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SUMMARY

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations

that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However,

our understanding ofmutational effects remains limited to the resolution attainable within immunophenotypi-

cally and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleuke-

mic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models

with drivermutations ofmyeloidmalignancies, generating 269,048 single-cell profiles. Our analysis infersmu-

tation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression

at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with

differentiation bias.We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic tran-

scriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-reso-

lution deep characterization of preleukemic biology has the potential to enhance our understanding of AML

heterogeneity and inform more effective risk stratification strategies.

INTRODUCTION

Acutemyeloid leukemia (AML) is a heterogeneous hematological

malignancy that arises from hematopoietic stem and progenitor

cells (HSPCs). At least nine functional categories of genes are

recurrently mutated and drive the heterogeneity in the process

of leukemogenesis.1 At the time of diagnosis, leukemic blasts

are often present with multiple driver mutations with character-

istic patterns of co-occurrence and mutual exclusivity.1,2 These

observations suggest that individual mutations possess unique

and complementary functions that cooperate to promote leuke-

mogenesis. Therefore, a deeper understanding of the distinct

leukemogenic effects of individual mutations is a crucial next

step in deciphering the intra- and inter-patient heterogeneity

that results from different combinations of mutations.

Approximately 20%ofAMLcasesare recognizedasdeveloping

from antecedent myeloid neoplasms, such as myeloproliferative

neoplasmsandmyelodysplastic syndrome,3 following theacquisi-

tion of additional functional categories of mutations.4,5 Recent

studies on clonal hematopoiesis6,7 have demonstrated that indi-

vidual mutations confer varying degrees of fitness to HSPCs and

modulate the risk forprogression to leukemia. Thus,mutation-spe-

cific remodeling of hematopoietic clonal architecture plays a role

from the earliest preleukemic stage through to full leukemic trans-

formation.However, asearly preleukemic changes are clinically si-

lent, howsinglemutationsdifferently perturb theentirehematopoi-

etic system remains largely elusive.

Over the past half decade, single-cell technologies, including

single-cell RNA sequencing (scRNA-seq), have reshaped our un-

derstanding of the hematopoietic hierarchy from a tree-like,

stepwise model toward a differentiation landscape model.8

More recent advances in computational and mathematical

methods have further expanded the application of scRNA-seq

beyond gene expression comparison, enabling the inference of

more complex biological information, such as cellular fate

probabilities9 and metabolic activities.10 As such, scRNA-seq

provides a unique advantage in characterizing mutation-driven

perturbations in various biological processes.

In this study, we perform scRNA-seq on bone marrow HSPCs

and computationally infer the preleukemic changes in cell abun-

dance, cellular lineage fate, metabolic activities, and gene

expression across eight different mouse models harboring pre-

leukemic mutations in Jak2, Calr, Flt3, Npm1, Idh1, Dnmt3a,

Ezh2, and Utx (Figure 1A). Our preleukemic mouse cell atlas
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(PMCA) can be explored using an interactive web portal at

https://gottgens-lab.stemcells.cam.ac.uk/preleukemia_atlas/.

This single-cell-resolution multi-scale analysis illustrates muta-

tion-specific mechanisms of hematopoietic perturbation and

identifies preleukemic genetic programs predictive of AML pa-

tient outcomes (Stem11 signature), thus establishing a novel

framework for translating preleukemic biology into an improved

treatment stratification strategy for AML patients.

RESULTS

Reference-based integration provides standardized

visualization across multiple datasets

To unravel themutation-specific preleukemic effects on hemato-

poietic differentiation, we performed scRNA-seq of lineage-

negative/c-Kit-positive (LK) cells for 38 animals from eight

different mutant mouse models and their wild-type littermates:

homozygous Jak2 V617F,12 homozygous Calr 52 bp deletion,13

heterozygous Flt3-ITD,14 heterozygous Npm1c,15 heterozygous

Idh1 R132H,16 heterozygous Dnmt3a R882H,17 homozygous

Ezh2 knockout (KO)18 and homozygous Utx KO19 (Table S1). A

total of 269,048 single-cell transcriptomes passed stringent

quality control measures (see STAR Methods), with a median

of 2,819 genes detected per cell.

To minimize technical batch effects and enhance comparability

between the mutant hematopoietic landscapes, we took advan-

tage of our previously reported single-cell mouse hematopoietic

atlas11 (Figures 1B and S1A) and projected all mutant and wild-

typesamplesonto this referenceatlaswitha reference-based inte-

gration and label transfer strategy using Seurat20 (see STAR

Methods). This enabled an automatic identification of the hemato-

poietic differentiation landscape within individual animals within a

common uniform manifold approximation and projection (UMAP)

space, while mitigating technical batch effects (Figure 1C). Our

mutant animals did not develop overt leukemia at the time of anal-

ysis and consistently, the scRNA-seq landscapes revealed multi-

lineage hematopoiesis in all mutant models (Figures S1B and

S1C). Therefore,our dataprovideaunique view into the ‘‘preleuke-

mic’’ window of various mutations, and our data integration strat-

egyenablesastandardizedvisualizationacrossconditions to facil-

itate further quantitative comparisons of mutation-driven

molecular, cellular, and tissue-scale alterations (Figure 1A).

Preleukemic stem and progenitor cells show skewed

abundance under steady state

To characterize the tissue-scale effects of individual mutations,

we first performed differential cell abundance analysis. Using

the Python package MELD,21 we computed single-cell-resolu-

tion differential abundance by comparing the cell densities be-

tween paired mutant and wild-type samples (Figure S2A; see

STAR Methods for details). When plotted in the common

UMAP space, this differential abundance score (mutant relative

likelihood) illustrated, at single-cell resolution, which transcrip-

tionally defined cell types were increased or depleted in each

mutant model (Figure 2A).

Reassuringly, this analysis was able to recapitulate the pheno-

typeofJak2V617Fmice, in that in addition toa significant increase

in later erythroid progenitors, a depletion of the most quiescent

HSCs and megakaryocyte progenitors was detected (Fig-

ure S2B).12 Of particular interest were the complex changes

observed within the broadly defined hematopoietic stem cell

(HSC) cluster of the Flt3 ITD mutant animals (Figures 2B and 2C).

To characterize these increased and depleted subpopulations

of HSCs, a previously developed HSC score (molecular signature

of long-term repopulating HSCs22) was calculated, which showed

significantly higher scores in the depleted HSCs (p = 1.3 3 10�8;

Figure 2D), indicating that the Flt3 ITD mutation selectively

depletes the most quiescent long-term HSCs. Importantly, clus-

ter-wise comparison of population proportions failed to capture

significant changes in the Flt3 ITD HSCs (Figure 2E), as discrete

population-level summarization loses information about intra-

cluster heterogeneity.Moreover, although the bulk neutrophil pro-

genitor population was significantly increased in the Flt3 ITD mice

(p=2.5310�3; Figure2E), our single-cell-level evaluation revealed

a significant depletion of later neutrophil progenitors (Figure 2F),

suggestingadifferentiationblockat the lateneutrophilicprogenitor

stage, which is consistent with the observation of terminal neutro-

philic differentiation of FLT3 ITD-positive AML blasts after treat-

ment with FLT3 inhibitors.23,24

Both young (12-week-old) and old (41-week-old) Calr mutant

mice showed a consistent increase in HSCs and megakaryocyte

progenitors, where the magnitude of changes was significantly

greater in the old animal (FiguresS2CandS2D). TheUtxKOmodel

showed a significant increase in neutrophil progenitors andmega-

karyocyte progenitors as well as a depletion of erythroid progeni-

tors (Figure S2E), while the Ezh2 KO model had only a few cells

with significant changes (Figure S2E), presumably because Ezh2

KO affects later B and T lymphopoiesis in adult hematopoiesis25

and thus the impact on HSPC abundance is relatively small. The

Npm1c, Idh1R132H, andDnmt3aR882Hmutations showedmin-

imal changes in cellular abundancewith the clustermedianmutant

relative likelihood fallingwithin the range of 0.4–0.6 for all cell types

(Figure 2A) and with no statistically significant differential abun-

dance, indicating that these mutations contribute to leukemogen-

esis in away thatdoesnot involvedramaticchanges in tissue-wide

population abundance at the HSPC level. Altogether, our differen-

tial abundance analysis has provided a mutation-specific tissue-

wide picture of skewed hematopoiesis at single-cell resolution.

