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A B S T R A C T   

Monitoring rivers is vital to manage the invaluable ecosystem services they provide, and also to mitigate the risks 
they pose to property and life through flooding and drought. Due to the vast extent and dynamic nature of river 
systems, Earth Observation (EO) is one of the best ways to measure river characteristics. As a first step, EO-based 
river monitoring often requires extraction of accurate pixel-level water masks, but satellite images traditionally 
used for this purpose suffer from limited spatial and/or temporal resolution. We address this problem by applying 
a novel Convolutional Neural Network (CNN)-based model to automate water mask extraction from daily 3 m 
resolution PlanetScope satellite imagery. Notably, this approach overcomes radiometric issues that frequently 
present limitations when working with CubeSat data. We test our classification model on 36 rivers across 12 
global terrestrial biomes (as proxies for the environmental and physical characteristics that lead to the variability 
in catchments around the globe). Using a relatively shallow CNN classification model, our approach produced a 
median F1 accuracy score of 0.93, suggesting that a compact and efficient CNN-based model can work as well as, 
if not better than, the very deep neural networks conventionally used in similar studies, whilst requiring less 
training data and computational power. We further show that our model, specialised to the task at hand, per
forms better than a state-of-the-art Fully Convolutional Neural Network (FCN) that struggles with the highly 
variable image quality from PlanetScope. Although classifying rivers that were narrower than 60 m, anastomosed 
or highly urbanised was slightly less successful than our other test images, we showed that fine tuning could 
circumvent these limitations to some degree. Indeed, fine tuning carried out on the Ottawa River, Canada, by 
including just 5 additional site-specific training images significantly improved classification accuracy (F1 
increased from 0.81 to 0.90, p < 0.01). Overall, our results show that CNN-based classification applied to 
PlanetScope imagery is a viable tool for producing accurate, temporally dynamic river water masks, opening up 
possibilities for river monitoring investigations where high temporal variability data is essential.   

1. Introduction 

Rivers provide a multitude of ecosystem services, but also pose risks 
to property and life through flooding and drought events (Rinke et al., 
2019; Arnell and Gosling, 2016). Despite their importance, data about 
key characteristics of rivers (Hannah et al., 2011; Gardner et al., 2021) 
at spatial and temporal scales amenable to their management are not 
readily available. The dominance of field measurements in the river 
sciences often means cost and time constraints prohibit the kind of 
extensive records that would be required to understand such large and 

dynamic systems (Piégay et al., 2020). Consequently, river managers 
have increasingly turned to Earth Observation (EO) science, using 
remote sensing (Piégay et al., 2020; Pavelsky and Smith, 2008), to 
provide the necessary data. 

The crucial first step in calculating any river characteristic from EO 
data is extracting an accurate water mask. This foundational component 
governs all further analysis by defining which pixels contain exclusively 
water. Therefore, a typical data pipeline for the extraction of river 
habitat data from satellite imagery involves taking a satellite image, 
defining a water mask, and subsequently using the combination of this 
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water mask and the original image to calculatecharacteristics such as 
discharge, width, or temperature. (Pavelsky and Smith, 2008). 
Currently, many studies rely on historical water masks from pre- 
processed EO datasets (e.g., the Global River Width from Landsat 
dataset (GRWL; Allen and Pavelsky, 2018) or the Surface Water and 
Ocean Topography mission River Database (SWORD; Altenau et al., 
2021) that are static in time and are assumed to be centred on average 
bankfull river width (Allen and Pavelsky, 2015). However, in reality, 
water masks are dynamic, varying as a function of hydromorphic 
changes that occur in all river systems. Because manual delineation of 
water masks is laborious and time consuming (Mahoney et al., 2020), 
this leads to a need for automated procedures for generating water 
masks. 

Traditional methods of water mask creation include use of the Nor
malised Difference Water Index (NDWI; Sekertekin et al., 2018). Since 
the NDWI uses the green and near-infrared wavelengths (Mcfeeters, 
1996), it is suitable to use with data from the majority of satellite EO 
missions. Extracting water masks based on the NDWI involves using 
histogram thresholding methods that generate very little computational 
demand; however, this technique relies on the choice of specific 
threshold values that vary with region (Frazier and Hemingway, 2021). 
Even when automating the choice of threshold for individual images 
(Otsu, 1979), segmentation errors persist. This unwanted spectral 
response occurs most often in heavily vegetated or urbanised regions 
where shadows, and reflection patterns similar to water, disrupt the 
expected response (Zheng et al., 2021) which led to the development of 
the Modified NDWI (Xu, 2006). However, the MNDWI requires a Short- 
Wave infrared band, precluding its use with higher-resolution VIS-NIR 
commercial satellites (Planet Labs, 2018; Gleyzes et al., 2012). Algo
rithms such as RivWidth (Pavelsky and Smith, 2008) use computer 
vision-based techniques to smooth the results of these threshold 
methods (Ziou and Tabbone, 1998; Dougherty, 2020). By combining 
these methods with cloud infrastructure, the process can be extended 
globally in the form of RivWidthCloud and operationalised to be reap
plied to new imagery (Allen and Pavelsky, 2018; Yang et al., 2019). 
However, the RivWidth method is still built on the MNDWI water mask 
foundation (Zou et al., 2018) and thus inherits its limitations. Alterna
tively, some authors use fractional pixel analysis to help separate some 
of the complexity in the output from OTSU NDWI thresholding (Cooley 
et al., 2017) but these do not address the root problems with NDWI. 

As an alternative to thresholding methods, a variety of machine 
learning methods (Abburu and Golla, 2015) such as Support Vector 
Machines (Foody and Mathur, 2006) or cluster analysis (Genitha and 
Vani, 2013) have been considered for water mask generation. However, 
while these approaches generate acceptable results, especially at coarse 
resolutions, they have not as yet produced masks with the precision 
required for segmentation of higher resolution imagery. Furthermore, 
these algorithms are rarely sufficiently generalisable to be extended to 
‘big data’ (Ling et al., 2019) derived from satellite constellations. Yuan 
et al. (2021) hypothesised that Artificial Neural Networks (ANN) 
perform better than these other machine learning approaches by being 
able to “learn” sensor discontinuity. However, on their own, ANNs will 
suffer from the same issues with generalisability due to their tendency to 
specialise to their training location (Foody et al., 2003). 

While there are some drawbacks associated with these methods, 
these approaches have also demonstrated the power of remote sensing 
for water resource science and management. These studies have tended 
to use open-source data from Sentinel and Landsat sensors, which have 
provided spatially extensive research avenues for provision of river data. 
However, these EO data are intrinsically restrained by their coarseness 
in spatial and temporal resolution (Gleason and Durand, 2020; Jun
queira et al., 2021), which consequently limits their usefulness in 
characterising dynamic freshwater environments that change at very 
fine timescales. However, the recent development of EO satellite con
stellations, such as PlanetScope, offer potential for mapping rivers at 
much higher temporal resolution via daily data collection (Frazier and 

Hemingway, 2021). This, coupled with the relatively fine spatial reso
lution of PlanetScope imagery, means that the required characteristics of 
river systems can potentially be measured and monitored across more 
river systems globally (Junqueira et al., 2021; Feng et al., 2019). Plan
etScope satellites have already been used for tasks such as measuring 
water quality parameters (Niroumand-Jadidi et al., 2020), such as sus
pended sediment concentration (Wirabumi et al., 2021), in various 
waterbodies. In the context of rivers, such studies could be enhanced and 
extended with dynamic water masks. Unsurprisingly, the effectiveness 
of these satellites does not match Landsat or Sentinel in understanding 
water quality (Mansaray et al., 2021) but by combing these more 
‘traditional’ satellites with high resolution water masks extracted from 
PlanetScope, the best of both products could potentially be achieved 
(Gabr et al., 2020). 

Working with satellite constellations raises a range of considerations 
for the creation of accurate water masks. An important one, is that the 
ability of satellite constellations to observe rivers globally at high spatio- 
temporal resolution increases the variety of conditions over which a 
model is required to generalise. This need for generality demands robust 
water mask extraction methods capable of consistently extracting water 
masks from across the continuum of rivers that exist globally. Another 
important consideration is that often, satellite constellations such as 
PlanetScope constitute smaller, low-cost sensors, whose radiometric 
quality and lower signal to noise ratio (in comparison to ‘conventional’ 
satellites) means that water mask extraction methods must be robust to 
variance in image quality (Haq, 2022). 

