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Relational concepts pervade daily life, as people are regularly required to comprehend, 

articulate, and reason about relational ideas and scenarios. Critically, these processes might be 

altered by how such concepts are represented. The dominant theories of relational learning have 

been built on the assumption that relational concepts are represented compositionally, based on 

the relationships among a concept’s components. However, these theories have typically 

neglected the possibility that a concept’s components can be consolidated or chunked into a 

unitized concept, producing a representation that is devoid of the concept’s component parts. The 

distinction between compositional and unitary representations of relational concepts is a natural 

consequence of structure-mapping theory, but its psychological implications have not been 

explored. This paper reports 7 studies that examine how people represent relational concepts and 

how such representations affect relational learning. The general take away from these studies is 

that people do indeed appear to be capable of representing relational concepts in two 

fundamentally different ways, unitarily and compositionally. Furthermore, unitary 

representations seem to lead to better relational learning than compositional representations, 

especially for inference-based tasks. However, the data suggest that there might be various 

factors that interact with how representation affects relational learning (e.g., individual 

differences in representation, type of task, type of comparison). The conclusion that follows from 

these studies is that unitary representations might incur less cognitive load than structural 
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alignment of compositional representations, and thus may be the default for everyday relational 

reasoning.  
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CHAPTER I 

Introduction 

How do people represent conceptual information? For many years this question has 

vexed cognitive scientists and philosophers alike. It has been posited that concept representation 

is critical for many higher-order tasks, such as analogical reasoning, problem solving, decision-

making, and category and concept acquisition (Markman, 1999; Markman & Dietrich, 2000). 

However, the specific role that representation plays in such tasks is often vague and 

underspecified. One reason for this lack of specificity is that peoples’ representations cannot be 

readily accessed or measured. Compounding the problem is that a given concept can typically be 

represented in many different ways, making it challenging for researchers to gain definitive 

knowledge on the matter. Consider the simple example of a dog: A dog can be represented based 

on its component parts (e.g., tail, ears, fur, etc.,) or as an atomic attribute that represents the 

animal as a whole (i.e., the concept of dog). Recent work has referred to this latter type of 

representation as a unitary concept, in which the component parts of the concept are not 

explicitly accessed or represented (Corral & Jones, in preparation; Corral, Kurtz, & Jones, 2017). 

It is important to note that there are numerous domains within cognitive science that 

formalize representation in various ways.  The present paper operates within the framework of 

structure-mapping theory (Gentner, 1983), which makes the implicit assumption that a relational 

concept can be represented in two fundamentally different ways: (1) as a system of relations, 

with meaning derived both from the identities of those relations and from how they are 

interconnected by shared role-fillers (Corral & Jones, 2014); or (2) as a primitive, atomic relation 

that is explicitly represented. These two types of representations are referred to as compositional 
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and unitary representations, respectively. Although this logical distinction has been noted 

(Gentner, 1983), its potential psychological implications have largely been neglected. 

To elaborate further, the first of these representational assumptions is premised on the 

idea that representations are constructed from two basic types of building blocks: objects and 

relations. The second assumption is based on the idea that a relation operates on a set of n 

objects, that is, for every ordered set of n objects, the relation returns a truth-value indicating 

whether the objects satisfy the relation. Equivalently, for every ordered set of n objects (o1…,on) 

for which the relation holds, there is an explicit token of that relation: R(o1…,on). Any relation of 

this sort is referred to here as a unitary relation. 

The distinction between a compositional and unitary representation is particularly 

relevant for concepts that are defined by a relational structure—the specific manner in which a 

concept’s components are linked by their shared relations (Corral & Jones, 2014). Consider the 

statement the dog chased the cat. This statement has a different meaning than the cat chased the 

dog because of the specific manner in which the component parts in each statement are linked by 

the chase relation (chase(dog, cat) vs. chase(cat, dog)). Comprehending such statements 

seemingly requires representing them compositionally, based on the relationships among the 

statements’ component parts.  

Although compositional representations can be useful for distinguishing certain relational 

concepts, they can consume a large amount of working memory resources (Kintsch & Bowles, 

2002), as the concepts’ relations, components and their specific interconnections (i.e., role-filler 

bindings) must be explicitly represented. Representing a concept in this manner is potentially 

problematic because working memory resources are limited (Baddeley, 2003) and many 

relational concepts are fairly complex, making it challenging for people to explicitly represent 
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such concepts. In such cases, more economical representations might be more useful than 

representing a relational concept compositionally. 

Although it has been acknowledged that it is possible for relational concepts to be 

represented in a non-compositional manner (Gentner, 1983, Footnote 4), theories of relational 

learning hold that people typically represent such concepts compositionally (Markman & 

Gentner, 2000). However, this assumption has not been directly examined under experimentally 

rigorous conditions. It thus remains unknown how people actually represent relational concepts. 

This project thus examines the conditions that might lead subjects to represent a relational 

concept compositionally and unitarily, with a specific focus on learning performance for 

different tasks, which might be facilitated by one of the two types of representations. 

 
Representational Flexibility 

One obstacle to addressing the issue of how people represent relational concepts is that 

people have a great deal of representational flexibility, such that many concepts can be 

represented in a variety of ways (Chalmers, French, Hofstadter, 1992; French, 1997; Mitchell & 

Hofstadter, 1990). For example, although a dam can be represented as an object that is used to 

store water or prevent floods, it can also be represented as a man-made object or as an 

engineering project that utilizes various scientific principles (e.g., gravity, conservation of 

energy) to produce, store, and release energy. This flexibility also seems to extend to how 

information for a given concept is represented. More specifically, the objects and relations of a 

stimulus can each be explicitly represented as individual units in working memory in a (1) non-

structured manner, (2) in a structured manner, or (3) they might be chunked together into smaller 

units. 
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Many concepts contain featural and relational information, both of which are posited to 

be available for explicit representation (Gentner, 1983; Gentner & Markman, 1997; Markman, 

1999; Markman & Dietrich, 2000; Markman & Gentner, 2000). For example, the concept of a 

dam contains information about attributes (e.g., large wall or barrier, flowing water) and 

relationships among those attributes (e.g., a barrier obstructs the flow of water). As mentioned 

above, theories of analogy and relational learning hold that structured concepts (i.e., concepts 

defined by a relational structure) are encoded, stored, and subsequently represented 

compositionally (Gentner & Markman, 1997; Markman, 1999; Markman & Dietrich, 2000; 

Markman & Gentner, 2000), such that people are explicitly aware of and attend to the 

components (i.e., attributes) and relations that define the given concept (Norman & Rumelhart, 

1975; Schank & Abelson, 1977; Markman & Dietrich, 2000). The concept of a dam as an object 

that prevents floods, for example, can be compositionally represented as follows: 

prevent[(obstruct(barrier, water), flooding(water, town)].  

There are important differences in the manner that featural and structured concepts are 

represented (Markman, 1999). A feature-based concept is defined by the presence of a given set 

of features, which can be represented in a vector space (e.g., featurally, the concept of car can be 

represented as {doors, seats, windows, steering wheel, tires, engine…}; Tversky, 1977). 

Although vector representations can be used to capture featural information, this type of 

representation may not be as useful for representing relational concepts. In order to represent 

relational concepts in a feature-based manner, the concept’s objects and relations must be 

included as a collection of properties in a vector. However, such a representation lacks the 

information that defines a relational concept (i.e., the manner in which the concept’s objects are 

linked together by their role-filler bindings). Consider a simple hypothetical scenario in which 
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Sam throws a pie at Robert. This scenario differs from one in which Robert throws a pie at Sam. 

Both scenarios consist of Sam, Robert, a pie that is thrown, an agent who plays the role of the 

thrower, and an agent who plays the role of the target. In the first scenario, Sam plays the role of 

the agent throwing the pie and Robert plays the role of the target; these roles are reversed in the 

second scenario. Using a feature-based representation, both scenarios would be represented as 

{Sam, Robert, throws, pie}. Even though such a representation contains all of the relevant 

objects and relations from both scenarios, it does not indicate how these elements are connected. 

Thus although the two scenarios differ, they cannot be distinguished from one another using a 

typical feature-based representation.  

In contrast, this is not the case for representations that are structured, which can capture 

the relational complexity of a given scenario, and can therefore be used to differentiate between 

scenarios like the ones described above. Accordingly, it is has been argued that compositional 

representations are necessary in order to learn and represent structured concepts (Markman, 

1999; Markman & Gentner, 2000). Markman and Gentner propose that although featural 

representations can be modified (e.g., representing a set of features configurally) to accurately 

reflect the structural information in a relational concept, doing so requires constructing a 

considerable number of representations, which can increase exponentially based on the concept’s 

complexity. Consider a simple stimulus that consists of two side-by-side objects, each with two 

dimensions (size and brightness), in which the left object is bigger than the right and the right 

object is brighter than the left. This can be represented using a vector with configural features, 

such as [left-object, right-object, bigger-object, smaller-object, brighter-object, darker-object, 

bigger-darker-right-object-left-object, …]. This type of representation is problematic because 
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working memory is limited (Baddeley, 1986, 2003). Representing structured concepts through 

the use of configural features thus appears to be psychologically implausible. 

 
Compositional Representations of Structured Concepts 

The assumption that relational concepts are represented compositionally is critical to 

most models of analogical reasoning (Forbus, Gentner, Markman, & Ferguson, 1998; French, 

2002; Gentner & Forbus, 2011; Gentner & Markman, 1997; Kokinov & French, 2003; Markman 

& Gentner, 2000; Morrison & Dietrich, 1995) and is arguably the foundational premise on which 

structure-mapping theory (Gentner, 1983) is based – the dominant theory of analogical learning 

and reasoning. The theory holds that two scenarios are only analogous if they share the same 

relational structure––the specific manner in which a system of objects and relations are linked 

by their role filler bindings (Corral & Jones, 2014). Consider a cup of water and a stadium filled 

with people: These two scenarios can be considered analogous because both share the same 

structure, such that each scenario’s corresponding objects play the same roles and are linked by 

the same relation (i.e., cup and stadium fill the container role, and water and people fill the 

contained role); this structure can thus be represented as contain(object1, object2). According to 

structure-mapping theory, people discover analogies and relational concepts via comparison, 

whereby two scenarios and their corresponding objects and relations are put into alignment in a 

way that preserves the parallel connectivity––the corresponding components that are mapped 

between two scenarios are bound to the same role by the same relation(s)––between the elements 

in the two scenarios, leading to the abstraction of their common structure (Falkenhainer, Forbus, 

& Gentner, 1989; Gentner, 1983). 

In line with this proposal, various studies have shown that people are sensitive to a 

concept’s substructure (Corral & Jones, 2014; Goldstone & Medin, 1994; Goldstone, Medin, & 
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Gentner, 1991; Kotovsky & Gentner, 1996). Findings also indicate that similarity judgments 

between structured scenarios are determined by the extent to which they share a common 

structure (Clement & Gentner, 1991; Gentner & Kurtz, 2006; Markman & Gentner, 1993a, 

1993b). Furthermore, people can accurately map objects from one scenario to its corresponding 

analogue in a different scenario (Keane, 1997; Markman, 1997; Spellman & Holyoak, 1992, 

1996), even in cases where there are substantial superficial differences between the objects being 

mapped (e.g., bird-to-human; Markman & Gentner, 1993a). Markman and Gentner presented 

subjects with pairs of scenarios that contained cross mapped objects, in which the role that an 

object played in one scenario differed from its role in the other scenario; subjects were asked to 

map these objects to their corresponding analogues. The findings showed that object mappings 

were strongly driven by whether the objects played identical roles in each scenario, and not by 

their superficial similarities. Related work has shown that people are better able to recognize 

featural differences between scenarios that are connected to a common substructure (alignable 

differences) than differences that are not (i.e., non-alignable differences; Gentner & Markman, 

1994), suggesting that discovering the shared structure between two scenarios draws attention to 

their different attributes (e.g., spaceships use rocket fuel and cars use gasoline; Markman & 

Gentner, 1993b). Taken together, these findings demonstrate that people can explicitly recognize 

and represent the elements and relational interconnections that define structured concepts.  

However, it is not clear from these studies whether people typically represent structured 

concepts compositionally or default to other modes of representation. One possibility is that 

relationally structured concepts are only represented compositionally under certain 

circumstances, such as when people attempt to gain new knowledge or insight about a given 

scenario, and the concept’s components must be used to make detailed predictions (e.g., 
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scientific discovery). It is therefore possible that the artificial nature of these studies (e.g., asking 

subjects to explicitly map corresponding objects between scenarios) allowed for this uncommon 

phenomenon to be captured. 

 
Representing Structured Concepts Unitarily 

It is important to note that there are various types of structured concepts. For example, a 

structured concept can be defined by a first-order relation, which is a single relation that binds 

two objects (e.g., the left object is larger than the right object) or by a collection of relations 

among objects (e.g., the left object is bigger and brighter than the right object; Gentner & 

Markman, 2005). A structured concept can also be defined by a higher-order structure, which is 

a relational structure that contains relations among other relations (i.e., relations that take other 

relations as arguments), such as the greater mass of an object causes the object with less mass to 

revolve around it. In this scenario, the cause relation takes the greater and revolves relations as 

arguments (e.g., cause[(greater(mass(Sun), mass(Venus)), revolves(Venus, Sun))].  

Various factors, such as prior knowledge about a concept’s components and relations 

may affect how these properties are represented, which can change the structure of the concept. 

Consider a scenario where a baseball pitcher throws a ball that strikes a catcher’s mitt. This 

scenario can be represented as a higher-order structure (i.e., cause[(throw(pitcher, ball), 

strike(ball, catcher’s-mitt))]) or in a more compact manner, such as a three-place predicate, 

which is a ternary relationship among the pitcher, the ball, and the catcher’s mitt (i.e., 

strike(pitcher, ball, catcher’s-mitt)). Although the latter representation lacks the cause and throw 

relationships, they can be inferred by people with knowledge about the game of baseball, and 

hence do not need to be explicitly represented. 
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Evidence that people can make these types of inferences has been found by Rehder and 

Ross (2001). Rehder and Ross showed that prior knowledge about the relational interconnections 

among a concept’s components can provide coherence to abstract concepts, which is posited to 

arise due to such knowledge binding the concept’s relations, and thus imposing a coherent 

structure to the concept. This idea shares parallels with Murphy and Medin’s (1985) proposal 

that peoples’ naïve theories about the world bind the relations within a relational category 

together, thereby making such categories conceptually coherent. Rehder and Ross constructed 

stimuli that consisted of three short sentences that described different components of machines 

that work to collect or remove waste products; half of the stimuli satisfied relationships (believed 

to be known by subjects but not explicitly present in the stimuli) among the machine’s 

components, whereas the other half did not. A stimulus could therefore be classified as a member 

of either a coherent or incoherent category. Consider the following description of a coherent 

stimulus: operates in war zones, works to gather shards of metal, and has a large magnet. People 

are presumed to know that shards of metal can be found in war zones and can be collected by 

large magnets. The coherence in the stimulus thus arises due to subjects’ a priori knowledge 

about these interconnections. In contrast, consider an example of an incoherent stimulus: 

operates in warzones, works to remove carbon monoxide, and has a finely woven net. Carbon 

monoxide is not typically associated with warzones and it cannot be removed by a finely woven 

net. Rehder and Ross found that subjects were better able to learn the category rule for coherent 

items than for items that were incoherent. Because the only difference between coherent and 

incoherent items was subjects’ presumed knowledge about the manner in which the concepts’ 

components were interconnected, these findings suggest that such knowledge can change the 

manner in which a relational structure is learned and represented.  
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Corral et al. (2017) raise the possibility that such a priori knowledge may allow for a 

concept to be represented unitarily, in which a relationally structured stimulus is encoded and 

represented as an atomic property, devoid of its substructure, that can be recognized directly in 

the stimulus. In such cases, a priori knowledge gives the unitary representation meaning, by 

providing the background knowledge needed for unpacking the unitary attribute. Consequently, 

it may be possible to process such representations in a manner that is psychologically similar to 

features. For example, a coherent stimulus from the Rehder and Ross (2001) experiments might 

be represented unitarily as an object that functions (e.g., functions(object)), whereas an 

incoherent stimulus might be represented as an object that does not function. One possibility is 

that people become aware of a stimulus’ unitary properties when its components and relations 

activate higher-order concepts in long-term memory (LTM), which are subsequently ascribed to 

the stimulus and used to determine its category membership (e.g., the stimulus functions and 

therefore belongs to a category that is defined by objects that function). Thus, structured 

concepts that can be defined by general themes or ideas that have a corresponding representation 

in LTM (e.g., the story is about betrayal) might be more readily represented unitarily than other 

concepts. 

Unitary representations may be formed through an automatic chunking mechanism, in 

which the components and relations of a structured stimulus or scenario are automatically 

grouped to form a conceptual unit. Automatic chunking appears to be ubiquitous in daily 

functioning, as people routinely combine the perceptual components of objects into meaningful 

representations (Czerwinski, Lightfoot, & Shiffrin 1992; Gobet et al., 2001; Goldstone, 2000; 

Shiffrin & Lightfoot, 1997), without necessarily attending to its component parts. For example, 

although a car consists of various components (e.g., tires, seats, a steering wheel), most people 
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can immediately recognize one without attending to or being aware of each of its parts. A similar 

process occurs during reading, in which individual features are chunked together to form 

semantically meaningful representations (e.g., characters are chunked to represent words and 

words are chunked to represent sentences; Healy, 1976; Simon, 1974). Chunking allows people 

to bypass their working-memory limitations and process a greater amount of information than 

would otherwise be possible (Ericcson, Chase, & Faloon, 1980; Miller, 1956). 

In theoretically related work, Clark (2006) posits that tagging or labeling a given concept 

allows for the concept to be tokenized, such that a tag or label can be used to represent the 

concept as a whole, and may thus facilitate the process of chunking conceptual information. For 

example, consider an instance in which two objects share a given relationship with one another 

on at least one dimension. Although this description can be used to describe such an instance, the 

concept of similarity can be invoked to represent the same information (i.e., the two scenarios are 

similar). As this example illustrates, tags and labels can be used to represent higher-order 

concepts in a lower-order or feature-based manner. Indeed, labels can often aid people in 

acquiring complex category rules (Lupyan, Rakison, & Mclelland, 2007). Furthermore, research 

involving non-human primates has shown that the use of tags and labels allows chimpanzees to 

learn relational concepts (e.g., greater than, sameness) that they are otherwise unable to learn 

(Boysen, Bernston, Hannan, & Cacioppo, 1996; Thompson, Oden, Boysen, 1997). To state this 

argument more specifically, it is possible that non-humans can acquire concepts that are defined 

by single relations, but not those that comprise a higher-order structure. However, replacing a 

first-order relation with a token might enable that token to become an argument to another first-

order relation, which can further facilitate the learning of more relationally complex concepts 

through the iterative use of this chunking process. Thus, tags enable higher-order relations to be 
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acquired and encoded using learning mechanisms that do not rely on structured representations. 

It has been argued that non-human animals lack the cognitive machinery to acquire relational 

concepts in a compositional manner, and thus likely rely on more primitive forms of learning 

(e.g., feature-based) that bypass the explicit representation of a concept’s components and 

relations (Penn, Holyoak, & Povinelli, 2008). If Penn et al. are correct, studies such as Boysen et 

al. and Thompson et al. demonstrate that relational concepts can indeed be represented and 

acquired in a non-compositional manner, and moreover that the use of tags and labels appear to 

facilitate such processing. 

The idea that relational concepts are represented non-compositionally can also be found 

in various influential models of metaphor comprehension (e.g., Glucksberg & Keysar, 1990; 

Ortony, 1979). One such model is the attributive categorization model (Glucksberg, 2003), 

which holds that metaphors are understood as statements that indicate the base and target are 

members of the same category, which is defined by a shared higher-order attribute. According to 

this model, statements such as the sprinter (target) was faster than a speeding bullet (base) are 

understood to be assertions about the shared category membership between the sprinter and a 

speeding bullet, such that both pertain to a category that is defined by objects that travel at a 

relatively high velocity. Because category membership is determined by a given attribute (e.g., 

objects that travel at a high velocity), it can therefore be recognized directly in the stimuli as a 

shared global property of the base and target, obviating the need for alignment (Kintsch & 

Bowles, 2002). Importantly, this model runs counter to the structure-mapping account of 

metaphor comprehension, which posits that metaphors are understood by mapping the 

corresponding components and relations between the base and the target (Gentner & Bowdle, 

2008; Gentner & Wolff, 1997). 
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Related work has shown that there is an asymmetry in metaphor comprehension that 

depends on which concept is used as the base and which is used as the target, a prediction that 

follows directly from the attributive categorization model (Glucksberg, McGlone, & Manfredi, 

1997). The statement the sprinter was faster than a speeding bullet may therefore be understood 

to hold a different meaning than the speeding bullet was faster than the sprinter. One reason for 

this asymmetry might be due to people basing their inferences about the target on the attribute 

that is most salient in the base, which often differs among concepts. For example, precision 

might be a salient attribute that comes to mind when people think of surgeons, whereas creativity 

might be salient when they think about artists. Different inferences can hence be made about the 

target for the statement the artist is a surgeon (i.e., the artist is precise) than for the statement the 

surgeon is an artist (i.e., the surgeon is creative). 

The argument can be made that because the components and relations that are analogous 

between the base and target are the same regardless of which item is used as the base and which 

is used as the target, a structure-mapping framework cannot account for the asymmetry in 

metaphor comprehension found by Glucksberg et al. (1997). However, because the concept that 

is used as the base can affect which dimensions in the target are most salient and each dimension 

can consist of different components and relations, the elements that are mapped between 

analogous concepts may differ depending on which concept is used as the base. This is a critical 

point because the base and target may not be alignable on many of their dimensions. A structure-

mapping account of metaphor comprehension therefore seems to predict that comprehension 

should decrease in cases where the salient dimensions in the base are not analogous or cannot be 

fully aligned with the salient dimensions in the target. 
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Another prediction that seems to follow from structure-mapping theory is that 

comprehension should be faster for literal statements than those that are figurative, as literal 

statements do not appear to require a mapping process, whereas this is not the case for figurative 

statements. However, various studies have failed to show support for this idea and have found no 

differences in the time it takes subjects to comprehend the meaning of literal and figurative 

statements (Giora, 1999; Harris, 1976; McElree & Nordlie, 1999; Tartter, Gomes, Dubrovsky, 

Molholm, & Stewart, 2002). Furthermore, it appears metaphors are often understood 

automatically and seem to require a minimal amount of explicit processing (Glucksberg, 2003; 

Gildea & Glucksberg, 1983; Glucksberg, Gildea, Bookin, 1982; cf. Lai, Curran, & Menn, 2009). 

Taken together, these findings run counter to a structure-mapping account of metaphor 

comprehension and the idea that such concepts are represented compositionally, as the mapping 

of the concepts’ corresponding components and relations is posited to be an explicit, arduous 

process that consumes a large amount of working memory resources (Kintsch & Bowles, 2002). 

In contrast, these are the exact pattern of results one would expect if structured concepts were 

represented unitarily, as the concept can be treated as a feature and recognized directly in the 

stimulus in much the same way that people can immediately recognize the color or shape of an 

object. 

Anecdotal evidence for this phenomenon can be found in language, in which people 

routinely use words that consist of an intricate substructure that may not be explicitly 

represented. Consider the concept of aid: Aid consists of at least two agents or objects, at least 

one of which has a goal, at least one obstacle that impedes that goal, an action or outcome 

produced by an agent that removes or reduces the impact of the obstacle, and a specific relational 

pattern that binds these components in the appropriate manner (e.g., Jill provided the short-
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staffed homeless shelter aid by volunteering). Although these relations and components can be 

explicitly generated, they may not be stored or explicitly represented when people think of the 

concept of aid. 

Moreover, if relational concepts are indeed represented compositionally (Markman & 

Gentner, 2000), people should be able to explicitly describe a concept’s components and their 

relational interconnections; however, this is often not the case. Although people can learn 

various complex relational concepts, they might often fail to encode and store those concepts’ 

components and relations (Keil, 2003a). Encoding the relational components of a structured 

concept requires a large amount working memory resources (Kintsch & Bowles, 2002), which 

may lead to such information being neglected, as people may instead rely on unitary properties 

that can adequately capture the general gist of the concept. These properties may serve as 

placeholders for the stimulus’ substructure that is unknown. 

The same may hold true for a variety of complex relational scenarios we encounter on a 

daily basis (Keil, 2003a, 2003b, 2006). Although people can be quite confident in their 

understanding of various types of phenomena (e.g., the concept of gravity), when prompted to 

explain such phenomena, accounts are often incomplete and lack explanatory depth (Rozenblit & 

Keil, 2002). Furthermore, these explanations typically contain scarce references to the 

components and relational interconnections that define a given phenomenon. In these instances, 

subjects are surprised by their inability to describe phenomena that they previously expressed 

high confidence in understanding. These findings suggest that the compositional elements of 

various types of relational phenomena are either not encoded and stored or cannot be accessed, 

and thus may not play a prominent role in the manner that such concepts are explicitly 

represented and understood. Furthermore, this possibility may account for the reason that 
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learning and comprehension are improved when people are asked to explain a given 

phenomenon (Chi, de Leeuw, Chiu, & LaVancher, 1994), as this process may allow people to 

logically construct and explicitly represent and access an item’s components that were previously 

not known. 

