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Abstract
We introduce ordinal collapsing principles that are inspired by proof theory but have
a set theoretic flavor. These principles are shown to be equivalent to iterated �1

1-
comprehension and the existence of admissible sets, over weak base theories. Our
work extends a previous result on the non-iterated case, which had been conjectured
in Montalbán’s “Open questions in reverse mathematics" (Bull Symb Log 17(3):431–
454, 2011). This previous result has already been applied to the reverse mathematics
of combinatorial and set theoretic principles. The present paper is a significant contri-
bution to a general approach that connects these fields.
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1 Introduction

Well ordering principles assert that certain (computable) transformations of linear
orders preserve well foundedness. Historically, the first example concerns the trans-
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formation of a linear order X into the set

ω(X) := {〈x0, . . . , xn−1〉 | x0, . . . , xn−1 ∈ X and xn−1 ≤X · · · ≤X x0}

of finite non-increasing sequences in X , ordered lexicographically.As shownbyGirard
[26, Theorem 5.4.1] andHirst [27], the statement that ‘ω(X) is well foundedwhenever
the same holds for X ’ is equivalent to a set existence principle known as arithmetical
comprehension. The latter is, in turn, equivalent to important mathematical results
such as the Arzelà-Ascoli theorem or the infinite Ramsey theorem (for tuples with
a fixed number of at least three elements). To make clear that these equivalences
are informative, we point out that they are established in a weak base system RCA0
(‘recursive comprehension axiom’). They are part of a research programme known as
‘reverse mathematics’, developed by Friedman [23] and Simpson (see his textbook
[55] for a comprehensive introduction).

The literature contains many more equivalences between well ordering principles,
statements about set existence, and mathematical theorems [2, 37, 45, 47, 48, 50, 58].
At the same time, there is a fundamental limitation: The statement that ‘X is well
founded’ has complexity �1

1 (one universal quantification over infinite sets). Given a
computable transformation D of linear orders, the principle that ‘D(X) is well founded
whenever the same holds for X ’ will thus be �1

2 (‘for all—exists’). It is known that
principles of this form cannot be equivalent to more abstract set existence statements,
such as the principle of �1

1-comprehension from reverse mathematics or the ‘minimal
bad sequence lemma’ of Nash-Williams [39] (see the analysis by Marcone [36]).

To overcome this limitation, one can consider order transformations of higher type,
which have other transformations as arguments or values. More precisely, the latter
should be dilators in the sense of Girard [24], i. e., particularly uniform transformations
X �→ D(X) of well orders (see below for details). In the prime example from the
literature, a given dilator D is transformed into a linear order ϑ(D) that represents a
relativized Bachmann–Howard ordinal (details below). The statement that ‘ϑ(D) is
well founded for every dilator D’ is equivalent to the principle of �1

1-comprehension,
as shown by the first author [10–13]. For related work by the second author we refer to
[46] and to Section 6 of the earlier paper [45]. The equivalencewith�1

1-comprehension
hadbeen conjectured inA.Montalbán’s list of ‘Openquestions in reversemathematics’
[38]).

The cited result on ϑ(D) has become the basis for an analysis of the minimal bad
sequence lemma in terms of a uniform Kruskal theorem [21], for a new approach to
Friedman’s gap condition [14, 19], for another equivalence that involves patterns of
resemblance [18] (which resolves a further open question fromMontalbán’s list [38]),
for work on a functorial version of the fast-growing hierarchy [3], and for a result
on inverse Goodstein sequences [59]. These applications show why well ordering
principles are relevant: they connect very intricate constructions from proof theory to
reverse mathematics, set theory, and core mathematics. The present paper shows that
these connections extend far beyond the existing literature. Specifically, we will study
iterated �1

1-comprehension or, equivalently, hierarchies of admissible sets. In partic-
ular, we will obtain a characterization of �1

1-transfinite recursion, which is equivalent
to mathematical results such as the Galvin-Prikry theorem from Ramsey theory (as



Well ordering principles for iterated �1
1… Page 3 of 83 76

shown by Tanaka [56]). We will also characterize the statement that ‘every set is con-
tained in a countable β-model of�1

1-comprehension’, which solves an important case
of the general Conjecture 6.1 from [45]. Analogous to the applications of [11, 13]
that were mentioned at the beginning of this paragraph, the present paper has already
been used to prove an equivalence between �1

1-transfinite recursion and a uniform
Kruskal-Friedman theorem with gap condition (see [35] for the combinatorial result
and [17] for the analysis in reverse mathematics).

Let us recall some terminology that is needed to state our result.Wewrite LO for the
category with linear orders as objects and embeddings (strictly increasing functions)
as morphisms. By [·]<ω we denote the finite subset functor on the category of sets,
with

[X ]<ω := ‘the set of finite subsets of X ’,

[ f ]<ω(a) := { f (x) | x ∈ a} (for f : X → Y and a ∈ [X ]<ω).

We will suppress the forgetful functor from linear orders to sets. In the following
definition, this allows us to view both D and [·]<ω as functors from linear orders to
sets, so that we can consider a natural transformation between them (i. e., a family of
maps suppX : D(X) → [X ]<ω such that [ f ]<ω ◦ suppX = suppY ◦D( f ) holds for
any embedding f : X → Y of linear orders). By rng( f ) we denote the range (in the
sense of ‘image’) of a function f .

Definition 1.1 A predilator consists of a functor D : LO→ LO and a natural transfor-
mation supp : D ⇒ [·]<ω such that the ‘support condition’

rng(D( f )) = {σ ∈ D(Y ) | suppY (σ ) ⊆ rng( f )}

is satisfied for every embedding f : X → Y of linear orders. If D(X) is well founded
for any well order X , then D (together with supp) is a dilator.

Girard additionally demands that D( f ) ≤ D(g) follows from f ≤ g (pointwise
inequalities betweenmorphisms),which is automatic for dilators but not for predilators
(see [24, Proposition 2.3.10] or also [21, Lemma 5.3]). Apart from this, our definition
is equivalent to Girard’s, which does not mention supports but demands that D pre-
serves direct limits and pullbacks (see [10, Remark 2.2.2]). Predilators are determined
by their restrictions to the category of finite orders, essentially because any linear
order is the union of its finite suborders. As observed by Girard, this allows us to treat
predilators as sets (rather than proper classes) and to represent them in reverse math-
ematics (assuming their values on finite orders are countable). To make the present
paper more readable, we will not work with representations explicitly. The reader who
desires a detailed formalization of our considerations in reverse mathematics will find
a blueprint in [13, Section 2].

The aforementioned characterization of�1
1-comprehension can now bemade more

precise. For a subset a and an element y of a linear order X , we write

a ⊆X y :⇔ x <X y for all x ∈ a.
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This fits with the usual identification of ordinals with their sets of predecessors. The
following notion—first defined in [11]—is inspired by Rathjen’s notation system for
the Bachmann–Howard ordinal (see [49]).

Definition 1.2 A Bachmann–Howard collapse for a predilator D consists of a linear
order X and a function ϑ : D(X)→ X such that

(i) σ <D(X) τ and suppX (σ ) ⊆X ϑ(τ) entail ϑ(σ) <X ϑ(τ),
(ii) we have suppX (σ ) ⊆X ϑ(σ) for all σ ∈ D(X).

If such a ϑ exists, we call X a Bachmann–Howard fixed point of D.

In [13, Section 4] it is shown that any predilator D has a minimal Bachmann–
Howard fixed point ϑ(D), which is computable with a representation of D as oracle.
We can now give a precise formulation of the result that was mentioned above.

Theorem 1.3 ([11, 13]) The following are equivalent over RCA0:

(i) �1
1-comprehension,

(ii) any dilator has a well founded Bachmann–Howard fixed point,
(iii) if D is a dilator, then ϑ(D) is well founded.

Let us point out that (ii) and (iii) have different virtues. Since D �→ ϑ(D) is a
computable transformation, statement (iii) is a well ordering principle of higher type,
as discussed above. The explicit construction of ϑ(D) reveals that the strength of (ii)
lies in well foundedness, not in the existence of Bachmann–Howard fixed points as
linear orders. On the other hand, statement (ii) has the advantage that it is very easy to
formulate. This demonstrates another advantage ofwell ordering principles: they allow
us to condense central ideas of ordinal analysis into elegant set theoretic principles.
With a grain of salt, we suggest to view these principles as ‘large cardinal axioms’ in
the computable realm.

We now describe how Theorem 1.3 will be generalized in the present paper. The
product X × Y of linear orders is defined as usual, namely by

(x, y) <X×Y (x ′, y′) :⇔ x <X x ′ or (x = x ′ and y <Y y′).

Given functions f : X → X ′ and g : Y → Y ′, we define f × g : X × Y → X ′ × Y ′
by ( f × g)(x, y) := ( f (x), g(y)). Let us note that we omit one pair of parentheses
in the expression ( f × g)((x, y)) to improve readability. If f or g is the identity on
X = X ′ or Y = Y ′, respectively, we write X × g or f × Y rather than f × g. By
Example 1.5, the following generalizes the ψ-functions of Buchholz [6].

Definition 1.4 Given a well order ν and a predilator D, a ν-collapse for D consists
of a linear order X and an embedding π : X → ν × D(X) with the following two
properties: First, we demand that the relation � on X that is given by

s � t :⇔ s ∈ suppX (τ ) for π(t) = (α, τ )
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admits a height function h : X → N with h(s) < h(t) for any s � t (think of s as a
subterm of t). For γ < ν, we use recursion along � to define G D

γ : X → [D(X)]<ω

and simultaneously Gγ : D(X)→ [D(X)]<ω by

G D
γ (t) :=

{
{τ } ∪ Gγ (τ ) if π(t) = (α, τ ) with α ≥ γ,

∅ if π(t) = (α, τ ) with α < γ,

Gγ (τ ) :=
⋃
{G D

γ (s) | s ∈ suppX (τ )}.

Secondly, we now demand that π has range

rng(π) = {(α, τ ) ∈ ν × D(X) |Gα(τ ) ⊆D(X) τ }.

If such a π exists, we say that X is a ν-fixed point of D.

In the presence of weak Kőnig’s lemma, the existence of our height function h is
equivalent to the well foundedness of � (since supports are finite). The given formu-
lation of the definition has the advantage that G D

γ and Gγ can be constructed even
over RCA0 (as kindly pointed out by Patrick Uftring). We will see that the existence
of well founded ν-fixed points entails principles that are far stronger than Kőnig’s
lemma.

Instead of π , we will often consider its partial inverseψ : ν×D(X)→p X , which
can be seen as a collapsing function in the sense of impredicative ordinal analysis (see
the following example). While some readers may prefer to reformulate the definition
in terms ofψ , we feel that the use of π has notational advantages. Note that we cannot
expect ψ to be total, because the order type of ν × D(X) will typically exceed the
one of X . Very roughly, the condition on rng(π) ensures that ψ has a large domain of
definition. Given that π and hence ψ is order preserving, this means that X must have
large order type.

Example 1.5 To turn the transformation X �→ ω(X) into a dilator, we declare

ω( f )(〈x0, . . . , xn−1〉) := 〈 f (x0), . . . , f (xn−1)〉,
suppω

X (〈x0, . . . , xn−1〉) := {x0, . . . , xn−1}.

Consider Buchholz’ order OT from [6, Section 2], and let P ⊆ OT be the suborder of
principal terms, which have the form Dαt with α < ω + 1 and t ∈ OT. Let us note
that a principal term of the indicated form represents a value of a function ψα that
‘collapses’ large ordinals below the α-th regular uncountable cardinal. All such values
are additively principal ordinals (i. e., have the form ωγ ), and the remaining terms
in OT represent finite sums of them. Our aim here is to show that P is an (ω+ 1)-fixed
point of the dilator ω(·). Up to the obvious isomorphism OT ∼= ω(P), we can define
π : P→ (ω + 1)× ω(P) by π(Dαt) := (α, t). Clause (≺2) from the cited paper by
Buchholz ensures thatπ is an embedding.Given s � Dαt for a term t = 〈t0, . . . , tn−1〉,
we invoke the definition of � to get

s ∈ suppω
P (t) = {t0, . . . , tn−1}.
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The latter entails that s is a subterm of Dαt (in the usual sense), which ensures that �
is well founded. The isomorphism OT ∼= ω(P) identifies t ∈ P ⊆ OT with the element
〈t〉 ∈ ω(P). Up to this identification, the function Gγ : ω(P) → [ω(P)]<ω from
Definition 1.4 is an extension of Gω

γ : P→ [ω(P)]<ω. Based on this observation, one
readily checks that our function Gγ coincides with Gγ : OT → [OT]<ω as defined
by Buchholz, still modulo OT ∼= ω(P). In view of Buchholz’ clause (OT3), it follows
that π has range as required by Definition 1.4.

In Sect. 2, we explicitly construct a ν-fixed point ψν(D) of a given predilator D.
More precisely, the order ψν(D) will be given as a term system that is computable
relative to ν and D, so that its existence is known in the axiom system RCA0. We will
also show that ψν(D) is isomorphic to any other ν-fixed point of D, so that ν-fixed
points are essentially unique. This confirms the significance of Example 1.5. Let us
now state our main result, which is further explained below. The proof spans most of
our paper and will be completed in Sect. 9.

Theorem 1.6 Provably in RCA0, the following principles are equivalent for any infinite
well order ν:

(i) �1
1-recursion along ν,

(ii) any dilator has a well founded ν-fixed point,
(iii) if D is a dilator, then ψν(D) is well founded.

Over ATRset0 , statements (i) to (iii) are also equivalent to the following:

(iv) for any set u, there is a sequence of admissible sets Adα � u for α < ν, such that
α < β < ν entails Adα ∈ Adβ (where we consider ν as an ordinal).

The restriction to infinite ν is convenient, because it will allow us to reduce to the
case where ν is of limit type. In RCA0 one can also prove the equivalence for ν = 1
and hence for each finite ν that is fixed externally, as we shall see in Corollary 4.4
(based on Theorem 1.3). What we will not show is that RCA0 proves the equivalence
uniformly for all finite ν. We believe that this could be established by our methods,
but this would seem to require a separate treatment of the successor case, which we
were keen to avoid.

Let us now explain statement (i) from Theorem 1.6. Given Y ⊆ N and α < ν,
we write Yα for the set of all x ∈ N such that (the Cantor code of) the pair 〈α, x〉 is
contained in Y . In other words, we view Y as a representation of the sequence of sets
Yα ⊆ N with α < ν. Its initial segments are represented by the sets

Y<α := {〈γ, x〉 ∈ Y | γ < α} = {〈γ, x〉 ∈ α × N | x ∈ Yγ } ⊆ N.

For a formula ϕ(x, α, X), possibly with further parameters, let Hϕ(Y ) be given by
(the obvious formalization of)

Hϕ(Y ) :⇔ Yα = {x ∈ N |ϕ(x, α, Y<α)} for all α < ν.

More intuitively, this expresses that the sets Yα ⊆ N are built by recursion along ν,
where ϕ determines the recursion step. Let us recall that �1

1-formulas have the form
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∀X ⊆ N. θ for a formula θ that contains quantifiers ∀n ∈ N and ∃n ∈ N only.
Statement (i) from Theorem 1.6 is the axiom schema that consists of all statements

∀x1, . . . , xm ∈ N∀X1, . . . , Xn ⊆ N ∃Y ⊆ N. Hϕ(Y )

for a �1
1-formula ϕ with number and set parameters x1, . . . , xm and X1, . . . , Xn .

Before we discuss the axiom system ATRset0 and statement (iv) from Theorem 1.6,
we consider some instances that are relevant in their own right (see Sect. 9 for proofs).
First, the following result was promised in [46], for a projected article with the title
‘A proof-theoretic characterization of β-models of �1

1-comprehension’, which we
have incorporated into the present more general paper.

Corollary 1.7 The following are equivalent over RCA0:

(i) every subset of N is contained in a countable β-model of �1
1-comprehension,

(ii) any dilator has a well founded ω-fixed point,
(iii) if D is a dilator, then ψω(D) is well founded.

Secondly, the axiom schema and rule of �1
2-comprehension are closely connected

to iterations of�1
1-recursion along fixed ν < ε0 and ν < ωω, respectively, as shown by

Friedman [22] andFeferman [9] (see also the presentationbyPohlers [41, Section3.2]).
Our Theorem 1.6 yields analogous connections with the well foundedness of ν-fixed
points. Finally, we obtain the following corollary when we quantify over ν. To confirm
the significance of this result, we recall that �1

1-transfinite recursion is equivalent to
the Galvin-Prikry theorem and to the principle of �0

2-determinacy, due to Tanaka [56,
57].

Corollary 1.8 The following are equivalent over RCA0:

(i) �1
1-transfinite recursion, i. e., the principle that �1

1-recursion is available along
any well order ν,

(ii) any dilator has a well founded ν-fixed point for every well order ν,
(iii) if D is a dilator and ν is any well order, then ψν(D) is well founded.

Let us now complete our explanation of Theorem 1.6. The axiom system ATRset0
is a set theory due to Simpson [54, 55], who showed that it is conservative over the
axiom system ATR0 (‘arithmetical transfinite recursion’) from reverse mathematics.
Its axioms ensure that all primitive recursive set functions (in the sense of Jensen and
Karp [34]) are total and that every well order is isomorphic to an ordinal (‘axiom
beta’). We also include the axiom that all sets are countable, as in [55] (while [54]
marks this axiom as ‘optional’).

We also recall that an admissible set is a transitive model of Kripke-Platek set
theory. For ν = 1, the equivalence between (i) and (iv) has been shown by Jäger [31]
(see also [10, Section 1.4]). The extension to general ν can probably be considered as
known, but we will also obtain a new—if rather indirect—proof in the present paper.
Indeed, we will work in ATRset0 to prove the circle of implications

(i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇒ (i)
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between the statements from Theorem 1.6. In order to obtain the equivalence of (i), (ii)
and (iii) over RCA0, we will argue that each of these statements entails arithmetical
transfinite recursion (consider Theorem 4.2 together with Theorem 1.3 above). Note
that (iv) cannot be (directly) considered over RCA0, as it is a statement of set theory
rather than reverse mathematics.

Statements (ii) and (iii) of Theorem 1.6 are equivalent becauseψν(D) is the unique
ν-fixed point of D (up to isomorphism), as mentioned above and proved in Sect. 2. The
implication from (i) to (ii) is established in Sect. 3, where we relativize Buchholz’ [5]
method of ‘distinguished sets’ to a given dilator (cf. the relativization to a single order
in [47, Section 12.3.1]). In Sect. 9 we recall the standard proof that (iv) implies (i).

To prove the crucial implication from (ii) to (iv), we will generalize the argument
that was given for ν = 1 in [11]. There we developed a notion of β-proof (cf. [25]) that
is sound and complete for the class of models L

u
α , i. e., the stages of the constructible

hierarchy over a transitive u =: Lu
0. By completeness, the existence of an admissible

set L
u
α (which implies (i) of Theorem 1.3) was reduced to the claim that there is no

β-proof of contradiction in Kripke-Platek set theory. This claim is a natural target for
ordinal analysis, which is specialized in consistency proofs based on large well orders.
Specifically, one argues that the height of a given β-proof can be bounded by some
dilator D. Based on the well order ϑ(D) from (ii) of Theorem 1.3, one can employ
Jäger’s ordinal analysis of Kripke-Platek set theory [30], to conclude that the given
β-proof does not derive a contradiction.

In the argument from [11] that we have sketched in the previous paragraph, the
relevant β-proofs consist of a tree SX for each linear order X (see [11, Section 4]).
The aforementioned dilator D is essentially given by D(X) = SX with the Kleene-
Brouwer order. In the present paper, we obtain corresponding trees SR

X that depend not
only on a linear order X but also on a given embedding R : ν → X , which corresponds
to the sequence of admissible sets in (iv) of Theorem 1.6 (see Sect. 5). However, we
cannot allow D(X) to depend on R, because (ii) of Theorem 1.6 requires a dilator, i. e.,
a transformation whose arguments are linear orders without additional structure. This
newobstacle is resolved in Sect. 6,which can be seen as themain technical contribution
of the present paper. To complete the proof that (ii) implies (iv) in Theorem 1.6, we
then adapt the classical ordinal analysis for iterated admissible sets, developed by
Jäger and Pohlers [32] and streamlined by Buchholz [7] (see also the earlier work on
inductive definitions [8] and the detailed results in [44]). Our ‘abstract’ version of this
ordinal analysis is worked out in Sects. 7 and 8. In the final Sect. 9, we combine all
previous work into official proofs of Theorem 1.6 and Corollaries 1.7 and 1.8.

2 Existence and uniqueness of �-fixed points

In the present section, we construct a ν-fixed point ψν(D) of a given predilator D for
an arbitrary well order ν. Before, we show that all ν-fixed points of D are isomorphic,
which will entail that ψν(D) is essentially unique. The following result is central for
our uniqueness proof.
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Proposition 2.1 For well orders μ and ν, consider a μ-collapse π : X → μ× D(X)

and a ν-collapse κ : Y → ν×D(Y ) of a predilator D. Given an embedding I : μ→ ν,
there is a unique embedding f : X → Y such that

X μ× D(X)

Y ν × D(Y )

π

f I×D( f )

κ

is a commutative diagram.

Proof Write � for the well founded relation on X that is given by Definition 1.4. To
prepare the proof of existence, we establish a more general form of uniqueness. For
the purpose of this proof, let us say that a (finite or infinite) set a ⊆ X is closed if
s � t ∈ a implies s ∈ a. We write ιa : a ↪→ X for the inclusion. By the definition of
� and the support condition from Definition 1.1, any closed a validates

t ∈ a ⇒ suppX (τ ) ⊆ a = rng(ιa) ⇒ τ ∈ rng(D(ιa)) for π(t) = (α, τ ).

Given that D(ιa) is an embedding, we get a unique embedding πa such that

a μ× D(a)

X μ× D(X)

πa

ιa Id×D(ιa)

π

commutes. By an a-approximation, we shall mean an embedding fa : a → Y such
that the diagram from the proposition commutes if we replace X , π, f by a, πa, fa .
When a is the entire order X , then the functions ιa and D(ιa) are the identity on a = X
and D(a) = D(X), respectively, since D is a functor. In this case, the functions πa

and π will thus coincide, which means that an X -approximation is a function f as in
the proposition. Our strong form of uniqueness reads as follows.

Claim Given any a-approximation fa and b-approximation fb for closed a, b ⊆ X ,
we have fa(t) = fb(t) for all t ∈ a ∩ b.

To prove the claim, one checks that c := a ∩ b is closed and that fa �c and fb �c are
c-approximations (write fa �c = fa ◦ ι with ι : c ↪→ a). To conclude, we consider an
arbitrary c-approximation f and show that its values are uniquely determined. Given
t ∈ c, write πc(t) = (α, τ ) and consider the inclusion ι : suppc(τ ) ↪→ c. By the
support condition, we can write τ = D(ι)(τ0), where τ0 is unique since D(ι) is an
embedding. As f is a c-approximation, we obtain

κ ◦ f (t) = (I × D( f )) ◦ πc(t) = (I (α), D( f ◦ ι)(τ0)).

Given that κ is an embedding, this means that f (t) is determined by f ◦ ι. We can
deduce uniqueness by induction over � (or over the heights from Definition 1.4), as
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s ∈ rng(ι) implies s � t . To see the latter, note that we have

π(t) = π ◦ ιc(t) = (Id×D(ιc)) ◦ πc(t) = (α, D(ιc)(τ )),

and that the naturality of supp : D ⇒ [·]<ω yields

rng(ι) = suppc(τ ) = [ιc]<ω ◦ suppc(τ ) = suppX (D(ιc)(τ )).

As a next step towards existence, we show that approximations can be combined:

Claim Consider a family 〈 fi | i ∈ I 〉 of ai -approximations fi for closed ai ⊆ X . The
function f : a =⋃

i∈I ai → Y with f (t) = fi (t) for t ∈ ai is an a-approximation.

Note that a is closed and that f is well defined by the previous claim. To show that
f is an a-approximation, we need to consider at most two indices at a time, namely,
when we check that f is an order embedding. This means that the claim for general I
reduces to the one for I = {0, 1}.We establish the latter by induction on the cardinality
|a0 ∪ a1| ∈ N ∪ {∞}. The crucial step is to show

t0 <X t1 ⇒ f0(t0) <Y f1(t1) for ti ∈ ai .

Let a′i ⊆ ai consist of the predecessors of ti in the transitive closure of �. Then the
set c := a′0 ∪ a′1 is finite and cannot contain both t0 and t1, as � is well founded.
Due to the induction hypothesis, the restrictions fi � a′i can thus be combined into a
c-approximation f ′. Put πi := πd with d = ai . As in the proof of uniqueness, we can
write πi (ti ) = (αi , D(ι′i )(τi )) with ι′i : a′i ↪→ ai . For ιi : ai ↪→ X we get

π(ti ) = π ◦ ιi (ti ) = (Id×D(ιi )) ◦ πi (ti ) = (αi , D(ιi ◦ ι′i )(τi )).

Let us also consider the inclusions ι′′i : a′i ↪→ c and ιc : c ↪→ X . Clearly,

a′i ai

c X

ι′i

ι′′i ιi

ιc

is a commutative diagram. Aiming at the implication above, we now assume t0 < t1.
As π is an embedding, we get either α0 < α1 or α0 = α1 and

D(ιc) ◦ D(ι′′0)(τ0) = D(ι0 ◦ ι′0)(τ0) < D(ι1 ◦ ι′1)(τ1) = D(ιc) ◦ D(ι′′1)(τ1),

which entails D(ι′′0)(τ0) < D(ι′′1)(τ1). By the choice of f ′ we have f ′ � a′i = fi � a′i ,
or equivalently f ′ ◦ ι′′i = fi ◦ ι′i . Hence the last inequality entails

D( f0 ◦ ι′0)(τ0) = D( f ′) ◦ D(ι′′0)(τ0) < D( f ′) ◦ D(ι′′1)(τ1) = D( f1 ◦ ι′1)(τ1).
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To conclude f0(t0) < f1(t1), it is thus enough to observe

κ ◦ fi (ti ) = (I × D( fi )) ◦ πi (ti ) = (I (αi ), D( fi ◦ ι′i )(τi )).

Now that this second claim is proved, the proposition is reduced to the following:

Claim Given any t ∈ X , there is an a-approximation for some finite closed a � t .

Arguing by induction on �, we can use the previous claim to produce a b-approxi-
mation f for some finite closed b ⊆ X that contains all s � t . As before, we can write
π(t) = (α, D(ιb)(τ )) with ιb : b → X . To extend f into a function f ′ : a → Y on
the closed set a := b ∪ {t}, we would like to stipulate κ ◦ f ′(t) = (I (α), D( f )(τ )).
For this purpose, we need to show that the right side lies in the range of κ . Let us
write G D,Z

γ : Z → [D(Z)]<ω and G Z
γ : D(Z)→ [D(Z)]<ω for the functions from

Definition 1.4, where Z can be X or Y . Analogous functions for Z = b arise by

G D,b
γ (s) :=

{
{σ } ∪ Gb

γ (σ ) if πb(s) = (α, σ ) with α ≥ γ,

∅ if πb(s) = (α, σ ) with α < γ,

Gb
γ (σ ) :=

⋃
{G D,b

γ (r) | r ∈ suppb(σ )}.

To see that this recursion is well founded, note that πb(s) = (α, σ ) and r ∈ suppb(σ )

entail r � s, as in the proof of the first claim. By induction along � we get

[D(ιb)]<ω ◦ G D,b
γ = G D,X

γ ◦ ιb,

[D(ιb)]<ω ◦ Gb
γ = G X

γ ◦ D(ιb),

[D( f )]<ω ◦ G D,b
γ = G D,Y

I (γ ) ◦ f ,

[D( f )]<ω ◦ Gb
γ = GY

I (γ ) ◦ D( f ).