Convolutional Neural Networks (CNN) show promise for providing 
the robust approach required by taking a deep learning, neighbourhood 
based, approach (Moortgat et al., 2022; Marochov et al., 2021; Car
bonneau et al., 2020; Yasir et al., 2023; Qayyum et al., 2020). CNNs tile 
a fixed number of pixels and then pass a smaller 3D kernel over these 
tiles; the height and width of the kernel is the number of image rows and 
columns, as specified by the user, and the depth of the kernel is the 
number of spectral bands in the image. The neural network uses this 
kernel to “learn” the space-intensity relationship between pixels within 
a class. The goal of this operation is to learn the high-level features 
which dictate which class (i.e., land or water) the tiles belong to. The 
output of a CNN is a prediction, returned in the same form as the input: a 
set of tiles which have been given a single class value (Reina et al., 
2020). Due to the fixed number of pixels, the real-world spatial extent of 
this tile is directly related to the ground sampling distance of the pixels 
in the image. Therefore, unless the CNN is predicting from hyperspatial 
imagery (<10 cm) the output can appear pixelated. Two predominant 
methods are often employed to overcome the pixelation issue. Fully 
Convolutional Neural Networks (FCNs) are often currently considered 
state of the art (e.g., Tiramisu; Jégou et al., 2017), using traditional CNN 
architecture to learn ‘deep’ characteristics but combine this with up- 
sampling to provide a pixel level result (Long et al., 2015). These have 
been applied successfully in water classifications (Carbonneau and Bizzi, 
2023; Isikdogan et al., 2017) and can be relatively efficient for CNNs 
(Moortgat et al., 2022). A variety of structures of FCN have been 
developed for water masking (e.g., Li et al., 2021), however, all these 
methods still require significant computational resources and deep 
learning expertise for effective implementation. Moreover, most FCNs 
also require more detailed training data (e.g., Moortgat et al., 2022); 
which adds an additional challenge that can create barriers for practi
tioners aiming to build water masks. Some authors have overcome this 
by using Open Street Map annotations to confirm water presence for 
model training (Mazhar et al., 2022) but along with using water pres
ence maps (Pekel et al., 2016) these methods cannot be used with 
PlanetScope due to PlanetScope’s georeferencing accuracy and edge 
effect errors caused by scale/resolution mismatches. Another concern 
stems from the high variability of radiometric quality in PlanetScope 
data, meaning that an FCN model will encounter challenges in effec
tively addressing radiometric differences between images without 
particularly large training sets. 
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A second strand of research, termed ‘CNN supervised classification’ 
(CSC) has been proposed (Carbonneau et al., 2020). This uses a pre- 
trained CNN to provide localised (within test image) training data for 
an ANN Multi-Layer Perceptron (MLP) model which in turn provides 
pixel-level semantic segmentation (Yuan et al., 2021; Carbonneau et al., 
2020), thus potentially overcoming significant radiometric differences 
between images. This method has been highly successful for mapping 
river habitat types in hyperspatial RGB imagery (Carbonneau et al., 
2020), but other applications (including glacier mapping using medium 
resolution Landsat imagery; (Marochov et al., 2021) demonstrate CSCs 
viability for segmenting satellite data where the target size (be it river or 
glacier width) is commensurate with these larger resolution satellite 
inputs. The CSC method only requires relatively imprecise training data, 
drawing patches over land or water on an image, which can be collected 
very quickly with limited a priori skills, as opposed to multi-step GIS 
workflows (Moortgat et al., 2022) or working with semi-automatic 
classifiers. We therefore hypothesise that such an approach is well- 
suited to producing water masks from PlanetScope imagery, and thus 
test the use of a relatively shallow model architecture (i.e., fewer layers 
than in other recent publications on FCNs and CSCs), with a view to 
demonstrating the viability of our proposed methodology for non- 
specialists. 

In this paper, we employ daily PlanetScope individual images and 
develop a novel Artificial Intelligence (AI) algorithm capable of gener
ating water masks for these high temporal resolution data at a spatial 
resolution of 3 m. This builds on previous CSC applications (Marochov 
et al., 2021; Carbonneau et al., 2020) but the method has not been 
previously tested with the large ratio between target size and pixel 
resolution we present here. Moreover, this study constitutes the first 
application of this method used for the extraction of daily river water 
masks, requiring vastly more imagery to be classified by practitioners 
than would be available with traditional satellites (e.g., Landsat’s 16- 
day return period). In turn this produces an added computational 
requirement that we hypothesise would be better met by the shallow 
CSC built here as opposed to more traditional architectures used in 
earlier CSC applications such as the very deep VGG16 model. This 
represents yet another reduction in processing requirements when 
compared to the computationally intensive needs of very deep FCNs 
favoured in alternative large water masking studies (Isikdogan et al., 
2017; Isikdogan et al., 2020; Carbonneau and Bizzi, 2023). Our pro
posed AI algorithm enables the automation of water mask development, 
so future EO-based river studies can be attempted without the require
ment for manually extracting water masks from each image in a tem
poral stack. As noted, the fine spatio-temporal resolution of PlanetScope, 
and difficulties with using CubeSats more generally (e.g., limited spec
tral resolution, issues calibrating within a constellation (NASA, 2020)), 
requires the model to be able to generalise to a much greater degree than 
other EO-based water mask algorithms (Feng et al., 2019; Junqueira 
et al., 2021; Moortgat et al., 2022; Isikdogan et al., 2017). We thus also 
hypothesise that the ‘self-contained’ nature of the CSC method would 
cope with these radiometric issues better than a FCN would. 

In order to create a model that can generalise globally, we also 
examine the potential to include a ‘human-in-the-AI-loop’ in this 
context. Here, we test the potential to improve classification perfor
mance in a specific use case by fine tuning it with limited additional 
training data. Our overarching aim was therefore to develop and eval
uate an AI algorithm that automates the extraction of river water masks 
from PlanetScope imagery. We aimed to overcome computational lim
itations associated with previous methods while ensuring practitioners 
could easily create and enhance training data, by pioneering a robust 
shallow CSC algorithm. In order to achieve this, we developed the 
following three objectives which provided not only insights into the 
feasibility of our proposed method but also highlights its viability as a 
tool for water mask generation on which to base further EO river 
research and analysis:  

1. Develop a CSC-based classifier, with minimal processing demands, 
capable of extracting river water masks from PlanetScope imagery 
and compare its accuracy to ‘conventional’ image segmentation al
gorithms and a state-of-the-art Fully Convolutional Neural Network.  

2. Apply the CSC approach to a range of global rivers to understand 
when, where and how effective our approach might be across 12 
global biomes.  

3. Test the extent to which the inclusion of limited additional training 
data improves classification accuracy at a specific river, shedding 
light on the viability of a ‘human-in-the-AI-loop’ classification 
strategy. 

2. Methods 

2.1. PlanetScope imagery 

Planet Labs PBC operates the PlanetScope constellation of 200 
CubeSat (i.e., small, low-cost) satellites (Planet Labs, 2022), imaging a 
large proportion of the globe every day (Planet Labs, 2018). There have 
been 3 generations of these PlanetScope “Dove” satellites, improving the 
radiometric quality of images as well as adding 4 additional bands in the 
most recent 2021 “SuperDoves” (coastal blue, green 1, yellow, and red 
edge; Le Roux et al., 2021). Here, we focus solely on four-band imagery 
enabling interoperability across the whole 5-year range of historical and 
current PlanetScope imagery. Given the new SuperDoves do not include 
a shortwave infrared band (shown to improve water delineation; Xu, 
2006) we do not expect that the increased complexity of 8 bands would 
provide significant classification improvement. 

PlanetScope satellites capture imagery at 3 to 5 metre resolution 
depending on the individual satellite’s altitude (Planet Labs, 2018). This 
imagery is resampled to 3 m making PlanetScope the highest resolution 
continuously recording satellite system (Frazier and Hemingway, 2021). 
Higher resolution imagery is obtainable but hindered by requiring the 
user to task it to a specific limited location and time at additional cost 
(Cornebise et al., 2022). EO data captured by these satellites is pre- 
processed before provision to the end-user. In this pre-processing the 
imagery is calibrated against ground stations and MODIS data to remove 
the effects of the atmosphere on reflectance received at the sensor 
(Planet Labs, 2018). As such, all imagery utilised in this study used the 
PlanetScope’s pre-processed surface reflectance product. This enables a 
reduction in the client-side model processing pipeline and also reflects 
the trend in satellite remote sensing towards the use of analysis-ready 
products (Gorelick et al., 2017). To help correct for different relative 
responses from individual satellites in the constellation and other 
adverse climatic effects, the PlanetScope product can be downloaded 
normalised against Sentinel 2 (Kington and Collison, 2022). However, 
interoperability between the constellation is difficult because there is a 
high turnover of satellites due to their short lifespans. In addition, their 
limited payload capacity requires smaller technology placed closer 
together than traditional satellites, which leads to relatively high po
tential error between PlanetScope sensors (Frazier and Hemingway, 
2021; NASA, 2020). 

2.2. Training and testing imagery 

To develop a water mask algorithm able to generalise across a 
diverse range of rivers, training data (Lew and Schumacher Jr, 2020) 
covers a variety of global rivers. Traditional river classification systems 
(Kasprak et al., 2016; Rosgen, 1994; Brierley and Fryirs, 2013) could 
provide the framework for this training set. However, the algorithm was 
also required to distinguish rivers that exist in the context of different 
land uses, meaning that the training selection framework must be 
globally holistic. We therefore used World Wildlife Fund (WWF) global 
biomes to dictate globally representative landscapes from which to 
select test and training data for our algorithm (Olson et al., 2001). Of the 
14 WWF biomes, Tropical Coniferous Forest and Mangrove Forest were 
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removed because their relative size and positioning limited the number 
of rivers that could confidently be placed within their boundaries. The 
Natural Earth 10 m wide river centre line vector file (Kelso and Patter
son, 2010) was used to select rivers in the remaining 12 biomes. This 
threshold ensured that rivers were resolvable within the 3 m resolution 
of PlanetScope, allowing for the inclusion of narrower rivers than other 
coarser datasets (e.g., GRWL) whilst still ensuring the presence of large 
perennial streams. A range of river types and sizes were included to 
incorporate the full range of potential study areas (Fig. 1). The final 
selection of rivers comprised water courses between 25 and 7400 m 
wide, selected to provide global coverage, with 3 rivers from each of the 
12 biomes resulting in a total of 36 individual rivers. 

