once again

for wind conditions based on unstable LES wind field 11, i.e., for Lu = 230 m, Lv = 90 m, and

Lw = 62 m, and σv/σu = 0.72 and σw/σu = 0.59.

Fig. 5.10 reveals that for a fixed turbulence intensity, as the mean wind speed increases

(a) Hub-height component (uhh).

(b) Shear components (δh, δv).

Figure 5.10: Minimum achievable measurement MSE normalized by the variance of the rotor
effective wind components along with the corresponding optimal scan radii r and preview distances
d as a function of mean wind speed U and u component turbulence intensity TIu for wind conditions
based on unstable LES wind field 11 with Lu = 230 m, Lv = 90 m, and Lw = 62 m, as well as
σv/σu = 0.72 and σw/σu = 0.59. Scan scenario optimization results are shown for (a) the hub-height
component and (b) the linear shear components.
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the optimal scan parameters and minimum achievable normalized measurement errors change very

little. The optimal scan radius for hub-height component measurements becomes slightly shorter,

following the tendency of the blade effective weighting functions shown in Fig. 3.16 to weight

wind speeds closer to the rotor center more heavily as wind speed increases and the blades are

pitched to reduce power capture. But the impact of the different optimal scan radii on optimal

preview distance and achievable measurement quality is very small. For the shear components, the

blade root bending moment-based weighting functions that are utilized are almost independent of

U , as shown in Fig. 3.16 (b), and consequently the optimal scan radius is almost constant near

r = 45 m (∼0.7 R) over the range of wind conditions analyzed. As turbulence intensity grows,

the optimal preview distance decreases to partially counter the intensifying wind evolution. The

shorter preview distances, in turn, cause a minor decrease in the optimal scan radius for hub-height

component measurements that mitigates line-of-sight errors slightly by reducing the measurement

cone angle. But since the optimal scan radius is primarily determined by the distribution of

the blade effective weighting function across the blade span, and thus remains roughly the same

regardless of turbulence intensity, measurement error increases due to the rise in line-of-sight errors

caused by larger measurement angles.

For both the hub-height and shear components, the minimum achievable normalized mea-

surement error changes very little as the mean wind speed increases. As shown in Fig. 5.9, at a

given frequency, the measurement coherence increases as mean wind speed becomes larger, due to

the equivalent dependence of the longitudinal coherence model describing wind evolution on the

mean wind speed. However, as also shown in Fig. 5.9, more of the energy in the rotor effective

wind components is shifted to higher frequencies as mean wind speed increases. Therefore, the

measurement coherence where most of the power in the wind is concentrated stays roughly the

same, producing only a minor change in normalized measurement error as wind speed increases.

Since the blade effective weighting functions in below-rated conditions are very similar to those

at the rated wind speed of U = 11.4 m/s, the achievable measurement quality and optimal scan

parameters for wind speeds below 11 m/s, not shown in Fig. 5.10, are expected to be nearly the
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same as those for U = 11 m/s.

So that the impact of turbulence length scale on the scan scenario optimization can be

examined, the optimal r and d values and corresponding minimum achievable normalized MSEs

are calculated for the same range of mean wind speeds and turbulence intensities analyzed in

Fig. 5.10, but for wind conditions based on stable LES wind field 12, listed in Table 3.1, with very

short length scales Lu = 56 m, Lv = 26 m, and Lw = 20 m, and turbulence standard deviation

ratios σv/σu = 0.73 and σw/σu = 0.55. The resulting optimized scan scenarios as a function of U

and TIu are provided in Fig. 5.11.

In general, the trends shown in Fig. 5.11 are similar to the optimal scan scenario behavior

for the wind conditions based on LES wind field 11 presented in Fig. 5.10. But since the small

(a) Hub-height component (uhh).

(b) Shear components (δh, δv).

Figure 5.11: Minimum achievable measurement MSE normalized by the variance of the rotor
effective wind components along with the corresponding optimal scan radii r and preview distances
d as a function of mean wind speed U and u component turbulence intensity TIu for wind conditions
based on unstable LES wind field 12 with Lu = 56 m, Lv = 26 m, and Lw = 20 m, as well as
σv/σu = 0.73 and σw/σu = 0.55. Scan scenario optimization results are shown for (a) the hub-height
component and (b) the linear shear components.
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turbulence length scales cause the longitudinal coherence describing wind evolution to drop con-

siderably, especially at low frequencies, the optimal preview distances are shorter. Because of the

increased severity of wind evolution and the use of shorter preview distances to help counter the

evolution, which in turn increases the measurement angle and causes more line-of-sight errors, the

achievable normalized measurement error rises as well. Further adding to the greater measurement

errors is the fact that smaller length scales shift more of the energy in the rotor effective wind speed

variables to higher frequencies, which are affected by wind evolution more. It is worth noting that

the relative increase in measurement error caused by shorter integral length scales is higher for the

hub-height component than for the shear components.

The scan scenario optimization results presented in Figs. 5.10 and 5.11 indicate that the

optimal lidar preview distance strongly depends on the turbulence intensity, while the optimal scan

radius has a smaller dependence on the wind conditions. Depending on the mean wind speed the

optimal scan radius ranges from 34.65 m (0.55 R) to 41.34 m (0.66 R) for the hub-height component

and between roughly 43.5 m (0.69 R) and 45.5 m (0.72 R) for the shear components, while the

optimal preview distance varies from 42.5 m (0.34 D) to 153.6 m (1.22 D) depending on the wind

conditions. As a result, a lidar system with variable scan parameters scheduled based on the

mean wind speed and estimated turbulence intensity would lead to improved measurement quality

throughout a range of wind conditions. But by analyzing the normalized MSE plotted against scan

radius and preview distance in Fig. 5.4, it is clear that the measurement error is much less sensitive

to deviations of the preview distance from the optimal value than to deviations of the scan radius

from its optimal value. Therefore it is not as important to closely track the optimal preview distance

as wind conditions change. Further analyses are required to determine how much additional error

would be incurred if a single fixed preview distance were used for all wind conditions. Since the

optimal scan radius varies by no more than ∼6.7 m (0.11 R) for the hub-height component and ∼2 m

(0.03 R) for the shear components, the performance increase made possible using a lidar system

with a variable scan radius might not warrant the added complexity and cost either. However, a

tradeoff between hub-height component and shear component measurement quality would have to
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be made when selecting a single fixed scan radius.

5.4.1 The Impact of Filter Preview Constraints on Measurement Scenario Opti-

mization

Although the optimization results presented in Section 5.4 show the minimum measurement

errors that can be achieved given the preview time constraints imposed by the scan pattern, they

do not reveal how close the errors are to the minimum normalized MSE that can be obtained with

the optimal prefilter unconstrained by preview time limitations. To analyze how close the errors

resulting from time-constrained prefilters are to the true optimal MSE, the optimization results

for the wind conditions based on LES wind field 12, with Lu = 56 m, shown in Fig. 5.11, are

presented in Fig. 5.12 with and without imposed filter preview time constraints. The optimization

objective for the unconstrained analysis is given by the frequency-domain formula in (5.29), while

the optimization objective with preview time constraints is given by (5.44). The wind condition with

shorter turbulence length scales is analyzed because the shorter optimal preview distances, which

result in less preview time, are expected to cause the greatest disparity between the constrained

and unconstrained optimization results.

The error and scan parameter contours in Fig. 5.12 illustrate how the performance of the

preview time-constrained prefilter essentially matches the performance of the unconstrained MMSE

filter for low to moderate wind speeds and turbulence intensities. For very high turbulence intensi-

ties, however, the reduced optimal preview distances cause the available preview time to decrease,

and thus a more noticeable difference between the constrained and unconstrained filtering scenarios

can be seen. For example, when U = 25 m/s, and TIu is above 15%, the time-constrained optimal

preview distance is greater to allow additional filtering time. The resulting discrepancy in normal-

ized MSE is relatively small, though. For the highest mean wind speed and turbulence intensity

values analyzed, the optimal preview distance for the hub-height component of 40.95 m resulting

from the time-constrained optimization allows only 1.14 s of filter preview time, but the resulting

MSE is only 4% higher than the MSE yielded by the unconstrained optimization scenario.
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(a) Hub-height component (uhh).
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(b) Shear components (δh, δv).

Figure 5.12: Contour plots of minimum achievable measurement MSE normalized by the variance of
the rotor effective wind components along with the corresponding optimal scan radii r and preview
distances d as a function of mean wind speed U and u component turbulence intensity TIu with
(solid) and without (dashed) filter preview time constraints. The wind conditions are based on
unstable LES wind field 12 with Lu = 56 m, Lv = 26 m, and Lw = 20 m, as well as σv/σu = 0.73
and σw/σu = 0.55. Scan scenario optimization results are shown for (a) the hub-height component
and (b) the linear shear components.

5.5 Discussion and Conclusions

This chapter presented a technique for calculating measurement error for a three-rotating lidar

scenario used to estimate rotor effective hub-height and linear shear wind variables, which are in turn

calculated based on three rotating blade effective wind speeds. These three wind components can

be used as inputs to a preview-based individual pitch controller designed with a non-rotating model

of the turbine using the MBC transform [38]. A method for calculating the measurement quality

for a single rotating lidar measurement and single rotating blade was also discussed, which can aid

in the analysis of preview-based individual pitch controllers designed using rotating models of the
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turbine. Measurement error is determined by calculating the power spectra of the rotor effective

wind speeds and lidar measurements, the cross-spectrum between the lidar measurements and the

wind variables, and the measurement coherence using frequency-domain techniques. Two methods

were suggested for calculating measurement error. First, a frequency-domain measurement error

calculation assuming that the optimal prefilter defined by its frequency content can be implemented

was proposed. Second, a more realistic time-domain method for calculating the measurement error

resulting from the use of a prefilter with time constraints imposed by the lidar preview distance

was discussed.

A scan scenario optimization for a single wind condition revealed the presence of an optimal

scan radius/preview distance combination that minimizes MSE. The optimal scan radius is largely

determined by the shape of the blade effective weighting function, i.e., by where the wind speeds

along the blade are weighted most heavily. For preview distances shorter than the optimal value, the

measurement angle increases and line-of-sight errors cause measurement error to increase. On the

other hand, for preview distances beyond the optimal distance, wind evolution intensifies causing

higher measurement error. It was shown that by including the induction zone model described in

Section 3.3, the achievable measurement error changes very little, in fact decreasing slightly, while

the optimal scan radius and preview distance become smaller due to the expansion of the approach-

ing wind field around the rotor. An investigation into the impact of yaw error on measurement

quality revealed that if the yaw error is unaccounted for by the lidar scenario, measurement error

can increase significantly for moderate amounts of yaw error. Yaw error affects measurements of

the three wind components differently, however, with the horizontal shear component showing the

most sensitivity to yaw error, followed by the vertical shear component, and finally the hub-height

component, which is the most robust to yaw error. Since wind turbines are likely to encounter

yaw error during operation, before the necessary error threshold is reached causing the yaw motor

to activate, it could be more advantageous to use shorter-than-optimal preview distances to help

mitigate the effects of yaw error. This way, errors caused by the measured wind reaching the rotor

at different transverse positions than anticipated would be reduced.
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Scan scenario optimizations performed for different wind conditions assuming filter preview-

time constraints show that the optimal scan parameters and the achievable measurement error

depend on the mean wind speed and turbulence intensity. As mean wind speed increases, the

optimal scan radius for hub-height component measurements becomes slightly shorter to match the

region along the blade where the mean wind speed-dependent blade effective weighting function

weights the wind most heavily, although the weighting functions and thus the optimal scan radii

are almost constant for wind speeds above U = 14 m/s. The optimal scan radius for the shear

components does not vary significantly, on the other hand, regardless of mean wind speed. As

turbulence intensity increases, the optimal preview distances become shorter, due to more severe

wind evolution and the resulting penalty on long preview distances. The achievable measurement

error therefore increases with turbulence intensity due to the intensification of wind evolution

and greater line-of-sight errors caused by larger measurement angles. For both wind components,

measurement error changes very little as the mean wind speed rises. A comparison of optimization

results for different turbulence length scales showed that the optimal preview distances decrease as

the length scale decreases, which causes wind evolution to become more severe and the achievable

measurement error to rise. Finally, it was shown that the measurement error achieved by employing

a measurement prefilter with time constraints imposed by the lidar scenario nearly matches the

minimum error that can be achieved by ignoring filter preview time constraints.

The methods described in this chapter provide a relatively quick way to determine mea-

surement error for different lidar scan parameters and different wind conditions using a frequency-

domain wind field model, a lidar model, and knowledge of the aerodynamic properties of the turbine

required to calculate the blade effective weighting functions. Many different scan scenarios and wind

conditions can be analyzed directly in the frequency domain without the need to simulate any wind

speed time series. But many practical issues related to implementing the optimal prefilter remain.

Specifically, the cross-correlation function between the lidar measurements and the true wind dis-

turbances that interact with the turbine, necessary to derive the optimal prefilter impulse response,

needs to be calculated. The next chapter presents a wind speed estimator which can be used to
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determine the “true” hub-height and shear component wind disturbances that interact with the

turbine, allowing the prefilter to be implemented. In Chapter 7, the process required to estimate

the prefilter coefficients given the lidar measurement and “true” wind speed signals is described.

Finally, the analyses in this chapter rely on many simplifications. First of all, it was assumed

that the turbine rotates at a fixed rotational speed, although in practice, changes in wind speed

cause fluctuations around the rated rotor speed. Second, the rotor effective wind variables were

calculated as a linear function of the wind speeds along the three blades using torque and out-of-

plane blade root bending moment-based blade effective weighting functions. In reality, the torque

and thrust produced by the blades are nonlinear functions of the wind speeds interacting with

the rotor, and additionally, the transverse and vertical components have an impact on the rotor

aerodynamics, albeit smaller than the u component in general. To assess whether the simplified

frequency-domain calculations used in this chapter accurately describe lidar measurement quality,

lidar measurement simulations described in Chapter 7 are performed using NREL’s aeroelastic

simulator FAST [9] with stochastic spatially-varying wind inflow. Rather than relying on linearized

blade effective wind speed variables to determine the rotor effective wind speeds, measurement

error is determined by comparing the simulated lidar measurements with rotor effective wind speed

estimates produced by the wind speed estimator discussed in the next chapter.



Chapter 6

Wind Speed Estimation

Wind speed estimation using measured outputs from a wind turbine has a variety of applica-

tions in wind turbine control. For example, the linear models of wind turbine dynamics often used

in controller design vary as a function of the wind speed disturbances. Estimates of these wind

speed disturbances can be used as scheduling variables as part of gain-scheduled control strate-

gies [57, 59, 99, 100]. Additionally, the estimated wind speed can be used directly as an input to a

feedforward controller that augments a typical feedback control loop [101]. To be more accurate,

as noted in van der Hooft [101], this strategy is a type of “pseudo” feedforward control because the

wind speed estimates are formed using the same information that is available to the feedback con-

troller. Active power control, another application of wind speed estimation, is a strategy whereby

a turbine is de-rated to produce a specific fraction of its potential power output so that it can

provide additional power when needed [102]. The estimated wind speed is used to determine the

maximum power that the turbine is capable of generating.

For the work discussed in this thesis, a wind speed estimator is required to determine the

“true” wind disturbances that interact with the wind turbine so that the cross-spectrum (or cross-

correlation) between the measured wind and the wind that interacts with the turbine can be

calculated. The cross-spectrum or cross-correlation is required to determine the transfer function of

the MMSE measurement filter discussed in Chapter 2. A modified block diagram of the feedforward

control scenario presented in Fig. 2.1 showing how a wind speed estimator is used to determine the

measurement filter is provided in Fig. 6.1. Turbine outputs and control inputs are used to estimate
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Figure 6.1: Block diagram of the original feedforward control scenario provided in Fig. 2.1 with the
addition of adaptive prefiltering relying on a wind speed estimator. A vector of turbine outputs yest

required by the wind speed estimator together with the blade pitch and generator torque control
inputs is used to estimate the wind disturbances that interact with the turbine. The estimated
wind speeds and the lidar measurement time series are used by an update algorithm to adjust the
prefilter coefficients based on the detected measurement correlation statistics.

the wind speeds that interact with the turbine. These wind speed estimates are combined with the

lidar measurements in an update algorithm to determine the appropriate prefilter transfer function.

6.1 Wind Speed Estimation Background

A number of wind speed estimator designs have been presented in the past. Among the sim-

plest methods are the power balance and torque balance techniques. In the power balance method,

the tip speed ratio, and thus the effective wind speed, that produces the measured power output is

solved for using the turbine’s coefficient of power function [59]. The torque balance method, which

models the conversion of energy due to rotor acceleration, uses the measured generator rotational

acceleration to calculate the aerodynamic torque [44, 59, 101]. The tip speed ratio is then solved for

using this aerodynamic torque value instead of the measured power. Additionally, Kalman filtering,

which produces MMSE estimates of the states of a linear system, has been widely applied to the
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wind speed estimation problem. A linear model of the turbine dynamics can be used to create a

Kalman filter for estimating aerodynamic torque, and thereby the effective wind speed [99, 100]. By

treating the effective wind speed disturbance as a dynamic state of the linearized turbine dynam-

ics, however, wind speed can be estimated directly using a Kalman filter. Oftentimes the extended

Kalman filter is employed for direct wind speed estimation, in which the full nonlinear turbine dy-

namics are re-linearized at every time step [58, 60, 103]. Soltani et al. [59] compare the performance

of several wind speed estimators, finding that the power balance, torque balance, Kalman filter,

extended Kalman filter, and the immersion and invariance technique for parameter estimation in

nonlinear systems [104] are all promising approaches, with the best method depending on factors

such as the amount of sensor noise and the turbulence intensity. While the aforementioned wind

speed estimators are all concerned with estimating the effective wind speed based either directly or

indirectly on the turbine’s coefficient of power function, there remain a variety of other wind speed

disturbance variables that are relevant to wind turbine control. Bottasso et al. [57] have presented

an extended Kalman filter that yields estimates of the effective hub-height wind speed, horizontal

and vertical shear, relative wind direction, and vertical wind speed.

In this chapter, which is based on work presented in Simley and Pao [65], a Kalman filter-

based wind speed estimator for the effective hub-height and linear shear components is described.

However, through (3.39) these rotor effective wind speed variables can also be used to solve for

estimates of the individual blade effective wind speeds in the rotating frame. The wind speed

estimator is designed using the NREL 5-MW reference turbine model for both above-rated and

below-rated conditions. The performance of the estimator is analyzed in the frequency domain using

outputs generated by NREL’s FAST aeroelastic code for simple wind disturbances consisting of the

effective hub-height and linear shear components. Note that whereas only low-frequency wind speed

information is needed for wind speed estimation applications such as gain scheduling, frequencies

as high as the control actuation bandwidth are required to calculate the MMSE measurement filter.

Accordingly, the wind speed estimator’s behavior is analyzed for frequencies up to 1 Hz.

The remainder of this chapter is organized as follows. In Section 6.2, the low-order lin-
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ear model of the turbine is presented together with the Kalman filter design used for wind speed

estimation. A description of the simulation environment for assessing the wind speed estimator

performance is provided in Section 6.3. A frequency domain analysis of the estimator performance

is provided in Section 6.4 for the NREL 5-MW reference turbine in below-rated and above-rated

conditions using the two different inflow models available in FAST. The impact that blade pitch ac-

tuation has on estimator performance is investigated in Section 6.5. Section 6.6 shows the additional

performance that can be gained using measurements up to 1 s after the wind speed disturbances

of interest occur. Finally, in Section 6.7 the improved performance of a wind speed estimator with

a gain-scheduled linear model is shown.

6.2 Kalman Filter Design for Rotor Effective Hub-Height and Shear Com-

ponent Wind Speed Estimation

For estimating the effective uhh, δh, and δv disturbances encountered by the turbine, Kalman

filtering is employed. A Kalman filter produces MMSE estimates of the states of a linear system

assuming that the states and outputs are corrupted by Gaussian noise with known covariance [105].

Kalman filtering is used as the basis of the wind speed estimator for two reasons: first of all, it is

straightforward to create linearized models of the turbine that include the shear disturbance vari-

ables, whereas the previously mentioned power and torque balance methods rely on the coefficient

of power to solve for the rotor effective wind speed without a way of defining or determining the

effective shear disturbances; secondly, with Kalman filtering, knowledge of the sensor noise and

wind speed statistics can be used to improve the estimate in the MMSE sense.

6.2.1 Linearized Wind Turbine Model

At the core of Kalman filtering is a linear state-space model of the turbine. A continuous-time

linearized model of the turbine dynamics is computed for a specific operating point of interest (e.g.,

mean wind speed, rotor speed, generator torque, and blade pitch) using FAST [9]. The continuous-

time model is then transformed into a discrete-time representation that can be used for digital
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control:

x(k + 1) = Ax(k) +Buuc(k) +Bww(k) (6.1a)

y(k) = Cx(k) +Duuc(k) +Dww(k), (6.1b)

where x(k) is the state vector at time step k, y(k) is the vector of measured turbine outputs, uc(k)

is the control input vector, and

w(k) =

[
uhh (k) , δh (k) , δv (k)

]T
(6.2)

is the wind disturbance vector. All variables in the linear model represent zero-mean deviations

from the operating-point.