Keil (2003a, 2003b, 2006) posits that people form skeletal representations of the 

substructure that defines relational phenomena, which only contains a small subset of the 

concept’s component parts. Nevertheless, such representations can facilitate a general 

understanding of relational phenomena (e.g., its outcome or function), which allows people to 

vaguely explain and accurately predict the outcomes of events that correspond to a given 

phenomenon.1 For example, a layperson who is asked to explain the concept of gravity might 

describe it as an anchoring force that keeps objects grounded or that causes solid objects to fall 

when they are not resting on a solid surface. Although such accounts lack critical information, 

they exemplify a general understanding of the concept of gravity that can be used to effectively 

navigate the environment. Such theme-like descriptions (which are mostly devoid of references 

to a substructure; Rozenblit & Keil, 2002) seem well suited to be represented as unitary concepts 

(e.g., anchor(gravity)), and moreover appear to more closely resemble the descriptions that 

would be expected for concepts that are represented unitarily (i.e., descriptions with minimal 

reference to structured components) than for those that are represented compositionally. 

Nevertheless, this is not to argue that a concept’s components and relations do not play an 

integral role in relational learning. One of the primary differences between experts and novices 

resides in the manner that experts represent concepts within their domain (Chi, Feltovich, & 

Glaser, 1981). Chi et al. found that experts identify such concepts by their substructure and 

                                                
1 This proposal shares similarities with Dennett’s (1987) theory on intentional stance.  
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display rich knowledge about these concepts’ components and their relational interconnections, 

indicating that compositional knowledge can indeed be accessed and explicitly represented. In 

contrast, novices typically neglect and fail to fully learn a concept’s relational structure and 

instead attend to their surface features. There is also evidence that experts can readily chunk 

large relational systems into individual units based on overlapping conceptual themes (e.g., the 

configuration of chess pieces represents a fork––an instance in which at least one chess piece can 

simultaneously attack multiple opposing pieces), which can greatly enhance memory of those 

concepts and their interconnections among its components (i.e., relational structure; Chase & 

Simon, 1973). Taken together, these findings suggest that unlike novices, experts can access the 

unitary and compositional properties that define the concepts within their domains. Hence, both 

types of representations likely play a prominent role in the development of insight and concept 

discovery. 

However, it is unclear which type of representation, compositional or unitary, develops 

first or how the two might coevolve with one another. The clearest evidence that relational 

concepts are represented compositionally comes from studies on expertise (e.g., Chi et al, 1981), 

which takes people many years to develop (Ericsson, Krampe, & Tesch-Römer, 1993), 

suggesting that such representations require an extensive amount of time to materialize and may 

often precede the formation of unitary representations. One obstacle to understanding the nature 

of knowledge representation is that the tasks that are used to make such assessments might affect 

and transform the initial representation and may therefore not reflect the role that such 

knowledge plays in analogical reasoning. For instance, when explaining a given phenomenon, 

subjects may discover and construct its relational structure on the fly, which may not have been 

explicitly known or represented beforehand. Such an occurrence might lead researchers to draw 
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erroneous conclusions, both about the manner in which such knowledge is typically represented 

and how those representations are used in analogical reasoning. 

 
Overview 

One issue that many studies on relational learning face is that they typically use complex 

training paradigms that consist of various components. These paradigms include (1) the manner 

in which similarity between two analogous concepts is described to subjects, (2) asking subjects 

to explicitly compare two items, (3) asking subjects to write out similarities and/or differences 

between those items, and (4) an inference-based reasoning task. Each of these components seems 

to encourage subjects to represent the stimuli compositionally, as they draw attention to the 

stimuli’s component parts. It is therefore unclear how each of these factors affects how a 

relational concept comes to be represented or how such concepts might best be learned. The 

purpose of this paper is to tease apart these factors to better understand the relationship between 

relational learning and concept representation. This paper reports seven experiments that 

examine how people typically represent relational concepts (Experiment 1), how such 

representations affect subsequent relational learning (Experiments 2-4), and the factors that 

affect concept representation and learning (e.g., different types of comparisons and tasks; 

Experiments 5-7). 
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CHAPTER II 

Experiment 1 

This study examines whether subjects typically represent relational concepts unitarily or 

compositionally. Common relational nouns might be particularly useful for investigating this 

question, as these concepts have rich relational structures that subjects are likely to be familiar 

with (due to the commonality of these concepts). Furthermore, due to this familiarity, subjects 

might be able to readily represent relational nouns unitarily (if relational concepts can indeed be 

represented in such a manner). Thus, one benefit of using common relational nouns as stimuli is 

that subjects might be capable of representing such concepts both unitarily and compositionally, 

and might therefore be able to readily access both. For this reason, such concepts might be well-

suited for testing which type of representation subjects prefer. 

The stimuli in this study were thus made up of common relational nouns (e.g., tradeoff, 

aid), each of which consisted of two definitions, which were both correct. For each noun, one 

definition consisted of a unitary-based description (i.e., a synonym) and the other consisted of a 

compositional-based description. For example, the unitary definition for tradeoff was “A 

situation in which a compromise or concession is made”, whereas the compositional definition 

was “A situation in which an agent must choose between or balance two or more things that are 

opposite or cannot be had at the same time”. Figure 1 shows an example stimulus from this 

study. Subjects were asked to select the definition that best represented how they typically think 

about the corresponding noun. Table 1 contains all of the relational nouns and their 

corresponding definitions that were used in this study. 
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Figure 1. An example stimulus for Experiment 1 for the concept of aid, along with its 

compositional (option a) and unitary definitions (option b). 

 
One concern worth noting is that the unitary definitions are shorter in word length and 

contain less information than the definitions that are described compositionally. Although steps 

can be taken to remedy this issue, doing so carries the risk of making the unitary definitions 

artificial and incoherent to subjects, which might affect the definitions they select. Because the 

primary goal of this study is to examine subjects’ typical preference between unitary and 

compositional concepts, a tradeoff must be made between experimental control and ecological 

validity, with a greater emphasis on the latter for the purposes of this study. In line with this goal, 

the differences between the two types of descriptions embody the proposed characteristics of 

compositional and unitary concepts, such that unitary concepts contain less explicit information 

than concepts that are represented compositionally (described in detail above). 

For each noun, all subjects were presented two definitions and were asked to select which 

best captures how they typically think about the noun. For conciseness, these questions will be 

referred to as representation questions; the main task only consisted of representation questions.  

A control group was used to provide a baseline measure of how relational nouns are typically 

represented, and thus these subjects were only presented representation questions on the main 

task. Previous work posits that relational concepts are represented compositionally (Markman & 

Gentner, 2000), and thus one prediction is that subjects in the control condition will select a 

higher proportion of compositional definitions than unitary definitions. However, one possibility 
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is that because unitary representations are posited to be more computationally efficient (as 

discussed above; Corral et al., 2017), subjects in the control condition will select the unitary 

definitions at a higher proportion than those that are described compositionally. 

 
Table 1. List of nouns and each of their corresponding compositional and unitary definitions that 

were used in Experiment 1. 

  

 
Concept 

 
Compositional Definition 

 
Unitary Definition 

 

 
Tradeoff 

 
A situation in which an agent must 
choose between or balance two or more 
things that are opposite or cannot be had 
at the same time 
 

 
A situation in which a compromise or 
concession is made  
 

Aid An instance in which an agent’s actions 
make it easier for another agent to reach 
their goal 
 

An instance in which help or assistance is 
provided 

Reciprocity A situation in which two or more agents 
or groups agree to do something similar 
for each other, to allow one another 
shared benefits 
 

A mutual trade or exchange 
 

Showdown An agent, object, or circumstance that 
impedes the passage or progress of 
another agent, group, or object 
 

A confrontation or clash 
 

Obstruction An agent, object, or circumstance that 
impedes the passage or progress of 
another agent, group, or object 
 

An obstacle, barrier or barricade, a 
blockage or hindrance 

Risk A situation or action that exposes an 
agent or group to the possibility of harm 
or an undesired outcome 
 

A situation in which there is potential 
danger 

Investigation An inspection carried out by an agent 
who’s primary goal is to find information 
about a given question 
 

To search or examine 

Cooperation An instance in which two or more agents 
or groups have at least one goal in 
c o m m o n a n d w o r k t o g e t h e r t o 
accomplish that goal 
 

A partnership or collaboration  
 

Compensation An act that is intended to make up for or 
balance the loss that an agent or group 
has incurred, typically due to the fault of 
another agent or group 
 

An act of reparation or repayment 
 

Deception An instance in which one or more agents 
provide inaccurate information to another 
agent or group with the purpose of 
misleading them 
 

To lie or deceit, to be dishonest 
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In addition to the control group, three experimental conditions (mapping, definitional, 

and generation) were used to examine which factors might change how subjects typically 

represent relational concepts. For these conditions, the corresponding manipulation was 

presented on each trial before subjects were presented a representation question. Subjects in the 

mapping condition were presented with two short scenarios (as shown in Figure 2) about a given 

noun and were asked to map the parts among the scenarios that were analogous (as shown in 

Figure 3); subjects in the definitional condition were asked to write out a definition for the noun 

in each trial; and subjects in the generation condition were asked to write out a short scenario 

about the noun for the given trial (e.g., in 3-4 short sentences, make up a scenario in which a 

tradeoff must be made). 

 

 

 
Figure 2. The two scenarios that instantiate the concept of aid in the mapping condition in 

Experiment 1. 
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Figure 3. The mapping portion of the trial in the mapping condition for the concept of aid in 

Experiment 1. 

 
All three of these manipulations were intended to draw subjects’ attention to the 

concepts’ component parts. More specifically, the two scenarios for each relational noun in the 

mapping condition emphasize the corresponding concept’s relational structure, and the mapping 

process is intended to further highlight the relational interconnections among the concept’s 

components. The definitional condition required subjects to explicitly describe each relational 

noun, which was intended to make the concept’s relational structure more salient to subjects; for 

each noun, subjects were only instructed to write out a definition so as not to explicitly bias them 

towards a given representation. Likewise, the process of generating a scenario about each 

relational noun might force subjects to explicitly represent each of the concept’s component 

parts. Therefore, one prediction that follows is that subjects in the experimental conditions will 
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select the compositional definitions at a higher proportion than subjects in the control condition. 

Alternatively, one possibility is that writing out a definition or generating a scenario about a 

given concept will simply reflect how a subject represents that concept, and thus the 

compositionality in subjects’ definitions and scenarios might predict the proportion of 

compositional definitions that they select on the representation questions. 

Lastly, this study also examines the relationship between relational concept 

representation and other cognitive attributes. More specifically, at the end of the study all 

subjects completed a modified version of the forward digit span, and a revised version of the 

Need for Cognition Assessment (Cacioppo, Petty, & Kao, 1984), which respectively provide a 

measure of subjects’ verbal working memory (Richardson, 2007) and the gratification they 

derive from engaging in reflective thought (Cacioppo & Petty, 1982). Because compositional 

representations are computationally expensive (Forbus, Gentner, & Law, 1995), one possibility 

is that subjects who score higher on the forward digit span task have a greater amount of 

cognitive resources to work with when representing relational concepts, and are thus more likely 

to represent such concepts compositionally than subjects who score lower on the forward digit 

span task. Alternatively, it is possible that subjects who score higher on the forward digit span 

task, because they might have a greater amount of cognitive resources to work with than subjects 

who score lower on this task, are more likely to consolidate a relational concept into a 

computationally efficient representation, and hence represent such concepts unitarily. A similar 

set of predictions can be made for subjects who score higher on the Need for Cognition 

Assessment, as subjects who enjoy engaging in reflective thought might be more likely (than 

subjects who do not enjoy this process) to prefer the more complex representation that takes 

more work to discover, and therefore represent relational concepts compositionally. 
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Alternatively, these subjects might devote an extensive amount of time to thinking about the 

structure of a given relational concept (because they enjoy engaging in reflective thought) and 

come to recognize that the concept can be consolidated into a more compact representation. As a 

result, these subjects might prefer to represent such concepts unitarily. 

 
Method 

 
Participants 

One hundred sixty-one subjects were paid $1.25 for their participation in this study, 

which was conducted online through Mechanical Turk. Only subjects who had a 95% hit 

approval rating and who had completed over 500 Mechanical Turk studies were allowed to sign 

up for this study. Subjects were randomly assigned to four conditions (between-subjects): control 

(N = 48), definitional (N = 44), generation (N = 33), and mapping (N = 36). 

 
Design and Materials 

All stimuli were presented on a computer monitor on a white background. All subject 

responses were entered using a computer keyboard and a computer mouse or touchpad. Subjects 

in the definitional and generation conditions were provided a textbox to type in the definitions 

and scenarios that they were asked to provide. The stimuli consisted of 10 relational nouns (see 

Table 1). For the compositional definitions, the standard definition of each noun was modified to 

highlight the elements of the noun’s relational structure. For the unitary definitions, synonyms 

were used to define each noun; these definitions did not contain relationally structured 

information. For the mapping condition, two analogous scenarios were created for each noun, 

each of which instantiated the noun’s relational structure. Appendix A contains all of the 
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scenarios that were used in the mapping condition, along with the corresponding elements that 

subjects were asked to map. 

 
Table 2. Revised (18-item) Need for Cognition Scale. This table was recreated from Cacioppo et 

al. (1984). 

 
Item  Item Wording 
Number  

    

 
1. I would prefer complex to simple problems. 
2. I like to have the responsibility of handling a situation that requires a lot thinking. 
3. Thinking is not my idea of fun.* 
4. I would rather do something that requires little thought than something that is sure to 

challenge my thinking abilities.* 
5. I try to anticipate and avoid situations where there is a likely chance I will have to think 

in depth about something.* 
6. I find satisfaction in deliberating hard and for long hours.  
7. I only think as hard as I have to.* 
8. I prefer to think about small, daily projects to long-term ones.* 
9. I like tasks that require little thought once I’ve learned them.* 
10. The idea of relying on thought to make my way to the top appeals to me. 
11. I really enjoy a task that involves coming up with new solutions to problems. 
12. Learning new ways to think doesn’t excite me very much.* 
13. I prefer my life to be filled with puzzles that I must solve. 
14. The notion of thinking abstractly is appealing to me. 
15. I would prefer a task that intellectual, difficult and important to one that is somewhat 

important but does not require much thought. 
16. I feel relief rather than satisfaction after completing a task that required a lot of mental 

effort.* 
17. It’s enough for me that something gets the job done; I don’t care how or why it works.* 
18. I usually end up deliberating about issues even when they do not affect me personally. 
 

  

 
Note: * This item was reverse scored. 

 
A modified version of the forward digit span task was given to all subjects. The sequence 

of digits that subjects were asked to recall ranged from 3-11, starting with 3 on the first trial and 

increasing by one digit on each subsequent trial. If a subject recalled the sequence of digits for a 
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given trial correctly, they continued on to the next trial, otherwise they did not. The task thus 

ended once a subject incorrectly recalled the sequence of digits that were presented on a single 

trial or after the 9th trial (i.e., the task contained a minimum of one trial and a maximum of nine). 

The Need for Cognition Assessment consisted of 18 items, which were presented in the 

order used by Cacioppo et al. (1984). Subjects entered their responses using a Likert scale, which 

ranged from 1-5 (extremely uncharacteristic of me to extremely characteristic of me), by clicking 

on the option of their choice. Table 2 contains the Need for Cognition items, along with the order 

in which they were presented. 

 
Procedure 

At the start of the study, all subjects were notified that they would be shown various 

words, each of which would consist of two definitions, and that they should select the definition 

that best reflects how they typically think about the word. Subjects were also told that for each 

word, both definitions were correct and that there were no right or wrong answers. Subjects in 

the mapping condition were told that before selecting a definition for the word on the given trial, 

they would be asked to read two side-by-side short scenarios about the word and would then 

need to match the parts between the two scenarios that were most similar to one another. 

Subjects in the definitional condition were told that on each trial, they would first be asked to 

define the word for that trial and then select the definition that best reflects how they typically 

think about that word. Subjects in the generation condition were told that on each trial, they 

would first be asked to create a short scenario about the word for that trial and then select the 

definition that best reflects how they typically think about that word. At the end of the 

instructions, all subjects were asked to click on the “next” button, which was located on the 

bottom right side of the screen, to proceed. 
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The order in which each noun was presented was randomized for all subjects, as was the 

spatial position in which each definition was presented on the screen. For all subjects, a bubble 

was presented directly to the left of each definition (as shown in Figure 1), and subjects selected 

a given definition by clicking on the corresponding bubble. After selecting a definition, subjects 

were allowed to move on to the next trial by clicking on the “next” button, which was located on 

the bottom right side of the screen. Subjects were not allowed to move on to the next trial 

without selecting a definition and were not allowed to navigate to a previous trial. 

For the main task, subjects in the control condition were only presented representation 

questions (i.e., subjects were asked to select the definition for each word that best represented 

how they typically thought about the word). Each trial in the definitional and generation 

conditions consisted of two phases. In the definitional condition, subjects were asked to write out 

a definition for each noun; in the generation condition they were asked to write out a short 

scenario (in 3-4 sentences) about the noun. For both of these conditions, a representation 

question was presented to subjects in the second phase of the trial. To move on to the next phase 

of the trial or to move on to the next trial, subjects in all conditions were required to click on the 

“next” button, which was located on the bottom right side of the screen. 

Each trial in the mapping condition consisted of three phases. In the first phase, subjects 

were presented two side-by-side short scenarios about the corresponding noun (as shown in 

Figure 2) and were asked to carefully read each. The scenarios on the left and right were labeled 

“Scenario 1” and “Scenario 2”, respectively. These labels were presented directly above the 

corresponding scenario, as shown in Figure 2. For each noun, the scenarios that were presented 

on the left and right side of the screen were randomized before the study, and were thus in a 

fixed order and the same for all subjects. In the second phase, subjects were presented three 
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passages from each scenario, which emphasized a different element of the noun’s relational 

structure. For example, in Figure 3, Passage C from Scenario 1 and Passage D from Scenario 2 

both instantiate the same elements of the relational structure for aid, such that in both cases there 

is an agent who has a goal and there is an obstacle that is obstructing that goal. Additionally, 

there was a one-to-one mapping between the passages from the two scenarios, such that only one 

passage from Scenario 1 could be mapped to a passage from Scenario 2. The passages for 

Scenario 1 were labeled A-C and were presented on the left side of the screen and the passages 

for Scenario 2 were labeled D-F and were presented on the right side of the screen (see Figure 3). 

The order in which the passages were presented on the screen was randomized for each subject. 

On the bottom left side of the screen, subjects were presented three labels (Passage A, Passage B, 

Passage C), each of which had a textbox next to it (as shown in Figure 3). Subjects were asked to 

indicate which passages from the two scenarios were most similar to one another by typing in the 

passage’s letter option from Scenario 2 into the textbox next to the corresponding passage label 

for Scenario 1 (as shown in figure 3). The third phase of the trial consisted of a representation 

question. 

After completing the main task, subjects were given a modified version of the forward 

digit span task, wherein subjects were shown a sequence of digits and were asked to type them 

into a textbox in the order that the digits were presented. This task ranged from 1-9 trials, 

depending on when a subject incorrectly recalled the sequence of digits that were presented in a 

given trial. Each digit was presented in bold font, one at a time, and was shown at the center of 

the screen for 1 second. Prior to the study, a random sequence of digits was generated for each 

trial. These sequences of digits were used for all subjects. On each trial, after the last digit was 

shown on the screen, a textbox was presented directly below where the digits were shown and 
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subjects were asked to type in the sequence of digits for that trial. Lastly, subjects were asked to 

complete the Need for Cognition Assessment. On both of these tasks, after entering a response, 

subjects were able to move on to the next trial or item by clicking on the “next” button, which 

was located at the bottom right side of the screen. Subjects were not allowed to move to the next 

trial or item without entering a response and were not allowed to return to a previous trial or 

item. The study lasted an average of 23 minutes. 

 
Results and Discussion 

First, an analysis was conducted to examine if subjects selected one type of definition at a 

greater proportion than the other. The proportion of compositional definitions that were selected 

by each subject was recorded. Figure 4 shows the proportion of compositional definitions that 

subjects in each condition selected. A one-sample t-test was conducted, which examined whether 

this proportion was different from the proportion of compositional definitions that subjects 

would be expected to select if they had no preference for either type of definition (i.e., 50%). 

This analysis revealed that subjects selected a lower proportion of compositional definitions (M 

= .374, SE = .018) than would be expected if they had no preference for either type of definition, 

t(160) = 6.73, p < .0001. This finding suggests that subjects had a strong preference for the 

unitary definitions over the definitions that were described compositionally. 

 
 



 

 

31 

 

 
Figure 4. Shows the proportion of compositional definitions that subjects in each condition, 

along with the standard error of the mean in Experiment 1. 

 
Next, a one-way ANCOVA was conducted to examine whether there were differences 

among the groups in the proportion of compositional definitions that subjects selected; scores on 

the Need for Cognition Assessment and the forward digit span task were included in the model 

as covariates. However, no differences were found among the groups (Mcontrol = .350; Mmapping =  

.372; Mdefinitional = .371; Mgeneration = .415) in the proportion of compositional definitions that were 

selected, F(3, 155) = .50, p = .68, MSE = .056. Performance on the Need for Cognition 

Assessment (M = 54.86, SD = 3.52) was also not a reliable predictor of the proportion of 

compositional definitions that subjects selected, F(1, 155) = 1.24, p = .267, MSE = .056. 

However, there was a marginal, negative relationship between performance on the forward digit 

span task (M = 6.11, SD = 2.39) and the proportion of compositional definitions that subjects 
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selected, β = -.15, F(1, 155) = 3.68, p = .057, MSE = .056, such that subjects who had a lower 

digit span score were more likely to select a higher proportion of compositional definitions than 

subjects who had a higher digit span score. Figure 5 shows the relationship between subjects’ 

digit span score and the proportion of compositional definitions that they selected. 

  

 

 
Figure 5. Illustrates the relationship between subjects’ digit span score and the proportion of 

compositional definitions that they selected on representation questions in Experiment 1, with 

the line of best fit. 

 
Additionally, two post hoc tests were conducted. The first test examined whether subjects 

in the control group differed in the proportion of compositional definitions they selected from 

subjects in the generation condition; the generation condition was chosen for this comparison 
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experimental conditions. Nevertheless, only a non-significant trend was observed, t(79) = 1.34, p 

= .185, d = .306. The second post hoc test combined all of the three experimental conditions and 

compared the proportion of compositional definitions that these subjects selected to that of the 

subjects from the control group, but no differences were found, t(159) = .83, p = .41.  

Taken together, these findings suggest that although it is plausible that subjects prefer to 

represent relational nouns unitarily, these representations might not be particularly mutable, as 

none of the experimental conditions produced an observable change in the type of definitions 

that subjects selected. However, it is worth noting that a non-significant trend was observed 

between the generation and control condition, as subjects in the generation condition selected a 

greater proportion of compositional definitions (by 6.5%) than subjects in the control condition. 

Although this difference was not statistically reliable, the qualitative difference between the two 

groups is encouraging and points to a way in which subjects’ mode of representation might be 

altered. More specifically, creating a scenario about a given concept (as subjects in the 

generation condition were asked to do) might explicitly shift subjects’ attention to the concepts’ 

component parts. Thus, similar manipulations might prove to be useful in shifting how subjects 

represent relational concepts. 

One explanation for the present findings is that the manipulations that were used were not 

strong enough to change how subjects’ typically represent relational nouns. Strengthening these 

manipulations might therefore produce the intended change in subjects’ representations. One 

way to accomplish this goal might be to combine and modify some of the manipulations used in 

this study into a single condition. For instance, it is feasible to combine and adapt the generation 

and mapping conditions, wherein for each relational noun subjects are first asked to write out a 

short scenario about the noun and are then shown two analogous scenarios about that noun and 
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are asked to align them; or as an alternative, subjects could be asked to map the scenario that 

they generate to an analogous scenario. To strengthen this type of manipulation, after mapping 

the corresponding passages, subjects could be shown the correct responses and then be asked to 

write out a short explanation of why each paired passage is analogous. This additional process 

would require subjects to further think about the concept’s relational structure, and might 

therefore help to modify how subjects typically represent relational nouns. 

It is also worth noting that a different result might be observed with different types of 

relational concepts. One potential issue that might have worked against the manipulations 

producing a change in how the stimuli are represented is that the relational nouns that were used 

are fairly common and thus subjects were likely highly familiar with them. As a result, these 

concepts might have been unitized long ago and their representations might not be particularly 

amenable to change. A different result might therefore be observed with relational concepts that 

subjects have less familiarity with, such as scientific theories. Furthermore, subjects might also 

be less likely to represent such concepts unitarily and might hence be more likely to select a 

higher proposition of compositional definitions for relational concepts that are less common than 

for those that are highly familiar. 

One possibility to consider is that there are individual differences in how subjects 

represent relational nouns, such that some subjects represent these concepts compositionally and 

others represent them unitarily. Critically, subjects’ written responses in the definitional and 

generation conditions might provide a measure of how each subject typically represents the 

corresponding concept, which might in turn predict the type of definition that subjects select on 

the representation questions. To examine this possibility, a regression was conducted which used 

subjects’ written responses in the definitional and generation conditions to predict the type of 
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definitions that they selected.2 In order to conduct these analyses, the definitions and scenarios 

that subjects wrote out were scored (by the researcher) based on the compositionality in their 

responses (from 0-2) and an average compositionality score was computed for each of these 

subjects. Responses that made no explicit reference to the relational structure of the 

corresponding noun were given a score of 0; responses that made some reference to the 

corresponding noun’s relational structure were scored as a 1; and responses that fully captured 

the noun’s relational structure were scored as a 2. Figure 6 shows the relationship between the 

proportion of compositional definitions that were selected and the average compositionality of 

subjects’ scores, by condition. 

