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Genetic factors are a known culprit influencing the choice of individuals to
smoke. However, the way in which these genetic factors may contribute to smoking
behavior through peers, depending upon the specific stage of smoking, and change
in relation to birth cohort further compounds the complexity of understanding the
mechanisms that link genetic makeup to smoking behavior.

Here we addressed: (1) what mechanism(s) are responsible for peer
similarity in smoking behavior, (2) at what stage of the smoking trajectory, from
initiation to progression, are these peer mechanisms most salient, (3) from whole-
genome SNP data, to what extent is smoking initiation related to more regular
smoking behaviors, and (4) to what degree do the genetic factors influencing
smoking for one generation correspond to those of another.

We utilized two twin samples, the 1962 National Merit twins and the more
recent Add Health twins. We also conducted genome-wide analyses of data from the
Atherosclerosis Risk in Communities Study (ARIC) and the Multi-Ethnic Study of
Atherosclerosis (MESA).

Our results indicated that homophily, or the tendency to associate with

individuals that are like oneself, may explain peer homogeneity for smoking



v
behaviors, and if this homophily is accompanied by additional peer influence, active
gene-environment correlation may be in part responsible for peer resemblance in
smoking behavior. While it was unclear whether this mechanism is relevant to both
initiation and persistent smoking in the National Merit Twins, analysis on the Add
Health sample demonstrated that this mechanism may be important at both the
stages of experimentation and regular use.

Genome-wide analysis on unrelated individuals revealed that common
genetic variation, as indexed by genome-wide SNPs, contributed to cigarette
smoking liability, and the genetic factors that influenced smoking initiation were
largely shared with those that impacted quantity smoked. Additionally, the genetic

factors influencing smoking may change as a function of birth cohort.
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CHAPTERI

INTRODUCTION

The most recent Surgeon General’s report reiterated findings that cigarette
smoking has been linked to a wide range of health deficits including diabetes,
arthritis, cardiovascular disease, and various cancers (National Center for Chronic
Disease Prevention and Health Promotion (US) Office on Smoking and Health 2014).
Since the first Surgeon General’s report was published in 1964, 20 million
Americans have died as a result of smoking, deeming it one of the ‘greatest public
health catastrophes of the century.” While this report noted that rates of smoking
have declined, it is still a public health problem, especially for certain groups of
individuals. Thus, even as the evidence for the numerous health consequences of
cigarette smoking builds, individuals continue to choose to smoke.

Understanding the mechanisms behind choices to undertake in actions
detrimental to health is one key to developing ways to effectively prevent these
choices. Thus, researchers have attempted to elucidate the various mechanisms that
contribute to cigarette smoking behavior. Some known culprits include
sociocultural norms, peer relationships, and genetic influences (Kobus 2003;
Munafo & Johnstone, 2008; Van Reek & Drop, 1986). However, these mechanisms
are unlikely to work in isolation; further, the influences related to starting to smoke
may be different from those related to more heavy patterns of cigarette smoking.

Our primary focus is the interface between genetic factors, peer influences, and



cohort effects, and how these factors may differ depending on how the smoking
phenotype is defined.

Literature Review
Peers and Cigarette Smoking

Association with cigarette smoking peers has been shown to increase the
likelihood that one will also smoke (Alexander, Piazza, Mekos, & Valente, 2001;
Hoffman, Sussman, Unger, & Valente, 2006; Holliday, Rothwell, & Moore, 2010;
Pollard, Tucker, Green, Kennedy, & Go, 2010; Vink, Willemsen, Engels, & Boomsma,
2003). For example, belonging to peer networks composed of at least half smokers
or having best friends who smoked is associated with individuals being twice as
likely to smoke (Alexander et al., 2001). This observed homogeneity in smoking
behavior between individuals and their peer groups was reviewed by Kobus (2003)
who summarized the work done to pinpoint the specifics of how peers are related to
smoking behavior, but concluded that further work should be done to illuminate the
‘subtleties’ behind the social dynamics of this contribution.

Therefore, we know that individuals tend to resemble their peers in smoking
behavior, yet we know little about why this association of smoking behavior, or
homogeneity, between adolescents and their peer groups is observed. Two potential
mechanisms may influence the correlation in smoking among peers—homophily and
peer influence. Homophily is defined as the propensity to associate with more
similar than dissimilar individuals (McPherson, Smith-Lovin, & Cook, 2001).
McPherson et al. noted that it was originally assumed that peer groups directly

influenced an individual’s behavior. However, the surge of longitudinal data led to a



shift towards recognition of the importance of homophily: individuals may actually
select membership into groups that share one’s initial behavioral characteristics.
Thus, in the context of homogeneity of smoking between individuals and peer
groups, arise two distinct, yet non-mutually exclusive, possibilities: (1) peer groups
may directly influence smoking behavior (peer influence), and (2) those with a
propensity for smoking behavior may self-select into groups with similar
characteristics (homophily).

However, there remains debate over the relative contribution of each of
these possibilities. For example, Arnett (2007) rejected the assumption that the
association between peer and individual smoking is a result of direct peer influence,
and suggested that selection of friends based on a number of factors leads to peer
group selection that creates a pathway to peer context variables such as group
expectations, identity, and opportunities that may influence smoking behavior.
Simons-Morton & Farhat (2010) on the other hand conclude that both homophily
and peer influence are important. Most reports emphasize that the magnitude of
each influence remains unclear (Dishion & Owen, 2002; Go, Green, Kennedy, Pollard,
& Tucker, 2010; Hall & Valente, 2007; Mercken, Snijders, Steglich, Vertiainen, & de
Vries, 2010; White, Hopper, Wearing, & Hill, 2003).

Further, the effect of peers on smoking behavior may vary as a function of
how smoking is defined, as differing etiologies have been implicated for smoking
initiation versus regular smoking and nicotine dependence (Amos, Spitz, &

Cinciripini, 2010; Vink, Willemsen, & Boomsma, 2005). Thus, we attempt to gain a



better understanding of the peer contribution to smoking behavior and how this
contribution may differ depending on the specific smoking phenotype.
The Genetics of Cigarette Smoking

Genetic factors have also been shown to play a role in cigarette smoking.
Such evidence for a genetic basis to smoking behavior can be traced back to the late
1950s and 1960s (Hughes 1986). A number of these studies reported that the
smoking behaviors of monozygotic (MZ) twins were more concordant compared to
dizygotic (DZ) twins (Fisher 1958; Friberg, Kaij, Dencker, & Jonsson, 1959; Todd &
Mason, 1959). More recent analyses have attempted to understand and quantify the
genetic basis of smoking even further. Sullivan and Kendler (1999) reviewed the
existing literature that included twin, family, and adoption studies, and
demonstrated that the etiology of smoking behavior may depend on whether
smoking is defined as experimentation, initiation or progression to nicotine
dependence. The major finding from this review was that genetic factors
contributed substantially to both smoking initiation (mean heritability =.56) and
nicotine dependence (mean heritability = .67). While unique environment (and
measurement error) was important for both initiation and nicotine dependence,
shared environment played a role in smoking initiation but was negligible for
nicotine dependence.

Whole genome methods. Given the overwhelming evidence for a genetic
contribution to smoking using twin samples, attempts to pinpoint specific genetic
regions related to smoking using genome-wide association analysis (GWAS) have

been puzzling in their failure to account for any sizable proportion of the heritability



reported in twin studies. This problem of the ‘missing heritability’ is not unique to
the smoking phenotype, and it has been suggested that one way to potentially
improve future GWAS analyses would be to increase sample size and focus on meta-
analyses (Maher 2008; Manolio et al., 2009). Regarding smoking phenotypes, the
Tobacco and Genetics Consortium (2010) combined three consortia to amass a
sample size of over 140,000 individuals. While their findings did pinpoint
biologically relevant markers, the loci identified were still unable to account for
even a small proportion of previously estimated heritability.

In contrast to genome-wide analyses, that attempt to pinpoint specific
regions or SNPs that contribute to trait variance, Yang et al. (2010) developed a
method known as Genome-wide Complex Trait Analysis (GCTA) that estimates the
trait variance explained by all genome-wide SNPs in conglomerate. GCTA uses SNP
information to calculate distal genetic resemblance between ‘unrelated’ individuals.
In contrast to family or twin studies that take advantage of assumed patterns of
genetic covariance between individuals of differing genetic relatedness, GCTA
constructs a genetic relatedness matrix (GRM) between all individuals in the sample
that gives an estimate of the genetic similarity between any two individuals due to
additive genetic effects (at least those that are tagged by SNPs). Once the GRM has
been calculated, the second part of this process involves using a mixed linear model
to predict phenotype from the genetic effect of all SNPs. This method has been used
to estimate the ‘SNP heritability’ for numerous traits such as height, body mass
index, and intelligence (Davies et al., 2011; Yang, Lee, Goddard, & Visscher, 2011).

With regard to smoking phenotypes, GCTA has also been used to estimate the SNP



heritability for smoking initiation (.19), current smoking (.24), and nicotine use and
dependence (.18) (Lubke et al., 2012 ; Vrieze, McGue, Miller, Hicks, & [acono, 2013).
Smoking Phenotype

In addition to attempting to understand the contribution of genetic effects to
smoking behavior, multivariate methods have been used to understand the degree
to which the genetic and environmental factors that influence each smoking
phenotype overlap. For example, smoking initiation is an essential prerequisite to
regular use and nicotine dependence, but are the genetic factors that influence
initiation the same that influence more persistent forms of smoking, and are there
unique factors that contribute to each of these phenotypes? Additionally, how is
initiation related to more persistent smoking?

A popular way to investigate the overlapping genetic and environmental
contributions to different stages of cigarette smoking is demonstrated by
Koopmans, Slutske, Heath, Neale, and Boomsma (1999) for smoking initiation and
quantity of cigarettes smoked among adolescents. Three models are used to test
three different situations in which either 1) there is a single dimension of liability
for both initiation and quantity (thus the genetic and environmental factors are
completely shared), 2) the genetic and environmental factors that contribute to
liability for initiation and quantity are completely independent of each other, or 3) a
‘combined’ model that postulates two different liability dimensions for initiation
and quantity, but allows for individuals to be non-smokers through either the
initiation dimension or by being extremely low on the quantity dimension.

