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ABSTRACT
We consider the case of interactive multi-objective Bayesian opti-
mization where decision maker (DM) preferences can be elicited by
asking the DM to select the more preferred among pairs of observa-
tions. Assuming that there is a cost to evaluating a solution as well
as to eliciting preferences, and given a total budget, we propose
an acquisition function that, in each iteration, decides whether to
evaluate another solution or to query the DM. Thus, the approach
automatically chooses how often and when to interact with the
DM. It furthermore decides which pair of observations is likely to
be most informative when shown to the DM. We show empirically
that the proposed criterion is not only able to pick suitable pairs of
observations, but also automatically results in a sensible balance
between optimization and querying the DM.
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1 INTRODUCTION
Many real-world optimization problems have multiple, conflicting
objectives. A popular way to tackle such problems is to search
for a set of Pareto-optimal solutions with different trade-offs, and
allow the decision maker (DM) to pick their most preferred solution
from this set. This has the advantage that the DM doesn’t have to
specify their preferences explicitly before the optimization, which
is generally considered very difficult.

In this paper, we consider the case of expensive multi-objective
optimization problems, where the evaluation of the objective func-
tions is costly, and thus the number of solutions that can be evalu-
ated during optimization is small. This has two potential drawbacks:

(1) The number of evaluations may not be sufficient to find
solutions close to the Pareto frontier.

(2) Given only a small number of evaluated solutions, it is un-
likely that the Pareto-optimal solution most preferred by the
DM would be among the small set of solutions found by the
algorithm, even if these were truly Pareto-optimal [23]
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Interactive approaches help in those cases, as they allow to focus
the search on the most interesting area of the search space, speeding
up convergence and returning more alternatives to choose from in
the area of focus [3].

A popular approach to capture preferences is to query the deci-
sion maker (DM) a fixed number of times, e.g., asking the DM to
select the more preferred from a given pair of observations. The
feedback is then used to learn a model of the DM preferences and
guide the optimization run, focusing on the most preferred region
of the Pareto frontier. However, there is very little work on when
and how often to query the DM, or which pair of solutions to
present to the DM. We fill this gap by proposing a multi-objective
Bayesian optimization algorithm that is able to decide, in each it-
eration, whether it would be more beneficial to evaluate another
solution and learnmore about the optimization problem, or to query
the DM and learn more about their preferences. This is inspired
by the BICO approach [24] which, for a single-objective problem
with simulation input uncertainty, can decide whether it is better
to evaluate a new solution or to collect more data on the input
distribution. In the case of eliciting preference information, if our
algorithm decides to query the DM, it will intelligently select the
pair of solutions that maximizes the potential contribution to the
optimization.

Assuming a fixed total budget, devoting too much effort to col-
lect preference information may not leave sufficient resources for
optimization. On the other hand, devoting too little effort to collect
preference information means the identified solution(s) may be
sub-optimal under the true utility parameters.

This paper is structured as follows. After a literature review in
Section 2, we formally define the problem considered in Section 3.
Section 4 explains the statistical models and derives the suggested
sampling procedures.We perform numerical experiments in Section
Section 5 and, finally, the paper concludes with a summary and
some suggestions for future work in Section 6.

2 LITERATURE REVIEW
Bayesian optimization (BO) is a global optimization technique that
builds a Gaussian process (GP) surrogate model of the fitness land-
scape, and then uses the estimated mean and variance at each
location to decide which solution to evaluate next. It uses an acqui-
sition function to explicitly make a trade-off between exploitation
and exploration (e.g., [21]). A frequently used acquisition function
is the expected improvement (EI) [12] which selects the point with
the largest expected improvement over the current best known
solution as the next solution to evaluate.
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Recently, BO has been adapted to the multi-objective case, for a
survey see [18]. One of the earliest approaches, ParEGO [15] sim-
ply uses the Tchebychev scalarization function to turn the multi-
objective problem into a single objective problem, but it uses a
different scalarization vector in every iteration where the next solu-
tion is decided according to EI. This scalarization has the advantage
that all solutions in the Pareto front may be supported, in convex
and concave regions [25]. EI-UU [1] is another method that trans-
lates the multi-objective problem into a single-objective problem
using an achievement scalarization function. However, EI-UU uses
linear scalarizations and integrates the expected improvement over
all possible scalarizations, so it takes into account different scalar-
izations simultaneously rather than sequentially over generations.
[8] trains a GP model for each objective, then chooses the next solu-
tion to be evaluated according to a hypervolume-based acquisition
criterion. Other multi-objective BO approaches include [6, 14, 17].

