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Abstract—This paper proposes a semi-supervised contrastive
capsule transformer method with feature-based knowledge distil-
lation (KD) that simplifies existing semisupervised learning (SSL)
techniques for wearable human activity recognition (HAR), called
CapMatch. CapMatch gracefully hybridizes supervised learning
and unsupervised learning to extract rich representations from
input data. In unsupervised learning, CapMatch leverages the
pseudo-labeling, contrastive learning (CL), and feature-based KD
techniques to construct similarity learning on lower- and higher-
level semantic information extracted from two augmentation
versions of the data, “weak” and “timecut”, to recognize the
relationships among the obtained features of classes in the
unlabeled data. CapMatch combines the outputs of the weak-
and timecut-augmented models to form pseudo-labeling and thus
CL. Meanwhile, CapMatch uses the feature-based KD to transfer
knowledge from the intermediate layers of the weak augmented
model to those of the timecut augmented model. To effectively
capture both local and global patterns of HAR data, we design
a capsule transformer network consisting of four capsule-based
transformers and one routing layer. Experimental results show
that compared with a number of state-of-the-art semi-supervised
and supervised algorithms, the proposed CapMatch achieves
decent performance on three commonly used HAR datasets,
namely, HAPT, WISDM, and UCI HAR. With only 10% of data
labeled, CapMatch achieves F1 values of higher than 85.00%
on these datasets, outperforming 14 semi-supervised algorithms.
When the proportion of labeled data reaches 30%, CapMatch
obtains F1 values of no lower than 88.00% on the datasets above,
which is better than several classical supervised algorithms, e.g.,
decision tree and KNN.

Index Terms—Capsule Network, Contrastive Learning, Human
Activity Recognition, Knowledge Distillation, Semi-supervised
Learning, Similarity Learning, Wearable Sensors

I. INTRODUCTION

HUMAN activity recognition (HAR) identifies people’s
actions based on their observations and environmental

surroundings [1]. HAR has been widely used in various
real-world domains, such as electroencephalography (EEG)
analysis [2], gesture detection [3], and healthcare system [4].
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With the prevalence of mobile devices, e.g., smartphones and
watches, wearable HAR data collection has become accessible
and convenient. Thus, wearable sensor-based HAR has grown
into one of the mainstream research topics in HAR [5]. Wear-
able HAR data is a series of time-ordered data points collected
by wearable sensor(s), e.g., triaxial accelerometer owns thee
sensors producing X-, Y-, and Z-axis data simultaneously.
Such a series is associated with a single or multiple time-
dependent variables, i.e., univariate and multivariate [6]. A
HAR algorithm captures the local and global patterns from a
given time series, e.g., those associated with one variable and
those across multiple variables [7], [8].

Over the years, a large number of algorithms have been
developed to address wearable sensor-based HAR problems,
mainly through traditional and deep learning techniques [5],
[6], [7]. Traditional algorithms are usually statistical or ma-
chine learning method based, which focus on capturing shal-
low features from HAR data. For example, Zhu and Sheng [9]
introduced a hierarchical hidden Markov model for context-
based recognition. Chen et al. [10] proposed a HAR system
with coordinate transformation and principal component anal-
ysis (PCA) and online support vector machine (SVM). In
contrast, deep learning ones are able to extract the intrinsic
connections among representations by constructing the internal
representation hierarchy of data [11], e.g., Al-qaness et al.
[12] designed a multilevel residual network with attention
for HAR feature extraction. Xia et al. [13] put forward a
multiple-level domain adaptive learning model that used a
single inertial measurement unit sensor to obtain accurate
activity recognition. Shu et al. [14] presented a graph long
short-term memory (LSTM)-in-LSTM method for group ac-
tivity recognition, where person-level actions and group-level
activity were modeled simultaneously. Unfortunately, all the
algorithms above heavily relied on labeled data that usually
consumed an incredible amount of human resource cost for
raw data annotation.

Semi-supervised learning (SSL) leverages a small amount
of labeled data to capture features from a dataset with a
large amount of unlabeled data [15]. To mitigate the de-
pendency on labeled data, SSL-based HAR has attracted
increasingly more research interests. The SSL algorithms for
HAR can be roughly classified into three categories: graph-
based, self-labeled, and self-supervised. Graph-based algo-
rithms use graph techniques to learn the similarity between
the feature maps obtained from the HAR data, e.g., the
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multi-graph-based SSL [16], shared structure discovery SSL
[17], and dynamic graph-based SSL [18]. Self-labeled ones
usually adopt a supervised classifier to label instances with the
unknown class without any specific input data suppositions,
mainly relying on two methods: co-training [19], [20] and self-
training [21], [22], [23]. Self-supervised algorithms consider
a model’s class prediction as a pseudo label of the training
object, e.g., SelfHAR [24], CSSHAR [25], and ColloSSL
[26]. In summary, the algorithms above usually use one
or two of the four main SSL techniques, namely, entropy
minimization, consistency regularization, pseudo-labeling, and
generic regularization. Unfortunately, most SSL algorithms for
HAR ignore integration of these techniques and thus have
limited ability to capture rich representations from the data.

Recently, algorithms hybridizing multiple SSL techniques
have become prevalent in the semi-supervised image classi-
fication community. For example, MixMatch used a single
loss to integrate the entropy minimization, consistency reg-
ularization, and generic regularization [27]. ReMixMatch was
an improved version of MixMatch, with distribution alignment
and augmentation anchoring as two additional techniques [28].
FixMatch took the advantages of ReMixMatch and pseudo-
labeling to capture sufficient representations from input data
[29]. Zhang et al. [30] integrated curriculum pseudo-labeling
into FixMatch to form FlexMatch for semi-supervised image
classification.

