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Abstract

We investigate a class of growing graphs embedded into the d-dimensional torus where

new vertices arrive according to a Poisson process in time, are randomly placed in space

and connect to existing vertices with a probability depending on time, their spatial

distance and their relative birth times. This simple model for a scale-free network

is called the age-based spatial preferential attachment network and is based on the

idea of preferential attachment with spatially induced clustering. We show that the

graphs converge weakly locally to a variant of the random connection model, which

we call the age-dependent random connection model. This is a natural infinite graph

on a Poisson point process where points are marked by a uniformly distributed age

and connected with a probability depending on their spatial distance and both ages.

We use the limiting structure to investigate asymptotic degree distribution, clustering

coefficients and typical edge lengths in the age-based spatial preferential attachment

network.

Keywords Scale-free networks · Benjamini–Schramm limit · Random connection

model · Preferential attachment · Geometric random graphs · Spatially embedded

graphs · Clustering coefficient · Power-law degree distribution · Edge lengths

Mathematics Subject Classification Primary 05C80; Secondary 60K35

1 Motivation: scale-free networks and clustering

Networks arising in different contexts, be it social, communication, technological or

biological networks, often have strikingly similar features. The question of interest to

us is why this is the case. Can these features be explained by a few basic principles

underpinning the construction of these networks?
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The probabilistic methodology to approach this question is to build a network

model as a growing sequence of random graphs defined from very simple interaction

principles and to prove the emerging features in the form of limit theorems when

the number of vertices is going to infinity. The purpose of this paper is to present a

tractable network model which is based on simple and natural construction principles

and for which such limit theorems can be proved rigorously. We will call this model

the age-based spatial preferential attachment model.

Potential features of networks we are interested in include:

• Networks are scale-free: For very large network size and large k, the proportion

μ(k) of nodes with exactly k neighbours is of order k−τ+o(1) for some power-law

exponent τ .

• Networks are ultrasmall: The shortest path between two randomly chosen nodes

in the graph is doubly logarithmic in the number of vertices.

• Networks are robust under random attack: If an arbitrarily large proportion of links

is randomly removed from the network, the qualitative topological features of the

network remain unchanged.

• Networks are vulnerable under targeted attack: Even if only a small number of

the most influential nodes are removed, the topological features of the network

change dramatically.

• Networks show strong clustering: Nodes picked from the neighbourhood of a

typical node have a much higher chance of being connected by a link than randomly

picked nodes.

These features should emerge solely from the principles on which our model rests. In

this paper, the focus is on the scale-free and clustering properties of our model. We

also believe that the other properties hold in certain parameter ranges; these (harder)

properties are left for future research we will undertake.

The simple building principles for our network are:

• They are built dynamically by adding nodes successively.

• When a new node is introduced, it prefers to establish links to existing nodes that

are either

– powerful or old;

– or similar to the new node.

The idea of building a network by connecting incoming nodes to existing nodes with

a probability depending increasingly on their power was introduced into network

theory by Barabási and Albert [2]. They use the degree of the existing node as the

indicator of its power; we speak of degree-based preferential attachment. There is

now a substantial body of work showing rigorously that the resulting networks are

scale-free [4] and, for power-law exponent τ < 3, they are ultrasmall and robust [8–

10]. The key technical tool in the proofs of the latter properties is the coupling of

neighbourhoods of typical vertices to well-studied random tree models often coming

from the genealogy of branching processes. This technique rests therefore crucially on

the absence of clustering, as clustering leads to presence of short cycles that destroy

the local tree structure of the graphs.
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To include clustering the idea of preferential attachment has to be developed further.

An attractive approach is to include the idea that nodes have individual features and

similarity of the features of nodes is a further incentive to form links between two

nodes. This is realised by embedding the graphs into space and giving preference to

short edges. We speak of spatially induced clustering. Spatial preferential attachment

models were studied by Manna and Sen [22], Flaxman et al. [11,12], Aiello et al. [1],

Jordan [17,18], Janssen et al. [16], Jordan and Wade [19], and Jacob and Mörters [14,

15].

The spatial preferential attachment models studied in these papers appear to be

too complicated to fully characterise features like robustness or ultrasmallness. We

therefore propose a simpler spatial model where preferential attachment is not to ver-

tices with high degree but to vertices with old age; we speak of age-based preferential

attachment. Age-based models are easier to study because while the actual degree of

a vertex depends in a complex way on the graph geometry, the age of a vertex is a

given quantity. At the same time, there is a strong link between degree and age, as

the expected degree is a simple function of the age of a vertex. Our simplification

therefore removes complicated but (on a large scale) inessential correlations between

edges and allows us to focus on the important correlations, namely those coming from

the spatial embedding.

2 The age-based spatial preferential attachment network

The age-based spatial preferential attachment model is a growing sequence of graphs

(G t )t>0 in continuous time. The vertices of the graphs are embedded in the d-

dimensional torus T
d
1 = (−1/2, 1/2]d of side-length one, endowed with the torus

metric d defined by

d(x, y) = min
{

|x − y + u| : u ∈ {−1, 0, 1}d
}

for x, y ∈ T
d
1 ,

where, here and throughout the paper, |·| denotes the Euclidean norm. Vertices are

denoted by y = (y, s) and they are characterised by their birth time s > 0 and by their

position y ∈ T
d
1 .

At time t = 0 the graph G0 has no vertices or edges. Then

• Vertices arrive according to a standard Poisson process in time and are placed

independently uniformly on the d-dimensional torus T
d
1 .

• Given the graph G t− a vertex x = (x, t) born at time t and placed in position

x is connected by an edge to each existing node y = (y, s) independently with

probability

ϕ

(

t · d(x, y)d

β ·
(

t
s

)γ

)

, (2.1)

where
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312 Queueing Systems (2019) 93:309–331

(a) ϕ : [0,∞) → [0, 1] is the profile function. It is nonincreasing, integrable

and normalised in the sense that

∫

Rd

ϕ(|x |d) dx = 1. (2.2)

The profile function can be used to control the occurrence of long edges.

