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Spectrum sharing allows the coexistence of heterogeneous wireless networks on the same frequency
band. Managing the interference between such networks is critically important to ensure high spectrum
efficiency, thus motivating the study of multiple-input-multiple-output (MIMO) interference channels (IC)
in information theory. This dissertation studies three classes of such interference channels, namely, the
MIMO one-to-three IC, the MIMO IC-ZIC, and the MIMO MAC-IC-MAC.

The MIMO one-to-three IC is a partially connected three-user IC with multiple antenna terminals,
where one transmitter that causes interference is heard at all three receivers, whereas the other two trans-
mitters are heard only by their intended receivers. We present inner and outer bounds on the capacity region
of the MIMO one-to-three IC, quantify the gap between the two bounds, and show that the gap is indepen-
dent of the channel signal-to-noise ratios (SNRs) and interference-to-noise ratios (INRs). In particular, the
achievable scheme at the interfering transmitter involves three-level superposition coding with linear precod-
ing based on the generalized singular value decomposition (GSVD) whereas the non-interfering transmitters
perform single-user coding with Gaussian codebooks and scaled identity covariances. The outer bound is ob-
tained using genie-aided arguments with various combinations of genie information provided to the receivers.
The generalized degrees of freedom (GDoF) region, which can be seen as a high SNR approximation of the
capacity region, of the MIMO one-to-three IC is then fully characterized. We study the achievability of the
GDoF region and the sum GDoF curve using an analysis tool developed in this dissertation, which we refer
to as multidimensional signal-level partitioning. This tool is tailored for demonstrating the achievability of
GDoF-tuples of a MIMO network that can be achieved via multi-level superposition coding.

The MIMO IC-ZIC is also a partially connected three-user IC consisting of three transmitter-receiver
pairs. In the IC-ZIC, the first and second pairs form a two-user IC, the first and third pairs form a one-sided or
Z interference channel (ZIC) and the second and third transmitter-receiver pairs taken by themselves are two

non-interfering point-to-point links. In this thesis, an explicit inner bound is obtained via a coding scheme



iv
is proposed in which the first transmitter employs three-level superposition coding (as in the MIMO one-to-
three IC), the second one employs the previously proposed and well-known Karmakar-Varanasi coding scheme
(which achieves a constant-gap-to-capacity region of the two-user MIMO IC), and the third transmitter
employs single-user coding with a Gaussian codebook (with scaled identity covariance). An explicit single
region outer bound based on genie-aided arguments is then obtained. The gap between the inner and outer
bounds is then shown to be within a quantifiable gap to the capacity region and the gap is independent
of channel SNRs and INRs. The GDoF region is then characterized and analyzed in a variety of channel
settings. The difficulty in this part of the research lies in the quantification of the gap between the 28-
inequality inner bound and the 33-inequality outer bound, which is characterized via a series of supporting
lemmas that reveal the relationship between the entropy terms in the inner and outer bounds.

The MIMO MAC-IC-MAC consists of two interfering MACs in which there is interference only from
one transmitter of each MAC to the receiver of the other MAC. Two achievable rate regions that are
within a quantifiable gap of the capacity region for the discrete-memoryless semi-deterministic MAC-1C-
MAC were obtained in a previous published work by Pang and Varanasi using inner and outer bounds that
are unions of polytopes. In the dissertation, we obtain single region inner and outer bounds that characterize
a constant-gap-to-capacity region of the MIMO MAC-IC-MAC. The inner bound is obtained by employing
the Karmakar-Varanasi coding scheme at the interfering transmitters and single-user coding with Gaussian
codebooks and scaled identity covariances at the non-interfering transmitters. Our work therefore unifies
and generalizes the constant-gap-to-capacity regions of the MIMO MAC and the two-user MIMO IC. The
GDoF region of the MIMO MAC-IC-MAC is also obtained and analyzed. The GDoF analysis reveals that,
at high SNR, when the ratio of the INR to the SNR, both taken in dB, is within a certain range in any
cell, non-interfering transmitters in that cell can fully occupy the receivers’ signal partitions in one or more
dimensions that cannot otherwise be utilized by the interfering transmitter alone. This phenomenon is a
generalization of the one discovered by Pang and Varanasi in the previous published work on the scalar

Gaussian MAC-IC-MAC.
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Chapter 1

Overview

Due to the rapid increase of data demands in recent years, wireless co-band communication has
drawn significant interest in both theory and practice. Some applications include the Bluetooth and Wi-
Fi coexistence on 2.4 GHz band and the Wi-Fi and LTE-LAA coexistence on 5GHz band. Most recently,
3GPP agreed to start a work item which will define 5G New Radio on unlicensed spectrum. Such emerging
technologies motivate the study of channel capacity and capacity achieving coding scheme for interference
channels (ICs) in information theory. Besides, since the multiple-input-multiple-output (MIMO) technology
has been widely adopted in modern wireless communication systems, it is practically important to study
networks with vector input and output in such research.

A single cellular network usually consists of three basic component channels: the MIMO point-to-
point (P2P) channel (direct link between a communication pair), the MIMO multiple access channel (MAC,
uplink channel from multiple users to the base station) and the MIMO broadcast channel (BC, downlink
channel from the base station to multiple users). The capacity regions of these three channels with constant
(time/frequency invariant) channel realizations and full channel side information (CSI) known to all the
transmitters and receivers have been fully determined. In particular, the capacity region of the MIMO P2P
channel was reported by Telatar in [42]. The capacity region of MIMO MAC can be found in the works [9,48].
The MIMO BC capacity region was characterized by Weingarten, Steinberg and Shamai [46]. For results on
capacity regions of fading MIMO P2P, MIMO MAC and MIMO BC, please refer to [33}42].

When multiple heterogeneous networks coexist on the same frequency band, interference may occur

between these networks. The three basic component channels introduced above are no longer sufficient to



Figure 1.1: A three user IC

describe the character of the coexisted networks. Four additional component channels are needed: the K-
user MIMO interference channel (see Fig. for a three-user IC example, dashed lines represent interference
links and solid lines direct links) where K P2P channels interfering with each other, the L-cell MIMO
interfering multiple access channel (IMAC, see Fig.[1.2|for a two-cell IMAC example) where L MACs mutually
interfering with each other, the L-cell MIMO interfering broadcast channel (IBC, see Fig. for a two-cell
IBC example) where L BCs interfering with each other, and the MIMO interfering multiple access broadcast
channel (IMABC, see Fig.[1.4] for an IMABC consists of one MAC and one BC) where each MAC or BC
interferes with other MACs and BCs. Note the term “interference channel” alone, as being used in the title
and throughout the rest of this chapter, means a network contains interference links in general, whereas
the term K-user interference channel or K-user IC refers to the network which contains K P2P channels
interfering with each other.

The Shannon capacities of those four component channels are all open. Characterizing these capacities
has not turned out to be easy. Information theorists have then been seeking for near optimal coding schemes
which achieve approximate capacity regions of these channels. The research behind this dissertation is part
of such efforts.

In the rest of this chapter, we first introduce three capacity approximations in Section[I.1] and then we
summarize related previous milestone works at a high level in Section (in Chapters detailed related
references will be reviewed with respect to the channel models to be studied therein). Lastly, we provide an
overview of the research results in this dissertation in Section L3

Throughout the dissertation, we always assume all transmitters and receivers know full global CSI in
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Figure 1.2: An IMAC consists of two uplink cells, each cell has four users.
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any network (also usually referred to as channel). Unless specified as fading or time/frequency varying, all

channels have constant channel realizations.

1.1 Capacity Approximations

With decreasing accuracy levels, the following three different capacity approximations have been
commonly used. They are constant-gap-to-capacity region, generalized degrees of freedom (GDoF) region
and degrees of freedom region (DoF). We introduce these three approximate capacity regions in sequence in

this section.

1.1.1 The Constant-gap-to-capacity Region

For a given channel model, a constant-gap-to-capacity region is an achievable region that lies within
only constant gap to the Shannon capacity region regardless of the channel parameters, i.e., link signal-to-
noise-ratios (SNRs), interference-to-noise-ratios (INRs) and transfer matrices. To obtain a constant-gap-to-
capacity region for a channel with K involved rate tuples, we usually find a pair of inner and outer bounds
Rin (which is an achievable region) and R, such that for any rate tuple (Ry,- -, Rx) € Ro, we always have
(Ry —n1, -+, Rk —ng) € Rin regardless of channel parameters. Since the capacity lies between R;, and
Ro, we infer that the inner bound R, lies within constant gap (nq,--- ,nx) to the capacity, and hence R,
is a constant-gap-to-capacity region of this channel. Let us take the constant-gap-to-capacity region of the
two-user scalar Gaussian IC given in [15] as an example. Consider the two-user IC as shown in Fig.m whose
parameters are given in the caption. We plot the inner and outer bounds (Ri, and R,) provided by [15] in
Fig. According to [15], for any (Ry, R2) € R,, we always have (R; — 1, Ry — 1) € R;,. Hence, the inner

bound Ri, is within (n1,mn2) = (1,1) bit gap to the capacity region of this IC.

1.1.2 The GDoF Region

The next level of capacity approximation is the GDoF region. To explain the idea of the GDoF
region, we start from the constant-gap-to-capacity region [15] of the two-user scalar Gaussian IC given in

Fig. but let us change the channel parameters a little. Let SNRy; = p®1t) SNRgos = p®22 INRjy = p@12
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Figure 1.5: A two-user scalar Gaussian IC with symmetric channel parameters: SNRy; = P |hq1[?/N; = 100,
SNR22 = P2|h22‘2/N2 = 100, |NR12 = P1|h12|2/N2 = 50 and |NR21 = Pg‘h21|2/N1 = 50, where P1 and P2 are
the transmit power at Tx1 and Tx2, Ny and N, are the power of the Gaussian noise Z; and Z, respectively.
Tx1 (and Tx2 respectively) transmits message M; (M) to Rx1 (Rx2). Random variables X; and X5 are the
inputs of the channel, and Y; and Y5 the outputs.

Figure 1.6: Inner and outer bounds and constant gap of the two-user IC given in Fig.[T.5]



and INRy; = p®2') where p is a nominal power and a1, ag9, 12 and as; are the pre-log factors of the
channel SNRs and INRs in dB scale. In the following numerical experiments, we keep a7 = a2 = 3 and
a1z = ag; = 2 unchanged while increasing the nominal power p from 10 to 10° in several steps. We plot the
inner and outer bounds as well as the normalized (scaled by log p) inner and outer bounds in Fig. (p =10),
Fig. (p = 100), Fig. (p = 1000) and Fig. (p = 10°). The scaling factor log p can be approximately
viewed as the capacity of a reference AWGN (additive white Gaussian noise) channel with channel SNR, p,
ie., logp = log(1 + p). It can be seen that both the inner and outer bounds expand with the increase of
p. Since the gap between the inner and outer bounds is constant, it does not grow with the increase of the
channel SNRs and INRs. The normalized inner and outer bounds do not expand with p, but they tend to
coincide. At high SNR regime, some details of the shape of the normalized constant-gap-to-capacity tends
to disappear, but the main sketch remains. When p goes to infinity, the gap completely disappears, and the
normalized inner and outer bounds coincide. This coincided region is the so-called GDoF region, as shown

in Fig.[I.TT} Precisely, the GDoF region of the two-user scalar Gaussian IC is defined as

D(aq1, a2, 12, (91) = {(dl,dg) = lim

p—00

R R
( ! s 2 )Z(RhRg)EC}
log p” log p
where C is its capacity region. We do not know the capacity region C, but we can get the exact GDoF region

through a constant-gap-to-capacity region R;y, i.e.,

Ri Ry
log p’ log p

p—r00

D(ou11, a2, 12, a21) = {(dl,dz) = lim < > :(R1,Rp) € Rin}y

as a finite number of bits is insignificant in the GDoF computation.

It is worth pointing out that even with a constant-gap-to-capacity region in hand, deriving the GDoF
region is not always straightforward, because a constant-gap-to-capacity region could be a union of infinite
regions each of which is contributed by one coding scheme. An ideal constant-gap-to-capacity region for
GDoF computation contains single polytope (as the one shown in Fig. from which the GDoF region
can be easily obtained by definition. In this dissertation, we always obtain single region inner and outer
bounds for the three channels to be discussed later. On the other hand, the derivation of GDoF region
does not always require a constant-gap-to-capacity region. To get the GDoF region, it is sufficient to have

an inner or outer bound which is within a p independent finite gap to the capacity. We shall adopt this
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Figure 1.7: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR;; = SNRgs = 10° and INRy3 = INRy; = 102. The right subplot shows the normalized (scaled by log p)

inner and outer bounds.
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Figure 1.8: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR;; = SNRy2 = 1003 and INR;5 = INRg; = 1002. The right subplot shows the normalized (scaled by log p)
inner and outer bounds.
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by log p) inner and outer bounds.
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insight to characterize the GDoF regions of the channels to be discussed in Chapters [3] and [ where the

constant-gap-to-capacity regions are undetermined.

1.1.3 The DoF Region

Getting constant-gap-to-capacity or GDoF region for the aforementioned four component channels
(the MIMO K-user IC, the MIMO IMAC, the MIMO IBC and the MIMO IMABC) is still difficult, if not as
difficult as characterizing their Shannon capacity regions. Many information theory works have aimed down
to the next level of channel capacity approximation—the DoF region. A DoF region is not an approximated
GDOoF region. For a given channel model, its DoF region is the exact GDoF region under a particular channel
realization where all the channel SNRs and INRs have the same pre-log factor. In other words, for a given
channel model, only one particular channel realization (pre-log factors of all channel SNRs and INRs are

equal) has its DoF region defined.

1.2 Milestone Results on Capacity Approximations of MIMO Interference

Channels

Previous works on the K-user MIMO interference channel are summarized in this paragraph. So far,
the Shannon capacity region of even the simplest K-user MIMO IC, the two-user scalar Gaussian IC with
constant channel realization, is still unknown. We first state known results on the K-user MIMO IC with
constant channel realizations. Karmakar and Varanasi characterized a constant-gap-to-capacity region of the
two-user MIMO IC. Etkin, Tse and Wang [15] characterized a constant-gap-to-capacity region of the two-
user scalar Gaussian IC. Jafar and Vishwanath |24] obtained per-user GDoF of the K user symmetric scalar
Gaussian IC where, in the notation of this paper, all direct links have the same SNR, p and all interference
links have the same INR p®. Next, we state known results on the coarser sum-DoF metric on the K-user
MIMO IC with time varying channel realizations. Gou and Jafar [22] provided inner and outer sum-DoF
bounds for a class of MIMO K-user ICs with M antennas at each transmitter and N antennas at each
receiver, and they showed these bounds are tight when the ratio max{M, N}/ min{M, N} is an integer. The

sum-DoF of the scalar Gaussian K-user IC was reported in [6]. Interference alignment is considered in the
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achievable coding schemes in both [22] and [6].

For the MIMO IMAC, the MIMO IBC and the MIMO IMABC, relatively little is known compared
to the K-user MIMO IC. Again, we first state results on those channels with constant channel realizations.
Pang and Varanasi [37] obtained constant-gap-to-capacity region for the scalar Gaussian MAC-IC-MAC (a
partially connected two-cell IMAC where only one interfering transmitter in each cell interferes the receiver
in the other cell; it is the scalar version of the channel discussed in Chapter . Chaaban and Sezgin studied
a fully connected two-cell channel in which a two-user MAC interferes with a point-to-point link [8]. The
capacity region is found for very strong and some cases of strong interference, and upper and lower bounds
on the sum-rate in the weak interference regime (with the lower bound achievable by treating interference
as noise) are also obtained. Subsequently, in [20], they showed that when the interference is weak, treating
interference as noise in their model is sub-optimal. Buhler and Wunder [5] derived upper bounds on the sum
rate and an achievable scheme for the linear deterministic version of the model in [§]. Fritschek and Wunder
obtained a result on the reciprocity between the two-cell deterministic IMAC and the two-cell deterministic
IBC in [17], and obtained an achievable region under a weak interference condition for both those channels.
In [18], the deterministic IMAC was revisited using the lower triangular deterministic model introduced
by [34], and a constant-gap sum capacity was obtained. Fritschek and Wunder [16] closed the gap between
the achievable sum rate regions for Gaussian IMAC and the deterministic IMAC. Their coding scheme
employs signal scale alignment and lattice coding. For symmetric (with K-user per cell, M antennas per
user and N antennas per base station) L-cell MIMO IMAC , Kim et al [29] derived an outer bound on its sum
DoF and presented an achievable scheme that achieves this outer bound for the case L = 2. For symmetric
L-cell MIMO IBC, Liu and Yang [32] determined per-user DoF for certain ranges of antenna configurations.
For symmetric L-cell MIMO IMAC and IBC, Sridharan and Yu [40] investigated achievable schemes based
on decomposition with asymptotic interference alignment and linear beamforming and showed that there are
distinct regimes where one outperforms the other. In this work, the per-user DoF is determined for the case
when each user is equipped with single antenna. Next, we state results on time/frequency varying channel
realizations. For multi-subcarrier Gaussian IMAC and IBC, Suh and Tse [41] applied interference alignment

and showed it achieves interference-free per-cell DoF when the number of users in each cell goes to infinity.
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Suh, Ho and Tse introduced a downlink interference alignment scheme for multi-subcarrier cellular networks.
The scheme only requires local channel state information at each base station, i.e., a base station only needs
the CSI of its own cell. Jeon and Suh [25] investigated a two-cell IMABC where each user has single antenna

and each base station has multiple antennas, and the sum DoF was characterized.

1.3 The Scope of This Dissertation

As seen from Section most of the results on general K-user (K > 2) MIMO IC, MIMO IMAC,
MIMO IBC or MIMO IMABC stay at DoF level. However, DoF (or sum DoF) approximation does not
permit asymmetric scaling of the channel SNRs and INRs in dB scale, severely restricting its applicability
to settings where the various received signals from the different transmitters at each receiver are of similar
strength.

In this dissertation, we study capacity approximations for MIMO interference channels beyond DoF.
We characterize GDoF regions of two particular cases of the three-user MIMO interference channels (the
MIMO one-to-three IC and the MIMO IC-ZIC) and the constant-gap-to-capacity region of the MIMO MAC-
IC-MAC (a class of partially connected MIMO IMACs). In all these channels to be investigated, we assume
constant channel realization and full CSI known to all the involved transmitter and receivers. We always
derive single region inner and outer bounds. In other words, each of our constant-gap-to-capacity or GDoF
region is achievable by one coding scheme. In what follows, we briefly summarize the research results to be
introduced in the next four chapters.

Before we investigate the three proposed channels, we first review the signal-level partitioning tech-
nique introduced by Pang and Varanasi in |37, Section ITI-F| and extended by the same authors to multidi-
mensional signal-level partitioning in [36] (which was initially proposed informally by Karmakar and Varanasi
in [26]) in Chapter [2 This technique will be an effective tool to demonstrate the achievability of any given
GDoF-tuple that is achievable via multi-level superposition coding in a MIMO network.

Since the MIMO two-user IC already has a constant-gap-to-capacity region characterized in [27], the
next goal towards the constant-gap-to-capacity or GDoF region of the K-user MIMIO IC is to find the

constant-gap-to-capacity or GDoF region of the MIMO three-user IC, but it is a difficult job. In Chapter
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we take one beginning step towards this goal by characterizing the GDoF region of the MIMO one-to-three
IC, a special case of the three-user MIMO IC where only the first transmitter interferes two other unintended
receivers (see Fig.. The coding scheme is enlightened by the Karmakar-Varanasi type coding scheme
(KV coding scheme) [27] in the two-user MIMO IC as well as the multi-level superposition coding scheme used
for the scalar Gaussian one-to-many IC [4]. More specifically, at Tx1 we perform three level superposition
coding to encode four sub-messages mi23, Mm12, M3 and my, which are intended to be decoded by Tx1-Tx3,
Tx1-Tx2, Tx1 and Tx3, and Tx1 only. One challenge in the design of the coding scheme is to seek an
appropriate mathematical tool to jointly decompose the two cross link transfer matrices so that the common
and exclusive signal directions and levels between Tx1 and Rx2-Rx3 can be revealed. We adopt GSVD to
fulfill the duty, but at the cost of losing the constant gap between the derived inner and outer bounds. The
gap turns out to be independent of channel SNRs and INRs, but dependent on the channel transfer matrices.
Nevertheless, such a pair of bounds is sufficient to characterize the GDoF region.

In Chapter [4 we take one further step by adding an additional interference link from Tx2 to Rx1 to
the MIMO one-to-three IC, and the resulting channel is the MIMO IC-ZIC which contains a two-user MIMO
IC between Tx1/Rx1 and Tx2/Rx2, and a two-user MIMO Z interference channel (ZIC) between Tx1/Rx1
and Tx3/Rx3 (see Fig.. With the knowledge of the GDoF optimal coding schemes for the MIMO one-
to-three IC and the two-user MIMO IC, it is not hard to conjecture that a three-level superposition coding
(as in the MIMO one-to-three IC) at Tx1, KV coding scheme (as in the two-user MIMO IC) at Tx2, and
single user random coding at Tx3 (with Gaussian codebook and scaled identity covariance matrix) could be
GDoF optimal. We prove that it is indeed the case. However, the mathematic process of quantifying the
gap between the derived inner and outer bounds turns out to be challenging. The number of inequalities
in the GDoF region of MIMO IC-ZIC increases significantly when compared to its sub-channels—the MIMO
one-to-three IC and the two-user MIMO IC, which indicates high complexity of GDoF region of the fully
connected three-user MIMO IC.

Lastly, we turn our attention to the MIMO MAC-IC-MAC, where two MACs interfere with each
other through two marginal links (see Fig.. The constant-gap-to-capacity region of the scalar Gaussian

MAC-IC-MAC has already been characterized in [37]. We extend it to the MIMO case in Chapter [5] We
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Figure 1.12: The MIMO one-to-three IC

perform KV coding scheme at the interfering transmitter (as in the two-user MIMO IC) and single user
random coding (with Gaussian codebook and scaled identity covariance matrix, which is GDoF optimal for
the MIMO MAC) at the non-interfering transmitters. The overall coding scheme yields a constant-gap-to-
capacity region of the MIMO MAC-IC-MAC. The GDoF result of the MIMO MAC-IC-MAC shows that
despite the existence of the interference links, each cell can achieve full sum symmetric GDoF as if it were
interference free, as long as the INR to SNR ratio (in dB scale) is within a certain range (either weak enough
or strong enough). This suggests that time or frequency sharing among cell users for the interfering uplink

cellular network is not GDoF optimal.
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Figure 1.13: The MIMO IC-ZIC
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Figure 1.14: The MIMO MAC-IC-MAC



Chapter 2

Multidimensional Signal-Level Partitioning for GDoF Analysis

In this chapter, we generalize the scalar signal-level partitioning technique introduced in the paper (37,
Section ITI-F] to the vector case, by developing a multidimensional signal-level partitioning technique that is
suitable for demonstrating the achievability of boundary points (e.g., vertices) of the GDoF region of MIMO
networks. This technique can be seen as a formalization of a similar idea introduced in |26, Section ITI-A] in

the context of the 2-user MIMO interference channel, thereby widening its applicability beyond that context.

2.1 Signal-Level Partitioning in Scalar Gaussian Channels

Let us start from a complex-valued scalar AWGN received signal Y = +/p®X + Z in some link in a
network with the additive noise Z being a zero-mean complex Gaussian random variable with unit-variance.
Without loss of generality, we normalize the transmit power constraint to be unity by absorbing the signal
amplitude into the channel gain, which in turn we denote as 1/p®, so that the received SNR = p©.

Suppose the signal X is sent with full power, i.e. E[|X|?] = 1. Since unit power can be expressed as
L= =p )+ (p = p )+ (p 2 = p72*) + - (2.1)
we accordingly let X be the result of linear superposition coding given as

X =V’ = p o Xpi+vVp @ — p72*Xpot (2.2)
R /p72a _ p73osz3 + ...

where X1, Xp2, Xp3,- -+ being mutually independent zero-mean, unit-variance complex Gaussian random

variables. Henceforth, we will refer to X1, Xp2, Xp3,- - as signal partitions since they are associated with
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powers that results from partitioning the total signal power into multiple levels as in . After going
through a channel with gain /p® (and additive noise with unit power) the part of the signal associated
with X1 has power p® so that it can "carry” o GDoF, with the receiver decoding it by treating all other
partitions as noise. Consider decoding the next lower signal partition X,s by canceling the effect of the
decoded X,; from Y and treating all signal partitions below X2 as noise. Since X,y at the receiver has
a power that is below the noise power it cannot carry positive GDoF. Similarly, all other lower partitions
Xp3,-+- cannot carry positive GDoF either. Hence, ignoring these partitions, either by treating them as
noise or by not transmitting them at all, is without loss of optimality when a capacity characterization that
is accurate only up to GDoF is needed. Hence, the transmitted signal can be set to X = WXM
without loss of GDoF optimality. This is depicted in Fig.[2.1] as a vertical bar on the left with one partition
Xp1. Its top is labeled p® which depicts the signal (power) level and the bottom p~* which represents the
next signal-level of X5 if it exists, etc. The channel lifts the top of signal partition X,; to level p“ at the
receiver and this is depicted in the right hand side of Fig.2:1] The resulting GDoF of « is hence achievable,
which is exactly the GDoF of this AWGN link. In summary, in this link, we need one signal partition with
power exponent resolution of a to achieve optimal GDoF. We henceforth refer to X,; as a GDoF-effective

partition to indicate it is sufficient to achieve the optimal GDoF.

Rx p
- —_— P
X1
Tx
P
X1
p—(l R _
X

Figure 2.1: Signal-level partitioning at the transmitter and receiver of a Gaussian link Y = /p*X + Z with
E[|X]?] <1 and zero mean Gaussian noise Z € CN(0,1)

In a network with multiple transmitters and/or receivers each link ¢ — j from transmitter 4 to receiver
j can be modeled as having a channel gain of the form /p®—i with possibly distinct exponents «;_,; (with

p being some nominal SNR). In this case, multiple signal partitions are usually needed for each transmit
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signal to achieve a given GDoF tuple in general. The process of creating these multiple signal partitions by
additively decomposing X into a series of p-ary components X1, Xp,--- as in is called signal-level
partitioning of X as explained previously. The number and resolution (i.e., size) of the signal partitions
required for each transmit signal are not unique but depend in general on the network topology, all involved
channel gain exponents «;_,; of nominal SNR p, and the GDoF tuple to be achieved. There are several
rules that must govern their selection which we shall reveal as needed in what follows. For instance, we can,
without loss of generality, insist that the bottom signal partition (i.e., with the lowest power) should be set
so that a partition below it would not be received at above the noise floor by any receiver in the network.
Moreover, the number of partitions used for each transmit signal should provide sufficient resolution so that
the they are aligned at each receiver. Moreover, not all signal partitions are "used” (so that a signal is not
always transmitted with full available power) and what partitions to transmit is dictated by the requirement
that the given achievable GDoF tuple must be achieved by successive cancellation decoding at each receiver.
We illustrate these points in the next example.

Consider a complex Gaussian scalar MAC with received signal

Y = /08X, +/p2Xy + Z (2.3)

with unit power constraints on X; and X5 and zero-mean, unit-variance complex Gaussian noise. The GDoF

region of this MAC is easily shown to be

To achieve the corner point (0.8,0.4), we decompose the signals X; and X, into three signal partitions each
at power exponent resolution 0.4 as depicted in the left hand side of Fig.[2.2] The resolution is chosen so it
divides both the two channel gain exponents 0.8 and 1.2 so that the received signal partitions can be aligned
at the receiver’s grid as shown in the right hand side of Fig.2.2] In particular, the top two signal partitions

of X7 and the top three partitions of X5 can be heard by the receiver (i.e, while carrying positive GDoF),
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with the top two partitions of X; aligned with the bottom two partitions of Xs. To achieve the GDoF pair
(0.8,0.4), we simply use (i.e., transmit) the top two partitions of X; which carry 0.8 GDoF together, and the
top partition of Xs, which carries 0.4 GDoF. The decoder decodes the three signal partitions sequentially
in decreasing order of signal strengths using successive cancellation (i.e., the top partition of X, first, the
top partition of X; next and followed by its second partition). We say that the depth of signal partition
is 3 in this scheme at each transmitter (even though the bottom partitions were unused) and the exponent
resolution (i.e., the GDoF per partition) is 0.4. Note also that the the GDoF pair (0.4,0.8) can be easily
achieved with the same depth-three signal partitioning and GDoF per partition of 0.4 by using the middle
partition of X; and the top two partitions of Xs. Evidently, the GDoF pair (0,1.2) can be achieved by using

all three signal partitions of X5 and none of X;.

Rx

——pl2
X1 P08
X1,p11X2,p2 s
— =/
P° Tx1 Tx2 X ol X203 0
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p T T - — -
pros- — Pl Fann VXX,
~12 Xl’l’3 X2,p3
P Xl X2

Figure 2.2: Signal-level partitioning of the transmitter and receiver of the MAC'Y = /p%8 X ++/pl2 X5+ 27

To summarize, the achievability analysis using signal partitioning restricts the encoding scheme to
be multi-level superposition coding with signal-level alignment, and with each signal partition encoded
independently with a different message, i.e. there is no cross-partition encoding. The decoding scheme
is usually successive decoding at each receiver, except in certain cases when it is not sufficient, in which
case joint decoding must be used, as illustrated in Section [2:4] In successive decoding, the decoder decodes
signal partitions from top to bottom sequentially. Each signal partition is decoded by treating all the signal
partitions below it as noise. The GDoF per partition should not only be set to be a common integer divisor
of all the channel gain exponents «;_,;, but also of the individual values in the given GDoF tuple to be

achieved (as was done in the achievable GDoF pairs considered for the MAC). We illustrate this point with
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another example.
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Figure 2.3: Coding scheme for (dy,d2) = (0.6,0.6) in MAC Y = /p08X;y + \/p!2Xo + Z

Continuing with the example of the MAC of , we next demonstrate the achievability of a maximum
symmetric (and sum) GDoF pair (dy,ds) = (0.6,0.6). The depth-three partition with GDoF per partition of
0.4 of Fig.[2.2] does not suffice. Consider the depth-six partition of Fig.[2.3]in which the GDoF per partition
is 0.2. The GDoF pair (dy,ds) = (0.6,0.6) can be achieved as follows: since the top two partitions of X5
alone can reach power levels p'2 and p' at the receiver, they must be utilized by Tx2 to get maximum sum
GDoF. However, the receiver’s power levels below p’-® can be shared by signal partitions of three partitions
of Tx1 and the remaining one of Tx2. One such achievability scheme is the one shown in Fig.[2:2] where the
shaded partitions of X7 and Xs (i.e., the second to the fourth of X; and the top three of Xs) are the ones
that are used by the two transmitters. The receiver successively decodes the shaded partitions it sees from
top to bottom using successive cancellation. Evidently, the higher resolution signal partitioning of Fig.[2:2]
can be used to specify the partitions that must be used to achieve the three GDoF pairs that were achievable

with the signal partitioning of Fig.[2.2] but also the new GDoF pair (d1,ds) = (1.0,0.2).
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2.2 Multidimensional Signal-Level Partitioning

When an input signal is a vector, we can employ signal-level partition to each element or dimension
of the vector individually at sufficient resolution. For convenience, we refer to each element of the transmit
or receive signal simply as a ”dimension” of the transmit and receive signal, respectively. For example, the
input signal X = (X(l) X(z))T is a two dimensional signal, with X1 being its first dimension, and X (?)
the second dimension. Similarly, in the output signal ¥ = (Y1) Y(Q))T, YW is its first dimension and Y (?
is its second dimension.

Consider a 2 x 2 MIMO AWGN link Y = /p®HX + Z where the channel matrix

H= satisfies the assumptions stated in Section [5.2| with Z ~ CN(0, I3). The maximum
[H]o1  [H]22
achievable GDoF in this point-to-point link is clearly 2a. We show that 2« can be achieved by having each

dimension of X carry @ GDoF using a single signal partition. Let X[()i) and Xﬁ) be these GDoF effective
partitions of X and X, They are depicted on the left hand side of Fig. The signal diagram on
the right hand side depicts the two dimensions of the output signal Y. Each is a linear combination of
the two input signals scaled by p®, ie. Y = \/po — ) + Ve — pO[H] 12X D for i € {1,2}.
Due to the effect of entries of H, in a signal partition depiction, the tops of the signals W[H]HX( ),
\/r pl , \/— 21X ;. and \/— 22X 1’ are almost never exactly aligned. However
—and this is a crucial point —the misalignment will effectively disappear as p tends to infinity, and so we
can depict the tops of these signal partitions as being aligned as shown in Fig.2:4] On the other hand, the
channel matrix has full rank w.p.1 according to its definition, which ensures that Y and Y® are two

linearly independent combinations of Xﬁ) and X2 both at power level p®. Hence, decoding the received

pl >
signal using zero-forcing will result in 2ac GDoF, the exact GDoF of this link.
Remark 2.1. The deterministic model introduced in [2] in contrast involves a bit-level signal partitioning.
It differs from the one discussed here in that it expresses a real-valued signal in its binary expansion X =
S Xpi27 with Xp; € {0,1}. A link with gain \/p lifts the [log, \/,5-|+ most significant bits of the input
signal above the noise level. With channel gains approximated in this way and signals at or below noise

level and the noise neglected, the capacity regions of the resulting deterministic P2P, MAC and broadcast
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Figure 2.4: Signal-level partitioning in a 2 x 2 MIMO link Y = /p®*H X 4 Z. The transmitted signal consists
of one signal partition per dimension so that X = [Xﬁ), Xﬁ)]T as depicted on the left (transmitter) side of
the figure. The " row of H is denoted as H®. The first two and last two signal partitions on the right
(receiver) side denote the components due to XI(&) and Xﬁ) in the signals received at the first and second

antennas, respectively. While the tops of these components wouldn’t be aligned at finite SNR, they can be
regarded as being effectively aligned, since it is the limit of high SNR that is relevant in GDoF analysis.

channels are seen to be constant-gap-to-capacity approximations of their underlying Gaussian scalar P2P,
MAC, and broadcast channels, respectively [2, Section II-A-C]. However, a representative example of the
MIMO P2P channel is given to illustrate the limitation of the deterministic model in [2}, Section II-E]. In it,
each element of the channel matrix is approximated in the deterministic model in the same way as channels
gains in the scalar Gaussian channels (so that the misalignment of signal components arriving at the receiver
would disappear). However, this leads to a reduction in the rank of the channel matrix in the deterministic
model for the example considered, so that the gap between the capacity of the original Gaussian MIMO
channel and that of its deterministic approximation becomes unbounded with increasing p, highlighting the
shortcoming of the deterministic model of [2] for MIMO channels.

In contrast, our additive, linear, superposition coding-based p-ary signal-level partitioning of
employed in each dimension of the transmitted signal, with each partition in each dimension carrying o
GDoF, leaves the entries of the channel matrix (and hence its rank) unaltered, and, since we are only
interested in the limiting (GDoF) analysis as p — oo, we effectively have the alignment of signal partitions

at the receiver as well.

Similar to the scalar signal-level partitioning, multidimensional signal-level partitioning also restricts

the encoding scheme to be multi-level superposition coding with signal-level alignment and decoding to be
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based on successive cancellation (after channel inversion). Moreover, for simplicity, we preclude coding across
signal dimensions in addition to disallowing coding across levels as in the scalar case. For example, in the
case of the MIMO link, with two signal partitions per dimension, XZ(,})7 X Xﬁ) and X;g) are all encoded

p2 >

independently. Hence, the covariance matrix of the transmit signal X should be diagonal.

Rx
Ant 1 Ant 2 Ant 3 pl‘z
X[ Xon X5 Xon Xool Xopi 0
N 0) 2 | (D |2 (1) @) | ¥ | (2 (1) D v |2 [ ~
Tx1 Tx2 _ Xl,pl Xﬂ,1 Xz,pz Xz,pz X1,p1 Xl,pl X2,p2 X2<p2 Xl.pl Xl,p X2=P2 G _ p0.4
(1) 2) |y |2 (1) 2) | (D | (2 (1) @) | () (2)
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Figure 2.5: Multidimensional signal-level partitioning in a (2,2,3) MIMO MAC Y = /p%8HX; +
VP12 Hy X5 + Z to achieve the GDoF pair (1.6, 1.6).

To be concrete, we explain the achievability of a GDoF pair in a (2,2,3) MIMO MAC (i.e., a two-
user MAC in which the transmitters have two antennas each and the receiver has three antennas) using

multidimensional signal-level partitioning next. Consider the input-output relationship of the (2,2,3) MIMO

MAC to be
Y = AV p0‘8H1X1 + p1'2H2X2 + Z

It is easily shown that the GDoF region of this MIMO MAC is given as the closure of (di,d2) € RZ which

satisfies:

We will show the achievability of the corner point (1.6,1.6). Depth-three signal partitioning is employed
for both dimensions of X; and X, as shown in Fig.[2.5] with GDoF per partition taken to be 0.4. The
shaded signal partitions in Fig.[2.5| denote the ones that are used for transmission. Due to limitation of

space, and since they can be naturally inferred, we omit the entries of the channel matrices H; and Hy
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associated with the various signal components/partitions/dimensions in the figure. The particular choice of
partitions to transmit in at Tx1 and Tx2 is made as follows: since the signal-level p*? can only be reached by
Tx2, we let Tx2 send messages on partitions Xz(,lgl and X2(,2;21 which together contain 0.8 GDoF. Moreover,
since the receiver has only three antennas, we need to ensure that there are at most three different signal

0-4 g0 that those partitions can be recovered via

partitions that arrive at the receiver on levels p°® or p
channel inversion. These levels are in turn both accessible by Tx1 and Tx2. Tx1 has no choice but to use
both of the corresponding partitions (i.e., the top two partitions) in both dimensions to achieve a total of

di = 1.6 GDoF. Hence, Tx2 can only use one of the two partitions X2(,1p)2 or XQ(?;Q

and one of Xz(,lgzg or Xéiz:j
to achieve an additional 0.8 GDoF for a total of 1.6 GDoF. This explains the choice of signal-level partitions
and dimensions in Fig.[2.5] to achieve the GDoF corner point (1.6, 1.6).

Thus far, we have seen the extension of scalar signal-level partitioning to vector or multidimensional
signal-level partitioning is a straightforward way to demonstrate the achievability of a GDoF tuple of a MIMO
network. However, when the numbers of antennas and/or transmitters/receivers increase, the complexity
of the diagram grows significantly. We need to simplify the tool while still maintaining its usability and
accuracy. This is what we do next.

Note that in the previous example of the MIMO MAC, if the signal diagram at the receiver is known,
the transmit signal diagram at each transmitter can be uniquely determined using the channel gain exponents.
Therefore, we can remove the transmit signal diagram altogether since it can be inferred. Also, note that
the signal diagram for the receiver in Fig.[2.5]is a repetition of a per-receive antenna signal diagram as many
times as there are number of receive antennas. This repetition is important since it can visually be verified
that at each signal level there are no more partitions than the number of repetitions (or receive antennas)
so that channel inversion can be performed to recover those partitions. Hence, with the understanding that
the number of shaded (i.e., used) signal partitions is never made to exceed the number of dimensions of the
receiver’s signal space at a given signal level, we can make do with a signal diagram that captures just the
per-receive-antenna diagram. Moreover, signal partitions at the same level can be moved as long as they are

kept at the same level. This allows us to further simplify the picture at the receiver. Using these ideas, the

signal diagram of Fig.[2.5] can be succinctly depicted as in Fig.[2.6] Note that in Fig.[2.6] we explicitly retain
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with each signal partition its provenance, i.e., the transmitter from when it was sent and the dimension
number on which it was transmitted. Hence, Fig.[2.6|retains the critical information about how many GDoF
each transmitter has at each level at the receiver (that it transmits and the receiver recovers). Note that the

order (from left to right) of the three bars in Fig.[2.6]is immaterial.

Rx

1.2 1.2

p - = - - X(l) - - p
0.8 2 0.8

P - — — 10| ?

,00'4 _ X%l) | _] X§2) | 1% |_ ,00'4

P° P°

Figure 2.6: A succinct depiction of the multidimensional signal-level partitioning of Fig. to achieve the
GDOF pair (1.6, 1.6) in the (2,2,3) MIMO MAC Y = /p0SH, X, + \/p12HoXo + Z .

In summary, to use multidimensional signal-level partitioning for analysis, the following rules needs

to be satisfied.
(1) All dimensions of a transmit signal will be amplified by the same channel gain.

(2) At a given receiver’s signal level, the number of dimensions assigned to a particular transmitter

cannot exceed the number of that transmitter’s antennas.

(3) At a given receiver’s signal level, the number of signal partitions assigned cannot exceed the number

of receive antennas.

(7)

Recall we have used the notation X’/ as the j-th component (dimension) of the signal X;. Hence, denote the
total GDoF of signal partitions assigned to Xi(j) as dz(-j) so that the total GDoF carried by X; is d; = Zj dz(-j).
Thus, all signals and the GDoF they carry can be depicted with the set {Xi(j)}iyj and their associated
partitions in the signal diagram from receiver’s perspective, as shown in Fig.[2.6 for the achievement of the
GDoF pair (1.6, 1.6) in the example of the (2,2,3) MIMO MAC. The two bottom signal-level partitions
of Tx1 and Tx2 are assigned following the rules stated above. This simplified signal-level partitioning still

clearly demonstrates the achievability of the corner point (1.6,1.6). Henceforth, we will adopt this simplified

signal-level partitioning for vector signals. The final ingredient we must introduce is transmit beamforming.
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2.3 Multidimensional Signal Partitioning with Beamforming

It remains to formulate the case when at least one transmitter employs beamforming. Consider a
(2,2,1,1) MIMO Z interference channel where Tx1 and Rx1 have two transmit antennas each while Tx2 and

Rx2 have one antenna each:

Y1 =pHuXi+ 23

Yo = /pUSH 2 X1 + /pXo + 2

According to |26, Theorem 1], we know the corner point (1.5,1) is achievable through superposition
coding and transmit beamforming at Tx1. Its transmitted signal X; is the sum of two Gaussian random

vectors X, and Xy, whose covariance matrices are

1 -1
COV[ch] = 5 (IMI - (IMl +/)0.5}[1‘2]{12> >

1 -1
Cov[Xsy) = 5 (Tar, + P2 HlyHys )

2
Hence, X7 can then be written as

X1 =X+ Xp

90‘5‘7%.142,19 X(l)
201492507 1,5 ,) " 1C

=Viiase
0
21%){&1)
+V1.1_>2 \/ (1409807 1 5 ) 1P
1 (2)
=iy

where Xx\” XEQ ~ CN(0,1) describe the i-th independent data streams of public and private messages,

lc»

(2)

i, Wwill not interfere at Rx2 as this data

respectively. The unitary beamforming matrix V7 1_.o ensures X
stream will be sent in the null space of His (i.e., the second column of Vi 1,9 is the basis vector of the

one-dimensional null space of Hjs and its first column that of the orthogonal complement). To reflect

beamforming in the signal-level partitioning, we partition and analyze the pre-beamforming signal

x{V
X =
x5V
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PPEoR s X(l) X(l)
2(1+po H 152, ) 2(14p%507 |, 4) 0‘71 152, )

1
72K

P
instead of the direct transmit signal X; = Vi1.9X;. When transmit beamforming is not needed, the
transmitted signal can also be viewed as a pre-beamforming signal scaled by the reciprocal of the number of
transmit antennas. In such an example, we would have X5 = Xs.

To achieve the GDoF corner point (1.5,1) in the (2,2,1,1) MIMO Z interference channel, we do not
assign any part of user 1’s message to ch , but both the private data streams are fully utilized with X(l)
assigned 0.5 GDoF and Xﬁ) assigned 1 GDoF. The signal diagram that depicts this strategy at each of the
two receivers is shown in Fig.[2.7] The key point here is that because of zero-forcing transmit beamforming,
Xﬁ) is not heard at receiver 2 and is hence not shown in Rx2’s signal diagram in Fig. We have to assign
1 GDoF to X3 to achieve the (1.5, 1) GDoF pair, but this is clearly decodable at Rx2 since Xglp) arrives below
the noise level at Rx2. Since Rx1 has two antennas it can decode XS)) and Xﬁ) for a total of 1.5 GDoF. Note

that any increase in the GDoF carried by XS))

will show up above the noise level at Rx2 so that it can only
come at the price of a corresponding decrease in the GDoF' carried by X,. For example, it is easily verified

that the GDoF pair (d;,dz2) = (2,0.5) is also achievable.

Rx1 Rx2
po-— == _—— —— )
0.5 2) 0.5
P - [6)) 'X]p I XZ — =P
p() le p()
05 ! X(l) 1
P e ——— el o p0

Figure 2.7: Signal-level partitioning of a (2,2,1,1) MIMO Z interference channel

With beamforming at Tx1, the pre-beamforming signal X; still has an identity covariance matrix with

(z). This is in accordance with the previous specification that each

independent encoding for X( )C and X
dimension and each signal level of the considered transmitted signal is encoded independently, only now,

that specification applies to pre-beamformed signals.
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24 Signal-Level Partitioning with Joint Decoding

From the previously discussed examples, it may seem as if successive cancellation decoding at each
receiver would work for any coding scheme based on the signal-level partitioning method. This is however not
true, as we illustrate with an example next. Within the framework of our partitioning method, the encoding
scheme is restricted to be multi-level superposition coding with signal-level alignment. We show that such
a restriction can produce cases when successive cancellation is insufficient to decode all the signal partitions

at at least one receiver. Consider a Gaussian scalar two-user interference channel with input-output

Y1 = /pX1+Vp'5Xe + 73

YQ = \/p1'5X1 + \/EXQ + ZQ.

In this channel, each receiver receives interference that is stronger than its intended signal. According
to the GDoF region from the work on the Gaussian two-user IC [15], it is known that the GDoF pair
(d1,d2) = (1,0.5) is a corner point of the GDoF region. To demonstrate its achievability with a signal
partitioning scheme shown in Fig.[2.8] we demonstrate that successive cancellation decoding is not sufficient
at Rx 2. Joint decoding must be used as we explain next.

Since both the interferences are strong, the two transmitters do not send private sub-messages, i.e.,
X1 = X1, and X5 = Xg.. We let the GDoF per partition be 0.5 since the GDoF pair to be achieved in (1,0.5).

0-5 and p1 to receive Xi. in order to achieve d; = 1.

At Rx1, we must have two signal partitions at levels p
Moreover, we have to ensure that the interference Xo. from Tx2 arrives at the partition level p1'5 at Rx1
in order to achieve do = 0.5 without causing GDoF reduction at Tx1. By adopting this GDoF allocation
at Rx1, the signal diagram at Rx2 is then uniquely determined as shown in Fig.[2.8] Note that the bottom
partition of X;. overlaps with X5, at Rx2. Hence, Rx2 cannot decode X;. and Xs. sequentially using successive
decoding. In Fig.[2.8] we slightly shift the signal partition of X5, to show this overlap and to indicate the

insufficiency of successive decoding. However, consider the MAC formed by (Tx1,Tx2)—Rx2 with the given

transmit power setting. It has the following GDoF region

0<d; <15
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Figure 2.8: A strong interference channel where successive cancellation at Rx2 is not sufficient to demonstrate
the GDoF achievability of (1,0.5) by signal-level partitioning

0<dy <1

di+dy <15

so that (d1,d2) = (1,0.5) lies on the boundary of this region, and is hence achievable by joint decoding. Note
that the necessity of joint decoding is not predicated on choosing the GDoF per partition to be 0.5 (it could
be smaller) nor on the assignment of both messages to be entirely common messages to be decoded at both

receivers.



Chapter 3

Generalized Degrees of Freedom Region of the MIMO One-To-Three

Interference Channel

3.1 Introduction

A Gaussian MIMO one-to-many interference channel (MIMO one-to-many IC) is a single-hop multi-
terminal network which models spectrum sharing scenarios where there is only one communication system
producing interference to all the others. One cause of one-sided interference is the disparity of transmission
power among different communication systems that coexist on the same frequency band. For example, as
shown in Fig.[3.1] the entire area in the figure is a macro cell covered by the radio tower Tx1, and two small
cells operate on the same carrier frequency inside the macro cell. The transmit power used by the macro
cell transmitter Tx1 is higher than the transmit power at Tx2 and Tx3 in the two small cells. We use solid
lines to represent direct links and dashed lines interference links. The interference pattern shown in the
figure is a consequence of the disparity of transmit power and network topology. One such application of
this scenario is the cellular network range expansion by deploying multiple lower power pico eNBs (Tx2 and
Tx3) under a macro cell centered with a macro eNB (Tx1) (3, Figure 1]. Due to the disparity of the transmit
power, the interference from Tx1 to Rx2 or Rx3 is significantly stronger than the interference strength from
either Tx2 or Tx3 to Rx1. Therefore, the interference from the small cell transmitters to Tx1 is negated.
Also, as seen from Fig.[3.1] because the small cell 2 is located further from Tx1 than the small cell 1, the
interference strength from Tx1 to Rx2 is stronger than from Tx1 to Rx3. Even without transmit power

disparity, the topology of the network along could causes one-sided interference. For example, as shown in
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Fig.[3:2] both Rx2 and Rx3 are located within the radio range of Tx1, but Rx1 is not in the radio range of
Tx2 or Tx3. In this scenario, all the communication pairs are assumed to transmit at the same power level,
but the locations of the transmitters and receivers result in one-sided interference from Tx1 to Rx2 and
Rx3. The path-loss difference from Tx1 to Rx2 and Rx3 yields disparity of the interference strength at the
two receivers. As most modem wireless systems have implemented FDM (frequency-division multiplexing),
TDM (time-division multiplexing), or both to provide services to multiple users, there is effectively one
user communicating with the infrastructure on a given sub-carrier and in a given time slot. Therefore, the
one-to-many IC practically captures the essence of the one-sided interference issue in most modern spectrum

sharing applications.

