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Abstract
When using mathematical models to make quantitative predictions for clinical or
industrial use, it is important that predictions come with a reliable estimate of their
accuracy (uncertainty quantification). Because models of complex biological systems
are always large simplifications, model discrepancy arises—models fail to perfectly
recapitulate the true data generating process. This presents a particular challenge for
making accurate predictions, and especially for accurately quantifying uncertainty in
these predictions. Experimentalists and modellers must choose which experimental
procedures (protocols) are used to produce data used to train models. We propose
to characterise uncertainty owing to model discrepancy with an ensemble of param-
eter sets, each of which results from training to data from a different protocol. The
variability in predictions from this ensemble provides an empirical estimate of pre-
dictive uncertainty owing to model discrepancy, even for unseen protocols. We use
the example of electrophysiology experiments that investigate the properties of hERG
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potassium channels. Here, ‘information-rich’ protocols allow mathematical models to
be trained using numerous short experiments performed on the same cell. In this case,
we simulate data with one model and fit it with a different (discrepant) one. For any
individual experimental protocol, parameter estimates vary little under repeated sam-
ples from the assumed additive independent Gaussian noise model. Yet parameter sets
arising from the same model applied to different experiments conflict—highlighting
model discrepancy. Our methods will help select more suitable ion channel models
for future studies, and will be widely applicable to a range of biological modelling
problems.

Keywords Mathematical model · Discrepancy · Misspecification · Experimental
design · Ion channel · Uncertainty quantification

1 Introduction

Mathematical models are used in many areas of study to provide accurate quantitative
predictions of biological phenomena. When models are used in safety-critical settings
(such as drug safety or clinical decision-making), it is often important that our models
produce accurate predictions over a range of scenarios, for example, for different drugs
and patients. Perhaps more importantly, these models must allow a reliable quantifi-
cation of confidence in their predictions. The field of uncertainty quantification (UQ)
is dedicated to providing and communicating appropriate confidence in model predic-
tions (Smith 2013). Exact models of biological phenomena are generally unavailable,
and we resort to using approximate mathematical models instead. When our math-
ematical model does not fully recapitulate the data-generating process (DGP) of a
real biological system, we call thismodel discrepancy or model misspecification. This
discrepancy between the DGP and our models presents a particular challenge for UQ.

Often, models are trained using experimental data from a particular experimental
design, and then used to make predictions under (perhaps drastically) different sce-
narios. We call the set of experimental designs under consideration the design space
and denote it D. We assume the existence of some DGP, which maps each element of
d ∈ D to some random output. These elements are known as experimental designs,
or, as is more common in electrophysiology, protocols, and each corresponds to some
scenario that our model can be used to make predictions for. Namely, in Sect. 1.1, each
protocol, d ∈ D, is simply a set of observation times. By performing a set of exper-
iments (each corresponding to a different protocol d ∈ D) we can investigate (and
quantify) the difference between theDGP and ourmodels in different situations.When
training our mathematical models using standard frequentist or Bayesian approaches,
it is typically assumed that there is no model discrepancy; in other words, that the data
arise from the model (for some unknown, true parameter set). This is a necessary con-
dition for some desirable properties of the parameter estimators which provide some
guarantees regarding the accuracy of parameter estimates when there is a large number
of observations, as discussed in Sect. 2.1.3. However, when model discrepancy is not
considered, we can find that the ability of a model to make accurate predictions is
compromised. In particular, if we try to validate our model with a protocol dissimilar
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to that used for training, there can be a noticeable difference between our predictions
and the data—even when the model appears to fit the training data well. A simple
illustration of this problem is introduced in the following section.

1.1 Motivating Example

In this section, we construct a simple example where we train a discrepant model
with data generated from a DGP using multiple experimental designs. This example
demonstrates that it is important to consider the protocol-dependence of parameter
estimates and predictions when using discrepant models.

First, we construct a DGP formed of the sum of two exponential terms,

y∗(t) = exp {−t} + exp

{
− t

10

}
, (1)

z∗(t) = y∗(t) + ε(t), (2)

for some t > 0 where ε(t) is an independent Gaussian random variable, each with
zero mean and variance, σ 2 = 10−4 for each t > 0. Here, z∗(t) is a random variable
representing an observation of the system at some time, t .

Next, we attempt to fit a model which takes the form of single exponential decay,

y(t; θ) = θ1 exp

{
− ti

θ2

}
, (3)

z(t; θ) = y(t; θ) + ε(ti ), (4)

to these data, denoting the column matrix [θ1, θ2]T by θ . We call this a discrepant
model because there is no choice of θ such that y(t; θ) = y∗(t), for all t > 0.

To train our model, we choose a set of n observation times, T = {t1, t2, . . . tn}.
We may then find the parameter set, θ̂(T ), which minimises the sum-of-squares error
between our discrepant model (Eq. 4) and each z(θ; ti ), that is,

θ̂(T ) = argminθ∈�

⎧⎨
⎩
∑
ti∈T

(
y(ti ; θ) − z∗(ti )

)2
⎫⎬
⎭ , (5)

where T is a set of observation times.
Then, we consider multiple experimental protocols which we may use to fit this

model (Eq. (4)). In particular, we consider the following sets of observation times

T1 = {0, 0.01, 0.02, . . . , 0.01} , (6)

T2 = {0, 0.1, 0.2, 0.3, . . . , 1} , (7)

T3 = {0.2, 0.3, 0.4, 0.5, . . . , 1.2} , (8)

T4 = {0.5, 0.55, 0.6, . . . , 1} , and (9)

Tall = T1 ∪ T2 ∪ T3 ∪ T4. (10)
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Wesample from theDGP10 times by computingEq.2 for each observation time, t , and
adding IID Gaussian noise. Then, for each sample of the DGP, we compute parameter
estimates using each set of observation times (T1, T2, T3, T4 and Tall). This process is
then repeated with a ten-fold increase in sampling rate, that is, with observation times,

T ′
1 = {0, 0.001, 0.002, . . . , 0.01} , (11)

T ′
2 = {0, 0.01, 0.02, 0.03, . . . , 1} , (12)

T ′
3 = {0.2, 0.21, 0.22, 0.23, . . . , 1.2} , (13)

T ′
4 = {0.5, 0.505, 0.51, . . . , 1} , and (14)

T ′
all = T1 ∪ T2 ∪ T3 ∪ T4. (15)

If we choose a Bayesian approach to the problem, we may specify a (relatively
uninformative) uniform prior distribution on the model parameters, that is,

θ1 ∼ U (0, 10), (16)

and θ2 ∼ U (0, 10). (17)

The likelihood of our misspecified model is

L(θ; z∗) =
n∏

i=1

√
1

2πσ 2 exp

{
(z∗(ti ) − y(ti ; θ))2

2σ 2

}
, (18)

where n is the number of observations for this protocol, and z∗ = (z(ti ))ni=1 is a
vector of observations of the DGP. We may then explore the posterior distribution
(Gelman et al. 2013) usingMarkov chainMonte Carlo. In particular we use theHaario-
Bardenet adaptive-covariance Metropolis-Hastings (Johnstone et al. 2016) algorithm
as implemented byPINTS (Clerx et al. 2019b). Thismethodwas run using four parallel
chains each containing 25,000 iterations and a ‘burn in’ period of 5,000 iterations.

As shown in Fig. 1, for each sample of theDGP,we obtain a parameter estimate from
each set of observation times, each with a different distribution. For instance, training
using T1 results in a model that approximates the DGP well on short timescales, and
training using T4 allows us to recapitulate the behaviour of the system over longer
timescales, as can be seen in panel a. From how closely the discrepant model (Eq.4)
fits the data in the regions where observations are made (in Fig. 1, panels a and b),
we can see that in either case, a single exponential seems to provide a reasonable
approximation to the DGP. However, if we require an accurate model for both the
slow and fast behaviour of the system, model discrepancy presents an issue, and this
model (namely, Eq. 4) may be unsuitable. This is the case for T2 as shown in Fig. 1a.
This variability in behaviour is shown in Fig. 1, panels g and h, which show how the
model’s predictions for 0 ≤ t ≤ 2 depend on what protocol was used to fit the model.

The Bayesian posteriors illustrated in Fig. 1, panels e and f, show that we are
not able to avoid the problems caused by model discrepancy by simply adopting
a Bayesian framework—we will obtain precise parameter estimates that are highly
dependent on the chosen training protocol, nevertheless. This problem becomes more
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Fig. 1 (Color figure online) Under model discrepancy, parameter estimates depend on the design used for
training. Panels to the left of the dotted line correspond to designs containing n = 11 observations at times
(T1, . . . , T4 as shown in panel (a). Panels on the right show designs with n = 101 observations, (T ′

1, . . . , T
′
4

as shown in panel b). a and b representative datasets generated by the DGP shown with the solid black line
(Eq.1) with points indicating observations (sampled using Eq.2) and the fitted discrepant model (Eq.4),
with calibrated θ) (grey dashed lines). c and d The parameter estimates for each design, each fitted to one
of ten repeats of the DGP. e and f 99% Bayesian credible regions obtained using MCMC, a uniform prior
and a single repeat of the DGP. g and h Predictions using the discrepant model fitted using a single repeat
of each protocol (using the estimates shown in e and f), showing the true DGP (black), discrepant model
predictions (red), and the difference between predictions (grey)
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obvious when we increase the number of observations. In the examples detailed in
this paper, we explore this ‘high-data limit’ where the variability in each parameter
estimate (under repeated samples of the DGP) is minuscule compared to the difference
between parameter estimates obtained from different protocols.