The ensemble algorithms above, e.g., FixMatch and its vari-
ants (e.g., FlexMatch), usually consist of supervised learning
based on a small amount of labeled data and unsupervised
learning based on a large amount of unlabeled data. Their
performance heavily depends on the representation learning
on the unlabeled data, where lower- and higher-level semantic
information is of significant importance [31]. However, most
of the ensemble algorithms only emphasize the similarity
learning on higher-level semantic information, ignoring the
importance of lower-level semantic information on representa-
tion learning, which limits their ability of extracting abundant
representations from unlabeled data. For example, the similar-
ity learning in FixMatch only combines the output extracted
from “weak” data and that from “strong” data through pseudo-
labeling, where “weak” and “strong” are two augmentation
versions of the same data. Indeed, the performance of an
algorithm is heavily dependent on the quality of lower- and
higher-level semantic information obtained from the data
through instance-level representation learning [31]. Therefore,
it is crucial for an SSL algorithm to enhance its similarity
learning on both lower- and higher-level semantic information,
which ensures the algorithm’s performance in unsupervised
learning.

Recently, feature-based knowledge distillation (KD), an
effective form of similarity learning on lower-level semantic
information, has emerged. This technique enables knowledge
flow between the intermediate layers of a teacher and those of
a student, helping the student obtain decent performance on
instance-level representation learning [32]. On the other hand,
contrastive learning (CL), a popular self-supervised learning
method, studies the similarity between different views from
the same sample and the similarity between the views from

different samples, which improves the quality of the learned
representations and thus provides rich semantic information
for downstream tasks [33].

On the other hand, most SSL algorithms for HAR, e.g.,
ActSemiCNN [22], CSSHAR [25], and ColloSSL [26], usually
use neural networks to capture features from the input. Neural
networks, however, easily cause potential information loss of
entities/objects due to the intrinsic translation invariance, e.g.,
Maxpooling. To overcome the drawback above, Sabour et al.
[34] introduced a capsule network (CapNet) with dynamic
routing mechanism to obtain entities’ semantic information,
e.g., location and orientation. It was reported that CapNet
was quite effective in mining sufficient lower- and higher-level
semantic information.

Based on FixMatch, we introduce the feature-based KD,
CL and capsule-based methods to design a semi-supervised
contrastive transformer capsule model for wearable HAR,
called CapMatch. This model gracefully integrates supervised
and unsupervised learning to mine rich representations from
partially labeled data. Like most supervised capsule algorithms
[35], [36], [37], CapMatch guides the prediction vectors to-
wards the corresponding ground labels on the labeled data.
On the other hand, CapMatch leverages data augmentation,
pseudo-labeling, CL, and feature-based KD techniques to rec-
ognize the relationships among the features of classes obtained
from the unlabeled data. CapMatch generates different views
of the same sample by two data augmentation methods, namely
“weak” and “timecut”. Similarity learning on the lower- and
higher-level semantic information extracted from the two types
of augmented data is established in unsupervised learning.
Meanwhile, CapMatch uses feature-based KD to transfer
knowledge from the intermediate layers of weak-augmented
model to those of the timecut-augmented model. The overview
of CapMatch is shown in Figure 1.

Our significant contributions are summarized below.

• We propose a capsule transformer network with four
capsule-based transformers and one routing layer as the
CapMatch’s feature extractor in Figure 1. Unlike the
vanilla transformer [38], the capsule-based transformer
considers the interaction rules among capsules, helping
CapMatch mine abundant valuable connections and reg-
ularizations from the HAR data, e.g., the length of each
capsule’s vector is the capsule’s entities’ probability.

• CapMatch applies the pseudo-labeling, CL, and feature-
based KD techniques to constructing similarity learning
on the lower- and higher-level semantic information ex-
tracted from the weak and timecut versions of input data,
resulting in high-quality feature extraction performance.

• Experimental results show that CapMatch outperforms
14 SSL algorithms on three widely used public HAR
datasets: the smartphone-based recognition of human ac-
tivities and postural transitions dataset (HAPT), wireless
sensor data mining (WISDM), and University of Califor-
nia Irvine (UCI) HAR using smartphones (UCI HAR)
when the labeled data only takes up 10% of the training
data. In particular, CapMatch overweighs a few super-
vised algorithms on these datasets in terms of F1 value,
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e.g., decision tree and k-nearest neighbor (KNN), when
the labeled data accounts for 30% of the training data.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the CapMatch’s
overall structure and its components. Section IV analyzes the
experimental results, and Section V draws the conclusion.

II. RELATED WORK

This section reviews the existing studies on wearable HAR,
capsule network, CL, and KD.

A. Wearable HAR Algorithms

There have been many algorithms for addressing various
wearable sensor-based HAR problems. These algorithms are
either traditional or deep learning based [5], [6], [7]. Tradi-
tional algorithms usually use statistical or machine learning
methods to mine shallow features from HAR data, such as
PCA, SVM, KNN, Bagging, logistic regression (LR), Bayes
algorithm, J48, Markov regression, collaboration algorithm,
logic-based reasoning, and Fuzzy algorithm [9], [10], [39],
[40], [41], [42].

