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Significance

Different strains of the same 
prokaryotic species often show 
significant variation in gene 
content. Whether this variation is 
due to genetic drift or selection is 
not well understood. If the latter, 
we expect sets of genes to be 
consistently and repeatedly 
gained or lost together, or 
sequentially. We used machine 
learning to predict the presence of 
variable genes in a large set of 
Escherichia coli strains, using other 
variable genes as predictors. We 
find a large proportion of genes 
are predictable, suggesting 
selection plays a role in their 
acquisition, loss, and 
maintenance. We show that some 
genes are consistently associated 
with the presence or absence of 
others. These results have 
implications for understanding 
evolutionary dynamics in 
prokaryotic genomes.
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Pangenomes exhibit remarkable variability in many prokaryotic species, much of which 
is maintained through the processes of horizontal gene transfer and gene loss. Repeated 
acquisitions of near-identical homologs can easily be observed across pangenomes, 
leading to the question of whether these parallel events potentiate similar evolutionary 
trajectories, or whether the remarkably different genetic backgrounds of the recipients 
mean that postacquisition evolutionary trajectories end up being quite different. In this 
study, we present a machine learning method that predicts the presence or absence of 
genes in the Escherichia coli pangenome based on complex patterns of the presence or 
absence of other accessory genes within a genome. Our analysis leverages the repeated 
transfer of genes through the E. coli pangenome to observe patterns of repeated evolu-
tion following similar events. We find that the presence or absence of a substantial set of 
genes is highly predictable from other genes alone, indicating that selection potentiates 
and maintains gene–gene co-occurrence and avoidance relationships deterministically 
over long-term bacterial evolution and is robust to differences in host evolutionary 
history. We propose that at least part of the pangenome can be understood as a set of 
genes with relationships that govern their likely cohabitants, analogous to an ecosys-
tem’s set of interacting organisms. Our findings indicate that intragenomic gene fitness 
effects may be key drivers of prokaryotic evolution, influencing the repeated emergence 
of complex gene–gene relationships across the pangenome.

pangenomes | machine learning | evolution

Evolution by horizontal gene transfer (HGT) and differential loss causes remarkable variation 
in gene content in bacterial genomes, both within and between populations (1–5). Genes 
present in all genomes in a collection constitute the core genome, while genes that are found 
only in some lineages are accessory genes. The union of these two sets makes up the pange-
nome. Intraspecific HGT, mediated by plasmids, phage, and transformation account for 
most gene transfers into a genome. Though there has been some disagreement on the relative 
influences of random drift and natural selection on structuring pangenomes, it is understood 
that the presence or absence of specific genes (genetic background) can influence the presence 
or absence of others (6–8). Consequently, the content of every contemporary prokaryotic 
genome is an outcome of its history of vertical and horizontal gene transmission and has 
emerged via a combination of internal (intragenomic) and external (ecological) fitness effects 
(9) in addition to stochastic, nonadaptive evolution (genetic drift).

It is also unclear how evolutionary responses, say, to the acquisition of a gene by HGT, 
are sensitive, or robust, to differences in evolutionary history. In his book, “Wonderful Life: 
The Burgess Shale and the History of Nature” (10), Stephen J. Gould set out a thought 
experiment where the “tape of evolution” could be replayed from any point in history. He 
suggested that since evolutionary paths depend on unpredictable events, if we could replay 
history, it would not result in the same outcome each time. Many recent studies have suggested 
this view is too rigid. Experiments designed to mimic replaying of the tape, such as parallel 
evolution experiments, have suggested that historical contingency does indeed have an effect 
but that some aspects of evolution are deterministic—i.e., they are likely to happen each time 
we replay the tape (11–15). Until now, it has not been obvious how, or even if, the 
contingency-deterministic question relates to prokaryote genome evolution. In prokaryote 
pangenome evolution, repeated HGT can introduce homologs of the same gene family into 
divergent genomes that contain unique but overlapping sets of genes. The incorporation of 
these genes into different genetic backgrounds allows us to address the contingency-determinism 
question through retrospective analysis of the subsequent outcomes. We identify a determin-
istic outcome if all, or most, recipient lineages evolve in similar ways after gene acquisition, 
while the alternative is that prior events—divergence in gene content of the recipient 
genomes—would play the more important role, and postacquisition evolution of the different 
lineages would therefore be markedly different.
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In the context of this study, we define a deterministic evolution-
ary trajectory as the acquisition of a gene that in turn potentiates 
the acquisition, avoidance, retention, or loss of one or more other 
genes. In other words, certain evolutionary outcomes are highly 
likely, thanks to the influence of intragenomic selection on geno-
types. Repeated acquisition and loss of a gene, while necessary, is 
insufficient to imply deterministic evolution. Hallmarks of deter-
minism would include the emergence of repeated biases in gene 
content, including the selective recruitment of another gene, or 
selective loss of another gene, following horizontal transfer. Owing 
to the prominent role of stochastic processes in evolution, it is 
unlikely that gene content evolution is entirely deterministic or 
entirely driven by contingency, but rather it falls somewhere on the 
spectrum between both extremes. The question is which end of the 
spectrum is closest. Today, several thousand complete prokaryotic 
genomes are available, providing enough data to address the issue. 
Therefore, we can ask whether a gene’s presence or absence in a 
genome is predictable, based solely on the gene content of the rest 
of a genome. This would imply deterministic evolution. Alternatively, 
if gene presence or absence is not predictable, it is because its pres-
ence is either contingent on unaccounted differences in evolutionary 
history or is solely driven by genetic drift. We acknowledge that 
HGT and loss is not the only way that gene content can evolve in 
a pangenome. Other forms of mutation including single nucleotide 
substitutions are clearly influential in bacterial evolution (see ref. 
16), and this may affect the ways in which genes co-occur or avoid 
each other. However, here we focus exclusively on gene gain, occur-
ring usually through transfer, and loss.

