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Methodology

Reflecting Parameter Uncertainty in Addition to Variability in Constrained
Healthcare Resource Discrete Event Simulations: Worth Going the Extra
Mile or a Road to Nowhere?

Hazel Squires, PhD, Dina Jankovic, PhD, Laura Bojke, PhD

A B S T R A C T

Objectives: Probabilistic sensitivity analysis (PSA) has been shown to reduce bias in outcomes of health economic models.

However, only 1 existing study has been identified that incorporates PSA within a resource-constrained discrete event

simulation (DES) model. This article aims to assess whether it is feasible and appropriate to use PSA to characterize

parameter uncertainty in DES models that are primarily constructed to explore the impact of constrained resources.

Methods: PSA is incorporated into a new case study of an Emergency Department DES. Structured expert elicitation is used to

derive the variability and uncertainty input distributions associated with length of time taken to complete key activities

within the Emergency Department. Potential challenges of implementation and analysis are explored.

Results: The results of a trial of the model, which used the best estimates of the elicited means and variability around the time

taken to complete activities, provided a reasonable fit to the data for length of time within the Emergency Department.

However, there was substantial and skewed uncertainty around the activity times estimated from the elicitation exercise. This

led to patients taking almost 3 weeks to leave the Emergency Department in some PSA runs, which would not occur in

practice.

Conclusions: Structured expert elicitation can be used to derive plausible estimates of activity times and their variability, but

experts’ uncertainty can be substantial. For parameters that have an impact on interactions within a resource-constrained

simulation model, PSA can lead to implausible model outputs; hence, other methods may be needed.

Keywords: discrete event simulation, probabilistic sensitivity analysis, uncertainty analysis.
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Introduction

Modeling Approaches to Inform Decisions Regarding
Cost-Effectiveness of Health Interventions and Policies

Many healthcare systems face budget constraints; therefore,

difficult decisions must be made regarding funding of

interventions and services. Decision analytic models are

commonly used to determine costs and outcomes of competing

interventions/services to inform policy decisions. There are

different types of models that can be used to determine cost-ef-

fectiveness.1 Markov models are commonly used in health

technology assessment. These simulate cohorts of patients

through a series of health states with associated outcomes.

Patients’ history is not explicitly modeled, although it is possible

to specify a series of tunnel states to reflect previous events that

patients experience. Microsimulation models can be used to

incorporate individual-level heterogeneity more easily, including

previous procedures and events experienced by patients.2 There-

fore, each individual is assigned a set of characteristics, which will

determine their modeled outcomes.

Discrete event simulation (DES) is a type of microsimulation

which models the sequence of key events within a system by

estimating each time to the next event.2 DES models do not

require that events occur at fixed points in time, as with cohort

type models. Instead, movements between health states are

determined by events that can occur at varying times. Within DES

models, individuals can be given different characteristics to

determine their pathway through the model.2 Limited resources

such as staffing levels and healthcare service capacity can be

incorporated into the model such that patients can only be

assessed or treated if the resource is available. Patient arrival times

will also affect capacity of the system. DES models are useful when

there are interactions between individuals and their environment,

where queues may build up because of resource constraints (such
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as the closure of a hospital wing3), or when there is substantial

heterogeneity, which affects patient pathways (such as patient

histories and comorbidities4). However, the greater flexibility

offered by DES must be traded off with the additional computa-

tional time and modeling expertise required.5

Defining Uncertainty, Variability, and Heterogeneity

In estimating the parameters required to establish

cost-effectiveness or optimum service design, uncertainty is often

pervasive.6 Epistemic uncertainty (otherwise known as parameter

or second order uncertainty) pertains from the evidence used to

populate these models, including estimation of treatment effects

and health-related quality of life. As others have described,7 failure

to reflect uncertainty in estimating costs and outcomes of

competing interventions, can lead to biased results and potentially

incorrect reimbursement/commissioning decisions, with associ-

ated health losses and costs incurred. Further data collection can,

potentially, reduce this epistemic uncertainty.

Aleatory uncertainty (otherwise known as variability or

stochastic or first order uncertainty) refers to the fact that a set of

individuals can possess the same characteristics, but alternative

events and outcomes still occur for these individuals.8 These

alternative events can include arrivals and completion of activities

within the system, and variability in these events may be due to

variability within the system, such as resource availability. This

variability (eg, lots of patients arriving at similar times, staff being

absent in a nonuniform way, some patients taking a long time to

be treated) leads to queues building up in the system, which af-

fects outcomes. Ignoring this variability may assume that the

system runs perfectly, with no buildup of queues; an unlikely

assumption in many healthcare systems. The key distinction here

between variability and uncertainty is that, no matter how much

more information is obtained, variability cannot be reduced,

which is not the case with uncertainty.