Figure 1. Standardized visualization across multiple mutant landscapes using reference-based data integration

(A) Schematic overview of the analysis workflow in this study. Data integration: scRNA-seq data of individual animals are first projected onto the reference mouse

hematopoietic atlas and all visual representations of the results are shown in the common UMAP space. Downstream analysis: the downstream analysismodules

then infer differential abundance, cellular fate probability, cellular metabolic activity and gene expression changes. All results are shown in the common UMAP

space to permit comparison among genotypes.

(B) UMAP plot of the referencemouse hematopoietic atlas11 (44,802 cells). HSC, hematopoietic stem cell; prog, progenitors; Mono, monocyte; DC, dendritic cell;

MEP, megakaryocyte-erythroid progenitors; MK, megakaryocyte; Ery, erythroid.

(C) Integrated preleukemic mouse hematopoietic atlas (38 animals, 269,048 cells). Cells are color coded according to cell types as in (B). WT, wild type; KO,

knockout.
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Single-cell transcriptome deciphers mutation-driven

fate bias in early HSPCs

Next, to explore whether and how each mutation alters the cell-

intrinsic potential of differentiation, we inferred cellular fate prob-

abilities using CellRank.9 On the basis of a cell-to-cell neighbor-

hood graph and diffusion pseudotime,26 cell-to-cell transition

probabilities were first computed, and then the fate probabilities

toward seven major hematopoietic lineages (megakaryocyte,

A

D E

F

CB

Figure 2. Depicting tissue-scale subpopulation abundance at single-cell resolution

(A) Differential abundance landscapes of eight preleukemicmutant models. Higher likelihood (red) corresponds to higher abundance and lower likelihood (blue) to

lower abundance in each mutant model compared with paired wild-type samples. All results are presented in the same color scale ranging from 0.2 to 0.8 for

comparability. Cell types with a median mutant relative likelihood of >0.6 or <0.4 are indicated.

(B) Statistically significant differential abundance (DA) in the Flt3 ITDmodel. p values were derived using a two-sided t test. Cells with raw p values < 0.05 and BH-

adjusted p values < 0.25 are colored red (abundant) or blue (depleted in the Flt3 ITD model).

(C) A magnified section of the HSC cluster region. The boundary of the HSC cluster is outlined with dashed lines.

(D) Top: the HSC score in the Flt3 ITD and wild-type HSCs. Bottom: significant difference in the HSC score between Flt3 ITD-depleted (mutant relative likeli-

hood < 0.4) and increased (mutant relative likelihood > 0.6) HSCs. Boxplots show median and first/third quartiles. The whisker extends from the smallest to the

largest values within 1.5 3 IQR from the box hinges. The p value is from a two-sided Wilcoxon rank-sum test.

(E) Stacked bar plots showing the cell type proportions in the Flt3 ITD and wild-type animals. Cell types are color coded as in Figure 1B. Statistical significance

was determined with two-sided t test.

(F) A magnified section of the neutrophil progenitor cluster region. The boundary between significantly expanded neutrophil progenitors (red) and depleted later

neutrophil progenitors (blue) is indicated by a dashed line.
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erythroid, lymphoid, neutrophil, monocyte, basophil, and mast

cell) were computed for each cell, allowing visual and statistical

evaluation of the fate bias in each mutant model (Figures 3A

and S3).

Of note, cell fate probability analysis identified a significant in-

crease in megakaryocytic and a decrease in erythroid fate prob-

ability in the Calr mutant megakaryocyte-erythroid progenitors

(MEPs; Figure 3A), consistent with the higher and lower produc-

tion of megakaryocyte and erythroid progenitors, respectively

(Figure 2A). Intriguingly, megakaryocytic fate bias was detect-

able even at the level of HSCs (Figure 3B), although the effect

was smaller than in MEPs (median fate difference of 17.9% in

HSCs (28.9% in Calr mutant vs. 11.0% in wild type) compared

with 48.5% in MEPs (72.1% in Calr mutant vs. 23.6% in wild

type). Similarly, erythroid fate bias was detected in the Jak2

V617F HSCs and MEPs with a greater difference in MEPs (me-

dian fate difference of 9.4% in HSCs (41.1% in Jak2 mutant vs.

31.7% in wild type) compared with 16.6% in MEPs (66.7% in

Jak2mutant vs. 50.0% in wild type); Figure 3C). As the megakar-

yocytic and erythroid bias in the Calr and Jak2 mutated HSCs

has been previously demonstrated experimentally,27,28 our re-

sults not only computationally recapitulated these phenotypes

but also provided a quantitative view of how hematopoietic line-

age fates are progressively biased from HSCs to more differen-

tiated oligo-/bi-potent progenitors. Other lineage bias detected

in mutant HSCs included monocytic bias by the Flt3 ITD and

Npm1c mutations, lymphoid bias by the Ezh2 KO and neutro-

philic and megakaryocytic bias by the Utx KO (Table S2). Of

note, Npm1c mutant HSCs showed monocytic bias at the

expense of neutrophilic fate (Figure 3D), consistent with the

A

DCB

Figure 3. Mutation-driven fate bias in early HSPCs

(A) Workflow of CellRank-based differential fate probability analysis. A neighborhood graph and diffusion pseudotime were computed (top left) and used to infer

cell-to-cell transition probabilities (top middle). On the basis of the transition matrix, the fate probabilities toward seven hematopoietic lineages (megakaryocyte,

erythroid, lymphoid, neutrophil, monocyte, basophil, andmast cell) were estimated for the individual cells (top right). The single-cell estimates of fate probabilities

were then compared between the paired mutant and wild-type samples (bottom). Ery, erythroid; Lym, lymphoid; Baso, basophil; Neu, neutrophil; Mo, monocyte;

MK, megakaryocyte.

(B) Significant difference in the megakaryocyte probability between Calr mutant and wild-type HSCs.

(C) Significant differences in the erythroid probability between Jak2 mutant and wild-type MEPs (left) and HSCs (right).

(D) Significant differences in the monocyte (left) and neutrophil (right) probability between Npm1 mutant and wild-type HSCs. Boxplots show median and first/

third quartiles. The whisker extends from the smallest to the largest values within 1.5 3 IQR from the box hinges. p values are from logistic regression and

likelihood ratio test and are BH adjusted.
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highest incidence of monocytic AML (FAB M4/M5) in the NPM1-

mutated patients.29 No positive lineage bias was detected in the

Dnmt3a and Idh1 mutant models (Table S2). Overall, our fate

probability analysis provided insights into how different muta-

tions may alter HSC fates and have the potential to tilt the bal-

ance of hematopoietic lineages.

Neural network modeling reveals distinct metabolic

alterations associated with different mutations

As the differential abundance and fate probability analyses have

revealed tissue and cellular scale perturbations, we next sought

to characterize the molecular level alterations in the preleukemic

conditions. For this purpose, we computationally inferred the

cellular metabolic activities from scRNA-seq data using a deep

neural networkmodel of the Python package scFEA10 and inves-

tigated mutation-driven metabolic alterations (Figure 4A).

By comparing the paired mutant and wild-type samples, we

first asked whether our results recapitulate known metabolic

changes in mutant mouse hematopoiesis. MEPs from Jak2

V617F mutant mice are known to upregulate glycolysis, the

tricarboxylic acid (TCA) cycle and nucleotide synthesis pathways

to fuel their increased energy requirements for overproduction of

erythrocytes.30 Consistently, neural-network-based metabolic

profiling successfully identified a significant upregulation of

these pathways in MEPs within our Jak2 V617F model (Figures

S4A and S4B). Moreover, a recent report has shown by isotope

tracing that the co-occurrence of Ezh2 KO andNrasG12Dmuta-

tion enhances the branched-chain amino acid (BCAA) meta-

bolism while Ezh2 KO or Nras G12D mutation alone does not

alter the activity of this metabolic pathway.31 Again, our meta-

bolic profiling using the scRNA-seq data from the same mouse

models32 successfully identified the enhanced BCAA meta-

bolism only in the double-mutant model (Figures S4C and

S4D). These results thus verified the applicability of this method

for the hematopoietic system.