1.2 Ion Channel Modelling

Discrepancy has proven to be a difficult problem to address in modelling electrically-
excitable cells (electrophysiologymodelling, Lei et al. 2020b;Mirams et al. 2016). The
same is true for many other mathematical models, such as rainfall-runoff models in
hydrology (Beven 2006), models of the spread of infectious diseases in epidemiology
(Guan et al. 2020; Creswell et al. 2023), andmodels used for the prediction of financial
markets (Anderson et al. 2009).

The ‘rapid delayed rectifier potassiumcurrent’ (IKr ), carried by the channel encoded
primarily by hERG, plays an important role in the recovery of heart cells in from
electrical stimulation. It allows the cell membrane to return to its ‘resting potential’
ahead of the next heartbeat. This current can be blocked by pharmaceutical drugs,
disrupting this process and causing dangerous changes to heart rhythm. Mathematical
models are now routinely used in drug safety assessment to test whether the expected
dynamics of IKr under drug block are expected to cause such problems (Li et al.
2017). However, these models provide only an incomplete description of IKr , and
do not, for example, account for the stochastic behaviour of individual ion channels
(Mirams et al. 2016). For this reason, an understanding of model discrepancy and its
implications is crucial in building accurate dynamical models of IKr which permit a
realistic appraisal of their predictive uncertainty.

In Sect. 1.1, we presented a simple example, in which each protocol corresponds
to a particular choice of observation times. However, there may other aspects of the
design to be decided upon. For example, in electrophysiology, whole-cell patch-clamp
experiments are performed by placing an electrode in the solution inside the cell
membrane (the intracellular solution), and another in the solution outside the cell (the
extracellular solution).Voltage-clamp experiments are a particular type of patch-clamp
experiment in which a voltage signal is applied across the cell membrane, whilst the
current flowing across the cell membrane is recorded. Here, the protocol consists of
the chosen voltage for each time (treated as a forcing function in ODE-based models),
together with a set of observation times for the resulting current (observed output).

Electrophysiologists have a lot of control, and therefore choice, regarding the pro-
tocol design; but little work has been done to explore how the choice of protocol used
to gather training data affects the accuracy of subsequent predictions.We explore these
protocol-dependent effects of model discrepancy in Sect. 3.

1.3 Previously ProposedMethods to Handle Discrepancy

One way of reducing over-confidence in inaccurate parameter estimates in the pres-
ence of model discrepancy may be to use approximate Bayesian computation (ABC)
(Frazier et al. 2020). With ABC, a likelihood function is not explicitly specified;
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instead, the model is repeatedly simulated for proposed values of the parameter sam-
pled from a prior distribution. Each proposed value is accepted or rejected according to
whether the simulated trajectory is “close” to the actual data, according to some cho-
sen summary statistics. ABC compares the simulated with the real data using these
summary statistics (rather than matching all aspects of the dynamics) and accepts
approximate matches (subject to a chosen tolerance). It is suited to inference where
there is substantial model discrepancy because this approach can decrease potential
over-confidence in the inferred values of parameters. However, it is challenging to
select suitable summary statistics, and the computational demands of ABC are much
greater than those of the methods we propose.

Another approach was first introduced by Kennedy and O’Hagan (2001), who
introduced Gaussian processes to the observables. This work has since been applied
to electrophysiology models (Lei et al. 2020b). Elsewhere, Sung et al. introduced
an approach to account for heteroscedastic errors using many repeats of the same
experiment (Sung et al. 2020), although this seems to be less applicable to the hERG
modelling problem (introduced in Sect. 2.2) because the number of repeats of each
experiment (when training individual, cell-specific models) is limited. Alternatively,
Lei and Mirams (2021) modelled the discrepancy using a neural network within the
differential equations. However, these approaches reduce the interpretability of other-
wise simple mechanistic models, and, when compared with models that simply ignore
model discrepancy, could potentially result in worse predictions under protocols that
are dissimilar to those used for training.

Instead,we use a diverse range of experiments to train ourmodels and build a picture
of how model discrepancy manifests under different training protocols. We are then
able to judge the suitability of our models, and provide empirically-derived, spread-
of-prediction intervals which provide a realistic level of predictive uncertainty due to
model discrepancy. We demonstrate the utility of these methods under synthetically
generated data by constructing two examples of model discrepancy.

2 Methods

We begin with a general overview of our proposed methods before providing two
real-world examples of their applications. In Sect. 2.1.1, we outline some notation for
a statistical model consisting of a dynamical system, an observation function, and
some form of observational noise. This allows us to talk, in general terms, about
model calibration and validation in Sect. 2.1.2. In particular, we describe a method for
validating our models, in which we change the protocol used to train the model. This
motivates our proposed methods for combining parameter estimates obtained from
different protocols to empirically quantify model discrepancy for the prediction of
unseen protocols.
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2.1 FittingModels UsingMultiple Experimental Protocols

2.1.1 Partially Observable ODEModels

In this paper, we restrict attention to deterministic models of biological phenomena,
in which a system of ordinary differential equations (ODEs) is used to describe the
deterministic time-evolution of some finite number of states. Although, the method
would generalise to other types of models straightforwardly. This behaviour may be
dependent on the protocol, d, chosen for the experiment, and so, we express our ODE
system as,

dx
dt

= f(x, t; θ f , d), (19)

wherex is a columnvector of length N describing the ‘state’ of the system, t is time, and
the parameters specifying the dynamics of the system are denoted θ f . Additionally,
the system is subject to some initial conditions which may be dependent on θ f . Owing
to x’s dependence on the protocol and model parameters, we use the notation,

x(t; θ f , d), (20)

to denote the solution of Eq.19 under protocol d and a specific choice of parameters,
θ f .

This ODE system is related to our noise-free observables via some observation
function of the form,

h (x, t; θh, d) , (21)

where x is the state of the ODE system (Eq.19), t is the time that the observation
occurs, d is the protocol, and some additional parameters θh , which are distinct from
those in θ f . Here, we make observations of the system, via this function, at a set of
observation times, {ti }ndi=1 defined by the protocol, d.

For concision, we may stack θ f and θh into a single vector of model parameters,

θ =
[
θ f

θh

]
. (22)

Then, we denote an observation at time ti by

yi (θ; d) = h
(
x(ti ; θ f , d), ti ; θh, d

)
, (23)

We denote the set of possible model parameters by �, such that θ ∈ �. We call this
collection of possible parameter sets the parameter space.

123



Empirical Quantification of Predictive Uncertainty Due to… Page 9 of 36     2 

For each protocol, d ∈ D, and vector of model parameters, θ , we may combine
each of our observations into a vector,

y(θ; d) =
⎡
⎢⎣
y1(θ; d),

...

ynd (θ; d)

⎤
⎥⎦ . (24)

Additionally, we assume some form of random observational error such that, for
each protocol, d, each observation is a random variable,

zi (d) = yi (θ; d) + εi , (25)

where each εi is the error in the i th observation. Here each protocol, d, is performed
exactly once so that we obtain one sample of each vector of observations (the vector
z(d) = [z1(d), . . . , znd (d)]). In the examples presented in Sects. 3.1 and 3.2, we
assume that our observations are subject to independent and identically distributed
(IID) Gaussian errors, with zero mean 0 and standard deviation, σ .

2.1.2 Evaluation of Predictive Accuracy andModel Training

Given some parameter set θ , we may evaluate the accuracy of the resultant predictions
under the application of some protocol d ∈ D by computing the root-mean-square
error (RMSE) (Willmott et al. 1985) between these predictions, and our observations
(z(d)),

RMSE
(
y(θ; d), z(d)

) =
√√√√ 1

nd

nd∑
i=1

(
yi (θ; d) − zi (d)

)2
, (26)

where nd is the number of observations in protocol d. We choose the RMSE as it
permits comparison between protocols with different numbers of observations.

Similarly, we may train our models to data, z(d), obtained using some protocol,
d, by finding the parameter set that minimises this quantity (Eq. 26). In this way, we
define the parameter estimate obtained from protocol d as,

θ̂d = argminθ∈�

{
RMSE

(
y(θ , d), z(d)

)}
, (27)

which is a random variable (because it depends on our random data, z). Since min-
imising the RMSE is equivalent to minimising the sum-of-squares error, this estimate
is also the least-squares estimator (identical to Eq.5). Moreover, under the assumption
of Gaussian IID errors, Eq. 27 is exactly the maximum likelihood estimator because
the natural logarithm of the likelihood can be written as,

log {L(θ; z)} = −n

2
log

(
2πσ̂ 2

)
− 1

2σ 2

n∑
i=1

(
yi (θ; d) − zi (d)

)2
, (28)
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where σ̂ is an estimate ofσ . Equation28 canbeminimisedbyfirst finding the parameter
set, θ̂ which minimises the sum-of-squares error term, then finding the optimal σ .
Whilst these estimates of θ are identical whether or not σ is known, only examples
with known (and not estimated) σ are explored in this paper.