As hypothesized, the results showed that subjects’ average compositionality scores 

reliably predicted the proportion of compositional responses that they selected, β = .495, t(75) = 

4.93, p < .0001, such that subjects who had a higher compositionality score selected a higher 

proportion of compositional definitions. Additionally, this result held when a regression was 

conducted for each condition separately, such that average compositionality score predicted the 

proportion of compositional definitions that subjects selected for the definitional (β = .693, t(42) 

= 6.22, p < .0001) and the generation (β = .41, t(31) = 2.51, p = .018) conditions. 

                                                
2 A regression was also conducted to examine whether performance on the mapping task (M 

= .58) predicted the proportion of compositional definitions that subjects in the mapping 

condition selected. However, no relationship between these two variables was found, t(34) 1.00, 

p = .322. 
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Figure 6. Illustrates the relationship between the proportion of compositional definitions that 

were selected and subjects’ average compositionality scores, with the line of best fit for each 

condition in Experiment 1. 

 
An additional regression revealed that there was an interaction between the definitional 

and generation conditions and subjects’ compositionality scores, β = .562, t(73) = 2.45, p = .017, 

such that subjects’ average compositionality scores were more predictive of the type of definition 

that subjects selected in the definitional condition than in the generation condition. One possible 

reason for this finding is that in the generation condition, subjects were required to use more of 

the nouns’ component parts to create a scenario about each noun, whereas this was not necessary 

in the definitional condition. To further test this idea, two additional analyses (one for the 

definitional condition and one for the generation condition) were conducted that compared 

whether subjects’ average compositionality scores differed from the average compositionality 

score (1.0) that would be expected if subjects’ did not show a preference towards compositional- 
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or unitary-based responses. The analyses showed that subjects in the definitional condition were 

well under the expected value, (M = .65), t(43) = 5.16, p < .0001, whereas the opposite was true 

for subjects in the generation condition (M = 1.47), t(32) = 3.39, p < .0001. Furthermore, subjects 

in the generation condition (M = 1.47) had higher compositionality scores than subjects in the 

definitional condition (M = .65), t(75) = 7.68, p < .0001. Nevertheless, these differences did not 

produce differences between these two conditions in the type of definitions that were selected on 

the representation questions. Thus, responses from the definitional condition might be more 

reflective of how subjects typically represent the relational nouns that were used in this study. 

One alternative to this possibility is that the definitional task is much closer to the 

representation questions than the generation task, and thus it is not surprising that responses on 

the definitional task were highly correlated with responses on the representation questions. 

However, these responses should only be correlated if the definitions that the subject was asked 

to select from were indeed correlated with the definitions that they wrote out. To the extent that 

the definitions that subjects wrote out provide a somewhat accurate assessment of how subjects 

represent the corresponding concepts, which appears to be a reasonable assumption, the strong 

relationship between the generated responses on the definitional task and the representation 

questions reaffirm the construct validity of this study’s dependent measure. Hence, responses on 

the representation questions might provide a somewhat reasonable assessment of how subjects 

represent the corresponding concepts. 

Although the findings that there are individual differences in how relational nouns are 

represented can be taken as support for the idea that relational concepts can indeed be 

represented in two fundamentally different ways (compositionally and unitarily), these findings 

are not conclusive. One potential issue that arises is that the compositional definitions were 
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longer in word length than definitions that were defined unitarily. Similarly, subject responses 

with higher compositionality scores tended to be longer in word length than those that had lower 

compositionality scores (i.e., responses that were more unitary-based). Thus, one alternative 

explanation for the present findings is that subjects who provided responses that received higher 

compositionality scores simply have a preference for descriptions that are wordier, and were thus 

more inclined to select wordier definitions. To address this possibility, two separate regressions 

were conducted, one for the definitional condition and one for the generation condition, which 

used the compositionality scores of these subjects to predict the type of definitions that they 

selected, while controlling for word length in these subjects’ responses. These analyses showed 

that subjects’ average compositionality scores in the definitional (β = .70, t(41) = 3.31, p = .002) 

and generation (β = .51, t(30) = 2.03, p = .05) conditions still predicted the type of definition that 

these subjects selected (i.e., subjects with higher compositionality scores selected a higher 

proportion of compositional definitions). These results lend further support to the idea that 

individual differences in the type of definitions that were selected were driven by corresponding 

differences in how subjects represent relational nouns, such that subjects selected the definitions 

that best corresponded with their representations. 

Moving on, the lack of relationship between the Need for Cognition Assessment and the 

type of definitions that subjects selected suggests that the amount of enjoyment that subjects 

derive from engaging in reflective thought is not related to how they represent relational nouns. 

However, given the extensive familiarity that subjects had with the stimuli, it is unclear whether 

a different finding might be obtained with more novel relational concepts (e.g., mathematical 

equations, Ohm’s law). One possibility is that people with a high need for cognition prefer 

unitary-based representations for relational concepts that are highly familiar (perhaps because the 



 

 

39 

concept has been overlearned), but compositional-based representations for more novel relational 

concepts which have yet to be fully learned. 

Lastly, one possible explanation for the negative relationship between subjects’ digit span 

score and the proportion of compositional definitions that were selected is that subjects with a 

higher verbal working memory (as measured through the forward digit span task) are better able 

to recognize that relationally structured information can be chunked into unitized concepts, 

which can be represented more efficiently than concepts that are represented compositionally. As 

a result, these subjects might develop a preference for unitary-based representations. Thus, 

differences in working memory capacity might give rise to differences in how relational concepts 

are represented. The inverse of this idea is also possible, such that subjects who are better at 

chunking consequently select unitary-based definitions and perform better on verbal working 

memory tasks. An alternative possibility that is perhaps more intriguing is that performance on 

the forward digit span task is facilitated by how subjects represent relational information, such 

that subjects who tend to represent relational concepts unitarily have more cognitive resources 

available to expend on a working memory task (than subjects who represent such concepts 

compositionally), which can thus lead to differences in performance among subjects on such 

tasks. In these latter two cases, differences in how subjects represent relational concepts gives 

rise to individual differences in working memory. 

Traditionally, research on working memory has emphasized processing capacity as a 

means to explain individual differences in working memory (Melby-Lervåg & Hulme, 2013). 

However, the present findings raise the possibility that how relational information is represented 

can give rise to differences in how subjects perform on working memory tasks, such that subjects 

who use more efficient representations (e.g., unitary-based) perform better on these tasks than 
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subjects who represent relational concepts compositionally, as such representations might free up 

cognitive resources that facilitate performance on working memory assessments. This idea points 

to a topic that has not been given sufficient consideration in the research and theory on working 

memory, which is the role that representation plays in information processing and how such 

representations might affect subjects’ performance on a working memory task. 

Three somewhat antithetical explanations are put forth above to account for the finding 

that subjects with higher working memory selected a lower proportion of compositional-based 

definitions. Critically, all three hypotheses seem equally viable, as they can each account for the 

present findings equally well. More work will therefore be required to better test each of these 

accounts. Such work is of critical importance to the literature on individual differences in 

working memory, as it would help cognitive scientists to better understand the factors that 

contribute to these differences. 

 
Experiment 1 Conclusion 

The findings from Experiment 1 showed that subjects had a strong preference for 

definitions that were described unitarily. These findings also point to individual differences in 

how relational nouns are represented, such that some subjects seem to represent these concepts 

unitarily, whereas others represent them compositionally. One possibility is that these findings 

are simply a byproduct of the particular definitions that were used, such that the unitary 

definitions were simply better worded or were more accessible to subjects. Furthermore, it is 

possible that subjects simply preferred shorter definitions. However, such possibilities do not 

account for the fact that as subjects’ compositionality scores (in the both the definitional and 

generation conditions) increased so too did the proportion of compositional definitions that they 

selected (as can be seen in Figure 6). Specifically, if subjects simply preferred the wording of the 
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unitary definitions or definitions that were shorter, there should not have been a positive 

relationship between subjects’ compositionality scores and the proportion of compositional 

definitions that subjects selected. That is, unless subjects’ generated responses and their 

responses to the representational questions were driven by the same underlying preference. It is 

however unclear exactly what that preference is (e.g., a representational preference or a 

preference for shorter descriptions). 

Related to this latter possibility, subjects might have simply been better at writing out 

shorter responses (for definitions and scenarios) that consisted of synonyms than they were of 

writing out structured responses, and these subjects simply selected the definitions that most 

closely resembled their own generated responses. In such a case, it seems reasonable to argue 

that the generated responses actually reflect (to some degree) how subjects represent the 

corresponding concepts, such that the reason it was easier for subjects to generate unitary-based 

responses is because they actually represent the corresponding concepts unitarily. Moreover, one 

might expect that how a subject represents a given concept should be reflected (at least partially) 

in that subject’s description of the concept, in much the same way as it is reasonable to expect 

that a student’s knowledge about a given concept is at least somewhat reflected in their response 

to a question about that concept. Nevertheless, it is acknowledged that this argument is 

speculative and there are other possibilities as to why subjects might have generated the type of 

responses that they did. This uncertainty is a limitation of this study, but one that holds for all 

forms of assessment, as there are many possible reasons as to why a subject or student might 

respond in the way that they do and the actual reason cannot be known for certain.  

This limitation not withstanding, Experiment 1 provides evidence for the idea that 

relational nouns can indeed be represented in two fundamentally different ways. If these findings 
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extend to most other relational concepts, they have the potential to have far ranging implications 

for various influential theories and models of relational learning (e.g., structure-mapping theory; 

Doumas, Hummel, & Sandhofer, 2008; Gentner, 1983; Hummel & Holyoak, 1997, 2003). For 

instance, as discussed above, structure-mapping theory holds that analogical learning and 

reasoning are driven by a process in which the corresponding elements between two analogous 

concepts are mapped and put into alignment in a way that preserves the elements’ parallel 

connectivity, leading to the abstraction of the concepts’ shared structure. However, if people 

typically represent such concepts unitarily, then there is no need for alignment, as two analogous 

concepts can be recognized as members of the same relational category if they share a category-

defining concept that is unitized (e.g., both concepts are defined by a “faster-than” relation or by 

the attribute of fast; Corral et al., 2017; Glucksberg, 2003). 

Although it is important to note that the present findings are far from conclusive, they 

nevertheless provide a strong reason to question the assumption that people typically represent 

relational concepts compositionally. This is a critical assumption on which many influential 

theories (e.g., structure-mapping theory, Gentner, 1983) and computational models of relational 

learning have been premised upon (e.g., DORA (Discovery of Relations by Analogy), Doumas et 

al., 2008; SME (Structure Mapping Engine), Falkenhainer et al., 1989; MAC/FAC (many are 

called, few are chosen), Forbus et al., 1995; LISA (Learning with Inference and Schemas and 

Analogy), Hummel & Holyoak, 1997, 2003; AMBR (Associative Memory-Based Reasoning), 

Kokinov, 1990, 1994). However, this assumption has not been rigorously examined empirically. 

The remainder of this paper focuses on addressing this issue and tests this assumption across six 

experiments, which use a variety of relational learning tasks and paradigms. 
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CHAPTER III 

Experiment 2 

Due to the representational flexibility that humans possess (Chalmers et al., 1992; 

French, 1997; Mitchell & Hofstadter, 1990), it seems plausible that relational concepts can be 

represented both unitarily and compositionally. Indeed, this idea was supported by the findings 

from Experiment 1. For instance, a subject might represent a concept such as investigation based 

on a global attribute (e.g., an inspection), but can also likely represent its relational substructure 

when necessary (explicitly representing the agent, question, line of inquiry, and their 

interrelations). This idea leads to the question of which type of representation people use by 

default when learning a relational concept. Although Experiment 1 suggests that subjects default 

to unitary-based representations, subjects were likely highly familiar with these concepts, and 

thus a different outcome might be observed in cases where subjects are required to learn novel 

relational concepts. 

The main hypothesis of the present study is that, because unitary representations should 

allow for more efficient processing (because they are posited to be psychologically similar to 

features), subjects will use such representations when they are available. We test this prediction 

by giving subjects relational category learning tasks and encouraging them to represent the 

stimuli either compositionally or unitarily. If people typically learn relational concepts from 

structural alignment (Gentner, 1983; Gentner & Markman, 1997; Markman & Gentner, 2000), 

then encouraging subjects to use compositional representations should aid learning. However, if 

people instead learn more efficiently with unitary representations, than the opposite outcome 

should be expected. 
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Half the subjects in this study were given a classification task, in which they were shown 

a series of stimuli and were asked to make categorization judgments. Unitary representations 

seem especially well-suited for such a task, because they should enable subjects to directly 

recognize the diagnostic property in a stimulus, just as with feature-based categories. The other 

subjects were given an inference task, in which they were asked on each trial to determine a 

missing property of a stimulus that was presented together with its category label. Research with 

feature-based categories has shown that classification and inference learning tend to yield 

different category representations, with inference tasks encouraging learning of internal category 

structure, such as correlations among features (Markman & Ross, 2003; Yamauchi & Markman, 

2000). Thus, inference tasks seem to strongly encourage compositional-based learning, whereas 

this is not necessarily the case for classification tasks. This finding suggests that compositional 

representations should be particularly well-suited for inference learning with relational 

categories, as such representations highlight the internal structure of stimuli. The inference 

conditions of our experiments thus provide a more stringent test of the hypothesis that people can 

learn relational concepts better through unitary representations. 

This study hence extends the finding from Experiment 1 that people represent relational 

concepts in two fundamentally different ways (compositionally and unitarily) and investigates 

how these two types of representations can be leveraged to improve relational learning. More 

specifically, Experiment 2 examines how providing unitary and compositional descriptions 

(manipulated through the use of hints) of relational concepts affects learning on classification 

and inference tasks (description and task type both manipulated between subjects). Subjects were 

provided either a unitary or compositional hint at the start of learning and again after every third 

error, in order to assess whether each type of hint can improve learning. Control groups who 
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were given no hints were also included in order to assess baseline performance in both tasks and 

test whether each type of hint improves relational learning. 

The stimuli used in this study were taken from Corral et al. (2017), which were adopted 

and modeled after those used by Rehder and Ross (2001). A stimulus consisted of three 

sentences, each of which describes a different component of a machine that works to remove 

waste material: (1) the location of where the machine operates, (2) the waste material the 

machine removes, and (3) the instrument the machine uses.  

Stimuli were sampled from two categories: coherent and incoherent. Each category 

consisted of 18 exemplars. The categories were determined by how a machine’s components 

were related to one another. For exemplars from the coherent category, the machine’s instrument 

is suited for collecting the waste material that the machine works to remove, which can be found 

in the location where the machine operates. Consider the following example: “Operates on the 

seafloor, works to remove lost fishing nets, and has a hook.” This exemplar is coherent because 

of the secondary relations among the machine’s component parts (presumed to be known by 

subjects), such that lost fishing nets can be found on the seafloor and a hook can be used to 

retrieve lost fishing nets. In contrast, exemplars from the incoherent category do not satisfy these 

second-order relations (i.e., the machine’s tool cannot be used to collect the machine’s target 

waste material and that material cannot be found where the machine operates). Figure 7 

illustrates the abstract relational structure of the two categories. 

Half of the subjects completed an A/¬A classification task (in which each stimulus was 

to be categorized as either a category member or a nonmember), and the other half completed an 

inference task. On each trial, the subject was presented a single stimulus and was asked to make 



 

 

46 

an inference or classification judgment (depending on the condition). After the response, the 

subject was shown whether the response was correct along with the correct answer. 

 

 

 
Figure 7. Illustration of the relational structure for items in the coherent and incoherent 

categories in Experiment 2. The structures differ in that coherent items satisfy the relations 

indicated by diagonal lines: the machine’s implement can remove the target, and the target is 

found in the machine’s location. Recreated from Corral et al. (2017). 
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assigned to six conditions (between-subjects). Type of hint (compositional vs. unitary vs. 

control) was crossed with task type (classification vs. inference): compositional-classification (N 
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= 36), compositional-inference (N = 32), unitary-classification (N = 37), unitary-inference (N = 

37), control-classification (N = 37), and control-inference (N = 39). 

 
Stimuli 

The stimuli for this study are included in Appendix B. Half of the stimuli for this study 

were taken from Rehder and Ross (2001) and Higgins (2012); the other half were taken from 

Corral et al. (2017). Rehder and Ross created three coherent items and three incoherent items; 

the incoherent items were generated by re-arraigning the features of the coherent items, in a way 

that each incoherent item took one feature from each of the three coherent items. Higgins used a 

similar method to generate an additional 12 items (six coherent and six incoherent). Eighteen 

additional items (nine coherent and nine incoherent) were created by Corral et al. (2017) by 

using the same method as Rehder and Ross. This study therefore consisted of 36 total stimuli, 18 

from each category. Subjects were presented a single stimulus, which was shown as three lines 

of text surrounded by a red border, as shown in Figure 8. 

 

 

 
Figure 8. Example of a stimulus display from the coherent category (Morkels) from the 

inference task in Experiment 2. 
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Design and Procedure 

All stimuli were presented on a 16-inch LCD monitor on a black background and all 

responses were entered using a computer keyboard. Subjects were told that they would be shown 

short descriptions of various types of cleaning machines, some of which were made by the 

Morkel Company (coherent category) and some were not (incoherent category). Additionally, 

subjects were told that the Morkel company makes many different types of cleaning machines, 

which operate in different environments, work to remove different types of materials, and use 

different types of tools. Subjects were provided a positive example of a Morkel (randomly 

selected) and were told that all Morkels share a certain commonality and it was their job to figure 

out what it was. 

Subjects in the unitary condition were shown the following hint: “On each trial try to 

think about how "well suited" the machine is for performing its task. Keep in mind that 

consumers say machines from Morkels are built "intuitively" in a way that makes sense.” This 

hint was intended to shift subjects’ attention toward finding a global attribute of the stimulus and 

away from the explicit relationships among its components. Using this hint, it is possible for 

subjects to learn how to distinguish the categories without explicit knowledge of their relational 

structure. This hint can therefore be said to encourage subjects to represent the concepts 

unitarily. 

In contrast, subjects in the compositional condition where shown the following hint: “On 

each trial try to think about the specific manner in which the machine's 1st property relates to its 

2nd and 3rd properties, as well as how its 2nd property relates to its 3rd property.” This hint was 

intended to focus subjects’ attention on the relationships among the component parts of the 

stimulus, and thus to encourage them to represent the stimulus compositionally.  



 

 

49 

Subjects were presented the appropriate hint during the initial task instructions, after the 

first trial, during rest breaks, and following every third error that the subject committed (on a 

blank screen after corrective feedback was shown); the corresponding hint was presented every 

third error to strengthen the manipulation. Following every third error, the screen was cleared 

and the corresponding hint was presented in red bolded letters at the center of the screen. 

Subjects were asked to read the hint carefully and press the spacebar when they were ready to 

continue. Subjects in the control group were not shown a hint and were instead asked to continue 

to try their best; this reminder was presented during the initial task instructions, after the first 

trial, on every third error that the subject committed, and on rest breaks (as in the other 

conditions). 

Each subject completed 72 trials. The order in which the items were presented was 

randomized for all subjects. After each block of 18 trials, subjects were given a self-paced rest 

break and were shown the proportion of correct responses they answered correctly over those 

trials, along with the number of trials they had completed and the number that remained. 

Subjects were also shown the corresponding condition hint. On each rest break, subjects were 

asked to press the spacebar when they were ready to continue. 

 

 

Operates on the seafloor 
 

Works to remove lost fishing nets 
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Figure 9. Example of a stimulus display from the coherent category (Morkels) from the 

classification task in Experiment 2. 

 
Figure 9 shows a stimulus from the classification task. On each trial in the classification 

condition, a single, complete stimulus was presented and the subject was shown a prompt 

(directly above the stimulus at the center of the screen) that told them to type “A” if the machine 

was a Morkel or “L” if it was not. On each trial in the inference condition, the category label for 

a stimulus was shown (Morkel or non-Morkel) directly above an incomplete stimulus consisting 

of two of its three components (i.e., sentences). Below the stimulus were two response options, 

one of which was the missing component and the other was a lure. The component that the 

subject was asked to infer (i.e., implement, target material, or location) was randomly selected on 

each trial. Subjects were asked to select which was the missing component by typing “A” if the 

correct choice was the top option or “L” if it was the bottom option. The spatial position in 

which the two options were presented was randomized on every trial. For items that were 

Morkels, the correct response was the option that shared secondary relations with the given 

stimulus’ components. The lure did not share secondary relations with either of the stimulus’ 

components. This choice was made to maximally differentiate Morkels from non-Morkels. Thus, 

for items that were non-Morkels, the correct response was the component that did not share any 

secondary relations with either of the stimulus components. The accompanying lure shared at 

least one secondary relation with one of the stimulus’ components. Figure 8 shows an example 

stimulus from the inference condition. For each stimulus, two inference lures were selected from 

the stimuli (beforehand) for each of the stimulus’ components. On each inference trial, the 

corresponding inference lure was randomly selected from these two options. 
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After each response, subjects were provided corrective feedback, in which they were 

shown whether they were correct, along with the correct response. This feedback was presented 

at the center of the screen directly under the stimulus (which remained on the screen). Responses 

that were incorrect were shown in red and responses that were correct were shown in green. 

Feedback remained on the screen for 3 s and the intertrial interval was 400 ms. 

At the end of the study, subjects were presented two options, each of which described the 

category rule for Morkels and non-Morkels. The category rules for one of the options were 

written unitarily, whereas for the other option the category rules were written compositionally. 

Subjects were asked to select the option that best represented how they were thinking about the 

two categories by typing “a” or “b”. For each subject, the letter option for each type of 

description was randomly assigned. The unitary option read as follows: “Machines that were 

Morkels made sense or seemed like they would function, whereas machines that were non-

Morkels did not make sense or seemed like they would not function”. The compositional option 

read as follows: “For machines that were Morkels, what the machine worked to remove could be 

found where the machine operated, and could be removed with the tool the machine used, 

whereas for non-Morkels, what the machine worked to remove could not be found where the 

machine operated and could not be removed with the tool the machine used”. After subjects 

entered a response, the screen was cleared and they were provided a thank you prompt at the 

center of the screen; the prompt remained on the screen for 500 ms. The study ran for an average 

length of approximately 15 min. 
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Results and Discussion 

Figure 10 shows average learning curves for subjects in each group. An ANOVA was 

conducted to examine differences in performance among groups.3 The analysis showed a main 

effect of hint, F(2, 212) = 42.14, p  < .0001, MSE = .014, and an interaction, F(1, 212) = 8.90, p  

= .0002, MSE = .014, indicating that the main effect of hint depends on the type of task that 

subjects completed. On the classification task, control subjects (M = .61, SE  = .024) were 

outperformed by subjects in the compositional (M = .775, SE = .024; t(71) = 4.89, p < .0001, d = 

1.60) and unitary groups (M = .830, SE = .016; t(72) = 7.75, p < .0001, d = 1.83). In the 

inference condition, only subjects who received a unitary hint (M = .716, SE = .014) performed 

better than control subjects (M = .585, SE = .016; t(74) = 5.34, p < .0001, d = 1.24), as no 

differences were observed between subjects who were presented a compositional hint (M = .587, 

SE = .018) and subjects in the control group. 

 

                                                
3 To test for block by condition interactions, the data were also analyzed using a mixed-

model ANOVA, with block as a within-subjects factor (each block consisted of 9 trials, totaling 

8 blocks) and type of hint and task type as between-subject factors. However, no statistically 

reliable interactions were found between block and these between-subject factors, indicating that 

the results reported above did not depend on block. This model was also run for Experiments 3-

7, but no statistically reliable interactions were found between block and any of the between-

subject factors that were used in those studies. For this reason, this model is not discussed 

further. 
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Figure 10. Average learning curves and standard errors across blocks of nine trials for each 

condition in Experiment 2. 

 
Planned t-tests were conducted to compare the unitary and compositional groups, 

separately for each task. On the classification task, subjects in the unitary condition 

outperformed subjects in the compositional condition (M = .775, SE = .024), t(71) = 1.85, p = 

.068, d = .45. This same pattern was observed in the inference condition (unitary M = .716, SE = 

.014; compositional M = .587, SE = .018), t(67) = 5.28, p < .0001, d = 1.29. An additional 2 

(unitary vs. compositional) × 2 (classification vs. inference) ANOVA was conducted, which 

excluded control subjects. This analysis revealed an interaction, F(1, 138) = 4.01, p = .047, MSE 

= .013, indicating that the unitary advantage was stronger in the inference task than in the 

classification task. 

One possibility that is explored further here is that the learning advantage produced by 

the unitary hint is specific to the concept that the hint corresponds to and does not generalize to 

Trial
0 10 20 30 40 50 60 70 80

Pr
op

or
tio

n 
C

or
re

ct

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unitary Classification
Compositional Classification
Control Classification
Unitary Inference
Compositional Inference
Control Inference



 

 

54 

aid subjects in discovering related concepts. In the present study, subjects were given a hint 

about the rule that defined the Morkel category, but were not provided explicit information about 

non-Morkels. Thus, it is possible that subjects who received a unitary hint only learned the 

category rule for Morkels, but not for non-Morkels. Indeed, subjects could perform exceptionally 

well on the classification task by simply learning the category rule for Morkels, without having 

explicit knowledge of the non-Morkel category rule, as non-Morkels could be identified by the 

absence of a Morkel. In contrast, this strategy is not as useful in the inference task, as subjects 

must infer the missing component for Morkels and non-Morkels alike. This idea can thus be 

tested by comparing subjects’ inference performance on trials that consisted of non-Morkels. 