Similarly, heterogeneity (variability that can be explained by

alternative characteristics) is another source of uncertainty that

cannot be reduced. Heterogeneity is key in determining outcomes

for resource-constrained DES, and this may also be true for some

pharmacoeconomic models. However, in addition to heterogene-

ity in individuals’ characteristics, in models of healthcare systems,

there may also be heterogeneity between local systems. It may be

important to understand and model this to be able to generalize

the model results, for example, to.1 hospital department. Thus, it

may be necessary to develop several DES models with alternative

structures because they are inherently different.

Characterizing Uncertainty in Health Economic Models

Methods to reflect epistemic uncertainty have developed in

recent years and many healthcare decision makers require the use

of probabilistic sensitivity analysis (PSA), in addition to univariate

sensitivity analysis, as part of their appraisal processes.9 PSA

involves representing the uncertainty in the input parameters via

an appropriate distribution and sampling from these distributions

over multiple model runs to propagate the uncertainty through to

the model outcomes.6 For many model types, the use of PSA is

relatively straightforward to implement, and results can be

generated in a timely manner. For more complex models, PSA may

be a computationally expensive and time-consuming task.10

Epistemic uncertainty will also be present in DES models. For

instance, the time to event data used to populate some of the

relationships between elements of the model may be subject to

uncertainty. This is because not all possible events have been

observed for all patients relevant to the decision (censoring).

Some of the parameters may also be estimated from external

sources, including the use of expert opinion, for example, the time

taken to complete activities. The extent to which this certainty (or

uncertainty) drives decisions will depend on the consequences of

making the wrong decision. However, PSA is not typically

incorporated within resource-constrained simulation models of

healthcare systems.

Within a typical health economic model, patients are often

simulated over a lifetime to reflect all differences between the

intervention(s) and current care. Yet, recommendations about the

use of a healthcare intervention need to be made before lifetime

outcomes can be collected. Thus, it is usually not possible to

validate the long-term outcomes using existing data, unless

patients are very close to end of life.

Characterizing Uncertainty in Resource-constrained DES
Models

Karnon et al11 published the findings of an ISPOR task force on

best practices in DES modeling. This report covers resource-

constrained modeling and also recommends the use of PSA in

DES models, which implies that the combination should be suit-

able in principle. However, a formal literature search to identify

any existing studies which have incorporated PSA within a

resource-constrained simulation identified only 1 case study12,13

(see Appendix in Supplemental Materials found at https://doi.

org/10.1016/j.jval.2023.09.003 for full search strategy). Within

this case study, the system modeled was a triaging process and

subsequent treatment in orthopedic care, in which the type of

staff member undertaking triage was altered to assess the impact

on subsequent treatment and outcomes. The results produced

seemed reasonable; however, the authors did not discuss the re-

sults of the PSA specifically in the context of the resource-

constrained version of the model. This dearth of PSA application

within DES models could simply be a result of the different

disciplinary origins of the methods, rather than the underlying

characteristics of the methodologies.

However, when modeling a healthcare system such as a

hospital department, the goal of the model is to first reflect the

current system over a relatively short period. The model is then

used to predict the impact on outcomes for alternative policy

options. In situations which the model does not reflect current

practice, the modeler can discuss this with clinicians and review

the evidence available, thus improving its validity. Therefore, in

cases for which there is greater availability of existing data to

validate the model, the level of uncertainty around the model

structure and parameters may be considered to be lower and less

impactful than variability and heterogeneity.

This article therefore explores whether it is feasible and

appropriate to use methodology typically used in health economic

models to characterize parameter uncertainty, in addition to

variability, in those models that are primarily constructed to

explore the impact of constrained resources. A new case study is

used to demonstrate potential challenges with conducting PSA in

resource-constrained DES. The structured expert elicitation used

to derive plausible estimates of resource-related parameters,

including the uncertainty and variability, is described. Finally, a

discussion is provided on the key challenges for characterizing

decision uncertainty in resource-constrained DES models and

priorities for further research.

