
This is a repository copy of RoboWorld : Verification of Robotic Systems with Environment
in the Loop.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207085/

Version: Published Version

Article:

Baxter, James, Carvalho, Gustavo, Cavalcanti, Ana orcid.org/0000-0002-0831-1976 et al.
(1 more author) (2023) RoboWorld : Verification of Robotic Systems with Environment in
the Loop. Formal Aspects of Computing. 26. ISSN 1433-299X

https://doi.org/10.1145/3625563

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

26

RoboWorld: Verification of Robotic Systems with

Environment in the Loop

JAMES BAXTER, University of York, UK

GUSTAVO CARVALHO, Universidade Federal de Pernambuco, Brazil

ANA CAVALCANTI, University of York, UK

FRANCISCO RODRIGUES JÚNIOR, Universidade Federal de Pernambuco, Brazil

A robot affects and is affected by its environment, so that typically its behaviour depends on properties of that
environment. For verification, we need to formalise those properties. Modelling the environment is very chal-
lenging, if not impossible, but we can capture assumptions. Here, we present RoboWorld, a domain-specific
controlled natural language with a process algebraic semantics that can be used to define (a) operational
requirements, and (b) environment interactions of a robot. RoboWorld is part of the RoboStar framework
for verification of robotic systems. In this article, we define RoboWorld’s syntax and hybrid semantics, and
illustrate its use for capturing operational requirements, for automatic test generation, and for proof. We also
present a tool that supports the writing of RoboWorld documents. Since RoboWorld is a controlled natural
language, it complements the other RoboStar notations in being accessible to roboticists, while at the same
time benefitting from a formal semantics to support rigorous verification (via testing and proof).

CCS Concepts: • Software and its engineering → Formal language definitions; • Computer systems

organization → Robotics; • Theory of computation→ Semantics and reasoning;

Additional KeyWords and Phrases: Model-driven engineering, domain-specific languages, controlled natural
languages, hybrid systems, process algebra

ACM Reference format:

James Baxter, Gustavo Carvalho, Ana Cavalcanti, and Francisco Rodrigues Júnior. 2023. RoboWorld: Verifica-
tion of Robotic Systems with Environment in the Loop. Form. Asp. Comput. 35, 4, Article 26 (November 2023),
46 pages.
https://doi.org/10.1145/3625563

1 INTRODUCTION

Recent advances in Engineering and Artificial Intelligence promise a transformative impact on our
society, as robots become ubiquitous in homes, offices, and public spaces, to facilitate and enrich
our lives. Development of software for robots operating in these complex environments, however,

The work reported here is funded by the Royal Academy of Engineering grant CiET1718/45, UK EPSRC grants

EP/M025756/1 and EP/R025479/1, and UKRI TAS Verifiability Node EP/V026801/1. The work is also partially supported

by CNPq grant 465614/2014-0, CAPES grant 88887.136410/2017-00, and FACEPE grants APQ-0399-1.03/17 and PRONEX

APQ/0388-1.03/14.

Authors’ addresses: J. Baxter and A. Cavalcanti, Department of Computer Science, University of York, Deramore Lane,

York, YO10 5GH, United Kingdom; e-mails: James.Baxter@york.ac.uk, Ana.Cavalcanti@york.ac.uk; G. Carvalho and F. Ro-

drigues Jünior, Centro de Informática, Universidade Federal de Pernambuco, Av. Jornalista Aníbal Fernandes, s/n - Cidade

Universitária, Recife - PE, 50740-560, Brazil; e-mails: {ghpc, fwrj}@cin.ufpe.br.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0934-5043/2023/11-ART26 $15.00

https://doi.org/10.1145/3625563

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:2 J. Baxter et al.

is a challenge. Roboticists often have in mind restrictions that must be satisfied for their robots to
operate well: they make assumptions about temperature, wind, layout of rooms, and weight of the
robot, for example. Rarely, however, these restrictions are recorded precisely or at all. The usual
code-centric approach adopted in software development for robotics often leads to tests that take
these restrictions into account, but no record beyond the test base, if any, is normally produced.
Model-driven, as opposed to code-centric, software engineering has been advocated for robot-

ics [13]. Many domain-specific languages support modelling and automated generation of code
for simulation and deployment. A few have a formal semantics. The RoboStar framework [10] is
distinctive in its design and simulation notations with semantics that can be automatically gener-
ated.1 The semantics is provided using CyPhyCircus, a state-rich and hybrid version of a process
algebra for refinement [20, 37] cast in the Unifying Theories of Programming (UTP) of Hoare
and He [25], and formalised in the theorem prover Isabelle [19]. Based on such semantics, RoboStar
can support automatic generation also of test suites and verification by proof.
In using models in verification (testing and proof), however, we often need to have a record

of assumptions about the environment. For example, tests generated from a model that does not
cater for environment assumptionsmay characterise invalid scenarios and be, therefore, useless. In
addition, properties of the system may depend fundamentally on assumptions of the environment.
For instance, a robot that starts too close to an obstacle may not be able to avoid it in time. An
account of operational requirements is, therefore, an important design artefact.
It is possible to define a single model covering the design of the control software and environ-

ment assumptions. With a separate model of the control software, however, we can give a plat-
form and environment-independent account of the design, encouraging reuse across applications.
Moreover, simpler discrete-time verification techniques are enough to reason about software mod-
els, but not adequate for a system model that caters for the continuous behaviour of the platform
and environment. In our approach, we define a design model in terms of a set of services that need
to be provided by a platform; no assumption is made in the software model about the nature or
the realisation of these services. In an additional document, we capture separately and clearly the
assumptions that need to be made at the system, not the software, level.
In this article, we present and formalise RoboWorld, a controlled natural language (CNL) for

writing these additional documents that describe operational requirements of a robotic system for
use in simulation, test generation, and proof. The RoboWorld requirements cover aspects of the
arena (that is, area) in which the robot is expected to work and of the robotic platform. As a CNL,
RoboWorld provides an accessible notation to describe operational requirements, and communi-
cate them to stakeholders who must ensure they are met (such as end users). On the other hand,
RoboWorld’s formal semantics enables its use in rigorous verification techniques, with automatic
generation insulating roboticists from the need to deal with the mathematical notations used to
describe the semantics when generating tests or even carrying out proofs.
In [11], we have provided an overview of the RoboWorld syntax, semantics, and tool support

using a couple of examples. As a general discussion of RoboWorld, [11] does not present the meta-
model of RoboWorld, nor details of its realisation as a natural language. The RoboWorld seman-
tics and our approach to its generation via an intermediate representation are also not addressed.
Additionally, here, we consider a more interesting and challenging example (a firefighting UAV).
Therefore, here we provide a comprehensive definition of RoboWorld: metamodel, grammar, well-
formedness conditions, formal semantics, a tool, and an application in automated testing.
Defining a (constructive) model of all but the simplest of environments of a service robot is not

feasible due to their highly complex physical properties, and their often dynamic and unpredictable

1robostar.cs.york.ac.uk

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:3

nature. Simulations, for example, do provide constructive accounts of an environment, but these
are specific scenarios, often simplified. Simulations do not reflect the overall operational require-
ments of a robotic system precisely; this is not the goal of simulations. On the other hand, it is feasi-
ble to record assumptions about the environment [7]. RoboWorld supports this practice; the formal
semantics of a RoboWorld document can be regarded as a precise model of the environment, but it
is highly nondeterministic. Such a non-determinism implicitly describes all valid environments of
a robotic system as all those that satisfy the assumptions described in the RoboWorld document.
Natural language processing techniques can be statistical or symbolic [41]. Statistical ap-

proaches assume that a large dataset of (raw) text is available, from which techniques, such as,
machine learning, extract processing rules by creating models. Differently, symbolic approaches
rely on grammars to define rules for analysing and producing valid text; these rules define a CNL.
While statistical approaches are more general, since they can process unrestricted text, inferring
the correct interpretation of the text is a challenge due to the huge variety of possible writing
styles. The control imposed by symbolic approaches can make this inference process easier, since
we restrict ourselves to a controlled subset of styles. The challenge is to achieve a compromise
between naturalness, expressiveness, and control.
RoboWorld is devised as a CNL for the following two reasons. First, as mentioned, operational

requirements of robotic systems are frequently left implicit and, thus, we do not have large datasets
to develop statistical models. Second, the structure imposed by a symbolic approach enables us
toautomatically provide a formal semantics for such requirements. Nevertheless, RoboWorld is a
natural, expressive and extensible language, even if controlled.
Tool support for RoboWorld is provided by RoboTool.2 It includes facilities for (graphical) mod-

elling, validation, and automatic generation of mathematical models for existing RoboStar nota-
tions and now also RoboWorld. It also automates test and simulation generation. Proof automation
relies on integration with model checkers [24, 27] and Isabelle/UTP [19].

In terms of the semantics, we define an intermediate representation that ensures changes to
the concrete syntax do not directly affect the definition of the semantics. The intermediate rep-
resentation provides a syntax-independent basis to define the semantics and implement tools for
RoboWorld. A set of rules defines how an intermediate representation is generated for a RoboWorld
document. A second set of rules defines a mathematical semantics for RoboWorld documents by
specifying functions that map the intermediate representation to CyPhyCircus processes.
In the next section, we give a detailed account of related work, covering CNLs used in robotics or

with a formal semantics. With that we emphasise the unique features of RoboWorld. Background
material is presented in Section 3, where we cover RoboStar, CyPhyCircus, and the Grammati-

cal Framework (GF) used to define the concrete syntax of RoboWorld. Section 4 specifies the
structure of RoboWorld documents: their abstract syntax via a metamodel, with associated well-
formedness conditions. The concrete grammar is defined in Section 5. In Section 6, we describe
our intermediate representation for RoboWorld documents. Section 7 formalises the semantics.
RoboTool support for RoboWorld is the object of Section 8. Applications to testing and proof are
the topic of Section 9. We conclude and discuss future work in Section 10.

2 RELATEDWORK

Here, we first position our work with respect to the literature on approaches to consider the
environment when developing software systems in general, including control software for robotic
systems (Section 2.1). Afterwards, we discuss the adoption of CNLs, especially when used in
robotics or with a formal semantics (Section 2.2).

2robostar.cs.york.ac.uk/robotool/

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:4 J. Baxter et al.

2.1 Software System Environments

Taking a view of the environment as the context in which a software operates, we can say that
a software system always affects and is affected by the environment. Considering properties of
that deployment environment is, therefore, needed during specification, design, development, and
verification. For example, in [48], the authors describe an approach for generating environments
of Java program fragments from formally specified assumptions and abstractions. Here, the envi-
ronment is a group of classes. When specifying concurrent systems using a process algebra, such
as CSP for example, as mentioned in the very beginning (Chapter 1) of [43], we set up and rea-
son about processes that interact with their environments. Those environments are mechanisms
that can be (potentially) represented by other processes. Here, since our focus is on robotics, we
consider the literature related to the physical environments of cyber-physical systems.
In [22], the authors argue that the modelling activity in the development of software systems

should formalise as much as possible of the environment, since analysing the correctness of the
system relies on an accurate model of the environment, of the software, and of their interaction.
RT-Tester is a tool for automatic test generation, execution, and real-time evaluation [39] that
follows this point of view. The expected software behaviour is modelled as state machines, which
are also used to describe the system environment. When generating test cases, for instance, the
models of the software and the environment are considered together to focus on valid scenarios,
where realistic operational requirements are assumed.

In [28], a timed input/output conformance relation (s rtiocoe t) is proposed to relate correct
implementations s of a specification t, under the environmental constraints expressed by e. The
models of s and t, and even of the environment assumptions e, are all given as timed automata.

Closer to our work is that in [44] by Santos, Carvalho, and Sampaio, where environment restric-
tions are specified according to a CNL. That work is for cyber-physical systems in general, and the
language is inspired by concepts of linear temporal logic (LTL). The semantics is given in CSP
and used as part of a test-generation technique.
None of the above notations is tailored for robotics. In contrast, RoboWorld includes domain-

specific concepts such as a mobile robotic platform, including its services and their definitions, and
arenas. In this way, RoboWorld facilitates the specification, since concepts of the robotics domain
have a pre-defined semantics, which does not need to be specified for each application.
When modelling robotic systems, some works consider the environment to avoid unrealistic

designs. For instance, in [16, 40], implicit assumptions of the environment are to some extent
captured by 3D and 2D grid maps. They describe a specific scenario where the designed robots are
assumed to work, as opposed to general assumptions that might identify a collection of maps.
In [3], a UML profile is used for designing human-robot collaborative systems. This profile has

specific stereotypes to model entities from a scenario that interact with the robot in class and
component diagrams. The RoboWorld notion of arena corresponds to that of a layout in [3], but
layouts are discrete spaces divided in sections that can be obstructed. In a component diagram,
each section is a component, with connections representing adjacency. The component diagram
is, therefore, a sort of map. Mathematical models for verification automatically generated use a
temporal logic with a notion of discrete time. Differently, RoboWorld has a hybrid semantics which
accounts for the continuous nature of space and movement, for example.
In [33], the MontiArcAutomaton language [42] is used for modelling components of robotic

systems. In this approach, environment assumptions are specified as LTL properties, using As-
pectLTL [34], a language whose syntax is similar to that of the SMV model checker. In RoboWorld,
at the user discretion, properties of the environment are described in a more natural way, consid-
ering a CNL, or referring to diagrams. Therefore, RoboWorld distinguishes itself by its flexibility
on specifying general assumptions of the environments where a robot can work.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:5

In [29], the authors acknowledge the importance of modelling the environment of robotic appli-
cations; this is done using Stochastic Hybrid Automata (SHA). Formal analyses are performed
using statistical model checking (SMC) and the UPPAALmodel checker [6] to assess how likely
the missions of the robotic system are to end in success.
Explicitly employing semi-formal or formal notations to describe the environment may hinder

practical application, since the stakeholders typically aware of environment assumptions are not
familiar with such notations. So, considering the use of (controlled) natural language to hide formal
models is a promising alternative. This is addressed in the next section.

2.2 Controlled Natural Languages

As discussed in Section 1, techniques designed to process natural language specifications are
commonly based on statistical approaches (that is, model-driven artificial intelligence techniques),
where it is assumed that a large dataset of raw text is available to extract processing rules.
This is not the reality of the development of robotic systems, where operational requirements
are frequently left implicit. Employing statistical approaches trained with text not related to
the robotics field would impose challenges to the automatic generation of a formal semantics.
Therefore, we devise RoboWorld as a natural language, controlled, yet flexible, whose underlying
structure favours automation. In the following paragraphs, we comment on other CNLs, mostly
with formal semantics.

In [38], use cases are used as a source for the generation of a CSP specification. The devised CNL
is tailored for mobile applications. In [47], PENG is proposed as a restricted computer-processable
CNL for writing unambiguous and precise requirements. The specifications written in PENG can
be translated into first-order predicate logic. In [18], requirements are written in a limited stan-
dardised format according to a strict if-then sentence template. This enables the translation of
requirements into the Formal Requirement Language (FRL) proposed by the authors. In [46],
assuming that the system specification is manually represented conforming to a set of templates,
developed for automotive systems, a Temporal Qualified Expression (TQE) is derived.
More recently, in [32], the authors propose RailCNL: a CNL for the railway domain that was de-

signed as amiddle ground between informal regulations andDatalog code. As RoboWorld, this CNL
is also implemented using GF. In [23], the authors use a structured natural language (FRETISH)
that incorporates previous knowledge from NASA applications and has a Real-Time Graphical

Interval Logic (RTGIL) semantics. The proposed CNL was used to capture and analyse require-
ments for a Lockheed Martin Cyber–Physical System challenge.
CNLs are also employed by theBehaviour DrivenDevelopment (BDDl) approach that allows

the tester or business analyst to create test cases in a simple text language (English). This language
helps even non-technical team members to understand what is going on in the software project.
For instance, Cucumber3 is a tool for BDDwhose language (Gherkin) uses a set of special keywords
to give structure and meaning to executable specifications. For a comprehensive survey of English-
based CNLs, we refer to [26], where 100 languages, covering the literature since 1930, are described.