The state-space model in equation 6.1 is formed using the MBC transformation method,

whereby states and outputs attributed to individual rotating blades are transformed into the non-

rotating frame [38]. Thus three blade-specific states are converted to a collective state, representing

the average of the rotating states at the three blades, and non-rotating projections of the original

states about the vertical and transverse axes. The final state-space model in equation 6.1 is formed

by taking the mean value of the MBC-transformed A, Bu, Bw, C, Du, and Dw matrices over all

rotor azimuth angles. Although FAST can be used to model an onshore turbine with 18 degrees of

freedom (DOF) [9], a low-order model with only 5 DOF is used for the wind speed estimator. The

10 states represent the generator rotational azimuth angle, the first tower fore-aft bending mode,

and the collective, horizontal (sine), and vertical (cosine) MBC components of the first flapwise

blade bending mode, as well as the first derivatives of these values. The inclusion of the tower fore-

aft state helps resolve the ambiguity between the true wind speed and the apparent wind velocity

caused by tower motions. Extending the linear model with additional DOF, such as drivetrain

compliance or tower side-to-side motions, does not significantly improve the wind speed estimator

in the frequency band of interest for blade pitch control, described in Section 6.3.

The control input vector

uc(k) =

[
τgen (k) , β0 (k) , βsin (k) , βcos (k)

]T
(6.3)
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consists of the generator torque command τgen as well as the collective (β0), sine (βsin), and cosine

(βcos) MBC components of the three independent blade pitch commands β{1,2,3}, calculated using

the MBC transformation [38]:
β0 (k)

βsin (k)

βcos (k)

 =


1
3

1
3

1
3

2
3 sin (ψ) 2

3 sin
(
ψ + 2π

3

)
2
3 sin

(
ψ + 4π

3

)
2
3 cos (ψ) 2

3 cos
(
ψ + 2π

3

)
2
3 cos

(
ψ + 4π

3

)




β1 (k)

β2 (k)

β3 (k)

 . (6.4)

Five output measurements are included in the linear model:

y(k) =

[
ωgen (k) , Mroot,y,0 (k) , Mroot,y,sin (k) , Mroot,y,cos (k) , anac,x (k)

]T
, (6.5)

where ωgen is the generator speed, anac,x is the nacelle acceleration in the fore-aft direction, and

Mroot,y,0, Mroot,y,sin, and Mroot,y,cos are the collective, sine, and cosine MBC components of the

out-of-plane blade root bending moments. These MBC bending moment values are calculated from

measurements at the individual blades Mroot,y,{1,2,3} using load sensors at the blade roots. Strain

gauge sensors have been considered for measuring blade bending moments, although they have

often been found to be unreliable for commercial operation [6]. Recently, optical-based sensors

such as fiber optic Bragg grating sensors have been developed for load monitoring on wind turbine

blades as well [106]. While not all turbines are currently equipped with load sensors at each

blade, it is assumed that any turbine using individual pitch control contains appropriate sensors

for measuring blade root bending at each blade [10]. The measurement Mroot,y,sin represents the

net bending of the rotor around the vertical axis and Mroot,y,cos corresponds to the rotor bending

around the horizontal transverse axis. Accordingly, the estimate of the hub-height wind component

is primarily formed using the generator speed, nacelle fore-aft acceleration, and collective blade

bending moment measurements along with the collective pitch angle, whereas the horizontal and

vertical shear estimates are based principally on the cosine and sine components of blade root

bending as well as blade pitch angle.
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6.2.2 Kalman Filter Model

As mentioned earlier, Kalman filtering produces MMSE estimates of the states of a linear

system; but the wind speed variables of interest instead appear as disturbances in the model in

equation 6.1. To address this conflict, the manipulation used previously in Bottasso et al. [57],

Knudsen et al. [58], and Henriksen et al. [60] is utilized, where the state equations are rearranged

so that the wind disturbances appear as system states. The resulting model that the Kalman filter

design is based on is given byx(k + 1)

w(k + 1)

 =

 A Bw

0 I3×3


x(k)

w(k)

+

Bu
0

uc(k) + vx (k) (6.6a)

y(k) =

[
C Dw

]x(k)

w(k)

+Duuc(k) + vy (k) , (6.6b)

where vx (k) is Gaussian process noise that represents modeling errors, such as nonlinearities, in the

state-space model and, similarly, vy (k) is Gaussian output noise that represents modeling errors

and sensor noise. The dynamics of the wind speed disturbances are modeled as random walks

driven by the corresponding elements of the process noise vector [57, 60]. Although the effective

wind speed signals differ from random walks, this model is adequate for estimating more complex

wind disturbances such as the rotor effective wind quantities described in Chapter 5. However, it

is possible to add additional dynamics to the wind disturbance model to improve the accuracy of

the Kalman filter model [58].

Estimates of the wind turbine states x̂(k), including the wind disturbance states ŵ(k), are

formed using the two-step Kalman filtering process [105]:x̂p(k)

ŵp(k)

 =

 A Bw

0 I3×3


x̂(k − 1)

ŵ(k − 1)

+Buuc(k − 1) (6.7a)

x̂(k)

ŵ(k)

 =

x̂p(k)

ŵp(k)

+K

y(k)−
[
C Dw

]x̂p(k)

ŵp(k)

−Duuc(k)

 . (6.7b)
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In the first stage, the predicted states x̂p(k) and ŵp(k) at the current time step are generated by

feeding the previous state estimates x̂(k − 1) and ŵ(k − 1) through the state-space model along

with the previous control actions uc(k− 1). In the second stage of the Kalman filter, the predicted

states are updated based on the current sensor outputs y(k). The update terms are formed by

multiplying the error between the measured output y(k) and the predicted output by the Kalman

gain matrix K. The optimal Kalman gain matrix K is calculated using the state-space matrices

together with the covariance matrices Qx and Ry corresponding to the process noise vector vx (k)

and output noise vector vy (k). Further information about Kalman filtering can be found in Grewal

and Andrews [105].

It is difficult to estimate the exact covariance matrices of the process and output noise because

the true turbine states are unknown. Therefore, to calculate the Kalman gain matrix K, estimates

Q̂x and R̂y of the true covariance matrices are typically needed. In this work, the design of the

Kalman filter is simplified by treating the Q̂x and R̂y matrices as tuning variables used to achieve

acceptable estimator performance. To reduce the dimension of the tuning variables, and because

the off-diagonal terms of the covariance matrices are expected to be much smaller than the diagonal

terms, Q̂x and R̂y are chosen to be diagonal. The process noise covariance matrix parameter is

structured as

Q̂x = diag

(
εQ, . . . , εQ, σ2

vx, uhh
, σ2

vx, δh
, σ2

vx, δv

)
, (6.8)

where εQ is a process noise tuning parameter for the original states x(k) of the turbine. The values

σ2
vx, uhh

, σ2
vx, δh

, and σ2
vx, δv

are estimates of the variances of the wind disturbance changes after one

time step, keeping in line with the random walk model in equation 6.6. Similarly, the output noise

covariance parameter depends on a tuning parameter εR:

R̂y = εR · diag

(
σ2
y1
, . . . , σ2

y5

)
, (6.9)

where σ2
yi is the estimated variance of output variable i.
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6.3 Wind Speed Estimator Simulation Description

The wind speed estimator is evaluated using outputs generated by FAST with the NREL

5-MW reference turbine model. Performance is evaluated during both above-rated and below-

rated conditions using the baseline generator torque controller in all operating conditions and the

baseline proportional-integral (PI) collective blade pitch controller [8] with additional individual

pitch actuation during above-rated operation. The individual pitch controller uses PI control on

the sine and cosine MBC components of flapwise blade root bending moment to mitigate cyclic

blade loads [10]. The linearized model of the turbine dynamics for designing the Kalman filter

is generated in FAST using the equilibrium inflow model, based on blade element momentum

theory, to calculate aerodynamic forces [9, 87]. A sampling rate of 80 Hz is used for the linear

model, although a lower sampling rate could be used while still capturing the relevant turbine

modes modeled in the Kalman filter. While linearization in FAST can only be performed using

equilibrium inflow [9], the higher-fidelity dynamic inflow model is more realistic [87]. Consequently,

the wind speed estimator is analyzed using FAST outputs generated with both equilibrium inflow,

so that the estimator performance can be assessed when the Kalman filter model is more accurate,

and dynamic inflow, in order to investigate how the inflow modeling error affects estimator quality.

Furthermore, the simulations performed using dynamic inflow also include dynamic stall [9].

The aim of the wind speed estimator design in this chapter is to provide estimates of the

wind speed disturbances to aid in the implementation of blade pitch control. As discussed briefly in

Section 5.3, the blade pitch actuators for the NREL 5-MW reference turbine are often modeled as

having a bandwidth of 1 Hz [28, 31]. Due to this bandwidth limitation on the pitch actuation, it is

desired that the Kalman filter at least provide accurate estimates of wind speed up to a bandwidth

of 1 Hz. To continue the emphasis on frequency-domain analysis of lidar measurement quality

throughout this thesis, the spectra of the wind speed estimates are compared to the spectra of

the true wind speeds. Specifically, the power spectra as well as the coherence and phase between

the estimates and the true values are discussed. All results are produced using outputs from 50
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separate 20-minute simulations.

The wind speed estimator is tested in both below-rated and above-rated conditions using

modeled hub-height and shear components due to three rotating blade effective wind speeds, as

described in Sections 3.4 and 3.5. The wind speed component power spectra are calculated using

the methods described in Section 5.2 with the von Kármán turbulence model. Below-rated wind

conditions with mean wind speed U = 8 m/s are calculated using a fixed rotor speed of 9.2 RPM

and above-rated wind conditions with a mean wind speed of U = 13 m/s are calculated using a

fixed rotor speed of 12.1 RPM, the 5-MW reference turbine’s rated speed. In order to evaluate the

wind speed estimator, random Gaussian realizations of the time series of the three independent

components are generated, adhering to the desired power spectra. The power spectral densities

of the generated hub-height and shear components for the below-rated and above-rated conditions

are shown in Fig. 6.2 for turbulence intensity TI = 10%. Note that with the axisymmetric von

Kármán turbulence model, the resulting spectra of the horizontal and vertical shear components

are identical. While a wind turbine will experience a variety of wind conditions during operation,

the wind speed power spectra used to test the wind speed estimator shown in Fig. 6.2 are meant
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Figure 6.2: Power spectral densities of the effective hub-height and shear components resulting from
three rotating blade effective wind speeds using the von Kármán turbulence model with turbulence
intensity TI = 10% at the below-rated operating point of U = 8 m/s and above-rated operating
point of U = 13 m/s.
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to represent examples of wind disturbances with the salient features that any particular wind

condition is likely to contain, i.e., a large concentration of power at low frequencies as well as the

3P frequency and its harmonics, with the shear components containing higher dominant frequencies

than the hub-height component.

Zero mean vertical wind shear is included in the simulated wind fields because only the time-

varying components are of interest for the lidar measurement quality analyses in this thesis; it is

assumed that the turbine’s feedback control loop can adequately mitigate the impacts of mean wind

shear disturbances. However, if non-zero mean vertical shear is present, a linear dynamic model

of the turbine derived using an operating point with non-zero vertical shear could be used in the

Kalman filter.

The state-space models used for the below-rated and above-rated Kalman filters are created

by linearizing the turbine dynamics around the appropriate operating points determined by the

baseline torque and blade pitch controller characteristics [8]. The operating points used for lin-

earization are provided in Table 6.1. As discussed in Section 6.7, in order to use the wind speed

estimator over the entire operating range of a wind turbine, gain scheduling of the underlying linear

model should be employed. For example, the generator speed ωgen can be used as a scheduling

variable in below-rated conditions while the collective pitch angle β0 can be used in above-rated

conditions. Together, these two variables allow the estimator to be gain scheduled over the turbine’s

entire operating range.

Table 6.1: Linearization operating points for state-space models.

Operating Condition uhh (m/s) τgen (kN·m) β0 (deg) β{sin,cos} (deg) ωgen (RPM)

Below-Rated 8 20.37 0 0 891.8

Above-Rated 13 43.09 6.62 0 1,173.7
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6.3.1 Kalman Filter Parameters

The covariance matrix parameters used to define the Kalman filter behavior are based on the

diagonal matrices in equations 6.8 and 6.9. The covariance parameters were chosen by first setting

the variances of the wind disturbance changes after one time step σ2
vx, uhh

, σ2
vx, δh

, and σ2
vx, δv

to

their true values calculated using wind disturbances with power spectra shown in Fig. 6.2 with a

turbulence intensity of 10%. The measurement variance parameters σ2
yi in equation 6.9 are simply

set to the calculated variances of the corresponding outputs with TI = 10%. For all cases analyzed

in Section 6.4, a value of εR = 10−6 was found to provide satisfactory results. Different values of εQ

were chosen for estimating the hub-height and shear components in the above-rated scenario while

a single value was found to provide the best performance for both the hub-height and shear terms

in the below-rated conditions. Table 6.2 contains the resulting covariance matrix parameters used

for the Kalman filter in both operating conditions. Although these parameters were chosen for a

specific turbulence intensity, it was found that they provided good performance for all TI values

investigated.

Table 6.2: Kalman filter covariance matrix parameters.

Operating Condition σ2
vx, uhh

(m2/s2) σ2
vx, δh

, σ2
vx, δv

εR εQ, uhh est. εQ, δh, δv est.

Below-Rated 3.6 · 10−4 1.1 · 10−4 10−6 8.7 · 10−8 8.7 · 10−8

Above-Rated 1.2 · 10−3 1.5 · 10−4 10−6 10−6 10−9

6.3.2 Sensor Noise

Sensor noise is introduced to the turbine outputs used for the Kalman filter to approximate

realistic operating conditions. Sensor noise is simulated by introducing independent zero-mean ad-

ditive white Gaussian noise signals at each turbine output. The standard deviation of the generator

speed noise is set equal to 2% of the nominal generator speed as is suggested in Knudsen et al. [58].

The standard deviation of the nacelle longitudinal accelerometer noise is set to 4% of the standard

deviation of the true tower acceleration as suggested in Knudsen and Bak [107]. Following a similar
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guideline, the blade root bending moment sensor noise is simulated using a standard deviation

equal to 2% of the actual out-of-plane blade root bending moment standard deviation. This choice

of sensor noise variance is based on an estimation of the high-frequency noise floor using a short

period of data from the blade root strain gauges on NREL’s 600 kW CART3 research turbine [59].

After MBC-transforming the bending moment measurements to form inputs to the Kalman

filter, the equivalent noise signals corrupting the collective, sine, and cosine components of bending

moment are given by
nMroot,y,0

nMroot,y,sin

nMroot,y,cos

 =


1
3

1
3

1
3

2
3 sin (ψ) 2

3 sin
(
ψ + 2π

3

)
2
3 sin

(
ψ + 4π

3

)
2
3 cos (ψ) 2

3 cos
(
ψ + 2π

3

)
2
3 cos

(
ψ + 4π

3

)




nMroot,y,1

nMroot,y,2

nMroot,y,3

 , (6.10)

where nMroot,y,i is the sensor noise at blade i. The resulting variances of the independent MBC-

transformed noise components are

σ2
nMroot,y,0

=
1

3
σ2
nMroot,y,i

(6.11)

and

σ2
nMroot,y,sin

= σ2
nMroot,y,cos

=
2

3
σ2
nMroot,y,i

. (6.12)

The variance parameters for the sensor noise are summarized in Table 6.3. The blade pitch and

generator torque commands are treated as noise-free control inputs.

Table 6.3: Variance parameters used to simulate white Gaussian sensor noise.

σ2
nωgen

σ2
nMroot,y,0

σ2
nMroot,y,sin

σ2
nMroot,y,cos

σ2
nanac,x

(0.02 · ωgen)2 1
3

(
0.02 · σMroot,y,i

)2 2
3

(
0.02 · σMroot,y,i

)2 2
3

(
0.02 · σMroot,y,i

)2 (
0.04 · σanac,x

)2

6.4 Wind Speed Estimator Performance

In this section, comparisons are made between the wind speed estimator performance in

below-rated and above-rated conditions using both the equilibrium and dynamic inflow settings in
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FAST. Examples of the time series for the true hub-height and vertical shear wind speed distur-

bances along with the estimates using both inflow settings are shown in Fig. 6.3 for the below-rated

mean wind speed 8 m/s and the above-rated wind speed 13 m/s. Both the estimates and the

true wind speed disturbances shown in Fig. 6.3 are low-pass filtered using a cutoff frequency of

1 Hz to reflect the approximate bandwidth of interest for blade pitch control. The estimator per-

formance results for the horizontal shear component are very similar to the vertical shear results

for all analyses in the remainder of this chapter and therefore, for simplicity, are not included. In

above-rated conditions, the Kalman filter underestimates the hub-height wind speed when the wind

deviates significantly from the operating point of 13 m/s, but, in general, appears to perform well

otherwise. In below-rated conditions, however, the hub-height estimates are much more accurate,

even when the wind deviates far from the operating point of 8 m/s. For both operating conditions,

the estimates of the shear components are very accurate with equilibrium inflow; with dynamic

inflow, on the other hand, the magnitude of the shear component is underestimated, particularly

in below-rated conditions.
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Figure 6.3: Effective hub-height and vertical shear wind disturbances and their Kalman filter
estimates using outputs from FAST with equilibrium and dynamic inflow. The below-rated and
above-rated wind fields with U = 8 m/s and U = 13 m/s, respectively, are generated for TI = 10%.
All time series are low-pass filtered with a cutoff frequency of 1 Hz.
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Figs. 6.4 and 6.5 contain spectral information relevant to the wind speed estimator perfor-

mance for the below-rated and above-rated scenarios shown in Figure 6.3. The coherence between

the estimates and the true disturbances is provided along with the ratio between the power spectra

of the estimates and the true disturbances, and the phase between the estimates and the true wind

components. The three different frequency domain plots are used to show whether errors are caused

by poor correlation, misestimation of the disturbance magnitude, or phase mismatch.

From the below-rated spectra in Fig. 6.4, it can be seen that the hub-height estimator co-

herence is high at low frequencies as well as near the 3P frequency (0.46 Hz) and its harmonics,

where the energy in the wind disturbances is concentrated, as revealed in Fig. 6.2. Sensor noise

causes the estimation coherence to suffer at frequencies where the power spectral density of the

wind disturbance is low, but because there is very little energy in the wind at these frequencies, the

poor performance does not cause overall estimation error to degrade significantly. Above approx-
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Figure 6.4: Coherence between estimated and true hub-height and vertical shear components, ratios
between power spectral densities of estimated and true wind components, and phases between the
estimates and the true wind components at the below-rated operating point of U = 8 m/s.
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imately 2 Hz, the coherence begins to decay. For equilibrium inflow, the power spectral density

and phase of the hub-height component estimate are very accurate below 1 Hz. With dynamic

inflow, the magnitude of the hub-height component spectrum is underestimated between 0.2 Hz

and 1 Hz, and the phase distortion is much worse. The coherence of the shear component estimates

remains high at all frequencies until about 1.5 Hz, with the exception of 0.9 Hz and 1.25 Hz, where

minor errors occur due to the unmodeled asymmetric edgewise blade modes [8]. With equilibrium

inflow, the power spectrum of the shear component is generally very accurate below 1.5 Hz, aside

from the modes at 0.9 Hz and 1.25 Hz, whereas for dynamic inflow, the power spectrum is severely

underestimated. There is a clear phase lag in the shear estimates for both inflow models. For

both the hub-height and shear components, there are significant errors above 1.5 Hz caused by

the unmodeled second flapwise blade modes as well as sensor noise. Consequently, the estimates

require additional low-pass filtering to remove the high frequency errors.

Generally, the quality of the estimates with equilibrium inflow is expected to be higher than

the quality with dynamic inflow since the Kalman filter relies on a turbine model linearized using

equilibrium inflow. This discrepancy between the estimator’s underlying model and the dynamic

inflow model used in simulation explains the noticeable difference in the power spectra of the

estimates. Also, the phase lag in the shear estimates above 1 Hz is larger than for the hub-height

estimates. This indicates that there might be a lag between when the shear disturbances occur

and when their effect is felt by the chosen sensors. Thus a causal estimator might not be able to

accurately determine the shear disturbances at the current time step. In Section 6.6, a non-causal

estimator is presented, which is shown to reduce this phase lag.