For t ∈ X with π(t) = (α, D(ιb)(τ )) as above, we can invoke Definition 1.4 to get

[D(ιb)]<ω ◦ Gb
α(τ ) = G X

α ◦ D(ιb)(τ ) ⊆D(X) D(ιb)(τ ).

The latter entails Gb
α(τ ) ⊆D(b) τ and then

GY
I (α) ◦ D( f )(τ ) = [D( f )]<ω ◦ Gb

α(τ ) ⊆D(Y ) D( f )(τ ).

Again by Definition 1.4, it follows that (I (α), D( f )(τ )) lies in the range of κ . As indi-
cated above we can thus define f ′ : a = b ∪ {t} → Y by stipulating

κ ◦ f ′(t) = (I (α), D( f )(τ ))

and f ′ � b = f . The fact that f ′ is order preserving is readily deduced from the
following observation: For s ∈ b with πb(s) = (β, σ )we have π(s) = (β, D(ιb)(σ )),
and since f is a b-approximation we get

κ ◦ f ′(s) = κ ◦ f (s) = (I × D( f )) ◦ πb(s) = (I (β), D( f )(σ )).
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To see that the diagram from the proposition commutes with c, πc, f ′ at the place
of X , π, f , we note that f ′ �b = f amounts to f = f ′ ◦ ι with ι : b ↪→ c. For s ∈ b
or s = t , we see that π(s) = (β, D(ιb)(σ )) yields πc(s) = (β, D(ι)(σ )) and hence

(I × D( f ′)) ◦ πc(s) = (I (β), D( f ′ ◦ ι)(σ )) = (I (β), D( f )(σ )),

which coincides with κ ◦ f ′(s) as computed above. ��
In terminology from category theory, the proposition shows that any ν-fixed point

satisfies the universal property of an initial object. As the following proof makes
explicit, this entails that ν-fixed points are essentially unique. For an application of
Proposition 2.1 with μ < ν, we refer to Corollary 2.10 below.

Corollary 2.2 All ν-fixed points of a given predilator are order isomorphic.

Proof Consider ν-fixed points π : X → ν× D(X) and κ : Y → ν× D(Y ), and write
I : ν → ν for the identity. Two applications of the previous proposition (one with X
and Y interchanged) yield embeddings f : X → Y and g : Y → X with

π ◦ g ◦ f = (I × D(g)) ◦ κ ◦ f = (I × D(g)) ◦ (I × D( f )) ◦ π = (I × D(g ◦ f )) ◦ π.

If IdX is the identity on X , then D(IdX ) is the identity on D(X), as D is a functor.
Hence we also have π ◦ IdX = (I × D(IdX )) ◦ π . We can conclude g ◦ f = IdX by
the uniqueness part of the previous proposition. The analogous argument shows that
f ◦ g is the identity on Y , so that f is indeed an isomorphism. ��
To prepare the construction of ν-fixed points, we recall a notion of normal form

that is due to Girard [24]. Where the context suggests it, we identify n ∈ N and the
finite order {0, . . . , n − 1} (with the usual order between natural numbers). We also
agree to write |a| = {0, . . . , |a| − 1} for the cardinality of a finite set a.

Definition 2.3 The trace of a predilator D is defined as

Tr(D) := {(n, σ ) | n ∈ N and σ ∈ D(n) with suppn(σ ) = n}.

We say that σ ∈ D(X) has normal form σ =NF D(e)(σ0) with e : n → X for
some n ∈ N if we have (n, σ0) ∈ Tr(D) and σ is indeed equal to D(e)(σ0).

Let us recall a standard observation:

Lemma 2.4 Any σ ∈ D(X) has a unique normal form σ =NF D(e)(σ0).

Proof If σ has normal form as given, then e is determined as the unique embedding
with domain n := | suppX (σ )| and range suppX (σ ) ⊆ X , as naturality yields

suppX (σ ) = suppX ◦D(e)(σ0) = [e]<ω ◦ suppn(σ0) = [e]<ω(n) = rng(e).

For existence, consider e as determined in the uniqueness proof. The support condition
from Definition 1.1 ensures that σ = D(e)(σ0) holds for some σ0 ∈ D(n). By the
equations above, we see that suppX (σ ) = rng(e) entails suppn(σ0) = n and hence
(n, σ0) ∈ Tr(D). ��
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In order to construct a ν-fixed point ψν(D) of a given predilator D, we shall first
build an order ψ+ν (D) ⊇ ψν(D) that admits an order isomorphism

ψ+ν (D) ∼= ν × D
(
ψ+ν (D)

)
.

We will later show that ψν(D) is well founded when D is a dilator (cf. Theorem 1.6).
The same cannot hold for ψ+ν (D), which explains the auxiliary status of this order.
Indeed, when we have ν > 1 and D admits embeddings X ↪→ D(X), then the order
type of ν × D(X) will always exceed the one of X (namely, ν × D(X) is isomorphic
to β · ν > α when we have α ∼= X ↪→ D(X) ∼= β with α ≤ β).

Definition 2.5 Consider an ordinal ν and a predilator D. The set ψ+ν (D) of terms is
generated by the following recursive clause: Given a finite set a ⊆ ψ+ν (D), we add a
term ψα(a, σ ) ∈ ψ+ν (D) for each α < ν and each σ ∈ D(|a|) with (|a|, σ ) ∈ Tr(D).

Note that ψ+ν (D) is non-empty if the same holds for D(0). We recursively put

l : ψ+ν (D)→ N with l (ψα(a, σ )) := 1+∑
t∈a 2 · l(t).

The following definition determines s � t by recursion on l(s) + l(t). In particular,
the factor 2 in the definition of l allows us to determine the restriction of � to a ∪ b.
We demand that this restriction is linear, to ensure that D(a∪ b) is defined (as a linear
order with the order relation written as ≤D(a∪b)).

Definition 2.6 In order to define a binary relation � on ψ+ν (D) by recursion, we
declare that ψα(a, σ ) � ψβ(b, τ ) holds precisely if a∪b is linearly ordered by� and

(i) either we have α < β,
(ii) or we have α = β and D(ea)(σ ) ≤D(a∪b) D(eb)(τ ) for the strictly increasing

functions ea : |a| → a ∪ b and eb : |b| → a ∪ b with range a and b, respectively.

The condition that a ∪ b is linearly ordered is made redundant by the following.

Lemma 2.7 The relation � is a linear order on ψ+ν (D).

Proof By induction on n ∈ N, one can simultaneously show

t � t for l(t) < n,

r � s and s � t imply r � t for l(r)+ l(s)+ l(t) < n,

s � t and t � s imply s = t for l(s)+ l(t) < n,

s � t or t � s for l(s)+ l(t) < n.

Let us establish transitivity for r = ψα(a, ρ), s = ψβ(b, σ ) and t = ψγ (c, τ ). The
induction hypothesis ensures that � is linear on d := a ∪ b ∪ c (due to the factor 2
in the definition of l and since transitivity is trivial when all three relevant terms are
equal). Given r � s and s � t , the conclusion r � t is immediate unless we have
α = β = γ as well as

D(ea∪b
a )(ρ) ≤D(a∪b) D(ea∪b

b )(σ ) and D(eb∪c
b )(σ ) ≤D(b∪c) D(eb∪c

c )(τ ),
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where ev
u : |u| → v is strictly increasing with range u ⊆ v. Note that ιwv ◦ ev

u = ew
u

holds for the inclusion ιwv : v ↪→ w. After composing the previous inequalities with
D(ιda∪b) and D(ιdb∪c), respectively, we can invoke transitivity in D(d) to get

D(ιda∪c) ◦ D(ea∪c
a )(ρ) = D(ed

a )(ρ) ≤D(d) D(ed
c )(τ ) = D(ιda∪c) ◦ D(ea∪c

c )(τ ).

We obtain D(ea∪c
a )(ρ) ≤D(a∪c) D(ea∪c

c )(τ ), so that clause (ii) of Definition 2.6 yields
the desired inequality r � t . By similar but easier arguments, we can reduce the reflex-
ivity and linearity of � to the corresponding properties of orders D(d). To establish
antisymmetry, we must show that s = t follows from

D(eb∪c
b )(σ ) = D(eb∪c

c )(τ ).

The expressions on both sides of this equation are normal forms in the sense of Def-
inition 2.3, as Definition 2.5 ensures that (|b|, σ ) and (|c|, τ ) lie in Tr(D). Hence
Lemma 2.4 allows us to conclude. ��

To obtain an order isomorphism ψ+ν (D) ∼= ν × D
(
ψ+ν (D)

)
as promised above,

it suffices to map ψα(a, σ ) to (α, D(ea)(σ )), where ea : |a| → ψ+ν (D) is strictly
increasing with range a. This fact will not be used, but a very similar result is shown
in the proof of Theorem 2.9 below. We now single out the desired suborder.

Definition 2.8 In the following, let ea : |a| → ψ+ν (σ ) denote the strictly increasing
function with range a and the indicated codomain. For each ordinal γ < ν we define
a function G+γ : ψ+ν (D)→ [D(ψ+ν (D))]<ω by recursion over terms, stipulating

G+γ (ψα(a, σ )) :=
{
{D(ea)(σ )} ∪⋃{G+γ (r) | r ∈ a} if α ≥ γ,

∅ if α < γ.

The suborder ψν(D) ⊆ ψ+ν (D) is determined by the recursive clause

ψα(a, σ ) ∈ ψν(D) :⇔ a ⊆ ψν(D) and
⋃
{G+α (r) | r ∈ a} ⊆D(ψ+ν (D)) D(ea)(σ ).

Let us now establish the main result of this section.

Theorem 2.9 The order ψν(D) is a ν-fixed point of a given predilator D.

Proof Write ι : ψν(D) ↪→ ψ+ν (D) for the inclusion and e′a : |a| → ψν(D) for the
strictly increasing function with range a, so that ea = ι ◦ e′a is the same function as in
Definition 2.8. Now consider the function

π : ψν(D)→ ν × D(ψν(D)) with π(ψα(a, σ )) := (α, D(e′a)(σ )).

One readily shows that π(s) ≤ π(t) entails s � t (factorize e′a = ιa∪b ◦ ea∪b
a with

ιa∪b : a ∪ b ↪→ ψν(D) as in the proof of Lemma 2.7). Since the codomain of π is a



Well ordering principles for iterated �1
1… Page 15 of 83 76

linear order, it follows that π is an embedding. With X := ψν(D) we compute

suppX

(
D(e′a)(σ )

) = [e′a]<ω
(
supp|a|(σ )

) = [e′a]<ω(|a|) = a.

Here the first equality holds since supp : D ⇒ [·]<ω is natural, while the second one
relies on (|a|, σ ) ∈ Tr(D) according to Definition 2.5. The binary relation � that is
determined in Definition 1.4 can thus be characterized by

s � ψα(a, σ ) ⇔ s ∈ a,

which entails that it is well founded with a height function that corresponds to the
usual notion of height for terms. Let the functions G D

γ : ψν(D) → [D(ψν(D))]<ω

and Gγ : D(ψν(D)) → [D(ψν(D))]<ω be given as in Definition 1.4. By induction
along � one readily shows

G+γ ◦ ι = [D(ι)]<ω ◦ G D
γ .

In view of Definition 2.8, we can deduce that ψα(a, σ ) ∈ ψν(D) entails

[D(ι)]<ω ◦ Gα(D(e′a)(σ )) =
⋃
{G+α (r) | r ∈ a} ⊆D(ψ+ν (D)) D(ι) ◦ D(e′a)(σ ).

It follows that we have

rng(π) ⊆ {(α, τ ) ∈ ν × D(ψν(D)) |Gα(τ ) ⊆D(ψν(D)) τ },

as Definition 1.4 demands. To show that the converse of this inclusion holds as well,
we consider an arbitrary element (α, τ ) of the right side. Writing X = ψν(D), we put
a := suppX (τ ). The support condition from Definition 1.1 yields a σ ∈ D(|a|) with
τ = D(e′a)(σ ). As in the proof of Lemma 2.4 we get (|a|, σ ) ∈ Tr(D), which allows
us to form the term ψα(a, σ ) ∈ ψ+ν (D). Given Gα(τ ) ⊆ τ , we get

⋃
{G+α (r) | r ∈ a} = [D(ι)]<ω ◦ Gα(τ ) ⊆D(ψ+ν (D)) D(ι)(τ ) = D(ea)(σ ).

This entails that ψα(a, σ ) lies in ψν(D) ⊆ ψ+ν (D). By construction, we can now
conclude that (α, τ ) = π(ψα(a, σ )) is contained in the range of π . ��

By Corollary 2.2, any ν-fixed point of D is isomorphic to ψν(D), which confirms
that statements (ii) and (iii) fromTheorem1.6 are equivalent. If the equivalencewith (i)
is to hold, then (iii) must become stronger as ν grows. We conclude the section with
a direct proof that this is the case.

Corollary 2.10 If ψν(D) is well founded, then so is ψμ(D) for any μ < ν.

Proof Given μ < ν, there is an embedding of μ into ν. By Proposition 2.1 (which
applies due to Theorem 2.9), we get an embedding of ψμ(D) into ψν(D). ��
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3 A proof of well foundedness

In this section, we prove that (i) implies (ii) in Theorem 1.6, i. e., we use iterated
�1

1-comprehension to show that ν-fixed points of dilators are well founded. To make
the general case more transparent, we provide an argument for ν = 1 first.

Remark 3.1 We show that any 1-fixed point X of a dilator D is well founded. Consider
a 1-collapse π : X → D(X), where D(X) is identified with 1 × D(X). Up to this
identification, Definition 1.4 yields

s � t ⇔ s ∈ suppX ◦ π(t),

and the definitions of G D
0 : X → [D(X)]<ω and G0 : D(X)→ [D(X)]<ω become

G D
0 (t) = {π(t)} ∪ G0(π(t)) and G0(τ ) =

⋃
{G D

0 (s) | s ∈ suppX (τ )}.

Furthermore, the condition on the range of π can now be written as

rng(π) = {τ ∈ D(X) |G0(τ ) ⊆D(X) τ }.

As a special feature of the case ν = 1, we get

s � t ⇒ π(s) ∈ G D
0 (s) ⊆ G0(π(t)) ⊆D(X) π(t) ⇒ s < t .

Assuming �1
1-comprehension, we may form the well founded part W of X , which

can be given as the intersection of all sets Z ⊆ X such that we have t ∈ Z whenever
s ∈ Z holds for all s <X t . One readily shows that W is well founded with

t ∈ W ⇔ s ∈ W for all s ∈ X with s <X t .

Write ι : W ↪→ X for the inclusion. By the previous observations and the support
condition from Definition 1.1, we get

t ∈ W ⇒ suppX ◦ π(t) ⊆ W = rng(ι) ⇒ π(t) ∈ rng(D(ι)).

It follows that there is a function

κ : W → D(W ) with D(ι) ◦ κ = π ◦ ι.

We will show that κ is a 1-collapse of D. Once this has been achieved, we can invoke
Corollary 2.2 to learn that X ∼= W is well founded, as desired. In fact, the existence part
of Proposition 2.1 yields an embedding f : X → W with κ ◦ f = (I × D( f )) ◦ π ,
where I : ν → ν is the identity. By the uniqueness part of the same proposition,
the composition ι ◦ f must be the identity on X = W . It remains to show that κ

satisfies the conditions from Definition 1.4. The latter ensures that π is an order
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embedding, so that the same holds for κ . Given s, t ∈ W , we observe that the naturality
of supp : D ⇒ [·]<ω yields

[ι]<ω ◦ suppW ◦ κ(t) = suppX ◦ D(ι) ◦ κ(t) = suppX ◦ π ◦ ι(t),

so that ι(s) � ι(t) is equivalent to s ∈ suppW ◦ κ(t). This shows that the restriction
of � to W coincides with the relation that κ induces according to Definition 1.4. The
latter also yields functions G D

W : W → [D(W )]<ω and GW : D(W )→ [D(W )]<ω,
which are given by

G D
W (t) = {κ(t)} ∪ GW (κ(t)) and GW (τ ) =

⋃
{G D

W (s) | s ∈ suppW (τ )}.

A straightforward induction along � shows that we have

[D(ι)]<ω ◦ G D
W = G D

0 ◦ ι and [D(ι)]<ω ◦ GW = G0 ◦ D(ι).

By the aforementioned condition on the range of π , we obtain

[D(ι)]<ω ◦ GW ◦ κ(t) = G0 ◦ D(ι) ◦ κ(t) = G0 ◦ π ◦ ι(t) ⊆D(X) π ◦ ι(t) = D(ι) ◦ κ(t)

for any t ∈ W . Since D(ι) is an embedding, we can conclude

rng(κ) ⊆ {τ ∈ D(W ) |GW (τ ) ⊆D(W ) τ }.

It remains to establish the converse inclusion. Note that D(W ) is well founded, as D
is a dilator and W is a well order. We argue by (main) induction on τ ∈ D(W ) to
prove the crucial implication

GW (τ ) ⊆D(W ) τ ⇒ τ ∈ rng(κ).

Assuming the premise, we get G0(D(ι)(τ )) ⊆D(X) D(ι)(τ ) as above, which allows
us to write D(ι)(τ ) = π(t) with t ∈ X . We will show t ∈ W , so that we obtain

D(ι) ◦ κ(t) = π ◦ ι(t) = π(t) = D(ι)(τ ).

Since D(ι) is an embedding, we can conclude τ = κ(t) ∈ rng(κ) as desired. In order
to get t ∈ W , we establish

s ∈ X and s <X t ⇒ s ∈ W

by (side) induction on s in the order�. For r � s < t weget r < t , so that the induction
hypothesis yields r ∈ W . This shows that we have suppX ◦π(s) ⊆ rng(ι). We can thus
write π(s) = D(ι)(σ ), due to the support condition. As above, the condition on the
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range of π entails GW (σ ) ⊆D(W ) σ . Since s < t implies σ < τ , the main induction
hypothesis yields σ = κ(s′) for some s′ ∈ W . In view of

π(s) = D(ι)(σ ) = D(ι) ◦ κ(s′) = π ◦ ι(s′)

we get s = ι(s′) ∈ W , as needed to complete the side induction step.

The previous remark is loosely inspired by [49, Section 10]. Similarly, the following
generalization to ν > 1 can be seen as an ‘abstract’ version of [47, Section 12]. For
all results up to Theorem 3.12, we fix a ν-collapse π : X → ν × D(X) of a dilator D
(note that D preserves well foundedness).

Definition 3.2 For each α < ν we put

Xα := {t ∈ X |π(t) = (γ, τ ) with γ ≤ α}.

Furthermore, we define E D
α : X → [Xα]<ω and Eα : D(X)→ [Xα]<ω by

E D
α (t) :=

{
{t} if t ∈ Xα,

Eα(τ ) if π(t) = (γ, τ ) with γ > α,

Eα(τ ) :=
⋃
{E D

α (s) | s ∈ suppX (τ )}.

This amounts to a recursion along the well founded relation � from Definition 1.4.

Note that each set Xα is an initial segment of X , since π is an embedding.

Definition 3.3 By �1
1-recursion on α < ν, define Wα as the well founded part of

Mα := {t ∈ Xα | E D
γ (t) ⊆ Wγ for all γ < α}.

Let us also set W :=⋃{Wα |α < ν}.
We point out that the sets Wα are distinguished (‘ausgezeichnet’) in the sense of

Buchholz [5], modulo the fact that we are in a somewhat more abstract setting.

Lemma 3.4 For α ≤ β we have Wα = Wβ ∩ Xα = W ∩ Xα .

Proof For α < β and t ∈ Wβ ∩ Xα we get t ∈ E D
α (t) ⊆ Wα by the definition of Mβ .

To establish Wα ⊆ Wβ , we argue by induction on β. For α ≤ γ < β, the induction
hypothesis ensures that t ∈ Wα ⊆ Xγ entails E D

γ (t) = {t} ⊆ Wγ , so that we get

Wα ⊆ Mβ ∩ Xα ⊆ Mα.

By definition of the well founded part, Wβ is the largest initial segment of Mβ that
is well founded. The given inclusions entail that Wα is such a segment and hence
contained in Wβ . More explicitly, induction on t ∈ Wα yields t ∈ Wβ . ��
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As W is the union of well founded initial segments, we get the following.

Corollary 3.5 The suborder W ⊆ X is well founded.

In the next lemma, we collect some basic facts for later use.

Lemma 3.6 The following holds for any α, β < ν, any s, t ∈ X and any τ ∈ D(X):

(a) Given s ∈ E D
β (t) and α ≤ β, we get E D

α (s) ⊆ E D
α (t). The same holds when E D

β (t)
is replaced by Eβ(τ ).

(b) If π(t) = (α, τ ), then we have Eα(τ ) ⊆X t.
(c) From (α, τ ) ∈ rng(π) we get (β, τ ) ∈ rng(π) for any β ≥ α.

Proof (a) We argue by induction on t in the order �. For s = t , the claim is trivial. In
the remaining case, we have π(t) = (δ, τ ) with δ > β ≥ α. We get s ∈ E D

β (r) for
some r � t , so that the induction hypothesis yields

E D
α (s) ⊆ E D

α (r) ⊆ Eα(τ ) = E D
α (t).

(b) By induction on s in the order �, we prove the auxiliary claim

r ∈ E D
α (s) and π(r) = (α, ρ) ⇒ ρ ∈ G D

α (s).

Assuming the antecedent, we must have π(s) = (γ, σ ) with γ ≥ α, so that

G D
α (s) = {σ } ∪

⋃
{G D

α (s′) | s′ ∈ suppX (σ )}.

For r = s we obtain ρ = σ ∈ G D
α (s). In the remaining case we have r ∈ E D

α (s′)
for some s′ � s, so that the induction hypothesis yields ρ ∈ G D

α (s′) ⊆ G D
α (s). To

deduce the lemma, consider an arbitrary r ∈ Eα(τ ). Write π(r) = (δ, ρ), necessarily
with δ ≤ α. If we have δ < α, then we immediately get π(r) < π(t) and hence r < t .
Now assume δ = α, and note that we have r ∈ E D

α (s) for some s ∈ suppX (τ ). By the
auxiliary claim and the condition on rng(π) in Definition 1.4, we get

ρ ∈ G D
α (s) ⊆ Gα(τ ) ⊆D(X) τ.

Once again this yields π(r) < π(t) and hence r < t , as required for Eα(τ ) ⊆X t .
(c) Given α ≤ β, one checks G D

β (t) ⊆ G D
α (t) by a straightforward induction on t

in the order �. The same inclusion then holds with Gγ (τ ) at the place of G D
γ (t). Now

it suffices to recall the condition on rng(π) from Definition 1.4. ��
Inspired by [47, Definition 12.64], we introduce the following crucial sets.

Definition 3.7 Let us put

B := {τ ∈ D(X) |we have t ∈ W whenever π(t) = (α, τ ) for some α < ν},
M := {τ ∈ D(X) |we have Eγ (τ ) ⊆ W for all γ < ν}.
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All of the following results rely on the standing assumption that D is a dilator. Note
that we only use this assumption once, namely in the following proof.

Lemma 3.8 The suborder M ⊆ D(X) is well founded.

Proof Given any τ ∈ M , pick a γ < ν such that the finite set suppX (τ ) is fully
contained in Xγ . By the definition of M , we obtain

W ⊇ Eγ (τ ) =
⋃
{E D

γ (s) | s ∈ suppX (τ )} = suppX (τ ).

For the inclusion ι : W ↪→ X , we get τ ∈ rng(D(ι)) by the support condition from
Definition 1.1. Hence M lies in the range of the embedding D(ι) : D(W )→ D(X).
To conclude, note that D(W ) is well founded as D is a dilator. ��

The next result is the technical core of this section.

Proposition 3.9 We have M ⊆ B.

Proof We argue by (main) induction over the well order M , i. e., we assume τ ∈ M
and {σ ∈ M | σ < τ } ⊆ B to derive τ ∈ B. Aiming at the latter, consider an
arbitrary t ∈ X such that π(t) = (α, τ ) holds for some α. We need to prove t ∈ W .
Given τ ∈ M , we get t ∈ Mα via

E D
γ (t) = Eγ (τ ) ⊆ W ∩ Xγ = Wγ for γ < α.

Since Wα is the accessible part of Mα , we can conclude t ∈ Wα ⊆ W once the
following is established (cf. [47, Lemma 12.65]):

Claim Given any α < ν and t ∈ X with π(t) = (α, τ ), we obtain s ∈ Wα for all
elements s ∈ Mα with s < t .

To prove this claim, we argue by (side) induction on s in the transitive closure �+ of
the well founded relation �, or alternatively on h(s) for

h : X → N with h(s) := max({0} ∪ {h(r)+ 1 | r � s}).

It will be important that the induction hypothesis is available for all α and hence for
various t , while τ remains fixed as above. In the side induction step, we first assume
that s ∈ Xγ holds for some γ < α. Given s ∈ Mα , we then get

s ∈ E D
γ (s) ⊆ Wγ ⊆ Wα.

In the remaining case, we have π(s) = (α, σ ) with σ < τ , as s < t entails π(s) <

π(t). To use the main induction hypothesis, we want to show σ ∈ M , which amounts
to

Eγ (σ ) ⊆ W for all γ < ν.
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We prove the latter by (auxiliary) induction on γ . For γ < α we can invoke s ∈ Mα

to get Eγ (σ ) = E D
γ (s) ⊆ Wγ . In the case of γ = α, we use Lemma 3.6(a) to obtain

E D
δ (r) ⊆ Eδ(σ ) ⊆ W ∩ Xδ = Wδ for all r ∈ Eα(σ ) and δ < α,

which yields Eα(σ ) ⊆ Mα . By Lemma 3.6(b), we have Eα(σ ) ⊆X s < t . Further-
more, it is not hard to see that the elements of Eα(σ ) lie below s in �+ (alternatively
check h(r ′) ≤ h(r) for r ′ ∈ E D

α (r) by induction over �). We can thus use the side
induction hypothesis to get Eα(σ ) ⊆ Wα . Finally, we consider the case of γ > α. The
auxiliary induction hypothesis entails Eγ (σ ) ⊆ Mγ as before. By Lemma 3.6(c) we
find s′, t ′ ∈ X with π(s′) = (γ, σ ) and π(t ′) = (γ, τ ). In view of σ < τ we get

Eγ (σ ) ⊆X s′ < t ′.

Thus the desired inclusion Eγ (σ ) ⊆ Wγ follows from the side induction hypothesis
(now with γ and t ′ at the place of α and t). This completes the auxiliary induction and
hence the proof of σ ∈ M , as noted above. We can now invoke the main induction
hypothesis to get σ ∈ B. Given π(s) = (α, σ ), this yields s ∈ W ∩ Xα = Wα , which
concludes the steps of side induction (claim) and main induction. ��

In Remark 3.1, we have exploited the fact that t ∈ W and s � t entail s ∈ W . The
proof that we have given breaks down for ν > 1. However, we get the desired closure
property for an inductively generated suborder:

Definition 3.10 Let V ⊆ W be given by the recursive clause

t ∈ V :⇔ t ∈ W and s ∈ V for all s � t .

In the following result, the implication⇒ is the closure property mentioned above.
The converse implication encapsulates most previous work of this section.

Corollary 3.11 For t ∈ X with π(t) = (α, τ ) we have

t ∈ V ⇔ suppX (τ ) ⊆ V .