Figure 11 shows mean overall performance across all trials on the inference task for 

Morkel and non-Morkel trials. First, a mixed-model ANOVA was conducted, with trial type as a 

within-subjects factor and type of hint as a between-subjects factor. A main effect of hint was 

found, as reported above. Furthermore, consistent with findings from Rehder and Ross (2001), 

there was a within-subjects main effect, F(1, 217) = 115.78, p < .0001, such that subjects 

performed better on items that were Morkels (M = .75) than items that were non-Morkels (M = 

.619). Critically, no interaction was found between type of hint and trial type, p > .05, indicating 

that the main effect of hint does not depend on trial type. Planned comparisons showed that 

subjects who received a unitary hint outperformed subjects who received a compositional hint on 

Morkel (Munitary = .811; Mcompositional = .722; t(67) = 3.48, p = .0009) and non-Morkel items 

(Munitary = .62; Mcompositional = .451; t(67) = 4.58, p < .0001). To be thorough, additional analysis 

were conducted, which showed that subjects who received a unitary hint also outperformed 

subjects in the control group on both Morkel (Mcontrol = .71; t(74) = 3.87, p = .0002) and non-

Morkel items (Mcontrol = .463; t(74) = 4.66, p < .0001). No differences were found between 
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subjects who received a compositional hint and control subjects on either trial type, ps > .61. 

Taken together, these findings show that the unitary hint is useful for learning the concept that 

the hint pertains to and moreover, that such hints can be leveraged by subjects to discover novel 

relational concepts. 

 

 

Figure 11. Mean performance in each condition on Morkel and non-Morkel items in Experiment 

2 and the standard error of the mean. 

 
Representational Preference 

Figure 12 shows the proportion of observed responses in each condition for the 

compositional and unitary category rules. A binomial test was conducted to examine whether 

subjects had a preference between the two types of category rules (shown to subjects at the end 

of the study), which were either described unitarily or compositionally. Collapsing across 

conditions, a greater proportion of subjects selected the category rules that were described 

unitarily (M  = .61) than category rules that were described compositionally (M = .39), p = .001. 

These findings are in line with the results from Experiment 1, and add further support to the idea 

that people might typically prefer to represent relationally structured concepts compositionally. 
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Additionally, a 3 (type of hint) × 2 (task type) logistic regression was also run to examine 

whether the number of subjects that selected each category rule differed by condition. This 

analysis showed a main effect of task type, β = -.556, χ2(1) = 3.94, p = .047, as a greater number 

of subjects in the inference condition selected the category rule that was described unitarily than 

subjects in the classification condition; there was not a statistically reliable effect of hint nor was 

there a statistically significant interaction. This result is consistent with the performance 

differences (i.e. a greater unitary advantage for the inference task). One explanation for this 

finding might be that during an inference task, subjects attempt to find a unitary-based 

representation that they can use to guide their inferences, and thus show a higher preference for 

the category rule that is described unitarily than subjects in the classification condition. 

 
 

 

 
Figure 12. Proportion of observed responses of the compositional and unitary category rules in 

each condition in Experiment 2. 

 
Individual Differences 

Figure 13 shows individual learning curves for Experiment 2. Although these learning 

curves are fairly noisy, Figure 13 seems to show three primary types of learning: (1) partial 
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learning, (2) all-or-none learning, and (3) gradual learning. These different patterns in learning 

likely reflect individual differences among subjects, which might range from differences in 

representational preferences to differences in subjects’ motivation and intelligence. The 

individual learning curves in Experiments 3-7 are similar to those in Figure 13 and exemplify 

that the stimuli and manipulations used in these studies can give rise to various types of learning 

patterns (neither of which was particularly predominant in any of the studies), which differ 

among subjects. 

 

 

Figure 13. Individual learning curves for all subjects in Experiment 2, based on blocks of 9 

trials. 

 
Moving on, it is important to note that if there are individual differences in how subjects 

represent relational concepts, it is possible that the type of hint that is most effective varies by 

subject. Specifically, subjects who prefer to represent relational concepts compositionally might 

be more likely to gain a greater benefit from receiving a compositional hint than one that is 
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unitary, whereas the opposite might be true of subjects who prefer unitary-based representations. 

Importantly, the type of category rule that subjects selected at the end the Experiment 2 might 

provide insight into how they prefer to represent the two relational categories that were used in 

the study. 

However, a regression showed that there was no relationship between the type of 

category rule that subjects selected and performance, t(216) = .66, p  = .512. Additionally, a 2 

(type of hint (excluding control subjects): unitary vs. compositional) × 2 (task type: classification 

vs. inference) × 2 (category rule: unitary vs. compositional) ANOVA was conducted. The results 

showed a non-significant trend in the interaction between type of hint and category 

representation, F(1, 134) = 2.39, p = .12, MSE = .03, suggesting that the type of hint that is most 

effective for learning might depend on how subjects typically represent a given relational 

concept. Specifically, for subjects who received a unitary hint, those who selected the unitary-

based category rule (M = .806) marginally outperformed subjects (collapsing across task type) 

who selected the category rule that was described compositionally (M  = .753), t(72) = 1.91, p = 

.059, whereas no differences were found between the type of category rule that was selected for 

subjects who received the compositional hint (Munitary rule  = .68; Mcompositional rule  = .69), t(66) = 

.20, p = .84. 
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Figure 14. Mean performance of subjects in each group and task in Experiment 2, based on the 

type of category rule that was selected, along with the standard error of the mean. A: Mean 

performance on the classification task. B: Mean performance on the inference task. 
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To better understand this trend in the data, a 2 (type of category rule selected) × 2 (task 

type) ANOVA was conducted which was restricted to subjects who received a unitary hint. The 

analysis showed a marginal interaction between the type of category rule that subjects selected 

and task type, F(1, 70) = 3.04, p = .086, MSE = .031, such that for subjects who received a 

unitary hint, those who selected the compositional-based category rule (M = .776) outperformed 

those who selected the unitary-based category rule (M = .693) on the inference task, t(35) = 2.11, 

p = .04, but not on the classification task, t(35) = .14, p = .89. The opposite pattern of results was 

observed for subjects in the control group, as subjects who selected the category rule that was 

described unitarily marginally (M = .60) outperformed subjects who selected the compositional-

based category rule (M = .55) on the inference task, t(37) = 1.64, p = .109, but no differences 

were observed on the classification task based on the type of category rule that subjects selected, 

t(37) = .75, p = .461; for subjects who were provided a compositional hint, no differences in 

performance were found based on the type of category rule that they selected on either task, all 

ps > .64. Figure 14 shows the mean performance of subjects in each group and task, based on the 

type of category rule that they selected. 

It is important to note that in order to make the correct inference on the inference task, 

subjects were required to figure out the relationships among a stimulus’ (i.e., machine’s) 

component parts. Thus, one way to interpret the findings presented in this section is that for 

subjects who received a unitary hint, those who preferred to represent the stimuli 

compositionally were better able to use that hint to build a compositional representation of the 

stimuli than subjects who preferred to represent the stimuli unitarily. However, in cases where no 

hint was provided, subjects who prefer to represent the stimuli unitarily seem to perform 

marginally better than subjects who prefer to represent it compositionally. One reason for this 
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finding might be that in the absence of any type of hint, representing relational stimuli unitarily 

aids learning on an inference task. It therefore follows that the type of benefits that are conferred 

to subjects by representing relational concepts unitarily or compositionally might depend on 

whether subjects are shown a unitary hint. 

It is important to remind the reader that subjects were asked to select between the 

category rules after completing the learning task and these responses therefore likely reflect how 

subjects learned the task. One possibility is that subjects’ selection of the category rules was 

driven by how readily the category rules could be represented or that they selected such category 

rules because it was in line with how they typically represent relational information. A related 

possibility is that subjects learned the category rules in the way that they did because it was more 

accessible to them than the other category rules. In either of these cases, the same conclusion can 

be drawn, which is that subjects had a preference for one of the two category rules (either 

because it was in line with their representational preference or because it was more accessible), 

which is reflected by how they learned the task. Moreover, differences in performance that were 

based on the category rules that subjects selected might reflect which type of category rules (and 

representations) were more useful for learning the task. However, this latter conclusion is based 

on correlational data and is therefore far from conclusive and should be taken with caution. 

 
Experiment 2 Conclusions 

To return to the primary results, one surprising finding from this study was that the 

unitary advantage was stronger for the inference task than for classification. The effect size for 

the inference task was actually quite dramatic (Cohen’s d of 1.29). It had been predicted that, if 

anything, the interaction would go in the opposite direction, given that inference tasks encourage 

learning the relationships among a concept’s components (Markman & Ross, 2003; Yamauchi & 
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Markman, 2000). One speculative possibility is that inference learning encourages a top-down 

approach, in that subjects must reason from the category label to the stimulus, whereas 

classification encourages a bottom-up approach of reasoning from the stimulus to the category 

label. Likewise, a unitary representation is top-down in that it embodies a global property of a 

stimulus that can be used to deduce its internal structure, whereas a compositional representation 

is bottom-up in that the local structure is explicitly represented and the global property emerges 

only implicitly from the relational system. Under this view, there might be a congruency effect 

between the stimulus representation and the processes involved in carrying out the task. In 

particular, a unitary representation might be more congruent with an inference task, because it 

facilitates conceiving of a concept by a single attribute that can then be used to infer missing 

parts of a stimulus. 

These speculations aside, the main conclusion of Experiments 2-3 is that although 

relational concepts are defined by the interconnections among their component parts, subjects 

seem to learn these concepts better when they can be represented unitarily, which might facilitate 

a global understanding that is easier to discover and use than an explicitly structured one. 

Furthermore, although compositional-based instruction can help subjects classify a given 

concept, it might not be optimal for inference-based reasoning. 
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CHAPTER IV 

Experiment 3 

Experiment 3 builds on the findings from Experiment 2 and examines how category 

learning is affected when subjects are encouraged to represent a relational concept one way 

(either unitarily or compositionally) and are subsequently made aware of an alternative 

representation. This manipulation examines how having access to both types of representations 

affects learning, which is an important question because people might often represent a given 

relational concept both unitarily and compositionally. The present study uses the stimuli from 

Experiment 2, and all subjects performed the classification task. All subjects were either 

provided a unitary or compositional hint prior to the start of learning. For half of the subjects, the 

hint was changed after the 18th trial (i.e., the unitary hint was replaced with the compositional 

one and vice versa); this change occurred midway through the full stimulus set. For the other half 

of subjects, the hint they were shown remained the same throughout the study. These latter 

conditions were identical to the unitary and compositional classification conditions in 

Experiment 1. 

 
Method 

 
Participants 

One hundred fifty-seven subjects participated for course credit in an introductory 

psychology course. Subjects were randomly assigned to four conditions: unitary/switch (N = 40), 

compositional/switch (N = 39), unitary/no-switch (N = 39), and compositional/no-switch (N = 

39). For each condition, the name of the hint indicates the type of hint that subjects were initially 

presented at the start of the study. Thus, subjects in the unitary/no-switch and the unitary/switch 
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conditions started the study with a unitary hint, whereas subjects in the other two conditions were 

initially shown a compositional hint. 

Procedure 

Following the same procedure as Experiment 2, subjects were presented a given hint 

(depending on their condition) at the start of the study, which was presented after the 1st trial and 

following every 3rd error (as in Experiment 2). After the 18th trial (i.e., following the first rest 

break), the screen was cleared and subjects in the switch conditions were shown the following 

prompt along with the other hint: “A new report from consumers indicates that a NEW method 

for distinguishing between machines that are Morkels and non-Morkels has been discovered”. 

The hint was presented directly below this prompt at the center of the screen in bolded red font 

and subjects were asked to press the spacebar when they were ready to continue; subjects were 

also encouraged to try and use this new method of thinking about each machine on each trial. 

Following the 19th trial, the hint was presented once more and subjects were reminded to use it to 

try to figure out what constitutes a Morkel. Subjects in the switch conditions were shown this 

hint for the remainder of the study (i.e., on rest breaks and following every 3rd error), whereas 

no-switch subjects continued to see the hint they had seen at the beginning of the study. The 

average length of the study was approximately 15 minutes. The rest of the procedure was 

identical to that of Experiment 2. 

 
Results and Discussion 

Figure 15 shows average learning curves for subjects in each condition in Experiment 3. 

A t-test showed that subjects in the unitary/no-switch condition (M = .790, SE = .019) 

outperformed subjects in the compositional/no-switch condition (M = .716, SE = .028), t(76) = 
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2.23, p = .03, d = .50.4 This finding directly replicates the results from the classification 

condition in Experiment 1, which showed a unitary learning advantage. 

 

 
 
Figure 15. Average learning curves and standard errors of the mean across blocks of nine trials 

for each condition in Experiment 3. 

 
In addition to this analysis, a series of planned comparisons were conducted to examine 

differences among groups from the point at which subjects were introduced to the other hint 

(trials 19-72). The first analysis showed that subjects in the compositional/switch condition (M = 

.82, SE = .018) outperformed subjects in the compositional/no-switch condition (M = .743, SE = 

.029), t(76) = 2.26, p = .027, d = .51. Additionally, subjects in the unitary/switch condition (M = 

                                                
4 A model was run with phase (phase 1 (trials 1-18) vs. phase 2 (trials 19-72)) as a within-

subjects factor and type of hint and type of switching as between-subject factors; phase did not 

interact with type of hint or type of switching. 
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.802, SE = .022) marginally outperformed subjects in the compositional/no-switch condition, 

t(77) = 1.77, p = .08, d = .45. However, no differences in performance were observed among any 

of the three groups that were presented a unitary hint at some point in the study. Thus, it seems 

that as long as a unitary hint is presented, regardless of whether it is the only hint that is shown 

or if it is presented before or after a compositional hint, subjects are able to benefit from it. 

Taken together, these findings support the conclusion from Experiment 1 and suggest that 

subjects indeed learn better when they rely on unitary representations. 

 
Representational Preference and Individual Differences 

As in Experiment 2, a binomial test (collapsing across all subjects) revealed that a greater 

proportion of subjects selected the category rules that were described unitarily (M = .68) than 

those that were described compositionally (M = .32), p < .0001. Figure 16 shows the proportion 

of observed responses in each condition in Experiment 3. These results further replicate the 

findings from Experiments 1 and 2 and suggest that people typically prefer to think of relational 

concepts in a unitary-based manner. Additionally, a logistic regression showed that there was a 

main effect of hint, β = -1.51, χ2(1) = 6.85, p = .009, such that a higher proportion of subjects 

who started with a compositional hint (switch and no-switch condition) selected the category 

rules that were described unitarily. An interaction was also found, β = -.405, χ2(1) = 4.15, p = 

.042, indicating that the effect of hint depends on the switch condition. Specifically, subjects 

selected the category rules that were described unitarily at a higher frequency in the 

compositional/switch condition than in the other three conditions (as shown in the Figure 16). It 

is important to note that subjects in the compositional/switch condition were first presented the 

compositional hint, and were then presented the unitary after the 18th trial, which was presented 

for the remainder of the experiment. This finding might therefore not be particularly surprising 
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given that these subjects were presented the unitary hint for most of the study. On the other hand, 

subjects in the other three conditions were shown either a unitary or compositional hint for as 

long or longer (true of subjects in the no-switch conditions) as subjects in the 

compositional/switch condition were shown the unitary hint. Nevertheless, subjects in these 

other three conditions did not show as strong of a preference for the category rules that were 

described unitarily as subjects in the compositional/switch condition. One explanation for this 

finding is that because subjects do not typically represent relationally structured concepts 

compositionally, it is more challenging for them to use these types of representations to learn a 

resulting concept. As a result, these subjects might have been hesitant to fully adopt a 

compositional representation. However, once these subjects were shown the unitary hint, which 

is perhaps a more natural representation that is easier to apply during relational learning, they 

fully adopt it and abandon the representation that was encouraged by the previous hint. The 

compositional/switch condition thus may have provided subjects the opportunity to experience 

the challenge of using a compositional representation during relational category learning, which 

was followed by the ease (and subsequent success) of applying the unitary hint. 
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Figure 16. Proportion of observed responses of each category rule in each condition in 

Experiment 3. 

 
This contrastive experience might have led these subjects to form a stronger preference 

for the unitary-based representation than subjects in the other three conditions, which might not 

have had this experience. Indeed, subjects in the compositional/no-switch condition were not 

exposed to the unitary hint and may therefore not have been fully aware of its benefits or the ease 

with which the stimuli could otherwise be represented. Subjects in unitary/no-switch condition 

were not presented a compositional hint, and as a result, these subjects might not have been 

aware of the difficulty of using this type of representation during category learning. Furthermore, 

although subjects in the unitary/switch condition were presented with both types of hints, these 

subjects were shown the compositional hint after the unitary hint, which might have helped to 

scaffold learning and buffer the difficulty of using the compositional hint, whereas subjects in 
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the compositional/switch condition did not have this buffer when they used the compositional 

hint. 

Subjects within each condition were divided by the type of category rules that they 

selected and their performance was compared to one another (e.g., subjects’ performance in the 

unitary/switch condition who selected the unitary category rules were compared to those in the 

unitary/switch condition who selected compositional category rules).  However, no differences in 

performance were found among the groups. This finding is in line with the findings from 

Experiment 2, which found no differences in performance among groups on the classification 

task based on the type of category rules that subjects selected. One possibility is that 

performance on a relational classification task is not related to how subjects prefer to represent 

the corresponding relational concept. To further elaborate, it is possible that a classification task 

does not require subjects to build up and construct a representation in the same way that an 

inference task does (in which Experiment 1 found a relationship between the category rules that 

subjects selected and performance). Thus, the type of category rule that can be more readily 

represented might not be as relevant for classification as it is for inference. For this reason, 

performance on a classification task might not be affected by how subjects prefer to represent a 

relational concept in the same way as in an inference task.5 An alternative explanation is that 

                                                
5 One finding that might be related to the type of task that was used in this study is that no 

differences were found in performance on Morkel and non-Morkel items (unlike in Experiment 

2), p = .93. This finding is perhaps due in part to this study only using an A/¬A classification 

task, as subjects could presumably perform at a high level (on either item) by only learning the 

category rule for Morkels and classifying a stimulus as a non-Morkel when it failed to meet the 

appropriate criterion. 
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both compositional and unitary category rules can be equally effective in aiding subjects’ 

classification judgments, and thus how the category was learned did not affect performance. 

Nevertheless, the findings presented in this section add further support to the idea that subjects 

prefer (either due to representational or learning preferences) to represent relational concepts 

unitarily. 

  



 

 

71 

CHAPTER V 

Experiment 4 

This study follows up on the work from Experiments 2-3 and examines how making both 

types of representations available (between-subjects) to subjects during relational learning might 

interact with classification and inference (within-subjects). Experiment 2 showed that although a 

compositional hint can be useful for category learning, it does not seem to aid inference. One 

explanation for these findings is that the inference task required subjects to engage in bottom-up 

learning, as they needed to discover the relationships among a stimulus’ components in order to 

make the correct inference. Similarly, the compositional hint required the same type of bottom-

up processing, and may therefore not have been particularly informative to subjects who 

completed the inference task. To elaborate, on each inference trial subjects were required to 

select between two options, one of which was the machine’s missing component. Although the 

compositional hint directed subjects to look for the relationships among the machines’ 

component parts, there are many potential relationships between each inference option for a 

given stimulus and its two component parts that were present in the stimulus. Thus, the 

compositional hint might not have provided the conceptual constraint that was necessary (and 

which might be provided by a unitary hint) to be useful for an inference task. In contrast, this 

issue did not arise on the classification task, as subjects were indeed capable of using the 

compositional hint to learn how to distinguish Morkels from non-Morkels. Accordingly, 

relational classification is more constrained than inference because a stimulus contains all of its 

properties and subjects must simply discover how those properties are related. One possibility is 

that a compositional hint can be used effectively during inference if a subject has a sufficient 

grasp of the concept that is being learned. One possible way to help subjects reach this goal is by 
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first training them on a classification task using a compositional hint and then asking them to 

complete an inference task. The present study tests this idea, along with how each type of hint 

affects inference learning when they are both made available to subjects. 

This study used the same stimuli as Experiments 2 and 3, and a similar design and 

procedure to that of Experiment 2. First, all subjects performed a classification task, and were 

presented a given hint (either unitary or compositional, based on the condition) at the start of the 

study (as in Experiments 2 and 3). After responding to half of the stimuli, all subjects were given 

an inference-based task, at which point half of the subjects were presented a different hint and 

the other half were shown the same hint (as in Experiment 3). There are two primary benefits to 

this design. The first is that the classification task provides a measure of each hint’s 

effectiveness. The second is that by presenting an inference task and then switching the hint that 

half of the subjects are shown, a direct measure can be obtained of how well subjects can transfer 

their relational category knowledge from classification to inference, along with which type of 

hint is more conducive to such transfer. 

The primary prediction for this study is that subjects who are presented a compositional 

hint during classification and then switch to a unitary hint during inference 

(compositional/switch condition) should show the greatest improvement in performance when 

they shift from classification to inference. This prediction is premised on the idea that the 

compositional hint during classification should lead to lower performance than the unitary hint 

(as was shown in Experiments 2 and 3). However, once subjects in the compositional/switch 

condition are shown a unitary hint, the effectiveness of this hint should lead to a rapid 

improvement in learning. In contrast, subjects who are provided a unitary hint to start the study 

will likely develop a strong grasp of the category rules during classification and are therefore 
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more likely to display more stable performance when they switch to the inference condition than 

subjects in the compositional/switch condition. Another prediction that might follow from 

Experiments 2 and 3 is that subjects in the unitary/no-switch condition should perform better on 

the inference task than subjects in the compositional/no-switch condition. However, an 

alternative prediction is that the classification task will help subjects who receive a 

compositional hint better develop a sufficient understanding of the category rule, which will 

allow subjects in the compositional/no-switch condition to effectively transfer this knowledge to 

the inference task. As a result, no differences on inference performance might be observed 

between subjects in the compositional/no-switch condition and subjects in the unitary/no-switch 

condition. 

 
Method 

 
Participants 

One hundred sixty-nine subjects participated in this study for course credit in an 

introductory psychology course at the University of Colorado Boulder. Subjects were randomly 

assigned to four conditions: unitary/switch (N = 41), compositional/switch (N = 42), unitary/no-

switch (N = 44), and compositional/no-switch (N = 42). 

 
Procedure 

All subjects first completed 18 trials on a classification task. After the rest break on the 

18th trial, the screen was cleared and subjects were shown a prompt that notified them that they 

would be completing an inference-based task (which they were given for the remainder of the 

study), and were told to press the spacebar to continue. This prompt was followed by a prompt 

that reminded subjects of the hint that they were already using or a new hint, which informed 
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them that there was a different way in which the concept could be represented. The rest of the 

design and procedure is identical to the inference task that was used in Experiment 2. The 

average length of the study was approximately 17 min. 

 
Results and Discussion 

Figure 17 shows learning curves for each condition on each task type. As in Experiments 

2 and 3, subjects performed better on items that were Morkels (M = .767) than non-Morkels (M = 

.625), t(168) = 15.09, p < .0001, SE = .001, d = 2.33, but no interaction was found between trial 

and task type or among trial type and the other two between-subject factors (i.e., type of starting 

hint and type of switching), p > .05; trial type was therefore not included in further analyses. A 

mixed ANOVA was run with task type as a within subjects-factor and type of starting hint and 

type of switching as between-subject factors. The results showed no between-subject main 

effects, but an interaction was found between task type and type of starting hint F(1,165) = 4.30, 

p = .04, MSE = .011, such that subjects who were presented the compositional hint at the start of 

the study showed a greater increase in performance (Mincrease = .04) from the classification (trials 

1-18) to the inference task (trials 19-72) than subjects who were shown the unitary hint (Mincrease 

= -.01) at the start of the study. Furthermore, a non-significant trend was observed such that 

subjects who were shown a unitary hint (M = .706) at the start of the study performed better on 

the classification task than subjects who were shown a compositional hint (M = .663), t(167) = 

1.60, p = .11, SE = .013, d = .248. However, these differences in performance were not present 

among conditions on the inference task, all ps > .15, suggesting that once subjects were 

introduced to a unitary hint, they were capable of making up any differences that might have 

developed in learning between them and subjects who were shown the unitary hint at the start of 

the study; no statistically reliable three-way interactions were found. 
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Figure 17. Average learning curves and standard errors of the mean across blocks of nine trials 

for each condition in Experiment 4. The first 18 trials indicate performance on the classification 

task; trials 19-72 indicate performance on the inference task. 

 
Additional analyses revealed that subjects who were in the compositional/switch 

condition performed better on the inference task (M = .684) than on the classification task (M = 

.627), F(1, 41) = 4.27, p = .045, MSE = .016. Critically, this improvement in performance 

occurred after the hint was switched from compositional to unitary. Moreover, no statistically 

reliable improvements in performance were observed from the classification to the inference task 

for subjects in the other conditions, all ps > .32. The improvement in performance from the 

classification to the inference task was also greater for the compositional/switch condition than 

for the subjects in unitary/no-switch condition, t(84) = 2.18, p = .032, SE = .017, d = .48, as well 

as subjects in the unitary/switch condition (non-significant trend), t(84) = 1.62, p = .109, SE = 
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.018; a non-significant trend was also observed between the compositional/switch and the 

compositional/no-switch conditions, t(82) = .98, p = .33, SE = .018.6 Taken together, these 

findings suggest that switching from a compositional to a unitary hint is more beneficial for 

relational learning. 