On the other hand, deep learning algorithms can extract not
only the shallow features but also the intrinsic regularizations
and connections hidden in the data [11]. For example, Ravi
et al. [43] introduced a temporal convolutional model for
activity recognition on low-power smartphones. Zhang et al.
[44] proposed a multi-head convolutional attention network
to capture multi-scale features from HAR data. Besides, the
stacked denoising autoencoder [45], graph-based LSTM-in-
LSTM [14], multilevel residual network with attention [46],
kernel density estimation-based model [47], Lego CNN [48],
deformable convolutional network [49], multiple-level domain
adaptive learning model [50], selective kernel convolution
[51], and CNN-LSTM-based model [52] are all well-known
HAR algorithms based on deep neural networks.

B. Capsule Network

Capsule network was developed to solve the problem of
information loss of entities/objects due to translation invari-
ance, e.g., Maxpooling [34]. In just a few years, capsule-based
models have attracted increasingly more research efforts. For
example, Chen et al. [35] proposed a contemporary novel
neural network capsule architecture with multi-dimension and
abundant spatial information for fault diagnosis. Feng et al.
[36] presented a dual-routing capsule graph neural network
to capture temporal and spatial features from video data.
Xiao et al. [37] devised a multi-process collaborative capsule
architecture for multi-scale feature extraction on time series
classification. Saad and Chen [53] designed an efficient cap-
sule network for Seismic Phase prediction. Sun et al. [54] put
forward a capsule and gate recurrent unit network to recognize
human activities.

C. Contrastive Learning

Recognized as one of the most effective SSL techniques,
CL has been widely applied to tackle various real-world
problems [33]. For instance, Feng et al. [55] adopted a CL-
based monocular object detection model to distinguish 3-
diminsional objects. In [56], an intra- and inter-Slice CL net-
work was used to address OCT fluid segmentation problems.
In [57], a CL-based joint learning framework was applied
to accurate COVID-19 identification. In [58], a contrastive
SSL method was utilized to capture the representations from
remote sensing data. With the help of CL, pre-trained language
models accelerated their fine-tuning phase and improved their
generalization abilities [59].

D. Knowledge Distillation

KD encourages knowledge transfer form a cumbersome
network (i.e., teacher) to a lightweight one (i.e., student).
According to the knowledge form, researchers roughly divide
the existing KD algorithms into three categories: response-
based, feature-based, and relation-based [32]. The response-
based method transfers the knowledge from the output (i.e.,
logits) of a teacher to that of a student [60], e.g., the multi-class
KD object detection [61], fast pose distillation [62], specific
expert learning [63], and collaborative teaching strategy [64].
The feature-based method enables knowledge sharing between
intermediate layers of a teacher and its student instead of
output-to-output, such as the FitNet [65] and knowledge rep-
resenting method [66]. The relation-based method pays more
attention to capturing the relationships among layers in the
student and teacher models, such as the similarity-preserving
approach [66], metric learning [67], and cross-layer mutual
distillation [68].

III. CAPMATCH

This section first overviews the CapMatch’s structure. Then
it describes the problem formulation, capsule-based trans-
former, routing, data augmentation, CL, feature-based KD, and
loss function one by one.

A. Overview

CapMatch contains supervised and unsupervised learning
processes, as shown in Figure 1. The capsule transformer
network, composed of four capsule-based transformers and
one routing layer, is the model’s feature extractor. Cap-
Match guides the prediction vectors towards the corresponding
ground labels by a margin loss function on the labeled data in
the supervised learning process. On the other hand, CapMatch
leverages data augmentation, pseudo-labeling, CL, and feature-
based KD techniques to recognize the relationships among
the features of classes obtained from the unlabeled data in
the unsupervised learning process. Two data augmentation
methods, namely “weak” and “timecut”, are used to generate
different views of the same sample. CapMatch establishes
similarity learning on the lower- and higher-level semantic
information extracted from the weak and timecut versions of
the data to enhance the instance-level representation learning
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Fig. 1. The overview of CapMatch. The capsule transformer network consists of four capsule-based transformers and a routing layer.

in unsupervised learning. To be specific, CapMatch not only
allows the weak-augmented artificial labels to supervise the
timecut-augmented prediction vectors by a margin loss func-
tion but also combines the outputs of the weak- and timecut-
augmented models to form similarity learning by a CL loss
function. Meanwhile, CapMatch promotes the knowledge flow
from the intermediate layers of weak-augmented model to
those of the timecut-augmented model via feature-based KD.

B. Problem Formulation
Assume xi = {{x(i)

1,1, ..., x
(i)
1,d}, ..., {{x

(i)
l,1, ..., x

(i)
l,d}} ∈ X

is an arbitrary HAR time-series, where X ⊆ Rl×d is the
input space, and l and d denote the length and dimension of
xi, respectively. yi ∈ Y is a categorical variable associated
with xi, where Y is the target space. We aim at training
a prediction model M : X 7→ Y on an arbitrary dataset,
D = {Dtrain,Dval,Dtest}. Dtrain = {Dlab

train,Dunl
train},

Dval = {xi, yi}nval
i=1 , and Dtest = {xi, yi}ntest

i=1 are the
data for training, validation, and testing, respectively, where
Dlab

train = {xlab
i , ylabi }nlab

i=1 and Dunl
train = {xunl

j }nunl
j=1 are the

labeled and unlabeled training data, respectively. nlab and nunl

denote the sizes of labeled and unlabeled data, respectively.
nval and ntest are the sizes of validation and testing data,
respectively.

C. Capsule-based Transformer
In the capsule transformer network, four capsule-based

transformers are adopted to capture local and global patterns
of the HAR data, providing rich representations with routing.

