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Spectrum sharing allows the coexistence of heterogeneous wireless networks on the same frequency

band. Managing the interference between such networks is critically important to ensure high spectrum

efficiency, thus motivating the study of multiple-input-multiple-output (MIMO) interference channels (IC)

in information theory. This dissertation studies three classes of such interference channels, namely, the

MIMO one-to-three IC, the MIMO IC-ZIC, and the MIMO MAC-IC-MAC.

The MIMO one-to-three IC is a partially connected three-user IC with multiple antenna terminals,

where one transmitter that causes interference is heard at all three receivers, whereas the other two trans-

mitters are heard only by their intended receivers. We present inner and outer bounds on the capacity region

of the MIMO one-to-three IC, quantify the gap between the two bounds, and show that the gap is indepen-

dent of the channel signal-to-noise ratios (SNRs) and interference-to-noise ratios (INRs). In particular, the

achievable scheme at the interfering transmitter involves three-level superposition coding with linear precod-

ing based on the generalized singular value decomposition (GSVD) whereas the non-interfering transmitters

perform single-user coding with Gaussian codebooks and scaled identity covariances. The outer bound is ob-

tained using genie-aided arguments with various combinations of genie information provided to the receivers.

The generalized degrees of freedom (GDoF) region, which can be seen as a high SNR approximation of the

capacity region, of the MIMO one-to-three IC is then fully characterized. We study the achievability of the

GDoF region and the sum GDoF curve using an analysis tool developed in this dissertation, which we refer

to as multidimensional signal-level partitioning. This tool is tailored for demonstrating the achievability of

GDoF-tuples of a MIMO network that can be achieved via multi-level superposition coding.

The MIMO IC-ZIC is also a partially connected three-user IC consisting of three transmitter-receiver

pairs. In the IC-ZIC, the first and second pairs form a two-user IC, the first and third pairs form a one-sided or

Z interference channel (ZIC) and the second and third transmitter-receiver pairs taken by themselves are two

non-interfering point-to-point links. In this thesis, an explicit inner bound is obtained via a coding scheme
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is proposed in which the first transmitter employs three-level superposition coding (as in the MIMO one-to-

three IC), the second one employs the previously proposed and well-known Karmakar-Varanasi coding scheme

(which achieves a constant-gap-to-capacity region of the two-user MIMO IC), and the third transmitter

employs single-user coding with a Gaussian codebook (with scaled identity covariance). An explicit single

region outer bound based on genie-aided arguments is then obtained. The gap between the inner and outer

bounds is then shown to be within a quantifiable gap to the capacity region and the gap is independent

of channel SNRs and INRs. The GDoF region is then characterized and analyzed in a variety of channel

settings. The difficulty in this part of the research lies in the quantification of the gap between the 28-

inequality inner bound and the 33-inequality outer bound, which is characterized via a series of supporting

lemmas that reveal the relationship between the entropy terms in the inner and outer bounds.

The MIMO MAC-IC-MAC consists of two interfering MACs in which there is interference only from

one transmitter of each MAC to the receiver of the other MAC. Two achievable rate regions that are

within a quantifiable gap of the capacity region for the discrete-memoryless semi-deterministic MAC-IC-

MAC were obtained in a previous published work by Pang and Varanasi using inner and outer bounds that

are unions of polytopes. In the dissertation, we obtain single region inner and outer bounds that characterize

a constant-gap-to-capacity region of the MIMO MAC-IC-MAC. The inner bound is obtained by employing

the Karmakar-Varanasi coding scheme at the interfering transmitters and single-user coding with Gaussian

codebooks and scaled identity covariances at the non-interfering transmitters. Our work therefore unifies

and generalizes the constant-gap-to-capacity regions of the MIMO MAC and the two-user MIMO IC. The

GDoF region of the MIMO MAC-IC-MAC is also obtained and analyzed. The GDoF analysis reveals that,

at high SNR, when the ratio of the INR to the SNR, both taken in dB, is within a certain range in any

cell, non-interfering transmitters in that cell can fully occupy the receivers’ signal partitions in one or more

dimensions that cannot otherwise be utilized by the interfering transmitter alone. This phenomenon is a

generalization of the one discovered by Pang and Varanasi in the previous published work on the scalar

Gaussian MAC-IC-MAC.
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Chapter 1

Overview

Due to the rapid increase of data demands in recent years, wireless co-band communication has

drawn significant interest in both theory and practice. Some applications include the Bluetooth and Wi-

Fi coexistence on 2.4 GHz band and the Wi-Fi and LTE-LAA coexistence on 5GHz band. Most recently,

3GPP agreed to start a work item which will define 5G New Radio on unlicensed spectrum. Such emerging

technologies motivate the study of channel capacity and capacity achieving coding scheme for interference

channels (ICs) in information theory. Besides, since the multiple-input-multiple-output (MIMO) technology

has been widely adopted in modern wireless communication systems, it is practically important to study

networks with vector input and output in such research.

A single cellular network usually consists of three basic component channels: the MIMO point-to-

point (P2P) channel (direct link between a communication pair), the MIMO multiple access channel (MAC,

uplink channel from multiple users to the base station) and the MIMO broadcast channel (BC, downlink

channel from the base station to multiple users). The capacity regions of these three channels with constant

(time/frequency invariant) channel realizations and full channel side information (CSI) known to all the

transmitters and receivers have been fully determined. In particular, the capacity region of the MIMO P2P

channel was reported by Telatar in [42]. The capacity region of MIMO MAC can be found in the works [9,48].

The MIMO BC capacity region was characterized by Weingarten, Steinberg and Shamai [46]. For results on

capacity regions of fading MIMO P2P, MIMO MAC and MIMO BC, please refer to [33,42].

When multiple heterogeneous networks coexist on the same frequency band, interference may occur

between these networks. The three basic component channels introduced above are no longer sufficient to
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Figure 1.1: A three user IC

describe the character of the coexisted networks. Four additional component channels are needed: the K-

user MIMO interference channel (see Fig. 1.1 for a three-user IC example, dashed lines represent interference

links and solid lines direct links) where K P2P channels interfering with each other, the L-cell MIMO

interfering multiple access channel (IMAC, see Fig. 1.2 for a two-cell IMAC example) where L MACs mutually

interfering with each other, the L-cell MIMO interfering broadcast channel (IBC, see Fig. 1.3 for a two-cell

IBC example) where L BCs interfering with each other, and the MIMO interfering multiple access broadcast

channel (IMABC, see Fig. 1.4 for an IMABC consists of one MAC and one BC) where each MAC or BC

interferes with other MACs and BCs. Note the term “interference channel” alone, as being used in the title

and throughout the rest of this chapter, means a network contains interference links in general, whereas

the term K-user interference channel or K-user IC refers to the network which contains K P2P channels

interfering with each other.

The Shannon capacities of those four component channels are all open. Characterizing these capacities

has not turned out to be easy. Information theorists have then been seeking for near optimal coding schemes

which achieve approximate capacity regions of these channels. The research behind this dissertation is part

of such efforts.

In the rest of this chapter, we first introduce three capacity approximations in Section 1.1, and then we

summarize related previous milestone works at a high level in Section 1.2 (in Chapters 3-5, detailed related

references will be reviewed with respect to the channel models to be studied therein). Lastly, we provide an

overview of the research results in this dissertation in Section 1.3.

Throughout the dissertation, we always assume all transmitters and receivers know full global CSI in
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Figure 1.2: An IMAC consists of two uplink cells, each cell has four users.

Figure 1.3: An IBC consists of two downlink cells where each cell has four users.
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Figure 1.4: An IMABC consists of one downlink cell and one uplink cell, each cell. has two users
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any network (also usually referred to as channel). Unless specified as fading or time/frequency varying, all

channels have constant channel realizations.

1.1 Capacity Approximations

With decreasing accuracy levels, the following three different capacity approximations have been

commonly used. They are constant-gap-to-capacity region, generalized degrees of freedom (GDoF) region

and degrees of freedom region (DoF). We introduce these three approximate capacity regions in sequence in

this section.

1.1.1 The Constant-gap-to-capacity Region

For a given channel model, a constant-gap-to-capacity region is an achievable region that lies within

only constant gap to the Shannon capacity region regardless of the channel parameters, i.e., link signal-to-

noise-ratios (SNRs), interference-to-noise-ratios (INRs) and transfer matrices. To obtain a constant-gap-to-

capacity region for a channel with K involved rate tuples, we usually find a pair of inner and outer bounds

Rin (which is an achievable region) and Ro such that for any rate tuple (R1, · · · , RK) ∈ Ro, we always have

(R1 − n1, · · · , RK − nK) ∈ Rin regardless of channel parameters. Since the capacity lies between Rin and

Ro, we infer that the inner bound Rin lies within constant gap (n1, · · · , nK) to the capacity, and hence Rin

is a constant-gap-to-capacity region of this channel. Let us take the constant-gap-to-capacity region of the

two-user scalar Gaussian IC given in [15] as an example. Consider the two-user IC as shown in Fig. 1.5 whose

parameters are given in the caption. We plot the inner and outer bounds (Rin and Ro) provided by [15] in

Fig. 1.6. According to [15], for any (R1, R2) ∈ Ro, we always have (R1 − 1, R2 − 1) ∈ Rin. Hence, the inner

bound Rin is within (n1, n2) = (1, 1) bit gap to the capacity region of this IC.

1.1.2 The GDoF Region

The next level of capacity approximation is the GDoF region. To explain the idea of the GDoF

region, we start from the constant-gap-to-capacity region [15] of the two-user scalar Gaussian IC given in

Fig. 1.5, but let us change the channel parameters a little. Let SNR11 = ρα11 , SNR22 = ρα22 , INR12 = ρα12
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Figure 1.5: A two-user scalar Gaussian IC with symmetric channel parameters: SNR11 = P1|h11|2/N1 = 100,
SNR22 = P2|h22|2/N2 = 100, INR12 = P1|h12|2/N2 = 50 and INR21 = P2|h21|2/N1 = 50, where P1 and P2 are
the transmit power at Tx1 and Tx2, N1 and N2 are the power of the Gaussian noise Z1 and Z2 respectively.
Tx1 (and Tx2 respectively) transmits message M1 (M2) to Rx1 (Rx2). Random variables X1 and X2 are the
inputs of the channel, and Y1 and Y2 the outputs.

Figure 1.6: Inner and outer bounds and constant gap of the two-user IC given in Fig. 1.5
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and INR21 = ρα21 , where ρ is a nominal power and α11, α22, α12 and α21 are the pre-log factors of the

channel SNRs and INRs in dB scale. In the following numerical experiments, we keep α11 = α22 = 3 and

α12 = α21 = 2 unchanged while increasing the nominal power ρ from 10 to 106 in several steps. We plot the

inner and outer bounds as well as the normalized (scaled by log ρ) inner and outer bounds in Fig. 1.7 (ρ = 10),

Fig. 1.8 (ρ = 100), Fig. 1.9 (ρ = 1000) and Fig. 1.10 (ρ = 106). The scaling factor log ρ can be approximately

viewed as the capacity of a reference AWGN (additive white Gaussian noise) channel with channel SNR ρ,

i.e., log ρ ≈ log(1 + ρ). It can be seen that both the inner and outer bounds expand with the increase of

ρ. Since the gap between the inner and outer bounds is constant, it does not grow with the increase of the

channel SNRs and INRs. The normalized inner and outer bounds do not expand with ρ, but they tend to

coincide. At high SNR regime, some details of the shape of the normalized constant-gap-to-capacity tends

to disappear, but the main sketch remains. When ρ goes to infinity, the gap completely disappears, and the

normalized inner and outer bounds coincide. This coincided region is the so-called GDoF region, as shown

in Fig. 1.11. Precisely, the GDoF region of the two-user scalar Gaussian IC is defined as

D(α11, α22, α12, α21) =

{
(d1, d2) = lim

ρ→∞

(
R1

log ρ
,
R2

log ρ

)
: (R1, R2) ∈ C

}
where C is its capacity region. We do not know the capacity region C, but we can get the exact GDoF region

through a constant-gap-to-capacity region Rin, i.e.,

D(α11, α22, α12, α21) =

{
(d1, d2) = lim

ρ→∞

(
R1

log ρ
,
R2

log ρ

)
: (R1, R2) ∈ Rin

}
,

as a finite number of bits is insignificant in the GDoF computation.

It is worth pointing out that even with a constant-gap-to-capacity region in hand, deriving the GDoF

region is not always straightforward, because a constant-gap-to-capacity region could be a union of infinite

regions each of which is contributed by one coding scheme. An ideal constant-gap-to-capacity region for

GDoF computation contains single polytope (as the one shown in Fig. 1.6) from which the GDoF region

can be easily obtained by definition. In this dissertation, we always obtain single region inner and outer

bounds for the three channels to be discussed later. On the other hand, the derivation of GDoF region

does not always require a constant-gap-to-capacity region. To get the GDoF region, it is sufficient to have

an inner or outer bound which is within a ρ independent finite gap to the capacity. We shall adopt this
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Figure 1.7: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR11 = SNR22 = 103 and INR12 = INR21 = 102. The right subplot shows the normalized (scaled by log ρ)
inner and outer bounds.

Figure 1.8: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR11 = SNR22 = 1003 and INR12 = INR21 = 1002. The right subplot shows the normalized (scaled by log ρ)
inner and outer bounds.
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Figure 1.9: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR11 = SNR22 = 10003 and INR12 = INR21 = 10002. The right subplot shows the normalized (scaled by
log ρ) inner and outer bounds.

Figure 1.10: The left subplot shows the inner and outer bounds of the scalar Gaussian two-user IC with
SNR11 = SNR22 = 10000003 and INR12 = INR21 = 10000002. The right subplot shows the normalized (scaled
by log ρ) inner and outer bounds.
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Figure 1.11: The GDoF region of the two-user scalar Gaussian IC with α11 = α22 = 3 and α12 = α21 = 2.
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insight to characterize the GDoF regions of the channels to be discussed in Chapters 3 and 4, where the

constant-gap-to-capacity regions are undetermined.

1.1.3 The DoF Region

Getting constant-gap-to-capacity or GDoF region for the aforementioned four component channels

(the MIMO K-user IC, the MIMO IMAC, the MIMO IBC and the MIMO IMABC) is still difficult, if not as

difficult as characterizing their Shannon capacity regions. Many information theory works have aimed down

to the next level of channel capacity approximation–the DoF region. A DoF region is not an approximated

GDoF region. For a given channel model, its DoF region is the exact GDoF region under a particular channel

realization where all the channel SNRs and INRs have the same pre-log factor. In other words, for a given

channel model, only one particular channel realization (pre-log factors of all channel SNRs and INRs are

equal) has its DoF region defined.

1.2 Milestone Results on Capacity Approximations of MIMO Interference

Channels

Previous works on the K-user MIMO interference channel are summarized in this paragraph. So far,

the Shannon capacity region of even the simplest K-user MIMO IC, the two-user scalar Gaussian IC with

constant channel realization, is still unknown. We first state known results on the K-user MIMO IC with

constant channel realizations. Karmakar and Varanasi characterized a constant-gap-to-capacity region of the

two-user MIMO IC. Etkin, Tse and Wang [15] characterized a constant-gap-to-capacity region of the two-

user scalar Gaussian IC. Jafar and Vishwanath [24] obtained per-user GDoF of the K user symmetric scalar

Gaussian IC where, in the notation of this paper, all direct links have the same SNR ρ and all interference

links have the same INR ρα. Next, we state known results on the coarser sum-DoF metric on the K-user

MIMO IC with time varying channel realizations. Gou and Jafar [22] provided inner and outer sum-DoF

bounds for a class of MIMO K-user ICs with M antennas at each transmitter and N antennas at each

receiver, and they showed these bounds are tight when the ratio max{M,N}/min{M,N} is an integer. The

sum-DoF of the scalar Gaussian K-user IC was reported in [6]. Interference alignment is considered in the
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achievable coding schemes in both [22] and [6].

For the MIMO IMAC, the MIMO IBC and the MIMO IMABC, relatively little is known compared

to the K-user MIMO IC. Again, we first state results on those channels with constant channel realizations.

Pang and Varanasi [37] obtained constant-gap-to-capacity region for the scalar Gaussian MAC-IC-MAC (a

partially connected two-cell IMAC where only one interfering transmitter in each cell interferes the receiver

in the other cell; it is the scalar version of the channel discussed in Chapter 5). Chaaban and Sezgin studied

a fully connected two-cell channel in which a two-user MAC interferes with a point-to-point link [8]. The

capacity region is found for very strong and some cases of strong interference, and upper and lower bounds

on the sum-rate in the weak interference regime (with the lower bound achievable by treating interference

as noise) are also obtained. Subsequently, in [20], they showed that when the interference is weak, treating

interference as noise in their model is sub-optimal. Buhler and Wunder [5] derived upper bounds on the sum

rate and an achievable scheme for the linear deterministic version of the model in [8]. Fritschek and Wunder

obtained a result on the reciprocity between the two-cell deterministic IMAC and the two-cell deterministic

IBC in [17], and obtained an achievable region under a weak interference condition for both those channels.

In [18], the deterministic IMAC was revisited using the lower triangular deterministic model introduced

by [34], and a constant-gap sum capacity was obtained. Fritschek and Wunder [16] closed the gap between

the achievable sum rate regions for Gaussian IMAC and the deterministic IMAC. Their coding scheme

employs signal scale alignment and lattice coding. For symmetric (with K-user per cell, M antennas per

user and N antennas per base station) L-cell MIMO IMAC , Kim et al [29] derived an outer bound on its sum

DoF and presented an achievable scheme that achieves this outer bound for the case L = 2. For symmetric

L-cell MIMO IBC, Liu and Yang [32] determined per-user DoF for certain ranges of antenna configurations.

For symmetric L-cell MIMO IMAC and IBC, Sridharan and Yu [40] investigated achievable schemes based

on decomposition with asymptotic interference alignment and linear beamforming and showed that there are

distinct regimes where one outperforms the other. In this work, the per-user DoF is determined for the case

when each user is equipped with single antenna. Next, we state results on time/frequency varying channel

realizations. For multi-subcarrier Gaussian IMAC and IBC, Suh and Tse [41] applied interference alignment

and showed it achieves interference-free per-cell DoF when the number of users in each cell goes to infinity.
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Suh, Ho and Tse introduced a downlink interference alignment scheme for multi-subcarrier cellular networks.

The scheme only requires local channel state information at each base station, i.e., a base station only needs

the CSI of its own cell. Jeon and Suh [25] investigated a two-cell IMABC where each user has single antenna

and each base station has multiple antennas, and the sum DoF was characterized.

1.3 The Scope of This Dissertation

As seen from Section 1.2, most of the results on general K-user (K > 2) MIMO IC, MIMO IMAC,

MIMO IBC or MIMO IMABC stay at DoF level. However, DoF (or sum DoF) approximation does not

permit asymmetric scaling of the channel SNRs and INRs in dB scale, severely restricting its applicability

to settings where the various received signals from the different transmitters at each receiver are of similar

strength.

In this dissertation, we study capacity approximations for MIMO interference channels beyond DoF.

We characterize GDoF regions of two particular cases of the three-user MIMO interference channels (the

MIMO one-to-three IC and the MIMO IC-ZIC) and the constant-gap-to-capacity region of the MIMO MAC-

IC-MAC (a class of partially connected MIMO IMACs). In all these channels to be investigated, we assume

constant channel realization and full CSI known to all the involved transmitter and receivers. We always

derive single region inner and outer bounds. In other words, each of our constant-gap-to-capacity or GDoF

region is achievable by one coding scheme. In what follows, we briefly summarize the research results to be

introduced in the next four chapters.

Before we investigate the three proposed channels, we first review the signal-level partitioning tech-

nique introduced by Pang and Varanasi in [37, Section III-F] and extended by the same authors to multidi-

mensional signal-level partitioning in [36] (which was initially proposed informally by Karmakar and Varanasi

in [26]) in Chapter 2. This technique will be an effective tool to demonstrate the achievability of any given

GDoF-tuple that is achievable via multi-level superposition coding in a MIMO network.

Since the MIMO two-user IC already has a constant-gap-to-capacity region characterized in [27], the

next goal towards the constant-gap-to-capacity or GDoF region of the K-user MIMIO IC is to find the

constant-gap-to-capacity or GDoF region of the MIMO three-user IC, but it is a difficult job. In Chapter 3,
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we take one beginning step towards this goal by characterizing the GDoF region of the MIMO one-to-three

IC, a special case of the three-user MIMO IC where only the first transmitter interferes two other unintended

receivers (see Fig. 1.12). The coding scheme is enlightened by the Karmakar-Varanasi type coding scheme

(KV coding scheme) [27] in the two-user MIMO IC as well as the multi-level superposition coding scheme used

for the scalar Gaussian one-to-many IC [4]. More specifically, at Tx1 we perform three level superposition

coding to encode four sub-messages m123, m12, m13 and m1p which are intended to be decoded by Tx1-Tx3,

Tx1-Tx2, Tx1 and Tx3, and Tx1 only. One challenge in the design of the coding scheme is to seek an

appropriate mathematical tool to jointly decompose the two cross link transfer matrices so that the common

and exclusive signal directions and levels between Tx1 and Rx2-Rx3 can be revealed. We adopt GSVD to

fulfill the duty, but at the cost of losing the constant gap between the derived inner and outer bounds. The

gap turns out to be independent of channel SNRs and INRs, but dependent on the channel transfer matrices.

Nevertheless, such a pair of bounds is sufficient to characterize the GDoF region.

In Chapter 4, we take one further step by adding an additional interference link from Tx2 to Rx1 to

the MIMO one-to-three IC, and the resulting channel is the MIMO IC-ZIC which contains a two-user MIMO

IC between Tx1/Rx1 and Tx2/Rx2, and a two-user MIMO Z interference channel (ZIC) between Tx1/Rx1

and Tx3/Rx3 (see Fig. 1.13). With the knowledge of the GDoF optimal coding schemes for the MIMO one-

to-three IC and the two-user MIMO IC, it is not hard to conjecture that a three-level superposition coding

(as in the MIMO one-to-three IC) at Tx1, KV coding scheme (as in the two-user MIMO IC) at Tx2, and

single user random coding at Tx3 (with Gaussian codebook and scaled identity covariance matrix) could be

GDoF optimal. We prove that it is indeed the case. However, the mathematic process of quantifying the

gap between the derived inner and outer bounds turns out to be challenging. The number of inequalities

in the GDoF region of MIMO IC-ZIC increases significantly when compared to its sub-channels–the MIMO

one-to-three IC and the two-user MIMO IC, which indicates high complexity of GDoF region of the fully

connected three-user MIMO IC.

Lastly, we turn our attention to the MIMO MAC-IC-MAC, where two MACs interfere with each

other through two marginal links (see Fig. 1.14). The constant-gap-to-capacity region of the scalar Gaussian

MAC-IC-MAC has already been characterized in [37]. We extend it to the MIMO case in Chapter 5. We
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Figure 1.12: The MIMO one-to-three IC

perform KV coding scheme at the interfering transmitter (as in the two-user MIMO IC) and single user

random coding (with Gaussian codebook and scaled identity covariance matrix, which is GDoF optimal for

the MIMO MAC) at the non-interfering transmitters. The overall coding scheme yields a constant-gap-to-

capacity region of the MIMO MAC-IC-MAC. The GDoF result of the MIMO MAC-IC-MAC shows that

despite the existence of the interference links, each cell can achieve full sum symmetric GDoF as if it were

interference free, as long as the INR to SNR ratio (in dB scale) is within a certain range (either weak enough

or strong enough). This suggests that time or frequency sharing among cell users for the interfering uplink

cellular network is not GDoF optimal.
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Figure 1.13: The MIMO IC-ZIC

Figure 1.14: The MIMO MAC-IC-MAC



Chapter 2

Multidimensional Signal-Level Partitioning for GDoF Analysis

In this chapter, we generalize the scalar signal-level partitioning technique introduced in the paper [37,

Section III-F] to the vector case, by developing a multidimensional signal-level partitioning technique that is

suitable for demonstrating the achievability of boundary points (e.g., vertices) of the GDoF region of MIMO

networks. This technique can be seen as a formalization of a similar idea introduced in [26, Section III-A] in

the context of the 2-user MIMO interference channel, thereby widening its applicability beyond that context.

2.1 Signal-Level Partitioning in Scalar Gaussian Channels

Let us start from a complex-valued scalar AWGN received signal Y =
√
ραX + Z in some link in a

network with the additive noise Z being a zero-mean complex Gaussian random variable with unit-variance.

Without loss of generality, we normalize the transmit power constraint to be unity by absorbing the signal

amplitude into the channel gain, which in turn we denote as
√
ρα, so that the received SNR = ρα.

Suppose the signal X is sent with full power, i.e. E[|X|2] = 1. Since unit power can be expressed as

1 = (ρ0 − ρ−α) + (ρ−α − ρ−2α) + (ρ−2α − ρ−3α) + · · · (2.1)

we accordingly let X be the result of linear superposition coding given as

X =
√
ρ0 − ρ−αXp1+

√
ρ−α − ρ−2αXp2+ (2.2)√

ρ−2α − ρ−3αXp3 + · · ·

where Xp1, Xp2, Xp3, · · · being mutually independent zero-mean, unit-variance complex Gaussian random

variables. Henceforth, we will refer to Xp1, Xp2, Xp3, · · · as signal partitions since they are associated with
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powers that results from partitioning the total signal power into multiple levels as in (2.1). After going

through a channel with gain
√
ρα (and additive noise with unit power) the part of the signal associated

with Xp1 has power ρα so that it can ”carry” α GDoF, with the receiver decoding it by treating all other

partitions as noise. Consider decoding the next lower signal partition Xp2 by canceling the effect of the

decoded Xp1 from Y and treating all signal partitions below Xp2 as noise. Since Xp2 at the receiver has

a power that is below the noise power it cannot carry positive GDoF. Similarly, all other lower partitions

Xp3, · · · cannot carry positive GDoF either. Hence, ignoring these partitions, either by treating them as

noise or by not transmitting them at all, is without loss of optimality when a capacity characterization that

is accurate only up to GDoF is needed. Hence, the transmitted signal can be set to X =
√
ρ0 − ρ−αXp1

without loss of GDoF optimality. This is depicted in Fig. 2.1 as a vertical bar on the left with one partition

Xp1. Its top is labeled ρ0 which depicts the signal (power) level and the bottom ρ−α which represents the

next signal-level of Xp2 if it exists, etc. The channel lifts the top of signal partition Xp1 to level ρα at the

receiver and this is depicted in the right hand side of Fig. 2.1. The resulting GDoF of α is hence achievable,

which is exactly the GDoF of this AWGN link. In summary, in this link, we need one signal partition with

power exponent resolution of α to achieve optimal GDoF. We henceforth refer to Xp1 as a GDoF-effective

partition to indicate it is sufficient to achieve the optimal GDoF.

Tx

Rx

Figure 2.1: Signal-level partitioning at the transmitter and receiver of a Gaussian link Y =
√
ραX +Z with

E[|X|2] ≤ 1 and zero mean Gaussian noise Z ∈ CN (0, 1)

In a network with multiple transmitters and/or receivers each link i− j from transmitter i to receiver

j can be modeled as having a channel gain of the form
√
ραi→j with possibly distinct exponents αi→j (with

ρ being some nominal SNR). In this case, multiple signal partitions are usually needed for each transmit
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signal to achieve a given GDoF tuple in general. The process of creating these multiple signal partitions by

additively decomposing X into a series of ρ-ary components Xp1, Xp2, · · · as in (2.2) is called signal-level

partitioning of X as explained previously. The number and resolution (i.e., size) of the signal partitions

required for each transmit signal are not unique but depend in general on the network topology, all involved

channel gain exponents αi→j of nominal SNR ρ, and the GDoF tuple to be achieved. There are several

rules that must govern their selection which we shall reveal as needed in what follows. For instance, we can,

without loss of generality, insist that the bottom signal partition (i.e., with the lowest power) should be set

so that a partition below it would not be received at above the noise floor by any receiver in the network.

Moreover, the number of partitions used for each transmit signal should provide sufficient resolution so that

the they are aligned at each receiver. Moreover, not all signal partitions are ”used” (so that a signal is not

always transmitted with full available power) and what partitions to transmit is dictated by the requirement

that the given achievable GDoF tuple must be achieved by successive cancellation decoding at each receiver.

We illustrate these points in the next example.

Consider a complex Gaussian scalar MAC with received signal

Y =
√
ρ0.8X1 +

√
ρ1.2X2 + Z (2.3)

with unit power constraints on X1 and X2 and zero-mean, unit-variance complex Gaussian noise. The GDoF

region of this MAC is easily shown to be

0 ≤ d1 ≤ 0.8

0 ≤ d2 ≤ 1.2

d1 + d2 ≤ 1.2

To achieve the corner point (0.8, 0.4), we decompose the signals X1 and X2 into three signal partitions each

at power exponent resolution 0.4 as depicted in the left hand side of Fig. 2.2. The resolution is chosen so it

divides both the two channel gain exponents 0.8 and 1.2 so that the received signal partitions can be aligned

at the receiver’s grid as shown in the right hand side of Fig. 2.2. In particular, the top two signal partitions

of X1 and the top three partitions of X2 can be heard by the receiver (i.e, while carrying positive GDoF),
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with the top two partitions of X1 aligned with the bottom two partitions of X2. To achieve the GDoF pair

(0.8, 0.4), we simply use (i.e., transmit) the top two partitions of X1 which carry 0.8 GDoF together, and the

top partition of X2, which carries 0.4 GDoF. The decoder decodes the three signal partitions sequentially

in decreasing order of signal strengths using successive cancellation (i.e., the top partition of X2 first, the

top partition of X1 next and followed by its second partition). We say that the depth of signal partition

is 3 in this scheme at each transmitter (even though the bottom partitions were unused) and the exponent

resolution (i.e., the GDoF per partition) is 0.4. Note also that the the GDoF pair (0.4, 0.8) can be easily

achieved with the same depth-three signal partitioning and GDoF per partition of 0.4 by using the middle

partition of X1 and the top two partitions of X2. Evidently, the GDoF pair (0, 1.2) can be achieved by using

all three signal partitions of X2 and none of X1.

Tx1

Rx

Tx2   

Figure 2.2: Signal-level partitioning of the transmitter and receiver of the MAC Y =
√
ρ0.8X1 +

√
ρ1.2X2 +Z

To summarize, the achievability analysis using signal partitioning restricts the encoding scheme to

be multi-level superposition coding with signal-level alignment, and with each signal partition encoded

independently with a different message, i.e. there is no cross-partition encoding. The decoding scheme

is usually successive decoding at each receiver, except in certain cases when it is not sufficient, in which

case joint decoding must be used, as illustrated in Section 2.4. In successive decoding, the decoder decodes

signal partitions from top to bottom sequentially. Each signal partition is decoded by treating all the signal

partitions below it as noise. The GDoF per partition should not only be set to be a common integer divisor

of all the channel gain exponents αi→j , but also of the individual values in the given GDoF tuple to be

achieved (as was done in the achievable GDoF pairs considered for the MAC). We illustrate this point with
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another example.

Tx1

Rx

Tx2

Figure 2.3: Coding scheme for (d1, d2) = (0.6, 0.6) in MAC Y =
√
ρ0.8X1 +

√
ρ1.2X2 + Z

Continuing with the example of the MAC of (2.3), we next demonstrate the achievability of a maximum

symmetric (and sum) GDoF pair (d1, d2) = (0.6, 0.6). The depth-three partition with GDoF per partition of

0.4 of Fig. 2.2 does not suffice. Consider the depth-six partition of Fig. 2.3 in which the GDoF per partition

is 0.2. The GDoF pair (d1, d2) = (0.6, 0.6) can be achieved as follows: since the top two partitions of X2

alone can reach power levels ρ1.2 and ρ1 at the receiver, they must be utilized by Tx2 to get maximum sum

GDoF. However, the receiver’s power levels below ρ0.8 can be shared by signal partitions of three partitions

of Tx1 and the remaining one of Tx2. One such achievability scheme is the one shown in Fig. 2.2 where the

shaded partitions of X1 and X2 (i.e., the second to the fourth of X1 and the top three of X2) are the ones

that are used by the two transmitters. The receiver successively decodes the shaded partitions it sees from

top to bottom using successive cancellation. Evidently, the higher resolution signal partitioning of Fig. 2.2

can be used to specify the partitions that must be used to achieve the three GDoF pairs that were achievable

with the signal partitioning of Fig. 2.2 but also the new GDoF pair (d1, d2) = (1.0, 0.2).
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2.2 Multidimensional Signal-Level Partitioning

When an input signal is a vector, we can employ signal-level partition to each element or dimension

of the vector individually at sufficient resolution. For convenience, we refer to each element of the transmit

or receive signal simply as a ”dimension” of the transmit and receive signal, respectively. For example, the

input signal X =
(
X(1) X(2)

)T
is a two dimensional signal, with X(1) being its first dimension, and X(2)

the second dimension. Similarly, in the output signal Y =
(
Y (1) Y (2)

)T
, Y (1) is its first dimension and Y (2)

is its second dimension.

Consider a 2× 2 MIMO AWGN link Y =
√
ραHX + Z where the channel matrix

H =

 [H]11 [H]12

[H]21 [H]22

 satisfies the assumptions stated in Section 5.2 with Z ∼ CN (0, I2). The maximum

achievable GDoF in this point-to-point link is clearly 2α. We show that 2α can be achieved by having each

dimension of X carry α GDoF using a single signal partition. Let X
(1)
p1 and X

(2)
p1 be these GDoF effective

partitions of X(1) and X(2). They are depicted on the left hand side of Fig. 2.4. The signal diagram on

the right hand side depicts the two dimensions of the output signal Y . Each is a linear combination of

the two input signals scaled by ρα, i.e. Y (i) =
√
ρα − ρ0[H]i1X

(1)
p1 +

√
ρα − ρ0[H]i2X

(2)
p1 for i ∈ {1, 2}.

Due to the effect of entries of H, in a signal partition depiction, the tops of the signals
√
ρα − ρ0[H]11X

(1)
p1 ,√

ρα − ρ0[H]12X
(2)
p1 ,

√
ρα − ρ0[H]21X

(1)
p1 and

√
ρα − ρ0[H]22X

(2)
p1 are almost never exactly aligned. However

—and this is a crucial point —the misalignment will effectively disappear as ρ tends to infinity, and so we

can depict the tops of these signal partitions as being aligned as shown in Fig. 2.4. On the other hand, the

channel matrix has full rank w.p.1 according to its definition, which ensures that Y (1) and Y (2) are two

linearly independent combinations of X
(1)
p1 and X

(2)
p1 , both at power level ρα. Hence, decoding the received

signal using zero-forcing will result in 2α GDoF, the exact GDoF of this link.

Remark 2.1. The deterministic model introduced in [2] in contrast involves a bit-level signal partitioning.

It differs from the one discussed here in that it expresses a real-valued signal in its binary expansion X =∑∞
i=1Xbi2

−i with Xbi ∈ {0, 1}. A link with gain
√
ρ lifts the

⌈
log2
√
ρ
⌉+

most significant bits of the input

signal above the noise level. With channel gains approximated in this way and signals at or below noise

level and the noise neglected, the capacity regions of the resulting deterministic P2P, MAC and broadcast
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Tx

Rx

Ant 1 Ant 2

Ant 1 Ant 2

Figure 2.4: Signal-level partitioning in a 2×2 MIMO link Y =
√
ραHX+Z. The transmitted signal consists

of one signal partition per dimension so that X = [X
(1)
p1 , X

(2)
p1 ]T as depicted on the left (transmitter) side of

the figure. The ith row of H is denoted as H(i). The first two and last two signal partitions on the right

(receiver) side denote the components due to X
(1)
p1 and X

(2)
p1 in the signals received at the first and second

antennas, respectively. While the tops of these components wouldn’t be aligned at finite SNR, they can be
regarded as being effectively aligned, since it is the limit of high SNR that is relevant in GDoF analysis.

channels are seen to be constant-gap-to-capacity approximations of their underlying Gaussian scalar P2P,

MAC, and broadcast channels, respectively [2, Section II-A-C]. However, a representative example of the

MIMO P2P channel is given to illustrate the limitation of the deterministic model in [2, Section II-E]. In it,

each element of the channel matrix is approximated in the deterministic model in the same way as channels

gains in the scalar Gaussian channels (so that the misalignment of signal components arriving at the receiver

would disappear). However, this leads to a reduction in the rank of the channel matrix in the deterministic

model for the example considered, so that the gap between the capacity of the original Gaussian MIMO

channel and that of its deterministic approximation becomes unbounded with increasing ρ, highlighting the

shortcoming of the deterministic model of [2] for MIMO channels.

In contrast, our additive, linear, superposition coding-based ρ-ary signal-level partitioning of (2.2)

employed in each dimension of the transmitted signal, with each partition in each dimension carrying α

GDoF, leaves the entries of the channel matrix (and hence its rank) unaltered, and, since we are only

interested in the limiting (GDoF) analysis as ρ → ∞, we effectively have the alignment of signal partitions

at the receiver as well.

Similar to the scalar signal-level partitioning, multidimensional signal-level partitioning also restricts

the encoding scheme to be multi-level superposition coding with signal-level alignment and decoding to be



24

based on successive cancellation (after channel inversion). Moreover, for simplicity, we preclude coding across

signal dimensions in addition to disallowing coding across levels as in the scalar case. For example, in the

case of the MIMO link, with two signal partitions per dimension, X
(1)
p1 , X

(1)
p2 , X

(2)
p1 and X

(2)
p2 are all encoded

independently. Hence, the covariance matrix of the transmit signal X should be diagonal.

Tx1 Tx2

Rx

Ant 1 Ant 2 Ant 1 Ant 2

Ant 1 Ant 2 Ant 3

Figure 2.5: Multidimensional signal-level partitioning in a (2,2,3) MIMO MAC Y =
√
ρ0.8H1X1 +√

ρ1.2H2X2 + Z to achieve the GDoF pair (1.6, 1.6).

To be concrete, we explain the achievability of a GDoF pair in a (2,2,3) MIMO MAC (i.e., a two-

user MAC in which the transmitters have two antennas each and the receiver has three antennas) using

multidimensional signal-level partitioning next. Consider the input-output relationship of the (2,2,3) MIMO

MAC to be

Y =
√
ρ0.8H1X1 +

√
ρ1.2H2X2 + Z

It is easily shown that the GDoF region of this MIMO MAC is given as the closure of (d1, d2) ∈ R2
+ which

satisfies:

0 ≤ d1 ≤ 1.6

0 ≤ d2 ≤ 2.4

d1 + d2 ≤ 3.2.

We will show the achievability of the corner point (1.6, 1.6). Depth-three signal partitioning is employed

for both dimensions of X1 and X2 as shown in Fig. 2.5 with GDoF per partition taken to be 0.4. The

shaded signal partitions in Fig. 2.5 denote the ones that are used for transmission. Due to limitation of

space, and since they can be naturally inferred, we omit the entries of the channel matrices H1 and H2
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associated with the various signal components/partitions/dimensions in the figure. The particular choice of

partitions to transmit in at Tx1 and Tx2 is made as follows: since the signal-level ρ1.2 can only be reached by

Tx2, we let Tx2 send messages on partitions X
(1)
2,p1 and X

(2)
2,p1 which together contain 0.8 GDoF. Moreover,

since the receiver has only three antennas, we need to ensure that there are at most three different signal

partitions that arrive at the receiver on levels ρ0.8 or ρ0.4 so that those partitions can be recovered via

channel inversion. These levels are in turn both accessible by Tx1 and Tx2. Tx1 has no choice but to use

both of the corresponding partitions (i.e., the top two partitions) in both dimensions to achieve a total of

d1 = 1.6 GDoF. Hence, Tx2 can only use one of the two partitions X
(1)
2,p2 or X

(2)
2,p2 and one of X

(1)
2,p3 or X

(2)
2,p3

to achieve an additional 0.8 GDoF for a total of 1.6 GDoF. This explains the choice of signal-level partitions

and dimensions in Fig. 2.5 to achieve the GDoF corner point (1.6, 1.6).

Thus far, we have seen the extension of scalar signal-level partitioning to vector or multidimensional

signal-level partitioning is a straightforward way to demonstrate the achievability of a GDoF tuple of a MIMO

network. However, when the numbers of antennas and/or transmitters/receivers increase, the complexity

of the diagram grows significantly. We need to simplify the tool while still maintaining its usability and

accuracy. This is what we do next.

Note that in the previous example of the MIMO MAC, if the signal diagram at the receiver is known,

the transmit signal diagram at each transmitter can be uniquely determined using the channel gain exponents.

Therefore, we can remove the transmit signal diagram altogether since it can be inferred. Also, note that

the signal diagram for the receiver in Fig. 2.5 is a repetition of a per-receive antenna signal diagram as many

times as there are number of receive antennas. This repetition is important since it can visually be verified

that at each signal level there are no more partitions than the number of repetitions (or receive antennas)

so that channel inversion can be performed to recover those partitions. Hence, with the understanding that

the number of shaded (i.e., used) signal partitions is never made to exceed the number of dimensions of the

receiver’s signal space at a given signal level, we can make do with a signal diagram that captures just the

per-receive-antenna diagram. Moreover, signal partitions at the same level can be moved as long as they are

kept at the same level. This allows us to further simplify the picture at the receiver. Using these ideas, the

signal diagram of Fig. 2.5 can be succinctly depicted as in Fig. 2.6. Note that in Fig. 2.6 we explicitly retain
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with each signal partition its provenance, i.e., the transmitter from when it was sent and the dimension

number on which it was transmitted. Hence, Fig. 2.6 retains the critical information about how many GDoF

each transmitter has at each level at the receiver (that it transmits and the receiver recovers). Note that the

order (from left to right) of the three bars in Fig. 2.6 is immaterial.

Rx

Figure 2.6: A succinct depiction of the multidimensional signal-level partitioning of Fig. 2.5 to achieve the
GDoF pair (1.6, 1.6) in the (2,2,3) MIMO MAC Y =

√
ρ0.8H1X1 +

√
ρ1.2H2X2 + Z .

In summary, to use multidimensional signal-level partitioning for analysis, the following rules needs

to be satisfied.

(1) All dimensions of a transmit signal will be amplified by the same channel gain.

(2) At a given receiver’s signal level, the number of dimensions assigned to a particular transmitter

cannot exceed the number of that transmitter’s antennas.

(3) At a given receiver’s signal level, the number of signal partitions assigned cannot exceed the number

of receive antennas.

Recall we have used the notation X
(j)
i as the j-th component (dimension) of the signal Xi. Hence, denote the

total GDoF of signal partitions assigned to X
(j)
i as d

(j)
i so that the total GDoF carried by Xi is di =

∑
j d

(j)
i .

Thus, all signals and the GDoF they carry can be depicted with the set {X(j)
i }i,j and their associated

partitions in the signal diagram from receiver’s perspective, as shown in Fig. 2.6 for the achievement of the

GDoF pair (1.6, 1.6) in the example of the (2,2,3) MIMO MAC. The two bottom signal-level partitions

of Tx1 and Tx2 are assigned following the rules stated above. This simplified signal-level partitioning still

clearly demonstrates the achievability of the corner point (1.6, 1.6). Henceforth, we will adopt this simplified

signal-level partitioning for vector signals. The final ingredient we must introduce is transmit beamforming.
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2.3 Multidimensional Signal Partitioning with Beamforming

It remains to formulate the case when at least one transmitter employs beamforming. Consider a

(2,2,1,1) MIMO Z interference channel where Tx1 and Rx1 have two transmit antennas each while Tx2 and

Rx2 have one antenna each:

Y1 =
√
ρH11X1 + Z1

Y2 =
√
ρ0.5H12X1 +

√
ρX2 + Z2

According to [26, Theorem 1], we know the corner point (1.5, 1) is achievable through superposition

coding and transmit beamforming at Tx1. Its transmitted signal X1 is the sum of two Gaussian random

vectors X1c and X1p whose covariance matrices are

Cov[X1c] =
1

2

(
IM1 −

(
IM1 + ρ0.5H†12H12

)−1
)

Cov[X1p] =
1

2

(
IM1

+ ρ0.5H†12H12

)−1

Hence, X1 can then be written as

X1 = X1c +X1p

= V1.1→2


√

ρ0.5σ2
1.1→2,k

2(1+ρ0.5σ2
1.1→2,k)

X
(1)
1c

0



+ V1.1→2


√

1
2(1+ρ0.5σ2

1.1→2,k)
X

(1)
1p

1√
2
X

(2)
1p


where X

(i)
1c , X

(i)
1p ∼ CN (0, 1) describe the i-th independent data streams of public and private messages,

respectively. The unitary beamforming matrix V1.1→2 ensures X
(2)
1p will not interfere at Rx2 as this data

stream will be sent in the null space of H12 (i.e., the second column of V1.1→2 is the basis vector of the

one-dimensional null space of H12 and its first column that of the orthogonal complement). To reflect

beamforming in the signal-level partitioning, we partition and analyze the pre-beamforming signal

X1 =

 X
(1)
1

X
(2)
2


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,


√

ρ0.5σ2
1.1→2,k

2(1+ρ0.5σ2
1.1→2,k)

X
(1)
1c +

√
1

2(1+ρ0.5σ2
1.1→2,k)

X
(1)
1p

1√
2
X

(2)
1p


instead of the direct transmit signal X1 = V1.1→2X1. When transmit beamforming is not needed, the

transmitted signal can also be viewed as a pre-beamforming signal scaled by the reciprocal of the number of

transmit antennas. In such an example, we would have X2 = X2.

To achieve the GDoF corner point (1.5, 1) in the (2,2,1,1) MIMO Z interference channel, we do not

assign any part of user 1’s message to X
(1)
1c , but both the private data streams are fully utilized with X

(1)
1p

assigned 0.5 GDoF and X
(2)
1p assigned 1 GDoF. The signal diagram that depicts this strategy at each of the

two receivers is shown in Fig. 2.7. The key point here is that because of zero-forcing transmit beamforming,

X
(2)
1p is not heard at receiver 2 and is hence not shown in Rx2’s signal diagram in Fig. 2.7. We have to assign

1 GDoF to X2 to achieve the (1.5, 1) GDoF pair, but this is clearly decodable at Rx2 since X
(1)
1p arrives below

the noise level at Rx2. Since Rx1 has two antennas it can decode X
(1)
1p and X

(2)
1p for a total of 1.5 GDoF. Note

that any increase in the GDoF carried by X
(1)
1p will show up above the noise level at Rx2 so that it can only

come at the price of a corresponding decrease in the GDoF carried by X2. For example, it is easily verified

that the GDoF pair (d1, d2) = (2, 0.5) is also achievable.

Rx1 Rx2

Figure 2.7: Signal-level partitioning of a (2,2,1,1) MIMO Z interference channel

With beamforming at Tx1, the pre-beamforming signal X1 still has an identity covariance matrix with

independent encoding for X
(i)
1,c and X

(i)
1,p. This is in accordance with the previous specification that each

dimension and each signal level of the considered transmitted signal is encoded independently, only now,

that specification applies to pre-beamformed signals.
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2.4 Signal-Level Partitioning with Joint Decoding

From the previously discussed examples, it may seem as if successive cancellation decoding at each

receiver would work for any coding scheme based on the signal-level partitioning method. This is however not

true, as we illustrate with an example next. Within the framework of our partitioning method, the encoding

scheme is restricted to be multi-level superposition coding with signal-level alignment. We show that such

a restriction can produce cases when successive cancellation is insufficient to decode all the signal partitions

at at least one receiver. Consider a Gaussian scalar two-user interference channel with input-output

Y1 =
√
ρX1 +

√
ρ1.5X2 + Z1

Y2 =
√
ρ1.5X1 +

√
ρX2 + Z2.

In this channel, each receiver receives interference that is stronger than its intended signal. According

to the GDoF region from the work on the Gaussian two-user IC [15], it is known that the GDoF pair

(d1, d2) = (1, 0.5) is a corner point of the GDoF region. To demonstrate its achievability with a signal

partitioning scheme shown in Fig. 2.8, we demonstrate that successive cancellation decoding is not sufficient

at Rx 2. Joint decoding must be used as we explain next.

Since both the interferences are strong, the two transmitters do not send private sub-messages, i.e.,

X1 = X1c and X2 = X2c. We let the GDoF per partition be 0.5 since the GDoF pair to be achieved in (1,0.5).

At Rx1, we must have two signal partitions at levels ρ0.5 and ρ1 to receive X1c in order to achieve d1 = 1.

Moreover, we have to ensure that the interference X2c from Tx2 arrives at the partition level ρ1.5 at Rx1

in order to achieve d2 = 0.5 without causing GDoF reduction at Tx1. By adopting this GDoF allocation

at Rx1, the signal diagram at Rx2 is then uniquely determined as shown in Fig. 2.8. Note that the bottom

partition of X1c overlaps with X2c at Rx2. Hence, Rx2 cannot decode X1c and X2c sequentially using successive

decoding. In Fig. 2.8, we slightly shift the signal partition of X2c to show this overlap and to indicate the

insufficiency of successive decoding. However, consider the MAC formed by (Tx1,Tx2)→Rx2 with the given

transmit power setting. It has the following GDoF region

0 ≤ d1 ≤ 1.5
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Rx1 Rx2

Figure 2.8: A strong interference channel where successive cancellation at Rx2 is not sufficient to demonstrate
the GDoF achievability of (1, 0.5) by signal-level partitioning

0 ≤ d2 ≤ 1

d1 + d2 ≤ 1.5

so that (d1, d2) = (1, 0.5) lies on the boundary of this region, and is hence achievable by joint decoding. Note

that the necessity of joint decoding is not predicated on choosing the GDoF per partition to be 0.5 (it could

be smaller) nor on the assignment of both messages to be entirely common messages to be decoded at both

receivers.



Chapter 3

Generalized Degrees of Freedom Region of the MIMO One-To-Three

Interference Channel

3.1 Introduction

A Gaussian MIMO one-to-many interference channel (MIMO one-to-many IC) is a single-hop multi-

terminal network which models spectrum sharing scenarios where there is only one communication system

producing interference to all the others. One cause of one-sided interference is the disparity of transmission

power among different communication systems that coexist on the same frequency band. For example, as

shown in Fig. 3.1, the entire area in the figure is a macro cell covered by the radio tower Tx1, and two small

cells operate on the same carrier frequency inside the macro cell. The transmit power used by the macro

cell transmitter Tx1 is higher than the transmit power at Tx2 and Tx3 in the two small cells. We use solid

lines to represent direct links and dashed lines interference links. The interference pattern shown in the

figure is a consequence of the disparity of transmit power and network topology. One such application of

this scenario is the cellular network range expansion by deploying multiple lower power pico eNBs (Tx2 and

Tx3) under a macro cell centered with a macro eNB (Tx1) [3, Figure 1]. Due to the disparity of the transmit

power, the interference from Tx1 to Rx2 or Rx3 is significantly stronger than the interference strength from

either Tx2 or Tx3 to Rx1. Therefore, the interference from the small cell transmitters to Tx1 is negated.

Also, as seen from Fig. 3.1, because the small cell 2 is located further from Tx1 than the small cell 1, the

interference strength from Tx1 to Rx2 is stronger than from Tx1 to Rx3. Even without transmit power

disparity, the topology of the network along could causes one-sided interference. For example, as shown in
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Fig. 3.2, both Rx2 and Rx3 are located within the radio range of Tx1, but Rx1 is not in the radio range of

Tx2 or Tx3. In this scenario, all the communication pairs are assumed to transmit at the same power level,

but the locations of the transmitters and receivers result in one-sided interference from Tx1 to Rx2 and

Rx3. The path-loss difference from Tx1 to Rx2 and Rx3 yields disparity of the interference strength at the

two receivers. As most modem wireless systems have implemented FDM (frequency-division multiplexing),

TDM (time-division multiplexing), or both to provide services to multiple users, there is effectively one

user communicating with the infrastructure on a given sub-carrier and in a given time slot. Therefore, the

one-to-many IC practically captures the essence of the one-sided interference issue in most modern spectrum

sharing applications.

Tx1

Rx1

Rx3 Tx3

Rx2Tx2

macro 
cell

small 
cell 1

small 
cell 2

Figure 3.1: A MIMO one-to-three interference channel where the macro cell transmitter transmits at signif-
icantly higher power level than the small cell transmitters, causing one-sided interference

Rx3Rx2

Rx1

Tx1 Tx3Tx2

Figure 3.2: A one-to-many IC where Rx2 and Rx3 are located within the radio coverage of Tx1, causing
one-sided interference
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The simplest one-to-many IC is the Z interference channel which contains only two transmit-receiver

pairs, with one of the transmitters interfering the unintended receiver. Constant-gap-to-capacity regions of

scalar and vector Gaussian (or MIMO) Z interference channels can be inferred from the work of the scalar

and MIMO two-user interference channels by [15] and [27], respectively. On the other hand, Bresler et al

characterized a constant-gap-to-capacity region for general scalar Gaussian one-to-many interference channel

in [4]. To the best of our knowledge, the constant-gap-to-capacity region of the vector Gaussian or MIMO

Gaussian one-to-many IC remains an open problem. Since the multiple-antenna transmission and reception

(also known as multi-input, multi-output or MIMO) has become popular in modern wireless networks,

the study of coding scheme for MIMO one-to-many interference channel has important practical value in

supervising the design of the next generation mobile network with spectrum sharing. In this chapter, we

take the first step towards this problem by tackling the fundamental generalized degrees of freedom (GDoF)

region of the three-user case. As an outcome of this research, the sum GDoF curve of the scenario shown

in Fig. 3.1 is plotted in Fig. 3.3 with a practical set of channel parameters given in the caption. The strict

definition channel model and parameters will be given in Section 3.2.2, and the GDoF region and sum GDoF

curve with respect to Fig. 3.2 will be defined and studied in Section 3.5.
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Figure 3.3: Sum GDoF curve of the scenario shown in Fig. 3.1. The parameters are chosen as follows. Tx1
and Rx1 are equipped with 3 antennas each; Tx2, Rx2, Tx3 and Rx3 are equipped with 2 antennas each; Tx1,
Tx2 and Tx3 transmit at power ρ2α, ρα and ρα (to reflect the transmit power disparity); the interference
strength from Tx1 to Rx2 and Rx3 are ρα and ρα/2, respectively.
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3.1.1 Main Contributions

We obtain single region inner and outer bounds for the MIMO one-to-three IC that are within SNR

and INR independent gap. The achievable scheme for the inner bound involves three-level additive su-

perposition coding with four sub-messages at the interfering transmitter and single-user coding (without

water-filling) at the non-interfering transmitters. The message M1 at the interfering transmitter 1 is split

into four sub-messages, namely M1p, M12, M13 and M123. As their subscripts indicate, they are to be decoded

at Rx1 only, Rx1 and Rx2, Rx1 and Rx3, and Rx1-Rx3, respectively. The four sub-messages are coded

independently according to a vector Gaussian distribution with explicitly specified covariance matrices,

and they are additively superposed and transmitted. In particular, those covariance matrices are specified

via the generalized singular value decomposition (GSVD) of the cross channel matrices. Consequently, a

single and explicit polyhedral inner bound is obtained. As a by product, a per-distribution inner bound is

also obtained for the discrete-memoryless one-to-three IC. The outer bound is obtained by providing various

combinations of genie information to the receivers. The gap between the inner and outer bounds is quanti-

fied and shown to be independent of SNRs and INRs (with increasing nominal SNR). Hence, such a gap is

tight enough to characterize the fundamental generalized degrees of freedom (GDoF) region. In the end, we

analyze the GDoF and sum GDoF achievability of several channel examples with multi-dimensional signal

level partitioning introduced in Chapter 2.