(b) γ ∈ (0, 1) is a parameter that quantifies the strength of the preferential

attachment mechanism. We shall see that it alone determines the power-law

exponent of the network.

(c) β ∈ (0,∞) is a parameter to control the edge density, which is asymptoti-

cally equal to
β

1−γ
, hence the smaller β, the sparser the graph.

Some comments on our choices in (2.1) are in order.

(i) For any r > 0, the profile function ϕ and parameter β define the same model

as the profile function x �→ ϕ(r x) and parameter rβ. Hence, the normalisation

convention (2.2) represents no loss of generality. Similarly, if the intensity of the

arrival process is taken as λ > 0, the process (G t/λ)t>0 is the original process

with the same profile function ϕ and parameter βλ.

(ii) The form of the connection probability (2.1) is natural for the following reasons:

To ensure that the probability of a new vertex connecting to its nearest neigh-

bour does not degenerate as t → ∞, it is necessary to scale d(x, y) by t−1/d ,

which is the order of the distance of a point to its nearest neighbour at time t .

Further, the integrability condition on ϕ ensures that the expected number of

edges connecting a new vertex to the already existing ones remains bounded

from zero and infinity, as t → ∞.

(iii) In the degree-based spatial preferential attachment model of Jacob and

Mörters [14], the term (t/s)γ that creates the age dependence in our model

is replaced by a function of the indegree, the number of younger vertices y is

connected to at time t . If this function is asymptotically linear with slope γ ,

the network is scale-free with power-law exponent τ = 1 + 1
γ

. In this case, the

expected indegree is of order (t/s)γ so that the models remain comparable and

this is the natural choice to ensure that our network model will be scale-free.

(iv) For the profile function ϕ, one has different choices. We normally assume that ϕ

is either regularly varying at infinity with index −δ, for some δ > 1, or ϕ decays

quicker than any regularly varying function, in which case we set δ = ∞. In

the latter case, a natural choice is to consider ϕ(x) = 1
2a
1[0,a](x) for a ≥ 1/2.

In this case, a vertex born at time s is linked to a new vertex at time t with

probability 1/(2a) if and only if their positions are within distance

(

1

t
βa (t/s)γ

)1/d

.

In the case a = 1/2, the profile function ϕ only takes the values zero and one;

thus, the decision is not random and we connect two vertices whenever they are
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close enough. The degree-based preferential attachment model in discrete time

for this choice of ϕ was introduced in [1] and further studied in [5,16]. This

particular choice for the profile function helps to get a better understanding of

the problems and properties of this model; see, for example, Sect. 5. However,

for our ultimate purpose this choice is too restrictive as it does not allow the

networks to be robust or ultrasmall.

In the following sections, we use g = o(h) to indicate that g/h converges to zero,

g ≍ h if g/h is bounded from zero and infinity and g ∼ h if g/h converges to one.

3 Weak local limit: the age-dependent random connectionmodel

In this section, we introduce a graphical representation of the network G t . This rep-

resentation allows a simple rescaling, and the rescaled graphs turn out to converge to

a limiting graph, which is denoted as the age-dependent random connection model.

This also turns out to be the weak local limit of the graph sequence (G t )t>0, which

enables us to achieve results for the network (G t )t≥0 by studying the age-dependent

random connection model.

Let X denote a Poisson point process of unit intensity on R
d × (0,∞). We say a

point x = (x, s) ∈ X is born at time s and placed at position x . Observe that, almost

surely, two points of X neither have the same birth time nor the same position. We

say that (x, s) is older than (y, u) if s < u. For t > 0 write Xt for X ∩ (Td
1 × (0, t]),

the set of vertices on the torus already born at time t . We denote by

E(X ) := {(x, y) ∈ X × X : x younger than y}

the set of potential edges inX . GivenX we introduce a familyV of independent random

variables, uniformly distributed on (0, 1), indexed by the set of potential edges. We

denote these variables by Vx,y or V(x, y). A realisation of Xt and Vt , defined as the

restriction of V to indices in Xt × Xt , defines a network G(Xt ,Vt ) with vertex set Xt ,

placing an edge between x = (x, u) and y = (y, s) with s < u if and only if

V(x, y) ≤ ϕ

(

u · d(x, y)d

β
(

u
s

)γ

)

. (3.1)

Observe that the graph sequence (G(Xt ,Vt ))t>0 has the law of our age-based spa-

tial preferential attachment model and is therefore constructed on the probability

space carrying the Poisson process X and the sequence V . Moreover, G extends

to a deterministic mapping associating a graph structure to any locally finite set of

points in Y ⊆ T
d
a × (0,∞) and sequence V in (0, 1) indexed by E(Y) = {(x, y) ∈

Y × Y : x younger than y}, where T
d
a = (− 1

2
a1/d , 1

2
a1/d ]d is the torus of volume a

equipped with its canonical metric d(·, ·) and x, y are connected if and only if (3.1)

holds. We permit the case a = ∞, with T
d
∞ = R

d equipped with the Euclidean metric.
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For finite t > 0, we define the rescaling mapping

ht : T
d
1 × (0, t] −→ T

d
t × (0, 1],

(x, s) �−→
(

t1/d x, s/t
)

,

which expands space by a factor of t1/d and time by a factor of 1/t . The mapping ht

operates canonically on the set Xt as well as on Vt by ht (Vt )(ht (x), ht (y)) := Vt (x, y),

and also on graphs with vertex set in Xt by mapping points x to ht (x) and introducing

an edge between ht (x) and ht (y) if and only if there is one between x and y. As

ϕ

⎛

⎜

⎝

u/t · d(t1/d x, t1/d y)d

β

(

u/t
s/t

)γ

⎞

⎟

⎠
= ϕ

(

u · d(x, y)d

β
(

u
s

)γ

)

,

the operation ht preserves the rule (3.1) and therefore

G(ht (Xt ), ht (Vt )) = ht (G(Xt ,Vt )).

In plain words, it is the same to construct the graph and then rescale the picture, or to

first rescale the picture and then construct the graph on the rescaled picture; see Fig. 1.