For each river, a minimum of 3 scenes were delineated and down
loaded. These were from different dates and different positions on the 
river. These dates were distributed throughout different seasons at all 
sites to maximise potential applications of the water masks generated, 
with the requirement that the river channel contained water (if an 
intermittent river) and this water was not entirely frozen. Two scenes 
were used as training data and the third used as hold-out test images, 
conferring a nominal test/train split of 66/33 (Yin et al., 2021; Car
bonneau et al., 2020). This is weighted slightly more towards testing 
than the 80/20 split used in some studies (Moortgat et al., 2022). 
However, the aim of CSC is to be able to predict many different scenarios 
from the training set and therefore there should be a larger weighting for 
test data (Carbonneau et al., 2020). As such, 5 additional hold-out im
ages were added to further test the algorithm. These contained anom
alies such as snow, excessive shadow, or cloud cover that had evaded the 
Planet Explorer cloud mask. 

2.3. Data labelling 

Training data were labelled manually using QGIS 3.16.5 with the 
GRASS 8.7.5 plug in (Baghdadi et al., 2018). This workflow involved 
delineating land and water in a shapefile by drawing polygons over the 
clear land and water sections of an image. There was no precise 
requirement for the extent of polygons but a reasonable coverage of the 
unambiguous land classes across the image, taking 3–5 min, was ex
pected (see supplementary materials for examples). This was then saved 
as a raster of the same dimensions as the original image. Labels con
sisting of large clear polygons were drawn to simulate the requirement 
for training data to be quick to assemble. Test images were labelled with 
the “Semi-Automatic classification QGIS plug-in” version 7.10.10 
(Congedo, 2021). A minimum of 8 sample polygons were delineated per 
image to train this semi-automatic classifier, and more were included 
where necessary when a visual inspection of the accuracy of the result 

was not considered sufficient. This method was used because every pixel 
in an image was classified. Alternative attempts at manual delineation 
often excluded the hardest to classify, channel edge pixels which were 
most important for understanding model success. The resulting training 
data consisted of 72 scenes which were then divided into 20 by 20-pixel 
training tiles starting in the top left corner of each image for CSC model 
calibration. Of these, only training tiles which were purely water or 
purely land were included in the training data (Marochov et al., 2021). 
These were balanced against the smallest class to prevent overfitting 
(Gavrilov et al., 2018), resulting in 393,000 training tiles. Additional 
training sets consisting of 10 by 10 and 32 by 32 tiles were also produced 
to enable comparison between models trained using different tile sizes. 

2.4. CSC model architecture 

Our water mask classification model was run on a PC with a 12-core 
Intel i7-12700K with 32 Gb RAM and a NVIDIA GeForce RTX 3070 GPU 
with 8 Gb RAM and 5888 CUDA cores. TensorFlow and Keras (Abadi 
et al., 2016) were chosen to develop the model. The classification 
models produced here were based on similar approaches developed and 
used in a variety of remote sensing fields known as CNN-supervised 
classification (CSC) models (Carbonneau et al., 2020; Marochov et al., 
2021). CSC models require training a fully connected sequential CNN 
model which predicts a tiled test image, analogous to a rough sketch of 
the river channel due to these larger CNN tiles. The results from this 
CNN are thereafter used to train a localised MLP model which enables 
semantic (i.e., pixel level) segmentation specific to the spectral signa
tures of the scene in question. 

Three relatively simplistic CNN models were developed with tile 
sizes of 32 × 32, 20 × 20 and 10 × 10 pixels respectively, hereafter 
referred to as M32, M20, M10. Each of these three sequential models is 
made up of 9 fully connected layers including two convolutional layers 
and two dense layers (Fig. 2). All layers used the ‘RELU’ activation 
function with the exception of the final ‘SoftMax’ output layer (Géron, 
2022). The convolutional layers and first dense layer have 32 neurons 
each. The convolutional layers have a kernel size of 3 by 3 which dictates 
the dimensions of the convolutional window which moves across the 
tile. The models are compiled with the ‘sparse categorical cross entropy’ 
loss function, and an ‘Adams’ optimiser, both of which are broadly 
adopted in image classification (Goodfellow et al., 2016). These values 
were selected based on an assessment of the loss and accuracy outputs 
during grid based hyperparameter tuning training runs which used the 
TensorFlow TensorBoard call back to assess which combinations worked 
best. All models were run for 10 epochs after this was found to be 
enough to result in convergence (see supplementary material). The 

Fig. 1. The Global terrestrial biomes presented by (Olson et al., 2001) overlayed with the rivers used in this study for testing and training. 12 biomes were selected 
for this study with 3 rivers selected from each biome. Additional sites used for testing the ability of the algorithm to be fine-tuned were in the area here. 
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output of these CNNs was in the form of the likelihood of each tile being 
land or water. 

Transfer learning is a field of AI that takes advantage of the weights 
in pre-trained classification models developed from millions of training 
images (Zhuang et al., 2020). The desire to use 4-band imagery here 
prevents the use of transfer learning on models trained with 3-band RGB 
imagery and solutions that are currently available in the literature. 
Models that enable transfer learning using variable band numbers are 
not yet commonly accepted (de la Comble and Prepin, 2021). Hence, 
many methods take the architecture of these very deep CNN models 
developed in “Kaggle” programming competitions but do not keep the 
pre-trained weights (Marochov et al., 2021). However, models such as 
the commonly adapted VGG16 model, were developed with a thousand 
output classes (Simonyan and Zisserman, 2014). We hypothesised that a 
more simplistic model would be more effective when attempting to 
satisfy the performance requirements desired from a binary output 
(Nativi et al., 2021). By using a much shallower architecture we believe 
that our models will converge quicker because they are not using the 
large processing power of traditional methods to learn intricacies in 
‘high level’ features, such as straight lines (Zoph et al., 2018). These high 
level features are largely superfluous to this study’s requirements 
because the relatively low resolution of PlanetScope means that these 
higher features are often not visible in the imagery. For example, 
learning aspects of spectral combinations in riverbanks would be of use 
with higher resolution imagery but here the 3 m resolution edge pixels 
are often mixed, negating these lessons. Therefore, developing our own 
shallower models allows for reduced tile size, potentially improving 
results and reducing processing time. These factors make the CSC 
models developed here both more effective and applicable to a larger 
user base who lack high-performance machines (Boothroyd et al., 2021). 
Nonetheless, a ‘control’ CSC model was developed to test this theory, 
using this VGG16 architecture to generate a very-deep CNN with a 2- 
neuron ‘SoftMax’ output layer added to provide the desired output. 
This used a tile size of 32 by 32 pixels, the minimum size enabled by 
VGG16. This very deep network was only run for 50 epochs before 
convergence, where upon visual inspection the validation loss value 
ceased to be improved by additional training (see supplementary ma
terials for loss curves). 

The subsequent MLP stage was kept simple to account for the very 

different inputs that might be used to train the model, due to the global 
diversity of river environments. Therefore, this neural network consisted 
of 4 dense fully connected layers using the same ‘ReLU’ and ‘SoftMax’ 
activation functions as the CNN phase. The first 3 layers had 64 neurons 
and the last again had 2, one for each potential output. The same 
compilers were used in this stage as in the CNN stage. The MLP was only 
run for a single epoch as it became apparent that with many of the 
images with smaller rivers more epochs resulted in overfitting. The 
result from this section also used NumPy’s argmax function to convert 
the softmax results into a binary classification. The final stage of our 
modelincludes an additional morphological operator to eliminate 
speckle from the water masks output by the MLP stage and constrain 
results to the main channel (Riggs et al., 2021; Pavelsky and Smith, 
2008). For this, the OpenCV ‘dilate’ function was used with a kernel size 
of 3 (Bradski and Kaehler, 2000). Thus, any pixels not immediately 
adjacent to 2 or more other pixels were converted to the alternative 
classification in the same neighbourhood. This procedure removed the 
majority of speckle without removing smaller watercourses in the 
images. 