3.1.2 Previous Related Work

For the two user MIMO interference channels, Karmakar and Varanasi characterized a constant-gap-

to-capacity region in [27] and GDoF region in [26], which lays the foundation of the coding scheme of the

MIMIO one-to-three IC in this chapter. A constant-gap-to-capacity region of the Gaussian scalar one-to-

many IC was reported by [4], and the resulting GDoF region will be reinforced in this chapter. We shall

demonstrate a smaller gap for the SISO one-to-three IC than the one derived in [4]. The idea of genie-

aided argument in the proof of the outer was first introduced in the work of the semi-deterministic two-user

interference by Telatar and Tse [43]. The GSVD has also been used in earlier works on other vector channels.

For example, Ekrem and Ulukus [14] introduced a GSVD based coding scheme for the broadcast channel
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with common and private messages.

3.1.3 Notation

Throughout, the i-th transmitter/receiver is denoted as Txi/Rxi for i ∈ {1, 2, 3}, and its message,

transmit symbol, rate and degrees of freedom (GDoF) are denoted as Mi, Xi, Ri and di, respectively. The

number of antenna at Txi and Rxi is denoted as Mi and Ni, respectively.

We use capital letters to denote random vectors such as Xi. The underlying alphabets are denoted by

Xi, and specific values by xi. We use the usual short hand notation for (conditional) probability distributions

where the lower case arguments also denote the random variables whose (conditional) distribution is being

considered. For example, p(yi|xi) denotes pYi|Xi(yi|xi).

We use C to denote the set of complex numbers and Z ∼ CN (0, IN ) to denote a N -dimensional

random vector Z that obeys the complex circularly symmetric Gaussian distribution with zero mean and

covariance matrix IN (the N × N identity matrix). The note either det(·) or | · | is used to represent the

determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as Mi.j and Ni. The

Frobenius norm of a matrix H is denoted by ‖H‖2F, i.e., ‖H‖2F = Tr(HH†), where Tr(·) returns the trace of

a given matrix. We use UN×N to represent the set of N × N unitary matrices. The k-th row and column

of the matrix H are denoted as H(k) and H [k] respectively. A sub-matrix obtained by taking the rows k1

to k2 of the matrix H is written as H(k1:k2). A sub-matrix obtained by taking the columns k1 to k2 of the

matrix H is written as H [k1:k2]. The linear span of matrix H is denoted as 〈H〉. For two matrices A and

B, if (A−B) is positive definite (p.d.) or positive semi-definite (p.s.d), we write the relationship as A � B

or A � B, respectively. We use o(1) to represent a term which approaches zero asymptotically and O(1)

to represent a term which is bounded above by some constant. The function (M)+ returns the maximum

value of M and 0, i.e., (M)+ = max{M, 0}. The minimum and maximum singular value of a matrix H are

denoted as λmin(H) and λmax(H), respectively. We refer rectangular diagonal matrix as any matrix whose

nonzero entries only appear on one particular diagonal (not necessarily the main diagonal). The diagonal

values of a rectangular diagonal matrix are the entries on that diagonal which contains nonzero values. The

minimum and maximum nonzero diagonal values of a rectangular diagonal matrix Σ are denoted as σmin(Σ)
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and σmax(Σ), respectively.

The rest of the chapter is organized as follows. Section 3.2 defines the DM and MIMO one-to-three IC

models, and discuss the channel structure of the MIMO one-to-three IC. Section 3.4 presents the inner and

outer bounds for MIMO one-to-three IC, with an inner bound for DM one-to-three IC as a byproduct. GDoF

region will be characterized in Section 3.5. Section 3.6 concludes the chapter. Some proofs are relegated to

Appendices.

3.2 Channel Models

In this section, we first introduce the general discrete-memoryless one-to-three interference channel

and the MIMO one-to-three interference channel. Then we explain the channel structure of a motivating

example, in particular the structure of the two interference signals. Finally, the channel structure of general

MIMO one-to-three interference channel is demonstrated using the generalized singular value decomposition

of the two cross channel matrices.

3.2.1 Discrete-memoryless One-to-three Interference Channel (DM one-to-three IC)

In a DM one-to-three IC, as shown in Fig. 3.4, there are three direct point-to-point links, namely

Tx1→Rx1, Tx2→Rx2 and Tx3→Rx3. Two interference links exist from Tx1 to Rx2 and Rx3, respectively,

as shown in Fig. 3.4. The DM one-to-three IC is defined in Definition 3.1.

Figure 3.4: DM one-to-three IC

Definition 3.1. A discrete memoryless one-to-three interference channel is a three-transmitter and three-
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receiver network (X1 ×X2 ×X3, p(y1, y2, y3|x1, x2, x3), Y1 × Y2 × Y3) with transition probability satisfying

p(yn1 , y
n
2 , y

n
3 |xn1 , xn2 , xn3 )

=

n∏
t=1

(p(y1t|x1t)p(y2t|x1t, x2t)p(y3t|x1t,x3t)) . (3.1)

The input and output symbols Xi and Yi are taken from discrete alphabets Xi and Yi, respectively, where

i ∈ {1, 2, 3}. Message Mi is generated from set Mi uniformly at random, and encoded at transmitter Txi.

Receiver Rxi decodes Mi as M̂i.

Given the channel as defined in Definition 3.1, a (n,R1, R2, R3, P
(n)
e ) coding scheme for a DM one-

to-three IC consists of

• Mi, the message to transmit at Txi, assumed to be uniformly distributed over Mi ∈ {1, · · · , 2nRi},

for each i ∈ {1, 2, 3};

• Encoding functions fi(·) such that

fi(·) : Mi 7−→ Xni , mi 7−→ xni (mi).

• Decoding functions gi(·) such that

gi(·) : Yni 7−→Mi, y
n
i 7−→ m̂i(y

n
i ).

The probability of error P
(n)
e is defined to be

P (n)
e = P

{
M1 6= M̂1, M2 6= M̂2 or M3 6= M̂3

}
.

A rate-tuple (R1, R2, R3) is said to be achievable if there exists a sequence of (n,R1, R2, R3, P
(n)
e ) coding

schemes for which P
(n)
e → 0 as n→∞. The capacity region of the DM one-to-three IC is the closure of all

achievable rate tuples of this channel, denoted as CDM.

3.2.2 Gaussian MIMO One-to-three Interference Channel (MIMO One-to-three IC)

A (M1, N1,M2, N2,M3, N3) Gaussian MIMO (multiple-input-multiple-output) one-to-three IC, as

shown in Fig. 3.2.2, has Mi antennas at Txi and Ni antennas at Rxi for each i ∈ {1, 2, 3}. Assuming
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the channel transfer matrices and path attenuations (also referred to as channel gains) are time-invariant

during the transmission, the input-output relationship of this channel is described by

Y1 = h11H11X1 + Z1 (3.2)

Y2 = h12H12X1 + h22H22X2 + Z2 (3.3)

Y3 = h13H13X1 + h33H33X3 + Z3, (3.4)

where Xi ∈ CMi×1 and Yi ∈ CNi×1 are complex input and output vectors, andHij ∈ CNj×Mi is the channel

transfer matrix from Txi to Rxj whose Frobenius norm satisfies ‖Hij‖2F = 1. We assume the entries of

the transfer matrices Hij are drawn i.i.d. from a continuous and unitarily invariant distribution [45], i.e.,

UHijV is identically distributed to Hij for any U ∈ UNi×Nj and V ∈ UMi×Mi , so that Hij has full rank

with probability one (w.p.1). The path attenuation hij from Txi to Rxj is a complex number. The Gaussian

noise Zi are i.i.d. CN (0, INi) across i. Let Cov[xit] be the covariance of the t-th symbol of the transmitted

codeword xni ∈ Xni at Txi. The codeword xni should meet the average per-codeword power constraint,

1

n

n∑
t=1

Tr(xitx
†
it) ≤ Pi. (3.5)

The SNR and INR at receiver Rxi are defined to be

SNRii = Pi|hii|2 , ραii , i ∈ {1, 2, 3} (3.6)

INR1i = P1|h1i|2 , ρα1i , i ∈ {2, 3} (3.7)

where ρ is the nominal SNR based on which the direct channel SNRs and the two cross-channel INRs are

defined. The distinct SNR and INR exponents allow us to express the disparities in power levels observed

across the direct and cross links as multiplicative terms associated with the nominal SNR in the dB scale.

Without loss of generality, we assume INR12 ≥ INR13 and denote the capacity region of the MIMO one-to-

three IC as C.

3.2.3 A Motiving Example

Understanding the relationship of the two vector interference signals h12H12X1 and h13H13X1 is

crucial to designing a coding scheme which adapts the channel parameters. In this subsection, we investigate
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Figure 3.5: The MIMO one-to-three IC

a simple and intuitive MIMO one-to-three IC and demonstrate that the interferences and noise received at

Rx2 and Rx3 can be written as disjointed channel side informations which carry the common and exclusive

parts of h12H12X1 and h13H13X1.

Consider a (3, 3, 2, 2, 2, 2) MIMO one-to-three IC with cross channel matrices H12 and H13 expressed

as

H12 = U12Σ12V
†
12 = U12

 1 0 0

0 1 0




1

1

1

 (3.8)

H13 = U13Σ13V
†
13 = U13

 0 1 0

0 0 1




1

1

1

 . (3.9)

Other channel parameters can be arbitrarily chosen. Remarkably, the equation (3.9) is not a singular value

decomposition of H13 since the nonzero values are not on the main diagonal of the matrix Σ13.

The earlier work [4, Section VI-II] pointed out that multi-level superposition coding is sufficient to

achieve a constant-gap-to-capacity region (and hence is GDoF optimal) for the Gaussian scalar K-user one-

to-many IC. More specifically, the coding scheme therein assumes the K interfered receivers are ordered by

increasing interference. The interfering transmitter splits the transmitted signal into multiple partitions so

that every interfering receiver decodes the received partitions above its noise floor. In the case of MIMO

one-to-three IC, we cannot sort interferences simply because the two interferences are vectors. Thus, we
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cannot directly apply the coding scheme in [4, Section VI-II] for the MIMO one-to-many IC. Rather, we

need a deeper understanding of the structure of this channel, especially the structure of the two interferences

h12H12X1 and h13H13X1 in order to design a coding scheme that adapts the channel parameters.

With the chosen channel matrices (3.8) and (3.9), the two interference signals received by Rx2 and

Rx3 can then be written as

h12H12X1 = h12U12

 1 0 0

0 1 0




X
(1)
1

X
(2)
1

X
(3)
1


and

h13H13X1 = h13U13

 0 1 0

0 0 1




X
(1)
1

X
(2)
1

X
(3)
1

 .

Observing the positions of nonzero values in the matrices Σ12 and Σ13, we readily see that the first component

of the X1 (denoted as X
(1)
1 ) is hearable at Rx2 but not at Rx3, the third component of X1 (X

(3)
1 ) is hearable

at Rx3 but not at Rx2, and the second component of X1 (X
(2)
1 ) can be heard by both Rx2 and Rx3, but

Rx2 hears a stronger version of X
(2)
1 . Given the common and exclusive parts seen between the interferences

h12H12X1 and h13H13X1, we then construct channel side informations S123, S12 and S13 as

S123 = h13U13

 0 1 0

0 0 0

X1 + U13


(
U−1

13

)(1)
Z3

0



S12 = h12U12

 1 0 0

0 1 0

X1 + Z2

S13 = h13U13

 0 0 0

0 0 1

X1 + U13

 0(
U−1

13

)(2)
Z3

 .

Now the channel input-output relationship can be rewritten as

Y1 = h11H11X1 + Z1 (3.10)

Y2 = (S12 − S123) + S123 + h22H22X2 (3.11)
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Y3 = S123 + S13 + h33H33X3. (3.12)

The channel side information S123 contains the interference contributed by X
(2)
1 with the lower channel

gain h13, it is the common part of the interference which could be received by both Rx2 and Rx3. The

difference of S12 − S123 is the interference that is hearable by Rx2 but not Rx3, and it consists of two

parts: the contribution by X
(1)
1 with channel gain h12 and also the contribution of X

(2)
1 amplified by the

higher channel gain h12. The channel side information S13 contains the interference contributed by X
(3)
1

with channel gain h13 that is hearable by Rx3 but not Rx2. With the channel structure reflected by the

channel side informations S123, S12 and S13 by (3.10)-(3.12), a coding scheme arises naturally. The message

M1 is split into four parts as M123, M12, M13 and M1p. The first three sub-messages are carried by S123, S12

and S13 are decoded by Rx1-Rx3, Rx1 and Rx2, and Rx1 and Rx3, respectively. The sub-message M1p is the

private sub-message to be decoded by Rx1 only. We shall complete the discussion of the coding scheme for

this channel in Section 3.4.1.

In this example, it is critical to find out the common and exclusive parts of the two interference signals

and formulate the disjointed channel side informations in determining the coding scheme. Since we have

V12 = V13 = I3 here, the common and exclusive parts of h12H12X1 and h13H13X1 can be directly obtained

by observing the positions of the nonzero entries in Σ12 and Σ13. For arbitrary channel matrices H12 and

H13, a more sophisticated matrix decomposition technique is needed to reveal the relationship between the

two interferences, which will be introduced in the next subsection.

3.2.4 Channel Structure of the MIMO One-to-three IC

Next, we demonstrate the channel structure of the MIMO one-to-three IC in general. Since channel

matrices H12 and H13 have full rank w.p.1, we have

r12 , rank(H12) = min{M1, N2} (3.13)

r13 , rank(H13) = min{M1, N3} (3.14)

r , rank

 H12

H13

 = min{M1, N2 +N3}. (3.15)
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When we linearly spanned the row vectors of H12 and H13, the intersection of the two resulting spaces have

dimension

r123 , r12 + r13 − r. (3.16)

We jointly decompose the two channel matrices H12 and H13 via the generalized singular value de-

composition (GSVD) [35], which is

H12 = U12Σ12

 Vr

0(M1−r)+×r


†

U† , U12Σ12V
† (3.17)

H13 = U13Σ13

 Vr

0(M1−r)+×r


†

U† , U13Σ13V
†. (3.18)

U1i ∈ UNi×Ni and U ∈ UM1×M1 are unitary matrices. Σ1i ∈ RNi×r is a real and rectangular diagonal matrix.

Vr ∈ Cr×r is a non-singular upper triangular matrix and V , U

 Vr

0(M1−r)+×r

 ∈ CM1×r. Matrices Σ12

and Σ13 have the following structure

r − r13 r123 r − r12

Σ12 =

r − r13

r123

N2 − r12


I

0

0

0

C

0

0

0

N.E.


(3.19)

r − r13 r123 r − r12

Σ13 =

r123

r − r12

N3 − r13


0

0

N.E.

S

0

0

0

I

0


, (3.20)

where C and S are both non-negative real diagonal matrices satisfying C2 + S2 = I. The acronym N.E.

means ”never exists”. Note N2 − r12 and r − r12 cannot be simultaneously positive according to (3.13) and
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(3.15), and the matrix Σ12 is in form of either

r − r13 r123 r − r12

Σ12 =
r − r13

r123

 I

0

0

C

0

0


or

r − r13 r123

Σ12 =

r − r13

r123

N2 − r12


I

0

0

0

C

0


.

These two different forms of the matrix Σ12 can be unified as the one given by (3.19), where the acronym

N.E. comes from the fact that Σ12 can only be a 2 × 3 or 3 × 2 rectangular diagonal matrices. Similarly,

N3 − r13 and r − r13 cannot be simultaneously positive because of (3.14) and (3.15), and Σ13 also has two

different forms which can be unified as (3.20).

Remark 3.1. GSVD decomposes H12 and H13 jointly and ensures both (3.17) and (3.18) have the same right

hand side matrix V but at the cost of permitting V to be non-unitary and rank deficient. GSVD renders

similar decomposition forms for H12 and H13 as single value decomposition (SVD); however, the rectangular

diagonal matrix Σ1i is usually not the singular value matrix of H1i. Also, the matrix Σ1i is of size Ni × r

instead of Ni ×M1 as in SVD. Since V is generally not unitary, the column vectors of V do not form a

orthonormal basis of the transmit signal space at Tx1.

Remark 3.2. Note we have assumed INR12 and INR13 are sufficiently large so that we can disregard the gains

contributed by C and S which is justifiable for analysis up to GDoF accuracy.

Remark 3.3. Through GSVD, the reception of the two interferences sent to Rx2 and Rx3, i.e. h12H12X1 and

h13H13X1, respectively, can be understood as follows. First, the input vector signal X1 ∈ CM1 is transformed

into a r dimensional column vector V †X1, leaving the remaining (M1−r)+ dimensions unheard by both Rx2

and Rx3. When r < M1, the matrix V is row rank deficient which reflects the case when the total number

of receive antennas at Rx2 and Rx3 is less the number of transmit antenna at Tx1. Next, the matrix Σ1i

determines which components in V †X1 are transferred to Rxi. The first r− r13 transmit directions of V †X1
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are heard by Rx2 but not by Rx3 because Σ12 has identity block matrix in the upper left, whereas Σ13 has

all-zero block matrix in the upper left. For a similar reason, the last r− r12 transmit directions of V †X1 are

received at Rx3 but not Rx2. The middle r123 transmit directions of V †X1 are received by both Rx2 and

Rx3, but with different interference strengths (INR12 and INR13). Finally, the left hand side unitary matrix

U1i produces Ni linear combinations of the r1i components in Σ1iV
†X1 as the interference signals, which

are the Ni signal received by the Ni antennas at Rxi.

Now that the GSVD provides a joint decomposition with the same right hand matrix V , the common

and exclusive parts of the two interference signals can be determined according to matrices Σ1i and channel

gain h1i. Define two matrices I12 and Λ12 to be

r − r13 r123 r − r12

I12 ,

r − r13

r123

N2 − r12


I

0

0

0

0

0

0

0

N.E.


(3.21)

and

r − r13 r123 r − r12

Λ12 ,

r − r13

r123

N2 − r12


0

0

0

0

C

0

0

0

N.E.

 ,
(3.22)

respectively, and the matrix Σ12 can be written as

Σ12 = I12 + Λ12.

Similarly we define

r − r13 r123 r − r12

I13 ,

r123

r − r12

N3 − r13


0

0

N.E.

0

0

0

0

I

0


(3.23)
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and

r − r13 r123 r − r12

Λ13 ,

r123

r − r12

N3 − r13


0

0

N.E.

S

0

0

0

0

0

 ,
(3.24)

so the matrix Σ13 can be written as

Σ13 = I13 + Λ13.

Let the matrices G12 and J12 be

G12 , U12Λ12V
† and J12 , U12I12V

†.

Hence, H12 = G12 + J12. Let the matrices G13 and J13 be

G13 , U13Λ13V
† and J13 , U13I13V

†.

Hence, H13 = G13 + J13.

The common part of the two interferences should be the r123 elements in the ”middle” of column

vector V †X1 which are both transferred to Rx2 and Rx3. In light of the interference power disparity to

Rx2 and Rx3, we define S123 to be the weaker version of the middle r123 transmit directions of V †X1, and

it could be either h13G12X1 or h13G13X1. Both these two signals contain the same information about X1,

albeit received as different signals. The power difference in h13G12X1 and h13G13X1 (caused by different

diagonal values in C and S) is ignorable with sufficiently large INR12 and INR13. h12H12X1−h13G12X1 is the

exclusive part of the interference to Rx2. It consists of the interference sent along the first r− r13 directions

which are hearable at Rx2 but not at Rx3, and the interference sent along the middle r123 directions with

extra power gain. h13J13X3 is the exclusive part of the interference to Rx3 which is the interference sent

along the bottom r − r12 directions which are hearable at Rx3 but not at Rx2.

So far we have figured out the structure of the two interference signals received at Rx2 and Rx3. The

structure of the channel can thus be expressed in terms of three channel side information S123, S12 and S123
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which are defined as follows.

S123 , h13G13X1 + U13

 U
−1(1:r123)
13 Z3

0(N3−r123)×1

 (3.25)

S12 , h12H12X1 + Z2 (3.26)

S13 , h13J13X1 + U13

 0r123×1

U
−1(r123+1:N3)
13 Z3

 (3.27)

We then can rewrite the channel output Y2 and Y3 in terms of their intended signal and channel side

information as

Y2 = S12 + h22H22X2 (3.28)

Y3 = S123 + S13 + h33H33X3 = U13

 U
−1(1:r123)
13 S123

U
−1(r123+1:N3)
13 S13

+ h33H33X3. (3.29)

The side informations S123, S12 and S123 carry the parts of the interferences that is hearable by both Rx2

and Rx3, Rx2 but not Rx3, and Rx3 but not Rx2. Each side information not only contains certain part of

the interference signal, but also the associated Gaussian noise elements along the corresponding directions.

There is no S123 explicitly in (3.28) because S12 = h12U12I12V
†X1 + h12U12Λ12V

†X1 + Z2 already contains

a scaled and linearly transformed version of the interference signal in S123 in the term h12U12Λ12V
†X1. As

will be seen in Section 3.4, the GDoF optimal coding scheme at Tx1 incorporates signal direction alignment

to utilize the exclusive transmit directions from Tx1 to Rx2 and Rx3 respectively, as well as signal level

alignment to adapt the disparity of the interference strength along the common transmit directions from

Tx1 to Rx2-Rx3.

Remark 3.4. Note the bottom (N3 − r123) rows of S123 and the upper r123 rows of S13 are all zeros. Hence

the side information S123 and S13 to Rx3 are disjointed in signal directions, and we have

h(S123 + S13) = h(S
(1:r123)
123 , S

(r123+1:N3)
13 ) = h(S123, S13). (3.30)

This setup plays an important role in deriving the outer bound in Section 3.4.3 when h(Sn123 +Sn13) needs to

be processed, as it is easier to process joint differential entropy h(Sn123, S
n
13) than to process the entropy of

the sum h(Sn123 + Sn13).
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The relationship between VrV
†
r and the two scaled identity matrices λ2

min(Vr)Ir and λ2
max(Vr)Ir will

be frequently used in the rest of the chapter. We present it in Fact 3.1.

Fact 3.1. Let Vr be a r × r full rank square matrix. The following relationship holds between the matrices

VrV
†
r , λ2

min(Vr)Ir and λ2
max(Vr)Ir

λ2
min(Vr)Ir � VrV †r � λ2

max(Vr)Ir, (3.31)

which is equivalent to

VrV
†
r

λ2
max(Vr)

� Ir �
VrV

†
r

λ2
min(Vr)

(3.32)

and

λ−2
max(Vr)Ir � V −1

r V †−1
r � λ−2

min(Vr)Ir. (3.33)

3.3 Multi-level Superposition Coding and Inner Bound for DM One-to-three

IC

The structure of the channel (c.f. Definition 3.1) suggests a natural coding scheme for DM one-to-

three IC: superposition coding at Tx1 and independent single user random coding at Tx2 and Tx3. Since

Rx2 and Rx3 receive different versions of the interference from Tx1, the coding scheme should adapt this

difference. Therefore, we split the message M1 at Tx1 into four parts (M123, M12, M13 and M1p) and perform

three level superposition coding to let those four messages be decodable at Rx1-Rx3, Rx1 and Rx2, Rx1 and

Rx3 and Rx1 only, respectively. The set of coding distributions is given in Definition 3.2.

Definition 3.2. Let Pin be the set of distributions of joint random variables (Q,W123,W12,W13, X1, X2, X3)

that can be factored as

p(q, w123, w12, w13, x1, x2, x3) = p(q)p(w123|q)p(w12|w123)p(w13|w123)p(x1|w123, w12, w13)
∏

i∈{2,3}

p(xi|q).

(3.34)

An inner bound can be obtained for any fixed coding distribution Pin ∈ Pin through a detailed joint

typicality analysis. We state it in Theorem 3.1.
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Theorem 3.1. For a DM one-to-three IC and some fixed distribution Pin ∈ Pin, the following region

RDM
in (Pin) given by

RDM
in (Pin) ,

{
(R1, R2, R3) ∈ R3

+ :

R1 ≤ I(X1;Y1|Q) (3.35)

R2 ≤ I(X2;Y2|W123,W12, Q) (3.36)

R3 ≤ I(X3;Y3|W123,W13, Q) (3.37)

R1 +R2 ≤ I(X1;Y1|W123,W12, Q) + I(X2,W123,W12;Y2|Q) (3.38)

R1 +R3 ≤ I(X1;Y1|W123,W13, Q) + I(X3,W123,W13;Y3|Q) (3.39)

R1 +R2 +R3 ≤ I(X1;Y1|W123,W12,W13, Q) + I(X2,W12;Y2|W123, Q) + I(X3,W123,W13;Y3|Q) (3.40)

R1 +R2 +R3 ≤ I(X1;Y1|W123,W12,W13, Q) + I(X2,W123,W12;Y2|Q) + I(X3,W13;Y3|W123, Q) (3.41)

2R1 +R2 +R3 ≤ I(X1;Y1|W123,W12,W13, Q) + I(X1;Y1|W123, Q) + I(X2,W123,W12;Y2|Q)

+ I(X3,W123,W13;Y3|Q)
}

(3.42)

is achievable, i.e., RDM
in ⊆ CDM.

Proof Outline. We outline the proof here and relegate the full proof to Appendix A.1. As previously stated,

Tx1 performs three level of superposition coding, and Tx2 and Tx3 perform independent single user ran-

dom coding. More specifically, Tx1 splits a message m1 into four parts: m123, m12, m13 and m1p. The

sub-message m123, which needs to be decoded by Rx1-Rx3, is first encoded to the first level codeword

wn123(m123). Then the multicast sub-message m1i is encoded to wn1i(m1i, w
n
123(m123)), which needs to be

decoded by Rx1 and Rxi for i ∈ {2, 3}. This is the second level superposition coding. Finally, based on

m1p, which is the private message to be decoded by Rx1, the entire message is encoded to the codeword

x1(m1p, w
n
12(m12, w

n
123(m123)), wn13(m13, w

n
123(m123))) for transmission. Txi, i = {2, 3}, sends information

mi via some codeword xni (mi) using a single-user random codebook and Rxi decodes the intended message

mi. Fourier-Motzkin elimination is used to eliminate the three rate variables associated with the auxiliary

random variables W123, W12 and W13 to obtain the achievable region.
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3.4 Bounds on the Capacity Region of the MIMO One-to-three IC

We present single region inner and outer bounds for the MIMO one-to-three IC within quantifiable

(and channel SNR/INR independent) gap in this section. In section 3.4.1, we demonstrate an intuitive coding

scheme for the motivating MIMO one-to-three IC introduced in Section 3.2.3. In Section 3.4.2, we present

an explicit additive superposition coding scheme for the general MIMO one-to-three IC with Gaussian

codebooks and specified covariance matrices. We obtain a single region inner bound which has the form of

a single polytope. In Section 3.4.3, we characterize a single region outer bound by genie aided argument.

In Section 3.4.4, the gap between the inner and outer bounds is then quantified and shown to be dependent

only on the entries of the channel matrices H12 and H13, leading to the characterization of the fundamental

GDoF region.

3.4.1 Coding Scheme for the Motivating Example

We explicitly specify one coding scheme for the motivating example given in Section 3.2.3. Following

the discussion in Section 3.3, we split the message at Tx1 into four parts, namely M123, M12, M13 and M1p.

Also, according to the coding scheme for the DM one-to-three IC, these four sub-messages are encoded to

Wn
123, Wn

12, Wn
13 and Wn

1p respectively, and Tx2 and Tx3 use single user random coding. In this subsection,

we demonstrate one coding scheme and therefore yields one coding distribution for W123, W12, W13 and

W1p, as well as X2 and X3. This coding scheme adapts the channel structure we have explored in Section

3.2.3. The basic idea is given below.

Recall the sub-message M123 is the common message for all three receivers, so it should be sent at the

highest possible power level along the signal directions that all three receivers could hear. Hence, we encode

M123 into the codeword Wn
123 and transmit Wn

123 along the transmit direction I
(2)
3 at power level ρ0. The

signal sub-message M12 is only intended for Rx1 and Rx2. Therefore, we encode it to Wn
12 and transmit Wn

12

along the transmit direction I
(1)
3 at power level ρ0 (hence is not heard by Rx3) and also along the transmit

direction I
(2)
3 at power level ρ−α13 (hence is received under the noise floor at Rx3). The sub-message M13

should be received by Rx1 and Rx3, so we encode it into Wn
13 and transmit it along the direction I

(3)
3 at
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power level ρ0 (hence is not heard by Rx2). In case SNR11 is greater than both INR12 and INR13, Rx1 can

decode a private message M1p. We encode M1p to Wn
1p and transmit Wn

1p on all three transmit directions at

power level ρ−α12 (hence not heard by either Rx2 or Rx3).

With the basic idea we have developed, we let the transmitted signal X1 be a sum of four independent

Gaussian sub-signals

X1 =
√
P1(W123 +W12 +W13 +W1p),

where W123 ∼ CN (0, Q123), W12 ∼ CN (0, Q12), W13 ∼ CN (0, Q1p) and W1p ∼ CN (0, Q1p) are the auxiliary

Gaussian random variables to encode M123, M12, M13 and M1p, respectively. The entire signal is transmitted

with full power, and the covariance matrix of X1 is chosen to be the identity matrix scaled by the reciprocity

of the number of transmit antennas at Tx1, i.e.,

Q1 , Cov[X1] =
P1

3
I3. (3.43)

The codeword Wn
1p should be sent along all transmit directions and should be received under the noise floor

at both Rx2 and Rx3. Therefore, we choose the covariance of the W1p as

Q1p =
1

3

(
I3 + ρα12Σ†12Σ12 + ρα13Σ†13Σ13

)−1

=
1

3


1

1+ρα12

1
1+ρα12+ρα13

1
1+ρα13

 . (3.44)

It ensure that the contributions of W1p at Rx2 and Rx3 have covariances

ρα12H12Q1pH
†
12 � IN2

and ρα13H13Q1pH
†
13 � IN3

.

Therefore, with this covariance matrix Q1p, W1p indeed arrives at the unintended receivers under the noise

floor. The choice of Q1p can be seen as an extension of the selection of the covariance matrix for private

sub-messages for the two-user MIMO IC by [27]. The difference here is that Q1p should be chosen so that

the interference W1p arrives under the noise floor at both Rx2 and Rx3.

Next, we determine the covariance of W12. W12 carries the sub-message M12 to be decoded by Rx1

and Rx2, but not Rx3, so a direct idea of Q12 is to make sure that W12 arrives under the noise floor at Rx3.

However, we already require W1p to be received under the noise floor at Rx3; therefore, the covariance of
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W12 should be selected to ensure that the sum signal of W1p and W12 are received under the noise floor at

Rx3, which implies

Q12 +Q1p =
1

3
(I3 + ρα13Σ†13Σ13)−1 =

1

3


1

1
1+ρα13

1
1+ρα13

 . (3.45)

Subtracting (3.44) from (3.45), we have

Q12 =
1

3


ρα12

1+ρα12

ρα12

(1+ρα12+ρα13 )(1+ρα13 )

0

 .

This is consistent with the basic idea we have developed that the W12 should be sent along the first transmit

direction at power level ρ0 (as Rx3 cannot hear this direction) and along the second transmit direction at

power level ρ−α13 (as it arrives under the noise floor at Rx3 in this direction). W12 does not transmit on the

third transmit direction at all.

The covariance of W13 can be determined in a similar fashion. We let the sum covariance Q13 +Q1p

satisfy

Q13 +Q1p =
1

3
(I3 + ρα12Σ†12Σ12 + ρα13Λ†13Λ13)−1 =

1

3


1

1+ρα12

1
1+ρα12+ρα13

1

 (3.46)

so we have

Q13 =
1

3


0

0

ρα13

1+ρα13

 .

Such choices of Q1p, Q12 and Q13 automatically guarantee the sum of W1p, W12 and W13 be received under

the noise floor along the second transmit direction at Rx2 and Rx3, because

Q12 +Q13 +Q1p =
1

3


1

1
1+ρα13

1

 .
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The covariance of W123 has to be

Q123 = Q1 −Q1p −Q12 −Q13 =
1

3


0

ρα13

1+ρα13

0

 .

It is also consistent with our basic idea that W123 should be transmitted along the second dimension at

power level ρ0.

Tx2 and Tx3 merely transmit X2 and X3 using full power, with scaled identity covariance matrices,

i.e.,

Q2 =
P2

2
I2 and Q3 =

P3

2
I2.

Remarkably, we do not perform water-filling at these two transmitters, since we have explained in 5.3.1 that

the scaled identity matrix is sufficient to achieve a rate region within constant gap to the capacity for MIMO

MAC (hence also MIMO P2P channel).

Now a coding scheme has been uniquely determined, and it will be clear at the end of this section

that this coding scheme is GDoF optimal.

3.4.2 Inner Bound for the MIMO One-to-three IC

We have derived an achievable region Rin(Pin) for the DM one-to-three in Theorem 3.1 for any coding

distribution Pin. In this subsection, we explicitly specify one coding distribution for the MIMO one-to-three

IC, and then we substitute the coding distribution of this particular coding scheme in the DM one-to-three

inner bound to get an explicit and single region inner bound for MIMO one-to-three IC.

Starting from the coding scheme proposed in Section 3.3, first of all we disable time sharing among the

three transmitters. A non-interfering transmitter encodes its entire message using single user Gaussian code-

book, and the total transmit power is uniformly and independently allocated among all transmit antennas,

i.e.,

Cov[X2] =
P2

M2
IM2 and Cov[X3] =

P3

M3
IM3 . (3.47)
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At Tx1, following the coding scheme developed from the motivating example, we let the transmitted signal

X1 be the direct sum of four independent Gaussian random vectors W123, W12, W13 and W1p, i.e.,

X1 =
√
P1(W123 +W12 +W13 +W1p).

Next, we specify the covariance matrices Q123, Q12, Q13 and Q1p of W123, W12, W13 and W1p, respectively.

Define

Vp , U†−1

 V †−1
r 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+

 , (3.48)

as a linear precoding matrix. The covariance matrices Q123, Q12, Q13 and Q1p satisfy the restrictions given

by (3.49)-(3.53). It can be readily seen that

Q12 +Q1p � Q1p and Q12 +Q1p � Q1p,

which implies both Q12 and Q13 are positive semi-definite and therefore are valid covariance matrices. Note

that even though there are four restrictions on Q1p, Q12 and Q13, i.e., (3.49)-(3.52), it can be shown that

these covariances exist and they can be uniquely determined. In particular, it is not difficult to see that

(3.52) results from adding the left and right hand sides of (3.50) and (3.51) and subtracting from that result

the left and right hand sides of (3.49).

Q1p =
Vp

Tr(VpV
†
p )

IM1 +

 ρα12Σ†12Σ12 + ρα13Σ†13Σ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P (3.49)

Q13 +Q1p =
Vp

Tr(VpV
†
p )

IM1
+

 ρα13Λ†13Λ13 + ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P (3.50)

Q12 +Q1p =
Vp

Tr(VpV
†
p )

IM1 +

 ρα13Σ†13Σ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P (3.51)

Q12 +Q13 +Q1p =
Vp

Tr(VpV
†
p )

IM1
+

 ρα13Λ†13Λ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P (3.52)

Q1 , Q12 +Q13 +Q1p +Q123 =
VpV

†
p

Tr(VpV
†
p )
. (3.53)
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The scaling by 1

Tr(VpV
†
p )

is required to satisfy the power constraint given by (3.5). Using the inequality (3.31),

the trace Tr(VpV
†
p ) can be upper and lower bounded as

Tr(VpV
†
p ) = Tr(V †p Vp) = Tr

 V −1
r V †−1

r 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+


= Tr(V −1

r V †−1
r ) + (M1 − r)+

≥ Tr

(
1

λ2
max

Ir

)
+ (M1 − r)+

=
r

λ2
max(Vr)

+ (M1 − r)+ (3.54)

, ζmin (3.55)

and

Tr(VpV
†
p ) ≤ r

λ2
min(Vr)

+ (M1 − r)+, (3.56)

, ζmax (3.57)

respectively.

The covariance matrices Q123, Q12, Q13 and Q1p and the precoding matrix Vp requires the GSVD

of H12 and H13 (c.f. (3.17) and (3.18)). This GSVD based coding scheme for the MIMO one-to-three IC

generalizes the coding scheme for the motivating one-to-three IC in Section 3.4.1. In the motivating example,

we have V as an identity matrix and each component of X1 transmit along a particular direction; therefore,

no precoding is needed. However, when V is not unitary, each transmit direction transmits certain linear

combination of the components of X1. The inverse matrix V †−1
r on the right hand side of (3.48) compensates

the non-unitarity of Vr, so the first r components in the post-precoding signal V †−1
r X

(1:r)
1 transmit exactly

along the r transmit directions independently. On the other hand, the precoding matrix Vp preserves the

rest M1 − r transmit directions for only Rx1 to receiver, and these M1 − r transmit directions will be sent

along the null space of

〈
H12

H13

〉
(and henceforth will not be heard by either Rx2 or Rx3). Since the matrix

V in GSVD is not unitary, the precoding matrix Vp is not unitary either.

Applying Theorem 3.1 to the MIMO settings and evaluating for the coding distribution resulting from
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(3.49)-(3.53) and (3.47), we get the following achievable region for the MIMO one-to-three IC in Theorem

3.2.

Theorem 3.2. For the MIMO one-to-three IC, let

β2 , log
∣∣max

{
ζ−1
min, 1

}∣∣+ r123 log

(
1 +

σ2
max(Λ12)

σ2
min(Λ12)

)
+ (r − r13) (3.58)

β3 , log
∣∣max

{
ζ−1
min, 1

}∣∣+ r123 log

(
1 +

σ2
max(Λ13)

σ2
min(Λ13)

)
+ (r − r12) (3.59)

then the following region Rin given by (3.60)-(3.67) is achievable.

Rin ,

{
(R1, R2, R3) ∈ R3

+ :

R1 ≤ log
∣∣∣IN1

+ ρα11H11Q1H
†
11

∣∣∣ (3.60)

R2 ≤ log

∣∣∣∣IN2
+ ρα12H12(Q13 +Q1p)H

†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣− β2 (3.61)

R3 ≤ log

∣∣∣∣IN3 + ρα13H13(Q12 +Q1p)H
†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β3 (3.62)

R1 +R2 ≤ log

∣∣∣∣IN1
+ ρα11H11(Q13 +Q1p)H

†
11

∣∣∣∣+ log

∣∣∣∣IN2
+ ρα12H12Q1H

†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣− β2

(3.63)

R1 +R3 ≤ log

∣∣∣∣IN1 + ρα11H11(Q12 +Q1p)H
†
11

∣∣∣∣+ log

∣∣∣∣IN3 + ρα13H13Q1H
†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β3

(3.64)

R1 +R2 +R3 ≤ log

∣∣∣∣IN1
+ ρα11H11Q1pH

†
11

∣∣∣∣+ log

∣∣∣∣IN2
+ ρα12H12(Q12 +Q13 +Q1p)H

†
12 + ρα22H22H

†
22

∣∣∣∣
+ log

∣∣∣∣IN3 + ρα13H13Q1H
†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β2 − β3 (3.65)

R1 +R2 +R3 ≤ log

∣∣∣∣IN1
+ ρα11H11Q1pH

†
11

∣∣∣∣+ log

∣∣∣∣IN2
+ ρα12H12Q1H

†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣
+ log

∣∣∣∣IN3
+ ρα13H13(Q12 +Q13 +Q1p)H

†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β2 − β3 (3.66)

2R1 +R2 +R3 ≤ log

∣∣∣∣IN1
+ ρα11H11Q1pH

†
11

∣∣∣∣+ log

∣∣∣∣IN1
+ ρα11H11(Q12 +Q13 +Q1p)H

†
11

∣∣∣∣
+ log

∣∣∣∣IN2 + ρα12H12Q1H
†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣+ log

∣∣∣∣IN3 + ρα13H13Q1H
†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣
− β2 − β3

}
(3.67)

Proof. The evaluation of the inner bound in Theorem 3.1 under the MIMO setting and the coding scheme
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introduced above is relegated to Appendix A.2.

Let us take a deeper look at the coding scheme. From the restrictions (3.49)-(3.52), the individual

covariance matrices Q12, Q13 and Q123 can be obtained as (3.68)-(3.70).

Q12 =
1

Tr(VpV
†
p )
Vp

·

 ρα12

1+ρα12
I†12I12 + (Ir + ρα13Λ†13Λ13)−1 − (Ir + ρα12Λ†12Λ12 + ρα13Λ†13Λ13)−1

0(M1−r)×(M1−r)


· V †p (3.68)

Q13 =
1

Tr(VpV
†
p )
Vp

 ρα13

1+ρα13
I†13I13

0(M1−r)×(M1−r)

V †p (3.69)

Q123 =
1

Tr(VpV
†
p )
VpV

†
p −Q1p −Q12 −Q13

=
1

Tr(VpV
†
p )
Vp

 Ir − (Ir + ρα13Λ†13Λ13)−1

0(M1−r)×(M1−r)

V †p (3.70)

Let X123, X12, X13 and X1p be zero mean Gaussian vectors with identity covariance matrices, of length r123,

r12, r13 and M1 respectively. With their chosen covariance matrices, the auxiliary random vectors W123,

W12, W13 and W1p can be alternatively written as follows.

W123 =

r123∑
k=1

√
1

Tr(VpV
†
p )

√
1− 1

1 + ρα13λ2
13,r−r13+k

V [r−r13+k]
p X

(k)
123 (3.71)

W12 =

r−r13∑
k=1

√
1

Tr(VpV
†
p )
V [k]
p

√
1− 1

1 + ρα12
X

(k)
12

+

r12∑
k=r−r13+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα13λ2
13,k

− 1

1 + ρα12λ2
12,k + ρα13λ2

13,k

V [k]
p X

(k)
12 (3.72)

W13 =

r−r12∑
k=1

√
1

Tr(VpV
†
p )
V [r12+k]
p

√
1− 1

1 + ρα13
X

(k)
13 (3.73)

W1p =

r−r13∑
k=1

√
1

Tr(VpV
†
p )

√
1

1 + ρα12
V [k]
p X

(k)
1p +

r12∑
k=r−r13+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα12λ2
12,k + ρα13λ2

13,k

V [k]
p X

(k)
1p

+

r∑
k=r12+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα13
V [k]
p X

(k)
1p +

M∑
k=r+1

√
1

Tr(VpV
†
p )
V [k]
p X

(k)
1p (3.74)

In the aforementioned equation, X
(k)
123 denotes the k-th data stream to Rx1-Rx3 that carries (part of)
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the public sub-message M123 along the transmit direction V
[r−r13+k]
p , and we call X

(k)
123 the k-th public data

stream to Rx1-Rx3. It needs to be decoded by all three receivers. Similarly, X
(k)
12 is the k-th public data

stream to Rx1 and Rx2 along the transmit direction V
[k]
p . The data streams X12 can be divided into two

groups. The first r − r13 data streams are sent with approximately full power, and they can be received

only by Rx1 and Rx2 since they are sent along the null space of H13. The rest r123 data streams are sent

with power ρ−α13 so they are decodable by Rx1 and Rx2, but not Rx3, since they arrive under the noise

floor of Rx3. The public data streams X13 for Rx1 and Rx3 are only received by Rx1 and Rx3 as they are

sent through the null space of H12. The data streams X1p are received by Rx1 only; we call them private

data streams. The first r − r13 private data streams are hearable by Rx2, but not Rx3; therefore, they are

transmitted at power level ρ−α12 so they arrive at Rx2 under the noise floor. The data streams X
(r−r13+1)
1p ,

· · · , X(r12)
1p are hearable by both Rx2 and Rx3, and they are sent at power level ρ−α12 so they arrive at Rx2

and Rx3 under the noise floor. The next r− r12 private data streams X
(r12+1)
1p , · · · , X(r)

1p are hearable by Rx3,

but not Rx2, and they are sent at power level ρ−α13 so they arrive under the noise floor at Rx3. When there

are more transmit antennas at Tx1 than the total receiver antennas at both Rx2 and Rx3, the precoding

matrix Vp lets M1 − r private data streams (the last part on the right hand of (3.74)) transmit along the

null space of 〈V 〉, which are exclusively hearable by Rx1. Thus, these M1 − r private data streams are sent

at power level ρ0.

To keep our statement consistent in the rest of the chapter, we also write the signals X2 and X3 in

terms of independent data streams, i.e.,

X2 =

√
P2

M2
X2 X3 =

√
P3

M2
X3. (3.75)

They are only to be received and decoded by their intended receivers.

Remark 3.5. In the SISO (single-input-single-output) one-to-three IC, there is only one transmit direction at

Tx1 which can be heard by all three receivers, but there is still interference power disparity at Rx2 and Rx3.

Therefore the coding scheme discussed in this subsection is specialized as follows. Tx1 split the message in

three parts: M123, M12 and M1p. All three sub-messages are transmitted along the only signal direction the

channel has. The M123 will be transmitted at power level ρ0 so every receiver could decode it. The sub-
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message M12 is transmitted at power level ρ−α13 so it is received below the noise floor at Rx3, but decodable

at Rx2 due to extra interference power. The private sub-message M1p is transmitted at power level ρ−α12 so

it is only decodable by Rx1. This coding scheme is the same as the coding scheme presented in Section VII

of [4].

3.4.3 Outer Bound

We derive a single region outer boundRo for MIMO one-to-three IC. We provide various combinations

of genie informations to Rxi to produce upper bounds on Ri in several different forms, and then linearly

combine those upper bounds across i ∈ {1, 2, 3} to obtain sum rate upper bounds. The outer bound is stated

in Theorem 3.3. To present the outer bound, we define the following relevant terms by which the outer

bound can be stated in a short form.

K1p ,
(
IM1

+ ρα12H†12H12 + ρα13H†13H13

)−1

(3.76)

K12,1p ,
(
IM1

+ ρα13H†13H13

)−1

(3.77)

K13,1p ,
(
IM1

+ ρα13G†13G13 + ρα12H†12H12

)−1

(3.78)

K12,13,1p ,
(
IM1

+ ρα13G†13G13

)−1

(3.79)

Theorem 3.3. Define

η , log
∣∣max

{
λ2

max(Vr), 1
}∣∣+ r123 log

(
1 +

σ2
max(Λ13)

σ2
min(Λ12)

)
, (3.80)

and a region Ro as given by (3.81)-(3.88),

Ro ,
{

(R1, R2, R3) ∈ R3
+ :

R1 ≤ log
∣∣∣IN1 + ρα11H11H

†
11

∣∣∣ (3.81)

R2 ≤ log
∣∣∣IN2 + ρα22H22H

†
22

∣∣∣ (3.82)

R3 ≤ log
∣∣∣IN3 + ρα33H33H

†
33

∣∣∣ (3.83)

R1 +R2 ≤ log
∣∣∣IN1 + ρα11H11K13,1pH

†
11

∣∣∣+ log
∣∣∣IN2 + ρα12H12H

†
12 + ρα22H22H

†
22

∣∣∣+ η (3.84)

R1 +R3 ≤ log
∣∣∣IN1 + ρα11H11K12,1pH

†
11

∣∣∣+ log
∣∣∣IN3 + ρα13H13H

†
13 + ρα33H33H

†
33

∣∣∣ (3.85)
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R1 +R2 +R3 ≤ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣+ log
∣∣∣IN2

+ ρα12H12K12,13,1pH
†
12 + ρα22H22H

†
22

∣∣∣
+ log

∣∣∣IN3
+ ρα13H13H

†
13 + ρα33H33H

†
33

∣∣∣ (3.86)

R1 +R2 +R3 ≤ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣+ log
∣∣∣IN2

+ ρα12H12H
†
12 + ρα22H22H

†
22

∣∣∣
+ log

∣∣∣IN3
+ ρα13H13K12,13,1pH

†
13 + ρα33H33H

†
33

∣∣∣+ η (3.87)

2R1 +R2 +R3 ≤ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣+ log
∣∣∣IN1

+ ρα11H11K12,13,1pH
†
11

∣∣∣
+ log

∣∣∣IN2
+ ρα12H12H

†
12 + ρα22H22H

†
22

∣∣∣+ log
∣∣∣IN3

+ ρα13H13H
†
13 + ρα33H33H

†
33

∣∣∣+ η
}
.

(3.88)

We have

C ⊆ Ro.

Proof Outline. The fundamental idea in the proof of the outer bound is to construct a virtual channel whose

output is then regarded as genie-aided side information to help each receiver to decode its intended signal

(therefore making the receiver more interference-resilient). We construct genie informations T123, T12 and T13

which are identically distributed as the channel side informations S123, S12 and S13, respectively, but each

pair of corresponding “T” and “S” random vectors are independent conditioned on X1. The upper bound

is proved in three steps. First, by providing one or more of those genie informations to Rxi, i ∈ {1, 2, 3}

we derive a series of individual upper bounds on Ri. Some of the bounds may contain entropy terms which

can not be single-letterized. Secondly, we linearly combine those individual upper bounds across i ∈ {1, 2, 3}

to obtain sum rate upper bounds with unsingle-letterized entropy terms eliminated. At this step, we get

an intermediate outer bound in terms of channel side and genie information symbols. This outer bound is

a union of polytopes over all admissible input distributions. Finally, we optimize the input distribution to

be Gaussian and plug in the optimized distribution to obtain a single region output bound only in terms of

the channel parameters. This genie aided argument was first introduced in [43] in characterizing an outer

bound for the semi-deterministic two-user interference channel. In [43], there is only one genie information Ti

regarding the interference that comes from a particular transmitter Txi, i ∈ {1, 2}, and this genie information

Ti is given to the intended receiver Rxi only. In the case of the MIMO one-to-three IC, we have various

combinations of T123, T12 and T13 to feed Tx1 to produce a variety of outer bounds on R1. Besides, the
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genie information T123 is not only fed to Rx1, but to Rx2 and Rx3 as well to produce certain upper bounds

on R2 and R3. Please refer to Appendix A.3 for details.

3.4.4 Quantifiable Gap

An achievable rate region of a MIMO one-to-three IC is within gap (n1, n2, n3) to its capacity if for

any given rate tuple (R1, R2, R3) ∈ C, the rate tuple (R1 − n1, R2 − n2, R3 − n3) is within that achievable

region. We call the tuple ni the individual gap on Ri. Since we do not know the capacity region C, we

quantify the gap between the inner bound Rin and the outer bound Ro, and the resulting gap will be an

upper bound of the gap (henceforth also a gap) between Rin and C. The main result in this subsection is

stated in Theorem 3.4.

Theorem 3.4. For any (R1, R2, R3) ∈ Ro, let

(R̃1, R̃2, R̃3) =
(
(R1 − η − δ1)+, (R2 − β2 − δ2)+, (R3 − β3 − δ3)+

)
, where

δ1 , min{M1, N1}
(
log
(
ζmax max

{
λ2

max(Vr), 1
}))+

(3.89)

δ2 , min{M1 +M2, N2}logmax
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
(3.90)

δ3 , min{M1 +M3, N3} log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M3

}
. (3.91)

Then we have

(R̃1, R̃2, R̃3) ∈ Rin.

Proof Outline. There is a one-to-one correspondence between a rate variable Ri on the left hand side and

a positive entropy term (in the form of log |INi + · · · |) on the right side of inequalities in both inner and

outer bounds. The difference between each pair of corresponding positive entropy terms in the inner and

outer bound is upper bounded by δi, which contributes to individual gap ni. Also note there is a one-to-one

correspondence between R2 (and R3) in the left hand side and β2 (β3) on the right hand side of each sum

rate restriction in the inner bound, which contributes to the partial individual gap β2 and β3 to n2 and n3.
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Finally, we let the term η in the inequalities (3.84), (3.87) and (3.88) of Ro be absorbed in n1. The details

of the proof is relegated to Appendix A.4.

Remark 3.6. Let us compute the gap for the SISO one-to-three IC, where only one antenna is equipped at

each transmitter and each receiver. We have β1 = β2 = 1, η = 1 and δ1 = δ2 = δ3 = 0. Theorem 3.4.4 tells

the coding scheme achieves an achievable region within (1, 1, 1) bit gap to the capacity. It is a smaller gap

then the one achieved in [4, Theorem 23] with K = 3 therein.

3.5 The GDoF Region of MIMO One-to-three IC

The generalized degrees of freedom (GDoF) is an information-theoretic performance metric that char-

acterizes the number of independent data streams a network could support simultaneously among all users

at high SNR regime. In this section, we first compute the GDoF region of the MIMO one-to-three IC, and

then focus the achievability of the key corner points in the GDoF region and the sum GDoF curve. In what

follows, we define ᾱ = {α11, α22, α33, α12, α13}.

3.5.1 The GDoF Region

The definition of GDoF region of the MIMO one-to-three IC is given in Definition 3.3.

Definition 3.3. The generalized degrees of freedom region of a MIMO one-to-three D(ᾱ) ∈ R3
+ with the

capacity region C(ᾱ) is defined as

{
(d1, d2, d3) : di = lim

ρ→∞

Ri
log ρ

, i ∈ {1, 2, 3}and (R1, R2, R3) ∈ C(ᾱ)

}
. (3.92)

In the rest of the chapter, we call (d1, d2, d3) a GDoF tuple. To compute the GDoF region in this section, we

need a slight different version of Lemma 5.1 which is stated in Fact 3.2. They differ in that the matrices H1,

H2, · · · , Hn only need to be full rank w.p.1 here, whereas the entries of the matrices in Lemma 5.1 are drawn

i.i.d. from a continuous unitarily invariant distribution. Fact 3.2 can be proved with similar mathematical

induction as in the proof of Lemma 5.1.
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Fact 3.2. Let H1 ∈ Cu×ui , H2 ∈ Cu×u2 , · · · , Hn ∈ Cu×un be n full rank matrices (w.p.1) such that

H = [H1, H2, · · · , Hn] is also full rank w.p.1. Then, for asymptotic ρ

log det

(
Iu +

n∑
i=1

ρaiHiH
†
i

)
= g(u, (a1, u1), · · · , (an, un)) log(ρ) +O(1), (3.93)

where for any (u, u1, · · · , un) ∈ Z+(n+1) and (a1, · · · , an) ∈ Rn, the function g(u, (a1, u1), · · · , (an, un)) is

defined as

g(u, (a1, u1), (a2, u2), · · · , (an, un))

=

in∑
i=i1

min {u, ui1} a+
i1

+ min
{

(u− ui1)
+
, ui2

}
a+
i2

+ · · ·+ min


u− in−1∑

j=1

uj

+

, uin

 a+
in


for i1 6= i2 6= · · · 6= in ∈ {1, · · · , n} such that ai1 ≥ ai2 ≥ · · · ≥ ain .