Several software programs have been developed to find coev-
olving gene pairs and to infer coevolving modules (17–22). 
However, gene presence or absence in a genome may be influenced 
by a mix of positive and negative intragenomic effects beyond just 
pairwise correlations. To incorporate these more complex and 
subtle patterns, we used a Random Forest approach (23). Random 
Forests aggregate information from individual decision trees, 
which themselves summarise the conjunction of features not just 
pairwise comparisons, that lead to predictions of gene presence 
or absence.

A Random Forest approach can assess whether inferences are 
generalisable. The model that we use to predict gene presence or 
absence is parameterised on a training dataset and evaluated on a 
test dataset (24). If the model built using the training dataset does 
not describe the patterns found in the test set, it is probable that 
the pattern is an artefact of the training set, and the model should 
be considered inadequate. However, if the model makes accurate 
predictions in the test set, it appears to describe general properties 
of the entire dataset. Finally, Random Forest models make predic-
tions in a directed manner, where one gene might predict the pres-
ence or absence of another, meaning that we can say whether a gene 
is predictable, and if so, we can also identify its predictors.

In this paper, we demonstrate that a substantial proportion of 
Escherichia coli accessory genes can be predicted by the other genes 
present. E. coli has a large accessory genome (25, 26) and occupies 
a wide range of niches (27). The E. coli pangenome has evolved 
divergent gene content over time—so much so, that a gene that is 
horizontally transferred from one E. coli to another will often find 
itself in a considerably different ensemble genetic background. We 
have analysed the predictability of gene content evolution following 
the repeated transfer of genes into these diverse genetic backgrounds. 
This is a natural equivalent of what Blount, Lenski, and Losos called 
a “historical difference experiment” (11). We have typified the effects 
of accessory genes’ presence on the presence or absence of other 
genes into three categories typically used by macroecologists to 
describe interactions between species. McInerney defined mutualism 

as a situation where two or more genes benefit from the association 
(9). Here, we define putative mutualism as two genes predicting the 
presence of one another and each gene similarly influencing the 
likelihood of the other’s occurrence. This could be due to a genuine 
beneficial relationship between the two genes. However, they might 
also both benefit from a common factor, which doesn’t necessarily 
have to be another gene. Commensalism refers to the situation where 
one gene strongly depends on the presence of another, but the reverse 
dependence is much weaker or nonexistent. Competition is when 
two genes appear to avoid being in the same genome. Note that we 
are not attributing specific behaviours to genes; these categories 
merely serve to describe observed patterns.

Materials and Methods

E. coli genomes were downloaded from the National Center for Biotechnology 
Information (NCBI) genome database (28) using the NCBI command line utility 
“datasets” 12.17.2 accessed 01/05/2022. All annotated E. coli genomes were 
downloaded provided that they were of the highest completeness level (com-
plete). If a genome had been assembled by both the GenBank and RefSeq 
methods, the GenBank (GCA) annotation was maintained; however, if only a 
RefSeq (GCF) annotation was in the database, this was retained. The final dataset 
consisted of 2,341 genomes. The full list of accession numbers is included in 
SI Appendix, Supplementary List 1.

Genomes were re-annotated with PROKKA version 1.14.6 (29), employing the 
“bacteria” annotation mode. We applied an E-value threshold of 10−9 and man-
dated a minimum query coverage of 80% for assigning functional annotations. 
The E. coli pangenome was inferred using Panaroo version 1.2.9 (30) with the 
mode set to sensitive. It was important to include rare genes, owing to the pos-
sibility that they would have important effects on the prediction of other genes.

The gene presence–absence matrix produced by Panaroo was processed so that 
genes present in more than 99%, or less than 1% of genomes were removed. The 
matrix was further modified by converting gene names to “1” and empty fields 
to “0” so that 1 represented presence and 0 represented absence. In addition, 
genomes with identical patterns of gene presence and absence were collapsed 
into the same vector. Genes with identical presence-absence patterns (PAPs) across 
our genome sample were also collapsed into gene family groups (SI Appendix, 
Table S1). Essentially, this meant that both the features and predicted variable in 
these analyses are PAPs rather than genes per se, most of which were represented 
by only one gene but some of which were represented by multiple genes. The list 
of genomes with nonunique gene repertoires is found in SI Appendix, Table S2.

To minimise the impact of phylogeny on understanding predictability, repeat-
ability, and contingency, we impose the requirement that we only study genes 
whose distribution is not “clumped” on one or a few clades. A backbone phylogeny 
was inferred in order to evaluate the distribution of gene content across the tree. 
Alignments of universal single-copy genes were constructed using MAFFT version 
7.490 (31). The resulting 337 gene alignments were concatenated to form a super-
alignment and a maximum likelihood phylogeny was reconstructed using IQTree 
2.2.0 (32) with extended model selection (33) and 1,000 ultrafast bootstrap rep-
licates (34). The tree was rooted at the midpoint. To assess the distribution of each 
gene on this tree, we calculated Fitz and Purvis’ D statistic (35), retaining only those 
predicted genes with a D statistic greater than zero, though source nodes could still 
have D < 0. To contextualise the meaning of the D statistic, we also calculated the 
parsimony score for each gene using PAUP v4.0a (36). This metric represents the 
minimum number of times a gene has shifted from present to absent or absent to 
present along the phylogeny. Filtration of the edges was carried out using Sqlite3 
(37). In practice, we only study genes that have changed character state from pres-
ent to absent or vice versa on the tree at least 8 times and where D is >0.

A model of gene presence or absence was inferred using Random Forests. 
Prediction models for each PAP were calculated separately, meaning that the 
number of times that our Random Forests were trained was equal to the number 
of PAPs in the processed matrix. For each PAP being predicted, the genomes were 
randomly split into a training set, equal to 75% of the genomes and a test set of 
the remaining 25%. These sets were stratified by the gene presence–absence state 
being predicted, meaning that the proportions of genomes with any given gene 
being present or absent remained approximately the same in the training and the D
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test datasets. These test and training datasets were assigned independently during 
the prediction of every PAP in every analysis. Decision trees were then generated by 
taking a random sample of genes with size equal to the square root of the number 
of genes in the dataset and the gene that most evenly split the training set out 
of this subset formed the first node in the tree (according to ref. 38). This process 
was repeated on each side of each decision node until either the maximum depth 
was reached or the remaining sample of genomes all had the same state for the 
gene in question. The impact of varying the number of trees produced and their 
maximum depth was empirically assessed based on the average effectiveness 
of the analysis in predicting the presence or absence of each gene (SI Appendix, 
Fig. S1). We chose the maximum depth and number of trees above which the 
performance of the models on the test set did not increase substantially. For the 
analyses in this manuscript, including those where the dataset was downsampled, 
we used 1,000 trees with a maximum depth of 16 nodes per tree.

