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ABSTRACT 
 

In order to investigate the relationship between the interface parameters of an optical interface/system and its 

polarization characteristics, a three-dimensional (3D) polarization ray-tracing Mueller algorithm is proposed in this 

paper. Firstly, using the optical design simulation software CODE V or ZEMAX, the vector modeling of the optical 

system and the pupil sampling or field of view sampling of the incident light are carried out. Secondly, according to 

the surface type of each optical interface in the optical system and whether the optical coating is plated, the 3D 

polarization ray-tracing of each optical interface is carried out, and the 3D Mueller matrix Ml (9×9 order) of each 

optical interface under the respective local coordinate system is calculated. Then, a 3×3 order rotation transformation 

matrix R is introduced by using the rotation transformation of the global coordinate system, and the 3D Mueller 

matrix Mg (9×9 order) of each optical interface under the global coordinate system is obtained. Based on the 3D 

polarization algorithm proposed in our published paper [1], the 3D Mueller matrix M of each sampled ray through 

whole optical system is calculated. Finally, if the polarization state of the incident light of the optical system is known, 

the polarization state of the emitted light can be accurately calculated. Especially, the 3D polarization ray-tracing 

Mueller algorithm is not only suitable for handle the totally, partial and unpolarized light through the optical system, 

but also suitable for quantitative calculation of the polarization properties of an arbitrary surface, including 

spherical/aspherical/free-form surface.  

Keywords: 3D polarization, polarization ray-tracing, Mueller algorithm, optical system, surface type  

1. INTRODUCTION 

How to describe the polarization characteristics of light waves and accurately deal with the interaction between 

polarized light and an optical interface/system, several polarization algorithms have been proposed, such as the three-

dimensional (3D) polarization ray-tracing calculus proposed by Russell A. Chipman based on the 3D extension of 

Jones vector[2]. The 3D Jones vector (3×1 order) represents the polarization characteristics of the incident and 

emergent light waves, and the 3D Jones matrix (order 3×3) represents the retardance [3] and diattenuation [4] of an 

optical system. G. Yun proposed the 3D polarization ray-tracing tensor (3×3×3×3 order) by using the 3D coherence 

matrix (3×3 order). Compared with the 3D polarization ray-tracing calculus proposed by Russell A. Chipman, the 3D 

polarization ray-tracing tensor can be used to calculate all the polarization characteristics of an optical system, 

including the de-polarization [5]. In addition, Colin J. R. Sheppard derived the 3D generalized form of Stokes vector 

based on Chandrasekhar phase basis matrix (3×3 order), and proposed the mathematical model of polarization action 

of 3D Mueller matrix (9×9 order) [6]. Meanwhile, based on 3 × 3 coherency matrix, a 3D polarization ray tracing 

calculus (3×3 order) for partially polarized light has been introduced by H. Zhang et al [7]. However, these existing 

3D polarization algorithms have not explored the quantitative relationship between the 3D polarization matrix (i.e., 

Jones matrix, Mueller matrix) or 3D polarization tensor and the interface parameters in an optical system.  

In general, an optical system contains multiple optical interfaces. In addition to optimizing the design of each optical 

interface parameter from the perspective of imaging performance, it is often necessary to comprehensively consider 

multiple factors to meet the transmission or reflection energy requirements. It will inevitably cause the changes of the 

polarization properties for the entire optical system to affect the imaging quality of the system. Especially for some 

polarization-sensitive optical systems, such as high NA microscope objective [8-10], lithographic projection objective 

[11] or large aperture astronomical telescope [12], the polarization properties must be strictly controlled during the  
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optical design of the system. Therefore, how to quantitatively trace the influence of each optical interface parameter 

on the polarization properties of the optical system, which provides a strong theoretical basis for high-performance 

optical imaging to guide the optimization design.  

2. VECTOR MODELING OF AN OPTICAL SYSTEM 

Vector modeling of the optical interface/system under study and the incident light is required. There are two main 

steps: 1) the definition of the global coordinate system of an optical interface/system: is a right-handed coordinate 

system {XYZ} with the Z-axis along the optical axis, and the direction of light propagation is always Z-axis forward. 

2) the definition of the local coordinate system of each sampled ray incident on the optical system: is a right-handed 

coordinate system {xiyizi} with the ray propagation vector ki as the local coordinate system Z-axis. Taking a single 

lens as an example, the definitions of global and local coordinate systems are shown in Fig. 1(a). 

    

Figure 1 Definitions of the local coordinate system for an optical system and global coordinate system for each ray 

Firstly, before vector ray tracing is performed on an optical interface/system, the propagation vector of incident light 

must be modeled. The linear field of view (i.e., object height h) is taken as an example, as shown in Fig. 1(b). 