Theorem 3.5. The GDoF region D(ᾱ) of the MIMO one-to-three IC with ᾱ = {α11, α22, α33, α12, α13} is

given by (3.94)-(3.101).

D(ᾱ) ,
{

(d1, d2, d3) ∈ R3
+ :

d1 ≤ min{M1, N1}α11 (3.94)

d2 ≤ min{M2, N2}α22 (3.95)

d3 ≤ min{M3, N3}α33 (3.96)

d1 + d2 ≤ g
(
N1,

(
(α11 − α12)+, r12

)
, (α11,M1 − r12)

)
+ g (N2, (α12,M1), (α22,M2)) (3.97)

d1 + d3 ≤ g
(
N1,

(
(α11 − α13)+, r13

)
, (α11,M1 − r13)

)
+ g (N3, (α13,M1), (α33,M3)) (3.98)

d1 + d2 + d3 ≤ g
(
N1,

(
(α11 − α12)+, r12

)
,
(
(α11 − α13)+, r − r12

)
, (α11,M1 − r)

)
+ g

(
N2,

(
(α12 − α13)+, r123

)
, (α12, r12 − r123) , (α22,M2)

)
+ g (N3, (α13,M1), (α33,M3))

(3.99)

d1 + d2 + d3 ≤ g
(
N1,

(
(α11 − α12)+, r12

)
,
(
(α11 − α13)+, r − r12

)
, (α11,M1 − r)

)
+ g (N2, (α12,M1), (α22,M2)) + g (N3, (α13, r13 − r123) , (α33,M3)) (3.100)

2d1 + d2 + d3 ≤ g
(
N1,

(
(α11 − α13)+, r123

)
, (α11,M1 − r123)

)
+ g

(
N1,

(
(α11 − α12)+, r12

)
,
(
(α11 − α13)+, r − r12

)
, (α11,M1 − r)

)
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+ g (N2, (α12,M1), (α22,M2)) + g (N3, (α13,M1), (α33,M3))
}
. (3.101)

Proof Outline. The GDoF region of the MIMO one-to-three IC is presented in the theorem below. In

Definition 3.3, the GDoF region is defined via the capacity region C(ᾱ). We do not have the exact capacity

region determined for the MIMO one-to-three IC, but Theorem 3.4 has shown that both Rin and Ro are

within quantifiable gap to the capacity region and that the gap is independent of the channel SNR and INR.

Because a finite number of bits are insignificant in the GDoF computation, the GDoF region can be obtained

from either Rin or Ro. Please refer to Appendix A.5 for the complete proof.

Example 3.1. Consider the MIMO one-to-three IC with the following parameters: α11 = α22 = α33 = 1,

α12 = 0.6, α13 = 0.3, M1 = N1 = 3 and M2 = M3 = N2 = N3 = 2. Given this setting, we have r = 3,

r123 = 1 and r12 = r13 = 2. The GDoF region is plotted in Fig. 3.6.
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I (3,0.8,1.4)
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L (3,0,1.4)

M (2.4,0,2)

Figure 3.6: GDoF region of a MIMO one-to-three IC with M1 = N1 = 3, M2 = M3 = N2 = N3 = 2,
α12 = 0.6 and α13 = 0.3

We provide an overview of the GDoF region in Example 3.1. The MIMO one-to-three IC consists of

two two-user Z ICs as its sub-channels. The tuples on the (d1, d2, 0) form the GDoF region of the two-user

Z IC with INR ρα12 and the tuples on the (d1, 0, d3) plane form the GDoF region of the other two-user Z IC

with INR ρα13 . The rate tuples on d3 vs d2 plane when d1 = 0 reflect the GDoF region of a parallel channel

with Tx2/Rx2 and Tx3/Rx3 while Tx1 is off. The sum GDoF plane is E-F-G-H, and any GDoF tuple on

this plane achieves the max sum GDoF 5.5.
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Example 3.2. Continue with the MIMO one-to-three IC in Example 3.1. We describe the structure of the

transmitted signals from the three transmitters in terms of independent data streams according to (3.71)-

(3.74) in Section 3.4.2. Our coding scheme suggests we send the following data streams at Tx1.

W123 =

√
1

Tr(VpV
†
p )
V (2)
p

√
1− 1

1 + ρ0.3λ2
13,r−r13+k

X
(1)
123

W12 =

√
1

Tr(VpV
†
p )

(
V (1)
p

√
1− 1

1 + ρ0.6
X

(1)
12 + V (2)

p

√
1

1 + ρ0.3λ2
13,2

− 1

1 + ρ0.6λ2
12,2 + ρ0.3λ2

13,2

X
(2)
12

)

W13 =

√
1

Tr(VpV
†
p )
V (3)
p

√
1− 1

1 + ρ0.3
X

(1)
13

W1p =

√
1

Tr(VpV
†
p )

(
V (1)
p

√
1

1 + ρ0.6
X

(1)
1p + V (2)

p

√
1

1 + ρ0.6λ2
12,k + ρ0.3λ2

13,k

X
(2)
1p + V (3)

p

√
1

1 + ρ0.3
X

(3)
1p

)
.

More specifically, there is one public data stream X
(1)
123 for all receivers, two public data streams X

(1)
12 and X

(2)
12

for Rx1 and Rx2, one public data stream X
(1)
13 for Rx1 and Rx3, and three private data streams for Rx1 only.

The data streams X
(1)
123, X

(1)
12 and X

(1)
13 are sent at power level ρ0. The data stream X

(2)
12 is sent at power level

ρ−0.3 as this is the part to be decoded by Rx2, but treated as noise by Rx3. The first private data stream

X
(1)
1p is sent at power level ρ−0.6 so that Rx2 can treat it as noise. The second private data stream X

(2)
1p is

sent at power level ρ−0.6 so that both Rx2 and Rx3 can treat it as noise. The third private data stream X
(3)
1p

is sent at power level ρ−0.3 so Rx3 can treat is as noise.

In what follows, we analyze the achievability of the four corner points on the max sum GDoF plane

in Example (3.1). For each corner point, we provide GDoF distribution among the data streams revealed in

Example (3.2). The detailed GDoF allocation of each data stream will be illustrated via multi-dimensional

signal partitioning introduced in Chapter 2. Each GDoF allocation will be plotted in a signal diagram

with each of the received independent (transmit) signal directions (from the receiver’s perspective) plotted

as a multi-leveled bar whose top level marks its signal strength and the vertical height of each partition

is proportional to the DoFs carried by it. The underlying coding scheme can be directly read from the

GDoF allocation. A transmitter encodes all data streams on a (transmit) signal direction by multi-level

superposition coding from bottom to top (refer to the figure for the position of the data streams on each

signal direction), and the receiver decodes the signal by either successive cancellation or joint decoding. No

cross signal level is employed, and each data stream is encoded independently. The underlying coding scheme
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can be different from the coding scheme we used to derive the inner bound in Section 3.4.2. In all the GDoF

analysis figures in the rest of the chapter, the transmit signal directions V
[1]
p , V

[2]
p , and V

[3]
p are sorted from

left to right in sequence at Rx1, V
[1]
p and V

[2]
p are shown from left to right at Rx2, and V

[2]
p and V

[3]
p are

shown from left to right at Rx3.

3.5.1.1 The achievability of point E (1.8,2,1.7)

We choose the GDoF distribution d
(1)
123 = 0, d

(1)
12 = 0, d

(2)
12 = 0, d

(1)
13 = 0.3, d

(1)
1p = d

(2)
1p = 0.4, d

(3)
1p = 0.7,

d
(1)
2 = d

(2)
2 = 1, d

(1)
3 = 1 and d

(2)
3 = 0.7. The GDoF allocation among the three transmitters are illustrated in

Fig. 3.7. This allocation guarantees an interference free channel between Tx2 and Rx2. Due to the precoding

(by matrix Vp), the second and third transmit directions V
[2]
p and V

[3]
p do not appear at Rx2 and Rx3,

respectively. All the signal levels at both Rx2 and Rx3 are fully utilized.

Rx1 first removes the effect of both X
(1)
1p and X

(2)
1p from Y1 by zero forcing, i.e. projecting the received

signal onto the 1-D plane which is perpendicular to H11V
[1:2]
p . X

(1)
13 can be recovered by treating the con-

tribution of X
(3)
1p as noise (with the equivalent noise floor raised to ρ0.7), which gives d

(1)
13 = 0.3. Since X

(1)
13

should also be decoded by Rx3, we shall verify the achievability of d
(1)
13 = 0.3 at Rx3 later. Subtracting the

effect of X
(1)
13 , X

(3)
1p can be recovered with GDoF d

(3)
1p = 0.7. After both X

(1)
13 and X

(3)
1p are recovered, we remove

their effects on the received signal Y1. Then we see a 2× 2 MIMO P2P channel between Tx1 and Rx1, and

data streams X
(1)
1p and X

(2)
1p can then be recovered, which gives d

(1)
1p = d

(2)
1p = 0.4. Rx2 directly decodes its

intended signals as the interference from Tx1 will be under the noise floor. Rx3 decodes its intended signal

by treating the interference from Tx1 as noise. It can be seen that the data stream X
(1)
13 can indeed achieve

GDoF 0.3 at Rx3 as well as at Rx1.

3.5.1.2 The achievability of point F (1.5,2,2)

The GDoF distribution among data streams could be d
(1)
123 = 0, d

(1)
12 = 0, d

(2)
12 = 0, d

(1)
13 = 0, d

(1)
1p =

d
(2)
1p = 0.4, d

(3)
1p = 0.7, d

(1)
2 = d

(2)
2 = 1 and d

(1)
3 = d

(2)
3 = 1. The GDoF allocation among the three transmitters

are illustrated in Fig. 3.8. This coding scheme guarantees interference free GDoF for the entire network.



66
Rx1 Rx2 Rx3

Figure 3.7: GDoF allocation at corner point E

Rx1 Rx2 Rx3

Figure 3.8: GDoF allocation at corner point F

3.5.1.3 The achievability of point G (2.4,1.1,2)

We choose the GDoF distribution among data streams as follows: d
(1)
123 = 0, d

(1)
12 = 0.3, d

(2)
12 = 0.3,

d
(1)
13 = 0, d

(1)
1p = d

(2)
1p = 0.4, d

(3)
1p = 0.7, d

(1)
2 = 0.7, d

(2)
2 = 0.4 and d

(1)
3 = d

(2)
3 = 1. The GDoF allocation

among the three transmitters are illustrated in Fig. 3.9. This coding scheme brings an interference free

channel between Tx3 and Rx3. As stated previously, the data stream X
(1)
12 is sent onto the null space of

〈H13〉, so it does not appear at Rx3; however, the X
(2)
12 is exclusive to Rx1 and Rx2 due to the difference

α12 ≤ α13; therefore, X
(2)
12 appears at Rx3 under the noise floor.

Rx1 first removes the effects of X
(1)
12 , X

(1)
1p , X

(2)
12 and X

(2)
1p from Y1 by zero forcing, i.e. projecting the

received signal onto the 1-D plane which is perpendicular to H11V
[1:2]
p . X

(3)
1p can be recovered with d

(3)
1p = 0.7.
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Subtracting the effect of X
(3)
1p from Y1 , we see a 2 × 2 MIMO P2P channel between Tx1 and Rx1, and

data streams X
(1)
12 and X

(2)
12 can be recovered by treating X

(1)
1p and X

(2)
1p as noise, which gives d

(1)
12 = 0.6 and

d
(2)
12 = 0.3. Subtracting the effect of X

(1)
12 and X

(2)
12 , X

(1)
1p and X

(2)
1p can be decoded, resulting d

(1)
1p = d

(2)
1p = 0.4.

The power level assignments of X
(1)
2 , X

(2)
2 , X

(1)
12 and X

(2)
12 permit these data streams to be jointly decoded,

resulting d
(1)
2 = 0.4, d

(2)
2 = 0.7, d

(1)
12 = 0.6 and d

(2)
12 = 0.3. Rx3 decodes its intended signal only, leading

d
(1)
3 = d

(2)
3 = 1.

Rx1 Rx2 Rx3

Figure 3.9: GDoF allocation at corner point G

3.5.1.4 The achievability of point H (2.7,1.1,1.7)

The GDoF distribution among data streams could be d
(1)
123 = 0, d

(1)
12 = 0.3, d

(2)
12 = 0.7, d

(1)
13 = 0,

d
(1)
1p = d

(2)
1p = 0.4, d

(3)
1p = 0.7, d

(1)
2 = 0.7, d

(2)
2 = 0.4 and d

(1)
3 = d

(2)
3 = 1. The GDoF allocation among the

three transmitters are illustrated in Fig. 3.10.

Remark 3.7. In Example 3.1, the interference strength is moderate (α13 = 0.6) from Tx1 to Rx2 and weak

(α13 = 0.3) from Tx1 to Rx3. In the four achievable schemes discussed above, we keep data streams X123

null because X123 is received above the noise floor at both Rx2 and Rx3 and decoding X123 will cause GDoF

reduction at both Rx2 and Rx3. More specifically, in the considered channel setting, carrying messages on

data stream X12 or X13 brings the same amount of GDoF to Rx1 as the reduction of GDoF at Rx2 or Rx3,

respectively. However, carrying message on data stream X123 reduces twice the GDoF at Rx2 and Rx3 in

total than the GDoF obtained by Rx1. We illustrate a GDoF distribution when X123 is active in Fig. 3.11.
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Rx1 Rx2 Rx3

Figure 3.10: GDoF distribution at corner point H

It is a coding scheme for corner point I in Fig. 3.6, which results sum GDoF 5.2.

Rx1 Rx2 Rx3

Figure 3.11: GDoF allocation at corner point I

3.5.2 The Sum GDoF Curve

Next, we keep the number of transmit and receive antennas unchanged in Example (3.1), and let α

run through the internal [0, 2] to see the variation of the sum GDoF. The sum GDoF vs α curve is plotted

in Fig. 3.12. There are two corner points on the curve. At the first corner point the interference to Rx2

becomes strong interference, i.e. α12 = 1. At the second corner point the interference to Rx3 becomes strong

interference, i.e. α13 = 1. In between the two corner points, one of the interference channels is moderate,

i.e. α13 ∈ [0.5, 1], and the other one is strong, i.e. α12 = [1, 2]. We focus a sum GDoF optimal corner point
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(α, dsum) = (0.8, 4.8) on the curve. By Theorem 3.5, we the equal GDoF tuple (1.6, 1.6, 1.6) is achievable.

Coding scheme to achieve this tuple is not unique, and we presents two different coding schemes through

the multi-dimensional signal level partitioning in Fig. 3.13 and Fig. 3.14. In the first coding scheme, data

stream X123 is active, contrary to the case when both interferences are not strong in the previous example,

activating data stream X123 can be sum GDoF optimal because Rx2 receives strong interference, and X
(1)
123

is received above ρ0, therefore it does not deduct GDoF at Rx2. The second coding scheme achieves the

same GDoF tuple, but only uses two antennas at Tx1 to transmit the signal. It is simpler and more energy

efficient than the first coding scheme.
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Figure 3.12: Sum GDoF curve of MIMO one-to-three IC with M1 = N1 = 3, M2 = M3 = N2 = N3 = 2,
α12 = 2α and α13 = α

Lastly, we plot the sum GDoF curve of a SISO one-to-three IC in Fig. 3.15. There is only one antenna

at each transmitter and each receiver, and again we choose α13 = α and α12 = 2α.

3.6 Conclusion

We delve into the channel structure of the MIMO one-to-three IC with the aid of GSVD, and designed

a explicit coding scheme which adapts the channel structure. A pair of single region inner and outer bounds

are derived and shown to be within a SNR/INR independent gap. The GDoF region of the MIMO one-

to-three IC is then fully characterized. We also numerically studied achievability of GDoF region and sum
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Rx1 Rx2 Rx3

Figure 3.13: Coding scheme 1 for GDoF tuple (1.6, 1.6, 1.6) of the considered example

Rx1 Rx2 Rx3

Figure 3.14: Coding scheme 2 for GDoF tuple (1.6, 1.6, 1.6) of the considered example
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Figure 3.15: Sum GDoF curve of SISO one-to-three IC with α12 = 2α and α13 = α



71

GDoF curve of several channel examples.



Chapter 4

Generalized Degrees of Freedom Region of the MIMO IC-ZIC

4.1 Introduction

An IC-ZIC is a single-hop multi-terminal network with three transmitters (Tx1-Tx3) and three re-

ceivers (Rx1-Rx3). Tx1/Rx1 and Tx2/Rx2 form a two-user interference channel (IC). Tx1/Rx1 and Tx3/Rx3

form a two-user Z interference channel (ZIC) where interference only comes from Tx1 to Rx3 (refer to Fig. 4.4

for a discrete memoryless IC-ZIC or Fig. 4.2.2 for a MIMO IC-ZIC). An IC-ZIC can also be formed from the

one-to-three interference channel by adding one more interference link from one of the non-interfering trans-

mitters (Tx2 or Tx3) to Rx1 therein. Without loss of generality, we let this interference link come from Tx2

to Rx1. To illustrate the practical scenarios which IC-ZIC models, we borrow and modify the two practical

scenarios of the one-to-three IC introduced in Fig. 3.1 and Fig. 3.2. In Fig. 4.1, the entire area is a macro cell

served by the radio tower Tx1, and two small cells operate on the same carrier frequency inside the macro

cell. The transmit power used by the macro cell transmitter (Tx1) is higher than the transmit power at Tx2

and Tx3 in the two small cells. We use solid lines to represent direct links and dashed lines interference links.

The interference pattern shown in the figure is a consequence of the transmit power disparity and channel

topology. One such application of this scenario is the cellular network range expansion by deploying multiple

lower power pico eNBs (Tx2 and Tx3) under a macro cell centered with a macro eNB (Tx1) [3, Figure 1].

As Tx1 transmits at significantly higher power level than Tx2 or Tx3 (to cover the entire area), there are

interferences from Tx1 to Rx2 and Rx3; the interference from Tx2 to Rx1 exists because Rx1 is located on

the margin of the small cell 1; the interference from Rx3 to Tx1 is negated since the small cell 2 is located far
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Tx1 Tx3
Rx3

Rx2Tx2

Rx1

Figure 4.1: A MIMO IC-ZIC where the macro cell transmitter transmits at significantly higher power level
than the small cell transmitters

enough from Rx1. Also, as seen from Fig. 4.1, because the small cell 2 is located further from Tx1 than the

small cell 1, the interference strength from Tx1 to Rx2 is stronger than from Tx1 to Rx3. In the one-to-three

IC, Rx2 can be assumed to receive stronger interference than Rx3 without loss of generality. However, since

we have fixed Tx2 to be another interfering transmitter in IC-ZIC, we do no assume the interference strength

at Rx2 is stronger than Rx3. For example, in Fig. 4.2, all transmitters transmit at the same power level, and

Tx1/Rx1 and Tx2/Rx2 have mutual interference. The path-loss difference from Tx1 to Rx2 and Rx3 yields

disparity of the interference strength at the two receivers. But as Rx3 is located closer to Tx1, it receives

stronger interference from Tx1 than Rx2.

The main goal of this chapter is to characterize the fundamental generalized degrees of freedom

(GDoF) region of the MIMO IC-ZIC. As an outcome of this research, the sum GDoF curve of the scenario

shown in Fig. 4.1 is plotted in Fig. 4.3 with a practical set of channel parameters given in the caption. The

channel model and parameters are defined in Section 4.2. The GDoF region and sum GDoF curve with

respect to Fig. 4.2 will be investigated in Section 4.5.

4.1.1 Main Contributions

We obtain single region inner and outer bounds for the MIMO IC-ZIC. Since Tx1 produces interfer-

ences to two receivers, we employ the same three level superposition coding scheme at Tx1 as in the MIMO

one-to-three IC (c.f. Section 3.4.2). More specifically, the message M1 at Tx1 is split into four sub-messages:

M123, M12, M13 and M1p. As their subscripts indicate, they are to be decoded by Rx1 only, Rx1 and Rx2, Rx1

and Rx3, and Rx1-Rx3, respectively. The four sub-messages are coded independently according to a vector



74

Rx2Rx3

Rx1
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Figure 4.2: A MIMO IC-ZIC all transmitter transmit at the same power level
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Figure 4.3: Sum GDoF curve of the scenario shown in Fig. 4.1. The parameters are chosen as follows. Tx1
and Rx1 are equipped with 3 antennas each; Tx2, Rx2, Tx3 and Rx3 are equipped with 2 antennas each; Tx1,
Tx2 and Tx3 transmit at power ρ2α, ρα and ρα (to reflect the transmit power disparity); the interference
strength from Tx1 to Rx2, Tx2 to Rx1 and Tx1 to Rx3 are ρα, ρα and ρα/2, respectively.
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Gaussian distribution with explicitly specified covariance matrices, and they are additively superposed and

transmitted. In particular, those covariance matrices are specified via the GSVD of the two cross channel

matrices from Tx1 to Rx2 and Rx3. Since Tx2 only produces interference to Rx1, we employ Karmakar-

Varanasi type [27] coding scheme at Tx2. The transmitted message M2 is split into common sub-message

M21 and private message M2p to be coded by Rx1-Rx2 and Rx2 only, respectively. Tx3 simply encodes its

entire message using single user Gaussian codebook without water-filling. Consequently, a single and ex-

plicit polyhedral inner bound is obtained. As a byproduct, a per-distribution inner bound is also obtained

for the discrete-memoryless IC-ZIC. The outer bound is obtained by providing various combinations of genie

information to the receivers. The difficulty lies within the quantification of the gap from the obtained inner

and outer bounds which contain 33 and 28 inequalities respectively. It is done with the aid of a series of

supporting lemmas which reveals the relationship between the set functions in the inner and outer bounds

(to be defined later). The gap between the inner and outer bounds is quantified and shown to be independent

of SNRs and INRs (with increasing nominal SNR). Hence, such a gap is tight enough to characterize the

fundamental generalized degrees of freedom (GDoF) region. In the end, we analyze the GDoF and sum

GDoF achievability of several channel examples with multi-dimensional signal level partitioning introduced

in Chapter 2.

4.1.2 Previous Related Works

The two-user IC and the one-to-three IC are two sub-channels embedded in the IC-ZIC. We summarize

the known results regarding these two sub-channels. For the general DM two-user IC, the Han-Kobayashi

achievable scheme (HK scheme) in [23], as well as its alternative, the CMG scheme of [11], give the (same)

best inner bound to the capacity region known to date. Telatar and Tse [43] found an outer bound for the

class of semi-deterministic interference channels and quantified the gap to the CMG inner bound. The idea

of genie-aided argument in the proof of the outer bound of MIMO IC-ZIC was first introduced in [43]. Etkin

et al [15] and Karmakar and Varanasi [27] characterized constant-gap-to-capacity regions for the Gaussian

scalar and vector two-user ICs, respectively. The GDoF region of the MIMO two-user IC was characterized

and studied in [26]. A constant-gap-to-capacity region of the Gaussian scalar one-to-many IC was reported
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by [4]. The GDoF region of the MIMO one-to-three IC was characterized previously in Section 3.5.

4.1.3 Notations

Throughout, the i-th transmitter/receiver is denoted as Txi/Rxi for i ∈ {1, 2, 3}, and its message,

transmit symbol, rate and degrees of freedom (GDoF) are denoted as Mi, Xi, Ri and di, respectively. The

number of antenna at Txi and Rxi is denoted as Mi and Ni, respectively.

We use capital letters to denote random vectors such as Xi. The underlying alphabets are denoted by

Xi, and specific values by xi. We use the usual short hand notation for (conditional) probability distributions

where the lower case arguments also denote the random variables whose (conditional) distribution is being

considered. For example, p(yi|xi) denotes pYi|Xi(yi|xi).

We use C to denote the set of complex numbers and Z ∼ CN (0, IN ) to denote a N -dimensional

random vector Z that obeys the complex circularly symmetric Gaussian distribution with zero mean and

covariance matrix IN (the N × N identity matrix). The note either det(·) or | · | is used to represent the

determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as Mi.j and Ni. The

Frobenius norm of a matrix H is denoted by ‖H‖2F, i.e., ‖H‖2F = Tr(HH†), where Tr(·) returns the trace of

a given matrix. We use UN×N to represent the set of N × N unitary matrices. The k-th row and column

of the matrix H are denoted as H(k) and H [k] respectively. A sub-matrix obtained by taking the rows k1

to k2 of the matrix H is written as H(k1:k2). A sub-matrix obtained by taking the columns k1 to k2 of the

matrix H is written as H [k1:k2]. The linear span of matrix H is denoted as 〈H〉. For two matrices A and

B, if (A−B) is positive definite (p.d.) or positive semi-definite (p.s.d), we write the relationship as A � B

or A � B, respectively. We use o(1) to represent a term which approaches zero asymptotically, and O(1)

to represent a term which is bounded above by some constant. The function (M)+ returns the maximum

value of M and 0, i.e., (M)+ = max{M, 0}. The minimum and maximum singular value of a matrix H are

denoted as λmin(H) and λmax(H), respectively. We refer rectangular diagonal matrix as any matrix whose

nonzero entries only appear on one particular diagonal (not necessarily the main diagonal). The diagonal

values of a rectangular diagonal matrix are the entries on that diagonal which contains nonzero values. The

minimum and maximum nonzero diagonal values of a rectangular diagonal matrix Σ are denoted as σmin(Σ)
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and σmax(Σ), respectively.

The rest of the chapter is organized as follows. Section 4.2 defines the DM and MIMO IC-ZIC

channel models and discuss the channel structure of the MIMO IC-ZIC. Section 4.3 presents the multi-level

superposition coding and the resulting inner bound for the DM IC-ZIC. Section 4.4 presents single region

inner and outer bounds for the MIMO IC-ZIC. The gap between the bounds is quantified. The GDoF region

of the MIMO IC-ZIC will be characterized in Section 4.5. Section 4.6 concludes the chapter. Many proofs

are relegated to the Appendices.

4.2 Channel Models

In this section, we first introduce the general discrete memoryless IC-ZIC and the MIMO IC-ZIC. Then

we explain the channel structure of the MIMO IC-ZIC using the generalized singular value decomposition

of the two cross channel matrices.

4.2.1 The Discrete Memoryless (DM) IC-ZIC

An IC-ZIC channel consists three transmitters and three receivers. The sub-channel between the

Tx1/Rx1 and Tx2/Rx2 is a two-user interference channel, the sub-channel between the Tx1/Rx1 and

Tx3/Rx3 a Z interference channel, and the sub-channel between Tx1/Rx1 and Tx3/Rx3 a parallel channel.

The discrete memoryless (DM) IC-ZIC is defined in Definition 4.1 and depicted in Fig. 4.4.

Definition 4.1. A discrete memoryless IC-ZIC is a three-transmitter and three-receiver network (X1×X2×

X3, p(y1, y2, y3|x1, x2, x3), Y1 × Y2 × Y3) with transition probability satisfying

p(yn1 , y
n
2 , y

n
3 |xn1 , xn2 , xn3 )

=

n∏
t=1

(p(y1t|x1t, x2t)p(y2t|x1t, x2t)p(y3t|x1t,x3t)) (4.1)

The input and output symbols Xi and Yi are taken from the discrete alphabets Xi and Yi respectively, for

each i ∈ {1, 2, 3}. Message Mi is generated from set Mi uniformly at random, and encoded at transmitter

Txi. Receiver Rxi decodes Mi as M̂i.
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Figure 4.4: DM IC-ZIC

Given the channel as defined in Definition 4.1, a (n,R1, R2, R3, P
(n)
e ) coding scheme for a DM IC-ZIC

consists of

• Mi, the message to transmit at Txi, assumed to be uniformly distributed over Mi ∈ {1, · · · , 2nRi},

for each i ∈ {1, 2, 3};

• Encoding functions fi(·) such that

fi(·) : Mi 7−→ Xni , mi 7−→ xni (mi).

• Decoding functions gi(·) such that

gi(·) : Yni 7−→Mi, y
n
i 7−→ m̂i(y

n
i ).

The probability of error P
(n)
e is defined to be

P (n)
e = P

{
M1 6= M̂1, M2 6= M̂2 or M3 6= M̂3

}
.

A three rate-tuple (R1, R2, R3) is said to be achievable if there exists a sequence of (n,R1, R2, R3, P
(n)
e ) coding

schemes for which P
(n)
e → 0 as n → ∞. The capacity region of DM IC-ZIC is the polytope containing all

achievable rate tuples, denoted as CDM.

4.2.2 The MIMO IC-ZIC

A (M1, N1,M2, N2,M3, N3) Gaussian MIMO (multiple-input-multiple-output) IC-ZIC, as shown in

Fig. 4.2.2, has Mi antennas at Txi, and Ni antennas at Rxi for each i ∈ {1, 2, 3}. Assuming the channel
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transfer matrices and path attenuations (also referred as channel gains) are time-invariant during each

transmission, the input-output relationship of this channel is described by

Y1 = h11H11X1 + +h21H12X2 + Z1 (4.2)

Y2 = h12H12X1 + h22H22X2 + Z2 (4.3)

Y3 = h13H13X1 + h33H33X3 + Z3, (4.4)

where Xi ∈ CMi×1 and Yi ∈ CNi×1 are complex input and output vectors, and Hij ∈ CNj×Mi is the channel

transfer matrix from Txi to Rxj whose Frobenius norm satisfies ‖Hij‖2F = 1. We assume the entries of the

transfer matrix Hij are drawn i.i.d. from a continuous and unitarily invariant distribution [45], i.e., UHijV

is identically distributed to Hij for any U ∈ UNi×Nj and V ∈ UMi×Mi , so Hij has full rank with probability

one (w.p.1). The path attenuation hij from Txi to Rxj is a complex number. The Gaussian noise Zi are

i.i.d. CN (0, INi) across i. Let Cov[xit] be the covariance of the t-th symbol of the transmitted codeword

xni ∈ Xni at Txi. The codeword xni should meet the average per-codeword power constraints

1

n

n∑
t=1

E(xitx
†
it) ≤ Pi. (4.5)

The SNR and INR at receiver Rxi are defined to be

SNRii = Pi|hii|2 , ραii , i ∈ {1, 2, 3} (4.6)

INR1i = P1|h1i|2 , ρα1i , i ∈ {2, 3}, (4.7)

where ρ is the nominal SNR based on which the direct channel SNRs and the two cross-channel INRs are

defined. The distinct SNR and INR exponents allow us to express the disparities in power levels observed

across the direct and cross channels as multiplicative terms associated with the nominal SNR in the dB scale.

We denote the capacity region of the MIMO IC-ZIC as C.

4.2.3 The Channel Structure of the MIMO IC-ZIC

We use the generalized singular value decomposition of H12 and H13 and the singular value decom-

position of H21 to illustrate the channel structure of the MIMO IC-ZIC. Since channel matrices H11, H12
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Figure 4.5: The MIMO IC-ZIC

and H13 have full rank w.p.1, we have

r11 , rank(H11) = min{M1, N1} (4.8)

r12 , rank(H12) = min{M1, N2} (4.9)

r13 , rank(H13) = min{M1, N3} (4.10)

r , rank

 H12

H13

 = min{M1, N2 +N3} (4.11)

The intersection of the two resulting spaces have dimension

r123 , r12 + r13 − r. (4.12)

We jointly decompose the two channel matrices H12 and H13 via the generalized singular value decomposition

(GSVD) [35], which is

H12 = U12Σ12

 Vr

0(M1−r)+×r


†

U† , U12Σ12V
† (4.13)

H13 = U13Σ13

 Vr

0(M1−r)+×r


†

U† , U13Σ13V
†. (4.14)

U1i ∈ UNi×Ni and U ∈ UM1×M1 are unitary matrices. Σ1i ∈ RNi×r is a real and rectangular diagonal matrix.

Vr ∈ Cr×r is a non-singular upper triangular matrix and V , U

 Vr

0(M1−r)+×r

 ∈ CM1×r. Matrices Σ12
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and Σ13 have the following structure

r − r13 r123 r − r12

Σ12 =

r − r13

r123

N2 − r12


I

0

0

0

C

0

0

0

N.E.


(4.15)

r − r13 r123 r − r12

Σ13 =

r123

r − r12

N3 − r13


0

0

N.E.

S

0

0

0

I

0


(4.16)

where C and S are both non-negative real diagonal matrices satisfying C2 + S2 = I. The acronym N.E.

means ”never exists”. Note N2 − r12 and r − r12 cannot be simultaneously positive according to (4.9) and

(4.11), and the matrix Σ12 is in form of either

r − r13 r123 r − r12

Σ12 =
r − r13

r123

 I

0

0

C

0

0


or

r − r13 r123

Σ12 =

r − r13

r123

N2 − r12


I

0

0

0

C

0


.

These two different forms of the matrix Σ12 can be unified as the one given by (4.15), where the acronym

N.E. comes from the fact that Σ12 can only be a 2×3 or 3×2 block matrices. Similarly, N3−r13 and r−r13

cannot be simultaneously positive because of (4.10) and (4.11), and Σ13 also has two different forms which

can be unified as (4.16).
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Define two matrices I12 and Λ12 to be

r − r13 r123 r − r12

I12 ,

r − r13

r123

N2 − r12


I

0

0

0

0

0

0

0

N.E.


(4.17)

and

r − r13 r123 r − r12

Λ12 ,

r − r13

r123

N2 − r12


0

0

0

0

C

0

0

0

N.E.


(4.18)

respectively, and the matrix Σ12 can be written as

Σ12 = I12 + Λ12.

Let the matrices G12 and J12 be

G12 , U12Λ12V
† and J12 , U12I12V

†.

Hence, H12 = G12 + J12. Similarly we define two matrices I13 and Λ13 to be

r − r13 r123 r − r12

I13 ,

r123

r − r12

N3 − r13


0

0

N.E.

0

0

0

0

I

0


(4.19)

and

r − r13 r123 r − r12

Λ13 ,

r123

r − r12

N3 − r13


0

0

N.E.

S

0

0

0

0

0

 ,
(4.20)

respectively, and the matrix Σ13 can be written as

Σ13 = I13 + Λ13.
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Let the matrices G13 and J13 be

G13 , U13Λ13V
† and J13 , U13I13V

†.

Hence, H13 = G13 + J13.

The channel matrix H21 from Tx2 to Rx1 can be decomposed with singular value decomposition

(SVD) as follows,

H21 = U21Σ21V
†
21, (4.21)

where U21 and V21 are N1 × N1 and M2 ×M2 unitary matrices respectively and Σ21 is a diagonal matrix

whose diagonal values consists of the singular values of H21.

Remark 4.1. Through the lens of GSVD, the transmit directions of the interference from Tx1 to Rx2 and

Rx3 are established by the column vectors of the matrix V in (4.13) and (4.14). The rectangular diagonal

matrix Σ1i determines which components in V †X1 are transferred to Rxi for i ∈ {2, 3}. The first r − r13

components of V †X1 will be heard by Rx2 but not by Rx3, because Σ12 has identity block matrix in the

upper left, whereas Σ13 has all-zero block matrix in the upper left. Similarly, the last r− r12 components of

V †X1 will be received at Rx3 but not Rx2. The middle r123 components of V †X1 will be received by both

Rx2 and Rx3, but with different interference strengths (INR12 and INR13). Similarly, through the SVD of

H21, the transmit directions of the interference from Tx2 to Rx1 are determined by the column vectors of

the matrix V †21 in (4.21). The diagonal matrix Σ21 determines which components of V †21X2 are transferred to

Rx1. As pointed out in Remark 3.1, there are a few differences between the SVD and GSVD. In particular,

the matrix V †21 is unitary therefore its column vectors not only define the transmit signal direction but also

form an orthonormal basis of the transmit signal space. However, because the matrix V † is generally not

unitary or orthogonal, it can be rank deficient.

Remark 4.2. Note we have assumed INR12 and INR13 are sufficiently large so that we can disregard the gains

contributed by C and S which is justifiable for analysis up to GDoF accuracy.

Next, we express the channel outputs at Rx1-Rx3 in terms of channel side informations. Define the

channel side information

S21 , h21H21X2 + Z1. (4.22)
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The received signal Y1 at Rx1 given by 4.2 can be written as the sum of the received intended signal h11H11X1

with the channel side information S21.

To describe the received signal Y2 and Y3, we use three channel side informations S123, S12 and S13

which represent the parts of the interference (and its associated noise) hearable at Rx2-Rx3, Rx2 and Rx3.

They are given by (4.23)-(4.25).

S123 ,



h13G13X1 + U13

 U
−1(1:r123)
13 Z3

0(N3−r123)×1

 INR12 ≥ INR13

h12G12X1 + U12



0(r−r13)×1

U
−1(r−r13+1:r12)
12 Z2

0(N2−r12)×1


INR12 < iNR13

(4.23)

S12 ,



h12H12X1 + Z2 INR12 ≥ INR13

h12J12X1 + U12



U
−1(1:r−r13)
12 Z2

0r123×1

U
−1(r12+1:N2)
12 Z2


INR12 < iNR13

(4.24)

S13 ,


h13J13X1 + U13

 0r123×1

U
−1(r123+1:N3)
13 Z3

 INR12 ≥ INR13

h13H13X1 + Z3. INR12 < iNR13

(4.25)

The reason that channel side informations S123, S12 and S13 depends on the relationship ofINR12 and INR13 is

because the channel gain associated with common part of the interference is determined by the channel gain

of the weaker interference receiver. When INR12 ≥ INR13, the channel side informations are the same as these

informations in the MIMO one-to-three IC, i.e., (3.25)-(3.27). The side information S123 contains the common

part of the interference signal h13G13X1 that can be heard by both Rx2 and Rx3 with the associated r123

noise elements. There is no S123 explicitly in (4.24) because S12 = h12U12I12V
†X1 + h12U12Λ12V

†X1 + Z2

already contains a scaled and linearly transformed version of the interference signal in S123 in the term
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h12U12Λ12V
†X1. The side information S13 contains the partial interference signal exclusively for Rx3. S12

contains the interference sent along the exclusive signal directions to Rx2 (h12U12I12V
†X1) and the amplified

version of S123 (h12U12J12V
†X1) to Rx2. As will be seen in what follows, the GDoF optimal coding scheme

incorporates signal direction alignment to utilize the exclusive transmit directions from Tx1 to Rx2 and Rx3

respectively, as well as signal level alignment to adapt the disparity of the interference strengths along the

common transmit directions from Tx1 to Rx2-Rx3.

With the channel side informations defined above, the channel input-output relationship (4.2)-(4.4)

can be written as

Y1 = h11H11X1 + S21 (4.26)

Y2 =


S12 + h22H22X2 INR12 ≥ INR13

S
′

123 + S
′

12 + h22H22X2 INR12 < INR13

(4.27)

Y3 =


S123 + S13 + h33H33X3 INR12 ≥ INR13

S
′

13 + h33H33X3 INR12 < INR13

. (4.28)

The relationship between VrV
†
r and the two scaled identity matrices λ2

min(Vr)Ir and λ2
max(Vr)Ir will

be frequently used in the rest of the chapter. We present it in Fact 4.1.

Fact 4.1. Let Vr be a r × r full rank square matrix. The following relationship holds between the matrices

VrV
†
r , λ2

min(Vr)Ir and λ2
max(Vr)Ir

λ2
min(Vr)Ir � VrV †r � λ2

max(Vr)Ir (4.29)

which is equivalent to

VrV
†
r

λ2
max(Vr)

� Ir �
VrV

†
r

λ2
min(Vr)

, (4.30)

and

λ−2
max(Vr)Ir � V −1

r V †−1
r � λ−2

min(Vr)Ir. (4.31)
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4.3 Multi-level Superposition Coding Scheme and the Inner Bound for the

DM IC-ZIC

The structure of the channel 4.1 suggests a natural coding scheme for the DM IC-ZIC: three level

superposition coding at Tx1 as in the DM one-to-three IC (c.f. Section 3.3), two level superposition coding

(either HK [23] or CMG type coding [10, 11]) at Tx2 as has been done for the two-user DM IC and single

user random coding at Tx3. More specifically, we split the message M1 at Tx1 into four parts, namely M123,

M12, M13 and M1p, and perform three level superposition coding to encode them to intermediate codewords

Wn
123,W

n
12, Wn

13 and Wn
1p so that those four messages can be decoded by Rx1-Rx3, Rx1 and Rx2, Rx1 and

Rx3 and Rx1 only, respectively. We split the message M2 at Tx2 into two parts (M12 and M1p) and perform

CMG type superposition coding to encode them to intermediate codewords Wn
21 and Wn

2p so that M21 and

M1p can be decoded by Rx1-Rx2 and Rx1 only. The Tx3 simply encodes its entire message using a single

user random codebook.

According to the coding scheme introduced above, we define the set of the coding distributions ac-

cordingly in Definition 4.2.

Definition 4.2. Let Pin be the set of distributions Pin of joint random variables (Q,W123,W12,W13,W12, X1,

X2, X3) that can be factored as

p(q, w123, w12, w13, w21, x1, x2, x3) = p(q)p(w123|q)p(w12|w123)p(w13|w123)p(w21|q)

· p(x1|w123, w12, w13)p(x2|w21)p(x3|q). (4.32)

An inner bound is obtained in Theorem 4.1 for any fixed coding distribution Pin ∈ Pin through

a detailed joint typicality analysis. For the sake of convenience, we define the relevant set functions in

Definition 4.3, in terms of which the inner bound can be written succinctly. Define Θi to be the index set of

the sub-messages which needs to be decoded at Rxi (intended or non-intended) for each i ∈ {1, 2, 3}, i.e.,

Θ1 , {123, 12, 13, 1p, 21} = {1, 21}

Θ2 , {123, 12, 21, 2p} = {123, 12, 2}

Θ3 , {123, 13, 3}.
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Note by the message split scheme introduced in the beginning of this section, we have {1} = {123, 12, 13, 1p}

and {2} = {21, 2p}. Also, define Φ1, Φ2 and Φ3 to be the three sets defined in the following.

Φ1 , {{1p}, {12, 1p}, {13, 1p}, {12, 13, 1p}, {1}, {1p, 21}, {12, 1p, 21}, {13, 1p, 21}, {12, 13, 1p, 21}, {1, 21}}

(4.33)

Φ2 , {{2p}, {2}, {12, 2p}, {12, 2}, {123, 12, 2p}, {123, 12, 2}} (4.34)

Φ3 , {{3}, {13, 3}, {123, 13, 3}} (4.35)

Let Mφi = {∪k∈φiMk} and Wφi = {∪k∈φiWk}. For a given Pin, the set function Fi(Mφi) takes the sub-message

set Mφi ∈ Φi (for i ∈ {1, 2, 3}) as input and returns the mutual information between the set of auxiliary

random variables Wφi (which are used to encode the sub-messages in the set Mφi) and the received signal

Yi conditioned on WΘi\φi and time sharing variable Q. For example, F1(M1p, M12) is the mutual information

between W1p,W12 (which are used to encode M1p and M12) and Y1 conditioned on W123, W13, W21 and Q.

Definition 4.3. For a fix distribution Pin ∈ Pin, define the following set functions for the DM IC-ZIC inner

bound.

F1(M1p) , I(X1;Y1|W1c,W21, Q) (4.36)

F1(M13, M1p) , I(X1;Y1|W123,W12,W21, Q) (4.37)

F1(M12, M1p) , I(X1;Y1|W123,W13,W21, Q) (4.38)

F1(M12, M13, M1p) , I(X1;Y1|W123,W21, Q) (4.39)

F1(M1) , I(X1;Y1|W21, Q) (4.40)

F1(M1p, M21) , I(X1,W21;Y1|W1c, Q) (4.41)

F1(M13, M1p, M21) , I(X1,W21;Y1|W123,W12, Q) (4.42)

F1(M12, M1p, M21) , I(X1,W21;Y1|W123,W13, Q) (4.43)

F1(M12, M13, M1p, M21) , I(X1,W21;Y1|W123, Q) (4.44)

F1(M1, M21) , I(X1,W21;Y1|Q) (4.45)

F2(M2p) , I(X2;Y2|W123,W12,W21, Q) (4.46)
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F2(M2) , I(X2;Y2|W123,W12, Q) (4.47)

F2(M12, M2p) , I(X2,W12;Y2|W123,W21, Q) (4.48)

F2(M12, M2) , I(X2,W12;Y2|W123, Q) (4.49)

F2(M123, M12, M2p) , I(X2,W123,W12;Y2|W21, Q) (4.50)

F2(M123, M12, M2) , I(X2,W123,W12;Y2|Q) (4.51)

F3(M3) , I(X3;Y3|W123,W13, Q) (4.52)

F3(M13, M3) , I(X3,W13;Y3|W123, Q) (4.53)

F3(M123, M13, M3) , I(X3,W123,W13;Y3|Q) (4.54)

where for the sake of simplicity we define W1c , {W123,W12,W13}.

The inner bound for the DM IC-ZIC is stated in the theorem below.

Theorem 4.1. For the DM IC-ZIC and some fixed distribution Pin ∈ Pin, the region RDM
in (Pin) defined by

(4.55)-(4.85) is achievable, i.e., RDM
in ⊆ CDM.

RDM
in ,

{
(R1, R2, R3) ∈ R3

+ :

R1 ≤ F(M1) (4.55)

R1 ≤ F1(M13, M1p) + F2(M123, M12, M2p) (4.56)

R2 ≤ F2(M2) (4.57)

R2 ≤ F1(M1p, M21) + F2(M2p) (4.58)

R3 ≤ F3(M3) (4.59)

R1 +R2 ≤ F1(M1, M21) + F2(M2p) (4.60)

R1 +R2 ≤ F1(M13, M1p) + F2(M123, M12, M2) (4.61)

R1 +R2 ≤ F1(M13, M1p, M21) + F2(M123, M12, M2p)

R1 +R3 ≤ F1(M12, M1p) + F3(M123, M13, M3) (4.62)

R1 +R3 ≤ F1(M1p) + F2(M12, M2p) + F3(M123, M13, M3)

R1 +R3 ≤ F1(M1p) + F2(M123, M12, M2p) + F3(M13, M3) (4.63)
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R1 +R2 +R3 ≤ F1(M1p) + F2(M12, M2) + F3(M123, M13, M3) (4.64)

R1 +R2 +R3 ≤ F1(M1p) + F2(M123, M12, M2) + F3(M13, M3) (4.65)

R1 +R2 +R3 ≤ F1(M1p, M21) + F2(M12, M2p) + F3(M123, M13, M3) (4.66)

R1 +R2 +R3 ≤ F1(M1p, M21) + F2(M123, M12, M2p) + F3(M13, M3) (4.67)

R1 +R2 +R3 ≤ F1(M12, M1p, M21) + F2(M2p) + F3(M123, M13, M3) (4.68)

R1 + 2R2 ≤ F1(M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2) (4.69)

2R1 +R2 ≤ F1(M13, M1p) + F1(M1, M21) + F2(M123, M12, M2p) (4.70)

2R1 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.71)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.72)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p, M21) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.73)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M1, M21) + F2(M12, M2p) + F3(M123, M13, M3) (4.74)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M1, M21) + F2(M123, M12, M2p) + F3(M13, M3) (4.75)

R1 + 2R2 +R3 ≤ F1(M1p, M21) + F2(M2p) + F2(M12, M2) + F3(M123, M13, M3) (4.76)

R1 + 2R2 +R3 ≤ F1(M1p, M21) + F2(M2p) + F2(M123, M12, M2) + F3(M13, M3) (4.77)

2R1 + 2R2 +R3 ≤ F1(M1p) + F1(M13, M1p, M21) + F2(M12, M2p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.78)

2R1 + 2R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.79)

2R1 + 2R2 +R3 ≤ F1(M1p, M21) + F1(M12, M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2p) + F3(M123, M13, M3)

(4.80)

2R1 +R2 + 2R3 ≤ F1(M1p) + F1(M12, M1p, M21) + F2(M12, M2p) + 2F3(M123, M13, M3) (4.81)

2R1 +R2 + 2R3 ≤ F1(M1p) + F1(M12, M1p, M21) + F2(M123, M12, M2p) + F3(M13, M3) + F3(M123, M13, M3) (4.82)

3R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F1(M1, M21) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.83)

3R1 + 2R2 + 2R3 ≤ 2F1(M1p) + F1(M12, M13, M1p, M21) + F2(M12, M2p) + F2(M123, M12, M2) + 2F3(M123, M13, M3)

(4.84)
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2R1 + 3R2 +R3 ≤ F1(M1p, M21) + F1(M12, M13, M1p, M21) + 2F2(M2p) + F2(M123, M12, M2) + F3(M123, M13, M3)
}

(4.85)

Proof Outline. We outline the proof here and relegate the full proof to Appendix B.1. As previously stated,

Tx1 performs three level superposition coding; Tx2 performs two level superposition coding; and Tx3 per-

forms single user random coding. More specifically, Tx1 splits a message m1 into four parts m123, m12,

m13 and m1p. The sub-message m123, which needs to be decoded by Rx1-Rx3, is first encoded to the first

level codeword wn123(m123). Then the multicast sub-message m1i is encoded to wn1i(m1i, w
n
123(m123)), which

needs to be decoded by Rx1 and Rxi for some i ∈ {2, 3}. This is the second level superposition coding.

Finally, based on m1p, which is the private message to be decoded by Rx1, the entire message is encoded

to the codeword x1(m1p, w
n
12(m12, w

n
123(m123)), wn13(m13, w

n
123(m123))). Tx2 splits a message m2 into two

parts m21 and m2p. The sub-message m21 needs to be decoded by Rx2 and Rx1, and it is encoded to the

codeword wn21(m21) first. Then based on m2p, which is the private message to be decoded by Rx2, the entire

message M2 is encoded to the codeword xn2 (m2p, w
n
21(m21)). Tx3 sends information m3 via some codeword

xn3 (m3) using a single-user random codebook, and Rx3 decodes the intended message m3. Fourier-Motzkin

elimination is performed to eliminate the four rate variables associated with the auxiliary random variables

W123, W12, W13 and W21 to obtain the achievable region.

4.4 Bounds on the Capacity Region for MIMO IC-ZIC

We present single region inner and outer bounds for the MIMO IC-ZIC which are within quantifiable

gap (independent of channel SNR/INR) in this section. In Section 4.4.1, we present an explicit additive

superposition coding scheme for the general MIMIO IC-ZIC with Gaussian codebooks and specified covari-

ance matrices. We then obtain a single region inner bound which has the form of a single polytope. In

Section 4.4.2, we derive a single region outer bound through the genie aided argument. In Section 4.4, the

gap between the inner and outer bounds is then quantified and shown to depend only on the entries of the

cross channel matrices H12 and H13.
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4.4.1 The Inner Bound

A per-distribution achievable region Rin(Pin) for the DM IC-ZIC has been derived in Theorem 4.1. In

this subsection, we apply that result to the MIMO IC-ZIC to obtain a single region inner bound in Theorem

4.2 to follow. In particular, to prove Theorem 4.2, we have to specify an explicit coding distribution Pin

and then compute the set functions in Definition 4.3 for the MIMO setting and for this particular coding

distribution. The set functions for the MIMO IC-ZIC inner bound are given in Definition 4.4 and the inner

bound itself is stated in Theorem 4.2.

Definition 4.4. Define the set functions listed as (4.86)-(4.104), where the constant β1, β2 and β3 are

F1(M1p) = log
∣∣∣IN1

+ ρα11H11Q1pH
†
11 + ρα21H21Q2pH

†
21

∣∣∣− β1 (4.86)

F1(M13, M1p) = log
∣∣∣IN1

+ ρα11H11(Q13 +Q1p)H
†
11 + ρα21H21Q2pH

†
21

∣∣∣− β1 (4.87)

F1(M12, M1p) = log
∣∣∣IN1

+ ρα11H11(Q12 +Q1p)H
†
11 + ρα21H21Q2pH

†
21

∣∣∣− β1 (4.88)

F1(M12, M13, M1p) = log
∣∣∣IN1

+ ρα11H11(Q12 +Q13 +Q1p)H
†
11 + ρα21H21Q2pH

†
21

∣∣∣− β1 (4.89)

F1(M1) = log |IN1
+ ρα11H11Q1H

†
11 + ρα21H21Q2pH

†
21| − β1 (4.90)

F1(M1p, M21) = log |IN1
+ ρα11H11Q1pH

†
11 + ρα21H21Q2H

†
21| − β1 (4.91)

F1(M13, M1p, M21) = log
∣∣∣IN1

+ ρα11H11(Q13 +Q1p)H
†
11 + ρα21H21Q2H

†
21

∣∣∣− β1 (4.92)

F1(M12, M1p, M21) = log
∣∣∣IN1

+ ρα11H11(Q12 +Q1p)H
†
11 + ρα21H21Q2H

†
21

∣∣∣− β1 (4.93)

F1(M12, M13, M1p, M21) = log
∣∣∣IN1

+ ρα11H11(Q12 +Q13 +Q1p)H
†
11 + ρα21H21Q2H

†
21

∣∣∣− β1 (4.94)

F1(M1, M21) = log |IN1
+ ρα11H11Q1H

†
11 + ρα21H21Q2H

†
21| − β1 (4.95)

F2(M2p) = log
∣∣∣IN2

+ ρα12H12(Q13 +Q1p)H
†
12 + ρα22H22Q2pH

†
22

∣∣∣− β2 (4.96)

F2(M2) = log
∣∣∣IN2

+ ρα12H12(Q13 +Q1p)H
†
12 + ρα22H22Q2H

†
22

∣∣∣− β2 (4.97)

F2(M12, M2p) = log
∣∣∣IN2

+ ρα12H12(Q12 +Q13 +Q1p)H
†
12 + ρα22H22Q2pH

†
22

∣∣∣− β2 (4.98)

F2(M12, M2) = log
∣∣∣IN2

+ ρα12H12(Q12 +Q13 +Q1p)H
†
12 + ρα22H22Q2H

†
22

∣∣∣− β2 (4.99)

F2(M123, M12, M2p) = log |IN2
+ ρα12H12Q1H

†
12 + ρα22H22Q2pH

†
22| − β2 (4.100)

F2(M123, M12, M2) = log |IN2
+ ρα12H12Q1H

†
12 + ρα22H22Q2H

†
22| − β2 (4.101)
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F3(M3) = log

∣∣∣∣IN3
+ ρα13H13(Q12 +Q1p)H

†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β3 (4.102)

F3(M13, M3) = log

∣∣∣∣IN3
+ ρα13H13(Q12 +Q13 +Q1p)H

†
13 +

ρα33

M3
H33H

†
33

∣∣∣∣− β3 (4.103)

F3(M123, M13, M3) = log |IN3 + ρα13H13Q1H
†
13 +

ρα33

M3
H33H

†
33| − β3 (4.104)

β1 , min{N1,M2} log
1 +M2

M2
(4.105)

β2 , log
∣∣max

{
ζ−1
min, 1

}∣∣+ r123 log

(
1 +

σ2
max(Λ12)

σ2
min(Λ12)

)
+ (r − r13) (4.106)

β3 , log
∣∣max

{
ζ−1
min, 1

}∣∣+ r123 log

(
1 +

σ2
max(Λ13)

σ2
min(Λ13)

)
+ (r − r12), (4.107)

ζmin ,
r

λ2
max(Vr)

+ (M1 − r)+

ζmax ,
r

λ2
min(Vr)

+ (M1 − r)+

and the covariance matrices Q1p, Q12, Q13 are given by the restrictions (4.141)-(4.145), and Q2p by (4.149).