For each gene (or set of genes with the same PAP), a prediction of either its 
presence or its absence was obtained for each genome in the test set according to 
the model generated using the training set. For each gene, four performance met-
rics were taken. These were Accuracy, Precision, Recall, and F1 score, all defined 
according to ref. 39. As our classification algorithm has two classes, we recorded 
a version of recall, precision, and F1 score separately for both the gene presence 
and for the gene absence classes.

In addition to performance statistics, the Gini importance (40) of each gene in 
predicting each other gene was added to an n by n matrix where n is the number 
of PAPs in the dataset. Here, the Gini importance is the contribution of a predictor 
PAP in separating the dataset into genomes where the test gene is present and 
those where it is absent averaged over all trees in the Random Forest. This Gini 
importance value can be used as a measure of the strength of the impact of the 
predictor gene on the presence/absence state being predicted. This statistic is 
appropriate when the predictor variables have two classes, as is the case here (41). 
All machine learning algorithms were implemented using the scikit-learn Python 
module version 1.0.1 (38). Code is available at https://github.com/alanbeavan/
pangenome_rf (SI Appendix, Fig. S2).

In principle, it is possible that a gene’s presence may be predictable purely 
due to coincidental correlations arising by random transfer and loss across the 
phylogeny. The number of predicted genes occurring in this way can be thought 
of as a baseline level of false positives. We simulated the presence or absence 
of genes on each tip of the tree according to an nonreversible All rates Different 
model which allows for a different rate of 1-to-0 and 0-to-1 transitions (see ref. 
42). For each gene family, the substitution matrix was derived from the gene 
presence and absence patterns observed across the phylogeny. This was achieved 
using the “fitDiscrete” function from the “geiger” R package (43). Following this, a 
presence and absence pattern for each gene was simulated using the “simulate_
mk_model” function, which is part of the castor R library (44). For simulation, the 
probability of the gene being present at the root of the tree was equal to the root 
probabilities inferred by IQTree (32). We employed ancestral state reconstruction 
and extended model selection and used the phylogeny inferred in this study as 
a fixed topology. Simulations were conducted 100 times and then analyzed in a 
manner similar to the empirical data. However, for computational efficiency, only 
those Presence-Absence Patterns (PAPs) with a high F1 score (as determined in 
the post-processing of the network) had their D statistic estimated.

Postprocessing the Network. Initially, all relationships between PAPs with a 
GINI importance of less than 0.01 were removed from each network examined. 
This threshold is arbitrary, chosen to restrict the number of gene–gene relation-
ships to the most highly ranked, a number that could be visualised.

Co-occurrence was distinguished from avoidance according to the effect of the 
predictor gene on the likelihood of the predicted gene’s presence. If the frequency 
of the target was higher when the source was present, the relationship was set as 
“co-occurrence.” If it was lower, then the relationship was flagged as “avoidance.” 
To ensure that our model only contained strongly predicted relationships, we kept 
only those edges where the target node was classified as accurate, which here 
means that the F1 score for both classes (present and absent) was greater than 
or equal to 90% in the test set.

Artefactual splitting of de facto gene families can, in principle, take place dur-
ing pangenome construction. Therefore, using BLASTn (45, 46), we subjected the 
sequences of each gene family involved in any apparent avoidance relationship to 
a comparison with the gene family they avoid. A total of 563 gene families (before 

filtering for performance and D) featured at least one sequence that was iden-
tical to a sequence placed in a different family. Gene families with this property 
were therefore removed from our results. After this step, any two sequences from 
avoidant gene families never share identity of at least 50% of their nucleotides or 
produce a significant BLAST hit with an associated E-value < 10.

Functional Classification of Genes and Enrichment Analysis. Eggnog map-
per version 2.1.8 (47) was used to assign gene ontology terms [go-basic release 
2022-07-01 (48, 49)], and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway (50, 51) terms for each gene included in this analysis. This applied to 
genes with a genome occupancy ranging between 1% and 99%. Diamond-
BLAST (52) was used to search the eggnog mapper database for sequences with 
an E-value <10−5. For functional enrichment analysis, the program used was 
find_enrichment.py which is part of the GOATOOLS Python library (53).

Calculating Physical Linkage between Genes. The physical distance between 
two genes was measured in the number of genes separating them, rather than 
base pairs. The position of each gene of the pair was extracted in each genome 
from the Panaroo output (30). For each pair of genes, the distance separating 
them was defined as the minimum distance either going clockwise or going anti-
clockwise around the circular chromosome. Genes present on different elements 
(e.g., chromosome and plasmid) were also enumerated in this way.

Categorising Accessory Gene Dynamics. We placed observations of gene 
associations into three mutually exclusive categories. The first category was 
putative mutualisms, where two or more genes predict each other’s presence 
and the strength of the prediction was similar in both directions, with the F1 
statistic greater than or equal to 0.9 and the D statistic is greater than zero. For 
commensalisms where the presence of one gene was highly dependent on the 
presence of another, but the reciprocal dependency was either far weaker or non-
existent, the more abundant, or “host gene,” must have been present in almost all 
(>= 99%) genomes where the putative “commensal” was present. Additionally, 
the proportion of genomes without the commensal where the host was present 
must have been at least 20% of the proportion of genomes in the full dataset 
containing the host. That is, if the host gene occupied 50% of the genomes in 
the full dataset, it must have been present in 10% of the genomes where the 
commensal gene was absent. Otherwise, we did not classify a relationship as 
putatively commensal. If a gene–gene association was classified as commensal, 
it could not be classified as putatively mutualistic. Finally, we considered two 
genes to be putatively in competition or antagonistic of one another when the 
absence of one gene strongly predicted the presence of the other or vice versa, 
i.e., any pair of genes where the predicted gene passed the thresholds described 
above and was found at a lower frequency when the predictor gene was present.