Depending on the involvement of the DM in the optimization
process, multi-objective optimization can be classified into a priori
approaches, a posteriori approaches, and interactive approaches
[3, 11, 27]. The field is very large, so we can only mention some of
the most relevant papers here. A priori approaches ask the DM to
specify their preferences ahead of optimization. This allows to turn
the multi-objective optimization problem into a single objective
optimization problem, but it is usually very difficult for a DM to
specify their preferences before having seen the alternatives. One
effective way to capture preferences is to ask the DM to specify a
reference point [7].

Most multi-objective evolutionary algorithms (MOEA) are a pos-
teriori approaches, attempting to identify a good approximation of
the Pareto frontier, and the DM can then pick the most preferred
solution from this set. This is much easier for a DM, but identi-
fying the entire Pareto front may be computationally expensive.
In particular in case of more than two objectives, the number of
Pareto-optimal solutions increases drastically, making it harder to
identify a good approximation, while it becomes more difficult for
the DM to grasp the structure of a high-dimensional Pareto front
in order to identify their most preferred solution [3].

Interactive approaches attempt to learn the DM’s preferences
during optimization and then focus the search on themost preferred
region of the Pareto front. In particular, elicitation of pairwise com-
parisons from the training sample set is a widely used approach
and requires a relatively small cognitive effort from the DM. Often,
each pair is randomly selected and a pre-defined (static) interaction
pattern determines when to elicit information from the DM. For
example, the interactive MOEA in [4] queries, at regular intervals,
randomly selected observations to the DM and examines the in-
fluence of the number of interactions to solve the MO problem.
Similarly, [22] propose to elicit pairs at regular intervals, however,
each pair is determined according to the potential contribution to
a performance measure, e.g, selecting pairs that minimize the ex-
pected number of potentially optimal solutions. [13] improve over
previous work by comparing several non-regular, but pre-defined,
interaction patterns. Moreover, they propose a dynamic pattern that
depends on the progress attained in the evolutionary search, im-
posing additional evolutionary pressure by narrowing down search
when the evolutionary search is stagnating. The interaction with
the DM relies on showing pairs of random observations.

Recently, a few interactive multi-objective BO approaches have
also been proposed. [9] allows the DM to specify a reference point
a priori, and use this to subsequently focus the BO search. [1]
propose to learn preferences by selecting random pairs of previously
evaluated solution, at each BO iteration. The preference information
is then used to guide EI-UU by computing the improvement using
only the scalarization functions compatible with the preference
dataset. [23] suggest to interact with the DM once before the end of
the run, rather than supplying the identified Pareto front at the end.
The DM selects a single solution from an approximated continuous
Pareto front which allows the algorithm a final effort to find the
most preferred solution. Similar to the approach in our paper, [16]
uses an acquisition function to select pairs of observations to show
to the DM. It takes into account the benefit of eliciting information
to the performance measure. However, the interaction strategy is
pre-defined before the start of the optimization. [10] proposes that,
at each interaction, the decision maker is shown a subset of non-
dominated observations and provide preferences in the form of
preferred ranges for each objective. Internally, a ParEGO algorithm
is used where sample reference points within the hyperbox defined
by the preferred ranges in the objective space guide the search. The
process of preference elicitation and optimization is performed at
regular intervals defined by the DM.

All aforementioned methods assume a fixed amount of prefer-
ence data to guide the search of the algorithm and/or a predefined
schedule to perform optimization and query the DM. We explicitly
look at the trade-off between either running more optimization or
instead collecting more preference data. Moreover, we propose a
unified BO algorithm that, in each iteration, dynamically decides
when to interact with the DM andwhat pairs of observations should
be selected.