Having obtained such a parameter estimate, we may validate our model, by com-
puting predictions for some other protocol, d̃ ∈ D. To do this, we compute, y(θ̂d; d̃).

This is a simulation of the behaviour of the system (without noise) under protocol d̃
made using parameter estimates that were obtained by training the model to protocol
d (as in Eq.27). In this way, our parameter estimates, each obtained from different
protocols, result in different out-of-sample predictions (predictions for the results for
protocols other than the one used for training). Because we aim to train a model able
to produce accurate predictions for all d ∈ D, it is important to validate our model
using multiple protocols.

By computing RMSE
(
y(θ̂d; d̃), z(d̃)

)
for each pair of training and validation pro-

tocols, d and d̃, we are able to perform model validation across multiple training and
validation protocols. This allows us to ensure our models are robust with regard to the
training protocol, and allow for the quantification of model discrepancy as demon-
strated in Sect. 3.

2.1.3 Consequences of Model Error/Discrepancy

Ideally,wewould have amodel that is correctly specified, in the sense that the data arise
from the model being fitted. In other words, our observations z(d) arise from Eq.25
where θ is some fixed, unknown value, θ∗ ∈ �. Then we may consider the distance
between an estimate θ̂ and the true value. When the model is correctly specified and
given suitable regularity conditions on the model and the design, d, we can obtain
arbitrarily accurate parameter estimates by increasing the number of observations, n.
That is, more precisely, that θ̂ converges in probability to θ∗ as n → ∞. This property
is known as consistency (Seber and Wild 2005). These regularity conditions include
that the model is structurally identifiable for the particular d ∈ D used for training,
for example. That is, different values of the parameter, θ , result in different model
output (Wieland et al. 2021). Other conditions ensure that y(θ; d) is suitably smooth
as a function of θ (Seber and Wild 2005).

However, when training discrepant models, we may find that our parameter esti-
mates are heavily dependent on the training protocol, as demonstrated in Sect. 1.1. For
unseen protocols, these discordant parameter sets may lead to a range of vastly differ-
ent predictions, even if each parameter set provides a reasonable fit for its respective
training protocol. In such a case, further data collection may reduce the variance of
these parameter estimates, but fail to significantly improve the predictive accuracy of
our models.

In Sect. 3, we explore two examples of synthetically constructedmodel discrepancy.
In Sect. 3.1, we have that f and h (Eqs. 19 and 25) are exactly those functions used to
generate the data, and the exact probability distribution of the observational errors is
known. However, one parameter is fixed to an incorrect value. In other words, the true
parameter set θ∗ lies outside the parameter space used in training the model. Under
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the assumption of structural identifiability (and a compact parameter space), this is an
example of model discrepancy because there is some limit to how well our model can
recapitulate the DGP.

In Sect. 3.2 we explore another example of model discrepancy where our choice of
f (and, in this case, the dimensions of θ and x) are misspecified by training a model
which differs structurally from the one used in the DGP.

2.1.4 Ensemble Training and Prediction Interval

As outlined in Sect. 2.1.2, we can obtain parameter estimates from each protocol d ∈ D
by finding the θ̂ ∈ � that minimises Eq.27. We then obtain an ensemble of parameter
estimates,

{
θ̂d : d ∈ Dtrain

}
. (29)

Then, for any validation protocol d̃ , the set,

{
y(θ̂d ; d̃) : d ∈ Dtrain

}
, (30)

is an ensemble of predictions where Dtrain ⊆ D is some set of training protocols.
Each of these estimates may be used individually to make predictions. We may then
use these ensembles of parameter estimates to attempt to quantify uncertainty in our
prediction.We do this by considering the range of our predictions for each observation
of interest. For the i th observation of our validation protocol, d̃, that is

B(i) =
[
B(i)
lower,B(i)

upper

]

=
[

min
d∈Dtrain

{
yi (θ̂d; d̃)

}
, max
d∈Dtrain

{
yi (θ̂d; d̃)

}]
, (31)

When all observations are considered at once, Eq.31 comprises a band of predic-
tions, giving some indication of uncertainty in the predictions. We demonstrate below
that this band provides a useful indication of predictive error for unseen protocols,
and provides a range of plausible predictions. We propose that a wide band of predic-
tions for a given validation protocol suggests that there is model discrepancy and poor
prediction accuracy for a particular context of use.

This interval (Eq.31), cannot shrink as more protocols are added. If a large number
of protocols are considered, percentiles of our ensemble of predictions may provide
additional insight. However, in this paper, we only consider cases where there are a
small number of protocols (five training protocols are used in each of the examples
discussed in Sect. 3).

For the purposes of a point estimate, we use the midpoint of each interval,

B(i)
mid = B(i)

lower + B(i)
upper

2
. (32)
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This is used to assess the predictive error of the ensemble in Fig. 8. There are other
ways to gauge the central tendency of the set of predictions (Eq.30). Such a change
would have little effect on Sect. 3, but a median or weighted mean may be as (or more)
suitable for other problems.

2.2 Application to an Ion Current Model

We now turn our attention to an applied problem in which dynamical systems are used
to model cellular electrophysiology. We apply our methods to two special cases of
model discrepancy using synthetically generated data.

Firstly, we introduce a common paradigm for modelling macroscopic currents in
electrically excitable cells, so-calledMarkov models (Rudy and Silva 2006; Fink and
Noble 2009). In this setting, the term ‘Markov model’ is often used to refer to systems
of ODEs where the state variables describe the proportional occupancy of some small
collection of ‘states’, and the model parameters affect transition rates between these
states. These models are discussed in Sect. 2.2.1 and may be seen as a special case
of the more general ODE model introduced in Sect. 2.1. Additionally, in Sect. 2.2.2,
we briefly introduce some relevant electrophysiology and in Sect. 2.2.3, we provide a
detailed overview of our computational methods.

2.2.1 Markov Models of IKr

Here, we useMarkovmodels to describe the dynamics of IKr , especially in response to
changes in the transmembrane potential. For any Markov model (as described above),
the derivative function can be expressed in terms of a matrix, A, which is dependent
only on the transmembrane potential, V . Accordingly, where xi denotes the proportion
of channels in some state, i , Eq. 19 becomes,

dx
dt

= f(x, t; θ f , d),

= A
(
V (t; d); θ f

)
x, (33)

where V (t; d) is the specified transmembrane potential at the time t under protocol d.
The elements of A(V ; θ f ), that is, Ai, j (V ; θ f ) describe the transition rate from state
j to state i with transmembrane potential, V . Usually, the transition rates (elements
of A) are either constant or of the form θi e±θ j V (t;d) with θi , θ j > 0. Hence, each
transition rate, k is either 0 for all V ∈ R or satisfies k > 0 for all V ∈ R.

Before and after each protocol, cells are left to equilibrate with the voltage V set to
the holding potential, Vhold = −80mV. Therefore, we require the initial conditions,
for at time t = 0,

x(0) = x∞(Vhold), (34)
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where, x∞(Vhold) is the unique steady-state solution for the linear system,

dx
dt

= A(Vhold; θ f )x, (35)

subject to the constraint
∑N

i=1 xi (0) = 1. Note also thatA(Vhold; θ f )may be singular,
as is the case when the number of channels is conserved (

∑N
i=1 xi (t) = 1 for all t).

This is the case for both Markov models used in this paper. To find x∞, we may follow
Fink and Noble’s method (see Supplementary Material of Fink and Noble 2009). A
more technical discussion of the steady states of such ODE systems is found in Keizer
(1972).

As is standard for models of IKr (Beattie 2015), we take our observation function
to be

IKr = h(x, ti ; θh, d) = g · [O](t; θ f , d) · (V (t; d) − EKr), (36)

where [O] denotes the proportion of channels in an ‘open’ conformation (one of
the components of x); and g is the sole parameter in θh , known as the maximal
conductance; and EKr is the Nernst potential. EKr is found by calculating

EKr = RT

F
ln

{ [Kout]
[Kin]

}
, (37)

where R is the gas constant, F is Faraday’s constant, and T is the temperature and
[Kin] and [Kout] are the intracellular and extracellular concentrations of K+, respec-
tively. Here, we choose the temperature to be room temperature (T = 298K), and our
intracellular and extracellular concentrations to be 120mM and 5mM, respectively,
which approximately correspond to physiological concentrations (Hille 2001). Hence,
for all synthetic data generation, training, and validation in Sects. 3.1 and 3.2, we fix
EKr = −80.24mV (using Eq.37).

From Eqs. 33–36, we can see that both the dynamics of the model and the observa-
tion function are dependent on the voltage,V (t; d). This is a special case of Eqs. 23–25,
in which f and h are time-dependent only via the voltage V (t; d). In other words, at
any fixed voltage (V ), Eq. 33 is an autonomous system and h does not depend directly
on t .

