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 The high signal-to-noise ratios typical of swept-wavelength interferometry (SWI) enable 

distance measurements to be superresolved with theoretical 2σ uncertainties as low as 1x10−4 of 

Fourier transform-limited resolution.  This result was obtained by numerically comparing four 

frequency estimation methods: Local Linear Regression (LLR), Estimation of Signal Parameters 

via Rotational Invariance Techniques (ESPRIT), Nonlinear Least Squares (NLS), and Candan’s 

Estimator (CE).  For distances greater than 5 to 20 times the SWI system’s transform-limited 

resolution, it was shown that CE provides the fastest and most accurate results, with precision 

approaching the Cramér–Rao bound.   

 Experimentally, the accuracy and precision of superresolved SWI were verified by 

comparing superresolved distance measurements against a known standard.  In an SWI system 

with 34	𝜇m transform-limited resolution, accuracy was shown to be greater than 2x10-3 of the 

transform limit, while thermal drift during data collection was shown to degrade the system’s 1σ 

precision to approximately 9x10-2 of the transform limit.   

 In combination with superresolution, swept laser sources with long coherence lengths 

create the possibility for time-multiplexed SWI systems to make high-accuracy, single-shot, non-

contact, three-dimensional measurements of arbitrarily shaped surfaces.  An algorithm for 

reconstructing surface shapes from SWI distance measurements was developed, and an 8-channel 

prototype system was used to characterize the surfaces of an optical flat, a cylindrical lens, and a 
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coin.  Resulting accuracies of ±1	µm demonstrate that this measurement method is feasible and 

warrants further development.   
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Chapter 1  

Introduction 

 

 

1.1 Introduction to Superresolved Swept-Wavelength 

Interferometry 

1.1.1 Measuring distance with light 

On October 14, 1960, the Eleventh General Conference on Weights and Measures declared 

that the platinum bars that had defined the length of a meter for one hundred sixty-one years were 

to be replaced with a new standard: the vacuum wavelength of light [1].  The 1960 standard, 

defined as 1,650,763.73 vacuum wavelengths of the light from an atomic transition of krypton-86, 

was updated in 1983 to be the vacuum length of the path travelled by light in 1 299,792,458 of 

a second.  In 2018, the 26th General Conference on Weights and Measures is expected to ratify a 

new definition of the Système International d'Unités, defining the value of a second by the 

frequency separation between the two hyperfine levels of the cesium-133 atom, and thereby 

establishing a new, and potentially final, international definition for the length of a meter [2].   

The first use of electromagnetic radiation to measure distance predates the adoption of the 

1960 meter standard by more than three decades.  June 17, 1935 saw the first successful 

demonstration of radio detection and ranging—radar—on Orford Ness, a British peninsula on the 

coast of the North Sea [3].  This first system was a type of pulsed radar; it measured distance by 

measuring the time-of-flight of a radio-frequency pulse from a transmitter to the target and then 
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back to a receiver.  Twenty-five years later, in 1960, the invention of the laser [4] allowed similar 

time-of-flight measurements to be made at optical frequencies.  Limited laser power restricted 

early laser ranging measurements to distances below a few kilometers [5], but by 1962, the first 

optical measurement of the distance between the earth and the moon had been achieved [6].  Today, 

light detection and ranging (LIDAR) systems exist which can measure distances of hundreds to 

thousands of meters with accuracies down to ±1 cm, even through scattering atmospheres 

containing dust, fire, fog, or smoke [7] [8].   

At both radio and optical frequencies, the minimum distance that can be measured with a 

time-of-flight system is limited, fundamentally by the pulse width of a transmitted signal, and often 

functionally by the speed of electronic hardware.  At radio frequencies, this limitation has been 

circumvented with frequency-modulated continuous-wave (FMCW) radar, which measures the 

distance between a transmitter and target by interfering a swept-frequency signal with a copy of 

that signal which has been delayed by the round-trip time-of-flight between the transmitter and the 

target [9] [10].  The periodicity of the received interference pattern is proportional to the time delay 

between the two copies of the swept-frequency signal, and the distance between transmitter and 

target can be obtained by multiplying the measured time delay by half the speed of light.    

Many optical frequency analogs to swept-source FMCW radar have been developed.  The 

first such system was likely described in 1981 by Eickhoff and Ulrich [11], who named their 

measurement technique optical frequency domain reflectometry (OFDR) to distinguish it from the 

similar time-of-flight measurement method known as optical time domain reflectometry (OTDR) 

[12].  Since 1981, OFDR systems have typically been developed to characterize fiber-optics 

networks and components [13] [14], or to be used in conjunction with fiber networks to measure 

quantities such as strain [15], temperature [16] [17], or vibration [18] [19].  Other swept-
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wavelength interferometry systems include FMCW ladar (laser detection and ranging) [20] [21] 

[22] [23], and swept-source optical coherence tomography (SS-OCT), which has been highly 

successful in measuring biological samples such as skin [24] [25], blood vessels [26] [27], and 

perhaps especially, the human eye [28]  [29] [30] [31].  While these systems differ from each other 

in in the details of their system designs and experimental applications, they all share the same 

fundamental structure and measurement principle.  They are all forms of swept-wavelength 

interferometry.    

 

1.1.2 Superresolving swept-wavelength interferometry measurements 

Two key characteristics of SWI account for its many and varied experimental successes.  

The first is its ability to simultaneously measure delay times to many reflectors, provided the 

reflectivity of each is small.  The second is its sensitivity. Coherent, heterodyne detection and large 

bandwidths provide swept-wavelength interferometry measurements with characteristically high 

signal to noise ratios (SNRs), in some cases 70dB or greater [32].  For target reflectors with 

sufficient spacing between them, these high SNRs allow measurements of reflector spacing to be 

superresolved.   

Traditionally, the resolution of a SWI system is set by the bandwidth of the swept source—

put more specifically, the transform-limited resolution is equal to the inverse of sweep bandwidth.  

However, in at least two cases, SWI measurements have been reported in the literature as having 

both accuracy and precision exceeding the transform limit by several orders of magnitude [33] 

[20].   In a third, closely related case, spectral-domain OCT measurements of a dielectric thin film 

were reported to have precision of 10-4 of the OCT system’s transform-limited resolution [34].  

Despite these remarkable results, neither the limits of superresolution for SWI measurements—
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i.e. the extent to which transform-limited resolution may be exceeded—nor the causes of those 

limits have been systematically quantified.   

   

1.2 Superresolution Limits 

Broadly speaking, the word superresolution may be used to describe any method that 

enhances the resolution of an imaging or measurement system beyond its traditional limits.  During 

the last twenty years, superresolution methods have received a good deal of attention, particularly 

in the field of fluorescence microscopy.  Structured illumination microscopy [35], photo-activated 

localization microscopy (PALM) [36], stochastic optical reconstruction microscopy (STORM) 

[37], and stimulated emission depletion (STED) microscopy [38] are likely the best-known 

superresolved microscopy methods, but others have been developed.  Outside of microscopy, a 

number of computational approaches to superresolution have been proposed [39] [40] [41] [42], 

although their practical success has been limited [43].  Perhaps as a consequence of all this activity, 

the word “superresolution” has come to describe a large and somewhat disparate collection of 

measurement and imaging techniques.   In this section, I attempt to draw a distinction between two 

classes of superresolution methods, those that exceed the diffraction limit, and those that exceed 

the resolution limit, in any given measurement or imaging system.   

It is helpful to first step back and review the difference between the diffraction limit and the 

resolution limit of an imaging system.  In a two-dimensional (2D) spatial imaging system, the 

diffraction limit is equal to the spot size of the image of a point source.  Diffraction-limited spot 

size is inversely proportional to the numerical aperture (NA) of the imaging system.  The higher 

the spatial frequency bandwidth of the system, the smaller the diffraction-limited spot size will be.  
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In contrast to 2D spatial imaging methods, swept-wavelength interferometry (SWI) is a one-

dimensional, temporal measurement method.  In SWI, the quantity analogous to the diffraction 

limit in a spatial imaging system is the Fourier transform-limited resolution, which is inversely 

proportional, not to the spatial frequency bandwidth of the system, but to the temporal bandwidth 

of the swept source.  Here, a terminological confusion first presents itself.  In SWI, the transform-

limited resolution of the SWI system is a measure of the resolvability of any single delay time, and 

not necessarily a measure of the resolvability of two neighboring delay times (although, of course, 

these two measures are related).  In both SWI and in 2D spatial imaging systems, however, the 

word “resolution,” used on its own, refers to the distinguishability of two neighboring delay times 

or point sources.   

The most common standard for the minimum resolvable distance between two incoherent 

point sources is the Rayleigh resolution criterion.  In the familiar example of a diffraction-limited 

imaging system with a circular pupil function, two point sources are Rayleigh resolved when the 

first null of the Airy intensity pattern resulting from one point source falls at the center of the Airy 

pattern emerging from the second [43].  In a SWI system, the equivalent criterion is that two 

reflectors are separated from each other by a time delay approximately equal to twice the 

transform-limited resolution of the system1.  Because of the parallel between spatial and temporal 

resolution criteria, I will refer to any reflectors that meet the delay time separation requirement as 

being Rayleigh resolved.   

                                                
1 If the amplitude of the swept source is constant as a function of optical frequency, then the exact 
separation requirement is given by the product of the transform-limited resolution and the spacing 
between the maximum and first minimum of the sinc function, i.e. roughly 1.429 times the 
transform-limited resolution.   
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In 2012, Candès and Fernandez-Granda proved that any point sources (or in the case of SWI, 

reflectors separated by a time delay) that meet the Rayleigh resolution criterion may be 

superresolved with precision limited only by signal-to-noise ratio (SNR) [44].  Given infinite SNR, 

any properly separated point sources or delay times may be superresolved with infinite precision!  

Put differently, the diffraction limit (or transform limit) of a measurement or imaging system may 

be exceeded, to a potentially infinite extent, provided only that the Rayleigh resolution criterion is 

met.   

If the Rayleigh resolution limit itself is to be exceeded, two approaches are available.  The 

first approach may be generally described as bandwidth extrapolation [43].  Given a data set or an 

image in which point sources do not meet the Rayleigh criterion, point sources may be 

superresolved using a variety of computational techniques [39] [40] [41] [42].   Unfortunately, all 

of these methods require very high SNR in order to have a chance of success, and their practical 

utility has therefore been limited [43].   

A second approach has been tremendously successful, however.  It is exemplified in a variety 

of forms by the superresolved fluorescence microscopy methods.  All of these methods work by 

combining a series of superresolved images in which point sources are Rayleigh resolved and only 

the diffraction limit is exceeded, into a final image in which point sources are not Rayleigh resolved 

and the resolution limit is exceeded.  Unfortunately, for SWI, there currently exists no rigorous 

method for suppressing the reflection from one or the other of a pair of reflectors which are not 

Rayleigh resolved, and consequently, this second approach is unavailable.  The study of 

superresolution for SWI data must therefore, at least for now, be restricted to the following 

question: For any two reflectors that are Rayleigh-resolved, by how much can the transform-
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limited resolution of the SWI system be exceeded, both in precision and in accuracy, and why?  

To answer this question, the field of frequency estimation stands almost ready-made.   

 

1.3 Introduction to Frequency Estimation 

Frequency estimation is a rich and well-developed field, dating back to at least 1974, when 

Rife and Boorstyn presented a maximum-likelihood method for estimating the parameters of a 

complex sinusoid from discretely sampled, noisy data [45].  Frequency estimation is a type of 

spectral analysis, specifically, a type of parametric spectral analysis, which concerns itself with 

estimating the frequency components of a signal composed of one or more complex exponentials 

[46].  In almost all cases, the goal of the estimation process is to determine, with resolution finer 

than the bandlimited (i.e. transform-limited) resolution of the data set, the exact frequencies 

present in a given signal.  For SWI data, the parameters to be estimated with resolution finer than 

the transform-limit are delay times; and by using frequency estimation methods to search for these 

delay times, SWI measurements may be superresolved.   

Frequency estimation methods can be broadly divided into two classes: single-frequency 

estimation methods (applied to signals containing only one frequency component), and multiple-

frequency estimation methods (applied to signals composed of a sum of complex exponentials).  

For the considerably simpler problem of single-frequency estimation, a great variety of methods 

and applications have been proposed and analyzed.  In addition to the maximum-likelihood method 

presented by Rife and Boorstyn, these methods include a linear regression approach [47] [48], 

autocorrelation methods [49] [50], the well-known parabolic estimator [10], and many others.  In 

the more difficult case of multiple-frequency estimation, the best-known approaches include the 

Nonlinear Least Squares estimator, the Yule-Walker auto-regression method, and the Pisarenko, 
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MUSIC (MUtiple SIgnal Classification), and ESPRIT (Estimation of Signal Parameters via 

Rotational Invariance Techniques) estimators [46].   

From among the many available frequency estimation methods, I have selected two 

multiple-frequency methods, Nonlinear Least Squares and ESPRIT, and two single-frequency 

methods, a linear regression method and a variant of the parabolic estimator, and compared their 

performance in superresolving SWI measurements.  The justifications for selecting these particular 

estimators will be discussed in Chapter 2.  Here, it is important to note that the size and richness 

of the frequency estimation literature is a consequence of the unique suitability of individual 

estimation methods to certain types of estimation problems.  No universal “best estimator” exists—

rather, the choice of any one estimator is a compromise among competing needs for accuracy, 

precision, and speed in any given estimation problem.   

 

1.4 Thesis Outline 

The remainder of this thesis is organized into four sections.  The first section, contained in 

Chapter 2, is an examination of how frequency estimation methods may be used to superresolve 

SWI data.  Using a numerical model, I quantify the fundamental limits, both in uncertainty and 

precision, of four methods for superresolving SWI measurements, and examine the experimental 

conditions under which each method is appropriate.   

The next section, Chapter 3, is an investigation of the experimental limits of SWI.  I analyze 

how six potential sources of systematic error—non-Gaussian noise, spurious delay times, laser 

power fluctuation, dispersion mismatch, temperature drift, and laser sweep nonlinearity—can 

prevent superresolved SWI measurements from reaching fundamental uncertainty limits.  I also 

quantify the extent to which each of the latter four error sources must be controlled in order for 
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superresolved SWI to achieve measurement accuracy equal to limiting measurement uncertainty.   

Finally, I present an experimental demonstration of the accuracy of an SWI system, showing 

superresolved accuracy well below the system’s transform-limited resolution across a series of 

measured distances spanning three times the system’s transform-limited resolution. 

 Chapter 4 is an exploration of how superresolved SWI may be time-multiplexed and used 

for the characterization of optical surfaces.  First, I present an analysis of the system design 

considerations specific to a time-multiplexed, superresolved SWI system.  I then describe the 

calibration requirements for such a system.  Next, I describe the design of an 8-channel, time-

multiplexed SWI system and lay out the calibration procedure for this system.  After describing 

the development of an algorithm for surface reconstruction from an array of measured delay times, 

I present and analyze the experimental results of the measurements for two surfaces, a cylindrical 

lens and a coin, of low-order rotational symmetry.   

Finally, in Chapter 5, I summarize the work contained in this thesis and conclude with a 

brief discussion of potential future developments for superresolved SWI.   
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Chapter 2   

Fundamental Limits of Superresolved Swept-Wavelength 

Interferometry 

 

 

In chapter two, I examine the limits of uncertainty and precision for superresolved swept-

wavelength interferometry (SWI) measurements.  I begin by developing mathematical and 

numerical models of an ideal SWI system.  I then use these models to evaluate four methods of 

superresolving SWI distance measurements: Local Linear Regression (LLR), ESPRIT (Estimation 

of Signal Parameters via Rotational Invariance Techniques), Nonlinear Least Squares (NLS), and 

Candan’s estimator.  I first examine the uncertainty limits of SWI measurements for targets 

containing a single reflective surface and for those containing multiple reflective surfaces.  Next, 

I compare the precision, or noise tolerance, of these four methods.  Finally, I conclude with an 

analysis of root-mean-square error for each superresolution method and a discussion of the 

conditions under which these superresolution methods are appropriate.   

 

2.1 Fundamentals of Swept-Wavelength Interferometry 

I begin with a brief overview of the fundamentals of swept-wavelength interferometry.  This 

subject has previously been analyzed in detail [51], so here I provide the concepts and notation 

that are the foundation for the work described later in this thesis.    

Figure 2.1 shows the basic structure of a fiber-optic SWI.  At the heart of the system is a 

tunable laser that sweeps across a continuous band of wavelengths.  A fiber-optic coupler splits 



 11 

the output of this tunable laser into two separate arms, a reference arm and a sample arm, each 

with a different optical path length.  Although the coupling ratio may take on any value, for 

simplicity, I assume here that it is 50:50.   

 

 

Figure 2.1  System diagram for a simplified swept-wavelength interferometer.   

 

 Mathematically, the output of the tunable laser can be represented by 

 𝑬 𝜈 𝑡 = 𝐸 𝜈 𝑡 𝑒DEFG H H𝝔	.	 (2.1) 

The output electric field 𝑬 is a function of the laser’s instantaneous optical frequency 𝜈, sampled 

at lab time 𝑡.  Both the amplitude and phase of 𝑬 are functions of optical frequency, while the 

polarization, given by unit vector 𝝔, is assumed to be constant throughout the laser sweep.   

 At the photodetector, the detected intensity	𝑈 is given by  

 𝑈 𝜈 𝑡 = 	𝑬 𝜈 𝑡 − 𝜏M + 𝑬 𝜈 𝑡 − 𝜏O 	 D	. (2.2) 

Variables 𝜏M and 𝜏O represent the group delay times of the signals in the reference and sample 

arms, respectively.  After dropping a constant phase offset and assuming 𝜈 𝑡 − 𝜏P ≈ 𝜈 𝑡 − 𝜏D , 

Equation (2.2) may be rewritten as 
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 𝑈 𝜈 𝑡 = 2𝐼 𝜈 𝑡 1 + cos 2𝜋𝜈 𝑡 𝜏W 	, (2.3) 

where the differential delay time 𝜏W is equal to 𝜏O − 𝜏M,  the difference in group delay times 

between the sample and reference arms.   The assumption that 𝜈 𝑡 − 𝜏P  is equal to 𝜈 𝑡 − 𝜏D  is an 

expression of the slow tuning approximation [52].  Qualitatively, this approximation assumes that 

the difference in group delays between the reference and sample arms is small enough that the 

optical frequencies being recombined at the coupler are the same.   

 To simplify this initial analysis, I assume that the sample arm of the SWI system contains 

only one reflective surface and therefore only one delay time 𝜏M.  In experiments in which this is 

in fact the case, the number of fringes, i.e. periods of the cosine function in (2.3), across the laser 

sweep bandwidth can be counted to determine the differential delay time 𝜏W.  This counting method 

is used, for example, in frequency scanning interferometry [53] [54] [55] [56] [57].  However, 

when the sample contains many reflective surfaces, the signal collected at the photodetector will 

be a superposition of many cosine terms, corresponding to the many differential delay times 

between sample and reference arms.  Additionally, the collected signal will contain a series of 

cross-terms corresponding to every possible combination of delay time differences in the SWI 

system.  In this more complicated case, the many differential delay times may be obtained by 

taking the Fourier transform of the collected signal.   

Returning to the simple case in which the sample arm contains only one reflective surface, 

the discrete Fourier transform (DFT) of the collected signal is given by 

 𝑈 𝜏 = ℑ 𝐼 𝜈 ∗ 2𝛿 0 + 𝛿 𝜏 − 𝜏W + 𝛿 𝜏 + 𝜏W 	. (2.4) 

The signal 𝑈, now a function of delay time 𝜏, contains peaks centered at 𝜏 = ±𝜏W in the positive 

and negative sidebands.  The width and shape of these peaks is given by the Fourier transform of 
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the profile of the laser’s output intensity 𝐼 as it sweeps across optical frequencies.  (Note that any 

detector nonlinearity may be also be represented in the expression 𝐼 𝜈 .) 

If output power is constant over the laser sweep, and the photodetector is perfectly linear, 

then the laser’s output intensity is given by 

 𝐼 𝜈 = 𝜎𝐸WD	rect
𝜈 − 𝜈^ − 𝐵 2

𝐵 	,	 (2.5) 

where 𝐸Wrepresents a constant electric field amplitude, 𝜎 is a constant representing detector 

responsivity, and 𝜈^ is the center frequency of the laser sweep bandwidth 𝐵.  In this case, the 

discrete Fourier transform of the detected signal is given by 

 
𝑈 𝜏 = 𝜎𝐸WD𝐵 	2sinc 𝐵𝜏 + 	sinc 𝐵 𝜏 − 𝜏W

+ 	sinc 𝐵 𝜏 + 𝜏W 	 	𝑒`FDE Gab
c
D d 	. 

(2.6) 

In general, spacing between samples in the delay time domain—or DFT bin size—is equal 

to the inverse of laser sweep bandwidth 𝐵.  The details of setting and maintaining this spacing will 

be discussed in section Section 3.1.6.  In this chapter, I assume that DFT bin size, represented by 

variable 𝑠d, is perfectly constant and exactly equal to 𝐵`P.  Given these assumptions, Equation 

(2.6) may be rewritten as a function of a discrete counting variable m, yielding 

 

𝑈 𝑚 = 𝜎𝐸WD𝐵 	2sinc 𝐵𝑚𝑠d + 	sinc 𝐵 𝑚𝑠d − 𝜏W

+ 	sinc 𝐵 𝑚𝑠d + 𝜏W 	 	𝑒`FDE Gab
c
D ghi, 

𝑚 = −
𝑀
2 	, −

𝑀
2 + 1	, …	,

𝑀
2 − 1 	, 

(2.7) 

where M is the total number of samples.  Explicitly noting the discretization of 𝑈 will simplify the 

later discussion of superresolving SWI measurements.   
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2.2   Superresolution using Frequency Estimation Methods 

Because the differential delay time 𝜏 is not a discrete variable, but a physical quantity, it may 

take on an intinite number of potential values.  It is therefore extremely unlikely that any given 

delay time will be equal to an integer multiple of DFT bins.  Instead, exact delay times will 

typically be centered some fraction 𝛿𝑚l of the way between sample points.  For a sample 

containing i reflectors, the exact differential delay time corresponding to the ith reflector is given 

by 

 𝜏l = 𝑚l + 𝛿𝑚l 𝑠d	. (2.8) 

Indices mi are the highest amplitude points in each of the delay time peaks.  The Fourier transform-

limited measure of each delay time 𝜏l is given by the product of index mi and DFT bin size 𝑠d.  

Superresolution is the process estimating delay times with resolution finer than the Fourier 

transform limit, either through a direct estimate of the fraction 𝛿𝑚l, or through some other method.   

 

2.2.1 Overview of numerical model 

In practice, temperature and pressure related fluctuations in the atmosphere, the target, and 

the SWI system itself typically set experimental limits on the accuracy and precision of any SWI 

measurement system [53] [58].   To avoid these limitations and examine the fundamental limits of 

superresolved SWI, I use data that has been generated numerically, rather than experimentally.  

This approach is particularly advantageous in the evaluation of uncertainty limits—results may be 

compared with the parameters of a known model, rather than with secondary experimental 

measurements which are themselves subject to environmental instability.   

Data was generated according to the specifics of the system shown in Figure 2.2.  This 

model is very similar to the experimental system described in [33] and identical to the system used 
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for experiments in Chapter 3.  In the measurement arm of the interferometer, two reflectors are 

located approximately 50% of the way through the unambiguous range of the system.  The tunable 

laser sweeps from 1500 nm to 1570 nm, resulting in a sweep bandwidth of 8.9 THz.  A trigger 

interferometer with a 20 m path length mismatch between the two arms sets both the sample 

spacing in optical frequency (10 MHz) and the total number of samples per laser sweep (891,103).  

The laser’s tuning rate is assumed to be slow enough that the trigger interferometer can perfectly 

compensate for laser sweep nonlinearity, i.e. second and higher order sweep rate nonlinearities can 

be neglected [52].     

 

 

Figure 2.2  System diagram of a fiber-based SWI used as the model for numerical 
experiments.  The Michelson geometry of the measurement interferometer enables the 
measurement of multiple reflective surfaces.  The trigger interferometer consists of a 
Mach-Zehnder interferometer and a hydrogen cyanide (HCN) gas reference cell.   

 

Mathematically, the data corresponding to a single laser sweep takes the following form: 

 𝑈 𝜈 𝑡 = 2 + cos 2𝜋𝜈 𝑡 𝜏m + cos 2𝜋𝜈 𝑡 𝜏n + 𝑍 𝑡 	. (2.9) 

The signal U, sampled at times t, is a function of the instantaneous laser frequency ν.  This 

signal consists of a DC offset term, two oscillatory terms created by the two reflectors in the 
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measurement arm of the interferometer, and an additive noise term Z[t].  Note that because this 

model contains two reflectors, the full expression for the signal U would also contain a cross term; 

however, because this term would be lower in amplitude than the terms of interest and very near 

DC, its impact on the terms of interest is negligible.  For the sake of simplicity, I have omitted it.   

Rewriting Equation (2.9) as a function of discrete sampling variable m gives 

 𝑈 𝑚 = 2 + cos 2𝜋𝜏m 𝜈W − 𝛿𝜈 ∙ 𝑚 + cos 2𝜋𝜏n 𝜈W − 𝛿𝜈 ∙ 𝑚 + 𝑍 𝑚 	, 

𝑚 =	 0,1, … ,𝑀 − 1 	, 

(2.10) 

where variable 𝛿𝜈 denotes optical frequency spacing between samples, and variable 𝜈W represents 

the optical frequency at the start of the laser sweep.   

Delay times 𝜏l to each of the two reflectors correspond to path length mismatches between 

arms of the measurement interferometer.  Physical path length mismatches are obtained by 

multiplying delay times by half the speed of light.  Zero-mean Gaussian noise Z[t] is added to the 

signal by drawing values from a normal distribution whose variance is equal to noise power.  In 

Figure 2.3a, a portion of the signal is plotted against laser wavelength λ.   The DFT of this signal, 

shown in Figure 2.3b, contains two peaks, centered at delay times 𝜏m and 𝜏n.  A close-up view of 

the second peak, shown in Figure 2.3c, reveals that delay time 𝜏n is located between sample points, 

approximately in the center of a DFT bin.  (The fastidious reader may notice that the peaks in 

Figure 2.3b are not located 50% of the way through the unambiguous range of the numerical model 

described earlier, but are in fact much closer to the DC term.  This discrepancy occurs only in 

Figure 2.3, and is included so that the two delay time peaks in Figure 2.3b will appear distinct.)   
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Figure 2.3  (a) Portion of measurement arm signal as a 
function of optical wavelength.  Two reflectors in the 
measurement arm result in a signal composed of a beat 
frequency and an underlying carrier frequency.  (b) 
Positive sideband of the DFT of the measurement signal 
contains a DC component as well as peaks 
corresponding to reflections from two surfaces.  (c) Time 
delay to the second reflector is between sample points.   