Figure 3.1: A MIMO one-to-three interference channel where the macro cell transmitter transmits at signif-
icantly higher power level than the small cell transmitters, causing one-sided interference

Figure 3.2: A one-to-many IC where Rx2 and Rx3 are located within the radio coverage of Tx1, causing
one-sided interference
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The simplest one-to-many IC is the Z interference channel which contains only two transmit-receiver
pairs, with one of the transmitters interfering the unintended receiver. Constant-gap-to-capacity regions of
scalar and vector Gaussian (or MIMO) Z interference channels can be inferred from the work of the scalar
and MIMO two-user interference channels by [15] and [27], respectively. On the other hand, Bresler et al
characterized a constant-gap-to-capacity region for general scalar Gaussian one-to-many interference channel
in [4]. To the best of our knowledge, the constant-gap-to-capacity region of the vector Gaussian or MIMO
Gaussian one-to-many IC remains an open problem. Since the multiple-antenna transmission and reception
(also known as multi-input, multi-output or MIMO) has become popular in modern wireless networks,
the study of coding scheme for MIMO one-to-many interference channel has important practical value in
supervising the design of the next generation mobile network with spectrum sharing. In this chapter, we
take the first step towards this problem by tackling the fundamental generalized degrees of freedom (GDoF)
region of the three-user case. As an outcome of this research, the sum GDoF curve of the scenario shown
in Fig.[3]]is plotted in Fig.[3.3] with a practical set of channel parameters given in the caption. The strict
definition channel model and parameters will be given in Section [3.2.2] and the GDoF region and sum GDoF

curve with respect to Fig.[3.2] will be defined and studied in Section [3.5
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Figure 3.3: Sum GDOF curve of the scenario shown in Fig.[3.1] The parameters are chosen as follows. Tx1
and Rx1 are equipped with 3 antennas each; Tx2, Rx2, Tx3 and Rx3 are equipped with 2 antennas each; Tx1,
Tx2 and Tx3 transmit at power p2®, p* and p® (to reflect the transmit power disparity); the interference
strength from Tx1 to Rx2 and Rx3 are p® and p®/2, respectively.
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3.1.1 Main Contributions

We obtain single region inner and outer bounds for the MIMO one-to-three IC that are within SNR,
and INR independent gap. The achievable scheme for the inner bound involves three-level additive su-
perposition coding with four sub-messages at the interfering transmitter and single-user coding (without
water-filling) at the non-interfering transmitters. The message M; at the interfering transmitter 1 is split
into four sub-messages, namely Mip,, Mi2, Mi3 and Mja3. As their subscripts indicate, they are to be decoded
at Rx1 only, Rx1 and Rx2, Rx1 and Rx3, and Rx1-Rx3, respectively. The four sub-messages are coded
independently according to a vector Gaussian distribution with explicitly specified covariance matrices,
and they are additively superposed and transmitted. In particular, those covariance matrices are specified
via the generalized singular value decomposition (GSVD) of the cross channel matrices. Consequently, a
single and explicit polyhedral inner bound is obtained. As a by product, a per-distribution inner bound is
also obtained for the discrete-memoryless one-to-three IC. The outer bound is obtained by providing various
combinations of genie information to the receivers. The gap between the inner and outer bounds is quanti-
fied and shown to be independent of SNRs and INRs (with increasing nominal SNR). Hence, such a gap is
tight enough to characterize the fundamental generalized degrees of freedom (GDoF) region. In the end, we
analyze the GDoF and sum GDoF achievability of several channel examples with multi-dimensional signal

level partitioning introduced in Chapter [2}

3.1.2 Previous Related Work

For the two user MIMO interference channels, Karmakar and Varanasi characterized a constant-gap-
to-capacity region in [27] and GDoF region in |26], which lays the foundation of the coding scheme of the
MIMIO one-to-three IC in this chapter. A constant-gap-to-capacity region of the Gaussian scalar one-to-
many IC was reported by [4], and the resulting GDoF region will be reinforced in this chapter. We shall
demonstrate a smaller gap for the SISO one-to-three IC than the one derived in [4]. The idea of genie-
aided argument in the proof of the outer was first introduced in the work of the semi-deterministic two-user
interference by Telatar and Tse [43]. The GSVD has also been used in earlier works on other vector channels.

For example, Ekrem and Ulukus [14] introduced a GSVD based coding scheme for the broadcast channel
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with common and private messages.

3.1.3 Notation

Throughout, the i-th transmitter/receiver is denoted as Txi/Rxi for ¢ € {1,2,3}, and its message,
transmit symbol, rate and degrees of freedom (GDoF) are denoted as M;, X;, R; and d;, respectively. The
number of antenna at Txi and Rxi is denoted as M; and IV;, respectively.

We use capital letters to denote random vectors such as X;. The underlying alphabets are denoted by
X;, and specific values by x;. We use the usual short hand notation for (conditional) probability distributions
where the lower case arguments also denote the random variables whose (conditional) distribution is being
considered. For example, p(y;|z;) denotes py,|x, (yi|z:).

We use C to denote the set of complex numbers and Z ~ CA(0,Ix) to denote a N-dimensional
random vector Z that obeys the complex circularly symmetric Gaussian distribution with zero mean and
covariance matrix Iy (the N x N identity matrix). The note either det(-) or | -| is used to represent the
determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as M;; and N;. The
Frobenius norm of a matrix H is denoted by ||HH§7 ie., ||HH% = Tr(HHT), where Tr(-) returns the trace of
a given matrix. We use UN*Y to represent the set of N x N unitary matrices. The k-th row and column
of the matrix H are denoted as H*) and H* respectively. A sub-matrix obtained by taking the rows k;
to ky of the matrix H is written as H(¥1%2) A sub-matrix obtained by taking the columns k; to ks of the
matrix H is written as H¥1%2] The linear span of matrix H is denoted as (H). For two matrices A and
B, if (A — B) is positive definite (p.d.) or positive semi-definite (p.s.d), we write the relationship as A > B
or A > B, respectively. We use o(1) to represent a term which approaches zero asymptotically and O(1)
to represent a term which is bounded above by some constant. The function (M) returns the maximum
value of M and 0, i.e., (M) = max{M,0}. The minimum and maximum singular value of a matrix H are
denoted as Amin(H) and Apax(H), respectively. We refer rectangular diagonal matrix as any matrix whose
nonzero entries only appear on one particular diagonal (not necessarily the main diagonal). The diagonal
values of a rectangular diagonal matrix are the entries on that diagonal which contains nonzero values. The

minimum and maximum nonzero diagonal values of a rectangular diagonal matrix ¥ are denoted as opyin (%)
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and omax(X), respectively.

The rest of the chapter is organized as follows. Section [3.2]defines the DM and MIMO one-to-three IC
models, and discuss the channel structure of the MIMO one-to-three IC. Section [3.4] presents the inner and
outer bounds for MIMO one-to-three IC, with an inner bound for DM one-to-three IC as a byproduct. GDoF
region will be characterized in Section Section |3.6] concludes the chapter. Some proofs are relegated to

Appendices.

3.2 Channel Models

In this section, we first introduce the general discrete-memoryless one-to-three interference channel
and the MIMO one-to-three interference channel. Then we explain the channel structure of a motivating
example, in particular the structure of the two interference signals. Finally, the channel structure of general
MIMO one-to-three interference channel is demonstrated using the generalized singular value decomposition

of the two cross channel matrices.

3.2.1 Discrete-memoryless One-to-three Interference Channel (DM one-to-three IC)

In a DM one-to-three IC, as shown in Fig.[3.4] there are three direct point-to-point links, namely
Tx1—Rx1, Tx2—Rx2 and Tx3—Rx3. Two interference links exist from Tx1 to Rx2 and Rx3, respectively,

as shown in Fig.[3:4 The DM one-to-three IC is defined in Definition [3.1]

Tx1 Rxl
M>1< — —

PO, Y2, ¥3lx1, X2, x3)

Rx2
axz — =pOilx)p(2lxi, ) M);
2 p(y3lxi,x3)
T Rx3
M);3 > —> M3

Figure 3.4: DM one-to-three IC

Definition 3.1. A discrete memoryless one-to-three interference channel is a three-transmitter and three-
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receiver network (X7 X Xo X X3, p(y1,y2,Y3|T1, 2, x3), Y1 X Vo X V3) with transition probability satisfying

(YT, vy, yslat, x5, x3)
n

(P(yrel1e)p(yae|T1e, T2e)P(Y3e|w1e,23e)) - (3.1)

t=1

The input and output symbols X; and Y; are taken from discrete alphabets X; and );, respectively, where
i € {1,2,3}. Message M; is generated from set M; uniformly at random, and encoded at transmitter Txi.

Receiver Rxi decodes M; as V;.

Given the channel as defined in Definition a (n, Ry, Ra, R, Pe(")) coding scheme for a DM one-

to-three IC consists of

e M;, the message to transmit at Txi, assumed to be uniformly distributed over M; € {1,--- 2"}

for each i € {1,2,3};

e Encoding functions f;(-) such that

e Decoding functions g;(-) such that
gi(): Vit — My, yit — i(y;').
The probability of error P™ is defined to be
P = P {My # My, My # My or My # 113} .

A rate-tuple (R;, Ro, R3) is said to be achievable if there exists a sequence of (n, Ry, Ra, Rg,Pe(")) coding
schemes for which Pe(n) — 0 as n — oo. The capacity region of the DM one-to-three IC is the closure of all

achievable rate tuples of this channel, denoted as CPM.

3.2.2 Gaussian MIMO One-to-three Interference Channel (MIMO One-to-three IC)

A (My, Ny, My, Ny, M3, N3) Gaussian MIMO (multiple-input-multiple-output) one-to-three IC, as

shown in Fig.[3.2.2) has M, antennas at Txi and NN; antennas at Rxi for each i € {1,2,3}. Assuming
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the channel transfer matrices and path attenuations (also referred to as channel gains) are time-invariant

during the transmission, the input-output relationship of this channel is described by

Yi=huHnX: + 23 (3.2)
Yo = hioH12 X1 + hooHa2 Xo + Z> (3.3)
Ys = hagH13 X1 + hasH33 X3 + Zs, (3.4)

where X; € CMi*1 and Y; € CNi*! are complex input and output vectors, andH;; € Ci*Mi is the channel
transfer matrix from Txi to Rxj whose Frobenius norm satisfies ||HUH?, = 1. We assume the entries of
the transfer matrices H;; are drawn i.i.d. from a continuous and unitarily invariant distribution [45], i.e.,
UH,;;V is identically distributed to H;; for any U € UN*Ni and V' € UMixMi g0 that H,; has full rank
with probability one (w.p.1). The path attenuation h;; from Txi to Rxj is a complex number. The Gaussian
noise Z; are i.i.d. CN(0, Iy,) across i. Let Cov|z;] be the covariance of the t-th symbol of the transmitted

codeword zj € A at Txi. The codeword 7' should meet the average per-codeword power constraint,

n

1
= " Tr(zuzl,) < P (3.5)
n

t=1
The SNR and INR at receiver Rxi are defined to be
SNRy; = Pilhy|® £ p®ii, i € {1,2,3} (3.6)

INRy; = Pylhy|> 2 p™i, i€ {2,3} (3.7)

where p is the nominal SNR based on which the direct channel SNRs and the two cross-channel INRs are
defined. The distinct SNR and INR exponents allow us to express the disparities in power levels observed
across the direct and cross links as multiplicative terms associated with the nominal SNR in the dB scale.
Without loss of generality, we assume INR;3 > INRy3 and denote the capacity region of the MIMO one-to-

three IC as C.

3.2.3 A Motiving Example

Understanding the relationship of the two vector interference signals hioH12X7 and hi3Hi3X1 is

crucial to designing a coding scheme which adapts the channel parameters. In this subsection, we investigate
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Figure 3.5: The MIMO one-to-three IC

a simple and intuitive MIMO one-to-three IC and demonstrate that the interferences and noise received at
Rx2 and Rx3 can be written as disjointed channel side informations which carry the common and exclusive
parts of h1oH12X1 and hi3H13X;.

Consider a (3,3,2,2,2,2) MIMO one-to-three IC with cross channel matrices Hys and H;3 expressed

as

1
1 0 0
Hiy = U12212V1T2 = Uiz 1 (3.8)
01 0
1
1
01 0
H13 = U13213V1T3 = U13 1 . (39)
0 0 1
1

Other channel parameters can be arbitrarily chosen. Remarkably, the equation is not a singular value
decomposition of Hi3 since the nonzero values are not on the main diagonal of the matrix 313.

The earlier work [4, Section VI-II| pointed out that multi-level superposition coding is sufficient to
achieve a constant-gap-to-capacity region (and hence is GDoF optimal) for the Gaussian scalar K-user one-
to-many IC. More specifically, the coding scheme therein assumes the K interfered receivers are ordered by
increasing interference. The interfering transmitter splits the transmitted signal into multiple partitions so
that every interfering receiver decodes the received partitions above its noise floor. In the case of MIMO

one-to-three IC, we cannot sort interferences simply because the two interferences are vectors. Thus, we
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cannot directly apply the coding scheme in [4, Section VI-II] for the MIMO one-to-many IC. Rather, we

need a deeper understanding of the structure of this channel, especially the structure of the two interferences

hi1aH12 X1 and h13H13X7 in order to design a coding scheme that adapts the channel parameters.

With the chosen channel matrices (3.8)) and (3.9)), the two interference signals received by Rx2 and

Rx3 can then be written as

hioH12X1 = h12Uja

and

hi13H13X7 = h13Uss

xM
100

x®
010

x®

x
010

x?
00 1

x®

Observing the positions of nonzero values in the matrices X712 and X3, we readily see that the first component

of the X; (denoted as X 1(1)) is hearable at Rx2 but not at Rx3, the third component of X; (X 1(3)) is hearable

at Rx3 but not at Rx2, and the second component of X (X1(2)) can be heard by both Rx2 and Rx3, but

. 2) e . .
Rx2 hears a stronger version of X { ). Given the common and exclusive parts seen between the interferences

hioH12 X1 and hi3H13X1, we then construct channel side informations Sy23, S12 and Si3 as

S123 = h13Uss

S12 = h12U12

S13 = h13Ui3

(Uigl) (1) Z3

X1+ Uss

0
X1+ 2>

0
X1+ Uss

(Ui))l) (2) Z3

Now the channel input-output relationship can be rewritten as

Yi=huH1 X1+ 2,

Yy = (S12 — S123) + S123 + hooHao Xo

(3.10)

(3.11)
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Y3 = S123 + S13 + hazH33X3. (3.12)

The channel side information Si23 contains the interference contributed by X{Q) with the lower channel
gain his, it is the common part of the interference which could be received by both Rx2 and Rx3. The
difference of Sio — Syo3 is the interference that is hearable by Rx2 but not Rx3, and it consists of two
parts: the contribution by X fl) with channel gain hjs and also the contribution of X 52) amplified by the
higher channel gain hj5. The channel side information Si3 contains the interference contributed by X {3)
with channel gain hys that is hearable by Rx3 but not Rx2. With the channel structure reflected by the
channel side informations Sy23, S12 and S13 by —, a coding scheme arises naturally. The message
M; is split into four parts as Mi23, M2, Mi3 and M;p,. The first three sub-messages are carried by Si23, Si2
and 513 are decoded by Rx1-Rx3, Rx1 and Rx2, and Rx1 and Rx3, respectively. The sub-message M;,, is the
private sub-message to be decoded by Rx1 only. We shall complete the discussion of the coding scheme for
this channel in Section B.4.11

In this example, it is critical to find out the common and exclusive parts of the two interference signals
and formulate the disjointed channel side informations in determining the coding scheme. Since we have
Via = Vi3 = I3 here, the common and exclusive parts of h1o H1o X7 and hi3H13X7 can be directly obtained
by observing the positions of the nonzero entries in 315 and ¥135. For arbitrary channel matrices Hq12 and
Hi3, a more sophisticated matrix decomposition technique is needed to reveal the relationship between the

two interferences, which will be introduced in the next subsection.

3.2.4 Channel Structure of the MIMO One-to-three IC

Next, we demonstrate the channel structure of the MIMO one-to-three IC in general. Since channel

matrices Hio and Hi3 have full rank w.p.1, we have

719 2 rank(Hyz) = min{M, Na} (3.13)

r13 2 rank(Hy3) = min{M,, N3} (3.14)
N Hisp

r = rank = min{ My, N3 + Ns}. (3.15)

His
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When we linearly spanned the row vectors of Hio and H;s, the intersection of the two resulting spaces have

dimension

123 = 1o+ 13 — T (3.16)

We jointly decompose the two channel matrices Hi5 and His via the generalized singular value de-

composition (GSVD) [35], which is

;
Vr N
His = U231 Ut 2 Upp21, VT (3.17)
Oar,—r)+xr
;
VYT A
Hyi3 = U3Xis U2 U383V (3.18)
Oar,—r)+xr

Up; € UNiXNi and U € UM XM gre unitary matrices. Y1; € RViX" is a real and rectangular diagonal matrix.

Vr
V, € C™ " is a non-singular upper triangular matrix and V £ U e CMix7 Matrices Y19

0(M1 —r)txr
and Y13 have the following structure

T —T13 T123 T —T12

T —T13 1 0 0
(3.19)
Z12 = 7123 0 C 0
Ny — 7112 0 0 N.E.
r—"rs 123 T —T12
7123 0 S 0
: (3.20)
Yi3= r—r"Ti2 0 0 I
N3 — 713 N.E. 0 0

where C' and S are both non-negative real diagonal matrices satisfying C? + S2 = I. The acronym N.E.

means "never exists”. Note Ny — r15 and r — 12 cannot be simultaneously positive according to (3.13]) and
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(3.15), and the matrix Y15 is in form of either

T—7Tiz Ti23 T —Ti12

T — 713 I 0 0
Y2 =
T123 0 C 0
or

r—ris 123

r—7"ri3 I 0

E12 = 7123 0 C

Ng —T12 0 0

These two different forms of the matrix X152 can be unified as the one given by (3.19)), where the acronym
N.E. comes from the fact that 315 can only be a 2 x 3 or 3 x 2 rectangular diagonal matrices. Similarly,
N3 — ry13 and r — r13 cannot be simultaneously positive because of (3.14)) and (3.15]), and 313 also has two

different forms which can be unified as (3.20)).

Remark 3.1. GSVD decomposes Hio and Hi3 jointly and ensures both and have the same right
hand side matrix V' but at the cost of permitting V' to be non-unitary and rank deficient. GSVD renders
similar decomposition forms for H1o and His as single value decomposition (SVD); however, the rectangular
diagonal matrix Xq; is usually not the singular value matrix of Hy;. Also, the matrix Xy; is of size N; x r
instead of N; x M; as in SVD. Since V is generally not unitary, the column vectors of V' do not form a

orthonormal basis of the transmit signal space at Tx1.

Remark 3.2. Note we have assumed INR15 and INR;y3 are sufficiently large so that we can disregard the gains

contributed by C' and S which is justifiable for analysis up to GDoF accuracy.

Remark 3.3. Through GSVD, the reception of the two interferences sent to Rx2 and Rx3, i.e. h1oH12X7 and
hi3Hy3X1, respectively, can be understood as follows. First, the input vector signal X; € CM! is transformed
into a r dimensional column vector VX, leaving the remaining (M; —r)* dimensions unheard by both Rx2
and Rx3. When r < M7, the matrix V is row rank deficient which reflects the case when the total number
of receive antennas at Rx2 and Rx3 is less the number of transmit antenna at Tx1. Next, the matrix 3y;

determines which components in VX, are transferred to Rxi. The first 7 — ry5 transmit directions of VX,
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are heard by Rx2 but not by Rx3 because ¥, has identity block matrix in the upper left, whereas 13 has
all-zero block matrix in the upper left. For a similar reason, the last r — 5 transmit directions of VX are
received at Rx3 but not Rx2. The middle 7123 transmit directions of VX, are received by both Rx2 and
Rx3, but with different interference strengths (INRy2 and INR;3). Finally, the left hand side unitary matrix
Uy; produces N; linear combinations of the ry; components in ¥1;VTX; as the interference signals, which

are the N; signal received by the N; antennas at Rxi.

Now that the GSVD provides a joint decomposition with the same right hand matrix V', the common
and exclusive parts of the two interference signals can be determined according to matrices ¥1; and channel

gain hy;. Define two matrices 112 and Ay to be

r—"T1i3 Ti23 r—"Ti2

r—17Tri3 I 0 0
(3.21)
I12 é 7123 0 0 0
Ny — 112 0 0 N.E.
and
r—"Ti3 Ti23 T —T12
T —7Tri3 0 0 0
(3.22)
A12 = 7123 0 C 0 )
N2 —T12 0 0 N.E.
respectively, and the matrix X5 can be written as
Y12 = T2 + Ago.
Similarly we define
r—Tis 123 T —T12
123 0 0 0
(3.23)
113 £ r—"T12 0 0 I

N3 — 713 N.E. 0 0
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and

7123 0 S 0
(3.24)
A13 £ r—r7rig 0 0 0 ;
N3 —ri3 N.E 0 0

so the matrix Y13 can be written as

Y13 = I3 + Ass.

Let the matrices GG1o and Jyo be

Gra 2 UaA1pVT and Jip 2 Upal1o V7.

Hence, His = G132 + J12. Let the matrices G153 and J;3 be

Giz £ UpsA3VT and Jyz 2 Upsli3V7.

Hence, Hi3 = G13 + J13.

The common part of the two interferences should be the ri23 elements in the "middle” of column
vector VT X, which are both transferred to Rx2 and Rx3. In light of the interference power disparity to
Rx2 and Rx3, we define Sia23 to be the weaker version of the middle 7195 transmit directions of VX, and
it could be either h13G12X7 or h13G13X;. Both these two signals contain the same information about X7,
albeit received as different signals. The power difference in h;3G12X7 and h;3G13X; (caused by different
diagonal values in C' and S) is ignorable with sufficiently large INRj2 and INRy3. hiaH12 X1 —h13G12X] is the
exclusive part of the interference to Rx2. It consists of the interference sent along the first r» — 13 directions
which are hearable at Rx2 but not at Rx3, and the interference sent along the middle 7123 directions with
extra power gain. hi3Ji3Xs is the exclusive part of the interference to Rx3 which is the interference sent
along the bottom r — r15 directions which are hearable at Rx3 but not at Rx2.

So far we have figured out the structure of the two interference signals received at Rx2 and Rx3. The

structure of the channel can thus be expressed in terms of three channel side information Si23, Si2 and Sis3
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which are defined as follows.
. U1—31(1:r123)Z3
S123 = h13G13X1 + Uss (3.25)

O(Ngf’l"lgg) x1

Si2 £ h1oH12X1 + Z3 (3.26)

07‘ x1
Sis £ hig 13Xy + Urs - (3.27)
UESI(T123+1'N3)Z3

We then can rewrite the channel output Y5 and Y3 in terms of their intended signal and channel side

information as

Yo = S12 + haa H22 Xo (3.28)

71(1:7‘123)
Uis S123
Y3 = S193 + S13 + hazH33 X3 = Uiz + h3zH33 X3. (3.29)
71(T123+12N3)
Uss S13

The side informations Sy23, S12 and Sio3 carry the parts of the interferences that is hearable by both Rx2
and Rx3, Rx2 but not Rx3, and Rx3 but not Rx2. Each side information not only contains certain part of
the interference signal, but also the associated Gaussian noise elements along the corresponding directions.
There is no Si23 explicitly in because S1a = hioU12l12VI X1 + hioUaA 12 VT X| + Z5 already contains
a scaled and linearly transformed version of the interference signal in S5 in the term hioUiaA1VIX,. As
will be seen in Section [3.4] the GDoF optimal coding scheme at Tx1 incorporates signal direction alignment
to utilize the exclusive transmit directions from Tx1 to Rx2 and Rx3 respectively, as well as signal level
alignment to adapt the disparity of the interference strength along the common transmit directions from

Tx1 to Rx2-Rx3.
Remark 3.4. Note the bottom (N3 — 7123) rows of S123 and the upper 7125 rows of Si3 are all zeros. Hence
the side information S123 and S13 to Rx3 are disjointed in signal directions, and we have

h(S1a3 + Si3) = h(S5712) §h2st NSy — (g0 814). (3.30)

This setup plays an important role in deriving the outer bound in Section when h(ST,s + S75) needs to
be processed, as it is easier to process joint differential entropy h(S7,3,S75) than to process the entropy of

the sum h(S7,5 + S7h).
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The relationship between V,.V,! and the two scaled identity matrices A2 (V;)I, and A2

min max

(V)1 will

be frequently used in the rest of the chapter. We present it in Fact

Fact 3.1. Let V. be a r x r full rank square matriz. The following relationship holds between the matrices

V.V A2 (Vi and N2, (V)

min

Min (V) I 2 VRV 2N (Vo) I (3.31)
which is equivalent to
\7A Al v,.vi
—_—t <, < 1 3.32
)‘?nax(v?”) - - A?mn(v;“) ( )
and
Ao (V) I 2 VIV 08 (V) (3.33)

3.3 Multi-level Superposition Coding and Inner Bound for DM One-to-three
IC

The structure of the channel (c.f. Definition suggests a natural coding scheme for DM one-to-
three IC: superposition coding at Tx1 and independent single user random coding at Tx2 and Tx3. Since
Rx2 and Rx3 receive different versions of the interference from Tx1, the coding scheme should adapt this
difference. Therefore, we split the message M; at Tx1 into four parts (My23, Mi2, Mis and My,) and perform
three level superposition coding to let those four messages be decodable at Rx1-Rx3, Rx1 and Rx2, Rx1 and

Rx3 and Rx1 only, respectively. The set of coding distributions is given in Definition [3.2]

Definition 3.2. Let P;, be the set of distributions of joint random variables (@, Wia3, W12, Wis, X7, Xo, X3)
that can be factored as

p(q, w123, w12, w13, T1, T2, ¥3) = P(q)P(Wi23]q)p(wiz|wiz3)p(wis|wizs)p(21 w123, W12, W13) H p(ilq).
1€{2,3}

(3.34)
An inner bound can be obtained for any fixed coding distribution P,, € P;, through a detailed joint

typicality analysis. We state it in Theorem
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Theorem 3.1. For a DM one-to-three IC and some fized distribution Py, € Pin, the following region

REM(Pr) given by

ROM(P) £ {(B1, Re, R3) € RY -

Ry < I(X1;11|Q) (3.35)
Ry < I(Xa;Y2|Wias, Wia, Q) (3.36)
Ry < I(X3;Y3|Wias, Wi3, Q) (3.37)
Ri+ Ry < I(X1;Y1[Wizs, Wiz, Q) + I(X2, Wizg, Wia; Y2|Q) (3.38)
Ry + Rz < I(X1;Y1|[Whas, Wiz, Q) + 1(X3, Wias, Wis; ¥3|Q) (3.39)

Ry 4+ Ry + Ry < I(X1; Y1 W23, Wia, Wi, Q) + 1( X2, Wia; Y2|Wias, Q) + I( X3, Wias, Wi3; Y3|Q)  (3.40)
Ry + Ry + R3 < I(X1;Y1|Wias, Wig, Wis, Q) + I(Xa, Wiag, Wia; Y2|Q) + 1( X3, Wis; Y3 W23, Q) (3.41)
2R1 4+ Ry + Ry < I(X1;Y1[Whas, Wia, Wis, Q) + I(X1; Y1 [Wias, Q) + I (X2, Wias, Wia; Y2|Q)

+ I(X3, Wigs, Wis; Y3|Q) } (3.42)
is achievable, i.e., RPM C ¢PM,

Proof Outline. We outline the proof here and relegate the full proof to Appendix[A7I] As previously stated,
Tx1 performs three level of superposition coding, and Tx2 and Tx3 perform independent single user ran-
dom coding. More specifically, Tx1 splits a message m; into four parts: mia3, mi2, mi3 and my,. The
sub-message mi23, which needs to be decoded by Rx1-Rx3, is first encoded to the first level codeword
wiys(mia3). Then the multicast sub-message mq; is encoded to w;(mq;, wiys(mi23)), which needs to be
decoded by Rx1 and Rxi for ¢ € {2,3}. This is the second level superposition coding. Finally, based on
m1p, Which is the private message to be decoded by Rx1, the entire message is encoded to the codeword
z1(map, wia(miz, wihs(Mi2s)), wis(Mmas, wiss(mMmizs))) for transmission. Txi, ¢ = {2,3}, sends information
m; via some codeword 27 (m;) using a single-user random codebook and Rxi decodes the intended message
m;. Fourier-Motzkin elimination is used to eliminate the three rate variables associated with the auxiliary

random variables Wyo3, W15 and Wi to obtain the achievable region. O
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3.4 Bounds on the Capacity Region of the MIMO One-to-three 1C

We present single region inner and outer bounds for the MIMO one-to-three IC within quantifiable
(and channel SNR/INR independent) gap in this section. In section we demonstrate an intuitive coding
scheme for the motivating MIMO one-to-three IC introduced in Section In Section [3.4.2] we present
an explicit additive superposition coding scheme for the general MIMO one-to-three IC with Gaussian
codebooks and specified covariance matrices. We obtain a single region inner bound which has the form of
a single polytope. In Section [3.4.3] we characterize a single region outer bound by genie aided argument.
In Section the gap between the inner and outer bounds is then quantified and shown to be dependent
only on the entries of the channel matrices Hio and H;3, leading to the characterization of the fundamental

GDoF region.

3.4.1 Coding Scheme for the Motivating Example

We explicitly specify one coding scheme for the motivating example given in Section [3:2:3] Following
the discussion in Section @ we split the message at Tx1 into four parts, namely M3, Mi2, Mz and My,.
Also, according to the coding scheme for the DM one-to-three IC, these four sub-messages are encoded to
Wihs, Wiy, Wis and W), respectively, and Tx2 and Tx3 use single user random coding. In this subsection,
we demonstrate one coding scheme and therefore yields one coding distribution for Wiz, Wis, W13 and
Wip, as well as X5 and X3. This coding scheme adapts the channel structure we have explored in Section
[3:233] The basic idea is given below.

Recall the sub-message M;23 is the common message for all three receivers, so it should be sent at the
highest possible power level along the signal directions that all three receivers could hear. Hence, we encode

I?()Q) at power level p°. The

Mi23 into the codeword W74, and transmit Wiy, along the transmit direction
signal sub-message M;s is only intended for Rx1 and Rx2. Therefore, we encode it to W7, and transmit W7,
along the transmit direction I él) at power level p° (hence is not heard by Rx3) and also along the transmit

direction I§2) at power level p~®13 (hence is received under the noise floor at Rx3). The sub-message M;3

should be received by Rx1 and Rx3, so we encode it into W{% and transmit it along the direction 1353) at
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power level p° (hence is not heard by Rx2). In case SNRy; is greater than both INRy2 and INRy3, Rx1 can
decode a private message My,. We encode My, to Wy}, and transmit Wy, on all three transmit directions at
power level p~*12 (hence not heard by either Rx2 or Rx3).

With the basic idea we have developed, we let the transmitted signal X; be a sum of four independent
Gaussian sub-signals

X1 = \/]?1(W123 + Wig + Wiz + Wyp),

where W123 ~ C./\/(O7 62123)7 W12 ~ CN(O, Q12), W13 ~ CN(O, le) and Wlp ~ CN(O, le) are the auxiliary
Gaussian random variables to encode M3, M2, Mi3 and My, respectively. The entire signal is transmitted
with full power, and the covariance matrix of X is chosen to be the identity matrix scaled by the reciprocity

of the number of transmit antennas at Tx1, i.e.,

Q1 = Cov[X,] = %Is- (3.43)

The codeword W7}, should be sent along all transmit directions and should be received under the noise floor

at both Rx2 and Rx3. Therefore, we choose the covariance of the Wy, as
1
1+p0‘12

(-73 +p 122J{zzlz +p 132La213) =3 m . (3.44)

Wl =

le -

1+p>13

It ensure that the contributions of Wy, at Rx2 and Rx3 have covariances
p*12 H12Q1, Hiy < In, and p™# Hi3Q1,Hiy < In,.

Therefore, with this covariance matrix Q1,, W1, indeed arrives at the unintended receivers under the noise
floor. The choice of @1, can be seen as an extension of the selection of the covariance matrix for private
sub-messages for the two-user MIMO IC by [27]. The difference here is that (1, should be chosen so that
the interference W, arrives under the noise floor at both Rx2 and Rx3.

Next, we determine the covariance of W75, Wiy carries the sub-message Mio to be decoded by Rx1
and Rx2, but not Rx3, so a direct idea of ()15 is to make sure that W5 arrives under the noise floor at Rx3.

However, we already require Wi, to be received under the noise floor at Rx3; therefore, the covariance of
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W2 should be selected to ensure that the sum signal of Wy, and Wiy are received under the noise floor at

Rx3, which implies

1 . _ 1
Q2 +Q1p = 5(13 + pauzigxm) t= 3 w%ls ) (3.45)

14+p>13

Subtracting (3.44) from (3.45)), we have

p0‘12
T4po12

1
Q12 = po1
3 (T 712 713 ) (1T 7713

0
This is consistent with the basic idea we have developed that the W15 should be sent along the first transmit
direction at power level p® (as Rx3 cannot hear this direction) and along the second transmit direction at
power level p~ 13 (as it arrives under the noise floor at Rx3 in this direction). Wia does not transmit on the
third transmit direction at all.

The covariance of Wiz can be determined in a similar fashion. We let the sum covariance Q13 + Q1p

satisfy
1
14+p>12
1 _ 1
Qi3+ Q1p = g(fg +p2128 ], B0 + pe Al A) Tt = 3 T T (3.46)
1
so we have
0
1
Q13 = g 0
p‘l13
Tpa1s

Such choices of Q1;,, Q12 and @13 automatically guarantee the sum of Wi,, Wiz and W3 be received under

the noise floor along the second transmit direction at Rx2 and Rx3, because

1
() (9] O, = — 1
2 TR T g TFpo15
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The covariance of Wi23 has to be

1 (a3
Qi3 =Q1— Qip — Q12 — Qi3 = pis

3 1+pe13

It is also consistent with our basic idea that Wjis3 should be transmitted along the second dimension at
power level pU.
Tx2 and Tx3 merely transmit X, and X3 using full power, with scaled identity covariance matrices,
ie.,
P

P
Qs = 7212 and Qs = ' 1.

Remarkably, we do not perform water-filling at these two transmitters, since we have explained in [5.3.1] that
the scaled identity matrix is sufficient to achieve a rate region within constant gap to the capacity for MIMO
MAC (hence also MIMO P2P channel).

Now a coding scheme has been uniquely determined, and it will be clear at the end of this section

that this coding scheme is GDoF optimal.

3.4.2 Inner Bound for the MIMO One-to-three IC

We have derived an achievable region Ri, (Py,) for the DM one-to-three in Theorem for any coding
distribution Py,. In this subsection, we explicitly specify one coding distribution for the MIMO one-to-three
IC, and then we substitute the coding distribution of this particular coding scheme in the DM one-to-three
inner bound to get an explicit and single region inner bound for MIMO one-to-three IC.

Starting from the coding scheme proposed in Section[3.3] first of all we disable time sharing among the
three transmitters. A non-interfering transmitter encodes its entire message using single user Gaussian code-
book, and the total transmit power is uniformly and independently allocated among all transmit antennas,

ie.,

P P.
Cov[Xs] = MQQIMQ and Cov[Xs] = ﬁiIMs. (3.47)
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At Tx1, following the coding scheme developed from the motivating example, we let the transmitted signal

X1 be the direct sum of four independent Gaussian random vectors Wia3, Wi, Wiz and Wy, ie.,
X1 =V Pi(Wias + Wia + Wig + Why,).

Next, we specify the covariance matrices Q123, Q12, Q13 and Q1 of Wias, Wia, Wiz and Wy, respectively.

Define

‘/TT_I Or M;—r)t
v, &yt et (3.48)

O, —mytxr Lo —r)+

as a linear precoding matrix. The covariance matrices Q123, Q12, @13 and @1, satisfy the restrictions given

by (3.49)-(3.53)). It can be readily seen that
Q12 + Q1p = Q1p and Qr2 + Q1p = Quyp,

which implies both Q12 and Q13 are positive semi-definite and therefore are valid covariance matrices. Note
that even though there are four restrictions on Q1p, Q12 and Qq3, i.e., —, it can be shown that
these covariances exist and they can be uniquely determined. In particular, it is not difficult to see that
(3.52)) results from adding the left and right hand sides of and and subtracting from that result

the left and right hand sides of (3.49).

(e T a3yt
Vv P29 4+ pM Y3303 Op 5 (M —r)+
Qup=—2— | Ing, + . " Han e Vi (3.49)
R TUAZ N P
pep O(ar, —r)+xr O(aty —r)+ x (M, —r)+
-1
(e T feY i
v, ARV SPVISER S R PO NP O (M —r)+
Qi3+ Q1p = WPVT) Iy, + ' V; (3.50)
pp O(ar, —r)+ xr O( a1, —r)+ x (My—r)+
-1
fe” T
v, AN EINT! 0y 5 (a1, —r)+
Q2+ Qup = —— | Int, + ' Vi (3.51)
T
Tr(V, V)
Ony—rytxr Oy —r)+ x (My—r)+
—1
s AT
V. P2 Aj3Ar3 0, (M —r)+
Q12 + Q13+ Q1p = 7PT Iy, + Vi (3.52)
Tr(VpVp)
Ot —mytxr Oy —ry+ (0t =)+
VoV

Q12 Q2+ Qi3+ Q1p+ Quas = (3.53)

T (V, V)



o4

The scaling by is required to satisfy the power constraint given by (3.5). Using the inequality (3.31)),

I
Te(V, V)

the trace Tr(VpV]DJr ) can be upper and lower bounded as

‘/;_1‘/;T_1 Orx(Ml—r)+
Tr(V,V)) = Te(V,jV,) = Tr

O(Ml—r)+ xr I(Ml—r)+

=Te(V VI + (M — )t

1
Z Tr <)\2Ir> + (Ml — 7")+

max

r

= SENUA] + (My —r)* (3.54)
L. (3.55)
and
Te(V, V) < ﬁ + (M — 1), (3.56)
2 (max (3.57)
respectively.

The covariance matrices Q123, @12, @13 and @1, and the precoding matrix V}, requires the GSVD
of His and His (c.f. and ) This GSVD based coding scheme for the MIMO one-to-three 1C
generalizes the coding scheme for the motivating one-to-three IC in Section[3.4.1} In the motivating example,
we have V' as an identity matrix and each component of X; transmit along a particular direction; therefore,
no precoding is needed. However, when V' is not unitary, each transmit direction transmits certain linear
combination of the components of X;. The inverse matrix V!~ on the right hand side of compensates
the non-unitarity of V,., so the first r components in the post-precoding signal VTT*IXF:T) transmit exactly
along the r transmit directions independently. On the other hand, the precoding matrix V), preserves the

rest My — r transmit directions for only Rx1 to receiver, and these M7 — r transmit directions will be sent

Hyp

along the null space of < > (and henceforth will not be heard by either Rx2 or Rx3). Since the matrix

Hy3

V in GSVD is not unitary, the precoding matrix V}, is not unitary either.

Applying Theorem [3:1] to the MIMO settings and evaluating for the coding distribution resulting from
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(13-49)-(3.53) and (3.47), we get the following achievable region for the MIMO one-to-three IC in Theorem

.2l

Theorem 3.2. For the MIMO one-to-three IC, let

2 (A
B = log |max {(;ilm 1}‘ +rioglog [ 1+ JI;L(H) + (r —ri3) (3.58)
Ormin (A12)
o2 (A
B3 = log |max {(r;iln, 1}‘ +rio3log [ 1+ M + (r — r12) (3.59)
Oimin (A13)
then the following region Rin given by (3.60)-(3.67) is achievable.
Rin £ {(R17R27R3) c Ri :
Ry < log| Iy, + po‘“HquHL‘ (3.60)
22
Ry <log|In, + p™2 Hi2(Q13 + Qup) Hi, + pz\72szH§2 — P2 (3.61)
33
Rs <log |In, + p“** H13(Q12 + Q1p)H;rg + @\4—3H33H§3 — B3 (3.62)
22
Ry + Ry <log|In, + p** H11(Q3 + le)HL +log |In, + paleanHIg + pM—ZszHgg — B
(3.63)
Q33
Ry + Ry <log |In, + p® Hy1(Qra + Qup) HY, | + log [T, + p®2 Hy3Q1 Hi5 + [;\/[—3H33H§3 — B
(3.64)
Ri+ Ry + R3 <log|In, + Pa11H11Q1pHL +log |In, + p*2Hi2(Q2 + Q13 + le)H;Iz + p“”ngHQB
to, Pt t
+log |In, + p*** Hi3Q1 H{5 + EH33H33 — B2 — B3 (3.65)
22
Ry + Ry + Rs <log |In, + pO‘“lﬁﬁlQmHI1 +log |In, + Pa12H12Q1HI2 + pjijﬂHgQ
Q33
+log [In, + p** Hi3(Qua + Quz + Qup) His + 6\4731133H§3 — B2 — f33 (3.66)
2R; + Ry + Rs < log Iy, + p™" H11Qu, HY, | +log Iy, + p® Hi1(Q12 + Q13 + Q1) H;
R i oy P i
+ log IN2 + pa12H12Q1H12 + EHQQHQQ + log IN3 + PQI3H13Q1H13 + VBHSBH%
— P2 — 63} (3.67)

Proof. The evaluation of the inner bound in Theorem [3.3] under the MIMO setting and the coding scheme
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introduced above is relegated to Appendix [A-2] O

Let us take a deeper look at the coding scheme. From the restrictions (3.49))-(3.52)), the individual
covariance matrices @12, Q13 and Q123 can be obtained as (3.68])-(3.70)).

1
=V
2 mv;vp*) v

s oo + (I 4 p22 AlgArs) ™ = (1 + p*12 Al Ava + p212 AlgA )~

O(Ml—r)X(Ml—r)

v (3.68)

p®13 ot
1 a1z 13113
A v (3.69)

O(ar, —r)yx (M1 —r)

Q123 = vap)v V —Q1p — Q12 — Q13

1 Iy — (I + p™# Al hrs) ™! T
-V V) (3.70)
Tr(VpVy)
O(at,—ryx (M1 —7)

Let X123, X12, X13 and Xy, be zero mean Gaussian vectors with identity covariance matrices, of length 723,
r12, 713 and M; respectively. With their chosen covariance matrices, the auxiliary random vectors Wias,

Wia, Wi3 and Wy, can be alternatively written as follows.

T123 1
Wigg = 1- ylr-rstklx(h) 3.71
123 Z TI“ V. Vp ) \/ 1+ p(XlS)\%B R P 123 ( )

T—T13
Wi = VI 1 -
N ,; | VV; 1+p‘“2

T12 1 1 .
+ vIFx() 3.72
k= TZ7“13+1 Te(V, Vi) \/1 D R B o St N (372

rT—7r12
ng = Z l V VT [T12+k] /1 1 n pa13 13 (373)
Wiy = Z \/ VM) 4 1 ! V Ik (R
' = V VT 1+ pa12 p k=r— T13+1 Tr(VPVPT) L+ per )\%Q,k + pals)‘iﬁl,k P
H \/ 1 1 '
k= T12+1 V V}’ L+ pa N p p T‘I‘(VPVYPT) P

In the aforementioned equation, X(Qg denotes the k-th data stream to Rx1-Rx3 that carries (part of)
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the public sub-message M;23 along the transmit direction I/]D[T_T13+k], and we call ngé the k-th public data

stream to Rx1-Rx3. It needs to be decoded by all three receivers. Similarly, X(lg) is the k-th public data
stream to Rx1 and Rx2 along the transmit direction VZ,[M. The data streams X195 can be divided into two
groups. The first » — r13 data streams are sent with approximately full power, and they can be received
only by Rx1 and Rx2 since they are sent along the null space of Hy3. The rest r123 data streams are sent
with power p~“13 so they are decodable by Rx1 and Rx2, but not Rx3, since they arrive under the noise
floor of Rx3. The public data streams X;3 for Rx1 and Rx3 are only received by Rx1 and Rx3 as they are
sent through the null space of His. The data streams X;, are received by Rx1 only; we call them private

data streams. The first » — r13 private data streams are hearable by Rx2, but not Rx3; therefore, they are

(r—riz+1)

transmitted at power level p~*12 so they arrive at Rx2 under the noise floor. The data streams X;, ,

cee Xg}?) are hearable by both Rx2 and Rx3, and they are sent at power level p~“12 so they arrive at Rx2
and Rx3 under the noise floor. The next r — 15 private data streams X§;12+1), e ng,) are hearable by Rx3,
but not Rx2, and they are sent at power level p~13 so they arrive under the noise floor at Rx3. When there
are more transmit antennas at Tx1 than the total receiver antennas at both Rx2 and Rx3, the precoding
matrix V,, lets My — r private data streams (the last part on the right hand of ) transmit along the
null space of (V'), which are exclusively hearable by Rx1. Thus, these M — r private data streams are sent
at power level p.

To keep our statement consistent in the rest of the chapter, we also write the signals X5 and X3 in

terms of independent data streams, i.e.,

P, Py
Xo =4/ —%9 X3 =4/ —Xs. 3.75
2=\ ante Ko =\ 3% (3.75)

They are only to be received and decoded by their intended receivers.

Remark 3.5. In the SISO (single-input-single-output) one-to-three IC, there is only one transmit direction at
Tx1 which can be heard by all three receivers, but there is still interference power disparity at Rx2 and Rx3.
Therefore the coding scheme discussed in this subsection is specialized as follows. Tx1 split the message in
three parts: Mjs3, M2 and Mj,. All three sub-messages are transmitted along the only signal direction the

channel has. The Mj93 will be transmitted at power level p° so every receiver could decode it. The sub-
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message Mjo is transmitted at power level p~*13 so it is received below the noise floor at Rx3, but decodable
at Rx2 due to extra interference power. The private sub-message M;,, is transmitted at power level p~*12 so
it is only decodable by Rx1. This coding scheme is the same as the coding scheme presented in Section VII

of [4].

3.4.3 Outer Bound

We derive a single region outer bound R, for MIMO one-to-three IC. We provide various combinations
of genie informations to Rxi to produce upper bounds on R; in several different forms, and then linearly
combine those upper bounds across i € {1,2,3} to obtain sum rate upper bounds. The outer bound is stated
in Theorem To present the outer bound, we define the following relevant terms by which the outer

bound can be stated in a short form.

—1
Ing, + p® 2 HiyHyy + p22 HI, ng) (3.76)

-1
Inr, + pal?»Hngng) (3.77)

1
Ing, + p®12Gl3Ghs + p® 2 HY, H12) (3.78)

—1
I, + p™2GlyGrs) (3.79)

£ (
= (
Theorem 3.3. Define
Tmax(A13)
n £ log }max {/\mdx 1}’ + r123 log (1 + ax) , (3.80)

O min (AIQ)

and a region R, as given by (3.81))-(3.88),

Ro £ {(Rl,RQ,Rg) S Ri_ :

Ry <log|Iy, + p®*Hy HI, (3.81)
Ry <log |In, + p®2* Hyo HJ, (3.82)
Rs < log|Iy, + p®% Hss H, (3.83)
Ry + Ry < log|Iy, + pa11H11K1371pHL’ +log ’1N2 St H L H + pamHQzH;Q’ o (3.84)
Ry + Ry < log|Iy, + panHHKlz,lpHL‘ +log ‘INS o HysH, + p°‘33H33H§3’ (3.85)
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Ry + Ry + R3 < log ’INl + paqulKlpHL’ + log ’INQ + pa12H12K12,13,1pHIQ + Pa22H22H§2’
+log ‘INS s Hy s H, + p°‘33H33H§3‘ (3.86)
Ri+ Ry + R3 <log ‘INl + Pa“HuKmHH + log ‘INQ + PalezHIg + PmszHng‘
+log ]1N3 b Hyy K151 Hy + paSSHggH;rg‘ + (3.87)
2Ry + Ry + Rs < log ’1N1 + pauHHKl,,HL’ +1log ‘INI + paanng,lpHL‘
+ log ‘INQ + p*2 HyoHYy + Pa22H22H2Tz‘ + log ‘INS + p™8 Hyg His + P%3H33H§3‘ +n}

(3.88)

We have
CCR,.

Proof Outline. The fundamental idea in the proof of the outer bound is to construct a virtual channel whose
output is then regarded as genie-aided side information to help each receiver to decode its intended signal
(therefore making the receiver more interference-resilient). We construct genie informations 793, 712 and 113
which are identically distributed as the channel side informations Sy23, S12 and Si3, respectively, but each
pair of corresponding “T” and “S” random vectors are independent conditioned on X;. The upper bound
is proved in three steps. First, by providing one or more of those genie informations to Rxi, ¢ € {1,2, 3}
we derive a series of individual upper bounds on R;. Some of the bounds may contain entropy terms which
can not be single-letterized. Secondly, we linearly combine those individual upper bounds across i € {1, 2,3}
to obtain sum rate upper bounds with unsingle-letterized entropy terms eliminated. At this step, we get
an intermediate outer bound in terms of channel side and genie information symbols. This outer bound is
a union of polytopes over all admissible input distributions. Finally, we optimize the input distribution to
be Gaussian and plug in the optimized distribution to obtain a single region output bound only in terms of
the channel parameters. This genie aided argument was first introduced in [43] in characterizing an outer
bound for the semi-deterministic two-user interference channel. In [43], there is only one genie information T;
regarding the interference that comes from a particular transmitter Txi, ¢ € {1, 2}, and this genie information
T; is given to the intended receiver Rx: only. In the case of the MIMO one-to-three IC, we have various

combinations of Tjo3, T12 and Ti3 to feed Tx1 to produce a variety of outer bounds on R;. Besides, the
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genie information Ti23 is not only fed to Rx1, but to Rx2 and Rx3 as well to produce certain upper bounds

on Ry and R3. Please refer to Appendix for details. O

3.4.4 Quantifiable Gap

An achievable rate region of a MIMO one-to-three IC is within gap (n1,n2,n3) to its capacity if for
any given rate tuple (Ry, Ra, R3) € C, the rate tuple (Ry — n1, Ro — na, R3 — n3) is within that achievable
region. We call the tuple n; the individual gap on R;. Since we do not know the capacity region C, we
quantify the gap between the inner bound R;, and the outer bound R,, and the resulting gap will be an
upper bound of the gap (henceforth also a gap) between R;, and C. The main result in this subsection is

stated in Theorem [3.41

Theorem 3.4. For any (R1, R2, R3) € R,, let
(Ry, Ry, R3) = (Ru—n—61)", (Ro — B2 — 62) T, (Rs — B3 — d3) 1)

, where

&1 = min{ My, N1} (log (Cmax max { A2, (V2), 1}))+ (3.89)
8> £ min{M; + Ma, N> }og max {(max max { A2, (V;), 1}, Ms} (3.90)
83 = min{M; + M3, N3} log max { (max max { A2, (Vi) 1}, M3} . (3.91)

Then we have

(Ry1, Ry, R3) € Rin.

Proof Outline. There is a one-to-one correspondence between a rate variable R; on the left hand side and
a positive entropy term (in the form of log|Iy, 4+ - -|) on the right side of inequalities in both inner and
outer bounds. The difference between each pair of corresponding positive entropy terms in the inner and
outer bound is upper bounded by §;, which contributes to individual gap n;. Also note there is a one-to-one
correspondence between Ry (and Rg) in the left hand side and fS3 (83) on the right hand side of each sum

rate restriction in the inner bound, which contributes to the partial individual gap 82 and B3 to ny and ngs.
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Finally, we let the term 7 in the inequalities (3.84]), (3.87) and (3.88]) of R, be absorbed in n;. The details

of the proof is relegated to Appendix O

Remark 3.6. Let us compute the gap for the SISO one-to-three IC, where only one antenna is equipped at
each transmitter and each receiver. We have 51 = 2 =1, 7 =1 and §; = do = d5 = 0. Theorem tells
the coding scheme achieves an achievable region within (1,1, 1) bit gap to the capacity. It is a smaller gap

then the one achieved in [4, Theorem 23] with K = 3 therein.