In the robotics domain, previous works have also investigated the use of (controlled) natural
languages. In [30], the authors present a form of natural language called system-English (sEnglish)
tailored for programming complex robotic systems. In [17], besides presenting a survey of domain-
specific languages for robot mission specification, the authors propose PROMISE, a textual and
graphical DSL for describing complex multi-robot missions. To the best of our knowledge, there
are no CNLs tailored to the description of assumptions about the environment of a robotic appli-
cation. So, the effort to specify such assumptions using an existing CNL would involve defining

3https://cucumber.io/

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:6 J. Baxter et al.

Fig. 1. Firefighting UAV.

from scratch the semantics of concepts specific to the robotics domain, which are pre-defined in
RoboWorld. They are identified in the metamodel of RoboWorld, and given a formal semantics.
They are also at the core of the intermediate representation we define for RoboWorld documents.

RoboWorld is realised using GF, which has been previously used to define CNLs with formal
semantics. In addition to [32], a language for deontic-based specifications for normative systems
is presented in [9]. In that work, a semi-automatic way is provided to extract a description using
the CNL from free-form texts. The language has a timed-automata semantics suitable for use
of UPPAAL for verification [8]. Like we do here, the semantics is defined using a translation
into an intermediate XML-like language. Like in our work, syntactic queries to check simple
validity constraints can use the intermediate language, while more complex semantic queries use
UPPAAL.

3 PRELIMINARIES

In this section, we give an overview of the background material for our work: the RoboStar frame-
work (Section 3.1), CyPhyCircus (Section 3.2), and GF (Section 3.3). Regarding language-design
approaches and techniques, we refer to [1, 21], which cover background concepts used here such
as abstract and concrete syntax, grammars, and metamodels.

3.1 RoboStar Framework

At the design level, a RoboWorld document complements (platform-independent) models of con-
trol software. In the RoboStar framework, these are written using RoboChart, a timed state-
machine based notation with a specialised component model. Platform independence is achieved
by writing models in terms of the services of the robotic platform described by events, operations,
and variables. These are abstractions for sensors and actuators, and associated embedded software.
RoboWorld documents can enrich a platform-independent software design by capturing how

features of the environment affect and are affected by the behaviour described by that design. This
is achieved by defining how elements of the environment affect or are affected by the values of
the variables, occurrences of events, and calls to operations used in the software.
How the software or simulation is described in terms of its required services is irrelevant to

the reader or writer of a RoboWorld document. To illustrate our ideas, however, we give a brief
overview of the RoboChart notation. For that we use a simplified model of a firefighting UAV
inspired by a challenge for an international robotics competition.4 Weuse this later on as a running
example to illustrate the structure of RoboWorld documents, the intermediate representation of
such documents, and their formal semantics. Figure 1 shows the drone.
RoboChart is a diagrammatic modelling language based on UML state machines, but embedding

a component model suitable for robotics and time primitives to capture budgets, timeouts, and

4www.mbzirc.com/ - Challenge 3 in 2020.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:7

Fig. 2. RoboChart module for a simplified firefighting UAV application.

deadlines. A key element of a RoboChart model is the block that specifies the services of a robotic
platform. In Figure 2, this is the block named UAV inside the block SimpleFireFighter.

The model for the real firefighter drone defines 21 services.5 In our simpler version, we have
five events and four operations declared in interface blocks called EmbeddedI and CommandsI on
the right in Figure 2. The UAV block declares these interfaces, making their events and operations
available to the software. Here, the software behaviour is defined by a controller block Planning.
The block SimpleFirefighter is an example of a RoboChart module, used to define a model for the
control software of a robotic system, using a robotic-platform, and one or more controller blocks.
The services of UAV include abstractions for a camera and associated image analysis software

in the form of events fireDetected and noFire. The event critical is an abstraction for a sensor that
indicates that the level of the battery is too low. The event spray abstracts an actuator that turns
on and off the water pump. The event landed represents flight-control sensors: IMU and GPS, for
example. Finally, the operations of our platform abstract navigation facilities of the flight controller,
which is able to follow trajectories to takeOff(), goToBuilding(), searchFire(), and goHome().

The RoboWorld document that we present in the next section explains how all these services
declared in UAV are related to elements of the drone environment. So, that RoboWorld document
is associated with the RoboChart module SimpleFirefighter. These definitions are irrespective of
how the services ofUAV are used in the controller Planning. For conciseness, we omit its definition.
In general, the behaviour of a controller can be specified by a collection of parallel state machines.
In the complete model of the firefighter, we have two controllers and nine machines.
Like RoboWorld, RoboChart has a process-algebraic semantics based on CSP [43]. It is compati-

ble with the semantics we provide here for RoboWorld, using CyPhyCircus [37], described next.

3.2 CyPhyCircus

CyPhyCircus is a hybrid process algebra that extends Circus [15], which itself combines CSP with
Z for modelling abstract data types and operations. Didactic accounts of Z and CSP are available
in the literature [45, 49]. The Circus syntax is defined in [15]; it is, with just small changes, the

5robostar.cs.york.ac.uk/case_studies/firefighting-UAV/index.html

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:8 J. Baxter et al.

Fig. 3. Some channels declared in the semantics of the firefighter RoboWorld document.

Fig. 4. Some global constants and constraints in the semantics of the firefighter.

syntax ofCyPhyCircus as well. The only significant difference, from a syntactic point of view, is the
availability in CyPhyCircus of a Z-like schema that can be used to specify evolution of continuous
variables. In terms of semantics, the UTP theories used to define CyPhyCircus are presented in [20,
37]. Here we give a brief overview of CyPhyCircus.
Like in CSP, CyPhyCircus models define mechanisms via processes communicating with each

other and their environment via atomic and instantaneous events. Like in Circus, however, CyPhy-
Circus processes include a state. Moreover, the state of a CyPhyCircus process can contain contin-
uous variables and may or may not be encapsulated. The behaviour of a process is defined by an
action, which, like in CSP, defines patterns of interaction via events, but, like in Circus, can also
define data updates. The new CyPhyCircus schemas that define evolution of continuous variables
via (differential) equations are an additional mechanism for data update.

We explain the constructs of CyPhyCircus as we use them. Our overview of CyPhyCircus here
is based on excerpts from the semantics of our running RoboWorld example, the firefighter UAV.
Here, however, we focus on the structure and meaning of CyPhyCircus constructs, and require no
knowledge of RoboWorld or its semantics, which are presented in subsequent sections.
Like for Z, a CyPhyCircus specification is given by a sequence of paragraphs (that is, definitions).

CyPhyCircus paragraphs can declare channels, types, global constants, and processes. The type
system is that of Z, but we note that we have support for real numbers (R).
The declaration of channels in CyPhyCircus is global to processes. Figure 3 shows the decla-

ration of a few of the channels used in the RoboWorld semantics. Channels with a type, such
as fireDetectedTriggered, define events representing communications of values of that type, such
as fireDetectedTriggered.true. Typeless channels such as sprayHappened define synchronisation
points.
Global constants along with constraints on them are declared using the Z notation for axiomatic

definitions, indicated by a vertical line on the left. Examples are shown in Figure 4, where we
declare two constants arena and building, giving just their types, omitted here.

Processes can be combined via several operators. In particular, since CSP and CyPhyCircus have
a common semantic framework, namely, the UTP, we can combine CSP andCyPhyCircus processes.
For example, we sketch below the process UAV that gives semantics to the system whose control
software is defined by SimpleFireFighter (see Figure 2) and whose operational requirements are
given by a CyPhyCircus process RWDocument, the semantics of some RoboWorld document.

UAV = (SimpleFireFighter � {| fireDetected, noFire, . . . , tock |} � RWDocument)

\ {| fireDetected, noFire, . . . tock |}

UAV is defined by the parallel composition (CSP operator � . . . �) of the processes
SimpleFireFighter , which captures the semantics of the RoboChart module, and RWDocument.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:9

Fig. 5. Example of a basic CyPhyCircus process called Environment.

These processes synchronise on the events in the set {| fireDetected, noFire, . . . , tock |}, which in-
cludes CSP events to represent the services of the platform, as defined in the module, and a special
CSP event tock. These events, however, are hidden (operator \). So, the visible behaviour of UAV
is described using the events and continuous variables of RWDocument representing the elements
of the environment of the system (as declared in the RoboWorld document). Like in CSP, CyPhy-
Circus events represent communications over channels; fat brackets {| . . . |} are used to define the
set of all events representing communications on the channels listed between the brackets.
The special event tock is used in a version of CSP, namely, tock-CSP, to capture discrete time: an

occurrence of tock represents the passage of one time unit: an abstract notion of time. This is
the version of CSP that we use to give semantics to RoboChart. To ensure that there is a single
global clock, in the parallelism between a RoboChart process and a RoboWorld process, as in the
definition of UAV above, we require these processes to synchronise on tock. These events are,
however, hidden. So, the time model of the composition is that of the CyPhyCircus process: a
continuous time model. In the CyPhyCircus process, based on the definition of the length of a time
unit, the tock events become available for synchronisation with the tock-CSP process.
A process like UAV is defined in terms of other processes. A basic process is defined by a se-

quence of paragraphs that specify a state, a main action, defining its behaviour at the end after
a spot (•), and a series of other actions that may be used to define the main action. Differently
from a process, an action is local to a process and has access to the state of that process. The main
action defines the behaviour of the process in terms of its interactions via events, and by the value
of the visible variables of its state. In Figure 5, we present an example of a basic process called
Environment.

The state of the Environment process is given by a Z schema EnvironmentState. Some of the
state components it declares, namely, robot and fires are marked visible, so that the behaviour
of Environment is characterised by the evolution of the values of these components over time, as
well as occurrences of events. EnvironmentState also contains encapsulated components: time and
stepTimer . The main action of Environment is a parallel composition of actions EnvironmentLoop

and EventBuffers, synchronising on the events in a channel set triggerChannels. Communications
on these channels are hidden, so that they are internal to Environment.

Additional action operators are explained as needed in Section 7.

3.3 Grammatical Framework

The concrete syntax of RoboWorld is defined using GF, which provides support for inflection
paradigms (for example, singular and plural forms), as well as agreement between elements
of a sentence (for instance, the subject-verb number agreement), for more than 35 languages.
There is a notion of module, which may describe an abstract or concrete grammar, but also

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:10 J. Baxter et al.

helper functions. In GF, grammars can be characterised by functions to cater for context-sensitive
languages. Modules with helper functions are called resource modules. Abstract and concrete
grammars can extend other abstract and concrete grammars, and concrete grammars implement
abstract ones. Additionally, resource modules can be opened, that is, imported, by other modules.
We illustrate the main features of GF using a toy version of RoboWorld (called ToyRoboWorld),

in which we can write clauses about robots and wheels, using exclusively the verb to have.

Example 1. The following clauses are valid in ToyRoboWorld: “the robot has a wheel”, “the
robot has wheels”, “the robots have wheels”.

In Listing 1, we define the abstract grammar of ToyRoboWorld. The starting symbol (category) of
the language is Clause (see Line 2). The terminals and non-terminals (called categories) are defined
on Lines 4–6. The lexicon comprises determiners (in singular and plural forms), two nouns and
one verb (see Lines 8–11). To finish, on Lines 13–16, we define how clauses can be created from
the other categories using functions. The function mkNounPhrase makes a noun phrase from a
determiner and a noun; mkVerbPhrase makes a verb phrase from a verb and a noun phrase, and
mkClause defines that a clause encompasses a noun phrase and a verb phrase.

1 abstract ToyRoboWorld = {

2 flags startcat = Clause ;

3 ---

4 cat -- categories

5 Determiner ; Noun ; Verb ;

6 NounPhrase ; VerbPhrase ; Clause ;

7 ---

8 fun -- lexicon

9 a_SgDeterminer : Determiner ; a_PlDeterminer : Determiner ;

10 the_SgDeterminer : Determiner ; the_PlDeterminer : Determiner ;

11 robot_Noun : Noun ; wheel_Noun : Noun ; have_Verb : Verb ;

12 ---

13 fun -- functions

14 mkNounPhrase : Determiner -> Noun -> NounPhrase ;

15 mkVerbPhrase : Verb -> NounPhrase -> VerbPhrase ;

16 mkClause : NounPhrase -> VerbPhrase -> Clause ;

17 }

Listing 1. Abstract grammar of ToyRoboWorld.

A concrete grammar of ToyRoboWorld, called ToyRoboWorldEng and sketched in Listing 2,
defines how to implement the aforementioned abstract concepts in English, covering expected
spellings and grammatical rules. To do this, we define two parameter types (Number and VerbForm)
to capture simplified notions of number and verb forms in English (Lines 3–5).
In GF, the implementations of abstract definitions are called linearisations. On Line 8, we provide

linearisation for a Determiner as a record with two fields, s and n, storing the spelling (as a string,
that is, a value of the GF type Str) and the number information.
Next, we define the linearisation of the lexicon of ToyRoboWorldEng. This is where we provide

English spellings, taking into account inflections. For instance, we provide the singular and plural
forms of nouns (Lines 13 and 14). Line 16 illustrates the linearisation of a function. When creating
a noun phrase, its number information is inherited from the associated determiner (n = det.n).
The string representation of the noun phrase enforces agreement between the determiner and the
noun. This string is created by concatenating (++) the determiner with the inflection form of the
noun that shares the same number of the determiner; noun.s ! det.n yields a string containing

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:11

1 concrete ToyRoboWorldEng of ToyRoboWorld = {

2 ---

3 -- parameters

4 param Number = Sg | Pl ;

5 param VerbForm = VPresent Number ;

6 ---

7 lincat -- categories

8 Determiner = {s : Str ; n : Number} ;

9 Noun = {s : Number => Str} ; ...

10 ---

11 lin -- lexicon

12 robot_Noun = {s = table {Sg => "robot" ; Pl => "robots"}} ;

13 wheel_Noun = {s = table {Sg => "wheel" ; Pl => "wheels"}} ; ...

14 ---

15 lin -- functions

16 mkNounPhrase det noun = {s = det.s ++ (noun.s ! det.n) ; n = det.n} ; ...

17 }

Listing 2. Concrete grammar of ToyRoboWorld.

the inflection form of the noun whose number information is given by det.n. We note that noun.s
is a table, and ! denotes table (function) application in GF.

GF has aResourceGrammar Library (RGL), covering amorphological and grammatical struc-
ture that is far from trivial, catering currently for 38 languages.
RGL defines basic categories such as adjectives (A), adverbs (Adv), and so on. When a cate-

gory has a number appended to its name, that number denotes the amount of expected argu-
ments (places). For example, a two-place verb (that is, a member of V2) expects the verb and one
complement. The basic categories are used to create more elaborate grammatical constructions,
offering support for great variety. To provide some figures, there are at least 15, 25, 20, and 30
different ways (functions) to create common nouns, noun phrases, verb phrases, and declarative
clauses alone. In addition, when creating sentences, we can also consider different tenses and po-
larities.
RoboWorld is built on RGL, inheriting its flexibility and expressiveness.

4 OVERVIEW ANDMETAMODEL

In this section, we first give an overview of the structure of RoboWorld documents using the
example of the firefighting drone (Section 4.1). Next, in Section 4.2, we present a metamodel
for RoboWorld. Finally, Section 4.3 lists well-formedness conditions that must be satisfied by a
valid RoboWorld document. The structure and, more generally, the metamodel of RoboWorld
documents identify the domain-specific concepts that need to be considered in the definition of
operational requirements. The well-formedness conditions complement the metamodel. The need
to conform to the metamodel and well-formedness conditions provides guidance to designers.