Methods of a Case Study Incorporating PSA within a
Resource-constrained DES of an Emergency Department

To demonstrate the complexity and challenges in implement-

ing PSA within a resource-constrained DES model, we updated a

simulation model of the Emergency Department (ED),
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undertaking such analyses. Details about this model and results

are provided within Squires et al.14 In brief, this model was

designed to assess the impact of reducing low-acuity attenders

within the ED on waiting times. There is evidence that crowding

and longer waiting times are associated with worse patient out-

comes including morbidity and mortality.15 This version of the

model did not estimate the impact of alternative interventions on

quality-adjusted life-years, but cost per minute saved in the sys-

tem was estimated. Options that were tested within the model

were for low-acuity attenders to be dealt with within other parts

of the National Health Service (NHS111 or general practice [GP]

surgeries) instead of the ED or to be sent to a colocated GP, which

consisted of a reception and standard GP appointment. The model

includes reception, triage, clinical evaluation, investigations,

treatments, and discharge. Resource constraints within the model

are staff and cubicles, based on expert clinical input. A question-

naire was sent to the hospital to complete the number of cubicles

and each staff type over the course of a week.

Individual-level data from the CUREd database16 were avail-

able to parameterize interarrival times and the investigations and

treatments patients received. The model utilized 1 year of data

from the Northern General Hospital in Sheffield, which included

117 238 patients. However, the data set included insufficient detail

about the time taken to undertake the investigations and

treatments within the ED. This was important because each

activity was dependent upon relevant staff and cubicles being

available for patients so that the impact of reducing low-acuity

attenders upon length of stay in the ED could be assessed. More

staff time and cubicles would be available for treating higher

acuity patients if there were fewer low-acuity attenders, poten-

tially leading to reduced length of stay. In the absence of any

published data about the time taken to complete investigations

and treatments within the ED, these parameters were elicited

from clinicians within the ED.

Structured Expert Elicitation

A structured expert elicitation process was used to improve

accountability and transparency, using reference methods to

design and implement the task.17 The full elicitation protocol is

presented in the Appendix in Supplemental Materials found at

https://doi.org/10.1016/j.jval.2023.09.003. In summary, the elici-

tation exercise was designed to capture experts’ uncertainty about

the mean time taken for each activity and about the variance

(variability between patients), using methods previously devel-

oped by Alhussain and Oakley (2020).18 For example, elicitation

questions for taking a blood test are as follows:

Question 1 (mean): “How long, on average, does it take to take a

blood test?”

Question 2 (variance): “If a blood test takes, on average, 8 mi-

nutes, what proportion of blood tests take up to 7 minutes?”

Quantities presented in question 2 (7 and 8 minutes) were

based on experts’ previous responses (see the elicitation protocol

in the Appendix in Supplemental Materials found at https://doi.

org/10.1016/j.jval.2023.09.003 for details).

The elicitation was conducted using a web application coded in

R, Shiny.19 The app included background information about the

project, training, and the elicitation questions, as well as contact

details of the researchers for any questions/problems. The total

number of activities in the elicitation exercise was 23, but experts

only expressed beliefs about activities they performed regularly.

Experts’ uncertainty about the mean (question 1 above) was

elicited using a histogram (Chips and Bins method), shown to

work well for experts not trained in probabilities and statistics.17

Uncertainty around the variance (question 2 above) was elicited

by asking for a range of proportions, as advised by Alhussain and

Oakley (2020),18 to minimize the burden on experts.

Seven experts agreed to take part in the exercise (2 ED consul-

tants, 1 middle grade doctor, 1 senior nurse, 2 junior nurses, 1

research nurse). Experience level ranged from ,1 year working

within the ED to .20 years. Responses from 4 experts who termi-

nated the task before answering all questions were included in the

analysis. Experts were individually asked to express their beliefs.

These were then aggregated using linear opinion pooling. First, a

probability distribution was fitted to each expert’s beliefs from the

histogram, and then these were pooled, assuming that each expert

contributed equally to the group overall distribution used within

the DES model. These were validated by another clinician.

Updating of the Model

The results of the elicitation exercise were used directly in the

simulation model, such that for every individual within a model

run, the time taken to complete the activities were sampled from a

distribution of the variability between individuals. The model was

run 12 times with these same distributions with different random

number seeds to allow for stochastic variation and to account for

the variation in interarrival times over the course of a year. The

parameters of the distributions were then updated, with new

values sampled from the distributions of uncertainty around the

mean parameters provided by the clinicians, and the model was

run again 12 times. This was repeated for 100 PSA runs, to begin to

assess the outcomes of the model. Additional PSA runs could have

been undertaken in subsequent analyses.

Results

Structured Expert Elicitation

For the elicitation exercise, 3 experts completed the task in full

(1 ED consultant, 1 junior nurse, and 1 research nurse). However,

no priors were obtained for 4 tasks (time to interpret scan results,

time to provide continuous positive airways pressure/nasal

intermittent positive pressure ventilation/bag valve mask, time to

insert an arterial line, and time for active rewarming). This indi-

cated that none of the experts would normally perform that task

in the ED. In part 1, about uncertainty for the mean parameter, the

number of experts who responded was between 1 and 6. In part 2,

about variability, the number of experts that responded was be-

tween 0 and 3 (as some experts only completed part 1). In the

absence of any other data, an “other” category was included for

those treatments for which we had no elicited data, which utilized

the average time taken of the elicited treatments.