From the above-rated spectra in Fig. 6.5, it can be seen that the hub-height estimator co-

herence is very high at low frequencies and between 0.3 Hz and 2 Hz. The power spectra of the

estimates are distorted at most frequencies, although the distortion is much more significant with

the dynamic inflow model. For equilibrium inflow, the estimator phase is very accurate below

1.5 Hz, while there is more distortion with dynamic inflow. Above 1 Hz, the power spectra reveal

large errors caused by the unmodeled second flapwise blade modes that need to be removed through
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Figure 6.5: Coherence between estimated and true hub-height and vertical shear components, ratios
between power spectral densities of estimated and true wind components, and phases between the
estimates and the true wind components at the above-rated operating point of U = 13 m/s.

additional low-pass filtering. In contrast to the estimator performance in below-rated conditions,

the estimator accuracy between 0.03 Hz and 0.3 Hz is strikingly low, but in different ways depending

on the inflow model. For the equilibrium inflow setting, the coherence of the estimate is relatively

poor and the power spectrum is slightly higher than the true spectrum, while for dynamic inflow,

the coherence is remains high, but the power spectrum is severely distorted. Additionally, there

is significant phase error between the estimate and the true wind speed. As discussed in the next

section, the errors in the band between 0.03 Hz and 0.3 Hz are caused by the use of blade pitch

control during above-rated operation.

The coherence of the vertical shear component estimate is very high up until roughly 1.3 Hz,

where it begins to decay. However, there are minor inaccuracies at 0.9 Hz and 1.3 Hz where

unmodeled asymmetric edgewise blade bending modes occur [8]. Again, the power spectra of the

estimates diverge from the true spectrum above 1 Hz due to unmodeled second flapwise blade modes
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and sensor noise. With dynamic inflow, the low-frequency magnitude of the shear component is

underestimated, but not as significantly as for the below-rated estimates. A possible explanation for

the decreased shear component estimator accuracy with dynamic inflow in below-rated conditions

is related to the higher induction factors experienced in below-rated conditions, when the turbine

is maximizing power capture. As explained in Henriksen et al. [60], the effects of dynamic inflow,

not included in the equilibrium inflow model, are much more pronounced with higher induction

factors.

To reflect overall estimator accuracy, root mean square (RMS) estimation errors for the hub-

height and shear components with both inflow models are provided in Table 6.4. All RMS errors are

normalized by the standard deviation of the true wind disturbances. Errors are listed for unfiltered

estimates and true disturbances as well as low-pass filtered estimates and true wind speeds using

a cutoff frequency of 1 Hz. The errors for the filtered signals reflect the estimator accuracy in the

frequency band of interest for blade pitch control purposes.

Table 6.4: Normalized RMS estimation errors for hub-height and vertical shear components in
below-rated and above-rated conditions with 10% turbulence intensity using equilibrium and dy-
namic inflow. The RMS errors are normalized by the standard deviation of the true wind distur-
bances. Error values are provided for the unfiltered signals as well as for estimates and true wind
disturbances that have been low-pass filtered with a cutoff frequency of 1 Hz.

Estimation

Category

Unfiltered

Equil. Dyn.

Filtered

Equil. Dyn.

Below-Rated, uhh

Above-Rated, uhh

Below-Rated, δv

Above-Rated, δv

0.562 0.437

0.448 0.33

0.658 0.8

1.52 1.35

0.0662 0.154

0.232 0.223

0.263 0.603

0.169 0.254

6.5 The Impact of Blade Pitch Control on Estimator Performance

Fig. 6.6 contains examples of turbine outputs as well as the collective and cosine MBC

components of the blade pitch commands along with the hub-height and vertical shear wind speed



152

estimates at the above-rated mean wind speed 13 m/s with both equilibrium and dynamic inflow.

The hub-height wind speed estimator clearly performs most poorly when the wind speed deviates

farthest from the operating point of U = 13 m/s, causing the wind speeds to be underestimated.

However, it is unlikely that the deviation in the wind speed from the operating point is solely

responsible for the drastic loss in estimation performance between 0.03 Hz and 0.3 Hz. In below-

rated conditions, the wind speed also deviates significantly from U = 8 m/s but the low-frequency

hub-height component estimate is very accurate.

The times when the hub-height component estimation errors are highest correspond to times

when the collective blade pitch is far from its operating point of 6.62◦. Nonlinearities in the

effect of blade pitch actuation on the rotor aerodynamics appear to be the cause of the poor
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Figure 6.6: Examples of turbine outputs, control actions, and wind speed estimates in above-rated
conditions with mean wind speed U = 13 m/s and TI = 10%. The dashed lines indicate the nominal
variable values used for linearization.
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estimator performance. As blade pitch angle increases, the sensitivity of the power produced by

the rotor to small changes in pitch angle increases as well [8]. For blade pitch angles higher than the

linearization operating point (e.g., around 55 seconds), the linearized dynamics of the state-space

model underestimate how much the increased pitch angle decreases the aerodynamic power; the

Kalman filter solution, therefore, attributes the measured power to wind speeds that are lower than

the true values. Similarly, when the blade pitch angle is lower than the operating point used for

linearization (e.g., at 35 and 90 seconds), the state-space model overestimates how much the change

in pitch increases the power. Consequently, the Kalman filter falsely attributes the measured power

to wind speeds that are again lower than the true values. However, as the cosine component of

the pitch angles deviates from zero, the shear estimates remain close to their true values. The

shear estimates likely remain robust to the sine and cosine components of blade pitch because the

individual pitch control inputs are smaller than the collective pitch commands.

Based on the estimator behavior corresponding to large deviations in blade pitch angle, it

seems wise to only use a particular linear model of the turbine in above-rated conditions during

operation very close to the linearization operating point. Spectral results are used in Fig. 6.7 to

show how the estimator performance for the hub-height component improves as the deviation of the

turbine variables from the operating point becomes smaller. This is done by simulating the turbine

with wind fields containing a range of turbulence intensities. The impact of reducing the deviation

of the turbine variables from the operating point on estimator quality for the shear components

is not analyzed since the shear component estimation error (for equilibrium inflow) is much lower

to begin with, as shown in Fig. 6.5. Sensor noise is not included for the results in this section so

that the impact of modeling errors can be isolated. Individual pitch control is disabled as well.

When equilibrium inflow is used and the turbulence intensity decreases, the coherence approaches

1, the power spectral density approaches the true spectrum, and the phase distortion decreases

for frequencies below 1 Hz. These results are expected because as the TI decreases, the turbine

operation remains closer to the operating point; since the inflow model used for simulation matches

the inflow model in the linear model, the linear model becomes more accurate for frequencies
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Figure 6.7: Coherence between estimated and true hub-height components, ratios between power
spectral densities of estimated and true wind components, and phases between the estimates and
the true wind components at the above-rated operating point of U = 13 m/s with turbulence
intensities from 1% to 15%. Individual pitch control and sensor noise are not included.

below 1 Hz. But with dynamic inflow, as the wind speed deviations from the operating point

become smaller, the power spectrum errors and phase distortion do not improve significantly; only

coherence increases. This is likely due to the dynamics between blade pitch and other turbine

variables not being represented correctly in the Kalman filter model linearized using equilibrium

inflow. The frequencies where the power spectra and phase distortion occur roughly correspond to

a closed-loop mode at 0.09 Hz caused by the feedback controller where blade pitch activity is high.

It is possible that the coherence remains higher when using dynamic inflow because, as shown in

Fig. 6.6, the blade pitch angle variations are not as extreme as they are with equilibrium inflow. In

summary, the estimation errors with equilibrium inflow are mostly caused by nonlinearities when

the turbine operation deviates far enough from the operating point, but with dynamic inflow, they

are caused primarily by fundamental modeling inaccuracies.

Normalized hub-height component RMS estimation errors are provided in Table 6.5 for the
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range of turbulence intensities investigated in Fig. 6.7. Because there is a very small mean estima-

tion error that would dominate the overall estimation error for very low turbulence intensities, the

errors are calculated after first removing the mean values of the signals. As turbulence intensity

decreases, the unfiltered RMS errors do not change significantly, because the errors are dominated

by the unmodeled turbine modes above 1 Hz. But the RMS errors for the low-pass filtered signals

using a cutoff frequency of 1 Hz show that the estimator accuracy improves much more for equi-

librium inflow as turbulence intensity decreases than it does for dynamic inflow. For a turbulence

intensity of 1% using equilibrium inflow, the RMS error of the filtered signals is less than 2% of the

standard deviation of the true wind disturbance.

Table 6.5: Normalized RMS hub-height component estimation errors for above-rated conditions
with turbulence intensities from 1% to 15% using equilibrium and dynamic inflow. The RMS
errors are normalized by the standard deviation of the true wind disturbances and do not include
the mean estimation error. Error values are provided for the unfiltered signals as well as for
estimates and true wind disturbances that have been low-pass filtered with a cutoff frequency of
1 Hz.

Turbulence

Intensity

Unfiltered

Equil. Dyn.

Filtered

Equil. Dyn.

TI = 1%

TI = 5%

TI = 10%

TI = 15%

0.344 0.221

0.357 0.226

0.386 0.233

0.423 0.258

0.0174 0.121

0.073 0.125

0.187 0.145

0.239 0.169

6.6 Performance of a Non-Causal Wind Speed Estimator

For some wind speed estimation applications, such as direct feedforward control using the

estimated wind speed [101], it is important to obtain the wind speed value at the current time

step. For other applications, some delay in the wind speed estimates can be tolerated, especially

if estimation error is reduced. For example, for the preview-based control scenario discussed in

this thesis, the controller depends on the statistics of the wind speed disturbances rather than the
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exact values. Since wind speed statistics typically vary slowly compared to control time scales, a

few seconds of estimator delay is acceptable. The estimator described by equation 6.7 is the causal

formulation of the Kalman filter, which only relies on past and present measurements. However,

the Kalman filter can be extended to account for measurements after the time step of interest

occurs. One possible non-causal design is the fixed-lag estimator [105], which provides estimates of

the states that occur at a fixed time delay in the past.

In this section, a simple fixed-lag estimator is created by augmenting the state-space model

in equation 6.6 with additional states representing the past wind speeds. Note that more efficient

implementations of the fixed-lag estimator exist, which are outside the scope of this work [105].

In the augmented state model, no additional dynamics are introduced; instead, states are simply

added to store the past wind speed values:

x(k + 1)

w(k + 1)

...

w(k + 1− P )


=


A

0

Bw 0

I3×3 0

0

0 I3P×3P 03P×3





x(k)

w(k)

...

w(k − P )


+

 Bu

03P×4

uc(k) +

 vx (k)

03P×1



(6.13a)

y(k) =

[
C Dw 05×3P

]


x(k)

w(k)

...

w(k − P )


+Duuc(k) + vy (k) , (6.13b)

where the wind disturbances of interest w(k − P ) are estimated after P samples of delay. Because

of the lack of dynamics necessary to describe the past wind speed states, there is no process noise

corresponding to w(k − 1) through w(k − P ). As a result, the Kalman filter need only rely on

the covariance matrix Q̂x for the original system (equation 6.8) appended with zeros to obtain the

proper dimension. For the investigations using this non-causal estimator, a fixed lag time of 1 s, or

P = 80 samples is chosen.



157

The improvement made possible by the use of estimator delay is analyzed by comparing

the estimates of the non-causal Kalman filter, with 1 s of estimation lag, with the results of the

original causal estimator. It was found that for the non-causal estimator in above-rated conditions,

covariance tuning parameters of εQ = εR = 10−5 provide good performance for estimating the hub-

height component while εQ = 10−5 and εR = 10−6 work well for estimating the shear components.

The spectral results for the fixed-lag filter tested in above-rated wind fields with U = 13 m/s and

TI = 10% for both inflow models are provided in Fig. 6.8.

Fig. 6.8 reveals that the non-causal estimator is an improvement over the causal estimator

in a couple of ways. First of all, as made evident by the power spectrum ratios, the non-causal

estimator further low-pass filters the estimates to remove the high frequency errors due to unmod-

eled dynamics and sensor noise. Whereas the high frequency noise in the standard causal estimates
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necessitates additional low-pass filtering, the non-causal estimator inherently provides this filtering.

The additional low-pass filtering does not come at the price of additional phase delay however. In

fact, the non-causality allows the Kalman filter to eliminate the phase delay up to a frequency

of roughly 1.5 Hz, as can be seen in the phase curves corresponding to the shear component esti-

mates. Table 6.6 compares the normalized RMS errors of the causal and non-causal estimators. For

the unfiltered signals, the non-causal estimator is a considerable improvement over the standard

estimator. When considering the frequency band below 1 Hz, the non-causal estimator provides

modest reductions in RMS error aside from the hub-height component errors with dynamic inflow.

Table 6.6: Normalized RMS hub-height component estimation errors in above-rated conditions with
10% turbulence intensity for standard and non-causal wind speed estimators using equilibrium and
dynamic inflow. The RMS errors are normalized by the standard deviation of the true wind
disturbances. Error values are provided for the unfiltered signals as well as for estimates and true
wind disturbances that have been low-pass filtered with a cutoff frequency of 1 Hz.

Estimation

Category

Unfiltered

Equil. Dyn.

Filtered

Equil. Dyn.

Standard, uhh

Non-Causal, uhh

Standard, δv

Non-Causal, δv

0.448 0.33

0.27 0.256

1.52 1.35

0.285 0.38

0.232 0.223

0.231 0.224

0.169 0.254

0.151 0.249

6.7 Performance of a Gain-Scheduled Wind Speed Estimator

The results of Section 6.5 showed that when using equilibrium inflow, the hub-height com-

ponent estimation error improves significantly when the turbine operation, particularly the blade

pitch actuation, remains close to the operating point at which the linear Kalman filter model is

calculated. For very low turbulence intensities, the error is reduced such that measurement coher-

ence and the ratio between the PSDs of the estimated and true components both approach 1 for

frequencies below ∼1 Hz. During realistic operating conditions with potentially high turbulence

intensity and fluctuating mean wind speeds, the turbine operation can be kept close to the lin-
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earization operating point of the Kalman filter model by switching between different linear models

depending on the value of measurable turbine variables. An estimator using this strategy, called

gain-scheduling, is implemented here by scheduling the precalculated linear Kalman filter models

using values of the generator torque command in below-rated conditions, i.e., when the blade pitch

command is 0, and collective blade pitch angle in above-rated conditions. The different linear mod-

els are scheduled using the control variables such that any given linear model is only used for wind

speeds +/− 0.5 m/s from the operating point. Note that some additional overhead is required to

ensure that the state, input, and output variables are correctly represented as the difference from

the operating point of the current linear model. The controller design is simplified by using the

covariance matrix parameter structure in (6.8) and (6.9) with the below-rated parameter values

listed in Table 6.3.1 at all times when the blade pitch angle is 0 and the above-rated parameter

values when blade pitch is greater than 0.

In Fig. 6.9, the performance of the gain-scheduled hub-height component estimator is com-

pared to that of the standard estimator relying on a single linear model linearized at U = 13 m/s,

for the U = 13 m/s, TI = 10% wind condition and equilibrium inflow. As seen in the time-domain

comparison, the gain-scheduled estimates are much closer to the true hub-height wind speeds, espe-

cially when the wind speed drops far below 13 m/s. The spectral results show that the ratio of the

estimated and true PSDs is significantly improved, the measurement coherence is much closer to

1, and the estimator phase distortion is reduced considerably below 1 Hz using the gain-scheduled

estimator. Thus a gain-scheduled estimator can be used to sufficiently estimate the wind speeds,

assuming the inflow model used in the calculation of the linear models matches the true aerody-

namic inflow behavior; the gain-scheduled estimator derived assuming equilibrium inflow will still

suffer from the same errors shown in Section 6.5 when dynamic inflow is present. An evaluation

of the shear component estimator is not provided because of the relatively low estimation error

that can already be achieved using the standard estimator, as shown in Fig. 6.5. However, the

estimation error for the shear components is also reduced using gain-scheduling.
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Figure 6.9: Comparison between the performance of a wind speed estimator using a dynamic model
linearized at 13 m/s and a gain-scheduled estimator with different linear models corresponding to
every 1 m/s step in wind speed at the above-rated operating point of U = 13 m/s with TI = 10%.
Time series are shown for the hub-height component estimates and true hub-height wind speeds
filtered with a cutoff frequency of 1 Hz. Spectrum-based results include the coherence between esti-
mated and true hub-height wind components, ratios between power spectral densities of estimated
and true wind components, and phases between the estimates and the true hub-height components.

6.8 Discussion and Conclusions

A wind speed estimator for rotor-effective hub-height and linear horizontal and vertical shear

components based on Kalman filtering was described and evaluated in this chapter. The linear

turbine model used in the Kalman filter includes relevant degrees of freedom such that the turbine

dynamics for frequencies below 1 Hz, the approximate bandwidth of interest for blade pitch control

applications, are well modeled. It was found that the estimator quality is very high when the turbine

operation remains close to the operating point used to create the Kalman filter’s underlying linear

dynamic turbine model and when the aerodynamic inflow model used to simulate the turbine

response to the wind field matches the inflow model included in the linearized turbine model. A

gain-scheduled estimator was developed that schedules the dynamic Kalman filter model based on

control signals such that a specific turbine model is only used when the wind speed is within 0.5 m/s
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of the linearization operating point. When using this gain-scheduled estimator and simulating the

turbine response with NREL’s FAST code with the equilibrium inflow setting enabled, which is the

required setting when using FAST to create the linearized turbine models included in the Kalman

filter, the estimator performs very well. However, when the more realistic dynamic inflow setting is

enabled in FAST, the estimator performance suffers. Therefore, the estimator could be improved

by introducing a model of dynamic inflow to the linear turbine model as described in previous work

on hub-height component estimation: Henriksen et al. [60] and Knudsen and Bak [107].

Although the frequency content of the wind speed estimates above 1 Hz is not of interest for

blade pitch control applications, the estimates are very noisy above 1 Hz due to unmodeled turbine

dynamics and sensor noise. In order to remove the frequency content of the estimates above 1 Hz,

additional low-pass filtering is required. It was shown that if a fixed estimation lag time can be

tolerated, the estimator phase delay can be reduced using non-causal Kalman filtering. In addition,

the non-causal estimator inherently provides some low-pass filtering above 1 Hz. For the purpose

of using the wind speed estimator to determine the correlation between the lidar measurements

and the true wind speed disturbances, as illustrated in Fig. 6.1, some delay, either for non-causal

estimation or to low-pass filter the estimates, can be tolerated. In other words, it is necessary

to determine the wind speed correlation statistics, which will not change significantly after a few

seconds of delay; possessing the true wind speed disturbance values at the current time step is not

important.

In the next chapter, the gain-scheduled wind speed estimator will be used to estimate the

measurement correlation statistics based on FAST simulations, with equilibrium inflow enabled,

so that the optimal measurement prefilter can be calculated for different wind conditions. How-

ever, instead of simulating the turbine response using simple three-component wind fields with

time varying uhh, δh, and δv components, as was done in this chapter, full-field spatially-varying

turbulent wind fields will be used. Therefore, the wind speed estimator will provide estimates of

the equivalent rotor effective uhh, δh, and δv wind disturbances that would have produced the mea-

sured turbine response rather than “true” uhh, δh, and δv components present in the wind field. By
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comparing these estimated equivalent wind disturbances with simulated lidar measurements, the

optimal measurement filter can be estimated without any prior information about the measurement

correlation statistics.
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Chapter 7

Time-Domain Lidar Measurement Simulation and Optimal Filter Estimation

While the focus of much of this thesis has been on the direct calculation of lidar measurement

error using frequency-domain techniques, the objective of this chapter is to present measurement

quality results based on time-domain simulations. The direct frequency-domain calculations dis-

cussed in Chapters 4 and 5 yield the same measurement error statistics that would be obtained

from stochastic lidar measurement and rotor effective wind speed time series with the same statis-

tics described by the frequency-domain model. Therefore, it is not useful to merely simulate lidar

measurement and rotor effective wind speed time series with the same underlying model as the

frequency-domain approach. However, time-domain simulations do not have to be performed us-

ing the simplifications and assumptions made in the frequency-domain calculations, and can thus

provide more realistic measurement quality results. One goal of this chapter is to validate the

method of modeling rotor effective wind speeds based on three rotating linear blade effective wind

speeds by using the wind speed estimator analyzed in Chapter 6 to determine rotor effective wind

speeds resulting from aeroelastic simulations with full-field spatially varying turbulence. Another

aspect explored in this chapter is the method through which the optimal prefilter, assumed to be

known a priori in the frequency-domain calculations, can be calculated using lidar measurement

and estimated rotor effective wind speed time series.

In Section 7.1, a lidar measurement scenario is optimized using wind field and turbine output

data resulting from the SOWFA simulation used to create the induction zone model in Section 3.3.1.

The LES wind field created by SOWFA allows a comparison between results based on the statistical
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wind field model discussed in Chapter 3 and results formed from physics-based simulations more

characteristic of the atmospheric boundary layer. Section 7.2 discusses a method for extending the

stochastic wind field simulation technique assuming frozen turbulence employed by TurbSim [71]

to four dimensions, allowing wind evolution to be included. Measurement coherence and rotor

effective wind speed power spectra determined using frequency-domain methods are compared

with the corresponding spectra calculated using simulated lidar measurements as well as wind speed

estimator outputs resulting from aeroelastic simulation in Section 7.2.1. Practical considerations

regarding the time-domain implementation of the optimal MMSE prefilter, discussed in Section 2.3,

are presented in Section 7.3, including the impact of filter preview time and the estimation of the

underlying correlation statistics used to calculate the filter. Finally, in Section 7.3.2 the performance

of the optimal filter is assessed as a function of the time permitted to estimate the underlying

correlation statistics.