Koopmans et al. found support for the combined model; therefore, the genetic and



environmental components that may increase one’s liability to smoking could be
directly related to initiation itself, or actually be more related to the quantity of
cigarettes smoked dimension. Vink et al. (2005) found similar results for smoking
initiation and nicotine dependence in an adult sample. Liability to smoke could be
determined by genetic and environmental factors related to initiation or those
related to the liability dimension of nicotine dependence. Investigating the
relationship between the smoking phenotypes in a different way, Maes et al. (2004)
examined 3 phenotypes, tobacco initiation, regular tobacco use, and nicotine
dependence. Consistent with the models put forth by Koopmans et al. and Vink et al,,
there was significant overlap in the genetic factors contributing to liability to these
three phenotypes. There were also unique genetic factors related to regular tobacco
use and nicotine dependence. Further making a case for the role of unique genetic
factors related to smoking phenotypes beyond those related to initiation, Madden et
al. (1999) found low shared genetic variance between smoking initiation and
persistence. Hardie, Moss, and Lynch (2006), too, found low genetic correlations
between age of smoking onset and three additional smoking phenotypes:
persistence of smoking, cigarettes smoked per day, and duration of smoking
cessation.
Gender and Smoking

Additionally, there are known gender differences in the prevalence of
cigarette smoking, with a lower percentage of women reporting themselves as
current smokers than men (Centers for Disease Control and Prevention (CDC)

2012). There are also reports that the relative contribution of genetic factors related



to smoking may differ depending on gender. However, the findings are mixed; for
example, Hamilton et al. (2006) found drastic differences in the heritability of
smoking initiation for females (~32%) and males (~71%); yet these differences did
not occur for persistent smoking. Contrastingly, in an Australian sample, heritability
estimates for initiation were higher in females (67%) compared to males (33%)
(Heath et al,, 1993).
Cohort Differences in Smoking

Further, over the last seventy years, as the negative health consequences of
smoking have become increasingly clear, the social acceptability and prevalence of
smoking have changed dramatically (Lopez, Collishaw, & Piha, 1994; National
Center for Chronic Disease Prevention and Health Promotion (US) Office on
Smoking and Health 2014). At the beginning of the 20t century, cigarette smoking
prevalence was low, but increased across a period when little information was
available on the health detriments of smoking. However, with a rise in smoking
related mortality and awareness of the harmful effects of cigarette smoking (e.g. the
1964 Surgeon General’s Report), prevalence decreased and smoking switched from
being seen as socially acceptable to an activity with known negative health
consequences (Lopez et al., 1994; Pacheco 2011).
GE Interactions and Cohort

In addition to main effects of the environment and genes on smoking, the two
factors may interact, such that the effects of one depend on the other. Studies
investigating such gene-environment interactions (GE interaction) on smoking

using twin designs have typically investigated what we term quantitative gene-



environment interactions, which occur when the magnitude of heritability differs as
a function of the environment. For example, attenuated heritability was found for
smoking and drinking in individuals who reported high levels of religious adherence
(Koopmans, Slutske, Baal, & Boomsma, 1999; Timberlake et al., 2006), and
heritability for daily smoking was highest in schools where popular students were
smokers (Boardman, Saint Onge, Haberstick, Timberlake, & Hewitt, 2008). With
respect to GE interactions across birth cohorts, there was little evidence for a
change in heritability for males born in the early 20t century through the 1960s, but
for women, heritability was found to increase as prevalence increased (Heath et al.,
1993; Kendler, Thornton, & Pedersen, 2000). Boardman et al. found genetic
influences for regular smoking for those born in the 1920s, 1930s, and 1950s, but
negligible influences for those born in the 1940s and 1960s (Boardman, Blalock, &
Pampel, 2010). Finally, Vink and Boomsma (2011) found no difference in the
heritability of ever smoking for 18 to 25 year olds in 1993-1995 versus 2009-2010.
These studies demonstrate the potential for heritability estimates to differ by birth
cohort, but because twins are the same ages, they are blind to whether the actual
genetic factors responsible for smoking have changed across environments and/or
cohorts.

Qualitative GE interactions occur when the genetic factors that influence
traits, or effect of those factors (Carey 1988), change across different levels of the
environment. It is important to recognize that a genetic correlation between the
same trait across different levels of the environment also measures the extent to

which genetic effects are the same or different across environments. Therefore, a
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genetic correlation is merely a reparameterization of a qualitative gene-by-
environment interaction, and both approaches can be used to estimate the same
conceptual construct.

With respect to smoking initiation, it is possible that genetic factors
associated with conformity may also be associated with smoking in a society where
smoking is commonplace; in social environments where smoking is taboo, a
partially different set of genetic factors, perhaps related to deviant behavior, may be
related to smoking. Given that the social acceptability of smoking has changed over
time, it is possible that the genes or genetic effects associated with smoking
initiation have changed across time--i.e., smoking initiation may show a qualitative
gene-by-age interaction (or equivalently, a low genetic correlation across different
ages). There are some suggestions in the literature that this may be the case. Two
extended twin family designs that estimated effects of environmental parental
influences on children found modest evidence for negative cultural transmission:
whereas genetic factors increased similarity between parents and offspring,
parental smoking itself may make their offspring less likely to initiate (Boomsma,
Koopmans, Van Doornen, & Orlebeke, 1994; Maes et al., 2006) . However, due to age
differences between parents and offspring, qualitative gene-by-age interactions
would also reduce parent-offspring resemblance and could appear as negative
vertical transmission in extended twin family models.

Although such qualitative gene-by-age interactions/genetic correlations are
impossible to detect in twin-only designs (due to lack of variation in age differences

between twins) and difficult to detect in family designs (due to confounding with



11

negative vertical transmission, as explained above), they can be investigated using
measured genetic data (Hartz et al., 2012; Vrieze et al., 2012). Given that smoking
initiation is likely to be polygenic, with no single variant or set of variants explaining
a sizable proportion of the variation (Tobacco and Genetics Consortium 2010), there
is a need to determine whether aggregate genome-wide effects on smoking
behaviors tend to be the same or different across age.
Summary

In summary, the literature described above makes a case for the following:
(1) peers play a role in the cigarette smoking behavior of adolescents, but it is
unclear through what mechanism, (2) as evidenced from family studies, genetic
factors are also important in smoking behavior, but analyses that have attempted to
‘recapture’ the genetic contribution from genome-wide data have been unable to
account for the genetic variance estimated in twin studies, (3) the contribution of
genetic factors may depend on the smoking phenotype in question, (4) there
appears to be both overlapping and unique genetic factors that contribute to the
different stages of smoking behavior, and (5) the etiology of cigarette smoking may
depend on birth cohort. Thus, the above motivates a number of additional queries
that we hope will elucidate the etiology of cigarette smoking.

Aims

Here we further investigated the previously described contributors to
cigarettes smoking through four studies.

In Study 1, “Adolescent Peer Choice and Cigarette Smoking: Evidence of

Active Gene-Environment Correlation?” we explored one possible reason why
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individuals resemble their friends’ smoking behavior: individuals may be selecting
friends who resemble their own smoking habits or homophily. In this study, we
were specifically interested in individuals choosing friends who are genetically
similar with respect to smoking behavior. If this genetically-based homophily is
accompanied by an environment of peer influence, active gene environment
correlation will be induced. Thus, we examined the potential for gene-environment
correlation in smoking through a twin method implemented by Loehlin (2010) for
adolescent alcohol use. Study 2, “Peers And Cigarette Smoking: Catalyst To Initiation
Or Precursor Of Regular Use?” extended upon Study 1 by (1) using a more recent
cohort of participants (Add Health twins) and (2) examining the relationship
between peers and smoking as function of two different smoking phenotypes:
experimentation and regular smoking.

Deviating from the twin approaches utilized in Studies 1 and 2, Studies 3 and
4 used whole genome SNP data from unrelated individuals. In Study 3, we examined
two smoking phenotypes, age of smoking onset and cigarettes smoked per day.
First, we estimated the degree to which the conglomerate of genome-wide SNPs
contributed to variance in each of these phenotypes (SNP heritability). We then
conducted bivariate GCTA analyses (Lee, Yang, Goddard, Visscher, & Wray, 2012) to
determine the degree to which genetic factors responsible for smoking onset
overlap with those for smoking quantity or the genetic correlation between onset
and quantity. Further, for each phenotype, we examined the SNP heritability for
males and females and the genetic correlation between genders. In Study 4, we

focused on smoking initiation and used similar methods to estimate the SNP
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heritability for two birth cohorts. Additionally, we estimated the genetic correlation
between these birth cohorts, determining to what degree individuals born in

different eras share the genetic factors that play a role in smoking initiation.
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CHAPTER I

STUDY 1: ADOLESCENT PEER CHOICE AND CIGARETTE SMOKING: EVIDENCE OF

ACTIVE GENE-ENVIRONMENT CORRELATION?

Background
We know that peers tend to resemble each other in terms of smoking
behavior, but it is not known why. In addition to pure influence or selection, we
propose a way in which these two forces may act in conjunction. Individuals may
assort or choose friends that are similar to themselves (selection). This chosen peer
group then creates an environment conducive toward smoking or non-smoking
(influence). If individuals make the original assortment based on genetic factors
related to smoking, this produces a correlation between genes and environment. In
Study 1, we examined evidence for gene-environment correlation in cigarette
smoking by replicating the Loehlin (2010) analysis on alcohol use.
Methods
Participants
The sample consisted of 850 twin pairs (514 MZ and 336 DZ same-sex twins)
that participated in the 1962 National Merit Scholarship Qualifying Test as high
school juniors (Loehlin & Nichols, 1976). Exclusions and missing values reduced this
sample to 509 MZ twin pairs (216 male and 293 female) and 330 same-sex DZ twin
pairs (135 male and 195 female).

Items of Interest and Scoring
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Zygosity assignment was made on the basis of a questionnaire on reported
similarities of a twin pair (Loehlin & Nichols 1976). The original survey contained 3
questions on smoking:

(1) How much do you smoke?

With responses: (1) Never smoked, (2) Used to or occasionally smoke,
(3) 1 to 19 cigarettes a day, and (4) greater than 20 cigarettes a day

(2) If you smoke do you inhale the smoke into your lungs?

With responses: (1) Don’t smoke, (2) Rarely or never inhale, (3)
sometimes inhale, and (4) usually inhale

(3) (How often have you) smoked a cigarette or cigar before breakfast?

With responses: (1) Frequently, (2) Occasionally, and (3) Not at all
Participants reported on the frequency of the said action, and a composite score was
assigned for each individual in the following manner. Individuals who had never
smoked were given a score of 1 (63% of individuals); individuals who occasionally
smoked, but had never inhaled were given a score of 2 (16% of individuals); current
or former smokers who had inhaled were given a score of 3 (18% of sample);
current or former smokers who had both inhaled and had smoked before breakfast
were given a score of 4 (3% of sample).

For the initiation part of our analysis, the composite score was used to
dichotomize individuals into categories of initiation status: a binary variable of
having never smoked (composite score of 1) or having initiated smoking behavior

(composite score > 1). To assess smoking persistence, we only included twin pairs
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where each twin had initiated, and persistent smoking behavior was analyzed using
the composite score (scores 2 though 4) described above.

Individuals missing scores on any of the above items were assigned scores
based on responses to the other smoking items. For example, a respondent who
omitted an answer to “how much do you smoke” but reported smoking before
breakfast was assigned a 4. Such assignments involved only a small proportion of
the sample (1.50%) and were made without knowledge of zygosity and twin’s
smoking status.

For the measure of shared friends, participants were asked: “Do you and
your twin have the same or different friends?” Responses were on an ordinal scale
ranging from a score of 1 (all shared friends) to 4 (few to no shared friends). As in
Loehlin (2010), we reverse scored this item for ease of interpretation. Thus, a score
of 1 indicated few shared friends between twins and a score of 4 indicated complete
sharing of friends between twins. To get a shared friends score for each twin pair,
we averaged the two twins’ shared friend scores. In the case of a missing shared
friend score for one twin, we assigned that twin the score given by the other twin in
the pair. If both twins had no score, this pair was excluded from the shared friends
portion of the analysis.

Evaluation of Heritability and Gender Differences

All four gender by zygosity groups were fitted to a multifactorial threshold
model, which assumed a threshold imposed on an underlying continuous
distribution of factors related to liability of the smoking composite. The first

question of interest was whether there was a sex difference in the additive genetic
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and environmental influences of the composite smoking variable that may account
for differences in results for male and female twin pairs. Here, we tested whether
the parameters of an ACE model could be equated across genders.