 

Here, I compare four estimators capable of superresolving SWI measurements.  The first 

two, Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [59] and 

Nonlinear Least Squares (NLS) [60] are well-known and well-characterized methods from the 

frequency estimation literature.  Here, I apply them to SWI data, using them to estimate delay 

times instead of frequencies.  The third estimator was developed specifically for making 

superresolved OFDR measurements [33], but unlike ESPRIT and NLS, its statistical properties are 

unknown.  Here I refer to this method as Local Linear Regression (LLR) in order to disambiguate 
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the estimation method itself from the entire experimental process the authors of [33] call Precision 

Ranging.  Finally, I examine the performance of Candan’s estimator, a relatively recent 

contribution to the field of frequency estimation [61].  Strictly speaking, Candan’s estimator 

belongs to the class of parametric single frequency estimators.  However, it has many desirable 

properties, and, given appropriate conditions, may be successfully applied to data containing 

multiple delay times.   

 

2.2.2 Nonlinear Least Squares 

For signals composed only of a summation of complex exponentials and corrupted only by 

white Gaussian noise, NLS is the maximum likelihood estimator [60] [62].  As such, it is 

consistent, asymptotically efficient, and asymptotically unbiased [63].  Even in the presence of 

colored noise, NLS estimates are asymptotically unbiased [64].  The NLS estimation method seeks 

to minimize the function 

 
𝑓 𝜔, 𝛼, 𝜑 = 𝑈 𝑚 − 𝛼l𝑒F uvgbwv

x

lyP

Dz

gyP

	, (2.11) 

where 𝑈 𝑚  is the sampled signal, and parameters	𝜔, 𝛼, and 𝜑 represent the angular frequency, 

amplitude, and phase of the ith component of the sum of complex exponentials.  For SWI data, the 

frequencies 𝜔l are give by 

 𝜔l = 2𝜋𝛿𝜈𝜏l	, (2.12) 

where 𝛿𝜈 is the spacing between samples in optical frequency, and 𝜏l is an individual delay time.   

For SWI problems, it is generally not the amplitudes and phases, but the delay times 𝜏l, 

and therefore the angular frequency components 𝜔l, that are of interest.  This is true for the 

majority of frequency estimation problems, although in most cases, the sampled signal 𝑈 𝑚  is a 
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function of temporal frequency, not of delay time, as it is in the case of SWI data.  The NLS method 

reduces the search for frequency, amplitude, and phase to a search for frequency alone by 

maximizing the value of merit function Q as a function of the angular frequency components 𝜔l.  

For any given values of the frequency components, the merit function Q is given by 

 𝑄 = 𝑈∗𝐵 𝐵∗𝐵 𝐵∗𝑈	. (2.13) 

The data vector 𝑈, given explicitly by 

 
𝑈 =

𝑈 1
⋮

𝑈 𝑀
	, (2.14) 

is a column vector containing the data points in the sampled signal 𝑈 𝑚 .  Matrix 𝐵, given by 

 
𝐵 =

𝑒Fu} ⋯ 𝑒Fu�
⋮ ⋱ ⋮

𝑒Fzu} ⋯ 𝑒Fzu�
	, (2.15) 

is a function of frequency components 𝜔l. 

Because NLS is a parametric method, the number of reflectors contributing to the SWI data 

must be known in advance.  And unlike LLR, ESPRIT, and Candan’s estimator, NLS is an 

optimization method, dependent on the quality of the initial guesses used to seed the optimization 

process.  The optimization search space contains many local maxima, and in general, the quality 

of initial guesses required for convergence to the global maximum is unknown [60].  However, for 

the model used here, containing only two reflectors, I found that the search space is convex within 

1 DFT bin of the global maximum.  This is shown in Figure 2.4. 
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Figure 2.4  NLS search space for a signal containing two 
reflection times.  The merit function Q is determined by the 
spacing δm between true delay times and delay time guesses.   

 

 Interestingly, in the two-reflector case, the NLS search space reveals that superresolving 

delay times that are not Rayleigh resolved may be possible with an NLS search, were it somehow 

possible to seed the search process with sufficiently accurate initial guesses.  This is illustrated in 

Figure 2.5.  Figure 2.5a shows the search space for a signal containing two Rayleigh resolved delay 

times.  The global maximum is at least one DFT bin from the nearest minima.  By contrast, Figure 

2.5b shows the search space for a signal containing two delay times separated by half a DFT bin—
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roughly one-third of the Rayleigh resolved distance.  In the latter case, the separation between the 

global maximum and the nearest minimum is reduced to less than a quarter of DFT bin.   

Recalling the discussion in Section 1.2, Figure 2.5 also clearly illustrates the dramatic 

increase SNR that would be required to superresolve reflectors that are not Rayleigh resolved 

(Figure 2.5b) compared those that are (Figure 2.5a).  

 

 

Figure 2.5  NLS search space for a signal containing two reflectors separated by (a) 5 
DFT bins, and (b) 0.5 DFT bins.   

 

 To locate maxima in NLS search spaces, I used the Nelder-Mead simplex algorithm [65], 

implemented using MATLAB’s fminsearch function [66].  However, the default value for the size 

of the simplex in the fminsearch function is too large for the search spaces generated by the NLS 

method.  The default simplex encompasses an area of the search space containing, in addition to 

the global maximum, many other local maxima; and consequently, the search algorithm was likely 

to converge to a local, instead of global, maximum.  To eliminate this problem, I reduced the initial 

size of the simplex to one 10,000th of its default value.  Additionally, I reduced the step size 

tolerance exit criteria from its default value of 10-4 to 10-7 of DFT bin size.  (Figure 2.6 illustrates 
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the exit—or convergence—criteria for the Nelder-Mead simplex.  The step size criterion is denoted 

as StepTolerance.)   

 

 

Figure 2.6  Convergence criteria for the 
Nelder-Mead simplex [67]. 

 

Further reducing the step size tolerance to below 10-7 of DFT bin size produces no additional 

improvement in the results of the NLS search, although it does continue to increase search time.  

This is shown in Figure 2.7.  As the search exit criterion TolX decreases, the standard deviation of 

estimated delay times decreases as well, although this comes at the cost of increased search time.  

However, when the search exit criterion TolX drops below approximately 10-7 of DFT bin size, 

further reduction in exit criterion TolX ceases to correspond to reductions in the standard deviation 

of estimated delay times (although the search time continues to increase).   
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Figure 2.7  Standard deviation, normalized to DFT bin size, of estimated delay times to 
two reflectors (solid and dashed blue lines) is plotted on the left y-axis.  Corresponding 
mean search time is plotted on the right y-axis.  Exit criterion TolXn is normalized to 
DFT bin size.  

 

This ceiling in performance quality is caused by the NLS search space itself reaching the 

numerical noise floor for double-precision floating point arithmetic.  Figure 2.8 shows a very finely 

sampled image of the global peak in the NLS search space for two delay times.  The asymptotic 

value of standard deviation estimates is 6.8x10-8 of a DFT bin (Figure 2.7).  In Figure 2.8, two 

circles, one with a radius of one standard deviation 1𝜎 and a second with a radius equal to two 

standard deviations, are plotted on the NLS search space.  Within a single standard deviation, the 

change in the value of the search space due to numerical noise is greater than the change in the 

value due to variation in the two delay time guesses.   
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Figure 2.8  NLS search space for a signal containing two 
reflectors.  The average value of the merit function across the 
portion of the search space plotted here has been subtracted 
from the all values of the merit function.  The centers for the 1𝜎 
and 2𝜎 circles are offset by 4.5 x 10-8 in x and 2 x 10-8 in y.  Both 
these offsets are within the 1𝜎standard deviation value. 

 

2.2.3 ESPRIT 

ESPRIT was originally developed to solve direction-of-arrival problems [68], but it is also 

used to estimate the components of sampled signals containing multiple frequencies [69], and here 

I use it to estimate exact delay times to reflectors.  It is a parametric estimation method, 
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the estimation process [71].  However, because ESPRIT is non-iterative, it is, in general, faster 

than NLS.  The mean execution time for ESPRIT, as well as for LLR, NLS, and Candan estimates, 

is listed in Table 2.1. 

 

Table 2.1  Run times for single estimates.  Averages of 5,220 iterations, run using Matlab on Intel® 
Core™ i7-3770K Processor. 

Estimator LLR Candan ESPRIT NLS 

Run Time (s) 0.13 ±0.01 0.64 ±0.01 26 ±1 151 ±16 

 

ESPRIT, like NLS, assumes that the sampled signal is a sum of k complex exponentials; 

that is, the sampled signal 𝑈 𝑚  can be represented by 

 
𝑈 𝑚 = 𝛼l𝑒F uvgbwv

x

lyP

	. (2.16) 

For SWI data, the angular frequency components 𝜔l are functions of delay times 𝜏l (Equation 

(2.12)).  Given this assumption, ESPRIT estimates of frequencies 𝜔l are made in the following 

way.  First, a covariance matrix 𝑅  of order A is computed, according to 

 

𝑅 =

𝑅� 0 							 𝑅� 1
𝑅� 1 								 𝑅� 0

⋯ 						𝑅� 𝐴 − 1
… 						𝑅� 𝐴 − 2

⋮ ⋮
𝑅� 𝐴 − 1 𝑅� 𝐴 − 2

⋱														 ⋮
⋯													 𝑅� 0

	. (2.17) 

Each component 𝑅� 𝑎  of the covariance matrix 𝑅 is given by the expected value of the product 

of the sampled signal and a delayed version of that same signal—i.e. 

 𝑅� 𝑎 = 𝐸 𝑈 𝑚 𝑈 𝑚 + 𝑎 ,			𝑎 = 	 0,1, … , 𝐴 − 1 	. (2.18) 

The singular value decomposition of matrix 𝑅 gives 

 𝑅 = 𝑊Λ𝑊�	, (2.19) 
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where superscript H denotes the conjugate transpose.  Selecting the first k columns of matrix 𝑊 

(or the eigenvectors corresponding to the k largest eigenvalues in matrix Λ) gives: 

 
𝑊h =

𝑊P,P ⋯ 𝑊�,P
⋮ ⋱ ⋮

𝑊�,P ⋯ 𝑊�,x

	. (2.20) 

Matrix 𝑊h can then be partitioned into matrices 𝑊hP and 𝑊hD, according to 

 𝑊h = 𝑊hP
last	row

= first	row
𝑊hD

	, (2.21) 

and the following equation may be solved for Ψ:  

 𝑊hD = 𝑊hPΨ	. (2.22) 

The frequencies estimates 𝜔� are then given by  

 𝜔� = −Arg 𝜆l 	, (2.23) 

where 𝜆l are the eigenvalues of matrix Ψ.   

 

2.2.4 Local Linear Regression 

LLR is the fastest of the three estimators, with a dramatically lower average execution time 

than either NLS or ESPRIT.  This is largely because only a small portion of the signal is used to 

superresolve delay times of interest [33].  In fact, LLR can be considered a single-frequency 

estimation method [47], modified to estimate delay times for SWI signals containing returns from 

multiple reflectors.   The estimation process, detailed in [33], is illustrated in Figure 2.9.  It consists 

of extracting a series of points centered on a peak of interest in delay time (Figure 2.9a), 

multiplying the extracted points by a digital window function, shifting the extracted peak to 

baseband, taking the inverse Fourier transform of the extracted and windowed data points, and 

finally, fitting a line to the unwrapped phase of the resulting data (Figure 2.9b).  The slope of the 
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unwrapped phase is proportional to the fractional distance 𝛿𝑚l of the peak’s center from the 

nearest sample point (Figure 2.9c).  The linear relationship between phase slope in the optical 

frequency domain and peak shift in the delay time domain is a consequence of the Fourier shift 

theorem [43].   

 

 

Figure 2.9  (a) One hundred data points, centered about 
a peak of interest in delay time, are extracted from the 
entire data set. (b) A line is fitted to the unwrapped phase 
of the inverse Fourier transform (IFT) of the extracted 
data points.  Five points at each end of the phase data 
are excluded from the line fit.  Before the IFT, the 
extracted points were multiplied by a Hanning window 
and shifted to baseband.  (c)  The fractional distance 𝛿𝑚l 
between the peak’s true center and the nearest sample 
point is proportional to the slope of the unwrapped 
phase.   
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The DFT of an SWI signal containing returns from multiple reflectors contains multiple 

peaks in delay time.  LLR relies on the assumption that the extracted points surrounding any peak 

contain information only about that peak, i.e. spectral leakage is negligible.  This assumption is 

reasonable only if the peaks are sufficiently separated in delay time, meaning the optical path 

length between any two reflectors is sufficiently large.  Consequently, the closer two peaks are in 

delay time, the fewer points surrounding any one peak may be extracted in the estimation process.   

Even when spectral leakage is negligibly small or nonexistent, LLR estimates are biased.  

The magnitude of this bias depends on several things: the locations of reflectors in the 

unambiguous range of the system, the number of points included in the extraction step, the choice 

of window function, and the number of data points included in the line fit to the phase slope.  For 

the case of a single reflector, Figure 2.10 illustrates how LLR bias depends on the fractional 

location of a delay time peak inside a DFT bin.  As the position of the reflector is moved across 

one DFT bin, the difference between the reflector’s true position (used to generate data) and the 

reflector’s recovered position (obtained with an LLR estimate) varies unpredictably.   

 

  

Figure 2.10  Bias, normalized to DFT bin size, in 
estimated delay time for a single reflector.  These 
LLR estimates were made using a 100 point 
rectangular window. 
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In general, bias decreases as the number of points included in the extraction step increases.  

Applying window functions that decay smoothly to zero at their edges produces bias values that 

asymptotically approach 10-10 of DFT bin size.  When peaks are separated in delay time by 

approximately 200 DFT bins or more, enough points may be included in the extraction step that 

LLR bias becomes inconsequential.  Figure 2.11 shows the dependence of maximum LLR estimate 

bias on the number of extracted data points, the choice of window function, and the percentage of 

endpoints excluded from the line fit to phase slope.   

 

 

Figure 2.11  Maximum absolute bias, normalized to DFT bin size, of delay time estimates for a 
single reflector.  For any window function, maximum bias depends on both the total number Me of 
extracted data points and on the percentage of endpoints excluded from each end the line fit to 
phase slope.  Results are shown for a (a) rectangular window, (b) Hanning window, and (c) 
Chebyshev window.   

 

When a rectangular window is chosen (this is equivalent to leaving the data unwindowed), then 

the optimal percentage of endpoints to exclude from each end of the phase data is approximately 

20% (Figure 2.11a).  When the extracted data points are multiplied by a Hanning window, estimate 

bias decreases in proportion to the percentage of excluded endpoints, although the rate of decrease 

slows considerably after more than approximately 20% of endpoints are excluded (Figure 2.11b).  
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depending on the number of extracted points (Figure 2.11c).  In general, however, excluding 

approximately 20% of endpoints from the line fit produces good results.   

 

2.2.5 Candan’s estimator 

Candan’s estimator [72] [73] belongs to a small family of parametric, single-frequency 

estimators that use only three DFT data points to estimate the exact center of a peak in frequency 

(or in the case of SWI data, in delay time).  The oldest and best known of these estimators is the 

parabolic interpolation method [10].  Other methods using three DFT points have been proposed 

by Quinn in 1994 [74] [75], MacLeod in 1998 [76], and Jacobsen in 2007 [77].  A similar 

estimation method using only two DFT points was proposed by Provencher in 2010 [78].  All these 

estimators produce biased estimates, with older estimators tending to suffer from greater bias than 

younger versions.   

In 2011, Candan proposed a modification of Jacobsen’s estimator that demonstrated a 

significant reduction in estimate bias over previous 3-point estimators [72].  Subsequent work 

showed that by including an additional bias correction step to the estimation process, estimate bias 

can be driven below 10-8 of one DFT bin [73].  Furthermore, by including a correction factor 

specific to any given window function, this negligible level of estimate bias may be maintained 

when data is multiplied by a window function before being Fourier transformed.  The additional 

computational burden imposed by the second bias correction step increases execution time for the 

Candan estimator (Table 2.1), but for single-reflector data generated using the model described 

earlier, the maximum bias in delay time estimates is always below 10-10 of DFT bin size.  For 

similarly rapid LLR estimates to achieve such low bias, around 500 points must be extracted from 
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around any delay time peak, which reduces the usable unambiguous range of the SWI system 

(albeit by only a small fraction).   

Candan’s estimator makes a direct estimate of the DFT bin fraction 𝛿𝑚l separating the true 

center of a delay time peak from the nearest sample point 𝑚l.  In the first step of the estimation 

process, an estimate 𝛿P𝑚� is made using the following formula: 

 
𝛿P𝑚� = 𝑐zReal

𝑈 𝑚l − 1 − 𝑈 𝑚l + 1
2𝑈 𝑚l − 𝑈 𝑚l − 1 − 𝑈 𝑚l + 1

	. (2.24) 

Signal 𝑈 𝑚  is the DFT of signal 𝑈 𝑚 , and the value of 𝑈 𝑚l  is given by the complex value of 

the highest-magnitude point, corresponding to delay time 𝜏l, in the transformed signal 𝑈 𝑚 .  

Points 𝑈 𝑚l − 1  and 𝑈 𝑚l + 1  are to the immediate left and right, respectively, of the highest-

magnitude point 𝑈 𝑚l .  The value of the correction factor 𝑐z depends on the number of points M 

in the sampled signal and on the window function 𝑤 𝑚  multiplied by signal 𝑈 𝑚  before taking 

the discrete Fourier transform.  It is calculated using   

 
𝑐z =

𝐵WD

𝐴P𝐵W + 𝐴W𝐵P
	. (2.25) 

The coefficients A0, A1, B0, and B1 are given by 

 
𝐴W = Imag 𝑤 𝑚 𝑒FDEgz

z`P

g`W

− 𝑤 𝑚 𝑒`FDEgz
z`P

g`W

	, 
(2.26) 

 
𝐴P =

𝑗2𝜋
𝑀 𝑚𝑤 𝑚 𝑒FDE

g
z

z`P

g`W

−
𝑗2𝜋
𝑀 𝑚𝑤 𝑚 𝑒`FDE

g
z

z`P

g`W

	, 
(2.27) 

 
𝐵W = 2 𝑤 𝑚

z`P

g`W

− 𝑤 𝑚 𝑒FDEgz
z`P

g`W

− 𝑤 𝑚 𝑒`FDEgz
z`P

g`W

	, 
(2.28) 

and 
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𝐵P = Imag

𝑗4𝜋
𝑀 𝑚𝑤 𝑚

z`P

g`W

−
𝑗2𝜋
𝑀 𝑚𝑤 𝑚 𝑒FDE

g
z

z`P

g`W

−
𝑗2𝜋
𝑀 𝑚𝑤 𝑚 𝑒`FDE

g
z

z`P

g`W

 

(2.29) 

respectively.   

In the second step of the Candan estimation process, the value 𝛿P𝑚�, estimated in the first 

step, is removed from the sampled signal 𝑈 𝑚 , giving a modified signal 𝑈D 𝑚 , where 

 𝑈D 𝑚 = 𝑈 𝑚 𝑒`F
DE
z �}g�g 

, 𝑚 = 0,1, … ,𝑀 − 1 	. 
(2.30) 

Then, a second value 𝛿D𝑚� is estimated from the highest-magnitude point 𝑈D 𝑚l  and its two 

neighboring points 𝑈D 𝑚 − 1  and 𝑈D 𝑚 + 1  in the DFT of signal 𝑈D 𝑚 , according to   

 
𝛿D𝑚� = 𝑐zReal

𝑈D 𝑚l − 1 − 𝑈D 𝑚l + 1
2𝑈D 𝑚l − 𝑈D 𝑚l − 1 − 𝑈D 𝑚l + 1

	. (2.31) 

Finally, the estimate 𝛿𝑚� is given by the sum of the estimates 𝛿D𝑚� and 𝛿D𝑚� made in the first and 

second steps, i.e. 

 𝛿𝑚� = 𝛿P𝑚� + 𝛿D𝑚�	. (2.32) 

 

2.3 Uncertainty in Superresolved SWI Measurements 

It is apparent from Equation (2.8) that the uncertainty of delay time measurements depends 

both on uncertainty in DFT bin size 𝑢 𝑠d  and on uncertainty in superresolution, 𝑢 𝛿𝑚l .  In 

general, uncertainty in DFT bin size depends on the method used to maintain sample spacing in 

optical frequency.  Because tunable laser sweep rates are generally not linear, samples acquired at 

regular time intervals will be unevenly spaced in optical frequency [52].  Evenly spaced samples 



 33 

can be obtained in several ways, by resampling the signal data [79] [80], linearizing the laser sweep 

[81] [82], using a nonuniform discrete Fourier transform (NDFT) [83], or using a secondary 

interferometer to trigger sample acquisition.  In each case, the method used to set sample spacing 

also sets a lower limit on uncertainty in DFT bin size.  The system modeled here uses a trigger 

interferometer, and consequently, DFT bin size uncertainty is ultimately limited by the quality of 

the wavelength reference gas cell [33] [84].   

For Fourier transform-limited SWI measurements, only DFT bin size uncertainty 𝑢 𝑠d  

contributes to total uncertainty in delay time measurements.  However, for superresolved 

measurements, the process of estimating the fractional location 𝑢 𝛿𝑚l  of delay time within a 

DFT bin may also contribute uncertainty to the measurement.  In general, unbiased estimation 

methods make no additional contribution to total uncertainty; in these cases, the value of 𝑢 𝛿𝑚l  

is zero.  However, estimators that converge to incorrect values of fractional location 𝛿𝑚l, that is, 

biased estimators, contribute additional uncertainty 𝑢 𝛿𝑚l  to the total uncertainty of delay time 

measurements.   

For targets containing multiple reflective surfaces, quantities of interest are not typically 

the absolute delay times to each surface, but rather the differential delay times between target 

surfaces.  Differential measurements reject common mode fluctuations such as temperature drift 

in the interferometer, resulting in significant improvements in measurement precision [33].  Here, 

I examine the two-reflector case, but these results are generalizable to targets containing any 

number of reflectors.   

For two reflectors separated by delay time difference Δτ, uncertainty in the measurement 

of Δτ is given by 
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 𝑢 ∆𝜏 = ∆𝜏D
𝑢D 𝑠d
𝑠dD

+ 2𝑠dD𝑢D 𝛿𝑚
P
D
	. (2.33) 

(The derivation of (2.33 assumes the variables Δτ, sτ, and δm are independent [85].)  The details of 

establishing DFT bin size uncertainty 𝑢 𝑠d  will be examined in detail in Section 3.1.  In this 

chapter, I will use the calibration procedure described in [33] along with the manufacturer’s 

specifications for a Wavelength References HCN gas reference cell to establish a lower limit on 

DFT bin size uncertainty.   

 

2.3.1 Spectral leakage and bias for single-frequency estimators 

To determine the contribution of estimator bias to overall uncertainty in differential delay 

time measurements, I begin by revisiting the topic of bias in both Candan and LLR estimates.  

Since both are single frequency estimators, applying them to data containing multiple delay times 

requires assuming spectral leakage is negligible.  In general, the closer any two delay times are to 

each other, the more this assumption breaks down.  For LLR estimates, this trend is illustrated in 

the numerical results plotted in Figure 2.12.  One reflector is fixed at delay time τP, approximately 

halfway through the unambiguous range of the modeled SWI system.  The delay time τD to a 

second reflector is translated from 10 to 100 DFT bins of separation from delay time τP.  The 

number of points extracted around each peak in delay time is equal to the number of DFT bins 

between the two peaks.  As the delay time difference between the two peaks increases, the bias in 

estimates of both the delay time difference τD − τP and the individual delay times τP and τD 

decreases.   



 35 

 

Figure 2.12  Absolute value of bias, normalized to DFT bin size, for LLR 
estimates of delay time for delay times 𝜏P, 𝜏D, and the difference between them 
𝜏D − 𝜏P.  The difference 𝜏D − 𝜏P increases through m DFT bins.   

 

2.3.2 Bias in LLR estimates of delay time differences 

In the case of LLR, it is difficult to distinguish the effects of spectral leakage from the 

effects of estimator bias, as the level of bias for delay times in the two-reflector case (Figure 2.12) 

is comparable to the level of bias in delay time estimates in single-reflector data (Figure 2.11b).     

 To reduce the effects of spectral leakage, data may be multiplied by a window function 

before being Fourier transformed.  This will have the general effect of broadening peaks in delay 

time and reducing their magnitude, while also reducing the magnitude of sidelobes (and thus 

reducing spectral leakage).  Figure 2.13 shows that for LLR estimates of delay time difference 

τD − τP, the magnitude of estimate bias is significantly reduced by applying a Hanning window to 

simulated data before taking the Fourier transform.  However, applying a Hanning window to the 

entire data set, in addition to multiplying extracted data points by a Hanning window before taking 

the inverse Fourier transform, dramatically increases estimate bias.  
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Figure 2.13  Effects of applying a rectangular window function to all data 
points before the Fourier transform and to extracted data points used for the 
LLR estimate (blue line); a rectangular window to all data points and a 
Hanning window to extracted data points (orange line); a Hanning window to 
all data points and a rectangular window to extracted data points (yellow line); 
and a Hanning window to all data points and then to extracted data points 
(purple line).    

 

Consequently, when LLR is used to estimate delay times in multiple frequency data, it is 

best to modify the procedure originally described in [33].  Extracted points should not be multiplied 

by a window function; instead, the entire data set should be windowed before the initial Fourier 

transform.    Figure 2.14 shows the magnitude of the bias in LLR estimates of delay time difference 

τD − τP when the entire data set has been multiplied by a rectangular (Π), Hanning, or Chebyshev 

window.  The Chebyshev window suppresses sidelobe magnitude to 100 dB relative to the 

magnitude of the main lobe, and of the three windows, it is the most effective in reducing the 

effects of spectral leakage.  However, both the Hanning and Chebyshev windows raise the noise 

floor in the delay time domain—this results in reduced estimate precision.  Because this processing 

loss is larger for the Chebyshev window, the Hanning window represents an acceptable (and very 

common) compromise between sidelobe suppression and SNR loss.  In Figure 2.14, a series of 
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selected points shows the maximum bias for reflector separations between 10 and 100 DFT bins 

when the Hanning window is used.   

 

 

Figure 2.14  Bias in the estimate of delay time difference 𝜏D − 𝜏P.  Before the Fourier 
transform, the entire data set was multiplied by a rect, Hann, or Chebyshev window.   