Theorem 4.2. For the MIMO one-to-three IC, the region Rin defined by (4.108)-(4.139) is achievable, i.e.,

Rin ⊆ C.

Rin(F1, F2, F3) ,
{

(R1, R2, R3) ∈ R3
+ :

R1 ≤ F1(M1) (4.108)

R1 ≤ F1(M13, M1p) + F2(M123, M12, M2p) (4.109)

R2 ≤ F2(M2) (4.110)

R2 ≤ F1(M1p, M21) + F2(M2p) (4.111)

R3 ≤ F3(M3) (4.112)

R1 +R2 ≤ F1(M1, M21) + F2(M2p) (4.113)

R1 +R2 ≤ F1(M13, M1p) + F2(M123, M12, M2) (4.114)

R1 +R2 ≤ F1(M13, M1p, M21) + F2(M123, M12, M2p)

R1 +R3 ≤ F1(M12, M1p) + F3(M123, M13, M3) (4.115)

R1 +R3 ≤ F1(M1p) + F2(M12, M2p) + F3(M123, M13, M3) (4.116)
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R1 +R3 ≤ F1(M1p) + F2(M123, M12, M2p) + F3(M13, M3) (4.117)

R1 +R2 +R3 ≤ F1(M1p) + F2(M12, M2) + F3(M123, M13, M3) (4.118)

R1 +R2 +R3 ≤ F1(M1p) + F2(M123, M12, M2) + F3(M13, M3) (4.119)

R1 +R2 +R3 ≤ F1(M1p, M21) + F2(M12, M2p) + F3(M123, M13, M3) (4.120)

R1 +R2 +R3 ≤ F1(M1p, M21) + F2(M123, M12, M2p) + F3(M13, M3) (4.121)

R1 +R2 +R3 ≤ F1(M12, M1p, M21) + F2(M2p) + F3(M123, M13, M3) (4.122)

R1 + 2R2 ≤ F1(M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2) (4.123)

2R1 +R2 ≤ F1(M13, M1p) + F1(M1, M21) + F2(M123, M12, M2p) (4.124)

2R1 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.125)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.126)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p, M21) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.127)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M1, M21) + F2(M12, M2p) + F3(M123, M13, M3) (4.128)

2R1 +R2 +R3 ≤ F1(M1p) + F1(M1, M21) + F2(M123, M12, M2p) + F3(M13, M3) (4.129)

R1 + 2R2 +R3 ≤ F1(M1p, M21) + F2(M2p) + F2(M12, M2) + F3(M123, M13, M3) (4.130)

R1 + 2R2 +R3 ≤ F1(M1p, M21) + F2(M2p) + F2(M123, M12, M2) + F3(M13, M3) (4.131)

2R1 + 2R2 +R3 ≤ F1(M1p) + F1(M13, M1p, M21) + F2(M12, M2p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.132)

2R1 + 2R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2) + F3(M123, M13, M3) (4.133)

2R1 + 2R2 +R3 ≤ F1(M1p, M21) + F1(M12, M13, M1p, M21) + F2(M2p) + F2(M123, M12, M2p) + F3(M123, M13, M3)

(4.134)

2R1 +R2 + 2R3 ≤ F1(M1p) + F1(M12, M1p, M21) + F2(M12, M2p) + 2F3(M123, M13, M3) (4.135)

2R1 +R2 + 2R3 ≤ F1(M1p) + F1(M12, M1p, M21) + F2(M123, M12, M2p) + F3(M13, M3) + F3(M123, M13, M3) (4.136)

3R1 +R2 +R3 ≤ F1(M1p) + F1(M12, M13, M1p) + F1(M1, M21) + F2(M123, M12, M2p) + F3(M123, M13, M3) (4.137)

3R1 + 2R2 + 2R3 ≤ 2F1(M1p) + F1(M12, M13, M1p, M21) + F2(M12, M2p) + F2(M123, M12, M2) + 2F3(M123, M13, M3)

(4.138)



94

2R1 + 3R2 +R3 ≤ F1(M1p, M21) + F1(M12, M13, M1p, M21) + 2F2(M2p) + F2(M123, M12, M2) + F3(M123, M13, M3)
}

(4.139)

Proof. As stated in the beginning of this subsection, we apply the inner bound in Theorem 4.1 for the

DM IC-ZIC to derive the single region inner bound for the MIMIO IC-ZIC. We explicitly pick one coding

distribution from the set of distributions defined in Definition 4.2 which adapts the MIMO IC-ZIC channel

parameters, allowing for auxiliary and input random vectors over continuous alphabets for the MIMO IC-

ZIC. First, time sharing is disabled and all the transmitters use full power. The coding scheme is motivated

from the three level superposition coding scheme for the MIMO one-to-three IC (c.f. Section 3.4.2) and

Karmakar-Varanasi coding scheme for the MIMO two-user IC. More specifically, since Tx1 produces one-

sided interferences to both Rx2-Rx3, we employ the same three-level superposition coding at Tx1 as in the

MIMO one-to-three IC (c.f. Section 3.4.2). Let W123 ∼ CN (0, Q123), W12 ∼ CN (0, Q12), W13 ∼ CN (0, Q13)

and W1p ∼ CN (0, Q1p) be four independent Gaussian random vectors to encode M123, M12, M13 and M1p. The

transmitted signal X1 is the direct sum of W123, W12, W13 and W1p scaled by the transmit power, i.e.,

X1 =
√
P1(W123 +W12 +W13 +W1p).

Define

Vp , U†−1

 V †−1
r 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+

 (4.140)

as a linear precoding matrix, and let the covariance matrices Q123, Q12, Q13 and Q1p satisfy the restrictions

given by (4.141)-(4.153).

Q1p

=
Vp

Tr(VpV
†
p )

IM1
+

 ρα12Σ†12Σ12 + ρα13Σ†13Σ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P (4.141)

Q12 +Q1p
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=



Vp

Tr(VpV
†
p )

IM1
+

 ρα13Σ†13Σ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 ≥ INR13

Vp

Tr(VpV
†
p )

IM1 +

 ρα12Λ†12Λ12 + ρα13Σ†13Σ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 < INR13

(4.142)

Q13 +Q1p

=



Vp

Tr(VpV
†
p )

IM1 +

 ρα13Λ†13Λ13 + ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 ≥ INR13

Vp

Tr(VpV
†
p )

IM1
+

 ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 < INR13

(4.143)

Q12 +Q13 +Q1p

=



Vp

Tr(VpV
†
p )

IM1
+

 ρα13Λ†13Λ13 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 ≥ INR13

Vp

Tr(VpV
†
p )

IM1 +

 ρα12Λ†12Λ12 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †P INR21 < INR13

(4.144)

Q1

, Q12 +Q13 +Q1p +Q123 =
VpV

†
p

Tr(VpV
†
p )
. (4.145)

This coding scheme was shown to be GDoF optimal for the MIMO one-to-three IC in Section 3.4.4, a special

case of the MIMO IC-ZIC when the cross link channel gain h21 = 0. This three level superposition coding

ensures that the contributions of W1p at Rx2 and Rx3 have covariances that satisfy

ρα12H12Q1pH
†
12 � IN2

and ρα13H13Q1pH
†
13 � IN3

.

Therefore, W1p arrives at the Rx2 and Rx3 under the noise floor. Hence, W1p is used to encode M1p, the
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private message to Rx1. The contribution of W1p +W13 at Rx2 has covariance which satisfies

ρα12H12(Q12 +Q1p)H
†
12 � IN2

,

and the contribution of W1p +W12 at Rx3 has covariance which satisfies

ρα13H13(Q12 +Q1p)H
†
13 � IN3

.

Hence, W12 and W13 are the auxiliary random vectors to encode M12 and M13, respectively. The random

vector W123 is received above the noise floor at all three receivers; therefore, it is used to encode the sub-

message M123 to be decoded by Rx1-Rx3. Besides, it is not difficult to see that (4.144) results from adding

the left and right hand sides of (4.143) and (4.142) and subtracting from that result the left and right hand

sides of (4.141).

Using the inequality (4.29), the trace Tr(VpV
†
p ) can be upper and lower bounded as

Tr(VpV
†
p ) = Tr(V †p Vp) ≥

r

λ2
max(Vr)

+ (M1 − r)+ = ζmin (4.146)

and

Tr(VpV
†
p ) = Tr(V †p Vp) ≤

r

λ2
min(Vr)

+ (M1 − r)+ = ζmax, (4.147)

respectively.

Since Tx2 only interferes Rx1, we let Tx2 perform Karmakar-Varanasi type coding scheme [27],

where the transmitted signal X2 is the sum of the auxiliary random vectors W21 ∼ CN (0, Q21) and W2p ∼

CN (0, Q2p) scaled by the transmit power, i.e.

X2 =
√
P2 (W21 +W2p) .

The random vectors W21 and W2p are used to encode M21 and M2p, respectively. The entire signal is trans-

mitted with full power and with covariance

Q2 , Cov[X2] =
1

M2
IM2 . (4.148)
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The covariance matrices Q21 and Q2p are chosen as follows.

Q2p =
1

M2
(IM2

+ ρα21H†21H21)−1 (4.149)

Q21 =
1

M2
IM2 −Q2p (4.150)

This coding scheme was first proposed in [26] for the two-user MIMO interference channel. It was shown

therein that the resulting rate region is within constant gap to the capacity region of the MIMO two-user

interference channel [27, Theorem 2].

Lastly, we let Tx3 perform single user coding with Gaussian random codebook to encode the intended

message M3 directly to the transmitter signal Xn
3 at full power, i.e.

Cov[X3] =
P3

M3
IM3 .

Note there is no water-filling at Tx3, and the total transmit power is uniformly and independently allocated

among all transmit antennas. The earlier works in [39] and Section 5.3.1 already pointed out that the scaled

identity matrix is sufficient to achieve constant-gap-to-capacity region for the MIMO MAC (hence also for

MIMO P2P channel). For the purpose of deriving GDoF region for the MIMO IC-ZIC, water-filling for Tx3

turns out to be unnecessary, which will be shown in the gap result in Section 4.4.3.

With the distributions for the inputs specified this way, we are now ready to obtain the inner bound

of Theorem 4.2 from Theorem 4.1. Please refer to Appendix (B.2) for the evaluation of the set functions in

Rin for the MIMO IC-ZIC.

Let us take a deeper look at the coding scheme. We temporarily assume INR12 ≥ INR13 before the

end of this subsection. From the restrictions (4.141)-(4.145), the individual covariance matrices Q12, Q13

and Q123 can be obtained as (4.151)-(4.153).

Q12 =
Vp

Tr(VpV
†
p )

·

 ρα12

1+ρα12
I†12I12 + (Ir + ρα13Λ†13Λ13)−1 − (Ir + ρα12Λ†12Λ12 + ρα13Λ†13Λ13)−1

0(M1−r)×(M1−r)


· V †p (4.151)
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Q13 =
Vp

Tr(VpV
†
p )

 ρα13

1+ρα13
I†13I13

0(M1−r)×(M1−r)

V †p (4.152)

Q123 =
VpV

†
p

Tr(VpV
†
p )
−Q1p −Q12 −Q13 =

Vp

Tr(VpV
†
p )

 Ir − (Ir + ρα13Λ†13Λ13)−1

0(M1−r)×(M1−r)

V †p

(4.153)

Let X123, X12, X13 and X1p be zero mean Gaussian vectors with identity covariance matrices, of length r123,

r12, r13 and M1, respectively. With their chosen covariance matrices, the auxiliary random vectors W123,

W12, W13 and W1p can be alternatively written as follows.

W123 =

r123∑
k=1

√
1

Tr(VpV
†
p )

√
1− 1

1 + ρα13λ2
13,r−r13+k

V [r−r13+k]
p X

(k)
123 (4.154)

W12 =

r−r13∑
k=1

√
1

Tr(VpV
†
p )
V [k]
p

√
1− 1

1 + ρα12
X

(k)
12

+

r12∑
k=r−r13+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα13λ2
13,k

− 1

1 + ρα12λ2
12,k + ρα13λ2

13,k

V [k]
p X

(k)
12 (4.155)

W13 =

r−r12∑
k=1

√
1

Tr(VpV
†
p )
V [r12+k]
p

√
1− 1

1 + ρα13
X

(k)
13 (4.156)

W1p =

r−r13∑
k=1

√
1

Tr(VpV
†
p )

√
1

1 + ρα12
V [k]
p X

(k)
1p +

r12∑
k=r−r13+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα12λ2
12,k + ρα13λ2

13,k

V [k]
p X

(k)
1p

+

r∑
k=r12+1

√
1

Tr(VpV
†
p )

√
1

1 + ρα13
V [k]
p X

(k)
1p +

M∑
k=r+1

√
1

Tr(VpV
†
p )
V [k]
p X

(k)
1p (4.157)

In the aforementioned equation, X
(k)
123 denotes the k-th data stream to Rx1-Rx3 that carries the public

sub-message (k-th public data stream) along the transmit direction V
[r−r13+k]
p . It needs to be decoded by all

three receivers. Similarly, X
(k)
12 is the k-th public data stream to Rx1-Rx2 along the transmit direction V

[k]
p .

The data streams X12 can be divided into two groups. The first r− r13 data streams are sent at power level

ρ0, and they are received by Rx1 and Rx2, but not Rx3, since they are sent along the null space of 〈H13〉.

The other r123 data streams will be sent at power level ρ−α13 so they are decodable at Rx1 and Rx2, but

not Rx3, since they arrive under the noise floor at Rx3. The data streams X13 are received by Rx1 and Rx3,

but not Rx2, as they are sent along the null space of 〈H12〉. The data streams X1p are received by Rx1 only,

as a result of which we call them private data streams. The first r − r13 private data streams are hearable

by Rx2, but not Rx3; therefore, they are transmitted at power level ρ−α12 so they arrive at Rx2 under the
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noise floor. The data streams X
(r−r13+1)
1p , · · · , X(r12)

1p are hearable by both Rx2 and Rx3, and they are sent

at power level ρ−α12 so they arrive at Rx2 and Rx3 under the noise floor. The next r − r12 private data

streams X
(r12+1)
1p , · · · , X(r)

1p are hearable by Rx3, but not Rx2, and they are sent at power level ρ−α13 so they

arrive below the noise floor at Rx3. Lastly, when there are more transmit antennas at Tx1 than the sum

of receiver antennas at Rx2 and Rx3, the precoding matrix Vp lets M1 − r private data streams (the last

part on the right hand of (4.157)) transmit along the null space of

〈
H12

H13

〉
, and these data streams are

exclusively hearable by Rx1; thus, these private data streams are sent at power level ρ0.

Similarly, let X21 and X2p be zero mean Gaussian vectors with identity covariance matrices, of length

min{M2, N1} and M2 respectively. According to their chosen covariance matrices, the auxiliary random

vectors W21 and W2p can be alternatively written as

W21 =

min{M2,N1}∑
k=1

V
[k]
21

√
P2

M2

√
ρα21σ2

21,k

1 + ρα21σ2
21,k

X
(k)
21 (4.158)

W2p =

min{M2,N1}∑
k=1

V
[k]
21

√
P2

M2

√
1

1 + ρα21σ2
21,k

X
(k)
2p +

M2∑
k=min{M2,N1}+1

V
[k]
21

√
P2

M2
X

(k)
2p . (4.159)

The public data streams X21 need to be decoded by both Rx1 and Rx2, and the private data streams X2p

are decoded by Rx2 only. The first min{M2, N1} private data streams in X2p are sent at power level ρ−α21

and are received under the noise floor at Rx1. These data streams are the first part in the right hand side of

(4.159). When there are more transmit antennas at Tx2 than receive antennas at Rx1, there are M2 −N2

data streams sent along the null space of 〈H21〉 causing no interference to Rx1; therefore, these data streams

are sent at power level ρ0 which are the second part in the right hand side of (4.159). The non-interfering

signal X3 can also be rewritten in terms of independent data streams

X3 =

min{M3,N3}∑
k=1

√
P3

M3
X

(k)
3 , (4.160)

and it is only to be received and decoded by Rx3.

4.4.2 The Outer Bound

We derive a single region outer bound for the MIMO IC-ZIC in this subsection. We provide various

genie informations to Rxi to produce upper bounds on Ri in several different forms, and then linearly combine
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those upper bounds across i ∈ {1, 2, 3} to obtain sum rate upper bounds. To present the outer bound, we

define relevant set functions in Definition 4.5. The outer bound itself is stated in Theorem 4.3.

Definition 4.5. Define the following matrices given by (4.161)-(4.164)

K1p ,
(
IM1 + ρα12H†12H12 + ρα13H†13H13

)−1

(4.161)

K12,1p ,


(
IM1

+ ρα13H†13H13

)−1

INR12 ≥ INR13(
IM1 + ρα12G†12G12 + ρα13H†13H13

)−1

INR12 < INR13

(4.162)

K13,1p ,


(
IM1

+ ρα13G†13G13 + ρα12H†12H12

)−1

INR12 ≥ INR13(
IM1

+ ρα12H†12H12

)−1

INR12 < INR13

(4.163)

K12,13,1p ,


(
IM1 + ρα13G†13G13

)−1

INR12 ≥ INR13(
IM1

+ ρα12G†12G12

)−1

INR12 < INR13

(4.164)

K2p ,
(
IM1

+ ρα21H†21H21

)−1

(4.165)

and the set functions listed in (4.166)-(4.184).

F 1(M1p) , log(IN1 + ρα11H11K1pH
†
11) (4.166)

F 1(M13, M1p) , log(IN1 + ρα11H11K13,1pH
†
11) (4.167)

F 1(M12, M1p) , log(IN1
+ ρα11H11K12,1pH

†
11) (4.168)

F 1(M12, M13, M1p) , log(IN1
+ ρα11H11K12,13,1pH

†
11) (4.169)

F 1(M1) , log(IN1
+ ρα11H11H

†
11) (4.170)

F 1(M1p, M21) , log(IN1
+ ρα11H11K1pH

†
11 + ρα21H21H

†
21) (4.171)

F 1(M13, M1p, M21) , log(IN1
+ ρα11H11K13,1pH

†
11 + ρα21H21H

†
21) (4.172)

F 1(M12, M1p, M21) , log(IN1
+ ρα11H11K12,1pH

†
11 + ρα21H21H

†
21) (4.173)

F 1(M12, M13, M1p, M21) , log(IN1
+ ρα11H11K12,13,1pH

†
11 + ρα21H21H

†
21) (4.174)

F 1(M1, M21) , log(IN1
+ ρα11H11H

†
11 + ρα21H21H

†
21) (4.175)

F 2(M2p) , log(IN2 + ρα22H22K2pH22) (4.176)
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F 2(M2) , log(IN2
+ ρα22H22H

†
22) (4.177)

F 2(M12, M2p) , log(IN2
+ ρα12H12K12,13,1pH

†
12 + ρα22H22K2pH

†
22) (4.178)

F 2(M12, M2) , log(IN2
+ ρα12H12K12,13,1pH

†
12 + ρα22H22H

†
22) (4.179)

F 2(M123, M12, M2p) , log(IN2
+ ρα12H12H

†
12 + ρα22H22K2pH

†
22) (4.180)

F 2(M123, M12, M2) , log(IN2 + ρα12H12H
†
12 + ρα22H22H

†
22) (4.181)

F 3(M3) , log(IN3 + ρα33H33H
†
33) (4.182)

F 3(M13, M3) , log(IN3 + ρα13H13K12,13,1pH
†
13 + ρα33H33H

†
33) (4.183)

F 3(M123, M13, M3) , log(IN3 + ρα13H13H
†
13 + ρα33H33H

†
33) (4.184)

Theorem 4.3. For the MIMO IC-ZIC, let

η ,



log
∣∣max

{
λ2

max(Vr), 1
}∣∣

+r123 log
(

1 +
σ2
max(Λ13)

σ2
min(Λ12)

)
INR12 ≥ INR13

log
∣∣max

{
λ2

max(Vr), 1
}∣∣

+r123 log
(

1 +
σ2
max(Λ12)

σ2
min(Λ13)

)
INR12 < INR13

, (4.185)

and the capacity region C is contained in Ro which is defined by inequalities (4.186) (4.213), i.e., C ⊆ Ro.

Ro(F̄1, F̄2, F̄3) ,
{

(R1, R2, R3) ∈ R3
+ :

R1 ≤ F̄1(M1) (4.186)

R2 ≤ F̄2(M2) (4.187)

R3 ≤ F̄3(M3) (4.188)

R1 +R2 ≤ F̄1(M1, M21) + F̄2(M2p) (4.189)

R1 +R2 ≤ F̄1(M13, M1p) + F̄2(M123, M12, M2) + η (4.190)

R1 +R2 ≤ F̄1(M13, M1p, M21) + F̄2(M123, M12, M2p) + η (4.191)

R1 +R3 ≤ F̄1(M12, M1p) + F̄3(M123, M13, M3) (4.192)

R1 +R2 +R3 ≤ F̄1(M1p) + F̄2(M12, M2) + F̄3(M123, M13, M3) (4.193)
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R1 +R2 +R3 ≤ F̄1(M1p) + F̄2(M123, M12, M2) + F̄3(M13, M3) + η (4.194)

R1 +R2 +R3 ≤ F̄1(M1p, M21) + F̄2(M12, M2p) + F̄3(M123, M13, M3) (4.195)

R1 +R2 +R3 ≤ F̄1(M1p, M21) + F̄2(M123, M12, M2p) + F̄3(M13, M3) + η (4.196)

R1 +R2 +R3 ≤ F̄1(M12, M1p, M21) + F̄2(M2p) + F̄3(M123, M13, M3) (4.197)

R1 + 2R2 ≤ F̄1(M13, M1p, M21) + F̄2(M2p) + F̄2(M123, M12, M2) + η (4.198)

2R1 +R2 ≤ F̄1(M13, M1p) + F̄1(M1, M21) + F̄2(M123, M12, M2p) + η (4.199)

2R1 +R2 +R3 ≤ F̄1(M1p) + F̄1(M12, M13, M1p) + F̄2(M123, M12, M2) + F̄3(M123, M13, M3) + η (4.200)

2R1 +R2 +R3 ≤ F̄1(M1p) + F̄1(M12, M13, M1p, M21) + F̄2(M123, M12, M2p) + F̄3(M123, M13, M3) + η (4.201)

2R1 +R2 +R3 ≤ F̄1(M1p) + F̄1(M1, M21) + F̄2(M12, M2p) + F̄3(M123, M13, M3) (4.202)

2R1 +R2 +R3 ≤ F̄1(M1p) + F̄1(M1, M21) + F̄2(M123, M12, M2p) + F̄3(M13, M3) + η (4.203)

R1 + 2R2 +R3 ≤ F̄1(M1p, M21) + F̄2(M2p) + F̄2(M12, M2) + F̄3(M123, M13, M3) (4.204)

R1 + 2R2 +R3 ≤ F̄1(M1p, M21) + F̄2(M2p) + F̄2(M123, M12, M2) + F̄3(M13, M3) + η (4.205)

2R1 + 2R2 +R3 ≤ F̄1(M1p) + F̄1(M13, M1p, M21) + F̄2(M12, M2p) + F̄2(M123, M12, M2) + F̄3(M123, M13, M3) + η

(4.206)

2R1 + 2R2 +R3 ≤ F̄1(M1p) + F̄1(M12, M13, M1p, M21) + F̄2(M2p) + F̄2(M123, M12, M2) + F̄3(M123, M13, M3) + η

(4.207)

2R1 + 2R2 +R3 ≤ F̄1(M1p, M21) + F̄1(M12, M13, M1p, M21) + F̄2(M2p) + F̄2(M123, M12, M2p) + F̄3(M123, M13, M3) + η

(4.208)

2R1 +R2 + 2R3 ≤ F̄1(M1p) + F̄1(M12, M1p, M21) + F̄2(M12, M2p) + 2F̄3(M123, M13, M3) (4.209)

2R1 +R2 + 2R3 ≤ F̄1(M1p) + F̄1(M12, M1p, M21) + F̄2(M123, M12, M2p) + F̄3(M13, M3) + F̄3(M123, M13, M3) + η

(4.210)

3R1 +R2 +R3 ≤ F̄1(M1p) + F̄1(M12, M13, M1p) + F̄1(M1, M21) + F̄2(M123, M12, M2p) + F̄3(M123, M13, M3) + η

(4.211)

3R1 + 2R2 + 2R3 ≤ 2F̄1(M1p) + F̄1(M12, M13, M1p, M21) + F̄2(M12, M2p) + F̄2(M123, M12, M2) + 2F̄3(M123, M13, M3)
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+ η (4.212)

2R1 + 3R2 +R3 ≤ F̄1(M1p, M21) + F̄1(M12, M13, M1p, M21) + 2F̄2(M2p) + F̄2(M123, M12, M2) + F̄3(M123, M13, M3)

+ η
}

(4.213)

Proof Outline. The fundamental principle in the proof of the outer bound is to construct virtual channels

whose outputs are then regarded as genie informations to each receiver to decode its intended signal (and

therefore making the receiver more interference-resilient). We construct three genie informations (T123, T12

and T13) which are identically distributed as the channel side informations S123, S12 and S13, respectively,

but each pair of corresponding “T” and “S” random variables (with the same subscripts) are independent

conditioned on X1. The upper bound is proved in three steps. First, by providing one or more of those

genie informations to Rxi, i ∈ {1, 2, 3}, we derive a series of individual upper bounds on Ri. Some of the

bounds may contain entropy terms which cannot be single-letterized. There is one set of individual upper

bounds for R1, but there are two sets of individual upper bounds for R2 (and also R3) for the two cases

INR12 ≥ INR13 and INR12 < INR13. Secondly, we linearly combine those individual upper bounds across

i ∈ {1, 2, 3} to obtain sum rate upper bounds with unsingle-letterized entropy terms vanished. We then

get two intermediate outer bounds in terms of channel side and genie information symbols for the cases

INR12 ≥ INR13 and INR12 < INR13. We unify these two outer bounds into one bound. This bound is a

union of polytopes over all admissible input distributions. Finally, we optimize the input distributions in

the context of MIMO setting and plug in the optimized distribution to obtain a single region output bound

in terms of the channel parameters. Detailed proof is relegated to Appendix B.3.

4.4.3 Quantifiable Gap

An achievable rate region of a MIMO IC-ZIC is within gap (n1, n2, n3) to its capacity if for any given

rate tuple (R1, R2, R3) ∈ C, the rate tuple (R1 − n1, R2 − n2, R3 − n3) is within that achievable region. We

call the tuple ni the individual gap on Ri. Since we do not know the capacity region C, we quantify the gap

between the inner bound Rin and the outer bound Ro, and the resulting gap will be an upper bound of the

gap between Rin and C. The main result in this subsection is stated in Theorem (4.4).
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Theorem 4.4. Define the following constants.

γ11 , min{M1, N1} log
(
ζmax max

{
λ2

max(Vr), 1
})+

(4.214)

γ12 , min{M1, N2} log
(
ζmax max

{
λ2

max(Vr), 1
})+

(4.215)

γ21 , min{M2, N1} logM2 (4.216)

γ22 , min{M2, N2} logM2 (4.217)

δ1 , min{M1 +M2, N1} log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
(4.218)

δ2 , min{M1 +M2, N2}t log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
(4.219)

δ3 , min{M1 +M3, N3} log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M3

}
. (4.220)

n(1) , (n
(1)
1 , n

(1)
2 , n

(1)
3 ) , (β1 + δ1 + η, β2 + δ2, β3 + δ3)

n(2) , (n
(2)
1 , n

(2)
2 , n

(2)
3 ) , (β1 + β2 + γ11 + γ12 + η, β1 + β2 + γ21 + γ22, β3 + δ3)

For any (R1, R2, R3) ∈ Ro, let

(R̃1, R̃2, R̃3) =

((
R1 −max{n(1)

1 , n
(2)
1 }
)+

,
(
R2 −max{n(1)

2 , n
(2)
2 }
)+

, (R3 − β3 − δ3))
+

)
,

then we have

(R̃1, R̃2, R̃3) ∈ Rin.

Proof Outline. There are 33 inequalities inRin. Taking out (4.109), (4.111), (4.116), (4.117) and (4.125) from

Rin, there is a one-to-one correspondence between the rest of the 28 inequalities inRin and the 28 inequalities

in Ro. More specifically, the k-th inequality in the rest of the 28 inequalities of Rin and the k-th inequality

in Ro differ by the set function name (Fi(·) and F̄i(·)) and a constant η (excepting the first three inequalities,

which do not have η). To demonstrate the gap, we first quantify the gap between the 28 inequalities in Rin

and Ro as (n
(1)
1 , n

(1)
2 , n

(2)
3 ). Then we quantify the five gaps from (4.109) to (4.186), (4.111) to (4.187), (4.116)

to (4.192), (4.117) to (4.192) and (4.125) to (4.186)+(4.192). We choose another gap tuple (n
(2)
1 , n

(2)
2 , n

(2)
3 )

to settle these five gaps. The overall individual gap ni is determined as max(n
(1)
i , n

(2)
i ). Please refer to

Appendix B.4 for the detailed proof.
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4.5 The GDoF Region of the MIMO IC-ZIC

The generalized degrees of freedom (GDoF) is an information-theoretic performance metric that char-

acterizes the number of independent data streams a network could support simultaneously among all users

at high SNR regime. In this section, we first compute the GDoF region of the MIMO IC-ZIC, and then

focus on the achievability of the key corner points in the GDoF region and the sum GDoF curve in various

numerical examples. In what follows, we define ᾱ = {α11, α22, α33, α12, α13, α21}.

4.5.1 GDoF Region

The definition of GDoF region of the MIMO IC-ZIC is given in Definition 4.6.

Definition 4.6. The generalized degrees of freedom region of a MIMO IC-ZIC D(ᾱ) ∈ R3
+ with a capacity

region C(ᾱ) is defined as{
(d1, d2, d3) : di = lim

ρ→∞

Ri
log ρ

, i ∈ {1, 2, 3} and (R1, R2, R3) ∈ C(ᾱ)

}
. (4.221)

In the rest of the chapter, we call (d1, d2, d3) a GDoF tuple. To compute the GDoF region in this section, we

need a slightly different version of Lemma 5.1 which is stated in Fact 4.2. They differ in that the matrices

H1, H2, · · · , Hn only need to be full rank w.p.1 here, whereas the entries of the matrices in Lemma 5.1

are drawn i.i.d. from a continuous unitarily invariant distribution. Fact 4.2 can be proved with similar

mathematical induction as in the proof of Lemma 5.1.

Fact 4.2. Let H1 ∈ Cu×ui , H2 ∈ Cu×u2 , · · · , Hn ∈ Cu×un be n full rank matrices (w.p.1) such that

H = [H1, H2, · · · , Hn] is also full rank w.p.1. Then, for asymptotic ρ

log det

(
Iu +

n∑
i=1

ρaiHiH
†
i

)
= g(u, (a1, u1), · · · , (an, un)) log(ρ) +O(1) (4.222)

where for any (u, u1, · · · , un) ∈ Z+(n+1) and (a1, · · · , an) ∈ Rn, the function g(u, (a1, u1), · · · , (an, un)) is

defined as

g(u, (a1, u1), (a2, u2), · · · , (an, un))

=

in∑
i=i1

min {u, ui1} a+
i1

+ min
{

(u− ui1)
+
, ui2

}
a+
i2

+ · · ·+ min


u− in−1∑

j=1

uj

+

, uin

 a+
in


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for i1 6= i2 6= · · · 6= in ∈ {1, · · · , n} such that ai1 ≥ ai2 ≥ · · · ≥ ain .

To present the GDoF region, we need to define the relevant set functions in Definition 4.7. The GDoF

region is stated in Theorem 4.5.

Definition 4.7. Define the set functions given by (4.223)-(4.241).

f1(M1p)

,


g (N1, ((α11 − α12)+, r12) , ((α11 − α13)+, r − r12) , (α11,M1 − r)) INR12 ≥ INR13

g (N1, ((α11 − α12)+, r − r13) , ((α11 − α13)+, r13) , (α11,M1 − r)) INR12 < INR13

(4.223)

f1(M13, M1p)

, g
(
N1,

(
(α11 − α12)+, r12

)
, (α11,M1 − r12)

)
(4.224)

f1(M12, M1p)

, g
(
N1,

(
(α11 − α13)+, r13

)
, (α11,M1 − r13)

)
(4.225)

f1(M12, M13, M1p)

,


g (N1, ((α11 − α13)+, r123) , (α11,M1 − r123)) INR12 ≥ INR13

g (N1, ((α11 − α12)+, r123) , (α11,M1 − r123)) INR12 < INR13

(4.226)

f1(M1)

, min{M1, N1}α11 (4.227)

f1(M1p, M21)

,


g (N1, ((α11 − α12)+, r12) , ((α11 − α13)+, r − r12) , (α11,M1 − r), (α21,M2)) INR12 ≥ INR13

g (N1, ((α11 − α12)+, r − r13) , ((α11 − α13)+, r13) , (α11,M1 − r), (α21,M2)) INR12 < INR13

(4.228)

f1(M13, M1p, M21)

, g
(
N1,

(
(α11 − α12)+, r12

)
, (α11,M1 − r12), (α21,M2)

)
(4.229)

f1(M12, M1p, M21)

, g
(
N1,

(
(α11 − α13)+, r13

)
, (α11,M1 − r13), (α21,M2)

)
(4.230)
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f1(M12, M13, M1p, M21)

,


g (N1, ((α11 − α13)+, r123) , (α11,M1 − r123), (α21,M2)) INR12 ≥ INR13

g (N1, ((α11 − α12)+, r123) , (α11,M1 − r123), (α21,M2)) INR12 < INR13

(4.231)

f1(M1, M21)

, g (N1, (α11,M1), (α21,M2)) (4.232)

f2(M2p)

, g
(
N2,

(
(α22 − α21)+,min{M2, N1}

)
,
(
α22, (M2 −N1)+

))
(4.233)

f2(M2)

, min{M2, N2}α22 (4.234)

f2(M12, M2p)

,



g (N2, ((α12 − α13), r123) , (α12, r12 − r123), ((α22 − α21)+,min{M2, N1}) , INR12 ≥ INR13

(α22, (M2 −N1)+))

g (N2, (α12, r12 − r123), ((α22 − α21)+,min{M2, N1}) , (α22, (M2 −N1)+)) INR12 < INR13

(4.235)

f2(M12, M2)

,


g (N2, ((α12 − α13), r123) , (α12, r12 − r123), (α22,M2)) INR12 ≥ INR13

g (N2, (α12, r12 − r123), (α22,M2)) INR12 < INR13

(4.236)

f2(M123, M12, M2p)

, g
(
N2, (α12,M1),

(
(α22 − α21)+,min{M2, N1}

)
,
(
α22, (M2 −N1)+

))
(4.237)

f2(M123, M12, M2)

, g (N2, (α12,M1), (α22,M2)) (4.238)

f3(M3)

, min{M3, N3}α33 (4.239)

f3(M13, M3)
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,


g (N3, (α13, r13 − r123), (α33,M3)) INR12 ≥ INR13

g (N3, (α13 − α12, r123), (α13, r13 − r123), (α33,M3)) INR12 < INR13

(4.240)

f3(M123, M13, M3)

, g (N3, (α13,M1), (α33,M3)) (4.241)

Theorem 4.5. The GDoF region D(ᾱ) of the MIMO IC-ZIC is given by (4.242)-(4.269).

D(ᾱ) ,
{

(d1, d2, d3) ∈ R3
+ :

d1 ≤ f1(M1) (4.242)

d2 ≤ f2(M2) (4.243)

d3 ≤ f3(M3) (4.244)

d1 + d2 ≤ f1(M1, M21) + f2(M2p) (4.245)

d1 + d2 ≤ f1(M13, M1p) + f2(M123, M12, M2) (4.246)

d1 + d2 ≤ f1(M13, M1p, M21) + f2(M123, M12, M2p) (4.247)

d1 + d3 ≤ f1(M12, M1p) + f3(M123, M13, M3) (4.248)

d1 + d2 + d3 ≤ f1(M1p) + f2(M12, M2) + f3(M123, M13, M3) (4.249)

d1 + d2 + d3 ≤ f1(M1p) + f2(M123, M12, M2) + f3(M13, M3) (4.250)

d1 + d2 + d3 ≤ f1(M1p, M21) + f2(M12, M2p) + f3(M123, M13, M3) (4.251)

d1 + d2 + d3 ≤ f1(M1p, M21) + f2(M123, M12, M2p) + f3(M13, M3) (4.252)

d1 + d2 + d3 ≤ f1(M12, M1p, M21) + f2(M2p) + f3(M123, M13, M3) (4.253)

d1 + 2d2 ≤ f1(M13, M1p, M21) + f2(M2p) + f2(M123, M12, M2) (4.254)

2d1 + d2 ≤ f1(M13, M1p) + f1(M1, M21) + f2(M123, M12, M2p) (4.255)

2d1 + d2 + d3 ≤ f1(M1p) + f1(M12, M13, M1p) + f2(M123, M12, M2) + f3(M123, M13, M3) (4.256)

2d1 + d2 + d3 ≤ f1(M1p) + f1(M12, M13, M1p, M21) + f2(M123, M12, M2p) + f3(M123, M13, M3) (4.257)

2d1 + d2 + d3 ≤ f1(M1p) + f1(M1, M21) + f2(M12, M2p) + f3(M123, M13, M3) (4.258)

2d1 + d2 + d3 ≤ f1(M1p) + f1(M1, M21) + f2(M123, M12, M2p) + f3(M13, M3) (4.259)
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d1 + 2d2 + d3 ≤ f1(M1p, M21) + f2(M2p) + f2(M12, M2) + f3(M123, M13, M3) (4.260)

d1 + 2d2 + d3 ≤ f1(M1p, M21) + f2(M2p) + f2(M123, M12, M2) + f3(M13, M3) (4.261)

2d1 + 2d2 + d3 ≤ f1(M1p) + f1(M13, M1p, M21) + f2(M12, M2p) + f2(M123, M12, M2) + f3(M123, M13, M3) (4.262)

2d1 + 2d2 + d3 ≤ f1(M1p) + f1(M12, M13, M1p, M21) + f2(M2p) + f2(M123, M12, M2) + f3(M123, M13, M3) (4.263)

2d1 + 2d2 + d3 ≤ f1(M1p, M21) + f1(M12, M13, M1p, M21) + f2(M2p) + f2(M123, M12, M2p) + f3(M123, M13, M3)

(4.264)

2d1 + d2 + 2d3 ≤ f1(M1p) + f1(M12, M1p, M21) + f2(M12, M2p) + 2f3(M123, M13, M3) (4.265)

2d1 + d2 + 2d3 ≤ f1(M1p) + f1(M12, M1p, M21) + f2(M123, M12, M2p) + f3(M13, M3) + f3(M123, M13, M3) (4.266)

3d1 + d2 + d3 ≤ f1(M1p) + f1(M12, M13, M1p) + f1(M1, M21) + f2(M123, M12, M2p) + f3(M123, M13, M3) (4.267)

3d1 + 2d2 + 2d3 ≤ 2f1(M1p) + f1(M12, M13, M1p, M21) + f2(M12, M2p) + f2(M123, M12, M2) + 2f3(M123, M13, M3)

(4.268)

2d1 + 3d2 + d3 ≤ f1(M1p, M21) + f1(M12, M13, M1p, M21) + 2f2(M2p) + f2(M123, M12, M2) + f3(M123, M13, M3)
}

(4.269)

Proof. In Definition 4.6, the GDoF region is defined by the capacity region C. We do not have the exact

capacity region C for the MIMO IC-ZIC, but Theorem 4.4 suggests that both Rin and Ro are within a SNR

and INR independent gap to the capacity. Because a finite number of bits are insignificant in the GDoF

computation, the GDoF region can be obtained from either Rin or Ro. To characterize the GDoF region,

we just compute the limit of each set function in Definition 4.5 when ρ→∞.

By Fact 4.2, the limit of set functions like (4.170) or (4.175) can immediately be obtained because

these set functions are already expressed in the form of log(I +
∑n
i=1HiH

†
i ). However, the limit of set

functions like (4.167) cannot be inferred immediately. We alternatively rewrite terms like H11K13,1pH
†
11 as

a sum of terms in the form of HH† and then apply Fact 4.2. Please refer to (A.46) in Appendix A.5 for the

detailed computation of limit of (4.167), which leads to (4.224) of the GDoF region.

Example 4.1. Consider the MIMO IC-ZIC with the following parameters: α11 = α22 = α33 = 1, α12 =

α21 = 0.6, α13 = 0.3, M1 = N1 = 3 and M2 = M3 = N2 = N3 = 2. Given this setting, we have r = 3,
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Figure 4.6: GDoF region of a (3,3,2,2,2,2) MIMO IC-ZIC with α12 = α21 = 0.6 and α13 = 0.3

r123 = 1 and r12 = r13 = 2. The GDoF region is plotted in Fig. 4.6.

We provide an overview of the GDoF region in Example 4.1. The MIMO IC-ZIC consists of two

ZICs as its sub-channels. The tuples on the (d1, d2, 0) form the GDoF region of the two-user IC with INR

ρα12 and ρα21 which is consistent with the plot in [26, Fig. 2]. The tuples on the (d1, 0, d3) plane form the

GDoF region of a two-user ZIC with INR ρα13 . The rate tuples on d3 vs d2 plane when d1 = 0 reflect the

GDoF region of a parallel channel between Tx2/Rx2 and Tx3/Rx3 while Tx1 is off. The sum GDoF plane

is G-H-I-M-N, and any GDoF tuple on this plane achieves the max sum GDoF 4.9.

Example 4.2. Continue with the MIMO one-to-three IC in Example 4.1. We describe the structure of the

transmitted signals from the three transmitters in terms of independent data streams according to (4.154)-

(4.157) in Section 4.4.1. The coding scheme suggests we send the following data streams at Tx1.

W123 =

√
1

Tr(VpV
†
p )
V (2)
p

√
1− 1

1 + ρ0.3λ2
13,r−r13+k

X
(1)
123

W12 =

√
1

Tr(VpV
†
p )

(
V (1)
p

√
1− 1

1 + ρ0.6
X

(1)
12 + V (2)

p

√
1

1 + ρ0.3λ2
13,2

− 1

1 + ρ0.6λ2
12,2 + ρ0.3λ2

13,2

X
(2)
12

)

W13 =

√
1

Tr(VpV
†
p )
V (3)
p

√
1− 1

1 + ρ0.3
X

(1)
13

W1p =

√
1

Tr(VpV
†
p )

(
V (1)
p

√
1

1 + ρ0.6
X

(1)
1p + V (2)

p

√
1

1 + ρ0.6λ2
12,k + ρ0.3λ2

13,k

X
(2)
1p + V (3)

p

√
1

1 + ρ0.3
X

(3)
1p

)
.
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More specifically, there is one public data stream X
(1)
123 for all receivers, two public data streams X

(1)
12 and X

(2)
12

for Rx1 and Rx2, one public data stream X
(1)
13 for Rx1 and Rx3, and three private data streams for Rx1 only.

The data streams X
(1)
123, X

(1)
12 and X

(1)
13 are sent at power level ρ0. The data stream X

(2)
12 is sent at power level

ρ−0.3 as this is the part to be decoded by Rx2, but treated as noise by Rx3. The first private data stream

X
(1)
1p is sent at power level ρ−0.6 so that Rx2 could treat it as noise. The second private data stream X

(2)
1p is

sent at power level ρ−0.6 so that both Rx2 and Rx3 could treat it as noise. The third private data stream

X
(3)
1p is sent at power level ρ−0.3 so Rx3 could treat it as noise.

The coding scheme also implies the following data streams sent at Tx2.

X2 =

2∑
k=1

V
[k]
21

√
ρ0.6σ2

21,k

2(1 + ρ0.6σ2
21,k)

X
(k)
21 +

2∑
k=1

V
[k]
21

√
1

2(1 + ρ0.6σ2
21,k)

X
(k)
2p .

Tx2 has two data streams, X
(1)
21 and X

(2)
21 , for its common sub-message to be decoded at both Rx1 and Rx2,

as well as two private data streams X
(1)
2p and X

(2)
2p for its private message to be decoded at Rx2 while arriving

under the noise floor at Rx1.

The data streams sent at Tx3 are simply

X3 =

2∑
k=1

1√
2
X

(k)
3 .

Tx3 sends two private streams, X
(1)
3 and X

(2)
3 , to Rx3 only.

In what follows, we analyze the achievability of the five corner points on the max sum GDoF plane

in Example 4.1. For each corner point, we provide GDoF distribution among the data streams revealed in

Example 4.2. The detailed GDoF allocation on each data stream will be illustrated via multi-dimensional

signal partitioning introduced in Chapter 2. Each GDoF allocation will be plotted in a signal diagram

with each of the received independent (transmit) signal directions (from the receiver’s perspective) plotted

as a multi-leveled bar whose top level marks its signal strength, and the vertical height of each partition

is proportional to the DoFs carried by it. The underlying coding scheme can be directly read from the

GDoF allocation. A transmitter encodes all data streams on a (transmit) signal direction by multi-level

superposition coding from bottom to top (refer to the GDoF allocations figures for the position of the data

streams on each signal direction), and the receiver decodes the signal by either successive cancellation or joint
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decoding. No cross signal level is employed, and each data stream is encoded independently. The underlying

coding scheme can be different from the coding scheme we used to derive the inner bound in Section 4.4.1.

In all the GDoF analysis figures in the rest of the chapter, transmit signal directions V
[1]
p , V

[2]
p , and V

[3]
p are

sorted from left to right in sequence at Rx1, andV
[1]
21 and V

[2]
21 are shown from left to right at Rx2, and V

[2]
p

and V
[3]
p are shown from left to right at Rx3.

4.5.1.1 The achievability of point G (1.1,1.8,2)

We choose the GDoF distribution d
(1)
123 = 0, d

(1)
12 = 0.2, d

(2)
12 = 0, d

(1)
13 = 0, d

(1)
1p = 0.2, d

(2)
1p = 0,

d
(3)
1p = 0.7, d

(1)
21 = 0.4, d

(2)
21 = 0.6, d

(1)
2p = d

(2)
2p = 0.4 and d

(1)
3 = d

(2)
3 = 1. The GDoF allocation among the

three transmitters are illustrated in Fig. 4.7. This allocation guarantees an interference free channel between

Tx3 and Rx3. Due to the precoding (by matrix Vp), the second and third transmit directions V
[2]
p and V

[3]
p

do not appear at Rx2 and Rx3. All the signal levels at both Rx2 and Rx3 are fully utilized.

Rx1 first removes the effect of X
(3)
1p from Y1 by zero forcing, i.e. projecting the received signal onto

the 2-D signal space which is perpendicular to H11V
[3]
p . In the resulting 2-D signal space, Tx1, Tx2 and

Rx1 form a (2,2,2) MIMO MAC channel, and their contributions X
(1)
12 , X

(1)
1p , X

(1)
21 and X

(2)
21 are present. Given

the power level assignment in Fig. 4.7, X
(1)
12 can be recovered by treating the W21 and W1p as noise, resulting

in GDoF d
(1)
12 = 0.2. Since X

(1)
12 also needs to be decoded by Rx2, it remains to verify if the same GDoF

can be achieved at Rx2. Subtracting the contribution of X
(1)
12 , we decode X

(1)
21 , X

(2)
21 and X

(1)
1p jointly, which

gives GDoF d
(1)
12 = 0.4, d

(2)
21 = 0.6 and d

(1)
1p = 0.2, respectively, where achievability of d

(1)
21 and d

(2)
21 has to be

confirmed at Rx2 later. After the recovery of X
(1)
12 , X

(1)
1p , X

(1)
21 and X

(2)
21 , we remove their effects from Y1, so

X
(3)
1p can be recovered, resulting in GDoF d

(3)
1p = 0.7.

At Rx2, the power level assignment of X
(1)
21 , X

(2)
21 and X

(1)
12 allow us to decode them jointly by treating

X
(1)
2p and X

(2)
2p as noise, resulting in GDoF d

(1)
21 = 0.4, d

(2)
21 = 0.6 and d

(1)
12 = 0.2, which are consistent with the

achievable GDoF allowed by these data streams at Rx1. Removing the effect of X
(1)
21 , X

(2)
21 and X

(1)
12 , we see

an interference free 2× 2 MIMO P2P channel between Tx2 and Rx2, and X
(1)
2p and X

(2)
2p can be decoded with

d
(1)
2p = d

(2)
2p = 0.4.

At Rx3, the interference from Tx1 arrives under the noise floor. So Rx3 simply decodes its intended
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Rx1 Rx2 Rx3

Figure 4.7: GDoF allocation at point G

signal, which leads to d
(1)
3 = d

(2)
3 = 1.

4.5.1.2 The achievability of point H (1.4,1.8,1.7)

We choose the GDoF distribution d
(1)
123 = 0, d

(1)
12 = 0.2, d

(2)
12 = 0, d

(1)
13 = 0.3, d

(1)
1p = 0.2, d

(2)
1p = 0,

d
(3)
1p = 0.7, d

(1)
21 = 0.4, d

(2)
21 = 0.6, d

(1)
2p = d

(2)
2p = 0.4 d

(1)
3 = 1 and d

(2)
3 = 0.7. The GDoF allocation among the

three transmitters is illustrated in Fig. 4.8. Comparing to the GDoF allocation for point G, the difference

is that X
(1)
13 carries GDoF 0.3. The decoding procedure to recover X

(1)
12 , X

(1)
1p , X

(1)
21 and X

(2)
21 at Rx1 is exactly

the same as the procedure at corner point G. But after removing the effects of X
(1)
12 , X

(1)
1p , X

(1)
21 and X

(2)
21 from

Y1, Rx1 decodes X
(1)
13 and X

(3)
1p successively, which gives d

(1)
13 = 0.3 and d

(3)
1p = 0.7. The decoding procedure

at Rx2 is exactly the same as the procedure at the corner point G. Rx3 decodes X
(1)
3 , X

(2)
3 and X

(1)
13 jointly,

resulting in d
(1)
3 = 1, d

(2)
3 = 0.7 and d

(1)
13 = 0.3.

4.5.1.3 The achievability of point I (1.8,1.6,1.5)

We choose the GDoF distribution d
(1)
123 = 0.2, d

(1)
12 = 0.2, d

(2)
12 = 0, d

(1)
13 = 0.3, d

(1)
1p = 0.2, d

(2)
1p = 0.2,

d
(3)
1p = 0.7, d

(1)
21 = d

(2)
21 = 0.4, d

(1)
2p = d

(2)
2p = 0.4, d

(1)
3 = 0.8 and d

(2)
3 = 0.7. The GDoF allocation among

the three transmitters is illustrated in Fig. 4.9. The decoding procedures at Rx1-Rx3 can be learnt from the

decoding procedures at the corner points G and H.
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Rx1 Rx2 Rx3

Figure 4.8: GDoF allocation at point H

Rx1 Rx2 Rx3

Figure 4.9: GDoF allocation at point I
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Rx1 Rx2 Rx3

Figure 4.10: GDoF allocation at point M

4.5.1.4 The achievability of point M (2.5,0.9,1.5)

We choose the GDoF distribution d
(1)
123 = 0.2, d

(1)
12 = 0.4, d

(2)
12 = 0.1, d

(1)
13 = 0.3, d

(1)
1p = d

(2)
1p = 0.4,

d
(3)
1p = 0.7, d

(1)
21 = d

(2)
21 = 0.2, d

(1)
2p = 0.2, d

(2)
2p = 0.3, d

(1)
3 = 0.8 and d

(2)
3 = 0.7. The GDoF allocation among

the three transmitters is illustrated in Fig. 4.10. The decoding procedures at Rx1-Rx3 can be learnt from

the decoding procedures at the corner points G and H.

4.5.1.5 The achievability of point N (2,0.9,2)

We choose the GDoF distribution d
(1)
123 = 0, d

(1)
12 = 0.4, d

(2)
12 = 0.1, d

(1)
13 = 0, d

(1)
1p = d

(2)
1p = 0.4,

d
(3)
1p = 0.7, d

(1)
21 = d

(2)
21 = 0.2, d

(1)
2p = 0.2, d

(2)
2p = 0.3 and d

(1)
3 = d

(2)
3 = 1. The GDoF allocation among the

three transmitters is illustrated in Fig. 4.11. The decoding procedures at Rx1-Rx3 can be learnt from the

decoding procedures at the corner points G and H.

4.5.2 The Sum GDoF Curve

Next, we keep the number of transmit and receive antennas unchanged in Example (4.1), and let α

run through the internal [0, 2] to see the variation of the sum GDoF. The sum GDoF vs α curve is plotted

in Fig. 4.12. There are five corner points in the middle of the curve. At the corner point (0.25,4.75), the

interferences between Tx1/Rx1 and Tx2/Rx2 turn moderate, i.e. α12 = α21 ∈ [0.5, 1] and the interference

between Tx1 to Rx1 stays weak. At the corner point (0.5,4.5), the interferences between Tx1/Rx1 and
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Rx1 Rx2 Rx3

Figure 4.11: GDoF allocation at point N

Tx2/Rx2 turn strong (α12 = α21 = [1, 2]) and the interference from Tx1 to Rx3 turns moderate. At the

corner point (1,5), the interferences between Tx1/Rx1 and Tx2/Rx2 turn very strong (α12 = α21 ≥ 2), and

the interference from Tx1 to Rx3 turns strong. We analyze the achievability of two sum GDoF optimal

corner points (1/3, 5) and (0.8, 4.8) on the curve. By Theorem 4.5, the equal GDoF tuples (5/3, 5/3, 5/3)

and (1.6,1.6,1.6) are achievable. A coding scheme to achieve (5/3, 5/3, 5/3) when α = 1/3 is illustrated in

Fig. 4.13. Two coding schemes to achieve (1.6,1.6,1.6) when α = 0.8 are illustrated in Fig. 4.14 and Fig. 4.15.