Fig. 1 The graph Gt on the left and its rescaling ht (Gt ) on the right. The blue vertices are born after time t

and, therefore, the corresponding edges do not exist yet and the vertices are not part of the rescaled graph.

The yellow vertex is placed at position 0 and remains in the centre after the rescaling (Color figure online)
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We now denote X t = X ∩ (Td
t × (0, 1]) and by V t the restriction of V to indices

in X t × X t . This gives rise to a graph G t := G(X t ,V t ). As ht (Xt ) is a Poisson point

process of unit intensity on T
d
t × (0, 1] and ht (Vt ) are independent uniform marks

attached to the potential edges, for fixed finite t , the graph G t has the same law as

G(ht (Xt ), ht (Vt )) and therefore as ht (G t ). However, the process (G t )t>0 behaves

differently from the original process (G t )t>0. Indeed, while the degree of any fixed

vertex in (G t )t>0 goes to infinity, the degree of any fixed vertex in (G t )t>0 stabilises

and the graph sequence converges to the graph G∞ := G(X ∞,V∞); see the following

theorem.

In order to formulate also a local version of this convergence result, we add a point

at the origin to our Poisson process, denoting X0 := X ∪ {(0, U )}, where U is an

independent birth time, uniformly distributed on (0, ]. As before, let V0 be a family of

independent uniformly distributed random variables indexed by the potential edges in

X0, and, for 0 < t ≤ ∞, let X t
0 = X0 ∩ (Td

t × (0, 1]) and denote by V t
0 the restriction

of V0 to indices in X t
0 × X t

0 . We define rooted graphs G t
0 := G(X t

0,V t
0) with the root

being the vertex placed at the origin. For p > 0, define the class Hp of nonnegative

functions H acting on locally finite rooted graphs and depending only on a bounded

graph neighbourhood of the root with the property that

sup
0<t<∞

E[H(G t
0)

p] < ∞.

Theorem 3.1 (i) G∞ is almost surely locally finite, i.e., almost surely all its vertices

have finite degree.

(ii) Almost surely, the graph sequence (G t ) converges to G∞ in the sense that for

each x ∈ X ∞ the neighbours of x in G t and in G∞ coincide for large t.

(iii) In probability, the graph sequence (G t ) converges weakly locally to G∞
0 in the

sense that, for any H ∈ Hp, p > 1, we have

lim
t→∞

1

t

∑

x∈Gt

H(θxG t ) = E[H(G∞
0 )] in probability, (3.2)

where θx acts on points y = (y, s) as θx(y) = (y − x, s) and on graphs

accordingly.

Theorem 3.1 will be proved in Section 4. The limiting graph G∞ in (i i) is what

we call the age-dependent random connection model. This model is of independent

interest as a natural generalisation of the random connection model; see Meester and

Roy [23] or Last et al. [20] for a recent paper. Like in the classical geometric random

graph models, points are placed according to a Poisson point process Y ⊆ R
d , but

now every point additionally carries a mark drawn independently from the uniform

distribution on (0, 1). Given points and marks, we independently connect two points

in position x with mark u, resp. position y with mark s, with probability

ϕ
(

β−1(s ∨ u)1−γ (s ∧ u)γ · |x − y|d
)

.
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The rooted graph G∞
0 occurring as the local limit is the Palm version of the age-

dependent random connection model G∞; loosely speaking the graph G∞ with a

typical point shifted to the origin.

Remarks:

• Weak local limits were introduced by Benjamini and Schramm [3] as distributional

limits for deterministic sequences of finite graphs randomised by a uniform choice

of root. The result in (iii) allows that H additionally depends continuously on the

ages of the vertices and the length of the edges if taken in the scaled graphs

ht (θxG t ). Further generalisations of the results hold; see Yukich and Penrose [26]

for seminal work on random geometric graphs and Jacob and Mörters [14] for a

similar proof in the case of the degree-based model which can be adapted to our

situation. We will not need these more general results here.

• The age-dependent random connection model is in a different universality class

than other established models of infinite spatial scale-free graphs. For example,

the scale-free percolation model of Deijfen et al. [6] and its continuous version

studied by Deprez and Wüthrich [7] correspond (when rewritten in our framework)

to a connection probability of the form

ϕ
(

β−1sγ uγ · |x − y|d
)

.

Models of this type do not arise naturally from sequences of growing finite random

graphs on a fixed space as our model does.

• There is a similar convergence result for the degree-based spatial preferential

attachment model, but the limiting graph is not as natural as the age-dependent

random connection model as the existence of edges between vertices with given

position and age depends in this graph on the existence of edges between the

older vertex and other vertices that may lie arbitrarily far away; see Jacob and

Mörters [14].

4 Convergence of neighbourhoods and degree distributions

In this section, we will study the asymptotic degree distribution and show that the

age-based spatial preferential attachment model is scale-free. To this end, we study

the neighbourhood of a fixed vertex x = (x, u) in the graphs G t . We think of edges as

oriented from the younger to the older endvertex, so that the indegree of x is the number

of younger vertices that connect to it and the outdegree is the number of older vertices

it connects to. As our construction is based on Poisson processes and conditionally

independent edges, the indegree and outdegree of a fixed vertex are independent and

Poisson distributed.

If G is a graph with vertices in T
d
t × (0,∞), we write x ↔ y to indicate that there

is an edge between x and y in G. Now, let x = (x, u) be a vertex in G and define its

older neighbours,

Yx(G) :=
{

y = (y, s) ∈ G : x ↔ y, s ≤ u
}

,
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and its younger neighbours born before time s,

Zx(s, G) :=
{

y = (y, r) ∈ G : y ↔ x, u < r ≤ s
}

.

For t ∈ (0,∞] and 0 < u < s ≤ 1, we write Y t
x := Yx(G

t ) and Z t
x(s) := Zx(s, G t ),

adding the point x = (x, u) to the underlying Poisson process X if it is not already

there.

Proposition 4.1 (a) For every t ∈ (0,∞], the older neighbours Y t
x of x = (x, u) form

a Poisson point process on T
d
t × [0, u) with intensity measure

λY t
x

:= ϕ

(

β−1u
( s

u

)γ

d(x, y)d
)

dy ds.