Each capsule-based transformer relates the representations
at different locations of the input data to extract the intrinsic
connections and regularizations among the representations ob-
tained, as shown in Figure 2. The multi-head capsule attention,
containing natt capsule-based attention modules, is the core
of each transformer. Each capsule-based attention module,
e.g., Attentioni, transfers a query, Queryi, and its key-value
pairs, Keyi-V aluei, to an output, V att

i . Different from the
vanilla attention [38], the capsule-based attention considers
the interaction rules among capsules, e.g., the length of each
capsule’s vector is the capsule’s entities’ probability. V att

i is
defined as:

V att
i = ||Queryi ·KeyTi√

di
|| · V aluei (1)

where, KeyTi denotes the transpose of Keyi, di is the dimen-
sion of Keyi, and ||.|| outputs the length of a given vector.

Let Vmul be the output of a multi-head capsule attention.
Vmul fuses the natt capsule-based attention through the CON-
CAT function, fconcat, to provide sufficient global features.
Vmul is defined in Eq. (2).

Vmul = fconcat([V
att
1 , V att

2 , ..., V att
natt

]) (2)

D. Routing

Following [34], [35], [36], [37], we adopt the routing layer
to promote the interaction among capsules, which helps mine
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Fig. 2. The architecture of a capsule-based transformer. Note: ||.|| outputs the length of a given vector and “MatMul” represents the matrix multiplication
operation.

Algorithm 1 Pseudo-code of Routing
1: procedure ROUTING(sj , niter) ▷ niter denotes the

number of iterations.
2: Initialize weight matrix Wij ;
3: Set v̂j|i = Wijsj and bij = 0;
4: Routing
5: for niter iterations do
6: Obtain kij using Eq. (4);
7: Obtain v̂j|i and sj using Eq. (3);
8: Obtain bij using Eq. (5);
9: end for

10: return vj ;
11: end procedure

the relationships among them. Given capsule j, its input sj is
defined in Eq. (3).

sj =
∑
i

kij v̂j|i, v̂j|i = Wijvi (3)

where, the prediction vector, v̂j|i, is obtained by multiplying
the output of capsule i in the previous layer, vi, by a weight
matrix, Wij . kij is a coupling coefficient between all capsules
in the current layer and capsule i in the previous layer cal-
culated by a softmax function, fsoftmax, through an iterative
routing process [34], [35], [37]. kij is calculated as:

kij = fsoftmax(bij) (4)

where, bij is the log prior probabilities that capsules i and
j couple. bij measures the “agreement” between the current

output vj and the prediction v̂j|v , where v̂j|v is obtained by
capsule i from the previous layer. bij is defined in Eqs. (5)-(7).

bij = bij + vj · v̂j|v (5)

vj = fsquash(sj) (6)

fsquash(x) =
||x||2

1 + ||x||2
x

||x||
(7)

where, vj is output of capsule j by “squashing” its input, sj ,
in the current layer. The pseudo-code of Routing is shown in
Algorithm 1.

E. Data Augmentation

Data augmentation is a widely used regularization method to
efficiently improve a model’s robustness in deep learning [27],
[28], [29]. CapMatch leverages two augmentation methods,
namely “weak” and “timecut”, to produce different views from
the same sample as the input in the unsupervised learning
process. Specifically, The weak augmentation is realized via
a jitter-and-scale strategy, e.g., adding the Gaussian function
to the raw data. The timecut version is a modified version of
Cutout [69] that transforms a small piece of the raw unlabeled
data without changing its overall trend. Figure 3 shows an
example of raw data and its weak- and timecut-augmented
data on the WISDM dataset.

F. Feature-based Knowledge Distillation

Feature-based KD encourages knowledge transfer between
intermediate layers of the teacher and student models, improv-
ing the student’s feature extraction ability [32]. Let V wea,1

j ,
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Fig. 3. Example raw data and its weak- and timecut-augmented data on the WISDM dataset.

V wea,2
j , V wea,3

j and V wea,4
j denote the outputs of the four

capsule-based transformers associated with the “weak” aug-
mented data, xwea

j , respectively; let V tim,1
j , V tim,2

j , V tim,3
j

and V tim,4
j be the outputs of the four capsule-based trans-

formers associated with the “timecut” augmented data, xtim
j ,

respectively, in Figure 1.
The proposed KD loss, LKD, leverages an L2 loss function

to measure the difference between the features obtained from
xwea
j and those from xtim

j . LKD is written in Eq. (8)

LKD =
1

nunl

4∑
i=1

nunl∑
j=1

||V wea,i
j /tKD − V tim,i

j /tKD||22 (8)

where, tKD is a temperature coefficient to generate a soft
probability distribution over classes. In this paper, we set
tKD = 1.0 (More details can be found in Section IV.C).

G. Contrastive Learning

As aforementioned, CL distinguishes the similarity between
different views from the same sample and that between the
views from different samples via a CL loss function, LCL.
Let V wea

j and V tim
j be the outputs of the capsule transformer

network associated with xwea
j and xtim

j , respectively. As [59],
[70] suggest, we define LCL as:

LCL = −
nunl∑
j=1

log
exp(sim(V wea

j , V tim
j )/tCL)∑nunl

m=1 1[m ̸=j]exp(sim(V wea
j , V tim

m )/tCL)

(9)
where,

sim(p, q) =
pT q

||p|||q||
,

Algorithm 2 CapMatch
Input: D = (Dtrain,Dval,Dtest);
Output: Y;

1: Initialize model parameters θ0;
2: //Training and validation
3: for i = 1 to nep do ▷ nep is the number of training

epochs.
4: Feedforward Dtrain into CapMatch;
5: Obtain LKD using Eq. (8);
6: Obtain LCL using Eq. (9);
7: Obtain Lsup using Eq. (10);
8: Obtain LCM using Eq. (11);
9: Obtain Luns using Eq. (12);

10: Obtain L using Eq. (13);
11: Update θi using θi = θi−1−η∇θi−1

L(θi−1); ▷ η is the
learning rate, and θi−1 and ∇θi−1 denote the parameters
and gradient at the (i-1)-th training epoch, respectively.