4.1 Document Structure: Overview

In this section, we give an overview of the RoboWorld syntax using the RoboWorld document for
the firefighting UAV, presented in Figures 6 and 7. As illustrated, a RoboWorld document includes
assumptions and mappings. Assumptions declare and restrict elements of the environment: they
are described in Section 4.1.1. The mappings define the services of an associated (RoboChart) de-
sign model using the elements defined in the assumptions. We give more details in Section 4.1.2.

4.1.1 Assumptions. The assumptions are divided into sections to distinguish assumptions about
the arena, about the robot, and about (other) elements introduced in the assumptions about the

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:12 J. Baxter et al.

Fig. 6. Firefighter UAV RoboWorld assumptions.

arena. The first section, labelled ARENA ASSUMPTIONS, captures assumptions over the arena as
a whole: its dimension, properties of the ground, if any, and, most importantly, presence of el-
ements (obstacles, objects that may be carried, a home or target region, and so on) besides the
robot. The elements may be entities that the robot may interact with or regions of the arena.
The assumptions in Figure 6 state that the arena is three-dimensionalwith a flat ground (gradient

0.0). The arena is not assumed to have a floor; for instance, for a drone, the existence of a floor
may not be relevant. The arena has a floor if, and only if, it is explicitly said, as in Figure 6, or if
the gradient of the ground is defined. So, in Figure 6, the declaration of the floor can be removed.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:13

Fig. 7. Firefighter UAV RoboWorld mappings.

Two types of entities are declared in Figure 6: building and fire. The sentences that declare
these entities indicate that there is a single building, but there may be none, one, or many
fires.
There is also a region called home. The regions share the same dimensionality of the arena,

unless we say otherwise. In addition, the arena and its regions are open, unless explicitly indicated
to be closed. So, regions do not block movement, unless otherwise stated.
Another entity often declared is an obstacle. For instance, the arena assumptions for a foraging

robot may declare obstacles as shown below. Entities are assumed to block movement.

Example 2. The arena has obstacles.

In our example, we provide in separate sentences exact measurements for the width and depth of
the arena, as described for the competition. These measurements can, however, be left unspecified,
inwhich case the arena is finite, but the actual values of its dimensions are unbounded. For instance,
in the example, the exact height of the arena is not specified. Another sentence provides a lower
bound, based on the height of the building, which is an element previously declared.
Finally, in Figure 6 two sentences give properties related to the wind and rain. These are primi-

tive concepts of RoboWorld. By default, the environment does not have any wind or rain.
Arena assumptions are optional. If not included, the implicit assumption is a three-dimensional

arena, of finite, but unbounded size, without floor, and that contains just the robot.
ROBOT ASSUMPTIONS are compulsory. We need to define the assumptions about the shape of

the robot. It can, however, be defined to be a point mass if the shape of the robot is not important
as far as the assumptions we make about its interactions with the world are concerned. We
can also define initial location, elements, and capabilities of the robotic platform. The ability to
move is a feature of every robot; they all have a pose (position and orientation), velocity, and
acceleration.
If the initial pose of the robot is not defined, the robot can start in any pose in the arena.
For the firefighting drone, we declare a tank of water as a robot element. After the introduction

of such an element, we can also indicate relevant information that can be recorded about it; here,
a separate sentence indicates that the tank of water can be full or empty. Another element of the
robot is the searchPattern. This is information held by the robot, rather than a physical element.
The declaration gives it type, namely, a sequence of positions.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:14 J. Baxter et al.

Several other examples are available,6 and some take advantage of this facility to declare relevant
elements of the robot. For instance, requirements for the foraging robot include the following.

Example 3. The robot may carry one object. The robot has an odometer.

In this case, elements called objects need to have been declared in the arena assumptions. Odometer
is part of the RoboWorld vocabulary, and captures information related to the robot movement.
It is possible to write a detailed description of the robot shape entirely in English. This involves

defining components of the robot, their shapes (boxes, spheres, cylinders, and so on), and their
poses. If such a description becomes unwieldy, however, it may be better to use a (block) diagram.
In RoboStar, physical models for use in simulation can be specified using RoboSim [14, 35].

These models describe specific robotic platforms and scenarios for a simulation using specialised
block diagrams and differential equations. In contrast, RoboWorld documents specify properties
that must be satisfied by RoboSim models, called p-models, in the case of platform models, and
s-models, in the case of scenario models. If, however, a detailed physical model for the robot or
any other element of the arena is useful, a p-model component can be included.
In this article, however, we focus on the facilities for descriptions in English. The use of diagrams

in RoboWorld is not required, but is provided as an extra resource.
The ELEMENT ASSUMPTIONS describe properties of elements declared in the ARENA ASSUMPTIONS.

We can constrain their shapes, dimensions, and locations, for example. These can be specific or
underspecified. In our example, for instance, we define a range for the dimensions of the building,
we define specific values for the dimensions of a fire, and we define that the home region is on the
ground, but do not say specifically where on the ground.
In the competition set up, a fire was simulated by a heat plate with a hole for the water. We do

not capture here some information that makes sense only for the environment especially set up for
physical testing, such as the hole in the middle of the fire. We, however, provide size information.
Here, we use millimetres, rather than metres. RoboWorld accepts all SI units and their prefixes.

4.1.2 Mappings. Up to four sections of a document contain mapping definitions: for INPUT
EVENTS, OUTPUT EVENTS, OPERATIONS, and VARIABLES. These describe how the robotic-platform
services of an associated (RoboChart) design model affect and are affected by the environment.
If there is no associated RoboChart model, or any other model describing the control software
in terms of the capabilities of the robot, these sections are not needed. In the presence of such a
model, however, they allow us to reason about the software behaviour with the environment in
the loop.
In Figure 7, we have mappings for four INPUT EVENTS: fireDetected, noFire, landed, and critical.

Themappings determine conditions that characterise the scenarios inwhich the input events occur.
In the conditions, we can refer to properties of the arena, of the robot, and of elements of the arena.
In our example, in defining fireDetected and noFire, for instance, we refer to a property distance
related to the robot and fires. To define landed we refer to the position of the robot. The event
critical is characterised by time conditions, in relation to occurrences, at a previous point in time,
of an output event, namely, spray, and calls to the operation takeOff.

The mappings for OUTPUT EVENTS describe their effect on the environment when they occur.
Similarly, the mappings for OPERATIONS describe their effect when they are called. For the foraging
robot, if the ROBOT ASSUMPTIONS declared that the robot has an odometer, and we had an output
event resetDist, then the mapping for this event could be as follows. As mentioned, odometer is
one of the sensors regarded as a primitive concept in RoboWorld.

6robostar.cs.york.ac.uk

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:15

Fig. 8. RoboWorld metamodel: top classes.

Example 4. When the event resetDist occurs, the odometer is reset.

For a drone, we may have an output event land to abstract functionality of the autopilot. The
mapping in this case can be as shown below, where we refer to the velocity of the robot.

Example 5. When the event land occurs, the velocity of the robot is set to 1.0 m/s downward.

The mappings in Figure 7 for the operations takeOff, goToBuilding, and goHome are similar.
The effect of an output event or operation may be conditional. In the firefighter example, the

effect of the output event spray is conditioned to the status of the tank of water being full. It
changes the environment by extinguishing fires and changing the status of the tank of the robot
to empty. This is defined by a state machine (omitted here but available in [4]).

As for the p-model block diagrams, state machines are available in RoboWorld as a resource to
define mappings if their English description might be too complex. Typically, if the effect of an
output or operation involves loops over a set of elements or takes time, using a machine to define
it may be simpler than giving an English description. The mapping for the operation searchFire() is
specified by a diagram (omitted here but available in [4]). The notation to describe state machines
is similar to that of RoboChart. In a RoboWorld machine, however, we can use events to set and
get the position, orientation, velocity, and acceleration of the robot, and other declared properties
of elements of the arena and robot. We can also require variables (and constants). As illustrated in
Figure 7, if using a diagram to define a mapping, we need to state that and define the value of a
time unit, which in RoboChart is left unspecified. In our example, the time unit is 1.0 s.

The final section contains theMAPPING OF VARIABLES of the robotic platform. It is empty for
the firefighting UAV, since there are no robotic platform variables in its model. Variables can be
used as inputs to the software, and so their definitions are similar to those for input events.
We now specify the metamodel and well-formedness conditions for RoboWorld documents.

4.2 Metamodel

Figure 8 presents a diagram including the top-level classes of the RoboWorld metamodel. A
RoboWorld document is an element of the class RWDocument. It is formed by a sequence of zero
or more objects of the classes for each of the assumption and mapping groups.
The assumptions and mappings are defined in terms of sentences, defined by the class RWSen-

tence representing the forms of sentences allowed in RoboWorld, and Conditions, which are
RWSentences prefixed by a subjunction. RWSentences are specified in terms of categories of the
English language: Noun, Adjective, Adverb, and so on.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:16 J. Baxter et al.

Fig. 9. RoboWorld metamodel: inputs and outputs.

An ArenaAssumption is defined by a sentence. As said, a RobotAssumption can be defined by
a sentence, as represented by the subclass RobotSentence, or by a p-model, represented by the
class RobotPModel. The attribute pmodel of RobotPModel has type PModel. This is a class in the
RoboSim metamodel7 that represents a specialised form of block diagrams that can be used to
describe the links, joints, sensors, and actuators of a robot.
Here, we do not discuss block diagrams any further, but note that a PModel may have some

parameters (representing sizes of rigid bodies, for example) which may be instantiated when used
in a RoboWorld document. The class Instantiation, used to give type to the attribute instantiations
of RobotPModel, is also in the RoboSim metamodel. Like the semantics of RoboWorld presented
here, the semantics of a RoboSim PModel is also given in CyPhyCircus, so it integrates well.

Like a RobotAssumption, an ElementAssumption can be a sentence (ElementSentence) or a p-
model (ElementPModel). In this case, the metamodel indicates that the name of the element is an
Item as defined in Figure 10: the block diagram is for the element declared in the arena assumptions
whose name is that Item. In the case of a p-model for the robot, the name is just robot.

The mappings all have a name, except for anOperationMapping, which has a signature, includ-
ing a name and a list of parameters. The types of the parameters do not need to be defined, since
they are already declared in the associated RoboChart model.
The name of an InputEventMapping identifies the input event being defined. In addition, it has

information given by an input that characterises when that event can take place and, if relevant,
that defines the values input. In Figure 9, we define the class Input as an abstract class with three
concrete subclasses: InputSometimes, InputAlways, and InputNever.

In Figure 7, the input mappings for fireDetected, noFire, and landed all represent an element of
InputSometimes, with an attribute condition. In each case, the subjunction in conditions is “when”,
and sentences, such as “the distance from the robot to a fire is not greater than

0.5 m”, define when the event occurs. In these examples, however, the InputSometimes instance
itself has no sentences because the input events in question do not communicate any values. We
provide below more examples, where we distinguish in bold face the keywords of RoboWorld. In
italic, we distinguish the names of the events being defined.
In the example below, the input mapping for an event with name angularSpeed uses an instance

of InputAlways as indicated by “is always available”. We can also write “is always enabled”, “can
always happen”, and so on. The concrete syntax identifies the possibilities (see Section 5).

Example 6. The event angularSpeed is always available and it communicates the angular
velocity of the robot.

In this example, the value of sentences in InputAlways is the RWSentence “it communicates the
angular velocity of the robot” introduced by the “and”. We assume that angularSpeed is declared

7robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:17

in the RoboChart robotic platform to have type real, so we use an RWSentence to define the value
communicated by the input: the angular velocity of the robot, which is a predefined property.
The keyword “and” is a separator used when we have a definition for sentences to follow. Use of

an RWSentence is valid only when the event has a type, and so communicates values. If an event
has a type, but no RWSentence is used to define the input value, that value is unconstrained.

In the next example of an InputMapping for an event transferred, the Input is an instance of
InputNever as indicated by “never happens”. In this case, the input event never takes place, and
so we do not need to include an RWSentence to characterise input values.

Example 7. The event transferred never happens.

The InputNever instances are useful for abstraction. An example of where the mapping in Exam-
ple 7 is useful is provided by one of our case studies8: a robot from a swarm that can transfer
objects to another robot. A sensor tells when the transfer has taken place. In the initial simulation
we have targetted, there is a single robot, so this part of the functionality is left out.

The output of anOutputEventMapping or of anOperationMapping can be defined in one of two
ways: in English or diagrammatically (see Figure 9). It can be described in English using, optionally,
Conditions, and some RWSentences. The concrete subclasses of Output called OutputSometimes,
OutputAlways, and NoOutput are similar to InputSometimes, InputAlways, and InputNever, but
define Outputs. For instance, in Example 4, the OutputMapping is for an event resetDist, whose
output is an instance of OutputAlways. There is no condition, but just an RWSentence.
An output, however, may be defined to have no effect, for the sake of abstraction. In this case,

we use an instance of NoOutput as illustrated below.

Example 8. When the operation Transfer() is called, nothing happens.

The use case here is the same as that for the Example 7. We use this mapping to block the operation
Transfer() when simulating a single robot from a swarm.

An output defined in a mapping by a diagram for a state machine is an instance of Diagram-
maticOutput. We refer to Figure 7, where we find the mapping for the event spray. Its effect is
conditioned on the robot having a full tank of water. So, like in an instance of OutputSometimes,
an attribute conditions records that restriction, namely, “if the tank of water is full”. The
state machine is an instance of the class RCOperation from the RoboChart metamodel that defines
the value of opd in the instance of DiagrammaticOutput. The value of the time unit is recorded in
sizetu, whose type RCIntegerExp is a class of the RoboChart metamodel for integer expressions.
As mentioned before, the definitions of assumptions and mappings rely of RWSentences. In-

stances of RWSentence can represent a significant set of sentences. Section 5 gives the details; the
specification of RWSentence is not domain specific and is not further discussed in this section. As
indicated in Figure 10, however, the definition of RWSentence depends on that of an ItemPhrase,
which we present in Figure 10 and describe in what follows.

An ItemPhrase identifies an element of the environment; it is a restricted form of noun phrase,
which is a general, rather than domain-specific, concept typical of natural languages. ItemPhrase
has five direct subclasses. An ItemPhrase can be just a pronoun, represented by an instance of
the class PronounIP. Its attribute pronoun is of a type Pronoun. We do not further define classes
that correspond directly to general grammatical categories, such as Pronoun, Adverb, and so on.
Another form of ItemPhrase is an instance of FloatLiteralIP, which is just a number. It has an
attribute value of type Floatwhose default value is 0.0. Other ItemPhrases are constructed using a

8robostar.cs.york.ac.uk/

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:18 J. Baxter et al.

Fig. 10. RoboWorld metamodel: sentences and item phrases.

Determiner, in the case of the subclass DeterminerIP, or a Quantifier, in the case of QuantifierIP.
The terms that can be determined or quantified are called Items, which can be basic or compound.

Example 9. A possible pronoun is “it”. In “the angular velocity”, we have a determined
ItemPhrase created from the determiner “the” and the BasicItem “angular velocity”. Finally, in
“1.0 rad/s upward”, we have a quantified ItemPhrase created from number 1 and CompoundItem
“rad/s upward”.

A BasicItem can be an instance of one of three classes: NounBI, representing a Noun, UnitBI,
representing a unit, or a QualifiedBI, which qualifies a basicitem using an Adjective.

Example 10. Examples of BasicItems are “velocity”, “angular velocity”, and “m/s”.

The notion of a CompoundItem allows the grouping of Items or ItemPhrases connected via a
Preposition or modified by an Adverb, without creating ambiguity in the grammar. Every Com-
poundItem refers to an item. A CompoundItem can add a preposition, in the case of the subclass
PrepositionCI of CompoundItem, to relate an item to one or more ItemPhrases. In the case of the
subclass AdverbCI, the CompoundItem adds an adverb.