To compare the models to a more basic classification algorithms, the 
Otsu segmentation method was also applied on all test images (Otsu, 
1979). This uses histograms to statistically split the imagery into two 
classes without the need for training data or a priori knowledge of the 
imagery. To compare against state-of-the-art AI models the Tiramisu 
FCN (Jégou et al., 2017) was trained using the same images as the other 
models. However, this requires pixel level classification training data 
that is much more time consuming to develop. To assist with this pro
cess, the DoodleVerse package (Buscombe and Goldstein, 2022) for 
semi-automatic image classification was used. Any training images that 
were not satisfactorily classified or were too large for DoodleVerse were 
classified using the same QGIS Semi-automatic classifier previously used 
for holdout image classification. A tile size of 224*224 was used due to 
the greater information requirements of a FCN. Because this model re
quires considerably more training data than CSC, an augmentation 
script was applied that added additional altered (e.g., flipped/rotated) 
tiles containing at least 5% water in the image. To further reduce the 
impact of the limited water coverage in the training images the focal loss 
function was used to put greater importance on the weights for water 
tiles (Lin et al., 2017). The Tiramisu model was run for 20 epochs before 

Fig. 2. Conceptual diagram of the CSC structure used in this study. A pre-trained 9-layer CNN which uses its predictions to train a 5-layer MLP. The final results are 
processed by a morphological operator to remove any remaining speckle. The CNN architecture consisted of a convolutional layer, a batch normalisation layer, a max 
pool layer, a second convolutional layer, a second max pool layer, a flattening layer, a dense layer, a drop out layer and the final output dense layer. The MLP 
architecture consisted of a normalisation layer, 3 dense layers and then a final output dense layer. 
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convergence. 

2.5. ‘Human-in-the-loop’ model enhancement 

Our CSC approach was expected to be able to use minimal processing 
power to provide accurate predictions despite the variability of Planet
Scope imagery. However, the model is unlikely to be capable of accu
rately predicting the water mask for every river globally, at all times of 
year, regardless of the quality of the satellite imagery and any correc
tions applied. This is because the infinite variability of global river 
systems (Thoms and Sheldon, 2019; Frazier and Hemingway, 2021) 
means that it was not feasible to train our model on every eventuality or 
user requirement. However, the ability to train with minimal processing 
power enabled us to test an additional ‘human-in-the-loop’ computation 
stage to understand whether retraining (i.e., fine tuning) the model 
through the inclusion of a few additional images, quickly labelled using 
a low effort approach such as the QGIS ‘magic wand’ (Baghdadi et al., 
2018), can effectively improve classification results in a specific river 
system not previously seen by the classifier. 

To test the ability of this model to be fine-tuned in this manner, an 
independent study site in Southern Canada was chosen which the model 
had not already seen. 20 images from the Ottawa River were collected. 
15 were used as test images and processed the original M20 CSC model 
developed here. The remaining 5 images were quickly labelled using the 
QGIS ‘magic wand’ tool, producing additional training data in less than 
an hour. The original CSC was then retrained with this additional 
training data included, for a total of 408,000 tiles, effectively biasing the 
training data to this new river system (which now has more training data 
than other rivers) with the same architecture, number of epochs, and 
learning rate. The 15 test images were predicted again to assess if this 
‘human-centric’ CSC was more effective at correctly predicting these 
images. 

2.6. Statistical analysis 

Three validation metrics were employed to different degrees. Loss 
(see section 2.3) and Accuracy (eq. 1) were used during training of the 
CNNs to assess the ability of each model to predict randomly assigned 
test data (Goodfellow et al., 2016; Yuan et al., 2021). Although this was 
important for improving CNNs during the building phase, it only showed 
their ability to predict known tiles as water and land and was not 
necessarily linked to the final results. The main measure of classification 
accuracy was therefore the F1 score (Eq. 4), which measured the ability 
of a full CSC model to predict a holdout image at a pixel scale. This F1 
score is sometimes considered the harmonic mean of Precision (eq. 2) 
and Recall (eq. 3; Carbonneau et al., 2020). It is a well-accepted method 
of balancing where a model correctly predicts a pixel and where it 
provides false positives or negatives (James et al., 2021; Goodfellow 
et al., 2016). Therefore, if a model predicts a single class for a whole 
image, it will not score highly despite, by process of elimination, having 
correctly predicted all instances of one of those two classes. 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision (P) =
TP

TP + FP
(2)  

Recall (R) =
TP

TP + FN
(3)  

F1 = 2
P.R

P + R
(4) 

Accuracy (Eq. 1) considers the True Positives (TP) and True Nega
tives (TN) which are respectively water and land pixels which have been 
identified correctly. It then divides these by the total predictions made, 
including False Positives (FP) and False Negatives (FN) that represent 

water and land pixels predicted incorrectly, thus giving the ratio of 
correctly identified pixels. For assessing predictions of holdout images, 
F1 score was used because it takes account of potential class imbalances. 
It does this through combining Precision, how many water pixels iden
tified were correct, and recall which is the ratio of correctly predicted 
water pixels to those that should have been predicted. 

Statistical analysis was carried out using the SciPy package (Virtanen 
et al., 2020), which was also used to compare F1 scores against river 
characteristics (e.g., river width and planform, anthropogenic influence) 
and imagery metadata, to understand whether differences between F1 
scores for biomes were caused by intrinsic landscape characteristics or 
were artifacts of the satellite imagery itself. River width was expected to 
be a limiting factor on predictive ability, due to the requirement of tile- 
sized sections of water being needed to provide pixels to train the MLP. 
Width was manually extracted from the widest river reach in the image, 
provided that the width was maintained in this reach for at least 20 
pixels (60 m) downstream to represent the width of a single tile at the 
CNN stage of classification. Width measurements were log transformed 
based on the hypothesis that the differences in the narrower widths 
would have a greater impact than differences between larger width 
values. The NIR band is integral to NDWI measurements because NIR 
wavelengths are strongly absorbed by water (Mcfeeters, 1996), and this 
was also tested in a similar manner to understand its influence on the 
results. The 5th to 95th percentile range of NIR values in an image was 
used as this represented the difference between land or water excluding 
the most over- or under-exposed areas of the image. We used linear 
regression to test the potential relationship between these environ
mental characteristics/imagery metadata and classification accuracy 
(F1). For the ‘human-in-the-AI-loop’ tests, we used a paired samples t- 
test to differentiate between F1 scores before and after the inclusion of 
the fine-tuned test data. A Box-Cox transformation was used before 
testing to achieve a normalised distribution, removing the effects of 
skew towards the better-predicted imagery. 

3. Results 

3.1. Model selection 

The various CSC models took between 36 min and 2 h 11 min to 
train, excluding the time taken to tile imagery and save it as TensorFlow 
Record file types. In contrast, the Tiramisu FCN model required 40 h at 
~2 h an epoch. The simpler models (M10, M20 and M32 tiles) all 
converged within 10 epochs. The very deep layered network based on 
the VGG16 architecture (also 32 × 32 tiles) converged over 50 epochs, 
while the comparator Tiramisu model converged after 20 epochs. All 
models produced some highly accurate water masks but also struggled 
with some imagery and biomes (Fig. 3). Training metrics describe the 
ability of the CNN stage of the model to predict a random selection of the 
training tiles providing an indication of the internal ability to learn 
during training. Here these training metrics corresponded with tile size 
and depth. The very deep model (VGG16) yielded the highest accuracy 
(0.94) compared to M32 (0.87), M20 (0.85) and M10 (0.84), and the 
lowest loss (0.13) compared to 0.31, 0.34 and 0.35 for M32, M20 and 
M10 respectively. By way of comparison, the Tiramisu FCN achieved a 
training accuracy of 0.92 and a loss of 0.04. 

The final learning curves for each of these models are included in the 
supplementary material. However, training metrics only measure the 
ability of the CNN to predict tiles taken from the training set, which 
could be related to those used to train the model. These training metrics 
do not provide an assessment of the CNN’s ability to predict hold-out 
image tiles or the full CSC model’s ability to predict the whole of a 
new hold-out image, and surprisingly, these training metrics were found 
to not correspond to the best final predictions. In predicting hold out 
images, the M20 model produced the highest median F1 score (0.93), 
making it the most successful model, while the M10, M32, and very deep 
CSC models were all similarly effective but slightly lower scoring (0.90, 
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Fig. 3. Comparison of the ability of tested models to predict hold-out images. All models shown here are skewed towards high F1 scores. There are different dis
tributions of the scores for the weakest predictions made by each model. M20 in particular never predicts as poorly as the other models and has a thinner tail 
suggesting no clustering of poorly predicted images. 

Table 1 
Comparison of water mask model averages and their performance in different biomes. For each variable, the 
best performing model has been highlighted. Mean F1 score was used for comparing biomes because each of 
these had a limited numbers of images, limiting the usefulness of median F1 score. 
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0.92, 0.92). While the Otsu segmentation approach scored a similar 
median classification result (0.90), its much lower mean value (Table 1) 
and longer-tailed error distribution (Fig. 3) highlights the considerably 
poorer performance of this ‘conventional’ classification approach in 
comparison to the CSC-based models. Using the comparator Tiramisu 
FCN, only 4 of 36 images were predicted with sufficient accuracy to 
justify recording F1 scores (F1 = 0.52 to 0.87; see supplementary ma
terial), highlighting how good training/validation performance does not 
guarantee accurate predictions of hold-out imagery. The FCN was 
therefore not included in further model comparisons. 