Note in the latter two coding schemes, there are signal levels overlapping between two different data streams

at Rx1 and Rx2; however, it is clear that with the power level assignments given in the diagram, both Rx1

and Rx2 could recover their received data streams with joint decoding.

Next, let us take an example when INR12 < INR13. Consider a (3, 3, 2, 2, 2, 2) IC-ZIC with α12 =

α21 = α and α13 = 2α. Its sum GDoF curve is plotted in Fig. 4.16. The achievability of GDoF tuple

(14/9,14/9,14/9) when α = 1/3 is illustrated in Fig. 4.17.

Lastly, we plot the sum GDoF curve of a SISO one-to-three IC in Fig. 4.18. There is only one antenna

at each transmitter and each receiver, and again we choose α13 = α and α12 = 2α.

4.6 Conclusion

We derived a pair of single region inner and outer bounds which are within a SNR/INR independent

gap. An explicit coding scheme which incorporates three level superposition coding at Tx1 (as in the MIMO
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Figure 4.12: Sum GDoG Curve of a (3,3,2,2,2,2) MIMO IC-ZIC with α12 = α21 = 2α and α13 = α

Rx1 Rx2 Rx3

Figure 4.13: A GDoF allocation to achieve (5/3,5/3,5/3) when α = 1/3

Rx1 Rx2 Rx3

Figure 4.14: A GDoF allocation to achieve (1.6,1.6,1.6) when α = 0.8
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Rx1 Rx2 Rx3

Figure 4.15: Another GDoF allocation to achieve (1.6,1.6,1.6) when α = 0.8
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Figure 4.16: Sum GDoG Curve of a (3,3,2,2,2,2) MIMO IC-ZIC with α12 = α21 = α and α13 = 2α
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Rx1 Rx2 Rx3

Figure 4.17: A GDoF allocation to achieve (14/9,14/9,14/9) when α = 1/3
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Figure 4.18: Sum GDoG Curve of a SISO IC-ZIC with α12 = α21 = 2α and α13 = α
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one-to-three IC, c.f. Section 3.4.2), Karmakar-Varanasi type coding at Tx2 and non-water filling single

user coding at Tx3 turns out to be GDoF optimal. The GDoF region of the MIMO IC-ZIC is then fully

characterized, and we numerically studied achievability of the GDoF region and the sum GDoF curve of

several channel examples.



Chapter 5

Constant-Gap-to-Capacity and Generalized Degrees of Freedom Regions of the

MIMO MAC-IC-MAC

5.1 Introduction

Spectrum sharing allows the coexistence of heterogeneous wireless networks on the same frequency

band. Managing the interference in the same band between such networks is critical to ensure high spec-

trum efficiency. The MAC-IC-MAC is an abstract channel model inspired by practical co-band network

scenarios where two multiple-access channels (MACs) mutually interfere with each other, but in which there

is interference only from one of the transmitters of each MAC to the receiver of the other MAC (see [37]

for illustrations of practical settings of the MAC-IC-MAC). An approximate capacity region for the scalar

Gaussian MAC-IC-MAC within a two bit gap was found in [37].

Multiple-antenna transmission and reception have been widely adopted in many wireless systems in

the last decade. Hence, the approximate capacity region of the MIMO MAC-IC-MAC and its achievability

analysis can provide the relevant understanding and insight on how coding schemes might be designed for

modern co-band network communications in settings that involve terminals with multiple antennas. Fig. 5.1

is an illustration of the MIMO MAC-IC-MAC.
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Figure 5.1: MIMO MAC-IC-MAC
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5.1.1 Main Contributions

5.1.1.1 A constant-gap-to-capacity region for the MIMO MAC-IC-MAC

The constant-gap-to-capacity region is based on the inner and outer bounds on the semi-deterministic

MAC-IC-MAC obtained by the authors in [37]. We explicitly specify one coding scheme and propose its

achievable rate region, a single polytope, to be the inner bound on the capacity region of the MIMO Gaus-

sian MAC-IC-MAC. This scheme simply lets interfering transmitters employ the Karmakar-Varanasi (KV)

superposition coding scheme of [27] proposed therein for the 2-user MIMO interference channel, and the

non-interfering transmitters employ single-user Gaussian codebooks with scaled identity covariance matrices

(i.e., with no beamforming or water-filling). These two coding schemes for interfering and non-interfering

transmitters by themselves are known to achieve constant-gap-to-capacity regions in the MIMO interference

channel [27] and the MIMO MAC [39], respectively. We hence unify and generalize those two results in

this chapter. The outer bound on the capacity region in the form of a single polytope is characterized

by specifying extremal input and genie signal distributions in the union-of-polytopes outer bound for the

semi-deterministic MAC-IC-MAC proposed by the author in the previous work [37], in the context of the

MIMO MAC-IC-MAC. The gap between the inner and outer bounds, while dependent on the numbers of

transmit/receive antennas and the numbers of users in each cell, is shown to be independent of all chan-

nel matrices and signal- and interference-to-noise ratios. Hence, the explicit inner (or outer) bound is an

approximation of the capacity region that is guaranteed to be within a constant gap.

5.1.1.2 Analysis of the GDoF region of the MIMO MAC-IC-MAC

The generalized degrees of freedom (GDoF) region is characterized and the achievability of its key

corner points is analyzed using the multidimensional signal-level partitioning technique introduced in Chapter

2. We also study the symmetric GDoF curve under various antenna configurations and analyze the role of

the non-interfering transmitters in affecting the symmetric GDoF curve. When the interference strength

is weak or strong enough, the non-interfering transmitters can fully occupy the receiver’s signal partitions

which cannot be utilized by the interfering transmitter, which improves the cell spectrum efficiency. This
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phenomenon has been discovered in our previous work on the scalar Gaussian MAC-IC-MAC [37]. Moreover,

when a receiver has more antennas than the interfering transmitter does, the non-interfering transmitters

saturate receiver’s signal dimensions which are not used by the signal from the interfering transmitter, which

also improves the cell spectrum efficiency.

5.1.2 Related Previous Work

The capacity of the time-invariant Gaussian MIMO point-to-point (P2P) channel was characterized

in [42], where the optimal Gaussian random coding scheme can be specified via beamforming and water-

filling power allocation via the singular value decomposition of the channel matrix. The capacity region of

the discrete-memoryless multiple access channel (MAC) was characterized by Ahlswede [1] and Liao [31].

In the MIMO Gaussian MAC, Gaussian inputs are optimal and the determination of the boundary of the

capacity region via a maximization of the weighted sum rate over input covariances at each transmitter is

a convex optimization problem. Multiple access channels are the best understood multi-terminal networks

with the capacity region determined by Liao [31], Ahlswede [1] and Wyner [47]. For the fading MIMO MAC

with finite discrete fading state, Mohseni et al. [33] characterized its capacity and power regions under

various power and rate constraints. Romero and Varanasi [39] studied the fading MIMO MAC with general

(private and common) message sets and with discrete fading states and showed that employing scaled identity

covariance matrices at every transmitter is sufficient to achieve a rate region that is within a constant gap

to the capacity region. Their result evidently holds when specialized to the time-invariant MIMO Gaussian

MAC with only private messages. Hence, the result in [39] motivates the use of that simple coding scheme

at the non-interfering transmitters in the MIMO MAC-IC-MAC. The constant-gap-to-capacity result of [39]

specialized to the MIMO MAC with private messages is discussed in Section 5.3.1.

Some of the key papers on two-user interference channels are [7, 10, 11, 15, 23, 26, 27, 30, 43]. For the

discrete memoryless two-user interference channel, the Han-Kobayashi achievable scheme (HK scheme) in

[23], as well as its alternative, the CMG scheme of [11], give the (same) best inner bound to the capacity region

known to date. Telatar and Tse [43] found an outer bound for the class of semi-deterministic interference

channels and quantified the gap to the CMG inner bound. Etkin et al [15] characterized approximate capacity
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regions to within one bit gap. Two constant-gap-to-capacity regions for the MIMO interference channel were

obtained in [27]. The first region was obtained using the so-called simple coding scheme, referred to herein

as the Karmakar-Varanasi (or KV) coding scheme. The second region was obtained by the explicit coding

scheme in [27], which represents a choice of one out of three coding schemes (including the simple coding

scheme) depending on the rate-pair to be achieved. The latter region was shown to be within a smaller

gap to the capacity region [27]. The KV coding scheme involves message splitting (into private and public

messages) at each transmitter with Gaussian random coding distributions. Each sub-message’s covariance

matrix incorporate transmit beamforming and signal-level superposition coding. The GDoF region of MIMO

interference channel was established in [26] with an in-depth analysis.

Bounds on the capacity region of the semi-deterministic MAC-IC-MAC were obtained in [37]. Two

inner bounds [37, (46) and (53)] and an outer bound [37, Theorem 3] were provided therein, with both

inner bounds being within a quantifiable gap of the proposed outer bound as shown in [37, Theorems 4 and

5]. For instance, it was shown in [37] that the Telatar-Tse type coding scheme of [43] at the interfering

transmitters and single-user random coding at the non-interfering transmitters is sufficient to achieve an

inner bound [37, (53)] which is within a quantifiable gap of the outer bound. However, those bounds on

the semi-deterministic MAC-IC-MAC do not directly yield explicit or closed-form constant-gap-to-capacity

region for the MIMO MAC-IC-MAC. This is because each of these inner or outer bounds is the union of

rate regions over its associated distributions. A constant-gap-to-capacity region for the Gaussian scalar

MAC-IC-MAC was given in [37] as well. The authors determined a single region inner bound which is

within two-bit gap to the capacity region. To achieve this inner bound, the interfering transmitters perform

Etkin-Tse-Wang type coding [15] and the non-interfering transmitters perform single-user random coding

with Gaussian codebooks.

5.1.3 Notations

The notation used throughout this chapter will be consistent with that in [37] except messages will be

denoted by the symbol M instead of M , since the latter is used to represent the number of transmit antennas.

The j-th user in the i-th cell is indexed as i.j, where i ∈ {1, 2}, j ∈ {1, · · · ,Ki} and Ki is the number of
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the user in cell-i. Hence, the j-th transmitter in the i-th cell is denoted as Txi.j, whose message, transmit

symbol, rate and degrees of freedom (GDoF) are denoted as Mi.j , Xi.j , Ri.j and di.j , respectively.

Let Θi be the set of indices of all users in the i-th cell, i.e. Θi = {i.1, · · · , i.Ki}. For the sake of

convenience, the Ki-tuples of messages, input symbols, rates and DoFs of users in cell i are denoted as MΘi ,

XΘi , RΘi and dΘi . For example, the input symbols of cell-1 {X1.1, · · · , X1.K1} are denoted simply as XΘ1 .

Similarly, MΘ1 denotes the K1-tuple of messages {M1.1, · · · , M1.K1}, RΘ1 denotes the K1-tuple of their rates

{R1.1, · · · , R1.K1
}, and dΘ1

denotes the K1-tuple of their DoFs {d1.1, · · · , d1.K1
}.

Throughout, we let Ωi denote any non-empty subset of Θi, i.e., Ωi ∈ 2Θi\∅, where 2Θi is the power

set of Θi. Moreover, we let Υi denote any non-empty subset of Θi that necessarily contains the element i.1.

The sets Ῡi and Ω̄i are defined as the complements of Υi and Ωi relative to Θi. Furthermore, the collection

of input symbols of users indexed by elements of Υi or Ωi are written as XΥi and XΩi .

We use capital letters to denote random vectors, such as Xi.j , the underlying alphabets are denoted

by Xi.j , and specific values by xi.j . We use the usual short hand notation for (conditional) probability distri-

butions where the lower case arguments also denote the random variables whose (conditional) distribution

is being considered. For example, p(yi|xi.j) denotes pYi|Xi,j (yi|xi,j).

In the MIMO MAC-IC-MAC to be defined in the next section, a signal path from the transmitter

Txi.j to the receiver Rxi is represented as i.j → i, so that hi.j→i and Hi.j→i denote the path attenuation and

transfer matrix from Txi.j to Rxi respectively. Similarly, the signal-to-noise ratio (SNR) and interference-

to-noise ratio (INR) from Txi.j and Txi′.j to Rxi are written as SNRi.j→i and INRi′.j→i, respectively, where

i, i
′ ∈ {1, 2} and i 6= i

′
.

The achievable schemes of this chapter involve message splitting at the two transmitters that cause

interference at their unintended receiver. The common sub-message sent by Txi.1 and decoded at both

receivers is denoted as mi.1c. The private sub-message of Txi.1 to be decoded only at the intended receiver

Rxi is denoted as mi.1p. The rates of mi.1c and mi.1p are written as Ri.1c and Ri.1p and their GDoFs as di.1c

and di.1p, respectively.

We use C to denote the set of complex numbers and Z ∼ CN (0, IN ) to denote a N -dimensional

random vector Z that is distributed according to the complex circularly symmetric Gaussian distribution
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with zero mean and covariance matrix IN (the N × N identity matrix). Both det(·) or | · | are used to

represent the determinant of a matrix. The number of antennas at Txi.j and Rxi are denoted as Mi.j and

Ni. The Frobenius norm of a matrix H is denoted by ‖H‖2F, i.e., ‖H‖2F = Tr(HH†), where Tr(·) denotes the

trace of its matrix argument. We use UN×N to represent the set of N ×N unitary matrices. The k-th row

and column of the matrix H are denoted as H(k) and H [k] respectively. A sub-matrix obtained by taking

the rows k1 to k2 of the matrix H is written as H(k1:k2). A sub-matrix obtained by taking the columns k1

to k2 of the matrix H is written as H [k1:k2]. For two matrices A and B, if (A−B) is positive definite (p.d.)

or positive semi-definite (p.s.d), we write the relationship as A � B or A � B, respectively. We use o(1) to

represent a term which approaches zero asymptotically and O(1) to represent a term which is bounded above

by some constant. The function (M)+ returns the maximum value of M and 0, i.e., (M)+ = max{M, 0}.

The rest of the chapter is organized as follows. Section II describes the channel models and formulates

the problem; Section III presents the constant-gap-to-capacity region of the MIMO MAC-IC-MAC; Section

IV introduces multidimensional signal-level partitioning; Section V characterizes the GDoF region, and

investigates the achievability of the key corner points in the GDoF region as well as the symmetric GDoF

curve; Section VI concludes the chapter. Some detailed proofs are relegated to appendices.

5.2 Channel Model and Problem Formulation

A (K1,K2) MIMO (multiple input multiple output) Gaussian MAC-IC-MAC (MIMO MAC-IC-MAC

for short) consists two uplink cells: (Tx1.1,· · · ,Tx1.K1→Rx1) and (Tx2.1,· · · ,Tx2.K2→Rx2). Two inter-

ference links exist from Tx1.1 to Rx2 and from Tx2.1 to Rx1. There are Mi.j transmit antennas at Txi.j

and Ni receive antennas at Rxi, where j ∈ {1, · · · ,Ki} for some i ∈ {1, 2}. Let Hi.j→i ∈ CNi×Mi.j and

Hi.j,i′ ∈ CNi′×Mi.j be the channel matrices from Txi to Rxi and Rxi
′

respectively, whose entries are drawn

i.i.d. from a continuous and unitarily invariant distribution [45] i.e., UHi.j→iV is identically distributed to

Hi.j→i for any UNi ∈ UNi×Ni and V ∈ UMi.j×Mi.j (also UHi.j→i′V is identically distributed to Hi.j→i′ ).

Such matrices Hi,j→i and Hi.1→i′ are full rank with probability one (w.p.1). At time t, Txi choose a vector
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Xi.j,t ∈ CMi.j×1 and send it over the channel. The per-codeword transmission power is constrained as

1

n

n∑
t=1

Tr(xi.j,tx
†
i.j,t) ≤ Pi.j .

The input-output relation of this channel can be written as

Y1 =

K1∑
j=1

h1.j→1H1.j→1X1.j

+ h2.1→1H2.1→1X2.1 + Z1

,

K1∑
j=1

h1.j→1H1.j→1X1.j

+ S2 (5.1)

Y2 = h1.1→2H1.1→2X1.1 +

K2∑
j=1

h2.j→2H2.j→2X2.j

+ Z2

,

K2∑
j=1

h2.j→2H2.j→2X2.j

+ S1 (5.2)

The Gaussian noise vector Zi ∈ CN (0, INi) is independent of the input signals and the channel gains. The

channel side information

Si = hi.1→i′Hi.1→i′Xi.1 + Zi′ i 6= i
′
, i, i

′
∈ {1, 2} (5.3)

includes both the interference from Xi and noise to Rxi
′
. The signal to noise ratio (SNR) and interference

to noise ratio (INR) at receiver Rxi are defined as

SNRi.j→i = Pi.j |hi.j→i|2 , ραi.j→i (5.4)

INRi.1→i′ = Pi.1|hi.1→i′ |
2 , ραi.1→i′ , (5.5)

where ρ is a nominal value for SNR and INR.

We shall frequently apply the singular value decomposition (SVD) of the cross link matrix Hi.1→i′ ,

Hi.1→i′ = Ui.1→i′Σi.1→i′V
†
i.1→i′ , (5.6)

in the rest of the chapter. The matrix Hi.1→i′ has rank min{Mi.1, Ni′} w.p.1. In the SVD of Hi.1→i′ , the

rectangular diagonal matrix Σi.1→i′ has Ni′ rows and Mi columns, and min{Mi, Ni′} nonzero value on its

diagonal, denoted as σi.1→i′ ,1, σi.1→i′ ,2, · · · , σi.1→i′ ,min{Mi.1,Ni′ }
, which are the singular values of Hi.1→i′ .

The product Σ†
i.1→i′Σi.1→i

′ , which will be frequently referred in the rest of the chapter, is a diagonal matrix
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of size Mi.1×Mi.1. The first min{Mi.1, Ni′} of its diagonal entries are zero, and the rest (Mi.1−Ni′ )+ zero.

Hence, the matrix Σ†
i.1→i′Σi.1→i

′ has the following structure

Σ†
i.1→i′Σi.1→i

′ =

 [Σ†
i.1→i′Σi.1→i

′ ]+

0(Mi.1−Ni′ )
+

 , (5.7)

where [Σ†
i.1→i′Σi.1→i

′ ]+ is defined to be a square diagonal matrix of size min{Mi.1, Ni′} × min{Mi.1, Ni′}

with all the nonzero diagonal values of Σ†
i.1→i′Σi.1→i

′ on its diagonal, i.e.,

[Σ†
i.1→i′Σi.1→i

′ ]+ ,
σ2
i.1→i′ ,1

. . .

σ2
i.1→i′ ,min{Mi.1,Ni′ }

 . (5.8)

The mathematical formulation describing the encoders, decoders, error events, rates, and achievable

rate region are consistent with the definitions in [37, Section II-A] and we do not repeat them here for

brevity. We denote the capacity region of a MIMO MAC-IC-MAC by C, which is the closure of all achievable

rate-tuples of this channel.

5.3 A Constant-Gap-to-Capacity Region

A constant-gap-to-capacity region of a network is an achievable region whose rate tuple (R1, · · · , Rn)

lies within (n1, · · ·nK) bits of the capacity region. The value of ni is independent of the channel matrices and

the SNR and INR of all links. The definition of constant-gap-to-capacity region for MIMO MAC-IC-MAC

is stated in Definition 5.1.

Definition 5.1. An achievable rate region of MIMO MAC-IC-MAC is within gap

(nΘ1
, nΘ2

) = (n1.1, . . . , n1.K , n2.1, · · · , n2.K) to its capacity region if for any given rate tuple (RΘ1
, RΘ2

) ∈ C,

the rate tuple (R̃Θ1 , R̃Θ2) = (R1.1 − n1.1, · · · , R1.K − n1.K , R2.1 − n2.1, · · · , R2.K − n2.K) lies within the

achievable region.

In this section, we first introduce the known results on constant-gap-to-capacity regions for the K-user

MIMO MAC and the two-user MIMO IC. We then unify and generalize those results to obtain an explicit
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achievable rate region and an explicit outer bound for the MIMO MAC-IC-MAC, and show that the two are

within a constant gap of each other, and hence, to the capacity region.

5.3.1 The MIMO MAC

In the special case where INRi.1→i′ = 0 for i = 1, 2 the MIMO MAC-IC-MAC becomes two decoupled

MACs. We hence review here the constant-gap-to-capacity region for the K-user MIMO MAC. Consider the

model for the receiver output

Y =

K∑
i=1

HiXi + Z

where Hi is the channel matrix from i-th transmitter to the receiver and input signal Xi satisfies the power

constraint E(X†iXi) ≤ Pi for i ∈ {1, · · · ,K}. The capacity region of MIMO MAC is the convex closure

of the union of achievable rate regions over all admissible input distributions. Earlier works by [9, 48] have

shown that Gaussian inputs are sufficient to achieve the capacity region of MIMO MAC and the convex hull

operation is not necessary. Let Qi = Cov[Xi] be the covariance matrix of input signal Xi. Then, the capacity

region is the union of rate regions over all admissible covariance matrices (Q1, · · · , QK). We present this

union region capacity in Fact 5.1. Zero-mean input is assumed since non-zero mean input only contributes

to power inefficiency.

Fact 5.1. [21, Sec III.B] The capacity region of K-user MIMO MAC is

CMAC =
⋃

Tr(Qi)≤Pi
∀i∈{1,··· ,K}

{
(R1, · · · , RK) ∈ RK+ :

∑
i∈S

Ri ≤ log |IN +
∑
i∈S

HiQiH
†
i |

∀S ⊆ {1, · · · ,K}} (5.9)

Determining the optimal covariance matrices (Q1, · · · , QK) on any boundary point on CMAC is a

convex optimization problem [48]. An efficient algorithm known as iterative water-filling was found in [48]

to solve for the sum capacity.

Next, we specify an explicit inner bound for the MIMO MAC and demonstrate that this bound lies

within a constant gap to its capacity. The result is a special case of [39, Corollary 1]. We take the inner
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bound to be the one obtained with Qi = 1
Mi
IMi

for i ∈ {1, · · · ,K}, and obtain a single region inner bound

RMAC,in of CMAC, which is

RMAC,in =
{

(R1, · · · , RK) ∈ RK+ :∑
i∈S

Ri ≤ log |IN +
∑
i∈S

1

Mi
HiH

†
i |

∀S ⊆ {1, · · · ,K}} (5.10)

On the other hand, if we choose each covariance matrix to be identity matrix, i.e., Qi = IMi in (5.9), the

sum rate bounds of (5.9) will be relaxed due to the fact that log det(·) is a monotonically increasing function

over the cone of p.s.d. matrices, which yields an explicit outer bound for CMAC:

RMAC,o =
{

(R1, · · · , RK) ∈ RK+ :∑
i∈S

Ri ≤ log |IN +
∑
i∈S

HiH
†
i |

∀S ⊆ {1, · · · ,K}} (5.11)

The gap from RMAC,in to CMAC cannot exceed the gap from RMAC,in to RMAC,o. Hence, it is sufficient

to bound the gap between RMAC,in and RMAC,o to show that RMAC,in is an approximation of the capacity

region that is within a constant gap to it.

Remark 5.1. The sets of inequalities in RMAC,in and RMAC,o have the same structure in that when we write

the two in the forms A1(R1, · · · , RK)T ≤ b1 and A2(R1, · · · , RK)T ≤ b2, they have the same coefficient

matrices, i.e., A1 = A2. Note for any user subset S, there is a one-to-one correspondence between the partial

sum rate restrictions in the inner and outer bounds. Let the bounds of these two partial sum rate restrictions

in RMAC,in and RMAC,o be denoted as BS , log
∣∣∣IN + 1

Mi

∑
i∈S HiH

†
i

∣∣∣ and BS , log
∣∣∣IN +

∑
i∈S HiH

†
i

∣∣∣.
Let an upper bound on BS − BS be denoted as nS , which we will refer to as a partial sum rate gap.

Also for clarity, we call a component ni in a gap (n1, · · · , nK) an individual rate gap. To prove a gap

between RMAC,in and RMAC,o, we first derive a universal partial sum rate gap nS for arbitrary S, and

then we construct individual rate gap ni for any i ∈ {1, · · · ,K}, such that
∑
i∈S ni ≥ nS . If such a

individual rate gap can indeed be found, then for any rate tuple (R1, · · · , RK) ∈ RMAC,o, the rate tuple
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(R̃1, · · · , R̃K) = (R1 − n1, · · · , RK − nK) satisfies

∑
i∈S

R̃i =
∑
i∈S

Ri −
∑
i∈S

ni

≤ BS −
∑
i∈S

ni

≤ BS − nS

≤ BS

∀S ⊆ {1, · · · ,K}. Thus (R̃1, · · · , R̃K) ∈ RMAC,in and RMAC,in is within constant gap (n1, · · · , nK) to the

capacity region of the MIMO MAC. This technique will be repeated in the proof of the constant gap result

for the MIMO MAC-IC-MAC in Section 5.3.6 and Appendix C.3.

Now we follow the idea presented in Remark 5.1 to show RMAC,in is a constant-gap-to-capacity region.

We first derive a partial sum rate gap nS as

log

∣∣∣∣∣IN +
∑
i∈S

HiH
†
i

∣∣∣∣∣− log

∣∣∣∣∣IN +
∑
i∈S

1

Mi
HiH

†
i

∣∣∣∣∣
≤ min

{∑
i∈S

Mi, N

}
log max

i∈{1,··· ,K}
Mi

, nS (5.12)

The inequality holds true because the rank of the matrix
∑
i∈S

1
Mi
HiH

†
i cannot exceed min{

∑
i∈SMi, N}.

This result on intra-cell sum rate gap is a specialization of the more general result in [39, Corollary 1] on

the constant-gap-to-capacity region of the MIMO MAC with discrete time fading state and general message

sets consisting of private and common messages.

Next, we pick the individual rate gap ni as

ni = min{Mi, N} log max
i∈{1,··· ,K}

Mi. (5.13)

It is easy to verify that this individual rate gap indeed guarantees

∑
i∈S

ni =

(∑
i∈S

min{Mi, N}

)
log max

i∈{1,··· ,K}
Mi

≥ nS ,∀S ⊆ {1, · · · ,K}.
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Note the choice of ni lets the partial sum rate gap nS to be distributed onto every associated individual

rate gap ni for i ∈ S. Hence, RMAC,in is within (n1, · · · , nK) gap to its outer bound RMAC,o and hence its

capacity region CMAC.

5.3.2 The Two-user MIMO IC

The two-user MIMO IC is a special case of the MIMO MAC-IC-MAC where each K1 = K2 = 1. In

the work [27] on the two-user MIMO IC, Karmakar and Varanasi proposed a simple coding scheme (which

we will henceforth refer to simply as the KV coding scheme) to get an explicit (i.e., a single region) inner

bound [27, Lemma 3] that is within a constant gap to the capacity region [27, Theorem 2]. In this chapter,

we obtain a constant-gap-to-capacity region for the MIMO MAC-IC-MAC in Theorem 5.3. In particular,

the gap of Theorem 5.3, when specialized to the 2-user MIMO IC (i.e., the (1,1) MIMO MAC-IC-MAC),

becomes the gap of [27, Theorem 2] as stated in Remark 5.3.

It must be noted here that the inner bound for the two-user MIMO IC in [27, Lemma 3] and the (1,1)

MIMO MAC-IC-MAC specialized from the (K1,K2) MIMO MAC-IC-MAC inner bound of Theorem 5.1 in

this chapter are obtained using different approaches. For the encoding, the authors of [27] derived their

inner bound by specifying the coding distribution in the Han-Kobayashi (HK) rate region (an achievable rate

region for general two-user IC [23]), whereas we derive our inner bound by specifying coding distribution

in our achievable region for the MAC-IC-MAC given in [37, Theorem 1], which in turn is based on the

Chong-Motani-Garg (CMG) rate region (another achievable rate region for general two-user IC [10]). For

decoding, the work in [27] requires the non-intended common sub-message (see Section 5.3.4) to be decoded

uniquely at each receiver, whereas in our work we employ a decoding scheme in which the non-intended

common sub-message is decoded non-uniquely.

5.3.3 The MIMO MAC-IC-MAC

The MIMO MAC-IC-MAC is a special case of the semi-deterministic MAC-IC-MAC defined in Section

II-B of [37]. Hence, bounds and gap results on the capacity region of semi-deterministic MAC-IC-MAC

in [37, Section III-C] can be used. If we apply the inner bound of [37, (46)] (which has the form of a a
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union of rate regions) for the semi-deterministic MAC-IC-MAC to the MIMO MAC-IC-MAC then Theorem

4 of [37] implies that that inner bound would be within the constant gap of

(
min{M1.1, N2}1TK1

,min{M2.1, N1}1TK2

)
(5.14)

to the capacity region, where 1n is a column vector of length n with each element being 1.

If we apply another inner bound (which has the form of another union of rate regions) for the semi-

deterministic MAC-IC-MAC, namely given by [37, (53)] to the MIMO MAC-IC-MAC then Theorem 5 of [37]

implies that that inner bound would the constant gap of ∑
i∈{1,2}

min{Mi.1, Ni′}1
T
K1
,
∑

i∈{1,2}

min{Mi.1, Ni′}1
T
K1

 (5.15)

to the capacity region. The two gaps of (5.14) or (5.15) can thus be achieved by considering one of infinitely

many distributions.

It is however important to specify an explicit coding scheme for the MIMO MAC-IC-MAC resulting

in an explicit inner bound (in the form of a single polytope) which is within a constant gap to the capacity

as was done in [27] for the 2-user MIMO IC and in Section 5.3.1 for the MIMO MAC. For instance, such

explicit bounds allow for the evaluation of the GDoF region as was done for the 2-user MIMO IC in [26]

or the generalized diversity-multiplexing trade-off as was done in [28] for the 2-user MIMO slow-fading Z

interference channel.

In Section 5.3.4, we therefore give an explicit specification of a coding scheme which is based on the

KV coding scheme of [27] and the simple single-user coding scheme for the K-user MIMO MAC discussed in

Section 5.3.1. This simple scheme yields an explicit inner bound for the MIMO MAC-IC-MAC. An explicit

outer bound is then derived in Section 5.3.5 by specifying the input distribution and genie information in

the known outer bound for the semi-deterministic MAC-IC-MAC [37, Theorem 3], in the MIMO Gaussian

setting. The gap between these explicit inner and outer bounds is shown to be constant, albeit different

from either (5.14) or (5.15).
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5.3.4 An Explicit Inner Bound

A per-distribution or explicit inner bound for the capacity region of the discrete memoryless (DM)

MAC-IC-MAC was given in [37, Theorem 1]. In this section, we apply that result to the MIMO MAC-IC-

MAC to obtain the explicit inner bound of Theorem 5.1 to follow. In particular, to prove Theorem 5.1,

we must explicitly specify a coding distribution and then compute the set functions in [37, Definition 7]

for the MIMO MAC-IC-MAC for that coding distribution. Those set functions are given in the following

Definitions, and following that, the inner bound is presented in Theorem 5.1.

Definition 5.2. For any sets Ωi ∈ 2Θi\∅ = {i.1, · · · , i.Ki}, Υ
′

i ⊆ Θi\{i.1} and Υi = Υ
′

i ∪ {i.1}, where

i ∈ {1, 2}, let AΥi and EΥi be non-negative real-valued functions of set Υi, and BΩi and GΩi be non-

negative real-valued functions of set Ωi. The mappings of set functions AΥi , BΩi , EΥi and GΩi are given by

(5.16)-(5.19).

AΥi , log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i +

1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

+
1

Mi′ .1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i

∣∣∣∣−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

(5.16)

BΩi , log

∣∣∣∣∣∣INi +
∑
i.j∈Ωi

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i +

1

Mi′ .1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i

∣∣∣∣∣∣
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

(5.17)

EΥi , log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i +

1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

+
1

Mi′ .1

ραi′ .1→iHi′ .1→iH
†
i′ .1→i

∣∣∣∣−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

(5.18)

GΩi , log

∣∣∣∣∣∣INi +
∑
i.j∈Ωi

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i +

1

Mi′ .1

ραi′ .1→iHi′ .1→iH
†
i′ .1→i

∣∣∣∣∣∣
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

(5.19)

Definition 5.3. Let the Cartesian product of the domains of (Υ1, Ω1, Υ2, Ω2) be

Ξ ,
{
Υ1 ∈ 2Θ1 : 1.1 ∈ Υ1

}
×
{

2Θ1\∅
}
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×
{
Υ2 ∈ 2Θ2 : 2.1 ∈ Υ2

}
×
{

2Θ2\∅
}
. (5.20)

Also, for convenience, define the set function

B
′

Ωi ,


min{BΩi , AΩi + EΥ

i
′ } if i.1 ∈ Ωi

BΩi if i.1 /∈ Ωi

(5.21)

where i, i
′ ∈ {1, 2}, i 6= i

′
and (Υ1, Ω1, Υ2, Ω2) ∈ Ξ.

Theorem 5.1. For MIMO MAC-IC-MAC, any rate tuple (RΘ1 , RΘ2) in the following region Rin is achiev-

able, i.e., Rin ⊆ C.

Rin =

{
(RΘ1

, RΘ2
) ∈ RK1+K2

+ :

∀(Υ1, Ω1, Υ2, Ω2) ∈ Ξ∑
1.j∈Ω1

R1.j ≤ B
′

Ω1
(5.22)

∑
2.j∈Ω2

R2.j ≤ B
′

Ω2
(5.23)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Ω2

R2.j ≤ AΥ1
+GΩ2

(5.24)

∑
1.j∈Ω1

R1.j +
∑

2.j∈Υ2

R2.j ≤ GΩ1 +AΥ2 (5.25)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Υ2

R2.j ≤ EΥ1
+ EΥ2

(5.26)

∑
1.j∈Υ1

R1.j +
∑

1.j∈Ω1

R1.j

+
∑

2.j∈Υ2

R2.j ≤ AΥ1 +GΩ1 + EΥ2 (5.27)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Υ2

R2.j

+
∑

2.j∈Ω2

R2.j ≤ EΥ1
+AΥ2

+GΩ2

}
(5.28)

Proof. As stated at the beginning of this section, we apply the inner bound of [37, Theorem 1] for the DM

MAC-IC-MAC to derive the single region inner bound for MIMO MAC-IC-MAC. We first note that the

MIMO MAC-IC-MAC inner bound of Theorem 5.1 is described by seven classes of inequalities instead of the
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nine classes of inequalities in [37, Theorem 1]. This is because the nine classes of inequalities that define the

inner bound in [37, Theorem 1] can be expressed as a region with seven classes of inequalities as we show in

detail in Appendix C.1. In particular, two pairs of classes of inequalities in the nine classes can be coalesced

into two classes of inequalities. The inner bound of [37, Theorem 1] involves set functions AΥi ,BΩi ,EΥi , and

GΩi defined in [37, equations (31-34)] for any coding distribution Pin ∈ Pin defined in [37, Definition 6].

To obtain a inner bound of Theorem 5.1 from the inner bound of [37, Theorem 1] we need to first

explicitly specify a single coding distribution in the set of admissible distributions defined in [37, Definition

6] adapted for the MIMO Gaussian case, allowing for auxiliary and input random variables over continuous

alphabets for the MIMO MAC-IC-MAC. This would specify the specific coding scheme and compute the

resulting bound which then yield Theorem 5.1.

Before we introduce our coding scheme, we first review the coding scheme used in deriving the bounds

for the DM MAC-IC-MAC in [37]. That scheme requires the interfering transmitter Txi.1 to split its

message into common and private sub-messages mi.1c and mi.1p, respectively. The public sub-message is

encoded into cloud codeword Un1 (mi.1c), based on which the private message is superimposed on and the

transmitted codeword is Xn
i.1(Uni.1(mi.1c),mi.1p). A non-interfering transmitter Txi.j, j 6= 0, encodes its

entire message mi.j into Xn
i.j(mi.j) using single user random coding. Rxi decodes its intended message from

all the transmitters in its cell, as well as the common message mi′ .1c from its non-intended transmitter Txi
′
.1.

Time sharing is employed between all transmitters. The resulting inner bound is presented in [37, Theorem

1], which is a per-distribution inner bound.

Next, we explicitly specify one coding distribution for the MIMO MAC-IC-MAC. First, time sharing

is disabled. The interfering transmitter Txi.1 performs KV coding [27], i.e., the transmitted signals Xi.1 is

a sum of two independent Gaussian signals Xi.1c and Xi.1p,

Xi.1 = Xi.1c +Xi.1p (5.29)

where Xi.1c ∼ CN (0, Qi.1c) and Xi.1p ∼ CN (0, Qi.1p) are signals that carry the public and private messages,

respectively, at Txi.1. The covariance matrices Qi.1p and Qi.1c of Xi.1c and Xi.1p are taken to be

Qi.1p =
Pi.1
Mi.1

(
IMi.1

+ ραi.1→i′H†
i.1→i′Hi.1→i′

)−1
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,
Pi.1
Mi.1

Ki.1 (5.30)

Qi.1c =
Pi.1
Mi.1

(IMi.1
−Ki.1) (5.31)

This coding scheme has a rate region that is within constant gap to the capacity region in the 2-user MIMO

IC as was established in [27, Theorem 2].

The non-interfering transmitters encode their respective messages using a single-user Gaussian code-

book with scaled identity covariances, i.e.,

Xi.j ∼ CN (0,
1

Mi.j
IMi.j

) j 6= 1. (5.32)

As discussed in Section 5.3.1 such a scheme would achieve a rate region which is within a constant gap to

the capacity region in a MIMO MAC.

With the distributions for the inputs specified this way (and with the random variable Xi.1c playing the

role of the auxiliary random variable Ui.1) we are now ready to obtain the inner bound of Theorem 5.1 from

the inner bound of [37, Theorem 1]. In particular, the set functions AΥi ,BΩi ,EΥi , and GΩi of [37, equations

(31-34)] must be evaluated (and lower bounded) for the above coding scheme. Please refer to Appendix C.1

for the details of this evaluation.

Let us take a deeper look at the KV coding scheme. The choice of the covariance ensures the private

message signal Xi.1p will be received by Rxi
′

under the noise level on each of its dimensions,

ραi.1→i′Hi.1→i′Qi.1pH
†
i.1→i′

=
1

Mi.1
ραi.1→i′Hi.1→i′

(
IMi.1 + ραi.1→i′H†

i.1→i′Hi.1→i′
)−1

·H†
i.1→i′

� Ui.1→i′

 1
Mi.1

Imin{Mi.1,Ni′ }

0(N
i
′−Mi.1)+

U†
i.1→i′ (5.33)

� 1

Mi.1
IN

i
′ . (5.34)

Note (5.33) is an upper bound of the received private sub-message signal at Rxi
′
, while (5.34) defines the

meaning of noise level in the context of vector input and output signals. When Rxi
′

has more antennas then
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the Txi.1 does, the difference of (5.34) and (5.33) shows there are extra dimensions at Rxi
′

that will not

be interfered at all. A detailed proof of received signal of non-intended private sub-message can be found

in [27, Appendix B].

Recall the channel matrix Hi.1→i′ can be decomposed as Hi.1→i′ = Ui.1→i′Σi.1→i′V
†
i.1→i′ , where

Ui.1→i′ ∈ UNi′×Ni′ and Vi.1→i′ ∈ UMi.1×Mi.1 are unitary matrices of size Ni′ ×Ni′ and Mi.1 ×Mi.1 respec-

tively, matrix Σi.1→i′ ∈ CNi′×Mi.1 is a rectangular diagonal matrix with all the singular values of Hi.1→i′ on

its diagonal. The covariance matrices (5.31) and (5.30) of Xi.1p and Xi.1c can be alternatively written as

Qi.1p =
Pi.1
Mi.1

(
IMi.1 + ραi.1→i′H†

i.1→i′Hi.1→i′
)−1

=
Pi.1
Mi.1

(
Vi.j→i′V

†
i.j→i′

+ραi.1→i′ Vi.1→i′Σ
†
i.1→i′Σi.1→i

′V †
i.1→i′

)−1

, Vi.1→i′Di.1→i′V
†
i.1→i′ (5.35)

Qi.1c =
1

Mi.1
IMi.1 − Vi.1→i′Di.1→i′V

†
i.1→i′

, Vi.1→i′ D̃i.1→i′V
†
i.1→i′ (5.36)

where the structure of matrices Di.1→i′ and Di.1→i′ are expressed in (5.37) and (5.38).

Di.1→i′ =
Pi.1
Mi.1

(
(Imin{Mi.1,Ni′ }

+ ραi.1→i′Σ†
i.1→i′Σi.1→i

′ )−1 0

0 I(Mi.1−Ni′ )
+

)
(5.37)

D̃i.1→i′ =
Pi.1
Mi.1

(
Imin{Mi.1,Ni′ }

− (Imin{Mi.1,Ni′ }
+ ραi.1→i′Σ†

i.1→i′Σi.1→i
′ )−1 0

0 0(Mi.1−Ni′ )
+×(Mi.1−Ni′ )

+

)
(5.38)

Define Xi.1c, Xi.1p be two mutually independent Gaussian vectors with zero mean and identity covari-

ance matrices, of length min{Mi.1, Ni′} and Mi.1 respectively. Given Qi.1p and Qi.1c in (5.35) and (5.36),

the transmitted signal Xi.1 can be alternatively expressed in terms of Xi.1c and Xi.1p as

Xi.1 = Xi.1c +Xi.1p

=

min{Mi.1,Ni′ }∑
k=1

V
[k]

i.1→i′

√
[D̃i.1→i′ ]kkX

(k)
i.1c
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+

min{Mi.1,Ni′ }∑
k=1

V
[k]

i.1→i′

√
[Di.1→i′ ]kkX

(k)
i.1p

+

Mi.1∑
k=min{Mi.1,Ni′ }+1

V
[k]

i.1→i′

√
[Di.1→i′ ]kkX

(k)
i.1p. (5.39)

In (5.39), X
(k)
i.1c denotes the k-th data stream that carries the public sub-message (k-th public data

stream) along direction V
[k]

i.j→i′ . It needs to be decoded by both Rxi and Rxi
′
. Since the last (Mi.1 −Ni′ )+

diagonal values of D̃i.1→i′ is zero (refer to (5.38)), only min{Mi.1, Ni′} public data streams exist, which are

indicated by the first part of the summation in (5.39). According to (5.38), the transmit power of X
(k)
i.1c,

1 ≤ k ≤ min{Mi.1, Ni′} is

[D̃i.1→i′ ]kk =
Pi.1
Mi.1

− Pi.1
Mi.1(1 + ραi.1→i′ σ2

i.1→i′ ,k)
. (5.40)

From (5.40), we see all public data streams are transmitted at power level ρ0.

The symbol X
(k)
i.1p in (5.39) denotes the k-th data stream that carries the private sub-message (k-th

private data stream) along directions V
[k]

i.j→i′ with power

[Di.1→i′ ]kk

=


Pi.1
Mi.1
− [D̃i.1→i′ ]kk 1 ≤ k ≤ min{Mi.1, Ni′}

Pi.1
Mi.1

min{Mi.1, Ni′}+ 1 ≤ k ≤Mi.1

(5.41)

The first min{Mi.1, Ni′} private data streams are transmitted at power level ρ−αi.1→i′ , so they arrive under

the noise floor at Rxi
′
. These private data streams are indicated by the second part of the summation in

(5.39). When there are more transmit antennas at Txi than receive antennas at Rxi
′
, beamforming (by

matrix Vi.1→i′ ) ensures the extra (Mi.1 − Ni′ )+ private data streams, indicated by the third part of the

summation in (5.39), are sent in the direction of the null space of Hi,1→i′ . Since these private data streams

are not ”heard” at Rxi
′
, they are transmitted at power level ρ0.

The non-interfering signal Xi.j can also be rewritten in terms of independent data streams

Xi.j =

√
Pi.1√
Mi.j

Xi.j =

min{Mi.j,Ni}∑
k=1

√
Pi.1√
Mi.j

X
(k)
i.j . (5.42)

They are only to be received and decoded by the intended receiver Rxi.
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5.3.5 An Explicit Outer Bound

Since the MIMO MAC-IC-MAC is semi-deterministic, we use the outer bound for the

semi-deterministic MAC-IC-MAC in [37, Theorem 3], which is given in the form of a union of polytopes, to

derive an explicit single polytope outer bound for the MIMO MAC-IC-MAC in this section. To specify the

outer bound we need to define the relevant set functions in Definition 5.4. The outer bound itself is stated

in Theorem 5.2.

Definition 5.4. For any sets Ωi ∈ 2Θi\∅ = {i.1, · · · , i.Ki}, Υ
′

i ⊆ Θi\{i.1} and Υi = Υ
′

i ∪ {i.1}, where

i ∈ {1, 2}, let AΥi and EΥi be non-negative real-valued functions of set Υi, and BΩi and GΩi be non-

negative real-valued functions of set Ωi. The mappings of set functions AΥi , BΩi , EΥi and GΩi are given by

(5.43)-(5.46).

AΥi , log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iKi.1H

†
i.1→i

∣∣∣∣∣∣ (5.43)

BΩi , log

∣∣∣∣∣∣INi +
∑
i.j∈Ωi

ραi.j→iHi.j→iH
†
i.j→i

∣∣∣∣∣∣ (5.44)

EΥi , log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iKi.1H

†
i.1→i + ραi′ .1→iHi′ .1→iH

†
i′ .1→i

∣∣∣∣∣∣
(5.45)

GΩi , log

∣∣∣∣∣∣INi +
∑
i.j∈Ωi

ραi.j→iHi.j→iH
†
i.j→i + ραi′ .1→iHi′ .1→iH

†
i′ .1→i

∣∣∣∣∣∣ (5.46)

Theorem 5.2. For the MIMO MAC-IC-MAC, any achievable rate tuple is contained in the following region

Ro, i.e., C ⊆ Ro, where

Ro =

{
(RΘ1 , RΘ2) ∈ RK1+K2

+ :

∀(Υ1, Ω1, Υ2, Ω2) ∈ Ξ∑
1.j∈Ω1

R1.j ≤ BΩ1
(5.47)
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∑
2.j∈Ω2

R2.j ≤ BΩ2
(5.48)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Ω2

R2.j ≤ AΥ1
+GΩ2

(5.49)

∑
1.j∈Ω1

R1.j +
∑

2.j∈Υ2

R2.j ≤ GΩ1 +AΥ2 (5.50)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Υ2

R2.j ≤ EΥ1
+ EΥ2

(5.51)

∑
1.j∈Υ1

R1.j +
∑

1.j∈Ω1

R1.j

+
∑

2.j∈Υ2

R2.j ≤ AΥ1
+GΩ1

+ EΥ2
(5.52)

∑
1.j∈Υ1

R1.j +
∑

2.j∈Υ2

R2.j

+
∑

2.j∈Ω2

R2.j ≤ EΥ1 +AΥ2 +GΩ2

}
(5.53)

Proof Outline. The key idea in the proof of the outer bound for the semi-deterministic MAC-IC-MAC in [37,

Theorem 3] was to construct a virtual channel whose output is then regarded as genie-aided side information

to help each receiver to decode its intended signal (by making it more interference-resilient). To get an outer

bound in the MIMO setting, we therefore need to specify the distribution of the genie information Ti to Rxi,

which, following [37, Definition 10], should be identical to the distribution of channel side information Si

but independent of Si conditioned on Xi.1. We hence choose the genie information to Rxi to be

Ti = hi.1→i′Hi.1→i′Xi.1 + Z
′

i′
i 6= i

′
, i, i

′
∈ {1, 2} (5.54)

where Z
′

i′
∼ CN (0, IN

i
′ ) and Z

′

i′
is independent of Zi′ . Hence we obtain an outer bound from [37] by

specializing it to the MIMO Gaussian setting using (5.54) and it has the form of a union of polytopes.

Secondly, we show that a polytope in that union of polytopes when evaluated with a certain Gaussian input

distribution (namely, the extremal distribution) results in a region that subsumes that union-of-polytopes

outer bound. That explicit outer bound is shown to be Ro given in the theorem statement. The details of

the proof are relegated to Appendix C.2.
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5.3.6 Constant Gap

We can now quantify the gap between the inner bound Rin and the outer bound Ro. That result is

stated next.

Theorem 5.3. Define the following three parameters

βi.j = min {Mi.j +Mi′ .1, Ni}

· log max

{
max
i.j∈Θi

Mi.j ,Mi′ .1

}
+ min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

, (5.55)

γi.j = min {Mi.j , Ni} log max
i.j∈Θi

Mi.j

+ min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

+ min{Mi.1, Ni′} log(1 +Mi.1), (5.56)

and ni.j = max{βi.j , γi.j} for any i.j ∈ Θi and i ∈ {1, 2}. For any rate tuple (RΘ1
, RΘ2

) ∈ Ro, let R̃Θi be

the rate tuple (
(Ri.1 − ni.1)+, · · · , (Ri.K − ni.K)+

)
,

then we have

(R̃Θ1
, R̃Θ2

) ∈ Rin.

Proof Outline. The inequality systems of the inner and outer bounds have the same algebraic structure.

The proof is based the idea discussed in Remark 5.1 but with a difference. We do not directly quantify the

differences of the right hand side values of 3rd to 7th classes of inequalities in Rin and Ro. Instead, we

make use of the one-to-one correspondence between the involved intra-cell sum rate term on the left hand

side and the set function on the right hand side of each class of inequalities in both bounds, and quantify

two intra-cell sum rate gaps nΥi and nΩi regarding user subset Υi and Ωi. Since both AΥi and EΥi (also

AΥi and EΥi ) are functions of Υi, the intra-cell sum rate gap nΥi should upper bound the maximum value

of AΥi − AΥi and EΥi − EΥi , i.e., nΥi ≥ max{AΥi − AΥi , EΥi − EΥi} for any Υi. Similarly, we should have
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nΩi ≥ max{BΩi − B
′

Ωi
, Gi − Gi}. We show the individual rate gap ni.j satisfies

∑
i.j∈Υi ni.j ≥ nΥi and∑

i.j∈Ωi ni.j ≥ nΩi at the same time. Please refer to Appendix C.3 for details.

Remark 5.2. When there are only the non-interfering transmitters in each cell, i.e., Θi = {i.2, · · · , i.Ki},

i ∈ {1, 2}, a MIMO MAC-IC-MAC is specialized to two parallel MIMO MACs. Let Mi.1 = Mi′ .1 = 0 in

(5.56) and (5.55), then the resulting individual rate gap becomes

ni.j = min {Mi.j , Ni} log max
i.j∈Θi

Mi.j ,

which reproduces the individual rate gap for the MIMO MAC given in (5.13).

Remark 5.3. As mentioned previously, when each cell contains only the interfering transmitter, a MIMO

MAC-IC-MAC is specialized to a two-user MIMO IC. Let Θ1 = {1.1} and Θ2 = {2.1} in (5.55) and (5.56) ,

then we have

βi.1 = min {Mi.1 +Mi′ .1, Ni}

· log max {Mi.1,Mi′ .1}

+ min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

and

γi.1 = min {Mi.1, Ni} logMi.1

+ min{Mi.1, Ni′} log(1 +Mi.1)

+ min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

,

which reproduces the gap presented in [27, Theorem 2]. As mentioned in Section 5.3.2, despite the same

gap result and the same covariance matrices used for the common and private sub-messages, the encoding

and decoding procedures in deriving the constant-gap-to-capacity region for (1, 1) MIMO MAC-IC-MAC is

different from the ones used for the two-user MIMO IC.

5.4 GDoF Region of the MIMO MAC-IC-MAC

In this section, we first compute the GDoF region of the MIMO MAC-IC-MAC and then describe

the achievability of the key corner points of the GDoF region and the symmetric GDoF curve using the
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multidimensional signal-level partitioning method to provide insight. In what follows, we define ᾱ as the set

of all the SNR and INR exponents, i.e., ᾱ = {α1.1→1, · · ·α1.K1→1, α2.1→2, · · · , α2.K2→2, α1.1→2, α2.1→1}.

Definition 5.5. The generalized degrees of freedom (GDoF) region of a (K1,K2) MIMO MAC-IC-MAC,

the capacity region of which is denoted as C, is defined as

{(dΘ1 , dΘ2) :di.j = lim
ρ→∞

Ri.j
log ρ

, i.j ∈ Θi, i ∈ {1, 2},

and (RΘ1
, RΘ2

) ∈ C} (5.57)

To derive the GDoF region in this section, we must determine limρ→∞ log det
(
Iu +

∑n
i=1 ρ

αiHiH
†
i

)
for an arbitrary integer n. In the work on the GDoF region of the two-user MIMO IC [26], this limit was

determined for n = 2 and n = 3. The limit for arbitrary n is stated in Lemma 5.1.

Lemma 5.1. Let H1 ∈ Cu×u1 , H2 ∈ Cu×u2 , · · · , Hn ∈ Cu×un be n channel matrices whose entries are

drawn i.i.d. from continuous and unitarily invariant distributions, then for asymptotic ρ

log det

(
Iu +

n∑
i=1

ρaiHiH
†
i

)
(5.58)

= f(u, (a1, u1), · · · , (an, un)) log(ρ) +O(1) (5.59)

where for any (u, u1, · · · , un) ∈ Z+(n+1) and (a1, · · · , an) ∈ Rn, the function f (u, (a1, u1), · · · , (an, un)) is

defined as

f (u, (a1, u1), (a2, u2), · · · , (an, un))

=

in∑
i=i1

{
min {u, ui1} a+

i1
+ min

{
(u− ui1)

+
, ui2

}
a+
i2

+ · · ·

+ min


u− in−1∑

j=1

uj

+

, uin

 a+
in


for indices {ij}nj=1 defined such that ai1 ≥ ai2 ≥ · · · ≥ ain .

Proof Outline. The proof employs mathematical induction. The details are given in Appendix C.4.

The result of Lemma 5.1 can be interpreted in an intuitive way. The term log det(Iu+
∑n
i=1 ρ

aiHiH
†
i )

can be approximately viewed as the achievable sum rate of a n-user MIMO MAC. Transmitter Txi1, that has
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the strongest SNR, dominates the first min{u, ui1} dimensions of the receiver’s signal space which leads to

GDoF min{u, ui1}α+
i1

, and then the 2nd strongest transmitter Txi2 dominates the next min
{

(u− ui1)
+
, ui2

}
dimensions among the remaining ones (if there are any) leading to additional GDoF

min
{

(u− ui1)
+
, ui2

}
α+
i2

, and so on.