To examine the relationship between smoking and number of friends in
common, we followed Loehlin (2010) and correlated the absolute value of the
difference in pair smoking scores with the measure of common friends. This was
done for the composite, initiation, and persistent smoking measures.

All statistical and model fitting analyses were conducted in R version 2.12.0
and OpenMx version 1.0.3-1505 (Boker et al.,, 2011).

Results

For simplicity, we report descriptive and univariate heritability measures for
the composite smoking score that includes both components of the initiation and
persistence measures.

Gender Differences in Shared Friends and Composite Smoking

Tables 2.1 and 2.2 present descriptive statistics for the gender-by-zygosity
groups. Gender and zygosity effects were tested using a two-by-two ANOVA with an
interaction term. No interactions were significant, so here we report the marginal
differences.

Males (M = 1.68, SD = .80) had higher smoking composite scores than females
(M =1.57, 5D =.66), but the difference was only marginally significant (¢£(837) =
1.95, p =.05). Females (M = 3.14, SD = .65) reported more shared friends than males

(M =3.02, SD =.59), (¢(836) = -2.67, p = .008).
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Means and standard deviations on smoking composite and absolute difference in

smoking composite between twins for the four samples.

Composite Smoke Score

Absolute Difference in Smoke

Score
N Mean SD Mean SD
MZ Males 216 1.62 .78 40 .65
MZ Females 293 1.53 .80 25 .55
DZ Males 135 1.77 .82 .53 73
DZ Females 195 1.62 .79 47 .78
Table 2.2

Mean and standard deviations for mean shared friends for the four samples.

N Mean SD
MZ Males 2152 3.17 .53
MZ Females 293 3.27 .60
DZ Males 135 2.79 .60
DZ Females 195 2.94 .66
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Zygosity Differences in Shared Friends and Smoking

Across sex, MZ and DZ twin pairs only marginally differed in their smoking
composite scores, with DZ twin pairs (M = 1.68, SD = .81) having slightly higher
composite scores than MZ twin pairs (M = 1.57, SD =.79), (¢t(837) =-2.01, p =.05).
However, DZ twin pairs (M = .49, SD = .76) were significantly more divergent in their
smoking behaviors (i.e., absolute difference scores) than MZ twin pairs (M = .31, SD
=.60), (t(837) =-3.62, p =.0003). MZ twin pairs (M = 3.22, SD = .57) also shared
significantly more friends than DZ twin pairs (M = 2.87, SD = .64), (t(836) =8.03,p <
.001).
Heritability of Smoking Composite

Table 2.3 presents the biometrical genetic model for the smoking composite
measure. Thresholds could be equated across twin pair (Ax? (8) = 3.19, p =.92) and
zygosity (Ax? (4) = 6.23, p =.18), but not gender (Ax? (2) =12.95, p =.002). The ACE
model with equal parameters across gender did not significantly reduce fit
compared to the model that allowed these parameters to vary separately for each
sex (Ax? (3) = 4.61, p =.20). Therefore, analysis was continued jointly for male and
female twin pairs. Both the Akaike Information Criterion (AIC) and the likelihood
ratio tests suggested that the model containing all three variance components is to
be preferred. Compared to a full model, the CE model (Ax%(1) = 14.46,p <0.001)

and AE model (Ax3(1) = 8.98, p =.003) could convincingly be rejected.
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Table 2.3

Smoking composite model fit statistics and variance component estimates with 95%
confidence intervals for ACE and nested AE and CE models.

Model EP  df -2LL AIC A2 Adf  p VA VC VE

ACEa 7 1623 259427 -651.73 43 39 18
(20-69) (15-60) (.13-.24)

AE 6 1624 2603.25 -64475 898 1 <01 83 17
(.78-.87) (13-22)

CE 6 1624 260873 -639.27 1445 1 <01 74 26

(68-79) (.21-32)

a. Threshold values: Males thresholds: t1: .25, t2: .54; Female thresholds: t1: .48, t2: .43

Differences Between MZ and DZ Correlations
To evaluate the possibility of active rGE, we examined the polychoric
correlation between absolute differences in smoking between twins and the mean

amount of shared friends each twin reported (Table 2.4).

Table 2.4

Polychoric correlations between absolute difference in twin pair smoking behavior
and average shared friends for composite, initiation, and persistence smoking

measures.
Composite Initiation Persistence
Group ra(s.e) ra(s.e) ra(s.e.)
MZ males .01 (.09) -.05(.10) -07 (.16)
MZ females -10 (.09) -.02 (.10) -.25 (.15)
DZ males -.23*(.10) -.39*% (.11) .16 (.20)
DZ females -.29* (.09) -.31* (.09) -.10 (.19)

*
p<.05
a. All correlations met assumption of bivariate normality.
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For the smoking composite, both the correlations for MZ males and MZ
females did not significantly differ from 0. However, the DZ correlations were
significant for both males and females. Hence, for DZ but not MZ twins, more shared
friends predicted greater twin similarity in smoking. However, the difference
between the MZ and DZ correlations was not significant for female (Ax% (1) = 2.44, p
=.12), but marginally significant for male (Ax%(1) = 3.49, p = .06) twin pairs.

For smoking initiation, polychoric correlations between shared friends and
differences in smoking for MZ males and females did not significantly differ from 0.
Yet, for DZ males and females, the correlation between shared friends and absolute
difference in smoking initiation was significant. Further, for both males (Ax%(1) =
6.15, p =.01) and females (Ax%(1) = 4.48, p =.03) the DZ correlation between
smoking and shared friends was significantly stronger than the MZ correlation.
Therefore, the initiation phenotype gave the same results as the composite measure.

For smoking persistence, however, the previous pattern of correlations was
not observed. Correlations for MZ males (n =61), MZ females (n = 76), DZ males (n
=44), and DZ females (n =48) did not significantly differ from 0. Thus, shared friends
did not predict similarity in smoking status beyond initiation.

Discussion

From the results, two major findings are highlighted. First, in DZ, but not MZ,
twin pairs there was a relationship between number of shared friends and similarity
of the smoking composite and initiation score. Thus, these results were consistent
with the possibility that genetic differences within DZ twin pairs may influence the

choice of friends with characteristics that correlate with each twin’s unique genetic
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predispositions, which in turn may explain corresponding differences in the pair’s
smoking.

Second, when the smoking variable was reduced to include only individuals
that had initiated for the smoking persistence part of the analysis, we did not find
this same pattern. This was unsurprising especially given the small sample size of
roughly between 40 to 80 twin pairs per group. The two items used to define
smoking persistence, whether one inhales or smokes before breakfast, may also not
have been the most optimal or relevant measure of smoking persistence in an
adolescent sample (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991).
Therefore, our composite smoking measure may more accurately assess initiation
rather than smoking persistence, and while our results for initiation may be valid,
limitations of the current dataset may be unable to conclude on the effect of shared
peers on smoking persistence past the stage of initiation.

In conclusion, we have evidence for homophily, or that individuals are
choosing friends based on their own genetic predispositions with regard to smoking
behavior. They thus may be selecting into environments that, through the possibility
of further peer influence, will further promote expression of their predisposed
smoking preferences. However, before substantive interpretation of these findings,
it is important to first rule out other mechanisms that could contribute to our
observed pattern of correlations.

One potential issue is the possibility that peer influence may violate a
cardinal assumption of the twin method, namely, that the correlations in latent,

trait-relevant environmental values are equal for MZ and DZ pairs. Similar peer
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groups for MZ twins may partly arise from the extra attention these twins receive by
being together in a group. Kendler and Gardner (1998) evaluated whether this
mechanism could play a role for both smoking initiation and nicotine dependence.
They reported that twins with higher ‘co-socialization’ scores, a factor based upon
items related to how often twins socialized together, resembled each other more
with respect to smoking initiation but not nicotine dependence. However, this
mechanism would also predict high correlations between peer group differences
and within-pair smoking differences for both MZ and DZ twins. Thus, our results are
inconsistent with this being a strong mechanism behind differences in correlations
between MZ and DZ twins.

A second mechanism that could influence the relationship between peers’
smoking behavior is passive assortment, or peer associations based on background
variables that are correlated with smoking. Family socioeconomic status is a clear
example. In nationally representative twin samples, simple geography, ethnicity,
culture and religious affiliation may influence both peer similarity and smoking
behavior (Degenhardt, Chiu, Sampson, Kessler, & Anthony, 2011). However, neither
Loehlin’s nor our results were consistent with pure passive assortment as the pre-
eminent mechanism for the correlation between self- and peer-drug use behaviors.
Friendship groups based on background factors correlated with smoking should be
the same for MZ and DZ twins, leading to identical correlations for MZ and DZ twins
in peer group differences and within-pair smoking differences.

Hence, the most likely factors contributing to the observed homogeneity in

peer group smoking are a combination of homophily and, possibly, peer-influence.
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Unfortunately, we could not quantify the precise contribution of each mechanism
with the current data, because there were no data on smoking in the twin’s friends.
The data, however, are not consistent with a strong role for peer influence. If peer
influence were very important, then we should have observed at least a trend
toward significance in the correlations between smoking status and peer-group
similarity in MZ twins. Yet, with the exception of smoking persistence, all MZ
correlations in Table 2.4 are very close to 0.

Hence, the pattern of results definitely supported homophily as an important
mechanism. In contrast to peer influence alone, homophily predicts that peer
groups should be more similar for MZ than DZ twins. Hence, our results could be
consistent with active rGE as an explanation why individuals and their peer groups
tend to share smoking habits, if this homophily is accompanied by peer influence.
However, we cannot definitively conclude that both of these requirements for rGE
are taking place given the limitations of a cross-sectional, twin dataset. Future
analysis on more expanded datasets that include twins, adoptees, and siblings
raised apart may illuminate the specific contribution of rGE, especially with
longitudinal data from adolescence until early adulthood.

A further caveat was the age of the participants. Participants were only
evaluated at the single time point of juniors in high school (~17 years of age).
However, longitudinal analyses have suggested that genetic and environmental
components related to peer influences might vary across different ages within the

span of early adolescence to young adulthood (Vink et al., 2003; White et al., 2003).
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Additionally, given only a single time point of evaluation, it is important to
take into consideration cohort differences in the etiology of smoking behavior.
Boardman et al. (2010) demonstrated the dynamic nature of heritability for regular
smoking behavior across a series of cohorts born in the United States, finding rather
negligible genetic influences for those born in the 1940s, the cohort of the National
Merit Twins (Loehlin & Nichols, 1976). They reasoned that social pressures might
have pushed the popularity of smoking to a level in which genetically vulnerable
individuals were no more likely to smoke than those without genetic
predispositions toward smoking. Kendler et al. (2000) examined the heritability of
regular smoking by birth cohort for males and females separately in Sweden and
found that heritability for women was actually greatest for those born after 1940.
The reasoning in this case was not so different from Boardman et al.’s, but appears
to have quite a different effect on the manifestation of genetic influences for women:
decline in the social stigma of women smoking may have allowed women to partake
in behaviors aligned with their genetic propensities. Given evidence of these
changes in the etiology of smoking behavior over time, it becomes difficult to
generalize both the genetic and peer influence components of our model to the
present era. Therefore, given that we only had participants at a single age from a
single point in time, it is possible that our results illustrated only a snapshot of the
true mechanisms by which smoking behavior may be regulated through the
influence of genes on peer choice.

Further issues discussed by Loehlin (2010) regarding this sample included

the ability of the questionnaire to accurately assess the number of shared friends
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and the key behavior (smoking in this study). Also addressed was the fact that
variance in the key behavior may have been restricted by a select sample of high-
achieving participants.