Overall, M20 produced water masks with F1 ≥ 0.9 for over 60% of 
the hold-out images making it the best model in this study (Fig. 4). While 
it produced the best F1 scores in 6 of the 12 biomes (Table 1), other 
models performed better in some other biomes with varying degrees of 
departure from M20. In fact, the Otsu thresholding method (the simplest 
used here, which produced some highly inaccurate results [e.g., average 
F1 of 0.5 for Mediterranean Forest]), also produced near perfect F1 
scores in polar-type biomes such as the Taiga (average F1 of 0.99). The 
clear histogram response facilitated separation of the water from non- 
water pixels which also allowed M20 to perform similarly well (F1 =
0.98). The Otsu method also exceeded the accuracy of all other methods 
in the Tropical Dry Broadleaf (0.80 compared to 0.66–0.69) biome 
despite still producing less than desirable results. Nevertheless, in all 
other cases it was not better than M20. 

3.2. Variability within biomes 

Water mask generation was consistently more accurate for rivers in 
some biomes (such as Tropical Moist Broadleaf) than others (e.g., 
Tropical Dry Broadleaf biome; Fig. 5, Table 1). Understanding these 
inconsistencies requires analysis of within-biome causes of poor model 
performance. Ecoregions were plotted separately for M20 to reveal those 
that produced similar results, possibly due to internal factors (Fig. 5). 
The 12 biomes can be visually categorised into 3 groups in terms of their 
performance: consistently good, varied, and poor (Fig. 5). In the ‘poor’ 
group Montane Grassland, Temperate Broadleaf and Temperate Conif
erous biomes yield some water masks that are highly accurate (Fig. 6a), 
but along with Tropical Dry Broadleaf, also generate water masks of an 
unacceptable quality (Fig. 6b). 

Descriptive statistics of underlying imagery components were tested 
against F1 scores to understand the causes of the variable results (Fig. 7). 
While no significant relationship was found between F1 score and the 
range of any of the spectral bands, any of the metadata characteristics 
provided by PlanetScope, or any of the physical river characteristics 
visible from the imagery (p>0.05 in all cases), we did observe a 
moderately significant trend between log-transformed river width and 
F1 score (r2 = 0.34, p<0.01) which is consistent regardless of biome, 
indicating that this control (i.e., width) is a local, rather than regional, 
driver of differences in F1 score. 

Nine poorly predicted images were isolated, with F1 scores ranging 

Fig. 4. Selection of water masks produced using M20. The majority of these rivers scored an F1 accuracy >0.97. However, the River Thames, through central 
London, is also included with a score of 0.85 to display model results in the most complex urban environments with multiple watercraft and bridges in a small spatial 
area (i). In this case, it has still produced a fairly accurate water mask in demanding circumstances. Rivers shown here a: Niger (Mali), Tropical Grasslands . b: 
Amazon (Brazil), Tropical Moist Broadleaf . c: Volga (Russia), Temperate Grasslands . d: Nile (Egypt), Flooded Grasslands . e: Betsiboka (Madagascar), Tropical Moist 
Broadleaf . f: Xi (China), Tropical Moist Broadleaf . g: Victoria (Australia), Tropical Grasslands . h: Pyasina (Russia), Tundra . i: Thames (UK), Temperate Broadleaf, j: 
Mackenzie (Canada), Taiga. K: Slave (Canada), Taiga . l: Congo (Democratic Republic of the Congo), Tropical Grasslands. 
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from 0.48 to 0.85 (see supplementary materials). Visual inspection of 
these images identified three issues common to these locations that 
could have contributed to the low F1 scores yielded by these data: 1 . 
braided river types without a dominant main channel, 2. land-use types 
that are unclear even to a human operator (i.e., where colour/textural 
differences between water and non-water pixels are difficult to 
discriminate), and c) the presence of bridges or instream features (e.g., 
boats). These issues all appeared to cause issues for model predictions at 
the first CNN phase, which were then propagated through the MLP to the 
final result. Additional potential causes of error result from the presence 
of cloud or ice in imagery. For example, despite choosing cloud-free 
images from the PlanetScope database, some images still included 
small amounts of cloud (Fig. 8.a). Where there was a limited amount of 
ice and snow in an image the model still performed well (Fig. 8.b), but 
this was not the case with deep shadow covering parts of the image 
(Fig. 8.c). 

3.3. Fine tuning 

M20 produced acceptable F1 scores on the Ottawa River test images. 
As with results in the original holdout images, there was a tendency 
towards successful predictions with 9 images predicted with a F1 score 
over 0.9, 1 had a score of 0.85, and 5 had scores below 0.55 producing 
an overall median of 0.97. After the inclusion of the additional ‘human- 
in-the-loop’ fine tuning labels there was only a marginal increase in 
median to 0.98. However, improvements were found to be focused on 
the images which performed worst without fine tuning. This caused the 
mean F1 score to increase from 0.81 to 0.90 after this fine tuning. The 
increase was found to be significant after Box-Cox transformation to 
remove skew (n=15, t=8.4, p<0.01). There was some variation in F1 
scores with a number of images producing marginally lower score in the 
fine-tuned run, in comparison to the base M20 model. However, three of 
the most poorly performing images saw greater improvement from <0.7 
to >0.95 (Fig. 9). Two images still performed poorly, one likely due to 
the presence of a dam and the other due to an unexplained, red-coloured 
artefact potentially caused by shallow water (both factors potentially 

Fig. 5. Within region F1 scores for biomes predicted by M20. Based on these results, biome predictability was classified as good, varied, or poor.  

Fig. 6. Comparison of CSC predictive workflows for well and poorly predicted images in the poor performing biomes. Despite narrow sinuous channels, the Vaal 
River in South Africa, from the Tropical Dry Broadleaf biome, scored an F1 score of 0.86 (a). Other images in the same biome struggled with issues such as sand bars 
and urban areas, including the Narmada River in India (b) with an F1 score of 0.72. It is clear that if the CNN prediction is particularly poor, then despite the 
predictive improvements made by the ANN section, the final prediction will suffer. 
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lacking in the training data; see supplementary material). The original 
test dataset (all images, all biomes) was then re-predicted using this fine- 
tuned model to test if the increase in the Ottawa River-specific training 
data had reduced its generalizability. Results show no impact on median 
F1 score but a minor (but significant) decrease in overall mean F1 score 
(0.83 to 0.81), indicating a slight reduction in the classification model’s 
generalisability, at the expense of improved classification results for the 
Ottawa River. 

4. Discussion 

4.1. Applicability of the CSC model 

The CSC models developed here successfully produced water masks 
from highly diverse satellite images, from rivers across a gradient of 
biomes and seasons. The novel use of the CSC architecture with a 
CubeSat constellation highlights the potential for the incorporation of 
daily PlanetScope satellite imagery in studies relating to dynamic river 
systems. The inclusion of a fine-tuning step (section 4.5) adds further 
capacity to refine the model on the sites of most importance and interest 

Fig. 7. F1 score as function of variability in external (e.g., physical river characteristics) and internal (image metadata) properties. Log transformed width correlates 
significantly to F1 score (r2 = 0.34, p < 0.01), which is to be expected due to the greater importance of differences in smaller river widths, as opposed to differences in 
the widths of larger rivers. No other variables were found to be significantly correlated. 
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for a user, allowing the generation of highly accurate water masks with 
minimal labour or expertise required. The median F1 score of M20 
(0.93) is a particularly notable given that our approach is effectively an 
automated system being tested across multiple global domains, and in 
some biomes our approach performs extremely well scoring over >0.95 
F1 on all test images. Although we acknowledge that the lack of field 
data prevented formal ground validation, the global nature of this study 
precludes such an approach. Instead, more manually intensive labelling 
methods were used for the assembly of validation data thatalso come 
with their own associated error which inherently prevents perfect F1 
scores (see Moortgat et al., 2022 for further discussion). Therefore, the 
high F1 scores are encouraging given the limitations of the labelled data 
these test images were compared against. 

The method proposed here is not intended to compete with the 
GRWL water masks (Allen and Pavelsky, 2018) or similar products, 
which are employed regularly in satellite studies of river systems (Lin 
et al., 2019; Rosentreter et al., 2021; Yang et al., 2020). Rather, our 
approach is intended as a method for developing water masks in dy
namic environments at (up to) daily frequency, as opposed to using a 
static product. We propose that a continuation of the method developed 
here could refine existing GRWL RivWidth predictions, which require a 
binary water mask as input (Pavelsky and Smith, 2008). Placing the 
model developed here in a similar cloud computing pipeline (Yang et al., 
2019) may encourage users to adopt concurrent development of water 
masks rather than use static, assumed bankfull datasets such as the 
GRWL (Allen and Pavelsky, 2018). Adaptive water masks could push 
remote sensing breakthroughs in temporally sensitive aspects of river 
systems such as flow dynamics and large-scale variations in water 
quality across a range of discharges. Our method also provides water 
masks and therefore river widths at a higher resolution than the GRWL. 

The GRWL application is limited to rivers ≥90 m wide (Allen and 
Pavelsky, 2018) which could be overcome with the 20*20 3 m pixel cells 
used here, enabling 60 m rivers and sometimes smaller to be fed into 
RivWidth. This ability to monitor smaller rivers, especially at a higher 
temporal resolution, would vastly increase the applicability of these 
methods for studying flooding scenarios where water progressively ac
cumulates downstream into larger rivers. 