5.4.1 The GDoF Region

In this subsection, we present the GDoF region of the MIMO MAC-IC-MAC. We define the relevant

set functions for the GDoF region in Definition 5.6, and the GDoF region is characterized in Theorem 5.4.

Definition 5.6. Define the set functions a, b, e, and g as in (5.60)-(5.63).

aΥi , f

Ni, ⋃
i.j∈Υi\{i.1}

(αi.j→i,Mi.j),
(
(αi.1→i − αi.1→i′ )

+,min{Mi.1, Ni′}
)
,
(
αi.1→i, (Mi.1 −Ni′ )

+
)
(5.60)

bΩi , f

Ni, ⋃
i.j∈Ωi

(αi.j→i,Mi.j)

 (5.61)

eΥi = f

Ni, ⋃
i.j∈Υi\{i.1}

(αi.j→i,Mi.j),
(
(αi.1→i − αi.1→i′ )

+,min{Mi.1, Ni′}
)
,
(
αi.1→i, (Mi.1 −Ni′ )

+
)
,

(αi′ .1→i,Mi′ .1)

)
(5.62)

gΩi , f

Ni, ⋃
i.j∈Ωi

(αi.j→i,Mi.j), (αi′ .1→i,Mi′ .1)

 (5.63)

Theorem 5.4. The GDoF region of the MIMO MAC-IC-MAC is the following polytope

D(a, b, e, g) =

{
(dΘ1 , dΘ2) ∈ RK1+K2

+ :

∀(Υ1, Ω1, Υ2, Ω2) ∈ Ξ∑
1.j∈Ω1

d1.j ≤ bΩ1
(5.64)

∑
2.j∈Ω2

d2.j ≤ bΩ2
(5.65)

∑
1.j∈Υ1

d1.j +
∑

2.j∈Ω2

d2.j ≤ aΥ1 + gΩ2 (5.66)
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∑
1.j∈Ω1

d1.j +
∑

2.j∈Υ2

d2.j ≤ gΩ1
+ aΥ2

(5.67)

∑
1.j∈Υ1

d1.j +
∑

2.j∈Υ2

d2.j ≤ eΥ1 + eΥ2 (5.68)

∑
1.j∈Υ1

d1.j +
∑

1.j∈Ω1

d1.j

+
∑

2.j∈Υ2

d2.j ≤ aΥ1
+ gΩ1

+ eΥ2
(5.69)

∑
1.j∈Υ1

d1.j +
∑

2.j∈Υ2

d2.j

+
∑

2.j∈Ω2

d2.j ≤ eΥ1
+ aΥ2

+ gΩ2

}
. (5.70)

Proof Outline. In Definition 5.5, the GDoF region is defined via the capacity region C. While the exact

capacity region C is not known for the MIMO MAC-IC-MAC, Theorem 5.3 states that both Rin and Ro

are within constant gap to the capacity. Because a constant number of bits are insignificant in the GDoF

computation, the GDoF region can be obtained from either Rin or Ro. We relegate the detailed proof to

Appendix C.5, where we shall directly or indirectly apply Lemma 5.1 on the four outer bound set functions

(c.f. Definition 5.4) to derive the result.

Next, we study the GDoF region of a (2, 1) MIMO MAC-IC-MAC with an emphasis on the achiev-

ability of the key corner points of its GDoF region using the signal partitioning method.

Example 5.1. Consider the (2, 1) MAC-IC-MAC with M1.1 = 3, M1.2 = 2, N1=3, M2.1=2, N2=2,

α1.1→1=α1.2→1=α2.1→2=1, and α1.1→2=α2.1→1=0.6. The GDoF region of this channel is the

three-dimensional polytope plotted in Fig. 5.2.

We provide an overview of the GDoF region of the MIMO MAC-IC-MAC of Example 5.1. Since the

MAC-IC-MAC can be viewed as a generalization of the MAC, the IC and the ZIC, we should be able to

observe the GDoF regions of these sub-channels by switching off one particular transmitter. The GDoF of

a MAC channel formed by Tx1.1 and Tx1.2 is shown on the (d1.1, d1.2, 0) plane, the GDoF of a two-user

interference channel constituted by Tx1.1 and Tx2.1 is shown on the (d1.1, 0, d2.1) plane, which is identical

to Fig. 2 in [26], and finally, the GDoF region of a Z interference channel is shown on the (0, d1.2, d2.1) plane
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A: (0,0,2)
B: (0,1.4,2)

C: (0,2,1.4)

D: (0,2,0)

E: (1,2,0)

F: (1,2,0.8)

G: (0.4,2,1.4)

H: (0.4,1.4,2)
I: (1,0.8,2)

J: (1.8,0.4,1.6)

K: (2.2,0.4,1.2)

L: (2.2,0.8,0.8)

M: (3,0,0)

N: (2.6,0,0.8)

O: (1.8,0,1.6)

P: (1,0,2)

Figure 5.2: The GDoF region of a MIMO MAC-IC-MAC with K1 = 2, K2 = 1, M1.1 = 3, M1.2 = 2, N1 = 3,
M2.1 = 2, N2 = 2, α1.1→1 = α1.2→1 = α2.1→2 = 1, and α1.1→2 = α2.1→1 = 0.6.

in Fig. 5.2. The GDof-tuples on the plane F-G-H-I-J-K-L reach the maximum sum GDoF 3.8, and evidently,

we should not switch off any interfering transmitter in order to achieve maximum sum GDoF.

Example 5.2. Continuing with the MIMO MAC-IC-MAC of Example 5.1, we describe here the structures

of the transmitted signals from the three transmitters in terms of independent data streams as in (5.39) or

(5.42). We assume the transmit power to be unity. In this example, we can accordingly write the signals

X1.1, X1.2 and X2.1 as

X1.1 =

2∑
k=1

V
[k]
1.1→2

√
ρ0.6σ2

1.1→2,k

3(1 + ρ0.6σ2
1.1→2,k)

X
(k)
1.1c

+

2∑
k=1

V
[k]
1.1→2

√
1

3(1 + ρ0.6σ2
1.1→2,k)

X
(k)
1.1p

+ V
[3]
1.1→2

1√
3
X

(3)
1.1p

X1.2 =

2∑
k=1

1√
2
X

(k)
1.2

and

X2.1 =

2∑
k=1

V
[k]
2.1→1

√
ρ0.6σ2

2.1→1,k

2(1 + ρ0.6σ2
2.1→1,k)

X
(k)
2.1c

+

2∑
k=1

V
[k]
2.1→1

√
1

2(1 + ρ0.6σ2
2.1→1,k)

X
(k)
2.1p.
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There are two common and three private data streams from Tx1.1. The common sub-message carried by

X
(1)
1.1c and X

(2)
1.1c will be decoded by both Rx1 and Rx2. The first two private data streams X

(1)
1.1p and X

(2)
1.1p are

decodable by Rx1 but will arrive under the noise floor at Rx2. Since Tx1.1 has one more antenna than Rx2

does, a third private data stream X
(3)
1.1p can be sent between Tx1.1 and Rx1 without interfering at Rx2 using

transmit zero-forcing beamforming by sending X
(3)
1.1p along the null space of H1.1→2. Hence, we can send X

(3)
1.1p

at the power level ρ0. The non-interfering transmitter Tx1.2 has two private streams X
(1)
1.2 and X

(2)
1.2 to Rx1

only. Tx2.1 has two data streams X
(1)
2.1c and X

(2)
2.1c for its common sub-message to be decoded at both Rx1

and Rx2, as well as two private data streams X
(1)
2.1p and X

(2)
2.1p for its private message to be decoded at Rx2

but under the noise floor at Rx1.

Next, we analyze the achievability of the corner points in the GDoF region of Example 5.1.

The achievability of the 2-user interference channel points A, P, O, N and M have been explored in

detail in [26]. The achievability of Points D, E and M can be understood along the lines of achievability

of GDoF-tuples in a MIMO MAC, examples of which we have seen previously. The achievability of points

A, B, C and D can also be inferred from [26] since the Z interference channel is a special case of the 2-

user interference channel. In what follows, we therefore focus on the corner points on the maximum sum

GDoF plane. We use the multidimensional signal-level partitioning method in each case to demonstrate

the achievability of these GDoF tuples. Note the underlying coding scheme in the multidimensional signal-

level partitioning, i.e., multi-level superposition coding as previously mentioned, is different from the coding

scheme we used to derive the inner bound.

5.4.1.1 Point I (d1.1, d1.2, d2.1) = (1, 0.8, 2)

For this point, we choose the GDoF distribution d
(1)
1.1c = d

(2)
1.1c = 0, d

(1)
1.1p = d

(2)
1.1p = 0, d

(3)
1.1p = 1,

d
(1)
1.2 = d

(2)
1.2 = 0.4, d

(1)
2.1c = d

(2)
2.1c = 0.6, d

(1)
2.1p = d

(2)
2.1p = 0.4. The GDoF allocation among the three transmitters

can be inferred from the signal partition diagrams at the two receivers in Fig. 5.3. In this allocation, Tx1.1

only uses the private data stream X
(3)
1.1p to communicate. This data stream is sent at the power level ρ0 and

along the null space of H1.1→2 by transmit beamforming. It arrives at Rx1 with power ρ1, but does not

cause interference at Rx2. The coding schemes for Tx1.2 and Tx2.1 can be easily inferred from the GDoF
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allocation.

Rx1 Rx2

Figure 5.3: GDoF allocation scheme at point I

Rx1 first removes the effect of X
(3)
1.1p by zero forcing, i.e., projecting the received signal onto the 2-

dimensional signal plane which is perpendicular to H1.1→1V
[3]
1.1→2. Subsequently, X1.2 and X2.1c can be

decoded successively. Rx1 recovers X
(1)
1.2 and X

(2)
1.2 by treating the X2.1c as noise on its first two dimensions.

The noise floor to recover X
(1)
1.2 and X

(2)
1.2 will be at ρ0.6 and we get d

(1)
1.2 = d

(2)
1.2 = 0.4 in this step. Then we

recover X
(1)
2.1c and X

(2)
2.1c resulting d

(1)
2.1c = d

(2)
2.1c = 0.6. Because X

(1)
2.1c and X

(2)
2.1c needs to recovered by both Rx1

and Rx2, it remains to check whether we can get d
(1)
2.1c = d

(2)
2.1c = 0.6 at Rx2 which will be confirmed later.

Finally, removing the contributions of X1.2 and X2.1c from the received signal, we see an interference-free

channel from Tx1.1 to Rx1 so that X
(3)
1.1p with GDoF 1 can thus be recovered.

Since there is no interference to Rx2 in this GDoF allocation, Rx2 simply decodes X2.1c and X2.1p

successively. The signal X2.1c arrives at Rx2 at power level ρ1, which can be decoded by treating X2.1p,

which arrives at power level ρ0.4, as noise. We then recover X
(1)
2.1c and X

(2)
2.1c resulting d

(1)
2.1c = d

(2)
2.1c = 0.6, the

same GDoF obtained from their recovery at Rx1. Lastly, subtracting X2.1c from the received signal, the

private message signal X2.1p can be decoded, resulting in d
(1)
2.1p = d

(2)
2.1p = 0.4.

5.4.1.2 Point J (d1.1, d1.2, d2.1) = (1.8, 0.4, 1.6)

Consider the GDoF distribution d
(1)
1.1c = d

(2)
1.1c = 0.2, d

(1)
1.1p = d

(2)
1.1p = 0.2, d

(3)
1.1p = 1, d

(1)
1.2 = d

(2)
1.2 = 0.2,

d
(1)
2.1c = d

(2)
2.1c = 0.4, d

(1)
2.1p = d

(2)
2.1p = 0.4, and the GDoF allocation illustrated in Fig. 5.4. Recall that in the

simple coding scheme of Section 5.3.4, the non-interfering transmitters transmit at full power. Here however,
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the GDoF allocation scheme implies the non-interfering transmitter Tx1.2 should transmit at power level

ρ0.8. In fact, both these two coding schemes achieve Point J. With Tx1.2 transmitting with full power, we

need to jointly decode X1.1c and X1.2 by treating X2.1c and X1.1p as noise, whereas with Tx1.2 transmitting

with power ρ−0.8, we can successively decode X1.1c, X1.2, X2.1c and X1.1p in sequence.

Rx1 Rx2

Figure 5.4: GDoF allocation scheme at point J

Rx1 first projects the received signal onto the two-dimensional space perpendicular to H1.1→1V
[3]
1.1→2 to

temporarily get rid of the effect of X
(3)
1.1p, and then decode X1.1c, X1.2, X2.1c and X1.1p successively. Lastly,

the stream X
(3)
1.1p can be recovered after removing the effects of all the other data streams. Rx2 can use

successive decoding to decode X2.1c, X1.1c and X2.1p sequentially.

5.4.1.3 Point K (d1.1, d1.2, d2.1) = (2.2, 0.4, 1.2)

Consider the GDoF distribution d
(1)
1.1c = d

(2)
1.1c = 0.2, d

(1)
1.1p = d

(2)
1.1p = 0.4, d

(3)
1.1p = 1, d

(1)
1.2 = d

(2)
1.2 = 0.2,

d
(1)
2.1c = d

(2)
2.1c = 0.2, d

(1)
2.1p = d

(2)
2.1p = 0.4 with the GDoF allocation illustrated in Fig. 5.5. The decoding

procedures at Rx1 and Rx2 are similar to what we have done for Point J.

5.4.1.4 Point L (d1.1, d1.2, d2.1) = (2.2, 0.8, 0.8)

Consider the GDoF distribution = d
(1)
1.1c = d

(2)
1.1c = 0.2, d

(1)
1.1p = d

(2)
1.1p = 0.4, d

(3)
1.1p = 1, d

(1)
1.2 = d

(2)
1.2 = 0.4,

d
(1)
2.1c = d

(2)
2.1c = 0, d

(1)
2.1p = d

(2)
2.1p = 0.4 with the GDoF allocation illustrated in Fig. 5.6.

Rx1 first removes the effect of X
(3)
1.1p, so X1.1c, X1.2 and X1.1p can be decoded successively, resulting

in d
(1)
1.1c = d

(2)
1.1c = 0.2, d

(1)
1.2 = d

(2)
1.2 = 0.4 and d

(1)
1.1p = d

(2)
1.1p = 0.2. After that, Rx1 removes the contributions

of X1.1c, X1.2 and X1.1p from the received signal to recover X
(3)
1.1p.
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Rx1 Rx2

Figure 5.5: GDoF allocation scheme at point K

Rx2 decodes X1.1c and X2.1p using successive cancellation. The equivalent noise floor is ρ0.4 to recover

X
(1)
2.1c and X

(2)
2.1c, so we have d

(1)
1.1c = d

(2)
1.1c = 0.2 (the same as we have at Rx1). Lastly, the private message

signal X2.1p can be decoded, resulting in d
(1)
2.1p = d

(2)
2.1p = 0.4.

5.4.1.5 Points F, G and H

We leave the development of the multidimensional signal-partitioning method for these three corner

points to the readers.

Remark 5.4. As stated previously, the GDoF region of the (3, 3, 2, 2) two-user MIMO IC is characterized by

the curve M-N-O-P-A on the (d1.1, 0, d2.1) plane. Comparing points P and I, the DoFs achieved by the two

interfering transmitters, i.e., d1.1 and d2.1 are the same, but at point I the non-interfering transmitter Tx1.2

gets GDoF 0.8 at no reduction of GDoF to Tx1.1 and Tx2.1. The reason is that the signal X2.1c arrives at

Rx1 at power level ρ0.6, because of which the top two signal partitions in the first two dimensions of Rx1 can

be utilized to receive the signals from Tx1.2. Such a phenomenon was first discovered by the authors in the

context of the scalar Gaussian MAC-IC-MAC in [37]. It shows that the receivers’ power levels are not fully

saturated in a two-user MIMO IC under certain channel conditions, and adding non-interfering transmitters

(hence, making it a MIMO MAC-IC-MAC) could saturate these power levels (by letting the non-interfering

transmitters send signal partitions towards those power levels) and hence improve the overall cell spectrum

efficiency. Similar improvement can be observed by comparing points O and J.

Other than more fully occupying a receiver’s signal partitions in multiple dimensions, the non-
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Rx1 Rx2

Figure 5.6: GDoF allocation scheme at point L

interfering intended transmitters could also utilize a receiver’s signal dimensions that are not used to receive

the signals from the intended and non-intended interfering transmitters Tx1.1 and Tx2.1. This is another

role the non-interfering transmitters could play in improving the spectrum efficiency. Such an improvement

is not seen in Example 5.1, but it is easily understood. Consider a SIMO MAC-IC-MAC which has more

than two receive antennas at each receiver. In this case, each receiver has extra signal dimensions after

receiving the signals from Tx1.1 and Tx2.1. The non-interfering transmitters (in the same cell), could send

their own signals along these extra signal dimensions and henceforth improve the utilization of the available

signal partitions and dimensions at each receiver.

5.4.2 The Symmetric GDoF Curve

A MIMO MAC-IC-MAC is said to be symmetric if each cell has the same number of users, all the

transmitters (and receivers) have the same number of transmit (receive) antennas M (N) and ρi.j→i = ρ and

ρi.1→i′ = ρα for any i.j ∈ Θi, i 6= i
′

and i, i
′ ∈ {1, 2}. In regards to the symmetric MIMO MAC-IC-MAC, a

more informative performance metric is the symmetric GDoF, which is a function of K, M , N and α, and

is defined as follows.

Definition 5.7. For a symmetric K-user, (M,M,N,N) MIMO MAC-IC-MAC with GDoF region

Dsym(K,M,N, ᾱ), the symmetric generalized degree-of-freedom dsym(K,M,N, α) is defined as the solution
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to the following maximization problem

dsym(K,M,N, α) , max
d=d1.1=···=d1.K=d2.1=···=d2.K

(dΘ1
,dΘ2

)∈Dsym(K,M,N,ᾱ)

d.

Given the GDoF region in Theorem 5.4, the symmetric GDoF of MIMO MAC-IC-MAC can be computed

by linear programming.

In order to see the GDoF performance at the cell level, we plot the per-cell sum symmetric GDoF (sum

symmetric GDoF for short) Kdsym against the interference strength exponent α, for given K, M and N .

The plotted curve is called the per-cell sum symmetric GDoF curve (sum symmetric GDoF curve for short).

Figs. 5.7-5.9 demonstrate the sum symmetric GDoF curves for the following three antenna configurations:

M = 1 and N = 2, M = 2 and N = 3, and M = 3 and N = 4 respectively, each figure has four curves, one

for each K = 1, 2, 3 and 4.
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Figure 5.7: Sum symmetric GDoF for K = 1, 2, 3, 4, M = 1, N = 2

Next, we study the sum symmetric GDoFs plotted in Fig. 5.7-5.9 for three distinct symmetric MIMO

MAC-IC-MACs described in the figure captions. We focus on the achievability of the corner points on these

curves, and the analysis employs the multidimensional signal-level partitioning introduced in Section 2.2.

Example 5.3. K = 2, M = 1, N = 2. This is a two user per cell SIMO (single input multiple output)

MAC-IC-MAC. When α = 0.5, Fig. 5.7 tells us that dsym = 3
4 and the sum GDoF per cell of 1.5 is achievable.

A GDoF allocation scheme to achieve GDoF 1.5 per cell is illustrated in Fig. 5.10. In this scheme, the private
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Figure 5.8: Sum symmetric GDoF for K = 1, 2, 3, 4, M = 2, N = 3

data streams X
(1)
1.1p and X

(2)
2.1p are transmitted with power ρ−0.5 so they arrive under the noise floor at their

non-intended receivers. The achievability of dsym = 4
5 when α = 0.6 is shown in Fig. 5.11.

Example 5.4. K = 3, M = 1, N = 2. We use this example to show how does sum symmetric GDoF

increases with the number of non-interfering transmitters, in comparison to the previous example. The

result in Fig. 5.7 suggests that we can achieve full GDoF of 2 per cell at α = 1
3 . A GDoF allocation scheme

is illustrated in Fig. 5.12, and the interference free GDoF is achieved in each cell. As can be observed in the

figure, the signal partitions of the interfering transmitters are allocated in such a away that the interferences

arrive below the noise levels at both the receivers.

Next, we show the achievability of the symmetric GDoF at strong interference with α = 5
3 which also

leads to the achievability of the full GDoF of 2 in each cell. The GDoF allocation of the signal transmission

scheme is illustrated in Fig. 5.13.

Example 5.5. K = 2, M = 2, N = 3. In this example, we show how the transmit/receive antenna ratio

effects the symmetric GDoF curve, in comparison to Example 5.3 where transmit/receive antenna ratio is

1/2. According to the result in Fig. 5.8, dsym = 5
4 can be achieved at α = 1

2 . A GDoF allocation that

achieves this point is illustrated in Fig. 5.14.

Remark 5.5. As seen from Figs. 5.7-5.9, the per-cell sum symmetric GDoF curve of the MIMO MAC-IC-
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Figure 5.9: Sum symmetric GDoF for K = 1, 2, 3, 4, M = 3, N = 4

MAC moves up as the number of non-interfering transmitters increases. At first glance, this improvement

is somehow expected, because with the increasing number of the non-interfering transmitters in a cell, the

interfering transmitter has to generally transmit less and therefore emits less interference to the other cell.

Hence, the overall cell spectrum efficiency could rise, and an easy way to achieve such improvement is by

time-sharing. What is more interesting here is that under certain ranges of α, the interfering transmitter

alone cannot fully utilize the spectrum resource as seen in the use of the receivers’ signal partitions and

dimensions in a cell. However, the interfering and the non-interfering transmitters together, can. The

resulting improvement to the sum symmetric GDoF is in general more than what time-sharing can alone

achieve. Recall Remark 5.4, the non-interfering transmitter gains positive GDoF at no cost to the two

interfering transmitters, and it is such a hidden benefit that we were interested in exploiting in this chapter.

Similar GDoF gain can be seen in the sum symmetric GDoF curve too. The most obvious observation is that

the full (interference free) GDoF per cell can be achieved ufor certain ranges of α in Fig. 5.7-5.9, whereas

time-sharing between the interfering and the non-interfering transmitters cannot achieve full GDoF in those

ranges of α. A comparison between the optimal sum symmetric GDoF curve and the sum GDoF curve

obtained by several time-sharing schemes has been discussed in the analysis of the per-cell sum symmetric

GDoF curve of the Gaussian scalar MAC-IC-MAC in [37, Section III.G].
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Rx1 Rx2

Figure 5.10: GDoF allocation when K = 2, M = 1, N = 2, α = 0.5

5.5 Conclusions

The known results on the constant-gap-to-capacity regions of the K-user MIMO MAC [39] and the

two-user MIMO IC [27] are generalized and unified in this chapter. In particular, we generalize the coding

schemes in [27] and [39] and introduce a simple coding scheme for MIMO MAC-IC-MAC. The resulting

achievable region turns out to be within constant gap to the capacity region. The multidimensional signal-

level partitioning is formally established and is shown to be a simple and straightforward tool to analyze

the achievability of any given GDoF tuple for general MIMO networks. The GDoF region of the MIMO

MAC-IC-MAC is characterized. The role of non-interfering transmitters in the MAC-IC-MAC, which has

been previously investigated in the Gaussian scalar MAC-IC-MAC [37], is further studied with a variety of

antenna configurations. In particular, the per-cell sum symmetric GDoF shows the improvement of spectrum

efficiency with the number of the non-interfering transmitters in the MIMO MAC-IC-MAC.
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Rx1 Rx2

Figure 5.11: GDoF allocation when K = 2, M = 1, N = 2, α = 0.6

Rx1 Rx2

Figure 5.12: GDoF allocation when K = 3, M = 1, N = 2, α = 1/3

Rx1 Rx2

Figure 5.13: GDoF allocation when K = 3, M = 1, N = 2, α = 5/3

Rx1 Rx2

Figure 5.14: GDoF allocation when K = 2, M = 2, N = 3, α = 0.5



Chapter 6

Future Research

Now that the GDoF regions of the MIMO one-to-three IC and the MIMO IC-ZIC have been character-

ized, the next step towards the GDoF region of the fully connected three-user MIMO IC could be obtaining

the GDoF region of the MIMO three-to-one IC which is shown in Fig. 6.1. It has the following input-output

relations.

Y1 = h11H11X1 + h12H21X2 + h31H31X3 + Z1

Y2 = h22H22X2 + Z2

Y3 = h33H33X3 + Z3

The random vectors Xi and Yi, i ∈ {1, 2, 3} are the channel inputs and outputs, and hij and Hij are the

channel gain and transfer matrix from Txi to Rxj, where i, j ∈ {1, 2, 3} and some ij pairs do not exist. Rxi

only intends to receive the message from Txi. Note in either MIMO one-to-three IC or IC-ZIC, the GDoF

Figure 6.1: The MIMO three-to-one IC
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optimal coding scheme does not include interference alignment. This is because in these two channels, no

receiver receives more than one interference signal. However, it is not the case in the MIMO three-to-one

IC, and interference alignment should be expected. The GDoF region of the MIMO three-to-one IC might

be addressed by harnessing insights from the known results on the scalar Gaussian many-to-one IC in [4]

and the MIMO one-to-three IC in Chapter 3. We perform GSVD on matrix H†21 and H†31 such that

H†21 = U21Σ21V
† and H†31 = U31Σ31V

†

where U31 and U21 are unitary matrices and Σ21 and Σ31 are rectangular diagonal matrices. Then we write

H21 and H31 as

H21 = V Σ†21U
†
21 and H31 = V Σ†31U

†
31.

This is another form of GSVD which guarantees identical left hand side matrix V in the decomposition.

Accordingly, the two interference signals can be expressed as h21V Σ†21U
†
21X2 and h13V Σ†31U

†
31X3. Depending

on the diagonal values of Σ†21 and Σ†31 as well as the channel gains h21 and h31, the interference arriving at

Rx1 should contain three parts. The first part consists of the interference signal partitions received along the

signal directions and levels (at Rx1) which are only seen by Tx2, the second part consists of the interference

signal partitions received along the signal directions and levels which are only seen by Tx3, and the third

part consists of the interference signal partitions received along the signal directions and levels which are

seen by both Tx2 and Tx3. A possible GDoF optimal coding scheme which adapts this channel structure

can be summarized as follows. Tx1 transmits its own message m1 using single user Gaussian codebook with

scaled identity covariance matrix. Tx2 splits its message m2 into three parts m12, m2a and m2p. Tx3 also

splits its message m3 into three parts m13, m3a and m3p. The sub-messages m2p and m3p are encoded so

that they will arrive under the noise floor at Rx1. The sub-message m12 is sent to the signal directions

and levels (at Rx1) which are exclusively accessible to Tx2, and similarly the sub-message m13 is sent at

the signal directions and levels which are exclusively accessible to Tx3. Finally, the signal partitions which

carry sub-messages m2a and m3a from Tx2 and Tx3 should be aligned with Lattice coding and sent to the

signal directions and levels which are accessible to both Tx2 and Tx3. Then Rx1 could take the benefit of

interference alignment on those signal directions and levels, and only the sum of aligned interference signal
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partitions needs to be decoded.

Following the work of the MIMO MAC-IC-MAC, especially the sum symmetric GDoF improvement

due to simultaneous transmissions of the interfering and the non-interfering transmitters in each cell, we

can already predict the sum symmetric GDoF for a few partially connected symmetric IMACs that have

more than one interfering transmitters per cell. Consider a partially connected symmetric IMAC with six

transmitters per cell, two of which interfere with the other cell, as shown in Fig. 6.2. Each transmitter is

equipped with one antenna and each receiver has two antennas. All the direct links have SNR ρ and all the

interference links have INR ρ1/3. Recall in Example 5.4, we already know that when α = 1/3, a symmetric

(3,3) MIMO MAC-IC-MAC with the same antenna configuration could achieve full sum symmetric GDoF

2 (the interference free sum symmetric GDoF) in each cell by the GDoF allocation illustrated in Fig. 5.12.

When adding another two non-interfering and one interfering transmitters into the (3,3) MAC-IC-MAC, we

let the two added non-interfering transmitters share the signal levels with the existing two non-interfering

transmitters in time, and the added interfering transmitter share the signal levels with the existing interfering

transmitter in time (see Fig. 6.3). We then get sum symmetric GDoF 2 per-cell which should be the exact

per-cell sum symmetric GDoF for this IMAC. Generally speaking, we can scale the number of users in

a symmetric MIMO MAC-IC-MAC (while keeping the antenna configuration and the ratio between the

numbers of the non-interfering and interfering transmitters the same) to achieve the same per-cell sum

symmetric GDoF. Because for any α ∈ [0, 1/3], a symmetric (3,3) MIMO MAC-IC-MAC could achieve full

per-cell sum symmetric GDoF, so could the IMAC in Fig. 6.2. Note the GDoF optimal coding scheme implied

by Fig. 6.3 merely treats interference as noise at both receivers. Hence, the MIMO MAC-IC-MAC results

could help answer the following question: for a partially connected symmetric IMAC, under what condition

is treating interference as noise GDoF optimal? The GDoF optimality condition of treating interference as

noise for K-user scalar Gaussian IC with constant channel realization has been determined in [19].

The constant-gap-to-capacity or GDoF region of the MIMO BC-IC-BC, where only one receiver in

each cell receives interference from the other cell, may be worth exploring. Unfortunately, the results on the

MIMO MAC-IC-MAC do not provide many clues on GDoF optimal coding scheme for the MIMO BC-IC-BC.

The known capacity achieving coding scheme for the MIMO BC is the so-called dirty paper coding introduced
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Figure 6.2: A partially connected symmetric IMAC with six transmitters per cell. Two of them interfere
with the other cell. Direct links have SNR ρ and interference links have INR ρ1/3. Each transmitter has one
antenna and each receiver has two antennas.

Rx1 Rx2

Figure 6.3: A GDoF allocation for the channel given in Fig. 6.2 which achieves full sum symmetric GDoF
in each cell. Two signal partitions at the same signal level (separated by comma) share that signal level in
time.
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by Costa [12], whereas the known GDoF optimal coding scheme for the two-user MIMO IC is the KV coding

scheme [27]. It is not clear how these two optimal coding schemes could be combined together to produce a

new coding scheme for the MIMO BC-IC-BC. Even for the scalar Gaussian BC-IC-BC, a potential coding

scheme is not obvious. One approach to characterize the GDoF region of the MIMO BC-IC-BC might be to

establish the duality between the GDoF region of the MIMO MAC-IC-MAC and the MIMO BC-IC-BC.

So far, all the results in Chapters 3-5 are based on constant channel realization. To make these results

more practical for wireless applications, channel fading may be incorporated in future research.
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Appendix A

Proofs for Results on the MIMO One-to-three IC

A.1 Proof of Theorem 3.1

We prove achievability through a random coding argument. We employ three level superposition

coding at Tx1, and single use random coding at Tx2 and Tx3. More specifically, the achievable scheme can

be described in the following steps.

(1) Generate time sharing sequence qn according to p(qn) =
∏n
t=1 p(qt).

(2) Tx1 generates 2nR123 sequences wn123 according to p(wn123|qn) =
∏n
t=1 p(w123,t|qt) and indexes them

by k123 ∈ {1, · · · , 2nR123}. For each wn123(k123), it generates 2nR12 sequences wn12 according to

p(wn12|wn123(k123), qn) =
∏n
t=1 p(w12,t|w123,t(k123), qt) and indexes then by (k123, k12) ∈

{1, · · · , 2nR123} × {1, · · · 2nR12} as well as 2nR13 sequences wn13 according to p(wn13|wn123(k123), qn) =∏n
t=1 p(w13,t|w123,t(k123), qt) indexed by (k123, k13) ∈ {1, · · · , 2nR123} × {1, · · · 2nR13}. Finally, Tx1

generates 2n(R1−R123−R12−R13) sequences xn1 according to

p(xn1 |wn123(k123), wn12(k12), wn13(k13), qn) =

n∏
t=1

p(x1t|w123,t(k123), w12.t(k12), w13,t(k13), qt)

and index them as

(k123, k12, k13, k1p) ∈ {1, · · · , 2nR123}×{1, · · · 2nR12}×{1, · · · 2nR13}×{1, · · · , 2n(R1−R123−R12−R13)}.

(3) Txi, i ∈ {2, 3}, independently generates 2nRi sequences xni according to p(xni |qn) =
∏n
t=1 p(xit|qt)

and indexes them by ki ∈ {1, · · · , 2nRi}.
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(4) Once the codebooks are generated, they are fixed for the duration of communication and revealed

to receivers Rx1-Rx3.

(5) A 4-tuple message m1 = (m123,m12,m13,m1p) = (k123, k12, k13, k1p) is encoded to xn1 (k123, k12, k13,

k1p) at Tx1 and sent over the channel.

(6) A message mi = (ki), i ∈ {2, 3} is encoded to xni (mi) and sent over the channel.

(7) Upon receiving yn1 , Rx1 declares its decoded messages (m̂123, m̂12, m̂13, m̂1p) as the unique index-

tuple (k̂123, k̂12, k̂13, k̂1p) for which qn, wn123(k̂123), wn12(k̂123, k̂12), wn13(k̂123, k̂13), xn1 (k̂123, k̂12, k̂13, k̂1p)

and yni are jointly typical. If such an index-tuple cannot be found, Rx1 declares an error.

(8) Upon receiving yni , i ∈ {2, 3}, Rxi declares its decoded messages (m̂123, m̂1i, m̂i) as the unique index-

tuple (k̂123, k̂1i, k̂i) for which qn, wn123(k̂123), wn1i(k̂123, k̂1i), x
n
2 (k̂i) and yni are jointly typical, for some

k̂123 and k̂1i. If such an index-tuple cannot be found, Rxi declares an error.

Suppose m1 = (1, 1, 1, 1), m2 = 1, and m3 = 1 are sent. The following reliability condition of the coding

scheme can be obtained from the typical decoding argument [13, Chapter 7].

R1 −R123 −R12 −R13 ≤ I(X1;Y1|W123,W12,W13, Q)

R1 −R123 −R12 ≤ I(X1;Y1|W123,W12, Q)

R1 −R123 −R13 ≤ I(X1;Y1|W123,W13, Q)

R1 −R123 ≤ I(X1;Y1|W123, Q)

R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|W123,W12, Q)

R2 +R12 ≤ I(X2,W12;Y2|W123, Q)

R2 +R123 +R12 ≤ I(X2,W123,W12;Y2|Q)

R3 ≤ I(X3;Y3|W123,W13, Q)
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R3 +R13 ≤ I(X3,W13;Y3|W123, Q)

R3 +R123 +R13 ≤ I(X3,W123,W13;Y3|Q)

R123, R12, R13 ≥ 0

B123 +R12 +R13 ≤ R1

R2, R3 ≥ 0

Performing Fourier-Motzkin elimination to eliminate R123, R12 and R13 in the reliability condition, the inner

bound can be obtained, which completes the proof.

A.2 Proof of Theorem 3.2

The proof starts from the DM one-to-three inner bound in Theorem 3.1. We evaluate the mutual

information terms when specialized to the MIMO setting and for the coding scheme specialized in Section

(3.4.2). We prove the fourth inequality (3.63) in Rin as an example.

According to (3.38), the sum R1 +R2 is bounded by I(X1, Y1|W123,W12, Q)+I(X2,W123,W12;Y2|Q).

The first mutual information term can be evaluated as follows,

I(X1, Y1|W123,W12, Q)

= h(Y1|W123,W12)− h(Y1|X1)

= h (h11H11(W13 +W1p) + Z1)− h(Z1)

= log
(
IN1 + ρα11H11(Q13 +Q1p)H

†
11

)
.

Before we evaluate the second mutual information term, we upper bound the term the term

log
(
IN2

+ ρα12H12(Q13 +Q1p)H
†
12

)
,

which is shown in (A.1), the step (a) is true due to the lower bound on Tr(VpV
†
p ) by (3.54). Then the second
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mutual information term an be computed as following,

I(X2,W123,W12;Y2|Q)

= h(Y2)− h(Y2|X2,W123,W12)

= h(h12H12X1 + h22H22X2 + Z2)

− h (h12H12(W13 +W1p) + Z2)

= log
(
IN2 + ρα12H12H

†
12 + ρα22H22H

†
22

)
− log

(
IN2 + ρα12H12(Q13 +Q1p)H

†
12

)
≥ log

(
IN2 + ρα12H12H

†
12 + ρα22H22H

†
22

)
− β2

The rest inequalities in Rin can be proved in a similar fashion. The proof is completed.

log
∣∣∣IN2

+ ρα12H12(Q13 +Q1p)H
†
12

∣∣∣
= log

∣∣∣∣∣∣∣∣IN2 + ρα12U12Σ12

 Vr

0(M1−r)+×r


†

U†
Vp

Tr(VpV
†
p )

·

IM1
+

 ρα13Λ†13Λ13 + ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r 0(M1−r)+×(M1−r)+



−1

V †PU

 Vr

0(M1−r)+×r

Σ†12U
†
12

∣∣∣∣∣∣∣∣
= log

∣∣∣∣∣∣∣∣IN2
+

ρα12

Tr(VpV
†
p )

Σ12

 Vr

0(M1−r)+×r


† V †−1

r 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+



·

 Ir + ρα13Λ†13Λ13 + ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+


−1 V −1

r 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+



·

 Vr

0(M1−r)+×r

Σ†12

∣∣∣∣∣∣∣∣
= log

∣∣∣∣∣∣∣∣IN2 +
ρα12

Tr(VpV
†
p )

Σ12

 Ir

0(M1−r)+×r


† Ir + ρα13Λ†13Λ13 + ρα12Σ†12Σ12 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+


−1

·

 Ir

0(M1−r)+×r

Σ†12

∣∣∣∣∣∣∣∣
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= log

∣∣∣∣∣IN2
+

ρα12

Tr(VpV
†
p )

Σ12(Ir + ρα13Λ†13Λ13 + ρα12Σ†12Σ12)−1Σ†12

∣∣∣∣∣

= log

∣∣∣∣∣∣∣∣∣∣∣∣
IN2 +

1

Tr(VpV
†
p )


ρα12

1+ρα12
Ir−r13

ρα12C(Ir123 + ρα13S†S + ρα12C†C)−1C†

0(N2−r12)×(N2−r12)



∣∣∣∣∣∣∣∣∣∣∣∣
(a)

≤ log

∣∣∣∣∣max

{(
r

λ2
max(Vr)

+ (M1 − r)+

)−1

, 1

}

·



(
1 + ρα12

1+ρα12

)
Ir−r13 (

1 +
ρα12σ2

max(Λ12)

1+ρα13σ2
min(Λ13)+ρα12σ2

min(Λ12)

)
Ir123

IN2−r12



∣∣∣∣∣∣∣∣∣∣∣∣

≤ log

∣∣∣∣∣∣∣∣∣∣∣∣
max

{
ζ−1
min, 1

}


2Ir−r13 (
1 +

σ2
max(Λ12)

σ2
min(Λ12)

)
Ir123

IN2−r12



∣∣∣∣∣∣∣∣∣∣∣∣
= log

∣∣max
{
ζ−1
min, 1

}∣∣+ (r − r13) + r123 log

(
1 +

σ2
max(Λ12)

σ2
min(Λ12)

)
= β2 (A.1)

A.3 Proof of Theorem 3.3

The outer bound for MIMO one-to-three is characterized in two steps. In the first step, we define

the genie information and derive a variety of individual rate upper bounds on R1, R2 and R3. Combing

these individual rate restrictions, we characterize an intermediate outer bound with these genie informations

and channel side informations S12, S13 and S123. It is a union region outer bound over all admissible input

distributions. In second step, we optimize the input distribution to be Gaussian and characterize a single

region outer bound with this specified distribution.
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A.3.1 An Intermediate Outer Bound

We construct three random vectors T123, T12 and T13 as the genie informations to help receivers to

decode their message. They are

T123 = h13G13X1 + U13

 (U−1
13 Z

′

3)(1:r123)

0(N3−r123)×1

 (A.2)

T12 = h12H12X1 + Z
′

2 (A.3)

T13 = h13J13X1 + U13

 0r123×1

(U−1
13 Z

′

3)(r123+1:N3)

 . (A.4)

where Z
′

2 ⊥ Z2 and Z
′

3 ⊥ Z3 such that T123, T12 and T13 have identical distribution as the channel side

information S123, S12 and S13 respectively. The basic fact supports the derivation of the individual rate

upper bounds to follow is the that providing genie information to the receiver makes the receiver more

interference resilient, and therefore should not decrease the capacity of the channel.

If we do not provide any genie information to Rx1, the individual rate R1 is simply upper bounded

by a point-to-point channel capacity

nR1 ≤ n
[
h(Y1|Q)− h(Y1|X1, Q)

]
+ nε. (A.5)

Providing genie information Tn123 to Rx1, we can get another upper bound on the rate R1 as

nR1

(a)

≤ I(Xn
1 ;Y n1 , T

n
123) + nε

(b)
= I(Xn

1 ;Tn123) + I(Xn
1 ;Y n1 |Tn123) + nε

(c)
= h(Tn123)− h(Tn123|Xn

1 ) + h(Y n1 |Tn123)− h(Y n1 |Xn
1 )

+ nε

≤ n
[
h(Y1|T123, Q)− h(Y1|X1, Q)− h(T123|X1, Q)

]
+ h(Tn123) + nε

(d)
= n

[
h(Y1|T123, Q)− h(Y1|X1, Q)− h(S123|X1, Q)

]
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+ h(Sn123) + nε. (A.6)

The inequalities or equations (a)-(d) hold true because: (a) Providing genie information Tn123 to Rx1 will not

decrease the channel capacity; (b) chain rule of mutual information; (c) h(Y n1 |Xn
1 , T

n
123) = h(Y n1 |Xn

1 ) = h(Zn1 )

according to the distribution of X1, Y1 and T123; (d) According to the definition of genie information (A.3)-

(A.4), we have h(S123|X1, Q) = h(T123|X1, Q) and h(Sn123) = h(Tn123).

Similarly, if we provide genie informations (Tn123, T
n
12), (Tn123, T

n
13) and (Tn123, T

n
12, T

n
123) we get three

more upper bounds on R1, which are

nR1 ≤ n
[
h(Y1|T123, T12, Q)− h(Y1|X1, Q)

− h(S123, S12|X1, Q)
]

+ h(Sn123, S
n
12) + nε (A.7)

nR1 ≤ n
[
h(Y1|T123, T13, Q)− h(Y1|X1, Q)

− h(S123, S13|X1, Q)
]

+ h(Sn123, S
n
13) + nε (A.8)

nR1 ≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q)

− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13)

+ nε. (A.9)

For Rx2 and Rx3, we provide no genie information, genie information Tn123 or the entire Xn
1 at the decoder,

resulting three upper bound on R2

nR2 ≤ I(Xn
2 ;Y n2 ) + nε

= h(Y n2 )− h(Y n2 |Xn
2 ) + nε

= h(Y n2 )− h(Sn12) + nε

≤ nh(Y2|Q)− h(Sn12) + nε (A.10)

nR2

(a)

≤ I(Xn
2 ;Y n2 , T

n
123) + nε

(b)
= I(Xn

2 ;Y n2 |Tn123) + nε

= h(Y n2 |Tn123)− h(Y n2 |Tn123, X
n
2 ) + nε

= h(Y n2 |Tn123)− h(Sn12|Tn123) + nε



174

≤ nh(Y2|T123, Q)− h(Sn12|Sn123) + nε (A.11)

nR2

(a)

≤ I(Xn
2 ;Y n2 , X

n
1 ) + nε

(b)
= I(Xn

2 ;Y n2 |Xn
1 ) + nε

≤ n
[
h(Y2|X1, Q)− h(S12|X1, Q)

]
+ nε (A.12)

and three upper bounds on R3

nR3 ≤ I(Xn
3 ;Y n3 ) + nε

= h(Y n3 )− h(Y n3 |Xn
3 ) + nε

(c)
= h(Y n3 )− h(Sn123, S

n
13) + nε

≤ nh(Y3|Q)− h(Sn123, S
n
13) + nε (A.13)

nR3

(a)

≤ I(Xn
3 ;Y n3 , T

n
123) + nε

(b)
= I(Xn

3 ;Y n3 |Tn123) + nε

(c)
= h(Y n3 |Tn123)− h(Sn123, S

n
13|Tn123) + nε

≤ nh(Y3|T123, Q)− h(Sn123, S
n
13|Sn123) + nε (A.14)

nR3

(a)

≤ I(Xn
3 ;Y n3 , X

n
1 ) + nε

(b)
= I(Xn

3 ;Y n3 |Xn
1 ) + nε

(c)
= h(Y n3 |Xn

1 )− h(Sn123, S
n
13|Xn

1 ) + nε

≤ n
[
h(Y3|X1, Q)− h(S123, S13|X1, Q)

]
+ nε. (A.15)

The steps (a)-(c) hold true because: (a) Providing genie information or Xn
1 to Rx2 or Rx3 will not decrease

the channel capacity; (b) Chain rule of mutual information and the fact that each genie information is

independent of Xi for i ∈ {2, 3}; (c) The side informations S123 and S13 are defined to be disjointed (c.f.

(3.30)).

Adding (A.7) and (A.10), we obtain an outer bound on sum rate R1 +R2,

n(R1 +R2)

≤ n
[
h(Y1|T123, T12, Q)− h(Y1|X1, Q) + h(Y2|Q)
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− h(S123, S12|X1, Q)
]

+ h(Sn123, S
n
12)− h(Sn12) + nε

= n
[
h(Y1|T123, T12, Q)− h(Y1|X1, Q) + h(Y2|Q)

− h(S123, S12|X1, Q) + h(S123|S12, Q) + nε (A.16)

Similarly, an outer bound on sum rate R1 +R3 can be obtained by adding inequalities (A.8) and (A.13),

n(R1 +R3)

≤ n
[
h(Y1|T123, T13, Q)− h(Y1|X1, Q)

+ h(Y3|Q)− h(S123, S13|X1, Q)
]

+ nε (A.17)

Next, we derive two upper bounds on sum rate R1 +R2 +R3. Adding (A.9), (A.11) and (A.13), we have

n(R1 +R2 +R3)

≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|T123, Q)

+ h(Y3|Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13)− h(Sn12|Sn123)− h(Sn123, S

n
13) + nε

= n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|T123, Q)

+ h(Y3|Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn12|Sn123, S
n
13)− h(Sn12|Sn123) + nε

= n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|T123, Q)

+ h(Y3|Q)− h(S123, S12, S13|X1, Q)
]

− I(Sn12;Sn13|Sn123) + nε

= n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|T123, Q)

+ h(Y3|Q)− h(S123, S12, S13|X1, Q)
]

+ nε (A.18)

Adding (A.9), (A.10) and (A.14), we have

n(R1 +R2 +R3)

≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)
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+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13)− h(Sn12)− h(Sn123, S

n
13|Tn123) + nε

= n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13)− h(Sn12)− h(Sn123, S

n
13|Tn123) + nε

(a)
= n

[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13, T

n
123)− h(Tn123|Sn123, S

n
12, S

n
13)

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

(b)

≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13, T

n
123)− h(Tn123|Sn123, S

n
12, S

n
13, X

n
1 )

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

(c)

≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

+ h(Sn123, S
n
12, S

n
13, T

n
123)− h(Tn123|Xn

1 )

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

(d)
= n

[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)
]

− h(Tn123|Xn
1 ) + h(Tn123|Sn12)

+ h(Sn123, S
n
13|Sn12, T

n
123)− h(Sn123, S

n
13|Tn123) + nε

= n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)

− h(T123|X1, Q)
]

+ h(Tn123|Sn12)
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− I(Sn123, S
n
13;Sn12|Tn123) + nε

≤ n
[
h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q) + h(Y2|Q)

+ h(Y3|T123, Q)− h(S123, S12, S13|X1, Q)

− h(S123|X1, Q) + h(S123|S12, Q)] + nε (A.19)

Inequalities or equations (a)-(d) hold true because: (a) chain rule of conditional differential entropy; (b)

conditioning reduces differential entropy; (c) Tn123 and (Sn123, S
n
12, S

n
13) are independent conditioned on Xn

1 ;

(d) chain rule of differential entropy.

Lastly, we generate an upper bound on 2R1 + R2 + R3, which is obtained by adding (A.6), (A.9),

(A.10) and (A.13) in the following.

n(2R1 +R2 +R3)

≤ n
[
h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

− 2h(Y1|X1, Q) + h(Y2|Q) + h(Y3|Q)

− h(S123, S12, S13|X1, Q)− h(S123|X1, Q)
]

+ h(Sn123)

+ h(Sn123, S
n
12, S

n
13)− h(Sn12)− h(Sn123, S

n
13) + nε

= n
[
h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

− 2h(Y1|X1, Q) + h(Y2|Q) + h(Y3|Q)

− h(S123, S12, S13|X1, Q)− h(S123|X1, Q)
]

+ h(Sn123)

+ h(Sn123, S
n
12, S

n
13)− h(Sn12)− h(Sn123, S

n
13) + nε

= n
[
h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

− 2h(Y1|X1, Q) + h(Y2|Q) + h(Y3|Q)

− h(S123, S12, S13|X1, Q)− h(S123|X1, Q)
]

+ h(Sn123|Sn12)− I(Sn12;Sn13|Sn123) + nε

= n
[
h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

− 2h(Y1|X1, Q) + h(Y2|Q) + h(Y3|Q)
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− h(S123, S12, S13|X1, Q)− h(S123|X1, Q)

+ h(S123|S12, Q)
]

+ nε (A.20)

At this point, we can write down an outer bound of MIMO one-to-three IC in terms of side and genie

informations by incorporating bounds on individual rate (A.5), (A.12) and (A.15), and on sum rate (A.16)-

(A.20). Since the input distribution p(x1, x2, x3, q) is not optimized yet, the resulting outer remains a union

of polytopes over all admissible input distributions.

Lemma A.1. Let Po be the set of distributions Po of joint random variables (Q,X1, X2, X3) that can be

factored as

p(x1, x2, x3) = p(q)p(x1|q)p(x2|q)p(x3|q),

and define the following region R′o(Po).

R
′

o(Po) ,
{

(R1, R2, R3) ∈ R3
+ :

R1 ≤ h(Y1|Q)− h(Y1|X1, Q) (A.21)

R2 ≤ h(Y2|X1, Q)− h(S12|X1, Q) (A.22)

R3 ≤ h(Y3|X1, Q)− h(S123, S13|X1, Q) (A.23)

R1 +R2 ≤ h(Y1|T123, T12, Q)− h(Y1|X1, Q)

+ h(Y2|Q)− h(S123, S12|X1, Q)

+ h(S123|S12, Q) (A.24)

R1 +R3 ≤ h(Y1|T123, T13, Q)− h(Y1|X1, Q)

+ h(Y3|Q)− h(S123, S13|X1, Q) (A.25)

R1 +R2 +R3 ≤ h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q)

+ h(Y2|T123, Q) + h(Y3|Q)

− h(S123, S12, S13|X1, Q) (A.26)

R1 +R2 +R3 ≤ h(Y1|T123, T12, T13, Q)− h(Y1|X1, Q)

+ h(Y2|Q) + h(Y3|T123, Q)
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− h(S123, S12, S13|X1, Q)

− h(S123|X1, Q) + h(S123|S12, Q) (A.27)

2R1 +R2 +R3 ≤ h(Y1|T123, Q) + h(Y1|T123, T12, T13, Q)

− 2h(Y1|X1, Q) + h(Y2|Q)

− h(S123, S12, S13|X1, Q) + h(Y3|Q)

− h(S123|X1, Q) + h(S123|S12, Q)
}
. (A.28)

Then we have

C ⊆
⋃
Po

R
′

o(Po).

A.3.2 The Single Region Outer Bound

The intermediate upper bound is a union of polytopes over all admissible input distributions Po. To

establish a single region outer bound, we maximize the right hand side values of of inequalities (A.21)-(A.28)

by optimizing the input distribution p(x1, x2, x3, q). First of all, the time sharing is disabled. The region

R′o(Po) will not shrink because removing random variable Q will not decrease the positive conditional entropy

terms and the negative entropy terms are entropies of the Gaussian noises which are independent of Q, for

example h(Y1|X1, Q) = h(Z1|Q) = h(Z1). The positive entropy terms are upper bounded below. Each term

reaches its maximum value when X1, X2 and X3 are independent Gaussian random vectors. Because for

random vectors X and Y with Zero mean and some fixed joint covariance, the conditional differential entropy

of X given Y is maximized when X and Y are joint Gaussian [44, Lemma 1]. We also assumed the inputs

have zero mean, i.e., E(Xi) = 0 for i ∈ {1, 2, 3}, as non-zero means only contribute to power inefficiency.

h(Y1) ≤ log
∣∣∣IN1 + ρα11H11H

†
11

∣∣∣+N1 log 2πe

h(Y1|T123) ≤ log
∣∣∣IN1 + ρα11H11K12,13,1pH

†
11

∣∣∣
+N1 log 2πe

h(Y1|T123, T12) ≤ log
∣∣∣IN1

+ ρα11H11K13,1pH
†
11

∣∣∣
+N1 log 2πe
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h(Y1|T123, T13) ≤ log
∣∣∣IN1

+ ρα11H11K12,1pH
†
11

∣∣∣
+N1 log 2πe

h(Y1|T123, T12, T13) ≤ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣
+N1 log 2πe

h(Y2) ≤ log
∣∣∣IN2 + ρα12H12H

†
12

+ρα22H22H
†
22

∣∣∣+N2 log 2πe

h(Y2|T123) ≤ log
∣∣∣IN2 + ρα12H12K1,12,123H

†
12

+ρα22H22H
†
22

∣∣∣+N2 log 2πe

h(Y2|X1) ≤ log
∣∣∣IN2 + ρα22H22H

†
22

∣∣∣+N2 log 2πe

h(Y3) ≤ log
∣∣∣IN3 + ρα13H13H

†
13

+ρα33H33H
†
33

∣∣∣+N3 log 2πe

h(Y3|T123) ≤ log
∣∣∣IN3

+ ρα13H13K12,13,1pH
†
13

+ρα33H33H
†
33

∣∣∣+N3 log 2πe

h(Y3|X1) ≤ log
∣∣∣IN3

+ ρα33H33H
†
33

∣∣∣+N3 log 2πe

h(S123|S12) ≤ η + r123 log(2πe)

The upper bound of h(Y1|T123, T12) can be obtained in the sequence of steps leading to (A.29). Steps labeled

(a)-(c) hold true for the following rationale: (a1)-(a2), the covariance matrix Cov[U13(U−1
13 Z3)(1:r123)] satisfies

Cov[U13U
−1(1:r123)
13 Z3]

= U13U
−1(1:r123)
13 I3

(
U
−1(1:r123)
13

)†
U†13

= U13

 Ir123 0r123×(N3−r123)

0(N3−r123)×r123 0(N3−r123)×N3−r123)

U−1
13

� U13IN3
U−1

13 = IN3
.