Data Visualisation. Gephi v0.10 (54) was used to visualise networks. Network 
layout was achieved using the Fruchterman–Reingold layout algorithm (55). Node 
ranking was assigned according to the PageRank (56) algorithm weighted by 
Gini importance of each incoming arc. A considerable amount of variation was 
observed in the weight ascribed to the nodes on this network when we employed 
the PageRank approach to ascertain node importance. Specifically, to attach a 
ranking to a node, the algorithm combines the number of incoming arcs, the 
weight of the arcs, and the importance of the source nodes (56). Node size in 
Fig. 1 is proportional to node rank, as judged by the PageRank algorithm. Other 
graphics were produced using custom Python or R scripts.

Results

A Substantial Subset of Accessory Genes in E. coli Can Be 
Predicted Accurately. The E. coli pangenome inferred from 
2,241 genomes in this study contained accessory gene families 
with 12,840 unique PAPs that were present in more than 1% 
and less than 99% of genomes and were hence included in this 
study. 56,579 gene families were inferred by Panaroo but 28,774 
genes were not included in the analysis because they were present 
or absent in over 99% of genomes. These were mostly very rare 
genes. Of the remaining 27,806 genes, 19,137 had a presence–
absence pattern that was shared by at least one other gene and 
were hence collapsed into 4,172 presence–absence patterns in D
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addition to 8,668 genes with unique distributions. The presence 
or absence of 3,922 (30.5%) PAPs could be accurately predicted 
(both F scores >= 0.9) in the test set after the Random Forest 
model had been trained. From this accurately predicted dataset, 
a total of 2,144 (54.7%) had an associated D-statistic greater 
than 0, meaning that they were distributed widely on the 
tree. The remaining 1,778 PAPs were “clumped” on the tree, 
and therefore, it is more difficult to ascribe causality to their 
association, when a very good explanation might be that they 
were simply acquired at more or less the same time and have 
been vertically inherited together since then. SI Appendix, Fig. S3 

shows that although the D score is not directly proportional to 
parsimony score, it correlates strongly, meaning that all 2,144 
PAPs with a D score of greater than or equal to zero also had 
a parsimony score of at least eight though most had a much 
higher score (SI Appendix, Fig. S3). This means that we have 
only examined predicted genes which have been acquired and/
or lost at least 8 times across the pangenome, and furthermore, 
we insist that their distribution is widespread and not localised 
(35). We focus on this set of 2,144 PAPs because they manifest 
a broad, patchy distribution across the phylogeny, stemming 
from a combination of lateral gene transfer and loss, and we can 

Fig. 1. The coincident relationships of predictable genes and their predictors. The nodes are gene families, or groups of gene families with the same PAP, and 
the edges are coincidence relationships with the arrow pointing at the node whose presence is predicted by the other. Edge thickness is proportional to the GINI 
importance value scaling linearly from the thinnest at 0.01 to the thickest at 0.062, while node size is proportional to the PageRank (56) value for that node. The 
PageRank algorithm has been applied here to evaluate the relative importance of each node within the network. A larger node size indicates a higher PageRank 
score, suggesting that the node has more influence or is more central in the network. Node size scales linearly from the smallest with a PageRank of 0.000043 
to the largest with 0.002945. This visualisation aids in quickly identifying key nodes that play pivotal roles in the connectivity and flow of the network. Node 
colour indicates community as identified by the Louvain algorithm (57). This figure can be thought of as a high-level summary of the results of this analysis, and 
attention should be paid to the number of nodes in a community, the discrepancy in the size of nodes, and the number of edges emerging from nodes, in this 
figure, source nodes can have a D score < 0. For a version of this figure with these nodes removed, see SI Appendix, Fig. S8.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
2.

19
.1

65
.1

99
 o

n 
Ja

nu
ar

y 
2,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
82

.1
9.

16
5.

19
9.

http://www.pnas.org/lookup/doi/10.1073/pnas.2304934120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304934120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304934120#supplementary-materials


PNAS  2024  Vol. 121  No. 1  e2304934120� https://doi.org/10.1073/pnas.2304934120   5 of 10

accurately predict their presence or absence based on the other 
genes present in the genome.

To evaluate whether the presence–absence matrix of 12,840 
uniquely distributed PAPs is no better structured than random 
expectation based on the underlying phylogeny and gene gain and 
loss rates in this study, we compared results from the original data 
to those simulated based on inferred transition rate matrices. 
Simulated datasets were analysed in the same way as the empirical 
data. Treating this as our null hypothesis, we can evaluate the 
extent to which, even after filtering by the D statistic, the predict-
ability of a gene’s presence or absence can be explained by chance. 
In each simulated dataset, several genes pass the F1 score thresh-
olds but the majority of these can be explained by a low D score 
and are hence removed from the set of accurately predicted genes. 
The number of genes that successfully pass both thresholds is 
between 1.0% and 1.7%, which can be thought of as a false dis-
covery rate. The empirical analysis yielded 16.7% of genes accu-
rately predicted with D > 0 (SI Appendix, Fig. S4). Accordingly, 
we can reject the hypothesis that these empirical observations of 
associations have arisen solely due to chance in our dataset or that 
the structure of the pangenome dataset has no more gene–gene 
correlations than the structure of randomly assembled data.

In principle, we would expect the number of accurate predictions 
to increase with increasing quantity of data, provided that the pre-
dictions being made are not artefactual. Hence, if downsampling 
the dataset results in a decrease in predictions being made accurately, 
it would be reasonable to infer that the addition of more data would 
result in more accurate predictions being made. Therefore, we car-
ried out a sensitivity analysis on dataset size. We randomly elimi-
nated 50%, 75%, 90%, and 95% of the genomes in the dataset and 
then repeated our Random Forest prediction 10 times per dataset. 
In each case, reducing the number of genomes substantially and 
significantly reduced the number of PAPs that were accurately pre-
dicted, while having a much smaller effect on the number of total 
PAPs that could be analysed. For example, the average number of 
accurately predicted PAPs, over 10 repeated analyses after filtering 
PAPs with D score < 0, using 50% of the genomes was 1,650/12,642 
(13.1%) compared with the 2,144/12,840 (16.7%) in our full anal-
ysis. When only 5% of genomes were included in the study, an 
average of 713/11,644 (6.1%) PAPs were predicted accurately 
(SI Appendix, Fig. S5). This suggests that predictions would be likely 
to improve with the addition of more genomes.