3.5 The GDoF Region of MIMO One-to-three 1C

The generalized degrees of freedom (GDoF') is an information-theoretic performance metric that char-
acterizes the number of independent data streams a network could support simultaneously among all users
at high SNR regime. In this section, we first compute the GDoF region of the MIMO one-to-three IC, and
then focus the achievability of the key corner points in the GDoF region and the sum GDoF curve. In what

follows, we define & = {aq1, a92, (33, 12, @13}

3.5.1 The GDoF Region

The definition of GDoF region of the MIMO one-to-three IC is given in Definition [3.3

Definition 3.3. The generalized degrees of freedom region of a MIMO one-to-three D(&) € Ri with the

capacity region C(@) is defined as

. R; . _
{(dl,dz,dg) i d; = pli}Ilgo logp,’é c {1,2,3}&1’1(:1 (Rl,RQ,Rg) S C(Oé)} . (392)

In the rest of the chapter, we call (dy,ds,ds) a GDoF tuple. To compute the GDoF region in this section, we
need a slight different version of Lemma [5.1] which is stated in Fact They differ in that the matrices Hy,
H,, ---, H, only need to be full rank w.p.1 here, whereas the entries of the matrices in Lemma are drawn
i.i.d. from a continuous unitarily invariant distribution. Fact can be proved with similar mathematical

induction as in the proof of Lemma [5.1
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Fact 3.2. Let H; € C**%, Hy € C**¥2 ...  H, € C**“ be n full rank matrices (w.p.1) such that

H =[Hy,Hs,- -, H,] is also full rank w.p.1. Then, for asymptotic p

log det (Iu + Z p“iHiH;() =g(u, (a1, u1), -, (an, un))log(p) + O(1), (3.93)
i=1

where for any (u,uy,--- up) € ZYH) and (ay,--- ,a,) € R", the function g(u, (a1, u1), -, (an,u,)) is
defined as

g(u7 (a17u1)7 (0,2,’[1,2), ) (an7un))

i in—1 +

:Z min{u,uil}az+min{(u—ui1)+7ui2}a;;+...+min U_Zuj Ui, pa;
i=iy j=1

foriy #ig £ - #in € {1,--- ,n} such that a;; > a;, >+ > ay,.

Theorem 3.5. The GDoF region D(&) of the MIMO one-to-three IC with & = {aq1, daa, 33, 12, 13} is

gwen by ([3.94)-(3.101]).

D(a) £ {(d1,ds,d3) € R3. :

dy < min{M;, N1}a1q (3.94)
dy < min{Ms, Na}ags (3.95)
ds < min{Ms3, N3}ass (3.96)
di +da < g (N1, ((a11 — aa2) ™, m12) , (@11, My — 712)) + g (N2, (12, My), (a2, M2)) (3.97)
di +ds < g (N1, ((011 — aa3) ™, 713) , (@1, My — 113)) 4+ g (N3, (o3, My), (ass, Ms)) (3.98)

di +dy +ds < g (N1, (@11 — aa2) ¥, r12) s (011 — a1s) T, r — r12) , (@1, My — 7))

+ g (N2, (12 — 13) ¥, r123) , (012,712 — r123) 5 (22, M2)) + g (N3, (o3, My), (as3, M)

(3.99)
dy +dy +d3 < g (N1, ((ca1 — a12)™,712) , (011 — o)t r — r12) , (01, My — 7))
+ g (N2, (12, M), (@22, M2)) + g (N3, (a13, 713 — r123) , (33, M3)) (3.100)
2dy + dy + d3 < g (N1, (@11 — a13) T, r123) , (a1, My — 71123))

+g (Nh ((0411 - 0412)+, 712) , ((all - 0413)+,7" - 7”12) ,(0411, M, — 7”))
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—|— g (NQ, (0412, ]\41)7 (0122, Mg)) —|— g (]\]37 (0113, Ml), (0133, Mg)) } (3101)

Proof Outline. The GDoF region of the MIMO one-to-three IC is presented in the theorem below. In
Definition the GDoF region is defined via the capacity region C(a). We do not have the exact capacity
region determined for the MIMO one-to-three IC, but Theorem has shown that both R;, and R, are
within quantifiable gap to the capacity region and that the gap is independent of the channel SNR and INR.
Because a finite number of bits are insignificant in the GDoF computation, the GDoF region can be obtained

from either R;, or R,. Please refer to Appendix [AJ5] for the complete proof. O

Example 3.1. Consider the MIMO one-to-three IC with the following parameters: a1 = aog = agz = 1,
a2 = 0.6, a3 = 0.3, M1 = Ny = 3 and My = M3 = Ny = N3 = 2. Given this setting, we have r = 3,

r1923 = 1 and r12 = 113 = 2. The GDoF region is plotted in Fig.[3.6

M (2.4,0,2

C(0,2,0)

o o

Figure 3.6: GDoF region of a MIMO one-to-three IC with My = N; = 3, My = M3 = Ny = N3 = 2,
19 — 0.6 and a13 = 0.3

We provide an overview of the GDoF region in Example The MIMO one-to-three IC consists of
two two-user Z ICs as its sub-channels. The tuples on the (di, d2,0) form the GDoF region of the two-user
Z 1C with INR p®*2 and the tuples on the (dy,0, ds3) plane form the GDoF region of the other two-user Z IC
with INR p®3. The rate tuples on d3 vs do plane when d; = 0 reflect the GDoF region of a parallel channel
with Tx2/Rx2 and Tx3/Rx3 while Tx1 is off. The sum GDoF plane is E-F-G-H, and any GDoF tuple on

this plane achieves the max sum GDoF 5.5.
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Example 3.2. Continue with the MIMO one-to-three IC in Example [3.1] We describe the structure of the
transmitted signals from the three transmitters in terms of independent data streams according to (3.71))-

in Section 3 Our coding scheme suggests we send the following data streams at Tx1.

W123 - V VT (2)\/ 1+ po 3)\13 r—riz+k X§12)3

Wio = W (‘/p(l) 1— 1+1p X(l) + V(Q)\/l +p01.3)\§372 - 1+p0.6)\%2; T 0T, Xg))
Wiz = \/TVP \/T/)O?’ e

o=\ (5 e e L RA e Xg) |

More specifically, there is one public data stream X52)3 for all receivers, two public data streams X 19 ) and X

for Rx1 and Rx2, one public data stream X( ) for Rx1 and Rx3, and three private data streams for Rx1 only.
The data streams X§2)3, X%) and ng) are sent at power level p°. The data stream X( ) is sent at power level

p~ 93 as this is the part to be decoded by Rx2, but treated as noise by Rx3. The first private data stream

Xg;) is sent at power level p~%¢ so that Rx2 can treat it as noise. The second private data stream Xﬁ) is

(3)

-6 50 that both Rx2 and Rx3 can treat it as noise. The third private data stream X,

sent at power level p~

0.3

is sent at power level p~”° so Rx3 can treat is as noise.

In what follows, we analyze the achievability of the four corner points on the max sum GDoF plane
in Example (3.1)). For each corner point, we provide GDoF distribution among the data streams revealed in
Example (3.2). The detailed GDoF allocation of each data stream will be illustrated via multi-dimensional
signal partitioning introduced in Chapter Each GDoF allocation will be plotted in a signal diagram
with each of the received independent (transmit) signal directions (from the receiver’s perspective) plotted
as a multi-leveled bar whose top level marks its signal strength and the vertical height of each partition
is proportional to the DoFs carried by it. The underlying coding scheme can be directly read from the
GDoF allocation. A transmitter encodes all data streams on a (transmit) signal direction by multi-level
superposition coding from bottom to top (refer to the figure for the position of the data streams on each
signal direction), and the receiver decodes the signal by either successive cancellation or joint decoding. No

cross signal level is employed, and each data stream is encoded independently. The underlying coding scheme
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can be different from the coding scheme we used to derive the inner bound in Section [3:4:2] In all the GDoF
analysis figures in the rest of the chapter, the transmit signal directions me, Vp[z], and Vp[g] are sorted from
left to right in sequence at Rx1, V;@[l] and Vp[z] are shown from left to right at Rx2, and me and Vp[3] are

shown from left to right at Rx3.

3.5.1.1 The achievability of point E (1.8,2,1.7)

We choose the GDOF distribution diyy = 0, d{y) =0, dij =0, diy = 0.3, d}}) = d)) =04, d?) = 0.7,
dgl) = df) =1, dgl) =1and d:(f) = 0.7. The GDoF allocation among the three transmitters are illustrated in
Fig. This allocation guarantees an interference free channel between Tx2 and Rx2. Due to the precoding
(by matrix V},), the second and third transmit directions Vpp] and V,,[B] do not appear at Rx2 and Rx3,
respectively. All the signal levels at both Rx2 and Rx3 are fully utilized.

Rx1 first removes the effect of both XS,) and Xﬁ) from Y; by zero forcing, i.e. projecting the received
signal onto the 1-D plane which is perpendicular to HHVP[M]. Xglg) can be recovered by treating the con-
tribution of Xgi) as noise (with the equivalent noise floor raised to p%7), which gives d(lé) = 0.3. Since X%)
should also be decoded by Rx3, we shall verify the achievability of d%) = 0.3 at Rx3 later. Subtracting the

1)

effect of X§3 , ng)

, can be recovered with GDoF dgi) = 0.7. After both X%) and Xi(l:;) are recovered, we remove

their effects on the received signal Y;. Then we see a 2 x 2 MIMO P2P channel between Tx1 and Rx1, and

data streams X%) and Xg,) can then be recovered, which gives d&) = dgi) = 0.4. Rx2 directly decodes its

intended signals as the interference from Tx1 will be under the noise floor. Rx3 decodes its intended signal
(1)

by treating the interference from Tx1 as noise. It can be seen that the data stream X;5 can indeed achieve

GDoF 0.3 at Rx3 as well as at Rx1.

3.5.1.2 The achievability of point F (1.5,2,2)

The GDokF distribution among data streams could be d§12)3 =0, dglz) =0, dg) =0, d%) =0, dﬁ}) =
dﬁ) =04, dgi) = 0.7, dél) = de) =1and dgl) = déQ) = 1. The GDoF allocation among the three transmitters

are illustrated in Fig.[3.8] This coding scheme guarantees interference free GDoF for the entire network.
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Figure 3.8: GDoF allocation at corner point F

3.5.1.3 The achievability of point G (2.4,1.1,2)

We choose the GDoF distribution among data streams as follows: d§12)3 =0, dg? = 0.3, d%) = 0.3,

dy =0, d)) =d?) =04, d?) =07, d" = 0.7, d” = 0.4 and d§” = d{’ = 1. The GDoF allocation

among the three transmitters are illustrated in Fig.[3.9] This coding scheme brings an interference free

channel between Tx3 and Rx3. As stated previously, the data stream X§12) is sent onto the null space of

)

(Hy3), so it does not appear at Rx3; however, the xfé is exclusive to Rx1 and Rx2 due to the difference

a12 < aqs; therefore, Xg) appears at Rx3 under the noise floor.

(1) ()

Rx1 first removes the effects of Xj,5', X, Xg) and Xﬁ) from Y7 by zero forcing, i.e. projecting the

received signal onto the 1-D plane which is perpendicular to H 11Vp[1:2]. Xﬁ)

can be recovered with dg?;) =0.7.
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Subtracting the effect of Xﬁ) from Y7 , we see a 2 x 2 MIMO P2P channel between Tx1 and Rx1, and

(1)

ip and Xﬁ) as noise, which gives d(112) = 0.6 and

data streams X%) and X(122) can be recovered by treating X

dg) = 0.3. Subtracting the effect of Xglz) and Xg), Xg;) and Xﬁ) can be decoded, resulting dg;) = dﬁ) =0.4.

The power level assignments of Xél), Xéz), X:(é) and Xg) permit these data streams to be jointly decoded,
resulting dgl) = 04, dgz) = 0.7, d%) = 0.6 and dg) = 0.3. Rx3 decodes its intended signal only, leading

d) =df) =1.
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Figure 3.9: GDoF allocation at corner point G

3.5.1.4 The achievability of point H (2.7,1.1,1.7)

The GDoF distribution among data streams could be d§12)3 = 0, d§12) = 0.3, d:(é) = 0.7, d%) =0,

2)
P

3)

» = 0.7, dél) = 0.7, déZ) = 0.4 and dél) = d?) = 1. The GDoF allocation among the

dt) = d?) = 0.4, df

three transmitters are illustrated in Fig.[3.10]

Remark 3.7. In Example the interference strength is moderate (a3 = 0.6) from Tx1 to Rx2 and weak
(13 = 0.3) from Tx1 to Rx3. In the four achievable schemes discussed above, we keep data streams Xjo3
null because Xj23 is received above the noise floor at both Rx2 and Rx3 and decoding X123 will cause GDoF
reduction at both Rx2 and Rx3. More specifically, in the considered channel setting, carrying messages on
data stream Xj5 or X3 brings the same amount of GDoF to Rx1 as the reduction of GDoF at Rx2 or Rx3,
respectively. However, carrying message on data stream Xio3 reduces twice the GDoF at Rx2 and Rx3 in

total than the GDoF obtained by Rx1. We illustrate a GDoF distribution when Xjo3 is active in Fig.[3.11]
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corner point I in Fig.[3.6] which results sum GDoF 5.2.
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Figure 3.11: GDoF allocation at corner point I

3.5.2 The Sum GDoF Curve

68

Next, we keep the number of transmit and receive antennas unchanged in Example (3.1), and let «

run through the internal [0, 2] to see the variation of the sum GDoF. The sum GDoF vs « curve is plotted

in Fig.[3.12] There are two corner points on the curve. At the first corner point the interference to Rx2

becomes strong interference, i.e. a;2 = 1. At the second corner point the interference to Rx3 becomes strong

interference, i.e. ay3 = 1. In between the two corner points, one of the interference channels is moderate,

ie. agg € [0.5,1], and the other one is strong, i.e. a12 = [1,2]. We focus a sum GDoF optimal corner point
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(o0, dsyum) = (0.8,4.8) on the curve. By Theorem we the equal GDoF tuple (1.6,1.6,1.6) is achievable.
Coding scheme to achieve this tuple is not unique, and we presents two different coding schemes through
the multi-dimensional signal level partitioning in Fig.[3.13] and Fig.[3.14 In the first coding scheme, data
stream Xjo3 is active, contrary to the case when both interferences are not strong in the previous example,
activating data stream Xi23 can be sum GDoF optimal because Rx2 receives strong interference, and x§12)3
is received above p°, therefore it does not deduct GDoF at Rx2. The second coding scheme achieves the

same GDoF tuple, but only uses two antennas at Tx1 to transmit the signal. It is simpler and more energy

efficient than the first coding scheme.

7

(1,5
(0.5,4.5)

Figure 3.12: Sum GDoF curve of MIMO one-to-three IC with M; = Ny = 3, My = M3 = Ny = N3 = 2,
a12 = 2 and a3 = «

Lastly, we plot the sum GDoF curve of a SISO one-to-three IC in Fig.[3.15] There is only one antenna

at each transmitter and each receiver, and again we choose a3 = a and a2 = 2a.

3.6 Conclusion

We delve into the channel structure of the MIMO one-to-three IC with the aid of GSVD, and designed
a explicit coding scheme which adapts the channel structure. A pair of single region inner and outer bounds
are derived and shown to be within a SNR/INR independent gap. The GDoF region of the MIMO one-

to-three IC is then fully characterized. We also numerically studied achievability of GDoF region and sum
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Chapter 4

Generalized Degrees of Freedom Region of the MIMO IC-ZIC

4.1 Introduction

An IC-ZIC is a single-hop multi-terminal network with three transmitters (Tx1-Tx3) and three re-
ceivers (Rx1-Rx3). Tx1/Rx1 and Tx2/Rx2 form a two-user interference channel (IC). Tx1/Rx1 and Tx3/Rx3
form a two-user Z interference channel (ZIC) where interference only comes from Tx1 to Rx3 (refer to Fig.|4.4
for a discrete memoryless IC-ZIC or Fig. for a MIMO IC-ZIC). An IC-ZIC can also be formed from the
one-to-three interference channel by adding one more interference link from one of the non-interfering trans-
mitters (Tx2 or Tx3) to Rx1 therein. Without loss of generality, we let this interference link come from Tx2
to Rx1. To illustrate the practical scenarios which IC-ZIC models, we borrow and modify the two practical
scenarios of the one-to-three IC introduced in Fig.[3.Iand Fig.[3:2] In Fig.[4.1] the entire area is a macro cell
served by the radio tower Tx1, and two small cells operate on the same carrier frequency inside the macro
cell. The transmit power used by the macro cell transmitter (Tx1) is higher than the transmit power at Tx2
and Tx3 in the two small cells. We use solid lines to represent direct links and dashed lines interference links.
The interference pattern shown in the figure is a consequence of the transmit power disparity and channel
topology. One such application of this scenario is the cellular network range expansion by deploying multiple
lower power pico eNBs (Tx2 and Tx3) under a macro cell centered with a macro eNB (Tx1) [3| Figure 1].
As Tx1 transmits at significantly higher power level than Tx2 or Tx3 (to cover the entire area), there are
interferences from Tx1 to Rx2 and Rx3; the interference from Tx2 to Rx1 exists because Rx1 is located on

the margin of the small cell 1; the interference from Rx3 to Tx1 is negated since the small cell 2 is located far
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Figure 4.1: A MIMO IC-ZIC where the macro cell transmitter transmits at significantly higher power level
than the small cell transmitters

enough from Rx1. Also, as seen from Fig.[4.1] because the small cell 2 is located further from Tx1 than the
small cell 1, the interference strength from Tx1 to Rx2 is stronger than from Tx1 to Rx3. In the one-to-three
IC, Rx2 can be assumed to receive stronger interference than Rx3 without loss of generality. However, since
we have fixed Tx2 to be another interfering transmitter in IC-ZIC, we do no assume the interference strength
at Rx2 is stronger than Rx3. For example, in Fig.[£:2] all transmitters transmit at the same power level, and
Tx1/Rx1 and Tx2/Rx2 have mutual interference. The path-loss difference from Tx1 to Rx2 and Rx3 yields
disparity of the interference strength at the two receivers. But as Rx3 is located closer to Tx1, it receives
stronger interference from Tx1 than Rx2.

The main goal of this chapter is to characterize the fundamental generalized degrees of freedom
(GDoF) region of the MIMO IC-ZIC. As an outcome of this research, the sum GDoF curve of the scenario
shown in Fig.[f1]is plotted in Fig.[f.3] with a practical set of channel parameters given in the caption. The
channel model and parameters are defined in Section [£.2] The GDoF region and sum GDoF curve with

respect to Fig.[4.2] will be investigated in Section [4.5

4.1.1 Main Contributions

We obtain single region inner and outer bounds for the MIMO IC-ZIC. Since Tx1 produces interfer-
ences to two receivers, we employ the same three level superposition coding scheme at Tx1 as in the MIMO
one-to-three IC (c.f. Section. More specifically, the message M; at Tx1 is split into four sub-messages:
Mi23, Mi2, Mi3 and My,,. As their subscripts indicate, they are to be decoded by Rx1 only, Rx1 and Rx2, Rx1

and Rx3, and Rx1-Rx3, respectively. The four sub-messages are coded independently according to a vector
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Figure 4.2: A MIMO IC-ZIC all transmitter transmit at the same power level

sum
a1

T

1

0 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

(o3

Figure 4.3: Sum GDOoF curve of the scenario shown in Fig.[d.1] The parameters are chosen as follows. Tx1
and Rx1 are equipped with 3 antennas each; Tx2, Rx2, Tx3 and Rx3 are equipped with 2 antennas each; Tx1,
Tx2 and Tx3 transmit at power p2®, p* and p® (to reflect the transmit power disparity); the interference
strength from Tx1 to Rx2, Tx2 to Rx1 and Tx1 to Rx3 are p®, p® and p®/2, respectively.
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Gaussian distribution with explicitly specified covariance matrices, and they are additively superposed and
transmitted. In particular, those covariance matrices are specified via the GSVD of the two cross channel
matrices from Tx1 to Rx2 and Rx3. Since Tx2 only produces interference to Rx1, we employ Karmakar-
Varanasi type [27] coding scheme at Tx2. The transmitted message M, is split into common sub-message
M1 and private message My, to be coded by Rx1-Rx2 and Rx2 only, respectively. Tx3 simply encodes its
entire message using single user Gaussian codebook without water-filling. Consequently, a single and ex-
plicit polyhedral inner bound is obtained. As a byproduct, a per-distribution inner bound is also obtained
for the discrete-memoryless IC-ZIC. The outer bound is obtained by providing various combinations of genie
information to the receivers. The difficulty lies within the quantification of the gap from the obtained inner
and outer bounds which contain 33 and 28 inequalities respectively. It is done with the aid of a series of
supporting lemmas which reveals the relationship between the set functions in the inner and outer bounds
(to be defined later). The gap between the inner and outer bounds is quantified and shown to be independent
of SNRs and INRs (with increasing nominal SNR). Hence, such a gap is tight enough to characterize the
fundamental generalized degrees of freedom (GDoF) region. In the end, we analyze the GDoF and sum
GDoF achievability of several channel examples with multi-dimensional signal level partitioning introduced

in Chapter

4.1.2 Previous Related Works

The two-user IC and the one-to-three IC are two sub-channels embedded in the IC-ZIC. We summarize
the known results regarding these two sub-channels. For the general DM two-user IC, the Han-Kobayashi
achievable scheme (HK scheme) in [23], as well as its alternative, the CMG scheme of [11], give the (same)
best inner bound to the capacity region known to date. Telatar and Tse [43] found an outer bound for the
class of semi-deterministic interference channels and quantified the gap to the CMG inner bound. The idea
of genie-aided argument in the proof of the outer bound of MIMO IC-ZIC was first introduced in [43]. Etkin
et al [15] and Karmakar and Varanasi [27] characterized constant-gap-to-capacity regions for the Gaussian
scalar and vector two-user 1Cs, respectively. The GDoF region of the MIMO two-user IC was characterized

and studied in [26]. A constant-gap-to-capacity region of the Gaussian scalar one-to-many IC was reported
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by [4]. The GDoF region of the MIMO one-to-three IC was characterized previously in Section

4.1.3 Notations

Throughout, the i-th transmitter/receiver is denoted as Txi/Rxi for ¢ € {1,2,3}, and its message,
transmit symbol, rate and degrees of freedom (GDoF) are denoted as M;, X;, R; and d;, respectively. The
number of antenna at Txi and Rxi is denoted as M; and IV;, respectively.

We use capital letters to denote random vectors such as X;. The underlying alphabets are denoted by
X;, and specific values by x;. We use the usual short hand notation for (conditional) probability distributions
where the lower case arguments also denote the random variables whose (conditional) distribution is being
considered. For example, p(y;|z;) denotes py,|x, (yi|z:).

We use C to denote the set of complex numbers and Z ~ CA(0,Ix) to denote a N-dimensional
random vector Z that obeys the complex circularly symmetric Gaussian distribution with zero mean and
covariance matrix Iy (the N x N identity matrix). The note either det(-) or | -| is used to represent the
determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as M;; and N;. The
Frobenius norm of a matrix H is denoted by ||HH§7 ie., ||HH% = Tr(HHT), where Tr(-) returns the trace of
a given matrix. We use UN*Y to represent the set of N x N unitary matrices. The k-th row and column
of the matrix H are denoted as H*) and H* respectively. A sub-matrix obtained by taking the rows k;
to ky of the matrix H is written as H(¥1%2) A sub-matrix obtained by taking the columns k; to ks of the
matrix H is written as H¥1%2] The linear span of matrix H is denoted as (H). For two matrices A and
B, if (A — B) is positive definite (p.d.) or positive semi-definite (p.s.d), we write the relationship as A > B
or A = B, respectively. We use o(1) to represent a term which approaches zero asymptotically, and O(1)
to represent a term which is bounded above by some constant. The function (M) returns the maximum
value of M and 0, i.e., (M) = max{M,0}. The minimum and maximum singular value of a matrix H are
denoted as Amin(H) and Apax(H), respectively. We refer rectangular diagonal matrix as any matrix whose
nonzero entries only appear on one particular diagonal (not necessarily the main diagonal). The diagonal
values of a rectangular diagonal matrix are the entries on that diagonal which contains nonzero values. The

minimum and maximum nonzero diagonal values of a rectangular diagonal matrix ¥ are denoted as opyin (%)
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and omax(X), respectively.

The rest of the chapter is organized as follows. Section defines the DM and MIMO IC-ZIC
channel models and discuss the channel structure of the MIMO IC-ZIC. Section presents the multi-level
superposition coding and the resulting inner bound for the DM IC-ZIC. Section [£.4] presents single region
inner and outer bounds for the MIMO IC-ZIC. The gap between the bounds is quantified. The GDoF region
of the MIMO IC-ZIC will be characterized in Section Section [4.6] concludes the chapter. Many proofs

are relegated to the Appendices.

4.2 Channel Models

In this section, we first introduce the general discrete memoryless IC-ZIC and the MIMO IC-ZIC. Then
we explain the channel structure of the MIMO IC-ZIC using the generalized singular value decomposition

of the two cross channel matrices.

4.2.1 The Discrete Memoryless (DM) IC-ZIC

An IC-ZIC channel consists three transmitters and three receivers. The sub-channel between the
Tx1/Rx1 and Tx2/Rx2 is a two-user interference channel, the sub-channel between the Tx1/Rx1 and
Tx3/Rx3 a Z interference channel, and the sub-channel between Tx1/Rx1 and Tx3/Rx3 a parallel channel.

The discrete memoryless (DM) IC-ZIC is defined in Definition and depicted in Fig.}4.4

Definition 4.1. A discrete memoryless IC-ZIC is a three-transmitter and three-receiver network (X; x Xy X

Xs, p(y1, Y2, ys|z1, T2, x3), V1 X Vo X YV3) with transition probability satisfying

Pyt ys, yz lat, o5, o3)
n
= H (P(y1¢|21e, T2t ) (Y2t | T 18, D20 )P (Y3t |T12,73¢)) (4.1)
t=1
The input and output symbols X; and Y; are taken from the discrete alphabets X; and ); respectively, for

each i € {1,2,3}. Message V; is generated from set M, uniformly at random, and encoded at transmitter

Txi. Receiver Rxi decodes M; as M;.
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PO, Y2, y3lx1, X0, x3)

Rx2
{4"2 — =pOilxi, x2)pO2lxr, x0) F—> M);
2 p(y3lx1,x3)
Tx3 Rx3
M); > > M3

Figure 4.4: DM IC-ZIC

Given the channel as defined in Definition a (n, Ry, Ra, Rs, Pe(n)) coding scheme for a DM IC-ZIC

consists of

e M;, the message to transmit at Txi, assumed to be uniformly distributed over M; € {1,--- ,2"37‘}7

for each i € {1,2,3};
e Encoding functions f;(-) such that
£,(-): M; — X my — x (my).
e Decoding functions g;(+) such that
gi(): Vit — M, g — a(yy').
The probability of error Pe(") is defined to be
P = P My # My, My # My or My # 113} .

A three rate-tuple (Ry, Ra, R3) is said to be achievable if there exists a sequence of (n, Ry, Ra, R3, Pe(n)) coding
schemes for which Pe(n) — 0 as n — oo. The capacity region of DM IC-ZIC is the polytope containing all

achievable rate tuples, denoted as CPM.

4.2.2 The MIMO IC-ZIC

A (My, Ny, My, Noy M3, N3) Gaussian MIMO (multiple-input-multiple-output) IC-ZIC, as shown in

Fig.[4.2.2] has M, antennas at Txi, and N; antennas at Rxi for each ¢ € {1,2,3}. Assuming the channel
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transfer matrices and path attenuations (also referred as channel gains) are time-invariant during each

transmission, the input-output relationship of this channel is described by

Yi = hiiHi1 X1 + +ho1 Hio Xo + 74 (4.2)
Yo = hioH 192X + haaHoo Xy + Z3 (4.3)
Y3 = h13H13X1 + hazH33X3 + Z3, (4.4)

where X; € CMi*1 and V; € CNi*! are complex input and output vectors, and H;; € CNi*Mi ig the channel
transfer matrix from Txi to Rxj whose Frobenius norm satisfies ||HU||§J = 1. We assume the entries of the
transfer matrix H;; are drawn i.i.d. from a continuous and unitarily invariant distribution [45], i.e., UH;;V
is identically distributed to H;; for any U € UNi*Yi and V € UMi*Mi g0 H,; has full rank with probability
one (w.p.1). The path attenuation h;; from Txi to Rxj is a complex number. The Gaussian noise Z; are
iid. CN(0,1y,) across i. Let Cov[z;] be the covariance of the ¢-th symbol of the transmitted codeword

x € X at Txi. The codeword z} should meet the average per-codeword power constraints

1 n
= E(aaal) < P (4.5)
nia
The SNR and INR at receiver Rxi are defined to be
SNRi; = Pilhul* = p*, i € {1,2,3} (4.6)
INRy; = Py|hyi|* £ p™vi, i € {2,3}, (4.7)

where p is the nominal SNR based on which the direct channel SNRs and the two cross-channel INRs are
defined. The distinct SNR and INR exponents allow us to express the disparities in power levels observed
across the direct and cross channels as multiplicative terms associated with the nominal SNR in the dB scale.

We denote the capacity region of the MIMO IC-ZIC as C.

4.2.3 The Channel Structure of the MIMO IC-ZIC

We use the generalized singular value decomposition of Hys and Hi3 and the singular value decom-

position of Hs; to illustrate the channel structure of the MIMO IC-ZIC. Since channel matrices Hy1, His
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Figure 4.5: The MIMO IC-ZIC

and Hi3 have full rank w.p.1, we have

r11 2 rank(Hyy) = min{M,, N1 } (4.8)
712 £ rank(Hiz) = min{ My, N>} (4.9)
715 2 rank(Hy3) = min{ M, N3} (4.10)
N Hyp .
r = rank = min{Mj, N2 + N3} (4.11)
His

The intersection of the two resulting spaces have dimension

123 = T2 413 — 7 (4.12)

We jointly decompose the two channel matrices Hi5 and H;3 via the generalized singular value decomposition

(GSVD) [35], which is

t
‘/T A
H12 - U12212 UT - U12212VT (413)
O(ar,—r)+xr
T
‘/’r‘ A
Hyz = Uiz¥13 Ut 2 U3V, (4.14)
O(nty—r)+ xr

Up; € UNiXNi and U € UM XM gre unitary matrices. $1; € RViX" is a real and rectangular diagonal matrix.

Vi
V, € C™ " is a non-singular upper triangular matrix and V £ U e CMixr Matrices 19

Ocar, —r)+xr
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and X135 have the following structure

T —T13 Ti23 r—T12

r—7Tris I 0 0
(4.15)
E12 = 7123 0 C 0
N2 —T12 0 0 N.E.
r—ris Ti23 T —T12
7123 0 S 0
(4.16)
Y13 = T — 17112 0 0 1
N3 —T13 N.E. 0 0

where C' and S are both non-negative real diagonal matrices satisfying C2 + S? = I. The acronym N.E.
means "never exists”. Note No — r12 and 7 — r15 cannot be simultaneously positive according to (4.9) and

(4.11), and the matrix X1 is in form of either

r—"Tiz Ti2z T —Ti2

T — 713 I 0 0
Yo =
7123 0 C 0
or

r—T13 T123

r— 713 I 0

E12 = 7123 0 C

NQ —T12 0 0

These two different forms of the matrix X152 can be unified as the one given by (4.15)), where the acronym
N.E. comes from the fact that 315 can only be a 2 x 3 or 3 x 2 block matrices. Similarly, N3 —ri3 and r — 13

cannot be simultaneously positive because of (4.10)) and (4.11)), and 313 also has two different forms which

can be unified as (4.16]).
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Define two matrices I1o and A1y to be

T —T13 Ti23 r—"Ti2

r—7Tris I 0 0
(4.17)
-[12 é 7123 0 0 0
N2 —T12 0 0 N.E.
and
r—Ti3 Tz T —Ti2
r—7"Tis 0 0 0
(4.18)
A12 é 7123 0 C 0
NQ — 712 0 0 N.E.
respectively, and the matrix Y15 can be written as
Yig =T + Apa.
Let the matrices G15 and Jyo be
Gia £ UppA1oVT and Jyg 2 Upal1p V1.
Hence, His = G132 + Ji2. Similarly we define two matrices I3 and A13 to be
r—"s3 123 T —T12
7123 0 0 0
(4.19)
Lis £ T —T19 0 0 I
N3 — 713 N.E. 0 0
and
r—Tis 23 T —Ti2
7123 0 S 0
(4.20)
Ay £ r—T12 0 0 0 )
N3 — 713 N.E. 0 0

respectively, and the matrix Y13 can be written as

Y13 =TI+ Ass.
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Let the matrices GG13 and Jy3 be
Gz 2 UizA3VT and Jiz 2 Upsli3V7.

Hence, Hi3 = G13 + J13.
The channel matrix Hs; from Tx2 to Rx1 can be decomposed with singular value decomposition
(SVD) as follows,

Hyy = Uy ¥o1 V), (4.21)

where Us; and Vo are Ny x N7 and Ms X My unitary matrices respectively and Yo is a diagonal matrix

whose diagonal values consists of the singular values of Ho;.

Remark 4.1. Through the lens of GSVD, the transmit directions of the interference from Tx1 to Rx2 and
Rx3 are established by the column vectors of the matrix V in and . The rectangular diagonal
matrix >1; determines which components in VX, are transferred to Rxi for i € {2,3}. The first r — r13
components of VX, will be heard by Rx2 but not by Rx3, because 12 has identity block matrix in the
upper left, whereas Y13 has all-zero block matrix in the upper left. Similarly, the last  — r12 components of
VX, will be received at Rx3 but not Rx2. The middle ri23 components of VX, will be received by both
Rx2 and Rx3, but with different interference strengths (INRi3 and INRy3). Similarly, through the SVD of
Hyy, the transmit directions of the interference from Tx2 to Rx1 are determined by the column vectors of
the matrix V2T1 in ([£.2I). The diagonal matrix X2; determines which components of V2T1X2 are transferred to
Rx1. As pointed out in Remark there are a few differences between the SVD and GSVD. In particular,
the matrix V), is unitary therefore its column vectors not only define the transmit signal direction but also
form an orthonormal basis of the transmit signal space. However, because the matrix V' is generally not

unitary or orthogonal, it can be rank deficient.
Remark 4.2. Note we have assumed INR15 and INR;y3 are sufficiently large so that we can disregard the gains
contributed by C' and S which is justifiable for analysis up to GDoF accuracy.

Next, we express the channel outputs at Rx1-Rx3 in terms of channel side informations. Define the
channel side information

So1 £ ho1Hoy Xo + Z1. (4.22)
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The received signal Y7 at Rx1 given by@can be written as the sum of the received intended signal h1y H11X4
with the channel side information So.
To describe the received signal Y> and Y3, we use three channel side informations Sy23, S12 and Si3

which represent the parts of the interference (and its associated noise) hearable at Rx2-Rx3, Rx2 and Rx3.

They are given by (4.23)-(4.25).

U1731(1:r123)Z3
h13G13X1 + Uss INR;2 > INRy3

O(Ng—’r‘lzg) x1

Sio3 = (4.23)

O(T—Tla)xl

h12G12X1 + Uiz []1*21(’“*7“13“”12)22 INR;2 < iNR;3

0(N27’I“12)><1

hi1oH12 X1 + Zs INR12 > INR;3
U1721(1:r7r13)22
Spp = (4.24)
hi2J12X1 + Uiz 0, x1 INR1s < iNRy3
U1721(T12+1:N2)Z2
07’123><1
h13J13X1 + U13 |NR12 Z |NR13
Si3 £ U1731(7“123+12N3)Z3 (425)
hisH13X1 + Zs. INR;2 < iNR;3

The reason that channel side informations Sy23, S12 and S13 depends on the relationship ofINR;5 and INR;3 is
because the channel gain associated with common part of the interference is determined by the channel gain
of the weaker interference receiver. When INR;5 > INR;3, the channel side informations are the same as these
informations in the MIMO one-to-three IC, i.e., —. The side information S723 contains the common
part of the interference signal h13G13X; that can be heard by both Rx2 and Rx3 with the associated 123
noise elements. There is no Syo3 explicitly in because Siz = h12U12112VI X1 4+ hi2UiaA12VIX) + Z

already contains a scaled and linearly transformed version of the interference signal in Si23 in the term
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h12U12A12V1 X, The side information Sy3 contains the partial interference signal exclusively for Rx3. Sis
contains the interference sent along the exclusive signal directions to Rx2 (h1oUsal LViX 1) and the amplified
version of Sia3 (h12U12J12VTX1) to Rx2. As will be seen in what follows, the GDoF optimal coding scheme
incorporates signal direction alignment to utilize the exclusive transmit directions from Tx1 to Rx2 and Rx3
respectively, as well as signal level alignment to adapt the disparity of the interference strengths along the
common transmit directions from Tx1 to Rx2-Rx3.

With the channel side informations defined above, the channel input-output relationship —

can be written as

Y1 = h11Hi1 Xy + S2 (4.26)

S12 + hoo Hoo X5 INRi2 > INRy3
Yy = (4.27)

Sias + Sio + hosHzo X INRya < INRy3

Si23 + S13 + hazH33X3 INRi2 > INRy3
Y, = . (4.28)

Sis + h3sH33X3 INR12 < INRy3

The relationship between VTVTT and the two scaled identity matrices A2, (V;.)I, and \2

min max

(V)1 will

be frequently used in the rest of the chapter. We present it in Fact

Fact 4.1. Let V,. be a v x r full rank square matriz. The following relationship holds between the matrices

Vv N2 (VL and N2, (V)

min max

Xin (V) I 2 VRV 208 (VI (4.29)
which is equivalent to
V, V1 Vv, Vi
—rr << #, 4.30
)‘?nax(‘/?") N N )\?nin(vr) ( )

and

M2 (VL = VoI <022 (V). (4.31)

max min
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4.3 Multi-level Superposition Coding Scheme and the Inner Bound for the
DM IC-ZIC

The structure of the channel suggests a natural coding scheme for the DM IC-ZIC: three level
superposition coding at Tx1 as in the DM one-to-three IC (c.f. Section , two level superposition coding
(either HK [23] or CMG type coding [10,/11]) at Tx2 as has been done for the two-user DM IC and single
user random coding at Tx3. More specifically, we split the message My at Tx1 into four parts, namely M;s3,
Mi2, M3 and My, and perform three level superposition coding to encode them to intermediate codewords
Wihs, Wiy, Wi and Wi}, so that those four messages can be decoded by Rx1-Rx3, Rx1 and Rx2, Rx1 and
Rx3 and Rx1 only, respectively. We split the message My at Tx2 into two parts (M2 and My,) and perform
CMG type superposition coding to encode them to intermediate codewords W3; and W3, so that Mgy and
M1, can be decoded by Rx1-Rx2 and Rx1 only. The Tx3 simply encodes its entire message using a single
user random codebook.

According to the coding scheme introduced above, we define the set of the coding distributions ac-

cordingly in Definition |4.2

Definition 4.2. Let Py, be the set of distributions Py, of joint random variables (Q, Wias, Wia, W13, Wia, X,

Xo, X3) that can be factored as

p(q, w123, W12, W13, W21, T1, T2, T3) = P(q)p(Wwi23]q)p(wi2|wi2z)p(wis|wizs)p(wai|q)
- p(@1|wi2s, w12, wi3)p(z2|waer )p(w3lq). (4.32)
An inner bound is obtained in Theorem for any fixed coding distribution P, € Pi, through
a detailed joint typicality analysis. For the sake of convenience, we define the relevant set functions in
Definition [.3] in terms of which the inner bound can be written succinctly. Define ©; to be the index set of
the sub-messages which needs to be decoded at Rxi (intended or non-intended) for each i € {1,2,3}, i.e.,
©1 2 {123,12,13,1p,21} = {1,21}
O, 2 {123,12,21,2p} = {123,12,2}

O3 = {123,13,3}.
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Note by the message split scheme introduced in the beginning of this section, we have {1} = {123,12,13, 1p}

and {2} = {21, 2p}. Also, define ®;, 5 and P3 to be the three sets defined in the following.

o, 2 {{1p}, {12, 1p}, {13, 1p}, {12,13, 1p}, {1}, {1p, 21}, {12, 1p, 21}, {13, 1p, 21}, {12, 13, 1p, 21}, {1,21}}

(4.33)
@y = {{2p}, {2}, {12,2p}, {12, 2}, {123,12,2p}, {123,12,2}} (4.34)
®3 2 {{3},{13,3},{123,13,3}} (4.35)

Let Mg, = {Ureg,Mi} and Wy, = {Ugeg, Wi }. For a given P, the set function F;(M,) takes the sub-message
set My, € ®; (for ¢ € {1,2,3}) as input and returns the mutual information between the set of auxiliary
random variables W, (which are used to encode the sub-messages in the set My,) and the received signal
Y; conditioned on We,\4, and time sharing variable Q. For example, Fy (M, M;2) is the mutual information

between Wi, Wig (which are used to encode My, and Mi2) and Y7 conditioned on Wia3, Wi, Wai and Q.

Definition 4.3. For a fix distribution P, € Pj,, define the following set functions for the DM IC-ZIC inner

bound.
Fi(Myp) £ I(X1; V1| Wie, War, Q) (4.36)
F1(Mi3,M1,) = I(X1; Y1 |[Wias, Wiz, Wa1, Q) (4.37)
F1(M12,M1,) = I(X1; Y1 |Wias, Wiz, Wai, Q) (4.38)
Fi (M2, Mi3,Mip) = I(X1;Y1|[Wias, Wa1, @) (4.39)
Fi(My) £ I(X1;Y1[Wa1, Q) (4.40)
F1(M1p,Ma1) = I(Xy, Wap; Y1 |[Wie, Q) (4.41)
Fi(M13,Mip, Ma1) £ (X1, War; Y1|[Wiaz, Wi, Q) (4.42)
F1(Mi, Mip, M21) £ I(X1, War; Y1|Wizg, Wis, Q) (4.43)
F1(Mi2, M13, M1p, Ma1) = I( X1, War; Y1 [Wias, Q) (4.44)
Fi(M,May) £ 1(Xy, Way; Y11Q) (4.45)

Fo(Map) £ I(Xa; Ya|Wiaz, Wiz, Way, Q) (4.46)



Fa(Ma) £ I(Xa; Ya|Wias, Wiz, Q)

(1>

Fo(Mi2,Map) = I(Xo, Wia; Ya|Wias, Wa, Q)

Fa(Mi2, M) £ I(Xa, Wia; Ya|[Wia3, Q)

[I>

Fo(Mi23,M12,Map) = 1( X2, Wia3, Wia; Y2 |Wa1, Q)

(>

Fo(Mi23, Mi2,Ma) = 1(Xo, Wia3, Wia; Y2|Q)

Fs(Ms) £ I(X3; Y3|Wias, W13, Q)

[I>

F3(Mi3,M3) = (X3, Wi3; Y3[Wi23, Q)

F3(M123, M3, M) = I( X3, Wiag, Wis; Y3]Q)

where for the sake of simplicity we define Wi = {Wia3, W12, Wis}.

The inner bound for the DM IC-ZIC is stated in the theorem below.
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(4.47)
(4.48)
(4.49)
(4.50)
(4.51)
(4.52)
(4.53)

(4.54)

Theorem 4.1. For the DM IC-ZIC and some fized distribution P, € Pi,, the region REM(Py,) defined by

([4.55)-(4.85)) is achievable, i.e., ROM C cPM.

Ry

Ry

Ry

Ry

Ry

R3
R+ Ro
Ry + Ry
Ry + Ry
Ry + Rs
Ry + Rs3

Ri + Rs3

2 [(Ry, Ry, Rs) € R? -

< F(Mp)

< F1(Mi13,M1p) + Fa(Mi23, M12, Mp)
<Fa(M2)

< Fi(Mip, Ma1) + Fo(Map)

< F3(M3)

< Fy (M, Map) + Fo(Map)

< F1(Mi3,M1p) + F2(Mi23, Mi2, M2)

< Fi(My3,M1p,Mo1) + Fa(Mi23, M12, Map)
< F1(Mi2,M1p) + F3(Mi23, M13,M3)

< F1(M1p) + F2(Mi12,Map) + F3(M123, M13, M3)

< Fi(Myp) + F2(My23, M1, Mop,) + F3(My3,M3)

(4.55)
(4.56)
(4.57)
(4.58)
(4.59)
(4.60)

(4.61)

(4.62)

(4.63)



Ry + Ry + Ry < F1(Myp) + Fo(My2,M2) + F3(Mi23,M13,M3)
R1+ Ry + R3 < F1(Myp) + Fo(My23, M12,Ma) + F3(My3,M3)
Ry + Ry + R3 < F1(Myp,Ma1) + F2(M12,Map) + F3(Mi23, M13, M3)
Ry + Ry + Rz < F1(Myp, M21) + F2(Mi23, Mi2,Map) + F3(Mi3,M3)
R1 + Ry + Rs < F1(My2,Mip, Moq) + Fo(Map) + F3(Mi23, Mi3, M3)
Ry + 2Ry < Fi(Mig,Mip, Ma1) + Fo(Map) + Fa(Mi23, Mi2, Ma)
2R1 4+ Ry < Fy(Mi3,Myp) + F1 (M1, Ma1) + Fa(Mi23, M12, Map)
2R; 4+ R3 < Fi(Mip) + F1(Mi2, M3, M1p) + F2(Mi23, M2, Map) + F3(Mi23, Mi3, M3)
2Ry + Ry + R3 < F1(Mi1p) + F1(Mi2, M13,M1p) + Fa(My23, M12, Ma) + F3(Mi23, M13, M3)
2R1 + Ry + R3 < F1(M1p) + F1(M12, M3, Mip, Ma1) 4+ F2(Mi23, Mi2, Map) + F3(Mi23, M3, M3)
2R; + Ry + R3 < F1(M1p) + F1(My,Ma1) + Fo(Mi2,M2) + F3(My23, M3, M3)
2Ry + Ry + R3 < F1(Mi1p) + F1 (M1, Ma1) + F2(Mi23, M12, Map) + F3 (M3, M3)
R1 + 2Ry + R3 < F1(Myp, M21) + F2(Map) + F2(Mi2,Ma) + F3(Mi23, M13, M3)

Ry + 2Ry + Ry < F1(Myp, Ma1) + F2(Map) + F2(Mi23, M12,Ma) + F3(Mi3,M3)

2R1 4+ 2Ry + R3 < F1(Myp) + F1(Mi3, My, Ma1) + F2(Mi2,M2p) + Fo(My23, Mi2, Ma) + F3(My23, M3, M3)

2Ry + 2Ry + R3 < F1(M1p) + F1(Mi2, M13, M1p, Ma1) + Fo(Map) 4+ F2(Mi23, M12, Ma) + F3(My23, My3,M3)
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(4.64)
(4.65)
(4.66)
(4.67)
(4.68)
(4.69)
(4.70)
(4.71)
(4.72)
(4.73)
(4.74)
(4.75)
(4.76)
(4.77)
(4.78)

(4.79)

2R1 + 2Ry + R3 < F1(Mip,Ma1) + F1 (M2, Mi3, M1, Ma1) + Fo2(Map) + Fo(Mi23, Mi2, Map) + F3(Mi23, Mi3, M3)

2R1 + Ry + 2R3 < F1(Myp) + F1(Mi2,Myp, M21) + Fo(Mi2,Map) + 2F3(My23, M3, M3)

2R1 + Ry + 2R3 < F1(Myp) + F1(Mi2, M1, Ma1) + F2(Mi23, Mi2, Map) + F3(Mi3,M3) + F3(My23, M3, M3)

3R1 4+ Ry + Rg < F1(Myp) + F1(M12,Mi3,M1p,) + F1 (M1, Ma1) + F2(Mi23, M12, Map) + F3(Mi23, Mi3, M3)

(4.80)
(4.81)
(4.82)

(4.83)

3R1 + 2Ry 4+ 2R3 < 2F(Myp) + F1(M12, M13, Mip, Mo1) + Fo(Mi2,Map) 4+ Fo(Mi23, Mi2, Ma) + 2F3(M123, Mi3, M3)

(4.84)



90

2R1 + 3Ry + Ry < F1(Myp, Ma1) + Fy (M2, My, Myp, May) + 2F2(Map) + Fo(Mi23, Mi2, Ma) + F3(My23, i3, M3) }

(4.85)
Proof Outline. We outline the proof here and relegate the full proof to Appendix As previously stated,
Tx1 performs three level superposition coding; Tx2 performs two level superposition coding; and Tx3 per-
forms single user random coding. More specifically, Tx1 splits a message m; into four parts misz, mia,
mq3 and my,. The sub-message my23, which needs to be decoded by Rx1-Rx3, is first encoded to the first
level codeword wiys(mi23). Then the multicast sub-message my; is encoded to w;(my;, wihs(miss)), which
needs to be decoded by Rx1 and Rxi for some ¢ € {2,3}. This is the second level superposition coding.
Finally, based on m;,, which is the private message to be decoded by Rx1, the entire message is encoded
to the codeword x1(map, wis(Mmiz, wiss(Mi23)), wis(mas, wiss(Mmigs))). Tx2 splits a message mo into two
parts mg; and my,. The sub-message mo; needs to be decoded by Rx2 and Rx1, and it is encoded to the
codeword w3 (me1) first. Then based on may,, which is the private message to be decoded by Rx2, the entire
message My is encoded to the codeword x4 (map, wh (me1)). Tx3 sends information mg via some codeword
x%(ms3) using a single-user random codebook, and Rx3 decodes the intended message mg. Fourier-Motzkin
elimination is performed to eliminate the four rate variables associated with the auxiliary random variables

Wias, Wia, Wis and Wo; to obtain the achievable region. O

4.4 Bounds on the Capacity Region for MIMO IC-ZIC

We present single region inner and outer bounds for the MIMO IC-ZIC which are within quantifiable
gap (independent of channel SNR/INR) in this section. In Section we present an explicit additive
superposition coding scheme for the general MIMIO IC-ZIC with Gaussian codebooks and specified covari-
ance matrices. We then obtain a single region inner bound which has the form of a single polytope. In
Section [£.4.2] we derive a single region outer bound through the genie aided argument. In Section [£.4] the
gap between the inner and outer bounds is then quantified and shown to depend only on the entries of the

cross channel matrices Hys and Hig.
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4.4.1 The Inner Bound

A per-distribution achievable region Ri,(P.y) for the DM IC-ZIC has been derived in Theorem In
this subsection, we apply that result to the MIMO IC-ZIC to obtain a single region inner bound in Theorem
to follow. In particular, to prove Theorem we have to specify an explicit coding distribution P,
and then compute the set functions in Definition [£.3] for the MIMO setting and for this particular coding
distribution. The set functions for the MIMO IC-ZIC inner bound are given in Definition [{.4] and the inner

bound itself is stated in Theorem [4.2]

Definition 4.4. Define the set functions listed as (4.86))-(4.104)), where the constant (1, 82 and f3 are

Fi(My,) = log | Iy, + p™ H11 Q1 HY, + Pa21H21Q2pH2Tl’ - h (4.86)
Fy(My3,M1p) = log |In, + p“' H11(Q13 + le)HlTl + Pa21H21Q2pH2Tl‘ - B (4.87)
Fi(Mi2,Mp) =log |In, + p*" Hi1(Q12 + Q1p)H1Tl + PO‘ZIHleszgl’ -5 (4.88)

Fi(Mi2,M13,M1,,) = log |In, + p“ H11(Q12 + Q13 + le)HL + panHleszgl‘ - B (4.89)
Fi(My) = log [In, + p™ Hi1 Q1 H], + panHleszgm - B (4.90)
Fi(Mip,Ma1) = log | Iny + p® HyiQupHY, + p°2 Hoy Qo HY, | — B (4.91)
Fy(My3,M1p,M21) = log |In, + p™"* H11(Q13 + le)HL + PamHlezH%’ -5 (4.92)
F1(Mi2,M1p,Ma1) = log |In, + p“** H11(Q12 + Qm)HL + pa2lH21Q2H§1’ — B (4.93)
Fy(My2,M13,M1p,Ma1) = log [In, + p*"  H11(Q12 + Q13 + le)HL + ,o”leleHL‘ -5 (4.94)
Fy(M1,Mg1) = log|In, + PO‘”H11Q1HL + pa21H21Q2H2T1| - B (4.95)
Fo(Map) = log |In, + p™? Hi2(Q13 + le)HIQ + PQQZHQQszH;fQ’ — B2 (4.96)

Fy(Ma) =log |In, + p**2 H12(Q13 + le)Hfg + pa22H22Q2H§2’ — B (4.97)
F>(Mi2,Mgyp) = log |In, + p*2 H12(Q12 + Q13 + Q1p)HIQ + pazszzszng) — B (4.98)
Fy(Mi2,Mp) = log |In, + p**2 Hi2(Q12 + Q13 + Q1p)H1Tg + pa22H22Q2H2Tz‘ — B2 (4.99)
F5(Mi23, M2, Mo,,) = log |In, + PamleQlHIg + pa22H22Q2pHg2| — B2 (4.100)
Fy(M123,M12,Mp) = log | I, + p™? H1oQ1 H{y + p*2* HyQo H,| — B (4.101)



33
F3(M3) = log |In, + p*** H13(Q12 + Q1p) H{5 + [;\473}[33]{;3 —Ps
33
F3(Mi3,M3) = log [In, 4+ p“* Hi3(Q12 + Q13 + Q1p) H{s + '0]\473H33H3Ts

33
F3(Mi123,M13,M3) = log |In, + Pa13H13Q1H1Tg + pMi?)H%Hgs‘ - B3

1+ M,
My

51 é Il'liIl{ZV]_7 MQ} log

B2 £ log ’max {lem 1}’ + r123 log (1 + max(A12)) (r — 113)
n(A12)
max(Al?)) _
B = log ’maX {lem 1}! +riezlog | 1+ + (r —r12)
mln(A13)
Cmin £ m (Ml —r)

— B3
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(4.102)
(4.103)

(4.104)

(4.105)
(4.106)

(4.107)

and the covariance matrices Q1p, @12, Q13 are given by the restrictions (4.141))-(4.145), and Q2, by (4.149).