 

2.3.3 Bias in Candan estimates of delay time differences 

2.3.3.1 Reflections of equal amplitude 

In comparison to LLR estimates, estimates of delay time differences made using Candan’s 

estimator clearly show the effects of spectral leakage.  In single-reflector data generated using the 

model described in Section 2.2.1, bias is always below 10-10 of DFT bin size.  By contrast, Figure 

2.15 shows that bias in estimates of delay time difference τD − τP is considerably higher, 

approaching—even briefly exceeding—one DFT bin when reflector spacing is below five DFT 

bins.  As reflector spacing increases, bias rapidly decreases, falling below 10-4 of DFT bin size 

when reflector spacing exceeds approximately fifteen DFT bins, and dropping below 10-6 of DFT 
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bin size for reflector separations greater than about fifty DFT bins.  For reflector separations greater 

than approximately five DFT bins, the power functions 

 |bias|� = 3.5𝑚` .P (2.34) 

and 

 |bias|¡ = 1.2×10`£𝑚`D.P (2.35) 

predict, for estimates made using the Hanning and Chebyshev windows, respectively, the 

magnitude of maximum bias with high fidelity.   

 

 

Figure 2.15  Magnitude of bias, normalized to DFT bin size, in Candan estimates of delay 
time difference 𝜏D − 𝜏P.  Before the Fourier transform, data was multipled by a rect, Hann, 
or Chebyshev window.   

 

 Just as in the case of LLR estimates, the Chebyshev window is more effective than the 

Hann window in mitigating the effects of spectral leakage between closely spaced reflectors.  

Because the Hanning window is likely to perform better under a broader range of conditions, I 

have used it for all the Candan estimates presented in the remainder of this dissertation.  However, 
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given sufficient SNR, the Chebyshev window may be better choice for Candan estimates when 

reflectors are separated by between 5 and 20 DFT bins.   

 

2.3.3.2 Reflections of unequal amplitude 

 When two reflections have unequal amplitudes, bias in estimates of the delay time between 

the two reflections is increased in proportion to the difference between reflection amplitudes.  

While the higher magnitude peak is influenced to a lesser extent than is indicated in Figure 2.15, 

the lower magnitude peak is influenced to a greater extent.  In fact, it is the magnitude difference 

between the peaks that determines the bias in estimates of differential delay times of two reflectors 

of unequal reflectivity.  This effect is shown for a series of magnitude differences in Figure 2.16. 

 

 

Figure 2.16  (a) Magnitude of bias, normalized to DFT bin size, in the estimated delay 
time between two reflectors separated by m DFT bins.  The legend gives the relative 
amplitude difference between the two reflectors.  (b) Magnitude of bias, normalized to 
DFT bin size, of the estimated delay time difference between two reflectors separated 
by 20.5 DFT bins, and with relative amplitude difference MD.    
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2.3.4 Summary of uncertainty limits for superresolved SWI 

Figure 2.17 summarizes uncertainty in estimates of time delay between two equal-

amplitude reflectors.  In general, as reflector spacing increases, uncertainty also increases, with the 

rate of increase dependent on uncertainty in delay time step size.  In the system modeled here, 

delay time step size is 112 fs, the inverse of the 8.9 THz laser sweep bandwidth.  Uncertainties in 

the wavelengths of HCN absorption lines determine uncertainty in delay time step size 𝑠d.  

Consequently, using a Wavelength References Hydrogen Cyanide gas reference cell with 0.08 pm 

and 0.15 pm uncertainty on R20 and P18 absorption lines, respectively, results in a 2σ uncertainty 

of 1.2 as in delay time step size. I assume a 2σ uncertainty of one fringe period in the trigger 

interferometer calibration. 
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Figure 2.17  2σ uncertainty for distance measurement between reflectors 
separated by free space. The lower x-axis shows the separation between 
reflectors measured in DFT bins; the upper x-axis shows the same reflector 
separation measured in meters of free space.  The left y-axis shows 
uncertainty normalized to the system’s Fourier transform-limited 
resolution, while the right y-axis shows the corresponding distance value in 
free space.   The highest value on the left axis is 1; when normalized 
uncertainty is equal to DFT bin size, superresolution no longer provides 
meaningful information.   

 

When reflector spacing drops below approximately 20 DFT bins, ESPRIT estimates become 

unstable, with small changes in reflector positions causing widely varying errors in estimated delay 

times.  Increasing the order of the covariance matrix enables estimates of delay times between 

more closely spaced reflectors, but also increases computation time for each estimate.  For LLR 

estimates, when reflectors are separated by approximately 100 DFT bins or fewer, uncertainty 

𝑢 𝛿𝑚  from estimator bias becomes the dominate contributor to overall uncertainty 𝑢 ∆𝜏  

10
-2

 

10
0
 

10
-1

 

10
-3

 

10
-4

 

10
-5

 
10

0
 10

1
 10

2
 10

3
 10

4
 10

5
 10

6
 

10
-5

 

10
-9

 

10
-8

 

10
-7

 

10
-6

 

10
-4

 10
-3

 10
-2

 10
-1

 10
0
 10

1
 

reflector separation (DFT bins) 

reflector separation (m) 

𝒖(
∆𝝉
) 	(
𝒔
𝒔⁄
)  

𝒖(
∆𝝉
) 	(
𝒎
)  

LLR
ESPRIT
NLS
Candan



 42 

(Equation (2.33)).  And although Candan estimates show lower bias than LLR estimates at 

equivalent reflector separations, for reflector separations below approximately 20 DFT bins, 

spectral leakage begins to contribute significantly to estimate bias and consequently degrade the 

overall estimate uncertainty.   

In Figure 2.17, uncertainty 𝑢 𝛿𝑚  from estimator bias is given by maximum estimate bias 

for both LLR and Candan estimators.  For LLR, maximum estimate bias for any given reflector 

spacing was obtained by interpolating the maximum bias line from Figure 2.14.  For Candan 

estimates, maximum bias was obtained from the exponential fit to the Hanning-windowed data 

shown in Figure 2.15.    

For reflectors that are more widely spaced, by 100 DFT bins or more, the uncertainties of 

LLR, ESPRIT, NLS, and Candan estimates are nearly identical, and the computational speed of 

LLR makes it the preferred superresolution method.  When reflector spacing is wide enough—in 

free space approximately 2.65 meters—uncertainty equals the size of a DFT bin.  This places an 

upper limit on the useful range of superresolved SWI.    

 

2.4 Precision of Superresolved SWI measurements 

The precision of estimates of delay time difference is determined by estimator variance—

that is, by the noise tolerance of the estimator used to establish any given delay time difference.  

Estimator variance is a statistical quantity, and each of the four estimators examined here—LLR, 

ESPRIT, NLS, and Candan’s estimator—demonstrate varying degrees of success in estimating 

delay time differences from noisy data.  Here, I compare the performance of each of these 

estimators across a range of signal-to-noise ratios (SNRs) and reflector separations.   
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2.4.1 Cramér-Rao bound 

For any deterministic parameter, the Cramér-Rao bound (CRB) establishes the lowest 

possible variance for any unbiased estimator of that parameter [86] [87].  Consequently, the CRB 

gives the lowest variance, or highest precision, for estimates of delay times from noisy data.  

Unfortunately, for signals composed of a summation of complex exponentials, as is the case for 

the signal described by Equation (2.9), there is typically no analytical solution for the CRB [88].  

However, if the signal’s parameters are known, the CRB may be estimated, or, as I have done here, 

calculated, using the procedure described in [60].   

Figure 2.18 shows the CRB for the signal 𝑈 𝜈 𝑡 ) across a wide range of reflector 

separations and SNRs.  For data composed of reflections from two reflectors, the maximum 

precision for a measure of the delay time difference between reflectors may be several orders of 

magnitude below DFT bin size.  This rather dramatic prediction has been corroborated by several 

experimental results reported in the literature [33] [21] [34], most notably in [33], in which a 

system operating with an estimated SNR of 90 dB [51] was used to measure the group refractive 

index and thickness of a fused silica plate with a reported 1𝜎 precision of 5x10-5 of DFT bin size.   
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Figure 2.18  Cramér-Rao bound (CRB) for a signal composed of two reflectors separated 
in delay time by m DFT bins.  The SNR plotted here are values are from the optical 
frequency domain.  Here, the square root of the CRB is normalized to DFT bin size and 
plotted on the common logarithmic scale. 

 

In general, for any given reflector spacing, the CRB decreases as SNR increases.  For the 

most part, reflector separation has no effect on the CRB; however, as reflector separation grows 

very small, the CRB does increase slightly any given SNR.  This is shown in Figure 2.19.   
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Figure 2.19  (a) Dependence of CRB on SNR for a reflector separation of 2 DFT bins.   (b) In 
general, the CRB depends only on SNR, but it does increase for very small reflector separations.  
The line here shows CRB as a function of reflector separation at a SNR of 10 dB.  The left axes 
show the square root of CRB normalized to DFT bin size, while the right axis shows, for the model 
described in Section 2.2.1, the equivalent distance in free space.   

 

2.4.2 Comparison of precision for frequency estimation methods 

To examine the variances of LLR, ESPRIT, NLS, and Candan’s estimator, I have simulated 

two scenarios based on the model described in Section 2.2.1.  The two reflectors in the 

measurement interferometer are the front and back surfaces of a fused silica window at 25 °C, 

0.5 mm thick in one scenario, and 5 mm thick in the other.  At a series of SNRs, 510 simulations 

were run, 10 simulations each at 51 reflector locations spaced evenly across the length of one DFT 

bin.  In Figure 2.20, the standard deviations of recovered reflector positions are plotted along with 

the square root of the CRB.   
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Figure 2.20  Standard deviations of delay time estimates for 
reflectors separated by (a) 0.5 mm and (b) 5 mm of fused silica at 
25 °C.  The left y-axis shows standard deviation normalized to DFT 
bin size; the right y-axis shows the corresponding distance in free 
space.  ESPRIT estimates were made using an order 100 covariance 
matrix.   

 

ESPRIT is decidedly the least precise estimator.  Its variance quickly rises as reflector 

spacing decreases.  In fact, for reflectors separated by 0.5 mm of fused silica, the standard deviation 

of ESPRIT estimates is larger than the size of one DFT bin for all the SNRs shown in Figure 2.20.  
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the precision of ESPRIT estimates for closely spaced reflectors [89].  Artificially increasing 

reflector spacing by downsampling the sampled signal 𝑈 𝜈 𝑡  and interleaving the downsampled 

snapshots into a modified covariance matrix may increase the precision of ESPRIT estimates of 

closely spaced delay times.  Unfortunately, this also decreases the unambiguous range of the SWI 

system in proportion to the downsampling rate.  (For example, a downsampling rate of 2 halves 

unambiguous range, and a downsampling rate of 10 reduces unambiguous range to 10% of its 

original value.)  Furthermore, the variances of these modified ESPRIT estimates are still higher 

than the variances of LLR and NLS estimates for the model used here.  This is shown in Figure 

2.21.   

 

 

Figure 2.21. Standard deviation, normalized to DFT bin size, 
in modified ESPRIT estimates of the delay times between 
reflectors separated by 0.5 mm, 5 mm, and 5 cm of fused silica 
at 25°C.  When reflectors are more closely spaced, increasing 
the downsampling rate (or interleaving factor) 𝛽 increases 
estimate precision.   

 

Above 50 dB of SNR, LLR, NLS, and Candan estimates have comparable precision.  

Below 50 dB, however, Candan’s estimator exhibits the highest precision.  LLR estimates, perhaps 
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counterintuitively, show higher precision in the 0.5 mm case than in the 5 mm case.  These results 

can be explained by carefully considering the difference in SNR between the optical frequency 

and delay time domains.   

 In the optical frequency domain, signal-to-noise ratio (SNR) is given by 

 𝑆𝑁𝑅G = 10 logPW
𝑃h
𝑃®

	, (2.36) 

where PN is the noise power, and the signal power PS is given by  

 𝑃h =
1
𝑁 𝑢 𝑘 D

®

xyP

	. (2.37) 

The signal u is composed of N total sample points.  Parseval’s relation for the DFT [90] gives the 

following relationship between signal power in the optical frequency domain and signal power in 

the delay time domain: 

 
1
𝑀 𝑢 𝑘 D

z

xyP

	= 𝑈 𝑚 D
z

gyP

	. (2.38) 

Consequently, the signal-to-noise ratio in the delay time domain (SNR) is given by 

 𝑆𝑁𝑅d = 10 logPW
𝑃h
𝑃®

	+ 	10 logPW 𝑀 	. (2.39) 

 This may be considered intuitively by recalling that after the Fourier transform, signal 

power is confined to only a few DFT bins, while noise power is distributed evenly across all M 

sample points, provided that the noise is white.   

 During the LLR estimation process, Me points are extracted from around a peak of interest 

in the delay time domain.  After a shift to move the peak to baseband, the extracted points are 

multiplied by a window function and inverse Fourier transformed.  Parseval’s relation predicts that 

after the inverse Fourier Transform is applied, the SNR for the extracted signal will be given by 
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 𝑆𝑁𝑅G,° = 10 logPW
𝑃h
𝑃®

	+ 	10 logPW 𝑀 − 	10 logPW 𝑀± 	. (2.40) 

 This leads to the conclusion that extracting fewer points around a peak of interest leads to 

a more precise LLR estimate.  Unfortunately, extracting fewer points also degrades the accuracy 

of LLR estimates (Figure 2.11).  By contrast, Candan’s estimator uses only the three highest-

magnitude points about a peak of interest and may therefore be expected to give even more precise 

estimates than LLR without suffering a corresponding degradation in accuracy.   

 

2.4.3 Estimator root-mean-square error comparison 

In any measurement scenario, DFT bin size uncertainty, estimator bias, and estimator 

precision all combine to determine the overall reliability of SWI measurements.  The combined 

contributions of these three measures can be quantified by evaluating the root-mean-square error 

(RMSE) for each estimator.  For an estimate ∆𝜏 of differential delay time, the mean-square-error 

(MSE) of the estimate is the expectation value of the square of the difference between delay time 

estimate ∆𝜏 and the true differential delay time ∆𝜏 [91], i.e. 

 𝑀𝑆𝐸 ∆𝜏 = 𝐸 ∆𝜏 − ∆𝜏 D 	. (2.41) 

This is equivalent to the sum of the estimator variance and the square of estimator bias, so 

 𝑀𝑆𝐸 ∆𝜏 = 	𝜎D + 𝐵D	. (2.42) 

 For the SWI model used here, DFT bin size uncertainty may be considered as a potential 

source of systematic error, and therefore a contributor to overall measurement bias.  Bias in 

estimates of differential delay time ∆𝜏 is consequently given by 

 𝐵 = 𝐵± + 𝐵�²®	, (2.43) 
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where estimator bias 𝐵± is determined by bias in the estimate of the fractional location 𝛿𝑚 of a 

delay time within a DFT bin, and potential systematic error in DFT bin size 𝐵�²® is determined 

by the gas reference cell calibration.  For the numerical model used here, DFT bin size is 

approximately 112 fs, 1𝜎 uncertainty in DFT bin size 0.6 as, and DFT bin size bias 𝐵�²® is 

approximately equal to 5.36×10`³ 𝑠 ∆𝜏.   

 Figure 2.22 shows RMSE for differential delay time estimates across a range of SNRs and 

reflector separations.  For all four estimators, RMSE decreases as SNR increases.  ESPRIT 

estimates are dominated by estimator variance, and show a RMSE minimum for wider reflectors 

separations of approximately 103 to 104 DFT bins.  LLR and Candan estimates show the lowest 

RMSE when estimate bias Be is roughly equal to DFT bin size bias BHCN.  For NLS estimates, 

neither estimator bias nor variance increase at small reflector separations, and consequently, 

RMSE in NLS estimates is primarily determined by only SNR and DFT bin size bias.  For each 

the four estimators, RMSE may be compared to the Cramér-Rao lower bound (Figure 2.18), as the 

CRB is equal to MSE for an unbiased estimator with the lowest possible variance.   
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Figure 2.22  RMSE for estimates of the delay time between two reflectors 
separated by m DFT bins.  Estimates were made using (a) NLS, (b) ESPRIT, 
(c) LLR, and (d) Candan’s estimator.  RMSE is normalized to DFT bin size and 
plotted on the common logarithmic scale.  Values greater than 1 DFT bin are 
excluded from the figures because they are outside the realm in which 
superresolved measurements are meaningful. 

 

2.5 Conclusions 

All the estimators examined here offer resolution limits significantly below the traditional 

Fourier transform limit.  However, there is no universal best estimator for superresolved SWI 

measurements.  Rather, the best choice of estimator is determined by measurement hardware and 

conditions.  The ideal estimator would be fast, unbiased, and noise tolerant, and none of the 

estimators examined here fulfill these requirements under all circumstances.  For example, 

ESPRIT satisfies only one of these requirements.  While ESPRIT estimates are asymptotically 

unbiased, their noise tolerance suffers greatly when target reflectors are closely spaced.  
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Additionally, for the system modeled here, which contains many points per data set and requires 

the computation of a large covariance matrix, ESPRIT is far slower than either LLR or Candan’s 

estimator.   

In terms of both uncertainty and precision, NLS and Candan’s estimator emerge as the 

superresolution estimators of choice.  NLS estimates are both asymptotically unbiased and noise 

tolerant.  Additionally, NLS estimates suffer no increase in uncertainty when reflectors are closely 

spaced.  However, because NLS is an optimization method, it is comparatively slow.  Additionally, 

with the exception of data containing reflections from only two target surfaces, the required quality 

of the initial guesses used to seed the optimization process is unknown.  Furthermore, omitting any 

reflection—even a spurious reflection—from the optimization process will alter the search space 

and degrade results.   

Candan’s estimator is both faster and more noise tolerant than NLS.  Although it is not an 

unbiased estimator, its bias in estimates of isolated delay times is inconsequentially small.  Because 

it is a single frequency estimator, estimates of delay times in multi-reflector data may suffer bias 

as a consequence of spectral leakage.  However, when reflectors are spaced by more than 

approximately 20 DFT bins—equivalent to approximately 0.34 mm of free space in the SWI model 

used for the numerical work presented here—the bias of Candan estimates can be negligibly small.  

Among the four estimators compared here, Candan’s estimator offers the greatest practical utility.  

It is the estimator I have used for all the experimental work described in Chapters 3 and 4.   
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Chapter 3  

Experimental Limits of Superresolved Swept-Wavelength 

Interferometry 

 

 

In Chapter 2, I showed that frequency estimation methods can be used to superresolve SWI 

measurements, and that the resulting measurements may have RSME values below 10-3 of the 

Fourier-transform limited resolution of the SWI instrument.  These results were obtained through 

numerical simulation and delineate the theoretical limits of superresolved SWI.   

As a predictor of precision, my results are in excellent agreement with experimental high-

precision SWI measurements reported in the literature [33] [34] [20].  However, the experimental 

accuracy of superresolved SWI is much more difficult to evaluate.  The accuracies of the optical 

frequency domain reflectometer used in [33] and the spectral-domain optical coherence 

tomography system used in [34] were evaluated by comparing measured optical path lengths 

(OPLs) with the known OPLs of dielectric reference samples.  These accuracies were reported as 

2.5x10-3 of DFT bin size (or ±61 nm) in the first case, and 0.6 nm in the second.  However, 

establishing accuracy by comparing measurements of a single OPL to a reference value is 

problematic for two reasons.  First, even very slight temperature fluctuations in either the SWI or 

the sample will cause the measured OPL of the reference to change on the nanometer level due to 

thermal expansion of the standard, temperature-dependent changes in its refractive index, or both.  

Second, even if the temperature of the instrument and the sample are well-controlled, it is possible 

for a measurement of a single OPL to be unbiased, when a measurement of a slightly different 
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OPL, made with the same instrument and estimation method, would be more biased and therefore 

less accurate.   

In this chapter, I present what I believe is the most rigorous demonstration to date of the 

experimental accuracy of superresolved SWI across the range of a single DFT bin.  I first discuss 

the effects of six potential sources of systematic error—non-Gaussian noise, spurious delay times, 

laser power fluctuations, dispersion mismatch, temperature drift in the instrument, and laser sweep 

rate nonlinearity—on the accuracy of SWI measurements, and show how these effects may be 

controlled. I then present an experimental measurement of the accuracy of an SWI system, 

demonstrating superresolved accuracy of approximately 2x10-3 of the system’s transform-limited 

resolution in 101 measurements across a range of approximately 3 sequential DFT bins.   

 

3.1 Experimental Sources of Bias 

In Chapter 2, the numerical model used to determine the limits of uncertainty and precision 

for superresolved SWI included a DC term, two oscillatory terms, and an additive white Gaussian 

noise term (Equation (2.9)).  The tractable nature of Gaussian random variables makes additive 

Gaussian noise an attractive and sensible choice for a numerical modeling study, but real-world 

SWI measurements will include many non-Gaussian noise sources.  Additionally, real-world 

systems will be exposed to other environmental factors, such as mechanical vibrations or 

temperature fluctuations, that may degrade measurement accuracy and precision.  In general, any 

noise or environmental variation that cannot be represented as additive white noise has the 

potential not only to degrade measurement sensitivity, but to introduce systematic error, or bias, 

into superresolved SWI measurements.   
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3.1.1 Non-Gaussian noise 

All SWI systems are subject to the effects of at least four non-Gaussian noise sources: 

relative intensity noise (RIN) from the tunable laser source, phase noise arising from the finite 

coherence length of tunable laser sources, quantization noise arising from the digitization of the 

detected optical signal, and shot noise arising from the quantized nature of light.  All four of these 

noise sources are known to degrade SWI measurement sensitivity, but their effects on 

measurement bias in superresolved SWI measurements are unknown.   

 

3.1.1.1 Relative intensity noise (RIN) 

RIN has been identified a potential [92] or known [93] limiting noise term in a number of 

SWI experiments, although in the system used for the experiments described in this chapter, it is 

not expected to be the limiting noise term.  Nevertheless, it is important to note that the frequency 

spectrum of RIN is not white, but has a 1/f character that asymptotically approaches a constant 

value at high frequencies.  To the best of my knowledge, no model for RIN in a SWI system 

currently exists, and any contribution that RIN makes to bias in superresolved SWI measurements 

must be determined experimentally.   

 

3.1.1.2 Phase noise 

Both the amplitude and frequency spectrum of phase noise depend on the specific 

instrument and sample characteristics in SWI systems.   The amplitude of phase noise depends on 

sample reflectivity and laser coherence time, and its frequency distribution depends on laser 

coherence time and tuning rate, as well as the path length difference between reference and sample 

arms [94].  Shorter path length differences correspond to wider, flatter frequency spectra for phase 
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noise [51].  The path-length difference dependency of phase noise becomes noteworthy for SWI 

measurements of samples containing multiple and widely separated reflectors (such as in the multi-

channel system described in Chapter 4).  The delay time spacing between the DC term and the 

highest delay time cross-term is equivalent to the maximum delay time separation of sample 

reflectors.  Consequently, the usable unambiguous range of the system is reduced by the maximum 

delay time separation of sample reflectors, and measurements of interest are confined, in the worst-

case, to the second half of the system’s unambiguous range.  This raises the maximum amplitude 

of phase noise and decreases the flatness of the phase noise frequency spectrum.   

 

3.1.1.3 Quantization noise 

In the SWI system used for the experiments described in this chapter, quantization noise is 

expected to be the dominant noise source.  Fortunately, given sufficient bit depth, the spectrum of 

quantization noise approaches that of an additive white Gaussian noise source [95] [96] [97].  It 

should still be noted, however, that quantization noise is not stochastic, and when the underlying 

signal is periodic, the deterministic nature of quantization noise may add to measurement bias.     

 

3.1.1.4 Shot noise 

Shot noise, or Poisson noise, is a direct and unavoidable consequence of the quantized 

nature of light.  Poisson random variables have variance (or noise power) equal to the square root 

of the distribution mean (or signal power) [98] [99].  Consequently, deterministic signal 

oscillations cause noise fluctuations and possible noise correlations [100] [101].  As is the case for 

RIN, phase noise, and quantization noise, the exact contributions of correlated shot noise to 
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measurement bias are unknown, difficult to analytically determine with sufficiently useful 

generality, and demonstrate the necessity of experimental verification for superresolved SWI.   

 

3.1.2 Spurious delay times 

Perhaps the most obvious potential source of measurement bias is spectral leakage from 

unwanted, or spurious, peaks in delay time.   Spurious peaks may find their way into SWI data in 

a number of ways, the two most common being through mechanical vibrations of the SWI system 

or as a result of unwanted reflections at fiber connections or components in the SWI system.   

Mechanical vibration is a particularly insidious source of spurious delay times—the 

extreme sensitivity of SWI systems to vibration is evidenced in the large number of publications 

describing OFDR vibration measurements, for example: [19] [18] [102] [103] [104].  In general, 

mechanical vibration causes sidelobes to appear on either side of all delay time peaks present in 

an SWI measurement [19].  The magnitude of these sidelobes depends on the vibrational 

amplitude, and their distance from the center peak depends on both the laser sweep rate and the 

vibrational frequency.  These effects can be expressed quantitatively, according to: 

 𝑈 𝜏 = 𝐼W + 𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴 𝛿 0

+ 𝑅O	𝐽W 𝐴 𝐼W	𝛿 𝜏 − 𝜏W

+ 𝑅O	𝐽P 𝐴 𝐼W 𝑒FDEµ¶
Ga
· 𝛿 𝜏 − 𝜏W −

𝑓g
𝛾

+ 𝑒`FDEµ¶
Ga
· 𝛿 𝜏 − 𝜏W +

𝑓g
𝛾  

(3.1) 

In Equation (3.1), a signal with a single reflector of reflectivity RS, located at delay time 

𝜏W, is perturbed by a vibration with amplitude A and frequency 𝑓g.  The positive sideband of the 

delay time signal 𝑈 𝜏  contains a DC peak, a peak centered at delay time 𝜏W, and two sidelobes 
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spaced at delay times ±µ¶
·

 on either side of the delay time peak.  The constant 𝛾 represents the 

sweep rate of the laser; 𝜈^ is the center frequency of the laser sweep; and 𝐽W and 𝐽P are the zeroth 

and first order Bessel functions of the first kind.   (The derivation and assumptions included in 

Equation (3.1) are detailed in Appendix A).   

 The bias that mechanical vibration may induce in estimates of any given delay time can be 

expected to increase with increasing vibration amplitude and with decreasing vibrational 

frequency.  Using the numerical model from Section 2.2.1, I quantified these effects for Candan’s 

estimator.  The results are shown in Figure 3.1.  The bias in estimates of the delay time to a single 

reflector that is caused by a pair of vibrational sidelobes (Figure 3.1c,d), is considerably less than 

the bias caused by the presence of a single neighboring reflector (Figure 3.1a,b).   
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Figure 3.1  (a) Magnitude of bias, normalized to DFT bin size, in the estimated delay 
time of a reflector separated by m DFT bins from a second reflector.  The amplitude of 
the second reflector, relative to the first, is noted in the legend.  (b) Magnitude of bias, 
normalized to DFT bin size, in the estimated delay time of a reflector separated by 20.5 
DFT bins from a second reflector with relative amplitude M2.   (c) Magnitude of bias 
in the estimated delay time of a reflector flanked by two vibrational sidelobes, each 
separated by m DFT bins from the main peak.  The legend notes the amplitude of the 
sidelobes relative to the main lobe.  (d) Magnitude of bias in the estimated delay time 
of a reflector separated by 20 DFT bins from two vibrational sidelobes of amplitude 
Ms.  