Table 1 shows the summary of aggregate priors for each task,

including the mean of experts’ aggregate mean, uncertainty in the

aggregate mean, and variability around the mean (conditional on

values in column 2). The shortest tasks included taking patient

observations (w6 minutes) and interpreting them (w2 minutes),

receiving a urine test result (w8 minutes), and provision of sup-

plemental oxygen. The longest activities included getting results

for blood test (w96 minutes), x-rays (w50 minutes) and scans

(w90 minutes), and resuscitation (w57 minutes).

The tapering of answers to the questions toward the end of the

elicitation exercise suggested that the number of parameters that

can reasonably be elicited in this way is limited (in the region of

10-15 parameters). The outputs of the elicitation exercise were

generally found to be reasonable in terms of the predicted means

and variability but with some having larger tails than expected.

The uncertainty distributions generated from the elicitation ex-

ercise gave large ranges of mean activity times.
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Updating of the Model

The results of one trial of the model, which used the best

estimates of the means and variability around the time taken to

complete each activity, provided a reasonable fit to the data for

length of time within the ED. The results of the PSA in comparison

are shown in Figure 1. The PSA model runs led to an expected

average time in the system of over 3 days, which is far in excess of

both the non-PSA model runs and the length of stay taken from

the data set. The PSA results had very wide interquartile ranges,

with some runs having an average time in the system of almost 3

weeks. These results were implausible.

The model was found to be very sensitive to small changes in

the parameters around time taken to complete activities, such

that slightly increasing some of the times would lead to sub-

stantial queue build ups, which led to much longer average length

of stay.

Discussion

Undertaking PSA within cost-effectiveness models has been

shown to reduce bias in expected results.7 However, there is a

dearth of evidence around incorporating PSA within a resource-

constrained model. Within the broader literature, it has also

been demonstrated that ignoring uncertainty in input parameters

can lead to poor model estimates.20 This can be made worse by

running more simulations, which reduces the confidence intervals

around the results. Our case study explored the appropriateness

and feasibility of using methodology for quantifying parametric

uncertainty in health economic models in a DES model with

resource constraints. These methods assume that uncertainty in

model outputs can be quantified by propagating uncertainty in

each parameter though the model.

Within standard health economic models, provided that the

ranges of uncertainty around the parameters are plausible (eg,

Table 1. Summary of results for the aggregate priors.

Task Mean time to perform the
task (min)

Uncertainty in the mean (95%
CI in minutes)

Variability conditional on the
mean in column 2 (95% CI in
min)

Q1: Time to take a blood test 12.8 1.4-36.2 9.6-16.4

Q2: Time to get blood test results 96.2 34.2-189.6 62.5-137

Q3: Time to receive x-ray results 50 7.5-132.1 43.9-56.5

Q4: Time to perform an ECG 13.6 0.4-49.9 7.4-21.7

Q5: Time to get scan results 89.1 25.8-190.9 60.2-123.6

Q6: Time to obtain patient
observations

6.4 1.2-15.9 0-31.6

Q7: Time to interpret patient
observations

2.1 0.1-6.8 0-8.1

Q8: Time to receive urine test
results

7.6 0.2-28.2 3-14.3

Q9: Time for a doctor to evaluate a
patient

21.2 1.7-64.6 15.4-27.9

Q10: Time for a nurse to evaluate a
patient

15.5 7.3-26.5 5.6-30.3

Q11: Time to undertake a
postinvestigation/ treatment
evaluation of the patient

13 0.4-46.4 9.4-17.2

Q12: Time to remove a foreign
body

14.6 1.8-40.5 7.2-24.6

Q13: Time to undertake lavage/
emesis/ charcoal/ eye irrigation

15.1 9.8-21.6 NA

Q14: Time to insert a urinary
catheter

19.9 5-44.9 NA

Q15: Time required for
defibrillation

19.4 1.5-59.6 13-27.1

Q16: Time required for
resuscitation

56.7 7.8-153.1 17-120

Q17: Time to undertaking a minor
surgery

22.8 10.7-39.5 10.5-39.9

Q18: Epistaxis control 28.4 1.3-96.1 NA

Q19: Time required for provision
of supplemental oxygen

5.1 1.5-10.7 NA

Note. NA because no variability was input during the elicitation exercise.
NA indicates not available; Q, question.
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costs that are not negative), then the uncertainty in the model

inputs are simply propagated into the model outputs. However,

our case study suggests that for resource-constrained DES models

this is not the case. Our results show that the PSA inputs can

substantially alter the model outputs in cases which there are

interactions within a simulation model. The resulting uncertainty

in model outputs was considered implausible when validated

against existing data, although the uncertainty around the model

inputs was plausible, whilst highly uncertain and skewed.