Theorem 4.2. For the MIMO one-to-three IC, the region Rin defined by (4.108[)-(4.139)) is achievable, i.e.,

7zin c C.

Rin(F1, Fo, F3) 2 {(Ry1, Ry, R3) € R, :
Ry < F1(Mp)
Ry < Fi(My3,M1p) + Fo(My23, Mi2, Map)
Ry < Fo(Ma)
Ry < Fy(Myp,Mo1) + Fo(Map)
Rs < F3(M3)
Ri+ Ry < F1(My,Ma1) + Fo(Map)
Ry + Ry < Fi(Mi3,Mip) + F2(My23, M2, M2)
Ry + Ry < Fi(Mi3g,Mip, Ma1) + Fo(My23, Mi2, Map)
Ry + R3 < F1(My2,M1,) + F5(Mi23, M13, M3)

Ri+ R3 < Fi(Myp) + F5(Mi2,Map) + F3(M123, Mi3,M3)

(4.108)
(4.109)
(4.110)
(4.111)
(4.112)
(4.113)

(4.114)

(4.115)

(4.116)



Ry + R3 < Fi(Myp) + F5(Mi123, Mi2,Map) + F3(My3,M3)
Ry + Ry + R3 < F1(Myp) + Fo(M12,Mg) + F3(My23, M3, M3)
Ry + Ry + R3 < F1(M1p) + F5(M123, M12, M2) + F5(M13,M3)
Ry + Ry + Rz < F1(Myp,Ma1) + F2(My2,Map) + F3(Mi23, Mi3, M3)
Ry + Ry + R3 < F1(Mip,Ma1) + Fo(My23,M12,Mop) + Fi3(Mi3,M3)
Ry + Ry + R3 < F1(M12,M1p, Mo1) + Fo(Map) + F5(Mio3, Mi3, M3)
Ry + 2Ry < F1(M13,Mip, Moy ) + Fo(Map) + Fo(My23, M2, M2)
2R1 + Ry < Fy(My3,Myp) + F1 (M1, Ma1) + F2(Mi23, Mi2,Map)
2Ry + R3 < F1(Mi1p) + Fi(M12,M13,M1p) + Fo(Mi23, Mi2, Mop) + F5(Mi23, M3, M3)
2Ry + Ro 4+ R3 < F1(M1p) + F1(M12,M13,M1p,) + Fo(Mi23, My2,M2) + F5(Mi23, M13,M3)
2R1 + Ry + R3 < Fi(M1p) + F1(M12,Mi3, M1, Ma1) + Fo(Mi23, Mi2, M2p) + F3(Mi23, M13, M3)
2R1 + Ry + R3 < Fi(Mip) + F1 (M1, Ma1) + Fo(Mi2,Map) + F3(My23, M3, M3)
2R1 + Ry + R3 < Fi(Mip) + F1(M1,Ma1) + Fo(Mi23, Mi2, Map) + F5(My3,M3)
Ry + 2Ry + Rs < F1(Mip,Ma1) + Fo(Mop) + Fo(Mi2, Ma) + F3(My23, Mi3,M3)

Ry + 2Ry + Ry < Fi(Mip,Ma1) + Fo(Map) + F2(Mi23, M2, M) + F3(My3,M3)
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(4.117)
(4.118)
(4.119)
(4.120)
(4.121)
(4.122)
(4.123)
(4.124)
(4.125)
(4.126)
(4.127)
(4.128)
(4.129)
(4.130)

(4.131)

2Ry + 2Ry + Rs < F1(M1p) + F1(M13, M1y, Mo1) + Fo (M2, Map) + Fo(My23, Mi2, Ma) + F3(My23, M1, M3) (4.132)

2Ry +2Rs + Rs < F1(M1p) + F1(M12,M13, M1y, Mo1) + Fo(Map) + Fo(M123, M12,Ma) + F3(My23, M1, Ms) (4.133)

2Ry + 2Ry + R3 < Fi(Mip,Ma1) + Fi(Mi2, My, Mip, Ma1) + Fo(Mop) + Fo(Mi2s, Mi2, Map) + F5(Mi23, Mi3, M3)

2R1 4+ Ry + 2R3 < Fy(M1p) + F1(M12, Mip, Ma1) + Fo(My2,Map) + 2F5(My23, M3, M3)

(4.134)

(4.135)

2R1 + Ry + 2R3 < Fy(M1p) + F1 (M12, Mip, Ma1) + Fa(Mi23, M2, Map) + F5(Mi13,M3) + F3(Mi23, M13,M3) (4.136)

3R 4+ Ry + R3 < Fi(Mip) + Fi(Mi2, Mi3,M1p) + F1 (M1, Ma1) + Fo(Mi23, Mi2, Map) + F5(Mi23, M3, M3) (4.137)

3R1 + 2Ry + 2R3 < 2F1(Mip) + Fi(Mi2,Mi3, M1p, Ma1) + Fo(Mi2, Map) + Fa(Mi23, Mi2, M2) + 2F5(Mi23, M13, M3)

(4.138)
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2Ry + 3Ry + Ry < Fy (M1, Ma1) + Fiy (M12, M3, Mip, Mo1) + 2F5(Map) + Fo(Mi23, Mi2, Ma) + F3(My23, My3, M3) }

(4.139)
Proof. As stated in the beginning of this subsection, we apply the inner bound in Theorem for the
DM IC-ZIC to derive the single region inner bound for the MIMIO IC-ZIC. We explicitly pick one coding
distribution from the set of distributions defined in Definition [£.2] which adapts the MIMO IC-ZIC channel
parameters, allowing for auxiliary and input random vectors over continuous alphabets for the MIMO IC-
ZIC. First, time sharing is disabled and all the transmitters use full power. The coding scheme is motivated
from the three level superposition coding scheme for the MIMO one-to-three IC (c.f. Section and
Karmakar-Varanasi coding scheme for the MIMO two-user IC. More specifically, since Tx1 produces one-
sided interferences to both Rx2-Rx3, we employ the same three-level superposition coding at Tx1 as in the
MIMO one-to-three IC (c.f. Section . Let Wia3 ~ CN(0,Q123), Wiz ~ CN(0,Q12), Wiz ~ CN(0,Q13)
and Wy, ~ CN(0,Q1p) be four independent Gaussian random vectors to encode Mja3, Mi2, My3 and My,. The

transmitted signal X is the direct sum of Wia3, Wi, Wi3 and Wy, scaled by the transmit power, i.e.,
X1 = VP (Wigg + Wia + Wiz + Wyy).

Define

‘/TT_l Or M,—r)+t
v, 2yt X@h=n (4.140)

Orri—rytxr L —r)+

as a linear precoding matrix, and let the covariance matrices Q123, @12, @13 and (1, satisfy the restrictions

given by (L.141)-(T.153).

le

o T a T
v P 1237,2192 +p 133313213 0,5 (M1 —r)+
T vpvff Ing, + b h o v (4.141)
r
VpV3) O(nty—r)+xr O(aty —ry+ x (ary —r)+

Q12 + Q1p
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v pa13213213 OT‘X(Ml—r)+ T
AT Vi INRy; > INR;3
Ot —rytxr Oy —ry+x(ary — )+
- —1
v pal2A12A12 =+ pa13213213 07'><(]\/11 —r)+ ;
v | Dt V) INRyy < INRys
O(as, —r)txr Oty —r)+ x (M —r)+
(4.142)
Q13+ Q1p
—1
. pa13A'{3A13 + pa12z'{2212 07'><(1\41 —r)+ ;
Tr(V:v;) Iny + V4 INRg; > INRy3
Oty —r)+xr O(aty — )+ x (M1 —1)+
- —1
o pa122'{2212 07'><(M1—7-)+ )
v | Pt v INRs; < INR;3
Ot —r)+xr Oy —r)+ s (My =)+
(4.143)
Q12 + Q13 + Q1p
-1
V. pa13A1i3A13 07‘><(M1—7‘)+ i
Tr(V:V;) IMl + VP INR21 > |NR13
Ot =)+ xr Oy —r)t > (My =)+
- —1 (4.144)
V. pa12A11‘2A12 07‘><(M1—7‘)+ i
oo | Dt Vi INRyy < INRys
Oaty—r)+scr Oy —r)+ x (Mg —r)+
Q1
Vv, vi
A pVp
= Q12+ Q3 +Q1p+ Q23 = ———. (4.145)
! Te(V, Vy))

This coding scheme was shown to be GDoF optimal for the MIMO one-to-three IC in Section[3.4.4] a special
case of the MIMO IC-ZIC when the cross link channel gain hy; = 0. This three level superposition coding

ensures that the contributions of Wy, at Rx2 and Rx3 have covariances that satisfy
PO‘”HlepHIQ = Iy, and PQI3H13Q1pH1T3 < In,.

Therefore, Wy, arrives at the Rx2 and Rx3 under the noise floor. Hence, Wy, is used to encode My, the
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private message to Rx1. The contribution of Wi, 4+ Wi3 at Rx2 has covariance which satisfies

P2 Hi2(Q12 + le)HIQ =< In,,

and the contribution of Wi, + Wi2 at Rx3 has covariance which satisfies

p*2 Hyz(Qua + Q1p)HI3 < In,.

Hence, W15 and Wi3 are the auxiliary random vectors to encode M;5 and M3, respectively. The random
vector Wias is received above the noise floor at all three receivers; therefore, it is used to encode the sub-
message Mia3 to be decoded by Rx1-Rx3. Besides, it is not difficult to see that results from adding
the left and right hand sides of and and subtracting from that result the left and right hand

sides of (4.141)).

Using the inequality (4.29), the trace Tr(V},VpT ) can be upper and lower bounded as

r
Te(V,V)) = Te(V,V,) > W) + (M1 =) = Cuin (4.146)
and
Tr(V;,VpT) = TI(VPTVP) < %ﬂ/) + (Ml - T)+ = Cmaxs (4147)
respectively.

Since Tx2 only interferes Rx1, we let Tx2 perform Karmakar-Varanasi type coding scheme [27],
where the transmitted signal X5 is the sum of the auxiliary random vectors Wa; ~ CA (0, Q21) and Way, ~

CN(0,Q2,) scaled by the transmit power, i.e.
Xo =Py (War + Wy,).

The random vectors W, and Wy, are used to encode Ma; and My, respectively. The entire signal is trans-

mitted with full power and with covariance

1
Qg £ COV[XQ] = 7IM2. (4148)
Mo
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The covariance matrices Q21 and (2, are chosen as follows.

1

Qap = E(IMQ + p2 HY, Hyp ) ™! (4.149)
1

Q2 = @IMZ - Q2 (4.150)

This coding scheme was first proposed in [26] for the two-user MIMO interference channel. It was shown
therein that the resulting rate region is within constant gap to the capacity region of the MIMO two-user
interference channel |27, Theorem 2].

Lastly, we let Tx3 perform single user coding with Gaussian random codebook to encode the intended

message Mg directly to the transmitter signal X% at full power, i.e.

P.
Cov[X3] = ﬁist.

Note there is no water-filling at Tx3, and the total transmit power is uniformly and independently allocated
among all transmit antennas. The earlier works in [39] and Section already pointed out that the scaled
identity matrix is sufficient to achieve constant-gap-to-capacity region for the MIMO MAC (hence also for
MIMO P2P channel). For the purpose of deriving GDoF region for the MIMO IC-ZIC, water-filling for Tx3
turns out to be unnecessary, which will be shown in the gap result in Section [.4.3]

With the distributions for the inputs specified this way, we are now ready to obtain the inner bound
of Theorem from Theorem Please refer to Appendix for the evaluation of the set functions in

Rin for the MIMO IC-ZIC. O

Let us take a deeper look at the coding scheme. We temporarily assume INRis > INR;3 before the

end of this subsection. From the restrictions (4.141f)-(4.145)), the individual covariance matrices @12, Q13

and Q123 can be obtained as (4.151))-(4.153|).

vV,
@ =
e o lio + (I + p™2 ALy Ayg) ™1 = (I + p 2 Al Aus + p212 ATy Arp) !
O(ar,—ryx (M1 —7)
v (4.151)
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Pt
v 5113113

Qua=—2— | v (4.152)

Tr(VpVy)

O(at,—ryx (M1 —7)
(e i —1
Vo VT v, L — (I + p*2 Aj3Aq3)

Q123 = 7T Qip — Q2 — Qi3 = 7PT VpT

Tr(VpVy) Tr(VpVp)

O(aty —r)x (My—7)
(4.153)
Let X123, X12, X13 and X;,, be zero mean Gaussian vectors with identity covariance matrices, of length 7123,
r12, T13 and My, respectively. With their chosen covariance matrices, the auxiliary random vectors Wiag,

Wi, Wiz and Wy, can be alternatively written as follows.

T123 1 1 k
Wiz = 1— yIr—ris+klx (k) 4.154
128 Z: Tr(V, \/ 14 prs )2, reristk 123 ( )

T— ’I‘13
— [ - [k] /1
W12 V VT 1 + pau

T12 1 1 .
+ yklx (R 4.155
= rzr;m-l Tr(Vy Vi) \/1 + P3N, 1+ pU2AT,  + p2EAT, P 2 ( )

r— T12
Wig = / V[“’-’Jr’f],/ 4.156
13 r(V, Vp 1+ poas pa13 13 ( )
T / / K1y . 1 1 il (F)
k k
Xy, + VIFX
v (V, VT 14+ pa12 . Z (Vp‘/;[) \/1 + pQ12>\%27k + pal?,)\%s’k p “p

r— 7’13+1 Tr

>y N Vx4 1 yagm (4.157)
a 1 .
it VvT 1+p ' 5 r+1 (V) 7

In the aforementioned equation, ngé denotes the k-th data stream to Rx1-Rx3 that carries the public

Wi,

sub-message (k-th public data stream) along the transmit direction Vp[T_TIBJrk]. It needs to be decoded by all

) ]

three receivers. Similarly, X(12 is the k-th public data stream to Rx1-Rx2 along the transmit direction V[
The data streams X;2 can be divided into two groups. The first » — r13 data streams are sent at power level
pY, and they are received by Rx1 and Rx2, but not Rx3, since they are sent along the null space of (H;3).
The other r123 data streams will be sent at power level p~®13 so they are decodable at Rx1 and Rx2, but
not Rx3, since they arrive under the noise floor at Rx3. The data streams X;3 are received by Rx1 and Rx3,
but not Rx2, as they are sent along the null space of (Hy2). The data streams X;,, are received by Rx1 only,

as a result of which we call them private data streams. The first r — ry3 private data streams are hearable

by Rx2, but not Rx3; therefore, they are transmitted at power level p~“12 so they arrive at Rx2 under the
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noise floor. The data streams X(T ma+l)

, Xg;”) are hearable by both Rx2 and Rx3, and they are sent
at power level p~®12 so they arrive at Rx2 and Rx3 under the noise floor. The next r — r15 private data
streams X&Z,HH), SN xﬁj} are hearable by Rx3, but not Rx2, and they are sent at power level p~%13 so they

arrive below the noise floor at Rx3. Lastly, when there are more transmit antennas at Tx1 than the sum

of receiver antennas at Rx2 and Rx3, the precoding matrix V,, lets My — r private data streams (the last

Hyo

part on the right hand of (4.157)) transmit along the null space of < >, and these data streams are

His

exclusively hearable by Rx1; thus, these private data streams are sent at power level p°.
Similarly, let X2; and X2, be zero mean Gaussian vectors with identity covariance matrices, of length
min{ M, N1} and M; respectively. According to their chosen covariance matrices, the auxiliary random

vectors Wa1 and Wy, can be alternatively written as

min{Ms,N} a 2
P 2105, k)
Wor — v, |2 2Lk y 4.158
21 Z 1 + pozzla— ( )

mm{Mg,Nl} M2
Py K | P2k
Vit | =2 ‘/1+ ol Vo 275 (4.159)
P k= mln{MQ,Nl}—i-l 2

The public data streams X2; need to be decoded by both Rx1 and Rx2, and the private data streams X,

Wayp

are decoded by Rx2 only. The first min{M,, N1} private data streams in Xo, are sent at power level p~@2!
and are received under the noise floor at Rx1. These data streams are the first part in the right hand side of
(4.159). When there are more transmit antennas at Tx2 than receive antennas at Rx1, there are My — N
data streams sent along the null space of (Hs;) causing no interference to Rx1; therefore, these data streams
are sent at power level p° which are the second part in the right hand side of . The non-interfering

signal X3 can also be rewritten in terms of independent data streams

min{Mg,Ng} P
3

k
Xs= Y Exg ), (4.160)
k=1

and it is only to be received and decoded by Rx3.
4.4.2 The Outer Bound

We derive a single region outer bound for the MIMO IC-ZIC in this subsection. We provide various

genie informations to Rx? to produce upper bounds on R; in several different forms, and then linearly combine



100

those upper bounds across i € {1,2,3} to obtain sum rate upper bounds. To present the outer bound, we

define relevant set functions in Definition 1.5l The outer bound itself is stated in Theorem [4.3]

Definition 4.5. Define the following matrices given by (4.161))-(|4.164))
-1
Ky & (IMl + PQIZHIQHH + PQISHISHB)
; -1
(1M1 + p“”HlsHlS)
t t -1
Ing, + p*2 GGz + Pa13H13H13)
i i !
Ing, + p*2G13Grs + Pa12H12H12)
; -1
Iy, + pa”Hquz)

(
(
(

-1
Ing, + p“lSGiSGlg) INRy5 > INRy3

-1
(IMI + pawGLGlg) INRy5 < INRy3
A a t -1
K2p = (IMl +p 21H21H21)

and the set functions listed in —.
Fi1(Myp,) £ log(In, + p““HuKlpHIl)
Fy(Mi3,M1p) 2 log(In, + p® Hy1 K131, H];)
F1(Mi2,Mp,,) 2 log(Iy, + pa“HuKlz,lpHL)
Fy(My2,M13,M1,) £ log(In, + pa“H11K12,13,1pHL)

Fi(My) 2 log(In, + p™ Hy HYy)

INRy2 > INRy3

INRi2 < INRy3

INR12 > INR;3

INR12 < INR13

Fi(Mip, Ma1) 2 log(In, + p® Hy1 K1, Hiy + p°2 Ho HY, )

F1(My3,M1p,Mo1) £ log(In, + Pa11H11K13,1pH1Tl + pa21H21H;1)

F1(My2, M, Mo1) 2 log(In, + PQ11H11K12,1pHL + panHle;rl)

F1(Mi2,M13,M1p, M21) = log(In, + Pa“H11K12,13,1pH1Tl + p Hyy HY,)

Fy (M1, M) 2 log(In, + p™* Hyy HY| + p©® Hoy HJ,)

Fy(My,) £ log(In, 4 p**2 Hyo KopHa)

(4.161)

(4.162)

(4.163)

(4.164)

(4.165)

(4.166)
(4.167)
(4.168)
(4.169)
(4.170)
(4.171)
(4.172)
(4.173)
(4.174)
(4.175)

(4.176)



Fy

Fy(Mo) 2 log(In, + p22 Hop H},)
Fo(M2,My,) = log(In, + PQ12H12K12,13,1;)HIQ + pa22H22K2pH2Tg)
Fa(M2,Mg) £ log (I, + pa12H12K12,13,1pHIQ + ,00‘22H22H;2)

(Mi23, Mi2, Ma) 2 log(In, + p®12 HipHYy + p©22 Hap K5, H1,)

Fo(Mg3, Mi2, M) = log(In, + PQHHHHIQ + Pa22H22H2T2)

F3(M3) £ log(In, + p** HagHl)

F3(My3,M3) £ log(In, + Pa13H13K12,13,1pH1Tg + PO‘BSHsSH;,rs)

F3(Mi23,M13,M3) = log(In, + PQISH13H1T3 + Pa33H33H§3)

Theorem 4.3. For the MIMO IC-ZIC, let

log |max {/\max s 1}|

7193 log (1 n %) INRys > INRy5

n s
log|max{)\max ),1}|

1>

+r123 log (1 + ma”&iif) INRy2 < INR13

min
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(4.177)
(4.178)
(4.179)
(4.180)
(4.181)
(4.182)
(4.183)

(4.184)

(4.185)

and the capacity region C is contained in R, which is defined by inequalities (4.186) (4.213)), i.e., C C R,.

RO(F17F2,F3) £ {(RlaR27R3) € Ri :

Ry

Ry

R3

Ry + Rs

Ri+ Ry <

R+ Ry <

Ry + R3 <

Ri+ Ry + R3

IA

IN

IN

IN

< Fi(M1p) + Fo(M12,Ma) + F3(Mi23, M3, M3)

'ﬁ |

"11 |

"ql

’H|

'ﬁ |

"11

<Pk

1(My)

2(M2)

3(M3)

1(My, Ma1) + Fo(Map)

1(M13, M1p) + Fo(Mi23, M1, M) + 1
1(M13, M1p, M21) + Fo(My23, M12,M2p) + 1

(M12,M1p) + F3(M123, M13,M3)

(4.186)
(4.187)
(4.188)
(4.189)
(4.190)
(4.191)
(4.192)

(4.193)



R+ Ry + R3

R+ Ry + R3

Ri+ Ry + R3

Ri+ Ry + R3

Ri 4+ 2R,

2R, + Rs

2R1 + Ry + R3

2R, + Ry + R3

2R1 + Ro+ R3

2R, + R2 + R3

Ri + 2Ry + R3

R+ 2Ry + R3

2R + 2Ry + R3

2Ry + 2Ry + R3

2R 4+ 2Rs + R3

2R1 + R + 2R3

2R + Ry + 2R3

3R1+ Ry + R3

3R1 4+ 2Ry + 2R3
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< Fi(M1p) + Fo (M2, Mi2, Mp) + F5(M13,M3) + 1 (4.194)
< Fy(Myp,May) + Fo(Mia, Map) + F5(Mia3,My3,M3) (4.195)
< Fy(Myp,Mo1) + Fo(My23,M12,Mop) + F3(My3,M3) + 1 (4.196)
< Fy(My2,M1p, Mo1) + Fo(Map) + F3(My23, Mi3,M3) (4.197)
< Fy(My3,M1p,Ma1) + Fo(Map) + Fo(Mi3,M12,Ma) + 1 (4.198)
< Fy(M13,M1p) + F1(M1,Mo1) + Fo(My23, M12,M2p) + 7 (4.199)
< Fy(Myp) + F1(Mi2,My3,M1,) + Fo(Mi23, My2, Ma) + F3(My23, M1z, M3) + 7 (4.200)
< 71(M1p) + F1(Mi2, Mi3, Mip, Mo1) + Fy(My23, M1, Map) + F3(My23,M13,M3) + 1 (4.201)
< Fy(Myp) + F1(M1,Ma1) + Fo(Mya,Map) + F3(Mia3, M13,M3) (4.202)
< Fy(Myp) + F1 (M1, Ma1) + Fo(Mya3, M19, May,) + F3(My3,M3) + 1 (4.203)
< Fy(Mip,Mo1) + Fo(Map) + Fo(M12,M2) + F3(Mia3, M3, M3) (4.204)
< Fl(M1p7M21) + FQ(MQp) + Fy(Mya3,M12,Ma) + F3(M13,M3) + 1 (4.205)

< Fi1(M1p) + F1(Mi3,M1p, M21) + Fo(M12,Map) + Fo(Mi23, Mi2, Ma) + F3(My23, Mi3, M3) + 17

(4.206)

< Fy(Myp) 4+ F1(Mi2,My3,M1p, Mo1) + Fo(Map) + Fo(My23, Mi2, Ma) + F3(My23, M13,M3) 4+ 17

(4.207)

< Fi(Mip,Mo1) + F1 (M12, Mi3, Mip, Ma1) + Fo(Map) + Fo(Mi23, Mi2, Mop) + F3(Miog, Mig, M3) + 17

(4.208)

< Fy(Myp) + F1(M12, M1y, Mo1) + Fo(My2,Map) + 2F5(M123, M3, M3) (4.209)

< F1(M1p) + F1(Mi2,M1p, M21) + Fo(M123, Mi2, Moy, ) + F3(Mi3,M3) + F3(Mi23, Mi3, M3) + 17

(4.210)

< Fi(M1p) + Fi(Mi2,M13,M1p) + F1 (M1, Mo1) + Fo(Mi23, M12, Map) + F5(My123, Mi3, M3) + 1

(4.211)

< 2F1 (M1p) + Fi (Mi2, Mig, Mip, Mo1) + Fo(Mi2, Moy, ) + Fo(Mia3, Mio, Ma) + 2F5(My23, My3, M3)
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+n (4.212)
2R1 + 3Ry + Ry < Fy (Mip, Ma1) + F1 (Mi2, M3, M1p, Mo1) + 2F2 (M) + Fo(Mi23, M12, Ma) + F3(Mi23, M13, M3)

+n} (4.213)

Proof Outline. The fundamental principle in the proof of the outer bound is to construct virtual channels
whose outputs are then regarded as genie informations to each receiver to decode its intended signal (and
therefore making the receiver more interference-resilient). We construct three genie informations (7123, T12
and T3) which are identically distributed as the channel side informations Si23, S12 and Si3, respectively,
but each pair of corresponding “T” and “S” random variables (with the same subscripts) are independent
conditioned on X;. The upper bound is proved in three steps. First, by providing one or more of those
genie informations to Rxi, ¢ € {1,2,3}, we derive a series of individual upper bounds on R;. Some of the
bounds may contain entropy terms which cannot be single-letterized. There is one set of individual upper
bounds for Ry, but there are two sets of individual upper bounds for Ry (and also R3) for the two cases
INR12 > INR;3 and INRj3 < INRj3. Secondly, we linearly combine those individual upper bounds across
i € {1,2,3} to obtain sum rate upper bounds with unsingle-letterized entropy terms vanished. We then
get two intermediate outer bounds in terms of channel side and genie information symbols for the cases
INRi2 > INR;3 and INRjs < INR;3. We unify these two outer bounds into one bound. This bound is a
union of polytopes over all admissible input distributions. Finally, we optimize the input distributions in
the context of MIMO setting and plug in the optimized distribution to obtain a single region output bound

in terms of the channel parameters. Detailed proof is relegated to Appendix O

4.4.3 Quantifiable Gap

An achievable rate region of a MIMO IC-ZIC is within gap (n1,ns,n3) to its capacity if for any given
rate tuple (Ry, Re, R3) € C, the rate tuple (R; — ni, Re — n2, R3 — ng) is within that achievable region. We
call the tuple n; the individual gap on R;. Since we do not know the capacity region C, we quantify the gap
between the inner bound R;, and the outer bound R, and the resulting gap will be an upper bound of the

gap between Ri, and C. The main result in this subsection is stated in Theorem (|4.4)).
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Theorem 4.4. Define the following constants.

1 2 min{M;, N1} log (Guax max { X2, (V),1}) " (4.214)
Y 2 min{ My, Ny} 1og (Cmax max {32, (V;),1}) (4.215)
Y21 £ min{Ma, N1} log M, (4.216)
Y22 £ min{My, N>} log M> (4.217)
§1 £ min{M; + M, Ny} log max {Qmax max {)\max s 1} ,Mg} (4.218)
82 £ min{M; + My, No}tlog max {(max max {)\max ) 1} ,Mg} (4.219)
83 = min{M; + M3, N3} log max {(max max { A2, (Vi) 1}, M3} . (4.220)

n(l) 2 (n(l) ngl)’ (1)) (ﬂ +6, + 77,52 + 09, B3 + 53)

n? & (ng ) ng),n( ) £ (B1+ B2 +vi1 + iz + 1, B+ B + Y21 + Y22, B3 + 03)
For any (R1, Ra, R3) € R, let
(Rl,RQ, Rg) = ((R1 — max{n(ll),n12)}> , (R2 - rnax{nél), Mg )}) ,(Rs — B3 — 53))+> ,

then we have

(Rla R27 é:ﬁ) S Rin.

Proof Outline. There are 33 inequalities in R;,. Taking out (4.109)), (4.111)), (4.116)), (4.117) and (4.125) from

Rin, there is a one-to-one correspondence between the rest of the 28 inequalities in R;, and the 28 inequalities
in Ro. More specifically, the k-th inequality in the rest of the 28 inequalities of Ry, and the k-th inequality
in R, differ by the set function name (F;(-) and F;(-)) and a constant 7 (excepting the first three inequalities,

which do not have 7). To demonstrate the gap, we first quantify the gap between the 28 inequalities in Ry

and R, as (ngl), ngl), n:(f)) Then we quantify the five gaps from (4.109) to (4.186)), (4.111) to (4.187), (4.116)

to ([1.192), (E117) to [@.192) and (E125) to ([@.186)+(E.192). We choose another gap tuple (n'® n$? n{?)

1) )

i . Please refer to

to settle these five gaps. The overall individual gap n; is determined as max(n

Appendix for the detailed proof. O
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4.5 The GDoF Region of the MIMO IC-ZIC

The generalized degrees of freedom (GDoF) is an information-theoretic performance metric that char-
acterizes the number of independent data streams a network could support simultaneously among all users
at high SNR regime. In this section, we first compute the GDoF region of the MIMO IC-ZIC, and then
focus on the achievability of the key corner points in the GDoF region and the sum GDoF curve in various

numerical examples. In what follows, we define & = {11, a2, a33, @12, @13, 21 }-

4.5.1 GDoF Region
The definition of GDoF region of the MIMO IC-ZIC is given in Definition

Definition 4.6. The generalized degrees of freedom region of a MIMO IC-ZIC D(@) € R} with a capacity

region C(&) is defined as

. R, . _
{(dl,dg,dg) 1d; = p1l>nolo @,Z S {1,2,3} and (Rl,RQ,Rg) € C(a)} . (4221)

In the rest of the chapter, we call (di, da,ds) a GDoF tuple. To compute the GDoF region in this section, we
need a slightly different version of Lemma [5.1] which is stated in Fact They differ in that the matrices
H,, Hy, ---, H, only need to be full rank w.p.1 here, whereas the entries of the matrices in Lemma [5.1
are drawn ii.d. from a continuous unitarily invariant distribution. Fact can be proved with similar

mathematical induction as in the proof of Lemma

Fact 4.2. Let H; € C**%, Hy € C**¥2 ...  H, € C"*"% be n full rank matrices (w.p.1) such that

H = [Hy,Hs,- - ,H,) is also full rank w.p.1. Then, for asymptotic p

log det (Iu + ZpaHij> =g(u, (a1,u1), -+, (an, un))log(p) + O(1) (4.222)
i=1
where for any (u,u1,--- ,u,) € ZYH) and (a1,--- ,a,) € R™, the function g(u, (a1, u1), -, (an,uy)) is
defined as
g(u7 (ala ul)a (a27u2)> R (an; un))
. +

in In—1
_ - + : + + : +
= E mm{u,uil}ail+mm{(u—ui1) ,Uiz}aiQ—i----—i—mln w— E wi | i, pal
i=i j=1



foriy #ig # - Fin € {1, ,n} such that a;;, > a;, > -+ > a;, .
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To present the GDoF region, we need to define the relevant set functions in Definition [£.7} The GDoF

region is stated in Theorem
Definition 4.7. Define the set functions given by —.
fi1(Myp)
g (N1, ((an1 — 012)+,7’12) s (o1 — 0113)+,7’ —r112), (@11, M1 — 7)) INRi2 > INRy3
g (N1, ((an1 — 0l12)+,7“ —r13), ((a11 — 0413)+,7"13) s (@11, My — 1)) INRi2 < INRy3
J1(M3, M)
£ g (N1, ((a11 — a12) T, r12) , (011, My — r12))
f1(M12,Myp)
£ g (Nl, ((0411 - 0613)+, 7’13) ) (0411, M, — 7’13))
f1(Mi2,My3,Myp)
g (N1, ((a11 — a13) ™, 7123) 5 (a1, My —7123))  INRig > INRy3
g (N1, ((11 — 1), 7123) , (a1, M1 —7r123))  INR12 < INRy3

Ji(My)

£ min{ M, N, }aq;

f1(Mip, Ma1)

g (va ((au - 0l12)+,7"12) s ((au - 0l13)+,7" - 7"12) , (OZ117 My — 7‘)7 (0421, M2)) INRi2 > INR;3

g (N1, (o1 — ar2) ™1 —113), (@11 — aa3) T, r13) , (e, My — ), (21, M2))  INRy2 < INRy3

J1(My3, My, Moy )
£ g (N1, ((a11 — a12)t,m12) 5 (a1, My — 712), (021, Ma))
J1(M12, Myp, May)

£ g (N1, (a1 — aa3)t,r13) , (a1, My — 113), (021, Ma))

(4.223)

(4.224)

(4.225)

(4.226)

(4.227)

(4.228)

(4.229)

(4.230)



f1(M12,M13, My, M1 )
g (N1, ((a11 — a13)t,r123) 5 (a1, My — 7123), (@21, M2))  INRig > INRy3
g (N1, ((a11 — a2) ™, 7123) , (@11, My — 7r193), (@21, M2))  INRig < INRy3
J1 (M1, Ma1)
= g (N1, (au1, My), (a1, M2))

fa(M2p)

£ g (N2, ((a22 — az1)*, min{ My, N1}) , (a22, (M2 — N1)™))
fa(M2)

£ min{Ma, Ny }ao

f2(Mi2,Map)

g (N27 ((alz - Ol13), 7”123) , (0412, r12 — 7"123), ((a22 - 021)+, min{Mg, Nl}) s

= (az2, (M2 — N1)™))
g (N2, (012,712 — T123), ((@22 — r21) ™, min{ My, N1}) , (w2, (M2 — N1) ™))
fa(M12,M2)

g (Na, ((a12 — a13),7123) , (12,712 — T123), (a22, Ma))  INRi2 > INRy3
g (Na, (12,712 — 7123), (22, Ma)) INR12 < INRy3
f2(M123, M12, Ma2p)
£ g (Na, (a2, My), (22 — 1), min{ My, N1}) , (g2, (Ma — N1)™))
f2(M123, M12, M2)
2 g (N2, (12, My), (a2, Ma))
f3(M3)
£ min{Ms, N3}ass3

J3(M13,M3)

INRy2 > INRy3

INR12 < INR13
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(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

(4.237)

(4.238)

(4.239)



g (N3, (013,713 — 1123), (33, M3)) INRi2 > INR;3

(1>

g (N37 (a13 - 0412,7“123)7 (Ol1377”13 - 7“123)7 (Oé337 Ms)) INRi2 < INR;3

f3(Mi23,M13,M3)
£ g (N3, (a3, M), (ass, Ms))
Theorem 4.5. The GDoF region D(a) of the MIMO IC-ZIC is given by (4.242))-(4.269).
D(@) £ {(d1,d>,d3) € RY :
dy < f1(Mp)
d2 < f2(Mz2)
dz < f3(M3)
di +dy < fi(M1,Ma1) + f2(Map)
dy +da < f1(My3,M1p) + fo(Mi23, Mi2, Ma)
di +da < fi(Mi3,Mip, Ma1) + f2(Mi23, Mi2, Map)
di +d3 < fi(Mi2,M1p) + f3(M123, Mi3,M3)
di +dy +ds < fi(Mip) + fo(Mi2,M2) + f3(Mi23,M13,M3)
di +do +ds < fi(Mip) + fo(Mi23,M12,M2) + f3(My3,M3)
di +da +ds < fi(Mip,Ma1) + foa(Mi2,Map) + f3(M123, M13,M3)
di +dy + d3 < fi(Mip,Ma1) + f2(Mi23,Mi2,M2p) + f3(My3,M3)
di + dy + ds < fi(Mi2,Mip, Ma1) + fo(Map) + f3(Mi23, M3, M3)
di +2dy < fi(Mi3,Mip, Ma1) + fo(Map) + f2(Mi23, M2, M2)
2dy +dy < f1(Mi3,M1p) + f1(M1,M21) + f2(Mi23, M2, Map)
2dy +dy +ds < fi(M1p) + f1(Mi2, M3, M1p) + f2(Mi23,M12,M2) + f3(M123, M3, M3)
2dy +da +ds < fi(Mip) + f1(Mi2, Mi3,M1p, Ma1) + f2(Mi23, Mi2,Map) + f3(My23, M3, M3)
2dy +dy +ds < fi(Mip) + f1(M1,M21) + fo(Mi2, Map) + f3(Mi23, Mi3, M3)

2dy +da +ds < fi(Mip) + f1(M1,M21) + f2(Mi23, Mi2, Mop) + f3(Mi3,M3)
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(4.240)

(4.241)

(4.242)
(4.243)
(4.244)
(4.245)
(4.246)
(4.247)
(4.248)
(4.249)
(4.250)
(4.251)
(4.252)
(4.253)
(4.254)
(4.255)
(4.256)
(4.257)
(4.258)

(4.259)
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di 4 2dy + d3 < fi(Mip,Ma1) + f2(Map) + fo(Mi2,M2) + f3(Mi23, Mi3,M3) (4.260)
dy +2dy + ds < f1(M1p, Ma1) + fa(Map) + f2(Mi23, M12,M2) + f3(M13,M3) (4.261)
2dy +2dy +ds < fi(Mip) + f1(Mi3,Mip, M21) + fo(Mi2,Map) + fo(Mi23, Mi2,Ma) + f3(Mi23, Mi3,M3)  (4.262)
2dy + 2da +d3 < fi(Myp) + f1(Mi2,Mi3, M1p, Mo1) + foa(M2p) + fo(Mi23, Mi2,M2) + f3(Mi23,M13,M3)  (4.263)
2d1 4 2dg + ds < f1(M1p,Mo1) + f1(M12, M1, M1p, Ma1) + fa(Map) + f2(Mi23, Mi2, Map) + f3(M123, Mi3, Ms)
(4.264)
2d; 4+ da + 2ds < f1(M1p) + f1(M12,M1p, Mo1) + fo(Mi2,Map) + 2f3(M123, M13, M3) (4.265)
2dy +dy + 2d3 < fi(Myp) + f1(M12,M1p, M21) + f2(Mi23, Mi2,Map) + f3(M13,M3) + f3(Mi23,M13,M3)  (4.266)
3dy +dy +ds < fi(Mip) + f1(Mi2, M3, M1p) + f1(M1,M21) + fo(Mi23, M2, Map) + f3(Mi23,M13,M3)  (4.267)
3dy + 2da + 2d3 < 2f1(Mip) + f1(Mi2,M13,Mip, Ma1) + fo(Mi2, Map) + f2(Mi23, Mi2, M2) + 2 f3(My23, Mi3, M3)
(4.268)
2dy +3da + d3 < f1(Mip,Ma1) + f1(Mi2, M3, Mip, Ma1) + 2f2(Map) + f2(Mi23, Mi2,M2) + fS(M123;M137M3)}
(4.269)
Proof. In Definition the GDoF region is defined by the capacity region C. We do not have the exact
capacity region C for the MIMO IC-ZIC, but Theorem suggests that both R;, and R, are within a SNR
and INR independent gap to the capacity. Because a finite number of bits are insignificant in the GDoF
computation, the GDoF region can be obtained from either R;, or R,. To characterize the GDoF region,
we just compute the limit of each set function in Definition [£.5] when p — oc.

By Fact the limit of set functions like or can immediately be obtained because
these set functions are already expressed in the form of log(I + Y"1, HiHj ). However, the limit of set
functions like cannot be inferred immediately. We alternatively rewrite terms like Hi1 K 13,1pHI1 as
a sum of terms in the form of HHT and then apply Fact u Please refer to in Appendix for the

detailed computation of limit of (4.167]), which leads to (4.224)) of the GDoF region. O

Example 4.1. Consider the MIMO IC-ZIC with the following parameters: a3 = o2 = agz = 1, ajp =

a1 = 0.6, a3 = 0.3, M; = Ny = 3 and My = M3 = Ny = N3 = 2. Given this setting, we have r = 3,
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Figure 4.6: GDoF region of a (3,3,2,2,2,2) MIMO IC-ZIC with a12 = ae; = 0.6 and a3 = 0.3

r123 = 1 and 712 = r13 = 2. The GDoF region is plotted in Fig.[4.6]
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We provide an overview of the GDoF region in Example The MIMO IC-ZIC consists of two

ZICs as its sub-channels. The tuples on the (di, ds,0) form the GDoF region of the two-user IC with INR

p®2 and p®2t which is consistent with the plot in |26, Fig. 2]. The tuples on the (di,0,d3) plane form the

GDoF region of a two-user ZIC with INR p™13.

The rate tuples on ds vs dy plane when d; = 0 reflect the

GDoF region of a parallel channel between Tx2/Rx2 and Tx3/Rx3 while Tx1 is off. The sum GDoF plane

is G-H-I-M-N, and any GDoF tuple on this plane achieves the max sum GDoF 4.9.

Example 4.2. Continue with the MIMO one-to-three IC in Example We describe the structure of the

transmitted signals from the three transmitters in terms of independent data streams according to (4.154))-

([1.157) in Section [4.4.1] The coding scheme suggests we send the following data streams at Tx1.

1 1)
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More specifically, there is one public data stream Xg)g for all receivers, two public data streams X§12) and Xg)

for Rx1 and Rx2, one public data stream X ) for Rx1 and Rx3, and three private data streams for Rx1 only.
1)

The data streams Xjy3, X(l) and X%) are sent at power level p°. The data stream Xg) is sent at power level

p~ 03 as this is the part to be decoded by Rx2, but treated as noise by Rx3. The first private data stream

—0.6 )

X%) is sent at power level p so that Rx2 could treat it as noise. The second private data stream X(

sent at power level p~%¢ so that both Rx2 and Rx3 could treat it as noise. The third private data stream

0.3

X(f;) is sent at power level p~" so Rx3 could treat it as noise.

The coding scheme also implies the following data streams sent at Tx2.

6 2
021,k (k) [k] 1 (k)
—X —X .
Z ]_ + pO .6 2 Z 1 + p0'60'§1,k) 2p

Tx2 has two data streams, X;ll) and Xézl), for its common sub-message to be decoded at both Rx1 and Rx2,

as well as two private data streams X%) and Xg}) for its private message to be decoded at Rx2 while arriving

under the noise floor at Rx1.

The data streams sent at Tx3 are simply

Tx3 sends two private streams, X( ) and X:(f), to Rx3 only.

In what follows, we analyze the achievability of the five corner points on the max sum GDoF plane
in Example For each corner point, we provide GDoF distribution among the data streams revealed in
Example The detailed GDoF allocation on each data stream will be illustrated via multi-dimensional
signal partitioning introduced in Chapter 2] Each GDoF allocation will be plotted in a signal diagram
with each of the received independent (transmit) signal directions (from the receiver’s perspective) plotted
as a multi-leveled bar whose top level marks its signal strength, and the vertical height of each partition
is proportional to the DoFs carried by it. The underlying coding scheme can be directly read from the
GDoF allocation. A transmitter encodes all data streams on a (transmit) signal direction by multi-level
superposition coding from bottom to top (refer to the GDoF allocations figures for the position of the data

streams on each signal direction), and the receiver decodes the signal by either successive cancellation or joint
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decoding. No cross signal level is employed, and each data stream is encoded independently. The underlying
coding scheme can be different from the coding scheme we used to derive the inner bound in Section 4.4.1
In all the GDoF analysis figures in the rest of the chapter, transmit signal directions Vp[l], me, and Vp[g] are
sorted from left to right in sequence at Rx1, andVQ[i] and V2[12] are shown from left to right at Rx2, and 1/})[2]

and Vp[3] are shown from left to right at Rx3.

4.5.1.1 The achievability of point G (1.1,1.8,2)

We choose the GDoF distribution d(llz)3 =0, d%) = 0.2, dg) =0, d%) =0, d&) = 0.2, d(l? = 0,
df;) = 0.7, déll) = 0.4, dg) = 0.6, d%)) = déi) = 0.4 and dél) = d:(f) = 1. The GDoF allocation among the
three transmitters are illustrated in Fig.[4.7] This allocation guarantees an interference free channel between
Tx3 and Rx3. Due to the precoding (by matrix V},), the second and third transmit directions Vpp] and V}F’]
do not appear at Rx2 and Rx3. All the signal levels at both Rx2 and Rx3 are fully utilized.

Rx1 first removes the effect of Xﬁ) from Y7 by zero forcing, i.e. projecting the received signal onto
the 2-D signal space which is perpendicular to H 11Vp[3]~ In the resulting 2-D signal space, Tx1, Tx2 and

Rx1 form a (2,2,2) MIMO MAC channel, and their contributions X§12), x{Y Xéll) and Xg) are present. Given

i)
the power level assignment in Fig. X%) can be recovered by treating the Ws; and Wi, as noise, resulting
in GDoF d%) = 0.2. Since x§12) also needs to be decoded by Rx2, it remains to verify if the same GDoF
can be achieved at Rx2. Subtracting the contribution of x§12>, we decode Xgll), XS) and X(li,) jointly, which
gives GDoF d%) =04, dg? = 0.6 and dg;) = 0.2, respectively, where achievability of dgll) and dgi) has to be

(1) (0

confirmed at Rx2 later. After the recovery of Xj5', Xj,;, Xéll) and ngl) , we remove their effects from Y7, so

Xg‘:’,) can be recovered, resulting in GDoF dgi’,) =0.7.

At Rx2, the power level assignment of Xéll), Xé21) and X%) allow us to decode them jointly by treating
Xg;) and Xg}) as noise, resulting in GDoF déll) =04, dgzl) = 0.6 and d%) = 0.2, which are consistent with the
achievable GDoF allowed by these data streams at Rx1. Removing the effect of Xéll), Xg) and Xg) , We see
an interference free 2 x 2 MIMO P2P channel between Tx2 and Rx2, and X%}) and Xéi) can be decoded with

dy) = dl) = 0.4.

At Rx3, the interference from Tx1 arrives under the noise floor. So Rx3 simply decodes its intended
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Figure 4.7: GDoF allocation at point G

signal, which leads to dgl) = d§2) =1.

4.5.1.2 The achievability of point H (1.4,1.8,1.7)

We choose the GDoF distribution d%)g =0, d(112) = 0.2, d(122) =0, d(é) = 0.3, dg;) = 0.2, dﬁ) =0,
dﬁ? =0.7, déll) =04, dg) = 0.6, dé;) = déi) =04 d:(gl) =1and dz(f) = 0.7. The GDoF allocation among the
three transmitters is illustrated in Fig.[4.8] Comparing to the GDoF allocation for point G, the difference

is that X%) carries GDoF 0.3. The decoding procedure to recover Xg), Xg)), Xgll) and xgﬁ) at Rx1 is exactly

the same as the procedure at corner point G. But after removing the effects of Xglz), X&), Xéll) and Xg) from
Y1, Rx1 decodes X%) and Xg‘;’,) successively, which gives d%) = 0.3 and dﬁ) = 0.7. The decoding procedure

at Rx2 is exactly the same as the procedure at the corner point G. Rx3 decodes Xél), Xé2) and X(113) jointly,

resulting in dgl) =1, dz(f) = 0.7 and d%) =0.3.