Example 11. In the AdverbCI “m/s upward”, we have the BasicItem “m/s” followed by the Ad-
verb “upward”. In the PrepositionCI “distance from the robot to the nest”, we have the
BasicItem “distance” followed by the Preposition “from” and an ItemPhrase “the robot to the

nest”. The latter is aDeterminedIP that contains a PrepositionCI “robot to the nest”, itself another
PrepositionCI.

In Section 5, we describe a grammar that justifies the use of English sentences to describe instances
of our metamodel. Not every instance represents a valid RoboWorld document, though. So, we now
present the well-formedness conditions that must be satisfied.

4.3 Well-formedness Conditions

Besides the expected restrictions of the English grammar, there are some general well-formedness
conditions that need to be enforced. For example, the use of measurement units must be
consistent with the relevant physical quantity. For instance, length (distance, x-width, y-width,
z-width, width, depth, or height) must be measured in metres or its prefixes. Time must be

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:19

Table 1. Well-formedness Conditions of RoboWorld

RW1 The values “arenas” and “robots” are not valid for the attribute noun of a BasicBI.
RW2 The names in the InputEventMappings,OutputEventMappings, and VariableMappings

must be precisely those of the input events, output events, and variables of the robotic
platform in the associated RoboChart module.

RW3 The names in the signatures of the OperationMappings must be precisely those of the
operations of the robotic platform in the associated RoboChart module.

RW4 The parameters in the signature of an OperationMapping must be precisely those (the
same number, order and name) of the operation of the robotic platform in the associated
RoboChart module.

RW5 The name of the pmodel in a RobotPModel is “robot”.
RW6 The name of the pmodel in an ElementPModel matches the value of its name.
RW7 In the input of an InputEventMapping for an event that is typeless in the associated

RoboChart module, there are no sentences.
RW8 The sentences that define a DiagrammaticOutput must define a unit of time.

RW9 If the name of an OutputEventMapping is n, and its output is a DiagrammaticOutput,
then the name of the RCOperation in opd is nmapping.

RW10 If the name of an OutputEventMapping is that of an event that has a type T in the
associated RoboChart module, and the output of the OutputEventMapping is a Dia-
grammaticOutput, then the signature of its RCOperation in opd has a parameter of
type T.

RW11 The signature of an OperationMapping whose output is a DiagrammaticOutput
matches the signature of the RCOperation in opd.

measured in units derived from seconds, and so on. These general restrictions are a form of well-
typedness rules, and can be naturally enforced using the intermediate representation described in
Section 6.
In this section, we concentrate on domain-specific well-formedness conditions related to the

RoboWorld concepts, and the relationship between RoboWorld documents and RoboChart models,
if applicable (since RoboWorld can be used in conjunction with other design notations or even
on its own). The conditions are presented in Table 1. In the next sections, we present additional
well-formedness conditions. In Section 5, we present restrictions related to the vocabulary used in
RWSentences. In Section 6, we present restrictions related to pre-defined terms (such as “linear
velocity of the robot”) and to a form of well-typedness and scope of expressions (such as
references to position should be consistent with the dimensionality of entities and regions). If
the RoboWorld document includes diagrams, for p-models or state machines, then they must also
satisfy the well-formedness conditions defined in RoboSim and RoboChart [35, 36].

Here, RW1 is a well-formedness condition that indicates that presently RoboWorld considers
single-robot applications, involving a single arena. Dealing with multiple robots requires little or
no further work in terms of the grammar (see the next section) or intermediate representation (see
Section 6). On the semantics, the impact is more significant. As for the restriction to a single arena,
it is of little consequence, given that an arena can have several regions.
RW2-4 are concerned with the association between a RoboWorld document and a RoboChart

module, if any. Themappings in the RoboWorld documentmust be for exactly the platform services
defined in the RoboChart model. It is those services that define how the robot can perceive and
affect the environment. If there is no RoboWorld model in context, there can be no mappings.
Similar restrictions can be imposed if other notations are used to specify control software.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:20 J. Baxter et al.

Fig. 11. Architecture of RoboWorld realisation in GF.

The name of a p-model used in a RoboWorld document, if any, must be consistent with the name
used in the document. It is either just “robot” in the case of a p-model for the robot (RW5), or the
name of the element being described by the p-model (RW6).
We recall that the sentences of an Input are used to define the values sent to the software based

on the environment elements and their statuses. So, RW7 ensures that these sentences are present
only if the input does require a value: it has a type.
The remaining RW8-11 ensures compatibility between the RoboWorld document and any state-

machine diagrams to which it might refer. RW8 ensures that the RoboWorld document defines
the value of the time unit. RW9-10 ensures that the name used in the RoboWorld document is
that in the diagram, but we note that the diagram for an event n, such as spray, is supposed to be
nmapping (spraymapping, in our example), to avoid conflict with the name of the event. RW11
ensures that, for operation mappings, the whole signature, not only the name, matches.

5 REALISATION IN THE GRAMMATICAL FRAMEWORK

In the following sections, we detail how the RoboWorld metamodel is realised by grammars in GF.
In Section 5.1, we present an overview of our approach, before getting into details in Section 5.2.

5.1 Overview

Figure 11 shows the structure of our realisation of the RoboWorld metamodel in GF. Our approach,
which defines an abstract and a concrete syntax, along with the support provided by RGL, means
that we have a general mechanisation of RoboWorld that is language independent. Using this
structure, we can provide concrete implementations for RoboWorld considering other languages,
such as Portuguese, French, and others, without having to implement the metamodel again. RGL
takes into account more than 35 languages. Here, we restrict ourselves to English.
In Figure 11, a module is represented as a box, and a collection of RGL modules as a dashed box.

The RoboWorld metamodel is realised by the abstract grammar RoboWorld. The concrete grammar
RoboWorldEng describes how sentences in English correspond to elements of the metamodel.
The collections of RGL modules used in our realisation of RoboWorld are shown on the left and

on the right in Figure 11. RGL is concerned with morphology and syntax rules of languages. The
RGL abstract grammars that we use, shown on the left in Figure 11, cover terms such as noun
phrases and clauses, for instance, which are common to many languages. On the right, Figure 11
shows RGL modules that implement the abstract modules in the English language.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:21

Table 2. Well-formedness Conditions of the Dictionary

D1 RoboChart keywords must not be included in the dictionary.
D2 The identifiers used in RoboChart to denote the name of variables and constants

must be in the dictionary, both as nouns and adjectives, and with inflection form IRREG.
D3 The identifiers used in RoboChart to denote the name of input and output events and

of operations must be in the dictionary as nouns and with inflection form IRREG.

In the middle box in Figure 11, we show the grammars that we have defined specifically for
RoboWorld. As indicated above, RoboWorldEng implements the grammar RoboWorld, and they
both extend a lexicon (RoboWorldLexicon in the case of the abstract RoboWorld grammar, and
RoboWorldLexiconEng for the concrete RoboWorldEng). The grammars RoboWorldLexicon and
RoboWorldLexiconEng define the RoboWorld lexicon, that is, its vocabulary. All these grammars
use RGL grammars to cater for general concepts. They are all publicly available in [4].
The RoboWorld lexicon contains words that are common to the specification of robotic sys-

tems, such as arena, robot, orientation, velocity, three-dimensional, among others. Cur-
rently, the RoboWorld lexicon comprises more than 100 words. The abstract version of the lexicon
(RoboWorldLexicon) defines the grammatical classes of these words (for instance, robot is a noun,
one-dimensional is an adjective), but it does not give their spelling.

The concrete lexicon of RoboWorld (RoboWorldLexiconEng) implements the abstract one con-
sidering the English language, and its particularities, by extending the RGL support for English.
For instance, Modern English largely does not have grammatical gender, which would require all
nouns to have masculine, feminine, and neutral inflections. Therefore, when defining a noun in
RoboWorldLexiconEng, it suffices to provide the spellings of the singular and plural inflections.
The RoboWorld grammar extends the RoboWorld lexicon, and defines the abstract structure

of sentences (for example, sentences in the passive or active voice, or in the present or past
tense, and so on) that we can write to specify assumptions and mappings. The concrete grammar
RoboWorldEng implements RoboWorld observing the rules that apply to the writing of sentences
in English.

5.2 Lexicon, Item Phrases, Clauses, and Sentences

It is possible to extend the RoboWorld lexicon to cover application-specific vocabulary. Hereafter,
we use “dictionary” to refer to the words in the RoboWorld pre-defined and application-specific
lexicons. To enrich the dictionary, we need to create new abstract and concrete grammars that
extend RoboWorld and RoboWorldEng. Our tool makes this transparent: to add a word, we just
need to provide it, its category, and inflections (see Section 8).
When enriching the dictionary, the well-formedness conditions in Table 2 need to be observed.

They ensure that RoboChart keywords are not used for any other purpose (D1), and the names
of the robotic platform services are in the dictionary (D2 and D3), and therefore can be used in
sentences. These words only need to be used in the singular form, so IRREG is to be used as their
plural inflection to mark that they do not have a plural form. Identifiers that represent values (that
is, the names of variables and constants) may also be used as an adjective (D2). For example, in
“the linear velocity of the robot is set to lv m/s”, lv plays the role of an adjective.

The realisation of sentences is very general and flexible. As mentioned before, this concept is
not domain specific. So, this part of our work, which provides a very extensible mechanism to deal
with a wide variety of grammatical structures, can be used in the realisation of other languages.

Generally speaking, sentences in RoboWorld relate ItemPhrases by means of verbs. The
realisation of ItemPhrase closely mimics the metamodel in Figure 10. Concretely, BasicItems,

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:22 J. Baxter et al.

CompoundItems, and Items are defined as common nouns, and ItemPhrases as noun phrases. So,
the functions in our grammar reflect the metamodel and identify the expected forms of common
nouns and noun phrases. For instance, in Listing 3, we define that a BasicItem can be created from
a noun (Line 2) or a Unit (Line 4), a type that we define to include the SI base units, among others.

1 ...

2 mkBasicItem_single_noun : Cat.N -> BasicItem ;

3 ...

4 mkBasicItem_Unit : Unit -> BasicItem ;

5 ...

6 mkCompoundItem_AdverbCI : Item -> Adv -> CompoundItem ;

7 mkCompoundItem_AdverbCI_from_adjective : Item -> A -> CompoundItem ;

8 ...

Listing 3. Excerpts of the RoboWorld grammar: BasicItem and CompoundItem.

As said before, we use RGL to make RoboWorld more flexible and expressive. For example,
according to the metamodel, an AdverbCI is a CompoundItem that modifies an Item by an ad-
verb (see Figure 10). In the GF-realisation, we expect both adverbs (Adv) and adjectives (A)—see
Listing 3, Lines 6 and 7. In the second case, we use an RGL function to create an adverb from a
given adjective. The realisation of ItemPhrases considers eight different types of quantifiers to add
expressiveness. We can write, for instance, one m, 1 m, 0.5 m, no obstacles and this obstacle.

RoboWorld clauses (defined by the category RWClause) are used to defineRWSentences; they are
instances of RGL clauses, and define the writing structures supported in RoboWorld. There are 12
forms of RWClause, each defined by a mK function. An RWClause can be written in the active voice
or in the passive voice. In the active voice, a mK function creates RWClauses using transitive verbs.
There is also support for modal and progressive verbs in the active voice. Additional functions
give a special treatment to clauses written using the verb “to be”. In the passive voice, we can use
intransitive and transitive verbs. The latter expects a preposition followed by an ItemPhrase.

The linearisation of the aforementioned functions uses RGL functions to ensure agreement be-
tween elements. In Listing 4, we give an example linearisation, along with an example RWClause
of the form considered. First, a verb phrase (VP) named progressive is declared. The function
mkVP creates a verb phrase from the text embedded in the provided verb (lin V2 v2) and the
second ItemPhrase (itemPhrase2). A type annotation (< ... : V2>) is applied to lin V2 v2

to ensure the text is cast to the type V2 (since verbs can have several types). Afterwards, the RGL
function progressiveVP transforms this verb phrase, taking into account the progressive form
of its verb, whose value is assigned to the local variable progressive. Finally, when creating the
clause, the function mkCl inserts the copula (that is, the verb “to be”, in this case), ensuring number
agreement.

1 -- the robot is carrying an object

2 mkRWClause_ActiveVoice_Progressive_TransitiveVerb_ItemPhrase

3 itemPhrase1 v2 itemPhrase2 =

4 let progressive : VP =

5 progressiveVP (mkVP <(lin V2 v2) : V2> itemPhrase2) ;

6 in mkCl itemPhrase1 progressive ;

Listing 4:== Linearisation of mkRWClause ActiveVoice Progressive TransitiveVerb

ItemPhrase.

Example 12. The following clause is not valid since there is no number agreement between the
first ItemPhrase and the copula: “the robots is carrying an object”.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:23

RoboWorld sentences are instances of RGL sentences. Here, we deal with verb tenses (present
and past) and polarity (positive and negative sentences). Since these possibilities apply to arbitrary
RWClauses, the 12 different writing structures for clauses discussed above are lifted to 12 × 4 =
48 different types of sentences supported by the RoboWorld language. Additionally, an arbitrary
RWSentence can be further modified by prefixing an adverb (for instance, “initially, the robot

is in the origin”), thus, there is support for 2× 48 = 96 different writing structures. Moreover,
if, for example, just a single new structure for writing RWClauses is added to the language, the
number of different types of sentences automatically increases by 8.
The GF realisation of RoboWorld assumptions and mapping definitions closely follows their

metamodel in Figures 8 and 9; it is almost a one-to-one relation, with one function in GF for
each type of assumption or mapping definition. ArenaAssumptions, RobotAssumptions and
ElementAssumptions are essentially RWSentences: any valid RWSentence is accepted. For a
RobotPModel or ElementPModel, we need to use a restricted form of sentence that, for example,
includes “is defined by a diagram”. Similarly, for the mappings, restrictions enforce the struc-
ture to ensure, for example, the presence of the name of the event, operation, or variable mapped.
In conclusion, RoboWorld is a flexible and expressive subset of the English language, yet con-

trolled. The intermediate representation presented next can, therefore, be generated automatically.

6 INTERMEDIATE REPRESENTATION

We define the semantics of a RoboWorld document in terms of an intermediate representa-

tion (IR) of that document. With this representation, we insulate the semantics specification pre-
sented in the next section from some evolutions of RoboWorld. For example, further case studies
are likely to suggest different phrasings for the same meanings, which we may be able to support
by extension of the dictionary or of the concrete grammar. With the IR, such extensions, which
are important to make the language more flexible, do not affect the semantics definition.
In the IR, information about the arena, the robot, and the other elements is grouped, and struc-

tured using notions of expressions and actions, although the original sentences are still recorded.
The main new features are classes Constraint and Statement, which record, besides the sentences
in the RoboWorld document, additional attributes that record the information in the sentences in a
form suitable to define the semantics. Both Constraint and Statement have an attribute sentence,
and also an extra attribute, booleanexpression in the case of Constraint and action in Statement.
These extra attributes are annotations, which may or may not be present, depending on whether
the meaning of the sentence can be captured by the RoboWorld semantics. The values of these
annotation attributes are determined by the rules to generate the IR. Two sets of rules formalise
how an IR can be automatically generated for a given RoboWorld document.
In Section 6.1, we present the IR, via the definition of its metamodel and well-formedness con-

ditions. In Section 6.2, we present the rules to generate the IR for a RoboWorld document. For a
RoboWorld document to be considered well formed, besides satisfying the conditions in Tables 1
and 2, it must also be the case that the application of the rules discussed in Section 6.2 to that
document generates a valid IR according to the conditions discussed in Section 6.1. Some of the
well-formedness conditions are guaranteed by the rules, and some need to be checked.

6.1 Metamodel and Well-formedness Conditions

Figure 12 presents the top classes of the metamodel for our IR. Here, a document is represented by
an instance of RWIntermediateRepresentation. In contrast with the metamodel (see Figure 8), its
attributes do not record assumptions (just) in terms of sentences, but in terms of a richer collection
of objects reflecting primitive and declared concepts in a RoboWorld document. These objects,
including those that represent the arena and the robot, are all instances of an abstract class Element.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:24 J. Baxter et al.