(b) For every t ∈ (0,∞], the younger neighbours Z t
x(s0) of x = (x, u) at time

s0 ∈ (u, 1] form a Poisson point process on T
d
t × (u, s0] with intensity measure

λZ t
x(s0) := ϕ

(

β−1s
(u

s

)γ

d(x, y)d
)

dy ds.

(c) The outdegree of the origin in G∞
0 is Poisson distributed with parameter

β
1−γ

and

independent of the age U of the origin.

(d) The indegree of the origin in G∞
0 is mixed Poisson distributed, where the mixing

distribution has the density

f (λ) = β1/γ (γ λ + β)−(1+1/γ ) for λ > 0. (4.1)

Proof The older neighbours of x = (x, u) are all neighbours with birth time smaller

than u; therefore, X ∩ (Td
t × [0, u)) is the set of all potential vertices connected to

x by an outgoing edge. Now, given X , a vertex y = (y, s) ∈ X ∩ (Td
t × [0, u))

is connected to x independently with probability ϕ(β−1u1−γ sγ d(x, y)d). Thus, Y t
x

defines a thinning of X ∩ (Td
t × [0, u)) and (a) follows. The analogous argument for

the vertices in X ∩ (Td
t × (u, s0]) proves (b).

Applying (a) to x = (0, u) and t = ∞ gives that the number of older neighbours

is Poisson distributed with parameter

λY∞
x

(

R
d × [0, u]

)

=
∫ u

0

∫

Rd

ϕ
(

β−1u1−γ sγ |y|d
)

dy ds

=
∫ u

0

βuγ−1s−γ ds

∫

Rd

ϕ
(

|y|d
)

dy = β

1 − γ
,

using the normalisation of ϕ. The claimed independence follows as the distribution

does not depend on u, completing the proof of (c).
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Applying (b) to x = (0, u) and t = ∞ gives that the number of younger neighbours

up to time s is Poisson distributed with parameter

λZ∞
x (s)

(

R
d × (u, s]

)

=
∫ s

u

∫

Rd

ϕ
(

β−1v1−γ uγ |y|d
)

dy dv

= β

∫ s

u

vγ−1u−γ

∫

Rd

ϕ(|y|d) dy dv

= β

∫ s

u

vγ−1u−γ dv = β
sγ u−γ − 1

γ
.

As U is independent of X and V , the probability that the indegree equals k is therefore

∫ 1

0

exp
(

− β
u−γ − 1

γ

)

·
(

β u−γ −1
γ

)k

k! du

=
∫ ∞

0

exp(−λ) · λk

k! ·
(

β1/γ (γ λ + β)−(1+1/γ )
)

dλ,

as claimed (Fig. 2). ⊓⊔

Remark Since, by construction, Y t
x and Z t

x(1) are independent Poisson point pro-

cesses, the neighbourhood of a point x = (0, u) added (if necessary) to G t is a

Poisson point process with intensity λZ t
x(1) +λY t

x
. Now let t be finite and pick a vertex

X uniformly at random from the finite graph G t . We easily see that ht (θxG t ) = G t
0

in distribution. Hence, Proposition 4.1, parts (a) and (b), give a precise description of

the neighbourhood of a randomly chosen vertex in G t .

Proof of Theorem 3.1(i) By Proposition 4.1, parts (c) and (d), almost surely, the origin

has finite degree in G∞
0 . Hence, by the refined Campbell theorem (see Theorem 9.1

in [21]), almost surely, every vertex in G∞ has finite degree. ⊓⊔

Proof of Theorem 3.1(ii) We work conditionally on x = (x, s) ∈ X ∞. Our aim is to

show that there exists an almost surely finite random variable M such that, for all

t ∈ (0,∞] and y ∈ X ∞ with distance at least M from x, the vertices x and y are not

connected in G t . To this end, observe that the distance between x and any y ∈ T
d
t can

be up to 2
√

d |x | smaller than it would be in R
d . Consider the model where the vertices

within distance 2
√

d |x | of x are deleted from X ∞ and all the other vertices are moved

towards x by a distance of 2
√

d |x |. It is easy to see that all vertices y ∈ X ∞, which

are at least 2
√

d |x | away from x and connected to x in the finite graph G t for some

t > 0, are also linked to x in this new model. Furthermore, the degree of x is still

almost surely finite. Hence, we define the random variable M as the distance of x to

the furthest vertex it is linked to in this new model, plus 2
√

d |x |. Then M is almost

surely finite and, as for t > |x | + M the vertices in X ∞ and in X t within distance M

from x coincide, the edges of x linking it to another vertex y that is at most M away

coincide in G t and G∞ for sufficiently large t . ⊓⊔
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Fig. 2 Heatmaps of the neighbourhood of a relatively old root (left, birth time 0.2) and of a relatively young

root (right, birth time 0.8) in G∞
0 with β = 5, γ = 1/3 and ϕ(x) = 1 ∧ x−2

Proof of Theorem 3.1(iii) We can replace the left-hand side in (3.2) by the limit of
1
t

∑

x∈Gt H(θxG t ), which has the same distribution and, due to Campbell’s formula,

has expectation E[H(G t
0)]. Furthermore, the neighbourhoods of the origin in G t

0 and

in G∞
0 agree for sufficiently large t . As the family (H(G t

0))t>0 is bounded in L p

and therefore uniformly integrable, we infer that E[H(G t
0)] converges to E[H(G∞

0 )].
Hence, the first moments in (3.2) converge, and we now argue that for bounded H the

second moments converge, too.

Spelling out the second moment of 1
t

∑

x∈Gt H(θxG t ), we get a term corresponding

to choosing the same x ∈ G t twice, which by the first moment calculation applied to

H2 converges to zero, and the term

E

[ 1

t2

∑

x,x′∈Gt

x �=x′

H(θxG t )H(θx′ G t )

]

.