Proof Since s � t amounts to s ∈ suppX (τ ), it suffices to show that suppX (τ ) ⊆ V
implies t ∈ W . For γ < ν, a straightforward induction over � shows that s ∈ V
entails E D

γ (s) ⊆ V . Given suppX (τ ) ⊆ V , we thus get

Eγ (τ ) =
⋃
{E D

γ (s) | s ∈ suppX (τ )} ⊆ V ⊆ W .

This shows τ ∈ M , so that Proposition 3.9 yields τ ∈ B, which entails t ∈ W . ��
Finally, we deduce the main result of this section, which shows that (i) implies (ii)

in Theorem 1.6. To justify the formulation of the following theorem, we recall that
ν-fixed points exist and are essentially unique, by Theorem 2.9 and Corollary 2.2.
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Theorem 3.12 If �1
1-recursion along ν is available, then the ν-fixed point of any

dilator is well founded.

Proof Consider a dilator D and a ν-fixed point X with collapse π : X → ν ×
D(X). Using �1

1-recursion along ν, we can construct sets Wα as in Definition 3.3, to
obtain suborders V ⊆ W ⊆ X as in Definition 3.10. Note that V is well founded by
Corollary 3.5. We shall show that V is a ν-fixed point of D. Once this is achieved,
we can use Corollary 2.2 to conclude that X ∼= V is well founded. In fact, we could
derive X = V via Proposition 2.1 (as in Remark 3.1). Write ι : V → X for the
inclusion. By the previous corollary and the support condition from Definition 1.1,
we get τ ∈ rng(D(ι)) whenever we have π(t) = (α, τ ) with t ∈ V . We thus obtain
an embedding κ so that

V ν × D(V )

X ν × D(X)

κ

ι I×D(ι)

π

commutes. Concerning the constructions from Definition 1.4, we note that κ and π

induce the same relation � on V ⊆ X , as in Remark 3.1. The cited definition also
yields functions G D,Z

γ : Z → [D(Z)]<ω and G Z
γ : D(Z) → [D(Z)]<ω for Z = X

and for Z = V , which are defined with respect to κ and π . As in Remark 3.1, a
straightforward induction over � shows

[D(ι)]<ω ◦ G D,V
γ = G D,X

γ ◦ ι,

[D(ι)]<ω ◦ GV
γ = G X

γ ◦ D(ι).

It remains to establish the crucial condition from Definition 1.4, i. e., the equation

rng(κ) = {(α, τ ) ∈ ν × D(V ) |GV
α (τ ) ⊆D(V ) τ }.

We point out that the analogous condition is given for π , as the latter is a ν-collapse.
As in Remark 3.1, one derives the inclusion⊆ and shows that GV

α (τ ) ⊆D(V ) τ entails
(α, D(ι)(τ )) = π(t) for some t ∈ X . Note that we have

suppX ◦ D(ι)(τ ) = [ι]<ω ◦ suppV (τ ) ⊆ V ,

as supp : D ⇒ [·]<ω is a natural transformation. Crucially, we can now infer t ∈ V
by the non-trivial direction of Corollary 3.11. In view of

(I × D(ι))(α, τ ) = (α, D(ι)(τ )) = π(t) = π ◦ ι(t) = (I × D(ι)) ◦ κ(t),

we get (α, τ ) = κ(t) ∈ rng(κ) as desired. ��
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4 Booting up: Bachmann–Howard fixed points and Veblen hierarchy

In the first part of this section, we establish a connection between Bachmann–Howard
fixed points and 1-fixed points (cf. Definitions 1.2 and 1.4). This will allow us to use
�1

1-comprehension whenever the well foundedness of 1-fixed points is given, due to
Theorem 1.3 (proved in [11, 13]). Amongst others, �1

1-comprehension secures the
Veblen hierarchy of normal functions. In the second part of this section, we discuss a
functor� that represents this hierarchy. It will be used in our proof that (iii) implies (iv)
in Theorem 1.6.

We begin with the easier part of the connection, which will not be needed in this
paper but completes the picture in a satisfactory way:

Proposition 4.1 Assume that Z is a Bachmann–Howard fixed point of a given pre-
dilator D. Then some suborder X ⊆ Z is a 1-fixed point of D.

Proof By assumption, we have a Bachmann–Howard collapse ϑ : D(Z)→ Z . To see
that ϑ is injective, consider an inequality σ < τ in the linear order D(Z). If we
have suppZ (σ ) ⊆D(Z) ϑ(τ ), then clause (i) of Definition 1.2 yields ϑ(σ) < ϑ(τ).
Otherwise, there is an r ∈ suppZ (σ ) with ϑ(τ) ≤ r < ϑ(σ), where the second
inequality relies on clause (ii) of the cited definition. We shall assume that ϑ is also
surjective and that

s � ϑ(τ) :⇔ s ∈ suppZ (τ )

defines a well founded relation on Z . To justify these assumptions, we point out
that they hold when Z is the minimal Bachmann–Howard fixed point ϑ(D) that was
constructed in [13, Section 4]. In other words, we can replace Z by ϑ(D) ⊆ Z to
satisfy the additional assumptions. Let us now define G D : Z → [D(Z)]<ω and
simultaneously G : D(Z)→ [D(Z)]<ω by the recursive clauses

G D(ϑ(τ)) := {τ } ∪ G(τ ) and G(τ ) :=
⋃
{G D(s) | s ∈ suppZ (τ )}.

By induction on s in the order �, we can show

G D(s) ⊆D(Z) τ ⇒ s < ϑ(τ).

Indeed, assume that the premise holds for s = ϑ(σ). We then have σ ∈ G D(s) and
hence σ < τ . To conclude by clause (i) of Definition 1.2, we note that r ∈ suppZ (σ )

entails G D(r) ⊆ G D(s), so that r < ϑ(τ) follows by induction hypothesis. Now set

Y := {s ∈ Z | s = ϑ(σ) with G(σ ) ⊆D(Z) σ }.

To generate X ⊆ Y , we inductively declare

t ∈ X :⇔ t ∈ Y and s ∈ X for all s � t .
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Write ι : X ↪→ Z for the inclusion. For ϑ(τ) ∈ X we get suppZ (τ ) ⊆ X = rng(ι).
Hence we have τ = D(ι)(σ ) for a (necessarily unique) element σ ∈ D(X), by the
support condition from Definition 1.1. To define π : X → D(X), we now declare that
π(t) = σ holds for t = ϑ(τ) with τ = D(ι)(σ ), i. e., we stipulate that

X D(X)

Z D(Z)

π

ι D(ι)

ϑ

is a commutative diagram. Clearly π is injective. To conclude that it is an order
embedding, we assume π(s) < π(t) and deduce s < t . Given s ∈ X , we get

ϑ ◦ D(ι) ◦ π(s) = ι(s) ∈ X ⊆ Y .

By the definition of Y , this yields G(D(ι) ◦ π(s)) ⊆D(Z) D(ι) ◦ π(s) and hence

G D(ϑ ◦ D(ι) ◦ π(s)) = {D(ι) ◦ π(s)} ∪ G(D(ι) ◦ π(s)) ⊆D(Z) D(ι) ◦ π(t).

Due to the implication that was shown above, one can infer s < t via

ι(s) = ϑ ◦ D(ι) ◦ π(s) < ϑ ◦ D(ι) ◦ π(t) = ι(t).

After some straightforward verifications, we can conclude that π is a 1-collapse of the
predilator D (where we identify D(X) and 1× D(X) as in Remark 3.1). ��

Let D and E be predilators with associated transformations suppD : D ⇒ [·]<ω

and suppE : E ⇒ [·]<ω. The predilator E ◦ D consists of the usual composition as
functors and the transformation suppE◦D : E ◦ D ⇒ [·]<ω that is given by

suppE◦D
X (σ ) :=

⋃
{suppD

X (ρ) | ρ ∈ suppE
D(X)(σ )}.

It is straightforward to check that the conditions from Definition 1.1 are satisfied. In
the following theorem, we write ω for the predilator from Example 1.5 (see also the
beginning of Sect. 1). The result is an abstract version of [49, Corollary 3.1], which
provides a similar connection between concrete ordinal notation systems.

Theorem 4.2 Any 1-fixed point of ω ◦ D is a Bachmann–Howard fixed point of D,
where D can be any predilator.

Proof Consider a 1-collapse π : X → ω ◦ D(X) =: E(X), where we identify E(X)

and 1× E(X) as before. Let G E
0 : X → [E(X)]<ω and G0 : E(X)→ [E(X)]<ω be

given as in Definition 1.4 (see also Remark 3.1), so that we have

rng(π) := {τ ∈ ω ◦ D(X) |G0(τ ) ⊆ω◦D(X) τ }.
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We need to define a function ϑ : D(X) → X that satisfies clauses (i) and (ii) from
Definition 1.2. As in the first paragraph of Sect. 1, we write elements of ω ◦ D(X)

in the form 〈σ0, . . . , σn−1〉, for elements σ0 ≥ · · · ≥ σn−1 of D(X). In particular, a
given σ ∈ D(X) gives rise to an element 〈σ 〉 ∈ ω ◦ D(X), which allows us to form

σ� := max
({〈〉} ∪ G0(〈σ 〉)

) ∈ ω ◦ D(X).

Writing σ� = 〈σ0, . . . , σn−1〉, we now set

σ+ := 〈σ0, . . . , σi(σ )−1, σ 〉 with i(σ ) := min
({i < n | σi < σ } ∪ {n}).

Note that we have σ+ ∈ ω ◦ D(X), as the definition of i(σ ) ensures σi(σ )−1 ≥ σ .
Informally, we point out that the given construction corresponds to σ+ = σ� +ωσ in
terms of ordinal arithmetic. Let us now show

G0(σ
+) ⊆ G0(σ

�) ∪ G0(〈σ 〉) ⊆ G0(〈σ 〉) ⊆ω◦D(X) σ+.

The first inclusion reduces to the analogous inclusions for suppω◦D
X and suppω

D(X),
which we get by the definition of supports in Example 1.5. Concerning the second
inclusion, we note that G0(〈〉) is empty, since the same holds for suppω

D(X)(〈〉) and
hence for suppω◦D

X (〈〉). In the remaining casewe haveσ� ∈ G0(〈σ 〉). Herewe can infer
G0(σ

�) ⊆ G0(〈σ 〉) from the general fact that ρ ∈ G E
0 (s) entails G0(ρ) ⊆ G E

0 (s),
which is readily verified by induction on s in the order � from Definition 1.4. Finally,
we see that r ∈ G0(〈σ 〉) entails r ≤ σ� < σ+, by the definition of σ� and as we have
σi(σ ) < σ or i(σ ) = n (recall that ω ◦ D(X) is ordered lexicographically). For any
σ ∈ D(X), we have shown G0(σ

+) ⊆ω◦D(X) σ+, which entails σ+ ∈ rng(π). This
allows us to form the function

ϑ : D(X)→ X with π ◦ ϑ(σ) = σ+,

which is unique since π is an embedding. To verify clause (ii) of Definition 1.2, we
show r < ϑ(σ) for a given r in the set suppD

X (σ ). The latter is equal to suppω◦D
X (〈σ 〉),

as we have suppω
X (〈σ 〉) = {σ }. We thus get

π(r) ∈ Gω◦D
0 (r) ⊆ G0(〈σ 〉) and hence π(r) ≤ σ� < σ+ = π ◦ ϑ(σ),

which yields r < ϑ(σ) as desired. In order to prepare the remaining verification, we
recall that s � t entails π(s) < π(t), as observed in Remark 3.1. One can derive that
ρ ∈ Gω◦D

0 (t) entails ρ ≤ π(t), by a straightforward induction on t in the order �.
Aiming at clause (i) of Definition 1.2, we now assume

σ <D(X) τ and suppD
X (σ ) ⊆X ϑ(τ).

For an arbitrary r ∈ suppD
X (σ ) and any ρ ∈ Gω◦D

0 (r), we get

ρ ≤ π(r) < π ◦ ϑ(τ) = τ+.
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In view of suppω◦D
X (〈σ 〉) = suppD

X (σ ) from above, this yields

G0(〈σ 〉) =
⋃ {

Gω◦D
0 (r)

∣∣∣ r ∈ suppω◦D
X (〈σ 〉)

}
⊆ω◦D(X) τ+.

Together with 0 ≤ τ � < τ+, we get σ� < τ+. The latter and σ < τ entail

π ◦ ϑ(σ) = σ+ < τ+ = π ◦ ϑ(τ)

and hence ϑ(σ) < ϑ(τ), by basic considerations about the lexicographic order. ��
As noted at the beginning of Sect. 1, the statement that “ω(X) is well founded for

any well order X" is equivalent to arithmetical comprehension and hence unprovable
in the theory RCA0. The latter can prove that ω is a predilator but not that it is a dilator.
To prepare the use of Theorem 4.2 over RCA0, we show the following proposition. It
is interesting to compare the result with [15, Theorem 2.2], which says that ω(ω(Y ))

is the minimal Bachmann–Howard fixed point of X �→ 1+ (1+ Y )× X .

Proposition 4.3 For any linear order Y , the order ω(Y ) is a 1-fixed point of a predila-
tor D with D(X) = 1+ Y × X (see the proof for a detailed definition of D).

Proof Recall the notation for products from the paragraph before Definition 1.4. To
complete the definition of 1 + Y × X , we introduce general notation for the sum of
linear orders Z0 and Z1, which will also be needed later. The underlying set of our
sum is the disjoint union

Z0 + Z1 := {z0 | z0 ∈ Z0} ∪ {Z0 + z1 | z1 ∈ Z1}.

To determine the order, we declare that z0 �→ z0 and z1 �→ Z0+ z1 are embeddings of
Z0 and Z1 into Z0+ Z1, while z0 < Z0+ z1 holds for any zi ∈ Zi . Given embeddings
fi : Zi → Z ′i , we define f0 + f1 : Z0 + Z1→ Z ′0 + Z ′1 by

( f0 + f1)(z0) := f0(z0) and ( f0 + f1)(Z0 + z1) := Z ′0 + f1(z1).

If f0 or f1 is the identity on Z0 = Z ′0 or Z1 = Z ′1, respectively, we write Z0 + f1 or
f0+ Z1 rather than f0+ f1. Let us agree that× binds stronger than+ and that 1 = {0}
denotes the singleton order. For our fixed order Y , this explains the transformations
X �→ D(X) := 1+ Y × X and f �→ D( f ) := 1+ Y × f of orders and embeddings.
To turn D into a dilator, we define suppX : D(X)→ [X ]<ω by

suppX (0) := ∅ and suppX (1+ (y, x)) := {x}.

Let us now consider the embedding π : ω(Y )→ 1+ Y × ω(Y ) with

π(〈〉) := 0 and π(〈y0, . . . , yn〉) := 1+ (y0, 〈y1, . . . , yn〉).
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To see that π is a 1-collapse of D, we need to show

rng(π) = {τ ∈ D ◦ ω(Y ) |G0(τ ) ⊆D◦ω(Y ) τ },

with G0 : D ◦ ω(Y ) → [D ◦ ω(Y )]<ω as in Definition 1.4 (see also Remark 3.1).
First note that we have 0 ∈ rng(π) while suppX (0) and hence G0(0) is empty. Let us
now consider τ = 1+ (y0, 〈y1, . . . , yn〉). We then have G0(τ ) = G D

0 (〈y1, . . . , yn〉),
where G D

0 : ω(Y )→ [D ◦ ω(Y )]<ω is recursively given by G D
0 (〈〉) = {0} and

G D
0 (〈z0, . . . , zm〉) = {1+ (z0, 〈z1, . . . , zm〉)} ∪ G D

0 (〈z1, . . . , zm〉).

Let us observe that 1 + (z0, 〈z1, . . . , zm〉) is the largest element of this set, by a
straightforward induction on m (note z1 ≤ z0 and 〈z2, . . . , zm〉 < 〈z1, . . . , zm〉). If
we have n = 0 and hence τ = 1 + (y0, 〈〉), then we get G0(τ ) = {0} ⊆D◦ω(Y ) τ as
well as τ = π(〈y0〉) ∈ rng(π). In the case of n > 0, we need to show

τ = 1+ (y0, 〈y1, . . . , yn〉) ∈ rng(π) ⇔ 1+ (y1, 〈y2, . . . , yn〉) < τ.

Given 〈y1, . . . , yn〉 ∈ ω(Y ), we see that both sides are equivalent to y1 ≤ y0. ��
Based on Theorem 1.3, we can now derive that the equivalence from Theorem 1.6

holds for ν = 1. This allows us to use �1
1-comprehension whenever the well found-

edness of ν-fixed points is given. In view of Proposition 4.1, the following can be seen
as a strengthening of Theorem 1.3.

Corollary 4.4 For each fixed ν ∈ N\{0}, the following are equivalent over RCA0:

(i) �1
1-comprehension,

(ii) the ν-fixed point of any dilator is well founded,
(iii) any dilator has a well founded μ-fixed point for some well order μ �= ∅.
Proof By iterated applications of (i), we obtain �1

1-recursion along ν, as the latter
is fixed externally. We can then invoke Theorem 3.12 to get (ii), which does clearly
imply (iii). Assuming the latter, we argue that any given dilator D has a well founded
Bachmann–Howard fixed point, to infer (i) via Theorem 1.3. In any application of (iii)
we may assume μ = 1, due to Corollary 2.10. If Y is a well order, then the predilator
from the previous proposition is a dilator, provably in RCA0. In the presence of (iii), we
can conclude that ω(Y ) is well founded. So we know that ω◦D is a dilator. Using (iii)
again, we get a well founded 1-fixed point ofω◦D. By Theorem 4.2, this is the desired
Bachmann–Howard fixed point of D. ��

In the rest of this section, we discuss a dilator � such that �(X) represents the
Veblen function ϕ up to the X -th ordinal α with ϕ(α, 0) = α (such α are called
‘strongly critical’). The Veblen function plays an important role in ordinal analysis
(see e. g. [53, Chapters V and VII]) and can also be analysed in terms of computability
theory (as done byMarcone andMontalbán [37]).Wewill use the dilator� in our proof
that (iii) implies (iv) in Theorem 1.6, where we mimic traditional ordinal analysis in a
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more abstract setting. To understand the following, it is not indispensable but certainly
helpful to know the set theoretic approach to the Veblen function, for which we refer
to [42, Section 3].

The next definition is equivalent to [45, Definition 2.5], despite a small difference
in clause (ii’). A detailed justification of the recursion is given after the definition. The
abbreviations SC and H stand for ‘strongly critical’ ordinals and ‘Hauptzahlen’. The
latter is German for (additively) ‘principal numbers’. We write ϕ in order to save the
symbol ϕ for Definition 4.12 (note that ϕ is fixed point free by Lemma 4.6).

Definition 4.5 Given a linear order X , we define sets SC ⊆ H ⊆ �(X) of terms,
a binary relation <�(X) on �(X) and a critical level function h : �(X) → �(X)

by simultaneous recursion. The terms are generated as follows (where s ≤�(X) t
expresses that we have s <�(X) t or that s and t are the same term):

(i) We have terms 0 ∈ �(X)\H and �x ∈ SC ⊆ H ⊆ �(X) for all x ∈ X .
(ii) Assume that we are given terms s, t ∈ �(X) with h(t) ≤�(X) s, such that we

have t �= 0 or s /∈ SC. We then add a term ϕst ∈ H\SC ⊆ �(X).
(iii) Given n > 1 terms t0, . . . , tn−1 ∈ H with ti+1 ≤�(X) ti for i < n − 1, we add a

term 〈t0, . . . , tn−1〉 ∈ �(X)\H.
To determine h, we put h(�x ) := �x and h(ϕst) := s as well as h(t) := 0 in the
remaining cases. Let us abbreviate 〈〉 := 0 and 〈t〉 := t for t ∈ H, so that any element
of �(X) can be uniquely written in the form 〈t0, . . . , tn−1〉 with n ∈ N. We declare
that <�(X) is the minimal relation with the following closure properties:

(i’) We have r <�(X) �y for r = �x with x <X y, for r = ϕst with s, t <�(X) �x ,
and for r = 〈r0, . . . , rn−1〉 with n = 0 or r0 <�(X) �y .

(ii’) We have r <�(X) ϕst for r = �x with r ≤�(X) s or r ≤�(X) t , for a term
r = 〈r0, . . . , rn−1〉 with n = 0 or r0 <�(X) ϕst , and for r = ϕs′t ′ such that

• we have s′ <�(X) s and t ′ <�(X) ϕst ,
• or we have s = s′ and t <�(X) t ′,
• or we have ϕs′t ′ ≤�(X) t .

(iii’) We get 〈s0, . . . , sm−1〉 <�(X) 〈t0, . . . , tn−1〉, not necessarily with m, n > 1, if

• we have m < n and si = ti for all i < m,
• or there is a j < min{m, n} with s j <�(X) t j and si = ti for all i < j .

We will sometimes write < rather than <�(X) when no ambiguity arises.

Note that clause (iii’) for m = 0 yields 0 <�(X) t when t �= 0. For m = 1 we learn
that s <�(X) 〈t0, . . . , tn−1〉 is equivalent to s ≤�(X) t0 when s ∈ H and n > 1. The
reader may wish to reformulate the clause for m > 1 and n = 1 in a similar way. Also
note that m, n = 1 makes (iii’) tautological, so that no new inequalities arise. Finally,
observe that �(X) is isomorphic to ω(H), as defined in Sect. 1.

To justify the simultaneous recursion in Definition 4.5, let �+(X) ⊇ �(X) be
generated by clauses (i) to (iii) but with all conditions that involve <�(X) ignored.
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Define h : �+(X)→ �+(X) as above, and consider L : �+(X)→ N with

L(0) := L(�x ) := 0, L(ϕst) := L(s)+ L(t)+ 1,

L(〈t0, . . . , tn−1〉) := L(t0)+ . . .+ L(tn−1)+ 1 (for n > 1).

Note that L(h(t)) ≤ L(t) holds for all t ∈ �+(X). One can now decide r ∈ �(X)

and s <�(X) t by simultaneous recursion on L(r) and L(s)+ L(t), respectively. This
decision procedure is implicit in part (ii) of [45, Lemma 2.6]. Part (i) of the latter
coincides with (b) in the next result, up to the modified formulation of (ii’) above.

Lemma 4.6 The following holds for any linear order X:

(a) We have s, t <�(X) ϕst and t0 <�(X) 〈t0, . . . , tn−1〉 in case n > 1.
(b) The relation <�(X) is a linear order on �(X).

Proof We will first show transitivity, which is part of (b). Based in this, we then
establish claim (a). Using the latter, we will finally prove irreflexivity as well as
trichotomy, so that the proof of (b) is completed. To show that r < s and s < t yields
r < t , one employs induction on L(r)+L(s)+L(t) and a lengthy but straightforward
case distinction. Now consider the function sub : �(X)→ [�(X)]<ω that collects the
subterms determined by

sub(0) := sub(�x ) := ∅, sub(ϕst) := {s, t} ∪ sub(s) ∪ sub(t),

sub(〈t0, . . . , tn−1〉) :=⋃
i<n

({ti } ∪ sub(ti )
)

(for n > 1).

In order to obtain (a), it suffices to show that s ∈ sub(t) entails s <�(X) t . We argue by
induction on L(s)+ L(t). In the only interesting case, we are concerned with a term
of the form t = 〈t0, . . . , tn−1〉. Here the point is that an inductively given inequality
s ≤ ti will always yield s ≤ t0, as transitivity has already been proved. As indicated,
we continue with the proof of (b). To show t �< t , one argues by induction on L(t).
The only non-trivial task is to exclude t = ϕt0t1 ≤ t1. The latter would imply t1 < t1
by (a) and transitivity, against the induction hypothesis. An induction on L(s)+ L(t)
shows that we always have s < t or s = t or s > t . ��

Concerning the following definition, it is immediate that the range of �( f ) is
contained in �+(Y ) ⊇ �(Y ), as defined in the paragraph before Lemma 4.6. In the
proof of Proposition 4.8 below, we show that it is indeed contained in �(Y ).

Definition 4.7 For an embedding f : X → Y , we define �( f ) : �(X)→ �(Y ) by

�( f )(0) := 0, �( f )(�x ) := � f (x),

�( f )(ϕt0t1) := ϕt ′0t ′1 with t ′i := �( f )(ti ),

�( f )(〈t0, . . . , tn−1〉) := 〈�( f )(t0), . . . , �( f )(tn−1)〉 (for n > 1).

We also define functions supp�
X : �(X)→ [X ]<ω by stipulating

supp�
X (0) := ∅, supp�

X (�x ) := {x}, supp�
X (ϕst) := supp�

X (s) ∪ supp�
X (t),

supp�
X (〈t0, . . . , tn−1〉) :=⋃

i<n supp
�
X (ti ) (for n > 1).
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In the following, a stronger metatheory is needed for matters of well foundedness.
We rely on �1

1-comprehension, which will be available in our intended application
(via Corollary 4.4). The proof shows that a somewhat weaker principle suffices.

Proposition 4.8 The data from Definitions 4.5 and 4.7 constitutes a predilator � (prov-
ably in RCA0), which is in fact a dilator (in the presence of �1

1-comprehension).

Proof Given an embedding f : X → Y , let �( f ) : �+(X)→ �+(Y ) be defined by
the clauses from Definition 4.7, applied to the larger sets �+(Z) ⊇ �(Z) from the
paragraph before Lemma 4.6. For r ∈ �+(X) and s, t ∈ �(X) one readily shows

r ∈ �(X) ⇔ �( f )(r) ∈ �(Y ),

s <�(X) t ⇔ �( f )(s) <�(Y ) �( f )(t)

by simultaneous induction on L(r) and L(s)+ L(t), respectively. Concerning the first
equivalence, we note that �( f ) commutes with the functions h : �(Z)→ �(Z) from
Definition 4.5. To establish the second equivalence, it suffices to show the implication
from left to right, which yields the second implication in

s �< t ⇒ t ≤ s ⇒ �( f )(t) ≤ �( f )(s) ⇒ �( f )(s) �< �( f )(t).

By a straightforward induction over terms, one checks that � is functorial. A similar
induction shows that supports are natural, in the sense that we have

[ f ]<ω ◦ supp�
X = supp�

Y ◦ �( f ).

To conclude that � is a predilator, it remains to prove

rng(�( f )) = {t ∈ �(Y ) | supp�
Y (t) ⊆ rng( f )}.

The inclusion from left to right follows from naturality, as t = �( f )(s) yields

supp�
Y (t) = supp�

Y ◦ �( f )(s) = [ f ]<ω ◦ supp�
X (s) ⊆ rng( f ).

In the converse direction, a straightforward induction on the term t ∈ �(Y ) shows
that supp�

Y (t) ⊆ rng( f ) entails t = �( f )(s) for some s ∈ �+(X). To get s ∈ �(X),
we invoke the first equivalence in this proof. If �1

1-comprehension is available, then
any subset of N is contained in a countable coded ω-model of arithmetical transfinite
recursion, by [55, Theorems VII.2.7 and 2.10]. This principle is equivalent to the
statement that �(X) is well founded for any well order X , by [45, Theorem 1.4]. ��

From [15, Theorem 3.5] we know that �(X) is a minimal Bachmann–Howard fixed
point of a dilator D with D(Y ) = 1 + 2 × Y 2 + X . By the first part of the present
section, it should not be hard to characterize �(X) as a 1-fixed point. Together with
Theorem 3.12, this would yield another proof that � is a dilator.

Recall that a function f from ordinals to ordinals is normal if it is strictly increasing
and continuous, where the latter means that f (λ) = sup{ f (α) |α < λ} holds when
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λ is a limit. In [20] we have combined previous work of Aczel [1] and Girard [24],
to define a class of ‘normal dilators’ that induce normal functions on the ordinals.
Informally, normal dilators admit internal versions of themselves:

Definition 4.9 For each linear order X , define γX : X → �(X) by γX (x) := �x .