7.1 Lidar Measurement Simulations using a Large-Eddy Simulation Wind

Field

The SOWFA simulation with U = 8 m/s below-rated wind conditions similar to LES wind

field 1 described in Table 3.1 that was used to develop the induction zone model in Section 3.3.1

can also be used for time-domain lidar measurement simulations. Wind speed data from the 1000 s

simulation was saved with a 3 m spatial resolution and a 0.2 s time step in the region around the

NREL 5-MW turbine model, extending 760 m (6 D) upstream of the rotor. Lidar measurements

can be simulated by sampling points along the lidar beam in the three-dimensional wind field and

applying the range weighting function. Outputs from the FAST simulation within SOWFA can

be used to determine the rotor effective wind speeds encountered by the turbine using the wind

speed estimator described in the previous chapter. By comparing simulated lidar measurements,

using many different scan parameter combinations, with the wind speed estimator outputs, the

measurement scenario can be optimized. The SOWFA simulation allows measurement quality to

be assessed in realistic, physics-based wind conditions, as opposed to the stochastic wind field model
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analyzed in the previous sections.

7.1.1 Lidar Measurement Simulation Scenarios

The main objective of the measurement simulations performed using the SOWFA wind field

is to determine the relative impact of the induction zone on measurement quality compared to

other error sources, such as wind evolution, line-of-sight effects, and lidar range weighting. Three

measurement simulation scenarios are investigated. A baseline simulation case is created to reveal

measurement quality with neither wind evolution nor induction zone effects. A second scenario

introduces wind evolution errors while the third scenario adds induction zone effects. The three

measurement scenarios investigated are:

• Scenario I: FAST, No Evolution. A 144 m × 144 m (1.14 D × 1.14 D) slice of wind speeds

in the yz plane, at an imaginary turbine location 315 m (2.5 rotor diameters) upstream of

the turbine location in SOWFA, where induction effects are negligible, is extracted from

the LES wind field and used as an input to a separate FAST simulation with the NREL

5-MW turbine model using the equilibrium inflow setting [9]. The hub-height and shear

wind disturbances at the turbine are estimated using turbine outputs from FAST and the

wind speed estimator for below-rated conditions developed in the previous chapter. Lidar

measurements are simulated in the original SOWFA wind field such that the lidars measure

at the extracted wind field location but are located behind the imaginary rotor plane by

an amount equal to the intended preview distance. This way, the proper range weighting

and directional bias effects are included, but wind evolution does not occur.

• Scenario II: FAST, with Evolution. This scenario is identical to Scenario I, except that the

lidar is located at the hub location of the imaginary turbine and measurements are taken

at the intended preview distance upstream of the turbine. This allows the wind measured

by the lidar to evolve before it reaches the location of the extracted wind field.

• Scenario III: SOWFA, with Evolution. Lidar measurements are simulated for a lidar located
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at the hub of the original 5-MW turbine in the SOWFA simulation. Thus the lidar measures

wind that is disturbed by the rotor induction and that undergoes wind evolution. The wind

disturbances at the rotor are estimated using outputs from the original turbine in SOWFA.

The three abovementioned simulation scenarios are illustrated in Fig. 7.1, where the location of

the virtual turbine for Scenarios I and II and the SOWFA turbine for Scenario III as well as the

location of the lidars are shown using a top view and a side view.

Scenario IScenario II Scenario III Scenario IScenario II Scenario III

Figure 7.1: The three lidar measurement scenarios that are investigated using the SOWFA simula-
tion.

The three-beam, circularly-scanning lidar scenario illustrated in Fig. 5.1 and analyzed through-

out Chapter 5 is used to estimate the rotor effective hub-height and shear components provided

by the wind speed estimator. Examples of the simulated lidar measurement time series and the

wind speed estimator outputs resulting from Scenario III are shown for all three wind components

Fig. 7.2. Note that the lidar measurement time series have been shifted to account for the pre-

view time delay. The wind speed estimator outputs as well as the lidar measurements exhibit the

3P components predicted by the frequency-domain calculations in Chapter 5. Because the lidar

measurements are simulated within the induction zone created by SOWFA, the mean value of uhh

measured by the lidar is lower than the wind speed estimator output. Furthermore, it should be

noted that the δv component contains a non-zero mean value due to the presence of non-zero mean

vertical shear over the rotor plane, which was not included in the wind field model analyzed earlier

in the thesis.
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Figure 7.3: Power spectral densities of the
estimated hub-height and shear wind dis-
turbances for the FAST and SOWFA tur-
bine simulations.

The power spectra of the hub-height and shear components given by the wind speed esti-

mator are shown in Fig. 7.3 for the FAST simulations used in Scenarios I and II as well as the

FAST simulation embedded within SOWFA from Scenario III. All power spectra exhibit the trends

predicted by the frequency-domain calculations from Chapter 5. Specifically, strong peaks in the

spectra occur at the 3P frequency (∼0.46 Hz, corresponding to the mean rotor speed of ∼9.2 RPM)

as well as the harmonic at 6P, and the hub-height component contains a higher concentration of its

power at low frequencies than the shear components. The discrepancy between the power spectra

resulting from the stand-alone FAST simulation and the SOWFA simulation at higher frequencies

is partially due to the different aerodynamic inflow models employed. The FAST simulations are

performed using equilibrium inflow while the SOWFA simulation relies on LES calculations to de-

termine the induced velocities at the rotor plane, and is more similar to the dynamic inflow setting

discussed in Chapter 6.
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7.1.2 Measurement Simulation Results

The lidar scan parameters are optimized for all three scenarios by simulating lidar mea-

surements for a range of scan radii and preview distances and calculating the normalized MSE

by way of the estimated measurement coherence and rotor effective wind component PSDs, as-

suming ideal prefiltering without preview time constraints, using the frequency-domain formula

in (5.27), as in Section 5.3. The measurement azimuth angle (shown in Fig. 5.1) is determined

so that each lidar measures the wind that will reach its corresponding blade, using the formula:

ψm = ψt + ωrot · (2π/60) · (d/Uhh + toffset), where ωrot is the rotational rate of the rotor in RPM,

Uhh is the mean hub-height wind speed, and toffset is a tuning parameter that is used to correct for

the arrival time of the wind potentially differing from d/Uhh. In the results presented here, optimal

values of toffset are found for each combination of scan radius and preview distance investigated

using a brute-force approach.

So that the results of scenario III can be fairly compared with scenarios I and II, the wind

disturbance power spectra from the FAST simulation, which are expected to be more accurate

due to the lack of dynamic inflow, are used for Stt(f) when calculating the normalized MSE in all

scenarios. Figure 7.4 shows the measurement quality plotted against r and d for the three wind

disturbance components and the three measurement scenarios. However, instead of plotting the

normalized MSE, the difference between the variance of the true rotor effective wind speed and the

MSE, normalized by the variance of the true component, equivalent to

1−E
[
(wt −Hprewm)2

]/
σ2
t =

∫ fmax

0
Stt (f) γ2

tm (f) df

/∫ fmax

0
Stt (f) df, (7.1)

is shown. This way, the optimal scan scenario is given by the parameters that produce the maximum

value of (7.1).

Table 7.1 displays the optimal scan radii and preview distances corresponding to the maxima

in Figure 7.4, i.e., the parameters that minimize the MSE of the wind measurements for all com-

ponents and scenarios. Additionally, Table 7.1 lists the normalized MSE values that are achieved

by these r and d using (5.27).
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Figure 7.4: Measurement quality, defined in (7.1), as a function of r (in rotor radii R = 63 m) and
d (in rotor diameters D = 126 m) for all three disturbances (rows) and all measurement scenarios
(columns).

Table 7.1: Optimal scan radii (in units of rotor radii R), preview distances (in units of rotor
diameters D), and minimum achievable normalized MSE, defined in (5.27).

Scenario
r (R)

uhh δh δv

d (D)
uhh δh δv

Measurement Error
uhh δh δv

I 0.75 0.75 0.75 1.1 1.2 1.2 0.09 0.13 0.16
II 0.75 0.75 0.80 0.7 0.8 0.7 0.15 0.23 0.28
III 0.70 0.70 0.70 0.6 0.7 0.7 0.14 0.21 0.26
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7.1.3 Discussion of Results

Figure 7.4 and Table 7.1 reveal that lidar scan radii between 70% and 80% blade span yield

the best measurement correlation, slightly higher than the optimal scan radii found for rated wind

conditions in Chapter 5. For scenario I, the optimal preview distances are between 1.1 and 1.2

rotor diameters. Shorter preview distances suffer from directional bias errors because of large

measurement angles. But greater preview distances cause the lidar probe volumes to become too

large, resulting in excessive spatial averaging [39]. As shown in Table 7.1, when wind evolution is

introduced to the measurement simulations, the optimal preview distances are reduced to between

0.7 and 0.8 rotor diameters (Scenario II) and between 0.6 and 0.7 rotor diameters (Scenario III).

In addition to the fact that wind evolves more over larger distances, greater preview distances

exaggerate errors caused by both wind shear (wind speeds measured at different heights reach the

turbine at different times) and uncertainty in the rotor azimuth angle when the wind arrives at the

turbine due to variable rotor speed, thus contributing to shorter optimal preview distances.

As revealed in Table 7.1, measurement correlation is higher for the hub-height component

than for the shear components in all three cases, as also shown by the frequency-domain calculations

in Chapter 5. Figure 7.5 shows the measurement coherence curves corresponding to the optimal scan

radii and preview distances for all scenarios. When wind evolution is introduced to the simulations

(Scenario II), normalized MSE increases by 6–12%. This is most evident at the coherence peaks

around the 3P and 6P frequencies. However, when induction zone effects are included, measurement

error decreases slightly. This improvement is largely due to the increased measurement coherence

around 0.1 Hz in all components. For comparison, measurement coherence curves for scenario III

using the optimal scan parameters from scenario II, without the induction zone, are also plotted in

Figure 7.5.

The slight improvement to measurement quality in Scenario III, when the induction zone is

included, confirms the results obtained by including the induction zone model in the frequency-

domain calculations in Section 5.3.1. For Scenario III as well as the frequency-domain calculations,
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Figure 7.5: Measurement coherence curves corresponding to the optimal scan radii and preview
distances listed in Table 7.1 for all three SOWFA simulation scenarios.

the optimal scan radii and preview distances are reduced in the presence of the induction zone,

and the achievable measurement error decreases slightly. As discussed in Section 5.3.1, the shorter

optimal scan radii result from the expansion of the approaching wind around the rotor plane

illustrated in Fig. 3.12 (b). In order to measure the wind that reaches the rotor at 75% to 80%

blade span, which is optimal for Scenario II, the lidar should actually be focused at slightly smaller

scan radii. The smaller scan radii allow for shorter preview distances, while only slightly increasing

the measurement angles, and thus not increasing line-of-sight errors by much. The shorter preview

distances, in turn, result in less wind evolution which likely accounts for the higher measurement

coherence.

Results from the three lidar scenarios investigated suggest that wind evolution is a signifi-

cant source of error while the induction zone, rather than acting as a further error source, allows

marginally better measurement coherence with slightly different optimal lidar scan parameters.

Thus, the additional drop in longitudinal coherence measured in the induction zone in Section 3.3.2,

not accounted for by the modified mean wind speed and length scale parameters, appears to be

small enough that the higher severity of wind evolution in the induction zone does not increase

measurement error. However, only a 1000 s period of data was analyzed, leading to noisy spec-
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tral calculations. To increase the statistical significance of the comparisons between the three

scenarios, longer simulations should be performed. Furthermore, simulations using different wind

conditions should also be investigated to determine how the dependence of measurement quality

on the induction zone is affected by stability, mean wind speed, and turbulence intensity.

7.2 Stochastic Wind Field Simulation with Wind Evolution

Aeroelastic wind turbine simulations are often performed using full-field stochastic wind

fields which contain turbulent wind speed time series at a number of grid points in the yz plane

encompassing the rotor, e.g., the blue points in Fig. 7.6. For the wind fields generated by NREL’s

TurbSim code [71], wind speeds at non-zero longitudinal positions are determined by assuming

Taylor’s frozen turbulence hypothesis [76] using (3.10). In the previous section, full-field turbulent

wind fields were created by extracting wind velocities at points on a grid in an existing LES wind

field. Since LES is very computationally expensive, however, aeroelastic simulations are typically

performed using efficiently computed stochastic wind fields. Stochastic wind fields typically contain

turbulence that is approximately Gaussian with second order statistics defined by turbulence power

spectra and spatial coherence functions, such as those described in Section 3.1.

Two methods for generating stochastic wind fields are commonly used: the Mann method,

described in Mann [74], and the Veers method implemented in TurbSim, described in Veers [72].

In this section, an extension of the Veers method will be described which allows for stochastic lidar

measurement time series to be generated in addition to the grid of wind velocities at the rotor plane.

Such a modified wind field allows simulated lidar measurement time series to be used in aeroelastic

wind turbine simulations with preview-based controllers such that the effects of wind evolution are

included, as presented in Laks et al. [34]. Additionally, as investigated in this chapter, a wind field

containing a grid of wind velocities that interacts with the turbine as well as lidar measurement

time series can be used to determine measurement coherence based on the wind speeds provided

by a wind speed estimator.

The Veers method for generating a grid of stochastic wind velocity time series can be sum-
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Figure 7.6: Diagram showing the grid of locations at the rotor plane where stochastic wind speed
time series are generated (blue) as well as the locations on a scan circle where lidar measurement
time series are generated (red).

marized as consisting of the following steps:

• For a series of discrete frequencies up to half the wind field sampling frequency, approx-

imately unity-magnitude Fourier components corresponding to the wind speeds at each

grid point are determined such that their phases are correlated according to the spatial

coherence model used.

• The proper magnitude is introduced to the correlated Fourier components according to the

power spectra defined by the wind field model.

• The inverse Fourier transform [67] is applied to the Fourier coefficients for each grid point,

forming zero-mean velocity time series.

• Mean wind speed values are added to each velocity time series, introducing wind shear if

applicable.

For a particular frequency bin, the vector of Fourier coefficients describing the longitudinal

wind speeds at all N grid points at the rotor plane can be represented as U (f). The Veers method



174

can be extended to include lidar measurements on a scan circle upstream of the rotor, indicated

by the red points in Fig. 7.6. By representing the vector of Fourier coefficients at the M lidar

measurement points on the scan circle as Û (f), the wind speed and lidar measurement Fourier

coefficients for a particular frequency bin are calculated asU (f)

Û (f)

 =

√Suu (f)IN 0

0
√
Sûû (f)IM

L (f) z (f) , (7.2)

where z (f) is a vector of uncorrelated unity-magnitude Fourier components, L (f) is a lower-

triangular correlating matrix, Suu (f) is the PSD of the u components at the grid points encom-

passing the rotor, and Sûû (f) is the PSD of the lidar measurements, assuming axisymmetry. IN

represents the N -by-N identity matrix.

Specifically, each of the M +N elements of z (f) is defined as

zi (f) = ejφi , (7.3)

where φi are independent and identically distributed uniform random variables where φi ∈ [0, 2π].

The lower-triangular matrix L (f) is found using the Cholesky decomposition of Γ (f):

Γ (f) = L (f)LT (f) , (7.4)

where Γ (f) is a matrix defining the coherence between each of the M + N wind speed frequency

components in the wind field. The elements of Γ (f) are defined as

Γi,j (f) =
√
γ2
{u,û}i,{u,û}j

(f), (7.5)

where γ2
{u,û}i,{u,û}j

(f) is the coherence between the u component or lidar measurement û at point

i and the u component or lidar measurement at point j. In the standard method employed in

TurbSim, the spatial coherence between wind speeds is simply given by a coherence formula, such

as (3.7). But in the extended method presented here, the coherence between lidar measurements

at two points, or between a lidar measurement and a wind speed at the rotor grid, is calculated

using the measurement coherence formulas derived in Section 4.2.
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After calculating the M + N Fourier coefficients for each frequency bin using (7.2) to form

a frequency-domain representation of each signal, the inverse Fourier transform is applied to yield

the time series. The wind velocities and lidar measurements are properly correlated, including the

effects of wind evolution, line-of-sight errors, and range weighting. Many different realizations of

the wind field and lidar measurements with the same statistics can be generated using different

random z (f) vectors for each realization. Although (7.2) through (7.5) only describe calculations

for lidar measurements and the u components, the v and w components can be easily included as

well.

7.2.1 Comparison between Frequency Domain Measurement Coherence Model

and Time Domain Simulations

In this section, the stochastic wind field simulation method described in the previous section

is used to create collections of 10-minute wind fields with corresponding lidar measurements so

that measurement coherence and the wind component power spectra can be determined using wind

speed estimator outputs based on FAST simulations. The stochastic wind fields are generated

using the axisymmetric Kaimal turbulence model analyzed in Chapter 5 based on LES wind field

11, with TIu = 10% and Lu = 230 m, for low and high above-rated mean wind speeds: U = 13 m/s

and U = 23 m/s. The lidar scan scenario is based on the optimal parameters determined from

the measurement optimization illustrated in Fig. 5.4; a scan radius of r = 40.95 m (0.65 R) and

a preview distance of d = 107.1 m (0.85 D) are used, which, for both mean wind speeds, are

halfway between the optimal parameters for the hub-height and shear components. A collection

of 30 unique 10-minute wind fields with a 0.05 s time step and 4.83 m grid spacing over the rotor

plane is generated for the two mean wind speeds analyzed. The corresponding lidar measurements

consist of measurement time series at 60 azimuth angles around the scan circle (see the red points

in Fig. 7.6). Rotating three-beam lidar-based wind component estimates using (5.11) are formed

by interpolating between the time series at the 60 discrete azimuth angles depending on the current

rotor azimuth angle.
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For each of the unique wind fields generated, a FAST aeroelastic simulation is performed

using the NREL 5-MW reference turbine model with equilibrium inflow and all DOF enabled.

The gain-scheduled wind speed estimator described in Section 6.7 is then used to determine the

effective hub-height and shear components encountered by the rotor given the full-field turbulent

inflow. Using the history of rotor azimuth angles from each simulation, lidar-based estimates of the

three wind components are formed based on the formulas in (5.11). Fig. 7.7 contains an example

of the wind speed estimator outputs and corresponding lidar measurements for the hub-height

and vertical shear components resulting from one of the 30 simulations with U = 13 m/s. As

in Chapter 6, since the results for the horizontal shear component are very similar to those for

vertical shear, due to axisymmetric wind conditions, only the vertical shear results are shown for

simplicity. Note that the time series are low-pass filtered with a cutoff frequency of 1 Hz so that

the measurement quality in the frequency band of interest for blade pitch control purposes can be
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Figure 7.7: A comparison between wind speed estimator outputs resulting from FAST simulations
with full-field stochastic wind inflow (blue) and simulated lidar measurements (red) for hub-height
and vertical shear components. The simulated wind field is formed using the axisymmetric Kaimal
turbulence model based on LES wind field 11, with U = 13 m/s, TIu = 10%, and Lu = 230 m.
Lidar scan parameters of r = 40.95 m and d = 107.1 m are used. All time series are low-pass
filtered with a cutoff frequency of 1 Hz.
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shown. The strong 3P components resulting from rotational sampling of the wind field are clearly

visible, with the 3P fluctuations being more dominant for the shear component as expected based

on the spectra shown in Fig. 5.2.

Comparisons of the wind component power spectra and measurement coherence curves de-

termined using the frequency-domain calculations described in Chapter 5 as well as from the wind

speed estimator outputs resulting from FAST simulations with full-field turbulent inflow are pro-

vided in Figs. 7.8 and 7.9 for the U = 13 m/s and U = 23 m/s wind conditions, respectively. The

power spectra and coherence curves for the time-domain simulations are estimated using all 30

10-minute simulations. In general, the power spectra and measurement coherence curves result-

ing from aeroelastic simulation match the direct frequency-domain calculations very well for the
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Figure 7.8: Hub-height and vertical shear component power spectra and measurement coherence
curves determined using frequency-domain calculations as well as time-domain simulations. The
rotor effective wind components in the time-domain simulations are determined using wind speed
estimator outputs resulting from FAST simulations with full-field stochastic wind inflow. The
simulated wind field is formed using the axisymmetric Kaimal turbulence model based on LES wind
field 11, with U = 13 m/s, TIu = 10%, and Lu = 230 m. Lidar scan parameters of r = 40.95 m
and d = 107.1 m are used.
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U = 13 m/s wind condition despite the simplifications included in the latter approach. For the simu-

lations with U = 23 m/s, however, the frequency-domain calculations overpredict the measurement

coherence slightly, especially for the shear components. For both mean wind speeds and both wind

components, the measurement coherence is significantly overpredicted by the frequency-domain

calculations near the 3P frequency.