Using the boundedness of H , we can chose ε > 0 so that the contribution from

pairs x, x′ for which one is born before time ε is arbitrarily small. We can then find a

large radius R so that the graph neighbourhood of the origin on which H depends is

contained in {y : d(0, y) ≤ R} for θxG t for a proportion of vertices x ∈ G t born after

time ε arbitrarily close to one, for all sufficiently large t . We can neglect the small

proportion of exceptional vertices as well as pairs x, x′ with distance smaller than R

using again the boundedness of H . On the remaining part, the expectation factorises

and we see that second moment converges to E[H(G∞
0 )]2. Hence, we get convergence

in L2.

It remains to remove the condition of boundedness of H . Let k ∈ N and observe

that our result applies to the bounded functional H ∧ k. Note that
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E

[1

t

∑

x∈Gt

H(θxG t ) − H ∧ k(θxG t )

]

= E
[

H(G t
0) − H ∧ k(G t

0)
]

and the right-hand side goes to zero uniformly in t as k → ∞ by the uniform integra-

bility implied in our L p bound. This implies the required convergence. ⊓⊔

We define the empirical outdegree distribution νt of the graph G t by

νt (k) = 1

t

∑

x∈Gt

1{|Yx(Gt )|=k} for k ∈ N,

and note that (for convenience) we have normalised νt so that its mass converges to

one without necessarily being equal to one for small t . We now show that the empirical

outdegree distribution νt converges to a deterministic limit.

Theorem 4.2 For any function g : N0 → [0,∞) growing no faster than exponentially,

we have

1

t

∑

x∈Gt

g
(

|Yx(G t )|
)

=
∫

g dνt −→
∫

g dν

in probability, as t → ∞, where ν is the Poisson distribution with parameter β/(1−γ ).

Proof For a finite graph G with vertices marked by birth times and a root vertex x,

we can define H(G) = g(|Yx(G)|), where Yx(G) is the set of edges from the root

to older vertices in G. Note that the function H depends only on the neighbourhood

of the root within graph distance one and the relative birth times of these vertices.

Moreover, H(G t
0) = g(|Yx(G

t
0)|), where x ∈ G t

0 is the vertex placed at the origin,

for arbitrary t , and as |Yx(G
t
0)| is Poisson distributed with a bounded parameter, the

integrability condition H ∈ Hp is satisfied as long as g is not growing faster than

exponentially. As H(θxG t ) = g(|Yx(G t )|) for all x ∈ Xt and finite t , we infer the

result from Theorem 3.1(iii). ⊓⊔

Define the empirical indegree distribution μt of the graph G t by

μt (k) = 1

t

∑

x∈Gt

1{|Zx(t,Gt )|=k}.

Similar to above, the empirical indegree distribution μt also converges to a determin-

istic limit.

Theorem 4.3 For any function g : N0 → [0,∞) growing no faster than linearly, we

have

1

t

∑

x∈Gt

g
(

|Zx(t, G t )|
)

=
∫

g dμt −→
∫

g dμ
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in probability, as t → ∞, where μ is the mixed Poisson distribution with density f

as in (4.1).

Proof For a finite graph G with vertices marked by birth times and a root vertex x,

we can define H(G) = g(|Zx(G)|), where Zx(G) is the set of edges from younger

vertices in G to the root. Note that the function H depends only on the neighbourhood

of the root within graph distance one and the relative birth times of these vertices.

Moreover, H(G t
0) = g(|Zx(G

t
0)|), where x ∈ G t

0 is the vertex placed at the origin,

for arbitrary t . Now, |Zx(G
t
0)| is dominated by |Zx(G

∞
0 )| whose distribution μ has

tails (calculated in Lemma 4.4) that vanish fast enough to ensure that H ∈ Hp for

some p > 1. As H(θxG t ) = g(|Zx(G t )|) for all x ∈ Xt and finite t , we infer the

result from Theorem 3.1(iii). ⊓⊔

To complete the proof that the age-based preferential attachment model is scale-free

with power-law exponent τ = 1 + 1/γ , we observe that, by a similar argument as in

Theorems 4.2 and 4.3, the empirical degree distribution in G t converges in probability

to the convolution of ν and μ. As ν has superexponentially light tails, the tail behaviour

of the convolution is inherited from that of μ, which we now calculate.

Lemma 4.4 μ(k) = k
−(1+ 1

γ
)+o(1)

as k ↑ ∞.

Proof Observe that

μ(k) = β1/γ

∫ ∞

0

λk

k! e−λ(γ λ + β)
−(1+ 1

γ
)

dλ ≤ β1/γ γ
−1− 1

γ

Ŵ(k + 1)

∫ ∞

0

λ
(k− 1

γ
)−1

e−λ dλ

= β1/γ

γ 1+1/γ

Ŵ(k − 1
γ
)

Ŵ(k + 1)
= k

−1− 1
γ

+o(1)
,

as k ↑ ∞, by Stirling’s formula. On the other hand, note that for some fixed bound

A > 0, there exists a constant c > 0 such that γ x + β ≤ cγ x for all x ≥ A. Hence,

μ(k) ≥ c
−1− 1

γ β1/γ

Ŵ(k + 1)

∫ ∞

A

λke−λ(γ λ)
−1− 1

γ dλ

= c̃
Ŵ(k − 1

γ
)

Ŵ(k + 1)
− c̃

Ŵ(k + 1)

∫ A

0

λ
(k− 1

γ
)−1

e−λ dλ,

for some positive constant c̃. As the subtracted term, for fixed A, is of smaller order

as k → ∞, we obtain the lower bound. ⊓⊔

5 Global and local clustering coefficients

To show that the age-based spatial preferential attachment model has clustering fea-

tures, we use two metrics well established in the applied networks literature; see,for

example, [25,27] for some early papers. If G is a finite graph, we call a pair of edges
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in G a wedge if they share an endpoint (called its tip). Define the global clustering

coefficient or transitivity of G as

cglob(G) := 3
Number of triangles in G

Number of wedges in G
,

if there is at least one wedge in G, and cglob(G) := 0 otherwise. By definition,

cglob(G) ∈ [0, 1].
Another way of thinking about clusters is locally, i.e., to count only the triangles

and wedges containing a fixed vertex x. For a vertex x with at least two neighbours,

define the local clustering coefficient by

cloc
x (G) := Number of triangles in G containing vertex x

Number of wedges with tip x in G
,

which is also an element of [0, 1]. Let V2(G) ⊆ G be the set of vertices in G with

degree at least two, and define the average clustering coefficient by

cav(G) := 1

|V2(G)|
∑

x∈V2(G)

cloc
x (G),

if V2(G) is not empty, and as cav(G) := 0 otherwise. Note that this metric places

more weight on the low-degree nodes, while the transitivity places more weight on

the high-degree nodes.