However, it is important to note that in Experiment 2 there was a strong benefit to using 

the unitary hint (over one that was compositional) on the inference task. However, no such 

benefits were observed in the present study. One explanation for these somewhat incongruent 

results is that using compositional representations for inference-based learning (without 

classification training beforehand) can be very challenging, as subjects must build up a 

representation out of a relationally structured stimulus that is incomplete. This process can be 

somewhat unconstrained, and might place a large load on working memory. In contrast, such 

generation is not necessary during classification because a full stimulus is presented on every 

trial, which might enable subjects to better use the compositional hint to discover the 

corresponding category rule. In line with this proposal, subjects in Experiment 2 were able to use 

the compositional hint to learn on the classification task, but not on the inference task. However, 

in the present study the compositional hint seems to have helped subjects’ performance on both 

classification and inference. Engaging in classification before inference might therefore help 

subjects to better represent the structure of a relational concept, which can in turn constrain the 

types of inferences that subjects subsequently make, thus attenuating the difficulty of using 

compositional-based representations during inference. Nevertheless, further work will be 

required to more directly test this possibility. 

                                                
6 These analyses were based on each condition’s difference scores between performance on 

the classification and inference task. 
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Representational Preference and Individual Differences 

 

 

 
Figure 18. Proportion of observed responses of each category rule in each condition in 

Experiment 4. 

 
Figure 18 shows the proportion of observed responses in each condition. As in 

Experiments 2 and 3, a binomial test (collapsing across all conditions) revealed that subjects 

selected the category rules that were described unitarily at a higher proportion (M = .62) than 

those that were described compositionally (M = .38), p = .001. However, a subsequent logistic 

regression showed no differences among the conditions in the type of category rules that subjects 

selected, all ps = ≥ .27. Additionally, no relationship was found between the type of category rule 

that subjects selected and performance on the classification and inference task, both ps > .50. 

Nevertheless, the initial result reported here provides further support for the findings from 

Experiments 1-3, which suggest that subjects represent relationally structured stimuli unitarily. 

An additional analysis was conducted to further explore the idea that there are individual 

differences in how subjects prefer to represent relational stimuli. Experiment 2 showed that for 
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subjects who received a unitary hint on the inference task, those who selected the category rules 

that were described compositionally outperformed subjects who selected the category rules that 

were described unitarily. This same comparison was conducted in the current study (to replicate 

the previous finding from Experiment 2) and the results from Experiment 2 were replicated, as 

subjects in the unitary/no-switch condition who selected the compositional-based category rules 

(M = .756) outperformed (on the inference task) subjects in this same condition (i.e., unitary/no-

switch) who selected the unitary-based category rules (M = .651), t(42) = 2.94, p = .005, SE = 

.018, d = .91. These findings can be interpreted as providing further support for the idea that 

subjects who are more inclined or better at representing relational concepts compositionally are 

better able to use a unitary representation to construct a structured concept than subjects who are 

more inclined to represent such concepts unitarily. Thus, although subjects might prefer to 

represent relational stimuli unitarily, there might be a benefit to representing or learning 

structured concepts compositionally. However, it is important to note that this finding is 

correlational and this interpretation is speculative. As such, there are other possible 

interpretations that might account for this result. For instance, it is possible that subjects who 

have higher working memory capacity also prefer to represent or are better able to learn the 

categories compositionally, and thus better learn the task than subjects who prefer to represent or 

learn the categories unitarily. Thus, the interpretation for this finding, although plausible, should 

be taken with caution. 

 
Summary of Experiments 2-4 

Experiments 2-4 examine how unitary and compositional hints, which are meant to 

encourage corresponding representations in subjects, affect relational learning. First, it is 

important to note that all three studies provide support for the findings from Experiment 1, which 
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suggests that people typically represent relational concepts unitarily, but there also appear to be 

individual differences in how such concepts are represented. The findings from Experiment 2 

showed that both unitary and compositional hints can aid learning on a classification task, but 

only the unitary hint was a useful learning aid on the inference task. These findings provide 

support for the idea that subjects can indeed use both types of representations to understand and 

learn relational concepts, but that unitary representations are as or more effective than 

compositional ones. This latter conclusion challenges the emphasis on compositional 

representations at the core of most research on analogical reasoning.  

Experiment 3 used only a classification task and was able to replicate the findings from 

the classification condition in Experiment 2, as subjects who received only a unitary hint 

outperformed subjects who received only a compositional hint. Furthermore, the results from this 

study showed that subjects who received a unitary hint at any point in the study (with a 

compositional hint coming before, after, or not at all) outperformed subjects who did not receive 

a unitary hint at all. No differences in performance were found among subjects in the groups who 

received a unitary hint. These results lend further support to the dominance of unitary 

representations, in that subjects will abandon or ignore suggestions for compositional 

representations if they have discovered a unitary one. 

Experiment 4 extended the study design of Experiment 3 and introduced an inference 

task after classification. Although no differences were found among the groups on the inference 

task, subjects who started out using a compositional hint and were then presented the unitary hint 

showed a statistically reliable improvement in performance on the inference task (no other 

groups showed such improvement) and a greater improvement than subjects who started out the 

study with a unitary hint. For subjects who begin the study using a compositional hint, one 
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benefit to engaging in classification before inference is that classification might help subjects 

form a more mature representation of the corresponding relational concepts, which they can then 

use to constrain the type of relationships they consider among a stimulus’s components during 

inference. These findings point to the possibility that in order for compositional representations 

to be useful during inference, subjects must hold the appropriate requisite knowledge about the 

corresponding concepts. Nevertheless, once such knowledge has been acquired, it seems that 

both types of representations can be equally effective. 
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CHAPTER VI 

Experiment 5a 

This study builds on the findings from Experiments 1-4 and is premised on the 

assumption that relational concepts can indeed be represented in two fundamentally different 

ways (i.e., unitarily and compositionally). The present study examines how different types of 

learning tasks, specifically classification and inference, interact with different types of 

comparisons (within- vs. between-category), to affect representation and relational learning. 

These two variables (i.e., type of task and comparison) are included in the present study because 

both can be used to test predictions that follow from a given set of representational assumptions. 

A seemingly straightforward prediction that follows from structure-mapping theory 

(Gentner, 1983) is that learning should be best when items from the same relational category are 

compared, as this allows for their common structures to be more easily aligned and abstracted 

(Gentner, 1983; Lassaline, 1996; Lassaline & Murphy, 1998), that is assuming that relational 

concepts are represented compositionally. In contrast, if stimuli are represented unitarily and are 

encoded similarly to features, comparing items from different categories should lead to superior 

learning, as this type of comparison highlights the discriminative attributes between the two 

categories (as predicted by theories of attention; Kruschke, 1992; Nosofsky, 1986). 

Corral et al. (2017) tested these predictions using a paradigm in which subjects were 

shown side-by-side co-presented items (i.e., two-item trials) that were either in the same (within-

category comparison) or a different category (between-category comparison; this was a between-

subjects study); on every 5th trial, subjects were shown a one-item test trial. In contrast to the 

prediction that follows from structure-mapping theory (Gentner, 1983), Corral et al. found that 

subjects who compare items from different categories perform better on both feature- and 
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relation-based categories. Moreover, the contrast advantage for relation-based categories was 

shown across four experiments using various stimuli, which varied from instantiating simple 

perceptual relations to more complex, abstract relations. On the surface, these findings appear to 

support the idea that structured concepts are not represented compositionally, and thus pose a 

challenge for theories of relational learning that are premised on the assumption that relational 

concepts are represented compositionally (e.g., structure-mapping theory). However, Corral et al. 

offer an alternative explanation of their findings that is somewhat compatible with a structure-

mapping framework. In cases where the structure for stimuli from different categories can be 

partially aligned, it is possible that attention is drawn to the differences in the relational 

properties between the stimuli, similarly to the manner in which people readily notice the 

featural differences among items that are analogous when their common structures are aligned, 

as is the case with alignable differences (Gentner & Markman, 1994). This latter proposal relies 

on the assumption that for some yet unknown reason, attending to the distinctive relational 

properties between two categories leads to superior learning than from mapping and abstracting a 

complete structure. One possibility is that these distinctive relational properties are treated as 

features and are used to identify each category, thus placing less strain on working memory than 

representing each category’s relational structure (e.g., representing the Morkel category through 

the relation of functions as opposed to representing its relational structure). 

It is important to point out that the idea that people learn through impediments to 

alignment is premised on the assumption that relational concepts are represented 

compositionally, as it is the analogous components between two stimuli that are mapped. If it is 

the case that the contrast advantage reported by Corral et al. (2017) arose from partial alignment, 

then a contrast advantage might be expected on both a classification and an inference task, as 
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subjects should be able to partially align co-presented items and recognize their distinctive 

relations. However, if the contrast advantage was due to subjects representing the stimuli 

unitarily, an interaction might be expected between type of comparison and task type. To further 

elaborate on this prediction, if classification judgments can be made based on the presence of a 

unitary property, without learning the stimuli’s relational structure, then (as described above) that 

property should be highlighted by contrasting stimuli. On the other hand, making an accurate 

inference about a relational stimulus requires learning the relationship among the stimulus’ 

component parts, and thus the stimulus must be represented compositionally. As such, a match 

advantage should be expected on an inference task, because subjects should be able to align the 

elements and abstract the common structure between two analogous items, as predicted by 

structure-mapping theory (Gentner, 1983), whereas full alignment is not possible in the contrast 

condition. As a brief aside, the prediction that inference relies on compositional representation 

might seem antithetical to the findings from Experiment 2, which showed that a unitary hint 

leads to better inference learning than a compositional hint. However, if the reader will recall, the 

explanation for this finding was that a unitary hint aids subjects in building a structured 

representation, which is indeed represented compositionally. 

To briefly summarize, the impediments to alignment hypothesis predicts a match 

advantage on both the inference and classification tasks, whereas an interaction is predicted if 

subjects’ representation of the categories varies by task. Specifically, if subjects represent the 

categories compositionally during classification a contrast advantage would be expected, 

whereas a match advantage would be expected on the inference task if the categories were 

represented unitarily. These predictions are tested in the present study, which applies the 

paradigm from Corral et al. (2017). Additionally, half of the subjects completed a classification 
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task and the other half completed an inference task. The stimuli from Experiments 2-4 were used 

in the present study, but were slightly modified (as described further below). After each 

response, subjects were given corrective feedback (i.e., shown whether their response was 

correct and shown the correct response). 

 
Method 

 
Participants 

Two hundred ninety-three subjects participated in this study for course credit in an 

introductory psychology course at the University of Colorado Boulder. Subjects were randomly 

assigned to four conditions: contrast/classification (N = 73), match/classification (N = 78), 

contrast/inference (N = 72), and match/inference (N = 69). 

 
Stimuli and Design 

This was a 2 (classification vs. inference) × 2 (match vs. contrast) between-subjects 

experiment with performance on one-item trials as the primary dependent measure. One-item 

trials were used as the primary dependent measure to control for potential differences that might 

arise due to the differences in the two types of comparison (e.g., one type of comparison is more 

difficult to make than the other). The stimuli from Experiments 2-4 were used in this study, but 

were modified to ensure that none of the components from one machine shared any secondary 

relations with the components from a separate machine.7 

                                                
7 This modification was made to accommodate an initial plan to randomly sample 

inference lures for Morkel items from within the Morkel stimuli. This modification would ensure 

that only one option could be correct on inference trials that consisted of a Morkel stimulus. 
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Procedure 

Subjects completed this study on an LCD 16-inch computer monitor and entered their 

responses using a computer keyboard. All stimuli were presented on a black background. 

Subjects were told a cover story that they were going to be shown descriptions of machines made 

by one of two alien species: Morkels and non-Morkels (this was an A/¬A classification task, as 

in Experiments 2-4). Subjects were shown a positive example of a Morkel and were instructed to 

press the spacebar when they were ready to begin the study. 

Subjects in all conditions completed 160 trials, which consisted of one- and two-item 

trials. Two-item trials consisted of two side-by-side items. In the match condition (within-

category comparison), both items were from the same category. In the contrast condition 

(between-category comparison), both items were from different categories. One-item trials were 

presented every fifth trial and only consisted of a single stimulus, for which subjects were either 

required to make a classification judgment or an inference (as in Experiments 2 and 4). On one-

item classification trials, a stimulus was presented at the center of the screen and subjects were 

asked to type “A” if the machine was a Morkel or “L” if it was not; subjects in the inference 

condition were told to type “A” if the top choice was the correct response or “L” if the bottom 

choice was the correct response. 

The classification condition consisted of an A/¬A task. In this condition, the machine 

that was presented on the left was labeled “Machine A” and the machine that was presented on 

                                                                                                                                                       
However, for logistic reasons, these plans were changed and the inference lures for each stimulus 

(both Morkels and non-Morkels) were instead selected by the researcher, as in Experiments 2-4. 

The modified stimuli were nevertheless kept in place. 
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the right was labeled “Machine B”; these labels were presented directly above each machine as 

shown in Figure 19. On two-item trials, subjects in the match/classification condition were asked 

to type “2” if both machines were Morkels or “0” if neither machine was a Morkel, whereas 

subjects in the contrast/classification condition were asked to type “2” if Machine A was a 

Morkel and Machine B was not or “0” if Machine B was a Morkel and the Machine A was not. 

 

 

 
Figure 19. Example trials from the contrast conditions in Experiment 5. A: Example trial from 

the classification condition. B: Example trial from the inference condition. 

 
In the inference condition, each stimulus was presented with its corresponding category 

label and two of its three sentences. For each stimulus, subjects were required to infer the 

missing component (i.e., sentence) from two options, which were presented below each item (as 

in Experiments 2 and 4). Figure 19 shows example stimuli from a two-item trial for the 

classification and inference conditions. Response prompts were presented above each machine’s 

label. For Machine A, the prompt instructed subjects to press “1” if the correct choice was the 

top sentence or “2” if the correct choice was the bottom sentence; for Machine B, the prompt 

instructed subjects to press “9” if the correct choice was the top sentence or “0” if the correct 
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choice was the bottom sentence. On two-item trials, each inference option that a subject selected 

was underlined. Subjects could change their responses by entering the other key press option, 

which would then show the corresponding inference option underlined. For each stimulus, only 

the response that was last entered was underlined. On each two-item trial subjects were 

instructed to finalize their response by pressing the spacebar. Additionally, on each of these trials 

subjects were required to make an inference for each stimulus in order to move on to the next 

trial. 

As in Experiments 2 and 4, the spatial position of each inference lure was randomized on 

each trial. The component that subjects were asked to infer was also randomized on each trial, 

subject to the constraint that subjects were not asked to infer the same type of component for two 

machines on the same trial. Each inference stimulus had two possible inference lures, one of 

which was randomly selected for the given trial. For Morkel items, each inference lure shared no 

secondary relations with any of the machine’s components. For non-Morkel items, each 

inference lure shared one secondary relation with one of the machine’s components. For 

example, as shown in Figure 19B, the correct inference for the non-Morkel stimulus is operates 

on the surface of water, because a shovel (the stimulus’s implement) can be used on land (the 

inference lure) and thus the two share a secondary relation.   

The entire stimulus set was presented over the course of 20 trials and the order in which 

the stimuli were presented on each block of 20 trials was randomized, subject to the constraint 

that any co-presented items on two-item trials were not members of the same family set. To 

remind the reader, stimuli were created in sets of families. For instance, one family set of stimuli 

came from Rehder and Ross (2001), who created three Morkel items and three non-Morkel items 

by shuffling the features of the Morkel items, in a way that each non-Morkel item took one 
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feature from each of the three Morkel items; Higgins (2012) and Corral at al. (2017) used this 

same procedure to each create their own family set of stimuli. This constraint was put in place to 

ensure that subjects in the contrast/inference condition would not have to make an inference 

about a component for one machine that was present in the other machine on the same trial.   

Subjects were provided corrective feedback on two-item trials, but not on one-item trials; 

no feedback was provided on one-item trials because these were intended to be test trials. 

Feedback was presented directly under each stimulus and remained on the screen for 3 seconds. 

For each stimulus in the inference conditions, both options remained on the screen and the 

correct option was shown in green and the incorrect option was shown in red. On one-item trials, 

the stimulus was presented at the center of the screen. After each response (on one-item trials), 

the screen was cleared and subjects were shown a thank you prompt, which was presented at the 

center of the screen for 500 ms. The intertrial interval was 400 ms. Subjects were given self-

paced rest breaks every 20 trials, in which they were shown their percentage of correct responses 

over those trials (i.e., one- and two-item trials) and were shown the number of trials they had 

completed along with the number of trials that remained in the study. Subjects were instructed to 

press the spacebar when they were ready to continue. The study was set to run for 55 minutes, 

but subjects who went over the allotted time were allowed to finish the study. 
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Results and Discussion 

 

  

 
Figure 20. Mean learning curves on one- and two-item trials and standard errors of the mean for 

each condition across blocks of 20 trials in Experiment 5a. A. One-item trials. Each data point 

represents an average over four one-item trials. B. Two-item trials. Each data point represents an 

average over 16 two-item trials. 
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Figure 20 shows learning curves for each condition on one- and two-item trials. One 

subject was removed from the analysis for scoring over 2 standard deviations below the mean. 

The results show a marginal interaction on one-item trials between type of comparison and task 

type, F(1, 288) = 3.70, p = .055, MSE = .027, such that there is a match advantage for the 

inference task (Mcontrast = .64, Mmatch = .70, t(139) = 2.20 , p = .029, SE = .013, d = .373) and 

slight (not statistically reliable) contrast advantage for the classification task (Mcontrast = .727, 

Mmatch = .711, t(149) = .57 , p = .573, SE = .014). This finding is in line with the idea that 

subjects represent stimuli unitarily on a classification task, but compositionally on an inference 

task. 

However, the contrast advantage on the classification task found by Corral et al. was not 

statistically reliable in the present study. It is important to note that although the stimuli used in 

the present study were taken from Experiment 4 of Corral et al. (2017), these stimuli were 

modified and a restriction was put in place so that co-presented items were not members of the 

same family set. Moreover, subjects in the study by Corral et al. completed 300 classification 

trials, but only 160 in the current study. Nevertheless, a numerical difference was observed in the 

predicted direction, which qualitavitely replicates the pattern observed by Corral et al. It is also 

worth noting that the contrast advatange does increase as as the study progresses, as there is a 

noticable increase in the difference between the contrast and match classification conditions at 

around the 100th trial, as shown in Figure 20. One possibility is that aforementioned changes 

weakened the contrast advatnage, but that it is still present and can be observed on later trials. 

 
Experiment 5b 

Although Experiment 5a showed the predicted interaction, the contrast advantage was 

considerably weaker from what was reported by Corral et al. (2017). Experiment 5a was 
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therefore re-run with subjects in the classification condition completing 300 trials and subjects in 

the inference condition still completing 160 trials. The two task types consisted of a different 

number of trials because the study was designed to run for 55 minutes and inference trials take 

longer to complete than classification trials. Thus, the inference task consisted of fewer trial 

numbers than the classification task. Two hundred seventy-seven subjects were randomly 

assigned to four conditions: contrast/classification (N = 70), match/classification (N = 70), 

contrast/inference (N = 66), and match/inference (N = 71). 

Results and Discussion 

Because Experiment 5a showed no statistically reliable differences in classification 

performance between the contrast and match conditions on 160 trials, to reduce the chance of a 

type two error only classification trials 165-300 (one-item trials) were included for analysis in 

the present study. First, the results once again revealed a statistically reliable interaction, F(1, 

273) = 5.07, p = .025, MSE = .032.8 Once again, there was a contrast advantage (non-significant 

trend) for the classification task (Mcontrast = .85, Mmatch = .803, t(138) = 1.46, p = .146, SE = .016, 

d = .25)9 and a match advantage (marginal) for the inference task (Mcontrast = .654, Mmatch = .705, 

                                                
8 The interaction is marginally significant when all one-item classification trials are included 

in the analysis, F (1, 273) = 2.73, p < .10, MSE = .028. 

9 This is a marginal effect using a one-tailed test (p = .073), which is appropriate to use given 

that there is an a priori prediction and the classification condition is a replication attempt of two 

prior studies. It is argued here that for replications, not only is it appropriate to use a one-tailed 

test, but this practice should be the norm, as honest efforts to replicate a study should take extra 

precautions to guard against type two errors, particularly in cases where the original result was 

found using a two-tailed test. 
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t(135) = 1.74, p = .084, SE = .015, d = .30; one-tailed p = .042). Although the contrast advantage 

on the classification task on one-item trials is not statistically reliable, it is when one- and two-

item trials are combined (Mcontrast = .867, Mmatch = .803, t(138) = 2.04, p = .043, SE  = .016, d = 

.347; p = .02 with a one-tailed test).10 Figure 21 shows learning curves for each condition on one- 

and two-item trials. 

The present findings replicate Experiment 5a, however the results could be stronger. One 

issue to consider is that the present results are likely underpowered. Although making the 

classification study 300 trials seems to have produced a stronger effect size for the slight contrast 

advantage than was observed in Experiment 5a, it is still relatively weak. To remedy this issue, 

follow-up studies should seek to double the trial number on the classification task and increase 

the sample size; a power analysis (power = .80, d = .25) indicates 253 subjects are required per 

condition to show a statistically reliable effect. However, given that the effect size appears to be 

stronger on later trials, fewer subjects might be required if the trial number on the classification 

task is increased. 

 

                                                
10 No interaction was found between trial and comparison type (p > .05), and thus the two 

trial types can be treated equivalently and combined, as discussed in Corral et al. (2017). 
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Figure 21. Mean learning curves on one- and two-item trials and standard errors of the mean for 

each condition across blocks of 20 (A-B) and 50 (C-D) trials in Experiment 5b. A. One-item 
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trials for the inference conditions. Each data point represents an average over four one-item 

trials. B. Two-item trials for the inference conditions. Each data point represents an average over 

16 two-item trials. C. One-item trials for the classification conditions. Each data point represents 

an average over 10 one-item trials. D. Two-item trials for the classification conditions. Each data 

point represents an average over 40 two-item trials. 

 
Experiments 5a and 5b produced similar results, and showed a slight contrast advantage 

for the classification task and a match advantage for the inference task. Nevertheless, to ensure 

that such findings can be trusted, the data for both experiments 5a and 5b were combined to 

increase statistical power. The results showed a reliable interaction (including all one-item trials 

from Experiment 5b), F (1, 565) = 6.53, p = .011, MSE = .027, as there was a non-significant 

contrast advantage in the classification condition (Mcontrast = .743, Mmatch = .725, t(289) = .82, p = 

.42, SE = .01)11 and a reliable match advantage in the inference condition (Mcontrast = .649, Mmatch 

= .704, t(276) = 2.80, p = .006, SE = .01, d = .34).  

In sum, although the findings from Experiments 5a and 5b are not definitive and the 

effect sizes are not particularly large, the findings are nevertheless reliable. The interaction 

provides support for the idea that relational classification and inference tasks lend themselves to 

different types of representations. Specifically, the match advantage on the inference task 

suggests that an inference task requires subjects to represent relational categories 

compositionally, as a unitary representation might not be readily accessible given that the 

                                                
11 The contrast advantage is statistically reliable (including all one-item trials; Mmatch = .75, 

Mcontrast = .79) when the data from Experiment 5b are combined with the data from Experiment 4 

in Corral et al. (2017), t(265) = 2.07, p = .039, SE = .01, d = .254. 
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stimulus is incomplete. Moreover, the comparison task specifically required subjects to compare 

the component parts between two machines and discover how two corresponding components 

between two machines were analogous. This type of process seems to require representing the 

categories compositionally, and indeed, the match advantage is in accord with the prediction that 

follows from structure-mapping theory (Gentner, 1983), as comparing analogous items should 

facilitate aligning their corresponding elements and abstracting their shared structure. On the 

other hand, the contrast advantage in the classification task suggests that when possible, subjects 

will represent relational concepts unitarily, as stimuli, particularly those used in the present 

study, can be classified without the need to represent their structure (as demonstrated in 

Experiments 2-4). As discussed above, in cases where a concept can be represented unitarily, 

comparing items from different categories should highlight their distinctive properties (because a 

unitary concept can treated similarly to a feature) and lead to better learning than comparing 

items from the same category. 
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CHAPTER VII 

Experiment 6 

One possibility is that the interaction found between task and comparison type in 

Experiments 5a and 5b itself depends on the type of relational stimuli that subjects are presented. 

More specifically, the stimuli used in Experiments 2-5 might have been well-suited to be 

represented unitarily, due to the secondary relations among each machine’s component parts, 

which might have activated subjects’ pre-existing general knowledge structures about machines, 

which could in turn be used to find a unitized property within each stimulus (e.g., the description 

of the machine makes sense). One possibility is that in cases when such representations are not 

readily available, subjects are forced to represent relational concepts compositionally. In such 

cases, a main effect of comparison might be found, such that there is a match advantage on both 

inference and classification, as the only way to learn the categories might be to align the 

component parts between co-presented items.  This study tests this prediction and uses the same 

paradigm as in Experiment 5 (i.e., 2 (match vs. contrast) × 2 (classification vs. inference) 

between-subjects study with one-and two item trials), along with stimuli that were designed with 

the specific purpose of inhibiting a unitary-based representation from readily emerging. 