We assume that our observational errors are additiveGaussian IID randomvariables
with zero mean and variance, σ 2.

The first model of IKr we consider is by Beattie et al. (2018). This is a four state
Markov model with nine parameters (8 of which relate to the model’s kinetics and
form θ f ). We use the parameters that Beattie et al. obtained from one particular cell
(cell #5) by training their model to data obtained from an application of the ‘sinusoidal
protocol’with amanual patch-clamp setup. The cells usedwereChinese hamster ovary
cells, which were made to heterologously over-express hERG1a. These experiments
were performed at room temperature.

The second model is by Wang et al. (1997). This is a five-state model which has 15
parameters. These parameters were obtained by performing multiple voltage-clamp
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protocols, all at room temperature, on multiple frog oocytes overexpressing hERG.
These experiments are used to infer activation and deactivation time constants as
well as steady-state current voltage relations, which are, in turn, used to produce
estimates for the model parameters. Of the two parameter sets provided in Wang et al.
(1997), we use the parameter set obtained by using the extracellular solution with a
2mMconcentrationof potassiumchloride, as thismost closely replicates physiological
conditions.

The systems of ODEs for the Beattie and Wang models, as well as the parameteri-
sations of the transition rates, are presented in Appendix 5.1. The values of the model
parameters, as used in Sects. 3.1 and 3.2 are given in Table 1.

2.2.2 Experimental Designs for Voltage Clamp Experiments

A large amount of data can be recorded in voltage-clamp electrophysiology experi-
ments: the current can be recorded at a several-kHz sampling rate, for many minutes.
In what follows, we take observations of the current at the same 10kHz frequency for
all protocols. Experimenters have a great deal of flexibility when it comes to speci-
fying voltage-clamp protocol designs. We have published a number of studies on the
benefits of ‘information-rich’ experimental designs for these protocols, focusing on
short protocols which explore a wide range of voltages and timescales (Beattie et al.
2018; Lei et al. 2019a, b; Clerx et al. 2019a; Kemp et al. 2021). In a real patch-clamp
experiment, the amount of data we can obtain from each cell is limited. Hence, it is not
feasible to perform many long protocols in sequence on the same cell. For this reason,
we use six short information-rich protocols, denoted d0 to d5, as shown in Fig. 3.

Here, we use simple designs consisting of a combination of sections where the
voltage is held constant or ‘ramps’ where the voltage increases linearly with time
for compatibility with automated high-throughput patch clamp machines which are
restricted to protocols of this type. For the protocols included in this paper, short iden-
tical sequences including ramps are placed at the beginning and end of each protocol.
In real experiments, these elements will allow for quality control, leak subtraction,
and the estimation of the reversal potential (Lei et al. 2019a, b). The central portion,
consisting of steps during which the voltage is held constant, is what varies between
protocols.

Not all possible designs are suitable for training models. Sometimes we encounter
protocols for which distant pairs of parameter sets yield approximately equal model
output—i.e. the model output for a protocol is not sensitive to certain (possibly large)
changes in the model parameters. Subsequently, when training the model to data
generated from this protocol, many different parameter sets give similar fits that are
almost equally plausible. This problem is loosely termed numerical unidentifiability
(Fink and Noble 2009) and generally speaking is best avoided, unless the resulting
uncertainty in the model parameters is known to be immaterial regarding any possible
future context of use.

For both the Beattie and Wang models, numerical unidentifiability is a problem for
design d0 (data not shown, but this phenomenon is illustrated for a similar IKr model
and protocol in Fig. 3 of Whittaker et al. (2020)). Yet d0 mimics the transmembrane
voltage of a heart cell in a range of scenarios, and so provides a good way to validate
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Fig. 2 (Color figure online) The structural differences between the two Markov model structures used in
this paper for synthetic data generation andmodel training. a The four-state Beattie model used in bothCase
I andCase II. b The five-state Wang model used only forCase II. When a channel is in the open/conducting
(O) state (green) current is able to flow. Whereas, when the model is in the other closed (C) or inactivated
(I) states, no current can flow. The arrows adjacent to each model structure indicate the direction in which
rates increase as the voltage increases

whether our models recapitulate well-studied, physiologically-relevant behaviour. In
particular, the central portion of this voltage-protocol consists of a sequence of wave-
forms, each of which resembles the action potential of muscle cells found in the heart
(ten Tusscher et al. 2004). So in this study we use d0 as a validation protocol, but do
not use it as a protocol for training models.

The remaining designs, d1–d5, were constructed using various criteria under con-
straints on voltage ranges and the duration of each step. The design d1 was designed
algorithmically by sampling from a probability distribution placed over possible
parameter sets and maximising the difference in model outputs between all pairs of
parameter sets sampled from this distribution; d5 was the result of the same algorithm
applied to theWang model. In contrast, d4 is a manual design we have used previously
(Lei et al. 2019a) based on a simplification of a sinusoidal design (Beattie et al. 2018).
The design, d2 is a further manual refinement of d4 to explore inactivation processes
(rapid loss of current at high voltages) more thoroughly. Finally, d3 is based on max-
imising the exploration of the model phase-space for the Beattie model, visiting as
many combinations of binned model states and voltages as possible. The main thing
to note for this study however, is that d1–d5 result in good numerical identifiability
(Fink and Noble 2009) for both models—that is, when used in synthetic data studies
that attempt to re-infer the underlying parameters, all five protocol designs yield very
low-variance parameter estimates (as shown in Fig. 2 for λ = 1 for the Beattie model,
and Fig. 5 for the Wang model). This is a useful property, because it allows us to
disregard the (very small) effect of different random noise in the synthetic data on the
spread of our predictions (Eq.31).

2.2.3 Computational Methods

Numerical solution of ODEs
Any time we calculate y(θ; d), we must solve a system of ordinary differential equa-
tions. We use a version of the LSODA solver designed to work with the Numba
package, and Python to allow for the generation of efficient just-in-time compiled
code from symbolic expressions. We partitioned each protocol into sections where the
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voltage is constant or changing linearly with respect to time because this sped up our
computations. We set LSODA’s absolute and relative solver tolerances to 10−8. The
fact that the total number of channels is conserved in our models, allows us to reduce
the number of ODEs we need to solve from N to N − 1 (Fink and Noble 2009).
Synthetic data generation
Having computed the state of the system at each observation time, (x(ti , θ∗, d))

nd
i=1, it

is simple to compute yi by substituting x into our observation function (Eq.25). Finally,
to add noise, we obtain nd independent samples using Eq.25, using NumPy’s (Harris
et al. 2020) interface to the PCG-64 pseudo-random number generator. Here, because
we are using equally spaced observations with a 10kHz sampling rate, nd = 104× tdur
where tdur is the duration of the protocol in seconds.
Optimisation
Finding the least-squares estimates, or, equivalently, minimising Eq.26 is (in general)
a nonlinear optimisation problem for which there exist many numerical methods. We
use CMA-ES (Hansen 2006) as implemented by the PINTS interface (Clerx et al.
2019b). CMA-ES is a global, stochastic optimiser that has been applied successfully
to many similar problems.

We follow the optimisation advice described in Clerx et al. (2019a). That is, for
parameters ‘a’ and ‘b’ in state transition rates of the form k = a exp (bV ), the opti-
miser works with ‘log a’ and untransformed ‘b’ parameters. We enforce fairly lenient
constraints on our parameter space, �, to prevent a proposed parameter set from forc-
ing transitions to become so fast/slow that the ODE system becomes very stiff and
computationally difficult to solve. In particular, we take a similar approach to Clerx
et al. (2019a) we require that every parameter is positive, and, for ease of computation,

1.67 × 10−5 ms−1 ≤ kmax ≤ 103 ms−1 (38)

where kmax is the maximum transition rate, k(V ), for all

V ∈ [−120mV,+60mV],

which is the voltage range used in our protocols (Fig. 3).
Because CMA-ES is a stochastic algorithm, repeated runs can produce different

output. To ensure that we have found the global minimum (Eq.27), we repeat every
optimisation numerous times (25 repeats for λ = 1 in Case I, 5 repeats for subsequent
λ, and 25 repeats in Case II).

Moreover, in Sect. 3.2, when training the discrepant model, our initial guesses for
the kinetic parameters were randomly sampled using

log10(p) ∼ U (−7,−1), (39)

whereas we set the maximal conductance initial guess (which only affects the obser-
vation function) to the value used for data generation (even though these data were
generated using a different model structure). We then check that our parameter set sat-
isfies Eq.38, and resample if necessary before commencing the optimisation routine.
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Fig. 3 Left: a range of different input voltage-clamp protocols (forcing functions) used in this study. Right:
corresponding synthetic output data IKr simulated using the Beattie model with noise added as described
in Sect. 2.2.3. Here, we generate and plot data observed at a 10kHz sampling rate. Training protocols (all
protocols except d0) were tested for numerical identifiability (Fink and Noble 2009): inverse problems
performed on synthetic data with repeatedly sampled random noise yielded parameter estimates with little
variability
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The examples presented in Sects. 3.1 and 3.2 require the solution of many optimi-
sation problems. For speed, these tasks may be organised in such a way that multiple
optimisation problems can be solved in parallel.