Fig. 12. RoboWorld IR: top classes.

Table 3. Some Well-formedness Conditions of RoboWorld’s IR

IR1 The plurality of the arena is SINGULAR, its name is “arena”, its shape is a Box, and its
components, if any, are Regions.

IR2 If an Arena has a gradient, then hasFloor is true.
IR3 The plurality of the robot is SINGULAR, its name is “robot”, and it cannot be an instance

of Region.
IR4 The names of the Elements and Attributes are unique.
IR5 The number of an element whose plurality is SINGULAR or UNCOUNTABLE is null.
IR6 An ElementReference to an element whose plurality is SINGULARmust be an instance

of UniqueElement.
IR7 An ElementReference to an elementwhose plurality is PLURALmust not be an instance

of UniqueElement.
IR8 An ElementReference to an element whose plurality is UNCOUNTABLE must be an

instance of UniqueElement or PotentialElement.
IR9 In an Assign, if the expressions of the assignto and of value are not null, then their types

are equal.

In the robotics domain, arenas and robots are clearly different concepts, and the notion of an
element in RoboWorld covers everything else, including regions and entities, such as obstacles,
robot components, and so on. In the IR, however, we provide a uniform view of all concepts of
interest to provide an internal model that is more convenient to give semantics. This is achieved
without affecting the domain-specific terminology used in RoboWorld documents.

The arena is represented by an instance of the class Arena, which in the IR is a Region. In turn,
a Region is represented by an instance of ElementDescription. The Element abstract class has
subclasses ElementDescription, to represent elements described using CNL, and ElementPModel,
to represent elements described by a p-model.
As an Element, the Arena has a plurality: it must be SINGULAR, since we have just one arena.

Table 3 presents this well-formedness condition (IR1) and others for the IR. Figure 13 sketches the
IR for our example. In general, the plurality of an Element can also be PLURAL for objects repre-
senting a set of instances of an element, such as fires, or UNCOUNTABLE (for example, smoke).
An Element also has a unique name (IR4), an Identifier that can be derived from an Item used in

the RoboWorld document. For example, in the RoboTool implementation of the rules to generate

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:25

Fig. 13. Partial sketch IR for RoboWorld document in Figures 6 and 7.

the IR (see Section 6.2), the identifier used for the “tank of water” is tank of water. An Element
also has a pose, for Elements with a body, and a number of instances, for elements with plurality
PLURAL (IR5). For the arena, the name must be “arena” (IR1).
In an ElementDescription, if it has a body, an attribute shape can record information using

objects that represent common geometric forms (boxes, cylinders, and so on). The not unexpected
definition of the class Shape is omitted here, but all classes are defined in [4]. The shape of the
arena is always a Box (IR1), but regions of the arena may have any shape. Moreover, if the arena
is two-dimensional or one-dimensional, the Box degenerates to a square or a line.

In addition, to cater for application-specific elements, we can define attributes, more general
properties, and components of an element. For the arena, however, components must be Re-
gions (IR1). The class Attribute represents an attribute by recording its unique name (IR4) and
type, the latter represented by a class Type that reflects the typing system of the RoboStar nota-
tions, which is based on that of the Z notation [49] for convenience of support for proof.

ElementPModel is similar to the homonymous class in the metamodel (see Figure 8).
A Region has a dimension and may be closed or not. An Arena may have a floor, as recorded

by the Boolean attribute hasFloor. The definition of the gradient of the floor is optional, and can
be present only if hasFloor is true (IR2). Our example in Figure 13 shows the gradient attribute, a
NumericProperty characterised by a Constraint. The class NumericProperty has a single attribute
property containing one or more Constraints, a class whose definition is shown in Figure 14.

The Boolean attribute hasRain records whether it is raining. Finally, it is possible to record the
speed of the wind in windSpeed, which is yet another NumericProperty.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:26 J. Baxter et al.

Fig. 14. RoboWorld IR: constraints and statements.

The robot is an Element with name “robot”. Its plurality has to be SINGULAR. It can be given
by an ElementDescription or ElementPModel, but not by a Region (IR3).
For each mapping class of the metamodel (see Figure 8), there is a similar class in the IR. The

differences are in the use of classes InputIR and OutputIR, instead of Input and Output, and Con-
straint and Statement, in Figure 14, instead of Conditions and RWSentence.

InputIR andOutputIR, omitted here, are themselves very similar to Input andOutput. The core
differences are just that Conditions and RWSentence are also replaced with Constraint and State-
ment. Moreover, the sentences attribute of the InputIR subclasses are named communications, not
sentences, reflecting the fact that they define communicated values. In Figure 13, we show the IR
objects related to the input event fireDetected (see block labelled fireDetected: InputEventMap-
pingIR above the middle right and those connected to it). Similarly, OutputIR subclasses have an
attribute statements instead of sentences because they define updates. In Figure 13, we show the
IR objects related to the call to the operation goToBuilding, which is recorded as an output (see
block labelled goToBuilding: OperationMappingIR below the middle left).
As explained in the next section, there are two sets of rules: the first creates a basic IR, and

the second defines an annotated version of that IR. For instance, in our example, the attribute
booleanexpression of the constraint for the gradient of arena in the IR defined by the first set
of IR generation rules is null. After the second set of rules is applied, we get the annotation in
Figure 13.
The definition of the class BooleanExpression is in many ways as to be expected, and we show

just some of its subclasses here. We have UnaryBooleanExpressions and BinaryBooleanExpres-
sions, and note that in a QuantifierExpression we have an Identifier for the quantified variable,
which ranges over the instances of the element. ComparisonExpressions include those based on

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:27

the Subset and LessThan relations, among many others. The actual terms being compared are item
phrases as represented in the IR: instances of the class ItemPhraseIR.

In Figure 13, the booleanexpression for the gradient constraint is an instance of the class Equal
that represents equalities. It has attributes left and right whose types are ItemPhraseIR.

ItemPhraseIR is similar to ItemPhrase, but, like Constraint and Statement, it has an extra at-
tribute expression to record the element described in a structured way. The type of expression is
a class Expression with a rich set of subclasses omitted here. Some of these subclasses capture
domain-specific expressions like TimeSince an event occurrence or the ArenaGradient.

As shown in Figure 13, the instance of Equal for the booleanexpression of the gradient constraint
has as its left attribute an instance of DeterminerIPIR, the IR version of DeterminerIP. For simplic-
ity, we do not show the objects for the item attribute of left; we just indicate that it represents
“gradient of the ground”. We show, however, the expression for left, which is an instance of
ArenaGradient. This object has no attributes, but flags the meaning of the DeterminerIPIR. There
can be many different ways to refer to the gradient of the floor of the arena (“gradient of the

ground”, as in the example, “gradient of the floor”, “gradient of the arena”, and so on).
With the annotation, we simplify the definition of the semantics, which can be based on the pres-
ence of an instance of ArenaGradient, and not on the many forms that we can use to refer to this
concept.
For the right attribute of the gradient constraint, we have an instance of FloatLiteralIR, the IR

version of FloatLiteral. Its expression just records the value of the literal, but its presence does
simplify the semantics, which can rely on the presence of an expression for all constraints.
The subclass PronounIPIR of ItemPhraseIR is similar to the subclass PronounIP of ItemPhrase,

but has yet another attribute. Namely, it records, in an attribute referent, the ItemPhraseIR towhich
the pronoun refers. This is in addition to the expression attribute inherited from ItemPhraseIR. In
the generation of the IR, the value of referent is used to indicate the element referenced by the
pronoun. If its meaning is covered by the RoboWorld semantics, in addition, the value of expression
is recorded to represent that element for the definition of the semantics.
Figure 14 shows just three forms of Actions. A communication (that is, an instance of Commu-

nicate) defines a value as an ItemPhraseIR. (This is the IR class that represents an expression.) An
Assignment records its target assignto and assigning value as ItemPhraseIR. Finally, instances of
a Put subclass of Action record that an element is put into another one.

The action attribute for the statement of the output for the operation goToBuilding is shown
in Figure 13. It is an Assign, whose assignto attribute is a DeterminerIPIR whose expression is
a reference to a property of an element (see Figure 12), represented by an instance of Property-
Expression. In this case, the value of the attribute property is one of several primitive properties,
namely, VELOCITY. The element is identified by an elementref.
In Actions and Expressions, references to an element are represented by an instance of the class

ElementReference shown in Figure 15. This is an abstract class with an attribute element; the
subclasses reflect the several meanings that a reference to element may have. A reference to an
elementwhose plurality is SINGULARmust be aUniqueElement (IR6). This is the case of the robot,
in the example in Figure 13 (see block robot: ElementDescription just above that for fireDetected).
For simplicity, we do not show the object for the robot as an Element.
For other elements, the different forms of ElementReference capture context information. For

example, in “A fire can occur on the floor”, the reference “a fire” denotes a potential, but
not necessary, instance of a fire. It is represented by an instance of PotentialElement. In “... the

distance from the robot to a fire ...” we have a reference to some fire characterised by
a constraint; this is represented by an instance of SomeElement. In the example below we have a
mapping for an alternative typeless event spray for a firefighter.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:28 J. Baxter et al.

Fig. 15. RoboWorld IR: element references.

Example 13. When the event spray occurs the fires within 3.0 m are extinguished.

Here, “the fires” refers to all fires satisfying a constraint, and it is represented by an instance of
AllElements. Finally,QuantifiedElements records a reference to a quantified variable.

The well-formedness conditions IR7 and IR8 impose additional restrictions on the use of Elemen-
tReferences based on the plurality of an element. Finally, IR9 is an example of a well-formedness
condition related to the types of Expressions. These are all conditions that need to be checked,
after the application of the rules presented in the next section.

6.2 Generation from RoboWorld Documents

The IR for a RoboWorld document can be automatically derived. As mentioned before, this is a
two-step process. First, an IR is obtained from the provided document; afterwards, it is annotated.
In the following sections, we cover these two steps.

6.2.1 Generating the Intermediate Representation. Our rules define functions. Each rule has a
number and a name, followed by the function declaration: name, arguments, return type, and
specification. Themetanotation used for specification is functional and standard. It is distinguished
from the target notation to describe objects of the IR by use of a grey font. The simple target
notation is in italics. To define an object of a class C, we use the construct new C{...}, where we
list, between curly brackets, the value of each attribute. Attributes not listed have arbitrary values.
Rule 1 defines the function mapRWDoc whose application to a document, represented by the

argument rwDocwhose type RWDocument is defined in the RoboWorld metamodel (see Figure 8),
produces an instance of RWIntermediateRepresentation (see Figure 12). So, it is this rule that
defines the overall mapping from a RoboWorld document to its IR.
Each attribute of the RWIntermediateRepresentation object defined by Rule 1 is specified by the

application of a separate map function, defined by other rules. Each function takes the relevant
assumptions or mappings of rwDoc as argument. The functions mapArena and mapRobot used
to define arena and robot take default instances of Arena and Robot, that is new Arena{} and
new Robot{} (see Figure 12) as additional arguments. FormapElements, an additional argument is
defined by the application of the function enumerateElements, which characterises the sequence
of all the Elements declared in the assumptions made in rwDoc.

The map functions are defined by additional rules, in turn defined by using yet more functions.
It is the functions concerned with domain-specific concepts that define the structure required
in the IR. The function updateArena, for example, is defined by Rule 2; we show an excerpt of
its specification. Taking into account the information that can be recorded in the IR, we have
defined a collection of boolean find functions that determine if a given assumption refers to a
particular concept. For example, findArenaDimensionInfo determines whether assumption refers
to the arena dimensionality. In Rule 2, we use these find functions to determine whether the second
argument arena of updateArena can be enriched with information from assumption.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:29

Rule 1 (Map RWDocument).

mapRWDoc(rwDoc : RWDocument) : RWIntermediateRepresentation =

new RWIntermediateRepresentation {

arena = mapArena(rwDoc.arenaAssumptions, new Arena{})

robot = mapRobot(rwDoc.robotAssumptions, new Robot {})

elements = mapElements(rwDoc.elementAssumptions,
enumerateElements(rwDoc.arenaAssumptions, rwDoc.robotAssumptions, rwDoc.elementAssumptions))

inputEventMappings = mapInputEvents(rwDoc.inputEventMappings)
outputEventMappings = mapOutputEvents(rwDoc.outputEventMappings)
operationMappings = mapOperations(rwDoc.operationsMappings)
variableMappings = mapInputEvents(rwDoc.variableMappings)

}

Rule 2 (Update Arena).

updateArena(assumption : ArenaAssumption, arena : Arena) : Arena =

if findArenaDimensionInfo(assumption) then arena.dimension = getArenaDimensionInfo(assumption)
elseif findArenaClosedInfo(assumption) then arena.closed = getArenaClosedInfo(assumption)
elseif findArenaFloorInfo(assumption) then arena.hasFloor = getArenaFloorInfo(assumption)
elseif findArenaRainInfo(assumption) then arena.hasRain = getArenaRainInfo(assumption)
. . .

Rule 3 (Map InputSometimes).

mapInput(input : InputSometimes) : InputIR =

new InputSometimesIR {

conditions = conditions
communications = communications

}

where

conditions = map (λ x−→ new Constraint {sentence = x}) input.conditions.sentences
communications = map (λ x−→ new Statement {sentence = x}) input.sentences

If no find function identifies information recognised in the IR, the result of updateArena is just
arena. Otherwise, the result is an updated version of arena, where one of its attributes is changed
using a get function that retrieves the relevant information from assumption.

To define the find and get functions for the sentences in the assumptions, we rely on the control
imposed by RoboWorld. The definitions, however, use general concepts such as “refers to arena”,
“dimension adjectives”, and so on. These are domain-specific concepts and the function definitions
can be easily extended if new forms of references or adjectives are added to the grammar. This is
part of the overall approach to support easy extension of RoboWorld.
Information about mappings is also extracted from the sentences. Rule 3 presents the definition

of mapInput for instances input of InputSometimes. An InputSometimes has conditions and sen-
tences, which are recorded as constraints and statements. To provide a concise definition, we rely
on the standard map function from functional programming to apply anonymous functions that
create Constraints and Statements from the respective sentences.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:30 J. Baxter et al.

Rule 4 (Annotate Constraint).

annotateConstraint(constraint : Constraint) : Constraint =

if positiveSentence(constraint.sentence)
∧ constraint.sentence.clause instanceof mkRWClause ActiveVoce ToBe ItemPhrase then

let cl = (mkRWClause ActiveVoice ToBe ItemPhrase) constraint.sentence.clause
within

constraint .booleanexpression = new Equal {

left = createItemPhraseIR(cl.itemPhrase1)
right = createItemPhraseIR(cl.itemPhrase2)

}

elseif . . .

We use a where clause to define variables global to the rule called conditions and
communications, used to define the homonymous attributes of the resulting InputSometimesIR.
The definition of conditions applies, via the use of map, a function defined by a λ expression, to
each sentence of the sequence sentences of the conditions of input. The result of the map is the
sequence of the results. The function defined by the λ expression has argument x and specifies
an instance of the IR class Constraint, whose sentence attribute has value x. It is the second set
of rules, presented in the next section, that extracts further information from the sentences, if
possible. The definition of communications is similar, but considers the sentences of input and
specifies a Statement.

6.2.2 Annotating the Intermediate Representation. Our first set of rules maps a document to
an IR representation. In contrast, the second set of rules defines an IR-to-IR transformation to
enrich the IR via the expression and action attributes of Constraints and Statements. A top rule
defines a function that applies to an RWIntermediateRepresentation and, like Rule 1, uses other
functions that deal with attributes of the IR classes, using yet more functions. It is the functions
for Constraint and Expression that define the features of an enriched IR.
For illustration, we present the next part of Rule 4, which defines a function annotateConstraint.