Thus, our findings are consistent with Loehlin’s (2010) for alcohol-related
behavior in that there appeared to be a pathway to smoking through both genes and
peer groups. However, the contribution of active rGE that requires both genetically-
based homophily and additional peer influence remains unclear. Yet, given evidence
in the literature for the dual contribution of selection and peer influence to smoking
behavior (Simons-Morton & Farhat, 2010), rGE might be a likely scenario. Thus,
future investigations should specifically test for the contribution of rGE using
datasets more amenable to quantifying the alternative contributions of unequal
twin environments, passive assortment, or peer influence/homophily that may
produce similar results.

In conclusion, our results further evidenced the contribution of genetics on
exposure to environments that may influence our behaviors. However, given the
unclear effect of sex and age on such findings as well as the inconclusive evidence as
to the full range mechanisms at work, the next step is to further illuminate both the
ways by which rGE might specifically be at work and what other factors may
contribute to homogeneity between individuals and their peer groups in smoking
behavior. Particularly, gaining a clearer understanding of this association will allow
future research to examine ways toward effective prevention of the problems

associated with cigarette smoking.
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CHAPTER III

PEERS AND CIGARETTE SMOKING: CATALYST TO INITIATION OR

PRECURSOR OF REGULAR USE?

Background

We know that peers play an important role in cigarette smoking, but we do
not know at what stage of the smoking process, from initiation to regular use, that
peers are the most salient factor. In Study 2, we expanded upon the first study, using
a more recent dataset, to again evaluate the potential for gene-environment
correlation for smoking. However, we also focused on whether this mechanism
plays a differential role based on whether cigarette smoking is defined as smoking
experimentation or smoking cigarettes regularly.

Method

Participants

Our participants were from Waves 1 (W1) and 2 (W2) of the National
Longitudinal Study of Adolescent Health, a representative study of American
adolescents in grades 7-12, with the first wave of data collected in 1994-95 (Harris
2011). Specifically, we focused on 754 twin pairs collected as a part of the “genetic
pairs data” that includes 3000 pairs with varying degrees of genetic relatedness. The
twin sample included five gender and zygosity groups: identical (MZ) male and
female twin pairs, fraternal (DZ) male and female twin pairs, as well as opposite-sex

fraternal twin pairs.
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Measures

In this analysis we focused on two stages of smoking: experimentation and
regular use.

Smoking Experimentation. To measure smoking experimentation we
constructed a score from items related to trying cigarettes. For each individual, we

assigned a score based on his or her endorsement of each of the items as follows for

W1:
Score:
0 : No smoking items endorsed.
1 Had a puff of a cigarette, but not a whole cigarette.
2 : Smoked a whole cigarette.

Because W2 did not include an item about smoking a whole cigarette, the W2
smoking initiation variable was dichotomous (0 or 1), in which the participant
either did or did not have a puff of a cigarette.

Regular Smoking. To focus on factors separating those that smoke regularly
from those having only experimented with smoking, we restricted our sample to
twin pairs where both members had reported at least having tried cigarettes. For
each individual we then computed a score from the 15t principle component of the

following items for W1:

1. Have you ever tried cigarette smoking, even just 1 or 2 puffs?

2. How old were you when you smoked a whole cigarette for the first
time?

3. Have you ever smoked cigarettes regularly, that is, at least 1 cigarette
every day for 30 days?

4. How old were you when you first started smoking cigarettes regularly

(atleast 1 cigarette every day for 30 days)?
5. During the past 30 days, on how many days did you smoke cigarettes?
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6. During the past 30 days, on the days you smoked, how many
cigarettes did you smoke each day?

Similar questions were used to compute each participant’s component score at W2.

Shared Friends. As a measure of mutual friends, each twin was asked about
their co-twin, “How much time do you spend with the same friend or group of
friends?” Twins could respond with: “1: alot”, “2: some”, “3: little”, or “4: none.”
Because higher numbers originally indicated a lower index of shared friends, we
reverse scored this item for ease of interpretation; therefore higher numbers
indicated more mutual friends, with a score of 0 indicating no shared friends. When
we had responses from both twins, we averaged this value to get a value for each
twin pair. In cases where we only had a single twin’s response, we used that twin’s
given value for the pair.
Analyses

For smoking experimentation and regular smoking, at each wave of data
collection, the twin smoking correlation was estimated. For smoking
experimentation (an ordinal variable at W1 and a dichotomous variable at W2), we
fit a multifactorial threshold model to the data, which assumed a threshold imposed
on an underlying continuous distribution of factors related to liability of smoking
initiation. Thus, we estimated the polychoric (W1) or tetrachoric (W2) correlation
(r) between twin 1 and twin 2’s smoking experimentation score. For regular
smoking, a continuous variable, we estimated the intraclass correlation between
twin 1 and twin 2’s smoking score, and, due to random assignment to ‘twin 1’ or
‘twin 2’ status, double entered twins and corrected for the degrees of freedom in our

analysis.
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To match the validity of our measured variables with respect to heritability
estimates pertaining to smoking experimentation and regular use in the literature,
we fit a univariate twin model to each smoking phenotype at each wave. We used
the raw data from the previous correlations described above and included additive
genetic (A), shared environmental (C), and unique environmental or measurement
error (E) components. Subsequent sub-models that dropped each component of the
ACE model were fit and compared to the original ACE model by the significance of
the difference in chi-square between the full and reduced model. Only complete
twin data for the smoking variables was used.

The models described above estimated the twin smoking correlation («),
irrespective of shared friends:

I'twinl,twin2 = & (1)
However, in order to assess the degree to which shared friends impacted twin
smoking similarity we fit a second model that estimated the twin correlation as a
function of two parameters, a and £3:
I'winltwinz = @ + 3 (Average Shared Friends) (2)

In this case, the a parameter is the y-intercept or twin smoking correlation
when twins spend time with none of the same friends, and the 3 parameter is the
degree to which the shared friends variable influences the twin smoking correlation.
In this case, we tested whether the § parameter could be equated across twin group.
In other words, we tested whether 3 was significantly different for MZ versus DZ
twins. To justify inclusion of the 3 parameter, we tested the significance of the

difference between the two models that either excluded or included the 3
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parameter. Identifying the most parsimonious model with respect to unique 8 terms
was done by testing whether reduction of each 3 term resulted in a significant
detriment to the fit of the model as defined by a significant difference in chi-square
values between the two competing models.

Again, all models were fitted to raw data and analysis was completed using
OpenMx version 1.2 (Boker et al., 2011) and R version 2.12.0.

Results

Twin correlations are reported in Table 3.1 (W1) and Table 3.2 (W2). In all
cases, there were no statistically significant gender differences in the twin
correlations or differences between correlations of DZ same-sex and DZ opposite-
sex twin pairs. Therefore, analyses were continued on the combined MZ and DZ twin

groups.



Table 3.1

Intraclass Polychoric Twin Correlations: Experimentation

MZ DZ
N r (s.e.) N r (s.e)

w1

Combined 297 .72(.04) 441  .55(.05)
Females 146 .74 (.06) 117 .53(.10)
Males 151 .70 (.06) 127 .62 (.08)
Opposite Sex 197 .48 (.08)
w2

Combined 269 .62 (.07) 397 .43 (.07)
Females 134 .64(.09) 112 .59(.11)
Males 135 .61(.10) 109 .46 (.13)
Opposite Sex 176 .30 (.11)

Table 3.2
Intraclass Twin Correlations: Regular Use (Only Smokers)
MZ DZ
N r (s.e.) N r (s.e)

w1

Combined 133 .69 (.03) 165 .43(.05)
Females 66 .70 (.05) 41 .35 (.10)
Males 67 .69 (.05) 60 .37 (.08)
Opposite Sex 64 .52 (.09)
w2

Combined 73 .81 (.03) 88 .38(.07)
Females 42 .78 (.04) 25 33 (.13)
Males 31 .84 (.04) 31 34 (.11)

Opposite Sex 32 49 (.14)



We report estimates of the variance components from a univariate twin
analysis for each of these variables in Table 3.3. Both additive genetics and shared

environmental factors contributed to twin resemblance in our smoking
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experimentation variable at W1. However, though there was a familial effect, it was

unclear whether this familial effect in the full model could be reduced to include

either additive genetic or shared environmental influences for smoking initiation at

W2. For regular use, both additive genetic and shared environmental influences

contributed to regular smoking at W1, though the magnitude of additive genetic

factors was stronger than that of the shared environment. At W2, only additive

genetic and non-shared environmental factors influenced regular smoking.

Table 3.3

Univariate Twin Analysis

Smoking
Phenotype Model EP -2LL AIC Ay Adf p VA VC VE
Experimentation =~ ACE 5 2834.06 -123.94 - - - 41 33 .26
w1? AE 4 284236 -117.64  8.30 1 <01 .77 --- 23
CE 4 284352 -116.49 945 1 <01 --- .62 .38
Experimentation ACE 4 1749.82 -938.18 - - --- .39 24 .37
w2° AE 3 1752.09 -939.91 2.28 1 A3 .66 - 34
CE 3 1753.58 -936.42 3.77 1 05 - 51 49
Regular Use W1 ACE 5 1517.32 335.32 - - — 40 .27 33
AE 4 152130 337.30 3.97 1 0.05 .68 - 32
CE 4 152571  341.71 8.39 1 <01 --- 57 43
Regular Use W2 ACE 5 865.83 231.83 --- --- - 85 -.03 18
AE 4 865.87  229.87 0.04 1 85 .81 - .19
CE 4 892.91 25691  27.07 1 <01 --- .58 42

Bolded line indicates best fitting model
* Thresholds equated across zygosity; Ay’ =2.61.; ADF =2; p = .27

® Thresholds equated across zygosity; Ay’ = 1.3 x 107-6; ADF = 1; p = .99
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Effect of shared friends

Change in chi square estimates and their significance for the specified models
as well as parameter estimates for the best fitting models are listed in Table 3.4.

Smoking Experimentation. At W1, starting with a saturated model that
allowed for zygosity specific thresholds, the 8 parameter, or effect of shared friends,
could be equated for MZ and DZ twins. However, dropping this parameter from the
model produced a marginal, but not statistically significant, detriment in model fit.
At W2, the effect of shared friends could also be equated across zygosity, and
dropping this parameter produced a significant decrease in model fit. Therefore, for
smoking initiation, predominantly at Wave 2, the 3 parameter or effect of mutual
friendships on the twin smoking correlation, could not be excluded.

Regular Smoking. At W1, the 3 parameter could not be dropped from the
model without significantly reducing model fit. It could, however, be equated across
all gender and zygosity groups to get a single [3 parameter, indicating an association
between twin similarity for regular smoking behavior and time spent with the same
group of friends. However, the § parameter at W2 could not be equated across
zygosity, resulting in different MZ and DZ values. While the MZ 3 value could be
dropped from the model without a significant detriment in model fit, dropping the
DZ 3 value decreased fit of the model. Therefore, increased time spent with the same

group of friends increased the DZ, but not MZ, twin correlation.
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Table 3.4.