4.5.1.3 The achievability of point I (1.8,1.6,1.5)

We choose the GDoF distribution d{y; = 0.2, diy = 0.2, d{3) = 0, diy = 0.3, d{}) = 0.2, d2) = 0.2,
d) =07, dY = dY =04, d}}) = df) =04, d" = 0.8 and d) = 0.7. The GDoF allocation among

the three transmitters is illustrated in Fig.[4.9] The decoding procedures at Rx1-Rx3 can be learnt from the

decoding procedures at the corner points G and H.
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Figure 4.10: GDoF allocation at point M

4.5.1.4 The achievability of point M (2.5,0.9,1.5)

We choose the GDoF distribution dyy = 0.2, diy = 04, d3 = 0.1, diy = 0.3, d}}) = di2) = 0.4,
df;) = 0.7, déll) = dg) =0.2, dé;) =0.2, déi) = 0.3, dgl) = 0.8 and dgz) = 0.7. The GDoF allocation among

the three transmitters is illustrated in Fig.[4.10l The decoding procedures at Rx1-Rx3 can be learnt from

the decoding procedures at the corner points G and H.

4.5.1.5 The achievability of point N (2,0.9,2)

We choose the GDoF distribution d{yy = 0, d{y = 0.4, di3 = 0.1, d{} = 0, di}) = di)) = 0.4,
dg?;) = 0.7, dgll) = dg) = 0.2, dgg) = 0.2, dg? = 0.3 and dgl) = déQ) = 1. The GDoF allocation among the
three transmitters is illustrated in Fig.[4.11] The decoding procedures at Rx1-Rx3 can be learnt from the

decoding procedures at the corner points G and H.

4.5.2 The Sum GDoF Curve

Next, we keep the number of transmit and receive antennas unchanged in Example , and let «
run through the internal [0, 2] to see the variation of the sum GDoF. The sum GDoF vs « curve is plotted
in Fig. There are five corner points in the middle of the curve. At the corner point (0.25,4.75), the
interferences between Tx1/Rx1 and Tx2/Rx2 turn moderate, i.e. a1 = ag; € [0.5,1] and the interference

between Tx1 to Rx1 stays weak. At the corner point (0.5,4.5), the interferences between Tx1/Rx1 and
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Figure 4.11: GDoF allocation at point N

Tx2/Rx2 turn strong (a12 = a1 = [1,2]) and the interference from Tx1 to Rx3 turns moderate. At the
corner point (1,5), the interferences between Tx1/Rx1 and Tx2/Rx2 turn very strong (a2 = ag1 > 2), and
the interference from Tx1 to Rx3 turns strong. We analyze the achievability of two sum GDoF optimal
corner points (1/3,5) and (0.8,4.8) on the curve. By Theorem the equal GDoF tuples (5/3,5/3,5/3)
and (1.6,1.6,1.6) are achievable. A coding scheme to achieve (5/3,5/3,5/3) when o = 1/3 is illustrated in
Fig.[4.13] Two coding schemes to achieve (1.6,1.6,1.6) when a = 0.8 are illustrated in Fig.[4.14) and Fig.[{.15]
Note in the latter two coding schemes, there are signal levels overlapping between two different data streams
at Rx1 and Rx2; however, it is clear that with the power level assignments given in the diagram, both Rx1
and Rx2 could recover their received data streams with joint decoding.

Next, let us take an example when INRj2 < INRys. Consider a (3,3,2,2,2,2) IC-ZIC with a5 =
a1 = a and a3 = 2a. Its sum GDoF curve is plotted in Fig.[4.16 The achievability of GDoF tuple
(14/9,14/9,14/9) when o = 1/3 is illustrated in Fig.[4.17]

Lastly, we plot the sum GDoF curve of a SISO one-to-three IC in Fig.[f.18 There is only one antenna

at each transmitter and each receiver, and again we choose a3 = a and a2 = 2a.

4.6 Conclusion

We derived a pair of single region inner and outer bounds which are within a SNR/INR independent

gap. An explicit coding scheme which incorporates three level superposition coding at Tx1 (as in the MIMO
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one-to-three IC, c.f. Section , Karmakar-Varanasi type coding at Tx2 and non-water filling single
user coding at Tx3 turns out to be GDoF optimal. The GDoF region of the MIMO IC-ZIC is then fully
characterized, and we numerically studied achievability of the GDoF region and the sum GDoF curve of

several channel examples.



Chapter 5

Constant-Gap-to-Capacity and Generalized Degrees of Freedom Regions of the
MIMO MAC-IC-MAC

5.1 Introduction

Spectrum sharing allows the coexistence of heterogeneous wireless networks on the same frequency
band. Managing the interference in the same band between such networks is critical to ensure high spec-
trum efficiency. The MAC-IC-MAC is an abstract channel model inspired by practical co-band network
scenarios where two multiple-access channels (MACs) mutually interfere with each other, but in which there
is interference only from one of the transmitters of each MAC to the receiver of the other MAC (see [37]
for illustrations of practical settings of the MAC-IC-MAC). An approximate capacity region for the scalar
Gaussian MAC-IC-MAC within a two bit gap was found in [37].

Multiple-antenna transmission and reception have been widely adopted in many wireless systems in
the last decade. Hence, the approximate capacity region of the MIMO MAC-IC-MAC and its achievability
analysis can provide the relevant understanding and insight on how coding schemes might be designed for
modern co-band network communications in settings that involve terminals with multiple antennas. Fig. |5.1

is an illustration of the MIMO MAC-IC-MAC.
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Figure 5.1: MIMO MAC-IC-MAC
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5.1.1 Main Contributions
5.1.1.1 A constant-gap-to-capacity region for the MIMO MAC-IC-MAC

The constant-gap-to-capacity region is based on the inner and outer bounds on the semi-deterministic
MAC-IC-MAC obtained by the authors in [37]. We explicitly specify one coding scheme and propose its
achievable rate region, a single polytope, to be the inner bound on the capacity region of the MIMO Gaus-
sian MAC-IC-MAC. This scheme simply lets interfering transmitters employ the Karmakar-Varanasi (KV)
superposition coding scheme of [27] proposed therein for the 2-user MIMO interference channel, and the
non-interfering transmitters employ single-user Gaussian codebooks with scaled identity covariance matrices
(i.e., with no beamforming or water-filling). These two coding schemes for interfering and non-interfering
transmitters by themselves are known to achieve constant-gap-to-capacity regions in the MIMO interference
channel [27] and the MIMO MAC |[39], respectively. We hence unify and generalize those two results in
this chapter. The outer bound on the capacity region in the form of a single polytope is characterized
by specifying extremal input and genie signal distributions in the union-of-polytopes outer bound for the
semi-deterministic MAC-IC-MAC proposed by the author in the previous work [37], in the context of the
MIMO MAC-IC-MAC. The gap between the inner and outer bounds, while dependent on the numbers of
transmit /receive antennas and the numbers of users in each cell, is shown to be independent of all chan-
nel matrices and signal- and interference-to-noise ratios. Hence, the explicit inner (or outer) bound is an

approximation of the capacity region that is guaranteed to be within a constant gap.

5.1.1.2 Analysis of the GDoF region of the MIMO MAC-IC-MAC

The generalized degrees of freedom (GDoF) region is characterized and the achievability of its key
corner points is analyzed using the multidimensional signal-level partitioning technique introduced in Chapter
We also study the symmetric GDoF curve under various antenna configurations and analyze the role of
the non-interfering transmitters in affecting the symmetric GDoF curve. When the interference strength
is weak or strong enough, the non-interfering transmitters can fully occupy the receiver’s signal partitions

which cannot be utilized by the interfering transmitter, which improves the cell spectrum efficiency. This
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phenomenon has been discovered in our previous work on the scalar Gaussian MAC-IC-MAC [37]. Moreover,
when a receiver has more antennas than the interfering transmitter does, the non-interfering transmitters
saturate receiver’s signal dimensions which are not used by the signal from the interfering transmitter, which

also improves the cell spectrum efficiency.

5.1.2 Related Previous Work

The capacity of the time-invariant Gaussian MIMO point-to-point (P2P) channel was characterized
in [42], where the optimal Gaussian random coding scheme can be specified via beamforming and water-
filling power allocation via the singular value decomposition of the channel matrix. The capacity region of
the discrete-memoryless multiple access channel (MAC) was characterized by Ahlswede [1] and Liao [31].
In the MIMO Gaussian MAC, Gaussian inputs are optimal and the determination of the boundary of the
capacity region via a maximization of the weighted sum rate over input covariances at each transmitter is
a convex optimization problem. Multiple access channels are the best understood multi-terminal networks
with the capacity region determined by Liao [31], Ahlswede |1] and Wyner [47]. For the fading MIMO MAC
with finite discrete fading state, Mohseni et al. [33] characterized its capacity and power regions under
various power and rate constraints. Romero and Varanasi |39] studied the fading MIMO MAC with general
(private and common) message sets and with discrete fading states and showed that employing scaled identity
covariance matrices at every transmitter is sufficient to achieve a rate region that is within a constant gap
to the capacity region. Their result evidently holds when specialized to the time-invariant MIMO Gaussian
MAC with only private messages. Hence, the result in |39] motivates the use of that simple coding scheme
at the non-interfering transmitters in the MIMO MAC-IC-MAC. The constant-gap-to-capacity result of [39]
specialized to the MIMO MAC with private messages is discussed in Section [5.3.1

Some of the key papers on two-user interference channels are |7}/10}/11,[15}|23}/26}27,[30,/43]. For the
discrete memoryless two-user interference channel, the Han-Kobayashi achievable scheme (HK scheme) in
[23], as well as its alternative, the CMG scheme of [11], give the (same) best inner bound to the capacity region
known to date. Telatar and Tse [43] found an outer bound for the class of semi-deterministic interference

channels and quantified the gap to the CMG inner bound. Etkin et al [15] characterized approximate capacity
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regions to within one bit gap. Two constant-gap-to-capacity regions for the MIMO interference channel were
obtained in [27]. The first region was obtained using the so-called simple coding scheme, referred to herein
as the Karmakar-Varanasi (or KV) coding scheme. The second region was obtained by the explicit coding
scheme in [27], which represents a choice of one out of three coding schemes (including the simple coding
scheme) depending on the rate-pair to be achieved. The latter region was shown to be within a smaller
gap to the capacity region [27]. The KV coding scheme involves message splitting (into private and public
messages) at each transmitter with Gaussian random coding distributions. Each sub-message’s covariance
matrix incorporate transmit beamforming and signal-level superposition coding. The GDoF region of MIMO
interference channel was established in [26] with an in-depth analysis.

Bounds on the capacity region of the semi-deterministic MAC-IC-MAC were obtained in [37]. Two
inner bounds [37, (46) and (53)] and an outer bound |37, Theorem 3] were provided therein, with both
inner bounds being within a quantifiable gap of the proposed outer bound as shown in [37, Theorems 4 and
5]. For instance, it was shown in [37] that the Telatar-Tse type coding scheme of [43] at the interfering
transmitters and single-user random coding at the non-interfering transmitters is sufficient to achieve an
inner bound [37, (53)] which is within a quantifiable gap of the outer bound. However, those bounds on
the semi-deterministic MAC-IC-MAC do not directly yield explicit or closed-form constant-gap-to-capacity
region for the MIMO MAC-IC-MAC. This is because each of these inner or outer bounds is the union of
rate regions over its associated distributions. A constant-gap-to-capacity region for the Gaussian scalar
MAC-IC-MAC was given in [37] as well. The authors determined a single region inner bound which is
within two-bit gap to the capacity region. To achieve this inner bound, the interfering transmitters perform
Etkin-Tse-Wang type coding [15] and the non-interfering transmitters perform single-user random coding

with Gaussian codebooks.

5.1.3 Notations

The notation used throughout this chapter will be consistent with that in [37] except messages will be
denoted by the symbol M instead of M, since the latter is used to represent the number of transmit antennas.

The j-th user in the i-th cell is indexed as i.j, where ¢ € {1,2}, j € {1,--- , K;} and K, is the number of
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the user in cell-i. Hence, the j-th transmitter in the i-th cell is denoted as Txi.j, whose message, transmit
symbol, rate and degrees of freedom (GDoF) are denoted as M; j, X; ;, R; ; and d; ;, respectively.

Let ©; be the set of indices of all users in the i-th cell, i.e. ©; = {i.1,--- ,i.K;}. For the sake of
convenience, the K;-tuples of messages, input symbols, rates and DoF's of users in cell ¢ are denoted as Mg,,
Xeo,, Ro, and dg,. For example, the input symbols of cell-1 {X7 1, -+, X1k, } are denoted simply as Xo,.
Similarly, Mg, denotes the K;j-tuple of messages {M; 1, -+ ,M1 .k, }, Ro, denotes the K;-tuple of their rates
{R11, -+ ,R1.k,}, and do, denotes the Kj-tuple of their DoF's {d; 1, - ,d1.k, }

Throughout, we let (2; denote any non-empty subset of ©;, i.e., £2; € 29:\), where 29 is the power
set of ©;. Moreover, we let 7; denote any non-empty subset of @; that necessarily contains the element i.1.
The sets 7; and (2; are defined as the complements of 7; and §2; relative to ©;. Furthermore, the collection
of input symbols of users indexed by elements of T} or {2; are written as Xy, and Xp,.

We use capital letters to denote random vectors, such as X; ;, the underlying alphabets are denoted
by &; ;, and specific values by z; ;. We use the usual short hand notation for (conditional) probability distri-
butions where the lower case arguments also denote the random variables whose (conditional) distribution
is being considered. For example, p(y;|z; ;) denotes py,x, , (yil: ;)-

In the MIMO MAC-IC-MAC to be defined in the next section, a signal path from the transmitter
Txi.j to the receiver Rxi is represented as i.7 — 4, so that h; j_,; and H; ;_,; denote the path attenuation and
transfer matrix from Txi.j to Rxi respectively. Similarly, the signal-to-noise ratio (SNR) and interference-
to-noise ratio (INR) from Txi.j and Txi’.j to Rxi are written as SNR; ;_,; and INR;/ j_,;, respectively, where
ii €{1,2} and i # i .

The achievable schemes of this chapter involve message splitting at the two transmitters that cause
interference at their unintended receiver. The common sub-message sent by Txi.1 and decoded at both
receivers is denoted as m; 1.. The private sub-message of Txi.1 to be decoded only at the intended receiver
Rxi is denoted as mj;.1,. The rates of m; 1. and m;.1, are written as R; 1. and R;.1, and their GDoF's as d; 1.
and d; 1p, respectively.

We use C to denote the set of complex numbers and Z ~ CN(0,Iy) to denote a N-dimensional

random vector Z that is distributed according to the complex circularly symmetric Gaussian distribution
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with zero mean and covariance matrix Iy (the N x N identity matrix). Both det(-) or | - | are used to
represent the determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as M; ; and
N;. The Frobenius norm of a matrix H is denoted by ||HH§7 ie., ||H||% = Tr(HHT), where Tr(-) denotes the
trace of its matrix argument. We use UV XY to represent the set of N x N unitary matrices. The k-th row

and column of the matrix H are denoted as H®) and HI*!

respectively. A sub-matrix obtained by taking
the rows k; to ko of the matrix H is written as H(¥1*%2) A sub-matrix obtained by taking the columns k;
to ko of the matrix H is written as H*1**2], For two matrices A and B, if (A — B) is positive definite (p.d.)
or positive semi-definite (p.s.d), we write the relationship as A > B or A = B, respectively. We use o(1) to
represent a term which approaches zero asymptotically and O(1) to represent a term which is bounded above
by some constant. The function (M)™ returns the maximum value of M and 0, i.e., (M)* = max{M, 0}.
The rest of the chapter is organized as follows. Section II describes the channel models and formulates
the problem; Section III presents the constant-gap-to-capacity region of the MIMO MAC-IC-MAC; Section
IV introduces multidimensional signal-level partitioning; Section V characterizes the GDoF region, and

investigates the achievability of the key corner points in the GDoF region as well as the symmetric GDoF

curve; Section VI concludes the chapter. Some detailed proofs are relegated to appendices.

5.2 Channel Model and Problem Formulation

A (Ky, K3) MIMO (multiple input multiple output) Gaussian MAC-IC-MAC (MIMO MAC-IC-MAC
for short) consists two uplink cells: (Tx1.1,---,Tx1.K;—Rx1) and (Tx2.1,---,Tx2.K,—Rx2). Two inter-
ference links exist from Tx1.1 to Rx2 and from Tx2.1 to Rx1. There are M; ; transmit antennas at Txi.j
and N; receive antennas at Rxi, where j € {1,--- K} for some ¢ € {1,2}. Let H; ;,; € CNixMi; and

P . . . K . .
H, ;€ CNi*Mii he the channel matrices from Txi to Rxi and Rxi  respectively, whose entries are drawn

iid. from a continuous and unitarily invariant distribution [45] i.e., UH; j—;V is identically distributed to

H; j_; for any Un, € UNiXNi and V € UMis*Mis (also UH, ;_ 'V is identically distributed to H,

©.J—>1 z.j—>i/)'

Such matrices H; j_,; and H,

;1 are full rank with probability one (w.p.1). At time ¢, Txi choose a vector
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Xt € CM:ix1 and send it over the channel. The per-codeword transmission power is constrained as

1 n
= Z Tr(xi-jixl’r.j,t) < P
n t=1

The input-output relation of this channel can be written as

K
Y|, = Z hijs1Hijo51 X | +hoaisi1Hoi51 X001 + 24
j=1
K
= Zth—)lHl.j—uXLj + S (5.1)
i=1
K>
Yo = hiasoHi 150X + Z hojoHs ;20X | + 22
J=1
K>
SN hajeHy 0 Xaj | + 5 (5.2)
i=1

The Gaussian noise vector Z; € CN(0, Iy,) is independent of the input signals and the channel gains. The

channel side information
Si=h; o Hy o Xin+ Zpi#i 00 €{1,2} (5.3)

includes both the interference from X; and noise to Rxi . The signal to noise ratio (SNR) and interference

to noise ratio (INR) at receiver Rxi are defined as

SNR; ji = Py jlhijil” & p¥ii—i (5.4)

INR,, .. = Pi1|h

1.1—1

, |2 2 /)"')élxlﬂi/7 (55)

1.1—1

where p is a nominal value for SNR and INR.

We shall frequently apply the singular value decomposition (SVD) of the cross link matrix H,

i1—i>

H; Ly =Ui Xy leﬁiw (5.6)
in the rest of the chapter. The matrix H,,_,,» has rank min{M, 1, Ny} w.p.1. In the SVD of H, , ., the

rectangular diagonal matrix ¥, ; ..~ has Ny rows and M; columns, and min{M;, N} nonzero value on its

diagonal, denoted as o Tiasi', 20 " Tidosd min{Mia, N,/ b which are the singular values of H,

i.1—i 1> i.1—i -

t
The product Ei.l—) %

i1 which will be frequently referred in the rest of the chapter, is a diagonal matrix
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of size M; 1 X M; 1. The first min{M, 1, N, } of its diagonal entries are zero, and the rest (M; 1 — N,/ )" zero.

Hence, the matrix E;r. L Y, 1,y has the following structure

D>

i 1—i’ i.l—)i/]
i.1—i’ Ei.l—)i/ = ’ (57)
O(ns,—N )+

where [27 %

i1 i1 1T is defined to be a square diagonal matrix of size min{M; 1, Ny} x min{M; 1, N, }

with all the nonzero diagonal values of E;r.l_”./ ¥, 1,y on its diagonal, i.e.,

[21.1—”" Ei.lai']Jr £

2
Ui.l—n”,l
(5.8)
o2
i.l%i',min{Mi,l,Ni/}
The mathematical formulation describing the encoders, decoders, error events, rates, and achievable
rate region are consistent with the definitions in [37, Section II-A] and we do not repeat them here for

brevity. We denote the capacity region of a MIMO MAC-IC-MAC by C, which is the closure of all achievable

rate-tuples of this channel.

5.3 A Constant-Gap-to-Capacity Region

A constant-gap-to-capacity region of a network is an achievable region whose rate tuple (Ry,-- , Ry)
lies within (nq, - - - nk) bits of the capacity region. The value of n; is independent of the channel matrices and
the SNR and INR of all links. The definition of constant-gap-to-capacity region for MIMO MAC-IC-MAC

is stated in Definition (.11

Definition 5.1. An achievable rate region of MIMO MAC-IC-MAC is within gap
(ne,,ne,) = (N1.1,..-,N1.K,M2.1,+ , N2k ) to its capacity region if for any given rate tuple (Re,, Ro,) € C,
the rate tuple (Re,,Re,) = (Ri1 —ni1, -+, Rix —nix,Ro1 —noy,--, Rax — no) lies within the

achievable region.

In this section, we first introduce the known results on constant-gap-to-capacity regions for the K-user

MIMO MAC and the two-user MIMO IC. We then unify and generalize those results to obtain an explicit
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achievable rate region and an explicit outer bound for the MIMO MAC-IC-MAC, and show that the two are

within a constant gap of each other, and hence, to the capacity region.

5.3.1 The MIMO MAC

In the special case where INR » =0 for i = 1,2 the MIMO MAC-IC-MAC becomes two decoupled

7.1—1
MACs. We hence review here the constant-gap-to-capacity region for the K-user MIMO MAC. Consider the

model for the receiver output

K
Y=Y HX+Z

i=1

where H; is the channel matrix from i-th transmitter to the receiver and input signal X; satisfies the power
constraint E(XZTXi) < P, for i € {1,---,K}. The capacity region of MIMO MAC is the convex closure
of the union of achievable rate regions over all admissible input distributions. Earlier works by [9,48] have
shown that Gaussian inputs are sufficient to achieve the capacity region of MIMO MAC and the convex hull
operation is not necessary. Let Q; = Cov[X;] be the covariance matrix of input signal X;. Then, the capacity
region is the union of rate regions over all admissible covariance matrices (Q1,--+,Qk). We present this
union region capacity in Fact Zero-mean input is assumed since non-zero mean input only contributes

to power inefficiency.

Fact 5.1. /21, Sec II1.B] The capacity region of K-user MIMO MAC is

CMAcz U {(Rb‘-‘,RK)GRf:
Tr(Q:)<P;
vie{l, K}

> Ri<log|Iy+ > H,Q:H]|

icS icS
Determining the optimal covariance matrices (Q1,--+,Qk) on any boundary point on Cpac is a

convex optimization problem [48]. An efficient algorithm known as iterative water-filling was found in [48]
to solve for the sum capacity.
Next, we specify an explicit inner bound for the MIMO MAC and demonstrate that this bound lies

within a constant gap to its capacity. The result is a special case of [39, Corollary 1]. We take the inner
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bound to be the one obtained with @Q; = ﬁIM,- for i € {1,--- , K}, and obtain a single region inner bound

RMAC,in of CMAC, which is

RMAC,in = {(R1,~~~ ,Ri) € Rf :

1
) gt
§ R1§10g|IN—|—§ HH|
€S €S

vs AL, K}} (5.10)

On the other hand, if we choose each covariance matrix to be identity matrix, i.e., Q; = Ips, in (5.9)), the
sum rate bounds of (5.9)) will be relaxed due to the fact that log det(-) is a monotonically increasing function

over the cone of p.s.d. matrices, which yields an explicit outer bound for Cyac:

Ruaco = {(R1, -+, Rk) € RY :

> Ri<log|ly + ) HH]|
i€S €S

VS C{l,-- ,K}} (5.11)

The gap from Ryiac,in to Cvac cannot exceed the gap from Ryiac,in to Rumac,o. Hence, it is sufficient
to bound the gap between Ryiac,in and Ryac,o to show that Rajac,in is an approximation of the capacity

region that is within a constant gap to it.

Remark 5.1. The sets of inequalities in Ryac,in and Ramac,o have the same structure in that when we write
the two in the forms A;(Ry, -+, Rx)T < by and As(Ry,--- ,Rx)™ < bo, they have the same coefficient
matrices, i.e., A; = As. Note for any user subset S, there is a one-to-one correspondence between the partial
sum rate restrictions in the inner and outer bounds. Let the bounds of these two partial sum rate restrictions
in Ryrac.in and Raraco be denoted as Bs = log |1y + ﬁ Yics HZHJ and Bg £ log |Iy + Yics HZHJ )
Let an upper bound on Bg — Bg be denoted as ng, which we will refer to as a partial sum rate gap.
Also for clarity, we call a component n; in a gap (n1,---,nx) an individual rate gap. To prove a gap
between Raiac,in and Rmac,o, we first derive a universal partial sum rate gap ng for arbitrary S, and

then we construct individual rate gap n; for any ¢ € {1,---, K}, such that > ._on; > ng. If such a

i€S

individual rate gap can indeed be found, then for any rate tuple (Ri,- - ,Rx) € Rmac,0, the rate tuple
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(R, ,RK) = (R1 —n1, -+, Rg — ng) satisfies

IR IED I

i€S i€s i€s
< Bs — Z n;
i€s
< Bs—nsg
< Bg

vS C {1,---,K}. Thus (Rl,--~ ,RK) € RMAC,in and Raac,in is within constant gap (ni,--- ,nk) to the
capacity region of the MIMO MAC. This technique will be repeated in the proof of the constant gap result
for the MIMO MAC-IC-MAC in Section [5.3.6] and Appendix [C-3]

Now we follow the idea presented in Remark to show Rmac,in 1s @ constant-gap-to-capacity region.

We first derive a partial sum rate gap ng as

1
g — S gt
log [In + Z HH]| —log |In + Z o il
€S €S
< min M;, N ylog max M;
(B s,
£ ng (5.12)

The inequality holds true because the rank of the matrix ), ¢ ﬁlHlHJ cannot exceed min{d . o M;, N}.

i€S
This result on intra-cell sum rate gap is a specialization of the more general result in [39, Corollary 1] on
the constant-gap-to-capacity region of the MIMO MAC with discrete time fading state and general message

sets consisting of private and common messages.

Next, we pick the individual rate gap n; as

n; = min{M;, N} log ie{rlr,l?}fK} M;. (5.13)

It is easy to verify that this individual rate gap indeed guarantees
n; = min{M;, N} | log max M;
e (ot o, s, o

Zn57v‘gg {1a 7K}
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Note the choice of n; lets the partial sum rate gap ng to be distributed onto every associated individual
rate gap n; for i € S. Hence, Rmac,in is within (nq,--- ,nx) gap to its outer bound Rmac,, and hence its

capacity region Cpac.

5.3.2 The Two-user MIMO IC

The two-user MIMO IC is a special case of the MIMO MAC-IC-MAC where each K1 = Ko = 1. In
the work [27] on the two-user MIMO IC, Karmakar and Varanasi proposed a simple coding scheme (which
we will henceforth refer to simply as the KV coding scheme) to get an explicit (i.e., a single region) inner
bound |27, Lemma 3] that is within a constant gap to the capacity region [27, Theorem 2]. In this chapter,
we obtain a constant-gap-to-capacity region for the MIMO MAC-IC-MAC in Theorem [5.3] In particular,
the gap of Theorem when specialized to the 2-user MIMO IC (i.e., the (1,1) MIMO MAC-IC-MAC),
becomes the gap of [27, Theorem 2] as stated in Remark

It must be noted here that the inner bound for the two-user MIMO IC in [27, Lemma 3] and the (1,1)
MIMO MAC-IC-MAC specialized from the (K7, K3) MIMO MAC-IC-MAC inner bound of Theorem in
this chapter are obtained using different approaches. For the encoding, the authors of [27] derived their
inner bound by specifying the coding distribution in the Han-Kobayashi (HK) rate region (an achievable rate
region for general two-user IC [23]), whereas we derive our inner bound by specifying coding distribution
in our achievable region for the MAC-IC-MAC given in [37, Theorem 1], which in turn is based on the
Chong-Motani-Garg (CMG) rate region (another achievable rate region for general two-user IC [10]). For
decoding, the work in [27] requires the non-intended common sub-message (see Section to be decoded
uniquely at each receiver, whereas in our work we employ a decoding scheme in which the non-intended

common sub-message is decoded non-uniquely.

5.3.3 The MIMO MAC-IC-MAC

The MIMO MAC-IC-MAC is a special case of the semi-deterministic MAC-IC-MAC defined in Section
II-B of |37]. Hence, bounds and gap results on the capacity region of semi-deterministic MAC-IC-MAC

in [37, Section III-C] can be used. If we apply the inner bound of [37, (46)] (which has the form of a a
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union of rate regions) for the semi-deterministic MAC-IC-MAC to the MIMO MAC-IC-MAC then Theorem

4 of [37] implies that that inner bound would be within the constant gap of
(min{M; 1, No}1%, ,min{M> 1, N1 }1%,) (5.14)

to the capacity region, where 1,, is a column vector of length n with each element being 1.

If we apply another inner bound (which has the form of another union of rate regions) for the semi-
deterministic MAC-IC-MAC, namely given by 37} (53)] to the MIMO MAC-IC-MAC then Theorem 5 of [37]
implies that that inner bound would the constant gap of

> min{M;1, Ny}, > min{M;q, Ny}, (5.15)
ie€{1,2} i1€{1,2}

to the capacity region. The two gaps of or can thus be achieved by considering one of infinitely
many distributions.

It is however important to specify an explicit coding scheme for the MIMO MAC-IC-MAC resulting
in an explicit inner bound (in the form of a single polytope) which is within a constant gap to the capacity
as was done in [27] for the 2-user MIMO IC and in Section for the MIMO MAC. For instance, such
explicit bounds allow for the evaluation of the GDoF region as was done for the 2-user MIMO IC in [26]
or the generalized diversity-multiplexing trade-off as was done in [28] for the 2-user MIMO slow-fading Z
interference channel.

In Section we therefore give an explicit specification of a coding scheme which is based on the
KV coding scheme of |27] and the simple single-user coding scheme for the K-user MIMO MAC discussed in
Section [5.3.1] This simple scheme yields an explicit inner bound for the MIMO MAC-IC-MAC. An explicit
outer bound is then derived in Section by specifying the input distribution and genie information in
the known outer bound for the semi-deterministic MAC-IC-MAC [37, Theorem 3], in the MIMO Gaussian

setting. The gap between these explicit inner and outer bounds is shown to be constant, albeit different

from either (5.14)) or (5.15]).
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5.3.4 An Explicit Inner Bound

A per-distribution or explicit inner bound for the capacity region of the discrete memoryless (DM)
MAC-IC-MAC was given in |37, Theorem 1]. In this section, we apply that result to the MIMO MAC-IC-
MAC to obtain the explicit inner bound of Theorem to follow. In particular, to prove Theorem
we must explicitly specify a coding distribution and then compute the set functions in [37, Definition 7]
for the MIMO MAC-IC-MAC for that coding distribution. Those set functions are given in the following

Definitions, and following that, the inner bound is presented in Theorem

Definition 5.2. For any sets £2; € 29\0 = {i.1,--- ,i.K;}, 7, € O\{i.1} and T; = T, U {i.1}, where
i € {1,2}, let Ay, and Ey, be non-negative real-valued functions of set 7;, and Bp, and Gy, be non-

negative real-valued functions of set £2;. The mappings of set functions Ar,, Bp,, Er, and G, are given by

E-10)-(-19).

Lo 1
A é log IN + Z M j p LJHlH’L’.j—”Hj]—M, M ) —p Ll%lHi.l_)iKl 1H,L L
ijeri\{fi.1} " i.
« 1+ M,
+Mi/.1p Q .14>1H/ 1‘>’LK’£',1H1‘T"1_”' mln{ 17N }IOgT (516)
1 .
BQl TS log I]\/7 —+ Z Mi]p 1'3*”H7j.j—>iHiT.j—>z M, p i 1~>1H/ 1—>1Ki/.1H:/_1_>i
ijE8: i.
14+ M,
~ min{M 1’N}1°g;47, (5.17)
= 71 Yi.j—ri i 1 Qi1
By, ®log|Iy + ) —p" T il it 1 o HiyiKqHY
ijeri\{i1}y Y i.
1 (a2} 1 —|— M/
+ Mil.lp i .1~>1H/ 1*>ZHT ]_—n’ m1n{ 1,N}IOgT (518)
Qi j—i 1 s
G_Qi £ log IN + Z 1-]_”Hi-j_>iH1;r,j4)i 4 R 1p i 41HLH/ 1H2HT G
1.JES2; Q.
1+ M.,
— min{My ;. N;}log — =11 (5.19)
My o

Definition 5.3. Let the Cartesian product of the domains of (13, 21,75, £25) be

E2 {1 €29 1.1e Ny} x {29\0}
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x {Tr €297 :21 € 1} x {29°\0} . (5.20)
Also, for convenience, define the set function

min{BQi, A_Qi + Er_,} if i.1 € 2
By = ' (5.21)

Bo. ifi.1¢

k3

where i,i € {1,2}, i # i and (11, 21,73, %) € E.

Theorem 5.1. For MIMO MAC-IC-MAC, any rate tuple (Re,, Ro,) in the following region Riy, is achiev-

able, i.e., Rin CC.

> Ri; < By, (5.22)
l.jes
> Raj < B, (5.23)
2.j€E82
Z Ry + Z Ry < Ay, + G, (5.24)
1jen 2.5€02
Z Rij+ Z Ry ; <G, + Ar, (5.25)
1je 2.j€Ts
Z Ry ; + Z Ry j < Er, + Enr, (5.26)
ljen 2.j€Ts
Z Ry, + Z Ry
1jen lje
+ Y Ry <Ay, +Gq, + Er, (5.27)
2.j€Y>
D R+ > Ray
1.jeT 2.j€EY>
+ Z Ryj < By, + Ax, + GQQ} (5.28)
2.5€822

Proof. As stated at the beginning of this section, we apply the inner bound of [37, Theorem 1] for the DM
MAC-IC-MAC to derive the single region inner bound for MIMO MAC-IC-MAC. We first note that the

MIMO MAC-IC-MAC inner bound of Theorem [5.1]is described by seven classes of inequalities instead of the
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nine classes of inequalities in [37, Theorem 1]. This is because the nine classes of inequalities that define the
inner bound in [37, Theorem 1] can be expressed as a region with seven classes of inequalities as we show in
detail in Appendix In particular, two pairs of classes of inequalities in the nine classes can be coalesced
into two classes of inequalities. The inner bound of [37, Theorem 1] involves set functions Ar,, Bg,, Ey,, and
Gp, defined in [37, equations (31-34)] for any coding distribution Py, € Pj, defined in [37, Definition 6].

To obtain a inner bound of Theorem from the inner bound of |37, Theorem 1] we need to first
explicitly specify a single coding distribution in the set of admissible distributions defined in |37}, Definition
6] adapted for the MIMO Gaussian case, allowing for auxiliary and input random variables over continuous
alphabets for the MIMO MAC-IC-MAC. This would specify the specific coding scheme and compute the
resulting bound which then yield Theorem [5.1

Before we introduce our coding scheme, we first review the coding scheme used in deriving the bounds
for the DM MAC-IC-MAC in [37]. That scheme requires the interfering transmitter Txi.1 to split its
message into common and private sub-messages m;.1. and m;.1p, respectively. The public sub-message is
encoded into cloud codeword Uj*(m;.1.), based on which the private message is superimposed on and the
transmitted codeword is X7 (U (m;.1c), Mi1p). A non-interfering transmitter Txi.j, j # 0, encodes its
entire message m;_;j into X;'; (m;.;) using single user random coding. Rxi decodes its intended message from
all the transmitters in its cell, as well as the common message m,/ ;. from its non-intended transmitter Txi .1.
Time sharing is employed between all transmitters. The resulting inner bound is presented in [37, Theorem
1], which is a per-distribution inner bound.

Next, we explicitly specify one coding distribution for the MIMO MAC-IC-MAC. First, time sharing
is disabled. The interfering transmitter Txi.1 performs KV coding [27], i.e., the transmitted signals X; 1 is

a sum of two independent Gaussian signals X; 1. and Xj 1p,
Xi1=Xi1e+ Xiap (5.29)

where X; 1. ~ CN(0,Q;.1.) and X; 1, ~ CN(0,Q;.1,) are signals that carry the public and private messages,
respectively, at Txi.1. The covariance matrices Q;.1p and Q;.1. of X; 1. and X; 1, are taken to be

Py

—1
P + p%i1i! . Y
M; 4 (IMi.l pit Hi.l—m” Hz.laz )

Qi.lp =



138

P
= Mi.llKi.l (5.30)
P
Qitc = Aé;i.1 (Ing,, — Kix) (5.31)

This coding scheme has a rate region that is within constant gap to the capacity region in the 2-user MIMO
IC as was established in [27, Theorem 2].
The non-interfering transmitters encode their respective messages using a single-user Gaussian code-

book with scaled identity covariances, i.e.,

1

Xi~j ~ CN(O7 Mi.j

Ing,)i # 1. (5.32)

As discussed in Section [5.3.1] such a scheme would achieve a rate region which is within a constant gap to
the capacity region in a MIMO MAC.

With the distributions for the inputs specified this way (and with the random variable X 1. playing the
role of the auxiliary random variable U; 1) we are now ready to obtain the inner bound of Theorem from
the inner bound of |37, Theorem 1]. In particular, the set functions Ay,, Bg,, Er,, and G, of [37, equations
(31-34)] must be evaluated (and lower bounded) for the above coding scheme. Please refer to Appendix

for the details of this evaluation. O

Let us take a deeper look at the KV coding scheme. The choice of the covariance ensures the private

message signal X; 1, will be received by Rxi’ under the noise level on each of its dimensions,

priami H QirpH]

i.1—i’
1 a « T -1
= Mi.lp i1—i Hi.l—»i' (IMll + ptia—i qu.l_m"Hi-l—)i/)
T
Hz:l—n"
_1 7. (Mi1 N}
Mi. min i1y i/
2Uiasy ' J_l_n./ (5.33)
O, —arin)+
1
< In,. 5.34
= M, N (5.34)

Note (5.33) is an upper bound of the received private sub-message signal at Rxi , while (5.34)) defines the

meaning of noise level in the context of vector input and output signals. When Rxi has more antennas then
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the Txi.1 does, the difference of (5.34) and (5.33) shows there are extra dimensions at Rxi that will not
be interfered at all. A detailed proof of received signal of non-intended private sub-message can be found
in |27, Appendix B].

t
i1’V ;> where

U.

i1’ T Yil—sd

Recall the channel matrix H,, ... can be decomposed as H, by

1.1—1

U, i, € UM >Ny and Vi € UMiaxMia are unitary matrices of size N, x N, and M; 1 x M, respec-

tively, matrix e CNv *Mit jg g rectangular diagonal matrix with all the singular values of H,

i.1—d’ O

P14

its diagonal. The covariance matrices (5.31)) and (5.30)) of X; 1, and X, 1. can be alternatively written as

Py , -
Qi1p = ]Wl“ (IMi.l + ptiao Hj‘lﬁi’Hl‘.l—VL‘l)
P;q 1
=M, (Vvij—”l/‘/i.jﬁz"
a i t -
tpia ‘/;l.l—)ilzl'_l_n"zil—”;/‘c‘.l—ﬂ’)
£ ‘/i.l—)i'Di.lﬁi/ le_}i’ (5.35)
1 t
Qi = Moo Ingiy = Viasi Diass Vo Lo
SV e Dy V:lai’ (5.36)

where the structure of matrices D, ,_,» and D, ,_,, are expressed in (5.37) and (5.38).

D L P (Imin{Mi.hNi/} + pai‘l_’i/ Z;r.lai' Ei-l_’il )_1 0 (5 37)
il = 0 Iv,—N o+ .
D, L, = Pia Imin{Mm,Ni/} - (Imin{Mi.lyNi/} + pianit E;r.lﬂi/ Ei-l_’i/)il 0
i.1—1 Mi.l 0 O(M¢,1*Ni/)+><(Mi.1*Nil)+
(5.38)

Define X;.1¢,Xi.1p be two mutually independent Gaussian vectors with zero mean and identity covari-
ance matrices, of length min{M; 1, N} and M, 1 respectively. Given @Q;1, and Q;.1. in (5.35) and (5.36),

the transmitted signal X, can be alternatively expressed in terms of X; 1. and X; 1, as

Xi1=Xite+Xi1p

min{Mi,l,N’i/ }

k /i 7 k
= Z VLL/ [Di.l—m"]kkxg.l)c

k=1
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min{Ml_l,Ni/ }

k (k
> VLD,
k=1
M; 1

k k
+ ) Vi mxﬁ.fp- (5.39)

k:min{Mi,l,Ni/ }Jrl
In (5.39), Xgﬁ)c denotes the k-th data stream that carries the public sub-message (k-th public data

stream) along direction V. It needs to be decoded by both Rxi and Rxi . Since the last (M; 1 — Ny)*

(k]
=i

diagonal values of D, |, is zero (refer to (5.38)), only min{M, 1, N, } public data streams exist, which are

indicated by the first part of the summation in (5.39)). According to (5.38), the transmit power of x(®

i.1c?

1 <k <min{M;q,Ny}is

~ P7;41 1 3.1
D _ o . 5.40
[ i1 ik M1 M;i(14 pSiasd o2 ( )

01— k)

From (5.40)), we see all public data streams are transmitted at power level p°.
The symbol Xgﬁ)p in (5.39) denotes the k-th data stream that carries the private sub-message (k-th

private data stream) along directions VZU;]_H/ with power

1\12111 — D1l 1<k <min{M;,,N;} (5.41)

P;1 min{Mi.laNi'} +1<k< M,

The first min{M; 1, N} private data streams are transmitted at power level p~“i.1-¢ | so they arrive under
the noise floor at Rxi . These private data streams are indicated by the second part of the summation in
(5.39). When there are more transmit antennas at Txi than receive antennas at Rxi , beamforming (by

matrix V, ) ensures the extra (M;; — N,)* private data streams, indicated by the third part of the

i.1—4’

summation in (5.39)), are sent in the direction of the null space of H,

i1i'- Since these private data streams

are not "heard” at Rx@'/, they are transmitted at power level p°.

The non-interfering signal X; ; can also be rewritten in terms of independent data streams

min{M; j N;}

VP X — Z VPia
M;; — /M

They are only to be received and decoded by the intended receiver Rxi.

Xij = x. (5.42)
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An Explicit Outer Bound

Since the MIMO MAC-IC-MAC is semi-deterministic, we use the outer bound for the

semi-deterministic MAC-IC-MAC in 37, Theorem 3], which is given in the form of a union of polytopes, to

derive an explicit single polytope outer bound for the MIMO MAC-IC-MAC in this section. To specify the

outer bound we need to define the relevant set functions in Definition [5.4l The outer bound itself is stated

in Theorem

Definition 5.4. For any sets £2; € 29\ = {i.1,--- ,i.K;}, ¥, C ©;\{i.1} and ¥; = 7, U {i.1}, where

i € {1,2}, let Ay, and Ey, be non-negative real-valued functions of set 7;, and By, and G, be non-

negative real-valued functions of set £2;. The mappings of set functions Ar,, Bp,, Er, and G, are given by

6-43)-E-49).

In, + Z pai.j%iHi.jHng:jﬁi +p™ = Hig g K HY (5.43)
i GET\{i.1}

In 4+ > p™i~iHj iH (5.44)
iJER

INi + Z pai.jaiHi.jHiHiT.j_n + pai.l%iHZ‘,lﬁiK@lH’Il%i + pai’.laiHiz_lﬁiH:,.IHi
i JETNi.1}
(5.45)

In, + Z pai'j%HijﬁinT.j—n +pai/'HiH¢’.1—>1HT (5.46)

. .
7 .11
i.J€82;

Theorem 5.2. For the MIMO MAC-IC-MAC, any achievable rate tuple is contained in the following region

R, i.e., C C Ry, where

Z Ri; < Bg, (5.47)
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Z Ry < Bg, (5.48)
2.j€2
Z Ry + Z Rsj < Ay, + Gg, (5.49)
1.5eTy 2.j€822
Z Ry + Z Ry < Go, + Ar, (5.50)
1€ 25Ty
Z Ry + Z Ry ; < Erv, + Er, (5.51)
1jen 25Ty
Z Ry + Z Ry
1jET 1jeR
+ Y Ry <Ay +Gg, +En, (5.52)
2.j€Y>
Z Rl,j + Z Rg,j
1jET 2.jETy
+ Z Ry j < Er, + An, +G92} (5.53)
2.5€02,

Proof Outline. The key idea in the proof of the outer bound for the semi-deterministic MAC-IC-MAC in [37,
Theorem 3] was to construct a virtual channel whose output is then regarded as genie-aided side information
to help each receiver to decode its intended signal (by making it more interference-resilient). To get an outer
bound in the MIMO setting, we therefore need to specify the distribution of the genie information 7; to Rxz,
which, following |37, Definition 10], should be identical to the distribution of channel side information S;

but independent of S; conditioned on X; ;. We hence choose the genie information to Rxi to be
Ty=hy oy H Ly Xia+2Z, i#d,ii €{1,2} (5.54)

where Z;/ ~ CN(OJNj,) and Z;, is independent of Z,. Hence we obtain an outer bound from [37] by
specializing it to the MIMO Gaussian setting using and it has the form of a union of polytopes.
Secondly, we show that a polytope in that union of polytopes when evaluated with a certain Gaussian input
distribution (namely, the extremal distribution) results in a region that subsumes that union-of-polytopes
outer bound. That explicit outer bound is shown to be R, given in the theorem statement. The details of

the proof are relegated to Appendix O
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5.3.6 Constant Gap

We can now quantify the gap between the inner bound R;, and the outer bound R,. That result is

stated next.

Theorem 5.3. Define the following three parameters

ﬁi,j = min {Mlj + Mi’.l’ Nz}

- log max { 1ax Mi.j7Mi'.1}

1.j€O;
1+ My,

+ min{M; ,, Ni}log ———1,
i’

(5.55)
vi.; = min{M; ;, N;}log max M, ;
.JEO;

L+ My,

+ min{M, ;, N;}log i
i1

+min{Mi_1,Ni/}log(1 +Mi.1), (556)

and n; ; = max{p; j,v.;} for any i.j € ©; and i € {1,2}. For any rate tuple (Rg,,Ro,) € R, let R@i be
the rate tuple

(Ria—ni1)" -, (Rix —nik)"),

then we have

(é@l s R@z) € Rin-

Proof Outline. The inequality systems of the inner and outer bounds have the same algebraic structure.
The proof is based the idea discussed in Remark but with a difference. We do not directly quantify the
differences of the right hand side values of 3rd to 7th classes of inequalities in R;, and R,. Instead, we
make use of the one-to-one correspondence between the involved intra-cell sum rate term on the left hand
side and the set function on the right hand side of each class of inequalities in both bounds, and quantify
two intra-cell sum rate gaps nr, and ng, regarding user subset 1; and (2;. Since both Ay, and Er, (also
Ary, and Ey, ) are functions of 7;, the intra-cell sum rate gap ny, should upper bound the maximum value

of Ay, — Ay, and Ev, — Er,, i.e., ny, > max{Ay, — Ay,, Ex, — Er,} for any 7;. Similarly, we should have



144

ng, > max{Bg, — B/Qi,ai — G;}. We show the individual rate gap n;; satisfies > n;; > ny, and

i.jeY;
Zz‘.jeﬂ,: n;; > ng, at the same time. Please refer to Appendix for details. O
Remark 5.2. When there are only the non-interfering transmitters in each cell, i.e., ©; = {i.2, -+ ,i.K;},

i € {1,2}, a MIMO MAC-IC-MAC is specialized to two parallel MIMO MACs. Let M;; = My, = 0in

(5.56) and ([5.55)), then the resulting individual rate gap becomes

Nij; = min {Mi,j)

N;}log lr?é%(l M; ;,

which reproduces the individual rate gap for the MIMO MAC given in .

Remark 5.3. As mentioned previously, when each cell contains only the interfering transmitter, a MIMO
MAC-IC-MAC is specialized to a two-user MIMO IC. Let ©; = {1.1} and O3 = {2.1} in and ,
then we have

Bi1 =min{M;1 + M, |, N;}

-logmax {M; 1, M, }

1+ M4

+ min{M, |, N;}log i
i1

and
¥i1 = min {M; 1, N;}log M; 1

+ min{Mi_l, Nil } IOg(]. -+ le)

1+ M, 4

+ min{M; |, N;}log i ,
i’

which reproduces the gap presented in [27, Theorem 2]. As mentioned in Section despite the same
gap result and the same covariance matrices used for the common and private sub-messages, the encoding
and decoding procedures in deriving the constant-gap-to-capacity region for (1, 1) MIMO MAC-IC-MAC is

different from the ones used for the two-user MIMO IC.

5.4 GDoF Region of the MIMO MAC-IC-MAC

In this section, we first compute the GDoF region of the MIMO MAC-IC-MAC and then describe

the achievability of the key corner points of the GDoF region and the symmetric GDoF curve using the
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multidimensional signal-level partitioning method to provide insight. In what follows, we define & as the set

of all the SNR and INR exponents, i.e., @ = {1151, - Q1 K, =1, ¥2.152, " ", X2 Ky—32, X1 12, X211 }-

Definition 5.5. The generalized degrees of freedom (GDoF) region of a (K1, K3) MIMO MAC-IC-MAC,

the capacity region of which is denoted as C, is defined as

{(de,,do,) :d;j = phg& logjp’w € 0,;,i€{1,2},

and (Rg,, Ro,) € C} (5.57)

To derive the GDoF region in this section, we must determine lim,_,, log det (Iu + Z?:l p‘”HiHZ)
for an arbitrary integer n. In the work on the GDoF region of the two-user MIMO IC [26], this limit was

determined for n = 2 and n = 3. The limit for arbitrary n is stated in Lemma [5.1

Lemma 5.1. Let Hy € C**“1 H, € C**¥2 ... H, € C"*% be n channel matrices whose entries are

drawn i.i.d. from continuous and unitarily invariant distributions, then for asymptotic p

n
log det (Iu + Z p‘”HJI}) (5.58)

i=1
= f(u> (alaul)a"' 7(an>un))10g(p) +O(1) (559)
where for any (w,u1,--- ,u,) € ZTY and (a1,--- ,a,) € R”, the function f (u, (a1, u1), -, (Gn,uy)) is
defined as
.f(u7(a17u1)7(a27u2)7"'7(an7un))

in
= 3 {min oy il f 4

1=11

+

in—1

-+ min U — Z U s Wi, a;;
j=1
for indices {i;}7_, defined such that a;;, > ai, > -+ > a;,.
Proof Outline. The proof employs mathematical induction. The details are given in Appendix [C.4] O

The result of Lemma can be interpreted in an intuitive way. The term log det (I, +> ., p* H; H, ZT )

can be approximately viewed as the achievable sum rate of a n-user MIMO MAC. Transmitter Txiy, that has
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the strongest SNR, dominates the first min{u, u;, } dimensions of the receiver’s signal space which leads to
GDoF min{u, u;, }a;-t, and then the 2nd strongest transmitter Txis dominates the next min {(u — i)t g, }
dimensions among the remaining ones (if there are any) leading to additional GDoF

min {(u — i)t g, } o, and so on.