Encouraged by the validation results, we further explored the

metabolic alterations in our mutant models. As glycolysis and

the TCA cycle are the major source of cellular energy, we asked

whether the increased cell populations in each mutant model

(Figure 2A) are accompanied by increased energy generation.

Indeed, the Jak2 andCalrmutations (group 1mutations) showed

global upregulation of these metabolic pathways in the exp-

anded erythroid and megakaryocyte progenitors, respectively

(Figure 4B). This is consistent with the constitutive activation of

the JAK-STAT signaling pathway and cellular proliferation by

these mutations,33,34 which augments cellular energy require-

ments. In contrast, the mutations in the epigenetic regulators

Idh1, Ezh2, and Utx, as well as the Npm1 mutation (group 2 mu-

tations), showed significant downregulation of these energy-

generating pathways in their respective targets of cell type accu-

mulation (Figures 4C and S4E), suggesting that accumulation of

cells was the consequence of a differentiation block rather than a

proliferative push.

TheDnmt3a and Flt3 ITDmutations did not fit into either group;

theDnmt3amutation did not show significantmetabolic changes

in these energy-producing pathways (Figure 4D). Interestingly,

the Flt3 ITD mutation induced downregulation of the TCA cycle

while maintaining or upregulating the glycolysis reactions (Fig-

ure 4E). This dissociation between glycolysis and the TCA cycle

is consistent with the Warburg effect, a cancerous metabolic

alteration in favor of glucose metabolism into lactate rather

than harnessing the TCA cycle.35 Altogether, our single-cell

metabolic analysis has successfully recapitulated known muta-

tion-driven metabolic alterations in the hematopoietic system

and further proposed a classification of leukemogenic mutations

on the basis of the potential metabolic modes of action.

Leukemogenic mutations induce cell-type-specific and

dynamic changes in gene expression

To further characterize the preleukemic perturbations, we next

sought to identify transcriptional signatures associated with the

lineage bias in each mutant model. To this end, we performed

cell-type-wise differential expression analysis of the paired

mutant and wild-type samples. This revealed highly variable

numbers of genes differentially expressed in different cell types

and in different mutant models (Figure 5A). Reassuringly, the

changes in gene expression seen in the mouse models recapit-

ulated the gene expression signatures seen in patients with the

respective mutation1,36–39 (Figure S5A). Assuming the number

of differentially expressed genes as a proxy for the perturbing ef-

fect size, the Calr deletion mutation, Ezh2 KO and Utx KO

showed the largest perturbing effects with >500 genes differen-

tially expressed in one or more cell types. In contrast, the Idh1

R132H mutation induced <10 differentially expressed genes in

any cell types in our model. This is consistent with a previous

expressionmicroarray analysis of an Idh1R132Hmodel,40which

identified no significantly differentially expressed genes with

false discovery rates < 0.05, suggesting non-transcriptomic

mechanisms of the Idh1 R132H mutation in leukemogenesis.

Of note, in the Jak2 V617F model, early erythroid progenitors

showed the greatest transcriptomic change (Figure 5A, top left

panel) with a significant activation of cell cycle regulators (Fig-

ure 5B), while population-level abundance was increased only

in later erythroid progenitors (Figure 2A). Likewise, MEPs in the

Calr mutant model and immature progenitors in the Flt3 ITD

model showed a greater number of differentially expressed

genes than megakaryocyte progenitors and neutrophil/mono-

cyte progenitors, respectively (Figure 5A), suggesting that tran-

scriptomic alterations precede the expansion of later progenitor

stages. Furthermore, consistent with the increase in erythroid

fate probability in the Jak2 V617F MEPs (Figure 3C), the regula-

tory genes of megakaryocyte differentiation were significantly

downregulated in the Jak2 V617FMEPs (Figure 5C). Collectively,

these results indicate that mutations induce differentiation

stage-specific transcriptomic programs that eventually lead to

a tissue-scale hematopoietic skew.

Tobetter capture stage-specific dynamic expression changes,

we next modeled gene expression as a function of pseudotime

and compared the pseudotemporal expression patterns using

a generalized additive model.41 By defining lineage trajectories

on the basis of lineage fate probability (see STAR Methods), we

first compared the pseudotemporal gene expression patterns

between the Jak2 V617F and wild-type erythroid trajectory (Fig-

ureS6A) and identified 80geneswith significantly altered expres-

sion patterns (Table S3). Among them, a megakaryocytic differ-

entiation marker Pf4 showed lower activation in the pseudotime

6 Cell Genomics 3, 100426, December 13, 2023
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windowcorresponding to theMEPstage (Figure 5D), while globin

genes (Hba-a1, Hba-a2, Hbb-bs, and Hbb-bt) showed an earlier

onset of expression from themid-erythroid progenitor stage (Fig-

ure 5E; TableS3).Tfrc (encoding the transferrin receptor orCD71)

as well as cell cycle regulators showed constant upregulation

throughout the erythroid differentiation (Figure 5E). These results

indicate that not a single factor but a combination of (1) lower acti-

vation of megakaryocytic differentiation regulators, (2) early acti-

vation of erythroid differentiation genes and (3) constant upregu-

lation of cell cycle regulators is the transcriptomic underpinning

for the erythroid bias observed within the Jak2 V617F-homozy-

gous HSPCs.12 Early activation of megakaryocytic and myelo-

monocytic differentiation markers were also observed in the

Calr mutant megakaryocytic trajectory and the Flt3-mutant

A

D E

CB

Figure 4. Transcriptome-based metabolic profiling reveals distinct metabolic consequences of different mutations

(A) Workflow of neural-network-based metabolic profiling. Using the expression levels of enzyme genes as input, a deep neural network model was optimized to

estimate the activities of 168 metabolic reactions in the individual cells. The cellular metabolic estimates were then used for statistical comparisons.

(B–E) Volcano plots comparing glycolysis and TCA cycle activities in the mouse models of group 1 mutations (Jak2 and Calr) (B), group 2 mutations (Idh1, Npm1,

Ezh2, and Utx) (C), Dnmt3amutation (D), and Flt3 ITD (E). The x and y axes represent Cohen’s D standardized difference of means and�log10 adjusted p values,

respectively. Each dot represents each metabolic reaction module and is colored according to the functional pathways. The horizontal dotted line indicates the

adjusted p value of 0.05; the vertical dotted lines indicate the Cohen’s D values of �0.15 and 0.15.
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Figure 5. Perturbed regulation of gene expression in preleukemic mutant models

(A) The number of genes differentially expressed in each cell type from eachmutant model comparedwith thewild-type counterpart. The numbers are shown over

the corresponding cell types in the individual UMAP plots. HSC, hematopoietic stem cell; prog, progenitors; Mono, monocyte; DC, dendritic cell; MEP,

megakaryocyte-erythroid progenitors; MK, megakaryocyte; Ery, erythroid.

(B) Significant upregulation of cell cycle regulators in Jak2 mutant early erythroid progenitors. Gene Ontology (GO) terms for biological processes (BPs) were

evaluated. NES, normalized enrichment score; FDR, false discovery rate.

(C) Significant downregulation of genes regulating megakaryocytic differentiation in Jak2 mutant MEPs.

(D) Differential expression dynamics of Pf4 between the erythroid trajectory of the Jak2 mutant and the paired wild-type samples. The upper panel shows the

pseudotime distribution of each cell type, defining the pseudotime ranges of dominant cell types. The lower panel shows the pseudotemporal expression patterns

(legend continued on next page)
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myelomonocytic trajectory, respectively (Figures 5F, 5G, S6B,

and S6C; Table S3). Moreover, the unfolded protein response

genes, reported to be upregulated inCALR-mutatedmyeloprolif-

erative neoplasms,37 were significantly upregulated in our Calr

mutant model with pseudotemporal expression patterns similar

to those in patients withCALR-mutated essential thrombocythe-

mia37 (Figures S5B–S5F). Overall, our differential expression

analysis has enabled quantification of the perturbing effects of

different mutations and revealed the putative transcriptomic ba-

sis of lineage bias.