Effect and estimates of the shared friends parameter ([3)

Bwmz=Bpz? B=0b Bmz | Bpz
Axz (1) Axz (1)
Experimentation W1 0.46 3.71# .08 (.04) .08 (.04)
Experimentation W2 0.35 6.43* 17(.07) .17(.07)
Regular Use W1 1.05 60.26%** .22 (.03) .22(.03)
Regular Use W2 4.31* MZ: 2.79 -10 (.01) .23(.10)
DZ: 6.94**

#p<.10,*p <.05 **p<.01,***p<.001

aSaturated model included amz, o pz, B mz, Bz, and thresholds mz/pz (Experimentation)
bSaturated model included awmz, o pz, B (based on whether vz = 3pz),and thresholds mz/pz
(Experimentation)

Discussion

When smoking was defined as smoking experimentation, the degree to which
twins spent time with the same group of friends affected their resemblance for
smoking experimentation, especially at an older age (W2). When the definition of
smoking was altered to refer to regular use, that included items related to smoking
frequency and quantity, more time spent with the same peer group increased twin
resemblance for smoking behavior. However, this effect only persisted for fraternal
twins at the second wave of data collection.

The goal of this analysis was to examine the differential impact of peer
relationships at different stages of the smoking trajectory. Peer relationships are a
known contributor to smoking status (Kobus, 2003), but the details of exactly how
these relationships impact adolescent choices to initiate and continue smoking are
unclear.

Our univariate analyses echoed findings from the literature implicating a

genetic component to smoking status. With the exception of the regular use variable
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at the second wave of data collection, it appeared that the shared environment also
played a role, though the magnitude of these estimates was smaller than those for
the additive genetic contribution (Table 3.3). This is an interesting factor to note
when considering to what degree the variable mutual peers was a reflection of
shared environmental or additive genetic components that may have resulted in
twin smoking resemblance.

In Study 1, we examined a similar question in assessing whether twins may
share friends as a result of being more genetically similar to each other with regard
to factors influencing smoking. If such was the case, there would be a correlation
between smoking status resemblance and number of shared friends, for DZ, but not
MZ twins, because MZ twins are already at maximal genetic relatedness, while DZ
twins vary in their genetic resemblance. For a composite smoking variable that
included items related to both initiation and more regular use, we found potential
evidence for genetically-based homophily, or that resemblance between individuals
and their peers may be due to choosing friends that are more genetically similar to
themselves in terms of smoking behavior. This finding was extended to apply to
smoking initiation, but not for smoking progression.

While the present analysis did not allow us to assess the specific role that
genetically-based homophily may have had in the homogeneity of smoking
behaviors within peer group, it did tell us that sharing peer groups increased
similarity of smoking behavior, whether that smoking behavior was the initial first
cigarette puff or more regular smoking behavior. At this stage, the relative role of

shared environments and shared genes on friendship similarity in twins remained
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unclear. As the effect of shared peers was statistically equivalent for both MZ and DZ
twins (with the exception of regular smoking at W2) we could not rule out either of
these possibilities, and it may be the case that the variable of shared peers reflected
both genetic and environmental sources of resemblance.

However, for regular smoking at W2, we did not see this pattern; shared
friends did not impact MZ twin resemblance but increased resemblance of DZ twins.
This result for regular smoking at W2 replicated the previously described findings
in Study 1 for smoking and Loehlin (2010) for alcohol use. It should also be noted
that these two studies assessed twins that were more similar in age to the W2 data
in the present analysis. Interestingly, for this variable, we could also exclude the
shared environmental component of our univariate model (Table 3.3). Thus, shared
friends for regular smoking at this wave of data collection may have been an
indicator of increased genetic resemblance among DZ twins, which, as a result,
increased smoking behavior resemblance. However, given such a high initial MZ
correlation and reduced sample sizes for this variable (Table 3.2), we remain
cautious with interpreting this result.

The major limitation of our analysis was that we were still unable to
decompose what shared peers among twin pairs tells us in regard to genetic and
environmental sources of resemblance in smoking behavior. Future analyses should
target this question specifically, as it may provide insight into exactly how peer
relationships affect adolescent decisions to smoke. A further limitation is that our
shared peer variable was not indicative of whether the shared peers smoked

themselves or not. This dataset does, however, have information regarding the
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number of friends that each individual reports as being a smoker. Hoffman, Monge,
Chou, and Valente (2007), using this same dataset (Waves 1 and 2 of AddHealth),
evaluated a longitudinal model that assessed an individual’s smoking behavior at
two time points (W1 and W2) as a function of the number of friends that smoke at
W1 and W2. Their result, finding an association between adolescent smoking at the
initial time point and smoking friends at the second time point, reiterates the impact
of selection on peer homogeneity in smoking behavior. Yet, they did not find
support for peer influence, as the relationship between friend smoking at W1 and
individual smoking at W2 was negative in direction. We are cautious about
interpreting their results, however, as W1 and W2 are only a year apart, which may
not be enough time to develop or assess the dynamics of peer formation and
development of smoking habits. Information about the smoking behavior of friends
at later time points (not available in this dataset) would be instrumental in
clarifying the impact of both selection and peer influence.

We also point out that the individuals in this sample were middle to high
school aged at the time of assessment, and, if having even experimented with
smoking, might have not yet taken on habits relevant to patterns of regular use by
this time. Using data from later waves may have rectified this issue; however, no
data on shared friends was available at subsequent waves following Wave 2.

In conclusion, we confirmed previous reports of the role that peer
relationships have in cigarette smoking behavior, and uniquely, we demonstrated
that this role was relevant to both the experimentation and continued use of

cigarettes. We also presented the possibility that similarity within peer groups of
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smoking behavior might be due to shared genetic propensities, but we could not
rule out environmental factors contributing to this resemblance as well.
Understanding the complexity involved in adolescent choices to both initiate and
continue to use cigarettes, and particularly how peer relationships impact each of
these choices, will be important in the development of effective strategies to curtail

the possible adverse effects of these decisions.
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CHAPTER IV

SNPS AND SMOKING: WHAT CAN THE AGGREGATE OF GENOME-WIDE SNPS TELL
US ABOUT GENETIC LIABILITY TO SMOKING INITIATION AND QUANTITY

SMOKED?

Background

We know that genetics is a relevant factor in cigarette smoking behavior, but
studies that focused on single or small groups of variants within whole-genome data
have yet to recapture the entirety (or any sizable portion) of the genetic variance as
estimated from the twin literature (Tobacco and Genetics Consortium, 2010). Here,
we used the conglomerate of common SNPs to estimate the ‘SNP heritability’ for
smoking age of onset including initiation and quantity smoked using GCTA (Yang,
Lee, Goddard, & Visscher, 2011). GCTA uses genome-wide single nucleotide
polymorphism (SNP) data to calculate the genetic similarities between classically
‘unrelated’ individuals, and determines the degree to which genetic similarities are
associated with phenotypic similarities to estimate the additive genetic effects
tagged by common SNPs. When standardized by the phenotypic variance, this
method estimates the “SNP heritability” (SNP h?): the proportion of phenotypic
variance explained by the aggregate effects of all SNPs.

We also know that different smoking phenotypes may have differing genetic
etiologies, but the twin literature has been mixed in regard to the degree that the

genetic factors influencing each phenotype overlap. Thus, we also conducted a
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bivariate analysis in GCTA (Lee, Yang, Goddard, Visscher, & Wray, 2012) to gain a
better understanding of the degree to which the genetic factors for smoking
initiation overlap with those that influence quantity smoked.

Method
Participants

Genetic and phenotypic data obtained from dbGaP consisted of 10,162
participants from the Atherosclerosis Risk in Communities (ARIC) and the Multi-
Ethnic Study of Atherosclerosis (MESA) that were genotyped on the Affymetrix 6.0
SNP chip.

The ARIC data was collected from four US communities to prospectively
study atherosclerosis and related cardiovascular conditions. As a part of the cohort
component of their study, 15,792 individuals aged 45 to 64 were included. Cohorts
were selected by probability sampling within each community, and households with
age-eligible individuals were selected for home interviews and invited to participate
in a clinic examination starting in 1987-89. In the present analysis we used only the
data from the first examination. Additional study details have been described
elsewhere (Investigators 1989). The MESA data was collected from six US centers
starting in 2001. 6,500 individuals between the ages of 45 and 84 were recruited to
investigate sub-clinical cardiovascular disease. Details have been reported in Bild et
al. (2002).

Quality control procedures were completed initially within each dataset and
then again in the merged dataset. Only self reported European Americans were

used. We removed ethnic outliers by visually inspecting the first two dimensions of
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a multidimensional scaling analysis plot. We also removed individuals with missing
phenotypes or covariates, genotyping rates less than 95%, discrepancies between
reported and genotypic sex, and with heterozygosity estimates greater than 3
standard deviations from the mean. We removed one of two individuals based on
high pairwise genetic relatedness (indexed by 7t values >. 05 in GCTA), because
closely related individuals, in addition to sharing more genetic variants, may also
share more similar environments. The final sample included 8494 individuals.
Measures

Age of smoking onset. In concordance with Heath, Martin, Lynskey, Todorov,
and Madden (2002), we defined smoking initiation in terms of age of smoking onset.
We assessed smoking age of onset in both datasets and included all participants for
this measure. In ARIC, this variable was assessed by interview with the question,
‘How old were you when you first started regular cigarette smoking?’ In MESA, age
of onset was assessed by questionnaire with the question ‘How old were you when
you first started smoking cigarettes? We coded this variable based on increasing
liability such that individuals who reported not ever smoking were given a score of
0, individuals that started smoking after age 18 were given a score of 1, and
individuals that smoked before age 18 were given a score of 2.

Quantity smoked. Only individuals who had initiated smoking (scores of 1 and
2 on age of onset measure) were included in the quantity smoked analysis. We
assessed quantity through reported cigarettes smoked per day. In ARIC participants
were asked “On the average of the entire time you smoked, how many cigarettes did

you usually smoke per day?” and MESA participants answered the question, “On
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average, how many cigarettes a day do/did you smoke?”. Participants reported the
number of cigarettes smoked per day, and this was included as a continuous
variable in the analysis.
Analyses

We used GCTA to estimate the univariate SNP h?2 for both smoking age of
onset using all participants (n = 8494) and quantity smoked for only participants
who had initiated smoking (n = 5075). Further, we examined the overlap of genetic
factors responsible for smoking onset in each gender, and repeated this analysis for
quantity smoked. We then conducted a bivariate analysis that estimated the SNP
correlation (SNP-rg) between age of onset and quantity smoked, providing an

estimate of the degree to which the SNPs that influence onset are the same as those

that influence quantity smoked. Age, gender, dataset, and the 15t ten ancestry
principal components (to control for the possibility of ethnic stratification (Price et
al,, 2006) were included as covariates in all analyses. All analyses and quality
control were conducted using PLINK v1.07(Purcell et al., 2007), PLINK v1.90b2b
(Purcell & Chang, 2014), R version 3.0.1 (Team 2013), and GCTA version 1.24.3
(Yang et al,, 2011b).
Results

Onset versus quantity smoked

Common SNPs contributed to both age of smoking onset (SNP h2 =.08; SE =
.04; p =.02) and quantity smoked (SNP h? = .12; SE =.06; p =.03). Additionally, the

SNP correlation between onset and quantity (SNP-rg =.39; SE =.34; psnprg=1=.08; p
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sNPrg=0 = .14) revealed that there is not complete overlap between the genetic
factors related to smoking onset versus smoking quantity.
Gender effects for smoking onset and quantity

When each phenotype was subdivided by gender, SNPs did not significantly
contribute to male (n = 4168) smoking onset (SNP h2 =.12; SE =.08; p =.06), male
(n = 2897) smoking quantity (SNP h2 =.10; SE =.11; p =.16), female (n = 4362)
smoking onset (SNP h2 =.06; SE =.07; p =.18), or female (n = 2178) smoking
quantity (SNP h2 =.07; SE =.14; p =.32). The SNP correlations between males and
females for smoking onset (SNP-rg =.74; SE =.73) and smoking quantity (SNP-rg = 1;
SE = 1.51) were high, indicating substantial overlap between the genetic factors
related to smoking onset and quantity smoked for males and females.