 

3.1.3 Laser power fluctuations 

In an ideal SWI system, laser power would be constant as a function of wavelength.  In 

such a case, laser power may be represented by a rectangular, or rect, function—outside of the 

sweep bandwidth, laser power is zero, and inside laser power is always equal to a constant value 
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precision in a transform-limited SWI system, the differences in estimate bias for Candan estimates 

made using different window functions [61] suggests that estimate bias may be affected by laser 

power fluctuations.  This is also suggested by the differences in LLR estimate bias when the 

estimation procedure includes windowing by either rect or Hanning windows (Figure 2.13).   

Laser power fluctuations may, in fact, be considered as an undesirable window function 

for SWI data.  This is illustrated in Figure 3.2, where the measured power P of an Agilent 81680A 

external cavity tunable laser is compared to the rect and Hanning window functions.  The product 

of the Hanning window and measured laser power variation P is also shown.   

 

 

Figure 3.2  (a) Laser power P changes as a function of output 
wavelength 𝜆 during the course of a laser sweep.  This power 
fluctuation is compared to the rectangular (𝛱) and Hanning 
window functions.  (b) Delay time spectra of rectangular and 
Hanning window functions.  The differences in spectra between 
these functions and the spectrum of laser power fluctuation are 
slight but distinct.   
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 The exact effect of laser power fluctuation on estimate bias is not generalizable: it is as 

unique as the power fluctuations of any laser source during any given sweep.  Nevertheless, 

looking at a single example will provide some general insight into the form and scale of the bias 

that laser power fluctuation may induce in differential delay time measurements.  Here, I look at 

the effect of power fluctuations in the output of an Agilent 81680A tunable laser, as this laser was 

used for both the experiments described in the later parts of this chapter and those in Chapter 4.   

 Noise-free signal data 𝑈 𝜈  was generated using the numerical model described in 

Section 2.2.1.  Before being Fourier transformed, this signal was multiplied by measured laser 

power output 𝑃 𝜈 	(Figure 3.2a) and by either a rect or Hanning window (Figure 3.3).  Measured 

signal power 𝑃 𝜈  was normalized to a maximum value of 1.   After the signal was Fourier 

transformed, Candan’s estimator was used to estimate the differential delay time between the two 

equal amplitude reflectors.  The bias in these estimates is plotted in Figure 3.3 as a function of 

reflector separation.   
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Figure 3.3  Magnitude of bias, normalized to DFT bin size, in the estimated 
delay time difference between two equal amplitude reflectors separated by 
m DFT bins.  Appling a rectangular (blue line) or Hanning window (orange 
line) to the data without correcting for power fluctuations allows occasional 
unexpected increases in bias.  Applying a Hanning window and perfectly 
(yellow line) or imperfectly (purple) line correcting for laser power 
fluctuation significantly reduces the negative impact of laser power 
fluctuations.   

 

 Figure 3.3 shows that laser power fluctuation may indeed increase bias in differential delay 
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Hanning window is used.  With a rect window, the bias from spectral leakage overshadows bias 

from laser power fluctuation.  However, when a Hanning window is applied, the increase in bias 

caused by laser power fluctuation is shown to be quite large, over two orders of magnitude for 

some reflector separations.   

0 20 40 60 80 100
m

10-8

10-6

10-4

10-2

100

|b
ia
s|

Hann
P-1 * Hann
Ps

-1 * Hann



 63 

 In a physical SWI system, the increase in estimate bias caused by laser power fluctuation 

could be eliminated by using balanced detection to measure the signal 𝑈 𝜈 .  Mathematically, this 

is equivalent to multiplying the corrupted signal 𝑈 𝜈 ∙ 𝑃 𝜈  by the inverse values 𝑃`P 𝜈 .  

Unfortunately, perfect correction may only be achieved with perfect path length matching between 

the two inputs to the balanced detector.  However, even with imperfect path length matching, 

balanced detection can still greatly reduce estimate bias caused by laser power variation.    

To estimate the effect of imperfect path length matching in a balanced detection system, I 

examine the effect of a one-sample shift in power correction.  Mathematically, this is equivalent 

to multiplying the corrupted signal by inverse values 𝑃h`P, where 

 𝑃h`P 𝜈 𝑚 = 𝑃`P 𝜈 𝑚 − 1  (3.2) 

Allowing for a shift of at most one sample restricts the path length mismatch ∆𝑑 between the two 

inputs of the balanced detector to 

 ∆𝑑 ≤
𝑐W∆𝜆
𝛾𝑛½𝑀

 (3.3) 

where 𝑐W is the speed of light in vacuum, ∆𝜆 is the laser sweep bandwidth, 𝛾 is the laser sweep 

rate, 𝑛½ is the average group index of the paths in the SWI system, and M is the total number of 

samples in sampled signal 𝑈 𝜈 𝑚 .  The following values for these constants are representative 

of the experimental work described later in this thesis: 

 

∆𝜆 = 70	nm , 

𝛾 = 	40	 nm s , 

𝑛½ = 1.44486 , 

𝑀 = 900,000 . 
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For these constants, the maximum path length mismatch ∆𝑑 is equal to 403 m, a constraint that 

may easily be satisfied.  For measured laser power variation 𝑃 𝜈  (Figure 3.2), Figure 3.3 shows 

the difference between power correction with perfect path length matching and power correction 

that is shifted by one sample.  Without perfect path length matching, laser power fluctuation still 

enforces a lower limit on estimate bias.  For the numerical model examined here, this lower limit 

is approximately 10-5 of one DFT bin.  In this model, fractional DFT bin size uncertainty has a 1𝜎 

value of approximately 5x10-6, meaning that only for NLS estimates of reflector separations of 

less than about 10 DFT bins will laser power variation make any significant contribution to 

measurement RMSE.   

 

3.1.4 Dispersion mismatch 

To explain the effects of dispersion mismatch in SWI, I begin with a brief overview of the 

use of a secondary interferometer to trigger sample acquisition in the primary measurement 

interferometer.  Because sweep rates of tunable lasers are, in general, not constant in optical 

frequency, sampling the output of SWI systems at equal intervals in lab time t will result in the 

signal 𝑈 𝜈 𝑡  being sampled unevenly in optical frequency.  This can cause significant 

broadening of peaks in delay time [52], since uniform sampling is an underlying assumption in the 

discrete Fourier transform.  The use of an auxiliary interferometer to linearize samples in optical 

frequency was introduced by Brinkmeyer and Glombitza in 1991 [105], and the concept has found 

widespread use since then, either as a method to measure and later correct for sweep rate 

nonlinearities, or as a method to trigger the acquisition of evenly spaced samples in the 

measurement interferometer [106].  Here, I consider the latter case.   



 65 

The signal from the trigger interferometer is periodic and, provided the slow-tuning 

approximation holds—i.e. the product of the laser sweep rate and the square of the delay time 

difference between arms of the trigger interferometer is much less than one—linear in optical 

frequency [52].  In this case, the signal 𝑈H 𝜈  is given by 

 𝑈H 𝜈 = 𝑈W 1 + cos 	2𝜋𝜈𝜏H 𝜈 	 	, (3.4) 

where 𝜏H is the delay time difference between arms of the trigger interferometer.  Each period of 

signal 𝑈H 𝜈  triggers the acquisition of a sample in the measurement interferometer (typically at 

upward zero-crossings of the trigger signal).   

 In a fiber-based SWI system, trigger delay time 𝜏H is not constant; dispersion in the optical 

fiber means that trigger delay time is a function of optical frequency and changes during the course 

of a laser sweep.  This has two significant implications.  First, the measurement and trigger 

interferometers must be dispersion matched for the signal from the measurement interferometer to 

be evenly sampled in optical frequency.  Second, dispersion in the trigger interferometer may 

increase DFT bin size uncertainty 𝑢 𝑠d  (Equation (2.33)).   

 

3.1.4.1 Dispersion matching 

 To understand the dispersion matching requirements for the trigger and measurement 

interferometers, consider a simple form of the signal 𝑈gh 𝜈  from the measurement 

interferometer: 

 𝑈gh 𝜈 = 𝑈W 1 + cos 	2𝜋𝜈𝜏gh 𝜈 	 	. (3.5) 

The period of this signal is equal to the delay time difference 𝜏g, and is sampled at optical 

frequencies 𝜈, where 

 𝜈 = 𝜈W + 𝑚 ∙ 𝛿𝜈gh	, 𝑚 = 0,1, … ,𝑀 − 1 	. (3.6) 
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For the signal 𝑈gh 𝜈  to be sampled at even intervals, either 𝜏gh 𝜈  and 𝛿𝜈gh must both be 

constant, or their product 𝜏gh 𝜈 ∙ 𝛿𝜈gh must be constant.  Since dispersion causes 𝜏gh to change 

as a function of optical frequency, then the requirement 

 𝜏gh 𝜈 ∙ 𝛿𝜈gh = C (3.7) 

stands, and each frequency sampling interval 𝛿𝜈g must also change during the course of a laser 

sweep in order to maintain even sampling.   

 Provided the trigger and measurement interferometers are correctly path matched2, then 

 𝛿𝜈H = 𝛿𝜈gh			∀			𝛿𝜈	; (3.8) 

that is, the frequency interval 𝛿𝜈H between upward zero-crossings of the trigger signal is equal to 

the frequency interval 𝛿𝜈gh between samples acquired in the measurement interferometer, for all 

such frequency interval pairs across the laser sweep bandwidth.   

 Consequently, if the signal from the measurement interferometer is to be evenly sampled, 

the phase spacing between measured samples is given by 

 
2𝜋𝛿𝜈H𝜏gh 𝜈 	= 2𝜋

𝜏gh 𝜈
𝜏H 𝜈

	. (3.9) 

Rewriting Equation (3.9) as a function of optical path length instead of delay time gives 

 
2𝜋𝛿𝜈H𝜏gh 𝜈 = 2𝜋

𝑑gh
𝑑H

𝑛gh 𝜈
𝑛H 𝜈

	, (3.10) 

where 𝑑gh and 𝑑H are the lengths of the path length mismatches in the measurement and trigger 

arms, respectively, and 𝑛gh 𝜈  and 𝑛Á 𝜈  are the group refractive indices of the measurement and 

                                                
2 Here, correct path length matching means that the total time delay between the trigger signal 
times and measurement acquisition times is equal to half the time delay between the arms of the 
trigger interferometer (trigger delay time).  Total time delay is equal to the sum of electronic delay, 
which is intrinsic to the data acquisition system, and optical delay, which can be controlled by 
adjusting the path length between trigger and measurement interferometers.  See [52] and Section 
3.1.6 for a more detailed discussion.   
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trigger interferometers.  The phase change between samples in the measurement interferometer is 

constant—i.e. the measurement signal is evenly sampled—only if the group indices of the 

materials comprising the path length differences in both the measurement and trigger 

interferometers are the same for all frequency intervals 𝛿𝜈H.   

 When this condition is not satisfied, peaks in delay time become broadened and distorted.  

This is illustrated by the experimental data shown in Figure 3.4.  When both the trigger and 

measurement interferometers are composed of Corning SMF-28 optical fiber, the dispersion 

matching condition of Equation (3.10) is met (Figure 3.4a).  Breaking this condition by including 

a length of dispersion compensating fiber (Thorlabs DCF38) in the trigger interferometer 

dramatically distorts delay time peaks (in Figure 3.4b).  (In Figure 3.4a, 311,522 samples were 

collected across a laser sweep from 1525 nm to 1564 nm, while in Figure 3.4b 524,288 samples 

were collected across a laser sweep from 1500 nm to 1564.17 nm.  The x-axes in Figure 3.4 have 

been scaled accordingly to allow accurate visual comparison of peak widths.)   

 

 

Figure 3.4  (a) Delay time measured in an SWI system with dispersion-matched trigger 
and measurement interferometers.  (b) Breaking the dispersion matching requirement 
results in broadened and distorted delay time peaks.  Results are shown for measurement 
signals multiplied by both rect and Hanning windows.   
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 The SWI system used to collect the data shown in Figure 3.4 is illustrated in Figure 3.5.  

The tunable laser used here is an Agilent 81680A external cavity laser.  The trigger interferometer 

uses a Michelson geometry and Faraday rotator mirrors to prevent polarization fading of the trigger 

signal and eliminate the need for polarization control in the trigger interferometer.  In the 

measurement interferometer, a polarization diverse detection scheme is used to prevent fringe 

fading.  The entire trigger interferometer, as well as the majority of the measurement 

interferometer, was housed in a machined aluminum enclosure to stabilize the temperature of the 

SWI system.   

 

 

Figure 3.5  System diagram for the SWI experiments described in Section 3.1.  All couplers are 3 
dB unless otherwise noted.  TL = tunable laser, FRM = Faraday rotator mirror, CL = collimating 
lens, RR = retroreflector, PBS = polarization beam splitter.   
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Figure 3.6  Custom-machined aluminum enclosure for the SWI system 
used for the experiments described in Section 3.1.   

 

When the data shown in Figure 3.4a was collected, both the measurement and trigger 

interferometers were composed of Corning SMF-28 optical fiber, which has a maximum 

dispersion value of 18	 ps nm ∙ km at 1550 nm.  For the data shown in Figure 3.4b, approximately 

one-third of the physical path length difference in the trigger interferometer was replaced with 

Thorlabs DCF28 dispersion compensating fiber, which has a dispersion value of −38	 ps nm ∙ km 

at 1550 nm.  This combination of optical fibers resulted in the cumulative dispersion of the trigger 

interferometer being near zero, while the dispersion of the measurement interferometer remained 

near 18	 ps nm ∙ km.   

 

3.1.4.2 Dispersion and DFT bin size uncertainty 

In the analysis of Chapter 2, uncertainty in superresolved SWI measurements is determined 

by two quantities: uncertainty in DFT bin size and estimate bias (Equation (2.33)).  Section 2.3.4 
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briefly described the trigger interferometer calibration method that is used both to determine DFT 

bin size and establish DFT bin size uncertainty.  I will now describe this method in more detail 

before going on to discuss the implications of dispersion in the trigger interferometer on DFT bin 

size uncertainty.   

In general, DFT bin size 𝑠d is given by the inverse of laser sweep bandwidth, or 

equivalently, by  

 𝑠d = 𝑀𝛿𝜈 `P	, (3.11) 

as the exact sweep bandwidth is equal to the product of the total number of samples M and the 

optical frequency interval 𝛿𝜈 between samples.  Because one sample is acquired at each upward 

zero-crossing of the trigger interferometer signal 𝑈H 𝜈  (Equation (3.4)), the optical frequency 

spacing between samples is equal to the inverse of trigger delay time.  That is,  

 𝛿𝜈 = 	 𝜏H`P	, (3.12) 

and DFT bin size is thus given by 

 𝑠d =
𝜏H
𝑀	. (3.13) 

Consequently, since DFT bin size is set by trigger delay time, uncertainty in DFT bin size is set 

by the method used to measure trigger delay time.  The method I used for this measurement exactly 

follows the procedure described in [33].  Trigger delay time is measured by counting number of 

trigger signal fringe periods p that occur within the frequency spacing ∆𝜈�²® between two 

hydrogen cyanide absorption lines.  This frequency spacing is measured by passing a portion of 

the laser sweep through a HCN gas cell.  Thus 

 𝜏H =
𝑝

∆𝜈�²®
	, (3.14) 

and uncertainty in the measurement of trigger delay time 𝑢 𝜏H  is given by 



 71 

 
𝑢 𝜏H = 	

𝜏H
∆𝜈�²®

𝑢D 𝑝
𝜏HD

+ 𝑢D ∆𝜈�²®

P
D
	, (3.15) 

where 𝑢 𝑝  is uncertainty in the number of fringe periods between two HCN absorption lines, and 

𝑢 ∆𝜈�²®  is uncertainty in frequency spacing between those two absorption lines.   

 In Figure 3.7a, the measured absorption spectrum of HCN is shown as a function of laser 

wavelength 𝜆.   In Figure 3.7b, the Lorentizian fit to the R20 line is shown as a function of fringe 

period count p.  The 1𝜎 uncertainty in the fit is less than 0.04 of a fringe period.   

 

 

Figure 3.7  (a) Measured absorption spectrum from a Wavelength References 
HCN reference gas cell.  (b) Lorentizian fit to R20 absorption line has an 
uncertainty of less than 0.04 fringe periods. 
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Figure 3.8 shows the same physical path length difference between arms of the trigger 

interferometer, measured using the following line pairs: R25 – R24, R25 – R23, R25 – R22, …, R25 – 

P24.  As the frequency spacing between line pairs increases, measured trigger delay time increases.  

This is due to the increase in the average group index of SMF-28 optical fiber as the center 

wavelength of the frequency band defined by each absorption line pair increases.   

 In Figure 3.8, measured trigger delay time is plotted at the center of a 2𝜎 confidence 

interval obtained from Equation (3.15), meaning that true trigger delay time lies somewhere within 

the span of the error bars with 95% probability [107].  When the trigger interferometer is composed 

entirely of SMF-28 optical fiber, the change in trigger delay time over the course of a single laser 

sweep can be easily observed (Figure 3.8a).  By contrast, when one-third of the physical path 

length difference in the trigger interferometer was replaced with Thorlabs DCF28 dispersion 

compensating fiber, trigger delay time became near-constant as a function of optical frequency 

(Figure 3.8b).   
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Figure 3.8  (a) Trigger delay time measured using a series of HCN 
absorption line pairs (a) in a trigger interferometer comprised entirely 
of SMF-28 optical fiber and (b) in a trigger interferometer in which the 
physical path length difference is one-third dispersion-compensating 
fiver and two-thirds SMF-28.  Error bars represent 2𝜎 uncertainty.   

 

 In a trigger interferometer with non-zero dispersion, DFT bin size is proportional to the 

mean value of trigger delay time 𝜏H over the course of the entire laser sweep— 

 
𝑠d =

𝜏H 𝜈
𝑀 	. (3.16) 

Unfortunately, hydrogen cyanide absorption lines only span the 1528 nm to 1564 nm wavelength 

range, while the laser sweeps used for the experimental work described in this chapter use 

wavelengths from 1500 nm to 1570 nm.  With exact knowledge of the mean group refractive index 

of SMF-28 over a given wavelength range, the value of DFT bin size may still be obtained from 
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𝑠d = 	 𝜏H ∆𝜈�²®

𝑛½ ∆𝜈g±mh
𝑛½ ∆𝜈�²®

	, (3.17) 

where 𝜏H ∆𝜈�²®  is the mean value of trigger delay time between two HCN absorption line 

wavelengths, 𝑛½ ∆𝜈�²®  is the mean group refractive index of optical fiber between those two 

wavelengths, and 𝑛½ ∆𝜈g±mh  is the mean group refractive index over the wavelength range of the 

SWI measurement.   

 Mean group refractive indices for fused silica can be calculated [51] using Sellmeier 

coefficients for SMF-28 [108], wavelength and temperature dependent thermo-optic coefficients 

for fused silica [109], and a computational model for the group refractive index of air.  Reliable 

models for calculating the refractive index of air have been developed by Ciddor [110] and Edlén 

[111] [112] [113], although Ciddor’s model is considered more accurate over a wider range of 

atmospheric conditions [114].  However, the exact uncertainties of these calculations are unknown, 

meaning that the uncertainty analysis of Equation (3.15) may cease to be reliable for a trigger 

interferometer with non-zero dispersion.   

 To qualitatively evaluate the accuracy of Equation (3.17), I used the measured trigger delay 

times plotted in Figure 3.8a to calculate the physical path length difference between the arms of 

the trigger interferometer.  For any trigger delay time 𝜏H measured using a single pair of HCN 

absorption lines, the physical path length difference 𝑑H is given by 

 𝑑H = 𝜏H
𝑐W

𝑛½ ∆𝜈�²®
	. (3.18) 

The value of 𝑛½ ∆𝜈�²® , the mean group refractive index of SMF-28 between wavelengths of the 

HCN absorption line pair, was calculated Sellmeier coefficients for SMf-28, thermo-optic 

coefficients for fused silica, and Ciddor’s model for the refractive index of air.  The resulting 

values of 𝑑H are plotted in Figure 3.9.  For all but the R0 absorption line, the 2𝜎 uncertainty bars 
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overlap, providing convincing, albeit qualitative, confirmation that Equation (3.17) may be used 

to obtain an accurate measure of DFT bin size, despite the effects of dispersion in the trigger 

interferometer.   

 

 

Figure 3.9  Physical path length difference dt of the trigger interferometer, 
measured using a series of HCN absorption line pairs.  Physical path 
length was obtained from measured trigger delay time by calculating the 
mean group refractive index of SMF-28 between HCN line pairs.  Error 
bars represent 2𝜎 uncertainty.   

 

3.1.5 Temperature drift 

Fiber-based SWI systems are extremely sensitive to changes in temperature—this has 

allowed them to be used as high precision temperature sensors in fiber networks [16] [13] [115] 

[17] [116], as well as in more exotic environments, such as in extreme low-temperature [117] or 

radioactive environments [118] [119].  Unfortunately, the same sensitivity that renders the 

measurement interferometer such an effective temperature sensor can also degrade measurement 

accuracy if temperature variations are allowed to affect the trigger interferometer.    

 If the temperature of the trigger interferometer is constant, the contribution	𝑢 𝑝  to 

uncertainty from the fringe period count is comparatively small, and uncertainty in trigger delay 
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time is dominated by the uncertainty 𝑢 ∆𝜈�²®  in frequency spacing between the absorption line 

pair chosen for calibration.  However, trigger delay time is extremely sensitive to temperature 

fluctuations in the trigger interferometer. For small temperature changes, the temperature 

dependent change ∆𝑝 in fringe period count is given by 

 
∆𝑝 ≈ 	 𝜏H∆𝜈�²®∆𝑇 𝛼Æ +

1
𝑛½
𝑑𝑛
𝑑𝑇 	, (3.19) 

where 𝛼Æ = 0.52×10`³ is the coefficient of thermal expansion for Corning SMF-28 fiber, 𝑛½ =

1.462893 is the fiber’s group index at 1550 nm, 𝑑𝑛 𝑑𝑇 = 7.97×10`³ is the fiber’s thermo-optic 

coefficient, and ∆𝑇 is the change in temperature from 25 °C.  If this temperature dependent change 

in trigger delay time is not eliminated or otherwise accounted for, it adds uncertainty to the fringe 

count p, according to 

 𝑢 𝑝 = 𝑢µlH 𝑝 + ∆𝑝	, (3.20) 

where 𝑢µlH 𝑝  is the uncertainty in the Lorentzian fits to HCN absorption lines, and ∆𝑝 is the 

temperature dependent change in the fringe period count, given by Equation (3.19).   

 Figure 3.10 shows the temperature dependent change in 1σ DFT bin size uncertainty 𝑢 𝑠d .  

A 0.02 °C temperature increase causes a 0.3% increase in uncertainty, and a 0.1 °C increase results 

in a 2.9% increase in uncertainty.  Consequently, temperature change during any single 

measurement (i.e. during any one laser sweep) must be minimized in order to minimize overall 

measurement uncertainty.   
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Figure 3.10  Temperature change in the trigger 
interferometer increases uncertainty in DFT bin size.  For 
this figure, uncertainty in absorption line spacing was 
derived from the 40 fm and 75 fm 1𝜎 wavelength 
uncertainties of the R20 and P18 absorption lines of a 
Wavelength References HCN gas reference cell. 

 

 Figure 3.11 shows a series of 4,400 measurements of trigger delay time in the SWI system 

from Figure 3.5.  During the 4.5 hour measurement period, the temperature of the aluminum block 

housing the trigger interferometer was monitored and recorded.  The aluminum housing was 

clamped to a hot plate which was stepped in temperature in two 0.5 °C increments.  Both the 

temperature of the aluminum block and the trigger delay time rapidly increased when the hot plate 

temperature was increased.  
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Figure 3.11  A series of 4,400 measurements of trigger delay time taken over a 4.5 
hour period illustrate the strong temperature-dependence of trigger delay time.  
The left y-axis shows measured trigger delay time, and the right y-axis shows the 
measured temperature of the aluminum housing.   

 

 During the entire series of measurements, the maximum rate of temperature change during 

a single laser sweep was less than 0.02 °C, resulting in a maximum temperature-dependent change 

in the number of fringe periods of less than 0.02 periods.  The maximum fringe period uncertainty 

𝑢 𝑝 , from both the temperature change and line fit uncertainty, is therefore less than 0.06.   

 The mean rate of temperature change during the series of measurements was 4.3x10-5 °C/s.  

Excluding measurements immediately following a temperature step, 1𝜎 variation in measured 

trigger delay time was approximately 11.5 fs, consistent with the 10 fs variation predicted using 

Equation (3.15), the average uncertainty of all 8,800 HCN line fits, and the mean fringe period 

uncertainty due to temperature variation in the trigger interferometer.  These results are consistent 

with the prediction from Equation (3.19) that for the SWI measurements to reach theoretical 

uncertainty limits, the temperature of the trigger interferometer must be stabilized at the 0.01 – 

0.1 °C level for at least the duration of each measurement.   
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3.1.6 Sweep nonlinearity 

For the numerical work in Chapter 2, I assumed that samples of the signal 𝑈 𝜈 𝑡  were 

evenly spaced in optical frequency.  For a triggered system, this assumption is quite good if the 

slow-tuning approximation holds.  However, the trigger interferometer can, in general, only 

compensate zeroth and first order variation in the laser sweep rate [52].   When trigger delay time 

is carefully matched to electronic delay time (the time delay between the upward zero-crossings 

of the trigger signal, which I will call trigger signal times, and the times of sample acquisition in 

the measurement interferometer), second order variations may also be compensated [52].   

Here, I examine the effect that laser sweep nonlinearity has on both the accuracy and 

precision of superresolved SWI measurements in a triggered system.  I am indebted to the excellent 

analysis of Dr. Eric Moore on the effects of sweep nonlinearity on measurement precision [51] 

[52]; it is his work that I build upon in this section.   

  First, I examine a simplified example that illustrates how sweep nonlinearity can degrade 

measurement accuracy.  Consider a laser sweep in which the rate of change of optical frequency 

𝑑𝜈 𝑑𝑡 equal to a monotonically increasing or decreasing function.  A common example is a laser 

sweep rate that is constant as a function of wavelength, i.e. 