The following means that � is normal in the sense of [20].

Lemma 4.10 For all s ∈ �(X) and x ∈ X we have

s <�(X) γX (x) ⇔ supp�
X (s) ⊆X x .

Each function γX is an embedding, we have supp�
X (γX (x)) = {x} for all x ∈ X, and

the naturality property �( f ) ◦ γX = γY ◦ f holds for any embedding f : X → Y .

Proof The equivalence is readily established by induction on the term s, while natu-
rality holds by a straightforward computation. ��

An initial segment of an order Y is a suborder Y0 ⊆ Y such that y <Y y′ ∈ Y0
entails y ∈ Y0. Let us record an important consequence of normality.

Corollary 4.11 If the range of f : X → Y is an initial segment of Y , then the range of
�( f ) : �(X)→ �(Y ) is an initial segment of �(Y ).

Proof Consider an inequality s < t ∈ rng(�( f )). To get s ∈ rng(�( f )) we need only
show supp�

Y (s) ⊆ rng( f ), due to the support condition from Definition 1.1. Aiming
at a contradiction, assume that we have an element y ∈ supp�

Y (s) with y /∈ rng( f ).
Given that rng( f ) is an initial segment, we obtain y′ < y for all y′ ∈ rng( f ). In view
of t ∈ rng(�( f )) we can write t = �( f )(t0). The naturality of supports yields

supp�
Y (t) = supp�

Y ◦ �( f )(t0) = [ f ]<ω ◦ supp�
X (t0) ⊆Y y.

Also note that y �< y entails supp�
Y (s) �Y y. Now the previous lemma allows us to

infer t < γY (y) ≤ s, which contradicts the assumption s < t . ��
We now represent the total Veblen function. In the following, the first two cases

do not clash as we have h(0) = 0, and the third case applies precisely when ϕst is
defined.

Definition 4.12 Let ϕ : �(X)2 → �(X) be given by

ϕs t := ϕst := ϕ(s, t) :=

⎧⎪⎨
⎪⎩

t if s <�(X) h(t),

s if s ∈ SC and t = 0,

ϕst otherwise.

Let us determine the range and fixed points of the Veblen function, its monotonicity
properties, and comparisons with terms of the various forms.
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Proposition 4.13 We have H = {ϕst | s, t ∈ �(X)} and

SC = {�x | x ∈ X} = {s ∈ �(X) |ϕs0 = s}.

Fixed points in the second argument are characterized by

ϕst = t ⇔ s <�(X) t ∈ SC or t = ϕt0t1 for some ti ∈ �(X) with s <�(X) t0.

For all s, s′, t, t ′ ∈ �(X) we have s, t ≤�(X) ϕst and

t ′ <�(X) t ⇒ ϕst ′ <�(X) ϕst and s′ <�(X) s ⇒ ϕs′t ≤�(X) ϕst .

Finally, we always have

ϕst <�(X) �x ⇔ s <�(X) �x and t <�(X) �x ,

ϕs′t ′ <�(X) ϕst ⇔

⎧⎪⎨
⎪⎩

s′ <�(X) s and t ′ <�(X) ϕst,

or s′ = s and t ′ <�(X) t,

or s <�(X) s′ and ϕs′t ′ <�(X) t .

Proof To obtain the characterization ofH, it suffices to note that the first case in Defini-
tion 4.12 can only apply whenwe have h(t) �= 0 and hence t ∈ H. The characterization
of SC is immediate. In the first equivalence, the left side amounts to s < h(t), from
which the right side is readily inferred. For the other direction, we need only observe
that we always have t0 ≤ h(ϕt0t1). In view of Lemma 4.6(a), the claim that we have
s, t ≤ ϕst reduces to the following observation: Due to the same lemma, we always
have h(t) ≤ t , so that s < h(t) entails s < t = ϕst . Monotonicity in the second argu-
ment is established by a case distinction. In the most interesting case, we have s ∈ SC
and t ′ = 0, so that we get ϕst ′ = s ≤ ϕst . Aiming at a contradiction, we assume
ϕst = s. This value cannot arise by the second or third case from Definition 4.12, as
t ′ < t entails t �= 0 and since s and ϕst are different terms. In the remaining case, we
would have s < h(t) and ϕst = t . But this would yield s = t and hence s < h(s),
against an observation above. A similar case distinction yields weak monotonicity in
the first argument (note that s′ < s and ϕst = t lead to ϕs′t = ϕs′(ϕst) = ϕst by
the fixed point property). The equivalence that characterizes ϕst < �x is immedi-
ate except when we have s < h(t). In this case, we observe that the left side of the
equivalence entails

s < h(t) ≤ t = ϕst < �x .

In the final equivalence of the proposition, the implication from right to left follows
from the fixed point and monotonicity properties, e. g., because we have

s′ < s and t ′ < ϕst ⇒ ϕs′t ′ < ϕs′(ϕst) = ϕst .
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Conversely, assume that the right side of the last equivalence in the lemma is false. If
we have s′ < s and ϕst = t ′, then we get ϕs′t ′ = ϕs′(ϕst) = ϕst , so that the left side
is false as well. A similar argument applies when we have s < s′ and t = ϕs′t ′. If we
have s′ = s and t ′ = t , then the claim is immediate. In all remaining cases, the right
side will hold after we interchange s with s′ as well as t with t ′. By the direction from
right to left, we get ϕst < ϕs′t ′, so that ϕs′t ′ < ϕst fails again. ��
To conclude this section, we discuss some ordinal arithmetic that will be used later.
It may help to recall that �(X) is isomorphic to the ordered set ω(H) of finite non-
increasing sequences in H, as observed in the paragraph after Definition 4.5. Indeed,
the following corresponds to the usual operation from ordinal arithmetic, if one thinks
of 〈t0, . . . , tn−1〉 as the Cantor normal form ωt0 + . . .+ ωtn−1 .

Definition 4.14 Let + : �(X)2 → �(X) be given by

〈s0, . . . , sm−1〉 + 〈t0, . . . , tn−1〉 := 〈s0, . . . , si−1, t0, . . . , tn−1〉

with i :=
{

m if m = 0 or n = 0 or t0 ≤�(X) sm−1,
min{i < m | si <�(X) t0} otherwise.

The following is readily verified and standard (see [53, Chapter V.14.3]).

Lemma 4.15 For all r , r ′, s, t ∈ �(X) the following holds:

(a) We have (r + s)+ t = r + (s + t) and t + 0 = t = 0+ t .
(b) Given s <�(X) t , we get r + s <�(X) r + t and s + r ≤�(X) t + r .
(c) If we have t ∈ H, then r <�(X) r ′ + t and s <�(X) t entail r + s <�(X) r ′ + t .
(d) We have r ≤�(X) t if, and only if, there is an s ∈ �(X) with r + s = t .

As ϕ00 is the smallest element of H ⊆ �(X), the map

N � n �→ n := n := 〈ϕ00, . . . , ϕ00〉︸ ︷︷ ︸
n entries

∈ �(X)

embeds N as an initial segment of �(X). Addition on N and �(X) are related by

m + t =
{

m + n if t = n,

t if t �= n for all n ∈ N.

In particular, this makes it harmless to write n at the place of n. Instead of a binary
multiplication, we use t �→ 1+ t to define a unary operation t �→ ω · t with

ω · 0 := 0, ω · �z := �z, ω · 〈t0, . . . , tn−1〉 := 〈ω · t0, . . . , ω · tn−1〉,
ω · ϕ0t := ϕ0(1+ t), ω · ϕs t := ϕs t for s �= 0.

It is not hard to check that t �→ ω · t is strictly increasing, that we have t ≤ ω · t ,
and that s < ω · t entails s + n < ω · t for all n ∈ N. Finally, we record how
the ordinal arithmetic interacts with supports. The following is immediate in view of
Definitions 4.7 and 4.12.
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Lemma 4.16 For any s, t ∈ �(X) we have

supp�
X (ϕst) ∪ supp�

X (s + t) ∪ supp�
X (ω · t) ⊆ supp�

X (s) ∪ supp�
X (t).

5 Hierarchies of admissible sets via search trees

Kurt Schütte’s method of search trees (also known as deduction chains) can be used
to prove completeness and to construct models in various settings, including predicate
andω-logic [51, 53], second order arithmetic [2, 33] and set theory [16]. In the present
section, we use search trees to construct hierarchies of admissible sets. This extends
the construction of a single admissible set in [11, Section 4].

We will search for admissible sets within the constructible hierarchy. Given a tran-
sitive set u, set L

u
0 := u, let L

u
α+1 consist of the �0-definable subsets of L

u
α , and

put L
u
λ :=

⋃
α<λ L

u
α when λ is a limit. The restriction to �0-formulas (in which all

quantifiers must be bounded as in ∀x ∈ y or ∃x ∈ a) is not essential but will have
technical advantages.

Inmany of our arguments, the actual hierarchyL
u will be represented by a functorial

variantLu . This ensures that we get a dilator, to which the well ordering principle from
Definition 1.4 can be applied. The functor Lu has been introduced in [11, Section 3],
based on the first author’s PhD thesis [10]. Central facts are recalled in the following,
but we refer to [11] for full details.

First, each linear order Y gives rise to a setLu
Y , which consists of ‘constant symbols’

from u and terms of the form Lu
s or {x ∈ Lu

s |ϕ(x, a0, . . . , an−1)}, for an element s ∈
Y , a �0-formula ϕ in the language of set theory, and previously constructed terms
ai ∈ Lu

Y that may only involve elements r ∈ Y with r <Y s (so that we have
suppLY (ai ) ⊆Y s in the notation below). To be more precise about the notion of
formula, we declare that the signature is {∈,=}, that there are separate symbols for
bounded quantifiers (which are thus distinguished from bounded occurrences of the
usual quantifiers), and that formulas are in negation normal form. In view of the latter,
negation and implication are defined operations that rely on de Morgan’s rules and
delete double negations. As usual, a formula is �0 or bounded if it only contains
bounded quantifiers.

Prior to any functorial considerations, let us point out that we get an interpretation
function �·� : Lu

α → L
u
α when Y = α is an ordinal. Here Lu

α is the term system from
above, while L

u
α refers to the actual constructible hierarchy. On the functorial side,

each order embedding f : Y → Z induces a function Lu
f : Lu

Y → Lu
Z , which is

defined by a straightforward recursion over terms. Another recursion yields support
functions suppLY : Lu

Y → [Y ]<ω with

suppLY (w) = ∅ for each constant symbol w ∈ u, suppLY (Lu
s ) = {s},

suppLY ({x ∈ Lu
s |ϕ(x, a0, . . . , an−1)}) = {s} ∪⋃

i<n supp
L
Y (ai ).

In the last case, s is the biggest element of the support, due to the aforementioned
condition suppLY (ai ) ⊆Y s. Assuming that u = {ui | i ∈ ω} is countable with fixed
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enumeration, one can define coding and decoding maps

enLY : [Y ]<ω × ω→ Lu
Y and codeLY : [Y ]<ω × Lu

Y → ω

that are natural in Y and satisfy enLY (y, codeLY (y, a)) = a when suppLY (a) ⊆ y (for
details see [11, Theorem 3.7]). Using these codes, one can define orders <L

Y on the
sets Lu

Y , which are compatible with the functions Lu
f . This turns L

u into a dilator.
The previous constructions may not be too surprising, because there is little inter-

action between syntax and semantics. However, semantic aspects of the constructible
hierarchy can also be recovered on the syntactic level, as we know from proof theo-
retic work of Jäger [28, 30] (cf. Schütte’s [52] work on ramified analysis). The relevant
considerations are also functorial, as shown in [11, Section 3]: Consider the language
that extends {∈,=} by a constant symbol for each element of Lu

Y . By an Lu
Y -formula

we shall mean a formula in this language. The constant symbols that occur in an Lu
Y -

formula will also be called its parameters. Unless noted otherwise, we assume that
Lu

Y -formulas are closed. Let us assume {0, 1} ⊆ u ⊆ Lu
Y , in order to have indices for

binary connectives. Then [11, Definition 3.12] associates each Lu
Y -formula ϕ with a

disjunction or conjunction

ϕ �∨
a∈ι(ϕ) ϕa or ϕ �∧

a∈ι(ϕ) ϕa .

Here ι(ϕ) = ιY (ϕ) is a subset of Lu
Y (which may be empty or infinite) and ϕa is an

Lu
Y -formula for each a ∈ ι(ϕ). For full details we refer to the cited definition. As an

example, we recall that ϕ = (b ∈ {x ∈ Lu
s | θ(x, c)}) yields

ϕ �∨
a∈ι(ϕ) θ(a, c) ∧ a = b with ι(ϕ) = {a ∈ Lu

Y | suppLY (a) ⊆Y s}.

If Y = α is an ordinal, then we get a well founded relation by declaring that ϕa

precedes ϕ for each a ∈ ι(ϕ). In this case, our disjunctions and conjunctions yield
an inductive definition of truth for Lu

α-formulas. The latter coincides with satisfaction
in the actual set L

u
α , under the aforementioned interpretation �·� : Lu

α → L
u
α . Let us

now state the crucial functorial property: For an embedding f : Y → Z , let ϕ[ f ]
be the Lu

Z -formula that results from a given Lu
Y -formula ϕ when each parameter a is

replaced byLu
f (a). Then ϕ and ϕ[ f ] are both disjunctive or both conjunctive, and [11,

Theorem 3.15] yields

ϕa[ f ] = ϕ[ f ]Lu
f (a) when a ∈ ιY (ϕ) or equivalently Lu

f (a) ∈ ιZ (ϕ[ f ]).

Using the constructions that we have just recalled, we will aim to build a hierarchy of
ν admissible sets above a transitive u. The following assumptions will be discharged
in the proof of our main theorem. We write Ord for the class of ordinals.

Standing Assumption 5.1 Until the end of Sect. 8, we fix a transitive set u and a limit
ordinal ν, both countablewithfixed enumerationsu = {ui | i ∈ N} andν = {νi | i ∈ N}
(no relation with the order). The height o(u) := u ∩Ord is assumed to be a successor
ordinal o(u) > 1. We also assume that �1

1-comprehension holds.
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The assumption that u and ν are countable is essential for our approach. On the
other hand, the assumption about the height of u has technical reasons and can later
be discharged. It entails {0, 1} ⊆ u, which provides the aforementioned indices for
binary connectives. Furthermore, it ensures that α is a limit ordinal whenever the same
holds for o(Lu

α) = o(u) + α (otherwise we could have α = 0). In this situation, the
set L

u
α � u is admissible if it satisfies the following axioms.

Definition 5.2 Let 〈Axn | n ≥ 1〉 enumerate all instances of �0-collection, i. e., all
sentences (in the signature {∈,=} and without parameters) that have the form

∀z1, . . . , zk∀v(∀x ∈ v∃y θ(x, y, z1, . . . , zk)→ ∃w∀x ∈ v∃y ∈ w θ(x, y, z1, . . . , zk))

for a �0-formula θ . Furthermore, let Ax0 be the sentence ∀x∃y. x ∈ y.

Let us write Z<ω for the tree of finite sequences with entries in Z . In [11] we have
built labelled trees SY ⊆ (Lu

Y )<ω for all linear orders Y , which represent attempted
proofs of contradiction from the axioms Axn and the rules associated with the infinite
disjunctions ϕ �∨

a∈ιY (ϕ) ϕa and conjunctions ϕ �∧
a∈ιY (ϕ) ϕa that were mentioned

above. By a relativized ordinal analysis, we showed that SY cannot be well founded
for all well orders Y , assuming a suitable well ordering principle. This allowed us to
conclude that SY has an infinite branch for some well order Y . Analogous to other
proofs of completeness, such a branch determined a model of the axioms Axn , i. e., a
single admissible set. The following construction of ν admissible sets is similar overall
but different in one respect: we will obtain search trees SR

Y that depend not only on
an order Y but also on an embedding R : ν → Y . The latter determines the heights
of the admissible sets in our hierarchy. On an intuitive level, one may think of R as
enumerating regular cardinals (cf. [7, Definition 4.1]).

To describe our search trees in detail, we fix some notation and terminology. Given
a sequence σ = 〈σ0, . . . , σn−1〉 ∈ Z<ω, write len(σ ) := n for its length and put
σ � k := 〈σ0, . . . , σk−1〉 for any k ≤ len(σ ). For z ∈ Z and σ ∈ Z<ω as before, set
σ�z := 〈σ0, . . . , σn−1, z〉. The support functions of Lu induce functions

suppS
Y : (Lu

Y )<ω → [Y ]<ω,

suppS
Y (〈σ0, . . . , σn−1〉) :=⋃

i<n supp
L
Y (σi ).

Our search trees will be labelled byLu
Y -sequents, which are defined as finite sequences

of Lu
Y -formulas. Semantically, one should think of a sequent as the disjunction of its

entries. As usual, we use the letters � and � to denote sequents (mind the clash of
notation with the Veblen hierarchy from Definition 4.5), and we write ϕ0, . . . , ϕn−1
and �, ϕ at the place of 〈ϕ0, . . . , ϕn−1〉 and ��ϕ. When the order and multiplicity
of formulas do not matter, we treat sequents like finite sets and write, for example,
ϕ ∈ � to express that ϕ is an entry of �. The relativization of an Lu

Y -formula ϕ

to an element a ∈ Lu
Y is the Lu

Y -formula ϕa that results from ϕ when we replace
all occurrences ∀x . ψ and ∃x . ψ of unbounded quantifiers by bounded quantifiers
∀x ∈ a. ψ and ∃x ∈ a. ψ , respectively. We do not relativize quantifiers that are
already bounded, as this is superfluous when a is transitive and contains the original
bounds. Finally, we can describe our search trees in detail:
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Definition 5.3 Consider a linear order Y and a strictly increasing map R : ν → Y .
Based on the enumeration ν = {νi | i ∈ N} from Assumption 5.1, we put

L(i) := Lu
R(νi )
∈ Lu

Y .

We define a tree SR
Y ⊆ (Lu

Y )<ω and a labelling function lY : SR
Y → “Lu

Y -sequents”
by recursion over sequences in (Lu

Y )<ω. Concerning the base case, we declare that we
have 〈〉 ∈ SR

Y and lY (〈〉) = 〈〉. In the recursion step, it suffices to consider the children
of a previously constructed element σ ∈ SR

Y , as we aim to build a tree. First assume
len(σ ) = 2k is even. Assuming that k codes the pair 〈n, i〉, we declare

σ�a ∈ SR
Y :⇔ a = L(i) and lY (σ�L(i)) := lY (σ ),¬AxL(i)

n .

Here a = L(i) asserts equality as terms, and the superscript refers to relativization.
Now assume that len(σ ) = 2k + 1 is odd and that k codes the triple 〈l, m, n〉. We
assume that our coding ensures l, m, n ≤ k. This entails l < len(lY (σ )), as we append
a formula at each even stage and do no delete any formulas in the following. Let ϕ be
the l-th formula in lY (σ ). If ϕ �∧

a∈ιY (ϕ) ϕa is conjunctive, we define

σ�a ∈ SR
Y :⇔ a ∈ ιY (ϕ) and lY (σ�a) := lY (σ ), ϕa .

If ϕ �∨
a∈ιY (ϕ) ϕa is disjunctive, we put

b := enLY (suppS
Y (σ �m), n) ∈ Lu

Y ,

using the function enLY : [Y ]<ω × ω→ Lu
Y mentioned above (the idea is to generate

all potential witnesses b in a functorial way). We then declare

σ�a ∈ SR
Y :⇔ a = 0 and lY (σ�0) :=

{
lY (σ ), ϕb if b ∈ ιY (ϕ),

lY (σ ) otherwise,

for which we recall that 0 ∈ u ⊆ Lu
Y holds by Assumption 5.1.

For f : N→ Lu
Y we write f �k := 〈 f (0), . . . , f (k − 1)〉 and put

supp∞Y ( f ) :=⋃
k∈N suppS

Y ( f �k) =⋃
k∈N suppLY ( f (k)) ⊆ Y .

Recall that f is a branch of SR
Y if f � k ∈ SR

Y holds for all k ∈ N. Given α < ν, pick
an i ∈ N with α = νi , and let k code a pair 〈n, i〉 for some n ∈ N. Assuming that
f is a branch, we must have f (2k) = Lu

R(α), by construction of the search tree. By

definition we have suppLY (Lu
R(α)) = {R(α)}, so that we get

R(α) ∈ supp∞Y ( f ) for all α < ν.
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If Y is well founded, then so is its suborder supp∞Y ( f ). In the base theory ATRset0
from Theorem 1.6, we can use axiom beta to get a transitive collapse, i. e., an order
preserving map from supp∞Y ( f ) onto an ordinal. This yields the desired admissibles:

Theorem 5.4 Assume that f is a branch in SR
Y for a well order Y and a strictly

increasing map R : ν → Y . Let c : supp∞Y ( f )→ Ord be the transitive collapse. Then
L

u
c(R(α)) � u is an admissible set for every α < ν.

Before we give a proof, we show that our construction of search trees is functorial.
This fact will facilitate the proof of our theorem, but its full significance will only
become apparent in the next section. Since we work with a functorial version of the
constructible hierarchy, an embedding g : Y → Z yields a function Lu

g : Lu
Y → Lu

Z .

Definition 5.5 Consider an embedding g : Y → Z of linear orders. We define

Sg : (Lu
Y )<ω → (Lu

Z )<ω,

Sg(〈σ0, . . . , σn−1〉) := 〈Lu
g(σ0), . . . ,L

u
g(σn−1)〉.

Under the assumptions of the following proposition, we also write Sg : S P
Y → SR

Z
for the restriction with the indicated (co)domain. Furthermore, let us define <S

Y as
the Kleene-Brouwer order on (Lu

Y )<ω (also called Lusin-Sierpiński order), which is
generated by the clauses σ�a <S

Y σ and σ�a <S
Y σ�b for a <L

Y b. We also write
<S

Y for the restriction of this relation to a search tree S P
Y .

Due to the corresponding properties of Lu , it is immediate that the definition turns
Y �→ (Lu

Y )<ω into a predilator. In particular, we have the support property

{Sg(σ ) | σ ∈ (Lu
Y )<ω} = {τ ∈ (Lu

Z )<ω | suppS
Z (τ ) ⊆ rng(g)}.

Under the assumptions of the following proposition, this equation remains valid when
we replace (Lu

Y )<ω and (Lu
Z )<ω by S P

Y and SR
Z , respectively.

Proposition 5.6 Consider linear orders Y and Z with embeddings P : ν → Y and
R : ν → Z. If the embedding g : Y → Z satisfies g ◦ P = R, then

σ ∈ S P
Y ⇔ Sg(σ ) ∈ SR

Z

holds for all σ ∈ (Lu
Y )<ω.

Proof Recall that we have a map ϕ �→ ϕ[g] from Lu
Y -formulas to Lu

Z -formulas. We
extend this map to sequents, by setting

�[g] := ϕ0[g], . . . , ϕn−1[g] for � = ϕ0, . . . , ϕn−1.

By induction over the sequence σ , we prove the equivalence from the proposition and
simultaneously

lY (σ )[g] = lZ (Sg(σ )) when σ ∈ S P
Y .
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The base case with σ = 〈〉 is immediate. In the induction step, we may assume that
we have σ ∈ S P

Y or equivalently Sg(σ ) ∈ SR
Z , as we are concerned with trees. First

assume that len(σ ) = len(Sg(σ )) = 2k is even, where k codes 〈n, i〉. Refining the
notation from Definition 5.3, we write L[Y ](i) := Lu

P(νi )
and L[Z ](i) := Lu

R(νi )
. As

[11, Definition 3.5] yields Lu
g(Lu

a) = Lu
g(a), we get

Lu
g(L[Y ](i)) = Lu

g◦P(νi )
= Lu

R(νi )
= L[Z ](i).

Since Lu
g is injective on terms (recall that it respects <L), we can conclude

σ�a ∈ S P
Y ⇔ a = L[Y ](i) ⇔ Lu

g(a) = L[Z ](i)
⇔ Sg(σ

�a) = Sg(σ )�Lu
g(a) ∈ SR

Z .

In order to see that the desired relation between the sequent labels is preserved, it
suffices to observe that we get AxL[Y ](i)

n [g] = AxL[Z ](i)
n from the above (since the

operation ϕ �→ ϕ[g] replaces any parameter a by Lu
g(a)). For the case in which the

sequences σ and Sg(σ ) have odd length 2k + 1, we refer to the detailed argument in
the proof of [11, Proposition 4.8] (where the tuple 〈l, m, n〉 with code k is written as
〈π0(n), π1(n), π2(n)〉 with code n). ��

Let us now establish the theorem that was stated above.

Proof of Theorem 5.4 As preparation, we provide a reduction to the case where the
inclusion supp∞Y ( f ) ⊆ Y is an equality. Let g : κ → Y be the increasing enumeration
of supp∞Y ( f ), so that we have c(g(γ )) = γ for γ < κ . Define P : ν → κ by
stipulating g ◦ P = R, which yields P(α) = c(R(α)). For each k ∈ N we have

suppLY ( f (k)) ⊆ supp∞Y ( f ) = rng(g).

By the support property for Lu (see [11, Proposition 3.6]), it follows that f (k) lies in
the range of Lu

g : Lu
κ → Lu

Y . We thus get an h : N→ Lu
κ with Lu

g ◦ h = f . Since

Sg(h �k) = 〈Lu
g ◦ h(0), . . . ,Lu

g ◦ h(k − 1)〉 = f �k ∈ SR
Y

holds for all k ∈ N, we can use Proposition 5.6 to conclude that h is a branch of S P
κ .

By the naturality of supports for Lu (see again [11, Proposition 3.6]), we get

{g(γ ) | γ ∈ supp∞κ (h)} = ⋃
k∈N[g]<ω(suppLκ (h(k))

= ⋃
k∈N suppLY (Lu

g ◦ h(k)) = supp∞Y ( f ).

This shows supp∞κ (h) = κ , which was the purpose of our preparatory construction. To
formulate the central claim of this proof, we say that anLu

κ -formula ϕ occurs on h if we
have ϕ ∈ lκ(h �k) for some k ∈ N. Let us also recall that we can evaluate Lu

κ -formulas
in L

u
κ , via the aforementioned interpretation �·� : Lu

κ → L
u
κ . Crucially, we shall show

that L
u
κ satisfies ¬ϕ whenever ϕ occurs on h. According to [11, Theorem 3.14], this

reduces to the following claims:
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(i) if ϕ �∧
a∈ικ (ϕ) ϕa occurs on h, then so does ϕa for some a ∈ ικ (ϕ),

(ii) if ϕ �∨
a∈ικ (ϕ) ϕa occurs on h, then so does ϕa for all a ∈ ικ (ϕ).

Indeed, we get a well founded relation on Lu
κ -formulas by declaring that each ϕa

precedes ϕ, as mentioned above. Given (i) and (ii), transfinite induction over this
relation shows that each ϕ on h must fail inL

u
κ . The proof of [11, Theorem 3.14] shows

that this inductive argument goes through in our base theory. Before we establish (i)
and (ii), let us explain how to derive the theorem: Given any α < ν and n ∈ N, let k be
the code of a pair 〈n, i〉 with νi = α. By construction of our search trees, the formula
¬AxL(i)

n occurs in lκ(h �(2k + 1)) and hence on h. In view of [11, Definition 3.2] we
have

�L(i)� = �Lu
P(α)� = L

u
P(α).

Hence our central claim entails that L
u
κ satisfies the relativization of Axn to L

u
P(α).