12: if i > 1 then
13: Validate CapMatch using Dval;
14: end if
15: end for
16: // Testing the model
17: Use the trained model to predict Y of Dtest.

and tCL is a contrastive coefficient for LCL. This paper sets
tCL = 1.0 in our experiments (More details can be found in
Section IV.C).

H. Loss Function

The loss function, L, includes a supervised loss, Lsup, and
an unsupervised loss, Luns. As the studies in [34], [35], [36],
[37] suggest, Lsup uses the margin loss function to measure
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TABLE I
DETAILS OF THE THREE HAR DATASETS.

Dataset Sample Rate Activities Classes Samples CapMatch’s
Parameter (M)

HAPT 50Hz

Walking (Wk), Walking Upstairs (Wu), Walking Downstairs (Wd),
Sitting (St), Standing (Sd), Laying (Ly),

Stand-to-Sit (DtS), Sit-to-Stand (StD), Sit-to-Lie (StL),
Lie-to-Sit (LtS), Stand-to-Lie(DtL), and Lie-to-Stand (LtD)

12 10,929 3.149857

WISDM 20Hz Walking (Wk), Jogging (Jg), Upstairs (Us),
Downstairs (Ds), Sitting (St), and Standing (Sd) 6 1,098,207 1.655185

UCI HAR 50Hz Walking (Wk), Walking Upstairs (Wu), Walking Downstairs (Wd),
Sitting (St), Standing (Sd), and Laying (Ly) 6 10,299 1.739665

the average difference between the ground labels and their
prediction vectors on labeled HAR data. Lsup is written as:

Lsup =
1

nlab

nlab∑
i=1

(ylabi max(0,m+ − ||V lab
i ||)

+ λ(1− ylabi )max(0, ||V lab
i || −m−))

(10)

where, V lab
i is the output of the proposed capsule transformer

network associated with the labeled data, xlab
i , and m+, m−,

and λ are three coefficients for Lsup. As the previous studies
suggest [34], [35], [37], we set m+ = 0.9, m− = 0.1, and λ
= 0.5.

Luns consists of a KD loss function, LKD, a CL loss
function, LCL, and a confidential marginal loss function,
LCM . Similar to FixMatch [29], CapMatch leverages V wea

j

to generate an artificial label associated with V tim
j when

max(V wea
j ) ≥ tCM , where tCM is a coefficient for LCM .

LCM is calculated by Eq. (11):

LCM =
1

nunl

nunl∑
j=1

(yonej max(0,m+ − ||V tim
j ||)

+ λ(1− yonej )max(0, ||V tim
j || −m−))

(11)

where,

yonej = 1(max(V wea
j ) ≥ tCM )argmax(V wea

j ),

and argmax(V wea
j ) produces a valid one-hot probability

distribution of V wea
j . Following [29], we set tCM = 0.95.

The unsupervised loss of CapMatch, Luns, is defined in Eq.
(12).

Luns = LCM + LKD + τLCL (12)

where, τ is a coefficient of LCL. Following the previous work
in [71], we set τ = 0.1.

Thus, the loss function of CapMatch, L, is calculated as:

L = Lsup + Luns + ϵ||θ||22
= Lsup + LCM + LKD + τLCL + ϵ||θ||22

(13)

where, θ represents the model parameters of CapMatch, and ϵ
is a coefficient of ||θ||22 (i.e., L2 regularization). Following
[37], we set ϵ = 0.0005 in our experiments. Besides, the
CapMatch’s pseudo-code is given in Algorithm 2.

IV. EXPERIMENTS

This section first describes the experimental setup, per-
formance metrics, hyper-parameter sensitivity, and ablation
study. Then, it verifies the CapMatch’s overall performance
and computational complexity.

A. Experimental Setting

1) Data Description: To evaluate the performance of Cap-
Match, we choose three widely used public HAR datasets, as
follows:

• HAPT: the smartphone-based recognition of human ac-
tivities and postural transitions dataset (HAPT) [72] was
collected from 30 volunteers aged 19-48 years. The sen-
sor signals, i.e., accelerometer and gyroscope with noise
filters, were set to sample in fixed-width sliding windows
of 2.56 sec and 50% overlap (128 readings/window).
Each sample is a 561-feature vector with time and
frequency domain variables. This dataset consists of six
basic activities, i.e., standing, sitting, laying, walking,
walking downstairs and walking upstairs, and six static
postures, including stand-to-sit, sit-to-stand, sit-to-lie, lie-
to-sit, stand-to-lie, and lie-to-stand.

• WISDM: the Wireless Sensor Data Mining (WISDM)
[73] lab collected the accelerometer data every 50ms,
where the signal sample rate was set to 20Hz. It has
1,098,207 multiple physical activities’ examples with six
attributes: user, activity, timestamp, x-acceleration, y-
acceleration, and z-acceleration. This dataset considers
six activities, namely, walking, jogging, upstairs, down-
stairs, sitting, and standing.

• UCI HAR: the human activity recognition using smart-
phones dataset [74] in the University of California Irvine
Machine Learning Repository (UCI HAR) was collected
from 30 volunteers aged 19-48 years. Each volunteer who
wore a smartphone (Samsung Galaxy S II) on his/her
waist performed six activities: walking, walking upstairs,
walking downstairs, sitting, standing and laying. The 3-
axial linear acceleration and 3-axial angular velocity at a
constant rate of 50Hz were used, and the signal sample
rate was set to 20Hz.