Discussion

Here we conclude that the conglomerate of genome-wide SNPs contributes to
both smoking onset and quantity smoked. From the bivariate analysis, it also
appears that there are both unique and shared genetic factors responsible for
smoking onset and quantity. In other words, the set of genetic factors that
contribute to age of smoking onset do not entirely account for the amount that an
individual smokes post initiation; there appear to be a unique set of factors related
to quantity smoked. Evidence for a separate genetic liability related to more
persistent smoking beyond the liability to smoking initiation reiterate what has
been found in family studies (Hardie et al., 2006; Koopmans et al., 1999; Madden et

al,, 1999; Maes et al., 2004; Vink et al., 2005).
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However, when we divided this analysis by gender, we were unable to
account for any variance in either phenotype using the conglomerate of SNPs, and
there did not appear to be unique genetic factors related to each gender in terms of
smoking onset or quantity. One possibility for our inability to assess these effects by
gender may be related to the reduction in sample size and, resultantly, power as a
result of dividing the dataset by gender, especially in the bivariate analysis (Visscher
et al.,, 2014). Previous analyses have drawn attention to the importance of including
gender as a factor when examining the genetics of smoking phenotypes. For
example, while not finding large differences in the actual heritability for each
gender, Morley et al. (2007) did find that genetic correlations among three smoking
phenotypes (onset, consumption, and persistence) was higher in males than
females, and that environmental connections between these traits may be higher in
women. Thus, while gender may play a substantial role, the present analysis was
unable to draw any meaningful conclusions regarding how genetic factors related to
onset and quantity might impact males and females differently.

A major standout from this analysis is the disparity between the SNP
heritability estimates here and heritability estimates from the twin literature that
are larger in magnitude. For example, Li, Cheng, Ma, and Swan (2003)’s meta-
analysis reported heritability estimates for smoking initiation of .37 in females and
.55 in males, and for persistence .46 in females and .59 in males. Analyses that
specifically looked at age of smoking onset found heritability of about .60 (Morley et
al,, 2007). Even though GCTA confirmed the contribution of common SNPs to

smoking onset and quantity, these estimates of the genetic contribution to smoking-
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related traits are less than what family studies have previously found. However, an
important consideration is that the genetic source of variance calculated by GCTA, is
not the heritability, or proportion of trait variance due to additive genetic factors. It
is simply the proportion of trait variance that can be attributed to measured SNPs
that may or may not capture the entirety of additive genetic factors contributing to a
trait.

Like Yang et al.’s (2010) initial study on human height, several other studies
have sought to use GCTA in an attempt to rectify the discrepancy between
heritability estimates from the family-based literature with the tiny genetic variance
estimates obtained from SNPs in GWAS. For the most part, the additive genetic
variance that can be obtained from the aggregate of all SNPs tends to be much
greater than that obtained from single SNPs in GWAS (Gusev et al., 2013), but less
than that estimated from family studies. For example, Lubke et al. (2012) examined
smoking initiation (GCTA =.19/ TwinFam = .44), current smoking (.24/.79), fasting
glucose (.22/.53), and height (.42/.90). Further, Vinkhuyzen et al. used GCTA to get
an estimate of the degree to which common SNPs explain variation in personality
dimensions of neuroticism (~ 6%) and extraversion (~12%). Again, these estimates
are much greater than what had been previously found in GWAS or candidate gene
studies, but un-accounted for genetic variance, as estimated by family-based studies,
remains.

There are a number of explanations for the lower estimates by GCTA
compared to family study estimates of heritability. Wray and Maier give an

extensive review of these possibilities (Wray & Maier, 2014). One explanation has
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to do with the key difference between GCTA and family-style analyses. While family
style analyses are supposedly picking up on total additive genetic variance due to
the assumptions underlying the covariance structure between different relatives of
differing genetic relatedness, the ability for GCTA to produce an accurate measure of
genetic variance depends on the degree to which the common SNPs that were used
in the study are correlated or in LD with the true causal variants. For many traits
there has been suspicion that perhaps rare causal variants (with MAFs much lower
than the marker), which would not be picked up as well by the genotyped common
SNPs, contribute to genetic variance in the trait. In other words, the there may be
imperfect tagging, either through LD or just missing particular parts of the genome,
between the genotyped SNPs and the un-observed causal variants. Thus, Davies et
al. (2011) in their study using this design for intelligence, describe GCTA as a way to
get a lower bound estimate for true narrow-sense heritability.

A further reason for the discrepancy between genetic variance estimates
from twin studies and analyses utilizing GCTA has to do with the possibility that
twin studies may be incorrectly assessing narrow-sense heritability. This could
happen for a variety of reasons that have to do with the assumptions and general
ways twin models are specified. One possibility is that non-additive genetic factors,
that are often un-modeled in classical twin designs, may be biasing shared
environmental effects downward, and thus estimates of heritability will be
increased. One example of this includes the potential for genetic interactions that
are not considered in an additive model (Zuk, Hechter, Sunyaev, & Lander, 2012).

Further any other effect that would bias heritability estimates in an upward fashion,
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such as violations of the equal environment assumption, will contribute to this
discrepancy. Additionally, when fitting twin models, dropping non-significant
parameters, particularly those for shared-environment, when they are in fact
contributing to twin co-variation might further bias heritability estimates upward
and further widen the discrepancy between genetic variance derived from common
SNPs using GCTA and that from family-based designs.

Additionally, twin studies examine the phenotypic correlation between
individuals that are the same age while analyses in GCTA look at the phenotypic
correlation between individuals that, depending on the sample used, could differ in
age by several years. In the case of this sample, participants were born from the
1920s to the 1950s. Thus, comparisons between smoking behavior would be made
between individuals of different ages. Thus, to the degree that age or cohort has
influence on the genetic etiology of smoking behavior, we would be ‘comparing
apples to oranges’ with respect to linking genetic similarity to phenotypic similarity
as is done in GCTA. Wray and Maier (2014) discuss how disease heterogeneity,
where different sets of genetic factors contribute to diseases that are classified as a
single condition, may result in underestimates of SNP heritability. Correspondingly,
if different sets of genetic factors are responsible for smoking phenotypes
depending on a person’s age or cohort, these lower estimates of SNP heritability for
smoking onset and quantity would not be surprising. As family studies have hinted
at potential differences in the genetic components related to smoking based on
cohort (e.g. Boardman et al., 2010), we will examine this possibility in the next

chapter.
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CHAPTERV

GENOME-WIDE SNP DATA SUGGESTS GENETIC INFLUENCES ON CIGARETTE

SMOKING INITIATION DIFFER ACROSS BIRTH COHORTS

Background

Twin studies have highlighted the potential for heritability estimates to differ
depending on the specific birth cohort examined (Heath et al., 1993; Boardman et
al,, 2010). Thus, we used a mixed linear effect model, implemented in Genome-wide
Complex Trait Analysis (GCTA)(Yang et al.,, 2011), to understand whether the
contribution of common genetic variants to smoking initiation differs as a function
of birth cohort.

Similar to the referenced twin studies, differences between cohorts in the
magnitude of SNP h? would point to a quantitative GE interaction. However, an
advantage of using GCTA over family studies is that, because genetic similarity
between all pairs of subjects are used to estimate SNP h?, age differences between
individuals in the sample allow estimation of the overlap between genetic effects
responsible for smoking initiation across different ages, or qualitative GE
interaction. In GCTA this can be done in two ways: (1) by estimating the genetic
correlation between the two cohort groups in a bivariate analysis (Lee et al., 2012),
and (2) by including a gene-by-cohort (qualitative) interaction term. Both
approaches assess the degree to which the SNP effects associated with smoking

initiation in one birth cohort are the same as those in another birth cohort.
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We were interested in understanding both quantitative and qualitative gene-
by-cohort interaction effects for smoking initiation during the 20t century, as the
health consequences of smoking began to become apparent. We first demonstrate
these approaches using a fake data simulation to ensure that the estimates of
quantitative and qualitative GE interactions were unbiased and modeled
appropriately. We then divided a large genome-wide dataset on smoking initiation
into two birth cohorts to estimate the SNP h? in each cohort separately, and then
tested both the genetic correlation across cohorts, and the qualitative gene-by-
cohort interaction, in the combined sample.

Method
Simulation of Quantitative and Qualitative GE Interaction in GCTA

We began our analysis by simulating polygenic quantitative or qualitative GE
interactions. To approximate the underlying genetic structure and reduce
computation time, we used real genotype data from chromosome 22 (3397 SNPs
spanning 34 Mb) in the Atherosclerosis Risk in Communities study accessed from
dbGaP. We divided the sample in half at random and called one group the ‘old'

cohort (n = 4140) and one the ‘young' cohort (n = 4140). For both interaction

models we simulated a phenotype with a prescribed SNP h? based on 150 randomly
chosen causal variants which each contributed equal genetic variation to the

phenotype. For quantitative GE interaction, the causal variants for each cohort were

the same but the simulated phenotype had a SNP h? of .6 in the old cohort and .3 in
the young cohort. To simulate a qualitative GE interaction, of the 150 causal

variants, 50 were unique to the old cohort, 50 were unique to the young cohort, and
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50 were shared by both. The SNP h2 was set to .6 in each cohort. Thus, within each
cohort, variance accounted for by SNPs unique to each cohort was .3 and variance
related to causal SNPs shared by the two groups was also .3, implying a genetic
correlation (SNP-rg) of .50 and a r? (or h?) of the gene-by-cohort interaction term of
3.

For both simulations we used GCTA to estimate the heritability for the
cohorts combined and separately. We also tested an interaction between genotype
and cohort and did a bivariate analysis between the two cohorts. We repeated this
100 times, each time creating new cohorts affected by new causal variants.

Real Data: ARIC and MESA

Genetic and phenotypic data obtained from dbGaP consisted of 10,162
participants from the Atherosclerosis Risk in Communities (ARIC) and the Multi-
Ethnic Study of Atherosclerosis (MESA). This is the same dataset used in Chapter IV,
“Snps And Smoking: What Can The Aggregate Of Genome-Wide Snps Tell Us About
Genetic Liability To Smoking Initiation And Quantity Smoked?” See the previous
chapter for details and quality control procedures. Missing phenotypes reduced our
sample to 8484 individuals.

Measures

We assessed smoking initiation in both datasets. In ARIC, initiation was
assessed by interview with the question, "Have you ever smoked cigarettes?” In
MESA, initiation was assessed by questionnaire with the question, ‘Have you ever
smoked at least 100 cigarettes in your lifetime?’ Responses were a dichotomous

‘yves' or ‘no". Differences in reported smoking behavior has not been found to differ
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as a function assessment method (Kaplan, Hilton, Park-Tanjasiri, & Pérez-Stable,
2001). The proportion of smokers in MESA dataset (56%, n = 1942) was slightly
lower than in the ARIC dataset (61%, n = 8102). To correct for any dataset related
discrepancies, dataset was included as a covariate in all models.
Analyses

To have enough individuals within each cohort to ensure adequate power to
detect SNP-correlations or GE interactions, we split the sample based on the median
birth year of 1934, creating two cohort groups of between four and five thousand
individuals (Visscher et al., 2014). Individuals born before 1934 were called the ‘old’

cohort and those born in or after 1934 were called the ‘young’ cohort.