The links between the 2,144 predictable PAPs, were used to 
construct a network with 33,426 edges featuring all well-predicted 
target nodes and their predictors (Fig. 1). This network consisted 
of 243 connected components ranging in size from 2 to 248 nodes, 
featuring both coincident and avoidance edges sensu ref. 19. By 
considering only the coincident relationships (33,138 out of 
33,426 edges), we found 240 connected components containing 
between 2 and 244 nodes. Taking only avoidance relationships, 
28 connected components were generated with a range from 2 to 
22 nodes in size. As nonunique gene patterns are collapsed into 
one entity, both in the analysis and presentation of results, some 
of the nodes represent multiple genes. Out of the well-predicted 
PAPs, 827 patterns were observed in more than one gene. In total, 
independent of whether they are well predicted by our Random 
Forest model or not, 19,137 genes had nonunique PAPs and were 
collapsed into 4,172 patterns that were then used both as features 
for prediction and as patterns to predict.

Owing to the stochastic nature of the Random Forest approach, 
we repeated the analysis 100 times, each time splitting the data 
into training and test sets differently. Out of the 12,840 accessory 
genes with unique PAPs analysed, 5,020 were never classified as 
predictable, 939 were always classified as predictable, 4,395 were 

classified as predictable in only some analyses (SI Appendix, 
Fig. S6), and the remaining 2,486 had a D score < 0. To under-
stand what makes a gene’s presence or absence predictable, we 
compared the 939 PAPs that were always well predicted the least 
predictable gene families in the dataset, which we defined as the 
set of genes that never passed our thresholds of predictability in 
any of the 100 iterations of the RF algorithm. To ensure a balanced 
comparison, we took the 939 PAPs with the lowest average com-
bined F1 score over the 100 repeats to generate two equally sized 
datasets representing the most and least predictable genes.

Following the functional annotation of genes using EGGNOG 
mapper (47), analyses of enrichment of Gene Ontology (48), and 
KEGG (50) pathways were performed. Using P-values that were 
corrected by false discovery rate, the set of most predictable genes 
were not enriched in any function, cellular location, or process 
and were not enriched in any gene ontology terms in either bio-
logical process, molecular function, or cellular compartment. 
Additionally, only two KEGG pathway terms were enriched in 
the consistently predictable genes. These were “bacterial secretion 
system” and “flagellar assembly.”

Among the 939 least predictable genes, 1 Biological Process 
term was enriched, and 22 were underrepresented, while for the 
cellular compartment terms, 0 were enriched, and 14 were under-
represented, and for molecular function, there were no enriched 
terms, while 4 were underrepresented. No KEGG pathway was 
found to be enriched or purified in this dataset after FDR correc-
tion. In total, 1 GO term was enriched in the low predictability 
set of genes, while 40 GO terms were significantly underrepre-
sented (SI Appendix, Table S3).

Given that the most predictable genes appear to contribute to a 
range of functions, we investigated the extent to which physical 
linkage determined their predictability. We compared the positions 
of the genes that shared an association and measured the distance 
between them (in numbers of genes rather than base pairs) as 
inferred by Panaroo. From these distances, linkage clearly plays an 
important role in the association of two genes (SI Appendix, Fig. S7). 
In the set of genes with the most accurate predictions, 68.7% of 
pairs of associated genes within the same genome are found to be 
separated by a distance of 10 genes or fewer. However, even in the 
most predictable set of genes, there are several occurrences of genes 
that are not closely physically linked with the genes that they are 
coincident with (10.4% of pairs of genes were separated by at least 
21 genes), so it cannot be the only factor at play. In addition to pairs 
of coincident genes on the same genomic element, there were 
17,714 coincident pairs of genes where one is featured on a chro-
mosome and another on a plasmid in the same genome.

The pangenome as an Ecosystem. Almost exclusively, the debate 
surrounding accessory genome evolution has been framed in terms 
of the “usefulness” of genes to their host or the quality of the fit 
between a particular gene function and the external environment 
in which the host is found. However, genes also have effects on one 
another, requiring us to consider higher level conceptualisation of 
the dynamics of gene gains, losses, and the intrinsic and extrinsic 
forces that shape pangenome evolution. Tansley (58) developed 
the theory of the ecosystem, progressing the study of ecology from 
a focus on individuals to sets of interacting organisms. We here 
attempt to lay the groundwork to do the same in the context of 
pangenomes by characterising gene–gene relationships according 
to their patterns of occurrence. This aids our understanding of gene 
content evolution by not only showing the extent of intragenomic 
influences on gene fitness but also how complex relationships can 
influence gene content evolution both on the scale of the whole 
accessory genome and for specific examples of sets of genes (9).D
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We investigated three signature relationships within the E. coli 
pangenome that we term putative mutualisms, commensalisms, 
and competition. We have illustrated these relationships using a 
small subset of the data, outlined in Fig. 2. By far, the most fre-
quent category of relationship is a putative mutualistic coincident 
relationship where the joint presence of a pair of genes in genomes 
is significantly higher than expected from their overall frequency 
in the dataset. We recovered 20,915 putatively mutualistic coin-
cident relationships out of our total of 33,138 inferred relation-
ships (Fig. 2 A–C). In our network analysis, we observed a total 
of 2,073 instances of commensal relationships. In these relation-
ships, one gene, typically the less abundant of the pair, generally 
depends on the other, while the reverse dependency is much 
weaker or nonexistent. This was determined as outlined in the 
Materials and Methods section. Commensal relationships can be 
seen in Fig. 2 between PAP pairs DA, DB, DC, EA, EB, and IH. 
Finally, competition relationships, which are defined as pairs of 
genes that avoid each other, were observed in 288 cases.