3 Results

In this section, we use synthetically generated data to explore two cases of model
discrepancy in Markov models of IKr . In this first case, we gradually introduce dis-
crepancy into a model with the correct structure by fixing one of its parameters to
values away from the DGP parameter set. Then, in Sect. 3.2, we apply the same meth-
ods to another case where the model structure is incorrectly specified. In both cases,
we take a literature model of IKr together with Gaussian IID noise to be the DGP.

3.1 Case I: MisspecifiedMaximal Conductance

In this case, we assume a correctly specifiedmodel, but assume increasingly erroneous
values of one particular parameter and investigate how this impacts the protocol-
dependence our parameter estimates and the predictive accuracy of our models. Also,
we explore how the spread in our model predictions (Eq.31) increases as the amount
of discrepancy increases (in a particular manner).

To do this, we simulate data generation from each training protocol, as outlined,
ten times using Gaussian IID noise with standard deviation (0.03nA). Specifically, we
take the trueDGP to be the Beattie model, as shown in Fig. 2. Then, we fix themaximal
conductance (g) to a range of values, and infer the remaining model parameters from
the synthetic data, generated using the true parameter set, θ∗. We assume that the
standard deviation of the Gaussian noise is known because it can be well estimated
from the initial portion of each protocol where the current is stationary.

When training our models, we use a restriction of the usual parameter space to fit
the data by assuming some fixed value, λ, for the maximal conductance, g. In this
way, we reformulate the optimisation problem slightly such that Eq. 27 becomes

θ̂λ(d) = argminθ∈�λ
{RMSE (y(θ; d), z(d))} , (40)

where �λ is the subset of parameter space where the maximal conductance is fixed
to λg. For each repeat of each protocol, we solve this optimisation problem for each
scaling factor, λ ∈ { 1

4 ,
1
2 , 1, 2, 4

}
. These calculations are identical to those used in

the computation of profile likelihoods under the assumption of additive IID Gaussian
errors (Bates 1988).

Next, we fit these restricted parameter-space models to the same dataset and assess
their predictive power under the application of a validation protocol. We do this for
each possible pair of training and validation protocols.

To reduce the time required for computation we fit our discrepant models sequen-
tially, starting at λ = 1 and increasing or decreasing λ, using previous parameter
estimates as an initial guess. This is done so that, for example, the kinetic parameters
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found by fixing λ = 2 are used as our initial guess when we fit the model with λ = 4,
unless the original kinetic parameters (Table 1) provide a lesser RMSE than the results
of the previous optimisation.

The spread in predictions for the validation protocol, d0, for, λ ∈ { 14 , 1, 4} is shown
in Fig. 4. A more complete summary of these results is provided by Fig. 5. Here,
when λ = 1 (the central row of Fig. 5), we can see that no matter what protocol is
used to train the model, the distribution of parameter estimates (panel a) is centred
around their true values, and the resultant predictions are all accurate (Fig. 5, panels b
and c). In contrast, when the maximal conductance, g is set to an incorrect value our
parameter estimates become biased, and overall, our predictions become much less
accurate. This effect on predictive accuracy is also shown in Fig. 10.

Moreover, the inaccuracy in our parameter estimates and our predictions varies
depending on the design used to train the model. This effect does not appear to be
symmetrical, with λ < 1 seemingly resulting in more model discrepancy than λ > 1.

Further results are provided in Sect. 5.2. Figure10 shows the error in our predictions
of d0 as λ varies, Table 2 examines the distribution of our parameter estimates for each
protocol (under repeated samples of the DGP) for different values of λ and Table 3
shows the behaviour of our spread-of-predictions interval (Eq. 31) and midpoint pre-
diction Eq.32 for different values of λ.

3.2 Case II: Misspecified Dynamics

Next, we apply thesemethods to an example wherewe havemisspecified the dynamics
of themodel (the function f).We use two competingMarkovmodels of hERGkinetics,
the Beattie model (Beattie et al. 2018), and theWang model (Wang et al. 1997). These
models have differing structures and differing numbers of states, as shown in Fig. 2.We
generate a synthetic dataset under the assumption of the Wang model with Gaussian
IID noise (with standard deviation 0.03nA) and the original parameter set as given in
Wang et al., for all the protocols shown in Fig. 3. As in Case I, we assume the standard
deviation of this noise is known.

Then, we are able to fit both models to this dataset, obtaining an ensemble of
parameter estimates and performing cross-validation as described in Sect. 2. In this
way, we can assess the impact of choosing the wrong governing equations (the choice
of f in Eq.19), and its impact on the predictive accuracy of the model. We do this
to investigate whether the techniques introduced in Sect. 2.1 are able to provide some
useful quantification ofmodel discrepancywhen the dynamics of IKr aremisspecified.

Our results, presented in Figs. 6 and 7, show how we expect a correctly specified
model to behave in comparison to a discrepant model.We can see from the bottom row
of Fig. 7, that when training using the correctly specified derivative matrix, we were
able to accurately recover the truemaximal conductance using each and every protocol.
Moreover, similarly to Case I, no matter which protocol the correctly specified model
was trained with, the resultant predictions were very accurate (as can be seen in Fig. 6).

However, when the discrepant model was used, there was significant protocol
dependence in our parameter estimates, and our predictions were much less accu-
rate overall, but perhaps accurate for many applications. Moreover, it seems that for
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Fig. 4 (Color figure online) The set of predictions (Eq.30) shown for parameter estimates obtained by
training with different values of λ to synthetic data under d1, . . . , d5 (using the Beattie model). The syn-
thetically generated data used for model validation are shown in grey and and the spread of the predictions
is highlighted in yellow. a The voltage trace for d0. b The set of predictions with λ = 1

4 . c The set of
predictions with λ = 1, that is, under the assumption of the correct maximal conductance (g). d The set of
predictions with λ = 4. N.B. the ‘angular’ nature of the current is not a plotting artefact, but reflects the fact
the voltage clamp (a) is constructed from a series of linear ramps for compatibility with automated voltage
clamp machines
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Fig. 5 (Color figure online) Discrepancy in parameter estimates and subsequent currents when a non-
discrepant model is fitted to synthetic data, with all parameters free except the maximal conductance, g,
which is scaled by some factor λ, (g = λg∗, where g∗ is the true value). a Estimates of θ1 and θ2 obtained
by training with different protocols for 10 repeats of the DGP. The lines (linearly interpolated using 17
values for λ ∈ [ 14 , 4]) show how the estimates from each protocol improve as λ → 1. b d0 voltage protocol.
c The spread of predictions of IKr under the d0 protocol using the parameter estimates in Column a. d A
heatmap showing the predictive error obtained by training and validating for each pair of protocols. Here c
corresponds with the top row of each heatmap, as indicated
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Fig. 6 (Color figure online) Case II: the set of predictions (Eq.30) shown for parameter estimates obtained
by training Beattie and Wang models with data synthetically generated using the Wang model. a The d0
voltage-clamp protocol. b The set of predictions using the Beattie model. c The set of predictions with
Wang model, that is, with under the assumption of the correct model structure

the majority of d0, the spread in predictions across training protocols (Eq.31) was
smaller than those seen in Case I, but there are certain portions where the discrepant
model and DGP are noticeably different (as highlighted in Fig. 6). This may be due
to the structural differences between the Wang and Beattie model. In particular, in
the Wang model, channels transitioning from the high-voltage inactive state (I), must
transition through the conducting, open state (O) in order to reach low-voltage closed
states (C1, C2, C3), causing a spike of current to be observed. Instead, channels in the
Beattie model may transition through the inactive-and-closed state (IC) on their way
between O and C, resulting in reduced current during steps from high voltage to low
voltage.

Nevertheless, our methods provide a useful indication of this model discrepancy.
Figure 8, examines the behaviour of our prediction interval (Eq.31) in more detail.
Importantly, we can see that our interval shows little uncertainty during sections of
the protocol where there is little current (this is also seen in Fig. 7a and Fig. 6). This is
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Fig. 7 (Color figure online) Model discrepancy between the Beattie model and synthetic data generated
using theWangmodel. a estimates of themaximal conductance obtained by trainingwith different protocols
for ten repeats of the DGP. There is a noticeable protocol dependence for estimates obtained using the
(discrepant) Beattie model, but the true underlying parameter (dashed line) can be accurately determined
from any protocol when using the (correct) Wang model. b d0 voltage protocol. c the spread of predictions
for IKr under the d0 protocol for discrepant (Beattie) and correct (Wang) models which are shown in more
detail in Fig. 6. d cross-validation heatmaps for both the Beattie and Wang models fitted to this suite of
protocols, averaged over ten repeated samples of the DGP for each protocol

ideal, because no reasonable model would predict a sizeable current here. On the other
hand,we see that our intervals show significant uncertainty around the spikes in current
that occur at the start of each action-potential waveform. This is to be expected because
it is known that these sections of the current time-series are particularly sensitive to
differences in the ‘rapid inactivation’ process in these models (Clerx et al. 2019a).