The summary of the three datasets is shown in Table I. As
the previous studies suggest [5], [6], [7], [44], [45], [46], we
randomly divide each dataset into training and testing sets with
a ratio of 7:3. Then, each training set is split into labeled and
unlabeled data. Like [75], [76], [77], the ratio of labeled data
to training data, r = nlab

nlab+nunl
(s.t., nlab ≪ nunl), is from

0.1 to 0.3, i.e., r ∈ {0.1, 0.2, 0.3}.
2) Implementation details: The hyper-parameter settings of

the four capsule-based transformers are given in Table II.
This paper uses RMSPropOptimizer as the optimizer, with the
momentum term, initial learning rate, and decay value set to
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TABLE II
HYPER-PARAMETER SETTINGS OF THE FOUR CAPSULE-BASED

TRANSFORMERS.

Transformer No. Fully-connected
layer’s units natt Dropout Value

1 48 8 0.5
2 96 8 0.5
3 144 8 0.5
4 192 8 0.5

0.9, 0.001, and 0.9, respectively. We conduct the experiments
with a computer with Ubuntu 18.04 OS, an Nvidia GTX
1080Ti GPU with 11GB, and an AMD R5 1400 CPU with
16G RAM.

B. Performance Metrics

As suggested in [5], [6], [7], [44], [45], [46], we use two
commonly used metrics, i.e., Accuracy and F -measure, in
performance comparison. These metrics are defined as:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
× 100%

F1 =
Precision×Recall

Precision+Recall

Precision =
tp

tp+ fn
× 100%

Recall =
tp

tp+ tn
× 100%

(14)

where, tp and tn are the numbers of true positive and negative
samples, respectively. fp and fn represent the numbers of
false positive and negative samples, respectively.

C. Hyper-parameter Sensitivity

We study the influence of hyper-parameter settings on
the performance of CapMatch on the HAPT, WISDM, and
UCI HAR datasets.

Fig. 4. F1 results with different tKD values when r = 0.1.

1) CapMatch with different tKD values: tKD is a scalable
temperature coefficient to produce a soft probability distribu-
tion over classes. As shown in Figure 4, 1.0 is the best setting
for tKD because it helps CapMatch to obtain the highest F1

value on each HAR dataset.

Fig. 5. F1 results with different tCL values when r = 0.1.

2) CapMatch with different tCL values: tCL is a threshold
value for CapMatch to learn the similarity between different
views from the same sample. Figure 5 shows the F1 re-
sults obtained by CapMatch with different tCL (i.e., tCL ∈
{0.1, 0.5, 1.0, 2.0, 5.0}) values on three HAR datasets when r
= 0.1. When tCL = 1.0, CapMatch achieves the highest F1

result on each dataset. That means tCL = 1.0 helps CapMatch
mine the connections and regularizations from the HAR data.

TABLE III
F1 RESULTS OBTAINED BY CAPMATCH WITH DIFFERENT KD LOSSES

WHEN r = 0.1. ABBREVIATIONS: L1 – L1 LOSS, CE – CROSS ENTROPY,
HL – HUGE LOSS.

Dataset L1 L2 KL CE HL
HAPT 85.04 ± 1.15 85.59 ± 1.06 85.42 ± 1.12 84.69 ± 1.04 84.36 ± 1.17

WISDM 84.94 ± 0.79 86.32 ± 0.82 84.99 ± 0.85 84.52 ± 0.86 84.15 ± 0.83
UCI HAR 85.81 ± 1.58 86.33 ± 1.73 85.32 ± 1.58 85.98 ± 1.65 84.92 ± 1.64

TABLE IV
F1 RESULTS OBTAINED BY FIVE CAPMATCH VARIANTS WHEN r = 0.1.

Method HAPT WISDM UCI HAR
CapMatch w/o Routing 78.23 ± 1.13 75.05 ± 0.79 76.13 ± 1.62

CapMatch w/o CL 84.22 ± 1.12 84.15 ± 0.76 84.33 ± 1.58
CapMatch w/o FKD 83.98 ± 1.16 83.29 ± 0.74 83.53 ± 1.57

VanMatch 84.37 ± 1.04 84.68 ± 0.73 84.97 ± 1.35
CapMatch 85.59 ± 1.06 86.32 ± 0.82 86.33 ± 1.73

3) CapMatch with different KD losses: It is crucial to
choose an appropriate KD loss function to measure the knowl-
edge difference between a teacher and its student. Table III
shows the F1 results obtained by CapMatch with different
KD losses on three HAR datasets when r = 0.1. L2 performs
better than the other 4 losses. Hence, we choose the L2 loss
to promote the knowledge transfer within the model.

D. Ablation Study

To investigate the effects of different components on Cap-
Match, we compare it with four variants listed below:

• CapMatch w/o Routing: CapMatch without routing mech-
anism.

• CapMatch w/o CL: CapMatch without contrastive learn-
ing.
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TABLE V
F1 RESULTS OBTAINED BY VARIOUS SSL ALGORITHMS ON THREE HAR DATASETS WHEN r = 0.1.