Many modeling details are included in the time-domain simulations using FAST that are ig-

nored in the simplified frequency-domain calculation method. For example, the frequency-domain

calculations assume linearized rotor effective wind speeds based solely on the u component while the

wind speed estimator outputs are calculated based on nonlinear aeroelastic simulations where all

three wind components affect the rotor aerodynamics. Additionally, a 5◦ rotor shaft tilt angle and
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Figure 7.9: Hub-height and vertical shear component power spectra and measurement coherence
curves determined using frequency-domain calculations as well as time-domain simulations. The
rotor effective wind components in the time-domain simulations are determined using wind speed
estimator outputs resulting from FAST simulations with full-field stochastic wind inflow. The
simulated wind field is formed using the axisymmetric Kaimal turbulence model based on LES wind
field 11, with U = 23 m/s, TIu = 10%, and Lu = 230 m. Lidar scan parameters of r = 40.95 m
and d = 107.1 m are used.
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2.5◦ rotor precone angle are present in the aeroelastic simulations while the frequency-domain cal-

culations assume that the rotor is two-dimensional and perpendicular to the longitudinal direction.

Furthermore, the direct frequency-domain method relies on a constant rotor speed of 12.1 RPM (the

rated rotor speed), but the wind speed estimator outputs are calculated using FAST simulations

with a rotor speed that fluctuates around the average value of 12.1 RPM. Yet the frequency-domain

calculations describe the spectra that result from the higher fidelity time-domain simulation ap-

proach reasonably well. The presence of lower measurement coherence near the 3P frequency based

on the wind speed estimator outputs and simulated lidar measurements than predicted by the

frequency-domain approach is likely due to a combination of the abovementioned modeling details

not present in the frequency-domain approach, particularly the variable rotor speed and the rotor

geometry. For the U = 23 m/s wind condition, the lower measurement coherence at low frequencies

calculated using the time-domain simulations, particularly for the shear component, is likely due

to the transverse and vertical wind speed components, ignored when calculating the rotor effective

wind component spectra in the frequency-domain calculations, affecting the rotor aerodynamics

more at higher wind speeds than at lower wind speeds such as U = 13 m/s.

Given the reasonably good agreement between the simplified frequency-domain calculations

and the more realistic time-domain simulations using FAST, the computationally efficient linearized

frequency-domain method can be used to determine lidar measurement quality for different scan

geometries and wind conditions without the need to perform computationally burdensome high-

fidelity time-domain simulations. However, the slightly lower coherence near the 3P frequency as

well as the slightly lower measurement coherence for the shear components at high wind speeds

observed using the more realistic time-domain simulations should be considered.

7.3 Determining the Optimal Filter

The time-domain prefilter implementation with preview time constraints described in Sec-

tion 2.3 and analyzed in Section 5.4 allows the MMSE prefilter to be derived given the cross-

correlation function between the lidar measurements and the true wind components along with
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the autocorrelation function of the lidar measurements. In Section 7.2.1, it was shown how the

gain-scheduled wind speed estimator developed in the previous chapter can be used to accurately

determine the rotor effective wind components encountered by the turbine. These wind speed es-

timates can then be compared with the lidar measurement time series to determine the necessary

correlation functions required to derive the optimal filter. In this section, practical issues related

to the derivation of the optimal prefilter are addressed. In Section 7.3.1, the effect of the filter

preview time on measurement error is analyzed, while Section 7.3.2 discusses how the correlation

functions can be estimated given the wind speed estimator outputs and lidar measurement time

series. Finally, in Section 7.3.2, the impact of different combinations of filter preview time and the

time provided to estimate the correlation statistics on measurement error is assessed.

7.3.1 Impact of Filter Length on Measurement Error

In Section 5.4, lidar measurement scenarios were optimized for different wind conditions

assuming that all of the available preview time provided by the lidar’s preview distance was used

for the prefilter implementation, except for 0.5 s required by the feedforward controller to overcome

pitch actuator delay. The performance of the prefilter with preview time constraints was compared

to the performance of an ideal unconstrained filter in Section 5.4.1. Here, it will be shown how the

achievable measurement error varies as a function of the preview time allocated to the prefiltering

process, while not necessarily using all of the available time. Once again, the assumption is made

that the number of samples of filter history Nh in the filter impulse response given by (5.41) is

equal to the specified number of samples of filter preview Np.

For the axisymmetric Kaimal turbulence model based on LES wind field 11, with U = 13 m/s,

TIu = 10%, and Lu = 230 m, analyzed in Section 7.2.1, Fig. 7.10 shows how the normalized measure-

ment MSE varies with the allocated preview time for both hub-height and shear components using

the near-optimal preview distance d = 107.1 m (0.85 D) and near-optimal scan radius r = 40.95 m

(0.65 R). The correlation functions Rtm [n] and Rmm [n] are determined by computing the inverse

Fourier transforms of the CPSDs and lidar measurement PSDs resulting from frequency-domain
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calculations using a sampling rate of fs = 50.82 Hz. As in Section 5.4, the bandwidth of the rotor

effective wind speed signals is limited to 1 Hz to reflect the frequencies of interest for blade pitch

control purposes, but the lidar measurement autocorrelation function is calculated with higher fre-

quency components included to force the prefilter to low-pass filter the measurements above 1 Hz.

In Fig. 7.10, the achievable MSE as a function of the preview time is compared with the MSE

resulting from the optimal unconstrained prefilter, given by (5.28), as well as the MSE that results

from no prefiltering at all, calculated by integrating (2.17).

Fig. 7.10 reveals that very little prefilter preview time is required to approach the error

reduction possible with an unconstrained MMSE filter. Even with a filter preview time of 0 s,

i.e., a one-sample filter used to scale the lidar measurements, the normalized MSE is significantly

reduced, especially for the shear components. Most of the available MSE reduction is made possible

with only 0.2 s of filter preview. With 2 s of filter preview time (out of the maximum allowable time

of ∼8 s given the lidar preview time of d/U = 8.72 s), the normalized measurement error is reduced
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using r = 40.95 m (0.65 R) and d = 107.1 m (0.85 D).
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to within 3.5 · 10−4 of the unconstrained optimal error. Therefore, should a preview-based control

system require more preview time than is necessary simply to overcome the pitch actuator delay,

prefilter preview times of only a couple seconds can be employed while causing only a negligible

loss in performance.

7.3.2 Measurement Filter Performance with Estimation Time Constraints

Since the correlation statistics necessary to calculate the optimal prefilter with time-domain

constraints given by (2.33) are unknown a priori, they must be estimated during operation of the

preview-based wind turbine control system. Specifically, the autocorrelation matrix Rmm in (2.34)

and the cross-correlation vector Rtm in (2.35) must be estimated yielding the optimal prefilter

estimate

ĥpre = R̂
−1
mmR̂tm. (7.6)

Because wind conditions vary depending on many factors including the atmospheric stability and

wind direction, the correlation statistics will vary as well. Therefore the correlation statistics

must be estimated using a relatively short history of wind speed estimator outputs and lidar mea-

surements such that the estimated prefilter can adapt to changing wind conditions and variable

measurement quality. Given a time history of N samples, the cross-correlation function between

the rotor effective wind components, determined from the wind speed estimator, and the lidar mea-

surements as well as the autocorrelation function for the lidar measurements can be determined

using the following estimate of the cross-correlation function Rab [n] for time lags from −N + 1 to

N − 1:

R̂ab [n] =
1

N

max(0,n)+N−1−|n|∑
m=max(0,n)

a [m+ n] b∗ [m] . (7.7)

The performance of estimated prefilters for hub-height and shear components using the cross-

correlation function estimator given in (7.7) is analyzed as a function of the estimation time, which

is related to N through the sampling rate, for the axisymmetric Kaimal wind condition based

on LES wind field 11 analyzed in Sections 7.2.1 and 7.3.1, with U = 13 m/s, TIu = 10%, and
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Lu = 230 m, using the lidar scan parameters r = 40.95 m (0.65 R) and d = 107.1 m (0.85 D).

Wind speed estimator outputs resulting from FAST simulations with full-field turbulent inflow as

well as the simulated lidar measurements, as in Section 7.2.1, are used to determine the correlation

statistics for a 20 Hz sampling rate, resulting in the estimated prefilter. Measurement error is then

determined by comparing the filtered measurements with the low-pass filtered wind speed estimator

outputs using a cutoff frequency of 1 Hz. Fig. 7.11 contains the measurement MSE for the hub-

height and vertical shear terms as a function of not only the estimation time utilized to estimate

the correlation functions leading to the filter calculations, but also the prefilter preview time. The

plotted measurement MSE values are normalized such that a value of 0 corresponds to the MSE

resulting from the use of the unconstrained optimal prefilter without preview time constraints and

a value of 1 corresponds to the MSE resulting from no prefiltering at all. The measurement errors
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Figure 7.11: Normalized measurement error for the hub-height and vertical shear components as
a function of prefilter preview time and the time used to estimate the lidar measurement and
rotor effective wind speed correlation statistics. The measurement MSE is normalized such that a
value of 0 corresponds to the MSE achieved with the unconstrained optimal prefilter and a value
of 1 corresponds to the MSE resulting from no prefiltering. The rotor effective wind components
are determined using wind speed estimator outputs resulting from FAST simulations with full-
field stochastic wind inflow. The simulated wind field is formed using the axisymmetric Kaimal
turbulence model based on LES wind field 11, with U = 13 m/s, TIu = 10%, and Lu = 230 m.
Lidar scan parameters of r = 40.95 m and d = 107.1 m are used.
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are determined by forming 30 different estimates of the prefilter, one corresponding to each of the

30 10-minute wind fields, and then applying each filter estimate to all 30 lidar measurement time

series.

Fig. 7.11 reveals that only 1-2 minutes of correlation function estimation time is required

to yield relatively low measurement errors. Less than one minute of prefilter estimation time is

required to achieve better error performance than would result from no prefiltering. For reference,

the normalized MSEs that result from no prefiltering at all are 0.159 for uhh and 0.642 for δv,

while normalized MSEs of 0.0765 for uhh and 0.250 for δv are achieved using the unconstrained

optimal prefilter. The contour plots for both components show that as the filter preview time

increases above roughly 2 s, the time needed to estimate the filter increases as well. In other words,

provided with a certain amount of time to estimate the correlation statistics, a filter with a preview

time close to 2 s will yield the lowest measurement error. While the available prefilter estimation

time depends on how long the wind conditions remain approximately stationary, which can vary

depending on location and time, as long as at least 1-2 minutes of estimation time is utilized and

a filter preview of 1-3 s is implemented, the resulting measurement error will be relatively close to

the minimum possible MSE compared to the error that would result without any prefiltering.

In order to analyze the ability of the optimal prefilter to adapt to different wind conditions

likely to be encountered by a wind turbine, lidar field measurement data are used to determine

realistic wind parameters. Specifically, lidar data provided by researchers at the University of

Colorado Boulder obtained using a ground-based vertically-profiling WindCube lidar system during

the Crop/Wind-Energy Experiments (CWEX) campaign [108, 109, 110] are used to calculate wind

speed parameters that occur at different times during a 24-hour period. The CWEX lidar data

were acquired during the summer of 2013 at a wind farm in central Iowa. A 24-hour period of

longitudinal wind speeds measured at a height of 100 m with a sampling rate of 1 s during August

2013 is shown in Fig. 7.12. Although the wind direction varies throughout the 24-hour period,

the longitudinal components of the wind are formed based on the mean wind direction calculated

for each 10-minute block of measurement data. Fig. 7.12 reveals that the wind conditions can be
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Figure 7.12: A 24-hour period of longitudinal wind speeds at a height of 100 m in central Iowa
measured using a WindCube pulsed lidar during the CWEX campaign in August 2013.

divided into two distinct periods: nighttime wind conditions, typically coinciding with a stable

atmospheric boundary layer, with higher mean wind speeds and lower turbulence intensities, and

daytime conditions, commonly resulting in an unstable atmospheric boundary layer, with lower

mean wind speeds but higher turbulence intensities.

Two sets of wind conditions representative of the low-turbulence stable atmosphere as well

as the high-turbulence unstable atmosphere are selected to simulate the adaptive filtering process.

The low-turbulence wind parameters are calculated using a 20-minute period of measurements be-

ginning at 00:20 while the high-turbulence parameters are based on 20 minutes of measurement

data beginning at 10:20. During the low-turbulence conditions at 00:20, the calculated wind pa-

rameters are U = 8.95 m/s, TIu = 2.0%, and Lu = 98 m. The remaining parameters are estimated

as TIv = 1.8%, TIw = 0.65%, Lv = 52 m, and Lw = 31 m. For the high-turbulence wind conditions

occurring at 10:20, the wind parameters are estimated as U = 6.1 m/s, TIu = 17.4%, TIv = 17.0%,

TIw = 8.8%, Lu = 149 m, Lv = 79 m, and Lw = 48 m. Both sets of wind conditions are simulated

using the axisymmetric Kaimal spectral model employed throughout this thesis. Note that while

most of the analyses in this thesis have focused on above-rated operation, the available CWEX mea-

surement data contained below-rated mean wind speeds. The WindCube lidar system estimates
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the u, v, and w wind components by measuring the line-of-sight wind speeds along four beam

directions evenly spaced around a scan cone. At a height of 100 m, the 30◦ half-opening angle of

the scan cone [111] results in a distance of 115 m between measurement locations opposite each

other in the scan circle. Therefore, due to the spatial averaging inherent in the wind component

estimates, the length scales and turbulence intensities measured by the lidar could differ from those

provided by measurements at a single point.

For both the high-turbulence and low-turbulence wind conditions, 30 different 10-minute

realizations of the lidar measurements and rotor effective wind speed disturbances were simulated

using frequency-domain techniques to calculate the power spectra and cross-spectra and applying

the stochastic wind field simulation technique explained in Section 7.2 to obtain the time series,

rather than using a wind speed estimator together with aeroelastic simulation data. The mean

square measurement error normalized by the variance of the true wind components is shown as

a function of the filter estimation time in Fig. 7.13 for the hub-height and shear components,

using a filter preview time of 2 s. The normalized MSE is compared with the MSE produced

by the unconstrained optimal prefilter as well as the measurement error that would result if the

optimal unconstrained prefilter for the other wind condition were used. In other words, for the

high-turbulence wind conditions in Fig. 7.13 (a), the dash-dotted lines represent the errors that

would result if the optimal unconstrained prefilters derived for the previous low-turbulence wind

conditions that occurred at 00:20 were used; similarly, the dash-dotted lines in Fig. 7.13 (b) indicate

the measurement error that would result if the optimal prefilter for the high-turbulence conditions

were used during the low-turbulence conditions that occurred earlier in the day. The results in

Fig. 7.13 suggest that with less than 10 minutes of filter estimation time, the prefilters are able to

adapt to changing wind conditions such that measurement errors are lower than those produced by

fixed prefilters derived for the other turbulence condition. However, the estimation time required to

exceed the performance of a fixed prefilter varies depending on the wind conditions. For the high-

turbulence conditions, approximately 8 minutes of estimation time are required for the hub-height

component prefilter to exceed the performance of the optimal filter derived for the low-turbulence
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Figure 7.13: Normalized measurement error for the hub-height and shear components as a function
of the estimation time for the correlation statistics with a filter preview time of 2 s for two different
wind conditions measured during during the CWEX campaign in August 2013: (a) U = 6.1 m/s,
TIu = 17.4%, and Lu = 149 m observed at 10:40, and (b) U = 8.95 m/s, TIu = 2.0%, and
Lu = 98 m observed at 00:20. The normalized MSE curves are compared with the minimum
achievable measurement errors using unconstrained optimal filters as well as the measurement
errors that would result if the unconstrained optimal filters from the other wind condition were
used (i.e., if the optimal filters for wind condition (b) were used for measurements in wind condition
(a) and vice versa).

conditions. But for the low-turbulence conditions, less than 1 minutes of estimation time is needed

to exceed the performance of the optimal prefilter derived for the high-turbulence conditions.

7.4 Discussion and Conclusions

The investigations in this chapter served one of two general purposes. First, time-domain sim-

ulations using wind speed estimator outputs determined from aeroelastic wind turbine simulations

with full-field turbulent inflow were performed in order to validate the simplified frequency-domain

calculations of measurement quality presented in Chapter 5. Second, practical issues related to im-

plementing the optimal measurement prefilter were discussed, such as the impact of filter preview

time and how the prefilter coefficients can be estimated from a finite amount of estimated wind

speed and lidar measurement information.

In Section 7.1, lidar measurement error was determined using a SOWFA simulation com-
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bining a wind field generated using LES with a FAST aeroelastic wind turbine simulation. The

measurement error calculated using a wind speed estimator to determine the true rotor effective

wind quantities confirmed some of the findings of the direct frequency-domain calculations. First of

all, the rotor effective wind speed power spectra and corresponding measurement coherence curves

contain peaks at the 3P frequency and its harmonics, as predicted by the frequency-domain calcu-

lations. Second, the measurement quality for the shear components is lower than for the hub-height

component. The optimal scan parameters are also close to those predicted from frequency-domain

methods. Finally, results from simulations performed both with and without the induction zone

included agree with the calculations in Section 5.3.1. Specifically, the presence of the induction

zone results in slightly shorter optimal scan radii and preview distances, producing slightly lower

measurement error.

In Section 7.2, rotor effective wind speed power spectra and measurement coherence curves

were calculated using simulated lidar measurements and wind speed estimator outputs resulting

from aeroelastic simulations with stochastic full-field turbulent inflow. The power spectra and

coherence curves that result from the time-domain simulations generally agree closely with those

predicted using the simplified frequency-domain calculations, indicating that many of the modeling

assumptions made in the latter method are justified. Specifically, the method of modeling rotor

effective wind speeds using the combined impact of three rotating linear blade effective wind speeds

very closely approximates the rotor effective wind speeds given by a wind speed speed estimator

using outputs from aeroelastic simulations with full-field turbulent inflow. Because the simpler

frequency-domain calculations agree reasonably well with the time-domain simulations, they can

be used in lieu of the computationally expensive time-domain approach. However, it should be

taken into consideration that the measurement coherence near the 3P frequency is overpredicted

slightly using the frequency-domain calculations, as is the low-frequency measurement coherence

for the shear components at high mean wind speeds.

Finally, in Section 7.3, it was shown that a prefilter implemented using only 1-2 s of preview

time can achieve nearly the same error reduction performance as the unconstrained optimal filter.
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Therefore, controllers that require more preview time than a simple model-inverse feedforward con-

troller that merely needs to overcome pitch actuator delay can use the majority of the preview time

provided by the lidar preview distance, while the measurements can be effectively filtered using

a MMSE prefilter needing only 1-2 s of preview time. By investigating how the time allowed to

estimate the prefilter correlation statistics affects the resulting measurement quality, it was found

that only a couple minutes of estimation time are required to achieve most of the benefit that can

be provided from prefiltering. Since wind conditions can vary rapidly, such a short filter estima-

tion time allows the prefilter to effectively adapt to changing wind speed and lidar measurement

statistics. As a reference, in wind turbine control simulations, 10-minute stationary wind fields are

often employed, leaving adequate time for the prefilter to adapt to the specific wind conditions.

Simulations using two different wind conditions based on field measurements (low turbulence

intensity and high turbulence intensity conditions) showed that the amount of estimation time

required for prefilters to perform better than fixed prefilters that are optimal for the other condition

is less than 10 minutes. Therefore, while prefilters can quickly adapt to changing wind conditions in

1-2 minutes such that they reduce measurement error compared to no prefiltering at all, more time

could be required for the estimated prefilters to exceed the performance of some fixed prefilter which

is determined as a tradeoff between the optimal filters corresponding to different wind conditions.

Ultimately, the ability of the measurement prefilters to adapt to changing wind conditions depends

on how long the wind conditions tend to remain approximately stationary, which is an area of

research beyond the scope of this thesis.
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Chapter 8

Conclusions and Future Work

8.1 Discussion and Conclusions

The objective of this thesis was to determine how accurately lidar can be used to provide

preview measurements of the approaching wind field for preview-based control applications through

wind field modeling and optimization of the lidar measurement scenario. Lidar measurement qual-

ity was determined using the mean square error (MSE) between the lidar wind speed measurements

and the true wind speeds that interact with the rotor. The minimum achievable MSE for any mea-

surement scenario is achieved by filtering the measurements using a minimum mean square error

(MMSE) prefilter, which is based on the statistics of the correlation between the measurements and

the true wind speeds. As discussed in Chapter 2, the optimal preview-based control system that

minimizes the variance of an output variable of interest, e.g., rotor speed error, using the lidar-

based preview measurements as input, is given by the ideal model-inverse feedforward controller

in series with the MMSE prefilter. Therefore, throughout the thesis MSE was calculated assuming

that a MMSE prefilter was employed. For more advanced multi-objective control scenarios such

as model predictive control or optimal control, discussed briefly in Chapter 1, the relationship be-

tween preview measurement MSE and the controller objectives is not necessarily as straightforward.

However, measurement MSE is a relatively simple error metric to analyze given the statistical wind

field model employed throughout the thesis, and MMSE preview measurements are expected to

benefit a variety of control applications.

Mean square measurement error can be determined by integrating the measurement MSE
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power spectrum, which can be calculated using a statistical frequency-domain wind field model.