Theorem 5.1 (Clustering coefficients)

(a) For the average clustering coefficient, we have

cav(G t ) −→
∫ 1

0

P
{

(X (1)

u , S(1)

u ) ↔ (X (2)

u , S(2)

u )
}

π(du)

in probability as t → ∞, where (X
(1)
u , S

(1)
u ) resp. (X

(2)
u , S

(2)
u ) are two independent

random variables on R
d × [0, 1] with distribution

1

λu

(

ϕ(β−1s1−γ uγ |x |d)1(u,1](s) + ϕ(β−1u1−γ sγ |x |d)1[0,u](s)
)

dx ds, (5.1)

where λu = β
γ
(

2γ−1
1−γ

+ u−γ ) is the normalising factor and π is the probability

measure on [0, 1] with density proportional to 1 − e−λu − λue−λu .

(b) For the global clustering coefficient, there exists a number c
glob
∞ ≥ 0 such that

cglob(G t ) −→ c
glob
∞

in probability as t → ∞. The limiting global clustering coefficient c
glob
∞ is

positive if and only if γ < 1/2.
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Remark The limiting average clustering coefficient can be interpreted as the proba-

bility that in G∞
0 two neighbours of the vertex at the origin are connected by an edge.

The density of the birth time of the vertex at the origin here is not uniform but given

by the measure π , which is the conditional distribution of the birth time of a vertex

given that it has degree at least two. Observe that this coefficient is always positive. By

contrast, the global clustering coefficient vanishes asymptotically when preferential

attachment to old nodes is strong (i.e., when γ is large). In this case, the collection of

wedges is dominated by those with an untypically old tip. These vertices have small

local clustering as they are endvertices to a significant amount of long edges.

Proof Let G be a finite rooted graph and define the function H(G) = cloc
x (G) if the

root x has degree at least two, and H(G) = 0 otherwise. As H is bounded, we have

H ∈ Hp for any p > 1 and, by Theorem 3.1 (iii), we get

1

t

∑

x∈Gt

H(θxG t ) −→ E
[

H(G∞
0 )

]

in probability, as t → ∞. To calculate the limit, observe that, for a vertex x with

degree k, the number of wedges with tip x is k(k − 1)/2. It follows that

E
[

H(G∞
0 )

]

=
∫ 1

0

∑

k≥2

E

[

2

k(k − 1)

∑

(x,s)↔(0,u)

∑

(y,v)↔(0,u)
v<s

1{(x,s)↔(y,v)}1{|Y∞
(0,u)

|+|Z∞
(0,u)

(1)|=k}

]

du.

By Proposition 4.1, the neighbourhood of the root (0, u) is given by a Poisson point

process with intensity measure

λZ∞
(0,u)

(1) + λY∞
(0,u)

.

Conditioned on the number of neighbours, the neighbours of the root (0, u) are

independent and identically distributed as the normalised intensity measure of the

neighbourhood given in (5.1); see [21, Proposition 3.8]. Therefore,

E
[

H(G∞
0 )

]

=
∫ 1

0

P
{

(X (1)

u , S(1)

u ) ↔ (X (2)

u , S(2)

u )
}

P
{

|Y∞
(0,u)| + |Z∞

(0,u)(1)| ≥ 2
}

du,

where (X
(1)
u , S

(1)
u ) and (X

(2)
u , S

(2)
u ) are independent and identically distributed as

claimed. Choosing H(G) as the indicator of the event that the root has degree at

least two, Theorem 3.1 (iii) gives

|V2(G t )|
t

−→
∫ 1

0

P
{

|Y∞
(0,u)| + |Z∞

(0,u)(1)| ≥ 2
}

du,
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in probability. As |Y∞
(0,u)

| + |Z∞
(0,u)

(1)| is Poisson distributed with intensity λu , we

conclude that

cav(G t ) −→
∫ 1

0 P
{

(X
(1)
u , S

(1)
u ) ↔ (X

(2)
u , S

(2)
u )

} (

1 − e−λu − λue−λu
)

du
∫ 1

0 1 − e−λu − λue−λu du
,

as claimed in part (a).

For the global clustering coefficient, we count the number of triangles and wedges

separately. To this end, define H(G) to be the number of triangles which have their

youngest vertex in the root of G, and Ĥ(G) to be the number of wedges with tip in

the root x of G. Note that H(G t
0) ≤ |Yx(G

∞
0 )|2 and thus H ∈ Hp for any p > 1.

Moreover,

Ĥ(G t
0) = 1

2
|Y t

x|(|Y t
x| − 1) + 1

2
|Z t

x(1)|(|Z t
x(1)| − 1)

+ |Y t
x||Z t

x(1)| ≤ 2
(

|Y∞
x |2 + |Z∞

x (1)|2
)

.

If γ < 1/2 and 1 < p < 1/(2γ ), we hence have Ĥ ∈ Hp and Theorem 3.1(iii) gives

that

cglob(G t ) =
∑

x∈Gt
H(θxG t )

t
· t
∑

x∈Gt
Ĥ(θxG t )

−→ E[H(G∞
0 )]

E[Ĥ(G∞
0 )]

> 0

in probability. If γ > 1/2, applying the theorem to the bounded functions Ĥ(G t ) ∧ k

and then sending k to ∞, we get 1
t

∑

x∈Gt
Ĥ(θxG t ) → ∞ and hence cglob(G t ) → 0

in probability, as t → ∞. ⊓⊔

The local and average clustering coefficients cannot be calculated explicitly, but

can be simulated; see Appendix A of this paper for a discussion of the simulation

techniques used here. We focus on the profile functions ϕ = 1
2a
1[0,a], for a ≥ 1/2,

dimension d = 1 and fixed edge density β/(1−γ ). Figure 3 shows the local clustering

coefficient of a vertex of age u in G∞ showing monotone dependence on the age, i.e.,

the empirical probability that two neighbours of a given vertex are connected to each

other is larger for younger vertices. This coincides with our intuitive understanding of

the local structure of the networks, in which a young vertex, typically, is connected to

either very close or very old vertices such that two randomly chosen neighbours have

a decent chance of being connected to each other as well. By contrast, an old vertex

typically has more long edges to younger vertices. Thus, two of its neighbours are

typically further apart, which reduces the chance of them being each other’s neighbour.