4.2. Constraints on model success 

Despite the success of the M20 model, Median F1 scores in our 
investigation are not as high as those in similar AI-driven water mask 
studies (e.g., Moortgat et al., 2022; Carbonneau et al., 2020; Qayyum 
et al., 2020). These studies differ from ours in a variety of key ways 
because of constraints we had to place on this model to work with 
PlanetScope imagery. Therefore, the very fact that the accuracy of our 
M20 model approaches these other studies, in spite of these limitations, 
makes us consider it effective. 

All satellites represent a trade-off between spatial resolution and 
frequency which directly relates to the quality of water mask predictions 
which can be achieved with their imagery. CubeSats are released at a 
relatively low altitude which decays further over time (Planet Labs, 
2018), enabling them to acquire medium-high resolution imagery. 
Having a constellation of CubeSats facilitates daily return period im
agery at this 3 m resolution, which is vital for the task of monitoring 
river systems. This means the spatial resolution we are able to achieve 
for our resulting water masks is superior to models focusing solely on 
‘conventional’ EO satellites (e.g., Landsat, Sentinel). Conversely, pro
prietary satellites such as Worldview or China’s GF-2 produce imagery 
with a resolution many times finer than PlanetScope is capable of 

Fig. 8. Examples highlighting where the M20 CSC model coped or struggled with more difficult images. The first column displays the original satellite image, the 
second displays the prediction, and the third shows correct predictions in blue and incorrect predictions in red. a: Amazon, Brazil with unprocessed cloud. b: Popigay, 
Russia with snow covered frozen pools . c: Ahuri, New Zealand, deep shade which resulted in a poor prediction. However, further research is needed because the 
model still separated the river in both shaded and unshaded sections of the image. Example c was not included in the analysis when selecting hold out images but was 
added as an additional test image to see how the model coped with more extreme examples. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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(Moortgat et al., 2022; Li et al., 2021). The same can be found of aerial 
imagery where the proximity to the target results in very high-resolution 
data. Water mask classification models produced using these data un
derstandably perform very well because each CNN tile is able to include 
more pixels for the same ground area enabling better characterisation of 
water or land structures (Carbonneau et al., 2020; Moortgat et al., 2022; 
Li et al., 2021). While these high- and hyperspatial resolution data 
capture methods have potential to produce better results than those 
presented here, it is not practically or financially feasible to obtain the 
temporal frequency of imagery required for generation of dynamic 
water masks. PlanetScope is thus the only system we are aware of that 
provides both relatively high temporal and spatial resolution. While we 
acknowledge that PlanetScope is proprietary, it is less expensive than 
other high-resolution satellite or airborne imagery (Cornebise et al., 
2022). Furthermore, PlanetScope offers 5000 km2 a month of free im
agery for individuals/groups affiliated with an educational institution 
under their Education and Research Programme, meaning that the 
techniques developed here will be open and useable by a large academic 
community. Additionally, it is currently available for free for some NGOs 
and Government employees through ESAs third party mission scheme 
(ESA, 2023) and NASAs Commercial Smallsat Data Acquisition program 
(Maskey et al., 2021). 

A trade-off of the high return period provided by CubeSats is their 
much lower radiometric quality, an issue that our classification model 
would not have had to contend with if developed with data from other 
satellite sources. Larger, high quality sensor systems used in these other 
platforms create radiometrically stable data with a much higher signal- 
to-noise ratio and therefore less erroneous values for the model to cope 
with (Ling et al., 2019; Yin et al., 2021; Isikdogan et al., 2017). Simi
larly, ‘conventional’ aerial imagery is largely immune from the disrup
tive effects of the atmosphere (Smith et al., 2021), with the resulting 
image quality being several orders of magnitude higher. Conversely, 
with PlanetScope, each platform, each sensor on the platform, and the 
calibration of these sensors differs as a result of the sheer quantity of 

satellites and their limited payload capacity (Frazier and Hemingway, 
2021). Although the metadata provided by Planet does show no corre
lation with F1 score (Fig. 7), unreported differences in illumination 
conditions and weather conditions add additional complexities. The 
intricacy of hosting this assemblage of satellites means that, despite 
proprietary corrections made by PlanetScope (Kington and Collison, 
2022) to normalise for radiometric variability between satellites, dif
ferences in absolute radiometric values still abound (Wilson et al., 
2017). This in part may be the cause of the lack of correlation between 
F1 score and NIR band metrics. This aligns with findings that CNN 
models can delineate water masks relatively well using just panchro
matic imagery (Moortgat et al., 2022) when NIR values would otherwise 
normally be expected to be the chief determinate of ability to depict 
water from 4-band imagery (Mcfeeters, 1996). Based on these factors, a 
relatively simple classification model might ostensibly be considered 
unviable, but our M20 CSC method nevertheless appears to be able to 
adequately handle these complexities. These findings are particularly 
interesting because CubeSats are increasingly common in the EO sector 
(De et al., 2022). If CNNs (and by extension, CSC) can produce accurate 
classifications despite this variation in CubeSat image quality, then they 
could be applicable to a wide variety of cases beyond water masking. 

By comparison, the much poorer performance of the comparator 
state-of-the art Tiramisu FCN may come as a surprise. However, work 
using FCNs generally involves much higher quality (i.e., radiometrically 
stable) imagery (Moortgat et al., 2022; Carbonneau and Bizzi, 2023) 
than PlanetScope, meaning that strong radiometric differences (which 
our CSC approach is robust to) are not accounted for by the FCN model 
architecture. The FCN requires considerably larger tile sizes than CSC, 
and while these tiles can be mixed (water and land), the requirement for 
larger tiles makes it more difficult to balance water and land pixels, even 
with a focal loss function “punishing” the model more for errors in water 
predictions. Trying to predict directly to the pixel level requires a large 
training set (Jégou et al., 2017), which is also inherently difficult with 
larger tile sizes (i.e., fewer training tiles per image). This necessitated 

Fig. 9. Difference in F1 scores between images predicted by the M20 model and after 5 images from the same river were included in the training data to fine tune it. 
Improvements are not universal but are dramatically better for the worst performing images. 
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the use of augmentation to gain more training tiles, potentially biasing 
the model to expect images of similar radiometric variability to this 
relatively narrow training base of 72 images. We hypothesise that this 
meant that when predicting hold-out images, the model was subse
quently unable to cope with the extreme radiometric differences be
tween these ‘unseen’ PlanetScope images. The additional complexity of 
the semantic segmentation thus led the FCN to perform poorer than our 
CSC which, through the inclusion of the secondary ANN stage, was able 
to achieve high quality semantic segmentation for the image quality 
directly related to the input image. 

4.3. Model structural and testing choices 

Our classification model is reasonably robust to levels of internal 
sensor noise and poor radiometric quality, but testing the model globally 
introduced further external variability. Many methodological studies 
into the use of EO for mapping river characteristics constrain their 
datasets to single regions and limited numbers of images (Feng et al., 
2019; Junqueira et al., 2021; Moortgat et al., 2022; Qayyum et al., 
2020). This limits the image variability resulting from different climates, 
vegetation, and river types (Thoms and Sheldon, 2019; Malhi et al., 
2022). As a result, when site-specific classification methods are 
expanded globally, they are generally ineffective (Foody et al., 2003). A 
large part of the lower overall accuracy found here, in comparison to 
similar studies (e.g., Moortgat et al., 2022; Marochov et al., 2021), is 
explained by our inclusion of rivers from across different biomes. It is 
important to reiterate that this model was not intended nor expected to 
work universally and without adaption. 

To maximise potential operational use of the model, structural de
cisions were made which could have impacted prediction scores. Spatial 
resolution and the associated tile size used in different models is key to 
understanding how structural differences have impacted the relative 
performance of models. Increasing tile size facilitates higher per-tile 
information content, allowing the CNN phase of the CSC to better 
learn contextual features such as texture and geometry (Carbonneau 
et al., 2020); the improved training metrics on a random allocation of 
test tiles in each epoch (0.87 accuracy and 0.31 loss for M32 compared 
to 0.84 and 0.36 for M10) thus fit with what we know about increasing 
tile size (Reina et al., 2020). This enables a better prediction for images 
with a higher range of different pixel brightness values. However, these 
improved accuracy and loss metrics in training did not correspond to 
increased F1 scores on hold out images (Table 1). Due to the resolution 
of our imagery, the larger the tile size, the more difficult it is to pick out 
enough pure-water tiles when predicting an image. This in turn leads to 
a poorly trained MLP and a poorer final CSC outcome. Therefore, there is 
clearly a balance between information and resolution for choosing the 
best tile size. Higher resolution imagery can increase pixels in a tile 
whilst maintaining the tile’s footprint and therefore, ability to predict 
narrow streams whilst also increasing F1 scores (Carbonneau et al., 
2020; Moortgat et al., 2022). 

It might be surprising that a model structure often considered uni
versally useful such as VGG16 (Theckedath and Sedamkar, 2020), did 
not perform well here. VGG16 requires a minimum tile size of 32 due to 
the number of max pooling layers in the architecture (Simonyan and 
Zisserman, 2014). In part, the lack of success here might be attributable 
to this balance between tile size, resolution, and river size. However, the 
depth and complexity of the VGG16 could also be too large for the 
quantity of training data available and the binary classification task. 
VGG16 was created with 1000 classes and 138 million parameters which 
can lead it to very easily overfit with practical (in this case binary) tasks 
and relatively small training data sets (Wu et al., 2017), which explains 
why it was limited in value here. 