In Chapter 3, an existing frequency-domain wind field model given by turbulence power spectrum

and spatial coherence formulas, assuming Gaussian turbulence, was described. A longitudinal

coherence formula, developed based on data from large-eddy simulations (LES), was incorporated

into this wind field model to describe wind evolution. A method was proposed for describing the

wind speeds encountered by a wind turbine as the combined impact of three “blade effective”

wind speeds, calculated by integrating the longitudinal wind speeds along a blade weighted by the

spanwise sensitivity of aerodynamic torque production or the contribution to out-of-plane blade

root bending moment to wind speed changes. It was shown how three blade effective wind speeds

can be equivalently described as the hub-height wind component, i.e., the average wind speed

encountered by the three blades, and linear horizontal and vertical shear components. These three

rotor effective wind components are common wind speed disturbance variables for which linear

dynamic turbine models can be created using aeroelastic tools such as NREL’s FAST code [9].

The dynamic turbine models can then be used to develop model-based control systems. Typically,

collective pitch control is used to mitigate the impact of the rotor effective hub-height component

on rotor speed error and structural loads, while individual pitch control can be employed to reduce

structural loads caused by the effective horizontal and vertical shear using the multiblade coordinate

(MBC) transformation [38]. Therefore, torque-based blade effective weighting functions were used

to calculate the hub-height component, to reflect the large impact that the hub-height component

has on rotor speed via aerodynamic torque, while blade root bending moment-based weighting

functions were used to determine the shear components, due to the interest in mitigating blade

loads caused by shear across the rotor using individual pitch control.

Using the statistical frequency-domain wind field model, together with the lidar range weight-

ing model described in Chapter 4 as well as the torque and bending moment-based blade effective

weighting functions presented in Section 3.4, a method was described for calculating measurement

MSE directly in the frequency domain using the NREL 5-MW reference turbine model. The NREL

5-MW model is representative of large utility-scale wind turbines and is commonly used to compare
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controller performance in the wind turbine control community. A simple hub-mounted circularly-

scanning lidar measurement scenario was analyzed, in which three lidar measurement points (one

for for each blade) are obtained on a scan circle upstream of the rotor. A model of the commercially-

available ZephIR continuous-wave lidar was used for all analyses. The lidar measurement points

rotate along with the rotor so that each lidar measures the wind encountered by a specific blade.

Using the MBC transformation, the lidar measurements are converted to estimates of the rotor

effective hub-height and shear components. Assuming that the optimal MMSE prefilter is included

in the measurement scenario, the MSE calculations rely on the power spectrum of the true wind

speeds encountered by the turbine as well as the coherence between the lidar measurements and

the true wind speeds. Methods were developed for calculating these spectra resulting from three

rotating blade effective wind speeds and three corresponding rotating lidar measurements. Directly

calculating the measurement MSE using the developed frequency-domain techniques is much more

efficient than performing time-domain simulations, allowing measurement error for many differ-

ent lidar and wind field scenarios to be calculated relatively quickly. In contrast, time-domain

simulations rely on stochastic wind fields, which are computationally expensive to generate. Fur-

thermore, lidar measurements must be simulated in many different wind field realizations in order

for the calculated measurement error statistics to converge.

In Chapter 5, the optimal lidar scan radius and preview distance that minimize mean square

measurement error were found for a variety of wind conditions. For the above-rated mean wind

speed of 13 m/s and a moderate u component turbulence intensity of 10%, with other turbulence

parameters based on one of the unstable LES wind fields analyzed in Chapter 3, it was shown that

the optimal scan radius is 37.8 m (0.6 R) for the hub-height component and 44.1 m (0.7 R) for the

shear components, corresponding to the general regions along the blade were the impact of wind

speed variations on torque production and blade root bending moment are greatest, respectively.

The optimal preview distance is 100.8 m (0.8 D) for the hub-height component and 113.4 m (0.9 D)

for the shear components, where tradeoffs between line-of-sight errors caused by large measurement

angles and errors caused by wind evolution, which grow as preview distance increases, are achieved.
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With the optimal scan parameters, a very low measurement error of only 6.1% of the variance of

the true wind component is achieved for the hub-height component. The achievable measurement

quality for the shear components (both horizontal and vertical) is worse, with a MSE equal to 20.3%

of the true wind component variance. As wind speed increases, the weighting functions used to

calculate blade effective wind speed change very little, but the region along the blade where torque

production is most sensitive to wind speed variations shifts slightly toward the root of the blade,

causing the optimal scan radius for the hub-height component measurements to decrease by a small

amount. Measurement error changes very little, however, when the wind speed increases but all

other turbulence parameters remain the same. As turbulence intensity increases, wind evolution

intensifies causing shorter optimal preview distances and increased measurement error. By varying

the integral length scale of the turbulence, it was found that shorter length scales result in shorter

optimal preview distances because of greater wind evolution, and consequently higher measurement

errors.

The lidar scenario optimization results for different wind conditions suggest that measurement

quality would benefit from lidar systems with variable scan geometries. The optimal scan radii do

not change significantly for different wind conditions, however. Over the range of all above-rated

mean wind speeds, the optimal scan radius for hub-height component measurements changes by

less than 7 m (∼0.11 R), while for shear component measurements, the optimal scan radius varies

by less than 2 m (∼0.03 R). Therefore, measurement quality would likely not be significantly

improved by using a lidar system with a variable scan radius. On the other hand, depending on the

turbulence intensity, the optimal preview distance varies considerably, ranging from ∼0.35 D to

∼1.2 D. But finding the optimal preview distance, which depends strongly on turbulence statistics

that must be estimated during turbine operation, could be difficult. However, as can be seen in

Fig. 5.4, measurement error is not as sensitive to changes in the preview distance as it is to changes

in the scan radius. Thus it is not necessarily important to aggressively track the optimal preview

distance. Finally, while scan scenario optimization results for the hub-height and shear components

were presented individually in this thesis, a single set of lidar parameters must be implemented at
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any given time. Therefore a tradeoff between the measurement quality of the hub-height component

and the shear components must be found.

By incorporating a model of the upstream induction zone based on a simulation performed

with NREL’s SOWFA tool [78], it was found that for the NREL 5-MW turbine’s rated wind

speed U = 11.4 m/s, the induction zone has very little impact on measurement quality, although

the optimal scan radius is reduced slightly to account for the expansion of the wind around the

rotor. Consequently, the optimal preview distance is reduced as well. These trends were later

confirmed using time-domain simulations performed with SOWFA in Section 7.1. The induction

zone has an even smaller impact on measurement quality for higher wind speeds when the turbine’s

axial induction factor is reduced. Note that an additional induction zone investigation, using

ground-based lidars to measure the wind inflow upstream of a 225 kW wind turbine, is discussed

in Appendix A. An investigation into the effects of yaw error on measurement quality for the

U = 13 m/s, TIu = 10% wind condition revealed that measurement MSE more than doubles for

a yaw error of 10◦ when the optimal scan geometry, assuming zero yaw error, is employed. The

drastic reduction in measurement quality due to yaw error suggests that the measurement scenario

might benefit from shorter-than-optimal preview distances, which reduce the undesired transverse

distance that the measured wind speeds travel before they reach the rotor plane.

While the scan scenario optimizations performed in Chapter 5 relied on the assumption

that the optimal MMSE prefilter was employed, in practice the correlation statistics required to

determine the filter need to be estimated. Specifically, the cross-correlation function between the

lidar measurements and the true wind speeds encountered by the turbine, as well as the lidar

measurement autocorrelation function must be determined. Since there is no way to directly

determine the “true” wind speeds encountered by the turbine, a wind speed estimator needs to

be employed. In Chapter 6, it was shown that a gain-scheduled Kalman filter-based wind speed

estimator relying on generator speed, tower fore-aft acceleration, and flapwise blade root bending

moment measurements can accurately determine the hub-height and shear components encountered

by the turbine. The wind speed estimator’s accuracy depends on which aerodynamic inflow model
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is used during simulation, however, since the Kalman filter model is based on the less realistic

equilibrium inflow model. When the more realistic dynamic inflow model is used in simulation, the

estimation error increases. Therefore, an improved wind speed estimator that includes the effects

of dynamic inflow should be utilized. Methods for incorporating dynamic inflow into linear turbine

models are discussed in Henriksen et al. [60] and Knudsen and Bak [107].

The rotor effective wind speed power spectra and measurement coherence curves calculated

using direct frequency-domain techniques as well as obtained using wind speed estimator outputs

based on aeroelastic simulations with full-field stochastic wind inflow were compared. The spectra

obtained from both approaches agree reasonably well, suggesting that the linear frequency-domain

calculations are sufficient for determining approximate measurement error. As the mean wind

speed increases in above-rated conditions, however, the accuracy of the direct frequency-domain

approach diminishes slightly. Using the wind speed estimator outputs together with simulated lidar

measurements, it was shown how the MMSE prefilter can be determined by estimating the required

correlation functions. The impact of the time used to estimate the correlation statistics, as well

as the preview time available to the filter, on the achievable measurement MSE was investigated

for the U = 13 m/s, TIu = 10% wind condition analyzed throughout the thesis. However, as was

shown in Section 5.4.1, the difference between the measurement error achievable with filter time

constraints imposed by the lidar scenario and the optimal MSE possible with an unconstrained

prefilter is negligible except when the preview distance is very short (resulting from very high wind

speeds or turbulence intensities). In terms of the difference in MSE between measurement scenarios

without any prefiltering and with the optimal unconstrained MMSE prefilter employed, after only 2

minutes of correlation function estimation time approximately 87% of the possible MSE reduction

is achieved for the hub-height component, with roughly 94% of the improvement resulting for the

shear components. After 9 minutes of estimation time, the estimated prefilters achieve 95% of the

potential MSE reduction for the hub-height wind speed and 97% of the potential improvement

for the shear components. These results suggest that the optimal prefilters can quickly adapt to

changing wind conditions and measurement quality. By comparing the performance of estimated
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prefilters for two different wind conditions with low and high turbulence intensities determined

using field observations, it was observed that a longer period of estimation time is required for

the prefilters to perform better than a fixed prefilter derived for the wind condition not being

investigated. But less than 10 minutes of estimation time was found to be sufficient to perform

better than the optimal prefilter for the other turbulence intensity.

Finally, lidar scenarios were optimized in this thesis in the minimum mean square measure-

ment error sense. However, as discussed in Chapter 2, if the objective of the preview-based controller

is to minimize the variance of an output error variable, such as generator speed, then the output

variance should be reflected in the optimization objective. As shown in Section 2.2.1, the variance

of an output variable can be calculated by integrating the product of the power spectrum of the

MSE and the squared magnitude of the transfer function from the measured wind disturbance to

the output. It is possible that the lidar scan scenario that minimizes the output variance, assuming

an ideal model-inverse feedforward controller, is not the MMSE scan configuration. For example, if

the transfer function from the wind speed to the output contains a resonant mode at a particular

frequency, the optimal lidar scan scenario in the minimum variance sense might yield very low

measurement error at that frequency even though the total MSE is minimized by some other scan

configuration. In this thesis, though, MSE was treated as the optimization variable because it is

a much more general metric. In contrast, the minimum-variance scan parameters and achievable

output variance depend on the behavior of the specific feedback controller utilized as well as on the

specific output variable of interest. But by incorporating the transfer function of interest into the

optimization objective, the frequency-domain approaches developed in this thesis can very easily

be extended to find the optimal lidar scan configuration that minimizes output variance.

8.2 Areas of Future Work

Opportunities exist to introduce additional modeling details to the frequency-domain tech-

niques for calculating measurement error used to generate the primary results of this thesis. For

example, the wind field model that was used contains zero mean vertical shear, although in reality
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some vertical shear is almost always present in the atmospheric boundary layer. The impact that

the height-dependent variable arrival time between wind measured by the lidar and the wind that

reaches the rotor has on measurement quality can be analyzed by incorporating height-dependent

phase delays in the cross-spectrum calculations. Because introducing vertical shear causes a wind

field to no longer remain axisymmetric, the more computationally intensive spectrum calculations

used to incorporate yaw error would have to be used. Furthermore, wind veer (height-dependent

wind direction), which is also common in the atmospheric boundary layer, could be incorporated

into the wind field model by extending the procedure used to analyze the impact of yaw error

on measurement quality. Additionally, different lidar measurement scenarios can be investigated,

including those used in commercially-available lidars. A rotating three-beam scenario was analyzed

because it forms a relatively accurate measurement of the wind components encountered by three

rotating blades. However, the frequency-domain methods presented in Chapters 4 and 5 can be

used to calculate measurement quality for lidar scan scenarios with additional beams or fixed mea-

surement points, for example. But the techniques developed in this thesis would need to be heavily

modified to allow the analysis of lidar scan patterns with a scan period different from the rotational

period of the rotor.

Other lidar models and wind turbine models can easily be included in the measurement

error calculations performed in this thesis by replacing the lidar range weighting functions and

blade effective weighting functions with those calculated for other models. Although the optimal

measurement scenarios and achievable measurement errors depend on the specific rotor size and

its aerodynamic properties as well as the specific lidar range weighting function shape, the general

trends found in this thesis are expected to hold for any measurement scenario. Specifically, the

optimal lidar scan radius depends on where along the blade the sensitivity of torque production or

blade root bending moment to wind speed variations is highest, while the optimal preview distance

occurs where a tradeoff between line-of-sight errors and wind evolution-induced errors takes place.

Many of the analyses in this thesis would benefit from wind speed statistics obtained from

field data. First, in Section 7.3.2 it was shown that only a couple minutes are required to obtain a
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relatively accurate estimate of the MMSE prefilter, but measurement error can still be significantly

improved with more filter estimation time. Wind speed field data obtained from a meteorological

tower, for example, could be used to examine how long wind conditions tend to remain stationary

and thus how much filter estimation time should be afforded to the prefilter calculation so that

it can adapt to changing conditions quickly enough. Given the amount of filter estimation time

utilized, it could then be determined if the adaptive filtering strategy can perform better than

a non-adaptive filter formed as a tradeoff between the optimal filters corresponding to different

wind conditions likely to be encountered during turbine operation. Secondly, statistics about the

distribution of mean wind speeds and turbulence intensities at a particular site could be used to

further optimize the measurement scenario. For example, if only a single set of lidar scan parameters

can be implemented, then the scan radius and preview distance that minimize measurement error

over the lifetime of the turbine should be determined. The optimization could be performed by

summing the errors that occur for a particular scan geometry over a variety of wind conditions

weighted by the probability of each particular wind condition occurring.

A number of models presented in the thesis were developed with the aid of computational

fluid dynamics simulations performed using NREL’s SOWFA tool. LES provides the opportunity to

develop models using physics-based wind field simulations, but in a much more controlled manner

than field measurements could allow. Although a collection of 12 different LES wind conditions

was used to develop the longitudinal coherence formula describing wind evolution in Section 3.2,

the model should be validated using LES wind fields with a greater range of mean wind speeds and

turbulence intensities. Ultimately, the wind evolution model should also be validated using field

observations. The 1000 s SOWFA simulation used to develop the induction zone model is sufficient

for creating a model of the mean velocity reductions and direction changes upstream of the turbine,

but longer simulations should be performed to validate the true impact that the induction zone

has on measurement quality. As can be seen in the coherence plots in Fig. 7.5, a single 1000 s

lidar measurement simulation using the SOWFA wind field does not provide enough data for the

frequency-domain statistics to be precisely determined. It is difficult to conclude whether the slight
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difference in measurement quality with and without the induction zone is significant, or if it is

simply a result of noise in the coherence calculations caused by insufficient data. Furthermore,

although it was observed that longitudinal coherence decreases in the induction zone close to the

turbine, and that simply adjusting the mean wind speed and length scale wind evolution model

parameters to account for the velocity reductions close to the turbine does not yield the true

coherence drop, more data is required to determine how the induction zone affects wind evolution

for different wind conditions.

One of the drawbacks to using a statistical frequency-domain wind field model or stochastic

wind field simulations to analyze lidar measurement error is that the turbulence is modeled as

Gaussian, which is a simplification compared to the actual behavior of turbulence. The method of

incorporating a linear MMSE prefilter to find the optimal lidar scenario and the minimum achiev-

able measurement MSE is, in general, an optimal strategy in the MSE sense only if the lidar

measurements and wind speeds encountered by the turbine are jointly Gaussian. For non-Gaussian

wind conditions, such as those generated by LES, nonlinear prefilters or estimation techniques could

perform better than the linear prefilters employed in this thesis. As an example, the speed at which

different turbulent structures advect downstream for short periods of time varies throughout an

LES simulation; not all turbulent structures advect at the mean wind speed at all times. As was

discovered by Dunne et al [41] using turbine-mounted lidar measurement data obtained in the field,

employing a time-varying preview time delay when determining the wind speeds that interact with

a turbine, a form of nonlinear estimation, allows a reduction in measurement error. By perform-

ing additional lidar measurement simulations using SOWFA, or other LES tools, other nonlinear

measurement filtering techniques could be developed to determine the potential improvement in

measurement quality. Machine learning techniques, which rely on a “training” period to learn the

complex relationships between measurements and outputs, could be applied to the preview mea-

surement scenario. A period of time could be dedicated to learning the nonlinear model describing

the relationship between lidar preview measurements and the wind that arrives at the turbine.

Next, the resulting model could be used to estimate the true wind speeds at the turbine based on
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the time history of lidar measurements and previous “true” wind speeds encountered by the turbine

obtained from a wind speed estimator. After some period of time, the learning stage could then be

performed again in order to adapt to changing wind conditions.

Perhaps the most useful extension of this research is the incorporation of the lidar measure-

ment model into preview-based control simulations. A lidar model including range weighting and

line-of-sight effects was incorporated into FAST simulations used to evaluate controller designs per-

formed by Laks et al. [23] as well as Dunne et al. [24, 28]. Using the Kristensen wind evolution model

and the stochastic wind field/lidar measurement simulation technique described in Section 7.2, the

impact of wind evolution on an H2 optimal preview-based controller’s performance was analyzed

in Laks et al. [34]. However, the more recent LES-based wind evolution model developed in this

thesis could be used to model wind evolution in future controller simulations. Many lidar-assisted

controllers are designed assuming perfect lidar preview measurements, and are then analyzed when

lidar measurement errors are introduced. By incorporating lidar and wind evolution models into

the controller design process, however, the controller and measurement scenario could be jointly

optimized, leading to improved performance.
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M. Kühn. Prospects of optimization of energy production by lidar assisted control of wind
turbines. In Proc. European Wind Energy Association Annual Event, Brussels, Belgium,
March 2011.

[15] K. A. Kragh, M. H. Hansen, and T. Mikkelsen. Precision and shortcomings of yaw error
estimation using spinner-based light detection and ranging. Wind Energy, 16(3):353–366,
2013.

[16] P. A. Fleming, A. K. Scholbrock, A. Jehu, S. Davoust, E. Osler, A. D. Wright, and A. Clifton.
Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by
reducing yaw misalignment. In Proc. The Science of Making Torque from Wind, Lyngby,
Denmark, June 2014.

[17] N. Wang, K. Johnson, and A. Wright. Combined feedforward and feedback controllers for
turbine power capture enhancement and fatigue loads mitigation with pulsed lidar. In Proc.
AIAA Aerospace Sciences Meeting, Nashville, TN, January 2012.

[18] E. A. Bossanyi, A. Kumar, and O. Hugues-Salas. Wind turbine control applications of turbine-
mounted lidar. In Proc. The Science of Making Torque from Wind, Oldenburg, Germany,
October 2012.

[19] D. Schlipf, P. Fleming, S. Kapp, A. Scholbrock, F. Haizmann, F. Belen, A. Wright, and
P. W. Cheng. Direct speed control using lidar and turbine data. In Proc. American Control
Conference, Washington, D.C., June 2013.
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Appendix A

Induction Zone Measurements Upstream of a 225 kW Wind Turbine using

Scanning Continuous-Wave Lidars

In addition to the SOWFA LES-based investigations described in Sections 3.3 and 7.1, several

approaches have been previously used to investigate the induction zone. In Modarresi and Kirch-

hoff [112] an analytic model of the velocity field and streamlines upstream of a wind turbine rotor

in steady flow is presented. Particle image velocimetry (PIV) and hot-wire anemometry were used

in Medici et al. [53] to measure the wind velocities upstream of rotating model turbines in a wind

tunnel. High resolution longitudinal and radial velocities in the near upstream region of the 18 cm

diameter rotor are provided from the PIV analysis. Hot-wire anemometry revealed that velocity

reductions between 2% and 5% of the freestream wind speed were present two rotor diameters

upstream of the turbine, while velocity deficits of less than 1% were detected 3 D upstream of the

turbine. Medici et al. [53] also presents a CFD investigation of the induction zone, finding that

the numerical simulations predict lower wind speed deficits in the induction zone than exhibited

by the experimental results. At 2 D upstream of the turbine, velocity deficits of only ∼1% are

produced using CFD. Recently, lidar remote sensing has been used to measure the induction zone

on full-scale wind turbines. In Slinger et al. [54] the reduction in wind speed up to 1.5 D upstream

of the rotor was verified by measuring at several upstream distances using a circularly-scanning

lidar located on the nacelle. Different power curves were measured using reference lidar measure-

ments at five distances between 0.14 D and 2.5 D upstream of the turbine. A nacelle lidar was also

employed in Asimakopoulos et al. [55] to determine how far upstream of the turbine the induction
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zone extends, using forward-staring measurements as well as a horizontal arc scan at hub height.