Further results regarding Case II are provided in Sect. 5.3. Tables 4 and 5 summarise
the behaviour of our parameter estimates for each choice of model.

4 Discussion

We have introduced an uncertainty quantification (UQ) approach to highlight when
discrepancy is affecting model predictions. We demonstrated the use of this technique
by providing insight into the effects of model discrepancy on a model of IKr in elec-
trically excitable cells. Here, we saw that under synthetically constructed examples
of model discrepancy, there was great variability between the parameter estimates
obtained using different experimental designs. This variability is a consequence of the
different compromises that a discrepant model has to make to fit different regimes of a
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Fig. 8 (Color figure online) The spread in predictions obtained from different protocols provides a useful
indicator of model discrepancy for Case II. a The validation voltage-clamp protocol, d0, with colours
corresponding to panels d and e. b The spread-of-predictions interval (Eq.31) for d0 using the Beattie
model trained with d1, . . . , d5. c The true DGP subtracted from the spread-in-predictions interval. d The
trueDGPwith the colour of each observation corresponding to panels a and e. e a scatter plot of themidpoint
prediction (Eq.32) and the width of the predictive interval (Eq.31) for every observation in d0. Here, the
red, dashed lines show the true value of IKr lies on the extremes of the range of predictions. Accordingly,
points above these lines show the observations for which the DGP lies inside this range, and the points
below the line correspond to observations for which the true DGP lies outside this range. The colours of
these points correspond to those in panels a and d

trueDGP’s behaviour. Consequently, these parameter estimates produced awide range
of behaviour during validation, despite each individual parameter estimate having little
variability under repeated samples of the DGP.

The variability in the model predictions stemming from this ensemble of parameter
estimates is, therefore, an empirical way of characterising the predictive uncertainty
due to model discrepancy. Usefully, our spread-of-prediction intervals (Eq.31) cor-
rectly indicated little uncertainty when the ion channel model was exhibiting simple
dynamics decaying towards a steady state, but more uncertainty during more complex
dynamics, whichwas indeedwhen the largest discrepancies occurred. Formany obser-
vations under our validation protocol, the true, underlying DGP lay inside this interval,
indicating that Eq.31 may provide a useful indication of predictive error under unseen
protocols. We expect that the presented methods may be of use for problems where
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Fig. 9 (Color figure online) The Beattie and Wang models may be seen as special cases of this more
complicated model. The state labelled ‘C3’ is called ‘C’ in the Beattie model and ‘C3’ in the Wang model.
The arrows outside the Markov state diagram indicate the direction in which rates increase with increasing
voltage

the variability in parameter estimates (from repetitions of each individual protocol)
is smaller than the variability between parameter estimates obtained from different
protocols—because there is little noise, and lots of observations for example. In such
cases, the variability in the extremes of our ensembles (Bupper andBlower) is immaterial
compared to the width of the interval (Bupper − Blower).

At first, Case I may seem like an artificial example—in practice, the maximal
conductance is taken to be amodel parameter andfitted alongwith the rest of themodel.
But Case I and Case II are similar: any two Markov models may be regarded as two
special cases of a more general model with some transition rates pinned to 0 (as shown
in Fig. 9 for the models used in this paper, with some transition rate). Like in Case
I, this means that different model structures can be seen as restrictions of this larger
model’s parameter space. Misspecified model structures can then be identified with
subsets of parameter space which do not contain the true, data-generating parameter
set (provided this larger model is structurally identifiable).

This means there is a setting in which Case II (misspecified governing equations)
is an example of the type of discrepancy explored in Case I, where a “true” parameter
value exists in the more general model, but is excluded in the parameter space being
optimised over when training the model. This may prove a valuable perspective for
modelling ion channel kinetics, where there are many candidate models (Mangold
et al. 2021), and each model may be seen as corresponding to some subset of a general
model with a shared higher-dimensional parameter space. Model selection problems
have been framed in this way previously (Akaike 1998; Chen et al. 2017).

4.1 Limitations

Whilst the spread of predictions under some unseen protocol may provide some fea-
sible range of predictions, we can see from Fig. 8, that our observables (the DGP
without noise) often lie outside this range. This shown in Fig. 6. Here, certain struc-
tural differences between the model and DGPmaymean that the truth lies outside. For
this reason, Eq.31 is best interpreted as a heuristic indication of predictive uncertainty
stemming from model discrepancy, rather than providing any guarantees about the
output of the DGP.

Using more training protocols in the training set may increase the coverage of the
DGP by our interval. Whilst the number of protocols that can be performed on a single
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biological cell is limited by time constraints (Beattie et al. 2018; Lei et al. 2019b), the
utilisation of more protocols is likely preferable.

Besides the types of discrepancies considered in Sect. 3, there are other ways that
theDGP can differ from the fittedmodels. For example, theDGPmay not be accurately
described by an ODE system, especially when ion channel numbers are small and the
stochasticity of individual channels opening and closing is apparent. In this circum-
stance, themodels can be cast in terms of stochastic differential equations (SDEs), as in
Goldwyn et al. (2011), and we can again consider an ensemble of parameter estimates
(Eq.29) and an ensemble of model predictions (Eq.30. The assumption of IID Gaus-
sian errors for the observation noise model could also be inaccurate: auto-correlated
noise processes (e.g. as explored in Creswell et al. 2020; Lambert et al. 2022), or
even experimental artefacts may be present, but all of these could be included in the
modelled DGP (Lei et al. 2020a) and it remains to be seen howwell our method would
perform in these cases.

4.2 Future Directions

We were able to quantify model discrepancy by considering the predictive error of
our models across a range of training and validation protocols. This provides a way
of quantifying model discrepancy that can be compared across models, and could be
used to select the most suitable model from a group of candidate models. For a given
context of use, we suggest that the spread of predictions can be used to gauge the
trustworthiness of a model’s predictions. Even in a model which produces a plausible
fit to each individual training protocol, a wide spread of predictions may indicate
that a model is ill-suited to a particular predictive task, and should prompt careful
reconsideration of the model and the experiments used for its training. In this way,
the disagreement between model predictions of d0 in Sect. 3.1 shows that the λ = 1

4
may not be suitable, owing to the relative width of this band of predictions, even in
the absence of validation data, or knowledge of a more suitable model.

Our approach may provide insight into improved experimental design criteria (Lei
et al. 2022). Optimal experimental design approaches that assume knowledge of a
correctly specified model may not be the most suitable in the presence of known
discrepancy. By adjusting these approaches to account for the uncertainty in choice
of model, we may be able to use these ideas to design experiments which allow for
more robust model validation. One method would be to fit to data from a collection
of training protocols, and to find a new protocol, for which the spread in ensemble
predictions (Eq.31) is maximised.

In this paper, we have applied our methodology to mathematical models of elec-
trophysiology. In both the cases we considered, we saw that model discrepancy could
lead to inaccurate predictive models, and due to the use of information-rich training
protocols, the variability of our parameter estimates, under repeated samples of the
DGP, was negligible. We propose that our methodology could be applied to simi-
lar problems, where there is high-frequency time-series data is available as well as
mathematical model which are relatively accurate. There are many such biochemical
reaction networks for whichmodel selection remains a challenge, and there are numer-
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ous approaches to finding suitable mathematical models Klimovskaia et al. (2016).
We propose the methodology outlined in this paper may be used to quantify the dis-
crepancy in such models.

In these examples, we saw little variability due to noise in our parameter inference,
and therefore in our ensemble prediction’s spread-of-prediction intervals and/or mid-
point predictions, as shown in Sect. 5.2 and Sect. 5.3. However, in other cases where
there are fewer observations and more observational noise (for example), it may be
more suitable to consider an analogous distribution-based approach where we con-
sider Bayesian posteriors of our parameters instead of point estimates (such as the
maximum likelihood estimator we used in this paper).

4.3 Concluding Remarks

The spread of predictions of our ensembles, based on training to data from multiple
experimental designs, provides a good indication of possible predictive error due to
model discrepancy. Ultimately, whilst our ensemble approach is no substitute for
a correctly specified model, it is a useful tool for quantifying model discrepancy,
predicting the size and direction of its effects, and may guide further experimental
design and model selection approaches.
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5 Appendices

5.1 Appendix A: Parameterisation of MarkovModels

5.1.1 Beattie Model

In full, the system of ODEs is,

dx
dt

=

⎡
⎢⎢⎣

−k1 − k3 0 k4 k2
0 −k2 − k4 k1 k3
k3 k2 −k1 − k4 0
k1 k4 0 −k2 − k3

⎤
⎥⎥⎦ x, (41)

where

k1 = p1e
p2V , (42)

k2 = p3e
−p4V , (43)

k3 = p5e
p6V , (44)

k4 = p7e
−p8V . (45)

Hence, the corresponding parameter set is,

θ = [
g, p1, . . . , p8

]T
, (46)

and,

x = [
C, I , IC, O

]T
. (47)

5.1.2 WangModel

We may write this model’s governing system of ODEs as

dx
dt

=

⎡
⎢⎢⎢⎢⎣

−αa0 βa0 0 0 0
αa0 −βa0 − k f kb 0 0
0 k f −kb − αa1 βa1 0
0 0 αa1 −βa1 − α1 β1
0 0 0 α1 −β1

⎤
⎥⎥⎥⎥⎦ x, (48)

where

α1 = q1e
q2V , (49)

αa0 = q3e
q4V , (50)

αa1 = q5e
q6V , (51)
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Fig. 10 (Color figure online) Case I: predictive accuracy (under our validation protocol, d0) decreases as
λ → 1. For 17 values of λ ( 14 ≤ λ ≤ 4), the predictive error (averaged over repeats) is shown for each
training protocol (d1–d5)

βa1 = q7e
−q8V , (52)

β1 = q9e
−q10V , (53)

βa0 = q11e
−q12V . (54)

The corresponding parameter set is,

θ = [
g, kb, k f , q1, . . . , q12

]T
, (55)

and

x = [
C1, C2, C3, O, I

]T
. (56)

The default parameter values for both models are presented in Table 1.