But this simply means that L
u
P(α) satisfies Axn . It follows that L

u
P(α) = L

u
c(R(α))

is admissible (cf. the paragraph before Definition 5.2), as required by our theorem.
Claims (i) and (ii) are established as in the proof of [11, Theorem 4.6]. However, the
fact that we have supp∞κ (h) = κ does simplify matters. We provide details for the
more difficult claim (ii): Assume that the disjunctive formula ϕ occurs on h, say as
the j-th formula in lκ(h �m0). Given an arbitrary a ∈ ικ (ϕ), we observe

suppLκ (a) ⊆ κ = supp∞κ (h) =⋃
k∈N suppS

κ (h �k).

Since the last union is increasing, we may pick a number m ≥ m0 such that the finite
set suppLκ (a) is contained in suppS

κ (h �m). We then have

a = enLκ (suppS
κ (h �m), n) for n := codeLκ (suppS

κ (h �m), a),

by [11, Theorem 3.7] or the discussion above. Let us now define k as the code of the
triple 〈 j, m, n〉. As in Definition 5.3, we may assume that our coding of tuples ensures
m ≤ k and hence m0 < 2k + 1. When we build our search trees, we extend sequents
at the end, but we never delete or permute formulas. Thus ϕ is still the j-th formula
in lκ(h �(2k + 1)). By construction we get

lκ(h �(2k + 2)) = lκ(h �(2k + 1)), ϕa .

Hence ϕa occurs on h, as desired. ��
Using methods from ordinal analysis, we will show that the well ordering principle

from Definition 1.4 entails the following: it cannot be the case that SR
Y is well founded

whenever Y is a well order. Once this is known, Theorem 5.4 will yield a hierarchy
of ν admissible sets, as needed for the crucial direction of Theorem 1.6. To conclude,
we record a fact that will be needed later (cf. [11, Corollary 4.10]):
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Corollary 5.7 Consider a linear order Z and an embedding R : ν → Z. We have

suppLZ (b) ⊆ suppS
Z (σ ) ∪ {R(α) |α < ν}

for any node σ ∈ SR
Z and any parameter b that occurs in some formula of lZ (σ ).

Proof Let Y be the set on the right of the desired inclusion, considered as a suborder
of Z . Write ι : Y ↪→ Z for the inclusion, and define P : ν → Y by ι ◦ P = R.
In view of suppS

Z (σ ) ⊆ rng(ι) we obtain σ = Sι(ρ) for some node ρ ∈ S P
Y , due to

Proposition 5.6. By the proof of the latter, we have lY (ρ)[ι] = lZ (σ ). We can thus
write b = Lu

ι (a) with a ∈ Lu
Y , so that

suppLZ (b) = suppLZ ◦ Lu
ι (a) = [ι]<ω ◦ suppLY (a) ⊆ rng(ι) = Y

follows by the naturality of supports. ��

6 From search tree to collapsing functions

In this section, we apply the well ordering principle from Definition 1.4 to the search
trees SR

Y that were constructed in Definition 5.3. The result is an order O, which is
quite close to the relativized ordinal notation system in [46, Definition 6.4] (cf. also
[6] and [47, Section 12.2]). We will later use O as a basis for the ordinal analysis that
proves the implication from (iii) to (iv) in Theorem 1.6.

Recall the dilator � and the functions γX : X → �(X) from Sect. 4. The desired
order O will be constructed as part of a system of orders and embeddings, which can
be depicted as follows (where a hooked arrow indicates that the range is an initial
segment of the codomain, while �p refers to a partial surjective function):

ν ×O X X+ SR
�(X) =: K �(K) =: O.

�(X)

ψX

p
I

γX

γK

�(I )

Before we give a formal construction of these objects, let us explain their intuitive
meaning. In view of Sect. 4, the order O = �(K) is closed under the binary Veblen
function and includes the first K strongly critical ordinals, which are represented by
the elements γK(z) ∈ O with z ∈ K (we choose K for ‘kritisch’). By composing all
horizontal arrows,weobtain ν-manypartial but order preserving ‘collapsing functions’
from O to itself. The values of these functions are represented by the elements of a
set X. We have a map I that realizes this set as an initial segment of K. Since � is a
functor and normal, we also obtain an identification�(I ) of the set�(X)with an initial
segment ofO (see Corollary 4.11). This means, first, that the collapsing values form an
initial segment of the strongly critical ordinals. Moreover, it means that the ordinals
generated from the collapsing values form an initial segment of the full system O.
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Both properties are typical for ordinal notation systems (see again the examples in
[6, 47]). It is also typical that there are strongly critical ordinals that lie above all
collapsing values. In our case, these ‘large’ ordinals correspond to the nodes of a
certain search tree SR

�(X) (cf. the elements Eσ in [11, Definition 5.2]). For our ordinal
analysis, it will be crucial that this search tree is built over the lower part �(X) of the
orderO, with respect to a map R : ν → �(X) that has a meaningful connection to the
collapsing functions. Concerning the latter, we will obtainR(α) = γX ◦ψX(α+ 1, 0)
for 0 ∈ �(K) = O, which evokes ψα+10 = �α+1 ∈ R from [6, Lemma 1.7] and [7,
Definition 4.1].

We would like to define ψX : ν × O �p X as the partial inverse of a function π

as in Definition 1.4. Before we can apply the latter, however, we must overcome a
significant obstacle. The issue is that Definition 1.4 requires a dilator as input, while the
construction of search trees in Definition 5.3 does not provide one, at least not directly:
the tree SR

Y depends not only on the order Y but also on a given embedding R : ν → Y .
This issue will occupy us for most of the present section, and its resolution may at
times appear technical. At the same time, we believe that the issue itself is not technical
but has real mathematical substance. In particular, it distinguishes the construction of
a single admissible set in [11]—where no similar issue arose—from the construction
of an infinite hierarchy of admissible sets.

In order to resolve the issue that was mentioned in the previous paragraph, we will
precompose the construction of search trees with the order transformation

X �→ J (X) := ν × �(X).

Recall that products were discussed in the paragraph before Definition 1.4, which does
also explain J ( f ) := ν × �( f ) for an order embedding f . It is straightforward to
check that we get a dilator if we provide supports by

suppJ
X : J (X)→ [X ]<ω with suppJ

X (α, σ ) := supp�
X (σ ).

As ν is a limit by Assumption 5.1, we may consider the embeddings

j[X ] : ν → J (X) with j[X ](α) := (α + 1, 0).

These are natural in the sense that J ( f ) ◦ j[X ] = j[Y ] holds for any embedding f ,
as we have �( f )(0) = 0 by Definition 4.7. We can now describe the preprocessed
search trees that were mentioned above:

Definition 6.1 Consider the order transformation

X �→ S0(X) := S j[X ]
J (X),

where the definiens refers to Definitions 5.3 and 5.5. Invoking the latter in conjunction
with Proposition 5.6, we map each embedding f : X → Y to the embedding

S0( f ) := SJ ( f ) : S0(X)→ S0(Y ).
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Note that the cited proposition can be applied because we have J ( f ) ◦ j[X ] = j[Y ],
as seen above. Finally, we define functions supp0X : S0(X)→ [X ]<ω by setting

supp0X (σ ) :=
⋃
{suppJ

X (ρ) | ρ ∈ suppS
J (X)(σ )}.

This relies on the definition of suppS in the paragraph before Definition 5.3.

As we had hoped, our preprocessed search trees form a dilator, at least when state-
ment (iv) from Theorem 1.6 is violated.

Proposition 6.2 The constructions from Definition 6.1 yield a predilator S0. The latter
is a dilator if there is no sequence of admissible sets Adα with u ∈ Adα ∈ Adβ for
α < β < ν (with u and ν as fixed in Assumption 5.1).

Proof Let us observe that the first map in

X �→ (Lu
J (X))

<ω ⊇ S j[X ]
J (X) = S0(X)

is the composition of predilators and hence a predilator itself, by the paragraph before
Proposition 5.6. Using the latter, we can conclude that S0 is also a predilator. To
provide details for the crucial step, we show that the support property

supp0Y (σ ) ⊆ rng( f ) ⇒ σ ∈ rng(S0( f ))

holds for any embedding f : X → Y and any σ ∈ S0(Y ). Given the antecedent of
our implication, the definition of supp0Y and the support property for J yield

suppS
J (Y )(σ ) ⊆ rng(J ( f )).

This allows us to write

σ = SJ ( f )(σ0) for some σ0 ∈ (Lu
J (X))

<ω,

by the paragraph before Proposition 5.6. Now the latter ensures that σ ∈ S0(Y )

entails σ0 ∈ S0(X) and hence σ = S0( f )(σ0) ∈ rng(S0( f )), as desired. Under the
assumption from theproposition,wenowshow thatS0 is a dilator.Given awell order X ,
we must establish that S0(X) is well founded. As �1

1-comprehension is available by
Assumption 5.1, we can infer that �(X) and J (X) are well orders, by Proposition 4.8
or directly by [45, Theorem 1.4]. According to [11, Lemma 3.10], it follows thatLu

J (X)

is well founded (see the beginning of Sect. 5 and compare with the usual constructible
hierarchy). Hence S0(X) is well founded (with respect to the Kleene-Brouwer order
from Definition 5.5) unless it has a branch. In the latter case, Theorem 5.4 would
yield a hierarchy of ν admissible sets above u, against the assumption of the present
proposition. ��
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Following the informal explanation at the beginning of this section, we now add
space for collapsing values below the elements of our search tree. Sums of linear orders
and embeddings are defined as in the proof of Proposition 4.3. Recall that elements of
Z0 + Z1 are written as z0 and Z0 + z1 with zi ∈ Zi .

Definition 6.3 For each linear order X and each embedding f : X → Y , we put
S(X) := X + S0(X) and define S( f ) : S(X)→ S(Y ) by S( f ) := f + S0( f ). By

suppSX (x) := {x} for x ∈ X and suppSX (X + σ) := supp0X (σ ) for σ ∈ S0(X)

we define a family of functions suppSX : S(X)→ [X ]<ω.

The crucial direction (ii)⇒(iv) of Theorem 1.6 asserts that the well foundedness
of ν-fixed points yields a hierarchy of admissible sets. To prove this by contradiction,
we will assume that statement (iv) fails. In view of Proposition 6.2, this will have the
effect that S0 is a dilator. It is easy to conclude that S and � ◦ S are dilators as well
(recall how composition is defined in the paragraph before Proposition 4.2). We bring
in statement (ii) of Theorem 1.6 in the form of the following assumption.

Standing Assumption 6.4 Until the end of Sect. 8, we assume that � ◦ S is a dilator.
Furthermore, we assume that we have a fixed well order Y and ν-collapse

πY : Y→ ν × (� ◦ S)(Y)

in the sense of Definition 1.4 (with ν and the suppressed u as in Assumption 5.1).

The inverse of πY is a partial embedding

ν × (� ◦ S)(Y) = ν × �
(
Y+ S j[Y]

J (Y)

)
�p Y.

This looks a lot like the function

ψX : ν × �
(
X+ SR

�(X)

)
�p X

that was promised at the beginning of this section. However, one important point
remains to be improved: the collapse ψX and the embedding R : ν → �(X) were
supposed to be connected in a meaningful way, while the function j[Y] : ν → J (Y)

and the order J (Y) appear rather ad hoc and unrelated to πY. Perhaps surprisingly,
we can use πY to ‘infuse meaning’ ex post. The following is a preparation.

Lemma 6.5 We have (α, 0) ∈ rng(πY) for all α < ν.

Proof By Definition 4.7 we have supp�
S(Y)(0) = ∅, which entails

supp�◦S
Y (0) =

⋃
{suppSY(ρ) | ρ ∈ supp�

S(Y)(0)} = ∅.
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In the notation from Definition 1.4, we get

Gα(0) =
⋃
{G�◦S

α (s) | s ∈ supp�◦S
Y (0)} = ∅ ⊆�◦S(Y) 0.

The claim follows by Definition 1.4. ��
Recall that the normal dilator � comes with an embedding γY : Y→ �(Y), which

is given by Definition 4.9.

Definition 6.6 In view of the previous lemma, let the embedding P0 : ν → Y be
determined by πY ◦ P0(α) = (α + 1, 0). We also put P := γY ◦ P0 : ν → �(Y).

Given s ∈ �(Y), let y ∈ Y be the maximal element of supp�
Y(s) ∪ {P0(0)}, which

is finite and non-empty. Write πY(y) = (α, σ ). Since πY is an embedding, we get

supp�
Y(s) ⊆Y P0(α) and thus s <�(Y) γY ◦ P0(α) = P(α),

using Lemma 4.10. This observation ensures that the following is well defined.

Definition 6.7 We define Y : �(Y)→ J (Y) by Y (P(α)) := (α + 1, 0) and

Y (s) := (α, s) with α = min{γ < ν | s <�(Y) P(γ )}

for any s ∈ �(Y) that does not lie in the range of P.

It is not hard to see that Y is an order embedding, and we have Y ◦ P = j[Y] by
construction. We can thus invoke Proposition 5.6 to obtain embeddings

SY : SP
�(Y) → S j[Y]

J (Y) = S0(Y),

Y+ SY : Y+ SP
�(Y) → Y+ S0(Y) = S(Y).

In contrast to j[Y] : ν → J (Y), themapP : ν → �(Y) has a ‘natural’ codomain and a
meaningful connection to πY. With respect to the informal discussion at the beginning
of this section, it may thus be tempting to defineX asY. The partial functionψX from
this discussion should then be inverse to the dashed arrow in

Y ν × �(Y+ SP
�(Y))

ν × (� ◦ S)(Y).

?

πY ν×�(Y+SY )

However, it seems that the range of πY need not be contained in the range of the
vertical arrow, so that the dashed arrow may not exist. To resolve this issue, we define
a suborder that guarantees the desired inclusion in a hereditary way.
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Definition 6.8 Let us write � for the well founded relation on Y that is provided by
Definition 1.4, which means that we have

x � y ⇔ x ∈ supp�◦S
Y (s) for πY(y) = (α, s).

By recursion over this relation, we define a suborder X ⊆ Y with

y ∈ X :⇔ πY(y) ∈ rng(ν × �(Y+ SY )) and x ∈ X for all x � y.

We will write ι : X→ Y for the inclusion.

Let us complement Lemma 6.5 as follows.

Lemma 6.9 If πY(y) = (α, 0) holds for some α < ν, then we have y ∈ X = rng(ι).

Proof It suffices to recall that 0 = �( f )(0) ∈ rng(�( f )) holds for any embedding f ,
and that supp�◦S

Y (0) = ∅ was shown in the proof of Lemma 6.5. ��
To define the other objects that were promised at the beginning of this section, we

repeat some of the previous constructions, but now with X at the place of Y.

Definition 6.10 Determine R0 : ν → X and R : ν → �(X) by

πY ◦ ι ◦ R0(α) = (α + 1, 0) and R := γX ◦ R0.

For the order SR
�(X) given by Definitions 5.3 and 5.5, we now put

K := X+ SR
�(X) and O := �(K).

Note that we have ι◦R0 = P0, as πY is order preserving and hence injective. From
Lemma 4.10 we know that γ is natural with respect to ι : X→ Y. We get

�(ι) ◦ R = �(ι) ◦ γX ◦ R0 = γY ◦ ι ◦ R0 = γY ◦ P0 = P.

Thus Proposition 5.6 yields an embedding S�(ι) : SR
�(X) → SP

�(Y). By composing with
another map from above, we obtain embeddings

(Y+ SY ) ◦ (ι+ S�(ι)) = ι+ SY◦�(ι) : K→ S(Y),

�(ι+ SY◦�(ι)) : O = �(K)→ � ◦ S(Y).

In particular, we can conclude that O is a well order, as � ◦ S(Y) is well founded by
Assumption 6.4. The following resolves an issue that was mentioned above. It may
help to read the lemma in conjunction with the definition that follows it.

Lemma 6.11 The range of πY ◦ ι is contained in the range of ν × �(ι+ SY◦�(ι)).
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Proof The crucial step is to show that any s ∈ Y+ SP
�(Y) validates

s ∈ rng(ι+ S�(ι)) ⇔ suppSY ◦ (Y+ SY )(s) ⊆ X = rng(ι).

Even though we will not use this fact, we note that the equivalence means that

X+ SR
�(X) S(X)

Y+ SP
�(Y) S(Y)

X+SX

ι+S�(ι) S(ι)

Y+SY

is a pullback, where X : �(X) → J (X) is constructed analogous to Definition 6.7.
For s = y ∈ Y ⊆ Y+ SP

�(Y) we can invoke Definition 6.3 to get

suppSY ◦ (Y+ SY )(s) = suppSY(y) = {y}.

So both sides of our equivalence amount to y ∈ rng(ι). For s = Y+ σ we have

s ∈ rng(ι+ S�(ι)) ⇔ σ ∈ rng(S�(ι)) ⇔ suppS
�(Y)(σ ) ⊆ rng(�(ι)),

where the second equivalence holds by Proposition 5.6 and the paragraph before it.
On the other hand, Definitions 6.1 and 6.3 yield

suppSY ◦ (Y+ SY )(s) = suppSY(Y+ SY (σ )) = supp0Y(SY (σ ))

=
⋃
{suppJ

Y(ρ) | ρ ∈ suppS
J (Y)(SY (σ ))} =

⋃
{suppJ

Y(Y (τ )) | τ ∈ suppS
�(Y)(σ )}.

Here the last equality relies on the fact that suppS is a natural transformation. By the
previous lines of equivalences and equations, the desired equivalence reduces to

τ ∈ rng(�(ι)) ⇔ suppJ
Y(Y (τ )) ⊆ X = rng(ι).

Considering the definition of Y , we distinguish two cases: For τ = P(α), the paragraph
after Definition 6.10 yields τ = �(ι) ◦ R(α) ∈ rng(�(ι)). We also have

suppJ
Y(Y (τ )) = suppJ

Y(α + 1, 0) = supp�
Y(0) = ∅ ⊆ X.

If τ does not lie in the range of P, then we have Y (τ ) = (α, τ ) for some α < ν. In this
case we get suppJ

Y(Y (τ )) = supp�
Y(τ ), so that the open equivalence coincides with

the support property of the dilator �. Thus the equivalence from the beginning of the
proof is established. For s ∈ �(L) with L := Y+ SP

�(Y) we now observe

s ∈ rng(�(ι+ S�(ι))) ⇔ supp�
L(s) ⊆ rng(ι+ S�(ι)),
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also by the support condition for �. Furthermore, we compute

supp�◦S
Y ◦ �(Y+ SY )(s) =

⋃
{suppSY(ρ) | ρ ∈ supp�

S(Y) ◦ �(Y+ SY )(s)}
=

⋃
{suppSY ◦ (Y+ SY )(τ ) | τ ∈ supp�

L(s)}.

Using the equivalence from the beginning of the proof, one can now derive

s ∈ rng(�(ι+ S�(ι))) ⇔ supp�◦S
Y ◦ �(Y+ SY )(s) ⊆ X = rng(ι).

Even though we will not use this, we note that this step corresponds to the fact that
� preserves pullbacks. It is straightforward to derive the lemma: Given y ∈ X, we
write πY ◦ ι(y) = (α, t). The definition of X ⊆ Y yields supp�◦S

Y (t) ⊆ X as well as
t = �(Y + SY )(s) for some s ∈ �(L). By the equivalence above, we can conclude
that s = �(ι+ S�(ι))(r) holds for some r ∈ �(K) = O. We thus get

t = �(Y+ SY ) ◦ �(ι+ S�(ι))(r) = �
(
ι+ SY◦�(ι)

)
(r).

So πY ◦ ι(y) = (α, t) is the image of (α, r) under ν × �(ι+ SY◦�(ι)). ��
The following completes the constructions that were sketched at the beginning of

the present section. We point out that πX is analogous to the dashed arrow from the
diagramm before Lemma 6.8.

Definition 6.12 Invoking Lemma 6.11, let πX be the unique embedding such that

X ν ×O

Y ν × (� ◦ S)(Y)

πX

ι ν×�(ι+SY◦�(ι))

πY

is a commutative diagram. To define a partial function ψX : ν × O �p X that is
surjective and order preserving, we put

ψX
α s := ψX(α, s) :=

{
x if πX(x) = (α, s),

undefined if (α, s) /∈ rng(πX).

We will write dom(ψX) := rng(πX) for the domain of this partial function. Also, let
I : X→ X+ SR

�(X) = K with I (x) := x be the map onto the first summand.

Crucially, the search tree SR
�(X) depends on an embedding R : ν → �(X) that has

a meaningful connection to the collapsing function ψX.

Lemma 6.13 We have (α, 0) ∈ dom(ψX) and γX(ψX
α+10) = R(α) for all α < ν.
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Proof Note that we have distinct elements 0 ∈ �(K) = O and 0 ∈ �(S(Y)). In view
of Definitions 4.7 and 6.10, we get

(
ν × �(ι+ SY◦�(ι))

)
(α + 1, 0) = (α + 1, 0) = πY ◦ ι ◦ R0(α)

= (
ν × �(ι+ SY◦�(ι))

) ◦ πX ◦ R0(α).

This entails (α + 1, 0) = πX ◦ R0(α) ∈ rng(πX) = dom(ψX) and ψX
α+10 = R0(α),

so that we get γX(ψX
α+10) = γX ◦R0(α) = R(α). To show (α, 0) ∈ dom(ψX) with α

at the place of α+ 1, use Lemmas 6.5 and 6.9 to write (α, 0) = πY ◦ ι(x) with x ∈ X.
Then argue as before, with α and y at the place of α + 1 and R0(α). ��

In the rest of this section we characterize the range of πX or, in other words, the
domain of the partial function ψX. As a first step, we assign supports to the elements
of K and O. To avoid misunderstanding, we point out that the following support
functions do not belong to a dilator. Let us also recall that suppS was defined in the
paragraph before Definition 5.3.

Definition 6.14 Let suppK : K = X+ SR
�(X) → [X]<ω be given by

suppK(x) = {x}, suppK(X+ σ) =
⋃
{supp�

X(ρ) | ρ ∈ suppS
�(X)(σ )\ rng(R)}.

Furthermore, define suppO : O = �(K)→ [X]<ω by setting

suppO(s) =
⋃
{suppK(ρ) | ρ ∈ supp�

K(s)}.

The given definition—and in particular the exclusion of rng(R)—is justified by the
following connection with the support functions of our dilators S and � ◦ S.
Lemma 6.15 Each of the diagrams

K S(Y)

[X]<ω [Y]<ω

ι+SY◦�(ι)

suppK suppSY[ι]<ω

and
O � ◦ S(Y)

[X]<ω [Y]<ω

�(ι+SY◦�(ι))

suppO supp�◦S
Y[ι]<ω

commutes.

Proof Let us abbreviate f := ι+ SY◦�(ι). Using Definitions 6.1 and 6.3 as well as the
naturality of supports, we get

suppSY ◦ f (X+ σ) =
⋃
{suppJ

Y(Y ◦ �(ι)(ρ)) | ρ ∈ suppS
�(X)(σ )},

[ι]<ω ◦ suppK(X+ σ) =
⋃
{supp�

Y(�(ι)(ρ)) | ρ ∈ suppS
�(X)(σ )\ rng(R)}.
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To see why the range of R is excluded, note that ρ = R(α) entails �(ι)(ρ) = P(α),
so that Definition 6.7 yields Y ◦ �(ι)(ρ) = (α + 1, 0) and thus

suppJ
Y(Y ◦ �(ι)(ρ)) = supp�

Y(0) = ∅.

As a straightforward consequence, the left diagram commutes if we have

suppJ
Y(Y ◦ �(ι)(ρ)) = supp�

Y(�(ι)(ρ)) for ρ ∈ �(X)\ rng(R).

Even though we do not need this fact, it is instructive to observe that the equation fails
for ρ = R(α) = γX(ψX

α+10), where Lemma 4.10 yields

supp�
Y(�(ι)(ρ)) = [ι]<ω

(
supp�

X(γX(ψX
α+10))

)
= [ι]<ω

(
{ψX

α+10}
)
�= ∅.

On the other hand, ρ /∈ rng(R) entails �(ι)(ρ) /∈ rng(P), as we have �(ι) ◦ R = P
and �(ι) is injective. We then get Y ◦ �(ι)(ρ) = (α, �(ι)(ρ)) for some α < ν. In this
case, the desired equality is immediate by the definition of the support for J . The right
diagram is readily reduced to the left one. ��

Our well founded ‘subterm’ relation on Y can now be transferred to X.

Lemma 6.16 For any x ∈ X and (α, s) ∈ dom(ψX) we have

ι(x) � ι(ψX
α s) ⇔ x ∈ suppO(s),

where � is the well founded relation on Y that was specified in Definition 6.8.

Proof When ψX
α s is defined, we have πX(ψX

α s) = (α, s) and hence

πY ◦ ι(ψX
α s) = (

ν × �(ι+ SY◦�(ι))
) ◦ πX(ψX

α s) = (
α, �(ι+ SY◦�(ι))(s)

)
.

Together with the previous lemma, it follows that ι(x) � ι(ψX
α s) amounts to

ι(x) ∈ supp�◦S
Y ◦ �(ι+ SY◦�(ι))(s)

=
⋃ {

suppSY(τ )

∣∣∣ τ ∈ supp�
S(Y) ◦ �(ι+ SY◦�(ι))(s)

}
=

⋃ {
suppSY ◦ (ι+ SY◦�(ι))(ρ)

∣∣ ρ ∈ supp�
K(s)

}
=

⋃ {
[ι]<ω

(
suppK(ρ)

) ∣∣ ρ ∈ supp�
K(s)

}
= [ι]<ω

(
suppO(s)

)
,

which is clearly equivalent to x ∈ suppO(s). ��
Given that ι : X → Y is an inclusion map, we will also refer to � as a well

founded relation on X. The following definition uses recursion along this relation. It
also exploits that any element of X can be uniquely written as ψX

α s, since the partial
function ψX : ν×O �p X is surjective and order preserving. When we refer to ψX

α s
as a given element of X, we always assume (α, s) ∈ dom(ψX).
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Definition 6.17 For γ < ν we define K−γ : X→ [O]<ω and Kγ : O→ [O]<ω by

K−γ (ψX
α s) :=

{
{s} ∪ Kγ (s) if γ ≤ α,

∅ otherwise,

Kγ (s) :=
⋃
{K−γ (x) | x ∈ suppO(s)}.

As promised, we can now characterize the domain of our collapsing function.

Proposition 6.18 For any γ < ν and s ∈ O we have

(γ, s) ∈ dom(ψX) = rng(πX) ⇔ Kγ (s) ⊆O s.

Proof Let Gγ and G�◦S
γ be the maps that arise fromDefinition 1.4 in conjunction with

Assumption 6.4. We abbreviate f := ι+ SY◦�(ι) : K→ S(Y) and show that

X [O]<ω O

Y [� ◦ S(Y)]<ω � ◦ S(Y)

K−γ

ι [�( f )]<ω

Kγ

�( f )

G�◦S
γ Gγ

is commutative. To prove that the left quare commutes, we employ induction over the
well founded relation from Lemma 6.16. For the induction step, recall that the proof
of Lemma 6.16 yields πY ◦ ι(ψX

α s) = (α, �( f )(s)). By Definition 1.4 we get

G�◦S
γ ◦ ι(ψX

α s) =
{
{�( f )(s)} ∪ Gγ ◦ �( f )(s) if α ≥ γ,

∅ otherwise.

To complete the induction step, use the hypothesis and Lemma 6.15 to compute

[�( f )]<ω ◦ Kγ (s) =
⋃
{[�( f )]<ω ◦ K−γ (x) | x ∈ suppO(s)}

=
⋃
{G�◦S

γ (x) | x ∈ [ι]<ω ◦ suppO(s)}
=

⋃
{G�◦S

γ (x) | τ ∈ supp�◦S
Y ◦ �( f )(s)} = Gγ ◦ �( f )(s).