Specifically, a stimulus consisted of three terms that pertained to perceptible objects (e.g., 

train, hamster, chocolate bar), which were arranged vertically and were bounded by a red border 

(as shown in Figure 22). The stimuli were divided into two categories, defined by the specific 

manner in which three objects were related to one another based on size. For one category 

(Zorpes), the third object was bigger than the second and the second object was bigger than the 

first object; for the other category (Olatin), the first object was bigger than the second and the 

second object was bigger than the third object. Figure 22 shows example stimuli from the 
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contrast/classification condition in Experiment 6. Appendix C contains the stimuli that were used 

in this study. 

 

 

 
Figure 22. Example trials from the contrast conditions in Experiment 6. A. Classification 

condition. B. Inference condition. 

 
The stimuli in Experiments 2-4 leveraged subjects’ prior knowledge about the secondary 

relationships among a stimulus’ component parts. Corral et al. (2017) posit that subjects’ 

knowledge about these secondary relations might have given rise to a unitized representation. 

However, the stimuli in the present study lacked this property in that the objects within any given 

stimulus are not typically associated with one another and do not typically share a common 

category (at least not on the relation that defined the categories), which might therefore inhibit 

the emergence of a unitized representation. For instance, consider the following example 

stimulus: great white shark, sunglasses, light bulb. Although there are certainly many 

relationships among these objects, such relationships are somewhat obscure and might not be 

readily salient to subjects. As a result, in order to learn the category rule for these stimuli it might 

be necessary for subjects to represent the component parts of each stimulus (i.e., each object) and 
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explicitly consider how they are related to one another, a process that would likely rely on 

representing the categories compositionally. Due to subjects shifting their attention to the 

stimuli’s component parts, the emergence of a unitary concept might be disrupted. Nevertheless, 

it is important to note that each category rule could be represented unitarily. For Zorpes, the 

category rule could be thought of as an instantiation of the concept of grow, in that the objects in 

a stimulus grow or increase in size from top to bottom. For Olatin, the category rule could be 

thought of as an instantiation of the concept of shrink, in that the objects in a stimulus shrink or 

decrease in size from top to bottom. However, to discover such representations subjects would 

still likely need to explicitly represent the relationships among the component parts within a 

stimulus (as just explained), as such a representation might only emerge after a subject has 

discovered how the objects are related, and thus a match advantage should still be expected. 

 
Method 

 
Participants 

One hundred ninety-six subjects participated in this study for course credit in an 

introductory psychology course at the University of Colorado Boulder. Subjects were randomly 

assigned to four conditions: contrast/classification (N = 47), match/classification (N = 48), 

contrast/inference (N = 50), and match/inference (N = 51). 

 
Stimuli, Design, and Procedure 

Thirty-six stimuli were created, 18 for each category. Subjects were provided the cover 

story that aliens from two different planets were communicating with Earth by sending coded 

messages. Subjects were told that the two types of messages differed from one another. One type 

of message was being sent by aliens from the planet Zorpes and the other was being sent by 
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aliens from the planet Olatin. Subjects were told that it was their job to figure out which type of 

message was sent by each planet. 

Directly above each stimulus on all (classification and inference) two-item trials, the 

stimulus on the left was labeled “Message A” and the stimulus on the right was labeled 

“Message B”. In the classification condition, subjects completed a two-category classification 

task. On two-item trials, subjects in the match/classification condition were told to press “2” if 

both messages were from Zorpes or “9” if both messages were from Olatin, whereas subjects in 

the contrast/classification condition were told to press “2” if the message on the left was from 

Zorpes and the message on the right was from Olatin or “9” if the message on the left was from 

Olatin and the message on the right was from Zorpes. On one-item trials, subjects in the 

classification condition were instructed to type “A” if the message was from Zorpes or “L” it was 

from Olatin; subjects in the inference condition were told to type “A” if the top choice was the 

correct response or “L” if the bottom choice was the correct response. All response prompts were 

presented above the stimuli at the center of the screen. 

For each two-item trial in the inference condition, each category label was presented 

directly above the stimulus. Two inference lures were created for each object within a given 

stimulus. On each inference trial, the inference lure was randomly selected for each stimulus. 

Each inference lure made the stimulus violate its category structure. For instance, consider the 

Zorpes stimulus in Figure 22B. The lure for this stimulus is fingernail, because Zorpes are 

defined by the 3rd object being larger than the 1st and 2nd objects and the 2nd object being larger 

than the 1st object, but a fingernail is smaller than both a book and a pocketknife. Appendix C 

shows the inference lures that were created for each object within a given stimulus. For two-item 

inference trials, subjects were presented a prompt directly above each message. For Message A, 
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subjects were instructed to press “1” if the top choice was correct or “2” if the bottom choice was 

correct; for Message B, subjects were instructed to press “9” if the top choice was correct or “0” 

if the bottom choice was correct. 

Subjects in the classification condition completed 200 trials and subjects in the inference 

condition completed 80 trials; the difference in trials between the two conditions is due to time 

constraints, as the study was designed to be completed within 30 minutes and the inference task 

takes longer for subjects to complete than the classification task. At the end of the study, subjects 

were shown two descriptions of each category rule, one of which was described unitarily and the 

other was described compositionally. Subjects were asked to select which option best 

represented how they were thinking of the two category rules by typing “A” or “B”; these two 

options corresponded to the two types of descriptions that subjects were shown. The unitary 

option read as follows: “For one type of message, the objects were organized in ascending order 

according to size, whereas for the other message the objects were organized in descending order 

according to size”. The compositional option read as follows: “For one type of message, the 3rd 

object was bigger than the 2nd object and the 2nd object was bigger than the 1st object, whereas 

for the other type of message the 1st object was bigger than the 2nd object and the 2nd object was 

bigger than the 1st object”. The option that corresponded to the two types of descriptions was 

randomized for each subject (as in Experiments 2-4). The average length of this study was 

approximately 22 minutes. The rest of the design and procedure were identical to that of 

Experiment 5. 
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Results and Discussion 

 

  

 
Figure 23. Average learning curves on one-item trials and standard errors of the mean across 

blocks of 10 (A) and 20 (B) trials for the inference and classification conditions in Experiment 6. 

A. Inference condition. Each data point represents an average over two one-item trials. B. 

Classification condition. Each data point represents an average over four one-item trials. 
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Figure 23 shows average learning curves on one-items trials for subjects in each 

condition in Experiment 6. A two-way ANOVA revealed no main-effect of comparison, F(1, 

192) = .1, p = .755, MSE  = .03, and no interaction between comparison and task type, F(1, 192) 

= .03, p = .858, MSE  = .03. Similarly, no differences in performance were found between the 

match (Mclassification = .623; Minference = .611) and contrast (Mclassification = .706; Minference = .710) 

conditions on the classification, t(93) = .420, p = .678, or inference tasks, t(99) = .42, p = .933. 

However, additional analyses do show slightly stronger, albeit non-significant, results. 

Specifically, when only the second half of the one-item trials were analyzed, there was a non-

significant trend for the main effect of comparison, F(1, 192) = 1.72, p = .191, MSE  = .054, such 

that subjects in the match condition (Mclassification = .685; Minference = .810) outperformed subjects 

in the contrast condition (Mclassification = .652; Minference = .743) on both the classification, t(93) = 

.865, p = .390, and inference task, t(99) = 1.38, p = .171. These patterns of results are in line with 

the predicted outcome of a main effect of comparison, such that subjects in the match condition 

should outperform subjects in the contrast condition on both tasks (because the stimuli were 

designed to inhibit a unitary representation from emerging). It is also important to note that the 

match advantage on the inference task (only on the 2nd half of the trials) does replicate the 

findings from Experiments 5a and 5b. Nevertheless, these findings are not statistically reliable 

and should thus be interpreted with caution. 

One possibility is that the present experiment is underpowered and thus a larger sample 

size is required to detect statistically reliable effects. Furthermore, the present study was 

designed to run for 30 minutes (although subjects were allowed more time to finish in cases 

where it was necessary) and the trials for each task were set based on this time frame. On each 

task, the second half of trials do show promising results and it is possible that these qualitative 
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differences between the match and contrast conditions might prove to be statistically reliable if 

more trials were added to the study (e.g., doubling the trial number on each task). Furthermore, 

although the stimuli were meant to inhibit unitary representations in subjects, they could be 

further altered to better accomplish this goal. As mentioned above, it was possible to represent 

the categories based on whether the sizes of the objects were ascending (for the Zorpes category) 

or descending (for the Olatin category). To further inhibit such a representation from emerging, 

the structure of the Zorpes category could be changed (e.g., the 2nd object is bigger than the 1st 

and the 1st object is bigger than the 3rd). The structure of the Olatin category could be altered in a 

similar manner (e.g., the 3rd object is bigger than the 1st and the 1st object is bigger than the 2nd 

object). Category structures such as these might be more challenging to represent unitarily than 

those used in the present study, as these structures cannot be as easily classified by a readily 

accessible concept, such ascension. Such changes might further encourage subjects to represent 

the stimuli compositionally (as no other representation might be available). As a result, a greater 

performance difference between the match and contrast condition might be observed, as within-

category comparison is posited to lead to better relational learning than between-category 

comparison (if stimuli are represented compositionally), because subjects can better align the 

corresponding elements between two items that share a common structure than when they do not. 

Nevertheless, further work will be required to better answer these questions. 

 
Representational Preference and Individual Differences 

Figure 24 shows the proportion of subjects who selected each of the category rules in 

each condition. As in Experiments 2-4, a binomial test showed that a greater proportion of 

subjects selected the category rules that were described unitarily (M = .783) than those that were 

described compositionally (M = .217), p < .0001. A logistic regression showed no main effects of 
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comparison or task type and no interaction between these two variables, all ps ≥ .19. 

Furthermore, the type of category rules that subjects selected (collapsing across comparison and 

task type) did not predict classification performance, F(1, 194) = 1.39, p = .24, MSE  = .027. 

Follow up exploratory analyses were also conducted to examine whether there were 

differences in performance within conditions based on the type of category rule that subjects 

selected. A marginal difference in performance was found between subjects in the 

match/inference condition, t(49) = 1.87, p = .068, SE = .028, d = .534, such that subjects who 

selected the category rules that were described unitarily (.746) outperformed subjects who 

selected the category rules that were described compositionally (.636). One possible explanation 

for this finding is that subjects who were representing the stimuli unitarily were better able to use 

that representation to structure or constrain the type of inference they made in the match 

condition. Another possibility is that all subjects in the match/inference condition started off with 

a compositional-based representation, but that representation evolved into one that was unitary 

for those who better learned the category structures (i.e., those with higher performance on the 

inference task). However, these explanations are merely speculative and require further follow-

up work. 
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Figure 24. Shows the proportion of subjects who selected each the of category rules in each 

condition in Experiment 6. 
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CHAPTER VIII 

Experiment 7 

Experiment 2 examined the congruence between type of hint and task. Similarly, 

Experiment 5 examined the congruence between type of comparison and type of task. The 

present study examines the congruence between type of hint and comparison. More specifically, 

this study builds on the findings from Experiment 2-6 and examines how using compositional- 

versus unitary-based hints on a classification task affects learning when subjects compare items 

from the same versus different categories. To elaborate further, Experiment 2 showed that both 

compositional- and unitary-based hints improve learning on a relational classification task. 

Similarly, extensive work has shown that comparison can aid concept acquisition (Alfieri, 

Nokes-Malach, & Schunn, 2013; Bransford & Schwartz, 1999; Gick & Holyoak, 1983; Schwartz 

& Bransford, 1998; Ward & Sweller, 1990). For these reasons, the paradigms from Experiments 

2 and 6 were partially combined. As in Experiment 6, subjects completed a two-category 

classification task, wherein subjects completed one- and two-item trials. Additionally, as in 

Experiments 2-4, subjects were shown a given hint (depending on their condition) every 3rd 

error. This study was therefore a 2 (match vs. contrast) × 2 (compositional hint vs. unitary hint) 

between-subjects experiment with performance on one-item trials as the primary dependent 

measure. 

The stimuli in this study were modeled after those used by Foster, Cañas, and Jones 

(2012), but were modified to fit within the present paradigm. A stimulus consisted of three photo 

finishes between two spaceships that were racing. There were three spaceships per stimulus and 

each raced one another once. Thus, Spaceship A raced Spaceship B and C and Spaceship B raced 

Spaceship C. Figure 25A shows an example of a trial from the contrast condition. The stimuli 
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were divided into two categories, distinguished by different relational structures. One category 

was defined by one spaceship beating the other two and thus winning each of its races; the other 

category was defined by each spaceship winning and losing one of its races. Figure 25B shows 

the different abstract instantiations of each category’s relational structure. 
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Figure 25. Shows an example trial from the contrast condition in Experiment 7 and the different 

abstract instantiations of each category structure. A. Example trial from the contrast condition in 

Experiment 7. The stimulus on the left shows a cycle category, wherein each spaceship wins and 

loses a race; the stimulus on the right denotes a hierarchy category, such that one spaceship wins 

all of its races. B. The different abstract instantiations of each category structure. Each letter 

represents a spaceship and the arrows between two spaceships indicate the outcome of the race 

between the two, such that arrows pointing away from a spaceship denote the winner of the race 

and arrows pointing to a spaceship denote the loser (e.g., A è B indicates that Spaceship A beat 

Spaceship B in a race). 

 
It is important to note that the paradigm used in this study allows for key theoretical 

predictions that follow from using unitary- versus compositional-based hints to be tested. 

Theories of attention (Kruschke, 1992; Nosofsky, 1986) predict that comparing feature-based 

stimuli from different categories should highlight their diagnostic properties. Thus, because 

unitary-based concepts are posited to be represented similarly to features (Corral et al., 2017), 

subjects who are shown a unitary hint should perform better in the contrast condition than in the 

match condition, as the contrasting pairs should highlight the unitary concept that defines each 

category. A contrasting prediction that follows directly from the findings from Experiment 2 is 

that subjects will use a unitary hint to construct a compositional-based representation, and thus 

these subjects will perform better in the match condition than in the contrast condition. A similar 

set of contrasting predictions can be made for the compositional hint. One straightforward 

prediction is that a compositional hint will encourage subjects to develop a corresponding 

representation, which should lead to better performance in the match condition than in the 

contrast condition. As described above, subjects should be able to align the corresponding 
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elements and abstract the common structure between items from the same scenario more easily 

in the match condition than in the contrast condition. Alternatively, as pointed out by Corral et 

al. (2017), representing the stimuli compositionally might produce a contrast advantage, as the 

stimuli might be partially aligned, highlighting the contrasting relations between the two 

categories. Thus, a contrast advantage might be expected for subjects who receive a 

compositional hint. 

Moving on to a different prediction, as discussed above, the compositional hint 

encourages subjects to look for the interconnections among a stimulus’s component parts. This 

process seemingly relies on bottom-up learning, which can be somewhat unconstrained, as there 

can be many potential relationships among a stimulus’ components. In contrast, a unitary hint 

can provide top-down structure to a representation, in that the concept itself can constrain the 

types of relationships that subjects consider among a stimulus’ components. This account might 

partially explain why the unitary hint leads to better learning than the compositional hint. 

However, in cases where the compositional hint is used within a relatively constrained context, it 

is possible that both types of hints can be equally effective. 

One idea that followed from Experiment 4 was that the advantage of the unitary hint over 

the compositional hint depends on whether subjects have an additional learning aid that can be 

used to scaffold learning. It was proposed that the classification condition provided such a 

constraint, which allowed subjects who received a compositional hint to build up an adequate 

representation of the category structure, which subjects were then able to transfer and apply on 

the inference task. In this case, the classification task served as a type of scaffold for relational 

inference. Experiment 4 thus showed that when such a learning aid is available, a compositional 

hint can produce similar performance to that of a unitary hint. Although this idea was not directly 
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tested in Experiment 4, it can be addressed using the present paradigm, as comparison might 

serve as a similar type of learning aid as the classification task did in Experiment 4, which might 

thus offset the benefit of the unitary hint over the compositional hint. To elaborate, comparison 

can draw subjects’ attention to the similarities and differences between each stimulus’ 

component parts, which can better highlight (than a single stimulus) their relational structures. 

Comparison can thus provide additional conceptual constraints to subjects who are using a 

compositional hint during classification. Thus, an interaction between type of hint and trial type 

might be expected, such that a unitary hint might be more beneficial to learning on one-item 

trials, which do not allow for direct comparison between two items, but not on two-item trials, in 

which subjects can engage in such comparison. 

 

Method 

 
Participants 

Two hundred thirty-six subjects participated in this study for course credit in an 

introductory psychology course at the University of Colorado Boulder. Subjects were randomly 

assigned to four conditions: unitary/contrast (N = 59), unitary/match (N = 59), 

compositional/contrast (N = 59), and compositional/match (N = 59). 

 
Stimuli and Design 

A single stimulus consisted of three side-by-side photo finishes of races, each between 

two spaceships. Each race was bounded by a white border and had a white finish line. The three 

races were presented inside of a rectangular box with a dark grey border, as shown in Figure 

25A. Each tournament consisted of three spaceships, each with a unique color (e.g., red, blue, 
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and green). The two spaceships that raced in the first race were randomly selected, as were the 

spaceships that were presented on the left (Spaceship A) and right side (Spaceship B) of each 

photo finish. The third spaceship (Spaceship C) raced in the second race against either Spaceship 

A or B, depending on the instantiation of the corresponding tournament category. There were 

two possible instantiations of the cycle category and six possible instantiations of the hierarchy 

category, as shown in Figure 25B. All losing spaceships were presented at the same height in the 

photo finishes. All winning spaceships were presented at the same height in the photo finishes. 

 
Procedure 

All stimuli were presented on an outer space-like background (as shown in Figure 25A) 

on a 16-inch LCD monitor and all responses were entered using a computer keyboard. As a 

cover story, subjects were told that they were a sports writer for the Galactic Times and were 

attending the 875th annual Space Dash. Subjects were also told that there were two types of 

tournaments, Dekal and Koplu, and it was their job to figure out the difference. Lastly, subjects 

were notified that they would be shown photo finishes of each type of tournament on two 

jumbotrons and they would need to be able to distinguish the two. 

Before the first trial, subjects were given a hint about the two tournaments, which varied 

based on the subject’s condition. All subjects were shown the hint that corresponded to their 

condition once more after the 1st trial, on every third error, and on rest breaks (as in Experiments 

2-4). Subjects who received a unitary hint were shown the following: “Remember, the two types 

of tournaments differ by whether their overall outcomes are expected or not. For each 

tournament, think about whether the outcome of its races is expected or unexpected.” Subjects 

who received the compositional hint were shown the following: “Remember, the two types of 

tournaments differ by how the ships in each tournament are related. For each tournament, think 
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about how the 1st spaceship relates to the 2nd and 3rd spaceships, as well as how the 2nd 

spaceship relates to the 3rd spaceship.” On every third error, the screen was cleared and subjects 

were presented the hint from their condition at the center of the screen and subjects were 

instructed to stop and read the hint carefully; subjects were instructed to press the spacebar when 

they were ready to continue.  

On each trial, the stimulus category was randomly selected, as was its type of 

instantiation. Additionally, on each trial, the color of each spaceship was randomly selected from 

the RGB color spectrum, subject to the constraints that (1) the stimulus was visible on the screen, 

(2) that no spaceship within a given stimulus was the same color, and (3) that the color of all 

spaceships within a stimulus were discriminable from one another, such that the difference 

between each spaceships’ summed squared RGB value was greater than 35%. 

On two-item trials, subjects in the match condition were told to press “X” if both 

tournaments were Dekal or “N” if both tournaments were Koplu; subjects in the contrast 

condition were told to press “X” if the tournament on the left was Dekal and the tournament on 

the right was Koplu or “N” if the tournament on the left was Koplu and the tournament on the 

right was Dekal. The labels “Tournament A” and “Tournament B” were displayed directly above 

the left and right stimulus, respectively. After each response on a two-item trial, subjects were 

shown whether they were correct along with the correct answer, which was displayed in large 

white letters inside of each jumbotron, directly above the photo finishes. Feedback remained on 

the screen for 2 s. On one-item trials, a single stimulus was presented at the center of the screen 

and subjects were instructed to press “D” if the tournament was Dekal or “K” if it was Koplu. 

The name of the tournament that corresponded to each category was counterbalanced across 

subjects within each condition. Subjects were not shown corrective feedback on one-item trials 
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(because these were test trials). After each response on these trials, the screen was cleared and 

subjects were shown a thank you prompt for 400 ms. Subjects completed 100 trials. 

The intertrial interval was 800 ms. Every 20 trials, subjects were given a self-paced rest 

break and were shown the proportion of correct responses they answered correctly over those 

trials, along with the number of trials they completed and the number that remained. Subjects 

were also shown and reminded to use the given hint they had been using. At the end of the study, 

subjects were shown two descriptions of the category rules (unitary and compositional, as in 

Experiments 2-4 and 6) and were asked to select the option that best corresponded to how they 

were representing the two types of tournaments. The unitary description of the tournaments read 

as follows: “One tournament was defined by each spaceship winning and losing a race, whereas 

the other tournament was defined by one spaceship never losing”. The compositional description 

read as follows: “One tournament was defined by Spaceship A beating Spaceship B but losing to 

Spaceship C, and Spaceship B beating Spaceship C, whereas the other tournament was defined 

by Spaceship A beating Spaceships B and C”. Subjects were asked to press “A” for one option or 

“B” for the other option. The option that corresponded to the two types of descriptions was 

randomized for each subject. 

 
Results and Discussion 

Seventeen subjects were excluded from the final analysis (unitary/match = 4, 

unitary/contrast = 2, compositional/match = 2, and compositional/contrast = 6) for having an 

average response time of less than 1.5 seconds on over 80% of their trials, suggesting that these 
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subjects did not put forth an honest effort in this study.12 Table 3 reports the analyses with all 

subjects included. 

Figure 26 shows average learning curves on one- and two-items trials for subjects in each 

condition in Experiment 7. A two-way ANOVA (restricting to one-item trials, as this was the 

primary dependent measure) showed a main effect of hint, F(1, 215) = 4.0, p = .047, MSE = 

.036, such that subjects who received a unitary hint (M = .82) outperformed subjects who 

received a compositional hint (M = .766). No effect of comparison was found, F(1, 215) = 1.32, 

p = .252, MSE = .036, but there was an interaction between type of hint and type of comparison, 

F(1, 215) = 6.31, p = .013, MSE = .036, indicating that the main effect of hint depends on the 

type of comparison that subjects engage in. A series of planned comparisons revealed that 

subjects in the match/compositional condition performed worse than subjects in the other three 

conditions. Specifically, subjects in the match condition performed better using a unitary hint (M 

= .834) than subjects who used a compositional hint (M = .721), t(108) = 3.11, p = .002, SE = 

.018, d = .60. Additionally, subjects in the contrast/compositional condition (M = .813) 

outperformed subjects in the match/compositional condition, t(108) = 2.46, p = .015, SE = .018, 

                                                
12 The decision to remove these subjects was based on the experimenter’s judgment that these 

reaction times were not sufficient for subjects to adequately process the outcome of two 

tournaments, which comprise six total races. This screening process was used to remove subjects 

from the dataset who either did not put forth an honest effort and/or who gave up on the task too 

early into the study to provide usable data. Nevertheless, it is important to note that the 

qualitative pattern of the results is unchanged when these subjects are not excluded and the 

results reported in this section and their interpretations remain the same, as shown in Table 3. 
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d = .473; subjects in the contrast/unitary condition also outperformed subjects in the 

match/compositional condition, t(111) = 2.31, p = .028, SE = .018, d = .439. No differences in 

performance were found between subjects in the contrast conditions who used the unitary (M = 

.804) and compositional hints (M = .813), t(107) = .262, p = .794, SE = .018. Similarly, no 

differences in performance were found for subjects who received a unitary hint between the 

match (M = .834) and contrast conditions (M = .804), t(107) = .855, p = .395, SE = .018. 

 
Table 3. Experiment 7 results with all subjects included in the dataset. 

 

Note: Conditions: C/U = Contrast/Unitary, C/C = Contrast/Compositional, M/U = 

Match/Unitary, M/C = Match/Compositional, U = Unitary Hint, C = Compositional Hint. 

 

 

 

 

 

df 

 

t-statistic 

 

p 

 

d 

 

C/U (M) 

 

C/C (M) 

 

M/U (M) 

 

M/C (M) 

          

 C/U vs. C/C 116 .36 .72 .07 .792 .778 .80 .714 

 C/U vs. M/U 116 .16 .873 .03     

 C/U vs. M/C 116 2.12 .036 .394     

 C/C vs. M/U 

C/C vs. M/C 

116 

116 

.51 

1.70 

.611 

.094 

.095 

.316 

    

 M/U vs. M/C 116 2.25 .027 .42 
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Taken together, these findings indicate that the unitary hint was just as effective when 

used with within- and between-category comparison (contrast condition), but the compositional 

hint was not, as using a compositional hint with between-category comparison is more effective 

than when it is used with within-category comparison (match condition). These results highlight 

the fact that the match/compositional condition was the least effective of the four conditions. 