Specifically, we focus on the fragment that deals with positive sentences that have clauses created
with the function mkRWClause ActiveVoice ToBe ItemPhrase. An example of such a sentence
is “the gradient of the ground is 0.0”, recorded in the constraint for the gradient of the
arena in Figure 13. Themk function has two parameters of type ItemPhrase. For example, the first
ItemPhrase is “the gradient of the ground” and the second is “0.0”.
Rule 4 annotates the constraint by setting its booleanexpression to an instance of an Equal ex-

pression with left and right attributes for the ItemPhraseIRs created from the first and second item
phrases of the clause in the sentence of the given constraint. The local variable cl records that
clause; to ensure it is created usingmkRWClause ActiveVoce ToBe ItemPhrase we use a cast. In
this case, cl.itemPhrase1 and cl.itemPhrase2 give the clause’s instances of ItemPhrase. The func-
tion createItemPhraseIR, from our first set of rules, is used to translate these ItemPhrases to their
representations in the IR: instances of ItemPhraseIR. For our example, as shown in Figure 13, we
get a DeterminerIPIR and a FloatLiteralIR for the item phrases in the constraint of the arena.
Next, we show how we use the IR to define a semantics for RoboWorld.

7 SEMANTICS

In this section, we give an overview of the formal semantics of RoboWorld documents
(Section 7.1), and present semantic functions that apply to the IR (Section 7.2). Together with

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:31

Fig. 16. The structure of the RoboWorld semantics.

the rules presented in Section 6.2, they can be used to generate the semantics of a RoboWorld
document automatically.

7.1 Formal Semantics: Overview

The overall structure of the RoboWorld semantics and how it connects with the semantics of
RoboChart is indicated in Figure 16. To define a model for a whole system, including the control
software modelled in RoboChart, and the robot and the environment as defined in a RoboWorld
document, we need to compose the RoboWorld process (represented by the box labelled (2) in
Figure 16) with the process that defines the semantics of the RoboChart module ((1) in Figure 16).
This is indicated at the bottom of Figure 16 and illustrated for the firefighter example in Section 3.2.
The RoboWorld process communicates with the RoboChart process using CyPhyCircus (and CSP)
events representing the services of the robotic platform (service events in Figure 16).

The semantics of a RoboWorld document is a CyPhyCircus process comprised of two further
processes composed in parallel: an environment process ((3) in Figure 16), which represents
the objects in the environment and handles triggering of events, and a mapping process ((4) in
Figure 16), which contains the semantics for the output-event and operation mappings.
The environment process is defined by the parallelism (represented by parallel bars in box (3) of

Figure 16) of two actions. The structure of its definition is shown in Figure 5 in CyPhyCircus. The
first action (EnvironmentLoop in Figure 5 and box (5) in Figure 16) is a loop that (a) evolves the state;
(b) communicates with the mapping process via get and set channels; and (c) buffers information
about inputs. The body of the loop includes an action (box (7) in Figure 16) that continuously
evolves variables representing elements of the environment to capture the movement of the robot.
This evolution can be interrupted (indicated by △ in Figure 16) by either the detection of a collision
between the robot and an element of the environment, or by the time reaching a specified sample
time ((8) in Figure 16). After the interruption ((9) in Figure 16), if it is due to reaching the sample
time, the loop action checks if the conditions for each input event are fulfilled, communicates the
result to the second parallel action ((6) in Figure 16) and then communicates with the mapping
process ((4) in Figure 16) to allow it to get and set the values of state variables, before starting
again. If the interruption of robot movement is due to a collision, the collision is handled by an
abstract action that just ensures that there is no overlapping between the robot body and any
physical element in the environment, and then EnvironmentLoop loops back.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:32 J. Baxter et al.

Fig. 17. The RWDocument process for the firefighter example.

Fig. 18. Example of a type declared in the semantics of the firefighter RoboWorld document.

The action EventBuffers ((6) in Figure 16) defines a set of buffers, one for each input or output
event. A buffer for an input event records whether that event was detected on the time step, and
provides that information to the RoboChart process ((1) in Figure 16). A buffer for an output event
records the time in which it last happened. It takes that information from the mapping process ((4)
in Figure 16) via a happened channel. Buffering the inputs and outputs allows the evolution of the
environment in robot movement ((7) in Figure 16) to proceed independently from their communi-
cation to the RoboChart process ((1) in Figure 16), directly in the case of input events, or indirectly
via the mapping process, in the case of output events.

The mapping process ((4) in Figure 16) is defined by the interleaving of processes that accept
output events and operation calls from the RoboChart process ((1) in Figure 16), and pass on the
relevant information to the environment process. These mapping processes capture each of the
mapping definitions in the RoboWorld document.
Figures 17–20 sketch the semantics for the firefighter document presented in Figures 6 and 7.

Figure 17 shows the definition of the overall RWDocument process that captures the semantics
of the whole document. As already said, it is defined by a parallel composition (� . . . �) of pro-
cesses Environment (see Figures 5 and 19) and Mapping (see Figure 20). The union of the sets
getSetChannels, eventHappenedChannels and {proceed}, indicated between the � and � symbols,
contains the events that require synchronisation between Environment and Mapping. The same
set is indicated after \ to define that the events happen instantaneously and are not visible by the
RoboChart process.
Figure 17 also sketches the definitions of the sets getSetChannels and eventHappenedChannels.

As their names indicate, these are events for communication with the Mapping pro-
cess (getSetChannels) and with the buffers (eventHappenedChannels) as sketched in Figure 16. The
channel proceed is just a signal, that is, it does not communicate any values. It is used by the process
Mapping to indicate to the process Environment that it can proceed with the loop (see Figure 16) af-
ter all necessary communications over getSetChannels and eventHappenedChannels have finished.
To define the types of channels and state variables, the semantics declares types used to rep-

resent the properties of the elements in the environment. These are record types specified as Z
schemas, written as a box with the name of the schema (record type) at the top, the components
of the schema (fields of the record) and their types specified inside the box, and constraints on
those components specified below a horizontal line. Figure 18 shows the type ArenaProperty used
to record properties of the arena. The complete model is available in [4].

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:33

The definition of ArenaProperty follows closely that of the class Arena in the IR. Some of the
attributes of the IR arena, however, are used to define the semantics, but do not need to be reflected
in ArenaProperty. For instance, we recall that the shape of the arena is always a Box. We do not,
however, have a shape component in ArenaProperty, but the dimension attribute of the IR arena
determines the attributes of the IR class Box that we include inArenaProperty. For our example, we
have a three-dimensional arena, and so components xwidth, ywidth, and zwidth of ArenaProperty,
each of which is a real number, record the size of the arena.

Additionally, when the attribute hasFloor of arena is true, like in our example, ArenaProperty
has a component ground recording its properties as a record of typeGroundProperty (omitted here).
We always record the windspeed, but use closed and hasRain from arena to define the action that
models the movement of the robot ((7) in Figure 16).
The component locations is a set (specified in Z by P) of Positions, representing all the positions

inside the arena. Position is defined as the set of triples of real numbers, since the arena is three-
dimensional. The locations set is derived from the size of the arena, and hence is defined in a
constraint on the ArenaProperty schema. It includes the whole range of positions, with the values
for each coordinate starting from 0.0 and going up to the size for each dimension.

Finally, ArenaProperty has a component for each region of the arena. In our example, we have a
component home. Its type is defined by another schema, omitted here. Additional schemas define
types to represent the robot, and, in our example, also the building and a fire.
Global constants along with constraints on them capture environment assumptions; examples

are shown in Figure 4. We declare global constants for the properties of the static elements of the
environment; their types are Property records. The arena, for example, is unique and static, so its
constant captures the values for its properties as a record of the type ArenaProperty defined above.
Similarly, the type BuildingProperty of the building constant capture properties arising from the
assumptions on the building. Finally, a constant timeStep records the length of the time for the
loop in the Environment process. The structure of Environment is shown in Figure 5, and some of
its actions, not included in Figure 5, are sketched in Figure 19.

We recall that the Environment main action, defining its behaviour, is the parallel composition of
actions EnvironmentLoop and EventBuffers ((3) in Figure 16). EnvironmentLoop, shown in Figure 19
first initialises the state using another action EnvironmentStateInit, and then enters a loop, defined
by a recursion that introduces a local name X (µ X). EnvironmentStateInit, omitted here, is a data
operation that specifies the initial value of the encapsulated state components using the global
constants. In the body of the recursion, EnvironmentLoop performs RobotMovementAction. After-
wards, EnvironmentLoop makes a choice (�) based on whether stepTimer < timeStep or not, that
is, on the reason for interrupting RobotMovementAction ((5) in Figure 16), and then recurses (X).

RobotMovementAction specifies a state evolution using a special kind of schema, here with name
RobotMovement, that is specifically available inCyPhyCircus (but not in Z orCircus). Such schemas
are indicated by a Λ declaration of the state to specify evolution according to a set of given differ-
ential equations. The body of RobotMovement has, for instance, differential equations describing
the movement of the robot and the evolution of timers. As shown in Figure 19, the robot’s position
evolves with a derivative equal to its velocity; other equations are omitted. Timers (time, stepTimer ,
and tockTimer) evolve with a derivative of 1, so that they keep track of the time in the environ-
ment. Every component in EnvironmentState not mentioned in the equations of RobotMovement,
including the discrete components, remains the same throughout the evolution.
In RobotMovementAction, RobotMovement is interrupted (△) by the detection of a collision or

the stepTimer reaching the timeStep. The interruption condition is a disjunction covering four
cases, two of which are shown in Figure 19. The first three cases are about the robot colliding
with the ground, the building, or a fire. In each case, a collision is detected if the robot’s position

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:34 J. Baxter et al.

Fig. 19. Local actions of the Environment process for the firefighter example.

is within the element with which it is colliding. In Figure 19, we consider collision with the
ground: robot.position belonging to the arena.ground.locations. The fourth disjunct of the inter-
ruption condition shown in Figure 19 is about the stepTimer reaching the timeStep (stepTimer ≥

timeStep).
In EnvironmentLoop, a choice checks if the stepTimer has reached timeStep. If not, a

HandleCollision specifies that the robot is to be taken to a position where there is no collision, leav-
ing open how this is to be achieved. If the timeStep is reached, trigger conditions for input events
are checked in interleaving (�), that is, independently, as defined by InputTriggers in Figure 19.
The conditions for fireDetected are checked by the action in fireDetected InputEventMapping

shown in Figure 19.
In fireDetected InputEventMapping, we have a choice based on whether there is a fire1 such that

the distance between its position and the robot’s position is not greater than 0.5 (metres, since SI
units are used in the semantics and already adopted in the IR). If the condition is fulfilled, True

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:35

Fig. 20. The Mapping and goToBuilding OperationMapping processes for the firefighter UAV example.

is signalled through the fireDetectedTriggered channel to communicate to EventBuffers the occur-
rence of fireDetected (as stated in the RoboWorld mapping—see Figure 7). Moreover, the state
components for fireDetected (from EventTimes) are updated: the boolean fireDetectedOccurred

is set to True, and the timer fireDetectedTimer is set to time. If the condition is not fulfilled, False
is communicated on fireDetectedTriggered and the action terminates (Skip).

After InputTriggers, Communication repeatedly offers a choice of actions (omitted in Figure 19)
to communicate (with the Mapping process) via the getSetChannels to get and set values for the
state components. This is used byMapping to capture the effect of output events and operations ((4)
in Figure 16). When Mapping finishes, for the current loop, it signals that via proceed. An action
CheckTock then defines whether to signal to the software process, via a tock event, passage of time.
This is based on whether a tockTimer has reached tockLength, the value of the time unit used to
specify the software. Finally, the stepTimer is reset and EnvironmentLoop recurses.
EventBuffers is defined by the interleaving of two actions InputEventBuffers and

OutputEventBuffers. These are themselves defined by the interleaving of a Buffer action
for each input or output event. These are similar, so we just present fireDetected Buffer and
takeOff Buffer in Figure 19.
Regarding fireDetected Buffer , it initialises the boolean state component for the event, here

fireDetectedTrig, to False, then enters a recursion. It repeatedly offers a choice between accept-
ing a new value from EnvironmentLoop via fireDetectedTriggered and storing it in fireDetectedTrig,
and offering the fireDetected.in input (to the RoboChart process—(1) in Figure 16) whenever
fireDetectedTrig is True. Thus, the input event is offered after its triggering condition holds at
the timeStep, until a timeStep where the condition for the event is no longer satisfied.
As illustrated in Figure 19 for takeOff Buffer , the Buffer action for an output event or operation

call accepts a signal from the Mapping process via the Happened channel. Afterwards, it sets the
corresponding state components for the event or operation, just like an input Buffer action.

The Mapping process is defined by a parallelism of similar processes for each output event
and operation synchronising on the channel proceed. The definition for our firefighter example is
shown in Figure 20. For illustration, we show the process for the goToBuilding operation, called
goToBuilding OperationMapping, also presented in Figure 20.
The OperationMapping and OutputEventMapping processes are basic, but without state; their

main actions are parallelisms of two other actions: a Semantics action, to capture the mapping
defined in the RoboWorld document, and a Monitor action, to communicate with EventBuffers.
They are both triggered by the CyPhyCircus event for the RoboWorld operation or event. In our
example, this is the CyPhyCircus event goToBuildingCall for the operation goToBuilding.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:36 J. Baxter et al.

As shown in Figure 20, the goToBuilding Semantics action captures the semantics corresponding
to the mapping definition “when the operation goToBuilding is called, the velocity of

the robot is set to 1.0 m/s towards the building”. After goToBuildingCall, it obtains from
Environment the position of the robot (robotPos) and of the building (buildingPos) via get channels.
It then sets, via a set channel, the velocity of the robot to 1, multiplied by a normalised vector
from the robotPos to buildingPos, representing 1.0 m/s towards the building. When finished setting
values, a Semantics action signals the Environment to proceed and recurses. Since all Mapping

actions synchronise on proceed, the Environment proceeds only when all Semantics actions are
done.
A Monitor action communicates with EventBuffers via Happened channels. In our ex-

ample, goToBuilding Monitor , after goToBuildingCall, communicates goToBuildingHappened to
EventBuffers so that it can update timers, before recursing. The synchronisation between the
Semantics and the Monitor actions ensures that they respond to the same event occurrence or
operation call.
The semantics of a RoboWorld document can be generated automatically. Next, we discuss the

formalisation of the semantics, via generative rules that define semantic functions.

7.2 Semantics Generation: Transformation Rules

In this section we give an overview of the rules for generating the semantics of a RoboWorld
document from its IR presented in Section 6. The top-level Rule 5 defines the overall semantics as
a CyPhyCircus section (that is, sequence of definitions). As in Section 6.2, the text in grey indicates
terms of the metanotation describing how the output is constructed. The output of these rules is
CyPhyCircus, describing the model, and is presented in black text.
Rule 5 defines the semantic function [[]]RW that characterises the CyPhyCircus section that

includes all definitions needed to specify the top process RWDocument (see Figure 17) that captures
the behaviours of the robot and environment elements allowed by the assumptions and mappings
in a well-formed instance rw of the IR class RWIntermediateRepresentation given as argument.

The definition of Rule 5 uses functions defined by other rules to specify groups of definitions.
Their definitions are omitted here, but are available in [4]. The first function, typeDefinitions, gen-
erates the property types for each element, such as ArenaProperty and RobotProperty. Afterwards,
the channels are declared. The declarations for those signalling when an input has been triggered
are defined by the function eventTriggeredChannelDefinitions, for those signalling when an
operation or output has happened by eventHappenedChannelDefinitions, and for those for
getting and setting the values of properties for each element by getSetChannelDefintions. Finally,
proceed is declared. Each function takes as argument the attributes of rw that contain the relevant
information.
The constraints on elements are defined by an application of entityGlobalAssumptions. The

declaration of timeStep is in the body of Rule 5 directly. It is followed by the definitions of the
process Environment, ofMapping processes and ofMapping itself, and finally RWDocument. Each
of these processes is characterised using further functions.
Environment is defined by environmentProcess(rw). The definitions of the Mapping processes

are characterised by for iterations over the outputEventMappings and operationMappings of rw.
For each output or operation in these attributes, we include a process definition characterised
by outputMappingDefinition(output) or operationMappingDefinition(operation). Mapping itself
is characterised by mappingProcess, which also takes the attributes outputEventMappings and
operationMappings of rw as arguments, to define the parallelism of the Mapping processes.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:37

Rule 5 (Semantics of RoboWorld Documents).