This monotonicity occurs independently of the choice of β, γ and a.

In Fig. 4, we see that the dependence of the average clustering coefficient with

respect to the width a of the profile function is of order 1
a

, a scaling that we also

see in the analysis of the global clustering coefficient in the case γ < 1
2

. Hence,

the average clustering coefficient and the global clustering coefficient (if γ < 1
2

)

can be varied by the choice of ϕ and can be made arbitrarily small by choosing a
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Fig. 3 Local clustering coefficient of a vertex (0, u) for parameters a = 1 and β = ced(1 − γ ) chosen such

that the asymptotic edge density is fixed at ced. The plot on the left displays the behaviour of the model for

high edge density (ced = 10) for various values of γ . We remark that the shown behaviour is qualitatively

independent of the edge density. In the plot on the right, the clustering coefficient for γ = 0.2 is shown,

along with the probabilities of the event that u is younger (resp. in the middle or older) than two randomly

picked neighbours, which are connected

Fig. 4 Average clustering coefficient for the network with profile function ϕ = 1
2a

1[0,a] plotted against

the width a, for γ = 0.3 in the left resp. γ = 0.6 in the right graphs. The graphs in the top row correspond

to fixed edge density 1, while the bottom row corresponds to edge density 10

large. Unlike with the global clustering coefficient, there is a mild dependence on

β. Again, roughly speaking, a large width of ϕ encourages long edges and reduces

clustering.
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6 Asymptotics for typical edge lengths

In this section, we study the distribution of the length of typical edges in G t . We denote

by E(G) the set of edges of the graph G and define λt , the (rescaled) empirical edge

length distribution in G t , by

λt = 1

|E(G t )|
∑

(x,y)∈E(Gt )

δt1/d d(x,y).

Theorem 6.1 For every continuous and bounded g : [0,∞) → R, we have

1

|E(G t )|
∑

(x,y)∈E(Gt )

g
(

t1/dd(x, y)
)

=
∫

g dλt →
∫

g dλ

in probability, as t → ∞, where the limiting probability measure λ on (0,∞) is given

by

λ([a, b)) = 1 − γ

β

∫ 1

0

∫ u

0

∫

a≤|y|<b

ϕ
(

β−1u1−γ sγ |y|d
)

dy ds du. (6.1)

Proof For a finite graph G with vertices positioned in R
d and marked by birth times

and with a root vertex x placed at the origin, define, for a < b ∈ [0,∞], the function

Ha,b(G) =
∑

y∈Yx(G)

1[a,b)(|y|). (6.2)

Observe that the law of λt ([a, b)) in G t equals the law of

1

|E(G t )|
∑

x∈X t

Ha,b(θxG t ).

As mentioned in the remark following the theorem, Theorem 3.1 is applicable to

functions Ha,b depending on the length of edges in the rescaled graphs (G t )t>0. Since

the sum in (6.2) is dominated by the outdegree, Ha,b ∈ Hp for some p > 1. We thus

get

1

t

∑

x∈X t

Ha,b(θxG t ) −→ E[Ha,b(G
∞
0 )],

and since Theorem 3.1 (iii) also gives
∣

∣E(G t )
∣

∣ /t → β
1−γ

and λ([a, b)) =
1−γ
β

E[Ha,b(G
∞
0 )] we infer that λt ([a,∞)) −→ λ([a,∞)) in probability, as t → ∞.

Therefore, convergence in probability of λt to λ in the space of probability measures

on R+, equipped with the Lévy–Prokhorov metric follows. ⊓⊔
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Remark Suppose there exists δ > 1 such that the profile function satisfies ϕ(xd) ≍ 1∧
x−dδ . Then, the explicit formula for λ in (6.1) can be used to calculate the tail behaviour

of λ. More precisely, separating the integration into several domains, depending on

whether we are integrating over the tail domain of ϕ or not, results in the terms of

order d, d( 1
γ

−1) and d(δ−1). This gives that λ([K ,∞)) ≍ 1∧ (β−1/d K )−η, where

η := min
{

d, d(
1

γ
− 1), d(δ − 1)

}

. (6.3)

In particular, λ has finite expectation if η > 1 and infinite expectation if η < 1.

We denote by M∞
0 the length of the longest outgoing edge of the origin in G∞

0 . By

the construction of λ above, λ([K ,∞)) is the expected number of outgoing edges of

length bigger than K divided by the total number of outgoing edges from the origin.

If K is large, this should be of similar order to the probability that M∞
0 ≥ K . This is

confirmed in the following lemma.

Lemma 6.2 Suppose there exists δ > 1 such that the profile function satisfies ϕ(xd) ≍
1 ∧ x−dδ . Then, E

[

(M∞
0 )a

]

is finite if a < η and infinite if a > η, where η is as

defined in (6.3).

Proof We show that the tail probability P
{

(M∞
0 )a ≥ K

}

is of order K −η/a as K →
∞. The number of outgoing edges with length at least K 1/a in G∞

0 from the vertex

(0, u) at the origin is Poisson distributed with parameter

λK 1/a ,u := λY∞
(0,u)

(

R
d\({|x | < K 1/a}) × (0, u]

)

,

and hence

P
{

(M∞
0 )a ≥ K

}

=
∫ 1

0

1 − exp
(

− λK 1/a ,u

)

du ≍
∫ 1

0

λK 1/a ,u du ≍ λ([K 1/a,∞)),

recalling the asymptotic edge length distribution λ defined in (6.1). The established

tail behaviour of the measure λ yields P
{

(M∞
0 )a ≥ K

}

≍ 1 ∧ K −η/a . ⊓⊔

Using this, we can establish a result about the average rescaled length in the net-

work G t .