5.2 Appendix B: Further Case I Results

The predictive accuracy (under the validation protocol, d0) of the model used in
Sect. 3.2, trained using each protocol, for a range of values of λ is shown in Fig. 10.
Here, we see that as there is more model discrepancy (when λ moves away from 1)
our predictions become less accurate.

The parameter estimates obtained in Sects. 3.1 and 3.2 are summarised in Tables 2,
4 and 5, respectively. Here, we can see that when the model is misspecified, the small
standard deviation in our estimates (across fits to different samples of ourDGP) is small
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Table 1 The default parameter
sets we use for the Wang et al.
(1997) and Beattie et al. (2018)
models

Parameter Value Units

Wang model

g 1.52 × 10−1 μS

kb 3.68 × 10−2 ms−1

k f 2.38 × 10−2 ms−1

q1 9.08 × 10−2 ms−1

q2 2.34 × 10−2 mV−1

q3 2.23 × 10−2 ms−1

q4 1.18 × 10−2 mV−1

q5 1.37 × 10−2 ms−1

q6 3.82 × 10−3 mV−1

q7 6.89 × 10−5 ms−1

q8 4.18 × 10−2 mV−1

q9 6.50 × 10−3 ms−1

q10 3.27 × 10−2 mV−1

q11 4.70 × 10−2 ms−1

q12 6.31 × 10−2 mV−1

Beattie model

g 1.52 × 10−1 μS

p1 2.26 × 10−4 ms−1

p2 6.99 × 10−2 mV−1

p3 3.45 × 10−5 ms−1

p4 5.46 × 10−2 mV−1

p5 8.73 × 10−2 ms−1

p6 8.91 × 10−3 mV−1

p7 5.15 × 10−3 ms−1

p8 3.16 × 10−2 mV−1

The same maximal conductance (g) is used for both models

compared to the differences between estimates obtained from different protocols—the
choice of training protocol is less important when there is no model discrepancy.

Table 2 details the distribution of each parameter estimate (under repeated samples
of the DGP) for each protocol as λ varies (as described in Sect. 3.1. Whereas, Table 3
shows how our spread-of-prediction intervals change under different values of λ. Here,
we can see that each parameter estimate, as well asB itself, show little variability under
repeated samples of the DGP.

5.3 Appendix C: Further Case II Results

Tables 4 and 5 summarise the parameter estimates obtained in Sect. 3.2 using the
Beattie model and Wang model, respectively. Here, the Wang model was chosen as
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Table 2 The mean and standard deviation (across different synthetic datasets) of estimates (Eq.27) used in
Case I, where the maximal conductance, is misspecified by scaling it with λ

λ d1 d2 d3 d4 d5

0.25 p1 1.8E−4±2E−7 2.4E−4±7E−7 9.0E−5±1E−6 1.9E−4±4E−7 4.7E−5±8E−8

p2 9.1E−2±5E−5 9.7E−2±9E−5 1.0E−1±2E−4 9.3E−2±8E−5 1.0E−1±4E−5

p3 3.0E−5±2E−8 1.9E−5±3E−8 1.2E−5±4E−8 1.7E−5±4E−8 9.3E−6±2E−8

p4 4.8E−2±6E−6 5.2E−2±2E−5 5.5E−2±3E−5 5.3E−2±2E−5 5.8E−2±2E−5

p5 5.0E−2±5E−5 5.5E−2±6E−5 5.0E−2±5E−5 7.9E−2±3E−4 5.1E−2±8E−5

p6 1.5E−2±2E−5 1.0E−2±4E−5 1.0E−2±2E−5 1.8E−2±5E−5 1.3E−2±3E−5

p7 1.5E−2±2E−5 1.3E−2±2E−5 9.8E−3±2E−5 2.3E−2±7E−5 1.0E−2±5E−5

p8 4.4E−2±2E−5 4.6E−2±5E−5 5.1E−2±4E−5 3.6E−2±4E−5 5.8E−2±1E−4

0.50 p1 2.2E−4±2E−7 2.5E−4±6E−7 2.0E−4±6E−7 2.1E−4±4E−7 6.9E−5±2E−7

p2 7.6E−2±3E−5 8.5E−2±8E−5 8.0E−2±6E−5 8.8E−2±7E−5 9.7E−2±6E−5

p3 3.7E−5±2E−8 3.4E−5±5E−8 3.6E−5±6E−8 3.6E−5±6E−8 2.5E−5±3E−8

p4 5.0E−2±4E−6 5.1E−2±1E−5 5.0E−2±2E−5 5.1E−2±1E−5 5.3E−2±9E−6

p5 7.5E−2±7E−5 7.5E−2±6E−5 6.8E−2±6E−5 8.4E−2±2E−4 7.7E−2±7E−5

p6 9.4E−3±1E−5 9.0E−3±3E−5 9.7E−3±2E−5 1.1E−2±3E−5 9.9E−3±1E−5

p7 9.3E−3±1E−5 8.2E−3±7E−6 6.8E−3±8E−6 1.0E−2±3E−5 8.5E−3±1E−5

p8 3.7E−2±1E−5 3.8E−2±2E−5 4.0E−2±1E−5 3.5E−2±3E−5 3.8E−2±2E−5

1.00 p1 2.3E−4±2E−7 2.3E−4±4E−7 2.3E−4±6E−7 2.3E−4±3E−7 2.3E−4±6E−7

p2 7.0E−2±3E−5 7.0E−2±7E−5 7.0E−2±5E−5 7.0E−2±5E−5 7.0E−2±6E−5

p3 3.4E−5±1E−8 3.4E−5±4E−8 3.4E−5±5E−8 3.4E−5±5E−8 3.4E−5±2E−8

p4 5.5E−2±5E−6 5.5E−2±1E−5 5.5E−2±1E−5 5.5E−2±1E−5 5.5E−2±5E−6

p5 8.7E−2±7E−5 8.7E−2±8E−5 8.7E−2±6E−5 8.7E−2±3E−4 8.7E−2±6E−5

p6 8.9E−3±9E−6 8.9E−3±2E−5 8.9E−3±1E−5 8.9E−3±3E−5 8.9E−3±1E−5

p7 5.2E−3±6E−6 5.2E−3±4E−6 5.2E−3±4E−6 5.1E−3±1E−5 5.2E−3±4E−6

p8 3.2E−2±9E−6 3.2E−2±2E−5 3.2E−2±8E−6 3.2E−2±3E−5 3.2E−2±1E−5

2.00 p1 2.3E−4±2E−7 2.1E−4±3E−7 2.3E−4±7E−7 2.1E−4±3E−7 3.4E−4±6E−7

p2 6.8E−2±3E−5 6.1E−2±7E−5 7.0E−2±6E−5 5.8E−2±5E−5 6.0E−2±4E−5

p3 3.0E−5±1E−8 3.0E−5±4E−8 2.5E−5±4E−8 2.8E−5±5E−8 3.4E−5±2E−8

p4 5.9E−2±5E−6 5.8E−2±1E−5 6.0E−2±1E−5 5.8E−2±2E−5 5.8E−2±6E−6

p5 9.0E−2±7E−5 8.9E−2±8E−5 9.5E−2±7E−5 9.5E−2±3E−4 9.0E−2±5E−5

p6 1.0E−2±6E−6 9.6E−3±2E−5 9.0E−3±1E−5 8.6E−3±4E−5 9.7E−3±8E−6

p7 2.6E−3±3E−6 2.9E−3±2E−6 2.9E−3±2E−6 2.8E−3±1E−5 2.7E−3±2E−6

p8 2.7E−2±8E−6 2.7E−2±2E−5 2.6E−2±6E−6 2.8E−2±3E−5 2.7E−2±8E−6
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Table 2 continued