PMCA pipeline streamlines single-cell analysis of

preleukemic mouse models

To test the external applicability of our analysis pipeline, we next

analyzed a previously published scRNA-seq dataset of a Tet2

KOmousemodel.42 The hematopoietic differentiation landscape

was automatically identified (Figure S7A), and differential abun-

dance and fate probability analyses illustrated expansion of

HSCs and myeloid-biased hematopoiesis within the Tet2 KO

model (Figures S7B and S7C), consistent with previous observa-

tions.43–45 Furthermore, single-cell metabolic analysis demon-

strated reduced activity of glycolysis and the TCA cycle (Fig-

ure S7D), classifying the Tet2 mutation as a group 2 mutation.

Differential expression analysis identified the largest trans-

criptomic changes in the immature to myeloid progenitors

(Figure S7E), and myeloid differentiation/maturation markers sh-

owed significantly altered expression patterns along the neutro-

philic differentiation trajectory (Figures S7F and S7G), in concor-

dance with impaired late neutrophilic maturation by the Tet2

mutation.46 As loss-of-function mutations in the TET2 gene are

among the most common drivers of human preleukemia,47–49

this analysis not only provides complementary results to the orig-

inal publication but also serves to demonstrate the broad utility

of our PMCA pipeline for streamlined characterization of muta-

tional effects.

Preleukemic lineage perturbation signature defines

patients with the most immature and refractory AML

Finally, in order to evaluate the translational applicability of our

analyses, we asked whether the molecular signatures derived

from our pseudotemporal differential expression analysis can

identify clinically relevant patient characteristics. As our analysis

and previous reports12,13,50 indicate that the Jak2, Calr, and Flt3

mutations actively drive proliferation and biased differentiation,

we combined the erythroid, megakaryocytic, and myelomono-

cytic bias signatures dysregulated by these mutations (Table

S3). This allowed us to develop a comprehensive gene signature

representing the biased differentiation toward the major myeloid

lineages (hereafter, preleukemic lineage perturbation signature

[PLPS]; 216 genes). We then applied this signature to the clus-

tering of gene expression data from AML patients (Figure 6A;

Table S4). The PLPS genes effectively separated the TCGA

(The Cancer Genome Atlas) AML patient samples1 according to

the morphological FAB classification in the principal component

space (Figure 6B). Consistent with this, hierarchical clustering on

the basis of the PLPS genes identified four clusters (Stem, Inter-

mediate, Monocytic, and Granulocytic) with distinct expression

patterns of differentiation marker genes (Figures 6C, S8A, and

S8B). The stem-cell-like immature transcriptomic status of the

Stem cluster was further confirmed by significant enrichment of

the previously developed LSC17 score51 (Figures S8C and

S8D). Notably, these four PLPS-based clusters showed signifi-

cant differences in overall survival, with the Stem cluster having

the poorest survival rate (Figure 6D).

To further refine the PLPS genes and pinpoint genes associ-

ated with poor prognosis, we compared the expression of

PLPS genes between the Stem cluster and the other three clus-

ters. Of the 216 PLPS genes, twelve were significantly upregu-

lated in the Stem cluster (Benjamini-Hochberg [BH]-adjusted

p < 0.05 and log2 fold change > 2; Figures 6E and S9). To assess

the predictive capability of these 12 genes for patient prognosis,

we next analyzed the Beat AML cohort,2 in which the PLPS

genes also partitioned the patient samples according to their dif-

ferentiation status (Figures S10A and S10B). Of the 12 genes up-

regulated in the Stem cluster of the TCGA cohort, eleven were

also expressed in the Beat AML cohort (hereafter, Stem11; Fig-

ure 6E). The sum of the expression Z scores of the Stem11 genes

(Stem11 score) showed a bimodal distribution in which the top

15th percentile formed a peak with higher Stem11 scores

(Stem11-high patients; Figure S10C). Importantly, the Stem11-

high patients exhibited significantly poorer overall survival than

the Stem11-low patients (p = 1.2 3 10�3; Figure 6F), indicating

the predictive power of the Stem11 system. Despite the pres-

ence of physiological differentiation markers for megakaryocytic

(CAVIN2, VWF, and PF4), erythroid (CA1) and lymphoid (DNTT)

lineages within the Stem11 genes, the blast content of the

sequenced samples did not correlate with the Stem11 score

(Figure S10D), suggesting that the higher Stem11 gene expres-

sion is due to a specific expression program preferentially seen

in patients with poor prognosis.

To further ascertain how the Stem11 score stratifies patient

prognosis, we next evaluated the association between the

Stem11 score and clinical risk factors. Although the Stem11

score did not correlate with patient age (Figure S10E), Stem11-

high patients were significantly more likely to belong to the

ELN2017 adverse risk group52 (Figure 6G). Specifically, 27 of

30 (90%) Stem11-high patients belonged to the ELN2017

adverse risk group, almost halving the group (Figure 6G). Addi-

tionally, the Stem11 score was significantly associated with

overall survival even in the ELN2017 adverse risk group (Fig-

ure 6H). This is in contrast to the LSC17 system,51which broadly

divided the entire cohort into two prognostic groups but did not

segregate the ELN2017 adverse risk group (Figures S10F and

S10G). As previously reported in another independent cohort,53

the ELN2017 intermediate and adverse risk groups did not differ

in patient outcomes in the Beat AML cohort (Figure S10H);

of Pf4. The red (Jak2 V617F) and blue (wild-type) lines show the expression smoothers estimated by a negative binomial generalized additive model.41 Each dot

shows the log-normalized expression and the pseudotime of each cell.

(E–G) Significantly altered gene expression patterns in the Jak2 mutant and wild-type erythroid trajectory (E), the Calr mutant and wild-type megakaryocyte

trajectory (F), and the Flt3 mutant and wild-type myelomonocytic trajectory (G). The pseudotime ranges of dominant cell types are indicated with colored bars.
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Figure 6. Prognostic relevance of preleukemic lineage perturbation signature genes

(A) Overview of the analysis of patient RNA-seq data. The erythroid, megakaryocytic, and myelomonocytic bias signatures derived from the pseudotemporal

differential expression analysis were combined to develop the PLPS (preleukemic lineage perturbation signature) genes, which were then used to cluster the

patient data.

(legend continued on next page)
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however, re-stratification of the Stem11-low, ELN2017 adverse-

risk patients to the intermediate risk group enabled better strat-

ification of patient prognosis (Figure 6I). Importantly, all cases

with KMT2A rearrangements had low Stem11 scores (Fig-

ure S11A), suggesting that re-stratification of this group to the in-

termediate risk group may be beneficial. Moreover, among the

adverse risk mutations in the recently updated ELN2022 classi-

fication,54 TP53, RUNX1, BCOR, SF3B1, and ZRSR2 mutations

were significantly more prevalent among the most refractory

Stem11-high patients (Figure S11A), indicating that these muta-

tions maintain characteristics inherited from preleukemic

HSPCs. When applied to a cohort of AML patients uniformly

treated with intensive chemotherapy,55 the Stem11 classifica-

tion showed a significant association with overall survival in

both univariate (p = 7.2 3 10�3) and multivariate analysis (p =

7.5 3 10�3), thus demonstrating prognostic value independent

from both patient age and ELN2017 cytogenetic/molecular risk

classification (Figures S10I and S10J). The Stem11 score was

also significantly associated with patient outcomes in the

TARGET pediatric AML cohort56 (p = 4.7 3 10�3; Figure 6J). As

pediatric and adult AML have distinct mutational profiles, the

ELN2022 adverse risk mutations developed for adult patients

were rare and not significantly enriched among the Stem11-

high pediatric patients, while the Stem11-high pediatric patients

had significantly higher frequencies of PTPN11 and WT1 muta-

tions (Figure S11B). These results indicate that the PLPS and

Stem11 signatures identified through our integrated single-cell

analysis of preleukemic hematopoiesis can define patients with

the most immature and refractory AML for both adult and pedi-

atric cohorts, regardless of their distinct genetic basis, thus

providing improved molecular risk stratification.