[[rw : RWIntermediateRepresentation]]RW =

typeDefinitions(rw.arena, rw.robot, rw.elements)
eventTriggeredChannelDefinitions(rw.inputEventMappings, rw.variableMappings)
eventHappenedChannelDefinitions(rw.outputEventMappings, rw.operationMappings)
getSetChannelDefinitions(rw.robot, rw.elements)
channel proceed

entityGlobalAssumptions(rw.arena, rw.robot, rw.elements)

timeStep : R

process Environment =̂ environmentProcess(rw)
for output in rw.outputEventMappings do

outputMappingDefinition(output)
endfor

for operation in rw.operationMappings do
operationMappingDefinition(operation)

endfor

processMapping =̂ mappingProcess(rw.outputEventMappings, rw.operationMappings)

process RWDocument =̂
(
Environment � communicationEvents � Mapping

)
\ communicationEvents

where

communicationEvents =
getSetEvents(rw.robot, rw.elements)
∪ eventHappenedSignals(rw.outputEventMappings, rw.operationMappings)
∪ {proceed}

Finally, the RWDocument process is defined as the parallel composition of Environment and
Mapping. The synchronisation set, communicationEvents, is defined in the where clause as the
union of three sets: the get and set channels, defined by getSetEvents, the signals that output events
have happened or operations have been called, defined by eventHappenedSignals, and {proceed}.

We recall that definitions omitted here are in [4]. The rules are not complex and basically define
a CyPhyCircus semantics using the approach explained in the previous section. They, however,
make RoboWorld a formal notation, and enable automated reasoning, as illustrated in what follows.
Mechanisation of the rules and their use to calculate the semantics or a range of examples provides
evidence of the appropriateness of the rule set. Use of the semantics improves confidence.

8 ROBOTOOL

Tool support for authoring RoboWorld documents is provided by a specific plug-in for RoboTool.
In this way, the support for RoboWorld is integrated with the other RoboTool plug-ins, providing,
for example, support for modelling using RoboChart, for generating tests from RoboChart
models, and much more. Here, we provide an overview of the main distinguishing features of
this plug-in, namely, extending the RoboWorld language to deal with project-specific vocabulary,
in addition to the support provided to edit sentences adhering to the underlying grammar of
RoboWorld.
In Figure 21, we show themain screen of the RoboWorld plug-in. As an Eclipse-based application,

files are organised into projects, listed on the left panel. The highlighted project is the one for the
firefighter example. When the user clicks on any .env file, the RoboWorld Editor opens. It has
two tabs: Dictionary and RoboWorld Document. As the names suggest, the former allows editing
the project-specific dictionary, and the latter writing assumptions and mappings. In Figure 21, we
show the Dictionary. Using a tabular representation, we can extend the RoboWorld lexicon by
adding words that are specific to the selected project. For that, it suffices to provide its category
(for instance, N for nouns or A for adjectives, and so on), along with its inflection forms.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:38 J. Baxter et al.

Fig. 21. RoboWorld plug-in in RoboTool: dictionary editor.

Whenever a new word is added to the dictionary, the plug-in automatically extends the
RoboWorld lexicon for this project and recompiles all related grammars. The user does not need
to understand the underlying details or GF at all. Nevertheless, as we can see in the left-side of
Figure 21, the underlying grammars (that is, .gf files) are listed so that advanced users can still
inspect them.
According to [31], there are two predominant paradigms when writing sentences to adhere

to a CNL: structural and surface editing. In structural editing, the user mostly follows a struc-
tural approach (for instance, clicking on predefined possibilities) that prevents the writing of
invalid sentences according to the grammar of the CNL. In surface editing, the user inputs
texts with varying degrees of guidance from the editor. In such an approach, it is possible to
write sentences that are invalid. Therefore, the validity of the sentences needs to be checked
afterwards.
The RoboWorld plug-in combines both paradigms. Depending on their expertise, users can adopt

one paradigm or use a mix of both. At one side of the spectrum, sentences can be written freely,
with the support of a typical syntax complete feature. On the other side, we can write sentences
by selecting the desired structure among those supported (see Figure 22). The list of supported
structures is dynamically built. If the dictionary is updated, the new words are listed. If the gram-
mar evolves, the plug-in deals automatically with new versions. This is achieved by a dynamic
integration between our plug-in and the underlying grammars, supported by the GF API.
In Figure 22, we illustrate our combination of the editing paradigms. Figure 22(a) is shown when

we start writing a new element assumption. In the text field, between square brackets, we have the
type of sentence being created: ElementAssumption. The user can then write the sentence freely,
by just overwriting the text initially shown. However, we can select ElementAssumption and click
on Help. Then, a new dialog is shown, indicating that there are two possible ways of describing an
element assumption: using PModels or writing RWSentences. If we select the second possibility,
Figure 22(b) is shown, listing the different ways of creating RWSentences. This guide goes until the
lowest level of the grammar, when words (for instance, nouns, adjectives, and so on) are defined.
At any point, if the user knows how to write a term of a specific grammatical category, this can be
done by overwriting the text between square brackets.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:39

Fig. 22. Combination of structural and surface editing.

Less experienced users initially benefit from the guide to write sentences, but with time the num-
ber of interactions with the writing guidance is likely to be reduced. The flexible combination of
surface and structural editing supported by RoboTool suits users with different experience levels.

9 APPLICATIONS

The RoboWorld CyPhyCircus semantics allows the assumptions on the environment to be taken
into account when performing analysis of the control software. In this section, we give examples
of what is possible when we have a RoboChart model describing that software. In this case, there is
automation for theorem proving over the composition of the RoboWorld and RoboChart semantics
using Isabelle/UTP [19], which has support for CyPhyCircus. The assumptions about the environ-
ment provided by RoboWorld are also useful in simulation. They form an abstract specification for
a simulation scenario, against which a concrete scenario can be checked.
The application we have explored in detail so far, however, is in testing. RoboWorld’s design

has been primarily motivated by the fact that tests automatically generated from a control soft-
ware model can define invalid scenarios. We can use the information about the environment in a
RoboWorld document to automate the elimination of such tests.
In previous work, using an approach to mutation of RoboChart models, we obtain traces of in-

correct behaviour [12], and create tests to guard against these faults based on the test theory in [5].
To illustrate our extension of this approach to take environment assumptions into account, we con-
sider the RoboChart model in Figure 23. It defines control software for a simple rescue drone. We
omit the definition of the simple module and controller, but present the state machine (FinderM).
The software is defined in terms of input events found and origin, output events takeoff and land,

and operations turnBack() andmove(LV). Control begins in the stateOff, capturing the initial state
when the robot is deactivated. When the robot is switched on, the software proceeds with sending
the takeoff event to the robotic platform, causing the robot to take off, and then waits for TOP

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:40 J. Baxter et al.

Fig. 23. RoboChart model for a rescue drone.

time units while the robot rises into the air. After that, the call move(LV) causes the robot to start
moving towards the target, until the robot’s camera signals the detection of the target with the
found event, and the robot is signalled to land with the land event. After waiting for DELIVERY
time units while the robot lands and delivers supplies to a person in need of rescue, the robot
then takes off again (takeoff; wait(TOP)), turns back towards its starting point for TURN time
units (turnBack(); wait(TURN)), and starts moving (move(LV)). When the starting point is found,
signalled by the origin event, the robot turns back round and is signalled to land (turnBack();
wait(TURN); land).

Our mutation testing approach generated 21 unique traces of incorrect behaviour for this model,
but some of them are not interesting because they rely on environments that we are not interested
in. For example, the following trace of tock-CSP events is obtained using RoboTool:

takeoff .out, tock,moveCall.1, found.in, tock, tock, takeoff .out

In this trace, the passage of time is indicated by the tock event. Events of the robotic platform are
postfixed with in or out indicating whether they are used as inputs or outputs of the software. The
takeoff event at the end is the incorrect behaviour to test against. The found event occurs here
immediately after the moveCall event, representing a call to themove(LV) operation. For that, the
target must be in the same place as the starting point of the robot; this does not make sense, so a
test generated from this trace is not useful. Using RoboWorld, we can state assumptions about the
environment that can be used to identify such useless tests.
For our example, a relevant RoboWorld document is shown in Figure 24. The assumptions state

that the arena has an origin and a target region. The robot is stated to begin at the origin, and
the distance between the origin and target is required to be at least 1 m. With this, the event
found cannot happen as soon as the robot starts moving, since found is linked to the position of
the robot in relation to the target region by the RoboWorld mapping definitions (omitted here).

We have checked the infeasible trace shown above against a discretised tock-CSP version of
the RoboWorld semantics using the model checker FDR [24]. This shows that the trace is indeed
infeasible, since it is not a possible trace in any environment that meets the RoboWorld assump-
tions. This kind of check allows us to automatically exclude such traces from our test generation
approach. In total, 13 of the 21 traces generated are excluded by this approach, all for containing
a found event when the robot has not yet moved off the origin and so cannot have found the
target.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:41

Fig. 24. RoboWorld assumptions for the rescue drone.

ALGORITHM 1: Test generation approach incorporating RoboWorld

1: procedure TestGeneration(robochart, mutants, roboworld)
2: feasibleTraces, infeasibleTraces ← {}, {}

3: while more tests needed do

4: testTraces ← {}

5: robochartPlusTraces ← robochart ⊓ (⊓ tr : infeasibleTraces • tr ; RUN (Σ))

6: for mutant ← mutants do i
7: refines, counterexample ← CheckRefinement(robochartPlusTraces, mutant)
8: if (¬ refines) then testTraces ← testTraces ∪ {counterexample} end if

9: end for

10: for trace ← testTraces do

11: isTrace, counterexamplePrefix ← CheckTraceOf(trace, roboworld)
12: if isTrace then

13: feasibleTraces ← feasibleTraces ∪ {trace}

14: else

15: infeasibleTraces ← infeasibleTraces ∪ {counterexamplePrefix}

16: end if

17: end for

18: end while

19: return feasibleTraces

20: end procedure

Since this elimination of infeasible traces can remove a lot of the generated traces, we need
to ensure that useful tests can be generated instead. This can be done by following the proce-
dure shown in Algorithm 1. It takes as input (line 1) the RoboChart software model for the robot,
robochart, for which tests are generated, and a set of mutants, which are modified versions of the
RoboChart model with errors introduced. The RoboWorld semantics, roboworld, is also taken as
an input and used to eliminate infeasible tests. Algorithm 1 constructs two sets, which are both
initialised to the empty set on line 2: feasibleTraces, the feasible test traces output by Algorithm 1,
and infeasibleTraces, infeasible test traces to be eliminated from the test generation.

The algorithm proceeds in a loop, starting on line 3, with tests generated and infeasible tests
eliminated in each iteration. The loop is repeated as many times as needed to generate a sufficient
number of feasible tests. In Algorithm 1, we use a condition “more tests needed”, which can be
simply defined by an application-dependent number of tests to be included in feasibleTraces.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:42 J. Baxter et al.

Inside the loop, test traces are first generated in a set, testTraces, which is initialised to the
empty set on line 4. This set is built by comparing the mutants to the robochart model, similar
to what we do in our existing approach to generating traces. In Algorithm 1, however, instead of
using the original robochart process as a specification for themutants, we use an enriched process
robochartPlusTraces that composes robochart with another process that adds the infeasibleTraces
wewish to eliminate to the specification (see line 5). With the extended specification, the infeasible
traces are no longer counted as incorrect behaviour of the software when generating traces.
Each of the infeasible traces is added to the specification using internal choice (⊓), so that the

composition does not affect the behaviour of robochart. In Algorithm 1, robochartPlusTraces is
defined by an internal choice where one of the choices is robochart itself, and the others are deter-

mined by the traces tr in infeasibleTraces. We use an iterated internal choice (⊓) over traces tr in
infeasibleTraces in the description of Algorithm 1, but that is used here as metanotation to specify
a process defined using simple ⊓. If infeasibleTraces is empty, which is always the case in the first
iteration of the loop, then the result is just robochart itself. We also use here tr as metanotation for
the simple process that offers each of the events of tr in sequence, before terminating.
In robochartPlusTraces, each trace process tr is followed with a RUN (Σ) process, which repeat-

edly offers all events in scope. (Σ is the set of all events.) This prevents trivial continuations of the
infeasible trace from being generated. For example, regenerating tests with the trace shown above
eliminated, but without eliminating continuations of it, yields the following trace:

takeoff .out, tock,moveCall.1, found.in, tock, tock, takeoff .out, tock

Here, the infeasible trace has been avoided by adding a tock event at the end, but the new trace is
still infeasible for the same reason as the original infeasible trace is. The erroneous takeoff event
is also no longer at the end of the trace, although that is the desired form for defining tests.
Each mutant in mutants is compared to robochartPlusTraces in a loop beginning on line 6. The

comparison is performed on line 7, by checking ifmutant refines robochartPlusTraces, meaning all
the traces of behaviourmutant can perform are also traces robochartPlusTraces can perform. The re-
finement check outputs a boolean, refines, indicating the result of the check and, if the result is false,
a counterexample giving a trace of behaviour thatmutant can perform but robochartPlusTraces can-
not. If refines is false, the resulting counterexample is added to testTraces, on line 8.
After each of the mutants has been checked, in a for loop on line 10, each trace in testTraces is

checked for feasibility. This is done by checking if the trace is a trace of behaviour that can be per-
formed by roboworld. As with the refinement check, the output of this check is a boolean, isTrace,
that records the result and, if isTrace is false, a counterexamplePrefix recording the shortest prefix
of trace that is not a trace of roboworld. If isTrace is true then trace is feasible and is added to the
feasibleTraces set, on line 13. If isTrace is false, then trace is infeasible and counterexamplePrefix is
added to infeasibleTraces. Adding counterexamplePrefix rather than trace ensures variations of trace
after the point the infeasibility are also excluded from the generation of test traces. For example,
generating traces with the infeasible trace shown earlier eliminated, as well as any continuations
of it, as discussed above, produces the following trace:

takeoff .out, tock,moveCall.1, found.in, tock, tock, tock, takeoff .out

This trace is similar to the infeasible trace, but has tock inserted before the end, so that it is not a con-
tinuation of the infeasible trace. The infeasible behaviour found.in immediately aftermoveCall.1 is,
however, still present. To eliminate similar infeasible traces, counterexamplePrefix with the events
up to and including found.in must be eliminated (along with its continuations).
Once testTraces have been sorted into feasibleTraces and infeasibleTraces, the while loop contin-

ues. Algorithm 1 returns the feasibleTraces set on line 19. It terminates if “more tests needed”, based

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:43

on the increasing size of feasibleTests and an upper bound on the number of iterations, for example.
It is also linear on the number of mutants. The bottleneck is the refinement and trace checks.
The mutants for the rescue drone example generate 13 infeasible traces, leaving just eight feasi-

ble traces. This forms the output from the first iteration of the loop. In the checking on the second
iteration eight new feasible traces are generated, in addition to the eight existing feasible traces,
but 12 infeasible traces are also generated. Among the new feasible traces generated in the second
iteration is a feasible variant of the trace considered above:

takeoff .out, tock,moveCall.1, tock, found.in, tock, tock, takeoff .out

This is feasible, since it allows time for the drone to move towards the target area aftermoveCall.1,
before it finds the target area with found.in. Of the 12 infeasible traces generated in the second
iteration, nine are formed by placing tock at the start of an infeasible trace. The remaining three
traces are infeasible due to detecting the originwhile still over the target region, the dual case of the
infeasibility observed earlier. Running a third iteration of the loop generates a further three feasible
traces and four new infeasible traces. This brings the total number of feasible traces generated to
19, so that we have feasible traces for almost all of the original 21 traces generated.