5.4.1 The GDoF Region

In this subsection, we present the GDoF region of the MIMO MAC-IC-MAC. We define the relevant

set functions for the GDoF region in Definition and the GDoF region is characterized in Theorem

Definition 5.6. Define the set functions a, b, e, and g as in ([5.60)-(5.63)).

ar, = f | Vi, U (@ijoi» Mi ), ((qi1—i — a1y )T min{M; 1, Ny}, (ia—i, (Mg — Ny)™)
i.7€Y\{i.1}
(5.60)
bo, = f | Ni, U (@i ji, M ) (5.61)
i.JES2;
er, = f | Vi, U (ijois Mig), ((qiami — oy )T min{M; 1, Ny }) , (0154, (M — Ny)b)
1.J€Y3\{i.1}
) (562
90, = f | Ni U (i jsis Mij), (i 1y My 1) (5.63)
.jEL2;

Theorem 5.4. The GDoF region of the MIMO MAC-IC-MAC is the following polytope
D(a, b, eag) = {(d@17d@2) € R§1+K2 :

V(11, 21,75,82) € 2

Z dij <bg, (5.64)
lje
Z d2.j < bo, (5.65)
2.j€822
Z dyj;+ Z doj < ar, + 90, (5.66)

1.j€Ty 2.5€0,
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Z dij+ Z d2j < go, +ar, (5.67)
1je? 2.jET;
Z dij+ Z dyj <er, t+er, (5.68)
1jeM 2.j€T>
D i+ ) iy
1.jen 1jem
+ Z doj <ar, +90, +en (5.69)
2.J€Y>
D i+ Y day
Ljen 2.jET>
+ Z doj < ey +ar, + 992}- (5.70)
2.j€822

Proof Outline. In Definition the GDoF region is defined via the capacity region C. While the exact
capacity region C is not known for the MIMO MAC-IC-MAC, Theorem states that both R;, and R,
are within constant gap to the capacity. Because a constant number of bits are insignificant in the GDoF
computation, the GDoF region can be obtained from either Ry, or R,. We relegate the detailed proof to
Appendix where we shall directly or indirectly apply Lemma on the four outer bound set functions

(c.f. Definition to derive the result. O

Next, we study the GDoF region of a (2,1) MIMO MAC-IC-MAC with an emphasis on the achiev-

ability of the key corner points of its GDoF region using the signal partitioning method.

Example 5.1. Consider the (2,1) MAC-IC-MAC with My, = 3, Myo = 2, N1=3, My1=2, Ny=2,
Q1.151=0Q1.951=02.152=1, and ay.1_2=0a21_,1=0.6. The GDoF region of this channel is the

three-dimensional polytope plotted in Fig.|5.2

We provide an overview of the GDoF region of the MIMO MAC-IC-MAC of Example Since the
MAC-IC-MAC can be viewed as a generalization of the MAC, the IC and the ZIC, we should be able to
observe the GDoF regions of these sub-channels by switching off one particular transmitter. The GDoF of
a MAC channel formed by Tx1.1 and Tx1.2 is shown on the (d; 1,d;.2,0) plane, the GDoF of a two-user
interference channel constituted by Tx1.1 and Tx2.1 is shown on the (dy.1,0,d21) plane, which is identical

to Fig. 2 in [26], and finally, the GDoF region of a Z interference channel is shown on the (0, d; 2,d2.1) plane
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P: (1,0,2) 1(0.0.2) _
1: (1,0.8,2 B:(0,1.4,2)
H: (0.4,1.4,2
2
0: (1.8,0,1.6)
3: (1.8,0.4,1.6)
C: (0,2,1.4)
G: (0.4,2,1.4
K: (2.2,0.4,1.2)
1
© N: (2.6,0,0.8) ML:(2.2.0.8,0.8) F: (1,2,0.8
D: (0,2,0)
0 £ (3,0.0)
0 £ (1,2,0) o
1 1
2 2
di, 3 3 d,

Figure 5.2: The GDoF region of a MIMO MAC-IC-MAC with K1 =2, Ko =1, My =3, M1 5 =2, Ny =3,
My =2, Ny =2, a1.141 = 1251 = @212 = 1, and ay.1452 = a2.11 = 0.6.

in Fig.[5.2l The GDof-tuples on the plane F-G-H-I-J-K-L reach the maximum sum GDoF 3.8, and evidently,

we should not switch off any interfering transmitter in order to achieve maximum sum GDoF.

Example 5.2. Continuing with the MIMO MAC-IC-MAC of Example we describe here the structures
of the transmitted signals from the three transmitters in terms of independent data streams as in ([5.39)) or
(5.42). We assume the transmit power to be unity. In this example, we can accordingly write the signals

X114, X12 and Xy as

2 (k] p607 o (k)
X1 = Viise 5 SISt
; TRV 3+ pO'G‘Tfiaz,k) ¢

2
1 k)
+> v X
kzﬂ 1.1-2 3(1+p060_%1_>27k) 1.1p

3 1 3
+ ‘/1[.1]%2%)(5.%;;

and

2 k] p0803 | 1k (k)
Xo1=) V. 5 X5
Z 2.1=1 2(1 + p0.60_%.1_>17k) 2.1

2
1 k
S g )
+ 2.1—1 2(1 +p0'60-§.1al,k) 2.1p
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There are two common and three private data streams from Tx1.1. The common sub-message carried by
X(HC and X(ﬂc will be decoded by both Rx1 and Rx2. The first two private data streams X(ﬂp and X(f%p are
decodable by Rx1 but will arrive under the noise floor at Rx2. Since Tx1.1 has one more antenna than Rx2
does, a third private data stream Xﬂp can be sent between Tx1.1 and Rx1 without interfering at Rx2 using
transmit zero-forcing beamforming by sending Xﬂp along the null space of H; 1_,2. Hence, we can send Xﬂp
at the power level p°. The non-interfering transmitter Tx1.2 has two private streams x§1; and X% to Rx1

only. Tx2.1 has two data streams Xgic and X(ﬂc for its common sub-message to be decoded at both Rx1

and Rx2, as well as two private data streams Xgip and Xg%p for its private message to be decoded at Rx2

but under the noise floor at Rx1.

Next, we analyze the achievability of the corner points in the GDoF region of Example

The achievability of the 2-user interference channel points A, P, O, N and M have been explored in
detail in [26]. The achievability of Points D, E and M can be understood along the lines of achievability
of GDoF-tuples in a MIMO MAC, examples of which we have seen previously. The achievability of points
A B, C and D can also be inferred from [26] since the Z interference channel is a special case of the 2-
user interference channel. In what follows, we therefore focus on the corner points on the maximum sum
GDoF plane. We use the multidimensional signal-level partitioning method in each case to demonstrate
the achievability of these GDoF tuples. Note the underlying coding scheme in the multidimensional signal-
level partitioning, i.e., multi-level superposition coding as previously mentioned, is different from the coding

scheme we used to derive the inner bound.

5.4.1.1 Point I (d1.17d142ad241) = (1,08,2)

For this point, we choose the GDoF distribution dﬂc = d(ﬂc =0, dﬂp = dﬁp = 0, df’ip =1,
dg = d% =04, d(;ic = dgc = 0.6, d(;ip = dgp = 0.4. The GDoF allocation among the three transmitters
can be inferred from the signal partition diagrams at the two receivers in Fig.[5.3] In this allocation, Tx1.1
only uses the private data stream Xﬁp to communicate. This data stream is sent at the power level p° and

along the null space of Hj1_5 by transmit beamforming. It arrives at Rx1 with power p', but does not

cause interference at Rx2. The coding schemes for Tx1.2 and Tx2.1 can be easily inferred from the GDoF
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allocation.
X Rx1 Rx2 X
P - _—— = -P
0.8 |y L @ | | o ] _ 0.8
P Xio T X x0 | 1x@ P
/)0.6 _ {o |———— 2.1c| 2.1 _/,0~6
P4 | _Xl.lp o _p04
o2 X0 (xS o) @ | 02
X 2.1 2.1
P - t 11 —— —— X155, |7
0 0
S g
p‘0'2 i Xz.lp v :X2.l[7 - - - - — - 1 02
04 e 0.4

Figure 5.3: GDoF allocation scheme at point I

Rx1 first removes the effect of Xﬁp by zero forcing, i.e., projecting the received signal onto the 2-

dimensional signal plane which is perpendicular to H1,1_>1V[3] . Subsequently, X7 and X5 1. can be
1152

decoded successively. Rx1 recovers Xglg and X@ by treating the X7 1. as noise on its first two dimensions.

The noise floor to recover X(llg and Xf% will be at p%6 and we get dglg = d?% = 0.4 in this step. Then we

recover Xgic and ch resulting dgic = dgc = 0.6. Because Xg%c and X;?ic needs to recovered by both Rx1

and Rx2, it remains to check whether we can get dgic = dgc = 0.6 at Rx2 which will be confirmed later.
Finally, removing the contributions of X7 o and X5 1. from the received signal, we see an interference-free
channel from Tx1.1 to Rx1 so that Xﬁp with GDoF 1 can thus be recovered.

Since there is no interference to Rx2 in this GDoF allocation, Rx2 simply decodes X3 1. and X3 1,
successively. The signal X, 1. arrives at Rx2 at power level p', which can be decoded by treating X2.1p,
which arrives at power level p%-4, as noise. We then recover XS{C and Xg?%c resulting dg%c = dgc = 0.6, the

same GDoF obtained from their recovery at Rx1. Lastly, subtracting X5 1. from the received signal, the

private message signal X5 1, can be decoded, resulting in dg%p = dg?ip =0.4.
5.4.1.2 Point J (dl_l,dlg,dgll) = (18, 047 16)

Consider the GDoF distribution d{'}, = di*}, = 0.2, di'} = d?}, = 0.2, d’}, =1, d{!) = d’} = 0.2,

1p

dg%c = dé%%c = 0.4, dg) = dgp = 0.4, and the GDoF allocation illustrated in Fig. Recall that in the

simple coding scheme of Section [5.3.4] the non-interfering transmitters transmit at full power. Here however,
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the GDoF allocation scheme implies the non-interfering transmitter Tx1.2 should transmit at power level
p8. In fact, both these two coding schemes achieve Point J. With Tx1.2 transmitting with full power, we

need to jointly decode X 1. and X 3 by treating Xz 1. and Xy 1, as noise, whereas with Tx1.2 transmitting

with power p~°%, we can successively decode X7 1, X1.2, X2.1. and X1.1p in sequence.
X Rx1 Rx2 X
P RO T RO - - -
p0.8 _|oLlc Llc]| | - X(l) i X(z) _p0-8
X(l) X(Z) 2.1c¢ 2.1c
P06 212 12| - _poo
0.4 M @ X(lgi Xgl; X(lzi 0.4
8 -p dc dc .
P - XZ.](? B XZ.](? 1 - - - =P
0.2 m 2 0.2
po ROT RO —— —— (%515 —PO
1.1p 1.1p
SN I g
e e MU RO
1 1 1 1.1p 1.1p
04 e b e o — Ay Ly 4
P P

Figure 5.4: GDoF allocation scheme at point J

Rx1 first projects the received signal onto the two-dimensional space perpendicular to Hj 13 V1[31] o to
temporarily get rid of the effect of Xfip, and then decode X 1., X1.2, X2.1. and X 1, successively. Lastly,
the stream X(fip can be recovered after removing the effects of all the other data streams. Rx2 can use

successive decoding to decode X» 1., X1.1. and X3 1, sequentially.

5.4.1.3 Point K (dl.la d1_2, d2_1) = (22, 04, 12)
Consider the GDoF distribution d{'}, = di*}, = 0.2, di'} = d?*}, =04, d’}, =1, d{!) = d’} = 0.2,
dgic = dgic = 0.2, d(;{p = dg%p = 0.4 with the GDoF allocation illustrated in Fig. The decoding

procedures at Rx1 and Rx2 are similar to what we have done for Point J.

5.4.1.4 Point L (dl.h d1_27 dg,l) = (22, 08, 08)
Consider the GDoF distribution = d'}, = d\*}, = 0.2, d{"}, = d*), = 0.4, d{"), = 1, d{'} = d*) = 0.4,
dgic = dgc =0, dgip = dgp = 0.4 with the GDoF allocation illustrated in Fig.
Rx1 first removes the effect of Xﬂp, 50 Xi.1¢, X1.2 and X 1, can be decoded successively, resulting
in dﬁc = dﬁc =0.2, dﬁ% = d@ = 0.4 and dﬁp = df%p = 0.2. After that, Rx1 removes the contributions

of Xi.1c, X1.2 and X 1, from the received signal to recover Xﬁp.
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Figure 5.5: GDoF allocation scheme at point K

Rx2 decodes X1 1. and X5 1, using successive cancellation. The equivalent noise floor is po'4 to recover
% and ), so we have d\"), = d\¥)_ =02 (the same as we have at Rx1). Lastly, the privat
51c 51 11c = di 1. =0. . y, the private message

signal X2 1, can be decoded, resulting in dg%p = dgp =04.

5.4.1.5 Points F, G and H

We leave the development of the multidimensional signal-partitioning method for these three corner

points to the readers.

Remark 5.4. As stated previously, the GDoF region of the (3,3, 2,2) two-user MIMO IC is characterized by
the curve M-N-O-P-A on the (d;.1,0,d2.1) plane. Comparing points P and I, the DoFs achieved by the two
interfering transmitters, i.e., di.1 and dy 1 are the same, but at point I the non-interfering transmitter Tx1.2
gets GDoF 0.8 at no reduction of GDoF to Tx1.1 and Tx2.1. The reason is that the signal X5 1. arrives at
Rx1 at power level p°-¢, because of which the top two signal partitions in the first two dimensions of Rx1 can
be utilized to receive the signals from Tx1.2. Such a phenomenon was first discovered by the authors in the
context of the scalar Gaussian MAC-IC-MAC in [37]. It shows that the receivers’ power levels are not fully
saturated in a two-user MIMO IC under certain channel conditions, and adding non-interfering transmitters
(hence, making it a MIMO MAC-IC-MAC) could saturate these power levels (by letting the non-interfering
transmitters send signal partitions towards those power levels) and hence improve the overall cell spectrum
efficiency. Similar improvement can be observed by comparing points O and J.

Other than more fully occupying a receiver’s signal partitions in multiple dimensions, the non-
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Figure 5.6: GDoF allocation scheme at point L

interfering intended transmitters could also utilize a receiver’s signal dimensions that are not used to receive
the signals from the intended and non-intended interfering transmitters Tx1.1 and Tx2.1. This is another
role the non-interfering transmitters could play in improving the spectrum efficiency. Such an improvement
is not seen in Example but it is easily understood. Consider a SIMO MAC-IC-MAC which has more
than two receive antennas at each receiver. In this case, each receiver has extra signal dimensions after
receiving the signals from Tx1.1 and Tx2.1. The non-interfering transmitters (in the same cell), could send
their own signals along these extra signal dimensions and henceforth improve the utilization of the available

signal partitions and dimensions at each receiver.

5.4.2 The Symmetric GDoF Curve

A MIMO MAC-IC-MAC is said to be symmetric if each cell has the same number of users, all the
transmitters (and receivers) have the same number of transmit (receive) antennas M (N) and p; j—; = p and
Py =p* forany ij €O, i#i andi,i € {1,2}. In regards to the symmetric MIMO MAC-IC-MAC, a
more informative performance metric is the symmetric GDoF, which is a function of K, M, N and «, and

is defined as follows.

Definition 5.7. For a symmetric K-user, (M, M, N, N) MIMO MAC-IC-MAC with GDoF region

Doym (K, M, N, &), the symmetric generalized degree-of-freedom dgym (K, M, N, ) is defined as the solution
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to the following maximization problem

dsym (K, M, N,a) £ max d.
d=d; 1=:-=d1 gk=dz1="-=d2. K
(doy ;dey) EDsym (K,M,N,&)
Given the GDoF region in Theorem the symmetric GDoF of MIMO MAC-IC-MAC can be computed

by linear programming,.

In order to see the GDoF performance at the cell level, we plot the per-cell sum symmetric GDoF (sum
symmetric GDoF for short) Kds,,, against the interference strength exponent «, for given K, M and N.
The plotted curve is called the per-cell sum symmetric GDoF curve (sum symmetric GDoF curve for short).
Figs.[5.75.9] demonstrate the sum symmetric GDoF curves for the following three antenna configurations:
M=1land N=2, M =2and N =3, and M = 3 and N = 4 respectively, each figure has four curves, one

for each K =1, 2, 3 and 4.
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Figure 5.7: Sum symmetric GDoF for K =1,2,3,4, M =1, N =2

Next, we study the sum symmetric GDoF's plotted in Fig. for three distinct symmetric MIMO
MAC-IC-MACs described in the figure captions. We focus on the achievability of the corner points on these

curves, and the analysis employs the multidimensional signal-level partitioning introduced in Section [2.2]

Example 5.3. K =2, M =1, N = 2. This is a two user per cell SIMO (single input multiple output)
MAC-IC-MAC. When a = 0.5, Fig. tells us that dgypm, = % and the sum GDoF per cell of 1.5 is achievable.

A GDoF allocation scheme to achieve GDoF 1.5 per cell is illustrated in Fig.[5.10} In this scheme, the private
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Figure 5.8: Sum symmetric GDoF for K =1,2,3,4, M =2, N =3

data streams Xﬂp and Xgip are transmitted with power p~°® so they arrive under the noise floor at their

non-intended receivers. The achievability of dgym = % when « = 0.6 is shown in Fig.|5.11

Example 5.4. K =3, M =1, N = 2. We use this example to show how does sum symmetric GDoF
increases with the number of non-interfering transmitters, in comparison to the previous example. The
result in Fig. suggests that we can achieve full GDoF of 2 per cell at a = % A GDoF allocation scheme
is illustrated in Fig.[5.12] and the interference free GDoF is achieved in each cell. As can be observed in the
figure, the signal partitions of the interfering transmitters are allocated in such a away that the interferences
arrive below the noise levels at both the receivers.

Next, we show the achievability of the symmetric GDoF at strong interference with o = % which also
leads to the achievability of the full GDoF of 2 in each cell. The GDoF allocation of the signal transmission

scheme is illustrated in Fig.[5.13

Example 5.5. K =2, M =2, N = 3. In this example, we show how the transmit/receive antenna ratio
effects the symmetric GDoF curve, in comparison to Example where transmit/receive antenna ratio is
1/2. According to the result in Fig. dsym = 2 can be achieved at @ = 3. A GDoF allocation that

achieves this point is illustrated in Fig.|5.14

Remark 5.5. As seen from Figs.[5.7[5.9 the per-cell sum symmetric GDoF curve of the MIMO MAC-IC-
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Figure 5.9: Sum symmetric GDoF for K =1,2,3,4, M =3, N =4

MAC moves up as the number of non-interfering transmitters increases. At first glance, this improvement
is somehow expected, because with the increasing number of the non-interfering transmitters in a cell, the
interfering transmitter has to generally transmit less and therefore emits less interference to the other cell.
Hence, the overall cell spectrum efficiency could rise, and an easy way to achieve such improvement is by
time-sharing. What is more interesting here is that under certain ranges of «, the interfering transmitter
alone cannot fully utilize the spectrum resource as seen in the use of the receivers’ signal partitions and
dimensions in a cell. However, the interfering and the non-interfering transmitters together, can. The
resulting improvement to the sum symmetric GDoF is in general more than what time-sharing can alone
achieve. Recall Remark the non-interfering transmitter gains positive GDoF at no cost to the two
interfering transmitters, and it is such a hidden benefit that we were interested in exploiting in this chapter.
Similar GDoF gain can be seen in the sum symmetric GDoF curve too. The most obvious observation is that
the full (interference free) GDoF per cell can be achieved ufor certain ranges of a in Fig. whereas
time-sharing between the interfering and the non-interfering transmitters cannot achieve full GDoF in those
ranges of a. A comparison between the optimal sum symmetric GDoF curve and the sum GDoF curve
obtained by several time-sharing schemes has been discussed in the analysis of the per-cell sum symmetric

GDoF curve of the Gaussian scalar MAC-IC-MAC in Section IIL.G].
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5.5 Conclusions

The known results on the constant-gap-to-capacity regions of the K-user MIMO MAC [39] and the
two-user MIMO IC [27] are generalized and unified in this chapter. In particular, we generalize the coding
schemes in [27] and [39] and introduce a simple coding scheme for MIMO MAC-IC-MAC. The resulting
achievable region turns out to be within constant gap to the capacity region. The multidimensional signal-
level partitioning is formally established and is shown to be a simple and straightforward tool to analyze
the achievability of any given GDoF tuple for general MIMO networks. The GDoF region of the MIMO
MAC-IC-MAC is characterized. The role of non-interfering transmitters in the MAC-IC-MAC, which has
been previously investigated in the Gaussian scalar MAC-IC-MAC [37], is further studied with a variety of
antenna configurations. In particular, the per-cell sum symmetric GDoF shows the improvement of spectrum

efficiency with the number of the non-interfering transmitters in the MIMO MAC-IC-MAC.
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Chapter 6

Future Research

Now that the GDoF regions of the MIMO one-to-three IC and the MIMO IC-ZIC have been character-
ized, the next step towards the GDoF region of the fully connected three-user MIMO IC could be obtaining
the GDoF region of the MIMO three-to-one IC which is shown in Fig.[6.1] It has the following input-output

relations.

Y1 =hi1Hi1 X1 + hioHo1 Xo + h31 H31 X3 + 23
Yy = hooHo X5 + Zo
Y3 = h3sH33 X3+ Z3
The random vectors X; and Y;, ¢ € {1,2,3} are the channel inputs and outputs, and h,;; and H;; are the

channel gain and transfer matrix from Txi to Rxj, where i, 5 € {1,2,3} and some ij pairs do not exist. Rxi

only intends to receive the message from Txi. Note in either MIMO one-to-three IC or IC-ZIC, the GDoF

Tx2

Figure 6.1: The MIMO three-to-one IC
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optimal coding scheme does not include interference alignment. This is because in these two channels, no
receiver receives more than one interference signal. However, it is not the case in the MIMO three-to-one
IC, and interference alignment should be expected. The GDoF region of the MIMO three-to-one IC might
be addressed by harnessing insights from the known results on the scalar Gaussian many-to-one IC in [4]

and the MIMO one-to-three IC in Chapter |3 We perform GSVD on matrix H;rl and H;[l such that
HY, = Uy D9,V and HY, = Uy 25, V7

where Us; and Us; are unitary matrices and 39 and Y31 are rectangular diagonal matrices. Then we write
HQl and H31 as

Hyy = VUL, and Hsy, = VEL UL,

This is another form of GSVD which guarantees identical left hand side matrix V in the decomposition.
Accordingly, the two interference signals can be expressed as hay VZglUngg and hlgVﬂglUngg. Depending
on the diagonal values of E;l and E;rn as well as the channel gains hy; and hsy, the interference arriving at
Rx1 should contain three parts. The first part consists of the interference signal partitions received along the
signal directions and levels (at Rx1) which are only seen by Tx2, the second part consists of the interference
signal partitions received along the signal directions and levels which are only seen by Tx3, and the third
part consists of the interference signal partitions received along the signal directions and levels which are
seen by both Tx2 and Tx3. A possible GDoF optimal coding scheme which adapts this channel structure
can be summarized as follows. Tx1 transmits its own message m; using single user Gaussian codebook with
scaled identity covariance matrix. Tx2 splits its message mo into three parts miz, ma, and me,. Tx3 also
splits its message mg3 into three parts mi3, ms, and mg,. The sub-messages mo, and ms, are encoded so
that they will arrive under the noise floor at Rx1l. The sub-message m2 is sent to the signal directions
and levels (at Rx1) which are exclusively accessible to Tx2, and similarly the sub-message m3 is sent at
the signal directions and levels which are exclusively accessible to Tx3. Finally, the signal partitions which
carry sub-messages mo, and mg, from Tx2 and Tx3 should be aligned with Lattice coding and sent to the
signal directions and levels which are accessible to both Tx2 and Tx3. Then Rx1 could take the benefit of

interference alignment on those signal directions and levels, and only the sum of aligned interference signal
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partitions needs to be decoded.

Following the work of the MIMO MAC-IC-MAC, especially the sum symmetric GDoF improvement
due to simultaneous transmissions of the interfering and the non-interfering transmitters in each cell, we
can already predict the sum symmetric GDoF for a few partially connected symmetric IMACs that have
more than one interfering transmitters per cell. Consider a partially connected symmetric IMAC with six
transmitters per cell, two of which interfere with the other cell, as shown in Fig.[6.2] Each transmitter is
equipped with one antenna and each receiver has two antennas. All the direct links have SNR p and all the
interference links have INR p!/3. Recall in Example , we already know that when o = 1/3, a symmetric
(3,3) MIMO MAC-IC-MAC with the same antenna configuration could achieve full sum symmetric GDoF
2 (the interference free sum symmetric GDoF) in each cell by the GDoF allocation illustrated in Fig.[5.12
When adding another two non-interfering and one interfering transmitters into the (3,3) MAC-IC-MAC, we
let the two added non-interfering transmitters share the signal levels with the existing two non-interfering
transmitters in time, and the added interfering transmitter share the signal levels with the existing interfering
transmitter in time (see Fig.. We then get sum symmetric GDoF 2 per-cell which should be the exact
per-cell sum symmetric GDoF for this IMAC. Generally speaking, we can scale the number of users in
a symmetric MIMO MAC-IC-MAC (while keeping the antenna configuration and the ratio between the
numbers of the non-interfering and interfering transmitters the same) to achieve the same per-cell sum
symmetric GDoF. Because for any a € [0,1/3], a symmetric (3,3) MIMO MAC-IC-MAC could achieve full
per-cell sum symmetric GDoF, so could the IMAC in Fig.[6.2] Note the GDoF optimal coding scheme implied
by Fig.[6.3] merely treats interference as noise at both receivers. Hence, the MIMO MAC-IC-MAC results
could help answer the following question: for a partially connected symmetric IMAC, under what condition
is treating interference as noise GDoF optimal? The GDoF optimality condition of treating interference as
noise for K-user scalar Gaussian IC with constant channel realization has been determined in [19)].

The constant-gap-to-capacity or GDoF region of the MIMO BC-IC-BC, where only one receiver in
each cell receives interference from the other cell, may be worth exploring. Unfortunately, the results on the
MIMO MAC-IC-MAC do not provide many clues on GDoF optimal coding scheme for the MIMO BC-IC-BC.

The known capacity achieving coding scheme for the MIMO BC is the so-called dirty paper coding introduced



Tx1.6
Tx1.5
Tx1.4

Tx1.3 Rx1

Tx1.2

Tx1.1 1/3

7
1/37
N

Tx2.1

Tx2.2

Tx2.3 Rx2

Tx2.4
Tx2.5
Tx2.6

162

Figure 6.2: A partially connected symmetric IMAC with six transmitters per cell. Two of them interfere
with the other cell. Direct links have SNR p and interference links have INR p'/2. Each transmitter has one

antenna and each receiver has two antennas.
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by Costa [12], whereas the known GDoF optimal coding scheme for the two-user MIMO IC is the KV coding
scheme [27]. It is not clear how these two optimal coding schemes could be combined together to produce a
new coding scheme for the MIMO BC-IC-BC. Even for the scalar Gaussian BC-IC-BC, a potential coding
scheme is not obvious. One approach to characterize the GDoF region of the MIMO BC-IC-BC might be to
establish the duality between the GDoF region of the MIMO MAC-IC-MAC and the MIMO BC-IC-BC.
So far, all the results in Chapters are based on constant channel realization. To make these results

more practical for wireless applications, channel fading may be incorporated in future research.
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Appendix A

Proofs for Results on the MIMO One-to-three IC

Al Proof of Theorem [3.1]

We prove achievability through a random coding argument. We employ three level superposition
coding at Tx1, and single use random coding at Tx2 and Tx3. More specifically, the achievable scheme can

be described in the following steps.
(1) Generate time sharing sequence ¢" according to p(q™) = [[;—, p(q:)-

(2) Tx1 generates 277122 sequences wi,; according to p(wihslg™) = [[—, p(wi23+|g:) and indexes them
by kigz € {1,---,27123} For each wi,ys(kia3), it generates 2712 sequences w?, according to
p(wlhy|wiys(ki2s), ¢") = H?:l p(wiz,¢|wizs,i(k123), ¢:) and indexes then by (k123, ki2) €
{1, 2nfes} x {1 ... 27R12} a5 well as 213 sequences wly according to p(wiy|wiys(k12s), ¢") =
[T, p(wis ¢|wi2s ¢ (k123), ¢:) indexed by (ki23, k1) € {1,--- 223} x {1,...27f3} Finally, Tx1

generates 2(F1—Fi2s—Fi2—F13) gequences x7 according to

p(@] |wiss (k123), wis(k12), wis(k13), ¢") = H p(@1t|wizs e (k123), wiz.¢(k12), wise(k13), ¢1)
t=1

and index them as

(K123, k12, k13, k1p) € {1, -+, 202y s {1, oonfazy o g LoognfBiey o fy L gn(Bi—Riss—Riz—Ria)y

(3) Txi, i € {2,3}, independently generates 2" sequences z? according to p(z}|q") = [[1—, p(zit|qt)

and indexes them by k; € {1,--- ’21’LR7',}.
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(4) Once the codebooks are generated, they are fixed for the duration of communication and revealed

to receivers Rx1-Rx3.

(5) A 4—tuple message mi; = (m123,m12,m13,mlp) = (k1237 k12, klg, klp) iS encoded to .’E?(klzg, k127 klg,

k1,) at Tx1 and sent over the channel.
(6) A message m; = (k;), i € {2,3} is encoded to zI'(m;) and sent over the channel.

(7) Upon receiving yi', Rx1 declares its decoded messages (1mi23, M12, M13,7M1,) as the unique index-
tuple (K123, k12, k13, k1p) for which ¢, wiys (k123), wiy (K123, k12), wi(ki2s, kis), 27 (ki2s, k12, k13, kip)

and y!* are jointly typical. If such an index-tuple cannot be found, Rx1 declares an error.

(8) Upon receiving y2*, i € {2, 3}, Rxi declares its decoded messages (1h123, 114, 772;) as the unique index-
tuple (1%123, ks, I%l) for which ¢", wﬁg(l%lgg), w?i(fclgg, IAcli), mg(l%l) and y}* are jointly typical, for some
1%123 and I%li. If such an index-tuple cannot be found, Rxi declares an error.

Suppose m; = (1,1,1,1), my = 1, and m3 = 1 are sent. The following reliability condition of the coding

scheme can be obtained from the typical decoding argument [13, Chapter 7].

Ry — Ri23 — Rig — Rz < I(X1; Y1 Wiz, Wiz, W13, Q)
Ry — Ria3 — Rip < I(X1;Y1|[Wias, Wia, Q)
Ry — Ri2z — Riz < I(X1;Y1[Wia3, W13, Q)
Ri — Rz < I(X1; Y1|[Whas, Q)

Ry < I(X1;11]Q)
Ry < I(Xa;Ya|Wiaz, Wi, Q)
Ry + Rio < I(Xo, Wia; Ya|Wi23, Q)

Ry + Rio3 + Ri2 < I(Xo, Wias, Wia; Y2|Q)

R3 < I(X3;Y3|Wias3, Wi3,Q)
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R3 + Rz < I(X3, Wis; Y3|Wi23, Q)

R3 + Rio3 + Ri3 < I(X3, Wias, Wis; Y3|Q)

Ri23, R12,R13 >0
Bios + Rig + Riz < Ry

Ry, R3 >0

Performing Fourier-Motzkin elimination to eliminate R123, R12 and Ri3 in the reliability condition, the inner

bound can be obtained, which completes the proof.

A.2 Proof of Theorem [3.2]

The proof starts from the DM one-to-three inner bound in Theorem We evaluate the mutual

information terms when specialized to the MIMO setting and for the coding scheme specialized in Section

(13.4.2). We prove the fourth inequality (3.63]) in R, as an example.
According to (3.38)), the sum R; + Ry is bounded by I( X1, Y1[Wia3, W12, Q) + (X2, Wiaz, Wi2; Y2|Q).

The first mutual information term can be evaluated as follows,

I(X1,Y1[Wi23, W12, Q)
= h(Y1|Wias, Wi2) — h(Y1]X1)
=h (h11H11(W13 + Wlp) + Zl) — h(Zl)

=log (IN1 + p M Hyp (Qu3 + le)HL) :
Before we evaluate the second mutual information term, we upper bound the term the term
log (IN2 + p™2Hyp(Q13 + le)HIQ) )

which is shown in (A.I]), the step (a) is true due to the lower bound on Tr(V,V,1) by (3.54). Then the second
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mutual information term an be computed as following,
I(X2, Wi23, Wi2; Y2|Q)
= h(Y2) — h(Ya| X2, Wias, Wi2)
= h(h12H12X1 + hooH22Xo + Z5)
— h (hioH1o(Wiz + Wip) + Z2)
= log (IN2 + p™2Hy,Hi, + Pa22H22H;[2)
— log (IN2 + p™2Hyp(Q13 + le)Hh)
> log (IN2 + pa”leHIg + Pa22H22H§2) — P2

The rest inequalities in R;, can be proved in a similar fashion. The proof is completed.

log |In, + p*2 H12(Q13 + le)Hb‘

i
V. : v,
= log IN2 + pa12U12212 U —————
Tr(V, V)
0(M1_7_)+><7l ( p 17)
—1
T o T
P13 AjgAas + p*2 X530 0r s (My —r)+ 8
Ing, + ViU siLuf,
O(ar, —r)+xr O(at, —r)+ (M —r)+ Ocar, —r)+xr
.i.
Q12 ‘/T VTT_l O’!‘X(M —7‘)+
=log|In, + pi]uzm '
(v, V)
Oty —r)+ xr Oy —rytxr L —r)+
—1
I, + palSAisAIS + palzZIQZIQ 07“><(M1—7")Jr ‘/;_1 0r><(M1 —r)t
Oy —r)txr T —ry+ Onei—r)ytxr Ly —r)+
V.
I
0(M1—7)Jr Xr
§ 1
P2 I, I, + palSAJ{3A13 + p‘mE{zEu Orx(ler)‘*'
=log |In, + TV VT)EH
r
PP O(ar, —r)+ xr O(az, —r)+ xr Iiaa, —ry+
I,
=l
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Q12

7212(Ir+p0413AT A13—|—pa122T 212)712T
TI‘(‘/;)VJ) 13 12 12

=log |In, +

a1z
1+4p>12 IT*T13

=log |In, + pamC(IleS + pf)él:sSTS + pa12CTC)—1CT

T (V, V)

max{(m + (M — r)+>_1,1}

@12

(1 + priam> IT*’I“13

O(Nz—T12)><(N2—T12)

(@)
< log

pQIQUrznax(Au’)
(1+1+ﬂ‘*1302 (A1s)+p 1205, (A12) Trizg

min min

INz—le

2Ly,

< log max {(5,, 1} (14 Zo=lz) g

Tonin(A12) ) 77123

INQ—le

01r2nax(A12)>

02 in(A12)

= log ’max {C;iln, 1}| + (r —ri3) + 123 log (1 +

= [ (A1)

A.3 Proof of Theorem [3.3]

The outer bound for MIMO one-to-three is characterized in two steps. In the first step, we define
the genie information and derive a variety of individual rate upper bounds on R;, Ry and R3. Combing
these individual rate restrictions, we characterize an intermediate outer bound with these genie informations
and channel side informations Si2, S13 and Si23. It is a union region outer bound over all admissible input
distributions. In second step, we optimize the input distribution to be Gaussian and characterize a single

region outer bound with this specified distribution.
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A.3.1 An Intermediate Outer Bound

We construct three random vectors 123, T12 and T3 as the genie informations to help receivers to

decode their message. They are

(U5 Zy) )
Th93 = h13G13X1 + Uss (A.2)
O(Ng—riza)x1

Tiy = hisHi2 X1 + Z, (A.3)

07”123 x1

T3 = hizJi3 X1 + Uss . (A.4)
(Ulglzé)(ﬁz?ri-liNB)

where Zé 1 Z5 and Z:; 1 Z3 such that Tio3, T12 and Ti3 have identical distribution as the channel side
information Si23, S12 and Si3 respectively. The basic fact supports the derivation of the individual rate
upper bounds to follow is the that providing genie information to the receiver makes the receiver more
interference resilient, and therefore should not decrease the capacity of the channel.

If we do not provide any genie information to Rx1, the individual rate R; is simply upper bounded

by a point-to-point channel capacity

Providing genie information 7755 to Rx1, we can get another upper bound on the rate R; as

niy (%) I(X{5 YY", Tiy3) + ne
& 1(XT: i) + T(XT5 Y7 Tihg) + ne

© (Ths) — DTl XT) + h(YPTihg) — h(YT|XT)
+ ne

< n[h(Y1|Ti23, Q) — h(Y1]| X1, Q) — h(T1231 X1, Q)]
+ h(T{53) + ne

D o [h(Y1|Tha3, Q) — h(Y1|X1, Q) — h(S125) X1, Q)]
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+ h(STa3) + ne. (A.6)
The inequalities or equations (a)-(d) hold true because: (a) Providing genie information 7744 to Rx1 will not
decrease the channel capacity; (b) chain rule of mutual information; (c) h(Y{"| X7, T1hs) = h(Y*|XT) = h(Z7)
according to the distribution of X1, Y7 and T23; (d) According to the definition of genie information -
(A24), we have h(S123| X1, Q) = h(T123| X1, Q) and h(S}h3) = h(T7ss).
Similarly, if we provide genie informations (1745, T7%), (143, T1%) and (T7hs, T1h, T1hs) we get three
more upper bounds on R;, which are
nRy < nl[h(Y1|Ti23, Ti2, Q) — h(Y1]X1,Q)
— h(S123, S12| X1, Q)] + h(SThs, STo) + ne (A7)
nRy < n[h(Y1|Ti23, T1s, Q) — h(Y1| X1, Q)
— h(S123, S131 X1, Q)] + h(Stas, Sis) + ne (A.8)
nRy < n[h(Y1|Ti2s, Th2, Ths, Q) — h(Y1]| X1, Q)
— h(S123, S12, 513/ X1, Q)] + h(STas, Sy, ST3)

+ ne. (A.9)

For Rx2 and Rx3, we provide no genie information, genie information 7744 or the entire X{* at the decoder,

resulting three upper bound on Rs

nRy < I(X3;Y3') + ne
= h(Y3') = h(Y3'|X3') 4 ne
= h(Y3") — h(S1y) + ne
< nh(Ya|Q) — h(ST,) + ne (A.10)
(@)
nRy < I(X3:;Y5", Thhs) + ne
(_b) n.,yvn|mn
= (X3 Y5 [Th3) + ne
= h(Y3'|Ti33) — h(Y5'[T1hs, X5') + ne

= h(Y3'|T{53) — h(ST|T133) + ne



< nh(Yz|Ti23, Q) — h(S15|ST23) + ne

(a)
nRy < I(X3;Y5, XT) + ne

b
© 1(xXz Y2 XT) + ne

< n[h(Ya|X1,Q) — h(S12| X1, Q)] + ne
and three upper bounds on Rj3

nRs < I(X;Y5) + ne

= n(Y3") — h(Y3'[X3) + ne

(c) n mn n
= h(Y3") — h(STs3, S15) + ne

< nh(Y3|Q) — h(Sa3, S13) + ne

(a)
nRs < I(X3;Y5", Ths) + ne

(b) n.yn|qm
= (X35 Y3 Th3) + ne

(¢) n|pn n n n
= h(Y3"|TT53) — h(STa3, S15|T153) + ne

< nh(Ya|Ti23, Q) — h(STa3, S15/5753) + ne

(a)
nRs < I(X3;Y3", XT') + ne

b
© 1(x3vIXT) + ne

(o) n n n n n
= h(Y3'[XT) — h(S1a3, ST5|X7") + ne

< n[h(Ys|X1,Q) — h(S12s, S13| X1, Q)] + ne.
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

The steps (a)-(c) hold true because: (a) Providing genie information or X7* to Rx2 or Rx3 will not decrease

the channel capacity; (b) Chain rule of mutual information and the fact that each genie information is

independent of X; for ¢ € {2,3}; (c) The side informations S123 and Si3 are defined to be disjointed (c.f.

B-30)).

Adding (A.7) and (A.10)), we obtain an outer bound on sum rate Ry + Ra,

’I’L(R1 + Rg)

< n[h(Y1|T123, T12,Q) — h(Y1|X1, Q) + h(Y2|Q)
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— h(S123, 512 X1, Q)] + h(STa3, ST2) — h(STs) + ne
= n[h(Y1|Ti23, T2, Q) — h(Y1|X1, Q) + h(Y2|Q)

— h(S123, S12| X1, Q) + h(S123[S12, Q) + ne (A.16)
Similarly, an outer bound on sum rate R; + R3 can be obtained by adding inequalities (A.8]) and (A.13),

n(R1 + Rg)
< n[h(Y1|Ti23, T13, Q) — h(Y1]X1,Q)

+ h(Y3]Q) — h(S123, S131X1, Q)] + ne (A.17)

Next, we derive two upper bounds on sum rate Ry + Re + R3. Adding (A.9)), (A.11) and (A.13)), we have

n(R1 + R2 + R3)
< n[h(Vi|Ti2. Tiz, Trs, Q) — h(Yi| X1, Q) + h(Ya|Ti2s, Q)
+ h(Y3]Q) — h(S123, S12, S13| X1, Q)]
+ h(S1a3, 512, ST3) — h(ST5|STa3) — h(STas, S13) + ne
= n[h(Y1|Th23, Th2, T13, Q) — h(Y1]| X1, Q) + h(Y2|T123, Q)
+ h(Y3]|Q) — h(S123, S12, S13| X1, Q)]
+ h(S15]STas, S13) — h(S12]ST53) + ne
= n[h(Y1|Ti23, Th2, T13, Q) — h(Y1|X1, Q) + h(Y2|T123, Q)
+ h(Y3]Q) — h(S123, S12, 513/ X1, Q)]
— I(515; 513/ S1a3) + ne
=n[h(Y1|Ti23, T12, T13, Q) — h(Y1|X1, Q) + h(Y2|T123, Q)

+ h(Y3|Q) — h(Si23, S12, S13| X1, Q)] + ne (A.18)

Adding (A.9), (A.10) and (A.14), we have

n(Ry + Re + R3)

< nf[h(Y1|Ti2s, Ti2, T13, Q) — h(Y1]| X1, Q) + h(Y2|Q)
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+ h(Ya|T123, Q) — h(Si23, S12, S13/ X1, Q)]
+ h(STas, STa, ST3) — h(S15) — h(STas, ST5|TTa3) + ne
= n[h(Y1|T123, Th2, T1s, Q) — h(Y1|X1, Q) + h(Y2|Q)
+ h(Y3|Ti23, Q) — h(S123, S12, S13/ X1, Q)]
+ h(S153, 512, S13) — h(ST2) — h(STas, S1s|T1as) + ne
@ n[h(Y1|Ti23, Ti2, T13, Q) — h(Y1]X1, Q) + h(Y2|Q)
+ h(Y3|T123, Q) — h(S123, S12, S13/ X1, Q)]
+ h(S153, 512, S5, Tias) — h(T753]STas, ST, 513)
— h(S512) — h(STas, S15|TT53) + ne
(%) n[h(Y1|T123, T12, T3, Q) — h(Y1]|X1, Q) + h(Y2|Q)
+ h(Y3|T123, Q) — h(S123, S12, S13/ X1, Q)]
+ h(S153, 512, S5, Tia3) — h(T15s|STas, S1a. 513, X1
— h(S12) — h(Stas, Sis|TT53) + ne
(2 n[h(Y1|T123, T12, T13, Q) — h(Y1]|X1, Q) + h(Y2|Q)
+ h(Y3|T123, Q) — h(S123, S12, S13/ X1, Q)]
+ h(STas, STa, ST3, T1as) — h(TTas| XT)
— h(ST2) — h(Stas, Si5|TT53) + ne
@ n[h(Y1|Ti2s, Tiz, T1s, Q) — h(Y1]| X1, Q) + h(Y2|Q)
+ h(Ys|T123, Q) — h(Si23, S12, S13/ X1, Q)]
— h(T53] XT) + h(T153] S15)
+ h(STas, S13|912: T1ag) — h(STas, S15|TT5g) + ne
= n[h(Y1|T123, Th2, Ths, Q) — h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q) — h(S123, S12, 513/ X1, Q)

— h(T123| X1, Q)] + h(T{hs|STs)
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— I(STa3, 5153 S1o|T153) + ne
< n[h(Y1|Ti23, Th2, Th3, Q) — h(Y1|X1, Q) + h(Y2|Q)
+ h(Y3|T123, Q) — h(S123, S12, 513 X1, Q)

— h(5123|X1, Q) + h(5123|512, Q)] + ne (Alg)

Inequalities or equations (a)-(d) hold true because: (a) chain rule of conditional differential entropy; (b)
conditioning reduces differential entropy; (c) Tihs and (ST, STh, STs) are independent conditioned on X7*;

(d) chain rule of differential entropy.
Lastly, we generate an upper bound on 2R; + Ry + Rs, which is obtained by adding (A.6), (A.9)),

(A.10) and (A.13) in the following.

n(2R; + Ry + R3)
< n[h(Y1|Ti23, Q) + h(Y1|Ti23, Ti2, Ths, Q)
= 2h(Y1]X1, Q) + h(Y2|Q) + h(Y3]Q)
— h(S123, S12, S13X1, Q) — h(S123/ X1, Q)] + h(Sihs)
+ h(STag, 512, ST5) — h(ST2) — h(STa3, ST5) + ne
= n[h(Y1|Ti23, Q) + h(Y1|T123, T12, T13, Q)
—2h(V1|X1, Q) + h(Y2|Q) + h(Y3]|Q)
— h(S123, S12, S13| X1, Q) — h(S123| X1, Q)] + h(SThs)
+ h(S7a3, 575, S13) — h(ST) — h(STa3, S13) + ne
=n[h(Y1|Ti23, Q) + h(Y1|T123, T12, Th3, Q)
= 2h(Y1]X1, Q) + h(Y2|Q) + h(Y3|Q)
— (8123, S12, 513| X1, Q) — h(S123| X1, Q)]
+ h(STa3] 1) — 1(S15; S13]5123) + ne
= n[h(Y1|Ti23, Q) + h(Y1|T123, T12, T13, Q)

—2h(M1]X3, Q) + h(Y2|Q) + h(Y3|Q)



— h(S123, S12, S13| X1, @) — h(S123/ X1, Q)

+ h(S123]512, Q)] + ne

178

(A.20)

At this point, we can write down an outer bound of MIMO one-to-three IC in terms of side and genie

informations by incorporating bounds on individual rate (A.5), (A.12)) and (A.15), and on sum rate (A.16)-

(A.20). Since the input distribution p(x1, 2, x3,q) is not optimized yet, the resulting outer remains a union

of polytopes over all admissible input distributions.

Lemma A.1. Let P, be the set of distributions Py of joint random variables (Q, X1, Xa, X3) that can be

factored as

p(w1, 22, 23) = p(q)p(z1]9)p(*2|q)p(73]q),

and define the following region R, (P,).

/

R (Fo)
R,
Ry
R3

R+ Ry

R+ Rs

Ri+ Ry + R3

Ri+ Ry + R3

2 {(Ry, Ry, Rs) € R :
< h(V1]Q) — h(Y1]X1, Q)
< h(Y2]X1, Q) — h(512|X1, Q)
< h(Y3|X1, Q) — h(S123, S13| X1, Q)
< h(Y1|T123, Th2, Q) — (Y1 X1, Q)
+ h(Y2|Q) — h(S123, S12/X1, Q)
+ h(S123]512, Q)
< h(Y1|Th23,T13, Q) — h(Y1|X1,Q)
+ h(Y3]Q) — h(S123, 5131 X1, Q)
< h(Y1|Th23, Th2, Ths, Q) — h(Y1| X1, Q)
+ h(Y2|Th23, Q) + h(Y3]Q)
— h(S123, 512, 513| X1, Q)
< h(Y1|Th23, Ti2, T3, Q) — h(Y1|X1,Q)

+ h(Y2|Q) + h(Y3|T123, Q)

(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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— h(S123, S12, 513| X1, Q)

— h(S123] X1, Q) + h(S123/512, Q) (A.27)
2Ry + Ry + R3 < h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

— 2h(Y1|X1, Q) + h(Y2|Q)

— h(S123, S12, 513/ X1, Q) + h(Y3]Q)

— h(S123|X1, Q) + h(S123]512, Q) }- (A.28)

Then we have

A.3.2 The Single Region Outer Bound

The intermediate upper bound is a union of polytopes over all admissible input distributions P,. To
establish a single region outer bound, we maximize the right hand side values of of inequalities —
by optimizing the input distribution p(z1,z2,z3,q). First of all, the time sharing is disabled. The region
R;(Po) will not shrink because removing random variable ) will not decrease the positive conditional entropy
terms and the negative entropy terms are entropies of the Gaussian noises which are independent of @, for
example h(Y1]|X1,Q) = h(Z1|Q) = h(Z1). The positive entropy terms are upper bounded below. Each term
reaches its maximum value when X;, X5 and X3 are independent Gaussian random vectors. Because for
random vectors X and Y with Zero mean and some fixed joint covariance, the conditional differential entropy

of X given Y is maximized when X and Y are joint Gaussian [44, Lemma 1]. We also assumed the inputs

have zero mean, i.e., F(X;) =0 for i € {1,2, 3}, as non-zero means only contribute to power inefficiency.

(Y1) < log ‘INl + paanHL‘ + N log 27e
h(Y1|T123) < log ‘INI + pa“H11K12,13,1pHL‘
+ Nj log 2me
h(Y1|T123,T12) < log ‘INl + Pa“H11K13,1pH1Tl‘

+ N log 2me
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h(Y1|T123,T13) < log ‘IN1 + pmlHnKlz,lpHIl‘
+ N log 2me
h(Y1|T123, T12,T13) < log ‘INl + P(X“HllKlpHH
+ Njlog 2me
A(Y2) < log | In, + p™** Hiz Hly
+p@22H22H§2‘ + Ny log 2e
h(Y3|T123) < log ‘IN2 + p®12 Hi9 Ky 19103 H],
+p°‘22H22H§2‘ + N, log 2re
h(Y3|X1) < log ‘INQ + pa”HggHgQ’ + N, log 2re
h(Y3) < log ‘INg + p™3 HygHiy
+po‘33H33H§3‘ + N3 log 2me
h(Y3|T123) < log ‘INB + e Hi3 K131, Hy
4 poa H33H§3‘ + Nj log 2re
h(Y;|X1) < log ‘INB + p"33H33H§3‘ + Ny log 2e
h(S123|S12) < 1+ 1123 log(2me)
The upper bound of h(Y7|T123,T12) can be obtained in the sequence of steps leading to . Steps labeled
(a)-(c) hold true for the following rationale: (al)-(a2), the covariance matrix Cov[U;3(U3' Z3)(17128)] satisfies
Cov[Uy3U5 1712 Z4]

. PR
= U13U1731(1'T123)I3 (U131(1' 123)) UlTs

‘[7“123 07“123><(N3—7"123) 1
=Uis Uz
O(Ns—T123)><7“123 0(N3—7’123)><N3—7“123)

< UisIn,Ups' = In,.