DISCUSSION

Premalignant biology is an emerging focus of global research,

with the potential to advance our understanding of cancer devel-

opment and to guide effective detection and intervention strate-

gies for cancers.57 In this study, we present a scRNA-seq-based

multi-scale analysis framework for characterizing mutation-

driven preleukemic perturbations and demonstrate that the mo-

lecular signatures of preleukemic lineage perturbations decipher

AML heterogeneity and suggest improved risk stratification

strategies.

The initial step of reference-based single-cell data integration

systematically anchors new datasets within a hematopoietic dif-

ferentiation landscape, providing a standardized visualization

that facilitates comparison across different perturbation models.

Importantly, our characterization of mutation-specific perturba-

tions is conducted by comparing paired mutant and wild-type

samples with matched age, sex, genetic background, and

pIpC regimens (for the Npm1, Idh1, Dnmt3a, Ezh2, Utx, and

Calr [41-week-old] models). In addition, different experimental

batches (i.e., different sample collections and library prepara-

tions) are included as covariates in the statistical models and

adjusted to compute statistical significance. In line with the

growing recognition of the importance of accounting for biolog-

ical and technical variations in single-cell comparative anal-

ysis,58,59 our experimental and statistical design enables the

robust identification of true mutation-driven perturbations while

mitigating non-pathological false positives.

Biologically, the four downstream analysis modules collec-

tively illustrate how individual mutations drive their target molec-

ular programs (i.e., metabolic and expression), bias cellular line-

age fates and ultimately skew the tissue-wide landscapes of

hematopoiesis. Here, the fate probability analysis and metabolic

flux analysis exemplify the transformative capabilities of scRNA-

seq beyond gene expression comparisons. On the basis of the

recently developed machine learning models,9,10 these analyses

successfully recapitulate previously demonstrated experimental

observations27,28,30,31 (Figures 3B, 3C, and S4), thereby vali-

dating their applicability in the study of hematopoiesis. Notably,

our differential metabolic flux analysis identified two groups of

mutations with opposing impacts on glycolysis and TCA cycle

reactions. As these energy-generating pathways are crucial for

cell proliferation and differentiation,60 our results suggest that

the group 1 mutations (Jak2 and Calr) skew hematopoiesis

through active proliferation and biased differentiation, while the

group 2 mutations (Idh1, Npm1, Ezh2, and Utx) lead to reduced

energy demands and passive accumulation of specific cell line-

ages. This is specifically highlighted by the contrasting effects on

cell cycle status seen in the Calr mutation and Utx KO models,

whereby both have increased abundance of megakaryocyte

progenitors (Figure 2A), yet the Calrmutation led to an increased

proportion of cycling G2/M-phase cells, while the Utx KO re-

sulted in an increase in G1-phase cells (Figure S4F). Interestingly,

all the group 2 mutations are known to act through epigenetic

dysregulation.19,40,61,62 As epigenetic processes play a crucial

role in normal and malignant stem cell differentiation,63 our re-

sults suggest that downregulation of energy-generating meta-

bolic pathways may represent at least part of the metabolic un-

derpinning of the differentiation block caused by the group 2

mutations. Metabolic modulation is a promising therapeutic

strategy for targeting cancer cell-specific dependencies by

limiting cell growth or inducing differentiation.64,65 Thus, our

(B and C) Principal-component analysis of the TCGA cohort. Samples are colored according to the FAB classification (B) and the patient clusters (C). PC1, PC2,

and PC3 represent the first three principal components, with the percentage of variance explained indicated on the axes.

(D) Survival analysis comparing the overall survival of the different clusters of TCGA AML cohort.

(E) Volcano plot showing the differential expression of PLPS genes. Genes with significant upregulation (BH-adjusted p < 0.05 and log2 fold change > 2; red) and

downregulation (BH-adjusted p < 0.05 and log2 fold change < �2; blue) are color coded.

(F) Survival analysis comparing the Stem11-high and Stem11-low groups in the Beat AML cohort.

(G) Proportions of Stem11-high patients in each of the ELN2017 risk groups. p values are from Fisher’s exact test. *p < 1.0 3 10�5.

(H) Survival analysis comparing the Stem11-high and Stem11-low patients among the ELN2017 adverse risk group in the Beat AML cohort.

(I) Survival analysis comparing our modified ELN2017 risk groups, where the Stem11-low, ELN2017 adverse-risk patients were re-stratified to the intermediate

risk group.

(J) Survival analysis comparing the Stem11-high and Stem11-low groups in the TARGET AML cohort.
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single-cell metabolic profiling provides novel insights into

possible early metabolic intervention by uncovering shared and

unique metabolic alterations in preleukemic conditions.

The differential abundance and differential expression analysis

modules further highlight the unique advantages of using

scRNA-seq in characterizing perturbations. By comparing cell

densities in the reference-based common latent space, our dif-

ferential abundance analysis enables statistical evaluation of

mutant cell expansion and depletion at the single-cell resolution.

As this approach is not constrained by predefined cell type

boundaries, it can pinpoint perturbed cell populations with a

level of resolution that is unattainable through discrete cluster-

wise comparison or immunophenotype-based quantification,

as exemplified by our identification of a late neutrophilic differen-

tiation block by the Flt3-ITD mutation. Likewise, the continuous

resolution of gene expression analysis allows for the identifica-

tion of genes with perturbed dynamic expression patterns, as

opposed to discrete comparison of averaged expression in tran-

scriptionally or immunophenotypically defined cell types.

Consequently, we show that individual mutations orchestrate

diverse transcriptional programs over the course of differentia-

tion, including (1) early activation of specific lineage markers,

(2) lowering expression of regulators of alternative lineages,

and (3)modulation of cell cycle regulators, collectively perturbing

hematopoietic differentiation.

Derived from the preleukemic molecular signatures, our PLPS

and Stem11 gene sets are likely to at least in part, signify aber-

rant lineage priming in mutant HSPCs. Intriguingly, the PLPS

genes effectively distinguish the heterogeneous differentiation

status of clinical AML samples, suggesting that perturbed line-

age priming during the preleukemic phase determines the even-

tual stages of arrested differentiation in AML blasts. Further-

more, the Stem11 score, derived from a subset of PLPS genes

overexpressed in the most immature AML cases, identifies

both adult and pediatric AML patients with the poorest survival

outcomes. Of the 11 genes, HMGA2 has been implicated in

poorer prognosis in various human cancers including AML.66

Otherwise, the Stem11 system has no gene overlap with previ-

ously published prognostic systems for AML,51,67,68 thus repre-

senting a unique feature of refractory AML reflecting preleukemic

perturbations. Considering the presence of multiple lineage

markers (e.g., DNTT, PF4, and CA1) in the Stem11 genes,

Stem11-high AML may capture features reminiscent of acute

leukemia of ambiguous lineage, which is associated with imma-

ture cells of origin and inferior prognosis.69 For adult patients, the

Stem11 system could have clinical impact by recommending

less toxic treatment options without hematopoietic cell trans-

plantation (HCT) for more patients by re-stratifying the Stem11-

low, ELN2017 adverse-risk patients to the intermediate risk

group. In pediatric cases, HCT is usually reserved for the highest

risk children and relapsed cases to balance long-term toxicity

against survival risk; nevertheless, molecular genetic risk factors

to stratify treatment are not well established and are thus ur-

gently needed.70 Therefore, in the pediatric context, the

Stem11 system helps identify patients for whom toxic but cura-

tive HCT would be indicated.