Author Method HAPT (%) WISDM (%) UCI HAR (%)
Chen et al. [77] DTW-D 73.55 ± 1.41 74.25 ± 0.59 74.68 ± 1.45

Zhou et al. [78] Self-labeled SVM 78.35 ± 1.29 77.25 ± 0.78 76.40 ± 1.52
Self-labeled Clustering 81.08 ± 1.23 75.34 ± 0.36 79.32 ± 1.03

Han et al. [76] SSSL 80.95 ± 1.27 80.92 ± 0.52 81.95 ± 1.47
Tang et al. [24] SelfHAR 83.71 ± 1.15 82.29 ± 0.65 82.02 ± 1.22
Chen et al. [19] SSRCA – – 81.43
Xie et al. [79] UDA 81.21 ± 1.35 80.93 ± 0.73 81.94 ± 1.26

Guan et al. [20] En-Co-Training 75.15 ± 1.28 77.12 ± 0.58 79.26 ± 2.04
Bhattacharya et al. [80] Sparse-Coding 76.65 ± 1.25 75.93 ± 0.68 76.20 ± 2.15
Khaertdinov et al. [25] SSCLHAR 82.74 ± 1.09 81.99 ± 0.46 83.32 ± 1.42

Bi et al. [22] ActSemiCNN 83.54 ± 1.12 83.19 ± 0.59 82.99 ± 1.39
Berthelot et al. [27] MixMatch 82.02 ± 1.21 82.72 ± 0.73 83.24 ± 1.06

Sohn et al. [29] FixMatch 83.25 ± 1.13 83.82 ± 0.56 84.71 ± 1.18
Zhang et al. [30] FlexMatch 83.98 ± 1.21 84.12 ± 0.61 84.99 ± 1.01

Ours CapMatch 85.59 ± 1.06 86.32 ± 0.82 86.33 ± 1.73

• CapMatch w/o FKD: CapMatch without feature-based
KD.

• VanMatch: CapMatch with each capsule-based trans-
former replaced with the vanilla transformer [38].

Table IV shows the F1 results obtained by five CapMatch
variants on three HAR datasets when r = 0.1. First, we
compare CapMatch with CapMatch w/o Routing to verify
the contribution of routing. Clearly, the routing mechanism
significantly improves the performance of CapMatch on F1.
Second, compared with CapMatch w/o CL, CapMatch results
in a higher F1 value on each dataset since CL helps enhance
the quality of the representations learned by quantifying the
difference between different views of the same sample. Third,
we compare CapMatch with CapMatch w/o FKD. It is easily
observed that the proposed CapMatch beats CapMatch w/o
FKD on each dataset because feature-based KD improves
knowledge transfer between intermediate layers of the model.
Last but not least, we compare CapMatch with VanMatch.
One can observe that CapMatch outperforms VanMatch on
each dataset because the capsule-based transformer relates
the capsules at different locations to mine rich connections
and regulations hidden in HAR data. In summary, routing,
CL, feature-based KD, and capsule-based transformer are all
essential components for CapMatch.

E. Experimental Analysis

To evaluate the performance of CapMatch, we compare it
with 14 SSL algorithms against F1 value, as follows:

• DTW-D: a modified dynamic time warping algorithm for
HAR [77].

• Self-labeled SVM: a modified self-labeled algorithm with
SVM for HAR [78].

• Self-labeled Clustering: a modified self-labeled algorithm
with clustering for HAR [78].

• SSSL: a combination of the shapelet method and pseudo-
labeling for HAR [76].

• SelfHAR: a self-supervised learning algorithm for HAR
[24].

• SSRCA: a semi-supervised recurrent convolutional atten-
tion algorithm for HAR [19].

• UDA: based on data augmentation and consistency regu-
larization with the proposed capsule transformer network
(see Figure 1) as its feature extractor [79].

• En-Co-Training: an SSL algorithm with co-training for
HAR [20].

• Sparse-Coding: a sparse-coding SSL framework for HAR
[80].

• SSCLHAR: a contrastive SSL algorithm for HAR [25].
• ActSemiCNN: an active semi-supervised CNN for HAR

[22].
• MixMatch: a modified MixMatch [27] adapted to HAR,

with the proposed capsule transformer network (see Fig-
ure 1) as its feature extractor.

• FixMatch: a modified FixMatch [29] adapted to HAR,
with the proposed capsule transformer network (see Fig-
ure 1) as its feature extractor.

• FlexMatch: a modified FlexMatch [30] adapted to HAR,
with the proposed capsule transformer network (see Fig-
ure 1) as its feature extractor.

Table V shows the F1 results with 15 SSL algorithms on
three HAR datasets when r = 0.1. One can easily observe
that CapMatch performs the best among all compared SSL
algorithms on each dataset, e.g., CapMatch obtains the highest
F1 value on the WISDM dataset, namely 86.32%. FixMatch
takes the second position among all algorithms while DTW-D
leads to the worst performance. The F1 value of CapMatch is
at least 1.3% higher than that of FixMatch in average with the
three datasets considered.

The following explains our observations above. Based on
the capsule transformer structure, CapMatch gracefully hy-
bridizes pseudo-labeling, CL, and future-based KD, being
able to capture as many intrinsic connections among the
obtained representations of classes in the unlabeled data
as possible. Thanks to the consistency regularization and
curriculum pseudo-labeling techniques, FlexMatch can mine
valuable information from the unlabeled data and achieves
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TABLE VI
F1 RESULTS OBTAINED BY CAPMATCH WITH r = 0.3 AND 16 EXISTING SUPERVISED ALGORITHMS ON THREE HAR DATASETS.