The origin of the global coordinate system {XYZ} of the optical system is located at the central object point, the 

known object height AB is ±h/2, the entry pupil diameter is Dent, the entrance pupil distance is Pz, and the incident 

light is sampled by m×m at the entrance pupil. The sampling range in the x and y directions is -D/2 to D/2. Similarly, 

the linear field of view (FoV) is sampled by 1×n, and the sampling range is -h/2 to h/2. For any object point M, its 

coordinates in the global coordinate system {XYZ} is M (0, y0, 0). Once the object point coordinates are fixed, the 

FoV of the optical system is also fixed. Different incident rays only depend on pupil sampling location in the entrance 

pupil plane. When the x and y coordinates of the sampling point P are correspondingly Px and Py, the P coordinates 

in the global coordinate system {XYZ} is P=(Px,Py,Pz). Thus, the propagation vector of an incident ray ki can be 

uniquely determined as 
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where the ± sign depends on the distance between the entrance pupil position Pz and the global coordinate origin. 

When the entrance pupil distance is positive Pz>0, the expression of the propagation vector of incident ray is + sign, 

otherwise, it is - sign. 

Secondly, on the premise that the propagation vector ki of the incident ray is known, combined with the surface 

equation of the incident optical interface, such as plane, sphere, aspherical or free-form surface, the global coordinates 

of the incident point of the incident ray arriving at the incident optical interface can be uniquely determined, that is, 

the incident point P1. According to the definition of normal vector, the vector direction connecting the center of 

incident optical interface C1 and the incident point P1 is the normal vector N1. In addition, it is noted in particular that 

the normal direction of any incident ray always points from the exiting medium n2 to the incident medium n1, and 

the normal vector is directly related to the surface shape of the optical interface. 

Finally, under the global coordinate system {XYZ}, based on the vector Snell law [13, 14], the vector ray tracing of 

each optical interface in the optical system is completed. It is obtained that the propagation vectors of the incident 

and emitted rays on each optical interface, namely kin and kout. Furthermore, the local coordinate system {xiyizi} 

corresponding to each optical interface is uniquely determined by, 
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where the bold x, y and z represent the direction of the three axes of the local coordinate system, xout 'and yout' 

represent the local coordinate system of the reflected rays, xout and yout represent the local coordinate system of 

transmitted rays. 

3. 3D POLARIZATION RAY-TRACING MUELLER ALGORITHM 

The local coordinate system{xiyizi} is defined in the z-axis positive always along the ray propagation vector k. Since 

the electric field vector of a light wave is a transverse wave, the z-electric field component in the local coordinate 

system is always 0. When the propagated ray incident on the optical interface is reflected or transmitted, its effect on 

the polarization of the incident ray in the local coordinate system {xiyizi} can be expressed by, 
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where the symbol t and r mean the reflected or transmitted ray, Ex and Ey are the x-field component and y-field 

component of incident ray, ts and tp is the Fresnel coefficient of transmitted ray, rs and rp is the Fresnel coefficient of 

reflected ray. 

Obviously, the polarization calculation of the above optical interface concluded in Eq. (3) is obtained in the 

corresponding local coordinate system. In order to maintain the consistency of the polarization calculation results of 

each optical interface, the polarization calculation result of each optical interface must be converted to the same 

coordinate system, that is, the global coordinate system {XYZ}. To this end, the rotation transformation matrix 

between the local coordinate system {xiyizi}and the global coordinate system {XYZ} is introduced, that is, a 3×3 

order matrix R, 
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where α and β are the two rotation angles, and only depends on the propagation vector of the light, 

2 2 2( , , ) ( / ) ( / )Ta b c arctan b c arcsin a a b c = = = + +k                      (5) 

It is noticed that the polarization calculation of an optical interface in a local coordinate system can be written to 2D 

Jones matrix and 2D Mueller matrix by reduced dimension, and the inherent relationship between them can be derived 

by, 
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Refer to the mathematical representation of 3D polarized light in our previous publication [1], the relationship 

between 3D coherence vectors and 9×1 order Stokes vectors is derived. Meanwhile, according to the definition of the  
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3D coherence vector/matrix [15], we can finally deduce the polarization effect of the optical interface on the incident 

ray according to Eqs.(3)-(6), 

1
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where Ng and M are the 3D coherency transformation matrix (9×9 order) and 3D Mueller matrix (9×9 order) of an 

optical interface in global coordinate system {XYZ}. 

The polarization effect of the entire optical system on the incident ray is equal to the sequential left multiplication of 

the 3D coherency transformation matrix or 3D Mueller matrix corresponding to each optical interface, that is 

1

1

, 1

... ...Total q m q

q m= −

= =    M M M M M                                                    (9) 

where m is the total number of optical interfaces contained in the optical system, and q is the sequence in which the 

incident ray passes through each optical interface. 

 

4. CONCLUSIONS 

A new 3D polarization ray-tracing Mueller algorithm for an optical system with arbitrary surface type is proposed to 

explore the quantitative relationship between the surface parameters and the polarization characteristics. It can be 

used to reverse guide the optimal design of high-performance imaging optical systems. Based on the proposed 3D 

polarization algorithm, the 3D Mueller matrix of each optical interface/system is calculated, which includes all the 

polarization characteristics, i.e., retardance, diattenuation and depolarization. 
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