4.4. Ecoregion differences 

Median F1 scores are shown to obscure considerable variation within 

the results for different biomes (Fig. 5). This is a common trend in image 
classification, with potential for individual results to be considerably 
worse than their aggregated scores (Carbonneau et al., 2020; Buscombe 
and Ritchie, 2018). A selection of smaller rivers simply did not have 
enough pixels for the CNN step to be effective, which results in unsuc
cessful predictions. However, there is a large degree of variation in some 
results from rivers with widths of ~60 m. We hypothesise that these 
rivers are large enough to have ‘disruptive’ features (e.g., large islands 
and bridges), which impact model accuracy, yet they lack sufficient pure 
water pixels required for the model to overcome these errors, weakening 
the correlation between river width and F1 score. 

Braided streams were found to produce lower F1 scores, which was 
especially the case within the worst performing biome (Tropical Dry 
Broadleaf). Despite the overall quantity of pure water pixels across the 
theoretical bankfull area, individual stretches of water were often too 
narrow for the CNN phase to pick out. Seasonality therefore effects these 
narrow channels, which would only be measurable when flows are high 
enough to increase the water surface area to the minimum requirements 
of the model (Ashmore et al., 2011). Therefore, although the model 
produced here may not be viable for average discharge measurements in 
these braided streams, the return period of PlanetScope makes it a viable 
to still be an important flood monitoring tool (Feng et al., 2019). 

Some conditions were not accounted for in the training data, but we 
included separate test images for these (see supplementary material). 
Snow, ice, and frozen river systems proved problematic for the model, 
although further research is needed to determine if and how our model 
should delineate frozen watercourses. Encouragingly, however, the 
model does not appear to be disrupted by winter conditions on the banks 
such as snow-covered land in the Taiga biome (Fig. 8.b). Similarly, the 
model appears able to cope with artifacts relating to minor cloud or 
shadow, which could negatively impact F1 scores but not to a great 
extent (Fig. 8.a). The model was not trained for these specifically, yet 
when applied to extreme cases of each it was still able to function to 
some degree. In one heavily shaded image, the model delineates dark 
mountain shadow and land as different classes, yet in each the river is 
considered different from the surrounding land type (Fig. 8.c). This 
shadow issue is present in other studies of PlanetScope classification in 
mountains (Qayyum et al., 2020) and should be investigated further but 
nonetheless clearly shows that the CNN phase is based on more infor
mation content than simply pixel values. 

Other conditions where the model was expected to struggle did not 
lead to catastrophic failure. For example, results from the Temperate 
Broadleaf biome were lower than several other biomes but still around 
F1 ≈ 0.8. Upon inspecting images associated with these F1 scores, it 
became clear that they comprised urban areas, such as central London. 
We might expect the model to struggle in these areas due to the con
flicting NIR reflectance values from other urban land use types (Xu, 
2006). However, the model coped fairly well barring errors around 
bridges and watercraft. This is promising because it suggests that limited 
additional specific test data could improve urban results dramatically. 

The categorisation of the different biomes into good, variable, and 
poor is clearly simplistic for the task at hand but could be useful. These 
categories highlight characteristics that the model struggles with. For 
example, Montane Grasslands often have braided streams due to the 
high gradient environment (Montgomery and Buffington, 1998), more 
ice and snow, and smaller first order streams (Strahler, 1957). These 
lead to fewer seasons in which the model can be applied because it is 
expected to produce poorer results when low angle sun hits steep valley 
sides, low flow confines braided streams to separate small channels, or 
snow covers banks. This provides useful information for river managers 
on our model’s applicability. However, when the ‘flashy’ nature of up
land hydrological cycles limits other forms of flood monitoring, these 
braided streams would combine to become wide enough for our method 
to identify and produce robust river masks. This means that while the 
model might be sub-optimal for braided streams during particularly low 
flows, it is likely to work effectively during large flood events when 
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other remote sensing methods cannot be deployed as rapidly (Balles
teros-Cánovas et al., 2015). 

4.5. Fine tuning 

We have shown where and when M20 is likely to work best but 
intend it to be considered as a ‘base’ model, to be further fine-tuned to 
the region or task required. This will enable users to save vast amounts 
of time when creating water masks for rivers, by allowing them to 
achieve highly accurate classification results with the labelling of only a 
handful of images. The main strength of the CSC method is that the base 
CNN has learnt to smooth the difficulties and differences associated with 
CubeSat data. Therefore, with minimum effort individuals can oper
ationalise the high spatial and temporal resolution of PlanetScope to 
process water masks. 

‘Interventional model training’ can be used to bias the model to
wards the biome in question whilst adding to the overall learning and 
generalizability of the model (Wu et al., 2022). Here we use this to 
integrate human knowledge and experience to keep humans ‘in the loop’ 
of model training and usage (Wu et al., 2022; Nunes et al., 2015). The 
training data pipeline used in this study only required the drawing of 
simple polygons enabling “no data” classifications (see https://github. 
com/SamValman/Public_RiverTwin for a step-by-step guide). 
Increasing the speed and ease of labelling thus encourages practitioners 
to invest the time to use and improve the classification model (through 
the creation of additional labels). This simplification step during 
training could have inhibited our model in comparison to similar studies 
with more complex methods of creating training data (Moortgat et al., 
2022). This was especially the case with the FCN comparison attempted 
here, which in turn required considerably more training data and pixel 
level classifications, which required the use of semi-automatic classi
fiers, sometimes with multiple iterations to obtain sufficient quality 
water masks. The simple polygon-based labelling method of CSC enables 
model training to be targeted to capture the right information at the 
right place and time, which in turn necessitates non-experts to develop 
additional training data (Rabaey, 2020). 

Testing of the theory that these models could be improved with 
limited additional training data was carried out on the Ottawa River, 
situated in the Taiga biome. Although the Taiga was the best performing 
biome, the Ottawa River was not one of the initial 36 rivers in the study. 
Therefore, some of the characteristics that make up the Ottawa River 
could have been learnt by the model from other similar rivers, but it will 
not have explicitly seen this river. Despite this, the M20 model first 
predicted the majority of the 15 Ottawa River test images well (Fig. 9). 
However, fine-tuning M20 with 5 additional training images from the 
Ottawa River significantly improved predictions on these same 15 hold- 
out images. This is an important demonstration of just how little user 
input is required to create useful water mask predictions once the initial 
global model has been improved. 

In this study, we chose to retrain the model from scratch whilst 
including the fine-tuned images. This was done to prevent ‘catastrophic 
forgetting’ whereby transfer learning causes a model to be unable to 
accurately make predictions of the original training task (Kirkpatrick 
et al., 2017). In an ideal world the methods chosen would enable ‘life
long learning’ whereby with each user-fed fine-tuning run, the model 
would increase its training set (Parisi et al., 2019). This would reduce 
the time taken for users to update the model and allow the model to 
continuously improve by a concerted community effort. Methods of 
overcoming this ‘catastrophic forgetting’ problem are beyond the scope 
of this paper, but bringing these methods from the computer science 
domains to EO and river science should be a research priority. On top of 
this call for an increase in community efforts to train truly global 
models, there need to be easier ways to access image classification 
models such as those used here. Cloud computing would enable access to 
multiple individuals with diverse site knowledge and training data 
(Rabaey, 2020). This is partly why the model was built using the 

TensorFlow API, which has good compatibility with Google Earth En
gine (Gorelick et al., 2017; Abadi et al., 2016). Future work should focus 
on bringing this lifelong learning into the cloud to collectivise the best 
models for maximum benefit. 

5. Conclusion 

Rivers are large, dynamic systems which cannot be monitored by 
field measurements at the spatial and temporal scale required for 
management. EO has the spatial coverage to provide a potential solution 
to monitoring issues but traditionally used open-source satellites, such 
as Landsat, do not always have the spatial or temporal resolution to be 
useful for practical applicability. The PlanetScope constellation operates 
a daily return rate with 3 m spatial resolution, but it has previously been 
limited to localised studies due to its variable radiometric quality. Our 
novel application of CNN-Supervised Classification (CSC) was shown to 
produce accurate water masks from PlanetScope imagery, overcoming 
the inherent radiometric issues associated with imagery from CubeSat 
constellations to provide automated water masking at a finer temporal 
resolution than any other current EO method. We found that CNN-based 
architecture is a promising option to analyse the increasing quantity of 
images coming from CubeSat satellites with increasing numbers of 
bands. By being the first model to explicitly develop accurate water 
masks from PlanetScope data, it has created the potential for river 
management applications to be operationalized at a global scale with 
daily medium-high resolution imagery. 