For two p.s.d. matrices A and B, if A < B, then B! < A=! and —A~! < —B~!. Therefore, the inverse

matrix term with a minus sign will be “greater” if we replace Cov[Us3(U; 5" Z3)1"128)] with Iy,. Since log|- |
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is a monotonically non-decreasing function on the cone of p.s.d. matrices, the value of the entire entropy
term will increase after this replacement. (b) follows from the Woodbury’s identity. (c¢) Tr(Q;) < P; implies
Q1 = PiIp, and Lemma 6 in [27]. The other positive entropy terms other than h(S123]S12) can be upper

bounded similarly.

The upper bound of the term h(S123|S12) is proved in the sequence of steps leading to (A.29). The

rationale for the labeled steps is as follows: step (a) is true because

h(U 3" S123, Uy S12)

U3 Sia3
0 13
U, Si2
-1
U13 5123
=h
Uy Sio
S123 Ui
=h + log e
Sho Ut
S123
= h R
S12

step (b) is true due to (3.31)).

h(Y1|T123, Ti2) = h(Y1, Ti23, Th2) — h(Ti23, T12)

Var[Yl] COV[Yl, Tlgg} COV[Yl, Tlg]
Var[Tia3] Cov[T123, Th2]
S IOg COV[/Tng7 Yl] Var[Tlgg] COV[T123, T12] - lOg

COV[T12, T123] Var[Tlg]

COV[TH, Yl] COV[T12, T123] Var[Tlg]

+ Nj log 2me

Var[T123] Cov[T123, T12]
= IOg Var[}/l] - ( COV[Yl,leg] COV[Yl,Tlg] )
Cov|[T12, T123] Var[T1,]
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COV [’1—71237 Yl]
+ N log 2me

COV[TH, Yl]

(al)
< log Iy, + [h11[*H11 Q1 H], — ( h11hT3Hl1QlGJ{3 h11hT2H11Q1H1T2 )

-1

IT123
Uis Ut + |his?G13Q. Gl hi3hisG13Q1 Hl,
O(N3*T123)><N3*T123)
highisHi2Q1Gly In, + |hi2|?H12Q1 H,
hishi,GisQiHI,
+ N; log 2me
hioh Hi2Q1 HY,
(a2)
< log |Iny + [hun|*Hn Qi HY; — ( hithis HuQiGly  hihiyHiQiHY, )
~1
In, + |his|?G13Q1 Gl hish},Gr3QuHl, hish} G13Q1HY,
+ Ny log27e
h12h>{3H12Q1G13 In, + \h12|2H12Q1H12 h12hT1H12Q1HL
1 .
=log|In, + |h11|*H11 Q} [IMl - ( T3Q1%G§3 12 %H1T2 )
—1
1
In, + |h13|2G13Q1G13 hishisG13Q1 HY, h13G13Q7 1o
Q7 H{,| + N1 log2me
hishisHi2Q1Gly  In, + |hio|?H12Q1 HY, h12H12Q}F
1 1 N
=log |In, + |h11|"H11Q} [IMl - ( MaQiGly hQF Hiy >
1
1 1
h13G13Q7 i i h13G13Q7 1o
Ing g + . hiQEG,  hi,QEH, L @D
hioH12Q7 h1oH12Q7
+ Ni log 2me
1
) ) 1 i . h13G13Q7 1o
= log Iy, + [hu["HuQf | Iny + | p1,Q7G1,  h3,Q7 HY, . [ Hiy| + Ny log 2me
h1oH12Q7
1 1 i\—1 1
= log Iy, + [hiPHN QT (I, + QF (hs2GloGrs + Ima P H2)QT ) QF HI |+ Ny log 2me
© i i R
< log |In, + p® Hyy (IMl +p*1 Gl Ghs + p”‘mHqug) Hi,| + Ny log 2me

= log ‘INl + pallHllKngpHIl‘ + N1 IOg 2me (A29)



183

h(S123]512) = h(S123, S12) — h(Si2)

—

Y b (U Shas, Uy S1a) — h (U1 S2)

_ _ _ _ -1 _ _
S log COV[U1315123] — COV[U131S123, U121512] (Var[U121812]) COV[UulSlQ, U131S123]’ “+ 7123 log 2me
r i r -1
=10g | I,y + [hasPALE 2 VIQUV AT — hish[ AT VIQ VS, (IN2 + |h12\2212VTQ1V212)
'h12h13212VTQ1VAE;TRS)T‘ + 7123 log 2me

. 1 1 -1 1
=10 |5, + s [PAL 2 VIQ] [IMl — 1h1aPQFVEL, (v, + [h1a?Zi2V Qi V], ) EmV*Qf}

O

1 .
z VA%T”B’)T‘ + r123 log 2me
24 (L123) 171 A 3 23 i t3 -t 3 (1:r123)t
=108 |Lrpsy + s PAG™VIQ] (s, + 1M PQEVELTLVIQE ) QF VAT 4 rizg log 2me

1 )
< 10g | I,y + p*3 A2V (IMl + pawvzhzuvf) VALt s log 2me

T _1
o (Lir123) v /1 o Vr T Vr t
= log Ir,,, + "2 A5 VU Iy + po2U 319212 U
O(Ml—r)+xr O(Ml—r)+><r
~VA%:”23)Jr + 7123 log 2me
-1

I + p™2V, 5], 5, V!

=1og |I,,p, + p* 2 AV TU UtV AT 4 py 5 log 2me

Iy —ry+
“1
1 T 12 T T
(b) , VoV,I+ p22 V325300V .
< 10g |y + pr AT VD [ ST . Utvag”!
I —ry+
+ 1123 log 27e
f 1
v, Vit (st e + 072 23) v
a 1: T T Aax (V) 7T 12 r
=log |l +p 13A(13 m123)
O(rty—r)+ xr Iy —ry+
Ve 4
A%’TIZS)T + 7123 log(2me)
O(Ml—r)+><r
] 1
= log |15, JFPalgA(lgmg) <)\2(V)Ir +poélzg{zzu) A%rm” + 1123 log(2me)
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: -1
<log |y, + max {2, (V;),1} p“mA%T“?’) (Ir + po‘mEhElg) A%m?’”‘ + 7123 log(2me)

(1+p22) "y,

o 1:r _
= log| I, +max {A7,.(V;), 1} p 13A§3 122) (Ip,ys + p™2CT0) '
Ireryy
'Aggmzsﬁ‘ + 7193 log(27re)
=log |Ir,, +max {2 (V;),1} p*2S (I,,,, + p*2CTC) ST) + 7123 log(2me)
P O (A13)
<log|l,,, + max {2 (V;),1} T4 prrec?, (A12)Ir123 + 7123 log(2me)
palsamax(A13)
<1 A2 (V)1 (1 I, log(2
< log |max { A2, (V;), 1} ( + T+ o0 (Agg) ) + 7123 log(2me)
A
< log |max { A2, (V;), 1} {1+ T (A13) I 5| + 1123 log(2me)
mm(AlQ)
2 (A
= 7123 IOg |max {/\max ), 1}| + 7123 1og (1 om> “+ 7123 10g(27‘(’€)
min 1
= 1 + 7123 log(2me) (A.30)

It remains to compute the negative terms. After relaxing ), the negative entropy terms become,

h(Y1|X1) = Ny log 2me
h(S12]X1) = Ny log 2me
h(S123]X1) = r123 log 2me
h(S123, 12| X1) = (N2 + 1123) log 27e
h(S123,513|X1) = N3log2me

h(S123, 512, S13|X1) = (N2 + N3) log 27e.
We verify h(S123|X1) as an example,

h(5123|X1)

(U1—31Z3)(1:’I"123)
=h| U

0(N3—7‘123)>< 1
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Ul—?)l(l:Tlgg)ZB
=h +10g|U13‘

O(N37T123)><1
_ h(U1—31(1:7'123)Zg)
= log|I;,,5| + 7123 log 2me

= ri123 log 27e.
The other negative entropy terms can be verified similarly. Finally, the outer bound can be determined by

replacing the positive entropy terms in ’R;(P) with their upper bound of the entropy terms and the negative

entropy terms with their computed values obtained above, which completes the proof.

A.4 Proof of Theorem 3.4l

We first demonstrate the relationship between the matrices Q1p, Q12 + Q1p, Q13 + Q1p and Q12 +
Q13 + Q1p by (3.49)-(3.52)) with matrices K1y, Ki2,1p, Ki3,1p and Ki2.13,1p by (3.76)-(3.79), which is stated
in Lemma [A2]
Lemma A.2. The identities given by (A.36)-(A.40) hold. Furthermore, the covariance matrices Q1p, Q12 +

Q1p, Qi3+ Q1p and Q12 + Q13 + Q1p can be lower bounded as follows.

1
- K A3l
Ot = G max PV, 1) (A.31)
1
— K A.32
Qi2+ Q1p = e max A2 (Vo)1) 12,1p ( )
1
: >~ K A.33
Ot i = DB (Vo) T} 5 (4.33)
1
Q12 + Qi3 + Qip = o ax (02 (V2), 1}K12,1371p (A.34)
1
— I A.35
O 2 e max DE (Vo) 1 (A.35)
—1
1 vV f -
Qup = Tr(V,Vy) v Ut + p*2 HiyHip + p™* Hi3His (A.36)
pYp I(le'r)
—1
1 Vv ;
Qi2+ Q1p = W U Ut + p* P H{sHys (A.37)
prp

Tty —r)
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A%
Qi3+ Q1p = Tr(vlvf) U Ut + p*2 HI, Hyp + p*2 Gl G (A.38)
pee I —r)
—1
1 A%
Q2+ Qi3+ Q1 = VAT U Ut + p23Gl,Gs (A.39)
p'p I(ler)
—1
1 v, Vi
Q=——|U Ut (A.40)
Tr(Vp,Vp) Iagy—r)

Proof. We show the truth of (A.36) in the sequence leading to (A.41), and the truth of (A.31) from (A.41)

to (A.42). The other identities and inequalities can be shown in a similar way, which completes the proof.

-1

Qp = ! Vo | In + pPEl, By + po1s By Vi
R R P
Oty —r)+ x (M —r)+
-1
v
_ 1 _yi |
Tr(V,V,
( P 10) I(Ml—r)+
—1 —1
s pa12212212 +pa13213213 V'T U_l
M, +
Oty —r)+ x (M1 —r)+ T —ry+
! U jad viio|
=— +
Te(V, V)l
( p 10) I(Ml—r)+ I(Ml—r)Jr
-1
pe128l,B1p + p213 8l 50y Vi
UT
Oy —r)+ x (M —r)+ T —ry+
1 VTV;"T
vl v
prp I(Ml—r)+

—1

pe2V, B8V + pors V] 55V
+U Ut

O(ar, —r)+x (M1 —r)+

1 v,V v, v,
=——|U Ut + por2U S50 Ut
Te(VpV3) I 0 0
(My—r)* (M1—r)txr (M1—r)txr
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t 1
Ve Vi
+p12U 213213 Ut
O(ar, —r)+xr O(ar, —r)+xr
-1
1 V.V
-——|U Ut + p*2 HIy Hyy + p* Hiy Hy 3 (A.41)
Te(V,Vy) I
(My—r)*

-1
)‘I2nax(‘/7‘)IT 0T><(M1—T)+

= Gonax | U U + p*2HyHis + p** H{3Hiy
Onty—ryrxr Ly —r)+
-1 2 i T -1
t Cmax (max {Arnax(VTL 1} IJWl + pa12H12H12 + pa13H13H13)
1. 2 f T -t
i C;ax nin {)‘r:lax(‘/T)v 1} (IM1 + pa12H12H12 + Pa13H13H13>

= C;;x min {)‘r:lix(‘/?“)? 1} Klp (A42)
O

As stated in the proof outline, there is a one-to-one correspondence between the positive entropy terms
in both inner and outer bounds. Let Ky = I, then the paired positive entropy terms will be identical if
we replace for the sum of “Q)” matrices with a corresponding K matrix in the entropy terms associated with
R1. By the lower bounds —, we show the gap resulting from replacing the matrices K1p, Ki2,1p
and Ki31p, K12,13,1p and K with Q1p, Q12+ Q1p, Q13+ Q1p, @12+ Q13+ Q1p and @1 in the related positive

entropy terms will not exceed d;. For example,

log ’IN1 —&—pa“HqupHL‘
> log ‘IN1 + paqulKlpHIl‘
— min {My, N1}
- (108 (Gunae max { N2, (V7). 13))
= log ‘IN1 + pa“HuKlpH;rl‘ — 01

There are three pair of positive entropy terms in the inner and outer bound associated with Ry. We bound

them one by one. The gap between log ‘IN2 + p*2Hi9(Q1s + le)Hir2 + "I\(}—Q;HQQH;Q and
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log |In, + p©*2 HQQHQTQ’ are bounded in the following.

Q22
log ’INz + p™12 H2(Q13 + Qup) Hiy + png Hayp HY,
pa22 T
> log |In, + EH22H22
> log ‘INZ + pa22H22H2T2‘ — min{Ms, No} log M, (A.43)

The gap between log ‘IN2 + p‘”?l‘thll‘IlT2 + %HQQH;-Q) and log ‘IN2 + pa12H12H;r2 + pO‘22H22H§2 are

thus bounded in the following.

Q22
log Iy, + Pa12H12Q1H1Tg + 7/;\4 H22H§2
2

> log ‘INz + M2 HipH, +Pa22H22H;2‘
7miH{M1 +M2,NQ}

-log max { Cmax max { A2, (V;),1}, M} (A.44)

max

It is obvious that the gap between log [In, + p®2 H12(Q12 + Q13 + le)HI2 + p@22 HQQH;LQ and

log |In, + Pa12H12K12,13,1pH1TQ + p22 Hyo HJ,

is also bounded by . The maximum should be the gap
contributes to the individual gap ne on Ro, which is do given by . Similarly, the gap between the
positive terms associated with R3 in the inner and outer bounds is upper bounded by d3.

So far, we quantified the gap between the entropy terms in the inner and outer bounds. Lastly, we
see there are negative terms 2 and B3 in the inner bound but not in the outer bound and the positive term
7 in the outer bound but not in the inner bound. We let 85 and 3 be absorbed by ns and ng respectively,

and 71 be absorbed by ni. The proof is completed.

A.5 Proof of Theorem [3.5]

The first three bounds (3.94)-(3.96]) on individual rate can be obtained by directly applying Fact to
the first three inequalities (3.81))-(3.83)) in the outer bound. The inequality (3.97) is the sum of the limits of
the two logarithm terms on the right hand side of (3.84]). Note we can not directly apply Fact to the first

term log |In, + p“t Hi1 Kq3,1,H Il‘ However, this term can be asymptotically expressed in an alternative
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format as shown in (A.45) through a sequence of matrix operations that leads to it, and we define the matrix

yi-1 Vvi-1

H,, & H, U ' in step (a). Note since U is a unitary matrix and "
IMl—’I‘ IMl—r

has full rank, we have H 11 has full rank w.p.1 as Hi1, hence we can apply Fact to (A.45)), which leads
to GDoF g (N1, ((11 — a12)t,m12) , (@11, M1 — r12)). The second logarithm term in the right hand side of

(3.84) leads to GDoF g (Na, (a2, M1), (a2, Ms)) with direct application of Fact (3.2). The inequality (3.97))

is then proved. Using the same technique, other inequalities in Theorem [3.5] can be similarly verified, which

completes the proof.

log |In, + Pa“H11K13,1pHL
=log| Iy, + p™ Hur(Inr, + p**Gl3Grs + p*? H], Hio) " HYy

—log | T, + p™ Hyy(Ing, + p® 5 VAL A3V + pawE{zzva)—lHL’
—1
I + Vi (p*7 ALy Arg + p*12 5], 50V
=log|In, + p* 1 Hy U utai
Iing, —ryt
—1

log [In, + p®" Hi U v I+ p* 2 Alg A + ™2 5], S
=log|in, Tp 11

Ing, —r T —ry+

V—l

r

utH],

Iler

I + p3 Al Mgz + p*128], 505

@ log Iy, + p* Hyy Hl|+0(1)
Iy —ry+
(L4 p*2) oy
, (14 p™s 4 p>2)~tp ;
=log |In, + p™"" Hyy Hy|+0Q1)
I7'—7'12
I(vy—ry+
— log |[In. + L /[1:T7T13]H/[1:T’7T13]T + LH'[r7r13+1:T12]H/[7"*7“13+1:7‘12]T
= log LN, 1+ porz 11 11 1+ pots 4 por 11 11

+pa11H1[17‘12+1:r]H1[1r12+1:r]T + panH1[1T+1:M1]H1[1T+1:M1]T + 0(1)
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_ 1og ‘INl + poqlfoqgH;[lliT—Tm]Hi[lliT—Tl?,]T + panfoqgH;[lT—T13+11T12]H;[lT—T13+1ZT12]T
+p(x11 H1[17‘12+1:r]H1[1r12+1:r]T + pallH1[1T+I:M1]H1[17‘+1:M1]T + 0(1) (A45)

=g (N1, ((a11 — a12) ™, 7m12) , (11, My — 112)) + O(1) (A.46)



Appendix B

Proofs for the Results on MIMO IC-ZIC

B.1 Proof of Theorem 4.1

We prove the achievability through a random coding argument. As stated in the proof outline, we
employ three level superposition coding at Tx1, two level superposition coding (the CMG type coding) Tx2
and single user random coding at Tx3. More specifically, the achievable scheme can be described in the

following steps.
(1) Generate time sharing sequence ¢" according to p(q™) = [[;—, p(q:)

(2) Tx1 generates 2"7122 sequences wi,; according to p(wihslg™) = [, p(wi23+]g:) and indexes them
by kigs € {1,---,272} For each wiys(kia3), it generates 2712 sequences w?, according to
pwiywiyz(k123), ¢) = [Ti—1 p(wiz,¢|wi2s ¢ (k123), ¢;) and indexes them by

(k123, k1) € {1,--- 2"z} 5 1 ... 9nF12} a5 well as 27112 sequences w]y according to

n

p(wiswiys(ki23), q") = H p(wizy
t=1

w123,t(k123)a Qt)

indexed by (ki23, k13) € {1,---,2"23) x {1,...27F13} Finally Tx1 generates 2"(F1—Fizs—Riz=Faa)

sequences x7 according to
n
p(@|wiss(k123), wis (k12), wis(kis), ¢") = Hp($1t|w123,t(k123)7 wiz.¢(k12), w1z, (k13), qt)

t=1

and indexes them as

(K123, k12, kg, kip) € {1,---2nFaz} s {1, jonfazs) o 1 o oonfaa) o 7 L Jon(Ra—Rass = Ria =Ry
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(3) Tx2 generates 2" sequences w}, according to p(w% |q") = [[j, p(wa1+|g:) and indexes them
by kg1 € {1,---,2"%21}. For each wy (k21), it generates 2"(F2=F21) sequences w3, according to
p(ws,|wyy (k21),q") = [T, p(wap ¢|wa1+(k21), ¢:) and indexes them by (ka1, kop) € {1,- -+, 2721} x

{1,--- 2nR2p}_

(4) Tx3 independently generates 2"/ sequences 2% according to p(z}|q™) = [}, p(z3¢|q:) and indexes

them by ks € {1,--- ,2nfs},

(5) Once the codebooks are generated, they are fixed for the duration of communication and revealed

to receivers Rx1-Rx3.

(6) A 4-tuple message my = (M123, M12, M13, M1p) = (k123, k12, k13, k1p) at Tx1 is encoded to
z7 (K123, k12, k13, k1p) at Tx1 and sent over the channel. A message ma = (k21, kop) at Tx2 is encoded
to x4 (ka1, kep) and sent over the channel. A message ms = k3 is encoded to z%(mgs) and sent over

the channel.

(7) Upon receiving 7", Rx1 declares its decoded messages (1123, 712, M13, M1p,721) as the unique
index-tuple (k123, k12, k13, k1p, k21) for which ¢", wiys(k123), wiy (123, ki2), wiy(ki23, k13),
27 (k1as, k12, k13, k1p), wh (k1) and y?* are jointly typical, for some kg. If such an index-tuple cannot

be found, Rx1 declares an error.

(8) Upon receiving y45, Rx2 declares its decoded messages (123, M12, M1, 72p) as the unique index-
tuple (I%lgg,];}lg,]%m, ]%217) fOI" Wthh q", w{’23(l%123), ’w?Q(l%lgz;,fﬁg), wgl(k21), Z‘g(lzigl,lgigp) and yS are

jointly typical, for some 15123 and 12:12. If such an index-tuple cannot be found, Rx2 declares an error.

(9) Upon receiving y%, Rx3 declares its decoded messages (7123, M13,73) as the unique index-tuple
(15123,1%13,153) for which ¢", w?23(fc123), wﬁ(l%lgg,l%lg), xg(l%g) and y% are jointly typical, for some

k125 and k3. If such an index-tuple cannot be found, Rx3 declares an error.

Suppose m1 = (1,1,1,1), ma = (1,1), and mz = 1 are sent. The reliability condition can be obtained from

the typical decoding argument [13, Chapter 7],

Ry — Ric < I(X1;Y1|[ Wi, Wai, Q)



Ry — Ryo3 — Ri2

Ry — Rya3 — Ry3

Ry — Rya3

Ry

Ry — Ri.+ Ryt

Ry — Ri23 — Ri2 + Roy

Ry — Ri23 — Ri3 + Ro1

Rl — R123 + R21

Ry + Ro1

RQ - R21

Ry

Ry — Ro1 + Ry

Ry + Rqo

Ry — Ro1 + Rias + Rio

Rs 4+ Ri23 + R12

R

R3 + Ry3

Rz + Ria3 + Ry3

Ri23, R12, Ry3

Ris3 + R12 + Ris

Ry

< I(X1;Y1|Wias, Wia, Wai, Q)
< I(X1; Y1 [ Whas, Wi, War, Q)

< I(Xl; Y1|W1237 Way, Q)

<I(X1;Y1|Wa1,Q)

< I( Xy, War; Y| Wie, Q)

< I( X1, War; Y1 |Wias, Wia, Q)
< I(Xy, War; Y1 [ Whas, Wis, Q)

< I(X1, Wor; Y1 |[Whas, Q)

< I(X1,We1;Y11Q)

< I(Xa; Yo |Wias, Wia, Way, Q)
< I(Xo; Yo |Wias, Wia, Q)
< I( X2, Wiz; Ya|[Wias, Wi, Q)
< I(Xa, Whz; Ya[Wias, Q)
< I(X2, Wizg, Wia; Ya|Wa1, Q)

< I( X2, Wiag, Wig; Y2|Q)

< I(X3;Y3|Wias, Wis, Q)
< I(X3, Wis; Y3|Wias, Q)

< I(X3, Wiag, Wis; Y3|Q)

>0

<R

>0
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Ryt < Ry
Ro, R3 > 0.

Performing Fourier-Motzkin elimination to eliminate R123, R12 and R3 in the reliability condition, the inner

bound can be obtained, which completes the proof.

B.2 Proof of Theorem [4.2]

We evaluate the DM IC-ZIC inner bound when specialized to the MIMO channel setting and for the
coding scheme introduced in the proof outline. In what follows, we prove the set function F'(My,,) and F'(Mg)

as two examples.

Fi(Mip) = 1(X1; Y1[Wie, Wa1, Q)
= h(Y1|Wic, War) — h(Y1]| X1, War)
= log(In, + pa“HllleHIl + pa21H21Q2pH;rl)
—log(In, + p** Hy1QapHY,)

(a)
> log(In, + PallHllleHL + pamHlesz;fl)

1—|—M2>

— min{M>, N1} log ( Y
2

= Fi(myp) — b1

Step (a) is true due to [27, equation (66)].

Fa(map)
= I(Xg; Ya| W12z, Wiz, Wa1, Q)
= h(Y2|Wias, Wiz, Wa1) — h(Ya|Wias, Wiz, X2)
= log (INz + p*2H12(Q13 + le)HIQ + Pa22H22Q2pH22)
— log (IN2 + p“? Hia(Q13 + le)Hgl)

(a)
> log (IN2 + p*2Hia(Qrs + le)HIQ + Pa22H22Q2pH22)
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— log |max {(r;iln, 1}’

0'2 (Alg)
_(r— _ 1 1 4 “max\"*12/
(r=ms) =mizs Og( " Urzmn(Alz)>

= Fi(Mp) — 32

Step (a) is true according to the lower bound of log (IN2 + p*2Hyp(Q13 + le)HQTJ by (A.1) in Section
when INRj2 > INRy3. With a slight change of the sequence that leads to (A.1]), the same lower bound holds
when INRj2 < INRy3. The rest of the set functions for Ry, can be verified in a similar fashion. The proof is

completed.

B.3 Proof of Theorem [4.3]

As stated in the proof outline, the outer bound for the MIMO IC-ZIC is derived in three steps. In the
first step, we define the genie information and derive a variety of individual rate upper bounds on R;,Rs and
Rj3. In step two, combining these individual rate restrictions, we obtain an intermediate outer bound with
these genie informations and channel side informations. This intermediate outer bound is a union region
outer bound over all admissible input distributions, Lastly, we optimize the input distribution to be vector
Gaussian and characterize a single region outer bound with this optimized distribution.

We construct the four random vectors Tia3, Th2, T13 and Th; given by — as the genie
informations to help receivers decode their message, where Z; ~ CN(0, N;) Z; L Z; for i € {1,2,3}.
To3, T12, T13 and Ty have identical distributions as the channel side informations Si23, S12, S13 and Saq

(c.f. (4.23)-(4.25) and (4.22))), respectively, but each pair of corresponding “I” and “S” random variables

are independent conditioned on Xj.

CrrAL
h13G13X1 + Uns INR12 > INRy3

0(N37T123)><1

Thog = 0(r—r15)x1 (B.1)

h12G12X1 + Uio Ul—zl(T—TIB'f‘lile)Zé INR12 < INRy3

O(Ny—r12)x1



hiaH12X5 + Zé

T =
hi2J12X1 + Uiz

hi3J13X1 + Uiz

hisHis X1 + Zy

T51 = ho1 Ho1 Xo + Zi~

’

—1(l:r—ry3)
U12 ZQ
0T123><1

71(T12+1:N2) /
U12 ZQ

OT123>< 1

(UnglZé)(ruerl:Ns)

INRy2 > INR3

INR12 < INRy3

INRy2 > INR3

INRi2> < INRy3
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(B.2)

(B.3)

(B.4)

The key fact in deriving individual rate in the following three subsections is that providing genie information

to the receiver makes the receiver more interference resilient, and therefore should not decrease the capacity

of the channel.

B.3.1 Upper Bounds on R;

If we do not feed any genie information, the individual rate Ry is simply upper bounded by a P2P

channel capacity

nRy < I(X75Y!") +ne

= h(Y]") = h(Y]"[XT') + ne

= h(Y7") — h(S3;) + ne

< nh("1|Q) —

h(S%,) + ne

=n[h(Y1|Q) — h(S21| X2, Q)] + nh(S21| X2, Q)

— h(S%y) + ne

2 nF) My, Ma1) + nh(S21| X2, Q) — h(SH,) + ne.

Providing genie information 7723 to Rx1, we get another upper bound on the rate Ry

(B.5)
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nRk (%) (X1 Y, 1) + ne
& I} Tiy) + I(XT, YV Tis)
= h(T53) — h(T{5s| XT) + h(Y1*|T123) — R(Y{"[XT)
+ ne
9 h(Tis) = ATl X7) + BV [Tis5) = h(S5) + e
(%) nh(Y1|Ti23, Q) — nh(S123] X1, Q) + h(STa3)
— h(S3) + ne
=n[h(Y1]|T123, Q) — h(S21]| X2, Q)] + nh(S21|X2, Q)
— nh(S123| X1, Q) + h(STa3) — h(S3,) + ne

é nFll (M127M137 Mlpv M21) + nh(521|X2a Q)

— nh(S123| X1, Q) + h(STa3) — h(S31) + ne. (B.6)

The inequalities or equations (a)-(c) hold true because: (a) providing genie information 7755 to Rx1 will not

decrease the channel capacity; (b) channel rule of mutual information; (c) h(Y{*| X7, T7h) = (Y| XT) =

h(S%,) according to the definition of the channel side informations. (d) h(ST,y3) = h(T7h3) as Si23 and Tias

are identically distributed.

Similarly, if we feed genie information (74, T7%), (T1hs, T7%) and (T7hs, 1y, T1%), we obtain the fol-

lowing three outer bounds on R,

nR1 < n[h(Y1|Th23, Th2, Q) — h(S21]| X2, Q)]
+ nh(S21]| X2, Q) — nh(S123, S12| X1, Q) (B.7)
+ h(ST3, STo) — h(S3;) + ne
= nF‘l/ (M13,M1p, Ma1) + nh(S21| X2, Q)
— nh(S123, 512/ X1, Q) + h(STa3, 51%) (B.8)

— h(S3) + ne (B.9)
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nRy < n[h(Y1]T23, T13, Q) — h(S21| X2, Q)]
+ nh(S21|X2, Q) — nh(Si23, S13| X1, Q)
+ h(STas, Sts) — h(S31) + ne (B.10)
2 nFy (M19, M1y, Ma1) + nh(S21| X2, Q)
— nh(S123, S13| X1, Q) + h(STa3, 513) (B.11)
— h(S%) + ne (B.12)
nRy < n[h(Y1|Ti23, Tiz, Th3, Q) — h(S21] X2, Q)]
+ nh(S21]X2, Q) — nh(Si23, S12, S13| X1, Q)
+ h(STas, STa, ST3) — h(S31) + ne (B.13)
2 nFy (Mip, Ma1) + nh(S21| X2, Q)
— nh(S123, S12, 5131 X1, Q) + h(S1a3, STa, ST3)
— h(S3,) + ne (B.14)
We then obtain five other outer bounds on R; based on the configuration of genie informations in getting
— but additionally feeding X3' to Rx1.
nRy < nh(Y1|X2, Q) — nh(S21| X2, Q) + ne
2 nF(My) + ne (B.15)
nRy < nh(Y1]Ti23, X2, Q) — nh(S123/ X1, Q)
— nh(S21]|X2,Q) + h(S7y3) + ne
2 nFy (Miz, Mi3, M) — nh(S123| X1, Q)
+ h(S153) + ne (B.16)
nRy < n(Y1|Th2s, Ti2, X2, Q) — nh(S123, S12| X1, Q)
— nh(521] X2, Q) + h(S1a3, 512) + ne
= nF{ (M13,M1,) — nh(S123, S12/X1, Q)

+ h(S7a3, Si2) + ne (B.17)



nR1 < n(Y1|Ti23, Th3, X2, Q) — nh(Si23, 13| X1, Q)

—nh(S21| X2, Q) + h(STa3, S73) + ne
£ nFy (M2, M1,) — nh(S123, S13/X1, Q)
+ h(STa3, S13) + ne

nRi < nh(Y1|Ti23, Thz, Ths, X2, Q)

— nh(S123, S12, 513 X1, Q) — nh(S21]X2, Q)

+ h(STa3, STa, ST5) + ne
= nF‘ll (M1p) — nh(Si23, S12,513|1X1, Q)

+ h( ?237 S?Qv SILB) + ne

B.3.2 Upper Bounds on R;
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(B.18)

(B.19)

When INRj2 > INR;3, we obtain the following set of six outer bounds on Ry by 1) not feeding any

genie information, 2) T3, 3) Tihs, 4)(Thhs, Toy), 5) X7 and 6) (X7, T5:) to Rx2, respectively. The proof of

these bounds is quite similar to the proof of the upper bounds on R;. We directly state the result in the

following.

nRy < n[h(Y2|Q) — h(S12|X1, Q)]
+ nh(S12| X1, Q) — h(ST,) + ne
2 (Mg, Mo, My) + nh(S12| X1, Q)
— h(STy) + ne
nRy < n[h(Y2|To1, Q) — h(S12[ X1, Q)]
+ nh(S12|X1, Q) — nh(S21] X2, Q)
+ h(T3y) — h(S7,) + ne
2 nFy(Mygs, Myg, Myp) + nh(S12] X1, Q)

—nh(S21]X2, Q) + h(T31) — h(STs) + ne

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)



nRy < n[h(Y2|T123,Q) — h(S12|X1, Q)]
+ nh(S12| X1, Q) — h(ST5|STas) + ne
£ nFy (M2, Mo) + nh(S12| X1, Q)
— h(S75|STes) + ne

nRQ

IN

n [h(Y2|Tha3, To1, Q) — h(S12| X1, Q)]
+ nh(S12| X1, Q) — nh(S21]| X2, Q) + h(S3))
— h(572|S123) + ne
£ nFy (M2, Map) + nh(S12] X1, Q) — nh(S21| X2, Q)
+ h(S3)) — h(S512]STas) + ne

nR2

IN

n [h(Ya]| X1, Q) — h(S12| X1)] + ne
= nF‘QI (M) + ne
nRy < nh(Y2| X1, To1,Q) — nh(S12|X1) — nh(S21] X2, Q)
+ h(T3y) + ne
£ nFQI(MQp) —nh(S21| X2, Q) + h(T3)) + ne
When INR;5 < INR;3, we have another set of six outer bounds on Rs.
nRy < n[h(Y2|Q) — h(S123, S12| X1, Q)]
+ nh(S123, S12| X1, Q) — h(STss, STo) + ne
2 nFy(Migs,My2, My) + nh(Shas, S12| X1, Q)
— h(S5Ta3, S15) + ne
nRy < n[h(Y2|To1, Q) — h(S123, S12| X1, Q)]
+ nh(S123, S12| X1, Q) — nh(S21|X2, Q)
+ h(S3)) — h(STa3,512) + ne
= nFQI (M123,M12, Moy, ) + nh(S123, S12| X1, Q)

—nh(S21| X2, Q) + h(53;) — h(STa3, S12) + ne
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(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)



201
nRy < n[h(Y2|T123, Q) — h(Si23, S12| X1, Q)]
+ nh(S123, S12| X1, Q) — h(S1a3, STo|Tia3) + ne
2 Fy(Myg,My) + nh(S123, S12| X1, Q)
— h(S153, 512/ TT53) + ne
nRy < n[h(Y2|Ti23, To1, Q) — h(S123, S12|X1, Q)]
+ nh(S123, S12| X1, Q) — nh(S21| X2, Q)
+ h(T31) — h(S1a3, S12|TTs3) 4 ne
£ HFQI (M12,Mgp) + nh(S123, S12|X1, Q)
—nh(S21]X2, Q) + h(T3})
— h(STa3, S15|TM53) + ne
nRy < nh(Y2| X1, Q) — nh(Si23, S12| X1, Q) + ne
2 nFy(My) + ne
nRy < nh(Y2|X1,To1, Q) — nh(S21|X2, Q)
— nh(Si23, S12| X1, @) + h(T5}) + ne
£ nFy (M) — nh(Sa1| X2, Q) + h(T3)) + ne
With a slight abuse of the notation, we defined each set function Fé() twice in two channel conditions.

Therefore, FQI() should be understood as a function with two mappings depending on the relationship

between INRy5 and INR;3. For example,

—/

Fy(M123,M12,M2)
h(Y2|Q) — h(S12| X1, Q) INR;2 > INR;3
h(Y2|Q) — h(S123, S12|X1,Q) INR12 < INRy3

. =/ . .
so is F3(-) in the next subsection.
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When INRj2 > INR;3, the following three upper bounds on R3 are obtained by 1) feeding no genie

information, 2)7T7%5 and 3) X7 to Rx3, respectively.

nRs < n[h(Y3]|Q) — h(Si23, S13/X1, Q)]
+ nh(Si23, S131 X1, Q) — h(STas, ST5) + ne
2 1 Fy(Mi23, M3, M3) + nh(S1a3, S13| X1, Q)
— h(S153, 513) + ne
nRs < n[h(Ys]T123, Q) — h(Si23, S13| X1, Q)]
+ nh(S123, S13| X1, Q) — h(STa3, ST5|T1a3) + 1€
£ nFy(Mi3,Mg) + nh(S123, S13|1X1, Q)
— h(S153, 513 TT53) + ne
nR3 < nh(Y3|X1,Q) — nh(Si23, S13| X1, Q) + ne

2 nFj(Mg) + ne
When INRj» < INRy3, the three upper bounds on R3 become the following.

nRy < n((Y3]|Q) — h(S13[X1, Q)] + nh(S13] X1, Q)
— B(ST,) + e
2 1 Fy(Mi23,M13,M5) + nh(S13] X1, Q)
— h(S75) + ne
nR3 < n[h(Y3|Ti23, Q) — h(S13| X1, Q)] + nh(S13] X1, Q)
h(575|T153) + ne
£ nFj (i3, M) + nh(S13 X1, Q) — h(ST5|T7s)
+ ne

nR3 <n [h(Y3|X1, Q) — h(313|X1)] + ne

(B.31)
(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)
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= ’I’LF3/(M3) + ne

B.3.4 An Intermediate Outer Bound

We first consider the case of INRj3 > INRy3. Since the goal of deriving the outer bound is to quantify
the gap from the inner bound to itself, we want our outer bound to have close identical algebraic structure to

the inner bound. Note there is a one to one correspondence between the set functions in the inner and outer

bounds. For each inequality in the inner bound (c.f. Theorem [1.2)) except (4.109), {-111)), (£.116), ({117

and , we construct a corresponding inequality by replacing the inner bound set function F;(-) with
the outer bound set function F(-). By assembling these 28 inequalities, we may get an intermediate outer
bound for the MIMO IC-ZIC expressed in terms of the genie and channel side informations. To accomplish
such a task, we meed to make sure all the unsingle-letterized entropy terms in the individual upper bounds
could be either bounded or eliminated. As a matter of fact, all the unsingle-letterized entropy terms can
indeed be removed when we linearly combine these individual upper bounds according to the structure of the
inner bound. Let us justify the derivation of the following two inequalities which belong to the intermediate
outer bound to follow in Lemma.

The 6th inequality in the inner bound (c.f. Theorem suggests an outer bound inequality with

Fi(My,Myy) + F (M2p) on the right side; therefore we add inequalities and as follows.
n(Ry 4+ R) < nFy (M1, Ma1) + nh(S21] X2, Q) — h(S5))
nFy(Mzp) — nh(S1| X2, Q) + h(T3) + ne
= nFy(My, Myy) + nFy(My,) 4 ne
In the derivation of these inequalities, unsingle-letterized entropy terms eliminate each other. The inequality

([£.119) in the inner bound suggests an outer bound inequality with F} Mip) + Fy(Mya3, M0, My) + F3(My3,M3)
on the right side, so this inequality must be the combination of inequalities (B.19), (B.21)) and (B.35|), which
is

n(R1 + R + R3)

< nF1(M1p) + nFy(Mio3, M1, Ma) + k3 (M3, M3)
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— nh(S123, S12, 5131 X1, Q) + h(STa3, S1%, S13)
+ nh(S12| X1, Q) — h(ST5) + nh(S123, S13|1X1, Q)
h(STs, ST5|TTs3) + ne
@ nFi(Mip) + nFo(Miaz, M1, Ma) + nF3 (M3, M3)
+ h(STag, S, S7s) — h(Sio) — h(Sihg, ST5|TThs) + ne
© nFl(Mlp) + nFy(My23, M2, M) + nF3(My3,M3)
+ h(STa3, St ST3, Thhz) — h(TT53] 5723, 5125 S13)
— h(STy) = h(Stas, Sis|Tibs) + ne
(g nFl(Mlp) + nFy(Mi23, M12,Ma) + nF3(Mi3, M3)
+ h(S123, St 513, Thaz) — h(TT53| 5123, 5125 513, X1')
— h(81y) = (ST, S| Tihg) + e
@ nF;(Mip) + nfo(Mios, M1, Ma) + nF3 (M3, Mg)
+ h(STas, STa, ST3, T1a3) — r123 log 2me
— h(81y) = h(Stg, S| Tihg) + e
= n[—riozlog 2me 4+ h(T123]S12)] — 1(SThs, S135 512 153)

(e) /
< nn+ ne .

The rationales of the steps (a)-(e) are as follows: (a) the value of entropy terms can be explicitly com-
puted and nh(Sia3,S12,S13|X1,Q) = nh(S12|X1, Q) + nh(Si23, 513/ X1,Q); (b) chain rule of the condi-
tional entropy; (c) conditioning reduces entropy, therefore the negative term h(T755]STa3, ST, ST, X7) >

h(T7h5]STes, STy, STa, XT1); (d) given the fact that Ti23 and Si23 are identically distributed, we have
(T3] 57535 S12: S13: X1') = h(T1h3| XT') = nh(T1as|X1) = n(S123| X1) = 7123 log 27e

. The value of h(S123|X1) is given by #. (e) h(T123|S12) = h(S123|S12) by the distributions of genie and

channel side informations, and the fact that h(S123]S12) is upper bounded by nn + r123 log 2re according to

(A.30) in Section
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The other 25 inequalities can be justified in a similar fashion. For each desired combination of the
individual upper bounds, the involved unsingle-letterized entropy terms are either upper bounded by 0 or
ni.

When INR;2 < INR;3, we have to use the same technique to derive another 28 inequalities for another
intermediate outer bound with the same process as in the case of INRj2 > INRy3. Again, for each desired
combination of the individual upper bounds, the involved unsingle-letterized entropy terms are either upper
bounded by 0 or nn (with a different value when INRj2 < INRy3, c.f. ) Thus we unify these two
intermediate outer bounds in Lemma #, where all the inequalities except the individual rate upper bounds

have 1 on the right hand side.

Lemma B.1. Let P, be the set of distributions P, of joint random variables (Q, X1, X2, X3) that can be

factored as

p(x1, 22, 73) = p(q)p(z1|q)p(r2|0)p(23lq),

and define the following region R, (P,) given by (B.38)-(B.65). Then we have

¢ C | JRo(Po).
P,

’

RO(PO) £ {(Rl,Rg,Rg) S Ri :

Ry < F{(Wy) (B.38)

Ry < Fy(My) (B.39)

Ry < Fy(M3) (B.40)

Ry + Ry < Fy (M, Ma1) + Fy(Map) +1) (B.41)
Ri+ Ry < 71/(M137M1p) + FQI(M1237M12)M2) +n (B.42)
Ri+ Ry < 71/(M137M1p7M21) + FQ/(M1233M127M2p) +n (B.43)

Ry +Rs < _1/ (M12,M1,) + FQ(M1237M13,M3) +1 (B.44)
Ri+ Ry + R3 < _1/(1"11;)) + Fy(Myg, My) + Fy(Myo3,My3,M3) 477 (B.45)

Ri+Ry+ R3 < 71/(M1p) + FQI(M123;M127M2) + F?:(M137M3) +n (B.46)



Ry + Ry + R3

R+ Ry + R3

R+ Ry + R3

R+ 2Ry

2Ry + Ry

2Ry + R2 + R3

2R1 4+ Ry + R3

2R, + Ry + R3

2R1 + Ry + R3

Ri1+2Rs+ R3

Ri + 2Ry + R3

2R + 2Ry + R3

2R, 4+ 2R> + R3

2R + 2Ry + R3

2R, + Ry + 2R3

2R1 + Rs + 2R3

3R1+ Ry + R3

3Ry + 2Ry + 2R3
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< Fy(Mip,Ma1) + Fy(Mi2,Mop) + Fy(Mio3, Miz, Ms) + 1 (B.47)
< F (Myp,Ma1) + F2I(M1237M127M2p) + Fy(My3,M3) + 177 (B.48)
< Fy (Mi2, M1y, Ma1) + Fy(Mop) + Fy(M1o3, Mi3,M3) + 1 (B.49)
< Fy (M3, Mip, Mat) + Fy(Map) + Fy(M123, Mi2, M2) +1) (B.50)
< Fy (M3, Mip) + Fy (M1, M) + Fy(Mio3, Mi2, Map) +1) (B.51)
< _1/(M1p) + F{(M127M13;M1p) + FQ/(MIQB,M123M2) + FQ(M1237M13,M3) +7n (B.52)
< 71/ (M) + F1/ (My2,My3, M1, Moy ) + FQ/(M1237 Mi2,Map) + F:; (M123,M13,M3) + 1 (B.53)
< 71/ (Mp) + Fll (M1,Ma1) + FQ/(M127M2}0) + F::,(M1237M13, M3)+1n (B.54)
< F(Mip) + Fy (M1, Ma1) + Fy(Mio3, Mi2, May) + F3(M13,M5) + 1 (B.55)
< Fy (Mip, May) + Fy(Map) + Fy(Mi2, Ma) + Fy(Mi23,M13,M3) + 1 (B.56)
<F (M1p, Ma1) + FQI(M2p) + Fy(Mya3, Mg, My) 4 Fly(My3,M3) 477 (B.57)

< 71/(M1p) + F{(M137M1p7M21) + FQ,(MIQaMQp) + FQ’(M1233M127M2) + F;;(M1237M13,M3) +n

(B.58)
< _{(Mlp) + F{(M127M137M1p7M21> + FQI(MQp) + FQ,(M1237M127M2) + Fgl,(M1237M137M3) +n

(B.59)
< 71/ (M1p, Ma1) + Fll (M12,M13,Mip, Ma1) + F;(sz) + FQI (M123,M12, Map) + F:;(Mms, Mi3,M3) + 1

(B.60)
< 71l (M1p) + Fll (My2,Myp, Ma1) + FQI (M12,Mgp) + QF;;(M123, Mi3,M3) + 17 (B.61)
< 71/(M1p) + F{(M127M1p7M21) + FQI(M1237M127M2])) + FQ(M137M3) + FQ(M1237M13,M3) +n

(B.62)
< _1/(M1p) + F{(M127M13;M1p) + Fl/ (M1, Ma1) + FQ/(M1237M12aM2p) + Fgl,(M1237M137M3) +n

(B.63)
< 2F1/ Myp) + Fl/ (My2,M13,Mip, Moy ) + FQI(M127 Map) + Fgl(M123,M12, Ma) + 2F§(M1237 Mi3,M3)

+n (B.64)
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2Ry + 3Ry + R3 < Fll(MlpaM21) + Fll (M12,My3, Mip, Maq) + QFé(sz) + FQI(M1235M127M2) + F;;(M123,M13,M3)

+n} (B.65)

Remark B.1. Recall there are five inequalities in the inner bound that do not have counterpoints in the outer
bound. This is because if we add the individual upper bounds accordingly, the rate variable combination on
the left hand side will not match the rate combination in the inner bound. For example, there are three set

functions on the right hand side of inequality (4.116), but only two rate variables in the left hand side.

B.3.5 The Single Region Outer Bound

The intermediate upper bound is a union of polytopes over all admissible input distributions. To
establish a single region outer bound, we maximize the set functions F(-), Fy(-) and F4(-) by optimizing
the input distribution p(z1, z2, z3,q). First of all, the time sharing is disabled. The region R;(PO) will not
shrink because removing the random variable @ will not decrease the positive conditional entropy terms, and
the negative entropy terms are entropies of the Gaussian noises which are independent of @, for example,
h(Y1|X1,Q) = h(Z1]Q) = h(Z;1). The positive entropy terms in the set functions are upper bounded below.
Each term reaches its maximum value when X7, X5 and X3 are independent Gaussian random vectors. For
random vectors X and Y with zero mean and some fixed joint covariance, the conditional differential entropy
of X given Y is maximized when X and Y are joint Gaussian [44] Lemma 1]. We also assumed the inputs
have zero means, i.e., E(X;) = 0 for ¢ € {1,2,3}, as non-zero means only contribute to power inefficiency.
We prove the set function Fl(Mlp) when INRy5 > INR;3 in the sequence of steps leading to . Steps
labeled (a)-(c) hold true for the following rationale: (al)-(a2), the covariance matrix Cov[Uy3(Uy3" Z3)(1i7128)]

satisfies
COV[U13U1_31(1:T123)23]
. (1 1
_ U13U1731(1.T123)13 (Ulgl(l. 123)) U;rS

I

7123 07“123><(N3—7"123)

=Ups Uyt

O(Ns—T123)><7“123 O(N:s—T123)><N3—7“123)

< UsIn,Ups = In.
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For the two p.s.d. matrices A and B, if A < B, then B~! < A~! and —A~! < —B~!. Therefore, the inverse
matrix term with a minus sign will be “greater” if we replace Cov[Us3(U; 5" Z3)1:7123)] with I,. Since log|- |
is a monotonically non-decreasing function on the cone of p.s.d. matrices, the value of the entire entropy
term will increase after this replacement. (b) follows from the Woodbury’s identity. (¢) Tr(Q1) < P; implies

Q1 <X P11, and Lemma 6 in [27], also Tr(Q2) < P; implies Q2 < Palpy,.