Note that this proves that the right square commutes. Definition 1.4 does now yield

Kγ (s) ⊆O s ⇔ Gγ ◦ �( f )(s) = [�( f )]<ω ◦ Kγ (s) ⊆�◦S(Y) �( f )(s)

⇔ (γ, �( f )(s)) ∈ rng(πY).

To complete the proof, we show that (γ, �( f )(s)) ∈ rng(πY) and (γ, s) ∈ rng(πX)

are equivalent, which means that the diagram from Definition 6.12 is a pullback.
Concerning the easier direction, we note that (γ, s) = πX(x) entails

(γ, �( f )(s)) = (ν × �( f )) ◦ πX (x) = πY ◦ ι(x) ∈ rng(πY).
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To prove the converse, we assume (γ, �( f )(s)) = πY(y) and derive y ∈ X = rng(ι).
In view of f = (Y+ SY ) ◦ (ι+ S�(ι)) we set t := �(ι+ S�(ι))(s) to obtain

πY(y) = (γ, �(Y+ SY )(t)) ∈ rng(ν × �(Y+ SY )).

The proof of Lemma 6.11 shows that t ∈ rng(�(ι+ S�(ι))) entails

supp�◦S
Y (�(Y+ SY )(t)) ⊆ X.

By Definition 6.8 we now get y ∈ X, as desired. ��
Let us also record a basic observation that will be needed later:

Lemma 6.19 We have suppO ◦ �(I ) = supp�
X.

Proof First recall that supp�
K ◦ �(I ) = [I ]<ω ◦ supp�

X holds by naturality. In view of
Definition 6.14 we have suppK ◦ I (x) = {x} and thus

suppO ◦ �(I )(ρ) =
⋃
{suppK(τ ) | τ ∈ supp�

K ◦ �(I )(ρ)}
=

⋃
{suppK ◦ I (x) | x ∈ supp�

X(ρ)} = supp�
X(ρ),

as desired. ��
We conclude this section with an observation about the order on O.

Lemma 6.20 We have �(I )(s) <O �X+σ for all s ∈ �(X) and σ ∈ SR
�(X).

Proof As I maps into the first summand of X+ SR
�(X), we see that �X+σ lies outside

the range of �(I ). But the latter is an initial segment of O, by Corollary 4.11. ��

7 Operator control and infinite proofs

From the previous section we have a function

ψX : ν ×O = ν × �
(
X+ SR

�(X)

)
�p X

that is surjective and order preserving but partial, i. e., not always defined. In the
present section, we transform ψX into a function ψ : ν ×O→ O that is total but not
always order preserving. We then define an abstract variant of the operator controlled
proofs that have been introduced by Buchholz [7]. Finally, we construct an operator
controlled proof that embeds the search tree SR

�(X) from Sect. 5.

As a first step, we transform ψX into a function ψ+ that remains partial but has
codomainO. Note that the following definition composes arrows from the diagram at
the beginning of Sect. 6. This diagram commutes by Lemma 4.10, which means that
γK ◦ I equals �(I ) ◦ γX. The maps γZ : Z → �(Z) and I : X → K are given by
Definitions 4.9 and 6.12, while suppO : O→ [X]<ω comes from Definition 6.14.
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Definition 7.1 The partial function ψ+ : ν ×O→p O is given by

ψ+α s := ψ+(α, s) :=
{

γK ◦ I (ψX
α s) if (α, s) ∈ dom(ψX) =: dom(ψ+),

undefined otherwise.

To define supp+ : O→ [O]<ω, we set supp+ := [γK ◦ I ]<ω ◦ suppO.
For an arbitrary dilator D, no family of embeddings Z → D(Z) needs to exist. This

explainswhyDefinition 1.4 involves two families of functionsG D
γ andGγ with domain

X and D(X), respectively. In Definition 6.17 we have constructed corresponding
functions K−γ : X → [O]<ω and Kγ : O → [O]<ω. In the present case, however,
we do have an embedding γX ◦ I : X → O (amongst others because of the maps
γZ : Z → �(Z) that make � normal). As the following shows, this allows us to
eliminate K−γ in favour of Kγ . Similarly, the functions G D

γ and Gγ are unified in
traditional ordinal notation systems, as we have seen in Example 1.5.

Proposition 7.2 For any γ < ν and (α, s) ∈ dom(ψ+) we have

Kγ (ψ+α s) =
{
{s} ∪ Kγ (s) if γ ≤ α,

∅ otherwise.

Furthermore, we have Kγ (t) =⋃{Kγ (r) | r ∈ supp+(t)} for any t ∈ O.

Proof The naturality of supports and Lemma 4.10 yield

supp�
K ◦ �(I ) ◦ γX(ψX

α s) = [I ]<ω ◦ supp�
X ◦ γX(ψX

α s) = {I (ψX
α s)}.

In view of Definition 6.14, we can derive

suppO(ψ+α s) = suppO ◦ γK ◦ I (ψX
α s) = suppO ◦ �(I ) ◦ γX(ψX

α s)

=
⋃
{suppK(ρ) | ρ ∈ supp�

K ◦ �(I ) ◦ γX(ψX
α s)} = suppK ◦ I (ψX

α s) = {ψX
α s}.

For later reference, we record that this entails

supp+(ψ+α s) = {γK ◦ I (ψX
α s)} = {ψ+α s}.

Due to Definition 6.17 we obtain

Kγ (ψ+α s) =
⋃
{K−γ (x) | x ∈ suppO(ψ+α s)} = K−γ (ψX

α s).

The first claim of the proposition is now immediate byDefinition 6.17. In the paragraph
before this definition, we have observed that any element x ∈ X can be written as
x = ψX

α s for some (α, s) ∈ dom(ψX). We get γK ◦ I (x) = ψ+α s, which means that
the previous observation can be reformulated as

Kγ ◦ γK ◦ I = K−γ .
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In view of Definition 6.17, we can deduce

Kγ (t) =
⋃
{K−γ (x) | x ∈ suppO(t)} =

⋃
{Kγ (r) | r ∈ [γK ◦ I ]<ω ◦ suppO(t)}.

Considering the definition of supp+, this coincides with the remaining claim. ��
The following result will be used to extend ψ+ into a total function.

Proposition 7.3 Given any α < ν and s ∈ O, we get (α, t) ∈ dom(ψ+) for some
element t ∈ {s} ∪ Kα(s) with s ≤O t .

Proof The main task will be to show that r ∈ Kα(s) entails r /∈ Kα(r) ⊆ Kα(s).
Once this is achieved, we can conclude by induction on the cardinality of the finite
set Kα(s). Indeed, for Kα(s) ⊆O s we get (α, s) ∈ dom(ψ+) by Proposition 6.18,
so we can take t = s. If Kα(s) ⊆O s fails, we can pick an r ∈ Kα(s) with s ≤ r .
By the initial claim, Kα(r) has fewer elements than Kα(s). Inductively, we thus get
(α, t) ∈ dom(ψ+) for some t ∈ {r} ∪ Kα(r) ⊆ Kα(s) with s ≤ r ≤ t . To prove the
initial claim, recall that Lemma 6.16 provides a well founded relation � on X ⊆ Y. It
will be convenient to consider the associated height function h : X→ N with

h
(
ψX

γ t
)
= max

(
{0} ∪ {h(z)+ 1 | z ∈ suppO(t)}

)
.

Aiming at r /∈ Kα(r), we fix an arbitrary element x ∈ suppO(r). We use induction on
h(y) ≤ h(x) to prove r /∈ K−α (y). Writing y = ψX

γ t , we note that h(x) ≥ h(y) forces

x /∈ suppO(t) and hence r �= t . With the induction hypothesis, this yields

r /∈ {t} ∪
⋃
{K−α (z) | z ∈ suppO(t)} = {t} ∪ Kα(t) ⊇ K−α (ψX

γ t) = K−α (y).

Since x ∈ suppO(r) was arbitrary, we get

r /∈
⋃
{K−α (x) | x ∈ suppO(r)} = Kα(r).

Another induction on h(x) shows that r ∈ K−α (x) entails Kα(r) ⊆ K−α (x). It is
straightfoward to conclude that r ∈ Kα(s) entails Kα(r) ⊆ Kα(s). ��

We can now define the total extension of ψX that was promised above.

Definition 7.4 To obtain a total function ψ : ν ×O→ O, we put

ψαs := ψ(α, s) := ψ+α t for the <O -minimal t ∈ {s} ∪ Kα(s) with

s ≤O t and (α, t) ∈ dom(ψ+).

Let us also define Cα(t) := {s ∈ O | Kα(s) ⊆O t} for all α < ν and t ∈ O.
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Note that we immediately get ψαs = ψ+α s for (α, s) ∈ dom(ψ+). The sets Cα(t)
and the following proposition evoke traditional constructions of ordinal notation
systems in terms of set theory (see e. g. [7, Definition 4.2]). In contrast to these con-
structions, our functions ψα do not seem to be weakly increasing. Indeed, if we have
t < r < t ′ with (α, r) ∈ dom(ψ+) but ψαt = ψ+α t ′ due to r /∈ Kα(t), then we get
ψαr = ψ+α r < ψ+α t ′ = ψαt . At the same time, Corollary 7.6 will ensure that the
order is preserved in relevant cases.

Proposition 7.5 The following holds for all α < ν and s, t ∈ O:

(a) Given s ∈ Cα(t) with s < t , we get ψγ s ∈ Cα(t) for any γ < ν.
(b) If we have s < ψα+10, then s ∈ Cα(t) implies s < ψαt .
(c) If we have t ∈ Cα(t), then s < ψαt implies s ∈ Cα(t).

Proof (a) For γ < α we have Kα(ψγ s) = ∅, so that ψγ s ∈ Cα(t) is immediate. Let
us now assume γ ≥ α. With h : X → N as in the proof of Proposition 7.3, an easy
induction on h(x) yields K−γ (x) ⊆ K−α (x) and simultaneously Kγ (s) ⊆ Kα(s). We
note that this entails Cα(t) ⊆ Cγ (t). Given that we have s ∈ Cα(t) and s < t , we
learn that ψγ s = ψ+γ t ′ holds for some

t ′ ∈ {s} ∪ Kγ (s) ⊆ {s} ∪ Kα(s) ⊆O t .

As in the proof of Proposition 7.3, we get Kα(t ′) ⊆ Kα(s) and hence

Kα(ψγ s) = Kα(ψ+γ t ′) = {t ′} ∪ Kα(t ′) ⊆ {t ′} ∪ Kα(s) ⊆O t .

This amounts to ψγ s ∈ Cα(t), as desired.
(b) We use induction on the build-up of s ∈ �(K) according to Definition 4.5. In

the crucial case, we have s = �z for some z ∈ K = X + SR
�(X). As Lemma 6.13

ensures (α + 1, 0) ∈ dom(ψ+), the assumption s < ψα+10 yields

γK(z) = s <O ψα+10 = ψ+α+10 = γK ◦ I (ψX
α+10).

The range of I : X→ K is an initial segment, so z = I (x) holds for some x < ψX
α+10.

Like any other element of X, the latter can be written in the form x = ψX
γ r , which

yields s = ψ+γ r . We must have γ ≤ α, as ψX is order preserving. If we have γ < α,
then s < ψαt is immediate. Let us now assume γ = α. We then have r ∈ Kα(s), so
that s ∈ Cα(t) yields r < t . For the appropriate t ′ ≥ t we get

s = ψ+α r < ψ+α t ′ = ψαt .

In the case of a term s = ϕs0s1, we recall that Definition 4.7 yields

supp�
K(s) = supp�

K(s0) ∪ supp�
K(s1).
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The equality remains valid when we replace supp�
K by suppO or supp+ or Kα , due

to Definition 6.14 and Proposition 7.2. So s ∈ Cα(t) is equivalent to s0, s1 ∈ Cα(t).
Also note that s < ψα+10 and s0, s1 < ψα+10 are equivalent by Definition 4.5, as

ψα+10 ∈ rng(γK) = {�z | z ∈ K}

is strongly critical. We can thus invoke the induction hypothesis to get s0, s1 < ψαt .
The latter entails s < ψαt , because ψαt is strongly critical as well. For a term of the
form s = 〈s0, . . . , sn−1〉, the argument is similar.

(c) As in the proof of (b), we argue by induction on the build-up of s ∈ �(K).
Let us first assume that we have s = �z for some z ∈ K. Given s < ψαt < ψα+10,
we can once again write s = ψ+γ r with γ ≤ α. If the last inequality is strict, we
obtain Kα(s) = ∅, so that s ∈ Cα(t) is immediate. Now assume γ = α and recall
that (α, r) ∈ dom(ψ+) entails Kα(r) ⊆O r . Given t ∈ Cα(t), we have ψαt = ψ+α t ,
so that s < ψαt entails r < t . Together we get

Kα(s) = {r} ∪ Kα(r) ⊆O t

and hence s ∈ Cα(t), as desired. Let us also consider a term s = ϕs0s1 < ψαt . For
each i ≤ 1 we get si < ψαt , so that the induction hypothesis yields si ∈ Cα(t). We
can conclude s ∈ Cα(t), as noted in the proof of (b). An analogous argument applies
in the case of a term s = 〈s0, . . . , sn−1〉 with n > 1. For s = 0, it suffices to observe
that Kα(0) is empty, since the same holds for supp�

K(0). ��
As observed in part (b) of the previous proof, all values ψαt are strongly critical.

The next result provides inequalities between different values of ψ .

Corollary 7.6 The following holds for all s, t ∈ O:

(a) For t �= 0 we have ψα0 < ψαt < ψα+10 = �(I ) ◦ R(α).
(b) If we have s ∈ Cα(t), then s < t implies ψαs < ψαt .

Proof Concerning part (a), let us first observe that Lemmas 4.10 and 6.13 yield

�(I ) ◦ R(α) = �(I ) ◦ γX(ψX
α+1) = γK ◦ I (ψX

α+10) = ψ+α+10 = ψα+10.

The second inequality in part (a) is immediate, while the first one reduces to (b), as
supp�

K(0) = ∅ entails Kα(0) = ∅ and hence 0 ∈ Cα(t). Let us now establish part (b).
Given s ∈ Cα(t) and s < t , we getψαs ∈ Cα(t) by part (a) of the previous proposition.
Part (b) of the latter yields ψαs < ψαt , as we have ψαs < ψα+10. ��

With the sets Cα(t) at hand, we can recover the operators Hs of Buchholz [7].

Definition 7.7 For s ∈ O and a ∈ [O]<ω we set

Hs(a) :=
⋂
{Cα(t) |α < ν and t ∈ O with s <O t and a ⊆ Cα(t)} ⊆ O.
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Note that the intersection is taken over a non-empty family, because a ⊆ Cα(t)
amounts to b ⊆O t for the finite set b =⋃

r∈a Kα(r). The following is immediate.

Lemma 7.8 The following holds for all s, t ∈ O and a, b ∈ [O]<ω:

(a) We have a ⊆ Hs(a).
(b) Given a ⊆ Hs(b), we get Hs(a) ⊆ Hs(b).
(c) For s < t we have Hs(a) ⊆ Ht (a).

Parts (a) and (b) express that Hs is a closure operator. Together, they ensure that
a ⊆ b implies Hs(a) ⊆ Hs(b). As we will see, the following is an abstract way to
say that Hs is nice in the sense of [7, Definition 3.5].

Proposition 7.9 For all s, t ∈ O and a ∈ [O]<ω we have

s ∈ Ht (a) ⇔ supp+(s) ⊆ Ht (a).

Proof For each α < ν, Proposition 7.2 yields

Kα(s) ⊆O t ⇔ Kα(r) ⊆O t for all r ∈ supp+(s).

In view of Definition 7.4, the equivalence from the proposition thus holds with Cα(t)
at the place of Ht (a). This pointwise version is stronger than the claim itself. ��

The corollary below encapsulates various closure properties, such as

ϕr0r1 ∈ Hr (a) ⇔ {r0, r1} ⊆ Hr (a).

In view of Definition 4.7, the direction from right to left follows from the corollary
for si = ri and t0 = ϕr0r1 (with m = 2 and n = 1). The converse direction follows
when we take s0 = ϕr0r1 and ti = ri . We get an analogous equivalence for terms
of the form 〈r0, . . . , rk−1〉. Due to Lemma 4.16, we also learn that {s0, s1} ⊆ Hr (a)

entails s0 + s1 ∈ Hr (a) and ϕs0s1 ∈ Hr (a), where ϕ is our total extension of ϕ. One
can also take m = 0, to obtain 0, 1 ∈ Hr (a) from supp�

K(0) = ∅.
Corollary 7.10 Consider any s0, . . . , sm−1 and t0, . . . , tn−1 in O. If we have

⋃
i<m supp�

K(si ) ⊇⋃
j<n supp

�
K(t j ),

then {s0, . . . , sm−1} ⊆ Hr (a) implies {t0, . . . , tn−1} ⊆ Hr (a).

Proof As in the proof of Proposition 7.5, the given inclusion remains valid when we
replace supp�

K by supp+. We can conclude by the previous proposition. ��
The following result on collapsing functions (cf. [7, Lemma 4.6]) completes our

list of closure properties. In particular, it yields ψα0 ∈ Ht (a) for all α < ν.

Corollary 7.11 Given s ∈ Ht (a) with s ≤O t , we get ψαs ∈ Ht (a) for all α < ν.
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Proof To obtain ψαs ∈ Ht (a), we need to establish ψαs ∈ Cβ(t ′) for arbitrary β < ν

and t ′ > t with a ⊆ Cβ(t ′). The assumption s ∈ Ht (α) ensures s ∈ Cβ(t ′). Given
that we have s ≤ t < t ′, Proposition 7.5 yields ψαs ∈ Cβ(t ′), as required. ��

The rest of this section concerns a notion of infinite proof that is heavily inspired
by work of Buchholz [7]. As preparation, we introduce notation that relates to the
parameters and the rank of formulas. In Sect. 5 and Definition 7.1, we have explained
suppL�(X)(a) ∈ [�(X)]<ω and supp+(s) ∈ [O]<ω for a ∈ Lu

�(X) and s ∈ O, respec-
tively. The following definition overloads this notation by admitting arguments of
different types. To interpret the notation correctly, one will need to infer the type of
the argument from the context.

Definition 7.12 For an Lu
�(X)-formula ϕ and an Lu

�(X)-sequent �, we put

suppL�(X)(ϕ) :=⋃{suppL�(X)(a) | a ∈ Lu
�(X) is a parameter of ϕ},

suppL�(X)(�) :=⋃
i<n supp

L
�(X)(ϕi ) for � = ϕ0, . . . , ϕn−1.

When σ is an element of Lu
�(X), an L

u
�(X)-formula or an Lu

�(X)-sequent, we define

supp+(σ ) := [�(I )]<ω ◦ suppL�(X)(σ ) ∈ [O]<ω.

For α < ν, an Lu
�(X)-formula ϕ is called a �(α)-formula if all universal quantifiers

in ϕ are bounded and we have

suppL�(X)(ϕ) ⊆�(X) R(α).

Let us also agree to abbreviate L[α] := Lu
R(α) ∈ Lu

�(X) for α < ν.

To motivate the new notation, we recall that Definition 5.3 involves relativized
axioms AxL(i)

n with L(i) = L[α] for α = νi . We are particularly interested in the case
of �0-collection, where Ax

L[α]
n has instances of the form

∀x ∈a0∃y∈ L[α] θ(x, y, a1, . . . , an)→∃w∈ L[α]∀x ∈a0∃y∈w θ(x, y, a1, . . . , an).

In the relevant cases, we will have ai ∈ Lu
�(X) and suppL�(X)(ai ) ⊆�(X) R(α). On

an intuitive level, this means that the parameters come from the R(α)-th stage of the
constructible hierarchy, i. e., from L[α]. The given condition ensures that

ϕ := ∀x ∈ a0∃y θ(x, y, a1, . . . , an)

is a �(α)-formula. Our instance of �0-collection can now be written as

ϕL[α] → ∃w ∈ L[α]. ϕw.

For an arbitrary �(α)-formula, this implication can be deduced from �0-collection
in L[α], at least for the actual constructible hierarchy (see [4, Theorem I.4.3]). This
fact will not be used in the following, but it does explain the role of �(α)-formulas.
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As a final ingredient for our infinite proofs, we assign formula ranks that will be
used to control cut inferences. In order to explain the following definition, we recall
thatLu

�(X) is built over a set u � 0 of urelements (fixed in Assumption 5.1). According
to Sect. 5, our Lu

�(X)-formulas are closed (unless noted otherwise) and in negation
normal form. The required ordinal arithmetic on O = �(K) was discussed at the
end of Sect. 4. Let us point out that �(I ) : �(X)→ O commutes with basic ordinal
arithmetic. It follows that all ranks lie in the range of �(I ). For notational reasons, it
will still be convenient to have ranks in O rather than �(X).

Definition 7.13 The function rk : Lu
�(X) → O is given by

rk(w) := 0 for w ∈ u, rk(Lu
s ) := ω · (1+ �(I )(s)),

rk({x ∈ Lu
s |ϕ(x, a1, . . . , an)}) := rk(Lu

s )+ 1.

To each bounded Lu
�(X)-formula ϕ, we assign a rank rk(ϕ) ∈ O by setting

rk(a ∈ b) := rk(¬ a ∈ b) := max{rk(a)+ 6, rk(b)+ 1},
rk(a = b) := rk(¬ a = b) := max{rk(a), rk(b), 5} + 4,

rk(ϕ0 ∨ ϕ1) := rk(ϕ0 ∧ ϕ1) := max{rk(ϕ0), rk(ϕ1)} + 1,

rk(∃x ∈ a. ϕ(x)) := rk(∀x ∈ a. ϕ(x)) := max{rk(a), rk(ϕ(0))+ 2}.

Note that we get rk(ϕ) = rk(¬ϕ) for any bounded Lu
�(X)-formula ϕ, because of

our treatment of negation as a defined operation. Let us record a basic property:

Lemma 7.14 For all b ∈ Lu
�(X) and t ∈ O we have rk(b) ∈ H0(supp+(b)) and

supp+(b) ⊆O t ⇔ rk(b) <O ω · (1+ t).

Both properties remain valid when we replace b by a bounded Lu
�(X)-formula ϕ.

Proof For b ∈ u it suffices to observe rk(b) = 0 and supp+(b) = ∅. In the remaining
cases, the equivalence holds sincewe have rk(b) = ω·(1+�(I )(s))+i for some i ≤ 1,
where s is the largest element of suppL�(X)(b). We also get

�(I )(s) ∈ supp+(b) ⊆ H0(supp
+(b)).

In view of 1 = ϕ00, Lemma 4.16 yields

supp�
K(rk(b)) = supp�

K(ω · (1+ �(I )(s))+ i) ⊆ supp�
K(�(I )(s)).

Thus rk(b) ∈ H0(supp+(b)) follows by Corollary 7.10. A straightforward induction
over formulas shows that we can write rk(ϕ) = rk(b) + n with n ∈ N, where b is a
parameter of ϕ or equal to 0 ∈ u ⊆ Lu

�(X). In both cases we get

rk(ϕ) = rk(b)+ n ∈ H0(supp
+(b)) ⊆ H0(supp

+(ϕ))
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due to Corollary 7.10 and Lemma 7.8. By another induction over formulas, we see
that rk(b) ≤ rk(ϕ) holds for any parameter b of the formula ϕ. Given that r < ω · s
entails r + n < ω · s, this ensures that the equivalence remains valid. ��

To justify the focus on bounded formulas, we recall that any Lu
�(X)-formula ϕ is

associated with a disjunction
∨

a∈ι(ϕ) ϕa or conjunction
∧

a∈ι(ϕ) ϕa , as explained in
Sect. 5. If ϕ is bounded, so is ϕa for every a ∈ ι(ϕ), due to [11, Definition 3.12]. Thus
all formulas in Definition 5.3 are bounded, and the same will hold for the formulas in
our infinite proofs. We say that an Lu

�(X)-sequent is bounded if it consists of bounded
formulas only. The assignment of ranks is designed to validate the following, which
is shown in the proof of [11, Theorem 3.14] (see also [7, Lemma 3]).

Lemma 7.15 Given any bounded Lu
�(X)-formula ϕ, we have

rk(ϕa) <O rk(ϕ) for all a ∈ ι(ϕ) = ι�(X)(ϕ).

In the paragraph before Lemma 6.11, we have observed that O is well founded,
which justifies the following recursion. Intuitively, we have (r , a) �t

s � if the sequent
� has an infinite proof with height at most t , where Hr (a) and s control relevant
parameters and cuts. The given definition is inspired by [7, Theorem 3.8].

Definition 7.16 By recursion on t , we declare that the relation

(r , a) �t
s �

between elements r , s, t ∈ O, a ∈ [O]<ω and a bounded Lu
�(X)-sequent � holds

precisely if we have

{t} ∪ supp+(�) ⊆ Hr (a)

and one of the following clauses applies:

(i) for some conjunctive ϕ � ∧
b∈ι(ϕ) ϕb ∈ � and every b ∈ ι(ϕ) ⊆ Lu

�(X), there is

a t(b) < t such that we have (r , a ∪ supp+(b)) �t(b)
s �, ϕb,

(ii) for some disjunctive ϕ �∨
b∈ι(ϕ) ϕb ∈ � and some b ∈ ι(ϕ) ⊆ Lu

�(X) such that

we have supp+(b) ⊆O t , there is a t(0) < t with (r , a) �t(0)
s �, ϕb,

(iii) for some bounded Lu
�(X)-formula ψ with rk(ψ) < s, there is a t(0) < t such

that we have (r , a) �t(0)
s �,ψ and (r , a) �t(0)

s �,¬ψ ,
(iv) for some α < ν and some �(α)-formula ϕ with ∃z ∈ L[α]. ϕz ∈ �, there is an

element t(0) < t with (r , a) �t(0)
s �, ϕL[α].

Sometimes one wants to apply the given clauses in a modified form, e. g., to derive
(r , a) �t

s �0, �1 from (r , a) �t(0)
s �0, ψ and (r , a) �t(1)

s �1,¬ψ with t(0) �= t(1) <

t . This is possible due to the following standard result (cf. [7, Lemma 3.9(a)]).

Lemma 7.17 (Weakening) Given r ≤ r ′, s ≤ s′, t ≤ t ′ and a ⊆ Hr ′(a′), we have

(r , a) �t
s � and {t ′} ∪ supp+(�) ⊆ Hr ′(a

′) ⇒ (r ′, a′) �t ′
s′ �,�.
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Proof One argues by induction on t ∈ O and distinguishes cases that correspond to
the clauses from Definition 7.16. In each case, one uses the induction hypothesis and
reapplies the same clause. This is possible because Lemma 7.8 yields

a ∪ c ⊆ Hr (a ∪ c) ⊆ Hr ′(a
′ ∪ c),

where one takes c = supp+(b) for clause (i) and c = ∅ in the other cases. ��
We always refer to the lemma as ‘weakening’, even when a′ is a proper subset of a,

where we get an apparent strengthening. In the following result, the bound ω · rk(ϕ)

could be improved to 2 · rk(ϕ). We keep the suboptimal bound because only t �→ ω · t
has been defined in the present paper.

Lemma 7.18 For any bounded Lu
�(X)-formula ϕ and any a ∈ Lu

�(X) we have

(0, supp+(ϕ)) �ω·rk(ϕ)
0 ϕ,¬ϕ and (0, supp+(a)) �ω·rk(a)+2

0 a = a.