Finally, in the present study, we have characterized mutations

relevant to varying degrees of preleukemic perturbation and

different clinical contexts; DNMT3A and TET2 mutations are

the most common drivers of clonal hematopoiesis,47–49 while

JAK2 and CALR mutations are rather specific to myeloprolifera-

tive neoplasms and secondary AML.2,71 IDH1, EZH2, and UTX

mutations are known to be rare drivers of clonal HSPC expan-

sion,72 whereas NPM1 and FLT3 mutations are more definitive

events toward leukemogenic progression.73 As fully transformed

AML patient samples consist of multiple clones with distinct mu-

tation loads, preleukemic mouse models can make unique

contribution to disentangling the individual mutational effects

despite their obvious drawback of not being human. Further-

more, future studies on other recurrent drivers of human

preleukemia, such as ASXL1, would be important for a more

comprehensive understanding of preleukemic hematopoiesis.

In this growing field of preleukemic biology, our study estab-

lishes a novel analysis framework for integrated analysis of

comprehensive single-cell genomics datasets and provides

new lessons and opportunities for translation into individualized

therapy for patients with AML.

Limitations of the study

Although this study provides a powerful computational frame-

work and data resources to understand preleukemic perturba-

tions, we note a few limitations. First, this study’s primary focus

on LK HSPCs precluded an assessment of mutational impacts

upon more differentiated cell populations. For instance, the

known effects of Ezh2 KO on B and T cell differentiation25 are

not captured within the confines of the LK gate. When focusing

on mature cell populations, a more comprehensive reference

atlas (e.g., a total mononuclear cell atlas) is required for robust

data projection and subsequent downstream analyses. Second,

although a broad spectrum of leukemogenic mutations has been

characterized in this study, there still remains additional recur-

rent drivers of human preleukemia to be characterized (e.g.,

ASXL1 and TP53).47–49 The cooperative mechanisms of multiple

mutations (e.g., combined DNMT3A, NPM1, and FLT3 muta-

tions) also need to be investigated to better understand the

mechanisms of progression to overt leukemia. Finally, the in-

sights gained frommousemodels need to be compared with hu-

man preleukemia. To this end, recently developed methods

enabling simultaneous single-cell DNA and RNA sequencing37,74

represent promising approaches to extracting mutant-cell-spe-

cific features within preleukemic human donors.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-EPCR STEMCELL technologies 60038PE

Anti-CD48 eBioscience 17-0481-82

Anti-CD150 Biolegend 115914

Anti-c-Kit Biolegend 105826

Anti-Sca1 Biolegend 108128

Anti-CD45 Biolegend 103108

Lineage Cocktail STEMCELL technologies 19856C (part of 19856)

Streptavidin Biolegend 405233

7AAD Life technologies A1310

Chemicals, peptides, and recombinant proteins

Ammonium chloride STEMCELL technologies 07850

EasySepTM Mouse Hematopoietic

Progenitor Cell Isolation Kit

STEMCELL technologies 19856

Critical commercial assays

Chromium Single Cell 30 Reagent Kit v2 10x Genomics N/A

Deposited data

scRNA-seq data This paper GEO: GSE227026

Experimental models: Organisms/strains

Mouse: Jak2 V617F:

C57BL6J-Jak2V617F/V617F
Li et al.12 N/A

Mouse: Jak2 WT: C57BL6J-Jak2+/+ Li et al.12 N/A

Mouse: Calr 52-bp del: C57BL6J-Calrfl/fl;

Vav-Cre+/�
Li et al.13 N/A

Mouse: Calr WT: C57BL6J-Calrfl/+;

Vav-CreWT

Li et al.13 N/A

Mouse: Calr 52-bp del: C57BL6J-Calrfl/fl;

Mx1-Cre+/�
Li et al.13 N/A

Mouse: Calr WT: C57BL6J-Calr+/+;

Mx1-Cre+/�
Li et al.13 N/A

Mouse: Flt3 ITD: C57BL6-Flt3+/ITD Dovey et al.14 N/A

Mouse: Flt3 WT #1: C57BL6-Flt3+/+ Dovey et al.14 N/A

Mouse: Flt3 WT #2: C57BL6-CRTKOWT;

Mx1-CreWT

Mesaeli et al.75 N/A

Mouse: Flt3 WT #3: C57BL6J-Calrfl/+;

Vav-CreWT

Li et al.13 N/A

Mouse: Npm1c: C57BL6-Npm1flox-cA/+;

Mx1-Cre+/�
Vassiliou et al.15 N/A

Mouse: Npm1 WT: C57BL6- Npm1flox-cA/+;

Mx1-CreWT

Vassiliou et al.15 N/A

Mouse: Idh1 R132H: C57BL6-Idh1R132H/+;

Mx1-Cre+/�
Gupta et al.16 N/A

Mouse: Idh1 WT: C57BL6-Idh1R132H/+;

Mx1-Cre-
Gupta et al.16 N/A

Mouse: Dnmt3a R882H: C57BL6-

Dnmt3aflox-R882H/+; Mx1-Cre+/�
Gozdecka et al.17 N/A
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Berthold

Göttgens (bg200@cam.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All raw sequencing data has been deposited on GEO under accession number GSE227026.

d All processed data and analysis results can be explored via our interactiveweb portal at https://gottgens-lab.stemcells.cam.ac.

uk/preleukemia_atlas/.

d All original code has been deposited at https://github.com/TomoyaIsobe/PMCA/. DOI is listed in the key resources table.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

This study included a total of 38 animals from eight different mutant mouse models: homozygous Jak2 V617F12 (n = 3), homozygous

Calr 52-bp deletion13 (n = 2), heterozygous Flt3 ITD14 (n = 3), heterozygous Npm1c15 (n = 2), heterozygous Idh1 R132H16 (n = 3), het-

erozygousDnmt3aR882H17 (n = 2), homozygous Ezh2 KO18 (n = 2) and homozygousUtx KO19 (n = 2). For eachmutant model, paired

wild-type mice with the same background (n = 1–3 per model; n = 17 in total) were simultaneously collected and subjected to flow

cytometry sorting and sequencing to obtain wild-type comparators withminimal batch effects. For the Flt3 ITDmodel, one paired and

two unpaired wild-type animals were collected.13,14,75 For the Npm1, Idh1, Dnmt3a, Ezh2, Utx and Calr (41-week-old mice) models,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Dnmt3a WT: C57BL6-

Dnmt3aflox-R882H/+; Mx1-CreWT

Gozdecka et al.17 N/A

Mouse: Ezh2 KO: C57BL6-Ezh2fl/fl;

Mx1-Cre+/�
Basheer et al.18 N/A

Mouse: Ezh2 WT: C57BL6-Ezh2fl/fl;

Mx1-CreWT

Basheer et al.18 N/A

Mouse: Utx KO: C57BL6-Utxfl/fl;

Mx1-Cre+/�
Gozdecka et al.19 N/A

Mouse: Utx WT: C57BL6-Utxfl/fl;

Mx1-CreWT

Gozdecka et al.19 N/A

Software and algorithms

Code and algorithms for analysis This paper https://doi.org/10.5281/zenodo.8345465

Cell Ranger 10x Genomics v6.0.1

Scanpy Wolf et al.76 https://scanpy.readthedocs.io/

Scrublet Wolock et al.77 https://github.com/swolock/scrublet

Seurat Stuart et al.20 https://satijalab.org/seurat/

MELD Burkhardt et al.21 https://github.com/KrishnaswamyLab/

MELD

CellRank Lange et al.9 https://cellrank.readthedocs.io/

scFEA Alghamdi et al.10 https://github.com/changwn/scFEA

edgeR Robinson et al.78 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

DESeq2 Love et al.79 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

tradeSeq Van den Berge et al.41 https://github.com/statOmics/tradeSeq

GSEA Subramanian et al.80 https://www.gsea-msigdb.org/gsea/

index.jsp

e2 Cell Genomics 3, 100426, December 13, 2023

Resource
ll

OPEN ACCESS



Mx1-Crewas induced by intraperitoneal injection of pIpC (Sigma #P1530). All mice were bred and maintained in microisolator cages

and provided continuously with sterile food, water, and bedding. All mice were kept in specified pathogen-free conditions, and all

procedures were performed according to the United Kingdom Home Office regulations. Details of all animals used in this study,

including age, sex and pIpC regimens, are summarized in Table S1. Further details on the individual mouse models are provided

in the original reports cited above.