F{(M13aM1paM21)
< W(Y1[Th23, Ti2, Q) — h(S21| X2, Q)
< h(Y1|T23, Ti2) — h(Z1)
= h(Y1,T123,T12) — h(Th23,T12) — Ny log 2me
Var[Yl] COV[Yl, T123] COV[Yi, Tlg}
Var[T123] Cov[T123, T12]
S log COV[T123, Yl] Var[Tlgg] COV[T1237 T12] - 1og

COV[le, Tlgg} Var[Tu]
COV[T12, Yl] COV[T127 T123} Var[Tn]

-1
Var[T}23] Cov[T123, T12]

= log |Var[Y;] — ( Cov[Y1, Tia3] Cov[Yy, T2 ) ‘

COV[TlQ7 Tlgg] VaI‘[Tlg]

COV[T123, Yl]

COV[TH, Yl]

(al)
< log I, + [ [PHu Qi HY, + |hoi |*Ho Qo HY, — < hihisHinQiGly  hahia HyQuHl, )
—1
Triza 1 2 i . t
U13 U13 + |h13| G13Q1G13 h13h12G13Q1H12
0(N3*T123)><N3*T123)
hl?hT3H12Q1GI3 In, + \h12|2H12Q1HIQ
hishi, G1sQ1 HY,
hiohiy HioQ1 HY,

(a2)
< log |Iny + hn|* HuQu H{, + |hor|” Ha1 Qo HY, — < hithisHiiQ1Gly  haihi, HnQuHY, >
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-1
In, 4 |his|2GisQ1Gly  hishi,GisQuHI, hish}, GisQiHY, ’
hiohtsHioQ1Gly  In, + |hao|>H12Q1 H, hiohfy HioQ  H,

1
In, + |ho1 P Ho1 Q2 HY, + |ha1 [P H11 Q7 [IMl - ( hT3Q%GI3 *I‘QQI%HI2 >

= log
1
1
Iy, + |h13\2G13Q1G§3 h13h*1‘2G13Q1HI2 h13G13Q7 Lot
T , . s Qi Hyy
hiohisH10Q1G 13 In, + |hi2|"H12Q1 H{y hi12H12Q7
1
=log |In, + |ha1[* Hx1 Q2 H, + |hi|*Hn Q7 [IMl - ( ﬁQ%GI?’ T2Q1%H1Tz >
-1
1 1
h13G13Q12 1 1 hlSGIBQf % f
Iny v, + \ LQIGL, hi,QFH], L | Qi
hi12H12Q7 hi2H12Q7
—1
®) ) 1 . i h13G13QF -
= log | Iy, + |ha PHu @t | Iy + | 113Q7 Gl hi,Q7 HY, 1 Qi Hi,
hi12H12Q7

+|h21|2H21Q2H§1’
I h 2H % I % 2GT G QHT H % -1 %HT 2H HT
Ny P [FH0QF (Iar, + QF (|ha|Gi3Gis + [hia| " Hiy Hi2) Q1 T Hiy + |ho1["H21Q2Hy,y

= log

(c) —1
< log |In, + p™" Hn1 (IMl + PalaGJ{3G13 + PamHIQHl?) H| + p* Hy HY,

(B.66)

= log ‘INl + Pa11H11K13,1pH1Tl + pa“Hleng’

In the case of INR;s > INR;3, the set function F} (My,) and also the other set functions can be proved in a

similar fashion. The proof is completed.

B.4 Proof of Theorem [4.4]

The gap is quantified in two steps. In the first step, we quantify the 28 inequalities in R;, which can

be seen as a result of replacing the set function F;(My,) with F;(Ms,) and removing 7 from the inequalities of

the outer bound. Then we quantity the gap resulting from the inequalities (4.109), (4.111)), (4.116), (4.117)

and (4.125) in Ri,. The overall gap will thus be determined.
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B.4.1 The Gap between the Twenty Eight Inequalities in R;, and R,

Fact [B.1| states the following relationship between the matrices Q1,, Q12 + @1, @13 + Q1, and
P P P

Q12 + Q13 + Q1, by (A.141)-(@.144) with matrices K1,, K12.1p, K13.1p and Kia,13,1, by ([£.161)-(4.164). The

result has been proved in Lemma[A-2]for the case INRj2 > INR;3, the result for INRj3 < INR;3 can be proved

similarly.

Fact B.1. The identities given by (B.72)-(B.75|) hold. Furthermore, the covariance matrices Q1p, Q12+ Q1p,

Q13 + Q1p and Q12 + Q13 + Q1p can be lower bounded as follows.

1
— K B.67
1
. K B.68
Qi2+ Q1p = Comemax 2 (V). 1} 12,1p ( )
1
> K B.
Qi3+ Q1p = e max D2 (V1) 13,1p (B.69)
1
Q12+ Q13+ Q1p = e max D2V, 1}K12,13,1p (B.70)
1
- I B.71
Ql B CInax max {A?nax(vtf% 1} M ( )
1
1 jad t t
Qup = W v Ut + P2 HiyHyp + p*** HigHis (B.72)
p'p I(Ml—r)
—1
/A%
I(a,—r)
Q12+ Q1p = 1 (B.73)
A%
movn | U Ut + p™12GL,Gha + p*i Hig i
I(a, —r)




v,V
1
Tr(V,Vy) v
Qi3+ Qip =
v,V
1
Tr(V, V) v
V.Vl
L U
T (V, V)
Q2+ Q13+ Q1p =
v, Vi
1
T (V, V) v
b Tr(VprT)

T, —r)

T, —r)

I(Ml—r)

I —r)

I(Ml—?”)

Ut + po12 Hf, Hip + p*13Gl3Gs

UT + ,OQUHIQHH

Ut + p*13GlyGas

Ut + p212Gl,Gha

-1

Ut

We quantify the gap between Fy(My,,) and Fy(My,,) in the following.

Fy (Mlp)

(@)
> log | In, + 0" HuQu H1y| - 4

®)

. (log ((max max {)\2

®

- log max {Cmax max {)\

=F(Myp) — 01 — B

> log |In, +pa“H11K1pH1Tl

> IOg INl +pa11H11K1pH1rl

7

max T

2
max

’—mm{MLNﬂ

LI B

’ — min{M1 + MQ,Nl}

(Vo) 1}, Mo} — B
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(B.74)

(B.75)

(B.76)

Step (a) holds true because log| - | is a non-decreasing function over the cone of p.s.d. matrices so removing

the term p"‘21H21Q2pH;rl will not increase the value of F;(My,). Step (b) is true due to (B.67)) in Fact|B.1

The gap between Fj(Mi3,Mip, Maq) and Fl(Mlg,Mlp,Mgl) is bounded as follows.

Fi(Myp,Ma1)

=log |In, + pa”HanpHL + pa21H21Q2H2T1| - p1
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(g log ’IN1 + pa“H11K1pHL + po‘mHle;l‘
— min{M; + My, N1}
-log max {Cmax max {Afnax(v,,L 1} ,MQ} -5

= Fi(Mip,Mo1) — 61 — By

Step (a) is true because the rank of po‘“HllKlpHL + po“Qngng1 should not exceed min{M; + M, Ny}.
In a similar way, the gap resulting from replacing F;(My,) with F;(Mg,) is upper bounded by d; + /3;. Note
in each of these 28 inequalities, the coefficient of R; in the left hand side is the same as the number of the
set functions (with subscript i) F;(-) that appear on the right hand side; therefore, we let the gap &; + 3; be

(1)

3

absorbed by the individual gap n
Lastly, there is a constant 7 in all but the first three inequalities in the outer bound. Since R; always
appears on the left hand side of these 25 inequalities, we let 1 be absorbed by ngl). So far, we quantified the

gap between the 28 inequalities in the inner bound R;, to their counterpoints in the outer bound R,.

B.4.2 Preliminaries for the Proof of The Gap Induced From the Other Five Inequalities

in the Inner Bound

Before we prove the gap induced from the other 5 inequalities in the inner bound, we need the following
preliminary result to support the proof. Throughout, we assume INR;5 > INR;3, and the result of the case

INR12 < INR;3 can be obtained in a similar fashion.

Lemma B.2. The inner bound set functions Fl(Mlp)7 Fl(Mlg,Mlp), Fl(Mlg,M137M1p), Fl(M1p7M21), FQ(Mgp),

F(Mi2,Map), Fo(Mi23,M12,Map) and F3(Mi3,M3) can be lower bounded as follows,

Fi(Myp)
> h(hinHin Xy + Zy, hiaHio Xy + Zo, hisHi3 X1 + Z3)
— h(hiaH12X1 + Za, hisH13X1 + Z3)
— Ny log(2me) — B1 — 1 (B.77)

Fy(My3,My,)
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> h(hiiHi Xy + Z1, hioHio Xy + Z2, hizGia X1 + Z3)
— h(hi2H12X1 + Z2, h13G13X1 + Z3)
— Ny log(2me) — B1 — v11 (B.78)
Fi(Mi2,M3, M)
> h(hiiHi X1 + 21, hi3Gi3 X1 + Z3)
— h(h13G13X1 + Z3) — Ny log(2me) — B1 — 11 (B.79)
Fy(Myp,Ma1)
> h(ho1Ho1 Xo + Z1) — Ny log(2me) — f1 — Y21 (B.80)
Fy(Myp)
> h(hooHao Xo + Za, ho1 Ha1 Xo + Z1)
— h(ho1H21 X2 + Z1) — Naolog(2me) — B2 — a2 (B.81)
F5(Mi2, M)
> h(h12H12 X1 + Za, h13G13 X1 + Z3)
— h(h13G13X1 + Z3) — Ny log(2me) — Ba — Y12 (B.82)
F>(Mi23,M12,Map)
> h(h1oH12X1 + Z5) — Nylog(2me) — B2 — 712 (B.83)
F3(My3,M3)
> h(hisHisX1 + hasHss X5 + Zs, hisGrs X1 + Zs)

— h(h13G13X1 + Zy) — N3 log(2me) — B3 — b3, (B.84)

where X1 ~ CN (0, PiIn,), Xo ~ CN(0, Polng,), X3 ~ CN(0, Psly,), Zy ~ CN(0,1In,) and Zs L Zy in the

right hand side of above inequalities.

Proof. The proof of lower bound on Fj(M;,) is demonstrated in the sequence of steps leading to (B.85]). Step

(a) holds true because of the Woodbury’s identity; step (b) is true because for any matrices A, B, C' and D,
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A B
we have = |D||A — BD7'C| if D is invertible. Other lower bounds can be obtained similarly.
C D

Fl(Mlp)
= log |In, + paanleHL + pa21H21Q2pH2T1 — b
> log |In, + Pa“HquleTl’ —h

> log |In, + Pa“HnKlpHL‘ —B1— 711

=log |In, + p™'* Hyq (IM1 + pa”H}LQng + po‘mH{nglg)il HL - B1 — 711
~1
hiav/PyHio
=log |In, + p*" Hiy | In, + ( hiovV/PiH, hysV/PL H, Hi| =1 — 7
hi3v/PiHis
@ log [In, + p*'* Hyq (IM1 — ( hm\/ﬁlHIQ hisv/ Py HL)))
-1
hiav/PiHio hi2v/PiH1o
IN2+N3+ hm\/ﬁlHirQ hlg\/ﬁl HI?)) HIl
hi3v/PiHis hi3v/PiHis

- B1— 71

= log|In, + p™ Hy Hi, — p™ Hyy (( hioV/PiH], hi3V/Pi HL,)

-1

hi2vVPiH2 ; hi2vPrH2 ;
IN2+N3 + ( hlgx/P1HIQ h13\/P1 HlS) Hll
hizvPrHqs hizvPrHs
- B1— 71
In, +p°‘11H11H1T1 hiivPrHp ( h12\/ﬁ1H1T2 hisvV Py H1f3>
(®)
= log hiovPiHyo ; hiov P Hio :
hi1vV' Py Hll IN2+N3 + hm\/PlHirz hisvV Py H13
hizvPrHs hi3vPiHs
hi2v PrHpo ;
—log [In,+n; + hiovV/PiH|,  hys/Py H13> - B —m
hizvPiHys

= h(hiiHi1 X1+ Z1, hisH12 X1 + Zo, hisH13 X1 + Z3) — h (hioH19 X1 + Za, hisH13X1 + Z3) — Ny log(2me)

=B = (B.85)



Lemma B.3. The outer bound set functions F1(M1), Fi(Mi2,M1p), Fo(M2) and F3(Mia3,M13,M3)

Fl (Ml) = h(hllHlle + Zl) — N]_ 10g(2ﬂ'€)

Fi(Mi2,Myp) = h (hinHi Xy + Z1, hisH3X, + Z3)
—h (h13H13X1 + Zg) — N1 10g(2ﬂ'6)

FQ(MQ) = h(h22H22X2 + Zg) — N2 10g(27’(6)

F3(M123,M13,M3) = h(h13H13X1 + hasH33 X3 + Z3)

— N3 log(2me)
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(B.86)

(B.87)

(B.88)

(B.89)

where X1 ~ CN(0,Pi1y,), Xo ~ CN(0,PyIyy,), and X3 ~ CN(0, PsIn,) in the right hand side of the

inequalities above.

Proof. We prove the second identity as an example in the following. The rest of identities can be verified

similarly. Recall the definition of the set function Fj(Mi2,M1,) (c.f. (4.168)) and the fact that the outer

bound is obtained by choosing X7, X2 and X3 to be Gaussian vectors (c.f. Section [B.3.5). We have

F1(Mi2,M1p)
= log ’IN1 + pa“H11K12,1pH1T1‘

-1
=log |In, + p™"" H11 (IM1 + Pu13H1T3H13) Hi,

@ log |In, + p®** Hyy

: (IM1 — p™ S Hy(In, + Pa13H13H1Ta)71H13) HY,
=log |In, + p™ Hy H,
—p®1 Hyp p® His(In, + p™ HigH{3) ™ His H,
In, + p® Hy HYy,  harhlyPLH  HI;

= log
hishly PUH sHY, Iy, + p*2 HisHi,

—log Iy, + p™# Hi3H{,
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= h(h11H1 X1 + Z1, hisH13 X1 + Z3)

— h(h13H13 X1 + Z3) — N1log(2me).

) holds due to the Woodbury’s identity. The proof is completed. O

Lemma B.4. The following identities hold when X1 ~ CN(0, PiIy,), Xo ~ CN(0, Polyy,), and X3 ~

CN(0, P31Iy,).

h (hioH12X1 + Zalhi1sH13 X1 + Z3)

1
= log EJ{Q

In, + %12 (VT_IVTT_I + p"13213213)

+ Nz log(2me) (B.90)
h (hioH12X1 + Zah13G13 X1 + Z3)

—1
= log |In, + p™* 12 (VflVJ*l + PQBAIgAls) =l

+ Ny log(2me) (B.91)
h (h13G13X1 + ZslhioH12 X1 + Z)

-1
Ing + p*?A13 (V}_lV}T_l + PQ”EIQEH) Aly

= log

+ N3 log(2me) (B.92)

Proof. We compute the first equation in the sequence of steps leading to (B.93)), and the rest of the identities

can be shown similarly. The proof is completed.

h (hioH12X1 + ZalhisH13 X1 + Z3)

= h(hioH12X1 + Zo, hisH13X1 + Z3) — h(hisHi3X1 + Z3)

= log

= log
= log

= log

Iy, + pa”HmH;rg h12h13P1H12H{rg ;
— log ’IN3 + palSngHB’ + Ny log(2me)

hishl, Py HisHI, Iy, + ,OO”SH13H1T3
In, 4 p™2 HyoHy — hiohly Py H o HIo (I, + palsH13H1TS)*1h13h{2P1H13H{2’ + N, log(2me)
In, + p™2Hio (IMl — p* Hy(In, + palsngng)*Hl?,) HH + Ny log(2me)

—1
In, + p™2Hys (IMl + pawHL,,HB) H,| + Ny log(2re)




217

—1
=log |In, + p™2 UiV (Tag, + p o VELULUE1sVT)  VELUD| + Nalog(2me)
—1
= log | Iy, + p®2 S5, VT (IMl +poe Vsl v ) V| + N log(2e)
= log IN2 +p0¢12212 < V;"T O¢‘><(M177‘) ) UT
-1
v, T v, +
IM1 +p6¥13U 213213 ( V'TT O’I"X(le’l") )UT U 212
Ocar,—r)+xr Oar,—r)+xr
+ N log(2me)
-1
Vi

= log| I, + 202 ( VTT 0 (M 1) ) Iar, +p™° 213213( VFT 0y (M —r) >

0(]\/11—7“)Jr Xr

Ve f
Xio| + Nalog(2me)
O(ar, —r)+xr
\ —1
(1 + pVo 2T Vi) v,
= log |In, + p** X1z ( VI Onx sy —r) )
I, —r) Oty —r)txr

-212‘ + Ny log(2re)

1
= log | Iy, + p®2 S5,V (1,, + pawvrz{gzlgvj) V.50, | + Ny log(2me)

-1
= log | Iy, + p®2 515 (V;lvj—l + pa132{3213) 51|+ N log(2re) (B.93)

Lemma B.5. h (h12H12X1 + Zg‘hlnggXl + Zg) S h (h12H12X1 + Zg‘hlg,Gngl + Zg) fOT‘

X1 ~ CN(O,Pl.[Ml), Xg ~ CN(O,PQIM2), and Xg ~ CN(O,P31N3).
Proof. Using the fact that 213213 = AI3A13, we have

h (hioH12X1 + ZolhisH13 X1 + Z3)

—1
= log |In, + p™* 12 (‘/7;1‘/;71 + 0%213213) IS

+ Ny log(2me)

-1
< log |In, + p**X12 (Vr_lvrT_l + PalgAJ{sAlS) I




+ Ny log(2me)

= h(hioH12X1 + Z3|h13G13X1 + Z3) .
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Lemma B.6. h(h13G13X1 + Z3|h12H12X1 + ZQ) S n + Ng log(27re) fO?” X1 ~ CN(O, P1[M1)7

XQ ~ CN(O,PQIMz) and X3 ~ CN(O,P3IN3).

Proof. The proof is demonstrated in the sequence leading to Step (a) is true because of the lower

bound on V7'V~ by (4.31); step (b) is true according to the structure of ¥ by The proof is

completed.

h(h13G13X1 + Zs|h12H12X1 + Z2)

= log

(a)
< log

<log

@ log

+ 7123 IOg max{)‘max

= log

< log

log

—1
Ing +p™* Agg (VFlVTT*l + PO‘”EIQEw) Al

1
Ing + p“? Ass ()‘I;a%(IT + P‘mEizEw) Al5| + N3 log(2me)

2
max

-1
In, + p*2 A3 (IT + pa“Z]{zZlg) AJ{S + 7123 log max{\

(1+ palz)_llrfhg

IN3 +pa13A13 (Inza —l—po‘lQCTC)_l

2 (V.),1} + N3log(2me)

P18 (I, + p22CTC) 151
In, +

O(Ns—rlza) X (N3—7123)

+ N3 log(2me)

P13 og  (A1s)
14p12 gﬁin(Au) T123

In, + + 7123

O(Ns—T123)><(N3—T’123)

p*130y, . (A1s)

(1 * I+p*120% (A12)

) IT'123

I(NS_T'IZS)

+ 7123 log max{\

+ Nslog(2me)

(Vr)v 1} + NS 10g(2’ﬂ'€)

1

rT—r12

2
max

+ 7123 logmax{\; .. (V;), 1}

2
max

log max{ Az .. (V;-),1} + N3 log(2me)

2
max

(V3), 1} + N3 log(2me)
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(1 + Uﬁax(A13)> I
Tiin (A12) ) 77123 2
<log + 1123 log max{\; .. (V;-), 1} + N3 log(2me)
I(N3*7”123)
2 (A
= T123 log (1 + UM;X(B)> “+ 7123 IOg HlaX{/\?nax(‘/r), 1} + N3 10g(27T6)
Oitin (A12)
=1+ N3 log(2me) (B.94)

B.4.3 The Gap Induced From the Other Five Inequalities in the Inner Bound

We show the gap from (4.109)) to (4.186)), (4.111) to (4.187), (4.116) to (4.192), (4.117) to (4.192)) and

(4.125) to (4.186))+(4.192)) one by one. Again, in what follows we assume INR;5 > INRy3, and the gap when

INR12 < INR13 can be similarly shown. In the proof of each gap, we shall employ the lemmas that have been
developed in the previous subsection, and the variables Xy, X5 and X3 have the desired distributions in all

those lemmas, i.e., X1 ~ CN(0, P1Ip,), Xo ~ CN (0, PoIpg,) and X5 ~ CN (0, P31y,).

B.4.3.1 The Gap between Fl(Mlg,Mlp) + FQ(M123,M12,M2p) and Fl(Ml)

Fy(My3,Myp) + F5(My23, Mi2, Mop)
@ (hi1tH1 Xy + Z1, haoHio X1 4 Z2, hi3Gi3 Xy + Z3)
— h(hioH12X1 + Z2, h13G 13X + Z3)
— Ny log(2me) — 51 — 711
+ h(hi2H12 X1 + Z5) — Nolog(2mwe) — B2 — 12
(2) h(h11H11 X1 + Z1) — Ny log(2me)
+ h (hi2H12 X1 + Z2,
h13G13 X1 + Z3|hi1 Hi1 X1 + Zy1, X1)

— h(h1oH12X1 + Z, h13G13X1 + Z3)

— 1 —v11 + h(hi2H12X1 + Z3) — Nz log(2me)



— B2 — M2

= F1(My) + N3log(2me)
— h(h3G13 X1 + Zs|hioH12 X1 + Z2) — 1 — 11
— B2 — 2

(e) _
> Fi(M)—f1—v1—B2—v12—n
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The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77)) and (B.83)); (b) chain

rule of joint entropy and conditioning reduces entropy; (¢) Lemma

B.4.3.2 The Gap between Fj (M, Mo1) + F2(Mz,) and Fy(My)

Fi(Mip, Mo1) + Fo(Mop)
@ h(h21Ha1 X5 + Z1) — Nilog(2me) — B1 — a1
+ h(hooH2o X2 + Za, ho1 Ho1 Xo + Z7)
— h(h21H21X2 —+ Zl) — N2 10g(2ﬂ'6) — /82 — Y22
(b)
Z h(h22H22X2 + ZQ) — N2 10g(27‘(’6)
+ h(ha1Ho1 X2 + Z1) — Nylog(2me) — B1 — 721
+ h(ha1Ha1 Xo + Zy|hooHoo Xo + Z2, X3)

— h(ho1Ho1 X2 + Z1) — P2 — o2

= F5(My) — B1 — Y21 — B2 — Y22

The steps (a)-(b) hold true for the following reasons: (a) by the lower bounds (B.80) and (B.81); (b) chain

rule of joint entropy and conditioning reduces entropy.

B.4.3.3 The gap between F; (Mlp) + Fy (Mlg, Mgp) —|—F3(M123, M3, M3) and Fl (1\’[127 Mlp) +F3 (M123, M3, M3)

We first quantify the gap between F1 (Mlp) + F2 (1\/[127 M2p) and Fl (Mlg, Mlp)~
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Fi1(M1p) + Fa(My2,Map)
(g h (hi1H11 X1 + Z1, hiaH12 X1 + Z2, hi3H13 X1 + Z3)
— h(hiaH12X1 + Zo, hi3H13X1 + Z3)
+ h(hi2H12 X1 + Z2, h13G13 X1 + Z3)

— h(h13G13X1 + Z3) — Ny log(2me) — 1 — 711

— N2 10g(271’6) — ﬁg — Y12

—~
=

= Fy(Mi2,M1p) + h (hioH12X1 + Zo
|hi1H11 X1 + Z1, hasH13 X1 + Z3)
— h(hioH12 X1 + Zalh13H13 X1 + Z3)
+ h(hi2H12X1 + Za, h13G13 X1 + Z3)
— h(h13G13X1 + Z3) — B1 — 111 — Na log(2me)
— P2 — M2
() _
> F1(Mi2,Mip) + h (hioH12X1 + 25
|hinH11 Xy + Z1, hisHi3 Xy + Z3, X1)
— h(hi2H12X1 + Za|hi3H13 X1 + Z3)
+ h(hi2H12X1 + Za, h13G13 X1 + Z3)
— h(h13G13X1 + Z3) — B1 — 111 — N2 log(2me)
— B2 — M2
(d) _
> Fi(Mi2,M1p) — h (h1oH12X1 + Z2|hasH13 X1 + Zs)
+ h(h12H12 X1 + Z2|h13G13 X1 + Z3) — B1 — 1
— B2 — M2

= F1(Mi2,Mip,) — B1 — y11 — B2 — M2
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The steps (a)-(b) hold true for the following reasons: (a) by the lower bounds (B.77) and (B.82); (b) chain

rule of joint entropy; (c¢) conditioning reduces entropy; (d) Lemma The gap between F5(M123, M3, M3) and
F3(Mj23,M;3,M3) has been bounded by 33+ 43 in Section Thus the gap between F (My),) + F2 (M2, Moy ) +

F5(M123,M13,M3) and Fy (Mya, M1p) + F3(Mi23, M13,M3) is quantified as 81 + v11 + B2 + Y12 + B3 + 5.

B.4.3.4 The Gap between F1 (Mlp) +F2 (M123, 1\’[127 M2p> +F3(M137 Mg) and Fl (Mlg, Mlp)—f—FP, (Mlgg, M13, M3)

Fi(Mip) + F>(My23, M2, Map) + F3(Mi3,M3)

(g) h(hi1H11 X1 + Z1, hioH12 X1 + Za, higH13 Xy + Z3)
— h(h1oH12X1 4+ Za, h1isH13X1 + Z3) — Ny log(2me)
— B1 — 11+ h(hioHi12 X1 + Z3)
— Nz log(2me) — B2 — 712
+ h(his His X1 + hasHss X3 + Zs, hisGrs X1 + Zs)
— h(h13G13X1 + Z:;) — N3 log(2mwe) — B3 — 3

(b)

> h(hi1Hy Xy + Z1, hisHi3 Xy + Z3)
— h(h1sH13X1 + Z3) — N1 log(2me)
+ h(h13H13X1 + h33H33 X3 + Z3) — N3 log(2me)
+ h(hi2H12 X1 + Z2
\hi1H11 X1 + Z1, hasHiz Xa + Z3, X1)
— h(hi2H12X1 + ZolhisHi3 X1 + Z3) — B1 — 711
+ h(hi2H12X1 + Z5) — Nolog(2me) — B2 — 712
+ h(h13G13 X1 + Zg|hasHi3 X1 + has Hss X3 + Z3)
— h(h13G13 X1 + Z3) — Bs — 73

= Fi(M12,M1p) + F3(Mi23, M13, M3)
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— h(hi2H12X1 + Zs|hisH13X1 + Z3)
+ h(hi2H12 X1 + Z5)
+ h(h13G15X1 + Zg|hysHy3 X1 + hasHss X3 + Z3)
— h(h13G13X1 + Z3) — B1 — 1 — B2 — 112 — B3 — s

b _
> Fy(Mi2,M1p) + F5(Mi23, M3, M3)

—
=

— h (h1aH12X1 + Z5|h13G13X1 + Z3)
+ h(hioH12 X1 + Z3)
+ h(h13G13X1 + Zy|h1sH13 X1 + hasHss Xs + Z3, X1)
— h(h13Gr3X1 + Z3) = B1 — 11 — B2 — 2 — B3 — 3
= 1 (M12,M1p) + F3(M123, M13,M3)
— h(h1oH12X1 + Z2, h13G13 X1 + Z3)
+ h(hiaHi2 X1 + Zs) + N3 log(2me) — B1 — 11 — fe
— 2 — B3 — s
= F1(M12,M1p) + F3(My23, My3,M3)
— h(h1sGhs X1 + Zs|hiaH1a X1 + 7o) + Ny log(2me)
—B1—v11— P2 —vi2 — B3 — 3
() _

> Fy(My2,M1,) + F3(My3,M13,M3) — 1 — B1 — 711

—Ba—v2—B3—13

The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77)), (B.83]) and (B.84)); (b)

chain rule of joint entropy and conditioning reduces entropy; (¢) Lemma
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B.4.3.5 The Gap between Fl(Mlp) + Fl(Mlg,Mlg,Mlp) —+ FQ(M1237M12,M21)) —+ F3(M1237M13,M3) and

Fi(My) + F1(M12,M1p) + F5(M123, M3, M3)

We first bound the gap between F (Mlp)+F1 (M12, M3, Mlp)+F2 (M123, Mo, Mgp) and F1 (Ml) +F1 (Mlg, Mlp)

as follows.

Fi(Mip) + Fi(Mi2,Mi3,M1p) + Fo(Mi23, M2, Map)

@ h (hi1Hy1 X1 + Z1, hiaH12 X1 + Z2, higH13 X1 + Z3)
— h(h1oH12X1 + Zo, hisH13X1 + Z3) — Ny log(27e)
=B =y + h(hiHu Xy + Z1, hisGiz X1 + Z3)
— h(h13G13 X1 + Z3) — Ny log(2me) — f1 — v
+ h(hi2H12X1 + Z5) — Nolog(2me) — By — 712

(g h(h11H11 X1 + Z1) — Ny log(2me)
+h(hitHi1 X1+ Z1, hisHi3 X1 + Z3)

— h (higH13X1 + Z3) — Ny log(2me)
+h(hi2H12 X1 + Z2
|hinHi1 X1 + Z1, hisHi3 X1 + Z3, X1)
— h(h1aH12X1 + Z2|h13G13 X1 + Z3)
+ h(h13G13 X5 + Z3lhi1 H11 Xh + Z1, X1)
— h(h13G13 X1 + Z3) + h(hioH12 X1 + Z2)
— Nalog(2me) — 261 — 2711 — B2 — 12

= F1 (M) + F1(My2,M1,)
—h(h13G 13Xy + Z3|h1aH12 X1 + Z2)
+ N3log(2me) — 281 — 2711 — B2 — M2

() _ _
> Fi(Mp) + F1(Mi2,M1p) — 1 — 281 — 2711 — B2 — 712
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The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77), and (B.83);
(b) chain rule of joint entropy and conditioning reduces entropy; (c¢) Lemma The gap between
F3(M123,M;3,M3) and F3(Mja3, M3, M3) has been bounded by 33 + d3 in Section Thus the gap between
Fi(M1p) + F1(M12,M13,M1,) + Fo(Mi23, M2, Map) + F3(My23,M13,M3) and Fy (My) + Fy (M1, M1,) + F3(Mi23, Mi3,M3)
is quantified as n + 281 + 2711 + B2 + 12 + B3 + J3.

At this point, we readily see that the gap n(® = (81 + B2 + 711 + 712 + 1, B1 + B2 + Y21 + Y22, B3 +73)
settles the five sum rate gaps quantified in this subsection. Finally, for the gap between the R;, and R,, we

pick each individual gap as the maximum of the individual gap in n") and n® i.e., n; = max{nz(»l), nz(»z)},

and the desired gap n = (max{ngl), 71&2)}7 max{ngl), n?)}, B3 + d3) is justified. The proof is completed.



Appendix C

Proofs for the Results on MIMO MAC-IC-MAC

C.1 Details of the Proof of Theorem [5.1]

The proof starts from the DM MAC-IC-MAC inner bound in 37, Theorem 1] which contains 9 classes
of inequalities. In what follows, we refer the k-th class of inequalities as the k''-inequality, for brevity.
The first and second inequalities lead to the following two intra-cell sum rate inequalities regarding users
in £ and 77 for the DM MAC-IC-MAC (namely, the specifications of inequalities (14) and (15) of [37]

in 37, Theorem 1]),

Z Ry ; <Byjy (C.1)
l.jes

Z Ri; <Ay, + Er,. (C.2)
1.jeT

By Definition it can be readily seen that for any 17, there exists a corresponding §2; such that 2, = 77,
this observation implies the intra-cell sum rate 2, ;cy, R1.; is bounded by both By, and Ay, + Er,, so we

can replace the inequality (C.2) with

> Ri; <min{Bry,,Ar, + Er,} (C.3)
1jeT

without changing the inner bound. When 1.1 ¢ (2;, inequality (C.2|) takes no effect, ), jeq, Bi.j is upper

bounded by (C.1)) only. Hence we merge (C.1]) and (C.6) as
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where

, min{BQi,AQi + ET_,} if i.1 € £,

l B, ifi.l ¢
where i,i € {1,2}, i # i and (11, 21,73, %) € E.
By symmetry, we can coalesce the specifications of inequalities (16) and (17) of [37] in [37, Theorem
1] into the single inequality set
Z Ry ; < BiQQ (C.6)
2.5€022
At this point, we have the single region inner bound of |37, Theorem 1] to be effectively described by
7 sets of inequalities that are similar to the single region inner bound of Theorem [5.1] except that we have
the quantities Ay,, Bn,, Er;, and Gp, of [37] in place of Ay, Bg,, Er,, and Gg, of T heorem respectively.
Next we prove the set functions Ar,, Bo,, Er,, and G, of [37, equations (31-34)] in |37, Definition 7],
when specialized to the MIMO Gaussian case and for the coding scheme specified in the proof of Theorem

in the main text, are lower bounded by Ar,, Bg,, Er,, and Gg, of (5.16)-(5.19)), respectively. We bound

the set function Ay, as an example.

Ay, = I(Xy,; Yil X7, Xi1es Xy 10, Q)

= h(Yi|Xﬁa Xite, Xy 10) = h(Sy |1 Xy 1)
=h Z hij—iHij i X j
ijeri\{i.1}
thiisiHii»iXiap +hy (Hy 3 Xy, + Zi)

- h(h'/ 'Hz".l—n‘Xz".lp + Zi)

7. 1—1

1 o
= log |In, + Z fﬂa”ﬂHi.jaz‘H;r,j%i
ijeri\{i1y 7

1 o
+ EPQI‘HIHM—m‘Ki.lHZl_”-

_|_

pail,lﬂ'iHi/'lﬁiK,l ]—I]L )

M, R
.
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(e ) 1
M., 1,0 l JazHi/'l%iKi/'lHi'.l—m'
1 .

—log |In, +

1 o
>log |In, + Z W/’al'ﬁlHi.j%iHijai
ijeri\{i.1y "7

1 o
* M; 4 P Hi'lﬁiKi-lHj.lai

+

s i
M., 1p ' .1‘MH7;/‘1_>iKi/'1Hi/.1—>i)
T .

L+ M4

— min{M, ,, N;}log i
i’

= ATl

The rest of the bounds By, > By, Er, > Er, and Gg, > G, follow in a similar fashion. Hence the region
of Theorem is contained in the inner bound obtained from [37, Theorem 1] with the coding distribution

specified as in the proof of Theorem [5.1] in the main text. The proof is hence completed.

C.2 Proof of Theorem [5.2]

The starting point for the proof of Theorem is Theorem 3 of [37] which gives an outer bound for the
semi-deterministic DM MAC-IC-MAC. In particular, the latter bound is a union (over certain distributions)
of polytopes of the form of R, given in the statement of Theorem [5.2] except that each of those polytopes in
the union involves the set functions Ar,,Bg,, Ey, and G, defined in |37, Definition 11] (that depend on that
distribution) in place of Ay,, Bo,, Ex, and Gg,, respectively, in the definition of R, (which are explicitly
computable). The idea here is to bound each of those set functions Ay,,Bp,, Ey, and Gy, universally (i.e.,
independently of the distribution involved) by Ar,, By, Ey, and Gg,, defined in -, respectively.
This will establish the explicit outer bound for the MIMO MAC-IC-MAC of Theorem

We will first prove in detail that Ay, can be upper bounded by Ay, of . The other three bounds
follow in similar fashion. The fact that Ay, < Ay, is shown in the sequence of steps leading to in
the next page. The rationale for those steps is as follows: in the first inequality labeled (a), disabling time
sharing will not shrink the outer bound because (i) reducing conditioning variable will not decrease the
positive conditional entropy term of Ay, and (ii) for its negative entropy term, we have h(S;|X, ;,Q) =

MZ/\X; 1,Q) = h(Z,;), since the noise Z; is independent of @ and X, ;. The second inequality labeled (b)
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holds since for random vectors X and Y with zero mean and joint covariance K, the conditional differential
entropy of X given Y is maximized when X and Y are joint Gaussian [44] Lemma 1] We also assume the
inputs have zero mean, i.e., E(X; ;) = 0, because non-zero means only contribute to power inefficiency. The
equality (c) holds because of Woodbury’s identity. Inequality (d) holds since (i) we have power constraint
Tr(Qi;) < Pij for any X, ;, and hence Q;; < P; jIn;, ; (ii) using the matrix inequality of [27, Lemma 6]
and (iil) logdet(-) is increasing over the cone of positive definite matrices.

As stated previously, the upper bounds for Bg,, Ey, and Gy, defined in [37, Definition 11] can be

similarly shown to be By, Ey, and Gg,, respectively. The proof is completed.

C.3 Proof of Theorem [5.3]

Following the proof outline, we prove the theorem in three steps. In the first step, we upper bound
max{Ay, — Ay,, Ey, — Ey,} for any 7; = 7, U {i.1} and 7, C ©;\{i.1}, and obtain an intra-cell sum rate
gap By, given by . In step two, we upper bound max{Bg, — B'Qi,égi — Gp,} for any £2; € 29\,
and obtain an intra-cell sum rate gap max{Sqn,,vn, } given by . In the last step, we show the desired

individual rate gap n; ; given in the theorem satisfies that for any 773,

Z ni.j > Br, (C.8)
1.jE€T;
and for any (2;,
Z Nij = max{ﬂﬂivryﬂi}' (Cg)

ijEQ;
C.3.1 The Upper Bound on max{Ay, — Ay,, Ey, — Er,}

We upper bound the difference Ey, — Ey, as an example. The upper bound on Ay, — Ay, can be

similarly derived.

1 o
Ey, =log |In, + Z %Pal'”ﬂ‘Hi‘jaiHijai
ijer\{i.1y = 7

1 L
+ ST P Hi i KiaHY

s T
M. lp ' .1_”Hi/'1_>iHi/.1~>i
.

+
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1+ M,
— min{M 1,N}logJ]K47
(@)
> log |In, + Z /)ai‘ﬁ"Hi.jqu;r,jﬁi
i.je€Y;\{i.1}

+ oM i K H

1. 1=

+pai’.14>zH , lazH‘T’

i 1=

— min Z M;; | +M;,N;
i.j€Y:
~logmax{maxM M, }

i
IS

1+ M,
— min{M, 1,N}10g_]|;/[7

£ Er, — Br,

The inequality (a) is true because the rank of the matrix ZZ JET\{i1} ﬁp”‘i‘ﬁiHZ;j%iHT
. i . i.j

1.J—1

+Mll_ Gi1=i Hy 1 K, 1HZ 1 T M p i HJr , cannot be greater than

A= 1—

min { (Ei.jen Mi,j> + M, Ni} and log det(+) is a monotonically increasing function over the cone of p.s.d.

matrices. Similarly, we can show Ay, — Ay, is upper bounded by By, as well. Hence, we have
max{ZTi — ATHE’E — ET,;} S ﬂy‘i. (ClO)

Thus we choose Sy, as the intra-cell sum rate gap for any user subset 1; .

C.3.2 The Upper Bound on max{Bg, — B;h,égi —Go,}

Regarding the difference By, — B;’zi» we shall have two different upper bounds depending on whether
user i.1 belongs to 2; or not. If .1 is not in §2;, then B; = B;, and the gap from By, to Bp, should be no

bigger than (g, which can be proved in the following,

1 o
Bgp, > log |In, + Z Wpal'JHIHi.j%iH;jﬁi
ijesy Y
1+ My,

— min{M; ;, N;}log i
i1
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. logmax{ max M”}

1.jES2;

1+ M,
— min{M 1,N}1ogL7

> Bg, — min Z M | + My 4, N;
i.jEQ;
-logmax{ max M; j, M, }
z]E k3

1+ My,

— min{M, ;, N;}log A
i1

2 B, — fo. (C.11)

The first inequality is true because logdet(-) is a monotonically increasing function over the cone of p.s.d.

matrices as well as the fact that the dropped term from the definition of Bg, (c.f. (5.17)), i.e

LKy HY s psd.

If i.1 € £2;, the intra-cell sum rate gap regarding By, fB/Qi should be an upper bound of the maximum
value of B, — By, and Bg, — miny, (Ao, + Er,). The former difference has been bounded above. We
compute the latter difference below. An intermediate lower bound on Ap, is needed and obtained first. Let
JIn, = In, + Zi,jem\{i-l} ﬁpa’”ﬁiHi,jaiHZjﬁp then we have

1 Qi j—si T
Ag, > |In, + Y. ——p™9 Hyj i H
ijei\{ia}y = "7
T,
b p™ > Hy gy Ko H

. i.1—14
M; 4

1+ M,
— min{M, 17N}10g—;47

Z log IN,i + Z pm'j_)iHi.j%iHiT‘jai
1.jE€R:\{i.1}

+pYitoiHy i K, 1H

11—
— mi 1 M
1+ M.
— min ,N;}log ————-L
{M, "1 }log M,

A=

= log ’JNi + p™ = Hyq Ly K o H
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~ mi M, N; b1 M,
1+ M,
7mln{ 1,N}10gT11

.11

log‘JN ‘ +1Og )[N ‘5‘/)% lﬁ%J Hz l—nKz lH

— min E M; j,N; ¢ log majgzc M; ;
1.JES; €

14 M,
~ min{M, |, N;}log Lj (C.12)

The term log |In, + p®i1—¢ JNlHZ 15K, 1H in (C.12) can be further lower bounded as

A=

log ‘INi + Pai’HiJXzilHi.laiKz H

1=

log‘IN b I ey K2 K H

i.1—1

. 1—1

@ log ‘IMt L+t Hlez HI\ Ty 7;1Hi-1—>iKi%.1‘

log‘ 21 leKZ

Fpt o KA HT N H KR ’
=log |K; L+ p*iHl | L JN TH; 1| — log | K|
> log |1y, , + p™ H1H31ﬁ1JN i1—i| — log |K; 1]
= log|In, + p* =" Iy HiaoiHY ;| — log | K;1l. (C.13)

The equation (a) is true because of the fact that logdet(l, + AB) = logdet(l,, + BA) for any complex
n x m matrix A and m X n matrix B. Substituting the lower bound (C.13]) in (C.12)), we end up with an

intermediate lower bound on the set function Ag, which is

— IOg |K11|

.1—1

Ag, = log |n, + = HyayiH]

— min Z M; ;, N; 1og11§1€a;§1M”
.JEN;
1+ M,

— min{M, ,, N;}log e
i

(C.14)

On the other hand, an intermediate lower bound on Ey, is obtained as follows,

pai.lﬁi/ H.

i1—i Hi.lﬁi’

Ey, >logl|l
T, 2 log|In, + Moo
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1+ M;
— min{Mi_l, Ni/ } IOg %
i.1

> log |K;.1| — min{M; 1, N, }log M, 1

14 M;
— min{Mi‘l,Ni/}log%
= 10g |K21| — min{Mi_l, N,L-/ } IOg(]. + le) (015)

Note this lower bound of Ey, does not depend on the specific choice of 7. Adding (C.14)) and (C.15), we

have

Ap, + Ey, > log ‘JN,- i Hy G HY

. 1—14

— min E M; ;, N; ¢ log ma!)% M; ;
1.JES2;
ije J

1+ My,

— min{M; ;, N;}log i
i1

— min{Mill, Nil } log(l —|— Mi.l)

2 Bo — o, (C.16)

Hence, the difference Bg, — (Ag, + Ex,) is bounded. Combine the intra-cell sum rate gap for i.1 ¢ 2 by
and for i.1 € {2 by , we conclude for any user set §2;, the difference B, — B;) should be no
more than max{fSq,, v, bits.

It can be verified with similar rationale that G, — G, < Bq,. Hence, for any (2;, the term max{ B, —

B/Qi,égi — G, } is upper bounded by
max{ﬁgi — B./(Ziaéﬂi — G_Qi} < max{ﬂgﬁ'ygi}. (C.17)
Thus we choose max{f0n,, V0, } as the intra-cell sum rate gap for any user subset (2;.

C.3.3 The Constant Gap

Now that we have intra-cell sum rate gap By, for 7; and max{Sqn,,vno,} for £2;. Returning to the

discussion in the beginning of the proof, we are left to show the individual rate gap n; ; ensures (C.8) and
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(C.9) for any 7; and (2;. The former relationship can be seen in the following,

Z Ngj = Z Bi.j

iET; ijE€Yy

= > min{M;; + My ,,N;}
i.5€Y;

-logmax{ max M”,M/ }
i.j€
M,

—|—|T|mln{ 1’N}1Og1-’—7]\4'i/-1

\%
E.
=]

> M| + My, N;
1.JEY ;.

'logmax{max M; 5, M, }

i.JEY;

M.
N;}log —i-L
+ min{M; ,, }og T4 M,
= pr,.

Similarly, it can verified that ), jeo, Mg 2 Bo, and ) . jeo, Mg = Y for any (2;. Hence, we have

Yijen, Mij = max{Bo,, Vo, } too, which completes the proof.

C.4 Proof of Lemma [5.1]

We prove the Lemma by mathematical induction. Let us start from the case when n = 1 and
H, = U, V. We have
log det (Iu + palHlHI)
= log det (Iu + p“lzlzj)

= log det (4 # ity +0(1)
Ty
= o min{u;, u}log(p) +O(1)
= 9(u, (a1, u1))log(p) + O(1).
For n = 2 and n = 3, the results have been proved in [38] and [26]. Suppose the conclusion holds when

n = k, in what follows we demonstrate the result for n = k + 1. Without loss of generality, we assume
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ay > max{ag, - ,axy1}, then
k+1
log |1, + p™ HyH] + _ p" H;H]
i=2
=log|I, + p‘“HlHH

k+1

+log | L, + (I + p™ HiH]) ™" > " p" H;H] | . (C.18)
1=2

Let the matrices A and HQ(kH) be defined as

P Ly,

Pt Ly,
and
HYY = (Hy, -, Hyya).
Note that the way Hékﬂ) is denoted temporarily violates our notation rule where A*) denotes the k-th row
of the matrix A, but no confusion will arise within the proof. Applying the identity that logdet(I,, + AB) =
log det(l,, + BA) for any complex n x m matrix A and m x n matrix B, and substituting H1HI with its

SVD form UX; VT, the second term in the right hand side of (C.18) can be written as

k+1
log | I, + (I + p™ HyH{) ™" >~ p™ H; H]
1=2

=log|I, + (I, + pa1HlHI)—1H2(k+1)AH§k+1)T’

= log Izk+1 w; T AHQ(]H_UT([H + palHlHir)—lHQ(k—&-l)’
=2

=log [Igwi1,,, + AHYTVTU
=2

(Imin{u,ul} +pa12121)_1 0

0 I(u—u1)+
~UTH§k+1)’ . (C.19)

We divide HQ(kH) into two sub-matrices

(I:min{wu,uq})
G = (UTH2(1€+1))



236

and

(min{w,uq }+1:u)
Gy = (UtHEY) 1

by extracting the first min{w,u;} and the rest (v — u1)™ rows of HQ(kH) respectively. Because the entries
of Hz(kﬂ) are drawn i.i.d. from a continuous and unitarily invariant distribution, the product U THQ(kH) is
identically distributed as H. Q(kﬂ). This implies that the entries of the product UTH. ékﬂ) are also drawn i.i.d.
from a continuous and unitarily invariant distribution, so are the entries of matrices G; and G5. Hence, both

G; and Gq are full rank w.p.1 and have the same property as the channel matrices. Continue from (C.19)),

we have
k+1
log I, + (I, + p™* Hi H]) ™! > P H H]
i=2
= log ‘IEkJrl ws + AGI (Imin{u,ul} + palzlzi)_lGl
=2
+AG;G2]
@ 108 ‘IZ;:; w AG§G2‘ +O(1)
= log ‘I(u_u1)+ + GQAG;‘ +O(1). (C.20)
The equation (a) is true because we assumed a; > max{as, - ,ar+1}, and the matrix AGJ{(Imin{u,ul} +

@133, 51)~1G; tends to be constant when p — 0. Plugging ((C.20)) in (C.18]), we have for n = k + 1,
p 1

k+1
I+ p™ HiH{ + > p" H;H]
1=2

log

— log | I, + p‘“HlHH +log ‘I(u_ul)+ + GQAGQ\ +O(1)
= [ (u, (a1, u1))log(p) + f ((u—u1)™, (a2, uz),
s (arg1, uks)) log(p) + O(1)

= f (u7 (ala ul)’ Ty (ak+1’uk+1>) log(p) + O(l)

which completes the proof.
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C.5 Proof of Theorem [5.4]

We derive the GDoF region by taking the limiting value on both the left hand side and right hand side
of the inequalities in the outer bound (c.f. Theorem . It is obvious that both bp, and gg, can be derived
by directly using Lemma on the outer bound set functions By, and G, (c.f. (5.44) and (5.46)), as the

log det(-) terms in these two set functions are in the form log |l + ), p* H;H!|. The computation of the
asymptotic value of the set functions Ay, and E7, in the form of log |1+, palH,Hj + HK~'HT| needs the

SVD of the matrix K. In what follows, we compute the set function ar, as an example and ey, can be obtained

Lmin{M;.1,N s }]

similarly. Steps (a) and (b) hold true because (a) in this step, we let G1 = (H; 15V, 1, )[ and

Gy = (Hi154V, ,)[min{Mi.l,Ni/}+1:M“] (b)

i.1—1% )

since H; 1,V -+ is identically distributed as H; 1_,;, the

. 1=

entries of the production H;1-,;V; ;_,» are drawn i.i.d. from a continuous and unitarily invariant distribution,

so are the entries of matrices G1 and G5 . Hence, G; and G4 are full rank w.p.1 and have the same properties

as the channel matrices, and thus Lemma applies.
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Kn = h(}/i‘XfiaTiv Xi’.la Q) - h(Sz/ |Xi/,1a Q)
(a) ’
<h Z hijsilijiXig+hinsilHinsiXin +Zi(hyy o Hyy o Xin + 2, | —h(Z;)
iGET\ {31}

Y e o g o gt
< log INi + Z |hl.j*>7,‘ H’L.]‘)’LQI.ijL‘_]‘_yL' + |hz.1~>l| H’Ll*}ZQ’L‘lHi_l_)i
igeTi\{i.1}

-1
2 2 2
—lhia—il Ry 1| Hi.l%iQi.lelﬁi/ (IN,ir + i Hi.lﬁi’Qi.lHj_lﬁi/> H, Ly QinH]y

1
=log|In; + Z |hi.j—>i|2Hi.j—>iQi.jH;rAj_>i + |hi.1—>i|2Hi,1—>iQi2,1
i.5ET\{i.1}

23 gt
' |:IM11 - |hi.1~>i’| Qi2.1H

i1—i

-1 1 1
2 T 2 z gt
(IN/ + ‘hi'l"i,| Hi'l"il Qi'lHi.l—m'/) Hi.l%i’ lelj| iz.lHi,l—m’

(c) 1
= log |In, + Z |hi.j—>i|2Hi.j—>iQi.jHiT,jﬁi + hiaiPHi15iQ7,

i.je€Ti\{i.1}

1 1\ 1 1
213 gyt 3 3 gt
' (IMM + |hi-1%’| Qi~1Hi.1—>i' H; Qu) i1 i1

(d) Qi isi t o ) o st -1 t
< log |In, + Z P Hy il oy A+ p™ T Hi (IMi.l i Hi.Hi’Hi-Hi') Hi
i.eTi\{i.1}

=log|In,+ Y. P Hy i HY o+ p™ = Hyg i K HY
i jET i1}
~ A, 1)



239

Ay, =log|In, + Z Pi.jaiHi,jﬁiHiT_j_,i + pai'lﬁiHuaiKmHL—n
i.7€7\{i.1}

1
=log |In, + Z pigmviHigsiH] jy+ p 0 Hin (IM“ e Hj'l—”/ Hi'l_)i/) Hiro
7€\ {:.1}

“1

=log|In, + Z /Ji.j—nHi.j—nHiT,j_n + M Vg (IMi.l + ptiasi’ Zj_l_,y 2i.1—>i’)
i.7€T;\{:.1}

T T

e Hia

=log|Iy,+ > pijoiHijilH] 4 p™ 0 Hia iV
1.J€Yi\{i.1}

-1
oyt
(Imin{Mz‘.lvNi'} + st B Zi-lﬁi/ﬁ) v GHN
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