Twenty connected components in our graph consist of genes 
that show both competition and coincident relationships in which 
two coincident gene sets have a reduced probability of being in 
the same genome at the same time (Fig. 2). Although the set of 
competition relationships is the smallest of our three categories, 
it represents the interesting situation where one gene makes a 
genome much less hospitable to another. In Fig. 2, we see that 
nodes F and G both predict the absence of node E. The reciprocal 
is not seen, though an analysis of the importances shows that the 
reciprocal relationship for E and F is just below our cutoff value 
(0.00925, when the cutoff was 0.01). To ensure avoidance rela-
tionships that we identified are genuine, we carried out a post hoc 
analysis of the avoiding gene pairs, and none of the genes share a 
sequence identity of at least 50% between each family or an E 
value < 10.

In Fig. 2, we outline a set of PAPs that represent one or more 
gene families, that predict the presence or absence of at least one 
other gene family. In the cases outlined, none are plasmid borne. 
In addition to being good examples of putative mutualism, com-
mensalism, and competition, the genes that manifest these PAPs 
are also of translational importance. For example, PAP E is the 
“pac” gene. During a cell’s response to penicillin, the Pac protein 
catalyses the hydrolysis of penicillin, forming six-aminopenicillanate, 
which is also important in the manufacture of synthetic penicillins 
(60, 61). The presence or absence of the encoding gene is predicted 
accurately in E. coli genomes using our Random Forest approach. 
Using parsimony reconstruction, we estimate that there have been 
at least 72 changes from present to absent or absent to present for 
this gene family across the phylogeny. Furthermore, the analysis of 
its distribution across the tree shows that it has a D score of > 0. 
Three other PAPs in our dataset are strongly predictive of the 
presence or absence of pac. These are PAPs G [group_13180 (not 
functionally annotated)] and F (symE), which are single gene fam-
ilies, and their presence strongly predicts the absence of pac, and 
the set of genes indicated by node A (farR, hpcG, ttuB, hpcB, hpcE, 
hpcD, hpcH_2, iolA, and hpaB) that, conversely, strongly predict 
the presence of pac. Of these three PAPs, perhaps the most striking 
relationship is the avoidant relationship between PAP F, the gene 
symE, which is more abundantly represented throughout the data-
set, yet it displays a genome occupancy pattern that is completely 
mutually exclusive with the pac gene. There are no genomes where 
both genes coexist, although there are several where neither of the 
genes are present. symE has a parsimony score of 167 and is a 
translational repressor associated with the SOS response (62).

We also outline the predictive relationships between four other 
PAPs (Fig. 2 J–M). To annotate these genes, a representative 

protein sequence for each gene family was compared with the 
NCBI nonredundant protein database using BLASTP. PAP J is 
annotated as lgoT, which is an MFS Transporter. PAP K is anno-
tated as mdtM, a multidrug efflux MFS transporter. PAP L is a 
collection of three distinct families that co-occur perfectly. PAP 
L includes nhaK, a Na+/H+ antiporter, siaP, which is a 
C4-dicarboxylate TRAP transporter substrate-binding protein, 
and siaT which is a TRAP transporter small permease. PAP M is 
annotated as dctM:siaM, which is a TRAP transporter large per-
mease. The presence of PAP J (lgoT) is predicted by the presence 
of PAP K (mdtM) (though the reverse is not true). Both PAP J 
(lgoT) and PAP K (mdtM) predict the absence of PAPs L and M 
(collectively, nhaK, siaP, siaT, and dctM:siaM), with all the genes 
in PAPs L and M predicting each other’s presence.

The most likely observation for any randomly picked genome 
from this study is that its genome will include either lgoT and 
mdtM (both MFS transporters) together (1,882 genomes) or 
nhaK, siaP, siaT, and dctM:siaM (a sodium ion/proton antiporter 
and parts of the TRAP transporter complex) together (213 
genomes). While this canonical pattern of either one group or the 
other group is by far the most likely motif, the data are somewhat 
noisy, with mdtM co-occurring with at least one gene it normally 
avoids in 115 genomes. Similarly, the co-occurrence relationships 
are noisy, for example, there are 65 genomes that contain lgoT but 
not mdtM compared with the 1,882 that contain both. The most 
consistent pattern of avoidance is the relationship of lgoT with the 
three genes siaP, siaT, and nhaK, which never co-occur, though 
there are 23 genomes where none of these genes are present. This 
means that we have found evidence that a multidrug efflux trans-
porter and a sodium–hydrogen ion antiporter strongly predict the 
absence of the other. Only eight genomes contain none of the 
genes depicted in Fig. 2 nodes J-L. Each gene in this set exhibits 
dynamic loss and gain, as indicated by their parsimony scores: 
lgoT (63), mdtM (43), siaP, siaT, and nhaK (57), and dctM:siaM 
(55). This pattern suggests that the relationships between these 
genes have evolved independently multiple times throughout evo-
lutionary history.

Discussion

A mechanistic explanation for prokaryotic pangenome origin and 
evolution is emerging (64, 65). Here, we specifically focussed on 
detecting pangenome-wide repeated and predictable patterns of 
evolution using a Random Forest approach. In effect, we have 
asked whether gene content evolution is predictable and whether 
within-species evolution is constrained by intragenomic forces. 
The benefit of the Random Forest approach is twofold. First, it 
allows us to test our models of gene presence and absence on an 
independent test set that is not used to generate the model. This 
means that genes can be classified not only according to the genes 
that influence their likelihood of occurrence but by whether their 
prediction is generalisable. This is a study that shows that gene 
presence or absence is predictable based only on other genes in 
the genome. Second, Random Forests can consider complex rela-
tionships as well as simple pairwise correlations. For example, a 
hypothetical gene A may predict the presence of gene B only in 
the absence of gene C. These two aspects of the method differen-
tiate it from previous methods (17–22).