METHOD DETAILS

Flow cytometry sorting of hematopoietic stem and progenitor cells

Mousebonemarrowcellswere collected from the femurs, tibiae and iliac crest anddepletedof red blood cells by anammoniumchloride

lysis step (STEMCELL Technologies). Cells were lineage depleted using EasySep Mouse Hematopoietic Progenitor Cell Isolation Kit

(19856, STEMCELL Technologies). Lineage� c-Kit+ (LK) cells were then isolated using the following antibodies (clone and company):

streptavidin BV510 (BioLegend), c-kit APC-Cy7 (2B8, BioLegend), Sca1 BV421 (D7, BioLegend), CD45 FITC (30-F11, BioLegend),

EPCR (CD201) PE (RMEPCR1560, STEMCELL Tech), CD150 PE/Cy7 (TC15-12F12.2, BioLegend), CD45 FITC (30-F1,1 BDBioscience)

and CD48 APC (HM48-1, eBioscience). Flow cytometry was performed on an LSRII Fortessa (BD) and all data were analyzed using

FlowJo (BD). A representative gating strategy is shown in Figure S12.

scRNA-seq data generation and preprocessing

The scRNA-seq data of the Calr mutant (n = 2) and the paired wild-type samples (n = 2) were previously published27 and re-

analyzed in this study; all remaining samples were newly sequenced for the current study. Single-cell sequencing libraries were

generated using 10x Chromium (10x Genomics, Pleasanton, CA) reagent kit v2 according to the manufacturer’s protocol and

sequenced on an Illumina HiSeq 4000 or Illumina Novaseq 6000 platform. Raw reads were mapped to the mm10 genome and

quantified using the Cell Ranger pipeline (v6.0.1) with default parameters. Cell-associated barcodes and background-associated

barcodes were determined using the EmptyDrops method81 implemented in the Cell Ranger pipeline, and the background-asso-

ciated barcodes were excluded. Subsequent data analysis was performed using Scanpy.76 Cell libraries with less than 1,000

detected genes or with mitochondrial gene expression exceeding 10% of UMI counts were removed from downstream analysis.

Multiplets were estimated using the Python package Scrublet77 and subsequently removed. Cell cycle phase was assigned to

each cell using a previously published list of cell cycle-associated genes82 and the Scanpy function ‘tl.score_genes_cell_cycle’.

All remaining cells that passed these quality controls (n = 269,048) were used for the downstream analysis. A previously published

scRNA-seq dataset from Tet2 KO and wild-type mice (GSE124822)42 was subjected to the same mapping and preprocessing

methods as shown above.

Reference atlas of mouse hematopoietic landscape

Our previously published mouse HSPC atlas11 including 44,802 LK and LSK cells was used as the reference hematopoietic land-

scape. The reference atlas data was log-normalized, and 5,000 highly variable genes were identified using the Scanpy function

‘pp.highly_variable_genes’. Cell cycle-associated genes83 were then removed and the expression values of the remaining 4,713

highly variable genes were scaled and used to compute 50 principal components, which were subsequently used to identify 10 near-

est neighbors. The UMAP embedding was computed using the python package umap-learn84 and the fitted model was saved to be

applied to the mutant datasets as described below.

Reference-based integration of mutant hematopoietic landscapes

All mutant and paired wild-type samples (n = 38) were log-normalized and projected onto the reference atlas using the reference-

based integration method of Seurat.20 First, all detected genes excluding cell cycle-associated genes were used to compute 30

canonical correlation vectors using the Seurat function ‘RunCCA’. Next, integration anchors were identified using the ‘FindIntegra-

tionAnchors’ with the option ‘reference’ set to the reference atlas data and using canonical correlation analysis for dimension

reduction (reduction = ‘cca’). Subsequently, each sample was integrated with the reference atlas using the ‘IntegrateData’ function

using the canonical correlation vectors for anchor weighting. These integration steps were performed on the basis of the individual

samples.

Integrated expression data were then scaled using the gene-wise means and standard deviations derived from the reference atlas

data. Finally, 50 principal components andUMAPembeddingswere computed using the samemodel fitted to the reference atlas data

to project each sample onto the latent space of the reference atlas. Cell type annotationwas transferred from the reference atlas using

the Seurat functions ‘FindTransferAnchors’ and ‘TransferData’ with the dimension reduction method set to ‘cca’.

Differential abundance analysis

Mutation-specific changes in subpopulation abundance were quantified using the python package MELD.21 First, a cell similarity

graph was constructed based on the Euclidean distances in the common 50-dimensional principal component space after the

data integration. Next, a kernel density estimate (KDE) was computed for each biological replicate and smoothed over the cell sim-

ilarity graph with eight nearest neighbors and the smoothing parameter b = 15. The KDEs of paired mutant and wild-type samples
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were then compared, and differential abundancewas quantified as the relative likelihood of observing each cell in either themutant or

wild-type condition by performing cell-wise L1 normalization of the KDEs as implemented in the MELD package. The mutant relative

likelihoods from all pairwise comparisons were averaged to obtain the mutation-specific differential abundance landscapes. Statis-

tical significance was tested by comparing the sample-wise KDEs between the paired mutant and wild-type samples. We used

paired t test for the mutant models with paired samples from multiple experimental batches (Jak2, Calr) and independent t test for

the other datasets. p values were adjusted with the Benjamini-Hochberg (BH) procedure and cells with raw p values < 0.05 and

BH-adjusted p values < 0.25 were considered significant.

Differential fate probability analysis

Cellular fate probability was inferred using the python package CellRank.9 The HSC score (molecular signature of long-term repo-

pulating HSCs22) was first computed for all samples to determine the root cells for pseudotime calculation. The HSC score was

then smoothed by taking the mean of 10 nearest neighbors in the diffusion map, and the cell with the highest smoothed HSC score

was used as the root cell in each sample. Diffusion pseudotime was computed for each sample using the Scanpy function ‘tl.dpt’.

Cells without assigned cell types (cell type = ‘Unassigned’) were removed from the analysis.

Cell-to-cell transition probabilities were then inferred using the CellRank’s pseudotime kernel (‘tl.kernels.PseudotimeKernel’) and

the function ‘compute_transition_matrix’ with the ‘soft’ weighting scheme (threshold_scheme = ’soft’). Terminally differentiated cells

were first identified in the reference atlas using the ‘compute_macrostates’ function. The terminal cells in each sample were then

identified as the 10 nearest neighbors of the reference terminal cells in the common principal component space after the data inte-

gration. Estimated terminal cells with only one supporting neighbor or outlier terminal cells were excluded.

The fate probabilities toward these terminal states were computed using the CellRank’s Generalized Perron Cluster Cluster Anal-

ysis (GPCCA) estimator and the function ‘compute_absorption_probabilities’. The inferred fate probabilities were compared between

the paired mutant and wild-type samples by logistic regression and likelihood ratio test using the Seurat function ‘findMarkers’ with

the option ‘LR’ (test.use = ‘LR’). The experimental batch information was included as a covariate in the logistic regression model to

account for batch effects in the statistical evaluation. Lineage fate changes with |median fate probability differences| >5% and BH-

adjusted p values < 0.05 were considered significant. The fate probabilities in each condition were summarized in pie charts with

partition-based graph abstraction (PAGA) connections.85

Differential metabolic flux analysis

Rawexpressioncountswerefirstnormalized tocountspermillion (CPM),whichwere thenusedas input for thepythonpackagescFEA.10

Metabolic fluxvalues for the168coremetabolic reactions implemented in scFEAwere inferredusing thedefault parameters. The inferred

metabolic flux values were compared between the paired mutant and wild-type samples by logistic regression and likelihood ratio test

using the Seurat function ‘findMarkers’ with the option ‘LR’ (test.use = ‘LR’) with the experimental batch information included as a co-

variate. Constant low-flux reactions with differences between the minimum and maximum flux <1.0 3 10�4 were excluded. The size

of differences between two groupswas evaluated byCohen’s D standardizedmean differences. Themetabolic reactions with |Cohen’s

D| > 0.15 and BH-adjusted p values < 0.05 were considered significant. A published scRNA-seq dataset (GSE155763)32 was used to

validate the method.