This model developed here was demonstrated to generalise reason
ably well across different global biomes, with a median F1 score of 0.93 
and max F1 scores of 0.99. Narrow anastomosed streams, deep shadow, 
and some urban influences were shown to limit the accuracy of model 
predictions. We showed that these limitations were concentrated in 
some biomes, but also demonstrated that the model can be fine-tuned to 
improve its applicability in specific locations. Indeed, our results indi
cate that very marginal increases in the training data can significantly 
improve the results of the base model in case study regions. Where it 
works particularly well, we also believe that our model could be 
extended to differentiate between different hydromorphic units such as 
vegetation, visible sediment, or hydraulic features. This extension would 
be a directly applicable management tool for environmental assessments 
which often request mapping of these features which might change with 
different discharge levels (Fryirs and Brierley, 2022). We therefore call 
for more research into making web-hosted ‘lifelong learning’ models 
that utilise the increasing availability of satellite data and the ability to 
continuously retrain these models, improving both their accuracy and 
allowing them to classify other riverine features. This would help the 
entire field move forwards towards the practical operationalization of 
this imagery. 
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Liébault, F., Ruiz-Villanueva, V., Slater, L., 2020. Remotely sensed rivers in the 
anthropocene: State of the art and prospects. Earth Surf. Process. Landf. 45, 
157–188. 

Planet Labs, 2018. Planet imagery product specifications. Planet Labs, San Francisco, CA, 
USA, p. 91. 

Planet Labs, 2022. Planet To Launch 36 SuperDove Satellites With SpaceX. Available 
from: https://www.planet.com/pulse/planet-to-launch-36-superdove-satellites-with 
-spacex/ [Accessed 9th January 2023].  

Qayyum, N., Ghuffar, S., Ahmad, H.M., Yousaf, A., Shahid, I., 2020. Glacial lakes 
mapping using multi satellite PlanetScope imagery and deep learning. ISPRS Int. J. 
Geo Inf. 9, 560. 

Rabaey, J.M., 2020. Human-centric computing. IEEE Transact. Very Large Scale Integr. 
(VLSI) Syst. 28, 3–11. 

Reina, G.A., Panchumarthy, R., Thakur, S.P., Bastidas, A., Bakas, S., 2020. Systematic 
evaluation of image tiling adverse effects on deep learning semantic segmentation. 
Front. Neurosci. 14, 65. 

Riggs, R.M., Allen, G.H., David, C.H., Lin, P., Pan, M., Yang, X., Gleason, C., 2021. 
RODEO: An algorithm and Google Earth Engine application for river discharge 
retrieval from Landsat. Environ. Model. Softw. 105254. 

Rinke, K., Keller, P.S., Kong, X., Borchardt, D., Weitere, M., 2019. Ecosystem services 
from inland waters and their aquatic ecosystems. Atlas of Ecosystem Services. 
Springer. 

Rosentreter, J.A., Borges, A.V., Deemer, B.R., Holgerson, M.A., Liu, S., Song, C., 
Melack, J., Raymond, P.A., Duarte, C.M., Allen, G.H., Olefeldt, D., Poulter, B., 
Battin, T.I., Eyre, B.D., 2021. Half of global methane emissions come from highly 
variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230. 

Rosgen, D.L., 1994. A classification of natural rivers. Catena 22, 169–199. 
Sekertekin, A., Cicekli, S.Y., Arslan, N., 2018. Index-based identification of surface water 

resources using sentinel-2 satellite imagery. In: 2018 2nd International Symposium 
on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 19-21 Oct. 
2018, pp. 1–5. 

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale 
image recognition 1409 (1556), 1–14. 

Smith, K.E., Terrano, J.F., Pitchford, J.L., Archer, M.J., 2021. Coastal wetland shoreline 
change monitoring: a comparison of shorelines from high-resolution WorldView 
satellite imagery, aerial imagery, and field surveys. Remote Sens. 13, 3030. 

Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. EOS Trans. Am. 
Geophys. Union 38, 913–920. 

Theckedath, D., Sedamkar, R., 2020. Detecting affect states using VGG16, ResNet50 and 
SE-ResNet50 networks. SN Comput. Sci. 1, 1–7. 

Thoms, M., Sheldon, F., 2019. Large rivers as complex adaptive ecosystems. River Res. 
Appl. 35, 451–458. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., 2020. SciPy 1.0: fundamental 
algorithms for scientific computing in Python. Nat. Methods 17, 261–272. 

Wilson, N., Greenberg, J., Jumpasut, A., Collison, A., Weichelt, H., 2017. Absolute 
Radiometric Calibration of Planet Dove Satellites, Flocks 2p & 2e. Planet, San 
Francisco, CA, USA.  

Wirabumi, P., Kamal, M., Wicaksono, P., 2021. Determining effective water depth for 
total suspended solids (TSS) mapping using PlanetScope imagery. Int. J. Remote 
Sens. 42, 5784–5810. 

Wu, B., Liu, Z., Yuan, Z., Sun, G., Wu, C., 2017. Reducing overfitting in deep 
convolutional neural networks using redundancy regularizer. In: International 
Conference on Artificial Neural Networks. Springer, pp. 49–55. 

Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., He, L., 2022. A survey of human-in-the-loop 
for machine learning. Futur. Gener. Comput. Syst. 135, 364–381. 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open 
water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 

Yang, X., Pavelsky, T.M., Allen, G.H., Donchyts, G., 2019. RivWidthCloud: an automated 
Google Earth Engine algorithm for river width extraction from remotely sensed 
imagery. IEEE Geosci. Remote Sens. Lett. 17, 217–221. 

Yang, X., Pavelsky, T.M., Allen, G.H., 2020. The past and future of global river ice. 
Nature 577, 69–73. 

Yasir, M., Jianhua, W., Shanwei, L., Sheng, H., Mingming, X., Hossain, M., 2023. 
Coupling of deep learning and remote sensing: a comprehensive systematic literature 
review. Int. J. Remote Sens. 44, 157–193. 

Yin, Z., Ling, F., Li, X., Cai, X., Chi, H., Li, X., Wang, L., Zhang, Y., Du, Y., 2021. 
A cascaded spectral-spatial CNN model for super-resolution river mapping with 
MODIS imagery. IEEE Trans. Geosci. Remote. 60, 1–13. 

Yuan, X., Shi, J., Gu, L., 2021. A review of deep learning methods for semantic 
segmentation of remote sensing imagery. Expert Syst. Appl. 169, 114417. 

Zheng, Y., Tang, L., Wang, H., 2021. An improved approach for monitoring urban built- 
up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. J. Clean. 
Prod. 129488. 

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2020. 
A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76. 

Ziou, D., Tabbone, S., 1998. Edge detection techniques-an overview. Pattern Recogn. 
Image Analys. C/C Raspoznav. Obraz. Analiz Izobrazh. 8, 537–559. 

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V., 2018. Learning transferable architectures 
for scalable Image recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 8697–8710. 

Zou, Z., Xiao, X., Dong, J., Qin, Y., Doughty, R.B., Menarguez, M.A., Zhang, G., Wang, J., 
2018. Divergent trends of open-surface water body area in the contiguous United 
States from 1984 to 2016. Proc. Natl. Acad. Sci. 115, 3810–3815. 

S.J. Valman et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.asr.2022.12.023
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0300
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0300
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0300
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0305
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0305
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0305
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0310
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0310
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0310
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0315
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0315
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0315
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0315
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0320
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0320
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0325
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0325
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0330
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0330
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0330
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0335
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0335
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0340
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0340
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0345
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0345
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0345
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0345
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0350
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0350
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0355
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0355
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0355
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0355
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0355
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0360
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0360
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0365
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0365
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0370
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0370
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0375
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0375
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0380
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0380
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0380
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0380
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0385
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0385
https://www.planet.com/pulse/planet-to-launch-36-superdove-satellites-with-spacex/
https://www.planet.com/pulse/planet-to-launch-36-superdove-satellites-with-spacex/
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0395
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0395
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0395
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0400
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0400
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0405
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0405
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0405
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0410
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0410
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0410
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0415
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0415
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0415
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0420
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0420
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0420
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0420
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0425
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0430
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0430
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0430
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0430
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0435
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0435
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0440
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0440
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0440
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0445
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0445
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0450
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0450
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0455
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0455
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0460
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0460
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0460
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0465
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0465
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0465
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0470
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0470
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0470
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0475
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0475
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0475
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0480
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0480
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0485
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0485
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0490
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0490
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0490
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0495
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0495
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0500
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0500
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0500
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0505
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0505
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0505
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0510
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0510
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0515
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0515
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0515
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0520
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0520
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0525
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0525
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0530
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0530
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0530
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0535
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0535
http://refhub.elsevier.com/S0034-4257(23)00484-4/rf0535

	An AI approach to operationalise global daily PlanetScope satellite imagery for river water masking
	1 Introduction
	2 Methods
	2.1 PlanetScope imagery
	2.2 Training and testing imagery
	2.3 Data labelling
	2.4 CSC model architecture
	2.5 ‘Human-in-the-loop’ model enhancement
	2.6 Statistical analysis

	3 Results
	3.1 Model selection
	3.2 Variability within biomes
	3.3 Fine tuning

	4 Discussion
	4.1 Applicability of the CSC model
	4.2 Constraints on model success
	4.3 Model structural and testing choices
	4.4 Ecoregion differences
	4.5 Fine tuning

	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Appendix A Supplementary data
	References