Training Scheme Author Method HAPT (%) WISDM (%) UCI HAR (%)
Semi-superved Learning Ours CapMatch with r = 0.3 88.00 ± 1.03 89.14 ± 0.89 90.02 ± 1.21

Supervised Learning
(Traditional Algorithms)

Serpush et al. [5]
Wang et al. [7]

SVM 94.14 88.26 94.00
KNN 87.01 82.29 90.00

GradientBoosting 90.00 79.71 93.90
Random Forest 83.74 82.38 90.17
Decision Tree 72.52 73.17 85.86

J48 – 85.21 –

Supervised Learning
(Deep Learning Algorithms)

Gu et al. [45] stacked denoising autoencoder – 94.01 –

Zhang et al. [44]
1DCNN 91.15 92.13 91.72
2DCNN 90.98 91.89 92.6

Multi-head Convolutional Attention 94.79 95.68 95.4

Abbaspour et al. [52] CNNLSTM 93.15 94.92 94.89
CNNBiLSTM 94.02 95.83 95.37

Tang et al. [48] LegoCNN 94.59 97.31 95.41
Xiao et al. [6] Perceptive Extraction Network 95.31 98.97 96.33
Xu et al. [49] Deformable CNN – 99.21 –
Gao et al. [51] Selective Kernel Convolution 96.11 98.13 –

decent performance regarding F1 value on three HAR datasets.
On the other hand, DTW-D cannot explore rich features and
regularizations from the unlabeled data via the DTW technique
only.

Fig. 6. F1 results obtained by CapMatch with r = 0.1, 0.2, and 0.3 on three
datasets.

Second, to study the impact of r on the performance
of CapMatch, this paper shows the F1 results obtained by
CapMatch with r = 0.1, 0.2, and 0.3 on three HAR datasets
in Figure 6. With more labeled data, more additional prior
knowledge is brought to CapMatch, helping it mine richer
relationships and regularizations from the data. That is why the
CapMatch’s performance is gradually enhanced as the amount
of labeled data increases.

Finally, we compare CapMatch with r = 0.3 with 16 su-
pervised algorithms on three HAR datasets and collect the F1

results in Table VI. One can easily see that CapMatch performs
worse than all deep learning-based supervised algorithms but it
performs better than several traditional supervised algorithms.
To be specific, CapMatch outperforms KNN, Random Forest,
and Decision Tree on HAPT, performs the best on WISDM,
and performs better than Decision Tree on UCR HAR. For
example, the F1 value of CapMatch is 89.14% while that of
KNN is 82.29% on the WISDM dataset. Therefore, CapMatch
has the potential to address various SSL tasks in the HAR

domain. Besides, to visualize the performance of CapMatch
with r = 0.3, we show its confusion matrices on three datasets
in Figure 7.

TABLE VII
THE NUMBER OF PARAMETERS AND RUN TIME RESULTS WITH VARIOUS

ALGORITHMS ON THE WISDM AND UCI HAR TESTING SETS.

Method WISDM UCI HAR
Parameters

(M)
With CPU

(s)
With GPU

(s)
Parameters

(M)
With CPU

(s)
With GPU

(s)
SVM – 5.8365 – – 0.2059 –

BAGGING – 6.2953 – – 1.1045 –
Random Forest – 9.2659 – – 3.4596 –

KNN – 9.4432 – – 0.9346 –
Multilayer Perceptron 0.089638 7.3983 1.1658 0.164396 1.0758 0.1964

1DCNN 0.772960 19.0011 8.2335 0.920145 15.2322 2.1262
2DCNN 1.124334 21.7324 7.8746 1.155719 31.6259 2.8849
LSTM 0.204324 16.8543 5.0002 1.364487 3.1376 0.9435

CNNLSTM 2.837317 69.6823 17.2398 2.913863 37.7875 7.0921
Multi-head Convolutional Attention 2.771270 22.3498 11.8345 2.896913 35.8435 5.8934

Perceptive Extraction Network 0.223558 17.9467 7.4801 0.819911 7.4029 1.4934
Deformable CNN 6.640000 – – – – –

Adaptive Deep Network 5.591000 – – – – –
Selective Kernel Convolution 0.360000 – – 0.45 – –

CapMatch 1.865496 21.8735 9.4529 2.637324 32.3743 4.9354

F. Computational Complexity

To evaluate the efficiency of CapMatch, we compare it with
a number of machine and deep learning algorithms regarding
the number of parameters and run time on the WISDM and
UCI HAR testing sets, as shown in Table VII. One can easily
observe that CapMatch is slower than 4 machine learning
algorithms, including SVM, BAGGING, Random Forest, and
KNN. When compared with deep learning algorithms, Cap-
Match is faster than CNNLSTM and Multi-head Convolutional
Attention, but slower than the others.

V. CONCLUSION

CapMatch gracefully integrates supervised learning and
unsupervised learning into the proposed capsule transformer
network, being able to extract abundant representations from
partially labeled HAR data, where pseudo-labeling, contrastive
learning, and feature-based knowledge distillation are adopted



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 7. Confusion matrixes of CapMatch with r = 0.3 on three HAR datasets.

to establish similarity learning on the lower- and higher-
level semantic information extracted. As the feature extractor
of CapMatch, the capsule transformer network can capture
sufficient local and global patterns of HAR data. With only
10% of data labeled, CapMatch performs the best among 15
semi-supervised algorithms, achieving an F1 value of 85.59%
on HAPT, 86.32% on WISDM, and 86.33% on UCI HAR.
With 30% of data labeled, CapMatch performs even better than
a number of classical supervised algorithms, achieving an F1

value of 88.00% on HAPT, 89.14% on WISDM, and 90.02%
on UCI HAR. In particular, on the WISDM dataset, CapMatch
outperforms all classical supervised algorithms for compari-
son, including SVM, KNN, GradientBoosting, Random Forest,
Decision Tree, and J48. That reflects the potential of CapMatch
to be applied to various real-world HAR problems.
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