Proof To establish the first claim, we argue by induction on rk(ϕ). First observe that
H0(supp+(ϕ)) contains rk(ϕ) and hence also ω · rk(ϕ), due to Lemma 7.14 and its
proof. As disjunction and conjunction are dual (see [11, Definition 3.12]), we may
assume ϕ � ∨

b∈ι(ϕ) ϕb to get ¬ϕ � ∧
b∈ι(ϕ)¬ϕb, or in other words ι(¬ϕ) = ι(ϕ)

and ¬(ϕb) = (¬ϕ)b. In view of Lemma 7.15, we use the induction hypothesis to get

(0, supp+(ϕb)) �ω·rk(ϕb)
0 ϕb,¬ϕb for each b ∈ ι(ϕ).

To prepare an application of weakening, we observe that [11, Definition 3.12] yields

suppL�(X)(ϕb) ⊆ suppL�(X)(ϕ) ∪ suppL�(X)(b).

This inclusion remains valid when we apply [�(I )]<ω to both sides, i. e., when we
replace suppL�(X) by supp+. For each b ∈ ι(ϕ), we can use Lemma 7.14 to derive

t(b) := max{rk(ϕb), rk(b)} ∈ H0(supp
+(ϕ) ∪ supp+(b)).

As announced, we now apply weakening to get

(0, supp+(ϕ) ∪ supp+(b)) �ω·t(b)
0 ϕ,¬ϕ, ϕb,¬ϕb.

The choice of t(b) and Lemma 7.14 ensure supp+(b) ⊆O ω · t(b)+ 1, as required in
clause (ii) of Definition 7.16. By the latter, we thus obtain

(0, supp+(ϕ) ∪ supp+(b)) �ω·t(b)+1
0 ϕ,¬ϕ,¬ϕb for each b ∈ ι(ϕ) = ι(¬ϕ).

Based on [11, Definition 3.12] and Lemma 7.14, it is not hard to check that b ∈ ι(ϕ)

entails rk(b) < rk(ϕ), so that we get t(b) < rk(ϕ) by Lemma 7.15. We can thus apply
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clause (i) of Definition 7.16, in order to complete the proof of the first claim from the
lemma. To derive the second claim, we show

(0, supp+(a)) �ω·rk(a)+1
0 ∀x ∈ a. x ∈ a

by induction on rk(a). Let us consider a term of the form a = {x ∈ Lu
s | θ(x,d)}.

For a ∈ u and a = Lu
s the argument is easier (but note that a ∈ u leads to the bound

ω · rk(a)+ 1 rather than ω · rk(a)). By [11, Definition 3.12] we have

∀x ∈ a. x ∈ a �∧
b∈ι¬θ(b,d) ∨ b ∈ a and b ∈ a �∨

c∈ι θ(c,d) ∧ c = b

with ι = {b ∈ Lu
�(X) | suppL�(X)(b) ⊆�(X) s}.

In the clause for b ∈ a, we will take c to be the same term as b. To derive b = b, we
recall the general clause

(b0 = b1) �∧
i∈{0,1} ∀x ∈ bi . x ∈ b1−i .

When b0 and b1 are the same term b, then the two conjuncts coincide, but we still
need a step to introduce the conjunction. So the induction hypothesis and clause (i) of
Definition 7.16 yield

(0, supp+(b)) �ω·rk(b)+2
0 b = b.

This shows the second claim of the lemma, once the present induction is completed.
We have supp+(θ(b,d)) ⊆ supp+(a) ∪ supp+(b), and Lemma 7.14 provides

s(b) < rk(a) for s(b) := max{rk(b)+ 1, rk(θ(b,d))}.

Using the first part of the present lemma, we can thus derive

(0, supp+(a) ∪ supp+(b)) �ω·s(b)+1
0 ¬θ(b,d), θ(b,d) ∧ b = b.

We now use clause (ii) of Definition 7.16 three times, once to get b ∈ a and twice to
combine the disjuncts, so that we obtain

(0, supp+(a) ∪ supp+(b)) �ω·s(b)+4
0 ¬θ(b,d) ∨ b ∈ a.

To complete the induction step, one applies clause (i) of the same definition. ��
In the rest of this section, we show how the search tree SR

�(X) from Definition 5.3
can be transformed into an infinite proof. We begin with the crucial axioms.

Proposition 7.19 For each of the �0-collection axioms Ax1+n from Definition 5.2 and
any α < ν, we have

(0,∅) �t
0 Ax

L[α]
1+n with t := ψα+10+ ω · 3.
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Proof Corollaries 7.10 and 7.11 provide ψα+10 + ω · m + n ∈ H0(∅) for m, n ∈ N.
We recall L[α] = Lu

R(α) and ψα+10 = �(I ) ◦ R(α) as well as suppL�(X)(Lu
s ) = {s}.

The initial condition from Definition 7.16 can now be derived as

supp+(AxL[α]
1+n ) = [�(I )]<ω ◦ suppL�(X)(Lu

R(α)) = {ψα+10} ⊆ H0(∅).

As in the paragraph that follows Definition 7.12, we write collection in the form

Ax1+n = ∀z∀v (ψ → ∃w ψw) with ψ(v, z) := ∀x ∈ v∃y θ(x, y, z),

for a �0-formula θ and variables z = z1, . . . , zk . Note that we get

AxL[α]
1+n = ∀z1 ∈ L[α] . . . ∀zk ∈ L[α]∀v ∈ L[α] (ψ L[α] → ∃w ∈ L[α]. ψw).

Let us now recall that [11, Definition 3.12] yields

∀y ∈ L[α]. ϕ(y) � ∧
a∈ι ϕ(a) for ι := {a ∈ Lu

�(X) | suppL�(X)(a) ⊆�(X) R(α)}.

To conclude by k + 1 applications of clause (i) from Definition 7.16, we shall thus
show the following: For s := ψα+10+ω ·2+3 and arbitrary a0, . . . , ak ∈ ι, we have

(0, supp+(ϕ)) �s
0 ϕL[α] → ∃w ∈ L[α]. ϕw with ϕ := ψ(a0, . . . , ak).

In the proof of Proposition 7.5 we have observed that ψα+10 is strongly critical. This
justifies the last step in the computation

rk(L[α]) = ω · (1+ �(I ) ◦ R(α)) = ω · (1+ ψα+10) = ψα+10.

By Definition 7.13 in conjunction with Lemma 7.14, we get rk(ϕL[α]) = ψα+10+ 2.
We can thus use Lemma 7.18 to obtain

(0, supp+(ϕL[α])) �r
0 ¬ϕL[α], ϕL[α] with r := ω · (ψα+10+ 2) = ψα+10+ ω · 2.

Weakening allows us to replace supp+(ϕL[α]) by supp+(ϕ), as we have

supp+(ϕL[α]) ⊆ supp+(ϕ) ∪ supp+(L[α]) ⊆ H0(supp
+(ϕ)).

Now ϕ is a �(α)-formula, due to ai ∈ ι. Thus clause (iv) of Definition 7.16 yields

(0, supp+(ϕ)) �r+1
0 ¬ϕL[α], ∃w ∈ L[α]. ϕw.

From Sect. 5 we recall that ϕL[α] → ∃w ∈ L[α]. ϕw and ¬ϕL[α] ∨ ∃w ∈ L[α]. ϕw

denote the same formula in negation normal form. We can thus conclude by two
applications of clause (ii) from Definition 7.16. ��
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On an intuitive level, the following holds because the stage R(α) of L[α] is a limit
(in fact �(I ) ◦ R(α) = ψα+10 is strongly critical).

Proposition 7.20 Consider the axiom Ax0 = ∀x∃y. x ∈ y from Definition 5.2. For
any α < ν we have (0,∅) �t

0 Ax
L[α]
0 with t := ψα+10.

Proof First note that we have

{t} ∪ supp+(AxL[α]
0 ) = {ψα+10} ⊆ H0(∅),

as in the previous proof. To conclude by clauses (i) and (ii) of Definition 7.16, we
write ι = {a ∈ Lu

�(X) | suppL�(X)(a) ⊆�(X) R(α)} and observe

AxL[α]
0 = ∀x ∈ L[α]∃y ∈ L[α]. x ∈ y � ∧

a∈ι ∃y ∈ L[α]. a ∈ y,

∃y ∈ L[α]. a ∈ y � ∨
b∈ι a ∈ b.

Given an arbitrary a ∈ ι, we must thus derive a ∈ b for a suitable b ∈ ι. Let us set

b := Lu
r with r :=

{
0 if a ∈ u,

s + 1 if a = Lu
s or a = {x ∈ Lu

s | θ(x, c)}.

In the more interesting second case, we note that a ∈ ι and s ∈ suppL�(X)(a) entail

s <�(X) R(α) ∈ rng(γX) = {�x | x ∈ X}.

We can infer s + 1 < R(α) by Lemma 4.15 (recall 1 = ϕ00). Let us rewrite this as

suppL�(X)(b) ⊆�(X) R(α),

which also holds when we have a ∈ u and hence r = 0. As in the previous proof, we
use Lemma 7.14 to conclude that ω · rk(b)+ n < ψα+10 holds for all n ∈ N. Given
that Definition 4.7 yields �(I )(0) = 0 and �(I )(s+1) = �(I )(s)+1, we can employ
Corollary 7.10 to get supp+(b) = {�(I )(r)} ⊆ H0(supp+(a)) and hence

rk(b) ∈ H0(supp
+(b)) ⊆ H0(supp

+(a)).

Let us now recall that [11, Definition 3.12] yields

a ∈ b � ∨
c∈κ c = a with κ = {c ∈ Lu

�(X) | suppL�(X)(c) ⊆�(X) r}.

As Lemma 7.18 provides a derivation of a = a, we take c to be the term a. Note that
the choice of r ensures a ∈ κ and supp+(a) ⊆O �(I )(r) ≤ ω · rk(b). We may thus
apply clause (ii) of Definition 7.16, to get

(0, supp+(a)) �ω·rk(b)
0 a ∈ b.
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In view of b ∈ ι and supp+(b) ⊆O ω · rk(b)+ 1, the same clause now yields

(0, supp+(a)) �ω·rk(b)+1
0 ∃y ∈ L[α]. a ∈ y.

Since a ∈ ι was arbitrary and we always have ω · rk(b) + 1 < ω · ψα+10 = ψα+10,
we can conclude by clause (i) of Definition 7.16. ��

To conclude this section, we show that the search tree SR
�(X) from Definition 5.3

can be converted into an infinite proof. We are particularly interested in the root
node 〈〉 ∈ SR

�(X), which gives rise to elements

X+ 〈〉 ∈ X+ SR
�(X) = K and �X+〈〉 ∈ �(K) = O.

The label l�(X)(〈〉) at the root is the empty sequent, which we denote by 〈〉 as well. Let
us recall that the empty sequent stands for the empty disjunction, which is false and
should thus not be provable. To reconcile this remark with the following result, we
recall that the latter is part of an argument by contradiction (see the paragraph before
Assumption 6.4).

Theorem 7.21 (Embedding) We have (0,∅) �t
t 〈〉 for t = �X+〈〉 ∈ O.

Proof For σ = 〈σ0, . . . , σn−1〉 ∈ SR
�(X) ⊆ (Lu

�(X))
<ω we extend Definition 7.12 by

supp+(σ ) := [�(I )]<ω ◦ suppS
�(X)(σ ) =⋃

i<n supp
+(σi ) ∈ [O]<ω,

where the second equality uses suppS
�(X)(σ ) = ⋃

i<n supp
L
�(X)(σi ) from Sect. 5. Let

us write l(σ ) = l�(X)(σ ) for the sequent label from Definition 5.3. We will show

(0, supp+(σ )) �s
s l(σ ) with s := �X+σ

by induction on σ ∈ SR
�(X) in the Kleene-Brouwer order, which is well founded due

to the embedding σ �→ �X+σ into the well order O. Note that the theorem is the case
of the root σ = 〈〉. Considering Definition 7.16, we first show

{�X+σ } ∪ supp+(l(σ )) ⊆ H0(supp
+(σ )).

In view of �(I ) ◦ R(α) = ψα+10 ∈ H0(∅), the claim about supp+(l(σ )) reduces
to Corollary 5.7. To conclude via Proposition 7.9, we assume r ∈ supp+(�X+σ ) and
derive r ∈ H0(supp+(σ )). Definitions 6.14 and 7.1 yield r = γK ◦ I (x) for some

x ∈ suppO(�X+σ ) =
⋃
{suppK(ρ) | ρ ∈ supp�

K(�X+σ )}
= suppK(X+ σ) =

⋃
{supp�

X(ρ) | ρ ∈ suppS
�(X)(σ )\ rng(R)}.
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We thus get x ∈ supp�
X(ρ) with ρ ∈ suppS

�(X)(σ ) and hence �(I )(ρ) ∈ supp+(σ ).
By Lemma 6.19 and the other direction of Proposition 7.9, we obtain

r ∈ [γK ◦ I ]<ω ◦ supp�
X(ρ) = [γK ◦ I ]<ω ◦ suppO(�(I )(ρ))

= supp+(�(I )(ρ)) ⊆ H0(supp
+(σ )).

In our induction along the Kleene-Brouwer order, we distinguish cases according
to Definition 5.3. Let us first assume that σ has even length 2k, where k codes a
pair 〈n, i〉. Forα = νi , the cited definition providesσ�L[α] ∈ SR

�(X), and the induction
hypothesis yields

(0, supp+(σ ) ∪ supp+(L[α])) �r
r l(σ ),¬AxL[α]

n with r = �X+σ�L[α] < �X+σ .

Here we can omit supp+(L[α]) ⊆ H0(∅) by ‘weakening’. From Lemma 6.20 we get

ψα+10 = �(I ) ◦ R(α) <O �X+σ�L[α] = r .

Due to Propositions 7.19 (for n > 0) and 7.20 (for n = 0), we thus have

(0, supp+(σ )) �r
r l(σ ),AxL[α]

n .

As ψα+10 < s = �X+σ entails rk(AxL[α]
n ) < s, we can complete the induction step

by clause (iii) of Definition 7.16 (‘cut rule’). The other cases from Definition 5.3
correspond directly to clauses (i) and (ii). Concerning the disjunctive case, we note
that supp+(b) ⊆ rng(�(I )) entails supp+(b) ⊆O �X+σ , again by Lemma 6.20. ��

8 An abstract ordinal analysis

In this section, we show cut elimination and collapsing results that entail the consis-
tency of our infinite proof system. On the one hand, these results resemble the known
ordinal analysis of iterated admissibility [7, 29, 40, 44]. On the other hand, our setting
here is more abstract, since we work relative to the given dilator � ◦ S from Assump-
tion 6.4 (recall that S arises from the search trees of Definition 5.3). Once consistency
is available, it will be straightforward to deduce the main result of our paper, as we
shall see in the next section. We begin with a standard ingredient for cut elimination
(cf. [7, Lemma 3.13]):

Lemma 8.1 (Inversion) If ϕ �∧
b∈ι(ϕ) ϕb is conjunctive, then we have

(r , a) �t
s �, ϕ ⇒ (r , a ∪ supp+(b)) �t

s �, ϕb for any b ∈ ι(ϕ).

Proof Due to the initial condition from Definition 7.16, the premise of the desired
implication entails supp+(ϕ) ⊆ Hr (a). As in the proof of Lemma 7.18 we get

supp+(ϕb) ⊆ supp+(ϕ) ∪ supp+(b) ⊆ Hr (a ∪ supp+(b)),
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which ensures that the same initial condition holds for the conclusion. We now argue
by induction on t ∈ O. In the crucial case, clause (i) of Definition 7.16 was applied to
the distinguished formula ϕ, so that we have

(r , a ∪ supp+(b)) �t(b)
s �, ϕ, ϕb

for some t(b) < t . Here we can omit ϕ due to the induction hypothesis. Weakening
(Lemma 7.17) allows us to increase t(b) to t , which yields the desired conclusion. In
all other cases, one uses the induction hypothesis and reapplies the same clause. The
latter is possible because clauses (ii) and (iv) concern formulas that are disjunctive
and hence different from ϕ. ��

The following (cf. [7, Lemma 3.14]) shows how certain applications of the cut rule
can be avoided. Note that the result is no immediate consequence of clause (iii) from
Definition 7.16, since the latter would require rk(ψ) = rk(¬ψ) < rk(ψ).

Lemma 8.2 (Reduction) For disjunctive ψ with rk(ψ) /∈ {ψα+10 |α < ν} we have

(r , a) �t(0)
rk(ψ) �,¬ψ and (r , a) �t(1)

rk(ψ) �,ψ ⇒ (r , a) �t(0)+t(1)
rk(ψ) �.

Proof The premise of the desired implication entails t(i) ∈ Hr (a) for i ∈ {0, 1}, as in
the previous proof. Thus t(0)+ t(1) ∈ Hr (a) holds by Corollary 7.10 in conjunction
with Lemma 4.16. We now argue by induction on t(1) and distinguish cases according
to the clause of Definition 7.16 that was used to derive �,ψ . In the crucial case, the
formula ψ �∨

b∈ι(ψ) ψb itself was derived by clause (ii), which means that we have

(r , a) �s
rk(ψ) �,ψ,ψb for some b ∈ ι(ψ) and s <O t(1).

In particular, this means that we have supp+(ψb) ⊆ Hr (a), by the initial condition
from Definition 7.16. We may also assume supp+(b) ⊆ supp+(ψb). Indeed, this is
immediate if b occurs in ψb. If it does not, then we have ψb = ψi for some index
i ∈ {0, 1} ⊆ ι(ψ), as a glance at [11, Definition 3.12] reveals. In this case we may
thus redefine b := i ∈ u ⊆ Lu

�(X) to get supp+(b) = ∅. Let us now apply weakening
to the given derivation of �,¬ψ , so that we obtain

(r , a) �t(0)
rk(ψ) �,¬ψ,ψb.

By the induction hypothesis, we can then infer

(r , a) �t(0)+s
rk(ψ) �,ψb.

From [11, Definition 3.12] we know that ¬ψ is conjunctive with (¬ψ)b = ¬(ψb)

for all b ∈ ι(¬ψ) = ι(ψ). We may thus apply inversion (Lemma 8.1) to the given
derivation of �,¬ψ , in order to get

(r , a ∪ supp+(b)) �t(0)
rk(ψ) �,¬ψb.
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For b as above, we may omit supp+(b) ⊆ Hr (a) by weakening. As Lemma 7.15
ensures rk(ψb) < rk(ψ), we can conclude by clause (iii) of Definition 7.16. In all
other cases, one uses the induction hypothesis and reapplies the same clause. Here
it is crucial to observe that clause (iv) cannot be applied with ψ = (∃z ∈ L[α].ϕz).
Indeed, given that ϕ is a �(α)-formula, we have

supp+(ϕ) ⊆O �(I ) ◦ R(α) = ψα+10.

We may replace ϕ by the ‘trivial’ relativization ϕ0, since we have supp+(0) = ∅. As
ψα+10 is strongly critical (cf. the proof of Proposition 7.5), Lemma 7.14 yields

rk(ϕ0)+ 2 <O ω · (1+ ψα+10) = ψα+10.

Similarly, we get rk(L[α]) = rk(Lu
R(α)) = ψα+10 and then

rk(∃z ∈ L[α]. ϕz) = max{rk(L[α]), rk(ϕ0)+ 2} = ψα+10 �= rk(ψ).

The inequality holds by an assumption in the lemma, which thus excludes an obstruc-
tive application of clause (iv) from Definition 7.16. ��

By the next result (cf. [7, Theorem 3.16]), the cut rank can be reduced when no
critical value ψα+10 is involved. To remove this last restriction, we will later prove a
collapsing result that complements cut elimination. Let us point out that ϕ refers to
the Veblen function from Definition 4.12.

Proposition 8.3 (Predicative cut elimination) Consider elements p, q ∈ O such that
p ≤ ψα+10 < p + ϕ(0, q) fails for all α < ν. We then have

(r , a) �t
p+ϕ(0,q) � and q ∈ Hr (a) ⇒ (r , a) �ϕ(q,t)

p �.

Proof The assumption of the desired implication entails q, t ∈ Hr (a), due to the initial
condition from Definition 7.16. We get ϕ(q, t) ∈ Hr by Corollary 7.10 in conjunction
with Lemma 4.16. Let us now argue by main induction on q and side induction on t
(where p may vary during the induction). In the crucial case, we are concerned with
clause (iii) of Definition 4.12, so that we have

(r , a) �s
p+ϕ(0,q) �, ψ and (r , a) �s

p+ϕ(0,q) �,¬ψ

with rk(ψ) < p + ϕ(0, q) and s < t . For later use we record supp+(ψ) ⊆ Hr (a).
The side induction hypothesis yields

(r , a) �ϕ(q,s)
p �,ψ and (r , a) �ϕ(q,s)

p �,¬ψ.

If we have rk(ψ) < p, then we can conclude by clause (iii) of Definition 7.16, since
Proposition 4.13 yields ϕ(q, s) < ϕ(q, t). By the same proposition and Lemma 4.15,
we even have ϕ(q, s)+ ϕ(q, s) < ϕ(q, t). Now assume p ≤ rk(ψ) and note that this
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entails rk(¬ψ) = rk(ψ) /∈ {ψα+10 |α < ν}. Let us recall that ¬¬ψ is syntactically
equal to ψ , since we treat negation as a defined operation on formulas in negation
normal form. Either ψ = ¬¬ψ or ¬ψ is disjunctive, as seen in [11, Definition 3.12].
We can thus use reduction (Lemma 8.2) and weakening to get

(r , a) �ϕ(q,t)
rk(ψ) �.

Lemma 4.15 yields rk(ψ) = p + s for some s ∈ O = �(K). By Definition 4.5 we
may write s = 〈s0, . . . , sn−1〉 with si ∈ H (not necessarily with n > 1). We thus get

p = p + s(0) and rk(ψ) = p + s(n) for s(i) := 〈s0, . . . , si−1〉.

By an auxiliary induction from i = n down to i = 0, we now show

(r , a) �ϕ(q,t)
p+s(i) �.

In the induction step, we use Proposition 4.13 to write si ∈ H in the form ϕ(pi , qi ).
Let us set q(i) := qi when pi = 0 and q(i) := si when 0 < pi . In the second case,
Proposition 4.13 yields ϕ(0, si ) = si . So we always get

s(i + 1) = s(i)+ si = s(i)+ ϕ(0, q(i)).

Let us observe that we have

suppL�(X)(q(i)) = suppL�(X)(si ) ⊆ suppL�(X)(rk(ψ)).

As Lemma 7.14 provides rk(ψ) ∈ H0(supp+(ψ)) ⊆ Hr (a), we obtain q(i) ∈ Hr (a)

by Corollary 7.10. Furthermore, we have q(i) < q due to

p + s(i)+ ϕ(0, q(i)) = p + s(i + 1) ≤ rk(ψ) < p + ϕ(0, q) ≤ p + s(i)+ ϕ(0, q).

Given the auxiliary induction hypothesis (with i+1 at the place of i), we use the main
induction hypothesis (with p + s(i) and q(i) at the place of p and q) to get

(r , a) �ϕ(q(i),ϕ(q,t))
p+s(i) �.

From Proposition 4.13 we know that q(i) < q entails ϕ(q(i), ϕ(q, t)) = ϕ(q, t). So
the step of the auxiliary induction is completed. Taking i = 0 completes the present
case of the side and main induction step. The remaining cases are straightforward. ��

So far, the notation ϕa for relativization has been introduced for a ∈ Lu
�(X) only.

We now use the embedding �(I ) : �(X)→ �(K) = O to overload the notation.

Definition 8.4 Given an Lu
�(X)-formula ϕ and an element t ∈ rng(�(I )) ⊆ O, we set

ϕt := ϕa with a := Lu
s ∈ Lu

�(X) for the unique s ∈ �(X) with �(I )(s) = t .
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It is instructive to recall ψα+10 = �(I ) ◦ R(α) and L[α] = Lu
R(α), which yields

ϕt = ϕL[α] for t = ψα+10 ∈ O.

By Corollary 4.11 and Definition 6.12, the range of �(I ) is an initial segment ofO. It
follows that ϕt is defined whenever t ≤ ψα+10 holds for some α < ν. We will later
need the following variant of inversion (cf. Lemma 8.1).

Lemma 8.5 Given q ∈ Hr (a) with q ≤ ψα+10, we get

(r , a) �t
s �,∀x ∈ L[α]. θ ⇒ (r , a) �t

s �, (∀x .θ)q ,

for any bounded Lu
�(X)-formula θ = θ(x).

Proof Write ϕ := ∀x ∈ L[α]. θ and ϕ′ := (∀x .θ)q = ∀x ∈ Lu
p. θ with �(I )(p) = q,

and note that q ≤ ψα+10 entails p ≤ R(α). The initial condition of Definition 7.16 is
preserved as we have supp+(ϕ′) ⊆ supp+(ϕ) ∪ {q}. In view of [11, Definition 3.12],
the formulas ϕ and ϕ′ are both conjunctive, and we have ϕb = θ(b) = ϕ′b for any

b ∈ ι(ϕ′) = {a ∈ Lu
�(X) | suppL�(X)(a) ⊆�(X) p} ⊆ ι(ϕ).

So whenever clause (i) of Definition 7.16 is used to derive ϕ, it can also derive ϕ′.
Based on this observation, the claim is readily established by induction on t . ��

Let us also record how relativization interacts with our assignment of a disjunction
ϕ �∨

b∈ι(ϕ) ϕb or conjunction ϕ �∧
b∈ι(ϕ) ϕb to each formula ϕ.

Lemma 8.6 The following holds for any Lu
�(X)-formula ϕ and any t ∈ rng(�(I )):

(a) The formula ϕt is conjunctive or disjunctive, respectively, if and only if the same
holds for ϕ.

(b) We have (ϕt )b = (ϕb)
t for any b ∈ ι(ϕt ) ⊆ ι(ϕ).

(c) For any b ∈ ι(ϕ) with supp+(b) ⊆O t , we have b ∈ ι(ϕt ).
(d) If ϕ is a �(α)-formula, then so is ϕb for any b in the set

ι(ϕL[α]) = {b ∈ ι(ϕ) | supp+(b) ⊆O ψα+10}.

(e) Assume ϕ is a conjunctive �(α)-formula. We then have ι(ϕt ) = ι(ϕ). Also, there
is an s ∈ supp+(ϕ) ∪ {0} with supp+(b) ⊆O s for all b ∈ ι(ϕ).

In part (e), we get s < ψα+10 due to the definition of �(α)-formulas. So when ϕ is
conjunctive, part (d) applies to any element b ∈ ι(ϕ).

Proof All claims can be verified explicitly, based on [11, Definition 3.12]. Details
for a representative case are given in the proof of [11, Lemma 9.1]. Concerning (d),
we note that supp+(b) ⊆O ψα+10 is equivalent to suppL�(X)(b) ⊆�(X) R(α), which
relates to Definition 7.12. In part (e), the crucial point is that ϕ cannot begin with an
unbounded quantifier. ��
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Clause (iv) of Definition 7.16 (which allows us to infer ∃z ∈ L[α]. ϕz from ϕL[α])
is an obstruction to cut elimination, as we have seen in the proof of Lemma 8.2. The
following result (cf. [7, Lemma 3.17]) will allow us to circumvent this clause, since
ϕt with t < ψα+10 entails ∃z ∈ L[α]. ϕz .

Proposition 8.7 (Boundedness) For each �(α)-formula ϕ with α < ν we have

(r , a) �s
q �, ϕL[α] and s ≤ t < ψα+10 with t ∈ Hr (a) ⇒ (r , a) �s

q �, ϕt .