λ d1 d2 d3 d4 d5

4.00 p1 2.3E−4±2E−7 2.0E−4±3E−7 2.3E−4±8E−7 2.1E−4±2E−7 3.8E−4±5E−7

p2 6.6E−2±3E−5 5.7E−2±6E−5 7.0E−2±6E−5 5.5E−2±4E−5 5.7E−2±3E−5

p3 2.9E−5±1E−8 2.8E−5±4E−8 2.3E−5±4E−8 2.6E−5±5E−8 3.3E−5±2E−8

p4 6.1E−2±5E−6 6.0E−2±1E−5 6.2E−2±1E−5 6.0E−2±2E−5 5.9E−2±6E−6

p5 9.4E−2±7E−5 9.1E−2±9E−5 9.7E−2±7E−5 9.9E−2±4E−4 9.6E−2±5E−5

p6 1.1E−2±5E−6 9.7E−3±2E−5 9.1E−3±1E−5 8.6E−3±3E−5 1.0E−2±6E−6

p7 1.4E−3±1E−6 1.6E−3±1E−6 1.5E−3±1E−6 1.5E−3±5E−6 1.5E−3±1E−6

p8 2.5E−2±8E−6 2.5E−2±1E−5 2.4E−2±5E−6 2.6E−2±3E−5 2.5E−2±7E−6

These were obtained from each training protocol (d1–d5) for multiple repeats of synthetically generated
data

Table 3 A summary of showing how the spread-of-predictions interval (Eq.31) behaves under Case I

λ Mean interval width (nA) DGP in interval (%) Midpoint RMSE (nA)

0.25 7.4E−2 ± 1.1E−4 34 ± 2.3E−2 1.6E−1 ± 8.9E−5

0.30 6.6E−2 ± 6.5E−5 37 ± 5.0E−2 1.4E−1 ± 8.9E−5

0.35 6.1E−2 ± 5.8E−5 42 ± 4.3E−2 1.3E−1 ± 9.1E−5

0.42 5.6E−2 ± 6.4E−5 50 ± 4.2E−2 1.1E−1 ± 9.2E−5

0.50 4.9E−2 ±7.1E−5 51 ± 5.1E−2 8.5E−2 ± 9.4E−5

0.59 4.0E−2 ± 8.4E−5 53 ± 6.7E−2 6.5E−2 ± 9.7E−5

0.71 2.8E−2 ± 9.1E−5 55 ± 8.8E−2 4.7E−2 ± 9.0E−5

0.84 1.4E−2 ± 9.3E−5 55 ± 0.17 3.4E−2 ± 8.4E−5

1.00 2.1E−4 ± 3.7E−5 94 ± 9.2 3.0E−2 ± 6.7E−5

1.19 1.2E−2 ± 8.9E−5 56 ± 0.69 3.3E−2 ± 5.1E−5

1.41 2.1E−2 ± 8.5E−5 57 ± 0.67 3.7E−2 ± 5.3E−5

1.68 2.8E−2 ± 8.5E−5 57 ± 1.7 4.2E−2 ± 6.2E−5

2.00 3.3E−2 ± 8.6E−5 56 ± 1.7 4.7E−2 ± 6.9E−5

2.38 3.6E−2 ± 8.6E−5 55 ± 1.4 5.1E−2 ± 7.3E−5

2.83 3.9E−2 ± 8.4E−5 54 ± 1.4 5.4E−2 ± 7.5E−5

3.36 4.1E−2 ± 8.6E−5 54 ± 0.17 5.7E−2 ± 7.6E−5

4.00 4.3E−2 ± 8.4E−5 53 ± 0.15 5.9E−2 ± 7.8E−5

Here we show: the mean width of the interval (averaged over each observation time); the proportion of
observations for which the the underlyingDGP (minus noise) lies within the interval; the RMSE between the
data and the midpoint prediction (Eq.32). By considering ten randomly sampled datasets (each containing
a repeat each protocol d1–d5), we show the mean and standard deviation of these values

the DGP and so, theWangmodel is an example of a correctly specifiedmodel, whereas
the Beattie model is a discrepant model. This is reflected by the parameter estimates
which show that when theWangmodel is fitted to the data, we obtain similar parameter
estimates from each protocol, whereas our parameter estimates for the Beattie model
are dependent on the protocol used for training.
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Table 4 The parameter estimates obtained for Case II (Sect. 3.1) when using the Beattie model to fit data
generated by the Wang model

d1 d2 d3 d4 d5

g 1.5E−1±3E−5 1.5E−1±5E−5 1.6E−1±3E−5 1.5E−1±5E−5 1.6E−1±2E−5

p1 1.6E−3±7E−7 1.6E−3±8E−7 1.7E−3±1E−6 1.7E−3±1E−6 2.0E−3±5E−7

p2 7.3E−2±2E−5 7.9E−2±2E−5 3.7E−2±2E−5 8.4E−2±4E−5 5.4E−2±2E−5

p3 1.9E−5±2E−8 2.2E−5±2E−8 4.3E−5±6E−8 2.2E−5±2E−8 3.0E−5±2E−8

p4 5.2E−2±7E−6 5.1E−2±1E−5 4.6E−2±1E−5 5.1E−2±1E−5 4.9E−2±6E−6

p5 1.1E−1±7E−5 9.6E−2±2E−5 9.3E−2±2E−5 1.2E−1±2E−4 9.6E−2±6E−5

p6 2.3E−2±5E−6 2.4E−2±8E−6 2.2E−2±5E−6 2.7E−2±2E−5 2.3E−2±7E−6

p7 8.9E−3±5E−6 7.1E−3±3E−6 7.4E−3±2E−6 8.9E−3±1E−5 6.8E−3±5E−6

p8 2.9E−2±8E−6 3.1E−2±1E−5 3.0E−2±7E−6 2.9E−2±2E−5 3.1E−2±7E−6

Table 5 The parameter estimates obtained for Case II when using the correctWangmodel to fit its synthetic
data

d1 d2 d3 d4 d5

g 1.5E−1±3E−5 1.5E−1±4E−5 1.5E−1±2E−5 1.5E−1±4E−5 1.5E−1±2E−5

kb 3.7E−2±4E−4 3.6E−2±1E−3 3.7E−2±2E−4 3.6E−2±2E−3 3.7E−2±3E−4

k f 2.4E−2±9E−5 2.4E−2±4E−4 2.4E−2±9E−5 2.4E−2±6E−4 2.4E−2±7E−5

q1 9.1E−2±5E−5 9.1E−2±7E−5 9.1E−2±2E−5 9.1E−2±1E−4 9.1E−2±6E−5

q2 2.3E−2±6E−6 2.3E−2±1E−5 2.3E−2±5E−6 2.3E−2±1E−5 2.3E−2±8E−6

q3 2.2E−2±5E−4 2.3E−2±7E−4 2.2E−2±3E−4 2.3E−2±8E−4 2.2E−2±3E−4

q4 1.2E−2±4E−4 1.1E−2±7E−4 1.2E−2±2E−4 1.1E−2±8E−4 1.2E−2±2E−4

q5 1.4E−2±2E−4 1.4E−2±4E−4 1.4E−2±1E−4 1.4E−2±7E−4 1.4E−2±1E−4

q6 3.8E−2±2E−4 3.8E−2±3E−4 3.8E−2±1E−4 3.8E−2±6E−4 3.8E−2±2E−4

q7 6.9E−5±7E−8 6.9E−5±3E−7 6.9E−5±1E−7 6.9E−5±4E−7 6.9E−5±1E−7

q8 4.2E−2±8E−6 4.2E−2±4E−5 4.2E−2±1E−5 4.2E−2±5E−5 4.2E−2±1E−5

q9 6.5E−3±4E−6 6.5E−3±5E−6 6.5E−3±2E−6 6.5E−3±8E−6 6.5E−3±7E−6

q10 3.3E−2±7E−6 3.3E−2±2E−5 3.3E−2±9E−6 3.3E−2±2E−5 3.3E−2±8E−6

q11 4.7E−2±1E−3 4.9E−2±3E−3 4.7E−2±4E−4 4.9E−2±3E−3 4.7E−2±6E−4

q12 6.3E−2±4E−4 6.3E−2±6E−4 6.3E−2±4E−4 6.3E−2±6E−4 6.3E−2±2E−4

Table 6 shows the behaviour of our spread-of-prediction intervals (Eq. 31) for both
the Wang model and the Beattie model as described in Sect. 3.2. Here, we see that the
average width of this interval (averaged over the length of the protocol) is much larger
for the Beattie model (a discrepant model) when compared with the Wang model (the
same model used for data generation).
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Table 6 A summary showing how the spread-of-predictions interval (Eq.31) behaves under Case II
(Sect. 3.2), for both the Beattie model (a discrepant model) and the Wang model (a correctly specified
model)

Model Mean interval width (nA) DGP in interval (%) Midpoint RMSE (nA)

Beattie 7.5E−2±9E−5 34±7E−2 1.1E−01±8E−5

Wang 7.0E−4±2E−4 87±20 3.0E−2±2E−5

The columns show: the mean width of the interval (averaged over each observation time); the proportion of
observations for which the the underlyingDGP (minus noise) lies within the interval; the RMSE between the
data and the midpoint prediction (Eq.32). By considering ten randomly sampled datasets (each containing
a repeat each protocol d1–d5), we show the mean and standard deviation of these values
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