For two p.s.d. matrices A and B, if A � B, then B−1 � A−1 and −A−1 � −B−1. Therefore, the inverse

matrix term with a minus sign will be “greater” if we replace Cov[U13(U−1
13 Z3)(1:r123)] with IN3

. Since log | · |
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is a monotonically non-decreasing function on the cone of p.s.d. matrices, the value of the entire entropy

term will increase after this replacement. (b) follows from the Woodbury’s identity. (c) Tr(Q1) ≤ P1 implies

Q1 � P1IM1
and Lemma 6 in [27]. The other positive entropy terms other than h(S123|S12) can be upper

bounded similarly.

The upper bound of the term h(S123|S12) is proved in the sequence of steps leading to (A.29). The

rationale for the labeled steps is as follows: step (a) is true because

h(U−1
13 S123, U

−1
12 S12)

= h

 U−1
13 S123

U−1
12 S12



= h

 U−1
13

U−1
12


 S123

S12



= h

 S123

S12

+ log

∣∣∣∣∣∣∣∣
U−1

13

U−1
12

∣∣∣∣∣∣∣∣
= h

 S123

S12

 ,

step (b) is true due to (3.31).

h(Y1|T123, T12) = h(Y1, T123, T12)− h(T123, T12)

≤ log

∣∣∣∣∣∣∣∣∣∣∣∣

Var[Y1] Cov[Y1, T123] Cov[Y1, T12]

Cov[T123, Y1] Var[T123] Cov[T123, T12]

Cov[T12, Y1] Cov[T12, T123] Var[T12]

∣∣∣∣∣∣∣∣∣∣∣∣
− log

∣∣∣∣∣∣∣∣
Var[T123] Cov[T123, T12]

Cov[T12, T123] Var[T12]

∣∣∣∣∣∣∣∣
+N1 log 2πe

= log

∣∣∣∣∣∣∣∣Var[Y1]−
(

Cov[Y1, T123] Cov[Y1, T12]

) Var[T123] Cov[T123, T12]

Cov[T12, T123] Var[T12]


−1
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·

 Cov[T123, Y1]

Cov[T12, Y1]


∣∣∣∣∣∣∣∣+N1 log 2πe
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≤ log
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†
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(
h11h

∗
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†
13 h11h

∗
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†
12

)
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†
12

h12h
∗
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†
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†
12
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·
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∗
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†
11

h12h
∗
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†
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(a2)

≤ log

∣∣∣∣IN1
+ |h11|2H11Q1H

†
11 −

(
h11h

∗
13H11Q1G

†
13 h11h

∗
12H11Q1H

†
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†
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h12h
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†
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†
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h12h
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†
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1
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2
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h(S123|S12) = h(S123, S12)− h(S12)
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min(Λ12)

)
Ir123

∣∣∣∣+ r123 log(2πe)

= r123 log
∣∣max

{
λ2

max(Vr), 1
}∣∣+ r123 log

(
1 +

σ2
max(Λ13)

σ2
min(Λ12)

)
+ r123 log(2πe)

= η + r123 log(2πe) (A.30)

It remains to compute the negative terms. After relaxing Q, the negative entropy terms become,

h(Y1|X1) = N1 log 2πe

h(S12|X1) = N2 log 2πe

h(S123|X1) = r123 log 2πe

h(S123, S12|X1) = (N2 + r123) log 2πe

h(S123, S13|X1) = N3 log 2πe

h(S123, S12, S13|X1) = (N2 +N3) log 2πe.

We verify h(S123|X1) as an example,

h(S123|X1)

= h

U13

 (U−1
13 Z3)(1:r123)

0(N3−r123)×1



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= h

 U
−1(1:r123)
13 Z3

0(N3−r123)×1

+ log |U13|

= h(U
−1(1:r123)
13 Z3)

= log |Ir123 |+ r123 log 2πe

= r123 log 2πe.

The other negative entropy terms can be verified similarly. Finally, the outer bound can be determined by

replacing the positive entropy terms in R′o(P ) with their upper bound of the entropy terms and the negative

entropy terms with their computed values obtained above, which completes the proof.

A.4 Proof of Theorem 3.4

We first demonstrate the relationship between the matrices Q1p, Q12 + Q1p, Q13 + Q1p and Q12 +

Q13 +Q1p by (3.49)-(3.52) with matrices K1p, K12,1p, K13,1p and K12,13,1p by (3.76)-(3.79), which is stated

in Lemma A.2.

Lemma A.2. The identities given by (A.36)-(A.40) hold. Furthermore, the covariance matrices Q1p, Q12 +

Q1p, Q13 +Q1p and Q12 +Q13 +Q1p can be lower bounded as follows.

Q1p �
1

ζmax max {λ2
max(Vr), 1}

K1p (A.31)

Q12 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K12,1p (A.32)

Q13 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K13,1p (A.33)

Q12 +Q13 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K12,13,1p (A.34)

Q1 �
1

ζmax max {λ2
max(Vr), 1}

IM1
(A.35)

Q1p =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12H†12H12 + ρα13H†13H13


−1

(A.36)

Q12 +Q1p =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα13H†13H13


−1

(A.37)
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Q13 +Q1p =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12H†12H12 + ρα13G†13G13


−1

(A.38)

Q12 +Q13 +Q1p =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα13G†13G13


−1

(A.39)

Q1 =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U†


−1

(A.40)

Proof. We show the truth of (A.36) in the sequence leading to (A.41), and the truth of (A.31) from (A.41)

to (A.42). The other identities and inequalities can be shown in a similar way, which completes the proof.

Q1p =
1

Tr(VpV
†
p )
Vp

IM1
+

 ρα12Σ†12Σ12 + ρα13Σ†13Σ13

0(M1−r)+×(M1−r)+



−1

V †P

=
1

Tr(VpV
†
p )
U†−1

 V †r

I(M1−r)+


−1

·

IM1
+

 ρα12Σ†12Σ12 + ρα13Σ†13Σ13

0(M1−r)+×(M1−r)+



−1 Vr

I(M1−r)+


−1

U−1

=
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)+

U† + U

 Vr

I(M1−r)+


 ρα12Σ†12Σ12 + ρα13Σ†13Σ13

0(M1−r)+×(M1−r)+


 V †r

I(M1−r)+

U†


−1

=
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)+

U†

+U

 ρα12VrΣ
†
12Σ12V

†
r + ρα13VrΣ

†
13Σ13V

†
r

0(M1−r)+×(M1−r)+

U†


−1

=
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)+

U† + ρα12U

 Vr

0(M1−r)+×r

Σ†12Σ12

 Vr

0(M1−r)+×r


†

U†
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+ρα13U

 Vr

0(M1−r)+×r

Σ†13Σ13

 Vr

0(M1−r)+×r


†

U†


−1

=
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)+

U† + ρα12H†12H12 + ρα13H†13H13


−1

(A.41)

� ζ−1
max

U
 λ2

max(Vr)Ir 0r×(M1−r)+

0(M1−r)+×r I(M1−r)+

U† + ρα12H†12H12 + ρα13H†13H13


−1

� ζ−1
max

(
max

{
λ2

max(Vr), 1
}
IM1

+ ρα12H†12H12 + ρα13H†13H13

)−1

� ζ−1
max min

{
λ−2

max(Vr), 1
}(

IM1
+ ρα12H†12H12 + ρα13H†13H13

)−1

= ζ−1
max min

{
λ−2

max(Vr), 1
}
K1p (A.42)

As stated in the proof outline, there is a one-to-one correspondence between the positive entropy terms

in both inner and outer bounds. Let K1 = IM1
, then the paired positive entropy terms will be identical if

we replace for the sum of “Q” matrices with a corresponding K matrix in the entropy terms associated with

R1. By the lower bounds (A.31)-(A.35), we show the gap resulting from replacing the matrices K1p, K12,1p

and K13,1p, K12,13,1p and K1 with Q1p, Q12 +Q1p, Q13 +Q1p, Q12 +Q13 +Q1p and Q1 in the related positive

entropy terms will not exceed δ1. For example,

log
∣∣∣IN1

+ ρα11H11Q1pH
†
11

∣∣∣
≥ log

∣∣∣IN1
+ ρα11H11K1pH

†
11

∣∣∣
−min {M1, N1}

·
(
log
(
ζmax max

{
λ2

max(Vr), 1
}))+

= log
∣∣∣IN1 + ρα11H11K1pH

†
11

∣∣∣− δ1
There are three pair of positive entropy terms in the inner and outer bound associated with R2. We bound

them one by one. The gap between log
∣∣∣IN2 + ρα12H12(Q13 +Q1p)H

†
12 + ρα22

M2
H22H

†
22

∣∣∣ and
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log
∣∣∣IN2

+ ρα22H22H
†
22

∣∣∣ are bounded in the following.

log

∣∣∣∣IN2
+ ρα12H12(Q13 +Q1p)H

†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣
≥ log

∣∣∣∣IN2
+
ρα22

M2
H22H

†
22

∣∣∣∣
≥ log

∣∣∣IN2
+ ρα22H22H

†
22

∣∣∣−min{M2, N2} logM2 (A.43)

The gap between log
∣∣∣IN2

+ ρα12H12Q1H
†
12 + ρα22

M2
H22H

†
22

∣∣∣ and log
∣∣∣IN2

+ ρα12H12H
†
12 + ρα22H22H

†
22

∣∣∣ are

thus bounded in the following.

log

∣∣∣∣IN2
+ ρα12H12Q1H

†
12 +

ρα22

M2
H22H

†
22

∣∣∣∣
≥ log

∣∣∣IN2
+ ρα12H12H

†
12 + ρα22H22H

†
22

∣∣∣
−min {M1 +M2, N2}

· log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
(A.44)

It is obvious that the gap between log

∣∣∣∣IN2
+ ρα12H12(Q12 +Q13 +Q1p)H

†
12 + ρα22H22H

†
22

∣∣∣∣ and

log
∣∣∣IN2

+ ρα12H12K12,13,1pH
†
12 + ρα22H22H

†
22

∣∣∣ is also bounded by (A.44). The maximum should be the gap

contributes to the individual gap n2 on R2, which is δ2 given by (3.90). Similarly, the gap between the

positive terms associated with R3 in the inner and outer bounds is upper bounded by δ3.

So far, we quantified the gap between the entropy terms in the inner and outer bounds. Lastly, we

see there are negative terms β2 and β3 in the inner bound but not in the outer bound and the positive term

η in the outer bound but not in the inner bound. We let β2 and β3 be absorbed by n2 and n3 respectively,

and η be absorbed by n1. The proof is completed.

A.5 Proof of Theorem 3.5

The first three bounds (3.94)-(3.96) on individual rate can be obtained by directly applying Fact 3.2 to

the first three inequalities (3.81)-(3.83) in the outer bound. The inequality (3.97) is the sum of the limits of

the two logarithm terms on the right hand side of (3.84). Note we can not directly apply Fact 3.2 to the first

term log
∣∣∣IN1

+ ρα11H11K13,1pH
†
11

∣∣∣. However, this term can be asymptotically expressed in an alternative
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format as shown in (A.45) through a sequence of matrix operations that leads to it, and we define the matrix

H
′

11 , H11U

 V †−1
r

IM1−r

 in step (a). Note since U is a unitary matrix and

 V †−1
r

IM1−r


has full rank, we have H

′

11 has full rank w.p.1 as H11, hence we can apply Fact 3.2 to (A.45), which leads

to GDoF g (N1, ((α11 − α12)+, r12) , (α11,M1 − r12)). The second logarithm term in the right hand side of

(3.84) leads to GDoF g (N2, (α12,M1), (α22,M2)) with direct application of Fact (3.2). The inequality (3.97)

is then proved. Using the same technique, other inequalities in Theorem 3.5 can be similarly verified, which

completes the proof.

log
∣∣∣IN1

+ ρα11H11K13,1pH
†
11

∣∣∣
= log

∣∣∣IN1
+ ρα11H11(IM1

+ ρα13G†13G13 + ρα12H†12H12)−1H†11

∣∣∣
= log

∣∣∣IN1
+ ρα11H11(IM1

+ ρα13V Λ†13Λ13V
† + ρα12V Σ†12Σ12V

†)−1H†11

∣∣∣
= log

∣∣∣∣∣∣∣∣IN1 + ρα11H11U

 Ir + Vr(ρ
α13Λ†13Λ13 + ρα12Σ†12Σ12)V †r

I(M1−r)+


−1

U†H†11

∣∣∣∣∣∣∣∣
= log

∣∣∣∣∣∣∣∣IN1
+ ρα11H11U

 V †−1
r

IM1−r


 Ir + ρα13Λ†13Λ13 + ρα12Σ†12Σ12

I(M1−r)+


−1

·

 V −1
r

IM1−r

U†H†11

∣∣∣∣∣∣∣∣
(a)
= log

∣∣∣∣∣∣∣∣IN1
+ ρα11H

′

11

 Ir + ρα13Λ†13Λ13 + ρα12Σ†12Σ12

I(M1−r)+


−1

H
′†
11

∣∣∣∣∣∣∣∣+O(1)

= log

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
IN1 + ρα11H

′

11



(1 + ρα12)−1Ir−r13

(1 + ρα13 + ρα12)−1Ir123

Ir−r12

I(M1−r)+


H
′†
11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+O(1)

= log

∣∣∣∣IN1
+

ρα11

1 + ρα12
H
′[1:r−r13]
11 H

′[1:r−r13]†
11 +

ρα11

1 + ρα13 + ρα12
H
′[r−r13+1:r12]
11 H

′[r−r13+1:r12]†
11

+ρα11H
′[r12+1:r]
11 H

′[r12+1:r]†
11 + ρα11H

′[r+1:M1]
11 H

′[r+1:M1]†
11

∣∣∣+O(1)
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= log
∣∣∣IN1

+ ρα11−α12H
′[1:r−r13]
11 H

′[1:r−r13]†
11 + ρα11−α12H

′[r−r13+1:r12]
11 H

′[r−r13+1:r12]†
11

+ρα11H
′[r12+1:r]
11 H

′[r12+1:r]†
11 + ρα11H

′[r+1:M1]
11 H

′[r+1:M1]†
11

∣∣∣+ o(1) (A.45)

= g
(
N1,

(
(α11 − α12)+, r12

)
, (α11,M1 − r12)

)
+O(1) (A.46)



Appendix B

Proofs for the Results on MIMO IC-ZIC

B.1 Proof of Theorem 4.1

We prove the achievability through a random coding argument. As stated in the proof outline, we

employ three level superposition coding at Tx1, two level superposition coding (the CMG type coding) Tx2

and single user random coding at Tx3. More specifically, the achievable scheme can be described in the

following steps.

(1) Generate time sharing sequence qn according to p(qn) =
∏n
t=1 p(qt).

(2) Tx1 generates 2nR123 sequences wn123 according to p(wn123|qn) =
∏n
t=1 p(w123,t|qt) and indexes them

by k123 ∈ {1, · · · , 2nR123}. For each wn123(k123), it generates 2nR12 sequences wn12 according to

p(wn12|wn123(k123), qn) =
∏n
t=1 p(w12,t|w123,t(k123), qt) and indexes them by

(k123, k12) ∈ {1, · · · , 2nR123} × {1, · · · 2nR12} as well as 2nR13 sequences wn13 according to

p(wn13|wn123(k123), qn) =

n∏
t=1

p(w13,t|w123,t(k123), qt)

indexed by (k123, k13) ∈ {1, · · · , 2nR123}× {1, · · · 2nR13}. Finally Tx1 generates 2n(R1−R123−R12−R13)

sequences xn1 according to

p(xn1 |wn123(k123), wn12(k12), wn13(k13), qn) =

n∏
t=1

p(x1t|w123,t(k123), w12.t(k12), w13,t(k13), qt)

and indexes them as

(k123, k12, k13, k1p) ∈ {1, · · · 2nR12}×{1, · · · , 2nR123}×{1, · · · 2nR13}×{1, · · · , 2n(R1−R123−R12−R13)}.
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(3) Tx2 generates 2nR21 sequences wn21 according to p(wn21|qn) =
∏n
t=1 p(w21,t|qt) and indexes them

by k21 ∈ {1, · · · , 2nR21}. For each wn21(k21), it generates 2n(R2−R21) sequences wn21 according to

p(wn2p|wn21(k21), qn) =
∏n
t=1 p(w2p,t|w21,t(k21), qt) and indexes them by (k21, k2p) ∈ {1, · · · , 2nR21} ×

{1, · · · 2nR2p}.

(4) Tx3 independently generates 2nR3 sequences xn3 according to p(xn3 |qn) =
∏n
t=1 p(x3t|qt) and indexes

them by k3 ∈ {1, · · · , 2nR3}.

(5) Once the codebooks are generated, they are fixed for the duration of communication and revealed

to receivers Rx1-Rx3.

(6) A 4-tuple message m1 = (m123,m12,m13,m1p) = (k123, k12, k13, k1p) at Tx1 is encoded to

xn1 (k123, k12, k13, k1p) at Tx1 and sent over the channel. A message m2 = (k21, k2p) at Tx2 is encoded

to xn2 (k21, k2p) and sent over the channel. A message m3 = k3 is encoded to xn3 (m3) and sent over

the channel.

(7) Upon receiving yn1 , Rx1 declares its decoded messages (m̂123, m̂12, m̂13, m̂1p, m̂21) as the unique

index-tuple (k̂123, k̂12, k̂13, k̂1p, k̂21) for which qn, wn123(k̂123), wn12(k̂123, k̂12), wn13(k̂123, k̂13),

xn1 (k̂123, k̂12, k̂13, k̂1p), w
n
21(k̂21) and yni are jointly typical, for some k̂21. If such an index-tuple cannot

be found, Rx1 declares an error.

(8) Upon receiving yn2 , Rx2 declares its decoded messages (m̂123, m̂12, m̂21, m̂2p) as the unique index-

tuple (k̂123, k̂12, k̂21, k̂2p) for which qn, wn123(k̂123), wn12(k̂123, k̂12), wn21(k̂21), xn2 (k̂21, k̂2p) and yn2 are

jointly typical, for some k̂123 and k̂12. If such an index-tuple cannot be found, Rx2 declares an error.

(9) Upon receiving yn3 , Rx3 declares its decoded messages (m̂123, m̂13, m̂3) as the unique index-tuple

(k̂123, k̂13, k̂3) for which qn, wn123(k̂123), wn13(k̂123, k̂13), xn3 (k̂3) and yn3 are jointly typical, for some

k̂123 and k̂13. If such an index-tuple cannot be found, Rx3 declares an error.

Suppose m1 = (1, 1, 1, 1), m2 = (1, 1), and m3 = 1 are sent. The reliability condition can be obtained from

the typical decoding argument [13, Chapter 7],

R1 −R1c ≤ I(X1;Y1|W1c,W21, Q)
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R1 −R123 −R12 ≤ I(X1;Y1|W123,W12,W21, Q)

R1 −R123 −R13 ≤ I(X1;Y1|W123,W13,W21, Q)

R1 −R123 ≤ I(X1;Y1|W123,W21, Q)

R1 ≤ I(X1;Y1|W21, Q)

R1 −R1c +R21 ≤ I(X1,W21;Y1|W1c, Q)

R1 −R123 −R12 +R21 ≤ I(X1,W21;Y1|W123,W12, Q)

R1 −R123 −R13 +R21 ≤ I(X1,W21;Y1|W123,W13, Q)

R1 −R123 +R21 ≤ I(X1,W21;Y1|W123, Q)

R1 +R21 ≤ I(X1,W21;Y1|Q)

R2 −R21 ≤ I(X2;Y2|W123,W12,W21, Q)

R2 ≤ I(X2;Y2|W123,W12, Q)

R2 −R21 +R12 ≤ I(X2,W12;Y2|W123,W21, Q)

R2 +R12 ≤ I(X2,W12;Y2|W123, Q)

R2 −R21 +R123 +R12 ≤ I(X2,W123,W12;Y2|W21, Q)

R2 +R123 +R12 ≤ I(X2,W123,W12;Y2|Q)

R3 ≤ I(X3;Y3|W123,W13, Q)

R3 +R13 ≤ I(X3,W13;Y3|W123, Q)

R3 +R123 +R13 ≤ I(X3,W123,W13;Y3|Q)

R123, R12, R13 ≥ 0

R123 +R12 +R13 ≤ R1

R21 ≥ 0
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R21 ≤ R2

R2, R3 ≥ 0.

Performing Fourier-Motzkin elimination to eliminate R123, R12 and R13 in the reliability condition, the inner

bound can be obtained, which completes the proof.

B.2 Proof of Theorem 4.2

We evaluate the DM IC-ZIC inner bound when specialized to the MIMO channel setting and for the

coding scheme introduced in the proof outline. In what follows, we prove the set function F (M1p) and F (M2p)

as two examples.

F1(M1p) = I(X1;Y1|W1c,W21, Q)

= h(Y1|W1c,W21)− h(Y1|X1,W21)

= log(IN1
+ ρα11H11Q1pH

†
11 + ρα21H21Q2pH

†
21)

− log(IN1
+ ρα21H21Q2pH

†
21)

(a)

≥ log(IN1
+ ρα11H11Q1pH

†
11 + ρα21H21Q2pH

†
21)

−min{M2, N1} log

(
1 +M2

M2

)
= F1(m1p)− β1

Step (a) is true due to [27, equation (66)].

F2(m2p)

= I(X2;Y2|W123,W12,W21, Q)

= h(Y2|W123,W12,W21)− h(Y2|W123,W12, X2)

= log
(
IN2

+ ρα12H12(Q13 +Q1p)H
†
12 + ρα22H22Q2pH22

)
− log

(
IN2

+ ρα12H12(Q13 +Q1p)H
†
21

)
(a)

≥ log
(
IN2 + ρα12H12(Q13 +Q1p)H

†
12 + ρα22H22Q2pH22

)
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− log
∣∣max

{
ζ−1
min, 1

}∣∣
− (r − r13)− r123 log

(
1 +

σ2
max(Λ12)

σ2
min(Λ12)

)
= F1(M2p)− β2

Step (a) is true according to the lower bound of log
(
IN2 + ρα12H12(Q13 +Q1p)H

†
21

)
by (A.1) in Section A.2

when INR12 ≥ INR13. With a slight change of the sequence that leads to (A.1), the same lower bound holds

when INR12 < INR13. The rest of the set functions for Rin can be verified in a similar fashion. The proof is

completed.

B.3 Proof of Theorem 4.3

As stated in the proof outline, the outer bound for the MIMO IC-ZIC is derived in three steps. In the

first step, we define the genie information and derive a variety of individual rate upper bounds on R1,R2 and

R3. In step two, combining these individual rate restrictions, we obtain an intermediate outer bound with

these genie informations and channel side informations. This intermediate outer bound is a union region

outer bound over all admissible input distributions, Lastly, we optimize the input distribution to be vector

Gaussian and characterize a single region outer bound with this optimized distribution.

We construct the four random vectors T123, T12, T13 and T21 given by (B.1)-(B.3) as the genie

informations to help receivers decode their message, where Z
′

i ∼ CN (0, Ni) Z
′

i ⊥ Zi for i ∈ {1, 2, 3}.

T123, T12, T13 and T21 have identical distributions as the channel side informations S123, S12, S13 and S21

(c.f. (4.23)-(4.25) and (4.22)), respectively, but each pair of corresponding “T” and “S” random variables

are independent conditioned on X1.

T123 =



h13G13X1 + U13

 (U−1
13 Z

′

3)(1:r123)

0(N3−r123)×1

 INR12 ≥ INR13

h12G12X1 + U12



0(r−r13)×1

U
−1(r−r13+1:r12)
12 Z

′

2

0(N2−r12)×1


INR12 < INR13

(B.1)
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T12 =



h12H12X1 + Z
′

2 INR12 ≥ INR13

h12J12X1 + U12



U
−1(1:r−r13)
12 Z

′

2

0r123×1

U
−1(r12+1:N2)
12 Z

′

2


INR12 < INR13

(B.2)

T13 =


h13J13X1 + U13

 0r123×1

(U−1
13 Z

′

3)(r123+1:N3)

 INR12 ≥ INR13

h13H13X1 + Z
′

3 INR12 < INR13

(B.3)

T21 = h21H21X2 + Z
′

1. (B.4)

The key fact in deriving individual rate in the following three subsections is that providing genie information

to the receiver makes the receiver more interference resilient, and therefore should not decrease the capacity

of the channel.

B.3.1 Upper Bounds on R1

If we do not feed any genie information, the individual rate R1 is simply upper bounded by a P2P

channel capacity

nR1 ≤ I(Xn
1 ;Y n1 ) + nε

= h(Y n1 )− h(Y n1 |Xn
1 ) + nε

= h(Y n1 )− h(Sn21) + nε

≤ nh(Y1|Q)− h(Sn21) + nε

= n [h(Y1|Q)− h(S21|X2, Q)] + nh(S21|X2, Q)

− h(Sn21) + nε

, nF̄
′

1(M1, M21) + nh(S21|X2, Q)− h(Sn21) + nε. (B.5)

Providing genie information T123 to Rx1, we get another upper bound on the rate R1
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nR1

(a)

≤ I(Xn
1 ;Y n1 , T

n
123) + nε

(b)
= I(Xn

1 , T
n
123) + I(Xn

1 , Y
n
1 |Tn123)

= h(Tn123)− h(Tn123|Xn
1 ) + h(Y n1 |Tn123)− h(Y n1 |Xn

1 )

+ nε

(c)
= h(Tn123)− h(Tn123|Xn

1 ) + h(Y n1 |Tn123)− h(Sn21) + nε

(d)

≤ nh(Y1|T123, Q)− nh(S123|X1, Q) + h(Sn123)

− h(Sn21) + nε

= n [h(Y1|T123, Q)− h(S21|X2, Q)] + nh(S21|X2, Q)

− nh(S123|X1, Q) + h(Sn123)− h(Sn21) + nε

, nF̄
′

1(M12, M13, M1p, M21) + nh(S21|X2, Q)

− nh(S123|X1, Q) + h(Sn123)− h(Sn21) + nε. (B.6)

The inequalities or equations (a)-(c) hold true because: (a) providing genie information Tn123 to Rx1 will not

decrease the channel capacity; (b) channel rule of mutual information; (c) h(Y n1 |Xn
1 , T

n
123) = h(Y n1 |Xn

1 ) =

h(Sn21) according to the definition of the channel side informations. (d) h(Sn123) = h(Tn123) as S123 and T123

are identically distributed.

Similarly, if we feed genie information (Tn123, T
n
12), (Tn123, T

n
13) and (Tn123, T

n
12, T

n
13), we obtain the fol-

lowing three outer bounds on R1,

nR1 ≤ n [h(Y1|T123, T12, Q)− h(S21|X2, Q)]

+ nh(S21|X2, Q)− nh(S123, S12|X1, Q) (B.7)

+ h(Sn123, S
n
12)− h(Sn21) + nε

, nF̄
′

1(M13, M1p, M21) + nh(S21|X2, Q)

− nh(S123, S12|X1, Q) + h(Sn123, S
n
12) (B.8)

− h(Sn21) + nε (B.9)
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nR1 ≤ n [h(Y1|T123, T13, Q)− h(S21|X2, Q)]

+ nh(S21|X2, Q)− nh(S123, S13|X1, Q)

+ h(Sn123, S
n
13)− h(Sn21) + nε (B.10)

, nF̄
′

1(M12, M1p, M21) + nh(S21|X2, Q)

− nh(S123, S13|X1, Q) + h(Sn123, S
n
13) (B.11)

− h(Sn21) + nε (B.12)

nR1 ≤ n [h(Y1|T123, T12, T13, Q)− h(S21|X2, Q)]

+ nh(S21|X2, Q)− nh(S123, S12, S13|X1, Q)

+ h(Sn123, S
n
12, S

n
13)− h(Sn21) + nε (B.13)

, nF̄
′

1(M1p, M21) + nh(S21|X2, Q)

− nh(S123, S12, S13|X1, Q) + h(Sn123, S
n
12, S

n
13)

− h(Sn21) + nε (B.14)

We then obtain five other outer bounds on R1 based on the configuration of genie informations in getting

(B.5)-(B.14) but additionally feeding Xn
2 to Rx1.

nR1 ≤ nh(Y1|X2, Q)− nh(S21|X2, Q) + nε

, nF̄
′

1(M1) + nε (B.15)

nR1 ≤ nh(Y1|T123, X2, Q)− nh(S123|X1, Q)

− nh(S21|X2, Q) + h(Sn123) + nε

, nF̄
′

1(M12, M13, M1p)− nh(S123|X1, Q)

+ h(Sn123) + nε (B.16)

nR1 ≤ n(Y1|T123, T12, X2, Q)− nh(S123, S12|X1, Q)

− nh(S21|X2, Q) + h(Sn123, S
n
12) + nε

, nF̄
′

1(M13, M1p)− nh(S123, S12|X1, Q)

+ h(Sn123, S
n
12) + nε (B.17)
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nR1 ≤ n(Y1|T123, T13, X2, Q)− nh(S123, S13|X1, Q)

− nh(S21|X2, Q) + h(Sn123, S
n
13) + nε

, nF̄
′

1(M12, M1p)− nh(S123, S13|X1, Q)

+ h(Sn123, S
n
13) + nε (B.18)

nR1 ≤ nh(Y1|T123, T12, T13, X2, Q)

− nh(S123, S12, S13|X1, Q)− nh(S21|X2, Q)

+ h(Sn123, S
n
12, S

n
13) + nε

, nF̄
′

1(M1p)− nh(S123, S12, S13|X1, Q)

+ h(Sn123, S
n
12, S

n
13) + nε (B.19)

B.3.2 Upper Bounds on R2

When INR12 ≥ INR13, we obtain the following set of six outer bounds on R2 by 1) not feeding any

genie information, 2) Tn21, 3) Tn123, 4)(Tn123, T
n
21), 5) Xn

1 and 6) (Xn
1 , T

n
21) to Rx2, respectively. The proof of

these bounds is quite similar to the proof of the upper bounds on R1. We directly state the result in the

following.

nR2 ≤ n [h(Y2|Q)− h(S12|X1, Q)]

+ nh(S12|X1, Q)− h(Sn12) + nε (B.20)

, nF̄
′

2(M123, M12, M2) + nh(S12|X1, Q) (B.21)

− h(Sn12) + nε (B.22)

nR2 ≤ n [h(Y2|T21, Q)− h(S12|X1, Q)]

+ nh(S12|X1, Q)− nh(S21|X2, Q)

+ h(Tn21)− h(Sn12) + nε (B.23)

, nF̄
′

2(M123, M12, M2p) + nh(S12|X1, Q)

− nh(S21|X2, Q) + h(Tn21)− h(Sn12) + nε (B.24)
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nR2 ≤ n [h(Y2|T123, Q)− h(S12|X1, Q)]

+ nh(S12|X1, Q)− h(Sn12|Sn123) + nε

, nF̄
′

2(M12, M2) + nh(S12|X1, Q) (B.25)

− h(Sn12|Sn123) + nε (B.26)

nR2 ≤ n [h(Y2|T123, T21, Q)− h(S12|X1, Q)]

+ nh(S12|X1, Q)− nh(S21|X2, Q) + h(Sn21)

− h(Sn12|Sn123) + nε (B.27)

, nF̄
′

2(M12, M2p) + nh(S12|X1, Q)− nh(S21|X2, Q)

+ h(Sn21)− h(Sn12|Sn123) + nε (B.28)

nR2 ≤ n [h(Y2|X1, Q)− h(S12|X1)] + nε

, nF̄
′

2(M2) + nε (B.29)

nR2 ≤ nh(Y2|X1, T21, Q)− nh(S12|X1)− nh(S21|X2, Q)

+ h(Tn21) + nε

, nF̄
′

2(M2p)− nh(S21|X2, Q) + h(Tn21) + nε (B.30)

When INR12 < INR13, we have another set of six outer bounds on R2.

nR2 ≤ n [h(Y2|Q)− h(S123, S12|X1, Q)]

+ nh(S123, S12|X1, Q)− h(Sn123, S
n
12) + nε

, nF̄
′

2(M123, M12, M2) + nh(S123, S12|X1, Q)

− h(Sn123, S
n
12) + nε

nR2 ≤ n [h(Y2|T21, Q)− h(S123, S12|X1, Q)]

+ nh(S123, S12|X1, Q)− nh(S21|X2, Q)

+ h(Sn21)− h(Sn123, S
n
12) + nε

, nF̄
′

2(M123, M12, M2p) + nh(S123, S12|X1, Q)

− nh(S21|X2, Q) + h(Sn21)− h(Sn123, S
n
12) + nε
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nR2 ≤ n [h(Y2|T123, Q)− h(S123, S12|X1, Q)]

+ nh(S123, S12|X1, Q)− h(Sn123, S
n
12|Tn123) + nε

, F̄
′

2(M12, M2) + nh(S123, S12|X1, Q)

− h(Sn123, S
n
12|Tn123) + nε

nR2 ≤ n [h(Y2|T123, T21, Q)− h(S123, S12|X1, Q)]

+ nh(S123, S12|X1, Q)− nh(S21|X2, Q)

+ h(Tn21)− h(Sn123, S
n
12|Tn123) + nε

, nF̄
′

2(M12, M2p) + nh(S123, S12|X1, Q)

− nh(S21|X2, Q) + h(Tn21)

− h(Sn123, S
n
12|Tn123) + nε

nR2 ≤ nh(Y2|X1, Q)− nh(S123, S12|X1, Q) + nε

, nF̄
′

2(M2) + nε

nR2 ≤ nh(Y2|X1, T21, Q)− nh(S21|X2, Q)

− nh(S123, S12|X1, Q) + h(Tn21) + nε

, nF̄
′

2(M2p)− nh(S21|X2, Q) + h(Tn21) + nε

With a slight abuse of the notation, we defined each set function F̄
′

2(·) twice in two channel conditions.

Therefore, F̄
′

2(·) should be understood as a function with two mappings depending on the relationship

between INR12 and INR13. For example,

F̄
′

2(M123, M12, M2)

=


h(Y2|Q)− h(S12|X1, Q) INR12 ≥ INR13

h(Y2|Q)− h(S123, S12|X1, Q) INR12 < INR13

,

so is F̄
′

3(·) in the next subsection.
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B.3.3 Upper Bounds on R3

When INR12 ≥ INR13, the following three upper bounds on R3 are obtained by 1) feeding no genie

information, 2)Tn123 and 3) Xn
1 to Rx3, respectively.

nR3 ≤ n [h(Y3|Q)− h(S123, S13|X1, Q)]

+ nh(S123, S13|X1, Q)− h(Sn123, S
n
13) + nε (B.31)

, nF̄
′

3(M123, M13, M3) + nh(S123, S13|X1, Q) (B.32)

− h(Sn123, S
n
13) + nε (B.33)

nR3 ≤ n [h(Y3|T123, Q)− h(S123, S13|X1, Q)]

+ nh(S123, S13|X1, Q)− h(Sn123, S
n
13|Tn123) + nε (B.34)

, nF̄
′

3(M13, M3) + nh(S123, S13|X1, Q) (B.35)

− h(Sn123, S
n
13|Tn123) + nε (B.36)

nR3 ≤ nh(Y3|X1, Q)− nh(S123, S13|X1, Q) + nε

, nF̄
′

3(M3) + nε (B.37)

When INR12 < INR13, the three upper bounds on R3 become the following.

nR3 ≤ n [(Y3|Q)− h(S13|X1, Q)] + nh(S13|X1, Q)

− h(Sn13) + nε

, nF̄
′

3(M123, M13, M3) + nh(S13|X1, Q)

− h(Sn13) + nε

nR3 ≤ n [h(Y3|T123, Q)− h(S13|X1, Q)] + nh(S13|X1, Q)

− h(Sn13|Tn123) + nε

, nF̄
′

3(M13, M3) + nh(S13|X1, Q)− h(Sn13|Tn123)

+ nε

nR3 ≤ n [h(Y3|X1, Q)− h(S13|X1)] + nε
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= nF̄
′

3(M3) + nε

B.3.4 An Intermediate Outer Bound

We first consider the case of INR12 ≥ INR13. Since the goal of deriving the outer bound is to quantify

the gap from the inner bound to itself, we want our outer bound to have close identical algebraic structure to

the inner bound. Note there is a one to one correspondence between the set functions in the inner and outer

bounds. For each inequality in the inner bound (c.f. Theorem 4.2) except (4.109), (4.111), (4.116), (4.117)

and (4.125), we construct a corresponding inequality by replacing the inner bound set function Fi(·) with

the outer bound set function F̄i(·). By assembling these 28 inequalities, we may get an intermediate outer

bound for the MIMO IC-ZIC expressed in terms of the genie and channel side informations. To accomplish

such a task, we meed to make sure all the unsingle-letterized entropy terms in the individual upper bounds

could be either bounded or eliminated. As a matter of fact, all the unsingle-letterized entropy terms can

indeed be removed when we linearly combine these individual upper bounds according to the structure of the

inner bound. Let us justify the derivation of the following two inequalities which belong to the intermediate

outer bound to follow in Lemma.

The 6th inequality in the inner bound (c.f. Theorem 4.2) suggests an outer bound inequality with

F̄1(M1, M21) + F̄2(M2p) on the right side; therefore we add inequalities (B.5) and (B.30) as follows.

n(R1 +R2) ≤ nF̄1(M1, M21) + nh(S21|X2, Q)− h(Sn21)

nF̄2(M2p)− nh(S21|X2, Q) + h(Tn21) + nε
′

= nF̄1(M1, M21) + nF̄2(M2p) + nε
′

In the derivation of these inequalities, unsingle-letterized entropy terms eliminate each other. The inequality

(4.119) in the inner bound suggests an outer bound inequality with F̄1(M1p) + F̄2(M123, M12, M2) + F̄3(M13, M3)

on the right side, so this inequality must be the combination of inequalities (B.19), (B.21) and (B.35), which

is

n(R1 +R2 +R3)

≤ nF̄1(M1p) + nF̄2(M123, M12, M2) + nF̄3(M13, M3)
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− nh(S123, S12, S13|X1, Q) + h(Sn123, S
n
12, S

n
13)

+ nh(S12|X1, Q)− h(Sn12) + nh(S123, S13|X1, Q)

− h(Sn123, S
n
13|Tn123) + nε

′

(a)
= nF̄1(M1p) + nF̄2(M123, M12, M2) + nF̄3(M13, M3)

+ h(Sn123, S
n
12, S

n
13)− h(Sn12)− h(Sn123, S

n
13|Tn123) + nε

′

(b)
= nF̄1(M1p) + nF̄2(M123, M12, M2) + nF̄3(M13, M3)

+ h(Sn123, S
n
12, S

n
13, T

n
123)− h(Tn123|Sn123, S

n
12, S

n
13)

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

′

(c)

≤ nF̄1(M1p) + nF̄2(M123, M12, M2) + nF̄3(M13, M3)

+ h(Sn123, S
n
12, S

n
13, T

n
123)− h(Tn123|Sn123, S

n
12, S

n
13, X

n
1 )

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

′

(d)
= nF̄1(M1p) + nF̄2(M123, M12, M2) + nF̄3(M13, M3)

+ h(Sn123, S
n
12, S

n
13, T

n
123)− r123 log 2πe

− h(Sn12)− h(Sn123, S
n
13|Tn123) + nε

′

= n [−r123 log 2πe+ h(T123|S12)]− I(Sn123, S
n
13;Sn12|Tn123)

(e)

≤ nη + nε
′
.

The rationales of the steps (a)-(e) are as follows: (a) the value of entropy terms can be explicitly com-

puted and nh(S123, S12, S13|X1, Q) = nh(S12|X1, Q) + nh(S123, S13|X1, Q); (b) chain rule of the condi-

tional entropy; (c) conditioning reduces entropy, therefore the negative term h(Tn123|Sn123, S
n
12, S

n
13, X

n
1 ) ≥

h(Tn123|Sn123, S
n
12, S

n
13, X

n
1 ); (d) given the fact that T123 and S123 are identically distributed, we have

h(Tn123|Sn123, S
n
12, S

n
13, X

n
1 ) = h(Tn123|Xn

1 ) = nh(T123|X1) = n(S123|X1) = r123 log 2πe

. The value of h(S123|X1) is given by #. (e) h(T123|S12) = h(S123|S12) by the distributions of genie and

channel side informations, and the fact that h(S123|S12) is upper bounded by nη + r123 log 2πe according to

(A.30) in Section A.3.
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The other 25 inequalities can be justified in a similar fashion. For each desired combination of the

individual upper bounds, the involved unsingle-letterized entropy terms are either upper bounded by 0 or

nη.

When INR12 ≤ INR13, we have to use the same technique to derive another 28 inequalities for another

intermediate outer bound with the same process as in the case of INR12 ≥ INR13. Again, for each desired

combination of the individual upper bounds, the involved unsingle-letterized entropy terms are either upper

bounded by 0 or nη (with a different value when INR12 < INR13, c.f. (4.185)). Thus we unify these two

intermediate outer bounds in Lemma #, where all the inequalities except the individual rate upper bounds

have η on the right hand side.

Lemma B.1. Let Po be the set of distributions Po of joint random variables (Q,X1, X2, X3) that can be

factored as

p(x1, x2, x3) = p(q)p(x1|q)p(x2|q)p(x3|q),

and define the following region R′o(Po) given by (B.38)-(B.65). Then we have

C ⊆
⋃
Po

R
′

o(Po).

R
′

o(Po) ,
{

(R1, R2, R3) ∈ R3
+ :

R1 ≤ F̄
′

1(M1) (B.38)

R2 ≤ F̄
′

2(M2) (B.39)

R3 ≤ F̄
′

3(M3) (B.40)

R1 +R2 ≤ F̄
′

1(M1, M21) + F̄
′

2(M2p) + η (B.41)

R1 +R2 ≤ F̄
′

1(M13, M1p) + F̄
′

2(M123, M12, M2) + η (B.42)

R1 +R2 ≤ F̄
′

1(M13, M1p, M21) + F̄
′

2(M123, M12, M2p) + η (B.43)

R1 +R3 ≤ F̄
′

1(M12, M1p) + F̄
′

3(M123, M13, M3) + η (B.44)

R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

2(M12, M2) + F̄
′

3(M123, M13, M3) + η (B.45)

R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M13, M3) + η (B.46)
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R1 +R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

2(M12, M2p) + F̄
′

3(M123, M13, M3) + η (B.47)

R1 +R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M13, M3) + η (B.48)

R1 +R2 +R3 ≤ F̄
′

1(M12, M1p, M21) + F̄
′

2(M2p) + F̄
′

3(M123, M13, M3) + η (B.49)

R1 + 2R2 ≤ F̄
′

1(M13, M1p, M21) + F̄
′

2(M2p) + F̄
′

2(M123, M12, M2) + η (B.50)

2R1 +R2 ≤ F̄
′

1(M13, M1p) + F̄
′

1(M1, M21) + F̄
′

2(M123, M12, M2p) + η (B.51)

2R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M13, M1p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M123, M13, M3) + η (B.52)

2R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M13, M1p, M21) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M123, M13, M3) + η (B.53)

2R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M1, M21) + F̄
′

2(M12, M2p) + F̄
′

3(M123, M13, M3) + η (B.54)

2R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M1, M21) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M13, M3) + η (B.55)

R1 + 2R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

2(M2p) + F̄
′

2(M12, M2) + F̄
′

3(M123, M13, M3) + η (B.56)

R1 + 2R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

2(M2p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M13, M3) + η (B.57)

2R1 + 2R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M13, M1p, M21) + F̄
′

2(M12, M2p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M123, M13, M3) + η

(B.58)

2R1 + 2R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M13, M1p, M21) + F̄
′

2(M2p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M123, M13, M3) + η

(B.59)

2R1 + 2R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

1(M12, M13, M1p, M21) + F̄
′

2(M2p) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M123, M13, M3) + η

(B.60)

2R1 +R2 + 2R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M1p, M21) + F̄
′

2(M12, M2p) + 2F̄
′

3(M123, M13, M3) + η (B.61)

2R1 +R2 + 2R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M1p, M21) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M13, M3) + F̄
′

3(M123, M13, M3) + η

(B.62)

3R1 +R2 +R3 ≤ F̄
′

1(M1p) + F̄
′

1(M12, M13, M1p) + F̄
′

1(M1, M21) + F̄
′

2(M123, M12, M2p) + F̄
′

3(M123, M13, M3) + η

(B.63)

3R1 + 2R2 + 2R3 ≤ 2F̄
′

1(M1p) + F̄
′

1(M12, M13, M1p, M21) + F̄
′

2(M12, M2p) + F̄
′

2(M123, M12, M2) + 2F̄
′

3(M123, M13, M3)

+ η (B.64)
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2R1 + 3R2 +R3 ≤ F̄
′

1(M1p, M21) + F̄
′

1(M12, M13, M1p, M21) + 2F̄
′

2(M2p) + F̄
′

2(M123, M12, M2) + F̄
′

3(M123, M13, M3)

+ η
}

(B.65)

Remark B.1. Recall there are five inequalities in the inner bound that do not have counterpoints in the outer

bound. This is because if we add the individual upper bounds accordingly, the rate variable combination on

the left hand side will not match the rate combination in the inner bound. For example, there are three set

functions on the right hand side of inequality (4.116), but only two rate variables in the left hand side.

B.3.5 The Single Region Outer Bound

The intermediate upper bound is a union of polytopes over all admissible input distributions. To

establish a single region outer bound, we maximize the set functions F̄
′

1(·), F̄ ′2(·) and F̄
′

3(·) by optimizing

the input distribution p(x1, x2, x3, q). First of all, the time sharing is disabled. The region R′o(Po) will not

shrink because removing the random variable Q will not decrease the positive conditional entropy terms, and

the negative entropy terms are entropies of the Gaussian noises which are independent of Q, for example,

h(Y1|X1, Q) = h(Z1|Q) = h(Z1). The positive entropy terms in the set functions are upper bounded below.

Each term reaches its maximum value when X1, X2 and X3 are independent Gaussian random vectors. For

random vectors X and Y with zero mean and some fixed joint covariance, the conditional differential entropy

of X given Y is maximized when X and Y are joint Gaussian [44, Lemma 1]. We also assumed the inputs

have zero means, i.e., E(Xi) = 0 for i ∈ {1, 2, 3}, as non-zero means only contribute to power inefficiency.

We prove the set function F̄1(M1p) when INR12 ≥ INR13 in the sequence of steps leading to (B.66). Steps

labeled (a)-(c) hold true for the following rationale: (a1)-(a2), the covariance matrix Cov[U13(U−1
13 Z3)(1:r123)]

satisfies

Cov[U13U
−1(1:r123)
13 Z3]

= U13U
−1(1:r123)
13 I3

(
U
−1(1:r123)
13

)†
U†13

= U13

 Ir123 0r123×(N3−r123)

0(N3−r123)×r123 0(N3−r123)×N3−r123)

U−1
13

� U13IN3
U−1

13 = IN3
.
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For the two p.s.d. matrices A and B, if A � B, then B−1 � A−1 and −A−1 � −B−1. Therefore, the inverse

matrix term with a minus sign will be “greater” if we replace Cov[U13(U−1
13 Z3)(1:r123)] with IN3

. Since log | · |

is a monotonically non-decreasing function on the cone of p.s.d. matrices, the value of the entire entropy

term will increase after this replacement. (b) follows from the Woodbury’s identity. (c) Tr(Q1) ≤ P1 implies

Q1 � P1IM1 and Lemma 6 in [27], also Tr(Q2) ≤ P1 implies Q2 � P2IM2 .

F̄
′

1(M13, M1p, M21)

≤ h(Y1|T123, T12, Q)− h(S21|X2, Q)

≤ h(Y1|T123, T12)− h(Z1)

= h(Y1, T123, T12)− h(T123, T12)−N1 log 2πe

≤ log

∣∣∣∣∣∣∣∣∣∣∣∣

Var[Y1] Cov[Y1, T123] Cov[Y1, T12]

Cov[T123, Y1] Var[T123] Cov[T123, T12]

Cov[T12, Y1] Cov[T12, T123] Var[T12]

∣∣∣∣∣∣∣∣∣∣∣∣
− log

∣∣∣∣∣∣∣∣
Var[T123] Cov[T123, T12]

Cov[T12, T123] Var[T12]

∣∣∣∣∣∣∣∣

= log

∣∣∣∣∣∣∣∣Var[Y1]−
(

Cov[Y1, T123] Cov[Y1, T12]

)
·

 Var[T123] Cov[T123, T12]

Cov[T12, T123] Var[T12]


−1

·

 Cov[T123, Y1]

Cov[T12, Y1]


∣∣∣∣∣∣∣∣

(a1)

≤ log

∣∣∣∣IN1
+ |h11|2H11Q1H

†
11 + |h21|2H21Q2H

†
21 −

(
h11h

∗
13H11Q1G

†
13 h11h

∗
12H11Q1H

†
12

)

·


U13

 Ir123

0(N3−r123)×N3−r123)

U−1
13 + |h13|2G13Q1G

†
13 h13h

∗
12G13Q1H

†
12

h12h
∗
13H12Q1G

†
13 IN2

+ |h12|2H12Q1H
†
12



−1

·

 h13h
∗
11G13Q1H

†
11

h12h
∗
11H12Q1H

†
11

∣∣∣∣
(a2)

≤ log

∣∣∣∣IN1
+ |h11|2H11Q1H

†
11 + |h21|2H21Q2H

†
21 −

(
h11h

∗
13H11Q1G

†
13 h11h

∗
12H11Q1H

†
12

)
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·

 IN3
+ |h13|2G13Q1G

†
13 h13h

∗
12G13Q1H

†
12

h12h
∗
13H12Q1G

†
13 IN2

+ |h12|2H12Q1H
†
12


−1 h13h

∗
11G13Q1H

†
11

h12h
∗
11H12Q1H

†
11

∣∣∣∣
= log

∣∣∣∣IN1
+ |h21|2H21Q2H

†
21 + |h11|2H11Q

1
2
1

[
IM1
−
(
h∗13Q

1
2
1 G
†
13 h∗12Q

1
2
1 H
†
12

)

·

 IN3 + |h13|2G13Q1G
†
13 h13h

∗
12G13Q1H

†
12

h12h
∗
13H12Q1G

†
13 IN2 + |h12|2H12Q1H

†
12


−1 h13G13Q

1
2
1

h12H12Q
1
2
1


Q 1

2
1 H
†
11

∣∣∣∣∣∣∣∣
= log

∣∣∣∣IN1 + |h21|2H21Q2H
†
21 + |h11|2H11Q

1
2
1

[
IM1 −

(
h∗13Q

1
2
1 G
†
13 h∗12Q

1
2
1 H
†
12

)

·

IN2+N3
+

 h13G13Q
1
2
1

h12H12Q
1
2
1

( h∗13Q
1
2
1 G
†
13 h∗12Q

1
2
1 H
†
12

)
−1 h13G13Q

1
2
1

h12H12Q
1
2
1


Q 1

2
1 H
†
11

∣∣∣∣∣∣∣∣
(b)
= log

∣∣∣∣∣∣∣∣IN1
+ |h11|2H11Q

1
2
1

IM1
+

(
h∗13Q

1
2
1 G
†
13 h∗12Q

1
2
1 H
†
12

) h13G13Q
1
2
1

h12H12Q
1
2
1



−1

Q
1
2
1 H
†
11

+|h21|2H21Q2H
†
21

∣∣∣
= log

∣∣∣∣IN1
+ |h11|2H11Q

1
2
1

(
IM1

+Q
1
2
1 (|h13|2G†13G13 + |h12|2H†12H12)Q

1
2
1

)−1

Q
1
2
1 H
†
11 + |h21|2H21Q2H

†
21

∣∣∣∣
(c)

≤ log

∣∣∣∣IN1
+ ρα11H11

(
IM1

+ ρα13G†13G13 + ρα12H†12H12

)−1

H†11 + ρα21H21H
†
21

∣∣∣∣
= log

∣∣∣IN1 + ρα11H11K13,1pH
†
11 + ρα21H21H

†
21

∣∣∣ (B.66)

In the case of INR12 ≥ INR13, the set function F̄1(M1p) and also the other set functions can be proved in a

similar fashion. The proof is completed.

B.4 Proof of Theorem 4.4

The gap is quantified in two steps. In the first step, we quantify the 28 inequalities in Rin which can

be seen as a result of replacing the set function F̄i(Mφi) with Fi(Mφi) and removing η from the inequalities of

the outer bound. Then we quantity the gap resulting from the inequalities (4.109), (4.111), (4.116), (4.117)

and (4.125) in Rin. The overall gap will thus be determined.
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B.4.1 The Gap between the Twenty Eight Inequalities in Rin and Ro

Fact B.1 states the following relationship between the matrices Q1p, Q12 + Q1p, Q13 + Q1p and

Q12 +Q13 +Q1p by (4.141)-(4.144) with matrices K1p, K12,1p, K13,1p and K12,13,1p by (4.161)-(4.164). The

result has been proved in Lemma A.2 for the case INR12 ≥ INR13, the result for INR12 < INR13 can be proved

similarly.

Fact B.1. The identities given by (B.72)-(B.75) hold. Furthermore, the covariance matrices Q1p, Q12 +Q1p,

Q13 +Q1p and Q12 +Q13 +Q1p can be lower bounded as follows.

Q1p �
1

ζmax max {λ2
max(Vr), 1}

K1p (B.67)

Q12 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K12,1p (B.68)

Q13 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K13,1p (B.69)

Q12 +Q13 +Q1p �
1

ζmax max {λ2
max(Vr), 1}

K12,13,1p (B.70)

Q1 �
1

ζmax max {λ2
max(Vr), 1}

IM1 (B.71)

Q1p =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12H†12H12 + ρα13H†13H13


−1

(B.72)

Q12 +Q1p =



1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα13H†13H13


−1

1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12G†12G12 + ρα13H†13H13


−1 (B.73)
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Q13 +Q1p =



1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12H†12H12 + ρα13G†13G13


−1

1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12H†12H12


−1 (B.74)

Q12 +Q13 +Q1p =



1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα13G†13G13


−1

1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U† + ρα12G†12G12


−1 (B.75)

Q1 =
1

Tr(VpV
†
p )

U
 VrV

†
r

I(M1−r)

U†


−1

(B.76)

We quantify the gap between F1(M1p) and F̄1(M1p) in the following.