Therefore, this highlights the need for further research into

methods for quantifying parametric uncertainty in DES models

with constrained resources.

For some parameters, such as costs and utilities, the existing

methodology is likely appropriate, but for parameters that affect

interactions within a simulation model, such as duration of ac-

tivities, alternative methods may be needed. This may depend

upon the level of data available to inform model inputs. Within

the case study, no data were available around the activity

durations; hence, elicitation was used to inform both the variation

and uncertainty in these input parameters. Alternative approaches

do exist for representing uncertainty in model inputs, including

bootstrapping, delta methods, metamodeling, and robust-opti-

misation.20 Their use in DES of resource-constrained healthcare

systems could be explored within future research. However, most

of these approaches depend on substantial data to quantify the

uncertainty. In situations which there are limited data for

informing model inputs, but data exist for validation of model

outcomes, an option may be to use the data to estimate uncer-

tainty in model parameters. Bayesian calibration can be used to

capture uncertainty using probability distributions which is

consistent with PSA21 and the priors can be informed by elicita-

tion, however, this is computationally expensive and is not typi-

cally used in resource constrained models. This could be explored

within further research.

This article focuses upon the incorporation of parameter

uncertainty within resource-constrained DES models; however

methodological uncertainty and structural uncertainty are also

relevant considerations for health economic models.9 Methodo-

logical uncertainty relates to decisions about the methods used,

such as measuring and valuing outcomes, or which discount rate is

appropriate. This is often dealt with via the use of a reference case,

which leads to consistency between analyses, although uncertainty

remains. Within resource-constrained models, the decision maker

is often a local decision maker, and the methodological decisions

will be dependent on their needs. It will be equally important for

the modeler to be aware of and test the impacts of key methodo-

logical uncertainties within resource-constrained models as for

standard health economic models.

Structural uncertainty relates to whether all relevant

relationships between parameters are captured appropriately

within the model. This can be dealt with prospectively by

considering the process through which decisions are made about

the conceptualization, structuring, and implementation of the

model. For example, within the ED case study, time was spent

observing the hospital and consulting with clinicians to

understand the current process within the ED. A validation exer-

cise was undertaken with clinicians to ensure that the structural

assumptions were representative of the current system. Any

remaining structural uncertainties can be explored using scenario

analyses. Where structural variations were found to exist between

hospitals, these could be implemented within alternative simu-

lations to capture local heterogeneity.

Reducing structural uncertainties prospectively tends to be

easier for a resource-constrained system because the system is

usually observable, and decision makers in these contexts gener-

ally do not want to make predictions far into the future, as for a

health economic model. It is important to note, however, that the

behavior of people within the system may adapt to the current

circumstances; hence, policies can have unintended consequences

on the system by affecting individuals’ behaviors. Thus, there may

be additional structural uncertainties when exploring the impacts

of policy changes, which should be explored. In addition, the ED in

our case study was found to be a complex system in which clinical

decision making includes many nuances that are challenging to

capture within a model. For example, within our model, 1 treat-

ment was always completed before another was begun by the

same staff member, whereas within the real system, staff may

move between patients before treatment is complete.

Within such complex systems in which there are in-

teractions between individuals and their environment, small

changes in model inputs can lead to large and unexpected

impacts on outcomes because of the structural assumptions

Figure 1. Results of the PSA exercise.
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within the model; therefore, it should be a priority to

explore this structural uncertainty, both prospectively and

retrospectively.

Conclusion

Structured expert elicitation can be used to derive plausible

estimates of resource-related parameters and their variability, but

experts’ uncertainty can be substantial, limiting their suitability for

use in this context. For some parameters, such as costs and utilities,

the existing PSA methodology is likely appropriate, but for param-

eters that have an impact on interactions within a resource-

constrained simulation model, PSA can substantially alter and

lead to implausible model outputs; hence, other methods may be

needed. Further research could develop methods for quantifying

parametric uncertainty in resource-constrained DES models,

including the use of calibration, and provide guidance on when

these are worthwhile, given a potentially low impact of parametric

uncertainty compared with structural uncertainties within these

models. Further research is also required about methods of elici-

tation for informing uncertain parameters within such models.
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