Though it was necessary to filter the dataset to remove rare and 
almost universal gene families (almost 50% of the accessory 
genome), we identified strong predictors for approximately 30% 
of the remaining gene families, roughly half of which could be 
explained by correlation with the phylogeny, leaving 16.7% of 
pangenome as both predictable and distributed widely across the D
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species. While this leaves much of the accessory genome in a 
category of nonpredictable, given the current data and method of 
analysis, it must be viewed in the context that we have only used 

a single species pangenome and therefore might ask how the inclu-
sion of additional species and datasets might lend additional pre-
dictive power. Given that downsampling our dataset reduced the 

I J K L MHF GEDCBA

J L*

MK

A*

B

C

DD

E

FF

G

H

I*

PPuuttaattiivvee MMuuttuuaalliissmm
CCoommmmeennssaalliissmm

AAvvooiiddaannccee

Fig. 2. Relationships between selected presence–absence patterns in the E. coli pangenome. On the top are a network of nodes that represent the presence–
absence patterns of the columns directly beneath, as well as the connections between the nodes that represent significant co-occurrence and avoidance 
relationships. Below left, the backbone phylogeny of the genomes in this study is positioned such that the rows of the heatmap to its right represent the presence 
or absence of nodes according to the label above each column. In each, the colour of presence is indicated by the colour of the text labels in the network and 
the colour of absence by the background colour of the node. Columns are coloured differently for differentiation rather than their properties. The colours of the 
arrows in the network indicate the type of association inferred. The figure we produced was created with the help of a modified version of the program ‘roary_plots.
py’, which is a component of the Roary suite of tools. (59). The gene annotations are as follows. Node A: a set of genes with identical presence–absence patterns 
including farR, hpcG, ttuB, hpcB, hpcE, hpcD, hpcH_2, iolA, and hpaB. Node B: hpaC. Node C: rhaR_2. Node D: group_39613 (not functionally annotated). Node E: 
pac. Node F: symE. Node G: group_13180 (not functionally annotated). Node H: group_19718 (not functionally annotated). Node I: A set of genes with identical 
presence–absence patterns including group_19717, hsdM, and mrr (see SI Appendix, Table S4 for full annotations). Node J: lgoT. Node K: mdtM. Node L: A set of 
genes with identical presence–absence patterns including group_24769 (SiaP), siaT, and nhaK. Node M: dctM:siaM (see SI Appendix, Table S5 for full annotations).
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proportion of gene families that could be well predicted, it is likely 
that the addition of more genomes would aid prediction, and the 
effect of broadening the taxon sampling would be of interest in 
future studies. The pattern of repetition and predictability that we 
observe across more than 2,044 gene families is compatible with 
a model of deterministic evolution and more difficult to reconcile 
with an evolutionary process dominated by contingent events. 
This compares with those gene families that we were not able to 
predict accurately for which we cannot rule out contingency on 
outside factors driving their evolution. Furthermore, given the way 
in which we have analysed the data, the reasons for observing such 
widespread predictability stem from intragenomic natural selection 
causing biases in the cohort of other genes that are acquired, 
retained, or avoided by a genome. Another possibility is that two 
(or more) genes are found together because they are both selectively 
beneficial in the same environment. Hence, when a lineage colo-
nises this environment, both genes are selectively recruited inde-
pendently. The reasons for co-occurrence and avoidance are largely 
speculative and would require complex experiments to decipher. 
Biased presence–absence patterns have been noted previously (19, 
21, 22, 66).

Throughout this study, we have been using the heuristic that 
homology is closely related to functional similarity and that the 
effects that genes have on one another are due in some way to the 
encoded functions of the proteins. Furthermore, we assume that 
these functions remain constant over time, despite evolutionary 
changes in the gene sequences. This is of course unlikely to be com-
pletely accurate (67, 68). Our dataset almost certainly contains genes 
that are placed into the same family but have different functions 
and confer different fitness effects. This limitation would certainly 
weaken our ability to make accurate predictions, though only a small 
portion of the dataset has verified function. Indeed, mutation can 
change the function of genes without changing the gene family to 
which they are assigned (69, 70). It is outside the scope of this paper 
to assess the role of point mutation on the predictability of bacterial 
genome evolution, but we hope that this approach may be applied 
to aspects of genome evolution outside of HGT.

We note that a lot of gene families are not well predicted given 
the current dataset and method of analysis. Our dataset might be 
too small to supply enough power for statistical inference, or 
indeed, intragenomic fitness effects do not overcome random 
genetic drift. Downsampling the dataset produced a significant 
reduction in prediction power. While the outcome with signifi-
cantly larger datasets is uncertain, the link between dataset size 
and predictive power suggests that increasing the dataset might 
enhance prediction accuracy. Future inclusion of other factors 
such as external environment, gene expression levels, protein inter-
action, phenotypic, or modification data may also aid prediction. 
Recently, the development of gene-specific evolutionary rate mod-
els has shown a significant level of metabolic predictability (71). 
Of course, a gene whose presence or absence is nonpredictable in 
the current analysis might continue to be nonpredictable in enor-
mous datasets, precisely because it is not impacted by co-occurring 
genes.

We have taken great care to minimise the confounding effect 
of genome relatedness. By applying the D-score filter (35), all gene 
families in our predictive model have a history of being gained or 
lost at least eight times across the pangenome, and furthermore, 
the distribution of any gene family cannot be “clumped” or 
restricted to just one part of the backbone tree. This is not a perfect 
way to eliminate the effect of phylogeny on the associations, but 
by coupling this approach with a very high threshold for predict-
ability, we end up with an approach that shows correlations that 
are not just because a pair of genes happen to be in the same clade. 

Furthermore, by simulating gene presence–absence on the tree we 
inferred, we observe that chance relationships can only account 
for ~1.5% of genes’ predictability. Stricter D score cutoffs would 
reduce this false discovery rate but at the expense of failing to 
identify some genes that are truly predictable. Similarly, decreasing 
the cutoff would identify a larger number of truly predictable 
genes but is likely to raise the false discovery rate.