The authors conclude that at the upstream distance of 2.5 D, where power curve measurements

are conventionally performed, velocity reductions between 1% and 3% of the freestream velocity

are still detectable.

In this study, three scanning ground-based lidars, the short-range “WindScanner” lidars, are

used to measure the induction zone upstream of a 225 kW Vestas V27 wind turbine at the Danish

Technical University (DTU) Wind Energy department’s Risø campus. Whereas the aforementioned

lidar studies relied on a single nacelle-mounted lidar to provide line-of-sight velocity measurements,

the three ground-based lidars are used to solve for the three wind components, namely the lon-

gitudinal, radial, and tangential (aligned with the rotational direction of the rotor) components.

Mean velocities in the induction zone are determined by scanning a horizontal plane at hub height

on one side of the nacelle extending roughly 1.5 D upstream of the rotor for various wind speeds

resulting in a wide range of induction factors a. A similar scan is employed to measure mean ve-

locities in a vertical plane extending from the bottom to the top of the rotor up to 1.5 D upstream

of the turbine. Therefore, while much of the focus of previous induction zone investigations was

on finding the velocity deficits that are present far upstream of the turbine, this study focuses on

the near region of the induction zone. Finally, the impact of the induction zone on turbulence

statistics is analyzed by rapidly scanning along lines perpendicular to the rotor plane at different

radial positions and forming velocity time series at regular intervals up to 1 D upstream of the

rotor.

The remainder of this appendix is organized as follows. Section A.1 describes the experimental

setup for the induction zone measurements. A description of the Vestas V27 wind turbine is included

in Section A.1.1. Section A.1.2 contains information about the WindScanner lidars used for the

measurements, Section A.1.3 summarizes the lidar data processing procedures, and Section A.1.4

discusses the different scan patterns employed. The resulting measurements of 10-minute mean

longitudinal, radial, and tangential velocities in the induction zone are provided in Section A.2 for

a variety of mean freestream wind speeds. Section A.2.1 contains the results of the horizontal plane
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scans and Section A.2.2 illustrates the results of a vertical plane scan. Turbulence statistics in the

induction zone are presented in Section A.3. Finally, Section A.4 concludes the appendix with a

brief discussion of the experimental methods and results.

A.1 Experimental Methods

The induction zone measurements are performed using the 27 meter rotor diameter, 225 kW

Vestas V27 wind turbine at DTU Wind Energy’s Risø campus. As shown in Fig. A.1, the turbine

is located on relatively flat agricultural land approximately 225 m to the east of Roskilde fjord.

The terrain is gently sloping up from the shore of the fjord and a meteorological (met) mast used

for reference measurements is located approximately 73 m (2.7 D) away from the turbine at a

heading of 283◦. The positions of the scanning lidars around the turbine are chosen to produce

measurements of the induction zone up to ∼1.5 D upstream of the rotor for wind directions from

221◦ to 281◦, with an ideal wind direction of 251◦, indicated in Fig. A.1. To improve the quality

of the lidar scans, as will be explained in Section A.1.2, the lidar positions are chosen to measure

only the left side of the rotor when looking upstream.

A.1.1 Wind turbine description

With a hub height of 32.5 m and a rotor diameter of 27 m, the three-bladed, pitch-regulated,

225 kW Vestas V27 turbine (pictured in Fig. A.2) was chosen for the measurement campaign

because its design is similar to that of larger utility-scale turbines, yet it is small enough to allow

for rapid scanning of its induction zone while keeping the lidars relatively close to the turbine. A

list of the parameters for the V27 is included in Table A.1. For wind speeds below ∼5.5 m/s, power

is generated using a 50 kW generator and the rotor’s rotational speed is fixed at 33 RPM [113]. At

higher wind speeds, power is generated using the 225 kW generator with a constant rotational speed

of 43 RPM. When wind speeds exceed 14 m/s, rated wind speed for the V27, blade pitch control is

used to regulate power capture. The published power curve for the V27 turbine [113] is shown in

Fig. A.3 (a). Using data collected during early testing of the V27 at Risø [114], the estimated CP
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Figure A.1: Location of measurement campaign at the Danish Technical University’s Risø campus.
(a) Map of the terrain surrounding the Vestas V27 turbine used for the inflow measurements.
Inflow measurements were acquired for intended wind directions between 251 and 280 degrees. (b)
Close-up of the region near the V27 turbine where the experiment took place (indicated by the
rectangular region in (a)). The locations of the three WindScanner lidars are indicated by the red
points and are chosen to provide the highest inflow scan quality for a wind direction of 251 degrees.
Map imagery c©2014 Google, Map data c©2014 Google.

curves based on electrical power production and mechanical power production (the latter relying

on modifying the electrical CP curve using measurements of the generator transmission efficiency)

are plotted in Fig. A.3 (b). Note that values of mechanical CP above the Betz limit of ∼0.59 at low

wind speeds are due to small errors in the estimation of the generator efficiency. Fig. A.3 (b) also

includes the estimated axial induction factor curve for the V27 calculated by solving for a using

the mechanical CP curve and (3.25). Although two solutions for a exist for a given CP value, it
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was assumed that the turbine operates at induction factors below the optimal value of 1/3. Higher

values of a would cause unnecessarily high rotor thrust.

Figure A.2: Lidar 2 positioned in the field with V27 wind turbine in the background (left). Close-up
of V27 nacelle and rotor (right).

Table A.1: Vestas V27 wind turbine parameters [113].

Parameter Value

Type 3 bladed, upwind oriented

Rated power 225 kW

Rotor diameter 27 m

Hub height 32.5 m

Power regulation Pitch control

Rotor speed, 50 kW generator (U < ∼5.5 m/s) 33 RPM

Rotor speed, 225 kW generator (U > ∼5.5 m/s) 43 RPM

Cut-in wind speed 3.5 m/s

Rated wind speed 14 m/s

Cut-out wind speed 25 m/s
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Figure A.3: (a) Vestas V27 power curve listed in [113]. (b) Estimated coefficient of power curves
based on generated electrical power and mechanical power produced by the low-speed shaft listed
in [114] as well as estimated axial induction factor curve using (3.25).

A.1.2 Lidar system

The short-range WindScanner lidar system (see Fig. A.2) developed by DTU Wind Energy is

used to measure the wind inflow to the V27 turbine. The short-range WindScanner system consists

of three continuous-wave (CW) lidars developed by ZephIR that have been modified with dual-

prism scanning systems capable of orienting the beam in any direction within 60◦ of the adjustable

center axis [95, 115]. Two motors are used to orient the beam while a third motor is used to

control the focus distance of the lidars between 10 m and 200 m. The short-range WindScanners

are capable of sampling the wind speed at 400 Hz, but a sample rate of 100 Hz is used for this

campaign. All three WindScanner lidars can be synchronized to scan the same pattern in space

simultaneously allowing for line-of-sight measurements from three unique directions, and therefore

the ability to solve for the three wind speed components.

As described in Section 4.1.1, particularly in (4.2) through (4.5), rather than measuring the

line-of-sight velocities at precisely the point where the lidars are focused, some volume averaging,

or “range weighting” occurs along the beam. The ZephIR CW range weighting function and

parameters listed in Section 4.1.1 are roughly equivalent to those for the short-range WindScanner

lidars. As previously mentioned, the resulting full-width-at-half-maximum (FWHM) width of the
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range weighting function, centered at the focus point, with focus distance F , can be approximated

as 0.0013·F 2. For this measurement campaign, the focus distances during the lidar scans range from

approximately 33 m to 75 m resulting in range weighting FWHM widths between approximately

1.5 m and 7 m.

A.1.3 Lidar data processing

At every time sample, a Doppler velocity spectrum is provided by each lidar. As discussed

in Section 4.1.2, each Doppler spectrum is formed by computing the discrete Fourier transform of

the backscattered light and contains 255 frequency bins, where the width of each frequency bin

represents a velocity change of 0.153 m/s. Approximately 2000 individual 255-bin Doppler spectra

are averaged together during the sampling period to reduce noise; for longer sampling periods,

noise suppression is higher. Because of range weighting, the Doppler spectrum contains energy at

frequencies corresponding to all of the velocities detected along the beam, weighted by W (F,R).

After subtracting the mean background noise spectrum, only frequency bins containing energy in

excess of some multiple of the standard deviation of the remaining noise floor are considered in

the final Doppler spectrum [94]. In this investigation, threshold values of either 3 or 5 standard

deviations of the noise floor are used, depending on the lidar scan. Once the background noise

is removed from the Doppler spectrum, a single value of the line-of-sight velocity detected by the

lidar is estimated. As outlined in Section 4.1.2, the more robust approach of identifying the velocity

representing the median value of the energy in the Doppler spectrum is used. More information

about estimating the line-of-sight velocity from a Doppler spectrum is provided in Angelou et

al. [94].

Once the line-of-sight velocities for the three lidars focusing at the same point in space are

known, the measurements are used to estimate the orthogonal u, v, and w wind components of

interest. This estimation is achieved by solving the inverse detection problem to find the u, v, and

w components that would have produced the three line-of-sight measurements. In reality, due to

range-weighting, the line-of-sight measurements are only approximations of the true line-of-sight
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velocities at the focus point. However, by ignoring the range-weighting effect in (4.2), the u, v, and

w components at the common focus point can be solved for using
u

v

w

 = −


`x,1 `y,1 `z,1

`x,2 `y,2 `z,2

`x,3 `y,3 `z,3


−1 

u`,1

u`,2

u`,3

 (A.1)

where [`x,i, `y,i, `z,i] and u`,i are the beam direction unit vector and measured line-of-sight velocity,

respectively, for lidar i. It is desirable to choose lidar positions and scan patterns that result in a

well-conditioned matrix in (A.1) to minimize the sensitivity of the u, v, and w component estimates

to errors in the line-of-sight measurements and beam direction vectors.

A.1.4 Lidar scan scenarios

Three lidar scan patterns were used to measure wind velocities in the induction zone: two

used to measure the mean velocity components upstream of the rotor and one used to measure

turbulence characteristics. The lidar positions were chosen to allow measurements for a 60◦ range

of wind directions, up to 30◦ away from an ideal wind direction. A 60◦ range of acceptable wind

directions allows a trade-off between optimizing for a single wind direction and enabling enough

data to be collected during the campaign given the variability in wind direction. After analyzing the

distribution of wind directions encountered by the V27, it was decided to allow measurements for

directions from 221◦ to 281◦, with 251◦ as the ideal direction. In practice, only lidar scans intended

for wind directions between 251◦ and 280◦ were performed during the campaign (see Fig. A.1).

When choosing the lidar positions, an additional guideline was the desire to avoid measuring

line-of-sight velocities close to 0. To allow the ability to distinguish between negative and positive

velocities, the Doppler spectrum detected by a WindScanner lidar is shifted by 27 MHz using an

acousto-optic modulator (AOM) so that frequencies from 0 to 27 MHz represent negative velocities

and frequencies from 27 MHz to 50 MHz represent positive velocities [94]. However, low-frequency

noise caused by laser light leakage in the lidar optics and mechanical vibrations in the optical fiber,

which is shifted by the AOM to the frequency band near 27 MHz, makes it difficult to detect
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velocities between approximately -0.5 m/s and 0.5 m/s. Therefore, the lidar positions and scan

patterns were chosen to avoid measuring perpendicular to the intended mean wind directions. To

minimize volume averaging due to range weighting, yielding measurement scans with higher spatial

resolution, the lidars were placed as close to the intended scan pattern locations as possible while

avoiding measurements perpendicular to the mean wind direction. To minimize the lidar focus

distances, resulting in less range weighting, only locations up to roughly 1.5 D upstream of the

turbine were scanned. Furthermore, only the area upstream of the left side of the rotor (when

looking upstream) was measured, under the assumption that the behavior of the induction zone is

symmetric about the rotor center. The chosen lidar positions are shown in Fig. A.1 (b). Lidar 1

is positioned upstream and to the right of the intended scan area, lidar 2 is positioned upstream

and to the left, and lidar 3 is located downstream of the scan area resulting in a diversity in

measurement angles at all points throughout the scan. While the lidar positions were not chosen

to produce measurement matrices (see (A.1)) with condition numbers above a specific threshold,

the diverse measurement angles help reduce the sensitivity of the u, v, and w component estimates

to measurement and beam direction errors.

The majority of the lidar scans performed during the measurement campaign were horizontal

planes at hub height extending from 0.1 D (2.7 m) downstream of the rotor to 1.6 D upstream

and from 1/8 D beyond the left edge of the rotor, when looking upstream, to 1/8 D to the right

of the hub. The scan is performed by repeating a 10-second pattern covering the area of interest,

which is plotted in Fig. A.4 (a) for a wind direction, and therefore x axis direction, of 251◦. Note

the positions of the lidars in Fig. A.4, plotted as red points, which result in no measurements

perpendicular to the wind direction of 251◦. For wind directions far enough above 251◦, however,

lidar 2 measures perpendicular to the wind direction during portions of the scan. Measurement

periods with such wind directions are still analyzed in this study, but the distance upstream of the

rotor for which data can be analyzed is limited. In terms of the rotor diameter D, the 10-second
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Figure A.4: Lidar scan patterns used to measure the induction zone. (a) Top view of horizontal
scan plane at hub height. (b) Top view of longitudinal line scans at hub height for radial positions
at 0, 1/6, 1/3, and 1/2 D. An inset plot shows the longitudinal scan position as a function of time.
(c) Side view of vertical scan plane located at the center of the rotor in the transverse direction
(y = 0). The lidar positions are indicated by the red points.

scan is defined as

~x (t) =


x (t) = −0.85D sin (2πt)− 0.75D

y (t) = 0.375D sin (2πt/10)− 0.25D

z (t) = 32.5 m,

(A.2)

where sinusoidal scan positions are used to reduce the acceleration of the WindScanners’ prism

and focus motors. This scan pattern is used to form 10-minute mean values of the wind velocities

to reveal the behavior of the longitudinal (u), radial, and tangential wind speeds in the induction

zone. The radial wind speed is defined as the wind speed component oriented away from the rotor
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center, perpendicular to the longitudinal direction, and the tangential wind speed is defined as the

component of the wind aligned with the rotational direction of the rotor, i.e., perpendicular to the

radial component in the yz plane. Thus, for the horizontal plane scan, the radial wind speed is

equivalent to the v component and the tangential wind speed is equivalent to the w component.

All scan patterns described in this section can be adjusted so that the x axis is aligned with any

wind direction between 221◦ and 281◦.

A second scan pattern, consisting of a vertical scan plane, was used to measure mean velocities

in the induction zone as well. The scan plane extends from 0.1 D downstream of the rotor to 1.5 D

upstream of the rotor and from the bottom of the rotor to 1/8 D above the top of the rotor, located

at the center of the rotor in the transverse direction, i.e., intersecting the hub position. This 10-

second vertical scan pattern, which allows measurements upstream of the entire rotor diameter, is

shown in Fig. A.4 (c) and is defined as

~x (t) =


x (t) = −0.8D sin (2πt)− 0.7D

y (t) = 0

z (t) = 0.5625D sin (2πt/10) + 0.0625D + 32.5 m.

(A.3)

As with the horizontal scan plane, this 10-second pattern is repeated to form 10-minute averages

of the measured inflow.

The third scan pattern used during the measurement campaign is designed to measure the

turbulence characteristics in the induction zone. Similar to the horizontal scan plane, this scan

pattern measures the wind upstream of the left side of the rotor at hub height, but along lines

perpendicular to the rotor plane extending from 0.2 D downstream of the rotor to 1.6 D upstream

at different radial positions. The line scans are performed at radial distances of 0 (the hub location),

1/6 D, 1/3 D, and 1/2 D. Each complete line scan, pictured in Fig. A.4 (b), is a 1-second sinusoidal

pattern defined for radial positions i ∈ {1, 2, 3, 4} as

~x (i, t) =


x (t) = −0.9D sin (2πt)− 0.7D

y (i, t) = − (i− 1)D/6

z (t) = 32.5 m.

(A.4)
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During the field measurements, the 1-second line scans were repeated for 2.5 minutes at each radial

position before advancing to the next position, forming a sequence which was repeated every 10

minutes. In contrast to the horizontal and vertical plane scans, these line scans were used to

determine wind velocity time series, instead of mean values. Time series at various longitudinal

distances from the rotor plane are formed by grouping the measurements by their x positions using

a bin size of 1 m and interpolating the resulting data for each bin to form 1 Hz time series.

A.2 Results: Radial and Longitudinal Dependence of Mean Wind Speeds

in the Induction Zone

Data were collected using the three different scan patterns from mid March to early May 2014

at the Risø campus. In order to identify acceptable data for analysis, all 10-minute periods where

the intended wind direction of the lidar scan differs by the mean wind direction reported by the met

mast by more than 15◦ were discarded, leaving roughly 35 hours of acceptable measurements. For

the horizontal scan at hub height, six 10-minute periods were chosen for analysis when the turbine

was running, with wind speeds representing axial induction factors between ∼0.25 (U = ∼6.89 m/s)

and the minimum induction factor that occurred during all acceptable scan periods (a = ∼0.041,

U = ∼16.29 m/s), according to the estimated induction factor curve in Fig. A.3 (b), in wind speed

intervals of approximately 1–3 m/s. By visually inspecting the met mast and lidar data, a 10-minute

period for each desired wind speed interval was selected by identifying the period with the lowest

error between mean wind direction and the chosen lidar scan direction, while maintaining low wind

speed and direction variability. Because very few lidar scans were acquired using the vertical plane

scan and line scan patterns, only a small number of scan periods for these categories are analyzed

and results for a wide range of mean wind speeds are not included. A summary of all the lidar

scans that were chosen for analysis in this study is provided in Table A.2. Measurement cases 1–7

are 10-minute horizontal plane scans chosen from the collected data to provide a wide range of

mean wind speeds and thus axial induction factors. Case 7 consists of measurements performed

when the V27 was stopped, providing a reference scan. Case 8 contains one of the few satisfactory
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Table A.2: Summary of lidar measurement cases. Cases 1–8 consist of 10-minute measurement
periods while cases 9–16 are 2.5-minute scans. Wind direction is calculated using the mean lidar-
measured wind speed values as far upstream of the rotor as possible. Turbulence intensity (TI) and
wind direction standard deviation are calculated using met tower measurements at a height of 32
meters. Case 7 was performed with the turbine stopped.

Case

Date/Time

(all 2014)
Scan
Type

Scan
Dir. Û∞ â

Wind
Dir. TI

Wind Dir.
Std. Dev.

1 3/17 10:57 xy plane 275◦ 16.29 m/s 0.041 289.5◦ 8.9% 4.8◦

2 3/18 12:00 xy plane 251◦ 8.93 m/s 0.18 254.8◦ 9.0% 5.1◦

3 3/18 14:09 xy plane 251◦ 10.01 m/s 0.16 260.2◦ 11.0% 5.0◦

4 3/19 13:32 xy plane 260◦ 11.49 m/s 0.12 259.1◦ 9.4% 4.9◦

5 3/19 16:18 xy plane 260◦ 13.26 m/s 0.085 263.4◦ 12% 6.1◦

6 3/21 10:44 xy plane 251◦ 6.89 m/s 0.25 250.8◦ 10.6% 5.0◦

7 3/21 12:09 xy plane 251◦ 5.67 m/s 0 249.8◦ 15.2% 7.0◦

8 4/30 22:19 xz plane 270◦ 7.17 m/s 0.25 269.8◦ 13.6% 6.7◦

9 5/07 14:05 line, y = -4.5 m 260◦ 6.23 m/s 0.24 262.5◦ 12.8% 7.2◦

10 5/07 14:08 line, y = -9 m 260◦ 6.25 m/s 0.24 260.1◦ 11.8% 7.0◦

11 5/07 14:10 line, y = -13.5 m 260◦ 5.95 m/s 0.23 264.1◦ 10.4% 5.5◦

12 5/07 14:13 line, y = 0 260◦ 6.15 m/s 0.23 259.3◦ 7.8% 4.4◦

13 5/07 16:03 line, y = -4.5 m 275◦ 7.60 m/s 0.22 281.2◦ 10.5% 5.0◦

14 5/07 16:05 line, y = -9 m 275◦ 7.49 m/s 0.22 277.8◦ 7.0% 5.8◦

15 5/07 16:08 line, y = -13.5 m 275◦ 8.09 m/s 0.20 275.9◦ 10.9% 6.0◦

16 5/07 16:10 line, y = 0 275◦ 7.40 m/s 0.23 278.6◦ 9.4% 6.5◦

10-minute measurement periods using the vertical scan plane. Cases 9–16 consist of 2.5-minute line

scan periods. Cases 9–12 represent successive line scans at radial positions of 1/6 D (y = -4.5 m),

1/3 D (y = -9 m), 1/2 D (y = -13.5 m), and at the hub location (y = 0) as do cases 13–16, but for

higher wind speeds. The similar sequences of scan cases 9–12 and 13–16 are both analyzed to help

confirm the identified trends, since each case contains only a short measurement period.