 𝑑𝜆
𝑑𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	. (3.21) 

In this case, the sweep rate as a function of frequency is not constant (Equation (3.27)), but rather 

 𝑑𝜈
𝑑𝑡 = −

𝜈D

𝑐
𝑑𝜆
𝑑𝑡	, 

(3.22) 

and optical frequency as a function of lab time is not linear:  

 
𝜈 𝑡 =

1
𝜈W
+
1
𝑐
𝑑𝜆
𝑑𝑡 𝑡

`P

	. (3.23) 
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Here c is the speed of light, and 𝜈W is optical frequency at the start of the laser sweep.  A simplified 

form of this same equation is 

 𝜈 𝑡 =
1

1 + 𝑡	, 
(3.24) 

and its inverse is 

 𝑡 𝜈 =
1 − 𝜈
𝜈 	. (3.25) 

 In Figure 3.12a, a series of trigger signal times are plotted in blue.  The corresponding 

values of optical frequency are all equally spaced (left y-axis).  A 0.1 s delay between trigger signal 

times and sample acquisition times, plotted in red, causes acquired samples to be unevenly spaced 

in optical frequency (right y-axis).  Additionally, the mean value of optical frequency spacing for 

acquired samples is changed (reduced, in this example).  The longer the delay between trigger 

signal times and sample acquisition times, the more dramatic these effects become (Figure 3.12b). 

  

 

Figure 3.12  Effects on optical frequency spacing for (a) 0.1 s of electronic delay 
and (b) 0.5 s of electronic delay.   
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(although as the results of Figure 3.14 will show, the approximation can be a very good one).  A 

more exact expression for DFT bin size can be obtained by noting that laser sweep bandwidth is 

equal to the sum of all the frequency sampling intervals 𝛿𝜈g across a laser sweep.  The exact value 

of DFT bin size is then given by the mean value of the following inverse probability distribution 

function (pdf): 

 𝑓hi 𝑠d =
1
𝑀𝑠dD

𝑓�G
1
𝑀𝑠d

		 , 𝐼(W,È] 𝑠d 	. (3.26) 

Here the pdf for DFT bin size 𝑓hi is a function of the pdf 𝑓�G for sample spacing in optical frequency 

and is defined on the interval (0,∞]. Unfortunately, the pdf for optical frequency spacing is 

unknown (and is likely to be unique for each tunable laser source and perhaps even to each laser 

sweep).  The mean 𝜇hi and variance 𝜎hi
D  of DFT bin size can, however, be obtained approximately 

from estimates as 

 𝜇hi =
1
𝛿𝜈gz

gyP
 (3.27) 

and 

 
𝑠hi
D =

1
𝑀 − 1

1
𝑀𝛿𝜈g

− 𝜇hi
Dz

gyP

	. (3.28) 

Following the analysis in [52], the frequency spacing intervals 𝛿𝜈gH  between trigger times 

are given by  

 𝛿𝜈gH = 	 𝜏H`P + 𝜂gÌ 	, (3.29) 

where 𝜂gÌ , the intrinsic errors in the frequency intervals between trigger times due to laser tuning 

rate variation, are given by 

 
𝜂gÌ = −

𝜏Hm`P

𝑎! 𝜈 m`P 𝑡g − 𝜈 m 𝑡g

È

myD

	. (3.30) 
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The frequency intervals between samples in the measurement interferometer are given by 

 𝛿𝜈gg±mh = 	 𝜏H`P + 𝜂gÌ + 𝜂gÎ 	. (3.31) 

The additional error term 𝜂gÎ  comes from electronic delay and is given by the infinite series 

 
𝜂gÎ =

𝜏Îm

𝑎! 𝜈
m 𝑡gbP − 𝜈 m 𝑡g

È

myP

	, (3.32) 

where 𝜏Î is electronic delay time.   

 The values of 𝛿𝜈gH  and 𝛿𝜈gg±mh depend uniquely on laser sweep rate and trigger delay time, 

and it is not possible to obtain a general solution for the mean and variance of DFT bin size, or for 

bias in DFT bin size, for all tunable laser sources.  Instead of a general solution, I present a 

numerical method for obtaining these values for any measured laser sweep rate, and demonstrate 

this method for the measured sweep rate of an Agilent 81680A tunable laser.   

 Figure 3.13 shows the measured sweep rate of an Agilent 81680A tunable laser from 1500 

nm to 1570 nm.  The laser sweep rate is nominally 40 nm/s, or approximately -5 THz/s, and the 

laser sweep was sampled at a 1 MHz sampling rate, resulting in an average frequency spacing 

between samples of approximately 5 MHz.     
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Figure 3.13  Measured frequency sweep rate (blue lines) of an 
Agilent 81680A tunable laser.  The mean sweep rate is plotted in 
red.  (a) The sweep rate was measured from 1500 nm to 1570 nm in 
10 nm sections.  The large variations in sweep rate at the beginning 
and end of each of these sections would not be present in a 
continuous sweep.  (b) Close-up view of a small portion of the laser 
sweep.   

 

Using the measured sweep rate of the laser, the phase of the output of the trigger 

interferometer is given by numerically evaluating the expression (again, from [52]) 

 
𝜙 𝑡 + 𝜏H − 𝜙 𝑡 = 2𝜋𝜈 𝑡 𝜏H + 2𝜋

𝜏Hm

𝑎! 𝜈
m`P 𝑡

È

myD

 (3.33) 

up to sixth order.  (Note that sampling density in measured laser rate must be high enough that 

errors are not accumulated by interpolating or by taking numerical derivatives.)  This expression 

is then interpolated and solved for the trigger signal times tm when phase is equal to an integer 

multiple of 2𝜋.  The frequency intervals 𝛿𝜈gH  between trigger signal times are obtained by 

evaluating Equation (3.29) and Equation (3.30) up to sixth order.  Finally, the frequency intervals 

𝛿𝜈gg±mh between samples in the measurement interferometer are obtained from evaluating 
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Equation (3.31), Equation (3.30), and Equation (3.32) up to sixth order.  (For the measured tuning 

rate from Figure 3.13, third and higher order terms make negligible contributions to these 

computations, but additional orders add little computational burden to the computational method.)   

 From the computed measurement interferometer frequency intervals 𝛿𝜈gg±mh, values for the 

mean and variance of DFT bin size can be obtained from Equation (3.27) and Equation (3.28), 

respectively.  Normalized bias in DFT bin size is then given by 

 
𝑏 = 	

𝜇hi − 𝜏H
`P

𝜏H`P
	. (3.34) 

For the laser sweep rate from Figure 3.13, Figure 3.14 shows the normalized values of standard 

deviation and bias in DFT bin size for a range of trigger delay times and electronic delay times.  

When trigger delay time is twice electronic delay time, second order error terms cancel, and both 

standard deviation and bias are minimized [52].   

 

 

Figure 3.14  (a) Normalized standard deviation in DFT bin size as a function of trigger delay 
time 𝜏H	and electronic delay time.  (b) Normalized bias in DFT bin size.   

 

0 200 400 600
electronic delay (ns)

100

200

300

400

500

t (n
s)

1

2

3

4

5
10-7

0 200 400 600
electronic delay (ns)

100

200

300

400

500

t (n
s)

1

2

3

4

5

10-4

a b 



 85 

3.2 Experimental Accuracy of Superresolved Swept-Wavelength 

Interferometry 

The analysis and experimental work from this chapter suggest that the theoretical limits 

delineated in Chapter 2 may be obtainable under properly controlled experimental conditions.  

Specifically, laser power fluctuations must be compensated, trigger and measurement 

interferometers must be dispersion-matched, dispersion in the trigger interferometer must be 

included in the calibration of trigger delay time, the temperature of the trigger interferometer must 

be stabilized, and trigger delay time should equal roughly twice the value of any electronic delay 

in order to control the effects of laser sweep rate nonlinearity.  An SWI system designed to meet 

these conditions is depicted in Figure 3.15.   

The tunable laser used here is an Agilent 81680A external cavity laser, set to sweep from 

1500 nm to 1570 nm at a 40 nm/s sweep rate.  The first optical coupler in the SWI system delivers 

5% of the laser output to a photodetector set to monitor and record laser power during the sweep.  

The trigger interferometer is composed entirely of SMF-28 fiber.  With approximately 10 m of 

additional fiber in the longer arm of the interferometer, trigger delay time is around 100 ns.  Before 

the measurement interferometer, 8 m of fiber provide enough additional electronic delay to cancel 

the effects of laser sweep nonlinearity.   

In the measurement interferometer, a polarization diverse detection scheme is used to 

prevent fringe fading3.  Instead of a collimating lens, the sample arm of the measurement 

interferometer is terminated by a cleaved fiber end, polished at a 0° angle.  This fiber end is the 

                                                
3 The polarization diverse detection system depicted in Figure 3.15 could be further improved by 
the addition of a polarization controller in the reference arm of the measurement interferometer.  
By using a polarization controller to ensure equal power levels of S and P polarizations in the 
reference arm, polarization fringe fading can be minimized, rather than simply mitigated.  
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terminus of one channel in a 32-channel silicon v-groove array manufactured by Oz Optics Ltd.  

The aluminum housing that enclosing the majority of the SWI system is clamped to a hot plate 

which is set to maintain a temperature of 29 °C, a few degrees C above the ambient temperature 

in the laboratory.     

 

 

Figure 3.15  System diagram for the SWI experiments described in Section 3.2.. For coupling 
ratios noted in this figure, the first number gives the percentage of power delivered to the upper 
of the two output fibers. TL = tunable laser, FRM = Faraday rotator mirror, lens, RR = 
retroreflector, PBS = polarization beam splitter.   

 

 In Chapter 2, the uncertainty limit for estimates of the delay time between two equal 
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and estimator bias (Figure 2.10).  The precision limit for delay time estimates is determined by 

SNR and, for some estimators, by reflector separation (Figure 2.20).  While the precision limits 

predicted in Chapter 2 are in good agreement with a number of earlier experimental results ( [33] 

[21] [34]), to my knowledge, no similarly convincing experimental work confirms the accuracy4 

of superresolved SWI across a DFT bin.   

 The experimental work presented here quantifies the magnitude of measurement bias 

across the span of approximately three DFT bins.  Experimentally confirming the accuracy of the 

DFT bin size calibration is a much more difficult problem, requiring a reference standard with 

optical path length both known and temperature stable at the nanometer level.  Here, the reference 

standard is the surface of a 2-inch diameter, 𝜆 20 (±15.8	nm) aluminum mirror with a 

ZERODUR substrate.  This mirror was placed at a 1° tilt angle on the polished ends of three 120 

threads-per-inch stainless steel adjustment screws and mounted on an x-y-z stage stack (Newport 

XMS160, XMS100, GTS30V).  The silicon v-groove array in the sample arm of the measurement 

interferometer was suspended by a steel scaffold above the surface of the reference mirror.  

Translating the mirror in x changes the spacing between the polished fiber end in the silicon v-

groove and the surface of the reference mirror (Figure 3.16).  The manufacturer specified 

maximum stage pitch error of 100 µrad gives a maximum 6 pm distance error from the stage stack.   

 

                                                
4 A clarification on accuracy and uncertainty: uncertainty is a prediction of how likely a measured 
quantity is to be within some range of the true value of that quantity.  For example, 2𝜎 uncertainty 
provides the 95% confidence interval for the quantity of interest.  Accuracy, however, is a measure 
of how close a measured quantity comes to the value of a reference standard.  Depending on the 
reference standard, accuracy and uncertainty may be related or even equivalent, but in general, this 
is not the case.      
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Figure 3.16  (a) Moving a tilted mirror in x gradually reduces the 
distance between a polished fiber end and the mirror surface.  (b) 
The fiber end, one channel in a 32-channel silicon v-groove array, 
is suspended in a steel scaffold above the mirror surface. 

 

 The reference mirror was stepped across 3 mm in 30 µm increments.  At each of the 101 

x-locations, a single SWI measurement of the delay time between the fiber endface reflection and 

the mirror surface was obtained.  This measurement process was then repeated 50 times.  A 

surface-mounted resistance temperature detector affixed to one of the steel scaffold legs recorded 

the temperature throughout the experiment.  Although the OPL of the ~0.5 mm air gap between 

the silicon v-groove array and the mirror surface is stable to less than 2 nm within a 0.2 °C 

temperature range, the physical lengths of the ~12 inch tall stage stack and ~14 inch tall steel 

scaffold certainty are not.  Therefore, to minimize the effect of temperature-dependent variation in 

the air gap between the fiber endface and mirror surface, the distances between the fiber endface 

and mirror surface were measured in 50 repeated sets of 101 sequential distances, rather than in a 

series of 101 sets of 50 measurements at each distance.   

 Figure 3.17 shows mean values for the measured distances between the fiber endface and 

mirror surface as a function of mirror position x.   Physical distance d was obtained by multiplying 

the measured time delays by half the vacuum speed of light.   
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Figure 3.17  Measured times and distances from 
mirror surface as a function of mirror position x.  
The left y-axis shows delay time in DFT bins, while 
the right y-axis shows the corresponding physical 
distance d.  Physical distance is half the measured 
round-trip distance between the polished fiber end 
and the mirror.  

 

 To evaluate the accuracy of sequential distance measurements, a line was fitted to the mean 

values of measured distances.  The residuals between the line fit and mean measured distances are 

plotted in Figure 3.18.  The range of the residuals shown is 62 nm, or 1.8x10-3 of a single DFT bin, 

roughly one order of magnitude larger than the 2𝜎 uncertainty value of 4 nm for two reflectors 

separated by approximately 30 DFT bins (Figure 2.17).   
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Figure 3.18  Mean and standard deviation of line fit residuals.  Green lines show the 
tolerance for a 𝜆 20 result (±15.8	𝑛𝑚), and the yellow lines show the tolerance for a 
𝜆 10 result (±31.6	𝑛𝑚).   

 

The error bars in Figure 3.18 show the 1𝜎 standard deviation of all measured distances at 

a single x-location.  The mean value of standard deviation is 135 nm, considerably larger than the 

~1 nm theoretical limit (Figure 2.20).  This discrepancy is largely due to temperature variation 

during the experiment.   Figure 3.19 shows the line fit residuals for every measurement taken 

during the experiment along with the measured temperature of the leg of the steel scaffold.  The 

two are clearly correlated.  The mean standard deviation for each set of sequential distance 

measurements (down columns in Figure 3.19) is only 17 nm, considerably closer to the theoretical 

limit.    
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Figure 3.19  Line fit residuals (nm) shown as a function of mirror position x and approximate 
measurement time t.  Temperature of the scaffold leg, a function of time t, is overlaid in red. 

 

3.3 Conclusions 

In this chapter, I discussed how six potential sources of systematic error—non-Gaussian 

noise, spurious delay times arising from unwanted reflections or mechanical vibration, laser power 

fluctuations, dispersion mismatch between measurement and trigger interferometers, temperature 

drift in the trigger interferometer, and laser sweep nonlinearity—may prevent superresolved SWI 

measurements from achieving theoretical accuracy limits.    I quantified the effects of mechanical 

vibration, dispersion mismatch, and temperature drift, and presented methods to quantify the 

effects of laser power fluctuation and sweep nonlinearity for any measureable laser sweep.  Finally, 

I described a series of experimental SWI measurements of 101 distances, spaced equally through 

a range of 3 DFT bins.  This measurement series had a maximum bias of 62 nm, or 1.8x10-3 of the 

SWI system’s transform-limited resolution, roughly one order of magnitude larger than the 

measurement’s limiting uncertainty of 4 nm.     
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Chapter 4  

Three-Dimensional Surface Characterization Using Time-

Multiplexed, Superresolved Swept-Wavelength Interferometry 

 

 

4.1 Background 

In this chapter, I present a unique application of superresolved SWI: time-multiplexed three-

dimensional (3D) surface metrology.  The use of SWI as a surface metrology tool is, of course, 

not unique.  OFDR [51], SS-OCT [120], SD-OCT [121], and FMCW ladar [20] systems have all 

been used successfully to characterize a variety of three-dimensional surfaces, both specular and 

diffuse, and ranging in size from microns to meters.  These are scanning measurements5 and rely 

on stages or scanning mirrors to acquire a succession of 1D measurements that are then 

agglomerated into full three-dimensional surface measurement.  The need for scanning necessarily 

increases measurement time and may also increase measurement error through errors in stage 

motion or mirror scanning.  By taking advantage of the long coherence lengths available from 

certain tunable laser sources, time-multiplexed SWI can decrease measurement time [51] and 

reduce or eliminate the need for scanning in measurements of 3D surfaces.   

                                                
5 The very similar technique known as wavelength scanning interferometry (WSI) does not rely 
on mechanical scanning.  It is a static swept-wavelength surface measurement technique capable 
of achieving nanometer-level accuracy across a micron-scale field-of-view [161] [163] [162].  
However, it suffers from 2𝜋 phase ambiguities at surface steps, and is currently not ideally suited 
for measurements of steeply-sloped surfaces.   
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The nanometer-level accuracy and precision of superresolved SWI make a time-multiplexed 

version of this measurement technique amenable to a difficult and high-interest metrology 

problem: the 3D characterization of steeply-sloped freeform and aspheric optical surfaces.   

Freeform and aspheric optics are increasingly being incorporated into optical systems and lens 

designs  [122] [123], yet no completely satisfactory technology exists for measuring the surface 

profiles of these optics, particularly when they are steeply sloped.  Contact measurement systems 

include mechanical profilometers and coordinate measuring machines (CMMs) [124] [125] [126], 

but producing a high-resolution surface profile with these systems is relatively slow and can be 

costly.  Non-contact methods include stitching interferometry [127] [128], phase measuring 

deflectometry [129] [130] or other structured illumination methods [131] [132] [133] [134], optical 

profilometry [135], and various combinations of these techniques [136] [137].  Among these, 

optical profilometry provides the highest-accuracy measurements of steeply sloped and arbitrarily 

shaped surfaces, but it is a scanning measurement and thus limited in measurement speed.   

 Interferometric systems incorporating computer generated holograms (CGHs) [138] [139] 

[140] have also been used to characterize both aspheric and freeform optical surfaces, with recent 

systems reporting peak-to-valley wavefront errors on the order of 𝜆 10 [141] to 𝜆 20, or even 

less [142].  However, the accuracy of these systems is generally limited by the quality of the CGH 

null corrector; as the maximum slope of the measured surface increases, the spatial frequency 

content of the CGH must also increase, with corresponding increases in manufacturing costs and 

potential decreases in CGH accuracy [143].     

 A novel system designed to measure the interior surfaces of small, concave objects used 

an array of optical fibers—a single-mode emitter and 8 multi-mode collectors—to measure 

reflected power as a function of angle and thus deduce the surface shape [144].  Preliminary 
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experiments have demonstrated the feasibility of such a system but, so far, have not demonstrated 

the capability of such a system to make high precision measurements of complex surfaces [145]. 

 Finally, a SS-OCT system used to measure the surface profiles of machined metal spheres 

[146] and aspheric lenses [147] demonstrated lateral resolution of 18 µm, axial resolution of 12 

µm, and most importantly, the ability to measure sample surface slopes of up to approximately 83 

degrees.  This was a scanning system with transform-limited axial resolution, but it demonstrates 

the capability of SWI to measure 3D surface profiles of steeply-sloped and aspheric objects.   

 In this chapter, I begin with an analysis of system design considerations for a time-

multiplexed, superresolved SWI system.  I then describe the calibration and resolution limits of 

such a system.  Next, I present an algorithm for surface reconstruction from an array of measured 

delay times.  After presenting and analyzing experimental results from an 8-channel, time-

multiplexed SWI system, I conclude with a discussion of the needs for further development of 

both the SWI system and the surface reconstruction algorithm.   

 

4.2 System Design 

4.2.1 Time multiplexing 

Time-multiplexed SWI is conceptually straightforward.  The unambiguous range of the SWI 

system is distributed among several channels; this allows simultaneous, parallel SWI 

measurements from each channel in the system.  Experimentally, this is accomplished by splitting 

the sample arm of the measurement interferometer into separate channels and constructing each 

channel from different physical lengths of optical fiber.  This is depicted in Figure 4.1.  Only the 
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second half of the total unambiguous range 𝜏gmÒ (equal to half the trigger delay time6 𝜏H) of the 

system can be assigned to measurement channels, since the maximum separation between 

reflections in delay time sets the delay time spacing between DC and the cross-term with the 

highest delay time.   

 

 

Figure 4.1  In a 4-channel time-multiplexed SWI system, the signal in the 
measurement interferometer is split into a reference arm and four channels in the 
sample arm.  The minimum physical path length mismatch between the reference 
arm and each sample channels sets the minimum delay time that can be measured 
by that channel. 

 

 Figure 4.2 shows the system diagram for the time-multiplexed SWI system used for the 

experiments described in this chapter.  The tunable laser source is an Agilent 81680A external 

cavity laser, set to sweep from 1525 nm to 1580 nm at a sweep rate of 40 nm/s.  The effective 

                                                
6 In an SWI system using a trigger interferometer, trigger delay time sets the spacing between 
samples in optical frequency, and therefore, through the Fourier transform relation, the maximum 
measurable (unaliased) delay time.   
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linewidth of this laser is roughly 100 kHz, giving a coherence time of approximately 10 µs [148], 

substantially longer than the approximately 50 ns unambiguous range set by the trigger delay time.    

 

 

Figure 4.2  System diagram for the SWI experiments described in Chapter 4.  For coupling ratios 
noted in this figure, the first number gives the percentage of power delivered to the upper of the 
two output fibers. TL = tunable laser, FRM = Faraday rotator mirror, PBS = polarization beam 
splitter, RR = retroreflector.   

 

The sample arm of the measurement interferometer is divided into eight channels, each 

terminated at a cleaved fiber end polished at a 0° angle.  These fiber ends are housed in a 32-

channel silicon v-groove array (shown in Figure 4.3) with 500 µm spacing between each fiber 
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core.  The aluminum housing enclosing the trigger interferometer was clamped to a hot plate which 

was set to maintain a temperature of 27 °C.     

 

 

Figure 4.3  32-channel silicon v-groove 
assembly from Oz Optics, Ltd [149].  
Spacing between fiber cores is 250 𝜇𝑚, or 
500 𝜇𝑚 between sets of 8 fibers.   

 

Data from a single laser sweep is plotted in Figure 4.4.  The eight peaks at delay times between 

25 ns and 50 ns correspond to reflections from each of the polished fiber ends in the silicon 

v-groove array.  The minimum delay time between any two channels is 1.29 ns, meaning the 

maximum unambiguous range of this time-multiplexed SWI system is approximately 19 cm.   
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Figure 4.4  Reflections from the polished fiber ends of each channel in 
the 8-channel, time-multiplexed SWI system appear at different delay 
times 𝜏.  The maximum delay time for any cross term (solid arrow) is 
equal to the maximum delay time difference between any two reflectors 
(dashed arrow).   

 

4.2.2 Maximizing SNR 

Because the power returned from each channel in a time-multiplexed system is equal to the 

inverse of the total number of channels, maintaining adequate SNR is a primary concern in the 

design of a time-multiplexed SWI system.  In the SWI system used for the experiments described 

in Chapter 3, power in the measurement interferometer was split evenly between reference and 

sample arms of the interferometer (Figure 3.15), meaning that the maximum power returned from 

the sample arm of the interferometer is one-fourth of the input power.  

In an 8-channel system, each channel will return a maximum of one sixty-fourth of the 

power input to the sample arm.  Based on the analysis in [51], the SNR limit for the SWI system 

used here is set by quantization noise.  Consequently, maximizing interference fringe contrast is 

more necessary than maximizing total power in the interferogram7.   

                                                
7 Section 4.2.2.1 describes how to maximize contrast by adjusting the coupling ratio between 
sample and reference arms of the measurement interferometer.  An alternative, and likely superior, 
approach would be to first maximize total signal power by using 50:50 coupling ratio between 
arms of the interferometer, and to subsequently maximize contrast by removing the DC offsets 
from the electronic signals immediately following the S and P photodetectors.   
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4.2.2.1 Maximizing contrast 

Figure 4.5 shows a system diagram for a simplified SWI system.  The input electric field 

amplitude E0 is constant as a function of optical frequency, and the polarization of the input field 

remains unchanged as it propagates through the system.  A fiber coupler with power coupling ratio 

a separates the input electric field into reference and sample arms, with electric field amplitudes  

 𝐸Á = 𝑎𝐸W (4.1) 

and 

 𝐸O = 1 − 𝑎𝐸W (4.2) 

respectively.  In the reference arm, a mirror reflects 100% of the electric field 𝐸Á back to the optical 

coupler.  The sample arm contains a single reflector with reflectivity Rs.   

 

 

Figure 4.5  Simplified SWI system diagram.  Input intensity 
electric field E0 is constant as a function of optical frequency.  
Reference reflectivity Rm is 100%.  A single reflector in the 
sample arm of the interferometer has reflectivity RS.  The unused 
output port of the optical coupler is depicted as a dashed line.   

 

 At the photodetector, the contrast C of the detected interferogram is given by  
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and is a function of both8 the optical coupling ratio a and sample reflectivity Rs [148].  This is 

shown in Figure 4.6.  

 

 

Figure 4.6  (a) Contrast C as a function of coupling ratio 
a and sample reflectivity RS.  (b) Contrast as a function 
of sample reflectivity at four common coupling ratios.   

 

                                                
8 Here, because the same port of the optical coupler is used for both input and output, contrast is a 
function of both coupling ratio and sample reflectivity.  If the unused output port of the coupler 
delivered the interference pattern to the photodetector, contrast would be a function only of sample 
reflectivity, and the best possible choice of coupling ratio a would be 0.5.   
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Establishing an arbitrary minimum contrast value of 80% gives the minimum and maximum 

sample reflectivites for any coupling ratio a.  These values are listed in Table 4.1 for a range of 

common coupling ratios.   

 

Table 4.1  Maximum and minimum sample reflectivity RS that 
provide at least 80% contrast at coupling ratio a. 

a min RS (%) max Rs (%) 

0.02 1.0 x 10-2 1.6 x 10-1 

0.05 7.0 x 10-2 1.1 

0.1 0.3 4.9 

0.5 25.0 100.0 

 

 

4.2.2.2 Experimental measurement of SNR as a function of coupling ratio 

SMF-28 optical fiber has a numerical aperture (NA) of approximately 0.14, meaning that 

the Rayleigh range of the beam emitted from a cleaved fiber end is approximately 25 µm at 

1550 nm, and the divergence half-angle of the beam is approximately 8° [148].  In the time-

multiplexed SWI system of Figure 4.2, each channel is terminated at a cleaved, polished fiber end.  

Consequently, the apparent reflectivity of any sample will decrease as a function of the distance 

between the cleaved fiber end and the sample; and in many measurement scenarios, the reflections 

from the polished fiber ends are higher in magnitude than reflections from the sample.   

In an 8-channel system, the maximum power returned from any one channel is 1 64 of the 

input power (about 1.6%).  The power returned from any one fiber end reflection is therefore 

approximately 6.25x10-2 % (4% of 1 64) of the input power.  Consequently, no choice of coupling 
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ratio will be optimal for all possible reflectivities in the 8-channel system.  However, a coupler 

that diverts 10% of input power to the retroreflector in the reference arm of the measurement 

interferometer can be expected to maximize the contrast of detected interference patterns over a 

broad range of sample reflectivities, and to provide better measurement precision than a 50% 

coupler for all possible sample reflectivites.  To experimentally confirm this prediction, I used the 

system from Figure 4.2 to acquire two sets of measurements of the OPL between the cleaved fiber 

end of one channel and a BK7 glass flat located approximately 0.5 mm from the silicon v-groove 

array housing the fiber endface.  In the first set of measurements, the coupling ratio between 

reference and sample arms was 0.5.  In the second set, the coupling ratio was 0.1 (The coupler in 

question appears to the immediate right of the circulator in the measurement interferometer in 

Figure 4.2.)   