We arbitrarily chose a conservative Gini importance cutoff of 
0.01 though there is no standard procedure for choosing a cutoff. 
Gini importance is a measure of the reduction in ambiguity of the 
test variable (gene presence or absence), with each node that com-
prises the prediction variable (a predictor gene), averaged over the 
trees in the forest. A Gini importance of 0.01 means that the ambi-
guity of the predicted gene is reduced by an average of 1% in each 
tree (bearing in mind it will only be sampled in a subset of trees). 
Gini filtering limited the number of associations to the strongest 
33,426 connecting 4,067 nodes, after filtering before filtering by 
model performance and D-statistic. A weaker cutoff value of 0.005, 
for example, would have included 70,581 edges connecting 6,830 
nodes. The distribution of edge strengths suggests that the number 
of edges will increase exponentially as that threshold is reduced 
linearly (SI Appendix, Fig. S3). Similarly, we chose an arbitrary, 
conservative, cutoff of 0.9 for accuracy and F1 score for both classes. 
Applying an accuracy threshold of 80% and an F1 score threshold 
of 0.8 would have resulted in the inclusion of more than 70% 
additional genes and relationships. Under these criteria, the number 
of predictable genes with a D statistic greater than zero would have 
nearly doubled, increasing from 2,044 to 3,704.

Linkage clearly plays an important role in coordinating the 
cooccurrence of sets of genes, but it cannot explain all the results. 
Also, it is not clear whether linkage is the cause or a consequence 
of co-occurrence. According to the selfish operon theory (63, 72), 
we would expect two genes that provide a fitness benefit when 
found together in a genome to evolve to be physically closer 
together on the chromosome, so they are less likely to be separated 
via recombination events. The most likely explanation is that close 
linkage is both a cause and effect of being found together. However, 
in addition to gene family co-occurrence where linkage plays a 
role, there are thousands of examples of gene families cooccurring 
in a repeated manner where linkage clearly has not played a role 
throughout the evolution of the pangenome, either because the 
genes are separated by a long stretch of DNA or are on different 
genetic elements.

Genes avoiding being in the same genome is an established phe-
nomenon, with Bruns et al. (73), for example, showing that within 
the genus Salinospora biosynthetic gene clusters encoding iron 
siderophores avoid one another. In that case, the clusters encoded 
iron chelators with very different structures, but near-identical 
chemical properties, and avoidance most likely stems from func-
tional redundancy. In Fig. 2, we outline two situations where avoid-
ance is apparent. In PAPs J-M, both sets of genes encode proton 
antiporters. It is not clear whether the two sets of genes can func-
tionally complement one another, in which case avoidance might 
be caused by redundancy in the same way as the iron chelators in 
Salinosopra. It is also possible that the functioning of the two ant-
iporters either results in toxic effects when present together or they 
are competing for the same cellular resources, which would obvi-
ously result in a reduction in fitness for the organism that possessed 
both sets of genes, compared with a close relative that contained 
only one set of genes. It is also possible that one of the sets of these 
genes is preferable to the other in some environments, but in others, 
the reverse is true. For example, multidrug resistance can be con-
ferred by the presence of several sets of genes, none of which are 
functionally related but each of which is selected by the presence D
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of different antimicrobial drugs used in a treatment. Indeed, ecol-
ogy has been shown to be a major driver of HGT (74). The situa-
tion in Fig. 2 PAPs A-I is more enigmatic, with no obvious 
functional similarity between pac and symE. However, they are 
found separately in genomes far more often than expected, and 
furthermore, the appearance of one of these genes in a genome 
occurs simultaneously with the removal of the other and vice versa 
at least 30 times across the phylogeny (Fig. 2 PAPs E-F).

Using nomenclature and analogies from ecology, the diversity 
of motifs embedded in the Random Forest network analysis allows 
us to identify putative mutualistic, commensal, and competitive 
classes of relationship, (see ref. 9). In this sense, the pangenome 
exists as a broad ecosystem, with individual genomes acting as 
evolving localities, where genes can either potentiate or alternatively 
reduce the likelihood of the presence of another gene. Just like a 
macroecological system, we see groups of genes with strong recip-
rocal co-occurrence patterns which we call putative mutualisms. 
Sometimes, these are just pairs of genes, but they are often groups 
of more genes which all co-occur reciprocally. Focussing on puta-
tively commensal relationships, we identify specific examples where 
one or more genes appear to make a genome more hospitable to 
another or several other genes. In these cases, the more abundant 
gene is highly likely to arrive in the genome first or simultaneously 
with the less abundant gene. We also see many cases where the 
arrival of a gene into a lineage is concomitant with the loss of 
another gene, and this pattern is repeated across the phylogeny. 
There are several possible underlying reasons causing genes to pre-
dict the presence or absence of other genes, including functioning 
in a common pathway or process, redundancy, physical linkage, 
and shared evolutionary advantage in a new environment.

Ecosystems are known to be dynamic; they also tend to be 
resilient and to be somewhat resistant to overall change (75). In 

our analysis of the E. coli pangenome, we see features that are 
consistent with this perspective. We see a very dynamic system of 
gene gains and losses; we see repetitive gains of the same cohorts 
of genes, and we see the establishment of sets of relationships that 
are persistent through time and across the phylogeny. Due to the 
diversity of the E. coli pangenome, each time a gene is recruited 
to a new genome, it finds itself in a different, and sometimes 
substantially different, genetic background. Nonetheless, we 
observe repeated, predictable patterns of evolution following a 
gene’s transfer.

With respect to Gould’s “replaying evolution’s tape” thought 
experiment, our results lead us to suggest that it is likely that 
rewinding the tape back to the start of E. coli evolution would still 
result in hundreds or thousands of predictable events taking place 
that are not contingent on those highly unlikely events unique to 
each replaying of the tape. It is doubtful that the exact same evo-
lutionary trajectories would play out, but several motifs would 
emerge over time.

Other machine learning algorithms such as neural networks 
may also be able to improve predictions by finding more abstract 
or subtle patterns in the data. Employing these types of method-
ologies, combined with the identification of further predictor 
variables and their application to diverse, large datasets of bacte-
ria, archaea, or eukaryotes, represents promising future directions 
for enhancing our understanding of pangenome evolution.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.
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