F1(M1p)

(a)

≥ log
∣∣∣IN1

+ ρα11H11Q1pH
†
11

∣∣∣− β1

(b)

≥ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣−min {M1, N1}

·
(
log
(
ζmax max

{
λ2

max(Vr), 1
}))+ − β1

(b)

≥ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣−min{M1 +M2, N1}

· log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
− β1

= F̄ (M1p)− δ1 − β1

Step (a) holds true because log | · | is a non-decreasing function over the cone of p.s.d. matrices so removing

the term ρα21H21Q2pH
†
21 will not increase the value of F1(M1p). Step (b) is true due to (B.67) in Fact B.1.

The gap between F1(M13, M1p, M21) and F̄1(M13, M1p, M21) is bounded as follows.

F1(M1p, M21)

= log |IN1 + ρα11H11Q1pH
†
11 + ρα21H21Q2H

†
21| − β1
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(a)

≥ log
∣∣∣IN1

+ ρα11H11K1pH
†
11 + ρα21H21H

†
21

∣∣∣
−min{M1 +M2, N1}

· log max
{
ζmax max

{
λ2

max(Vr), 1
}
,M2

}
− β1

= F̄1(M1p, M21)− δ1 − β1

Step (a) is true because the rank of ρα11H11K1pH
†
11 + ρα21H21H

†
21 should not exceed min{M1 + M2, N1}.

In a similar way, the gap resulting from replacing Fi(Mφi) with F̄i(Mφi) is upper bounded by δi + βi. Note

in each of these 28 inequalities, the coefficient of Ri in the left hand side is the same as the number of the

set functions (with subscript i) F̄i(·) that appear on the right hand side; therefore, we let the gap δi + βi be

absorbed by the individual gap n
(1)
i .

Lastly, there is a constant η in all but the first three inequalities in the outer bound. Since R1 always

appears on the left hand side of these 25 inequalities, we let η be absorbed by n
(1)
1 . So far, we quantified the

gap between the 28 inequalities in the inner bound Rin to their counterpoints in the outer bound Ro.

B.4.2 Preliminaries for the Proof of The Gap Induced From the Other Five Inequalities

in the Inner Bound

Before we prove the gap induced from the other 5 inequalities in the inner bound, we need the following

preliminary result to support the proof. Throughout, we assume INR12 ≥ INR13, and the result of the case

INR12 < INR13 can be obtained in a similar fashion.

Lemma B.2. The inner bound set functions F1(M1p), F1(M13, M1p), F1(M12, M13, M1p), F1(M1p, M21), F2(M2p),

F2(M12, M2p), F2(M123, M12, M2p) and F3(M13, M3) can be lower bounded as follows,

F1(M1p)

≥ h (h11H11X1 + Z1, h12H12X1 + Z2, h13H13X1 + Z3)

− h (h12H12X1 + Z2, h13H13X1 + Z3)

−N1 log(2πe)− β1 − γ11 (B.77)

F1(M13, M1p)
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≥ h (h11H11X1 + Z1, h12H12X1 + Z2, h13G13X1 + Z3)

− h (h12H12X1 + Z2, h13G13X1 + Z3)

−N1 log(2πe)− β1 − γ11 (B.78)

F1(M12, M13, M1p)

≥ h (h11H11X1 + Z1, h13G13X1 + Z3)

− h (h13G13X1 + Z3)−N1 log(2πe)− β1 − γ11 (B.79)

F1(M1p, M21)

≥ h(h21H21X2 + Z1)−N1 log(2πe)− β1 − γ21 (B.80)

F2(M2p)

≥ h(h22H22X2 + Z2, h21H21X2 + Z1)

− h(h21H21X2 + Z1)−N2 log(2πe)− β2 − γ22 (B.81)

F2(M12, M2p)

≥ h(h12H12X1 + Z2, h13G13X1 + Z3)

− h(h13G13X1 + Z3)−N2 log(2πe)− β2 − γ12 (B.82)

F2(M123, M12, M2p)

≥ h(h12H12X1 + Z2)−N2 log(2πe)− β2 − γ12 (B.83)

F3(M13, M3)

≥ h(h13H13X1 + h33H33X3 + Z3, h13G13X1 + Z
′

3)

− h(h13G13X1 + Z
′

3)−N3 log(2πe)− β3 − δ3, (B.84)

where X1 ∼ CN (0, P1IM1), X2 ∼ CN (0, P2IM2), X3 ∼ CN (0, P3IN3), Z
′

3 ∼ CN (0, IN3) and Z3 ⊥ Z
′

3 in the

right hand side of above inequalities.

Proof. The proof of lower bound on F1(M1p) is demonstrated in the sequence of steps leading to (B.85). Step

(a) holds true because of the Woodbury’s identity; step (b) is true because for any matrices A, B, C and D,
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we have

∣∣∣∣∣∣∣∣
A B

C D

∣∣∣∣∣∣∣∣ = |D||A−BD−1C| if D is invertible. Other lower bounds can be obtained similarly.

F1(M1p)

= log
∣∣∣IN1

+ ρα11H11Q1pH
†
11 + ρα21H21Q2pH

†
21

∣∣∣− β1

≥ log
∣∣∣IN1

+ ρα11H11Q1pH
†
11

∣∣∣− β1

≥ log
∣∣∣IN1

+ ρα11H11K1pH
†
11

∣∣∣− β1 − γ11

= log

∣∣∣∣IN1 + ρα11H11

(
IM1

+ ρα12H†12H12 + ρα13H†13H13

)−1

H†11

∣∣∣∣− β1 − γ11

= log

∣∣∣∣∣∣∣∣IN1 + ρα11H11

IM1 +

(
h12

√
P1H

†
12 h13

√
P1

H†13

) h12

√
P1H12

h13

√
P1H13



−1

H†11

∣∣∣∣∣∣∣∣− β1 − γ11

(a)
= log

∣∣∣∣IN1 + ρα11H11

(
IM1 −

(
h12

√
P1H

†
12 h13

√
P1

H†13

)

·

IN2+N3
+

 h12

√
P1H12

h13

√
P1H13

( h12

√
P1H

†
12 h13

√
P1

H†13

)
−1 h12

√
P1H12

h13

√
P1H13


H†11

∣∣∣∣∣∣∣∣
− β1 − γ11

= log

∣∣∣∣IN1
+ ρα11H11H

†
11 − ρα11H11

((
h12

√
P1H

†
12 h13

√
P1

H†13

)

·

IN2+N3 +

 h12

√
P1H12

h13

√
P1H13

( h12

√
P1H

†
12 h13

√
P1

H†13

)
−1 h12

√
P1H12

h13

√
P1H13


H†11

∣∣∣∣∣∣∣∣
− β1 − γ11

(b)
= log

∣∣∣∣∣∣∣∣∣∣∣∣

IN1
+ ρα11H11H

†
11 h11

√
P1H11

(
h12

√
P1H

†
12 h13

√
P1

H†13

)

h11

√
P1

 h12

√
P1H12

h13

√
P1H13

H†11 IN2+N3
+

 h12

√
P1H12

h13

√
P1H13

( h12

√
P1H

†
12 h13

√
P1

H†13

)
∣∣∣∣∣∣∣∣∣∣∣∣

− log

∣∣∣∣∣∣∣∣IN2+N3
+

 h12

√
P1H12

h13

√
P1H13

( h12

√
P1H

†
12 h13

√
P1

H†13

)∣∣∣∣∣∣∣∣− β1 − γ11

= h (h11H11X1 + Z1, h12H12X1 + Z2, h13H13X1 + Z3)− h (h12H12X1 + Z2, h13H13X1 + Z3)−N1 log(2πe)

− β1 − γ11 (B.85)
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Lemma B.3. The outer bound set functions F̄1(M1), F̄1(M12, M1p), F̄2(M2) and F̄3(M123, M13, M3)

F̄1(M1) = h(h11H11X1 + Z1)−N1 log(2πe) (B.86)

F̄1(M12, M1p) = h (h11H11X1 + Z1, h13H13X1 + Z3)

− h (h13H13X1 + Z3)−N1 log(2πe) (B.87)

F̄2(M2) = h(h22H22X2 + Z2)−N2 log(2πe) (B.88)

F̄3(M123, M13, M3) = h(h13H13X1 + h33H33X3 + Z3)

−N3 log(2πe) (B.89)

where X1 ∼ CN (0, P1IM1
), X2 ∼ CN (0, P2IM2

), and X3 ∼ CN (0, P3IN3
) in the right hand side of the

inequalities above.

Proof. We prove the second identity as an example in the following. The rest of identities can be verified

similarly. Recall the definition of the set function F̄1(M12, M1p) (c.f. (4.168)) and the fact that the outer

bound is obtained by choosing X1, X2 and X3 to be Gaussian vectors (c.f. Section B.3.5). We have

F̄1(M12, M1p)

= log
∣∣∣IN1 + ρα11H11K12,1pH

†
11

∣∣∣
= log

∣∣∣∣IN1 + ρα11H11

(
IM1 + ρα13H†13H13

)−1

H†11

∣∣∣∣
(a)
= log |IN1

+ ρα11H11

·
(
IM1
− ρα13H†13(IN3

+ ρα13H13H
†
13)−1H13

)
H†11

∣∣∣
= log

∣∣∣IN1
+ ρα11H11H

†
11

−ρα11H11ρ
α13H†13(IN3

+ ρα13H13H
†
13)−1H13H

†
11

∣∣∣
= log

∣∣∣∣∣∣∣∣
IN1

+ ρα11H11H
†
11 h11h

†
13P1H11H

†
13

h13h
†
11P1H13H

†
11 IN3

+ ρα13H13H
†
13

∣∣∣∣∣∣∣∣
− log

∣∣∣IN3 + ρα13H13H
†
13

∣∣∣
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= h(h11H11X1 + Z1, h13H13X1 + Z3)

− h(h13H13X1 + Z3)−N1 log(2πe).

Step (a) holds due to the Woodbury’s identity. The proof is completed.

Lemma B.4. The following identities hold when X1 ∼ CN (0, P1IM1), X2 ∼ CN (0, P2IM2), and X3 ∼

CN (0, P3IN3).

h (h12H12X1 + Z2|h13H13X1 + Z3)

= log

∣∣∣∣IN2
+ ρα12Σ12

(
V −1
r V †−1

r + ρα13Σ†13Σ13

)−1

Σ†12

∣∣∣∣
+N2 log(2πe) (B.90)

h (h12H12X1 + Z2|h13G13X1 + Z3)

= log

∣∣∣∣IN2
+ ρα12Σ12

(
V −1
r V †−1

r + ρα13Λ†13Λ13

)−1

Σ†12

∣∣∣∣
+N2 log(2πe) (B.91)

h (h13G13X1 + Z3|h12H12X1 + Z2)

= log

∣∣∣∣IN3
+ ρα13Λ13

(
V −1
r V †−1

r + ρα12Σ†12Σ12

)−1

Λ†13

∣∣∣∣
+N3 log(2πe) (B.92)

Proof. We compute the first equation in the sequence of steps leading to (B.93), and the rest of the identities

can be shown similarly. The proof is completed.

h (h12H12X1 + Z2|h13H13X1 + Z3)

= h(h12H12X1 + Z2, h13H13X1 + Z3)− h(h13H13X1 + Z3)

= log

∣∣∣∣∣∣∣∣
IN2 + ρα12H12H

†
12 h12h

†
13P1H12H

†
13

h13h
†
12P1H13H

†
12 IN3 + ρα13H13H

†
13

∣∣∣∣∣∣∣∣− log
∣∣∣IN3 + ρα13H13H

†
13

∣∣∣+N2 log(2πe)

= log
∣∣∣IN2

+ ρα12H12H
†
12 − h12h

†
13P1H12H

†
13(IN3

+ ρα13H13H
†
13)−1h13h

†
12P1H13H

†
12

∣∣∣+N2 log(2πe)

= log
∣∣∣IN2

+ ρα12H12

(
IM1
− ρα13H†13(IN3

+ ρα13H13H
†
13)−1H13

)
H†12

∣∣∣+N2 log(2πe)

= log

∣∣∣∣IN2
+ ρα12H12

(
IM1

+ ρα13H†13H13

)−1

H†12

∣∣∣∣+N2 log(2πe)



217

= log

∣∣∣∣IN2
+ ρα12U12Σ12V

†
(
IM1

+ ρα13V Σ†13U
†
13U13Σ13V

†
)−1

V Σ†12U
†
12

∣∣∣∣+N2 log(2πe)

= log

∣∣∣∣IN2
+ ρα12Σ12V

†
(
IM1

+ ρα13V Σ†13Σ13V
†
)−1

V Σ†12

∣∣∣∣+N2 log(2πe)

= log

∣∣∣∣IN2 + ρα12Σ12

(
V †r 0r×(M1−r)

)
U†

·

IM1
+ ρα13U

 Vr

0(M1−r)+×r

Σ†13Σ13

(
V †r 0r×(M1−r)

)
U†


−1

U

 Vr

0(M1−r)+×r

Σ†12

∣∣∣∣∣∣∣∣
+N2 log(2πe)

= log

∣∣∣∣∣∣∣∣IN2
+ ρα12Σ12

(
V †r 0r×(M1−r)

)IM1
+ ρα13

 Vr

0(M1−r)+×r

Σ†13Σ13

(
V †r 0r×(M1−r)

)
−1

·

 Vr

0(M1−r)+×r

Σ†12

∣∣∣∣∣∣∣∣+N2 log(2πe)

= log

∣∣∣∣∣∣∣∣IN2 + ρα12Σ12

(
V †r 0r×(M1−r)

)
(
Ir + ρα13VrΣ

†
13Σ13V

†
r

)−1

I(M1−r)


 Vr

0(M1−r)+×r


·Σ†12

∣∣∣+N2 log(2πe)

= log

∣∣∣∣IN2 + ρα12Σ12V
†
r

(
Ir + ρα13VrΣ

†
13Σ13V

†
r

)−1

VrΣ
†
12

∣∣∣∣+N2 log(2πe)

= log

∣∣∣∣IN2
+ ρα12Σ12

(
V −1
r V †−1

r + ρα13Σ†13Σ13

)−1

Σ†12

∣∣∣∣+N2 log(2πe) (B.93)

Lemma B.5. h (h12H12X1 + Z2|h13H13X1 + Z3) ≤ h (h12H12X1 + Z2|h13G13X1 + Z3) for

X1 ∼ CN (0, P1IM1), X2 ∼ CN (0, P2IM2), and X3 ∼ CN (0, P3IN3).

Proof. Using the fact that Σ†13Σ13 � Λ†13Λ13, we have

h (h12H12X1 + Z2|h13H13X1 + Z3)

= log

∣∣∣∣IN2 + ρα12Σ12

(
V −1
r V †−1

r + ρα13Σ†13Σ13

)−1

Σ†12

∣∣∣∣
+N2 log(2πe)

≤ log

∣∣∣∣IN2
+ ρα12Σ12

(
V −1
r V †−1

r + ρα13Λ†13Λ13

)−1

Σ†12

∣∣∣∣
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+N2 log(2πe)

= h (h12H12X1 + Z2|h13G13X1 + Z3) .

Lemma B.6. h(h13G13X1 + Z3|h12H12X1 + Z2) ≤ η +N3 log(2πe) for X1 ∼ CN (0, P1IM1
),

X2 ∼ CN (0, P2IM2
) and X3 ∼ CN (0, P3IN3

).

Proof. The proof is demonstrated in the sequence leading to B.94. Step (a) is true because of the lower

bound on V −1
r V †−1

r by (4.31); step (b) is true according to the structure of Σ12 by 4.15. The proof is

completed.

h(h13G13X1 + Z3|h12H12X1 + Z2)

= log

∣∣∣∣IN3
+ ρα13Λ13

(
V −1
r V †−1

r + ρα12Σ†12Σ12

)−1

Λ†13

∣∣∣∣+N3 log(2πe)

(a)

≤ log

∣∣∣∣IN3 + ρα13Λ13

(
λ−2
MaxIr + ρα12Σ†12Σ12

)−1

Λ†13

∣∣∣∣+N3 log(2πe)

≤ log

∣∣∣∣IN3
+ ρα13Λ13

(
Ir + ρα12Σ†12Σ12

)−1

Λ†13
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(b)
= log
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max(Vr), 1}+N3 log(2πe)

= log

∣∣∣∣∣∣∣∣IN3
+

 ρα13S(Ir123 + ρα12C†C)−1S†
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∣∣∣∣∣∣∣∣+ r123 log max{λ2

max(Vr), 1}

+N3 log(2πe)

≤ log
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+
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ρα13σ2
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1+ρα12σ2
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∣∣∣∣∣∣∣∣+ r123 log max{λ2
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= log
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ρα13σ2
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1+ρα12σ2
Min(Λ12)

)
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∣∣∣∣∣∣∣∣+ r123 log max{λ2
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≤ log

∣∣∣∣∣∣∣∣

(

1 +
σ2
Max(Λ13)

σ2
Min(Λ12)

)
Ir123

I(N3−r123)


∣∣∣∣∣∣∣∣+ r123 log max{λ2

max(Vr), 1}+N3 log(2πe)

= r123 log

(
1 +

σ2
Max(Λ13)

σ2
Min(Λ12)

)
+ r123 log max{λ2

max(Vr), 1}+N3 log(2πe)

= η +N3 log(2πe) (B.94)

B.4.3 The Gap Induced From the Other Five Inequalities in the Inner Bound

We show the gap from (4.109) to (4.186), (4.111) to (4.187), (4.116) to (4.192), (4.117) to (4.192) and

(4.125) to (4.186)+(4.192) one by one. Again, in what follows we assume INR12 ≥ INR13, and the gap when

INR12 < INR13 can be similarly shown. In the proof of each gap, we shall employ the lemmas that have been

developed in the previous subsection, and the variables X1, X2 and X3 have the desired distributions in all

those lemmas, i.e., X1 ∼ CN (0, P1IM1
), X2 ∼ CN (0, P2IM2

) and X3 ∼ CN (0, P3IN3
).

B.4.3.1 The Gap between F1(M13, M1p) + F2(M123, M12, M2p) and F̄1(M1)

F1(M13, M1p) + F2(M123, M12, M2p)

(a)
= h (h11H11X1 + Z1, h12H12X1 + Z2, h13G13X1 + Z3)

− h (h12H12X1 + Z2, h13G13X1 + Z3)

−N1 log(2πe)− β1 − γ11

+ h(h12H12X1 + Z2)−N2 log(2πe)− β2 − γ12

(b)

≥ h(h11H11X1 + Z1)−N1 log(2πe)

+ h (h12H12X1 + Z2,

h13G13X1 + Z3|h11H11X1 + Z1, X1)

− h (h12H12X1 + Z2, h13G13X1 + Z3)

− β1 − γ11 + h(h12H12X1 + Z2)−N2 log(2πe)
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− β2 − γ12

= F̄1(M1) +N3 log(2πe)

− h (h13G13X1 + Z3|h12H12X1 + Z2)− β1 − γ11

− β2 − γ12

(c)

≥ F̄1(M1)− β1 − γ11 − β2 − γ12 − η

The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77) and (B.83); (b) chain

rule of joint entropy and conditioning reduces entropy; (c) Lemma B.6.

B.4.3.2 The Gap between F1(M1p, M21) + F2(M2p) and F̄2(M2)

F1(M1p, M21) + F2(M2p)

(a)
= h(h21H21X2 + Z1)−N1 log(2πe)− β1 − γ21

+ h(h22H22X2 + Z2, h21H21X2 + Z1)

− h(h21H21X2 + Z1)−N2 log(2πe)− β2 − γ22

(b)

≥ h(h22H22X2 + Z2)−N2 log(2πe)

+ h(h21H21X2 + Z1)−N1 log(2πe)− β1 − γ21

+ h(h21H21X2 + Z1|h22H22X2 + Z2, X2)

− h(h21H21X2 + Z1)− β2 − γ22

= F̄2(M2)− β1 − γ21 − β2 − γ22

The steps (a)-(b) hold true for the following reasons: (a) by the lower bounds (B.80) and (B.81); (b) chain

rule of joint entropy and conditioning reduces entropy.

B.4.3.3 The gap between F1(M1p)+F2(M12, M2p)+F3(M123, M13, M3) and F̄1(M12, M1p)+F̄3(M123, M13, M3)

We first quantify the gap between F1(M1p) + F2(M12, M2p) and F̄1(M12, M1p).
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F1(M1p) + F2(M12, M2p)

(a)

≥ h (h11H11X1 + Z1, h12H12X1 + Z2, h13H13X1 + Z3)

− h (h12H12X1 + Z2, h13H13X1 + Z3)

+ h(h12H12X1 + Z2, h13G13X1 + Z3)

− h(h13G13X1 + Z3)−N1 log(2πe)− β1 − γ11

−N2 log(2πe)− β2 − γ12

(b)
= F̄1(M12, M1p) + h (h12H12X1 + Z2

|h11H11X1 + Z1, h13H13X1 + Z3)

− h (h12H12X1 + Z2|h13H13X1 + Z3)

+ h(h12H12X1 + Z2, h13G13X1 + Z3)

− h(h13G13X1 + Z3)− β1 − γ11 −N2 log(2πe)

− β2 − γ12

(c)

≥ F̄1(M12, M1p) + h (h12H12X1 + Z2

|h11H11X1 + Z1, h13H13X1 + Z3, X1)

− h (h12H12X1 + Z2|h13H13X1 + Z3)

+ h(h12H12X1 + Z2, h13G13X1 + Z3)

− h(h13G13X1 + Z3)− β1 − γ11 −N2 log(2πe)

− β2 − γ12

(d)

≥ F̄1(M12, M1p)− h (h12H12X1 + Z2|h13H13X1 + Z3)

+ h(h12H12X1 + Z2|h13G13X1 + Z3)− β1 − γ11

− β2 − γ12

= F̄1(M12, M1p)− β1 − γ11 − β2 − γ12
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The steps (a)-(b) hold true for the following reasons: (a) by the lower bounds (B.77) and (B.82); (b) chain

rule of joint entropy; (c) conditioning reduces entropy; (d) Lemma B.5. The gap between F3(M123, M13, M3) and

F̄3(M123, M13, M3) has been bounded by β3 +δ3 in Section B.4.1. Thus the gap between F1(M1p)+F2(M12, M2p)+

F3(M123, M13, M3) and F̄1(M12, M1p) + F̄3(M123, M13, M3) is quantified as β1 + γ11 + β2 + γ12 + β3 + δ3.

B.4.3.4 The Gap between F1(M1p)+F2(M123, M12, M2p)+F3(M13, M3) and F̄1(M12, M1p)+F̄3(M123, M13, M3)

F1(M1p) + F2(M123, M12, M2p) + F3(M13, M3)

(a)

≥ h (h11H11X1 + Z1, h12H12X1 + Z2, h13H13X1 + Z3)

− h (h12H12X1 + Z2, h13H13X1 + Z3)−N1 log(2πe)

− β1 − γ11 + h(h12H12X1 + Z2)

−N2 log(2πe)− β2 − γ12

+ h(h13H13X1 + h33H33X3 + Z3, h13G13X1 + Z
′

3)

− h(h13G13X1 + Z
′

3)−N3 log(2πe)− β3 − γ3

(b)

≥ h (h11H11X1 + Z1, h13H13X1 + Z3)

− h (h13H13X1 + Z3)−N1 log(2πe)

+ h(h13H13X1 + h33H33X3 + Z3)−N3 log(2πe)

+ h (h12H12X1 + Z2

|h11H11X1 + Z1, h13H13X1 + Z3, X1)

− h (h12H12X1 + Z2|h13H13X1 + Z3)− β1 − γ11

+ h(h12H12X1 + Z2)−N2 log(2πe)− β2 − γ12

+ h(h13G13X1 + Z
′

3|h13H13X1 + h33H33X3 + Z3)

− h(h13G13X1 + Z
′

3)− β3 − γ3

= F̄1(M12, M1p) + F̄3(M123, M13, M3)
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− h (h12H12X1 + Z2|h13H13X1 + Z3)

+ h(h12H12X1 + Z2)

+ h(h13G13X1 + Z
′

3|h13H13X1 + h33H33X3 + Z3)

− h(h13G13X1 + Z
′

3)− β1 − γ11 − β2 − γ12 − β3 − γ3

(b)

≥ F̄1(M12, M1p) + F̄3(M123, M13, M3)

− h (h12H12X1 + Z2|h13G13X1 + Z3)

+ h(h12H12X1 + Z2)

+ h(h13G13X1 + Z
′

3|h13H13X1 + h33H33X3 + Z3, X1)

− h(h13G13X1 + Z
′

3)− β1 − γ11 − β2 − γ12 − β3 − γ3

= F̄1(M12, M1p) + F̄3(M123, M13, M3)

− h (h12H12X1 + Z2, h13G13X1 + Z3)

+ h(h12H12X1 + Z2) +N3 log(2πe)− β1 − γ11 − β2

− γ12 − β3 − γ3

= F̄1(M12, M1p) + F̄3(M123, M13, M3)

− h (h13G13X1 + Z3|h12H12X1 + Z2) +N3 log(2πe)

− β1 − γ11 − β2 − γ12 − β3 − γ3

(c)

≥ F̄1(M12, M1p) + F̄3(M123, M13, M3)− η − β1 − γ11

− β2 − γ12 − β3 − γ3

The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77), (B.83) and (B.84); (b)

chain rule of joint entropy and conditioning reduces entropy; (c) Lemma B.6.
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B.4.3.5 The Gap between F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2p) + F3(M123, M13, M3) and

F̄1(M1) + F̄1(M12, M1p) + F̄3(M123, M13, M3)

We first bound the gap between F1(M1p)+F1(M12, M13, M1p)+F2(M123, M12, M2p) and F̄1(M1)+F̄1(M12, M1p)

as follows.

F1(M1p) + F1(M12, M13, M1p) + F2(M123, M12, M2p)

(a)
= h (h11H11X1 + Z1, h12H12X1 + Z2, h13H13X1 + Z3)

− h (h12H12X1 + Z2, h13H13X1 + Z3)−N1 log(2πe)

− β1 − γ11 + h (h11H11X1 + Z1, h13G13X1 + Z3)

− h (h13G13X1 + Z3)−N1 log(2πe)− β1 − γ11

+ h(h12H12X1 + Z2)−N2 log(2πe)− β2 − γ12

(b)

≥ h(h11H11X1 + Z1)−N1 log(2πe)

+ h (h11H11X1 + Z1, h13H13X1 + Z3)

− h (h13H13X1 + Z3)−N1 log(2πe)

+ h (h12H12X1 + Z2

|h11H11X1 + Z1, h13H13X1 + Z3, X1)

− h (h12H12X1 + Z2|h13G13X1 + Z3)

+ h (h13G13X1 + Z3|h11H11X1 + Z1, X1)

− h (h13G13X1 + Z3) + h(h12H12X1 + Z2)

−N2 log(2πe)− 2β1 − 2γ11 − β2 − γ12

= F̄1(M1) + F̄1(M12, M1p)

− h (h13G13X1 + Z3|h12H12X1 + Z2)

+N3 log(2πe)− 2β1 − 2γ11 − β2 − γ12

(c)

≥ F̄1(M1) + F̄1(M12, M1p)− η − 2β1 − 2γ11 − β2 − γ12
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The steps (a)-(c) hold true for the following reasons: (a) by the lower bounds (B.77), (B.79) and (B.83);

(b) chain rule of joint entropy and conditioning reduces entropy; (c) Lemma B.6. The gap between

F3(M123, M13, M3) and F̄3(M123, M13, M3) has been bounded by β3 + δ3 in Section B.4.1. Thus the gap between

F1(M1p) +F1(M12, M13, M1p) +F2(M123, M12, M2p) +F3(M123, M13, M3) and F̄1(M1) + F̄1(M12, M1p) + F̄3(M123, M13, M3)

is quantified as η + 2β1 + 2γ11 + β2 + γ12 + β3 + δ3.

At this point, we readily see that the gap n(2) = (β1 + β2 + γ11 + γ12 + η, β1 + β2 + γ21 + γ22, β3 + γ3)

settles the five sum rate gaps quantified in this subsection. Finally, for the gap between the Rin and Ro, we

pick each individual gap as the maximum of the individual gap in n(1) and n(2), i.e., ni = max{n(1)
i , n

(2)
i },

and the desired gap n = (max{n(1)
1 , n

(2)
1 },max{n(1)

1 , n
(2)
1 }, β3 + δ3) is justified. The proof is completed.



Appendix C

Proofs for the Results on MIMO MAC-IC-MAC

C.1 Details of the Proof of Theorem 5.1

The proof starts from the DM MAC-IC-MAC inner bound in [37, Theorem 1] which contains 9 classes

of inequalities. In what follows, we refer the k-th class of inequalities as the kth-inequality, for brevity.

The first and second inequalities lead to the following two intra-cell sum rate inequalities regarding users

in Ω1 and Υ1 for the DM MAC-IC-MAC (namely, the specifications of inequalities (14) and (15) of [37]

in [37, Theorem 1]),

∑
1.j∈Ω1

R1.j ≤ B1.j (C.1)

∑
1.j∈Υ1

R1.j ≤ AΥi + EΥ2 . (C.2)

By Definition 5.2, it can be readily seen that for any Υ1, there exists a corresponding Ω1 such that Ω1 = Υ1,

this observation implies the intra-cell sum rate
∑

1.j∈Υ1
R1.j is bounded by both BΥ1 and AΥi + EΥ2 , so we

can replace the inequality (C.2) with

∑
1.j∈Υ1

R1.j ≤ min{BΥ1 ,AΥ1 + EΥ2} (C.3)

without changing the inner bound. When 1.1 /∈ Ω1, inequality (C.2) takes no effect,
∑

1.j∈Ω1
R1.j is upper

bounded by (C.1) only. Hence we merge (C.1) and (C.6) as

∑
1.j∈Ω1

R1.j ≤ B
′

Ω1
(C.4)
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where

B
′

Ωi ,


min{BΩi ,AΩi + EΥ

i
′ } if i.1 ∈ Ωi

BΩi if i.1 /∈ Ωi

(C.5)

where i, i
′ ∈ {1, 2}, i 6= i

′
and (Υ1, Ω1, Υ2, Ω2) ∈ Ξ.

By symmetry, we can coalesce the specifications of inequalities (16) and (17) of [37] in [37, Theorem

1] into the single inequality set

∑
2.j∈Ω2

R2.j ≤ B
′

Ω2
(C.6)

At this point, we have the single region inner bound of [37, Theorem 1] to be effectively described by

7 sets of inequalities that are similar to the single region inner bound of Theorem 5.1 except that we have

the quantities AΥi ,BΩi ,EΥi , and GΩi of [37] in place of AΥi , BΩi , EΥi , and GΩi of Theorem 5.1, respectively.

Next we prove the set functions AΥi ,BΩi ,EΥi , and GΩi of [37, equations (31-34)] in [37, Definition 7],

when specialized to the MIMO Gaussian case and for the coding scheme specified in the proof of Theorem

5.1 in the main text, are lower bounded by AΥi , BΩi , EΥi , and GΩi of (5.16)-(5.19), respectively. We bound

the set function AΥi as an example.

AΥi = I(XΥi ;Yi|XῩi , Xi.1c, Xi′ .1c, Q)

= h(Yi|XῩi , Xi.1c, Xi′ .1c)− h(Si′ |Xi′ .1c)

= h

 ∑
i.j∈Υi\{i.1}

hi.j→iHi.j→iXi.j

+hi.1→iHi.1→iXi.1p + hi′ .1Hi′ .1→iXi′ .1p + Zi

)
− h(hi′ .1→iHi′ .1→iXi′ .1p + Zi)

= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i

+
1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

+
1

Mi′ .1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i

)
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− log

∣∣∣∣INi +
1

Mi′ .1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i

∣∣∣∣
≥ log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i

+
1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

+
1

Mi′ .1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i

)
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

= AΥ1

The rest of the bounds BΩi ≥ BΩi , EΥi ≥ EΥi and GΩi ≥ GΩi follow in a similar fashion. Hence the region

of Theorem 5.1 is contained in the inner bound obtained from [37, Theorem 1] with the coding distribution

specified as in the proof of Theorem 5.1 in the main text. The proof is hence completed.

C.2 Proof of Theorem 5.2

The starting point for the proof of Theorem 5.2 is Theorem 3 of [37] which gives an outer bound for the

semi-deterministic DM MAC-IC-MAC. In particular, the latter bound is a union (over certain distributions)

of polytopes of the form of Ro given in the statement of Theorem 5.2 except that each of those polytopes in

the union involves the set functions AΥi ,BΩi ,EΥi and GΩi defined in [37, Definition 11] (that depend on that

distribution) in place of AΥi , BΩi , EΥi and GΩi , respectively, in the definition of Ro (which are explicitly

computable). The idea here is to bound each of those set functions AΥi ,BΩi ,EΥi and GΩi universally (i.e.,

independently of the distribution involved) by AΥi , BΩi , EΥi and GΩi , defined in (5.43)-(5.46), respectively.

This will establish the explicit outer bound for the MIMO MAC-IC-MAC of Theorem 5.2.

We will first prove in detail that AΥi can be upper bounded by AΥi of (5.43). The other three bounds

follow in similar fashion. The fact that AΥi ≤ AΥi is shown in the sequence of steps leading to (C.7) in

the next page. The rationale for those steps is as follows: in the first inequality labeled (a), disabling time

sharing will not shrink the outer bound because (i) reducing conditioning variable will not decrease the

positive conditional entropy term of AΥi and (ii) for its negative entropy term, we have h(Si′ |Xi′ .1, Q) =

h(Zi′ |Xi′ .1, Q) = h(Zi′ ), since the noise Zi′ is independent of Q and Xi′ .1. The second inequality labeled (b)
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holds since for random vectors X and Y with zero mean and joint covariance K, the conditional differential

entropy of X given Y is maximized when X and Y are joint Gaussian [44, Lemma 1] We also assume the

inputs have zero mean, i.e., E(Xi.j) = 0, because non-zero means only contribute to power inefficiency. The

equality (c) holds because of Woodbury’s identity. Inequality (d) holds since (i) we have power constraint

Tr(Qi.j) ≤ Pi.j for any Xi.j , and hence Qi.j � Pi.jIMi.j (ii) using the matrix inequality of [27, Lemma 6]

and (iii) log det(·) is increasing over the cone of positive definite matrices.

As stated previously, the upper bounds for BΩi ,EΥi and GΩi defined in [37, Definition 11] can be

similarly shown to be BΩi , EΥi and GΩi , respectively. The proof is completed.

C.3 Proof of Theorem 5.3

Following the proof outline, we prove the theorem in three steps. In the first step, we upper bound

max{AΥi − AΥi , EΥi − EΥi} for any Υi = Υ
′

i ∪ {i.1} and Υ
′

i ⊆ Θi\{i.1}, and obtain an intra-cell sum rate

gap βΥi given by (C.10). In step two, we upper bound max{BΩi − B
′

Ωi
, GΩi − GΩi} for any Ωi ∈ 2Θi\∅,

and obtain an intra-cell sum rate gap max{βΩi , γΩi} given by (C.17). In the last step, we show the desired

individual rate gap ni.j given in the theorem satisfies that for any Υi,

∑
i.j∈Υi

ni.j ≥ βΥi (C.8)

and for any Ωi, ∑
i.j∈Ωi

ni.j ≥ max{βΩi , γΩi}. (C.9)

C.3.1 The Upper Bound on max{AΥi −AΥi , EΥi − EΥi}

We upper bound the difference EΥi − EΥi as an example. The upper bound on AΥi − AΥi can be

similarly derived.

EΥi = log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i

+
1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

+
1

Mi′ .1

ραi′ .1→iHi′ .1→iH
†
i′ .1→i

∣∣∣∣
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−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

(a)

≥ log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i

+ ραi.1→iHi.1→iKi.1H
†
i.1→i

+ραi′ .1→iHi′ .1→iH
†
i′ .1→i

∣∣∣
−min


 ∑
i.j∈Υi

Mi.j

+Mi′ .1, Ni


· log max

{
max
i.j∈Υi

Mi.j ,Mi′ .1

}
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

, EΥi − βΥi

The inequality (a) is true because the rank of the matrix
∑
i.j∈Υi\{i.1}

1
Mi.j

ραi.j→iHi.j→iH
†
i.j→i

+ 1
Mi.1

ραi.1→iHi.1→iKi.1H
†
i.1→i + 1

M
i
′
.1

ραi′ .1→iHi′ .1→iH
†
i′ .1→i cannot be greater than

min
{(∑

i.j∈ΥiMi.j

)
+Mi′ .1, Ni

}
and log det(·) is a monotonically increasing function over the cone of p.s.d.

matrices. Similarly, we can show AΥi −AΥi is upper bounded by βΥi as well. Hence, we have

max{AΥi −AΥi , EΥi − EΥi} ≤ βΥi . (C.10)

Thus we choose βΥi as the intra-cell sum rate gap for any user subset Υi .

C.3.2 The Upper Bound on max{BΩi −B
′

Ωi
, GΩi −GΩi}

Regarding the difference BΩi −B
′

Ωi
, we shall have two different upper bounds depending on whether

user i.1 belongs to Ωi or not. If i.1 is not in Ωi, then B
′

i = Bi, and the gap from BΩi to BΩi should be no

bigger than βΩi , which can be proved in the following,

BΩi ≥ log

∣∣∣∣∣∣INi +
∑
i.j∈Ωi

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i

∣∣∣∣∣∣
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

≥ BΩi −min


 ∑
i.j∈Ωi

Mi.j

 , Ni


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· log max

{
max
i.j∈Ωi

Mi.j

}
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

≥ BΩi −min


 ∑
i.j∈Ωi

Mi.j

+Mi′ .1, Ni


· log max

{
max
i.j∈Ωi

Mi.j ,Mi′ .1

}
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

, BΩi − βΩi . (C.11)

The first inequality is true because log det(·) is a monotonically increasing function over the cone of p.s.d.

matrices as well as the fact that the dropped term from the definition of BΩi (c.f. (5.17)), i.e.,

1
M
i
′
.1

ραi′ .1→iHi′ .1→iKi′ .1H
†
i′ .1→i, is p.s.d..

If i.1 ∈ Ωi, the intra-cell sum rate gap regarding BΩi−B
′

Ωi
should be an upper bound of the maximum

value of BΩi − BΩi and BΩi − minΥ
i
′ (AΩi + EΥ

i
′ ). The former difference has been bounded above. We

compute the latter difference below. An intermediate lower bound on AΩi is needed and obtained first. Let

JNi = INi +
∑
i.j∈Ωi\{i.1}

1
Mi.j

ραi.j→iHi.j→iH
†
i.j→i, then we have

AΩi ≥

∣∣∣∣∣∣INi +
∑

i.j∈Ωi\{i.1}

1

Mi.j
ραi.j→iHi.j→iH

†
i.j→i

+
1

Mi.1
ραi.1→iHi.1→iKi.1H

†
i.1→i

∣∣∣∣
−min{Mi′ .1, Ni} log

1 +Mi′ .1

Mi′ .1

≥ log

∣∣∣∣∣∣INi +
∑

i.j∈Ωi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i

+ραi.1→iHi.1→iKi.1H
†
i.1→i

∣∣∣
−min

 ∑
i.j∈Ωi

Mi.j , Ni

 log max
i.j∈Ωi

Mi.j

−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

= log
∣∣∣JNi + ραi.1→iHi.1→iKi.1H

†
i.1→i

∣∣∣
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−min

 ∑
i.j∈Ωi

Mi.j , Ni

 log max
i.j∈Ωi

Mi.j

−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

= log |JNi |+ log
∣∣∣INi + ραi.1→iJ−1

Ni
Hi.1→iKi.1H

†
i.1→i

∣∣∣
−min

 ∑
i.j∈Ωi

Mi.j , Ni

 log max
i.j∈Ωi

Mi.j

−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

. (C.12)

The term log
∣∣∣INi + ραi.1→iJ−1

Ni
Hi.1→iKi.1H

†
i.1→i

∣∣∣ in (C.12) can be further lower bounded as

log
∣∣∣INi + ραi.1→iJ−1

Ni
Hi.1→iKi.1H

†
i.1→i

∣∣∣
= log

∣∣∣INi + ραi.1→iJ−1
Ni
Hi.1→iK

1
2
i.1K

1
2
i.1H

†
i.1→i

∣∣∣
(a)
= log

∣∣∣IMi.1
+ ραi.1→iK

1
2
i.1H

†
i.1→iJ

−1
Ni
Hi.1→iK

1
2
i.1

∣∣∣
= log

∣∣∣K 1
2
i.1K

−1
i.1 K

1
2
i.1

+ραi.1→iK
1
2
i.1H

†
i.1→iJ

−1
Ni
Hi.1→iK

1
2
i.1

∣∣∣
= log

∣∣∣K−1
i.1 + ραi.1→iH†i.1→iJ

−1
Ni
Hi.1→i

∣∣∣− log |Ki.1|

≥ log
∣∣∣IMi.1 + ραi.1→iH†i.1→iJ

−1
Ni
Hi.1→i

∣∣∣− log |Ki.1|

= log
∣∣∣INi + ραi.1→iJ−1

Ni
Hi.1→iH

†
i.1→i

∣∣∣− log |Ki.1|. (C.13)

The equation (a) is true because of the fact that log det(In + AB) = log det(Im + BA) for any complex

n ×m matrix A and m × n matrix B. Substituting the lower bound (C.13) in (C.12), we end up with an

intermediate lower bound on the set function AΩi which is

AΩi ≥ log
∣∣∣JNi + ραi.1→iHi.1→iH

†
i.1→i

∣∣∣− log |Ki.1|

−min

 ∑
i.j∈Ωi

Mi.j , Ni

 log max
i.j∈Ωi

Mi.j

−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

. (C.14)

On the other hand, an intermediate lower bound on EΥ
i
′ is obtained as follows,

EΥ
i
′ ≥ log

∣∣∣∣INi′ +
1

Mi.1
ραi.1→i′Hi.1→i′H

†
i.1→i′

∣∣∣∣
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−min{Mi.1, Ni′} log
1 +Mi.1

Mi.1

≥ log |Ki.1| −min{Mi.1, Ni′} logMi.1

−min{Mi.1, Ni′} log
1 +Mi.1

Mi.1

= log |Ki.1| −min{Mi.1, Ni′} log(1 +Mi.1). (C.15)

Note this lower bound of EΥ
i
′ does not depend on the specific choice of Υi′ . Adding (C.14) and (C.15), we

have

AΩi + EΥ
i
′ ≥ log

∣∣∣JNi + ραi.1→iHi.1→iH
†
i.1→i

∣∣∣
−min

 ∑
i.j∈Ωi

Mi.j , Ni

 log max
i.j∈Ωi

Mi.j

−min{Mi′ .1, Ni} log
1 +Mi′ .1

Mi′ .1

−min{Mi.1, Ni′} log(1 +Mi.1)

, BΩi − γΩi . (C.16)

Hence, the difference BΩi − (AΩi + EΥ
i
′ ) is bounded. Combine the intra-cell sum rate gap for i.1 /∈ Ω by

(C.11) and for i.1 ∈ Ω by (C.16), we conclude for any user set Ωi, the difference BΩi − B
′

Ωi
should be no

more than max{βΩi , γΩi} bits.

It can be verified with similar rationale that GΩi−GΩi ≤ βΩi . Hence, for any Ωi, the term max{BΩi−

B
′

Ωi
, GΩi −GΩi} is upper bounded by

max{BΩi −B
′

Ωi , GΩi −GΩi} ≤ max{βΩi , γΩi}. (C.17)

Thus we choose max{βΩi , γΩi} as the intra-cell sum rate gap for any user subset Ωi.

C.3.3 The Constant Gap

Now that we have intra-cell sum rate gap βΥi for Υi and max{βΩi , γΩi} for Ωi. Returning to the

discussion in the beginning of the proof, we are left to show the individual rate gap ni.j ensures (C.8) and
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(C.9) for any Υi and Ωi. The former relationship can be seen in the following,

∑
i.j∈Υi

ni.j ≥
∑
i.j∈Υi

βi.j

=
∑
i.j∈Υi

min {Mi.j +Mi′ .1, Ni}

· log max

{
max
i.j∈Θi

Mi.j ,Mi′ .1

}
+ |Υi|min{Mi′ .1, Ni} log

Mi′ .1

1 +Mi′ .1

≥ min


 ∑
i.j∈Υi.j

Mi.j

+Mi′ .1, Ni


· log max

{
max
i.j∈Υi

Mi.j ,Mi′ .1

}
+ min{Mi′ .1, Ni} log

Mi′ .1

1 +Mi′ .1

= βΥi .

Similarly, it can verified that
∑
i.j∈Ωi ni.j ≥ βΩi and

∑
i.j∈Ωi ni.j ≥ γΩi for any Ωi. Hence, we have∑

i.j∈Ωi ni.j ≥ max{βΩi , γΩi} too, which completes the proof.

C.4 Proof of Lemma 5.1

We prove the Lemma by mathematical induction. Let us start from the case when n = 1 and

H1 = UΣ1V
†. We have

log det
(
Iu + ρa1H1H

†
1

)
= log det

(
Iu + ρa1Σ1Σ†1

)

= log det

 (1 + ρα1)Imin{u.u1}

I(u−u1)+

+O(1)

= α+
1 min{u1, u} log(ρ) +O(1)

= g(u, (a1, u1)) log(ρ) +O(1).

For n = 2 and n = 3, the results have been proved in [38] and [26]. Suppose the conclusion holds when

n = k, in what follows we demonstrate the result for n = k + 1. Without loss of generality, we assume
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a1 ≥ max{a2, · · · , ak+1}, then

log

∣∣∣∣∣Iu + ρa1H1H
†
1 +

k+1∑
i=2

ρaiHiH
†
i

∣∣∣∣∣
= log

∣∣∣Iu + ρa1H1H
†
1

∣∣∣
+ log

∣∣∣∣∣Iu + (Iu + ρa1H1H
†
1)−1

k+1∑
i=2

ρaiHiH
†
i

∣∣∣∣∣ . (C.18)

Let the matrices Λ and H
(k+1)
2 be defined as

Λ =


ρa2Iu2

. . .

ραk+1Iuk


and

H
(k+1)
2 = (H2, · · · , Hk+1) .

Note that the way H
(k+1)
2 is denoted temporarily violates our notation rule where A(k) denotes the k-th row

of the matrix A, but no confusion will arise within the proof. Applying the identity that log det(In +AB) =

log det(Im + BA) for any complex n ×m matrix A and m × n matrix B, and substituting H1H
†
1 with its

SVD form UΣ1V
†, the second term in the right hand side of (C.18) can be written as

log

∣∣∣∣∣Iu + (Iu + ρa1H1H
†
1)−1

k+1∑
i=2

ρaiHiH
†
i

∣∣∣∣∣
= log

∣∣∣Iu + (Iu + ρa1H1H
†
1)−1H

(k+1)
2 ΛH

(k+1)†
2

∣∣∣
= log

∣∣∣I∑k+1

i=2
ui

+ ΛH
(k+1)†
2 (Iu + ρa1H1H

†
1)−1H

(k+1)
2

∣∣∣
= log

∣∣∣I∑k+1

i=2
ui

+ ΛH
(k+1)†
2 U

·

 (Imin{u,u1} + ρa1Σ1Σ†1)−1 0

0 I(u−u1)+


·U†H(k+1)

2

∣∣∣ . (C.19)

We divide H
(k+1)
2 into two sub-matrices

G1 =
(
U†H

(k+1)
2

)(1:min{u,u1})
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and

G2 =
(
U†H

(k+1)
2

)(min{u,u1}+1:u)

by extracting the first min{u, u1} and the rest (u − u1)+ rows of H
(k+1)
2 respectively. Because the entries

of H
(k+1)
2 are drawn i.i.d. from a continuous and unitarily invariant distribution, the product U†H

(k+1)
2 is

identically distributed as H
(k+1)
2 . This implies that the entries of the product U†H

(k+1)
2 are also drawn i.i.d.

from a continuous and unitarily invariant distribution, so are the entries of matrices G1 and G2. Hence, both

G1 and G2 are full rank w.p.1 and have the same property as the channel matrices. Continue from (C.19),

we have

log

∣∣∣∣∣Iu + (Iu + ρa1H1H
†
1)−1

k+1∑
i=2

ρaiHiH
†
i

∣∣∣∣∣
= log

∣∣∣I∑k+1

i=2
ui

+ ΛG†1(Imin{u,u1} + ρa1Σ1Σ†1)−1G1

+ΛG†2G2

∣∣∣
(a)
= log

∣∣∣I∑k+1

i=2
ui

+ ΛG†2G2

∣∣∣+O(1)

= log
∣∣∣I(u−u1)+ +G2ΛG†2

∣∣∣+O(1). (C.20)

The equation (a) is true because we assumed a1 ≥ max{a2, · · · , ak+1}, and the matrix ΛG†1(Imin{u,u1} +

ρa1Σ1Σ†1)−1G1 tends to be constant when ρ→∞. Plugging (C.20) in (C.18), we have for n = k + 1,

log

∣∣∣∣∣Iu + ρa1H1H
†
1 +

k+1∑
i=2

ρaiHiH
†
i

∣∣∣∣∣
= log

∣∣∣Iu + ρa1H1H
†
1

∣∣∣+ log
∣∣∣I(u−u1)+ +G2ΛG†2

∣∣∣+O(1)

= f (u, (a1, u1)) log(ρ) + f
(
(u− u1)+, (a2, u2),

· · · , (ak+1, uk+1)) log(ρ) +O(1)

= f (u, (a1, u1), · · · , (ak+1, uk+1)) log(ρ) +O(1)

which completes the proof.
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C.5 Proof of Theorem 5.4

We derive the GDoF region by taking the limiting value on both the left hand side and right hand side

of the inequalities in the outer bound (c.f. Theorem 5.2). It is obvious that both bΩi and gΩi can be derived

by directly using Lemma 5.1 on the outer bound set functions BΩi and GΩi (c.f. (5.44) and (5.46)), as the

log det(·) terms in these two set functions are in the form log |I +
∑
i ρ
αiHiH

†
i |. The computation of the

asymptotic value of the set functions AΥi and EΥi in the form of log |I+
∑
i ρ
αiHiH

†
i +HK−1H†| needs the

SVD of the matrix K. In what follows, we compute the set function aΥi as an example and eΥi can be obtained

similarly. Steps (a) and (b) hold true because (a) in this step, we let G1 = (Hi.1→iVi.1→i′ )
[1:min{Mi.1,Ni′ }] and

G2 = (Hi.1→iVi.1→i′ )
[min{Mi.1,Ni′ }+1:Mi.1]; (b) since Hi.1→iVi.1→i′ is identically distributed as Hi.1→i, the

entries of the production Hi.1→iVi.1→i′ are drawn i.i.d. from a continuous and unitarily invariant distribution,

so are the entries of matrices G1 and G2 . Hence, G1 and G2 are full rank w.p.1 and have the same properties

as the channel matrices, and thus Lemma 5.1 applies.
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AΥi = h(Yi|XῩi , Ti, Xi′ .1, Q)− h(Si′ |Xi′ .1, Q)

(a)

≤ h

 ∑
i.j∈Υi\{i.1}

hi.j→iHi.j→iXi.j + hi.1→iHi.1→iXi.1 + Zi

∣∣∣hi.1→i′Hi.1→i′Xi.1 + Z
′

i′

− h(Zi)

(b)

≤ log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

|hi.j→i|2Hi.j→iQi.jH
†
i.j→i + |hi.1→i|2Hi.1→iQi.1H

†
i.1→i

−|hi.1→i|2|hi.1→i′ |
2Hi.1→iQi.1H

†
i.1→i′

(
IN

i
′ + |hi.1→i′ |

2Hi.1→i′Qi.1H
†
i.1→i′

)−1

Hi.1→i′Qi.1H
†
i.1→i

∣∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

|hi.j→i|2Hi.j→iQi.jH
†
i.j→i + |hi.1→i|2Hi.1→iQ

1
2
i.1

·
[
IMi.1

− |hi.1→i′ |
2Q

1
2
i.1H

†
i.1→i′

(
IN

i
′ + |hi.1→i′ |

2Hi.1→i′Qi.1H
†
i.1→i′

)−1

Hi.1→i′Q
1
2
i.1

]
Q

1
2
i.1H

†
i.1→i

∣∣∣∣
(c)
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

|hi.j→i|2Hi.j→iQi.jH
†
i.j→i + |hi.1→i|2Hi.1→iQ

1
2
i.1

·
(
IMi.1

+ |hi.1→i′ |
2Q

1
2
i.1H

†
i.1→i′Hi.1→i′Q

1
2
i.1

)−1

Q
1
2
i.1H

†
i.1→i

∣∣∣∣
(d)

≤ log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→i

(
IMi.1 + ραi.1→i′H†

i.1→i′Hi.1→i′
)−1

H†i.1→i

∣∣∣∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iKi.1H

†
i.1→i

∣∣∣∣∣∣
= AΥi (C.7)
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AΥi = log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ρi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iKi.1H

†
i.1→i

∣∣∣∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ρi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→i

(
IMi.1

+ ραi.1→i′H†
i.1→i′Hi.1→i′

)−1

H†i.1→i

∣∣∣∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ρi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iVi.1→i′

(
IMi.1

+ ραi.1→i′Σ†
i.1→i′Σi.1→i

′

)−1

V †
i.1→i′H

†
i.1→i

∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ρi.j→iHi.j→iH
†
i.j→i + ραi.1→iHi.1→iVi.1→i′

·

 (
Imin{Mi.1,Ni′ }

+ ραi.1→i′ [Σ†
i.1→i′Σi.1→i

′ ]+
)−1

I(Mi.1−Ni′ )
+

V †
i.1→i′H

†
i.1→i

∣∣∣∣∣∣
(a)
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi,j→iHi.j→iH
†
i.j→i + ραi.1→iG1

(
Imin{Mi.1,Ni′ }

+ ραi.1→i′ [Σ†
i.1→i′Σi.1→i

′ ]+
)−1

·G†1 + ραi.1→iG2G
†
2

∣∣∣
= log

∣∣∣∣∣∣INi +
∑

i.j∈Υi\{i.1}

ραi,j→iHi.j→iH
†
i.j→i + ραi.1→i−αi.1→i′G1G

†
1 + ραi.1→iG2G

†
2

∣∣∣∣∣∣+ o(1)

(b)
= f

Ni, ⋃
i.j∈Υi\{i.1}

(αi.j→i,Mi.j),
(
(αi.1→i − αi.1→i′ )

+,min{Mi.1, Ni′}
)
,
(
αi.1→i, (Mi.1 −Ni′ )

+
)

· log(ρ) +O(1) (C.21)