In each set of measurements, the distance between the fiber endface and the BK7 flat was 

measured 4,000 times, once every 10 s over 11 hours.  To minimize the influence of temperature 

variations, the 100-point moving standard deviation for each data set was averaged.  (The time to 

acquire 100 measurements was about 17 min.)  In the first set, the mean of the 100-point moving 

standard deviation of the data set was 15 x 10-3 of a DFT bin, and in the second, 3 x10-3 of a DFT 

bin.  This threefold improvement in measurement precision confirms the importance of the 

selecting the proper coupling ratio between reference and sample arms in a power-limited SWI 

system, and also confirms that a 10/90 coupling ratio was an acceptable choice for the SWI system 

used for the experiments described here.  
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4.3 Calibration 

In the time-multiplexed SWI system used for the experiments described in this chapter, the 

eight channels in the sample arm of the measurement interferometer are cleaved fiber ends, spaced 

equidistantly along a line, and housed in a silicon v-groove chip (Figure 4.3).  I chose this sample 

arm arrangement because silicon v-groove fiber assemblies are readily available and have 

excellent manufacturing tolerances (±1	µm in fiber core positions).  Other sample arm 

configurations, such as two-dimensional fiber arrays, lensed fiber ends, or fiber ends terminated 

by gradient-index (GRIN) lenses are certainly possible and could offer improvements over the 8-

channel system presented here.  No matter which sample arm configuration is chosen, however, 

measurement accuracy and resolution depend on both the accuracy and resolution of the SWI 

system itself and on the positional accuracy and resolution of the array of fiber ends in the sample 

arm of the measurement interferometer.  In this section, I first present an analysis of the transverse 

resolution and accuracy of the 8-channel system of Figure 4.2.  I then describe a calibration 

procedure to establish the axial accuracy for each of the eight channels and for the 8-channel 

system as a whole.  

 

4.3.1 Transverse resolution 

In the 8-channel SWI system use for the experiments described in this chapter, each 

channel is terminated at a cleaved fiber end, polished at a 0° angle.  The beam emitted from single 

mode step-index fiber is very nearly Gaussian [150], so SMF-28 fiber, with a NA of 0.14, has a 

Rayleigh range of approximately 25 𝜇𝑚 at 1550 nm.  Because the minimum superresolvable 

reflector separation is 2 DFT bins—approximately 88 𝜇𝑚 in air—for a laser sweep from 1525 nm 

to 1580 nm, the distance between any fiber endface and the sample surface must be at least 44 𝜇𝑚.  
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This is nearly twice the Rayleigh range of the beams emitted from each channel, and consequently, 

the transverse resolution of the SWI system cannon be obtained from the waist diameter of emitted 

Gaussian beams.   

Instead, the area of the sample surface that returns light into any fiber channel can be 

determined using a ray optics approach.  For a flat sample surface, transverse resolution is equal 

to the diameter of the fiber core9, 9 µm in the case of SMF-28 fiber.  This is illustrated in Figure 

4.7.  Although returned power decreases as the distance between the fiber endface and the sample 

surface increases, or as the angle between the surface and the fiber endface increases, the area of 

the sample surface that returns light to the fiber core remains constant.   

 

 

Figure 4.7  For a flat surface, transverse resolution is equal to fiber core size, 
regardless of (a) the distance between the fiber endface and the sample or (b) the 
angle between the fiber endface and the sample surface.   

 

 When the sample surface is curved, however, transverse resolution becomes a function of 

surface curvature, surface position, and the distance between the fiber endface and the sample 

                                                
9 Note that in this ray-optics based approach, it is the physical diameter of the fiber core, not the 
mode field diameter, that sets the transverse resolution of the system.   
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surface, as shown in Figure 4.8.  For a convex surface, the sample surface area that reflects light 

back into the fiber core decreases relative to a flat sample surface, and transverse resolution 

consequently increases, while for a concave surface, transverse resolution decreases.   

 

 

Figure 4.8  Transverse resolution depends on surface curvature and (a) 
decreases for concave surfaces or (b) increases for convex surfaces.   

 

4.3.2 Transverse accuracy 

In a time-multiplexed SWI system capable of completely static measurements of a sample 

surface (i.e. measurements which no mechanical scanning), transverse accuracy depends entirely 

on the accuracy with which the transverse locations of fiber cores are known.  In the 8-channel 

system used for experiments here, the spacing of fiber cores in the silicon v-groove array is 

accurate to ±1	µm.  The error this may introduce to surface measurements depends on the shape 

of the sample surface and cannot be determined for a general case.  For a flat surface, transverse 

error in fiber core positions causes no error whatsoever in the surface measurement, but for a 

steeply-sloped surface, measurement error may be significant.  
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In the SWI system used for the experiments described in this chapter, the ends of the eight 

sample arm channels are spaced across a line in a silicon v-groove chip (Figure 4.3), and the SWI 

system relies on mechanical scanning of the sample in order to acquire measurements across a 3D 

sample surface.  Consequently, the transverse accuracy of the system also depends on stage 

accuracy.  The same x-y-z stage stack (Newport XMS160, XMS100, GTS30V) and steel scaffold 

structure that were used for experiments in Chapter 3 was also used here.  The x-stage, used to 

translate the sample perpendicular to the line of fiber channel ends (Figure 3.16), has on-axis 

accuracy of 1.5	µm and bidirectional repeatability of 80 nm, giving a combined limit of ±	2.5	µm 

in the transverse position accuracy of each channel location.     

 

4.3.3 Axial offset in channel positions 

The axial offsets of each of the 8 fiber enfaces were determined by measuring the distances 

between each of the fiber endfaces and the surface of a 2-inch diameter, 𝜆 20 (±15.8	nm) 

aluminum mirror with a ZERODUR substrate.  At each of six separate (presumably uncorrelated) 

locations on the mirror surface, 100 measurements of the delay time between fiber endfaces and 

the mirror surface were obtained.  The offsets of each of the fiber cores are given by the residuals 

between the mean delay time measurements in each channel and the line fit to all mean measured 

delay times as a function of channel position y.  This is shown in Figure 4.9.   The maximum slope 

of all six line fits was less than 0.12°, meaning that the maximum axial calibration error from 

potential ±1	µm transverse fiber core position errors is 27 as, or approximately 4 nm.   
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Figure 4.9  Axial calibration results for 8-channel SWI system.  The results from 
six different mirror locations (A through F) are plotted along with the mean of 
all six measurements.  Errorbars show measured 2𝜎 standard deviation.  An air 
index value of 1 was assumed in the conversion of measured delay time residuals 
to distance residuals (plotted here).   

 

4.3.4 Axial accuracy the SWI system 

The axial accuracy of the 8-channel SWI system is determined by the level of bias in 

superresolved SWI measurements.  To quantify measurement bias for the system as a whole, I 

used a calibration procedure similar to the one described in Section 3.2.  Once again, the reference 

standard was the surface of a 2-inch diameter, 𝜆 20 (±15.8	nm) aluminum mirror with a 

ZERODUR substrate.  This mirror was placed at an approximate 1° tilt angle on the polished ends 

of three 120 threads-per-inch adjustment screws, and mounted on the x-y-z stage stack beneath the 

silicon v-groove array.  The reference mirror was translated in x across 3 mm in 30 µm increments.  

At each of the 101 x-locations, each of the 8 channels of the time-multiplexed SWI system 

measured a delay times between a fiber endface and the mirror surface.  This measurement process 

was repeated 50 times.  
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 Figure 4.10 shows mean values for the measured distances between fiber endfaces and the 

mirror surface as a function of mirror position x and channel location y.   Physical distance d was 

obtained by multiplying the measured time delays by half the vacuum speed of light.   

 

 

Figure 4.10  Measured distances d (red dots) to the surface 
of a 𝜆 20 mirror as a function of channel position y and 
stage position x.  The planar surface fit is also shown.   

 

To evaluate the accuracy of 3D distance measurements, a first-order polynomial surface was fitted 

to the mean values of measured distances.  The residuals between the surface fit and mean 

measured distances are plotted for each channel in Figure 4.11.  Including the axial offsets (Figure 

4.9) for each channel in the surface fit significantly reduces the range of the measured residuals.   

The range of the residuals shown in Figure 4.11b is 224 nm, or 5.1x10-3 of a DFT bin, 

somewhat larger than the 1.8x10-3 residual range measured with the SWI system in Section 3.2, 

and substantially larger than the 2𝜎 uncertainty value of 3 nm for two reflectors separated by 

approximately 20 DFT bins (Figure 2.17).  The average standard deviation of all distance 
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measurements was 117 nm, or 2.7x10-3 of a DFT bin, comparable to the mean standard deviation 

value of 135 nm for the measurements described in Section 3.2.   

 

 

Figure 4.11  Surface fit residuals z as a function of stage position x for each of the 
eight channels (a) without correction for axial positions of channels and (b) with 
correction for axial positions of channels. 

 

 Some of the larger range of the measurement residuals shown in Figure 4.11 can be 

attributed to the obvious oscillation in the residuals observed between x = 0 mm and x = ~1.5 mm.  

This oscillation is likely the result of estimator bias, as its frequency matches the oscillation 

frequency of the bias in Candan estimates of the distance between two reflectors.  This is shown 

in Figure 4.12.   
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Figure 4.12  Magnitude of the discrete Fourier transform of a 
surface fit residual plotted along with the magnitude of the discrete 
Fourier transform of the bias in Candan estimates of distance 
between two simulated reflectors with a 3 dB difference in their 
relative amplitudes.  

 

The difference in the measured peak heights10 of fiber end reflections and mirror surface 

reflections is roughly 3 dB.  (The relative heights of these two peaks are illustrated in Figure 4.13.)  

For peaks separated by about 20 DFT bins, and having a 3 dB difference in their relative 

amplitudes, the numerical model developed in Chapter 2 predicts a bias magnitude of just over 

10-5 of a DFT bin (Figure 2.16).  However, the magnitude of the oscillation observed in Figure 

4.11 is approximately 3.5x10-3 of a DFT bin, roughly two orders of magnitude larger than the 

predicted value.  The cause for this discrepancy is not immediately apparent.  It may be due to the 

differences between the time-multiplexed SWI system and the numerical model, or to spectral 

leakage from additional mirror surface reflections due to an etalon effect (such an effect would be 

                                                
10 For peaks with the same shape function, relative peak heights are linearly proportional to relative 
peak areas, which can generally be measured with greater accuracy.  Here, the relative heights of 
delay time peaks were calculated by multiplying the measured interferogram by a flattop window 
[159] [158], and, after taking the discrete Fourier transform of the windowed data, estimating peak 
areas using the trapezoidal method [157].   
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expected to diminish nonlinearly as a function of the distance between the silicon v-groove array 

and the mirror surface), or to some other, unknown, cause.   

 

 

Figure 4.13  The measured height of the first reflection peak from the 
mirror surface is approximately half the height of the fiber endface 
reflection peak.  

 

4.4 Surface Reconstruction 

4.4.1 Reconstruction problem 

Using diverging beams to measure distances between fiber endfaces and the sample surface 

creates a unique surface reconstruction problem.  Although optical path length can be measured 

with great precision and accuracy, the angle at which any given optical path length is measured is 

unknown.  This is illustrated in a two-dimensional example in Figure 4.14.  Eight equally spaced 

channels in the sample arm of a time-multiplexed SWI system measure the distance between fiber 

endfaces and a circular sample surface.  These measured distances are perpendicular to the sample 

surface. If these measured distances are assumed to have all been measured at the same angle 
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(relative to the linear array of fiber endfaces), then the reconstructed surface may differ 

significantly from the true, measured surface.   

 

 

Figure 4.14  Eight equally spaced channels measure 
distances normal to a circular surface (solid line).  
Assuming that all measured distances are vertical causes 
error in the reconstructed surface (dashed line). 

 

As the curvature or complexity of the measured surface increases, the potential magnitude 

of surface reconstruction error also increases, up to some limit imposed by the acceptance angle 

of the optical fiber.  Although both the structure and magnitude of reconstruction errors depend 

uniquely on the measured sample surface, an example case can provide insight into the potential 

magnitude of surface reconstruction error.  Here, I consider a circular surface measured with the 

3-channel SWI system depicted in Figure 4.15.  (I chose this case because there is an analytical 

solution for radius of curvature of a circle passing through three points11  [151]; in the 8-channel 

example illustrated in Figure 4.14, the erroneously reconstructed surface would not be truly 

circular.)  In this example, three equally spaced channels, each separated from the next by distance 

d, measure perpendicular distances a, b, and c to a circular surface with radius of curvature R.  

 

                                                
11 This problem is a special case of Apollonius’ problem, first solved over 2,000 years ago! 
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Figure 4.15  Assuming that measured distances are vertical 
causes error in the reconstruction of a circular surface with 
radius of curvature R.  The difference between the true radius 
of curvature R and the radius R’ of the reconstructed surface 
is determined by the spacing d between channels, the distances 
a, b, and c between the channel ends and the surface, and the 
true radius of curvature R.   

 

Given some radius of curvature R, a channel spacing d, and a perpendicular measured distance a, 

measured distances b and c are given by  

 𝑏 = 	 𝑅 + 𝑎 D + 𝑑D − 𝑅 (4.4) 

and 

 𝑐 = 	 𝑅 + 𝑎 D + 4𝑑D − 𝑅	. (4.5) 

respectively.  Assuming that all measured distances are vertical, i.e. perpendicular to the linear 

channel array, the reconstructed circle must pass through points (0,-a), (d,-b), and (2d,-c).  

Choosing values for distances a and d and radius of curvature R to be similar to experimental 

values from Section 4.5.1 gives the following: 

 

a = 500 µm, 

d = 500 µm, 
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R = 25.8 mm. 

 

With these values, the radius of curvature R’ of the reconstructed circle is approximately 26.6 mm.  

This represents an error of approximately 3% in the reconstructed radius of curvature, an error 

roughly four orders of magnitude larger than the limiting accuracy of the 8-channel SWI system 

used for the experiments of this chapter.   

 

4.4.2 Reconstruction assumptions 

In a fiber-based time-multiplexed SWI system, the minimum spacing between channels is 

fundamentally limited by the physical size of optical fiber.  For SMF-28 fiber, minimum spacing 

is equal to the 125 µm cladding diameter, although fibers mounted in a silicon v-groove chip are 

spaced by at least twice this distance.  Consequently, the spacing between channels will almost 

always be substantially larger than the transverse resolution of the SWI system, and the measured 

surface will be underconstrained.  This is illustrated in Figure 4.16.    

 

 

Figure 4.16  Identical sets of distance measurements can be obtained 
from two dramatically different sample surfaces.    

 

 Because the measured surface is underconstrained, the number of reconstructed surfaces is 

potentially infinite, and an a priori judgement must be made about the sample surface.  The 
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approach I take here is to assume that the sample surface matches, or very nearly matches, some 

analytic function.  This approach is mathematically straightforward and likely a good fit for many 

optical surfaces.  A different approach, which makes no assumptions about the surface shape and 

instead seeks to minimize the slope of the reconstructed surface, is explored in Section 5.2.2.   

 

4.4.3 Reconstruction algorithm 

After assuming some analytic function12 f(x,y) that describes the sample surface, the 

surface reconstruction problem can be stated as follows: what are the coefficients of that function 

that give a surface with surface normals that (a) pass through the locations ci of the channel 

endfaces and (b) have lengths 𝑑lÕ equal to the measured distances 𝑑lg±mh between each channel 

endface and the sample surface?    

 

 

Figure 4.17  Surface function f(x,y) with surface normals of 
distances d1 and d2  passing through two channel locations c1 and 
c2.   

 

                                                
12 This function may simply be a description of the ideal sample surface, or it may also contain 
terms to describe surface aberrations.   
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With reasonable initial guesses for function coefficients, this problem may be solved iteratively 

using the algorithm outlined below.  Figure 4.17 is provided for clarity. 

 

1) Choose an analytic function f (x,y,) to describe the sample surface.   

2) Make an initial guess for the coefficients of the surface function f (x,y,).   

3) Find all surface normals.  (These are given by the negative reciprocal of the surface 

gradient.) 

4) Select the surface normals that intersect points ci, the locations of the N fiber endfaces 

corresponding to each channel.   

5) Find lengths 𝑑lÕof these intersecting surface normals.   

6) Compute a merit function by subtracting the lengths of intersecting surface normals from 

measured distances 𝑑lg±mh and sum the square of the differences, according to   

 
𝑄 =

𝑑PÕ
⋮
𝑑®Õ

−
𝑑Pg±mh±
⋮

𝑑®g±mh

D®

lyP

	. (4.6) 

7) Iterate through steps 3 through 6, optimizing function coefficients to minimize the merit 

function Q.     

 

This algorithm was successfully used to determine the radius of curvature for a cylindrical lens in 

the measurement described in Section 4.5.1.  However, the algorithm has one serious weakness.  

In addition to optimizing the coefficients of the sample surface function, it must also optimize six 

other parameters—the translations and rotations of the sample surface in Cartesian space.  For 

many sample surfaces, one or more of these Euclidean transformations may be functions of the 

others, and as a result, the high-dimensional optimization search space is not convex and may be 
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rapidly varying.  Consequently, the required quality of initial guesses, both for function 

coefficients and for the position of the sample surface relative to channel endfaces, is unknown 

and may be extremely high.   

 

4.5 Experimental Results 

The time-multiplexed SWI system described in Section 4.2.1 was used to measure two 

samples, both with rotational symmetry of order two or lower.  The first object, a cylindrical lens, 

was measured with a sampling density that could be easily achieved with a 2D channel array, and 

its surface was reconstructed using the algorithm described above.  The second object, a 

Columbian 50-peso coin, was measured at a sampling density unachievable without either 

mechanical scanning of the object or significant alterations to the SWI system (such alterations are 

briefly discussed in Section 5.2.1).  The coin surface is too complex to be reconstructed using an 

algorithm that relies on an analytic function to describe it, and in the measurement shown in 

Section 4.5.2, vertical beam paths were assumed.  A reconstruction algorithm capable of dealing 

with complex sufaces of low symmetry is proposed in Section 5.2.2.   

 

4.5.1 Cylindrical lens 

A plano-convex cylindrical lens (Figure 4.18) with radius of curvature equal to 25.8 mm, 

±3%, was metalized with a 10 nm layer of chrome, followed by a 40 nm layer of gold, to increase 

its reflectivity.  It was then epoxied to a machined aluminum block and mounted approximately 

0.6 mm below the silicon v-groove array on an x-y-z stage stack (Newport XMS160, XMS100, 

GTS30V).   The long axis of the lens was mounted roughly parallel to the x-axis of the stage stack, 

and perpendicular to the line of channel endfaces in the v-groove array.  A virtual 17 x 8 channel 
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array was created by stepping the lens in seventeen 500 µm increments in x, acquiring a single 

time-multiplexed measurement at each step.  To minimize the impact of thermal variation during 

the measurement process, this measurement procedure was repeated 50 times, and the delay time 

measurements of each channel at each x-location were averaged.  To obtain distance measurements 

from delay time measurements, an air index value of 1 was assumed.   

 

 

Figure 4.18  Plano-convex 
cylindrical lens, 5 mm x 10 mm, 
radius of curvature = 25.8 mm.  
Coffee bean is shown for scale.   

 

To reconstruct the surface of the cylindrical lens, the algorithm from Section 4.4.3 was 

used, with the analytic surface function f(x,y) being the equation of a cylinder.  MATLAB’s 

fmincon function [152] (set to use the interior-point algorithm) was used to optimize the radius of 

curvature of the cylinder equation, along with the location and rotations of the cylinder in Cartesian 

space.    For a convex surface, the length of any surface normal that intersects a point above the 

surface is also the shortest distance between the surface and the point.  Therefore, instead of using 

an analytic function to determine surface normals in each iteration of the algorithm, a grid of points 

on the surface of the cylinder was generated, and the shortest distance between each channel point 

and the nearest surface grid point was taken to be the surface normal.  The spacing between grid 
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points was 9 µm, equal to the transverse resolution of the SWI system.  Finally, the optimization 

process was seeded with the following initial guesses for the radius of curvature, location, and 

extrinsic rotations of the cylindrical surface: 

 

𝑅 = 25.8	mm 

𝑥 = 0	mm 

𝑦 = 1.75	mm 

𝑧 = 25.8	mm 

𝜙Ò = 0° 

𝜙Ò = 0° 

𝜙Ò = 0° 

 

The reconstructed cylindrical surface is shown in Figure 4.19.  Its radius of curvature is 25.5 

mm, well within the manufacturer’s 3% error bounds for the specified 25.8 mm radius of 

curvature.  Consistent with the expectations discussed in Section 4.4.1, the reconstructed surface 

lies within the surface that would be obtained by assuming that all measured distances are 

vertical (Figure 4.19b).   
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Figure 4.19  (a) Reconstructed cylindrical surface.  (b) Top-down view of reconstructed 
surface plotted along with measured distances (coarse grid). 

 

 Figure 4.20 shows the absolute values of the differences between distances measured at 

each channel location and the lengths of the reconstructed surface normals that intersect those 

channel locations.  These differences have a maximum value of 1.235 µm, roughly five times 

larger than the ±112	nm accuracy limit derived from the system calibration; and they show strong 

local variation, making them unlikely to be completely due to variation of the sample surface.  

However, all difference values are well below the transform-limited resolution of the SWI system 

(1.235 µm is approximately 2.84 x 10-2 of a single DFT bin), and it is difficult to distinguish 

between measurement errors and the potential shortcomings of the reconstruction algorithm.   

 

a b 
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Figure 4.20  Absolute differences, in 𝜇𝑚, between 
measured distances and the lengths of the surface 
normals that intersect channel locations. 

 

4.5.2 Coin 

To measure the 17 mm x 20 mm area surrounding the 50-peso coin (pictured in Figure 

4.21a) with a sample spacing of 25 µm, 68,100 measurements were taken over the course of nearly 

4 days.  While this measurement time may seem excessive, it represents an 8-fold improvement 

over the time that would be required to measure the same coin at the same sampling density without 

time-multiplexing.  The coin measurement required mechanical scanning in both x and y, and an 

algorithm for reconstructing its complicated surface does not exist.  Nevertheless, the surface 

recovered by assuming that all measured beam paths are vertical still shows the capability of the 

time-multiplexed SWI system to make finely superresolved measurements (see Figure 4.22) and 

demonstrates the need for further algorithm development and improvements to sampling density 

restrictions.   
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Figure 4.21  (a) Columbian 50-peso coin.  (b) Image of measured distances between channel 
endfaces and the coin.  (c) Detailed view of the Spanish and Latin names of the Spectacled Bear.  
Color bars in 𝜇𝑚.  

 

 

Figure 4.22  Comparison between (a) transform-limited and (b) superresolved 
images of the Spectacled Bear's cabeza.  Color bars in 𝜇𝑚.   
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4.6 Conclusions 

At the outset of this chapter, I stated that time-multiplexed SWI has the potential to make 

non-scanning, 3D measurements of steeply sloped, unsymmetrical surfaces.  The time-multiplexed 

SWI system described in this chapter cannot measure steeply-sloped surfaces (due to the linear 

arrangement of channel endfaces and the relatively small acceptance angle of SMF-28 fiber), and 

without mechanical scanning of the sample, it is restricted to 2D measurements (due to both the 

low number of channel endfaces and their linear arrangement).  However, neither of these 

limitations are fundamental.  Non-planar, 2D arrays of channel endfaces are can certainty be 

constructed, and with additional power from the tunable laser source, such arrays could contain 

many more than eight channels.   

The work presented in this chapter is, to the best of my knowledge, the first experimental 

demonstration of a time-multiplexed SWI system.  In applying it to the problem of surface 

measurement, I have achieved several worthwhile results.  First, I have shown that the total time 

required to measure a 3D surface can be significantly reduced.  Second, I demonstrated that the 

need for mechanical scanning of a 3D sample surface can be reduced, or even eliminated entirely.   

Third, I have clarified two important requirements for further development of time-multiplexed 

SWI for 3D surface metrology.  These requirements—increased sampling density and surface 

reconstruction algorithms—will be discussed in the following chapter.   
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Chapter 5  

Summary and Discussion of Future Work 

 

 

5.1 Summary 

This thesis began with a numerical investigation of the precision and uncertainty limits of 

superresolved swept-wavelength interferometry.  Uncertainty in any superresolved SWI 

measurement is determined by two measures—the uncertainty in the size of a single DFT bin, and 

the bias present in any sub-transform-limited estimate of delay time.  DFT bin size uncertainty is 

a function of, first, the consistency in the frequency spacing between samples of any measured 

interference pattern, and second, the accuracy with which that frequency spacing is known.  For a 

SWI system that uses a trigger interferometer to maintain even frequency spacing between 

samples, DFT bin size uncertainty is dominated by uncertainty in the exact wavelengths of the 

absorption lines used to calibrated the trigger interferometer.   

To evaluate bias in superresolved estimates of delay time, I used a numerical model to 

compare the accuracy of four frequency estimation methods in making such estimates.  Two 

multiple-frequency estimation methods—Nonlinear Least Squares (NLS) and ESPRIT—and two 

single-frequency estimation methods—Local Linear Regression (LLR) and Candan’s estimator—

were applied to numerically generated SWI data and used to estimate delay times between two 

reflectors.  For reflectors separated by roughly 20 DFT bins or less, only NLS estimates are 

unbiased.  However, for more widely separated reflectors, Candan’s estimator produces estimates 

with negligible bias at a fraction of the computation time required by NLS.   
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To evaluate the precision of NLS, ESPRIT, LLR and Candan’s estimator, I used a 

numerical model to compare the variance of each of these estimators to the Cramér-Rao bound.  

With the exception of ESPRIT, all these estimators have variances closely approaching the 

Cramér-Rao bound.  However, Candan estimates, computed using only three points from the delay 

time domain, show the greatest noise tolerance; this is a consequence of Parseval’s relation for the 

DFT.     

In an experimental SWI system, measurement accuracy may fail to reach limiting 

uncertainty values due to a number causes.  In Chapter 3, I evaluated six of these potential causes: 

non-Gaussian noise, spurious delay times, power fluctuation across a laser sweep, dispersion 

mismatch between trigger and measurement interferometers, temperature drift in the trigger 

interferometer, and laser sweep rate nonlinearity.  For SWI, the consequences of most forms of 

non-Gaussian noise cannot be predicted either analytically or numerically using existing models, 

and any systematic measurement error arising from non-Gaussian noise must be determined 

experimentally.   By contrast, the effects of dispersion mismatch and temperature drift can by 

determined analytically, and the consequences of spurious delay times can be numerically 

predicted.   