Moreover, this finding goes against the prediction that a compositional hint would produce better 

learning under within- than between-category comparison. One possibility to consider is that 

within-category comparison is not particularly effective for relational concept discovery, but 

might be useful for relational concept recognition, particularly in cases where subjects already 

have a representation of the concept (e.g. recognizing that a novel concept is analogous to a 

familiar concept). Given that subjects in the present study initially did not know what defined the 

two categories, these subjects had to rely on the compositional hint in order to learn the category 

structures. However, this type of hint seems to require bottom-up learning and does not help to 

constrain (at least not initially) the type of interconnections among the ships that subjects 

consider, and thus might not be optimal to use in the match condition. 

To test for whether the effect of hint depends on trial type, difference scores were 

computed between one- and two-item trials and a two-way ANOVA was conducted on these 

scores. In line with the hypothesized prediction, a statistically reliable interaction was found 

between type of hint and trial type, F(1, 215) = 5.15, p = .024, MSE = .001, as subjects who 

received a unitary hint outperformed subjects who received a compositional hint on one-item 

trials (Munitary = .82; Mcompositional = .766), but not on two-item trials (Munitary = .813; Mcompositional = 

.79). There was no interaction between trial type and comparison nor was there a three-way 

interaction between trial type, type of hint, and type of comparison, both ps > .66. These findings 
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support the idea that followed from Experiment 4, such that in cases where subjects have an 

additional learning aid that they can use in conjunction with a compositional hint, it can offset 

the benefit of using a unitary hint. In the present case, comparison seems to have indeed filled 

the role of said learning aid and helped subjects who received a compositional hint perform as 

well as those who received a unitary hint. Nevertheless, this benefit did not transfer to one-item 

trials, suggesting that these subjects may not have fully abstracted the relational structure of the 

two categories. 
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Figure 26. Average learning curves on one- and two-item trials and standard errors of the mean 

across blocks of 20 trials for each condition in Experiment 7. A. One-item trials. Each data point 

represents an average over two one-item trials. B. Two-item trials. Each data point represents an 

average over 16 two-item trials. 

 
One possible explanation for these findings is therefore that the type of hint and 

comparison that subjects were provided in the other three conditions were more conducive to 

learning than in the match/compositional condition. It is important to note that the reason for this 

difference in learning may have varied among the three conditions that achieved better 

performance than subjects in the match/compositional condition. For instance, subjects in the 

unitary/match condition might have used the unitary hint as a top-down aid to construct a 

structured representation of the stimuli (familiarizing them with category structures), which 

might have then facilitated the alignment and abstraction of the shared structure between the two 

analogous items during within-category comparison. Thus, as in the unitary/inference condition 

in Experiment 2, these subjects might have been able to use the unitary hint to better represent 

the stimuli compositionally. In contrast, subjects in the contrast/unitary condition might have 

used the unitary hint to represent the categories unitarily. It has been proposed that such 

representations are represented similarly to features (Corral et al., 2017), and thus between-

category comparison should highlight the diagnostic differences between the two categories, 

making subjects’ classification judgments relatively straightforward. For these reasons, it is not 

surprising that subjects in these two conditions outperformed subjects in the 

match/compositional condition. 
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However, it is less clear as to why subjects in the contrast/compositional condition 

outperformed subjects in the match/compositional condition. For subjects who received a 

compositional hint, those in the match condition should have been able to align the 

corresponding elements between both scenarios and abstract their common structure, as follows 

from structure-mapping theory (Gentner, 1983). In contrast, full alignment was not possible for 

subjects in the contrast/compositional condition (because the two stimuli comprised different 

relational structures), thus these subjects should have performed worse than subjects in the 

match/compositional condition. One possibility raised by Corral et al. (2017) is that a failed 

alignment might highlight the relations that distinguish the two categories, and these relations 

can be represented as features. Consequently, subjects can then distinguish the two categories 

based on the presence or absence of those relations. For the present experiment, both categories 

consisted of the same relations, but differed in how those relations were linked. Subjects in the 

contrast condition might have therefore partially aligned the structures between the two 

categories (i.e., structural elements that were shared between the two categories), highlighting 

the differences between the two category structures and giving rise to corresponding unitary 

representations (e.g., Zorpes can be represented as an instance of shrinkage and Olatin can be 

represented as an instance of growth). This type of strategy thus allows for feature-based 

processing, which is posited to be less strenuous and more computationally efficient than using a 

compositionally structured representation (Forbus et al., 1995), which would require subjects to 

fully align the elements between the two stimuli (and represent their structure) on every trial. 

This latter process is posited to be computationally expensive and can place a large load on 

working memory (Kintsch & Bowles, 2002). Given these findings, it might therefore follow that 

discovering how the component parts of a stimulus are interrelated is easier when there are 
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structural differences between co-presented items than when those items have a common 

structure. 

The present study used a classification task, but follow-up work should seek to replicate 

and extend these findings with an inference task. Experiment 2 showed that the benefit of the 

unitary hint is much stronger on inference than on classification, and thus the benefits of using a 

unitary hint might be more pronounced on an inference task. Moreover, it is possible that the 

present findings differ depending on the type of task that subjects complete (e.g., classification 

vs. inference). For instance, although the compositional hint was as effective for learning when 

used in conjunction with between-category comparison as the unitary hint, the unitary hint might 

prove to be more advantageous on inference-based learning. Future work will seek to address 

these questions. 

 
Representational Preference and Individual Differences 

Figure 27 shows the proportion of observed responses in each condition for each type of 

category rule. Unlike in the previous studies reported above, a binomial test did not reveal any 

differences in the proportion of observed responses between the unitary and compositional 

choices, p = .685. Similarly, a logistic regression did not find any differences in the type of 

category rule that subjects selected based on the type of comparison or hint that subjects used or 

an interaction between these two variables, all ps > .191. The type of category rule that subjects 

selected also did not predict performance on the classification task, p = .640 and no differences 

were found among conditions based on the type of category rules that subjects selected, all ps > 

.100.  

Although no differences were found between the two types of category rules that subjects 

selected, these findings nevertheless help to support one of the ideas proposed in Experiment 1, 
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mainly that the type of descriptions that subjects select depend on the concept itself. In 

Experiments 1-4 and 6, subjects showed a strong preference for the descriptions of the concepts 

that conveyed unitized information. However, this preference was not found in the present study, 

which used different stimuli from those that were used in the aforementioned studies. One 

critical difference between the present stimuli and those used in the previous studies is that these 

stimuli were constructed in a way that subjects were required to examine and compare the 

relationships among each of the spaceships in each race to determine its category membership. 

Thus, each component in a stimulus (i.e., a single race) was itself made up of two components 

that shared a first-order relationship with one another (e.g., beats(spaceship1, spaceship2)). This 

additional layer of compositionality might have therefore encouraged compositional-based 

representations. Future work will need to be conducted to more directly test this idea. 

 
 

 

 
Figure 27. Shows the proportion of subjects who selected each the of category rules in each 

condition in Experiment 7. 
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CHAPTER IX 

General Discussion 

Although representation has been posited to play a critical role in relational learning 

(Chalmers et al., 1992; French, 1997, 2002; Markman, 1999; Markman & Dietrich, 2000; 

Markman & Gentner, 2000; Mitchell & Hofstadter, 1990), previous work has not directly 

examined this proposal. Nevertheless, for over 30 years empirical and theoretical work on 

relational learning has been premised on the assumption that people represent relational concepts 

compositionally (Doumas et al., 2008; Falkenhainer et al., 1989; Forbus et al., 1995; Gentner, 

1983; Gick & Holyoak, 1983; Gentner & Markman, 1997; Holyoak & Thagard, 1997; Hummel 

& Holyoak, 1997, 2003; Markman, 1999; Markman & Gentner, 2000). The present paper puts 

this long held assumption to the test and reports seven experiments that investigate relational 

concept representation and how such representations affect relational learning. In accord with the 

main hypothesis advanced in this paper, the findings from these studies suggest that relational 

concepts can be represented in two fundamentally different ways, unitarily and compositionally. 

This possibility was acknowledged in early work on analogical reasoning (Gentner, 1983, 

Footnote 4), but its implications on relational concept acquisition have not been investigated 

until now. 

 
Representational Preference 

Experiments 1-4 and 6 provide evidence that contradicts the idea that people typically 

represent relational concepts compositionally, as subjects showed a strong preference for unitary-

based descriptions of relational concepts over those that were described compositionally; no 

differences were observed in the types of category rules that subjects selected in Experiment 7. 

These studies used various types of relational concepts, which varied in structure, abstractness, 
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and familiarity. Experiment 1 presented subjects with 10 common relational nouns; Experiments 

2-4 presented subjects with descriptions of the component parts of cleaning machines, which 

were defined by the interconnections (or lack thereof) among a machine’s components; and 

Experiment 6 presented subjects with stimuli that were defined by how three arbitrarily chosen 

objects were related to one another based on size. Experiment 7 used categories that were 

defined by the relationships among three spaceships. Furthermore, these five studies used a 

variety of manipulations, including those that explicitly encouraged subjects to represent the 

stimuli compositionally (e.g., compositional hints in Experiments 2-4). Taken together, these 

studies suggest that people typically represent many relational concepts unitarily, and prefer this 

type of representation when both a unitary and compositional representation are available. 

One objection that can be raised against this interpretation is that the unitary-based 

descriptions were simply written in a manner that was more accessible to subjects than the 

compositional descriptions, and thus the results do not reflect subjects’ representational 

preference. However, Experiment 1 provides some evidence against this alternative account, as 

the types of definitions and scenarios that subjects provided predicted the type of definitions that 

they selected. Specifically, subjects who provided definitions and scenarios that referenced a 

greater number of the concepts’ structural components selected a greater proportion of 

compositional-based definitions. If subjects’ choices were based solely on differences in the 

writing quality of the two types of definitions, then their average compositionality scores should 

not have predicted the type of definitions that they selected. This relationship suggests that the 

description of the definitions and the responses that subjects generated both reflect the same 

underlying preference. Although it is unclear what this preference is, it seems reasonable to 

assume that this relationship reflects a representational preference. In sum, this finding suggests 
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that there are individual differences in how people represent relational concepts, which supports 

the primary hypothesis of this paper. 

Putting aside the definitions that subjects selected in Experiment 1, the definitions that 

subjects generated perhaps provide the purest measure of how they represent the relational nouns 

that were used in this study (to the extent that these responses can provide such information). 

The results showed that these subjects generated definitions that were mostly unitary-based, 

providing further support that such concepts might be typically represented unitarily.  

Moving on, as mentioned above, the findings from Experiment 7 showed that there were 

no differences in the type of category rules that subjects selected at the end of the study. This 

finding points to the idea that the type of representation that subjects prefer or can access for a 

relational concept can vary and might depend on the properties of the concept or stimulus. 

Experiment 1 used common relational nouns, which subjects were likely to be highly familiar 

with; Experiments 2-5 used more abstract stimuli that capitalized on subjects’ prior knowledge 

about the secondary relations among a machine’s component parts; and Experiment 6 used 

relational categories that instantiated the concepts shrinkage and growth. All of these studies 

therefore used concepts that subjects had some level of familiarity with. In such cases, subjects 

might be able to access and prefer to use unitary-based representations. In contrast, Experiment 7 

used two categories, one that instantiated the concept of a cycle and the other of a hierarchy. 

Although these concepts might be familiar or readily accessible to some subjects, they might be 

less familiar or more difficult to access for others, which might have made it less likely for these 

latter subjects to represent the categories unitarily. This possibility might explain the reason that 

there were no differences in the types of category rules that subjects selected in Experiment 7. 
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Thus, it is possible that subjects prefer compositional-based representations in cases where they 

are unfamiliar with a given concept. 

Taken as a whole, the findings reviewed in this subsection support the idea that relational 

concepts can indeed be represented in two fundamentally different ways, unitarily and 

compositionally, and suggest that people might typically represent such concepts unitarily. 

Nevertheless, it is acknowledged that the responses provided by subjects (the scenarios and 

definitions that were selected and generated by subjects in Experiment 1 and the category rules 

that were selected in Experiments 2-4, 6, and 7) might reflect something other than how they 

represent the corresponding concepts. Thus, although the present findings can be said to be fairly 

reliable and somewhat suggestive, they are far from conclusive and more work will be required 

in order to draw a more definitive conclusion. 

 
Representation and Relational Concept Learning 

Experiment 2 showed that both unitary- and compositional-based hints could be used to 

aid relational learning (as compared to control groups), otherwise no differences in performance 

would have been observed. However, the benefit of the compositional hint seems to be restricted 

to classification learning, as it was seemingly ineffective on the inference task. Moreover, the 

unitary hint led to better learning on both classification and inference than the compositional 

hint, suggesting that unitary-based representations might be more conducive to learning. 

Experiment 3 replicated these findings using a classification task and also showed that as long as 

subjects are provided a unitary hint, even if they are shown a compositional hint for most of the 

study (as subjects in the unitary/switch condition were), they will perform better than subjects 

who do not receive a unitary hint at all. The benefit of the unitary hint was also observed in 

Experiment 4, in which subjects who switched from a compositional to a unitary hint showed 
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rapid improvement in learning when they switched from classification to inference and were the 

only group of the four (compositional/switch, compositional/no-switch, and unitary/no-switch) 

that showed a statistically reliable improvement in performance when they switched over to the 

other task. 

The ineffectiveness of the compositional hint in the inference task in Experiment 2 might 

be thought of as somewhat surprising, given that relational inference learning requires subjects to 

explicitly consider how the component parts within a given stimulus are interconnected. 

However, it is possible that because compositional processing is working memory intensive 

(Forbus et al., 1995; Kintsch & Bowles, 2002), a compositional hint is not particularly useful in 

cases where people must explicitly discover novel connections among relations. In such cases, a 

unitary representation (if it is available) might be particularly helpful, as it might constrain the 

types of relations that are considered and provide structure to how such relations are 

interconnected. The unitary hint might derive its effectiveness from its ability to leverage 

subjects’ prior knowledge, which they can then apply in novel ways to discover the concepts that 

define the experiment’s categories. In contrast, a compositional hint might not provide this type 

of conceptual guidance. 

Interestingly, no differences in performance were observed among any of the groups in 

the inference task in Experiment 4. Indeed, subjects in the compositional/no-switch condition 

performed as well as subjects in the other three groups. This finding is meaningful because in 

Experiment 2 there were large differences in inference performance between subjects who 

received a unitary hint and subjects who received a compositional hint. One possible reason as to 

why a similar result was not observed in Experiment 4 is that subjects engaged in classification 

before inference, which might have helped them to learn the category structure of a Morkel (or at 
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least part of it). Consequently, subjects might have been able to use this knowledge in a top-

down manner during the inference task, offloading some of the processing strain from engaging 

in inference and representing the category compositionally. These findings suggest that once a 

conceptual aid has been acquired, a compositional representation can be just as effective as a 

unitary concept. This idea is supported by the findings in Experiment 7, which replicated and 

extended the findings from Experiment 2, showing that the a unitary hint led to better learning 

than the compositional hint on one-item trials, but not on two-item trials. Because two-item trials 

allow for comparison, they might have filled a similar role as classification did in Experiment 4, 

in that both provide a learning aid that can reduce the computational cost of using a 

compositional representation. 

This idea might also account for the reason that subjects in the match/compositional 

condition in Experiment 7 performed worse than subjects in the other three conditions, as 

structural alignment might place a large strain on working memory, and thus matching the 

corresponding elements between two analogous items (as both the compositional hint and the 

match condition seem to encourage) and abstracting their common structure might be 

particularly challenging (as discussed above). As a result, this condition might lack a buffer 

against the processing strain that comes from structural alignment and representing the categories 

compositionally, whereas in the other three conditions subjects were either provided a unitary 

hint or might have been able to learn through failures of alignment (compositional/contrast 

condition), either of which might lead to more efficient processing (as described above). 

One critique that can be raised against the hints that were used in the studies presented 

here is that the compositional hint instructed subjects to look for relations without providing 

them any information about what the correct relations were, whereas the unitary hint instructed 
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subjects to look for a particular type of global property. However, such a critique ignores that the 

unitary hint that subjects were provided was much more ambiguous than the compositional hint, 

as a machine that is built intuitively (Experiments 2-4) or an outcome of a tournament that 

follows logically (Experiment 7) is a vague and unspecified set of instructions, as that which is 

intuitive or follows logically can be highly subjective and can widely vary from one subject to 

another. Moreover, just about any stimulus or concept can be made to fit these properties 

(including non-Morkels). Thus, the constraint and structure that are provided from a unitary hint 

can be said to be implicit, in that the hint is devoid of explicit structure and there is no explicit 

information that is specific to the stimuli (because the hint can more or less apply to anything). In 

contrast, the compositional hint is much more specific and not only tells subjects to look for 

relationships, but tells them what components to look for relationships among. 

Furthermore, for both a unitary and a compositional hint, subjects are required to figure 

out how the hint applies to a stimulus. Specifically, subjects who received a unitary hint were 

required to figure out how or why a machine is intuitive or would function, which was based on 

how the machine’s component parts were interconnected. Likewise, subjects who received a 

compositional hint were required to figure out what the relationships were among the machine’s 

components. Thus, in both cases subjects were required to figure out the same information, 

which was how the machine’s component parts were interconnected. This point holds 

particularly true for the inference condition in which subjects had to explicitly infer the 

machine’s missing component, which was based on its relationship to the other two components. 

Moreover, the unitary hint was only specific to the Morkel items and produced no useful 

information about non-Morkel items, whereas the compositional hint should have been useful for 

both types of stimuli. Specifically, examining the relationships among the component parts of a 
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stimulus should have equally benefitted the learning of Morkel and non-Morkel items. 

Nevertheless, subjects who received the unitary hint outperformed subjects on non-Morkel 

inference items, despite receiving less explicitly applicable information. These findings argue 

against the idea that the unitary hint is more explicitly informative than the compositional hint, 

and seems to provide evidence to the contrary. 

 
Summary: Experiments 1-7 

Experiment 1 examined whether three different types of manipulations, which were 

intended to encourage subjects to represent relational nouns compositionally, could affect the 

types of definitions that subjects selected for each noun; these conditions were compared to a 

control condition. In line with one of the primary predictions, subjects in the control condition 

showed a strong preference for the unitary definitions. However, none of the manipulations 

seemed to affect the types of definitions that subjects selected, as subjects in these three 

conditions showed a strong preference for definitions that were described unitarily. This outcome 

goes against the prediction that the manipulations used in this study would change how subjects 

represented the relational nouns, suggesting that such changes in representation might be fairly 

challenging and likely requires stronger manipulations.   

Experiments 2-7 examined the relationship between representation and relational 

learning. Specifically, Experiment 2 tested the congruence between type of hint and task type 

and found an interaction, such that in general, a unitary hint leads to better learning than a 

compositional hint, but this benefit is particularly strong on an inference task. The finding that a 

unitary hint produced better classification learning than the compositional hint (as shown in 

Experiments 2-3) is in line with the a priori prediction that subjects should be able to recognize a 

unitary attribute directly in a stimulus, similarly to a feature, which should be less 
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computationally taxing than learning the categories based on their relational structure. However, 

the finding that the unitary hint led to better inference learning than the compositional hint was 

unexpected and contradicts the prediction that because relational inference requires 

understanding the relationships among a stimulus’s component parts, a compositional hint should 

lead to better learning than a unitary hint. It is speculated that subjects who received a unitary 

hint were able to use that hint in a top-down manner to build up a structured representation, 

which is less computationally expensive than discovering the structured concept in a bottom-up 

manner, as subjects in the compositional hint were required to do. This post hoc hypothesis led to 

specific predictions that were more directly tested in Experiment 7 (as discussed below). 

Experiment 3 had two specific predictions, such that subjects in the unitary/no-switch 

condition and subjects in the compositional/switch condition would outperform subjects in the 

compositional/no-switch condition. These predictions were premised on the idea that the unitary 

hint should lead to superior category learning, as discussed above and as shown in Experiment 2. 

Because subjects in the unitary/no-switch and the compositional/switch conditions were either 

exclusively or primarily shown the unitary hint, they were expected to outperform subjects in the 

compositional/no-switch condition, in which only a compositional hint was used. These 

predictions were indeed supported by the data, and taken with the findings from Experiment 2, 

provide further support for the idea that unitary representations lead to superior category learning 

than compositional representations. Although there were no a priori predictions about the 

unitary/switch condition, subjects in this condition marginally outperformed subjects in the 

compositional/no-switch condition, suggesting that when subjects have access to both types of 

representations they might abandon the compositional representation in favor of the unitary 

representation.   
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Additionally, based on the findings from Experiment 2, it was predicted that subjects in 

the unitary/no-switch condition would outperform subjects in the compositional/no-switch 

condition on the inference task in Experiment 4. However, this hypothesis was not supported as 

no differences in performance were found between subjects in these two conditions. It is 

speculated that the classification task that subjects engaged in before completing the inference 

task may have served as a learning aid for subjects who received the compositional hint, which 

allowed these subjects to learn the categories just as well as subjects who received the unitary 

hint. The hypothesis that using a compositional hint in conjunction with a learning aid can offset 

the benefits of presenting subjects a unitary hint was directly tested in Experiment 7. 

Experiments 5 and 6 examined the congruence between type of comparison and task 

type. As in Experiment 2, Experiments 5a and 5b revealed an interaction, this time between 

comparison and task type, such that within-category comparison led to better learning than 

between-category comparison on an inference task, whereas between-category comparison led to 

slightly better learning on a classification task. These findings are exactly in line with the 

predictions outlined in Experiment 5a. The match advantage provides support for the idea that 

inference-based learning encourages compositional representations and that subjects are able to 

fully align and abstract the common structure between two items, as predicted by structure-

mapping theory (Gentner, 1983; Lassaline, 1996; Lassaline & Murphy, 1998). The slight contrast 

advantage provides mild support for the idea that classification encourages unitary-based 

representations, which can be treated similarly to features, and the contrast highlights the 

discriminative unitary attributes between the two categories, which are less computationally 

expensive than compositional representations and structural alignment.  In sum, the interaction 

found in Experiments 5a and 5b suggest that the two types of tasks encourage different types of 
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representations, which can be leveraged differently during relational learning, depending on the 

types of comparisons that subjects engage in. 

Experiment 6 used stimuli that were designed with the intention of inhibiting a unitary 

representation from emerging, but did not yield statistically reliable results. Nevertheless, this 

study did show a trend in the direction of a match advantage (which was expected if subjects did 

not have access to a unitary representation) for both task types (and no interaction), which might 

suggest the interaction observed in Experiments 5a and 5b might itself depend on the properties 

of the stimuli. Nevertheless, the findings from Experiment 6 did not provide support for the a 

priori prediction of a match advantage on both the classification and inference tasks and further 

work will be required to better understand this inconclusive finding. 

Lastly, Experiment 7 used a classification task and examined the congruence between 

type of comparison and type of hint, and once again revealed an interaction between these two 

factors, suggesting that the type of hint that is most effective for classification learning depends 

on the type of comparison that subjects engage in (as discussed above). Although this interaction 

was expected, some of the group differences were not. The prediction that subjects who received 

a unitary hint would perform better in the contrast condition than in the match condition was not 

supported, as no differences in performance were found between these two groups. Moreover, 

evidence was found against the hypothesis that subjects who received a compositional hint 

would perform better in the match condition than in the contrast condition, as the opposite 

pattern was found, providing support for the prediction that arose from the alignable differences 

hypothesis advanced by Corral et al. (2017). Subjects in the unitary/match condition also 

outperformed subjects in the compositional/match condition. This finding is directly in line with 

the a priori prediction that was based on the findings from Experiment 2 (in which the unitary 
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hint led to better inference learning than the compositional hint), from which it would be 

expected that a unitary-based representation can be used to construct a structured concept in a 

way that is more computationally efficient than building a compositional representation in a 

bottom-up manner. Thus, subjects in the unitary/match condition should be expected to perform 

better than subjects in the compositional/match condition. Because subjects in the match 

conditions are posited to learn through structural alignment, subjects who received a unitary hint 

might have therefore been better able to align and abstract the common structure between two 

items than subjects in the compositional/match condition. Additionally, subjects in the 

unitary/contrast condition outperformed subjects in the compositional/match condition. Although 

this outcome was not explicitly predicted, it is in line with the idea that a unitary concept can be 

readily recognized from between-category comparison, which should lead to more efficient 

processing than representing a concept compositionally and engaging in structural alignment. On 

a last note, Experiment 7 also provided support for the prediction that followed directly from 

Experiment 4, which was that the benefit of the unitary hint over the compositional hint can be 

offset when the compositional hint is used in conjunction with a learning aid (e.g., comparison), 

as subjects who received a unitary hint outperformed subjects who received a compositional hint 

on one-item trials, but not two-item trials.  

In sum, although none of these studies by themselves provided conclusive evidence for a 

specific hypothesis, together they do provide converging evidence for the primary hypothesis 

advanced in this paper. Mainly, these studies support the idea that relational concepts are 

represented in two fundamentally different ways, and the type of representation that leads to 

better relational learning depends on various factors, such as task type and comparison. 

Furthermore, these reported interactions paint a complicated picture going forward, which is 
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further complicated by the findings from Experiment 1, which indicate that there are likely 

individual differences in how subjects represent relational concepts. Additionally, the results 

from Experiment 6 point to the possibility that these interactions might themselves depend on the 

type of concept that subjects are learning. Hence, the types of interventions that are most 

effective for improving relational learning might vary by instruction (e.g., type of hint), task 

type, type of comparison, concept type, and individuals. This take away is not particularly 

surprising given the complicated nature of representation and relational learning. Nevertheless, 

future work on relational learning will need to take these issues into careful consideration when 

designing experiments. 