To test for quantitative GE interaction, we estimated the SNP h2 for the
young and old cohorts separately as well as for the combined sample (both old and
young cohorts). We estimated the genetic correlation between SNPs (SNP-rg) in the
young and old cohorts using two methods. First, using the gene-environment
interaction option, we estimated a single additive genetic variance component that
is assumed/required to be equal in each cohort, an environmental variance
component, also assumed to be equal in each cohort, and a gene environment
variance component (Vaxe) that effectively parameterizes a genetic correlation. A
significant Vaxr component suggests that the genetic correlation is significantly
different from 1.0. Second, using the bivariate option, we estimated the additive
genetic and environmental variance for each cohort and the genetic correlation
between the cohorts, which did not require the genetic variances in the two cohorts

to be equal.
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Additionally, due to the arbitrary nature of the median data split, we

estimated the SNP h? for overlapping groups of individuals born in 8-year intervals.
Further, we tested the interaction between gender and genotype both in a model
that included just gender and, to confirm that gender interactions are not driving
cohort interactions, in a model allowing for both cohort and gender interactions.
Dataset and birth year (as a continuous instead of dichotomous variable) were also
included as interacting factors with genotype in separate models. We included
gender, dataset, and the first ten ancestry principal components (to control for
ethnic stratification (Price et al., 2006)) as covariates in all analyses. Birth year was
used as covariate in analyses in which it was not collinear with birth cohort. All
analyses and quality control were conducted using PLINK v1.07(Purcell et al., 2007),
PLINK v1.90b2b(Purcell & Chang, 2014), R version 3.0.1(Team 2013), and GCTA
version 1.24.3(Yang et al., 2011b).

Results
SNP Heritability and GE Interactions for Simulated Phenotypes

Results from the simulation of the quantitative GE interaction, are shown in
Table 5.1. GCTA correctly estimated the SNP h2 within each cohort, and when the

cohorts were combined into a single sample, the SNP h? estimate was at an
intermediate value between the values for the old and young cohort. Furthermore,
the interaction term between genotype and cohort in the combined sample was null,
and the bivariate analysis of the SNP correlation demonstrated that the causal SNPs

in one cohort were identical to those in the other.
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Results from the simulation of the qualitative GE interaction demonstrate

that the SNP h? for the old and young cohorts correctly estimated the genetic

variance from causal SNPs for each cohort (Table 5.1). When the two cohorts were
combined in a single sample, the estimated SNP h? was reduced to a level that was

lower than the SNP h2 in either cohort, because the SNP h2 estimate was depressed
by the genetic variance that was due to SNPs that differed between cohorts. The
interaction term between cohort and genotype correctly indicated that half of the
genetic variance was shared within and half between cohorts. In the bivariate
analysis, the SNP correlation also indicated that half the SNPs relevant to each group

were shared while the other half were unique to each cohort (SNP-rgz ~ .50).

Table 5.1

Simulation: GCTA estimates and standard errors

Quant. Simulation (Mean SNP hZ) | Qual. Simulation (Mean SNP h2)

n Est. (SE) n Est. (SE)

0Old Cohort 4140 .60 (.04) 4140 .61(.02)

Young Cohort 4140 .30 (.05) 4140 .60 (.02)

0Old and Young 8280 44 (.03) 8280 46 (.02)
Interaction 8280 8280

V(G)/V(P) 42 (.03) .32 (.02)

V(GxCohort)/V(P) .04 (.03) .28 (.02)
Bivariate 8280 8280

V(G)/V(P) Old .60 (.04) .61 (.02)

V(G)/V(P) Young .31 (.04) .60 (.02)

rg SNP Young-Old .96 (.07) .53 (.03)
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SNP Heritability and GE Interactions for Smoking Initiation

Sixty percent of the old cohort had initiated smoking (48% prevalence in
females and 72% in males), while 59% had initiated in the young cohort (52%
prevalence in females and 67% in males). There was not a significant interaction
between genotype and dataset (V(GxDataset)/V(P) = 0; SE =.13; p =.5), indicating
that the same SNPs predicted smoking initiation in the two datasets, which provided
justification for combining them.

Results from the main GCTA analyses are shown in Table 5.2. For individuals
born before 1934, SNP hZ2 for smoking initiation was not significant (SNP h% =.15; SE
=.13; p =.12), but there was a significant SNP h2 for individuals born in or after
1934 (SNP h2 =.31; SE =.11; p =.002). There was no evidence that these two SNP h?
estimates differed (that there was a quantitative gene-by-cohort interaction; Z = -
1.37, p =.17). Figure 5.1 illustrates the SNP h? estimates for overlapping sets of
individuals born in cohorts of 8 years, suggesting that the strongest genetic

contribution to smoking initiation occurred for those born in the 1930s.

Table 5.2
ARIC and MESA data: GCTA estimates and standard errors

n SNP h?
Old Cohort 3912 .15 (.13)
Young Cohort 4572 31 (\111)
0Old and Young 8484 .13 (.06)
Interaction 8484
V(G)/V(P) .003 (.08)
V(GxCohort)/V(P) .23 (.12)
Bivariate 8484
V(G)/V(P) Old .15 (.13)
V(G)/V(P) Young 31 (\11)
rs SNP Young-0ld -.09 (.40)
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Figure 5.1. Estimated SNP heritability for overlapping sets of individuals (points
non-independent) born in cohorts of 8 years. We used Genome-wide Complex Trait
Analysis (GCTA) to estimate SNP heritability (SNP h2) for individuals born in
overlapping 8-year intervals (* 4 years from the year shown). Significant estimates
indicate significant SNP heritability estimates for individuals born within the 8-year
interval. As displayed, the greatest genetic influence indicated by significant SNP h2
estimates was found for individuals born in the 1930s. Error bars represent

standard errors.
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In the combined old and young cohort groups, there was a significant effect
of common SNPs (SNP h%2 =.13; SE =.06; p =.02) on smoking initiation, which was
lower in magnitude than in either the old or young cohort when analyzed separately
(see Table 5.1), suggestive of a qualitative birth cohort-by-SNP interaction.
Consistent with this expectation, there was a significant interaction between the
effect of common SNPs and cohort (V(GxCohort)/V(P) =.23; SE =.12; p =.02) for
smoking initiation. To ensure this result was not confounded by gender (Keller
2014), we included a gender-by-gene interaction in this model; the cohort
interaction remained significant (V(GxCohort)/V(P) =.22; SE =.12; p =.03) while
the gender interaction was not (V(GxGender)/V(P) =.09; SE =.11; p =.22). In the
bivariate analysis, the estimate of SNP-rg was low (-.09; SE = .40), suggesting that
SNP effects associated with smoking initiation differ across birth cohorts. This
estimate is significantly different from 1.0 using a Z test (Z = -2.74, p =.003) but not
by a likelihood ratio test (y? = 1.49, p =.11). However, when we replaced the
dichotomous (young/old) variable with birth year as a continuous variable,
evidence for the cohort-by-gene interaction disappeared (V(GxYear)/Vp = 0; SE =
29,p =.5).

Discussion
We used a mixed linear effect method to understand how genetic factors
responsible for smoking initiation tagged by genome-wide SNPs differ in terms of
magnitude and composition for two birth cohorts. Genetic influences as indexed by
the conglomerate of genome-wide SNPs contributed to smoking initiation for those

born in or after 1934, but were lower and non-significant for those born before
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1934. The heritability estimate in the combined cohort analysis was less than that
for either cohort individually, suggestive of a low genetic correlation between
smoking initiation in the two cohorts, and a SNP correlation significantly less than 1
was found in the bivariate analysis. Additionally, a significant genotype-by-cohort
qualitative interaction term was found in the combined cohort analysis that further
supported the hypothesis that genetic effects responsible for smoking initiation
differ across birth cohorts.

An advantage of using the qualitative interaction term in addition to the
bivariate analysis is that we could include a continuous interacting factor instead of
dichotomizing birth year into two cohorts. However, when we treated cohort as a
continuous variable (birth year), evidence for the cohort-by-gene interaction
disappeared. We are uncertain why this occurred, but one possibility is nonlinearity
in the birth year-by-gene interaction effect (See Figure 5.1). Additionally, the
qualitative interaction analysis requires homogeneity of genetic and environmental
variance across the groups being compared, and violations of this could lead to false
positive results. The bivariate analysis relaxes this assumption. Yet, both analyses
suggested that the genetic components or effects related to smoking initiation might
be different depending on cohort.

The arbitrary median split prompted us to examine differences in estimates of
SNP hZ for 8-year increments across our entire sample. Our results mirrored
findings from Boardman et al. (2010) who found genetic influences for individuals
born in the 1930s. Low sample sizes in the tail birth years of our sample hindered

our ability to get accurate SNP h? estimates for cohorts defined by specific events,
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such as the 1964 Surgeon General’s Report, that are likely to have influenced
smoking behavior. Larger samples that span greater age ranges could test the same
GE interactions investigated here across potentially more informative cohorts.

Gender may also have an impact on the quantitative or qualitative differences
in heritability across birth cohort observed here, but splitting the sample by both
gender and cohort would increase the imprecision of SNP h2 estimates for each
group. Nevertheless, it is possible that our findings could be the result of genetic
factors that are differentially related to smoking initiation for males versus females.
However, given that the cohort interaction remained significant even when
accounting for potential gender interaction, it is unlikely that gender differences
could be entirely driving our finding of genetic differences by cohort.

This analysis focused on smoking initiation and did not examine these effects
for other smoking phenotypes, such as nicotine dependence, which might show
different patterns of heritability and environmental moderation. Further, as seen in
the previous chapter, these estimates of SNP h? are lower than heritability estimates
from twin/family studies (Sullivan & Kendler, 1999; Li et al., 2003) primarily
because only effects of (mostly common) genetic variants tagged by SNPs are
included in the estimate of SNP hZ2, but also because SNP h? estimates are not
inflated by common environmental or non-additive genetic effects (Keller &
Coventry, 2005). Finally, motivated by our need to maximize sample size, we used a
Tt threshold (< .05) that was more relaxed than often used (<.025) (Yang et al.,
2010). As this threshold is increased, it is increasingly possible that shared

environmental factors (shared between very extended families) to be confounded
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with genetic factors, which could lead to inflated estimates of SNP h2. Nevertheless,
we find this possibility unlikely given the very distant relatedness implied by the
low threshold for genetic similarity used in this analysis.

We illustrated GCTA’s ability to detect differences in not only the magnitude
of genetic effects but in the actual genetic factors that affect the same trait at two
time periods. Importantly, there might be different genetic effects influencing
smoking initiation for those born either before or after the mid-1930s. To better
understand the dynamic of the social environment and any gender effects that could
differentially impact the each of these cohorts, obtaining larger genome-wide
datasets with an expanded range of birth years is a crucial next step. Such inquiry
will allow a clearer understanding of how the genetic underpinnings of smoking

exist in synergy with the environmental and social context.
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CHAPTER VI

OVERALL DISCUSSION, LIMITATIONS AND IMPLICATIONS

These four studies explore some of the primary contributors to the etiology
of cigarette smoking. The influences of genes, peers, and birth cohort have all been
previously described in terms of their unique relationship to various definitions of
cigarette smoking behavior. Here, however, we further clarified how these factors
may synergistically influence choices to smoke.