The exact effects of laser power fluctuation and laser sweep nonlinearity may be quantified, 

but they depend on the specific power and sweep-rate variations of any given tunable laser source.  

For the Agilent 81680A external cavity tunable laser used for all the experiments described in this 

thesis, I computed the effects of variations in both output power and sweep rate.  Power 

fluctuations have the potential to degrade measurement accuracy to a much greater extent than 

does sweep rate variation; however, the effects of power variation may be controlled or eliminated 

by using balanced detection in the measurement interferometer.     
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Chapter 3 concluded with a description of a series of experimental SWI measurements of 

101 distances, spaced equally through a range of 3 DFT bins.  This measurement series had a 

maximum bias of 62 nm, or 1.8x10-3 of the SWI system’s transform-limited resolution, roughly 

one order of magnitude larger than the measurement’s limiting uncertainty of 4 nm, and an average 

1𝜎 standard deviation of 135 nm.  The discrepancy between the measured 135 nm standard 

deviation and the ~1 nm theoretical limit is attributable to temperature variation during the 

experiment.   

 The concept of time-multiplexed SWI was first suggested by Dr. Eric Moore (in the 

concluding chapter of his own Ph.D. thesis) as a possible method for increasing the speed of SWI 

measurements [51].  In my thesis work, I have built on this idea, experimentally demonstrating the 

feasibility of time-multiplexed SWI, and exploring its potential to make 3D measurements of low-

symmetry surfaces.   

 In a time-multiplexed SWI system, the unambiguous range of the SWI system is divided 

among many channels, allowing simultaneous, parallel measurements of delay time to be obtained 

from each channel.  Experimentally, this is accomplished by splitting the sample arm of the 

measurement interferometer into multiple physical channels.  By constructing each channel from 

different lengths of optical fiber, the channels are assigned different portions of the unambiguous 

range of the SWI system.   

One of the chief concerns in the design of such a system, particularly if delay time 

measurements are to be superresolved, is maintaining adequate SNR.  Because the maximum 

power returned from each channel is inversely proportional to the total number of channels, SNR 

may deteriorate rapidly as the number of measurement channels in the system is increased.  In a 

system dominated by quantization noise, signal contrast, and thus SNR, can be maximized with an 
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appropriate choice of the power coupling ratio between reference and sample arms of the 

measurement interferometer.   

To obtain high-accuracy 3D profiles of sample surfaces with a time-multiplexed SWI 

system, two key requirements must be met.  First, the physical locations of all channel termini 

must be known, relative to each other, to at least the level of accuracy desired from the sample 

surface profile.  Second, a method for reconstructing the sample surface profile from measured 

distances must be available.  In Section 4.3, I described a calibration method for the 8-channel 

time-multiplexed SWI system that I developed and used for the experiments detailed in Chapter 

4.  In this system, each of the 8 channels is terminated at a cleaved, polished fiber end face and 

housed in a silicon v-groove array.  Consequently, these channels are separated from each other 

by much more than the transverse resolution of the system, and unless the sample is mechanically 

scanned, the sample surface reconstruction will be under-constrained.   

 In Chapter 4, two surface measurement experiments were described.  In the first 

experiment, I used the 8-channel SWI system to produce a synthetic array of distance 

measurements (comparable to the sort of measurements that could be obtained from a two-

dimensional channel array) to the surface of a cylindrical lens.  I then developed an algorithm for 

reconstructing the surface profile of the cylindrical lens from the array of distance measurements.  

Because the surface of the cylindrical lens can be described by an analytic function, and because 

it varies smoothly and slowly on the scale defined by the spacing between channels, the surface 

reconstruction algorithm was able to determine the radius of curvature of the lens to within the 

lens manufacturer’s margin of error.   

In a second experiment, I measured the surface of a Columbian 50-peso coin.  This surface 

is not slowly varying, nor can it be readily described by an analytic function.  Consequently, the 
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coin required significant mechanical scanning to achieve reasonable sampling density across its 

surface.  Additionally, the reconstructed surface has lower fidelity than that of the coin, since all 

measured distances were assumed to be perpendicular to the array of channel endfaces.  However, 

the coin surface measurement clearly illustrates the capability of time-multiplexed SWI to make 

finely-superresolved surface measurements with greatly reduced measurement times.  In the 

remaining section of this chapter, I outline two potential approaches to the outstanding problems 

of sampling density and surface reconstruction.   

 

5.2 Future Work 

5.2.1 Multistatic SWI 

One intriguing possibility for increasing sampling density in a fiber-based, time-

multiplexed SWI system is to create a multistatic SWI by allowing crosstalk between channels.  

This could be accomplished by increasing the distance between the channel endface array and the 

sample surface, or by using higher NA fiber in the channels, or both.  Similar ideas have been 

proposed in the past [51], and an FMCW ladar system using trilateration along with mechanical 

scanning has been used to measure surface profiles for diffusely scattering surfaces [153].   

One of the primary design concerns in a multistatic system is the proper selection of 

channel lengths.  A simple example can be used to illustrate the complexity of this problem, and 

to point to a potential method for solving it.  In Figure 5.1,  a simplified diagram of the sample 

arm of a 3-channel multistatic SWI system is shown.  In addition to the 3 individual path length 

measurements made by each of the 3 channels, 3 more distance measurements can be obtained in 

a multistatic configuration.  
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Figure 5.1  Sample arm in a multistatic 
SWI with three channels.  Capital 
letters denote the channel length, and 
lower case letters denote the path 
lengths between channels.   

 

For channels of lengths A, B, and C, spaced along a line at intervals of distance 2𝑑, and with 

separations of lengths a, b, and c between the end of each channel endface and the sample 

surface, Table 5.1 gives the delay times measured by each channel.   

 

Table 5.1  Delay times measured by each 
channel as a function of channel length (capital 
letters) and the distances between channel 
termini and the sample surface (lowercase 
letters). 

Channel 1 Channel 2 Channel 3 

2𝐴 + 2𝑎 2𝐵 + 2𝑏 2𝐶 + 2𝑐 

𝐴 + 𝐵 + 2𝑎𝑏 𝐴 + 𝐵 + 2𝑎𝑏 𝐵 + 𝐶 + 2𝑏𝑐 

𝐴 + 𝐶 + 2𝑎𝑐 𝐵 + 𝐶 + 2𝑏𝑐 𝐴 + 𝐶 + 2𝑎𝑐 

        

2𝑑 

a b c 
ab 

A 
B 

C 

ac bc 
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The detected signal is a superposition of the signals in all 3 channels, and its Fourier transform 

contains peaks at each of the six unique delay times measured by the 3-channel, multistatic 

system.  Figure 5.2 shows the proportional spacing between delay times for the following 

channel lengths and spacings: 

 

𝐴 = 	2𝑑 

𝑎 = 𝑏 = 𝑐 = 2𝑑 

𝐵 = 2𝐴 

𝐶 = 3𝐴 

 

 

 

Figure 5.2  Composite signal measured in the 3-channel multistatic SWI. 

 

 In any multichannel system, the maximum delay time must be below some value set by 

either the coherence length of the laser sources, or what is more likely, by the maximum 

allowable uncertainty in superresolved measurements of delay time (Figure 2.17).  Additionally, 

the minimum spacing between any two delay times must be no less than the Rayleigh resolution 

of the SWI system.  Even in a 3-channel system, adjusting the channel lengths and spacings to 
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meet both these requirements is challenging, and in a multistatic system containing many more 

than 3 channels, the complexity of the channel length problem is significant.   

The problem could be approached numerically, by optimizing channel lengths, or both 

channel lengths and distances of each channel from the sample surface, or even channel lengths, 

surface distances, and lateral channel spacings (although optimizing the later requires building a 

custom channel array).  These constants should be optimized so that the minimum distance 

between any two delay times is at least equal to the Rayleigh resolution of the system, and the 

maximum delay time satisfies the maximum uncertainty constraint.  In the 3-channel example, 

each of the delay time differences ∆𝜏lF given by 

 𝜏P 𝜏D 𝜏£
𝜏P 𝜏D 𝜏£
𝜏P 𝜏D 𝜏£

𝜏  𝜏Ü 𝜏³
𝜏  𝜏Ü 𝜏³
𝜏  𝜏Ü 𝜏³

𝜏P 𝜏D 𝜏£
𝜏P 𝜏D 𝜏£
𝜏P 𝜏D 𝜏£

𝜏  𝜏Ü 𝜏³
𝜏  𝜏Ü 𝜏³
𝜏  𝜏Ü 𝜏³

			− 			

𝜏P 𝜏P 𝜏P
𝜏D 𝜏D 𝜏D
𝜏£ 𝜏£ 𝜏£

𝜏P 𝜏P 𝜏P
𝜏D 𝜏D 𝜏D
𝜏£ 𝜏£ 𝜏£

𝜏  𝜏  𝜏 
𝜏Ü 𝜏Ü 𝜏Ü
𝜏³ 𝜏³ 𝜏³

𝜏  𝜏  𝜏 
𝜏Ü 𝜏Ü 𝜏Ü
𝜏³ 𝜏³ 𝜏³

= 	

∆𝜏PP ∆𝜏DP ∆𝜏£P
∆𝜏PD ∆𝜏DD ∆𝜏£D
∆𝜏P£ ∆𝜏D£ ∆𝜏££

∆𝜏 P ∆𝜏ÜP ∆𝜏³P
∆𝜏 D ∆𝜏ÜD ∆𝜏³D
∆𝜏 £ ∆𝜏Ü£ ∆𝜏³£

∆𝜏P  ∆𝜏D  ∆𝜏£ 
∆𝜏PÜ ∆𝜏DÜ ∆𝜏£Ü
∆𝜏P³ ∆𝜏D³ ∆𝜏£³

∆𝜏   ∆𝜏Ü  ∆𝜏³ 
∆𝜏 Ü ∆𝜏ÜÜ ∆𝜏³Ü
∆𝜏 ³ ∆𝜏Ü³ ∆𝜏³³

 

(5.1) 

must be maximized, or must at least be equal to the system’s Rayleigh resolution.  Similarly, the 

maximum value of any individual delay time 𝜏l should be minimized, or should at least be less 

than some acceptable ceiling value.   Even in the 3-channel case, this problem appears daunting.  

In a mutistatic SWI system containing many channels (10 or more), the solution to the channel 

length problem would require much more attention and ingenuity.     

 One possible solution to the channel length problem is a change in the geometry of the 

interferometer, from the Michelson, or reflection geometry shown in Figure 5.1, to the Mach-
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Zehnder, or transmission geometry, depicted in Figure 5.3.  In Figure 5.3, the two transmission 

channels (dashed lines) emit a signal collected by the three receiver channels (solid lines).  This 

geometry does causes a reduction in sampling density—because some of the fibers in the channel 

array are used only as emitters—but it significantly reduces the complexity of the channel length 

problem.   

 

 

Figure 5.3  System diagram for a multistatic SWI system with Mach-
Zehnder geometry.  Light emitted by two transmission channels 
(dashed lines) is collected by the three receiver channels (solid 
lines).  TL = tunable laser.  

 

 Figure 5.4 shows a simplified, 2D version of the sample arm of a Mach-Zehnder, 

multistatic SWI system.  In this system, three receiver channels are alternately spaced with two 

transmitter channels.  Each channel is separated from its nearest neighbors by distance 2d, and the 

channel endface array is separated from the flat sample surface by a distance c.  Each of the three 

receiver channels collects a signal containing two delay times, one originating from each of the 

transmitter channels.   
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Figure 5.4  Sample arm in a multistatic 
Mach-Zehnder SWI system with two 
transmission channels of lengths 𝛼 and 𝛽, 
and three receiver channels of lengths A, B, 
and C.   

  

 Table 5.2 lists the delay times measured by each of the three receiver channels, assuming 

the path lengths α and β of the transmitter channels are equal.  Unlike the Michelson-geometry 

multistatic SWI, in which measured delay times are interdependent functions of channel path 

lengths, the Mach-Zehnder-geometry SWI produces measured delay times that are independent 

functions of a single channel path length.  In the example of Figure 5.4, the two delay times 

measured by any one receiver channel are separated by a delay time proportional to the distance 

2d between channels in the array.  And the delay time differences between channels are functions 

only of the path lengths A, B, and C of the receiver channels.  This result allows the channel path 

lengths to be optimized with relative ease.  Consequently, although the Mach-Zehnder geometry 

comes at the cost of reduced sampling density, it may offer the best path forward for the 

development of a multistatic SWI system.   

 

a 
b 

A 
B C 

𝛼 𝛽 

2𝑑 

c 



 134 

Table 5.2  Delay times measured by each channel as a function of channel 
length and the distances between channel termini and the sample surface. 

Channel 1 Channel 2 Channel 3 

𝐴 + 𝛼 + 2 𝑑D + 𝑐D 𝐵 + 𝛼 + 2 𝑑D + 𝑐D 𝐶 + 𝛼 + 2 𝑑D + 𝑐D 

𝐴 + 	𝛼 + 2 9𝑑D + 𝑐D 𝐵 + 𝛼 + 2 9𝑑D + 𝑐D 𝐶 + 𝛼 + 2 9𝑑D + 𝑐D 

 

5.2.2 Surface reconstruction using Hermite splines 

 For sample surfaces with little or no symmetry, the surface reconstruction algorithm 

described in Section 4.4.3 cannot be used, as it relies on an analytic function to described the 

sample surface. Furthermore, it is an optimization algorithm with a search space that is very 

unlikely to be convex.  Because search space changes depending on the analytic function used to 

describe the sample surface, the tolerances on the “initial guess” that are required for the 

optimization process to converge to the global maximum are unknown.   

Here, I present one potential alternative to the method described in Section 4.4.3.  Instead 

of assuming the sample surface can be described by an analytic function, this method assumes 

only that the sample surface is the most slowly varying surface that is able to meet the following 

two constraints: 

1) For any distance measurement from any channel, the sample surface must intersect the 

spherical shell representing all possible directions for that distance measurement. 

2) At points of intersection between the sample surface and the spherical shell of 

distances, the sample surface must be perpendicular to the line between the intersection 

point and the channel endface location.   

These constraints are illustrated for a 2D surface in Figure 5.5.   
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Figure 5.5  For an arbitrary sample surface, the distances d1 
and d2 measured from channel enface locations C1 and C2 
must intersect the sample surface and be perpendicular to the 
sample surface at the points of intersection.   

 

An arbitrary sample surface can be described with Hermite splines, which, most conveniently, are 

defined both by the points they intersect and by the slope of the spline at the points of intersection 

[154].  The angles corresponding to each measured distance (angles 𝜃l in the 2D example shown 

in Figure 5.5) may then be optimized to minimize the maximum derivative of the surface shape, 

or equivalently, to find the minimum-order Hermite spline necessary to satisfy both of the 

constraints outlined above.   
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Appendix A  

Derivation of Equation for Vibrational Sidelobes 

 

 

Here, I present the derivation of Equation (3.1).  The derivation here closely resembles the 

work presented in [19].  I have modified the notation to match the rest of the work presented in 

this thesis, and explicitly noted the inclusion of assumptions upon which Equation (3.1) depends.   

 To begin, consider a Michelson-geometry SWI system in which the sample arm contains 

only one reflector.  If the sample arm is disturbed by mechanical vibration, the electric field E at 

the photodetector is given by  

 𝐸 𝜈 𝑡 = 𝑎 1 − 𝑎𝐸W𝑒`FDEG H dÞ + 𝑎 1 − 𝑎 𝑅h𝐸W𝑒`F DEG H dßb� àáâ DEµ¶H 	. (A.1) 

The electric field E is a function of the time-varying instantaneous optical frequency 𝜈, and its 

amplitude E0 is assumed to be constant across the laser sweep.  The time delays of the reference 

and sample arms are given by 𝜏Mand 𝜏O, respectively.  The reflectivity of the single reflector in the 

sample arm is given by 𝑅O.  The coupling ratio a of the optical coupler may take on values between 

0 and 1.  For a 3 dB coupler, its value would be 0.5.   

 Mechanical vibration induces a periodic variation of the phase in the sample arm of the 

SWI.  This is represented by the term 𝐴 sin 2𝜋𝑓g𝑡 , where A is the amplitude of the vibration-

induced phase variation and 𝑓g is its frequency.   

Using the Jacobi-Anger expansion [155], the exponential term with a sine as its argument 

can be expressed as a sum of Bessel functions of the first kind, so 
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𝑒`F� àáâ DEµ¶H = 𝐽Ó 𝐴 𝑒`FDEÓµ¶H

ÓyÈ

Óy`È

	. (A.2) 

In Figure A.1, orders zero through four of the Bessel functions are plotted.   

 

 

Figure A.1  Bessel functions of the first kind for orders 0, 1, 2, 3, and 4.  For 
small vibration amplitudes A, the values of second and higher order Bessel 
functions are negligible.   

 

Provided vibration amplitude A is small, then Equation (A.2) is well-approximated by its zeroth-

order and first-order terms,  

 𝑒`F� àáâ DEµ¶H ≈ 𝐽W 𝐴 + 𝐽P 𝐴 𝑒`FDEµ¶H − 𝐽P 𝐴 𝑒FDEµ¶H	. (A.3) 

In this case, Equation (A.3) can be rewritten as 
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 𝐸 𝜈 𝑡 = 𝑎 1 − 𝑎𝐸W𝑒`FDEG H dÞ

+ 𝑎 1 − 𝑎 𝑅hh𝐸W𝑒
`F DEG H dß 𝐽W 𝐴 + 𝐽P 𝐴 𝑒`FDEµ¶H

− 𝐽P 𝐴 𝑒FDEµ¶H 	. 

(A.4) 

The intensity at the photodetector is given by the squared modulus of the electric field, so 

 𝐼 𝜈 𝑡 = 𝑎 1 − 𝑎𝐸W𝑒`FDEG H dÞ

+ 𝑎 1 − 𝑎 𝑅h𝐸W𝑒`F DEG H dß 𝐽W 𝐴 + 𝐽P 𝐴 𝑒`FDEµ¶H

− 𝐽P 𝐴 𝑒FDEµ¶H D	. 

(A.5) 

By representing the time delay difference between the two arms of the SWI as 

 𝜏W = 𝜏O − 𝜏M	, (A.6) 

Equation (A.5) can be expanded to become 



 153 

 𝐼 𝜈 𝑡 = 𝑎 1 − 𝑎 𝐼W + 𝑎 1 − 𝑎 𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴

+ 𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐼W𝑒FDEG H dã

+ 	𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐼W𝑒`FDEG H dã 		

+ 𝑎 1 − 𝑎 𝑅O𝐽P 𝐴 𝐼W𝑒FDEG H dã𝑒FDEµ¶H

+ 𝑎 1 − 𝑎 𝑅O𝐽P 𝐴 𝐼W𝑒`FDEG H dã𝑒`FDEµ¶H

− 𝑎 1 − 𝑎 𝑅O𝐽P 𝐴 𝐼W𝑒FDEG H dã𝑒`FDEµ¶H

− 𝑎 1 − 𝑎 𝑅O𝐽P 𝐴 𝐼W𝑒`FDEG H dã𝑒FDEµ¶H

+ 𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐽P 𝐴 𝐼W𝑒FDEµ¶H

+ 𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐽P 𝐴 𝐼W𝑒`FDEµ¶H

− 𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐽P 𝐴 𝐼W𝑒`FDEµ¶H

− 𝑎 1 − 𝑎 𝑅O𝐽W 𝐴 𝐽P 𝐴 𝐼W𝑒FDEµ¶H

− 𝑎 1 − 𝑎 𝑅O𝐽PD 𝐴 𝐼W𝑒`FDEDµ¶H − 𝑎 1 − 𝑎 𝑅O𝐽PD 𝐴 𝐼W𝑒FDEDµ¶H	. 

(A.7) 

If the laser sweep rate is assumed to be linear, with sweep rate 𝛾, then the instantaneous 

optical frequency 𝜈 𝑡  can be expressed as 

 𝜈 𝑡 ≈ 𝜈W + 𝛾𝑡	, (A.8) 

and time t can be written as a function of instantaneous optical frequency, i.e.  

 
𝑡 =

𝜈W − 𝜈 𝑡
𝛾 	. (A.9) 

After substituting Equation (A.9) into Equation (A.7), simplifying, and applying Euler’s identity, 

detected intensity I is given by 
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 𝐼 𝜈 = 𝑎 1 − 𝑎 𝐼W + 𝑎 1 − 𝑎 𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴

+ 2𝑎 1 − 𝑎 𝑅O	𝐽W 𝐴 𝐼W cos 2𝜋𝜈 𝑡 𝜏W 			

+ 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W𝑒
FDEµ¶

Gã
· 𝑒FDEG dã`

µ¶
·

+ 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W𝑒
`FDEµ¶

Gã
· 𝑒`FDEG dã`

µ¶
·

− 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W𝑒
`FDEµ¶

Gã
· 𝑒FDEG dãb

µ¶
·

− 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W𝑒
FDEµ¶

Gã
· 𝑒`FDEG dãb

µ¶
·

− 𝑎 1 − 𝑎 𝑅O𝐽PD 𝐴 𝐼W𝑒
`FDEDµ¶

Gã
· 𝑒FDEG

Dµ¶
·

− 𝑎 1 − 𝑎 𝑅O𝐽PD 𝐴 𝐼W𝑒
`FDEDµ¶

Gã
· 𝑒FDEG

Dµ¶
· 	. 

(A.10) 

Taking the Fourier transform of Equation (A.10) gives the following expression: 

 𝐼 𝜏 = 𝑎 1 − 𝑎 𝐼W + 𝑎 1 − 𝑎 𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴 𝛿 0

+ 𝑎 1 − 𝑎 𝑅O	𝐽W 𝐴 𝐼W 𝛿 𝜏 − 𝜏W + 𝛿 𝜏 + 𝜏W 			

+ 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W 𝑒FDEµ¶
Gã
· 𝛿 𝜏 − 𝜏W −

𝑓g
𝛾

+ 𝑒`FDEµ¶
Gã
· 𝛿 𝜏 + 𝜏W −

𝑓g
𝛾 + 𝑒`FDEµ¶

Gã
· 𝛿 𝜏 − 𝜏W +

𝑓g
𝛾

+ 𝑒FDEµ¶
Gã
· 𝛿 𝜏 + 𝜏W +

𝑓g
𝛾

− 1 − 𝑎 D𝑅O𝐽PD 𝐴 𝐼W 𝑒`FDEDµ¶
Gã
· 𝛿 𝜏 −

2𝑓g
𝛾

+ 𝑒`FDEDµ¶
Gã
· 𝛿 𝜏 +

2𝑓g
𝛾 	. 

(A.11) 

Both sidebands contain reflection peaks, centered at 𝜏 = ±𝜏W.  If the vibrational amplitude A is 

nonzero, each reflection peak has two sidelobes spaced from their main peak by a delay times 
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determined by the vibrational frequency 𝑓g and the laser sweep rate 𝛾.  The stronger the vibrational 

amplitude A, the more the energy in the main lobe is transferred into the sidelobes, and the lower 

the vibrational frequency 𝑓g, the closer the sidelobes are to the main lobe in delay time.   

 Mechanical vibration also causes sidelobes to appear on either side of the DC term; 

however, the amplitude of these sidelobes is proportional to the square of the value of the first-

order Bessel function, and provided the assumption that vibrational amplitude A is small holds, the 

amplitude of these sidelobes is negligible.   Dropping these squared terms and rearranging gives 

 𝐼 𝜏 = 𝑎D𝐼W + 1 − 𝑎 D𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴 𝛿 0

+ 𝑎 1 − 𝑎 𝑅O	𝐽W 𝐴 𝐼W	𝛿 𝜏 − 𝜏W

+ 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W 𝑒FDEµ¶
Gã
· 𝛿 𝜏 − 𝜏W −

𝑓g
𝛾

+ 𝑒`FDEµ¶
Gã
· 𝛿 𝜏 − 𝜏W +

𝑓g
𝛾

+ 𝑎 1 − 𝑎 𝑅O	𝐽W 𝐴 𝐼W	𝛿 𝜏 + 𝜏W

+ 𝑎 1 − 𝑎 𝑅O	𝐽P 𝐴 𝐼W 𝑒`FDEµ¶
Gã
· 𝛿 𝜏 + 𝜏W −

𝑓g
𝛾

+ 𝑒FDEµ¶
Gã
· 𝛿 𝜏 + 𝜏W +

𝑓g
𝛾 	. 

(A.12) 

A final simplification is achieved by dropping the terms in the negative sideband, assuming that 

coupling ratio a is equal to 0.5, and multiplying the entire expression by 4; this results, at last, in 

Equation (3.1): 
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 𝐼 𝜏 = 𝐼W + 𝑅O𝐼W 𝐽WD 𝐴 + 2𝐽PD 𝐴 𝛿 0

+ 𝑅O	𝐽W 𝐴 𝐼W	𝛿 𝜏 − 𝜏W

+ 𝑅O	𝐽P 𝐴 𝐼W 𝑒FDEµ¶
Gã
· 𝛿 𝜏 − 𝜏W −

𝑓g
𝛾

+ 𝑒`FDEµ¶
Gã
· 𝛿 𝜏 − 𝜏W +

𝑓g
𝛾 	. 