Theorem 6.3 Suppose that there exists δ > 1 such that the profile function satisfies

ϕ(xd) ≍ 1 ∧ x−dδ . Then, for all a > 0 and b ∈ [0,
η
a
), there exists a positive constant

C, depending on a, b, γ, β, ϕ, such that

1

|E(G t )|
∑

x∈Gt

(

∑

y∈Gt
x↔y

(

t1/dd(x, y)

)a
)b

→ C (6.4)

in probability, as t → ∞.
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Remark If η > 1, one can choose a = b = 1, and this yields that the mean edge

length in G t is of order t−1/d . If η < 1 (and in particular always if d = 1), the mean

edge length is of larger order.

Proof Consider again a finite graph G with vertices positioned in R
d and marked by

birth times and with a root vertex x placed at the origin. Define

H(G) :=
(

∑

y∈Yx(G)

|y|a
)b

and observe that the law of the left-hand side in (6.4) equals the law of

1

|E(G t )|
∑

x∈X t

H(θxG t ).

It suffices to show that H ∈ Hp for some p > 1, since Theorem 3.1 (iii) then ensures

the convergence in probability to
1−γ
β

E[H(G∞
0 )], which is a positive constant. To

this end, recall M∞
0 , the length of the longest outgoing edge of the root x in G∞

0 ,

and observe that, almost surely, H(G t
0) ≤ (M∞

0 )ab|Y∞
x |b. Since, by choice, ab < η,

there exist some p, q > 1 such that α := pqab < η. Lemma 6.2 then ensures

E[(M∞
0 )α] < ∞ and, by applying Hölder’s inequality to the observed bound for

H(G t
0), we get

sup
t>0

E
[

H(G t
0)

p
]

≤
(

E
[

(M∞
0 )α

])1/q
(

E

[

|Y∞
x |

α
a(q−1)

])

q−1
q

< ∞.

⊓⊔

7 Conclusion and outlook

We have seen that properties of real networks, like scale-free degree distributions and

clustering, emerge from the simple building principle of preferential attachment to

old and near nodes. Our model simplifies the spatial preferential attachment model

in the literature, and this allows for more explicit calculations of asymptotic network

metrics. Moreover, we are therefore confident that we can also cover more complicated

features that have proved elusive in the full, degree-based, model. In particular, for the

small-world property, robustness and vulnerability of the age-based spatial preferential

attachment model only partial results have been possible [13,15]. A full study of these

problems has been initiated in our group, and we hope to be able to report on new

results soon.

Mathematically, our research is a step in the important direction of developing

methods for networks that, due to clustering, cannot be locally approximated by trees.

We have seen that in our case there is still a valuable description of a local limit given

in terms of a tractable graph, the age-dependent random connection model. This model

is interesting in its own right and methods from the theory of random geometric graphs
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as well as techniques to investigate long-range percolation models can presumably be

developed and enhanced to provide a powerful toolbox for its investigation.

The results we have achieved (and hope to achieve soon) are to some extent uni-

versal, i.e., other network models that follow our building principles should show

qualitatively very similar behaviour. But these results do not necessarily explain the

full picture, other building principles could lead to similar behaviour and add to the

explanation of the abundance of networks with the mentioned features that describe

complex systems. A particularly interesting way to generate networks based on uni-

versal principles is to define random graphs that try to optimise certain functionals,

for example in the form of Gibbs measures on graphs with Hamiltonians that reward

connectivity and punish long edges; see, for example, recent work of Mourrat and

Valesin [24]. There remain a lot of interesting challenges for probabilists in the area

of random networks.
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Appendix A: Simulation of themodel

In this section, we give an overview of the code used to generate the pictures shown

throughout the paper. It is also used for estimating the limiting average clustering

coefficient in Sect. 5. The code can be freely accessed at: http://www.mi.uni-koeln.

de/~moerters/LoadPapers/adrc-model.R.

The main objective of the code is to sample neighbours of a given vertex (x, u)

in the age-dependent random connection model in dimension 1 for given parameters

β and γ and the profile function ϕ. Due to Proposition 4.1, which gives an explicit

description of the neighbourhood of a given vertex, we can use rejection sampling to

achieve this. The distribution in (5.1), defined on R × (0, 1], that we use to sample

the neighbours of (x, u) may be unbounded and heavy tailed in the first parameter. To

deal with this, we restrict the sampling to a region with mass q = 0.99 with respect

to this distribution. This sampling works for arbitrary but reasonable choices of the

profile function ϕ and parameters β, γ ; we provide and use an optimised sampling

algorithm for ϕ = 1
2a
1[0,a] with a ≥ 1

2
. The advantage of studying this class of ϕ is that

expressions can be analytically simplified, which allows us to improve the algorithm

by dividing the region from which the points are sampled into sub-regions with equal

mass with respect to ϕ, thus increasing the acceptance rate for points sampled far

away from (x, u). That is, the code first selects one of these equally likely sub-regions

uniformly at random and then points are sampled therein until one is accepted. The

numerical optimisation method nlminb is used to calculate the boundaries of the

ranges, i.e., quantiles of the distribution from (5.1).

A first application of the sampling is the estimation of the expected local clustering

coefficient of a vertex (0, u) in the age-dependent random connection model (see

Fig. 3) and by Theorem 5.1 also the average clustering coefficient for the age-based

preferential attachment network (see Fig. 4). To this end, the code samples pairs of
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neighbours of (0, u) and averages the probability that the pair is connected. A second

application of the sampling is generating heatmaps of the neighbourhoods of a given

vertex (see Fig. 2). The heatmaps are generated using the R library MASS and function

kde2d by estimating the heat kernel for the sampled neighbouring vertices. Further

properties thereof can be studied with additional heatmap generating functions that

we provide.
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