Studies 1 and 2

In Study 1, we described the various mechanisms that explain homogeneity
in smoking behavior among peers. Specifically, we addressed the possibility that
shared genes may put individuals into friendship groups that may then provide
additional peer influence. Additionally, we assessed whether this mechanism is
limited to the initiation of smoking or whether such processes are still relevant for
heavier use of cigarettes.

Our findings demonstrated that homophily, or selecting friends that are
genetically similar to oneself in terms of smoking behavior, could partially explain
why individuals resemble their peers with respect to smoking behavior, especially
with respect to smoking initiation. We also described a number of alternatives that
may explain smoking homogeneity in peer groups, but our specific pattern of

correlations points to the presence of genetically based homophily.
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However, we were limited in our ability to evaluate the presence of active
gene environment correlation (active rGE), which would require that we also have
information on the degree to which the selected peer group provided additional
influence on smoking behavior. Ideally, longitudinal data could be used to assess
both the effects of peer selection and the possibility of influence processes,
especially if information was known about the smoking behavior of the friends.
Additional limitations further discussed in the relevant chapter included: the young
age of participants, relevance of the questions related to smoking behavior
(especially for high school students), and the ability to extend these results to more
modern cohorts of adolescents.

Study 2 uses a more recent dataset to expand upon Study 1 for two smoking
phenotypes: smoking experimentation and regular use of cigarettes. Again, we
sought to determine the degree to which shared friends influences similarity of twin
smoking. Our findings demonstrated that shared peers among twins contribute to
their similarity of smoking for both smoking experimentation and more regular use
of cigarettes. However, we only see a replication of the results from Study 1, an
effect for DZ but not MZ twins, for regular smoking at Wave 2 (W2). This result
could demonstrate that choosing friends like oneself with respect to genetic
propensity for smoking may only be a viable explanation for peer smoking
homogeneity for older individuals that are using cigarettes more regularly. Rather,
we remain cautious in interpreting this result due to the reduced sample size in W2
and the high initial correlation for MZ twins. Other analyses have taken advantage

of the longitudinal aspects of this dataset to demonstrate the salience of peer



63

selection, but have found limited evidence for additional influence (Hoffman et al.,
2007).

In conclusion, both Study 1 and 2 established that selecting peers like oneself
contributes to why peers resemble each other in terms of smoking behavior. Study 1
specifically pointed to the possibility that this selection is based upon genetic
similarity in domains related to smoking initiation. Study 2 demonstrated that
friend selection is also an important precursor to both smoking experimentation
and regular use. However, we had limited evidence with regard to the additional
influence that would be needed to conclude the presence of active rGE. Longitudinal
data that assesses individual and their friends with regard to smoking over more
expanded time periods would be key in trying to assess the impact of active rGE.

Though we remain unsure about the potential for active rGE with respect to
smoking behavior, we were able to evidence homophily (selection) as a driving
mechanism in why individuals resemble their peers for both smoking
experimentation/initiation and more regular smoking habits. Thus, in an effort to
deter adolescents from smoking, it may be a more effective strategy, instead of
campaigns that largely target peer pressure and influence, to begin intervention
with the encouragement of the formation of friends that that exhibit similar healthy
habits.

Studies 3 and 4

Studies 3 and 4 switched from the use of family data to whole-genome SNP

data. These analyses occurred in the context of what is often termed ‘missing

heritability’ or the apparent inability to recover from single SNPs through genome-
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wide association studies (GWAS) the genetic variance estimated from family studies
for behavioral traits (Maher 2008; Manolio et al., 2009). However, using the same
SNP data originally collected for traditional GWAS, recent methods have been
developed to possibly circumvent some of the limitations related to GWAS for
behavioral traits (Visscher, Brown, McCarthy, & Yang, 2012). Some examples
include polygenic risk scores (Purcell et al.,, 2009), pathway analyses (Wang, Li, &
Hakonarson, 2010), and, as we will focus on here, analyzing the simultaneous effect
of all SNPs (Yang et al,, 2010). Thus, Studies 3 and 4 used mixed linear effects
models to estimate the genetic variance and genetic correlation due to the
conglomerate of all genome-wide SNPs using a program called Genome-wide
Complex Trait Analysis (GCTA) (Lee et al., 2012b; Yang et al., 2011b). Both of these
analyses used genome-wide SNP data from dbGaP.

In Study 3, we focused on two smoking phenotypes, smoking onset and
quantity. Genetic factors as indexed by the conglomerate of genome-wide SNPs were
able to account for variance in both the age of smoking onset and quantity of
cigarettes smoked. Further, it appears that there may be unique genetic factors
related to the quantity of cigarettes smoked. However, when analysis was divided
into male and female samples, we were unable to detect significant genetic
influences for each phenotype. Further, there do not appear to be unique genetic
factors that influence each gender’s propensity to start smoking at a particular age
or smoke more cigarettes per day.

While these results remained ambiguous with respect to effects for each

gender, we did demonstrate that genome-wide SNPs in conglomerate can account
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for variance in smoking phenotypes. In relation to The Tobbacco and Genetics
Consortium (2010) that found a number of individual SNPs that contributed to both
smoking initiation and cigarettes smoked per day, using the conglomerate of all
SNPs, we were able to account for 8-12% of the phenotypic variance for these
smoking phenotypes, more than could be accounted for by any single SNP. However,
again in comparison to the Consortium’s results, using the conglomerate of SNPs
does not give any information with regard to which specific SNPs contribute to the
trait, making it impossible to connect this source of genetic variance to any genes or
biological pathways. Thus, it still remains important to consider a wide range of
approaches to fully understand the genetic etiology and underlying biology of
smoking. An additional consideration is that the ‘SNP heritability’ estimates
achieved here are considerably lower than reports from family studies. Briefly, this
may occur for a number of reasons including inability of the SNPs to pick up on the
true causal variants, overestimates of heritability in family studies, and genetic
heterogeneity. For a detailed discussion of these and other possibilities, see
Discussion in Chapter IV.

Beyond the ability to quantify the genetic contribution to smoking onset and
quantity was the goal of estimating the shared genetic variance between these two
traits. Results, demonstrating a low to moderate correlation between the SNPs
relevant to onset and quantity, replicate findings in the literature that evidenced
some unique genetic contribution to more advanced stages of smoking beyond
smoking initiation. This finding has particular implications in understanding

individual differences in smoking patterns, as it appears that individuals with a
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genetic predisposition to initiate smoking may not have that same predisposition to
smoke in quantity, and vice versa, though the affinity to smoke in quantity could be
averted through non-initiation. As such, this finding is important methodologically;
as it illustrates that there may be separate biological pathways related to the
specific smoking stage in question.

The possibility that the lower ‘SNP heritability’ for smoking onset and
quantity than reported in family studies could be due to differences in the ages of
the individuals being compared in GCTA prompted us to examine cohort differences
in both the magnitude and composition/effect of the genetic factors related to
smoking initiation. Family studies have previously examined differences in the
magnitude of these effects, though the results are mixed depending on the specific
cohort and gender of the sample (Boardman et al., 2010; Heath et al., 1993; Kendler
et al., 2000; Vink & Boomsma, 2011). Differences in the composition of these genetic
factors are not feasibly obtained in family studies due to the need to compare
individuals of different ages. However, GCTA, which compares unrelated individuals,
gave us the unique ability to ask specifically whether the genetic components
related to smoking initiation are shared by different cohorts.

In this analysis we divided individuals in our sample into ‘young’ and ‘old’
cohort groups based upon the median birth year of 1934. The conglomerate of
genome-wide SNPs significantly contributed to variance in smoking initiation for
individuals born in or after 1934, but not for individuals born prior. While this
difference in the magnitude of heritability estimates was not significant

(quantitative GE interaction), we did find evidence that there may be differences in
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the composition or effect of genetic factors responsible for smoking initiation for
those born before versus after 1934. Further, the greatest genetic effect here was for
individuals born in the 1930s.

A major limitation here was that the sample did not include many individuals
that would have started smoking after large milestones, such as the 1964 Surgeon
General’s Report that linked smoking to lung cancer. Thus, we do not have any
specific hypotheses regarding why we see this difference in the genetic factors for
the two cohorts. In fact, the sample sizes in the tail ends of our range of birth years
were quite small, so we were not able to get good estimates of how the heritability
of smoking initiation may have changed over time (See Figure 5.1). Importantly,
however, we draw attention to the potential for not only the magnitude of
heritability for smoking initiation to change over time but for the actual genetic
factors to change according to the environmental context as well. Further, we
demonstrate the use of a recent method to answer a question, whether the genetic
factors related to smoking initiation are shared by individuals born during different
time periods, that has previously been difficult to assess using family-based
methods.

Overall Conclusion and Next Steps

This dissertation examines the interplay of a number of factors that have
been associated with cigarette smoking: genes, peers, stage of smoking, gender, and
cohort. In Studies 1 and 2, we discovered that peers resemble each other in terms of
smoking behavior due to homophily or selecting friends that are like oneself. We

also have evidence that this occurs not only for initial experimentation with
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cigarettes, but for more regular smoking as well. However, the role of active rGE in
peer smoking homogeneity is unclear, as we do not know whether the chosen peer
environment exerts additional influence on smoking behavior. This question could
be resolved with longitudinal data spanning an adequate time range that assesses
both the smoking behavior of both individual and their friends.

In studies 3 and 4 we used the conglomerate of SNPs from whole-genome
data to carry out analyses using GCTA (Yang et al., 2011b). In Study 3, we learned
that common SNPs do explain variance in smoking onset and quantity smoked.
Additionally, there are both shared and unique SNPs related to smoking onset
versus quantity. Given larger sample sizes, this analysis should be extended to look
at the potential for gender effects as well as additional smoking phenotypes. Study 4
examined cohort and smoking. Not only were we able to discern whether
heritability estimates for smoking initiation differ as a function of year born, but we
were also able to examine whether the actual genetic factors related to smoking
initiation are shared by individuals born during different time periods. While the
magnitude of heritability did not differ by cohort, the data suggest there were
different genetic factors contributing to the heritability of each. Larger datasets that
span a wider range of birth years would be instrumental in allowing us to assess
specific hypotheses related to changes in the genetic components, potential for
these patterns to vary by gender, and whether these patterns are seen for smoking
phenotypes besides initiation.

In summary, we have taken known factors related to cigarette smoking and,

using new or underutilized methods hope to understand these factors in a new light.
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These approaches not only allow us to understand the direct relationship between
genes, peers, cohort and smoking, but allow for insight into the complex ways these
factors may dually influence choices to smoke.

Additionally, many of these methods and insights are applicable to a host of
traits that ensue a number of additional queries. For example, is peer selection (and
its potential to contribute to active rGE) relevant for other traits that we see shared
by peer groups? Further, given our finding that there are unique genetic factors
related to smoking in quantity, to what degree are these unique genetic factors
related to addiction in general? The ability to use GCTA to estimate shared genetic
variance using unrelated individuals creates even more possibilities to understand
the role of genetics in connecting particular phenotypes, especially in cases where
the use of family data would be infeasible for the particular question. For example,
psychiatric conditions are often accompanied by substance use; to what degree is
this phenotypic correlation the result of shared genetic etiology? Thus, the
methodology and findings presented here do more than elucidate some of the
factors relevant to cigarette smoking, but open up a series of additional ways to
understand the complex intertwine of the genetic and environmental etiology of

smoking, substance use, addiction, and behavior.
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