(A.13) 
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Appendix B  

Matlab Code for Numerical Model 

 

 

B.1 Nonlinear Least Squares (NLS) 

B.1.1 Script for evaluating the precision of NLS estimates 

% NLSNoise.m 
% Script to calculate precision of Nonlinear Least Squares (NLS) estimates  
% of the delay time between two reflectors of equal amplitude.  Simulation  
% parameters are defined in two blocks, between dashed lines in the first  
% section.   
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: Stoica, Petre, and Randolph L. Moses. Spectral analysis of signals.  
% Vol. 452. Upper Saddle River, NJ: Pearson Prentice Hall, 2005. 
%************************************************************************** 
%% Set sampling conditions 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1505e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + (5000:5001)*dtau).'; 
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% SNR levels to test (This is SNR in the delay time domain.) 
SNR     = 10:10:110;     
  
% Number of simulations to run at each SNR 
Nnoise  = 30;  
  
w   = hann(N);  % Define window function 
% ------------------------------------------------------------------------- 
  
%************************************************************************** 
%% NLS estimation 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau2),numel(SNR),Nnoise); 
tau2r   = zeros(numel(tau2),numel(SNR),Nnoise); 
etime   = zeros(numel(tau2),numel(SNR),Nnoise); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(SNR)*Nnoise;    % total number of iterations 
I   = 0;    % completed iterations 
  
% Convert SNR from delay time domain to optical frequency domain. 
SNR     = SNR - 10*log10(N);  
  
% Run simulations 
for ij = 1:numel(tau2)    
    for jk  = 1:numel(SNR) 
        for kl = 1:Nnoise 
             
            % Start the timer 
            tic 
  
            % Calculate the sampled signal from the measurement  
            % interferometer 
            u   = 2 + cos(2*pi*nu*tau1) + cos(2*pi*nu*tau2(ij)); 
             
            % Add white Gaussian noise 
            u   = awgn(u,SNR(jk),'measured'); 
  
            % FFT to find transform-limited delay times 
            U   = fft(u); 
  
            % FT resolved peak centers 
            p1      = round(tau1/dtau) + 1; 
            p2      = round(tau2(ij)/dtau) + 1; 
                   
            % Scale initial guesses for NLS 
            scale_factor = 2*pi*dnu*dtau; 
            tau1_scaled  = p1*scale_factor; 
            tau2_scaled  = p2*scale_factor; 
             
            % Vector of initial guesses for both sidebands 
            tau_guess   = [-tau2_scaled, -tau1_scaled, 0, tau1_scaled, ... 
                            tau2_scaled]; 
     
            % Options in for Nelder-Mead Simplex search 
            options = optimset('TolX', scale_factor*10e20); 
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            % Search using Nelder-Mead simplex 
            [tauNLS,~,~] = fminsearchSmallSimplex(@(tau) nls( tau, U ),... 
                                                    tau_guess, options); 
             
            % Record error 
            tau1r(ij,jk,kl)  = tauNLS(end-1)/(2*pi*dnu); 
            tau2r(ij,jk,kl)  = tauNLS(end)/(2*pi*dnu); 
             
            % Record elapsed time 
            etime(ij,jk,kl)     = toc; 
  
            % Update counting variable 
            I   = I + 1; 
                 
            % Display completion percentage every 100 iterations 
            if mod(I,100) == 0 
                disp(I/ti*100) 
            end   
             
        end 
             
    end 
     
end 
 

B.1.2 Subroutine for NLS optimization method 

function Q = nls( tau, U ) 
%-------------------------------------------------------------------------- 
% The NLS optimization method for frequency estimation. 
% 
% INPUTS:   tau -  vector of guesses for frequencies/delay times in data 
%                  vector U 
%           U   -  the data vector 
%  
% OUTPUTS:  w   - the frequency estimates  
%  
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: Stoica, Petre, and Randolph L. Moses. Spectral analysis of signals.  
% Vol. 452. Upper Saddle River, NJ: Pearson Prentice Hall, 2005. 
%  
%-------------------------------------------------------------------------- 
  
  
% Make sure that the signal vector U is a column vector.   
U = U(:); 
  
% Number of samples 
N   = numel(U); 
  
% Number of frequencies (reflectors) 
n   = numel(tau); 
  
% Make sure the vector of frequency (delay time) guesses is a row 
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% vector.   
tau = tau(:).'; 
  
% Matrix of powers 
powers  = repmat((1:N)',1,n); 
  
% Matrix B (see Stoica, Nonlinear Least Squares Method) 
B   = repmat( exp( 1i*tau ) , N , 1) .^ powers; 
  
% Clear space in memory 
clear powers 
  
% Calculate output.  This quantity should be maximized to estimate 
% frequencies.   
Q   = U'*B*( (B'*B)^-1 )*B'*U; 
  
% Flip the value of f so to switch from a maximization to a minimization 
% problem.  Keep only the real part.   
Q   = -1*real(Q); 
  
  
end 
 

B.1.3 Notes on modification of MATLAB function fminsearch  

The script provided in Section B.1.1 included a call to a Matlab function titled 

fminsearchSmallSimplex.  This function is a modified version of Matlab’s Nelder-Mead 

optimization function fminsearch.  Lines 257 and 258 of the original function define the initial size 

of the simplex and are as follows: 

 

usual_delta = 0.05;       % 5 percent deltas for non-zero terms 
zero_term_delta = 0.00025;    % Even smaller delta for zero elements of x 

 

These lines must be altered so that the optimizer does not leave the vicinity of the global maximum 

during the first iteration of the search process.  The lines in the modified function 

fminsearchSmallSimplex are: 

 

usual_delta = 1e-7;       
zero_term_delta = 5e-10;       
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B.2 ESPRIT 

B.2.1 Script for evaluating the precision of ESPRIT estimates 

% ESPRITNoise.m 
% Script to calculate precision of ESPRIT estimates of the delay time  
% between two reflectors of equal amplitude.  Simulation parameters are  
% defined in two blocks, between dashed lines in the first section.   
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: Santamaria, Ignacio, Carlos Pantaleon, and Jesus Ibanez.  
% "A comparative study of high-accuracy frequency estimation methods."  
% Mechanical Systems and Signal Processing, vol. 14, no. 5, p. 819-834. 
% (2000). 
%  
%************************************************************************** 
%% Set sampling conditions 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1570e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + dtau/2+(20:10:30)*dtau).'; 
  
% SNR levels to test (This is SNR in the delay time domain.) 
SNR     = 10:100:110;     
  
% Number of simulations to run at each SNR 
Nnoise  = 2;  
  
% Set parameters for ESPRIT 
n       = 2;    % Number of frequencies in real-valued signal 
m       = 100;  % order of covariance matrix 
B       = 1;    % interleaving factor 
% ------------------------------------------------------------------------- 
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%************************************************************************** 
%% ESPRIT 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau1),numel(SNR),Nnoise); 
tau2r   = zeros(numel(tau1),numel(SNR),Nnoise); 
etime   = zeros(numel(tau1),numel(SNR),Nnoise); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(A2)*Nnoise;    % total number of iterations 
I   = 0;    % completed iterations 
  
% Convert SNR from delay time domain to optical frequency domain. 
SNR     = SNR - 10*log10(N);     
  
% Run the simulations 
for ij = 1:numel(tau2) 
    for jk  = 1:numel(SNR) 
        for kl = 1:Nnoise 
             
                % Start the timer 
                tic 
  
                % Calculate sampled signal from measurement interferometer 
                U   = 2 + cos(2*pi*nu*tau1) + cos(2*pi*nu*tau2(ij)); 
  
                % Add white Gaussian noise 
                U   = awgn(U,SNR(jk),'measured'); 
  
                % Make data complex 
                U   = ifft(fft(U)); 
  
                % Get ESPRIT delay time estimates 
                w   = espritCF(U,2*n+2,m,B); 
  
                % Scale delay time estimates 
                w   = w/(2*pi*dnu*B); 
  
                % Record error.  Don't know order of ESPRIT estimates, so 
                % record minimum error.   
                [~,a]               = min(abs(tau1 - w)); 
                tau1r(ij,jk,kl)     = w(a); 
                [~,a]               = min(abs(tau2(ij) - w)); 
                tau2r(ij,jk,kl)   = w(a); 
                 
                % Record elapsed time 
                etime(ij,jk,kl)     = toc; 
  
                % Update counting variable 
                I   = I + 1; 
  
                % Display completion percentage every 100 iterations 
                if mod(I,100) == 0 
                    disp(I/ti*100) 
                end   
  
        end 
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    end 
end 
 

B.2.2 Subroutine for the ESPRIT estimation process 

function  [ w ] = espritCF(y,n,m,B) 
%-------------------------------------------------------------------------- 
% The ESPRIT method for frequency estimation. 
% 
% INPUTS:   y   -  the data vector 
%           n   -  the model order 
%           m   -  the order of the covariance matrix 
%           B   -  the interleaving factor 
%  
% OUTPUTS:  w   - the frequency estimates  
%  
% Original ESPRIT code published in 1996 by R. Moses 
% Modified 18 March 2015 by M. I. Bodine.  Added the option for a 
% non-unitary interleaving factor.  Based on B Halder and T. Kailath 1997. 
%  
%-------------------------------------------------------------------------- 
  
y   = y(:);             % make sure data vector is a column vector 
N   = length(y);        % data length 
Nt  = N - B*(m-1);      % number of "snapshots" 
  
% compute the sample covariance matrix 
R   = zeros(m,m); 
for i = 1 : Nt 
   R = R + y( i : B : i+B*(m-1) ) * y( i : B : i+B*(m-1) )' / Nt; 
end 
  
% get the eigendecomposition of R; use svd because it sorts eigenvalues 
[U,~,~] = svd(R); 
S       = U(:,1:n); 
  
phi     = S(1:m-1,:)\S(2:m,:); 
  
% Estimate frequencies 
w   = -angle(eig(phi)); 
  
return 
  
 
 

B.3 Local Linear Regression (LLR) 

B.3.1 Script for evaluating bias in LLR estimates 

% LLRBias.m 
% Script to calculate bias in Local Linear Regression (LLR) estimates of  
% the delay time between two reflectors.  Simulation parameters are defined 
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% in two blocks, between dashed lines in the first section.   
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: Eric D. Moore and Robert R. McLeod, "Phase-sensitive swept-source  
% interferometry for absolute ranging with application to measurements of  
% group refractive index and thickness," Opt. Express 19, 8117-8126 (2011). 
%  
%************************************************************************** 
%% Set sampling conditions 
  
clear all 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1570e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + (50:60)*dtau/5).'; 
  
% vector of amplitudes of second reflector relative to first 
A2  = [1 2]; 
  
w   = hann(N);  % Define window function 
% ------------------------------------------------------------------------- 
  
%************************************************************************** 
%% Superresolved LLR estimate 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau2),numel(A2)); 
tau2r   = zeros(numel(tau2),numel(A2)); 
etime   = zeros(numel(tau2),numel(A2)); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(A2);    % total number of iterations 
I   = 0;    % completed iterations 
  
% Run simulations 
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for ij = 1:numel(tau2) 
    for jk = 1:numel(A2) 
         
            % Start the timer 
            tic 
  
            % Calculate the sampled signal from the measurement  

interferometer 
            u   = 1 + A2(jk) + cos(2*pi*nu*tau1) + ... 
                    A2(jk).*cos(2*pi*nu*tau2(ij)); 
             
            % Window the entire data set 
            u   = u.*w; 
             
            % Take the FFT of the windowed data set 
            U   = fft(u); 
  
            % Fourier-transform (FT) resolved peak centers 
            p1  = round(tau1/dtau) + 1; 
            p2  = round(tau2(ij)/dtau) + 1; 
             
            % Distance between FT resolved peak centers in DFT bins 
            m   = p2 - p1; 
             
            % LLR window constants 
            prw     = abs(m)/2; % spacing between FT resolved peak centers 
            % Set the number of data points to be extracted from around 
            % each peak center. 
            if prw > 200 
                prw = 200;  % Max number of points is 200.   
            end 
            % Set the number of endpoints to be excluded (20%).   
            prec    = round(0.2*prw); 
             
            % Window out peaks 
            peak1   = U(p1-round(prw/2):p1+round(prw/2)-1); 
            peak2   = U(p2-round(prw/2):p2+round(prw/2)-1); 
             
            % Get the unwrapped phase of the IFFT of the shifted peak 
            phase1  = unwrap(angle(ifft(ifftshift(peak1)))); 
            phase2  = unwrap(angle(ifft(ifftshift(peak2)))); 
  
            % Curve fit to find slope of phases 
            dx      = 1/(numel(phase1));  % x-axis scaling, in index 
            x       = dx*(0:numel(phase1)-2*prec-1).'; 
            y1      = phase1(1+prec:end-prec)/(2*pi); 
            y2      = phase2(1+prec:end-prec)/(2*pi); 
             
            f1      = fit(x,y1,'poly1'); 
            f2      = fit(x,y2,'poly1'); 
  
            cf1     = coeffvalues(f1); 
            cf2     = coeffvalues(f2); 
            m1      = cf1(1); 
            m2      = cf2(1); 
             
            % Precision ranging peak location, in index 
            % Subtract one so that first point is at time zero.      
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            p1 = p1 + m1 - 1;            
            p2 = p2 + m2 - 1; 
             
            % Record recovered reflector times 
            tau1r(ij,jk)     = p1*dtau; 
            tau2r(ij,jk)     = p2*dtau; 
             
            % Record elapsed time 
            etime(ij,jk)     = toc; 
             
            % Update counting variable 
            I   = I + 1; 
                 
            % Display completion percentage every 100 iterations 
            if mod(I,100) == 0 
                disp(I/ti*100) 
            end 
    end 
  
end 
 

B.3.2 Script for evaluating the precision of LLR estimates 

% LLRNoise.m 
% Script to calculate precision of LLR estimates of the delay time  
% between two reflectors of equal amplitude.  Simulation parameters are  
% defined in two blocks, between dashed lines in the first section.    
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: Eric D. Moore and Robert R. McLeod, "Phase-sensitive swept-source  
% interferometry for absolute ranging with application to measurements of  
% group refractive index and thickness," Opt. Express 19, 8117-8126 (2011). 
%  
%************************************************************************** 
%% Set sampling conditions 
  
clear all 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1570e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
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nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + (50:60)*dtau/5).'; 
  
% SNR levels to test (This is SNR in the delay time domain.) 
SNR     = 10:50:110;     
  
% Number of simulations to run at each SNR 
Nnoise  = 2;  
  
w   = hann(N);  % Define window function 
% ------------------------------------------------------------------------- 
  
%************************************************************************** 
%% LLR estimates 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau2),numel(SNR),Nnoise); 
tau2r   = zeros(numel(tau2),numel(SNR),Nnoise); 
etime   = zeros(numel(tau2),numel(SNR),Nnoise); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(SNR)*Nnoise;    % total number of iterations 
I   = 0;    % completed iterations 
  
% Convert SNR from delay time domain to optical frequency domain. 
SNR     = SNR - 10*log10(N);    
  
% Run simulations 
for ij = 1:numel(tau2) 
    for jk  = 1:numel(SNR) 
        for kl = 1:Nnoise 
                
            % Start the timer 
            tic 
  
            % Calculate the sampled signal from the measurement  

interferometer 
            u   = 2+ cos(2*pi*nu*tau1) + cos(2*pi*nu*tau2(ij)); 
                 
            % Add white Gaussian noise 
            u   = awgn(u,SNR(jk),'measured'); 
             
            % Window the entire data set 
            u   = u.*w; 
             
            % Take the FFT of the windowed data set 
            U   = fft(u); 
  
            % Fourier-transform (FT) resolved peak centers 
            p1  = round(tau1/dtau) + 1; 
            p2  = round(tau2(ij)/dtau) + 1; 
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            % Distance between FT resolved peak centers in DFT bins 
            m   = p2 - p1; 
             
            % LLR window constants 
            prw     = abs(m)/2; % spacing between FT resolved peak centers 
            % Set the number of data points to be extracted from around 
            % each peak center. 
            if prw > 200 
                prw = 200;  % Max number of points is 200.   
            end 
            % Set the number of endpoints to be excluded (20%).   
            prec    = round(0.2*prw);             
  
            % Window out peaks 
            peak1   = U(p1-round(prw/2):p1+round(prw/2)-1); 
            peak2   = U(p2-round(prw/2):p2+round(prw/2)-1); 
             
            % Get the unwrapped phase of the IFFT of the shifted peak 
            phase1  = unwrap(angle(ifft(ifftshift(peak1)))); 
            phase2  = unwrap(angle(ifft(ifftshift(peak2)))); 
  
            % Curve fit to find slope of phases 
            dx      = 1/(numel(phase1));  % x-axis scaling, in index 
            x       = dx*(0:numel(phase1)-2*prec-1).'; 
            y1      = phase1(1+prec:end-prec)/(2*pi); 
            y2      = phase2(1+prec:end-prec)/(2*pi); 
             
            f1      = fit(x,y1,'poly1'); 
            f2      = fit(x,y2,'poly1'); 
  
            cf1     = coeffvalues(f1); 
            cf2     = coeffvalues(f2); 
            m1      = cf1(1); 
            m2      = cf2(1); 
             
            % Precision ranging peak location, in index 
            % Subtract one so that first point is at time zero.      
            p1 = p1 + m1 - 1;            
            p2 = p2 + m2 - 1; 
  
            % Record recovered reflector times 
            tau1r(ij,jk,kl)     = p1*dtau; 
            tau2r(ij,jk,kl)     = p2*dtau; 
             
            % Record elapsed time 
            etime(ij,jk,kl)     = toc; 
             
            % Update counting variable 
            I   = I + 1; 
                 
            % Display completion percentage every 100 iterations 
            if mod(I,100) == 0 
                disp(I/ti*100) 
            end  
  
        end 
         
    end 
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end 
 

B.4 Candan’s Estimator 

B.4.1 Script for evaluating bias in Candan estimates 

% CandanBias.m 
% Script to calculate bias in Candan estimates of the delay time between 
% two reflectors.  Simulation parameters are defined in two blocks, between 
% dashed lines in the first section.   
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: C. Candan, "Fine Resolution Frequency Estimation From Three DFT 
% Samples: Windowed Case," Elsevier Signal Processing, v. 114, p. 245-250,  
% Sept. 2015. 
%************************************************************************** 
%% Set sampling conditions 
  
clear all 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1570e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + (1:50)*dtau/5).'; 
  
% vector of amplitudes of second reflector relative to first 
A2  = [1 2]; 
  
w   = hann(N);  % Define window function 
% ------------------------------------------------------------------------- 
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%************************************************************************** 
%% Super-resolved Estimate 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau2),numel(A2)); 
tau2r   = zeros(numel(tau2),numel(A2)); 
etime   = zeros(numel(tau2),numel(A2)); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(A2);    % total number of iterations 
I   = 0;    % completed iterations 
  
% Get the correction factor for the window function 
cN  = correction_factor(w); 
  
% Run the simulations 
for ij = 1:numel(tau2) 
    for jk = 1:numel(A2) 
         
            % Start the timer 
            tic 
  
            % Calculate the sampled signal from the measurement  
            % interferometer 
            u   = 1 + A2(jk) + cos(2*pi*nu*tau1) + ... 
                    A2(jk).*cos(2*pi*nu*tau2(ij)); 
             
            % Window the entire data set 
            u   = u.*w; 
  
            % FT resolved peak centers 
            p1      = round(tau1/dtau) + 1; 
            p2      = round(tau2(ij)/dtau) + 1; 
  
            % Offset estimate 
            delta1  = candan_estimate(u,p1,cN); 
            delta2  = candan_estimate(u,p2,cN);        
  
            % Precision ranging peak locations, in index 
            p1      = p1 + delta1 - 1;   % Subtract one so that first point  

 is at time zero.   
            p2      = p2 + delta2 - 1; 
  
            % Record recovered reflector times 
            tau1r(ij,jk)     = p1*dtau; 
            tau2r(ij,jk)     = p2*dtau; 
             
            % Record elapsed time 
            etime(ij,jk)     = toc; 
             
            % Update counting variable 
            I   = I + 1; 
                 
            % Display completion percentage every 100 iterations 
            if mod(I,100) == 0 
                disp(I/ti*100) 
            end 
    end 



 171 

     
end 
 

B.4.2 Script for evaluating the precision of Candan estimates 

% CandanNoise.m 
% Script to calculate precision of Candan estimates of the delay time  
% between two reflectors of equal amplitude.  Simulation parameters are  
% defined in two blocks, between dashed lines in the first section.   
% 
% Author: Martha I. Bodine 
% Date: 22 May 2017  
% 
% Ref: C. Candan, "Fine Resolution Frequency Estimation From Three DFT 
% Samples: Windowed Case," Elsevier Signal Processing, v. 114, p. 245-250,  
% Sept. 2015. 
%************************************************************************** 
%% Set sampling conditions 
  
clear all 
  
% Physical constants 
c0          = 299792458;    % light speed [m/s] 
  
% SIMULATION PARAMETERS, PART 1 ------------------------------------------- 
lambda1     = 1500e-9;      % sweep start wavelength [m] 
lambda2     = 1570e-9;      % sweep end wavelength [m] 
tau_t       = 100e-9;       % trigger delay time [s] 
tau1        = tau_t/4;      % delay time to first reflector [s] 
% ------------------------------------------------------------------------- 
  
% Calculate vector of optical frequencies 
nu1 = c0/lambda1;   % start frequency [Hz] 
nu2 = c0/lambda2;   % end frequency [Hz] 
N   = round((nu1 - nu2)*tau_t); % number of samples 
  
nu  = nu1 - (0:N-1).'/tau_t;    % vector of optical frequencies [Hz] 
nu  = fliplr(nu);    
  
dnu = nu(1)-nu(2);  % spacing between samples in frequency [Hz] 
dtau   = tau_t/N;    % spacing between samples in delay time [s] 
  
% SIMULATION PARAMETERS, PART 2 ------------------------------------------- 
% vector of delay times to second reflector[s] 
tau2   = (tau1 + (1:50)*dtau/5).'; 
  
% SNR levels to test (This is SNR in the delay time domain.) 
SNR     = 10:50:110;     
  
% Number of simulations to run at each SNR 
Nnoise  = 2;  
  
w   = hann(N);  % Define window function 
% ------------------------------------------------------------------------- 
  
%************************************************************************** 
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%% Super-resolved Estimate 
  
% Preallocate space for errors and elapsed time 
tau1r   = zeros(numel(tau2),numel(SNR),Nnoise); 
tau2r   = zeros(numel(tau2),numel(SNR),Nnoise); 
etime   = zeros(numel(tau2),numel(SNR),Nnoise); 
  
% Define variables to track execution percentage 
ti  = numel(tau2)*numel(SNR)*Nnoise;    % total number of iterations 
I   = 0;    % completed iterations 
  
% Convert SNR from delay time domain to optical frequency domain. 
SNR     = SNR - 10*log10(N);     
  
% Get correction factor 
cN  = correction_factor(w);  
  
% Run the simulations 
for ij = 1:numel(tau2) 
    for jk  = 1:numel(SNR) 
        for kl = 1:Nnoise 
                
            % Start the timer 
            tic 
  
            % Calculate the sampled signal from the measurement  
            % interferometer 
            u   = 2 + cos(2*pi*nu*tau1) + cos(2*pi*nu*tau2(ij)); 
             
            % Add white Gaussian noise 
            u   = awgn(u,SNR(jk),'measured'); 
             
            % Window the entire data set 
            u   = u.*w; 
  
            % FT resolved peak centers 
            p1      = round(tau1/dtau) + 1; 
            p2      = round(tau2(ij)/dtau) + 1; 
  
            % Offset estimate 
            delta1  = candan_estimate(u,p1,cN); 
            delta2  = candan_estimate(u,p2,cN);        
  
            % Precision ranging peak locations, in index 
            % Subtract one so that first point is at time zero.   
            p1      = p1 + delta1 - 1;    
            p2      = p2 + delta2 - 1; 
  
            % Record recovered reflector times 
            tau1r(ij,jk,kl)     = p1*dtau; 
            tau2r(ij,jk,kl)     = p2*dtau; 
             
            % Record elapsed time 
            etime(ij,jk,kl)     = toc; 
             
            % Update counting variable 
            I   = I + 1; 
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            % Display completion percentage every 100 iterations 
            if mod(I,100) == 0 
                disp(I/ti*100) 
            end             
  
        end 
         
    end 
     
end 
 

B.4.3 Subroutine for the Candan estimation process 

function [ d ] = candan_estimate( r, k, cN ) 
%-------------------------------------------------------------------------- 
% Procedure make superresolved frequency estimator using the method 
% described by Candan.   
% 
% INPUTS:   r    -  windowed data set 
%           k    -  transform limited estimate (an index in data set r) 
%           cN   -  coefficient associated with the window used on data set 
%                   r 
%  
% OUTPUTS:  d   -  fine frequency estimate, a fraction of a DFT bin from 
%                  the index k 
% 
% Author: Martha I. Bodine 
% Date: 31 October 2016  
%  
% Ref: C. Candan, "Fine Resolution Frequency Estimation From Three DFT 
% Samples: Windowed Case," Elsevier Signal Processing, v. 114, p. 245-250,  
% Sept. 2015. 
% 
%-------------------------------------------------------------------------- 
  
% Determine the number of points in the data set 
N   = numel(r); 
  
% Calculate DFT of r 
R   = fft(r); 
  
% First order estimate of delta 
d1  = cN * real( ( R(k-1) - R(k+1) ) / ( 2*R(k) - R(k-1) - R(k+1) ) );  
  
% Second order estimate of delta 
r2  = r .* exp( -1i*2*pi/N*d1*(0:N-1) ).'; 
R2  = fft(r2); 
d2  = cN * real( ( R2(k-1) - R2(k+1) ) / ( 2*R2(k) - R2(k-1) - R2(k+1) ) );  
  
% Final estimate of delta 
d   = d1 + d2; 
  
end 
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B.4.4 Subroutine for calculating window-specific correction factors 

The following Matlab function was written by C. Candan and copied exactly from the 

author’s webpage [156].  I have reproduced it here for completeness.   

function out = correction_factor(win,N2) 
% function out = correction_factor(win,N2) 
% Gives the correction factor for the estimator described in [1,2,3]  
% for an arbitrary window  
% 
% [1] C. Candan, "A Method For Fine Resolution Frequency Estimation From 
Three 
% DFT Samples," IEEE Signal Processing Letters, Vol. 18, No.6, p. 351-354, 
% June 2011.  
%  
% [2] C. Candan, "Analysis and Further Improvement of Fine Resolution  
% Frequency Estimation Method From Three DFT Samples,"  
% IEEE Signal Processing Letters, vol.20, no.9, pp.913–916, Sept. 2013. 
% 
% [3] C. Candan, "Fine Resolution Frequency Estimation From Three DFT 
% Samples: Windowed Case," Elsevier Signal Processing, vol. 114, p. 245-250,  
% Sept. 2015. 
% 
% 
% Input:  
% win : Windowing function  
% N2  : Number of DFT points  
% 
% Output:  
% out : Correction factor 
% 
% Note:  
% ----- 
% The case of zero-padding (N2 > length(win)) is identical to the 
% correction factor of the zero-padded window, i.e.  
% win_zero_padded = [win(:) zeros(N2-length(win),1)];  
%  
% Some usage examples:  
% win = hamming(N)'; 
% win = window(@hamming,N)'; 
% win = window(@blackman,N)'; 
% 
% c_N = correction_factor(hamming(16),32);  
% 
% Oct. 2013,  
% Cagatay Candan 
% 
  
win = win(:).'; 
  
if exist('N2')==0,  
    N2 = length(win);  
elseif N2~=length(win), 
    win = [win zeros(1,N2-length(win))]; 
end; 
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N = length(win);  
nvec = 0:N-1; 
  
fd = @(inp) sum(repmat(win,length(inp),1).*exp(1j*2*pi/N*inp(:)*nvec),2);  
fdp = @(inp) 
1j*2*pi/N*sum(repmat(win.*nvec,length(inp),1).*exp(1j*2*pi/N*inp(:)*nvec),2);
  
  
A0 = imag(fd(1)-fd(-1)); 
A1 = fdp(1) - fdp(-1); 
  
B0 = 2*fd(0) - fd(1) - fd(-1);  
B1 = imag(2*fdp(0) - fdp(1) - fdp(-1));  
%%%%%%% 
  
c1 = (A1*B0+A0*B1)/B0^2; 
out = 1/c1; 
 
 

 

 

 

 

 

 

 

 