Proof First note that the antecedent of the desired implication entails

supp+(ϕt ) ⊆ supp+(ϕL[α]) ∪ {t} ⊆ Hr (a),

so that the initial condition from Definition 7.16 is preserved. We now argue by induc-
tion on s. When the relevant clause from Definition 7.16 does not refer to ϕL[α], it
is straightforward to reduce to the induction hypothesis. In case clause (i) applies
to ϕL[α], the latter is conjunctive and we have

(r , a ∪ supp+(b)) �s(b)
q �, ϕL[α], (ϕL[α])b with s(b) < s for all b ∈ ι(ϕL[α]).

The previous lemma ensures that ϕb is a �(α)-formula with (ϕb)
L[α] = (ϕL[α])b, for

any b ∈ ι(ϕ) = ι(ϕL[α]). Thus two applications of the induction hypothesis yield

(r , a ∪ supp+(b)) �s(b)
q �, ϕt , (ϕb)

t for all b ∈ ι(ϕ).

Using the previous lemma once again, we learn that ϕ and hence ϕt is conjunctive with
(ϕt )b = (ϕb)

t for all b ∈ ι(ϕt ) ⊆ ι(ϕ). In order to conclude the present case of the
induction step, we can thus reapply clause (i). A similar argument covers clause (ii),
as the previous lemma ensures the following: for any b ∈ ι(ϕL[α]) ⊆ ι(ϕ) with
supp+(b) ⊆O s ≤ t < ψα+1, we have b ∈ ι(ϕt ) and ϕb is a �(α)-formula. Finally,
we consider an application of clause (iv) for a �(β)-formula θ with β < ν and
(∃z ∈ L[β]. θ z) = ϕL[α], where we have

(r , a) �s(0)
q �, ϕL[α], θ L[β] for some s(0) < s.

If we have α �= β, then L[β] occurs in ϕ, and the definition of �(α)-formulas yields

R(β) ∈ suppL�(X)(L[β]) ⊆ suppL�(X)(ϕ) ⊆�(X) R(α).

So in any case we have β ≤ α. By a similar argument, it follows that L[α] cannot
occur in the �(β)-formula θ . In case β < α we thus get ϕL[α] = ϕ = ϕt , which
makes the claim trivial. Now assume β = α and note that this forces ϕ = ∃z. θ z . We
apply the induction hypothesis twice (once with s(0) at the place of t), to get

(r , a) �s(0)
q �, ϕt , θ s(0).
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For p ∈ �(X) with �(I )(p) = t we have

ϕt = ∃z ∈ Lu
p. θ

z �∨
b∈ι(ϕt ) θb with ι(ϕt ) = {b ∈ Lu

�(X) | suppL�(X)(b) ⊆�(X) p}.

Now θ s(0) = θb holds for b := Lu
p(0) with �(I )(p(0)) = s(0) < s ≤ t , which yields

suppL�(X)(b) = {p(0)} ⊆�(X) p and supp+(b) = {s(0)} ⊆O s.

We can thus conclude by an application of clause (ii) from Definition 7.16. ��
The following definition adapts notation from [7, Section 4], which will be used

for the crucial result on collapsing and impredicative cut elimination. The reader may
wish to recall Definitions 7.4 and 7.7 as well as the paragraph before Theorem 7.21.

Definition 8.8 For α < ν and r , s ∈ O and a ∈ [O]<ω, we abbreviate

A(a; r , α, s) :⇔ r , s ∈ Hr (a) and a ⊆⋂
β≥α Cβ(r + 1).

Let us also put K := {�(α) |α ≤ ν} with
�(0) := 0, �(α + 1) := (ψα+10)+ 1,

�(ν) := �X+〈〉 �(λ) := ψλ0 for each limit λ < ν.

Note that we have �(α) ∈ H0(∅) for all α ≤ ν, as a consequence of Theorem 7.21
and Corollary 7.11. For α < ν, the following result characterizes �(α) ∈ rng(�(I ))
as a supremum.

Lemma 8.9 For any α ≤ ν and s ∈ rng(�(I )) ⊆ O we have

s <O �(α) ⇔ s ≤O ψβ+10 for some β < α.

Proof The claim is immediate when α is zero or a successor. Let us now assume that
α < ν is a limit. The non-trivial task is to show that s < ψα0 entails s ≤ ψβ+10 for
some β < α. Invoking Definitions 7.1 and 7.4 as well as Lemma 4.10, we see that any
δ < ν validates

s <O ψδ0 = γK ◦ I (ψX
δ 0) ⇔ supp�

K(s) ⊆K I (ψX
δ 0).

Assume that these equivalent statements hold for δ = α. We need to find a β < α

such that they hold for δ = β + 1 as well. Let us recall that the range of I : X→ K is
an initial segment. The maximal element of the finite set supp�

K(s) can thus be written
as I (x), except in the trivial case where the support is empty. Due to Definition 6.12
we get x = ψX

β t for some β < ν and t ∈ O. Clearly, the right side above holds

for δ = β+1. Also, the right side for δ = α entails I (x) < I (ψX
α 0) and hence β < α,

as desired. Now consider the case of α = ν. For any s ∈ rng(�(I )), Definition 1.1
and Lemma 6.20 yield s < �(ν) and supp�

K(s) ⊆ rng(I ). Due to the latter, we can
find a β < ν with s < ψβ+10, as in the limit case. ��
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The following transfers [7, Lemma 4.7] into our setting. Note that no assumption
such as p′ ∈ Hr (a) is needed in part (b).

Lemma 8.10 If we have A(a; r , α, s) and t ∈ Hr (a), then the following holds:

(a) Given α ≤ β and t < ψβ+10, we get t < ψβ(r + 1).
(b) For p := r + ϕ0(s+ t) we have p ∈ Hr (a) as well as ψα p ∈ Hp(a), and p < p′

entails ψα p < ψα p′.

Proof (a) In view of Definition 7.7, the assumptions entail t ∈ Cβ(r + 1). Now the
conclusion follows by Proposition 7.5.

(b) In view of r ≤ p, we can use Corollary 7.10 to get p ∈ Hr (a) ⊆ Hp(a),
which entails ψα p ∈ Hp(a) by Corollary 7.11. Given p < p′, we now obtain
ψα p ∈ Cα(p′), as A(a; r , α, s) provides a ⊆ Cα(r + 1) ⊆ Cα(p′). In order to
conclude ψα p < ψα p′, it suffices to invoke Proposition 7.5 once again.

��
Our abstract ordinal analysis culminates in the following (cf. [7, Theorem 4.8]).

Theorem 8.11 (Collapsing and impredicative cut elimination) For α < ν, assume

(r , a) �t
s � with A(a; r , α, s) and s ∈ K ,

where all elements of � have the form ϕL[α] for a �(α)-formula ϕ. We then get

(p, a) �q
q � with p = r + ϕ0(s + t) and q = ψα p.

Proof We argue by main induction on s and side induction on t (where α and the
other parameters may vary in the induction). The previous lemma secures the initial
condition from Definition 7.16. In clause (i) of the latter, we are concerned with a
conjunctive formula ϕL[α] ∈ � such that we have

(r , a ∪ supp+(b)) �t(b)
s �, ϕ

L[α]
b with t(b) < t for all b ∈ ι(ϕL[α]).

Here we write ϕ
L[α]
b for (ϕL[α])b, which coincides with (ϕb)

L[α] due to Lemma 8.6.
The latter also yields a t ′ ∈ supp+(ϕ) ∪ {0} ⊆ Hr (a) with supp+(b) ⊆O t ′ < ψα+10
for all b ∈ ι(ϕL[α]). To establishA(a∪ supp+(b); r , α, s) for any such b, we consider
an arbitrary β ≥ α. By the previous lemma we get t ′ < ψβ(r + 1). Let us also note
that r + 1 ∈ Hr (a) ⊆ Cβ(r + 1) holds due to A(a; r , α, s) and Definition 7.7. Thus
Proposition 7.5 yields supp+(b) ⊆ Cβ(r + 1), as required. We may now use the side
induction hypothesis to infer

(p(b), a ∪ supp+(b)) �q(b)

q(b) �, ϕ
L[α]
b with p(b) = r + ϕ0(s + t(b)) and ψα p(b),

for any b ∈ ι(ϕL[α]). With p and q as in the theorem, we see that t(b) < t entails
p(b) < p and then q(b) < q, by Lemma 8.10 with a ∪ supp+(b) at the place of a.
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To conclude the present case of the induction step, we use weakening and reapply
clause (i) of Definition 7.16. Now consider clause (ii) for a disjunctive ϕL[α] ∈ � with

(r , a) �t(0)
s �, ϕ

L[α]
b for some t(0) < t and b ∈ ι(ϕL[α]).

As in the proof of Lemma 8.2, we may assume supp+(b) ⊆ supp+(ϕ
L[α]
b ). The latter

entails supp+(b) ⊆ Hr (a), by the initial condition from Definition 7.16. Since we
also have supp+(b) ⊆O ψα+10 due to Lemma 8.6, we can use Lemma 8.10 to get

supp+(b) ⊆O ψα(r + 1) ≤O ψα p(0) =: q(0) with p(0) := r + ϕ0(s + t(0)).

Let us recall that our version of ψ is not even weakly increasing. To secure the weak
inequality above, one invokes Lemma 8.10 with s = 0 = t . The given bound on
supp+(b) allows us to reapply clause (ii) after the side induction hypothesis has been
used. Before we come to the crucial clause (iii), let us consider an application of (iv),
where � contains ∃z ∈ L[β]. ϕz for some �(β)-formula ϕ. As in the proof of Propo-
sition 8.7, we necessarily have β ≤ α. To conclude by the side induction hypothesis,
we need only observe that ϕL[β] = ψ L[α] holds for some �(α)-formula ψ . We can
take ψ := ϕ for β = α and ψ := ϕL[β] = (ϕL[β])L[α] for β < α. As preparation
for clause (iv), we establish the following claim (which is adapted from the proof by
Buchholz [7]). The quantities that appear in the theorem should be considered as fixed
(for the induction step), while p(0), q(0) and ϕ can be arbitrary.

Claim Assume that we have r ≤ p(0) < p and p(0) ∈ Hp(0)(a), and that there exists
a β < ν with s(0) := max{q(0), rk(ϕ)} < ψβ+10 ≤ s. We then get

(p(0), a) �q(0)
q(0) �, ϕ and (p(0), a) �q(0)

q(0) �,¬ϕ ⇒ (p, a) �q
q �.

To establish the claim, we first note that clause (iii) of Definition 7.16 yields

(p(0), a) �q(0)+1
s(0)+1 �.

For any β as in the claim, we have s(1) := �(β)+ ϕ0(s(0)+ 1) < ψβ+10, since the
bound is strongly critical (cf. the proof of Proposition 7.5). So there is no γ < ν with
�(β) ≤ ψγ+10 < s(1). We can thus use Proposition 8.3 (predicative cut elimination)
to get

(p(0), a) �t(0)
�(β) � with t(0) := ϕ(s(0)+ 1, q(0)+ 1).

It is straightforward to check that we have A(a; p(0), α,�(β)). We can now use the
main induction hypothesis to infer

(p(1), a) �q(1)
q(1) � with p(1) = p(0)+ ϕ0(�(β)+ t(0)) and q(1) = ψα p(1).
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We have p(0) < p = r + ϕ0(s + t) by assumption, and the above yields

ϕ0(�(β)+ t(0)) < ϕ0(s + t) ∈ H ⊆ �(X).

Using Lemmas 4.15 and 8.10, we obtain p(1) < p and then q(1) < q. An application
of weakening (Lemma 7.17) concludes the proof of the claim. Let us now consider an
application of clause (iii) from Definition 7.16, where we have

(r , a) �t(0)
s �, ϕ and (r , a) �t(0)

s �,¬ϕ

for some t(0) < t and some bounded Lu
�(X)-formula ϕ with rk(ϕ) < s. First assume

rk(ϕ) <O ψα+10 = ω · (1+ ψα+10),

where the equality holds because ψα+10 is strongly critical. From Lemma 7.14 we
learn that ϕ and ¬ϕ are �(α)-formulas. Given that any bounded formula θ is equal
to θ L[α], the side induction hypothesis provides

(p(0), a) �q(0)
q(0) �, ϕ and (p(0), a) �q(0)

q(0) �,¬ϕ (�)

with p(0) = r + ϕ0(s + t(0)) and q(0) = ψα p(0). Also by Lemma 7.14, we have

rk(ϕ) ∈ H0(supp
+(ϕ)) ⊆ Hr (a),

which entails rk(ϕ) < ψα(r +1) ≤ q(0) due to Lemma 8.10. To conclude the present
case of the induction step, we can thus reapply clause (iii). Next, assume we have

ψα+10 ≤ rk(ϕ) /∈ {ψβ+10 |β < ν}.

Due to rng(�(I )) � rk(ϕ) < s ∈ K , we may pick a β < ν with rk(ϕ) ≤ ψβ+10 < s,
by Lemma 8.9. In the present case this upgrades to rk(ϕ) < ψβ+10, which entails that
we have α < β. It follows that �, ϕ,¬ϕ consists of bounded �(β)-formulas. Indeed,
for ψ L[α] ∈ � with a �(α)-formula ψ , we get

suppL�(X)(ψ
L[α]) ⊆ suppL�(X)(ψ) ∪ {R(α)} ⊆�(X) R(β).

FromA(a; r , α, s) and α < β we immediately getA(a; r , β, s). Thus the side induc-
tion hypothesis yields (�), but now with q(0) = ψβ p(0) for the same p(0). We can
conclude the present case by the claim that we have established above. Finally, assume
that we have rk(ϕ) = ψβ+10 with α ≤ β < ν. Recall that ϕ and ¬¬ϕ are syntac-
tically equal, due to our treatment of negation as a defined operation. We may thus
assume that ϕ (rather than ¬ϕ) is disjunctive. In view of Definition 7.13, we must
have ϕ = ∃x ∈ L[β]. θ for some bounded Lu

�(X)-formula θ = θ(x) that satisfies
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rk(θ(0)) < ψβ+10. The latter entails that ∃x . θ is a �(β)-formula. Now the side
induction hypothesis and boundedness (Proposition 8.7) yield

(p(0), a) �q(0)
q(0) �, (∃x . θ)q(0) with p(0) = r + ϕ0(s + t(0)) and q(0) = ψβ p(0).

From (r , a) �t(0)
s �,¬ϕ with ¬ϕ = (∀x ∈ L[β].¬θ) we also obtain

(p(0), a) �t(0)
s �, (∀x .¬θ)q(0),

by weakening and Lemma 8.5. One readily derives A(a; p(0), β, s). As (∀x .¬θ)q(0)

is a bounded �(β)-formula, the side induction hypothesis provides

(p(1), a) �q(1)
q(1) �, (∀x .¬θ)q(0) with p(1) = p(0)+ ϕ0(s + t(0)) and q(1) = ψβ p(1).

As we have p(0) < p(1) and q(0) < q(1) ∈ Hp(1)(a) by Lemma 8.10, the above can
be weakened to

(p(1), a) �q(1)
q(1) �, (∃x . θ)q(0).

Note that we have p(1) < p, due to Lemma 4.15. Using Lemma 7.14, we also see
that rk(θ(0)) < ψβ+10 = ω · (1+ ψβ+10) entails

supp+
(
(∃x . θ)q(0)

)
⊆ supp+(θ(0)) ∪ {q(0)} ⊆O ψβ+10

and hence rk((∃x . θ)q(0)) < ψβ+10 = rk(ϕ) < s. We can thus conclude by the claim
that was shown above (with p(1) and q(1) at the place of p(0) and q(0)). ��

One can use collapsing and boundedness to obtain quantitative information from
proofs, as in [7, Theorem 4.9]. For our purpose, it will be enough to have the following
consistency result (recall that the empty sequent represents contradiction). Let us stress
that our ordinal analysis was conditional on Assumptions 5.1 and 6.4. In fact, our aim
was to refute these assumptions. This aim is achieved by the following result, since it
contradicts Theorem 7.21 (embedding). The conclusions from this contradiction will
be drawn in the next section.

Corollary 8.12 (Consistency) We do not have (0,∅) �t
�(ν) 〈〉 for any t ∈ O.

Proof Assume the claim is false. Then the previous theorem yields a p ∈ O with

(p,∅) �q
q 〈〉 for q = ψ0 p.

Note that we have q = ϕ(0, q) ≤ ψα+10 for all α < ν. We can thus use predicative
cut elimination (Proposition 8.3) to get

(p,∅) �ϕ(q,q)
0 〈〉.
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The latter cannot hold, because no clause from Definition 7.16 applies: clauses (i,ii)
and (iv) require a formula in 〈〉, while clause (iii) demands rk(ψ) < 0. ��

9 Fixed points, comprehension, and admissible sets

In this section, we combine our previous work in order to prove Theorem 1.6 and its
corollaries, which were stated in the introduction. The following result provides the
most difficult implication. It relies on an extensive argument that was developed in
Sects. 5 to 8. More intuitive explanations of the following proof can be found in the
introduction and in Sect. 5.

Theorem 9.1 For the following statements from Theorem 1.6, the theoryATRset0 proves
that (ii) implies (iv) for any infinite ordinal ν:

(ii) any dilator has a well founded ν-fixed point,
(iv) for any set u, there is a sequence of admissible sets Adα � u for α < ν, such that

α < β < ν entails Adα ∈ Adβ .

Proof Asmentioned before, the restriction to infinite ν is convenient because it allows
us to reduce to the limit case. Indeed, it entails that we have ν ≤ μ + ω for limits
μ,ω ≤ ν. Given that (ii) holds for ν, it does also hold forμ and forω, byCorollary 2.10
in conjunction with Corollary 2.2 and Theorem 2.9. Assuming the limit case of the
present theorem, we thus get (iv) for μ and for ω. To deduce (iv) for ν and a given
set u, we build two increasing sequences of admissibles Ad′α � u for α < μ and
Ad′′n �

⋃
α<μ Ad′α for n < ω. Note that we always have Ad′α ∈ Ad′′n , as admissible

sets are transitive. To obtain the desired sequence of admissibles Adα for α < ν,
we set Adα := Ad′α when α < μ and Adα := Ad′′n when α = μ + n < ν. For
the rest of this proof, we assume that ν is a limit such that (ii) holds. Note that �1

1-
comprehension becomes available by Corollary 4.4. It suffices to establish (iv) for
transitive u (replace u by the transitive closure u′ of {u}). We may also assume that
the intersection o(u) = u ∩ Ord with the class of ordinals is a successor o(u) > 1
(replace u′ by u′ ∪ {0, 1, o(u′)}). Since ATRset0 contains the axiom of countability
(cf. the introduction), we can fix enumerations u = {ui | i ∈ N} and ν = {νi | i ∈ N}.
By these preliminary considerations we have satisfied Assumption 5.1. Aiming at a
contradiction, we now assume that (iv) fails for ν and u as fixed. By Proposition 6.2,
it follows that a certain predilator S0 is a dilator. The latter gives rise to another
dilator � ◦ S, due to Proposition 4.8 and Definition 6.3. We now use statement (ii) of
the present theorem, which yields a well order Y with a ν-collapse

πY : Y→ ν × (� ◦ S)(Y).

This means that Assumption 6.4 is satisfied as well. However, we have seen that the
cited assumptions entail two incompatible results: Theorem 7.21 and Corollary 8.12
cannot both be valid, as we have �(ν) = �X+〈〉 by Definition 8.8. Thus we have
reached the desired contradiction. ��



76 Page 78 of 83 A. Freund, M. Rathjen

The next implication follows from [43, Paragraph 3] (see also theEnglish translation
in [44, Section 5] as well as Section 3.3.5 of the survey [41]). We provide a proof
because the cited references involve the notion of inductive definition.

Proposition 9.2 OverATRset0 , statement (iv) from Theorem 1.6 (or Theorem 9.1) entails
the following, for any ordinal ν:

(i) �1
1-recursion along ν holds.

Proof We want to establish recursion for a given �1
1-formula ϕ(x, α, X ,Z) with

parameters x ∈ N, α < ν and X ,Z ⊆ N. Recall (e. g. from [55, Lemma V.1.4]) that
we have a set theoretic �-formula ψ(x, α, X ,Z) such that our base theory proves

“A is admissible”→ ∀x, α, X ,Z ∈ A
(
ϕ(x, α, X ,Z)↔ ψ(x, α, X ,Z)A

)
,

where the superscript denotes relativization. Since the cited reference employs induc-
tive definitions, we recall an alternative argument: We have ϕ(x, α, X ,Z) precisely
when a certain computable tree T = T (x, α, X ,Z) is well founded (see e. g. [55,
Lemma V.1.4]). Let ψ(x, α, X ,Z) assert that there is an f : T → Ord that descends
along branches. Crucially, if T ∈ A is indeed well founded, then such an f exists
in A (see e. g. [31, Theorem 4.6]). In the following, we rely on the presentation of
�1

1-recursion in the second paragraph after Theorem 1.6. Note that statement (iv)
holds for ν + 1 if it holds for ν > 0. We may thus consider a sequence of admissibles
Ad(α) ∈ Ad(β) for α < β ≤ ν, such that Ad(0) contains given parameters Z. By
primitive recursion in the sense of [34], we define a function ν � α �→ Y<α with
Y<0 := ∅ and

Y<α+1 := Y<α ∪ {〈α, x〉 | x ∈ N and ψ(x, α, Y<α,Z)Ad(α+1)},
Y<λ :=⋃

α<λ Y<α for limit λ.

We then set Y :=⋃
α<ν Y<α and observe Yα = {〈γ, x〉 ∈ Y | γ < α} for α < ν, as in

the presentation after Theorem 1.6. Our task is to establish

{x ∈ N | 〈α, x〉 ∈ Y } = {x ∈ N |ϕ(x, α, Y<α,Z)},

where the left side is commonly denoted by Yα . The claim reduces to

ϕ(x, α, Y<α,Z)↔ ψ(x, α, Y<α,Z)Ad(α+1).

This equivalence holds by the choice ofψ , once we have established Y<α ∈ Ad(α+1).
We show the latter by induction on α < ν. In the crucial case of a limit α, we get

ψ(x, γ, Y<γ ,Z)Ad(γ+1) ↔ ψ(x, γ, Y<γ ,Z)Ad(α) for γ < α.

Indeed, both sides are equivalent to ϕ(x, γ, Y<γ ,Z), as Y<γ ∈ Ad(γ + 1) ⊆
Ad(α) holds by induction hypothesis. So we can view α ≥ γ �→ Y<γ as depen-
dent on Ad(α) rather than α � γ �→ Ad(γ ). Now since Ad(α + 1) contains Ad(α),
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it will also contain Y<α , as admissible sets are closed under primitive recursive set
functions. ��

In Sect. 2 we have constructed a linear orderψν(D), relative to a given well order ν

and predilator D. Besides the statements (i,ii) and (iv) that that have been recalled
above, Theorem 1.6 involves the following assertion:

(iii) if D is a dilator (rather than just a predilator), then ψν(D) is a well order.

We now combine the previous results in order to deduce our main theorem.

Proof of Theorem 1.6 Due to Corollary 2.2 and Theorem 2.9, the order ψν(D) is the
unique ν-fixed point of D, up to isomorphism. Together with Theorem 3.12, it follows
that we have

(i) ⇒ (i i) ⇔ (i i i)

for any well order ν, provably in RCA0. As in the desired Theorem 1.6, we now assume
that ν is infinite (though this could probably be avoided). From Corollary 4.4 we know
that (ii) entails �1

1-comprehension. To show that (ii) implies (i) over the theory RCA0,
it is thus enough to prove the same implication in ATR0 or indeed in the conservative
extension ATRset0 . As stated in the introduction, our version of ATRset0 contains the
axiom of countability, which is included in [55] but marked as ‘optional’ in [54]. Let
us also recall that ATRset0 contains axiom beta, which allows us to assume that ν is
an ordinal (rather than just a well order). Over the theory ATRset0 , Theorem 9.1 and
Proposition 9.2 yield

(i i) ⇒ (iv) ⇒ (i),

which closes our circle of implications. ��
In the introduction, we have stated a corollary which asserts that (ii) and (iii) for ν =

ω are equivalent to the following:

(i’) every subset of N is contained in a countable β-model of �1
1-comprehension.

This result holds by our main theorem and the following standard argument.

Proof of Corollary 1.7 We first assume (i’) and derive (ii) for ν = ω, over RCA0. In
fact we may work in ATR0 (e. g. by [55, Exercise VII.2.10]). Due to Theorem 1.6, it
is enough to establish �1

1-recursion along ω. Given a �1
1-formula ϕ(x, n, X ,Z) and

paramtersZ, we invoke (i’) to get a countable β-modelM � Z of�1
1-comprehension.

Satisfaction in M is arithmetical for instances of ϕ (cf. [55, Definition VII.2.1]). We
can thus use arithmetical recursion to construct the set

Y = {〈n, x〉 ∈ ω × N |M � ϕ(x, n, Y n,Z)},

with Y n = {〈m, x〉 ∈ Y |m < n} as before. The given definition presumes Y n ∈M,
which we get by induction: in the step, �1

1-comprehension in M yields

Y n+1 = Y n ∪ {〈n, x〉 | x ∈ N and M � ϕ(x, n, Y n,Z)} ∈M.
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Since M is a β-model (cf. [55, Lemma VII.2.6]), we have

ϕ(x, n, Y n,Z) ↔ M � ϕ(x, n, Y n,Z).

In the notation from the introduction we thus have Hϕ(Y ), as needed to establish
the given instance of �1

1-recursion. To show that (ii) for ν = ω entails (i’), we may
work over ATRset0 , as in the proof of Theorem 1.6. By the latter, we get a hierarchy of
admissible sets Ad(m) ∈ Ad(n) for m < n < ω, where we can assume that Ad(0)
contains a given subset of N. Let us put

S := {Z ∈ A | Z ⊆ N} with A :=⋃
n<ω Ad(n).

We shall show that M := (N,S) is the β-model required by (i’). First note that the
countability of S is for free, because ATRset0 includes an axiom that makes all sets
countable (cf. the previous proof). To show that M is a β-model, we consider an
arbitrary �1

1-formula ϕ(x, Z). As in the proof of Proposition 9.2, we obtain a �-
formula ψ(x, Z) such that ϕ(x, Z) and ψ(x, Z)Ad(n) are equivalent for Z ∈ Ad(n).
The indicated proof of equivalence relativizes to A (for details see [31, Section 7] or
[41, Section 3.3.2], noting that A � KPlr). This means that we get

ϕ(x, Z)↔ ψ(x, Z)Ad(n) ↔M � ϕ(x, Z) when Z ∈ Ad(n).

As any Z ∈ A is contained in Ad(n) for some n ∈ N, it follows thatM is a β-model.
Invoking bounded separation in Ad(n + 1), we also see that Z ∈ Ad(n) entails

{x ∈ N |M � ϕ(x, Z)} = {x ∈ N |ψ(x, Z)Ad(n)} ∈ Ad(n + 1) ⊆ A,

which shows that M satisfies �1
1-comprehension. ��

To conclude this paper, we derive the final result that was stated in the introduc-
tion. It is concerned with the principle of �1

1-transfinite recursion, which asserts that
statement (i) of Theorem 1.6 holds for every well order ν.

Proof of Corollary 1.8 Consider the statements (i) to (iii) from Theorem 1.6. For each
of these statements, we define the variants

(∀n) statement (n) holds for every well order ν,
(∞n) statement (n) holds for every infinite well order ν.

By Theorem 1.6, statements (∞i) and (∞ii) and (∞iii) are pairwise equivalent. The
corollary claims that the same holds for (∀i) and (∀ii) and (∀iii). This is true because
statements (∀n) and (∞n) are in fact equivalent. The latter is immediate in the case
of (i). For the other statements, it follows from Corollary 2.10 (in conjunction with
Corollary 2.2 and Theorem 2.9). ��
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