Pseudobulk differential expression analysis

Cell-type-wise differential expression analysis was performed with a pseudobulk method. First, gene-by-cell expression matrices

were summed and aggregated for different cell types in different biological replicates to generate gene-by-replicate expression

matrices. Single-cell-level mean expression was computed for each cell type, and low-expression genes with mean single-cell

expression%0.05 counts per 10,000UMIs (CP10K) were removed before differential expression testing. Differential expression anal-

ysis was performed using the likelihood ratio test of edgeR78 with experimental batch information included as a covariate in the ad-

ditive linear model. Genes with |log2 fold changes| R0.5 and BH-adjusted p values < 0.05 were considered significant. Gene set

enrichment analysis was performed using the edgeR-derived �log10 adjusted p values with the signs of log2 fold changes as input

for the preranked mode of GSEA software.80

Pseudotemporal differential expression analysis

To identify genes with altered expression patterns over the course of differentiation, paired mutant and wild-type samples were com-

bined and a common pseudotime was computed for each pair. The root cell for pseudotime inference was determined according to

the highest smoothed HSC score as described above (see ‘Differential fate probability analysis’).

The erythroid, megakaryocytic and myelomonocytic trajectories were extracted from our Jak2, Calr and Flt3 datasets, respec-

tively. The Jak2 mutant or wild-type erythroid trajectory was defined as the cells belonging to the ’HSC’, ’Immature prog’, ’MEP’,

’Early Ery prog’, ’Mid Ery prog’ or ’Late Ery prog’ clusters and with the erythroid fate probabilityR0.20, neutrophil probability <0.3

and Mono/DC probability <0.23. A small number of cells (56 of 24,210 cells, 0.23%) at the end of the trajectory with variable pseu-

dotimeR0.40 were excluded. For the Calr mutant or wild-type megakaryocytic trajectory, cells belonging to the ’HSC’, ’Immature

prog’, ’MEP’ or ’MK prog’ clusters and with the megakaryocytic fate probability R0.08 and neutrophil probability <0.3 were
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included. The Flt3 mutant or wild-type myelomonocytic trajectory was defined as the cells belonging to the ’HSC’, ’Immature prog’

or ’Mono/DC prog’ clusters and with the monocytic fate probability R0.25 and the pseudotime <0.10.

Low-expression genes with mean CP10K % 0.05 were removed before differential expression testing. A negative binomial

generalized additive model was fitted using the ‘fitGAM’ function of the R package tradeSeq41 with six knots (nknots = 6) and

with the experimental batch information included as a covariate in the model. The fitted pseudotemporal expression patterns

were then compared between the mutant and wild-type samples using the function ‘conditionTest’ with the log2 fold change

threshold of 0.5 (‘l2fc = 0.5’). Genes with BH-adjusted p values < 0.05 were considered significant.

CALR-mutated patient dataset

A previously published scRNA-seq dataset (GSE117826)37 of CD34+ bone marrow HSPCs from patients with CALR-mutated

essential thrombocythemia was analyzed. Multiplets were first estimated using Scrublet and subsequently removed. Cells with

less than 1000 UMI counts or with mitochondrial gene percentage >10% were then removed. Cells with no genotyping UMI in-

formation were further removed. The remaining cells (n = 17,975) were log-normalized, and 500 highly variable genes were iden-

tified using the Scanpy function ‘pp.highly_variable_genes’. Cell cycle-associated genes86 were then removed and the expression

values of the remaining 489 highly variable genes were scaled and used to compute 50 principal components. Five patient

samples (ET01-ET05) were then integrated using Harmony87 with a theta of 0. Harmony adjusted principal components were sub-

sequently used to identify 10 nearest neighbors, and the UMAP embedding was computed using the Scanpy function ‘tl.umap’.

Leiden clustering was performed using the ‘tl.leiden’ function with a resolution of 0.6, and the cluster cell identity was assigned

based on known marker genes. Based on the genotyping information obtained from GSE117826, cells with num.MUT.call R 1

and total genotyping UMI R 2 were labeled as mutant, while cells with num.MUT.call = 0 and total genotyping UMI R 2 were

labeled as wild-type.

For pseudotemporal differential expression analysis, the human HSC score88 was first computed to determine the root cell for

pseudotime calculation. The HSC score was then smoothed by taking the mean of 10 nearest neighbors in the diffusion map, and

the cell with the highest smoothed HSC score was used as the root cell. Diffusion pseudotime was computed using the Scanpy func-

tion ‘tl.dpt’. The megakaryocyte trajectory was defined as the HSC and megakaryocyte progenitor clusters. Cells at the end of the

trajectory with variable pseudotime R0.10 were excluded, and the remaining cells (1,199 mutant and 2,226 wild-type cells) were

analyzed for pseudotemporal differential gene expression using tradeSeq.

AML patient datasets

Publicly available TCGA AML,1 Beat AML,2 EGAD0000100848455 and TARGET AML56RNA-seq datasets were used. Gene expression

raw counts and TPM values of the TCGA and Beat AML cohorts were downloaded using the R package TCGAbiolinks. Clinical data for

the TCGA cohort were downloaded from the National Cancer Institute Genomic Data Commons (https://gdc.cancer.gov/about-data/

publications/laml_2012). Clinical and mutation data for the Beat AML cohort were downloaded from the Beat AML data portal

(https://biodev.github.io/BeatAML2).For theBeatAMLcohort,denovoAMLpatientswithRNA-seqdataandFABclassificationavailable

were included. Samples with low tumor cell content (<20%) were excluded. Patients with FAB labels of ‘‘M0/M1’’, ‘‘M4eo’’, ‘‘M5a’’ and

‘‘M5b’’ were reannotated in the figures as ‘‘M1’’, ‘‘M4’’, ‘‘M5’’ and ‘‘M5’’, respectively. For the EGAD00001008484 dataset, gene expres-

sion data were downloaded from the European Genome-Phenome Archive (EGA), and de novo AML patients were included. For the

TARGET AML cohort, gene expression data were downloaded from the National Cancer Institute TARGET data portal (https://

target-data.nci.nih.gov/Public/AML/).

Analysis of patient RNA-seq data

The gene expression matrices were filtered to include only the 216 preleukemic lineage perturbation signature genes, and low-expres-

sion geneswithmean TPM%0.5 were further excluded. The expression TPM valueswere log-normalized, scaled and used to compute

the principal components. The first three principal componentswere used for visualization. For the TCGA cohort, hierarchical clustering

was performed using the ‘ward.D2’ method and differential expression analysis were performed using the R package DESeq2.79 Two-

group comparisons were performed using the Wald test, and p values were adjusted with the BH procedure. The Stem11 genes were

defined based on significant overexpression (log2 fold change > 2 and BH-adjusted p < 0.05) in the Stem cluster of the TCGA cohort,

where 12 genes were identified and one gene (RORB) was removed due to low expression in the Beat-AML cohort (mean TPM <0.5).

The Stem11 score was calculated as the sum of the Z-scores of the Stem11 genes, and Stem-11 high patients were defined as the

top 15th percentile.

Survival analysis

Survival was estimated using the Kaplan–Meier method and the difference was tested using the log rank test. Overall survival was

compared over the first 6 years of observation. For multivariate analysis, a Cox proportional hazards regression model was used to

identify the risk factors associated with the overall survival. p values of less than 0.05 were considered statistically significant. Sta-

tistical analysis was performed using the R package survival.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Python (3.8.6 or 3.8.12) or R (3.6.3 or 4.0.3). All statistical methods used in this study are

described in the individual figure legends and the METHOD DETAILS. For differential abundance analysis, cells with raw

p values < 0.05 and BH-adjusted p values < 0.25 were considered significant. For differential fate probability analysis, differential

metabolic flux analysis and differential expression analysis, BH-adjusted p values of less than 0.05 were considered significant.

For all the other analyses, raw p values of less than 0.05 were considered significant.
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