 
Novel Concept Learning Versus Concept Recognition 

One important issue that has yet to be addressed is that there is a distinction between 

learning a novel concept and learning which concepts (among those the subject has a priori 

knowledge about) define a given category.13 For instance, it can be argued that the latter type of 

learning occurred in Experiments 2-5, because subjects presumably had pre-existing knowledge 

about the secondary relations among the Morkel machines’ component parts. A similar point can 

be made about Experiments 6 and 7, as subjects likely had knowledge about the concepts of 

                                                
13 It is important to acknowledge that the conditions under which novel concept acquisition 

truly occur are vague and underspecified, and depend on how novel learning is defined (for 

which there are many reasonable definitions). This question has long been debated in philosophy 

and has been a fairly contentious topic, as many prominent scholars (e.g., Plato, Descartes) have 

argued that novel learning never actually occurs (Gorham, 2002; Stich, 1975). These issues are 

not given further consideration here, as they are beyond the scope of the present paper.  
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shrinkage and growth (Experiment 6) and the concepts of cycle and hierarchy (Experiment 7). It 

is important to note that structure-mapping theory (Gentner, 1983) is primarily applicable to 

these latter cases, as the theory holds that the elements between the base (a concept that the 

subject already has in memory) and target (a novel concept or scenario) are aligned and their 

common structure is abstracted. This process allows for inference projection from the base to the 

target (Spellman & Holyoak, 1992, 1996), such that knowledge from a previous concept or 

scenario is applied to a novel situation. Indeed, previous work has raised this exact point and 

argued that structure-mapping theory, on its own, does not account for how relational concepts 

are initially acquired (Chalmers et al., 1992; French, 1997; Mitchell & Hofstadter, 1990). 

Moreover, even in cases where subjects are asked to learn a category that instantiates a 

concept that is known, it is erroneous to conclude that novel relational learning is not taking 

place. Extensive work has shown that people often fail to recognize when a presumably known 

relational concept is presented in a novel context (Gick & Holyoak, 1983; Gentner & 

Schumacher, 1986; Holyoak & Koh, 1987; Reed, 1989; Ross, 1987, 1989). In such cases, 

learning can only proceed by the subject discovering the concept anew and should consequently 

be driven by the same type of learning mechanisms that underlie novel relational concept 

acquisition. For these reasons, although Experiments 2-7 used concepts that subjects likely had 

some familiarity with, it is likely that many (if not most) subjects had to learn these concepts 

from scratch, as they were likely unaware (at least until after the concept was learned) that the 

concepts they were learning were instantiations of the concepts they had some prior knowledge 

about. It also seems somewhat unlikely that subjects had prior knowledge about the non-Morkel 

items in Experiments 2-5 (given that the relational rule that defined these concepts were made up 

by the researcher), which subjects were explicitly required to discover in the inference task. 
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Thus, it seems a fair to conclude that the present findings are likely applicable to both novel 

concept acquisition and learning which concepts from memory define a given category (i.e., 

analogical learning). 

 
Relational Reasoning and Concept Representation in the Brain 

Although the studies presented here provide support for the idea that relational concepts 

can indeed be represented in two fundamentally different ways, and that people might typically 

prefer to represent such concepts unitarily, there is one potential shortcoming to these studies 

that requires consideration. Although subjects were encouraged to represent the stimuli unitarily 

or compositionally, it cannot be known for certain whether subjects adopted either of these 

representations. This issue has historically plagued cognitive scientists and highlights the need 

for improved assessment on concept representation. This challenge might account for the reason 

that researchers have typically neglected the role that representation plays in relational and 

analogical learning (Chalmers et al., 1992; French, 1997; Mitchell & Hofstadter, 1990), despite 

recognizing its importance (Markman, 1999; Markman & Gentner, 2000). Although there is not 

a perfect solution to this problem, the technological advances over the last two decades in 

imaging techniques make the field of cognitive neuroscience relatively well suited for addressing 

this issue. Specifically, if relational concepts can indeed be represented unitarily and 

compositionally, one would expect these two types of representations to yield different types of 

neural patterns of activation. 

 
Neural Correlates of Relational and Analogical Reasoning 

Although not particularly plentiful, there are studies that have examined the neural 

correlates of relational and analogical reasoning (e.g., Bunge, Wendelken, Badre, & Wagner, 
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2005; Green, Fugelsang, Kraemer, Shamosh, & Dunbar, 2006; Green, Kraemer, Fugelsang, Gray 

& Dunbar, 2010; Mason & Just, 2016). A relatively consistent finding is that the prefrontal 

cortex (PFC) plays a prominent role in relational reasoning. For instance, various studies have 

shown high levels of activation in the PFC on a multitude of relational reasoning tasks (e.g., 

solving problems in mechanical physics, phase changes of matter, relationship among electrical 

circuits; Dunbar, Fugelsang, & Stein, 2007; Brault Foisy, Potvin, Riopel, & Masson, 2015; 

Masson, Potvin, Riopel, & Brault Foisy, 2014; Masson, Potvin, Riopel, Brault Foisy, & 

Lafortune, 2012). Conceptually related work has shown a strong relationship between activation 

in the PFC and relational concept acquisition (concepts about air-pressure) and scientific 

reasoning (Kwon & Lawson, 2000). Other work has compared the neural activation of experts 

and novices during various types of relational reasoning tasks and has shown that experts have 

greater activation in the PFC than novices during problem solving within the experts’ domain of 

the expertise (Amalric & Dehaene, 2016; Foisy et al., 2015; Nelson, Lizcano, Atkins, & Dunbar, 

2007). Another study found that subjects who were asked to determine whether geometry 

problems (some of which were analogous) were similar to one another had greater activation in 

the left dorsomedial PFC than when they were asked to make literal comparisons (e.g., 

comparing whether two statements were identical; Wharton et al., 2000). 

These findings are in accord with previous work, which suggests that the PFC plays an 

important role in the use of rules (Miller, Nieder, Freedman, & Wallis, 2003; Schoenbaum & 

Setlow, 2001; White & Wise, 1999) and the integration of relational information (Christoff et al., 

2001; Morrison et al., 2004), both of which are critical for relational reasoning. Integrating the 

way in which multiple relations and objects are bound together into a single representation 

arguably lies at the heart of relational reasoning (Holyoak & Thagard, 1997). Furthermore, these 
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relationships often follow a given set of rules (e.g., causal structures) or require the learner to 

apply a given set of rules to solve a particular scenario (e.g., applying a solution strategy to a 

given problem type). 

Imaging research on analogical reasoning has provided somewhat more detailed findings 

about which parts of the PFC are involved in relational reasoning. Specifically, activation in the 

left frontopolar cortex (FPC) has been shown to increase during analogical reasoning tasks in 

comparison to control conditions (working memory tasks that do not require analogical 

reasoning; Green et al., 2006). Related work has shown a positive relationship between activity 

in the lateral FPC and the number of relations that subjects are asked to process (Cho et al., 

2010). That is, as the number of relations for a given analogy between two items increases, so 

does activity in the lateral FPC. Other studies that have manipulated the number of relations for a 

given analogy have shown similar findings in respect to the increased activation in the left lateral 

FPC (Christoff et al., 2001; Kroger et al., 2002). These results have been interpreted as providing 

support for the idea that the left FPC is primarily responsible for integrating relational 

information (Ramnani & Owen, 2004). 

The left FPC has also been implicated as playing a central role in mapping and aligning 

the corresponding elements between two analogous concepts or scenarios (Green et al., 2006). 

Research has shown that when the semantic distance among the relations between two analogous 

concepts is increased (i.e., going from a within- to a between-domain analogy), so too does 

activity in the left FPC (Green et al., 2010; Green, Kraemer, Fugelsang, Gray & Dunbar, 2012; 

Krawczyk, McClelland, Donovan, Maguire, & Tillman, 2010; Wendelken, Nakhabenko, 

Donohue, Carter, & Bunge, 2008). Much of this work has also shown that activation in the left 
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FPC is stronger in the anterior regions when the number of relations or semantic distance 

between analogous concepts increases. 

Taken together, these findings suggest that the left FPC plays a prominent role in 

representing relational concepts compositionally, as activation in this region seems to increase 

with the demand for representing the structural components of a given relational concept. This 

idea is further supported by findings which have shown that there is an increase in the activation 

of the left FPC in cases where subjects are asked to remember specific components about an 

episodic event (Dobbins, Foley, Schacter, & Wagner, 2002; Nolde, Johnson, & D’Esposito, 

1998; Ranganath, Johnson, & D’Esposito, 2000). This finding is particularly relevant because 

episodic memories are structured, such that each object within a given episode is bound to a 

specific role, which they fill at a specific point within the given episode. Thus, in cases where a 

subject represents a given stimulus compositionally, activation in the left FPC should be 

expected to increase in comparison to cases where the subject represents the concept unitarily. 

Furthermore, the FPC has also been found to play an important role in inference-based reasoning 

and in cases where subjects are required to generate information (Christoff & Gabrieli, 2002). 

This finding suggests that subjects who are asked to engage in inference-based reasoning or who 

use a unitary hint to generate the structure of a stimulus (as it was proposed that subjects in 

Experiments 2 and 7 might have done) might be expected to have greater activation in the FPC 

than subjects who are either engaged in classification or who do not use this strategy. 

This review raises the question of which brain regions are involved when a relational 

concept is represented unitarily. An answer to this question might be found from a study 

conducted Bunge et al. (2005). On some trials, subjects were asked to determine whether two 

word pairs (e.g., bouquet/flower and chain/link) were analogous or whether two words were 
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related (rain and draught). As in the findings reviewed above, Bunge et al. report an increase in 

activation in the left FPC on trials where subjects were required to make an analogy judgment, 

suggesting that subjects may have been representing such stimuli compositionally. In contrast, on 

trials in which subjects made similarity judgments between two words, there was an increase in 

activation in the anterior left inferior prefrontal cortex (aLIPC). For these trials, subjects could 

simply retrieve a shared relation between the two words. For instance, if a subject is asked to 

make a relatedness judgment between chain and link, a correct judgment simply requires the 

subject to retrieve the contain relation (because a chain contains a link). Related work has shown 

the aLIPC is important in the retrieval of semantic knowledge, including relations (Jackson, 

Hoffman, Pobric, & Lambon Ralph, 2015; Noonan, Jefferies, Visser, & Lambon Ralph, 2013; 

Thompson-Schill, D’Esposito, Aguirre, & Farah, 1997; Wagner, Maril, Bjork, & Schacter, 

2001). Bunge et al. propose that the aLIPC plays a critical role in retrieving common relations 

between analogous concepts. Because relations might be represented unitarily, similarly to a 

feature (Corral et al., 2017), representing a relational concept unitarily might produce greater 

levels of activation in the aLIPC than when the concept is represented compositionally. 

It is important to point out that the analogy task used by Bunge et al. (2005) could 

potentially be completed without structural alignment, such that a subject could simply recognize 

that the word pairs share the same relation (e.g., bouquet contains flowers and chain contains 

link). Solving the task in this manner would require the retrieval of common relations and thus 

should produce an increase in the activation of the aLIPC. Although Bunge et al. report an 

increase in activation in the left FPC during their analogical reasoning task, this increase might 

simply reflect that there were more components to process in the analogy task (four words) than 

in the word similarity task (two words), as activation in this region seems to increase as the 
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number of components that must be processed for a given task increases. It is therefore not clear 

whether the increase in activation in the left FPC during the analogy task reported by Bunge et 

al. were due to subjects engaging in structural alignment (as proposed by Bunge et al.) or due to 

a general increase in the processing of a stimulus’ component parts. Imaging work on analogical 

and relational reasoning has not considered the possibility that many of these tasks can be 

completed using unitary-based representations, as this work has been primarily premised on a 

structure-mapping account of analogical reasoning (Gentner, 1983). Further work is therefore 

necessary to provide further clarity on this issue. 

This section reviews imaging research on relational and analogical reasoning. From this 

review there are specific predictions that follow about which brain regions are likely to show 

greater activation if a subject represents a given concept unitarily or compositionally. Although 

these predictions have yet to be directly tested, imaging research has the potential to address 

what is possibly the most daunting challenge in research on concept representation, which 

involves accurately assessing how subjects represent a given concept. To briefly summarize the 

findings reviewed in this section, a strong relationship has been found between activity in the left 

FPC and analogical reasoning, as well as relational retrieval and activity in the aLIPC. These 

findings lead to two predictions. One is that there should be a greater amount of activation in the 

left FPC when subjects represent a given concept compositionally. The other prediction is that 

there should be stronger activation in the aLIPC when they represent a concept unitarily. It is 

important to note that these are the exact pattern of results that were reported by Bunge et al. 

(2005) in the analogy and semantic similarity conditions, respectively, the former of which might 

have been conducive to representing the stimuli compositionally and the latter to representing the 

stimuli unitarily. Nevertheless, directly testing these predictions in an imaging study is perhaps a 
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necessary step in the path to providing converging evidence for the primary idea advanced in this 

paper, which is that relational concepts can be represented in two fundamentally different ways. 
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CHAPTER X 

Conclusion 

This paper reports seven studies that provide support for the idea that relational concepts 

can be represented in two different ways, compositionally and unitarily, and moreover that 

various factors might affect how a concept is learned and represented. Although the findings 

reported above are suggestive, the results are far from conclusive (and can be interpreted in 

numerous ways). An extensive amount of work will therefore be required to answer the 

questions there were raised here. Nevertheless, this research has laid the groundwork for such 

follow-up work to be conducted. 

Furthermore, the findings reported here (and any subsequent related research) seem 

particularly applicable to education and instruction, as they might provide insight into how 

different types of descriptions for a given relational concept can affect students’ representations, 

as well as how such representations affect learning. Indeed, students are often required to learn 

various types of structured concepts, and must often engage in both classification and inference. 

For instance, in mathematics, students must recognize various instantiations of a given problem 

type, a process that relies on classification, and must also make inferences about how to apply a 

given solution. These findings thus hold the potential to improve how relational concepts are 

taught in the classroom. 

Furthermore, the present findings have theoretical implications for relational concept 

learning and representation, and have the potential to affect current theories of analogical 

reasoning and learning. In particular, research within the theoretical framework of structure 

mapping (Doumas et al., 2008; Hummel & Holyoak, 2003) has placed a heavy emphasis on 

alignment processes operating on compositional representations, but our findings suggest that 
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subjects more naturally represent such concepts unitarily, and that such representations produce a 

greater and more robust benefit to learning. During comparison of two scenarios, if the critical 

information can be represented unitarily, then there is no need for structural alignment, because 

the two can be recognized through the same sort of processing that is possible with feature-based 

representations, that is, flat (setwise) comparison to identify which properties they have in 

common. To be clear, this proposal is not intended to argue against the idea that structural 

alignment of compositional representations plays a prominent role in the more impressive feats 

of human reasoning (e.g., creativity or scientific discovery), but rather to point out that in more 

mundane cases, simpler processes and representations may be involved. Nevertheless, further 

work is necessary to better understand which conditions facilitate unitary and compositional 

representations. 
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Appendix A: Experiment 1 Scenarios Used in Mapping Condition 
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Appendix B: Experiments 2-4 Stimuli 

 

Morkels Non-Morkels 

 
1. Operates on land 

Works to gather harmful solids  
Has a shovel 
 

2. Operates on the surface of the water 
Works to clean spilled oil 
Has a spongy material 
 

3. Operates in the stratosphere 
Works to collect dangerous gaseous ions 
Has an electrostatic filter 
 

4. Operates in highway tunnels 
Works to remove carbon dioxide 
Has a large intake tank 
 

5. Operates in swamps  
Works to remove malaria-ridden 
mosquitos 
Has a finely woven net 
 

6. Operates in warzones 
Works to gather shards of metal 
Has a large magnet 
 

7. Operates in parks  
Works to gather discarded paper 
Has a metal pole with a sharpened end 
 

8. Operates on the seafloor 
Works to remove lost fishing nets 
Has a hook 
 

9. Operates on the beach 
Works to remove broken glass 
Has a sifter 
 

10. Operates on wood floors 
Works to remove stains 
Has absorbent cloth	  

 
1. Operates on land 

Works to clean spilled oil 
Has an electrostatic filter 
 

2. Operates on the surface of the water 
Works to collect dangerous gaseous ions 
Has a shovel 
 

3. Operates in the stratosphere 
Works to gather harmful solids 
Has a spongy material 
 

4. Operates in highway tunnels 
Works to remove lost fishing nets 
Has a sifter 
 

5. Operates in swamps 
Works to remove broken glass 
Has a metal pole with sharpened end 
 

6. Operates in warzones 
Works to gather discarded paper 
Has a finely woven net 
 

7. Operates in parks 
Works to gather shards of metal 
Has a hook 
 

8. Operates on the seafloor 
Works to remove malaria-ridden 
mosquitoes 
Has a large intake fan 
 

9. Operates on the beach 
Works to remove carbon dioxide 
Has a large magnet 
 

10. Operates on wood floors 
Works to collect ocean sediments 
Has an intake port 
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Morkels cont’d Non-Morkels cont’d 

 
11. Operates on solid surfaces 

Works to remove debris 
Has a dense set of bristles 
 

12. Operates on glass  
Works to remove liquids 
Has a rubber edge 
	  

13. Operates on thick woven fabric 
Works to collect small particles 
Has an intake port 
 

14. Operates in harbors  
Works to collect ocean sediments 
Has a large shovel 
 

15. Operates in the jungle  
Works to remove brush 
Has sharp blades 
 

16. Operates in farmland 
Works to remove rocks 
Has metal teeth and a sieve 
 

17. Operates on fine wood 
Works to smooth rough spots 
Has a rough metal surface 
 

18. Operates in gardens 
Works to remove leaves 
Has a nozzle and a motor 

 
11. Operates on solid surfaces 

Works to remove large rocks 
Has absorbent cloth 
 

12. Operates on glass 
Works to collect small particles 
Has a dense set of bristles 
 

13. Operates on thick woven fabric 
Works to remove brush 
Has a large shovel 
 

14. Operates in harbors 
Works to remove leaves 
Has metal teeth and a sieve 
 

15. Operates in the jungle 
Works to remove debris 
Has a rubber edge 
 

16. Operates in farmland 
Works to smooth rough spots 
Has a rough metal surface 
 

17. Operates on fine wood 
Works to remove liquids 
Has a nozzle and a motor 
 

18. Operates in gardens 
Works to remove stains 
Has sharp blades 

 
Note: Morkels were coherent items and non-Morkels were incoherent items. The first three items 

in each category were taken from Rehder and Ross (2001), the next six items were taken from 

Higgins (2012), and the remaining items were created by the present authors. 
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Appendix C: Experiment 6 Stimuli 

 

Zorpes Inference Lure 1 Inference Lure 2 

 
 
1. Dog 

Car 
Asteroid 
  

2. Pocket Knife 
Book  
Television 
 

3. Desk Lamp 
Bicycle 
Bear 
 

4. Apple 
Cat 
Boat 
 

5. Remote Control 
Laptop 
Desk 
 

6. Pencil 
Shoe  
Tiger 
 

7. Wallet 
Coffee Table  
Lion 
 

8. Banana 
A Volleyball 
Penguin 
 

9. Ring 
Mango 
Dragon 
 

10. Nail Polish Container 
Glasses 
Hat 

 
1. Train 

Hamster 
Chocolate Bar 
 

2. Door 
Mosquito 
Fingernail 
 

3. Hippopotamus 
Stapler 
Paperclip 
 

4. Dolphin 
Worm 
Dollar Bill 
 

5. Sofa 
Safety Pin 
Wasp 
 

6. Bookshelf 
Electron 
Ladybug 

 
7. Buffalo 

Key 
Glove 

 
8. Wrecking Ball 

Bacteria  
A Baseball 
 

9. Watermelon 
Atoms  
Coin 
 

10. Window  
DNA Molecules 
Flash Drive 

 

 
1. Subway Train 

Mouse 
Peanut 
 

2. Apartment 
Caterpillar 
Eyelash 
 

3. Great White Shark 
Sunglasses 
Light Bulb 
 

4. Panda 
Moth 
Goldfish 
 

5. Gorilla  
Credit Card 
Grasshopper 
 

6. Skateboard 
Beetle 
AA Batteries 
 

7. Mattress 
Cricket 
Backpack 
 

8. Missile 
Tooth  
Grain of Sand 
 

9. Refrigerator 
Pea 
Thumb 
 

10. Lawn Mower 
Flea 
Chap Stick 
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Zorpes cont’d Inference Lure 1 cont’d Inference Lure 2 cont’d 

 
11. Salt Shaker 

Hammer 
Whale 
 

12. Teddy Bear 
Kangaroo 
Building 
 

13. Chair 
Truck 
Saturn 
 

14. Kitchen Trey 
Elephant 
Mountain 
 

15. Eraser 
Hamburger 
Tree 
 

16. Hippopotamus 
Cruise Ship 
Jupiter 
 

17. Crocodile 
Tyrannosaurus Rex Statue 
of Liberty 
 

18. Rhinoceros 
Jumbo Jet 
The Great Pyramids 

 

 
11. Stove 

Sewing Pin 
Spoon 
 

12. Tank 
Lipstick 
Pie 
 

13. Tugboat 
Plate 
Manikin 
 

14. Moon 
Keychain 
Deer 
 

15. Car Battery 
Microbe 
Ant 
 

16. Sun 
Garden Snake 
Paddle 
 

17. Venus 
Goose 
Cabinet Drawer 
 

18. China 
Windshield 
Belt 
 

 
11. Shovel 

Grain of Salt 
Snail 
 

12. Submarine 
Nail 
Pizza Slice 
 

13. Parking Lot 
Baseball Mitt 
Typewriter 
 

14. Sequoya Tree 
Lighter 
Carrot 
 

15. Swimming Pool 
Sesame Seed 
Slug 
 

16. Mount Fuji 
Possum 
Purse 
 

17. Skyscraper 
Skunk 
Piano 
 

18. Empire State Building 
Fox 
Pillow 
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Olatin Inference Lure 1 Inference Lure 2 

 
 

1. Comet 
Volkswagen Beetle 
Wolf 
 

2. Movie Theater 
Raft 
Bucket 
 

3. Garage 
Motorcycle 
Butterfly 
 

4. Lighthouse 
Octopus 
Almonds 
 

5. Jaguar 
Ironing Board 
Nail Clipper 
 

6. Porch Deck 
Bed 
Steering Wheel 
 

7. Panther 
Vacuum Cleaner 
Hair Comb 
 

8. Mars 
Waterslide 
Bench 
 

9. Blimp 
Puma 
Magnifying Glass 
 

10. Alligator 
Kitchen Sink 
Fish Bowl 
 

 
1. Bowling Ball 

Solar System 
Helicopter 
 

2. A Crown 
Grand Canyon 
Eifel Tower 
 

3. Hotdog 
Fort Knox 
Spaceship 
 

4. Rabbit 
Black Hole 
Battleship 
 

5. Grocery Bag 
Mall 
Palm Tree 
 

6. Dustpan 
Museum 
Arena 
 

7. Headphones 
Amusement Park 
Sears Tower 
 

8. Ostrich 
Galaxy 
Stadium 
 

9. Cereal Bowl 
Mount Rushmore 
Hut 
 

10. Chopsticks 
Triceratops 
Military Base 

 

 
1. Bee 

Neptune 
Aircraft Carrier 
 

2. Rooster 
National Park 
Bulldozer 

 
3. Trout 

Rainforest 
Cement Mixer 

 
4. Squirrel 

Pluto 
Waterfall 

 
5. Toothbrush 

Lincoln Memorial 
Ice Rink 

 
6. Violin 

Gymnasium 
Water Park 

 
7. Microscope 

Tow Truck 
Palace 

 
8. Strawberry 

Universe 
Mount Everest 

 
9. Chestnut 

Niagara Falls 
Hotel 

 
10. Chipmunk 

Manmade Dam 
Pine Tree 
 

 



 

 

185 

Olatin cont’d Inference Lure 1 cont’d Inference Lure 2 cont’d 

 
11. Saber-Toothed Tiger 

Sword 
Doorknob 

 
12. Ferris Wheel 

Washing Machine 
Coconut 

 
13. Oven 

DVD Player 
Soda Can 

 
14. Horse 

Eagle 
Frisbee 

 
15. Pool Table 

Binoculars 
Bar of Soap 

 
16. Recliner 

Baseball Bat 
Bowling Pin 

 
17. Bull 

Microwave 
Pineapple 

 
18. Cannon 

Duck  
Pepper Spray 

 

 
11. Tennis Ball 

Pacific Ocean 
Supermarket 
 

12. Slice of Bread 
Swamp 
Football Field 
 

13. Bottle Cap 
Bar 
Filing Cabinet 
 

14. Parrot 
Farm 
School Bus 
 

15. Ice-Cream Cone 
Ambulance 
Cougar 
 

16. Crayon 
Iceberg 
Jeep 
 

17. Golf Ball 
Garbage Truck 
Polar Bear 
 

18. Egg 
Airport 
Sailboat 

 

 
11. Cherry 

Coliseum 
Casino 
 

12. Camera 
Constellation 
Oil Rig 
 

13. Laser Pointer 
Cabin 
Catapult 
 

14. Contact Lens 
Concert Hall 
Capitol Building 
 

15. Pebble 
Bowling Alley 
Satellite 
 

16. Toothpick 
Hospital 
Crane 
 

17. Test Tube 
Mansion 
Forklift 
 

18. Scissors 
Fire Truck 
Space Station 

 

 
Note: Each lure pertains to the stimulus’ component on the corresponding row. 

 