As said, the work above is supported by a discretisation of our semantics. This discretisation
scales poorly for larger environments, since it involves a lot of computation to represent the evolu-
tion of variables, which can cause a state explosion. An alternative is to use hybrid model checkers,
where the continuous evolution of state is given special handling. Many hybrid model checkers
are limited in the kinds of models they can support, with some having limited support for non-
linear equations or parallel composition of components. We are currently working to implement
the RoboWorld semantics in the hybrid model checker CORA [2].

In future work, we will improve automation by integrating model checking with theorem prov-
ing so that results from automated model checking can be used to provide facts that form part of
proofs. Given the restricted nature of the checks required by Algorithm 1, for example, based on
automatically generated processes, we will work to devise proof tactics to achieve automation and
scalability in a setting that combines theorem proving and model checking.

10 CONCLUSIONS

We have presented RoboWorld, a CNL for documenting operational requirements of robotic sys-
tems. We have described the overall structure of a RoboWorld document using a metamodel, de-
fined using elements of the English grammar, such as Sentence, Noun, and so on. A concrete
grammar, defined using the GF, specifies the subset of the English language that is currently ac-
cepted. RoboWorld is a very flexible language, with an open vocabulary to define, for example,
elements of the environment. Two sets of transformation rules are used to characterise an inter-
mediate representation for a RoboWorld document, from which other rules define a precise hybrid
process-algebraic semantics written in CyPhyCircus for that document.
The concrete grammar is very powerful, allowing and enforcing correct use of inflections, for

example. The intermediate representation groups together the sentences that are relevant to each
of the concepts primitive to RoboWorld: arena, robot, any additional entities, and so on. After-
wards, the first set of model-to-model rules enrich the intermediate representation to expose fur-
ther structure in the sentences. They carry out a form of pre-processing to simplify the following
transformation, from the intermediate representation to a CyPhyCircus model. The intermediate
representation can also be used as a gateway to consider semantics in several notations.
The design of RoboWorld captures an extensible collection of concepts relevant to the definition

of operational requirements for a robotic application. With RoboWorld, roboticists can use English

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:44 J. Baxter et al.

to capture such requirements, an approach in line with current practice. Moreover, an English
description of assumptions is accessible to a wide range of stakeholders.
It is possible, however, to use, for example, a diagrammatic notation based on the intermediate

representation. It is a purely technological matter to extend RoboTool to support writing of models
based on the metamodel for the intermediate representation. Moreover, due to our use of GF, re-
alisation of RoboWorld in different natural languages is just a matter of dealing with the different
linearisations of standard concepts, such as noun and verb phrases, in the new language.
Robotics is a very wide domain, and the open vocabulary, the intermediate representation, and

the compositional sets of transformation rules are important assets to support future evolution and
additional specialisation of RoboWorld. For example, we can cover, via a richer dictionary, classes
of robotic applications, such as terrestrial or aerial robots, or even specific application areas, like
healthcare or agriculture. On the other hand, we can envisage use of RoboWorld for cyber-physical
systems in general, where a physical platform and an environment are also key components. More-
over, the part of the RoboWorld metamodel that is presented in Figure 10, defining ItemPhrases
and sentences, can be reused in other CNLs.
In future work, we will consider additional case studies. RoboWorld can cater for 96 different

structures for writing sentences, and the GF has been under development and use for more than
20 years. The support for document writing is in line with well accepted practice in the area [31].
We can either write documents in free form, or guided by a set of dialogues that enforce the
required structure of sentences. We can benefit, nevertheless, from a usability study.
Regarding the semantics, CyPhyCircus is a hybrid process algebra, and the challenges of auto-

mated reasoning using hybrid models are many. Scalability requires theorem proving, and we can
take advantage of Isabelle/UTP, unique in that it builds on a widely used theorem prover and the
UTP to support very rich hybrid, reactive, and concurrent models. Automation can benefit from
integrated use of theorem proving and model checking.
Another possibility is the direct generation of a hybrid automata semantics, which may be more

suitable for model checking. Such a semantics might avoid the state explosion arising from the use
of networks of automata to reflect the structure of processes. An automata model requires restric-
tions on the use of data types in the RoboWorld document, and is limited in terms of integration
with richer (reactive or probabilistic, for example) semantics. It is, however, appealing in terms of
automated reasoning in the scope of what it can cover.

ACKNOWLEDGMENTS

We are grateful to the members of the RoboStar centre and anonymous referees for valuable sug-
gestions and discussions.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. 2007. Compilers: Principles, Techniques, and Tools. Addison-Wesley.

[2] M. Althoff. 2015. An introduction to CORA 2015. In 1st and 2nd International Workshop on Applied Verification for

Continuous and Hybrid Systems. G. Frehse and M. Althoff (Eds.), EPiC Series in Computing, Vol. 34. EasyChair,

120–151.

[3] M. Askarpour, L. Lestingi, S. Longoni, N. Iannacci, M. Rossi, and F. Vicentini. 2021. Formally-based model-driven

development of collaborative robotic applications. Journal of Intelligent and Robotic Systems 102, 3 (2021), 59.

[4] J. Baxter, A. L. C. Cavalcanti, G. Carvalho, and F. Rodrigues Jr. 2022. RoboWorld Reference Manual. Technical Re-

port. RoboStar Centre on Software Engineering for Robotics. Retrieved from robostar.cs.york.ac.uk/publications/

techreports/reports/roboworld-reference.pdf

[5] J. Baxter, A. L. C. Cavalcanti, M. Gazda, and R. Hierons. 2022. Testing using CSP Models: Time, Inputs, and Outputs –

Extended Version. Technical Report. RoboStar Centre on Software Engineering for Robotics. Retrieved from robostar.

cs.york.ac.uk/publications/reports/BCGH22.pdf

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

RoboWorld: Verification of Robotic Systems with Environment in the Loop 26:45

[6] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hendriks. 2006. UPPAAL 4.0. In 3rd

International Conference on the Quantitative Evaluation of Systems. IEEE Computer Society, 125–126.

[7] A. Burns, I. J. Hayes, and C. B. Jones. 2020. Deriving specifications of control programs for cyber physical systems.

The Computer Journal 63, 5 (2020), 774–790.

[8] J. J. Camilleri, M. R. Haghshenas, and G. Schneider. 2018. A web-based tool for analysing normative documents in

english. In 33rd Annual ACM Symposium on Applied Computing. Association for Computing Machinery, 1865–1872.

[9] J. J. Camilleri, G. Paganelli, and G. Schneider. 2014. A CNL for contract-oriented diagrams. In Controlled Natural

Language. B. Davis, K. Kaljurand, and T. Kuhn (Eds.), Springer International Publishing, 135–146.

[10] A. L. C. Cavalcanti, W. Barnett, J. Baxter, G. Carvalho, M. C. Filho, A. Miyazawa, P. Ribeiro, and A. C. A. Sampaio.

2021. RoboStar Technology: A Roboticist’s Toolbox for Combined Proof, Simulation, and Testing. Springer International

Publishing, 249–293. DOI:https://doi.org/10.1007/978-3-030-66494-7_9

[11] A. L. C. Cavalcanti, J. Baxter, and G. Carvalho. 2021. RoboWorld: Where can my robot work?. In Software Engineering

and Formal Methods. R. Calinescu and C. S. Păsăreanu (Eds.), Lecture Notes in Computer Science, Springer, 3–22.

DOI:https://doi.org/10.1007/978-3-030-92124-8_1

[12] A. L. C. Cavalcanti, J. Baxter, R. M. Hierons, and R. Lefticaru. 2019. Testing robots using CSP. In Tests and Proofs,

D. Beyer and C. Keller (Eds.), Springer, 21–38. DOI:https://doi.org/10.1007/978-3-030-31157-5_2

[13] A. L. C. Cavalcanti, B. Dongol, R. Hierons, J. Timmis, and J. C. P. Woodcock (Eds.). 2021. Software Engineering for

Robotics. Springer International Publishing. DOI:https://doi.org/10.1007/978-3-030-66494-7

[14] A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva Filho, A. Didier, W. Li, and J. Timmis.

2019. Verified simulation for robotics. Science of Computer Programming 174 (2019), 1–37. DOI:https://doi.org/10.

1016/j.scico.2019.01.004

[15] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. 2003. A refinement strategy for circus. Formal Aspects

of Computing 15, 2–3 (2003), 146–181. DOI:https://doi.org/10.1007/s00165-003-0006-5

[16] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. Seshia. 2017. DRONA: A framework for safe distributed mobile robotics.

In 8th International Conference on Cyber-Physical Systems. IEEE, 239–248.

[17] Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione. 2021. Languages for Specifying

Missions of Robotic Applications. Springer International Publishing. DOI:https://doi.org/10.1007/978-3-030-66494-7_

12

[18] M. Esser and P. Struss. 2007. Obtaining models for test generation from natural-language like functional specifica-

tions. In International Workshop on Principles of Diagnosis. 75–82.

[19] S. Foster, J. Baxter, A. L. C. Cavalcanti, A. Miyazawa, and J. C. P. Woodcock. 2018. Automating verification of state

machines with reactive designs and isabelle/UTP. In Formal Aspects of Component Software. K. Bae and P. C. Ölveczky

(Eds.). Springer, Cham, 137–155. DOI:https://doi.org/10.1007/978-3-030-02146-7_7

[20] S. Foster, A. L. C. Cavalcanti, S. Canham, J. C. P. Woodcock, and F. Zeyda. 2020. Unifying theories of reactive design

contracts. Theoretical Computer Science 802 (2020), 105–140. DOI:https://doi.org/10.1016/j.tcs.2019.09.017

[21] Martin Fowler. 2010. Domain Specific Languages (1st. ed.). Addison-Wesley Professional.

[22] Carlo A. Furia, Matteo Rossi, and Dino Mandrioli. 2007. Modeling the environment in software-intensive systems.

In International Workshop on Modeling in Software Engineering (MISE’07: ICSE Workshop 2007). 11–11. DOI:https:

//doi.org/10.1109/MISE.2007.11

[23] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. 2021. Automated for-

malization of structured natural language requirements. Information and Software Technology 137 (2021), 106590.

DOI:https://doi.org/10.1016/j.infsof.2021.106590

[24] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. 2014. FDR3 - a modern refinement checker for

CSP. In Tools and Algorithms for the Construction and Analysis of Systems. 187–201.

[25] C. A. R. Hoare and He Jifeng. 1998. Unifying Theories of Programming. Prentice-Hall.

[26] Tobias Kuhn. 2014. A survey and classification of controlled natural languages. Computational Linguistics 40, 1 (2014),

121–170. DOI:https://doi.org/10.1162/COLI_a_00168

[27] M. Kwiatkowska, G. Norman, and D. Parker. 2004. Probabilistic symbolic model checking with PRISM: A hybrid

approach. International Journal on Software Tools for Technology Transfer 6, 2 (2004), 128–142.

[28] K. Larsen, M. Mikucionis, and B. Nielsen. 2005. Online testing of real-time systems using UPPAAL. In Formal Ap-

proaches to Software Testing. J. Grabowski and B. Nielsen (Eds.), Springer, Berlin, 79–94.

[29] Livia Lestingi, Davide Zerla, Marcello M. Bersani, and Matteo Rossi. 2023. Specification, stochastic modeling and

analysis of interactive service robotic applications. Robotics and Autonomous Systems 163 (2023), 104387. DOI:https:

//doi.org/10.1016/j.robot.2023.104387

[30] N. Lincoln and S. M. Veres. 2013. Natural language programming of complex robotic BDI agents. Journal Intelligent

Robotics Systems 71, 2 (2013), 211–230.

[31] B. Luteberget. 2019. Automated Reasoning for Planning Railway Infrastructure. Ph.D. Dissertation.

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

26:46 J. Baxter et al.

[32] B. Luteberget, J. J. Camilleri, C. Johansen, and G. Schneider. 2017. Participatory verification of railway infrastructure

by representing regulations in RailCNL. In Software Engineering and Formal Methods. A. Cimatti andM. Sirjani (Eds.),

Springer International Publishing, 87–103.

[33] S. Maoz and J. Ringert. 2015. Synthesizing a lego forklift controller in GR(1): A case study. In 4th Workshop on

Synthesis (EPTCS). P. Cerný, V. Kuncak, and P. Madhusudan (Eds.), Vol. 202, 58–72.

[34] S. Maoz and Y. Saar. 2011. AspectLTL: An aspect language for LTL specifications. In 10th International Conference on

Aspect-Oriented Software Development. Association for Computing Machinery, 19–30.

[35] A. Miyazawa, A. L. C. Cavalcanti, S. Ahmadi, M. Post, and J. Timmis. 2020. RoboSim Physical Modelling: Diagrammatic

Physical Robot Models. Technical Report. University of York, Department of Computer Science, York, UK. Retrieved

from robostar.cs.york.ac.uk/notations/

[36] A. Miyazawa, P. Ribeiro, K. Ye, A. L. C. Cavalcanti,W. Li, J. Timmis, and J. C. P.Woodcock. 2020. RoboChart: Modelling,

Verification and Simulation for Robotics. Technical Report. University of York, Department of Computer Science, York,

UK. Retrieved from www.cs.york.ac.uk/robostar/notations/

[37] J. H. Y. Munive, G. Struth, and S. Foster. 2020. Differential hoare logics and refinement calculi for hybrid systems with

Isabelle/HOL. In 18th International Conference on Relational and Algebraic Methods in Computer Science. Vol. 12062,

Lecture Notes in Computer Science, Springer, 169–186.

[38] S. Nogueira, A. C. A. Sampaio, and A. C. Mota. 2014. Test generation from state based use case models. Formal Aspects

of Computing 26, 3 (2014), 441–490.

[39] J. Peleska, E. Vorobev, F. Lapschies, and C. Zahlten. 2011. Automated Model-Based Testing with RT-Tester. Technical

Report. Universität Bremen.

[40] M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. 2004. Multi-robot planning: A timed automata approach. In IEEE

International Conference on Robotics and Automation. 4417–4422.

[41] A. Ranta. 2011. Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications.

[42] Andreas Wortmann, Jan Oliver Ringert, and Bernhard Rumpe. 2014. Architecture and behavior modeling of cyber-

physical systems with MontiArcAutomaton. Shaker Verlag, Aachen.

[43] A. W. Roscoe. 2011. Understanding Concurrent Systems. Springer.

[44] T. Santos, G. Carvalho, and A. Sampaio. 2018. Formal modelling of environment restrictions from natural-language

requirements. In Formal Methods: Foundations and Applications. T. Massoni and M. Mousavi (Eds.), Springer Interna-

tional Publishing, 252–270.

[45] S. Schneider. 2000. Concurrent and Real-time Systems: The CSP Approach. Wiley.

[46] Matthias Schnelte. 2009. Generating test cases for timed systems from controlled natural language specifications. In

International Conference on System Integration and Reliability Improvements. 348–353.

[47] R. Schwitter. 2002. English as a formal specification language. In International Workshop on Database and Expert

Systems Applications. France.

[48] O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu. 2003. Automated environment generation for software model check-

ing. In 18th IEEE International Conference on Automated Software Engineering. 116–127. DOI:https://doi.org/10.1109/

ASE.2003.1240300

[49] J. C. P. Woodcock and J. Davies. 1996. Using Z - Specification, Refinement, and Proof. Prentice-Hall.

Received 27 January 2023; revised 19 September 2023; accepted 22 September 2023

Formal Aspects of Computing, Vol. 35, No. 4, Article 26. Publication date: November 2023.