The scan direction column in Table A.2 indicates the wind direction that the x axes of the

scan patterns were aligned with in anticipation of the true wind direction. The wind direction
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column contains the actual mean wind directions present during the scan periods, calculated from

the lidar measurements. It is difficult to determine the true freestream mean wind speeds from the

lidar measurements, given that the farthest measurement locations from the turbine are roughly

1.5 D upstream of the rotor, within the expected extent of the induction zone. Furthermore, there

are occasionally significant discrepancies between the mean wind speeds measured by the nearby

met mast and those detected by the lidars far upstream of the turbine. Therefore, the mean

wind speeds (under the Û∞ column) are estimated by solving the vortex sheet theory formula

presented in Medici et al. [53] giving the velocities upstream of the rotor center, plotted in Fig. 3.9,

for the freestream velocities using the measured wind speeds at either x = -1 D or x = -1.5 D

and the estimated axial induction factors. The estimated axial induction factors (â) are based on

the induction factor curve plotted in Fig. A.3 and the mean velocities measured at x = -1 D or

x = -1.5 D. After applying the vortex sheet theory formula the estimated freestream velocities

only differ from the values at x = -1 D or x = -1.5 D by up to 3% or 1%, respectively, however.

Finally, the u component turbulence intensity and wind direction standard deviation columns

contain values measured at a height of 32 m on the met tower 2.7 D to the west of the turbine.

Measurement periods with low wind direction standard deviations were selected for analysis to keep

the instantaneous wind directions close to the lidar scan direction.

A.2.1 Horizontal scan plane at hub height

Fig. A.5 shows the 10-minute mean longitudinal (U), radial (V ), and tangential (W ) velocities

measured in the horizontal scan plane at hub height for cases 5, 6, and 7. In order of increasing

mean freestream wind speed U∞, case 7 has an estimated wind speed of 5.67 m/s, with the wind

turbine stopped to provide a reference measurement case free of rotor induction effects, case 6 has

a value of Û∞ = 6.89 m/s with a relatively high estimated induction factor of â = 0.25, and case

5 contains an estimated freestream wind speed of Û∞ = 13.26 m/s with a relatively low â value of

0.085. The velocity plots are formed by grouping the measurements by their (x, y) positions using

1 m-by-1 m bins and averaging all Doppler spectra belonging to each bin. Line-of-sight velocities are
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Figure A.5: Measured U , V , and W wind components (top, middle, and bottom rows, respectively)
for a horizontal scan plane at hub height for measurement cases 7 (Û∞ = 5.67 m/s, turbine stopped),
6 (Û∞ = 6.89 m/s), and 5 (Û∞ = 13.26 m/s).

determined from the averaged Doppler spectra at each of the bin locations and bilinear interpolation

in the xy plane is used to find values at bins in the scan plane for which no measurements were

acquired during the scan period. The line-of-sight velocities at each bin location in the xy plane

are then transformed to the U , V , and W components using (A.1). By averaging the Doppler

spectra prior to determining the velocities, the background spectral noise is significantly reduced.

Measurements corresponding to lidar beam directions pointing at the turbine, including the blades,
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are detected and removed before calculation of the velocities. Note that the scan patterns plotted

in Fig. A.5 are rotated so that the x axis is aligned with the true wind direction rather than the

original scan direction.

For measurement case 7, with the turbine stopped, there are no drastic variations in the U ,

V , and W components within the scan plane, aside from a drop in the longitudinal wind speed

near the nacelle. To allow easier visual comparison between the relative velocity variations for

the three cases shown in Fig. A.5, the limits of the color axes are identical across each row after

normalization by the estimated mean freestream wind speed Û∞. For case 6, significant longitudinal

velocity deficits occur in the induction zone, especially within 0.5 D of the rotor. The U component

velocity reductions are present in case 5 as well, although, as expected given the lower induction

factor, they are less drastic and are also more concentrated near the center of the rotor, possibly due

to lower induction at the outboard region of the blades. Consistent with the expected expansion

of the wind inflow around the rotor disk, illustrated in Fig. 3.12 (b), the radial V components are

negative (directed away from the rotor center) near the edge of the rotor for cases 5 and 6. Thus

the mean wind direction changes in that region, deflecting away from the rotor center. Significant

positive vertical W components can be seen behind the rotor when the turbine is operating. This

behavior is expected because the blades are traveling downward on the left half of the rotor and

the induced tangential velocities should be opposite the direction of rotor rotation [7]. For all three

cases in Fig. A.5 the mean W component upstream of the rotor is slightly positive (0.1 m/s for case

7, 0.18 m/s for case 6, and 0.2 m/s for case 5), likely due to the gently sloping nature of the terrain

between the fjord and the V27. The vertical wind speeds do not vary significantly upstream of the

rotor, however, and are therefore not analyzed in depth in this study.

The velocity plots in Fig. A.5 reveal longitudinal stripe patterns which are artifacts of the

lidar scan process. There are two reasons why these stripes appear. First of all, there are very

minor timing errors between the lidar motor position values, used to determine the scan positions,

and the corresponding Doppler spectra. This results in small offsets between the detected velocities

and their reported locations in the scan plane, and has the effect of causing the detected velocities
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to either lead or lag the actual measurement positions. As can be seen in Fig. A.4 (a) and (c),

there are alternating regions of the scan plane where the lidar focus positions are moving in either

the positive x direction or in the negative x direction. The line-of-sight velocities detected by the

lidars tend to either increase or decrease along the x direction due to the changing lidar beam

angles. As a result, depending on the x direction the lidar scan is moving in, the lead or lag

in the velocity measurements will cause the detected line-of-sight velocities to be either slightly

higher or slightly lower than their true values, on average. These errors are then transferred to the

calculated u, v, and w components. The motor position timing errors are minimized as much as

possible however, to within the sampling period of 10 ms, and therefore cause only minor artifacts

in the measurements. A second, unavoidable reason for the artifacts in the velocity plots is due to

the lidars measuring different areas of the scan plane at different times. Although all regions in

the scan pattern are sampled every 10 seconds, the regions are measured at different times. Due

to the turbulent nature of the inflow, the 10-minute averages of the velocities are slightly different

depending on exactly when the velocities are sampled during the 10-minute period. The artifacts

caused by different sampling times for different regions cannot be avoided, but are also relatively

small when using a 10-minute measurement period.

Measurement cases 1–7 are used to determine how the behavior of the induction zone changes

as the turbine’s induction factor decreases. U velocities normalized by Û∞, determined from the

horizontal plane scans, are plotted as a function of longitudinal distance from the rotor in Fig. A.6

for six different radial positions from the hub location to 1/8 D beyond the edge of the rotor.

Cases 6, 2, 3, 4, 5, and 1 represent wind speeds from 6.89 m/s to 16.29 m/s with estimated axial

induction factors of 0.25, 0.18, 0.16, 0.12, 0.085, and 0.041, respectively, while case 7, with the

turbine stopped, acts a reference case. Note that velocities could only be calculated for case 1 up

to 19 m upstream of the rotor because the actual wind direction of nearly 290◦ causes lidar 2 to

measure close to perpendicular to the wind direction for greater longitudinal distances, thus making

it difficult to estimate the low line-of-sight velocities. In general, the velocity reductions are largest

at the rotor center as well as the radial position of 1/8 D and become smaller towards the edge
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Figure A.6: Measured U wind components as a function of radial and longitudinal position for
measurement cases 7 (Û∞ = 5.67 m/s, turbine stopped), 6 (Û∞ = 6.89 m/s), 2 (Û∞ = 8.93 m/s), 3
(Û∞ = 10.01 m/s), 4 (Û∞ = 11.49 m/s), 5 (Û∞ = 13.26 m/s), and 1 (Û∞ = 16.29 m/s). For each
case, the velocities are normalized by the corresponding estimated freestream longitudinal wind
speed.

of the rotor until they are no longer noticeable beyond the rotor disk. The velocity deficits are a

strong function of the turbine’s induction factor, with a maximum deficit at the rotor plane of 20%

U∞ occurring for case 6, which has the highest estimated induction factor. The measurements for

case 1, with the lowest estimated induction factor, reveal velocity reductions of only 6% U∞ at the

rotor plane. When the turbine is stopped there is still a slight reduction in wind speed upstream

of the rotor center due to the presence of the nacelle.

Similar to Fig. A.6, the radial V velocities for cases 1–7, normalized by Û∞, are plotted as a

function of longitudinal position in Fig. A.7 for different radial positions. Significant changes in the

V velocities due to the induction zone begin occurring between 0.5 D and 0.75 D upstream of the

rotor and are noticeable at radial distances between 1/8 D and 5/8 D. The maximum magnitude

of the radial V component occurs at the edge of the rotor, where the magnitude of V for case 6,
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Figure A.7: Measured V wind components as a function of radial and longitudinal position for
measurement cases 7 (Û∞ = 5.67 m/s, turbine stopped), 6 (Û∞ = 6.89 m/s), 2 (Û∞ = 8.93 m/s), 3
(Û∞ = 10.01 m/s), 4 (Û∞ = 11.49 m/s), 5 (Û∞ = 13.26 m/s), and 1 (Û∞ = 16.29 m/s). For each
case, the velocities are normalized by the corresponding estimated freestream longitudinal wind
speed.

with the highest induction factor, is 9% U∞ at the rotor plane. In general, the magnitude of the

V component decreases for lower induction factors with only very minor radial velocities equal to

3% U∞ occurring at the rotor plane for case 1, with the lowest induction factor. However, this

trend is not as strong as with the U velocities. For example, at a radial position of 3/8 D case 5,

which has a low induction factor of 0.085, shows V magnitudes almost as high as case 6. Because

the V component magnitudes are significantly smaller than the U component deficits, they may

be more difficult to accurately measure, however. In addition, the yaw angle of the turbine does

not perfectly track the wind direction; potentially time-varying yaw error during the 10-minute

measurement periods could also contribute to variations in the V component estimates.

By combining the U and V velocities measured in the horizontal scan planes, the wind

direction changes in the induction zone can be determined. Fig. A.8 shows streamlines formed
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Figure A.8: Streamlines of the measured U and V components for measurement cases 7 (Û∞ = 5.67
m/s, turbine stopped), 6 (Û∞ = 6.89 m/s), 2 (Û∞ = 8.93 m/s), and 4 (Û∞ = 11.49 m/s).

from the U and V velocities starting at 1 D upstream of the rotor for four measurement cases. As

expected, the wind directions are relatively unchanged for case 7, with the turbine stopped. The

direction changes are greatest for case 6 with an estimated induction factor of 0.25. Near the edge

of the rotor the wind direction changes the most, such that a particle released 1 D upstream of the

rotor at radial position 3/8 D will, on average, end up nearly 0.04 D closer to the edge of the rotor

when it reaches the rotor plane. For the remaining two cases the wind direction changes along the

streamlines decrease as the estimated induction factor decreases (â = 0.18 for case 2 and 0.12 for

case 4).

A.2.2 Vertical scan plane

A small amount of data was collected using the vertical plane scan pattern. Velocities calcu-

lated from a 10-minute measurement period with an estimated hub-height freestream wind speed

of 7.17 m/s, with a wind direction that was very close to the scan direction (case 8), are shown

in Fig. A.9. Velocities are only shown for x distances up to 30 m upstream of the rotor because

the wind direction of roughly 270◦ caused lidar 2 to once again measure close to perpendicular

to the wind direction for locations farther from the rotor, making the velocities at those positions
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Figure A.9: Measured U , V , and W wind components for a vertical xz scan plane at the center of
the rotor for measurement case 8 (Û∞ = 7.17 m/s).

difficult to estimate. As shown in the U component plot, the velocity deficits in the induction

zone are present upstream of the entire diameter of the rotor. The velocities at the same radial

positions above and below the hub are different due to the wind shear present across the rotor plane

extending into the induction zone. Due to the slightly negative V velocities above hub height, it

appears that there is wind veer across the rotor plane causing a slight change in wind direction

with height. But the source of the strong V components near the top of the rotor disk, as well as

the source of the positive V components near the hub location, is unknown. For the vertical scan

plane orientation, the w component represents the radial wind speed instead of v, and therefore

strong vertical W velocities are present near the top of the rotor disk, indicating expansion of the

wind inflow around the rotor, as was seen in the horizontal scan results. However, even though

there are positive mean vertical components due to the sloping of the terrain (W = 0.22 m/s at

hub height), the radial wind speed magnitudes are unexpectedly very low near the lower edge of

the rotor disk. This could possibly be caused by the lower freestream velocities near the bottom of

the rotor as well as the presence of the ground 20 m below the bottom of the rotor plane.

A.3 Results: Turbulence Statistics in the Induction Zone

Measurement cases 9–16 are used to determine how turbulence is affected by the induction

zone. Specifically, the standard deviations of the u, v, and w wind components are calculated for
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different distances upstream of the rotor at different radial positions at hub height. Cases 9–12

consist of consecutive 2.5-minute line scans performed at radial positions of -4.5 m (1/6 D), -9 m

(1/3 D), -13.5 m (1/2 D), and 0 (hub location), respectively. Cases 13–16 represent the same

sequence of scans but at a later time with a different wind direction and higher wind speeds. For

both line scan sequences, the estimated induction factors are relatively high, between 0.2 and 0.24.

To calculate the turbulence standard deviation values, a single 1 Hz time series is formed for each

1 m-wide x position bin between x = -27 m (1 D upstream of the rotor) and x = 0 by interpolating

between all of the lidar measurements occurring in each respective bin. Due to the lidar scan

directions intersecting with the nacelle for scan positions close to the turbine, results for scan cases

12 and 16, with y = 0, are only analyzed at longitudinal distances beyond x = -3 m.

Examples of the time series calculated from the lidar line scans in case 13 are provided in

Fig. A.10. The time-varying u′, v′, and w′ components are plotted for five different distances

upstream of the rotor at radial position y = -4.5 m where zero-mean u′, for example, is equal to

u − U . Therefore, the reduction in the mean U wind speed approaching the rotor is not visible

(although it is shown in Fig. A.12). To allow easier comparison of the turbulence at the different x

positions, the signals in Fig. A.10 are shifted in time by time lag values that produce the highest

cross correlation with the wind speeds at x = -14 m. In general, the large scale structures in the

turbulence remain unchanged as the wind passes through the induction zone. At the rotor plane,

however, small time scales of the turbulence are altered; more high frequency content is added to

the turbulence. This is likely due to the altering of the wind speeds caused by rotor induction

at the blade passage frequency of 2.15 Hz. The turbulence in the radial v component appears to

change the most close to the rotor plane due to rotor induction.

Statistics for the wind speed time series calculated for cases 9–12 and 13–16 are shown in

Figs. A.11 and A.12, including the mean values and standard deviation values calculated at 1 m

intervals between x = -27 m and x = 0. The mean velocity plots reveal slightly different conditions

during each 2.5-minute line scan for both sequences, but for each sequence the four mean wind

directions deviate by less than 6◦. The differences in mean freestream wind speed within the two
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Figure A.10: Time series of measured longitudinal, transverse, and vertical wind speeds in the
induction zone upstream of radial position y = -4.5 m (-1/6 D) for measurement case 13. Time
series are shown for longitudinal positions x = -27 m (-1 D), x = -20 m (-0.74 D), x = -14 m (-
0.52 D), x = -7 m (-0.26 D), and x = 0. All time series are plotted with their mean values subtracted
and are time-shifted to correct for their different positions along the mean wind direction to allow
for easier comparison.

scan sequences are primarily caused by the use of different averaging periods. As revealed by the

presence of positive V components close to the rotor in case 9 and negative W components upstream

of the rotor in case 10, a 2.5-minute averaging period is not as capable of revealing mean wind speed

trends as the 10-minute averaging period used for cases 1–8. The measurements in cases 9–12 in

Fig. A.11 show that the standard deviation of the longitudinal u component is relatively unaltered

as the wind travels through the induction zone, with a slight decrease close to the rotor at radial

positions y = 0 and y = -4.5 m. In general, the standard deviations of the radial v component

and vertical w component, on the other hand, increase close to the rotor plane. Fig. A.12, which

contains measurement results for cases 13–16, shows a stronger decrease in u component standard

deviation close to the rotor for all four radial positions investigated. Similar to cases 9–12, the

standard deviations of the v component also increase as the wind inflow travels toward the rotor.

The w component standard deviations remain relatively unchanged in the induction zone.
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Figure A.11: Mean and standard deviation of the measured longitudinal, transverse, and vertical
wind speeds upstream of radial positions y = 0 (hub location, case 12), y = -4.5 m (-1/6 D, case
9), y = -9 m (-1/3 D, case 10), and y = -13.5 m (-1/2 D, case 11).

It is difficult to infer the exact behavior of turbulence in the induction zone from the relatively

short time series in cases 9–16. However, the u component standard deviations decrease slightly

close to the rotor for the majority of the measurement periods. The greatest reductions occur

close to the rotor center. It appears that the velocity reductions present in the mean wind speeds

extend to the time-varying part of the wind inflow as well. All eight cases indicate that the radial

v component standard deviation increases as the inflow moves closer to the rotor. The expansion

of the inflow around the rotor disk seems to create larger variations in the radial component. It is

more difficult to draw conclusions about the w component turbulence. Cases 9–11 reveal a slight

increase in the standard deviation close to the rotor while cases 12–16 show very little variation in

the induction zone. Thus the w component turbulence does not appear to change significantly as

the inflow approaches the rotor.
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Figure A.12: Mean and standard deviation of the measured longitudinal, transverse, and vertical
wind speeds upstream of radial positions y = 0 (hub location, case 16), y = -4.5 m (-1/6 D, case
13), y = -9 m (-1/3 D, case 14), and y = -13.5 m (-1/2 D, case 15).

Complicating the estimates of turbulence standard deviation is the fact that the lidar spatially

averages the wind speeds along the beam, as described by (4.2) and (4.3). The range weighting along

the beam can filter out small-scale turbulent fluctuations in the measurements. Additionally, the

lidar probe volume, and therefore the amount of spatial averaging, changes depending on where

in the scan pattern the lidar is measuring. Consequently, lidar range weighting could produce

artificial trends in the turbulence statistics that vary depending on the distance from the turbine

rotor. Regardless, the changing turbulence trends close to the rotor are believed to be caused by

rotor induction. First of all, the probe volumes of lidars 1 and 2 are relatively large in this region,

which should cause some amount of reduction in measured turbulence, yet the measured v and w

component turbulence intensities close to the rotor increase rather than decrease. Moreover, the

rapid nature of the decrease in u component standard deviation close to the rotor at y = 0 and
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y = -4.5 m is unlikely to be caused solely by the increasing lidar probe volumes.

A.4 Conclusions

In this appendix, results from lidar measurements of the upstream induction zone of a 27 m

rotor diameter Vestas V27 wind turbine were presented. In contrast to the majority of previous

wind turbine induction zone studies, which have focused on finding the velocity deficits that are

present far upstream (2–3 D) of the turbine, this investigation focused on the region of the induction

zone close to the turbine (within 1.5 rotor diameters). Whereas the previous lidar-based induction

zone studies discussed here relied only on line-of-sight velocities from nacelle lidars, this work

was performed with three scanning ground-based lidars so that the three components of the wind

could be detected. The experimental setup was designed to minimize instances when the lidars

measure close to perpendicular to the wind direction, where it is difficult to estimate the very small

velocity magnitudes, as well as to minimize the lidar focus distances and thus the amount of volume

averaging due to range weighting. To help achieve these objectives, only wind speeds upstream

of one half of the rotor plane were measured. The results of the investigations showed that the

reductions in the mean longitudinal wind speed in the induction zone due to rotor induction increase

as the turbine’s axial induction factor increases. The radial component of wind becomes non-zero

near the edge of the rotor due to the expansion of the wind inflow around the rotor disk present

in actuator disk theory. The relative magnitude of the radial component increases as the axial

induction factor increases as well. No significant change in the mean tangential wind component

(equivalent to the vertical component for the horizontal plane scan at hub height) was detected

upstream of the turbine. Measurements of the wind speed time series upstream of the turbine

reveal a general decrease in the longitudinal component turbulence standard deviation close to the

rotor and an increase in the radial component standard deviation, while the tangential component

standard deviation is relatively unchanged. Very close to the rotor plane, high frequency turbulence

components are added to the wind speeds, likely caused by the periodic induction effects due to

blade passage.
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The conclusions drawn in this study relied on measurements upstream of half of the rotor

and it was assumed that velocity reductions and radial wind speeds are similar on the other half

of the rotor. Future investigations including measurements across the entire rotor disk would be

useful to verify this assumption. Additionally, although the range weighting, inherent in all lidar

technologies, was minimized through the choice of lidar positions, it is possible that the volume

averaging present in the measurements as well as the uneven volume averaging across the scan

patterns somewhat influence the results. Finally, future investigations using CFD to simulate the

induction zone of the V27 turbine would be of interest for comparison with the lidar measurements

presented in this work.
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