3 PROBLEM DEFINITION
We assume a 𝐷-dimensional real-valued space of possible solutions,
i.e., 𝑥 ∈ X ⊂ R𝐷 . The objective function is an arbitrary black box
𝑓 : X → R𝐾 which takes as arguments a solution and returns a
deterministic vector of observations 𝑦 ∈ R𝐾 . The (unknown) DM
preference over the observations can be characterized by a utility
function𝑈 : R𝐾 → R. Thus, of all solutions in X, the DM’s most
preferred solution is 𝑥∗ = argmax𝑥∈X𝑈 (𝑥).

We consider a budget of 𝐵 units that can be spent either by
choosing 𝑥 ∈ X and calling 𝑓 (𝑥), costing 𝑐 𝑓 , or by asking the DM
to select the more preferred among a pair of observations to reduce
the uncertainty over the DM preferences, costing 𝑐𝑠 .

After consuming the budget, a single solution 𝑥𝑟 is returned to
the DM and its quality is determined by the difference in true user’s
utility between 𝑥𝑟 and the best solution 𝑥∗, or Opportunity Cost
(OC),

𝑂𝐶 = 𝑈 (𝑓 (𝑥∗)) −𝑈 (𝑓 (𝑥𝑟 )),
which is to be minimized. This assumption of returning a single
solution at the end reflects the idea that at some point, preference
elicitation has to take place to identify the most preferred solution,
and we assume that this has to happen within the given budget.
Under finite resources, an algorithm must carefully determine how
much effort to spend on preference elicitation vs. optimization.
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4 METHODOLOGY
This section describes details of the proposed algorithm. Section 4.1
and Section 4.2 describe the statistical models used for the objec-
tives and the utility, respectively. Sections 4.4 and 4.5 apply this to
estimate the value of collecting black box evaluations and collect-
ing DM information, respectively. At each iteration, the action is
simply determined bywhat has the highest value. Together themod-
eling and automated value based data collection form the algorithm
summarized as Algorithm 1 in Section 4.6.

4.1 Statistical Model of the Objectives
Let us denote the set of 𝑛 evaluated points and their objective
function values as 𝒟𝑛

𝑓
= {(𝑥,𝑦)1, . . . , (𝑥,𝑦)𝑛}. We also define the

column vector of all 𝑛 solutions sampled so far, 𝑋𝑛 , as a 𝑛 × 𝐷
and the column vector of all sampled outputs for the 𝑗-th objective
function as 𝑌𝑛

𝑗
. Then, we propose to use an independent GP to

model each objective function 𝑦 𝑗 = 𝑓𝑗 (𝑥),∀𝑗 = 1, . . . , 𝐾 , defined
by a mean function 𝜇0

𝑗
(𝑥) : X → R and a covariance function

𝑘0
𝑗
(𝑥, 𝑥 ′) : X × X→ R. Given the dataset 𝒟𝑛

𝑓
, predictions at new

locations 𝑥 for observation 𝑦 𝑗 are given by,
E[𝑓𝑗 (𝑥)] = 𝜇𝑛𝑗 (𝑥)

= 𝜇0𝑗 (𝑥) − 𝑘
0
𝑗 (𝑥,𝑋

𝑛)𝑘0𝑗 (𝑋
𝑛, 𝑋𝑛)−1 (𝑌𝑛𝑗 − 𝜇

0
𝑗 (𝑋

𝑛))
Cov [𝑓𝑗 (𝑥), 𝑓𝑗 (𝑥 ′)] = 𝑘𝑛𝑗 (𝑥, 𝑥

′)

= 𝑘0𝑗 (𝑥, 𝑥
′) − 𝑘0𝑗 (𝑥, 𝑋

𝑛)𝑘0𝑗 (𝑋
𝑛, 𝑋𝑛)−1𝑘0𝑗 (𝑋

𝑛, 𝑥 ′)
The prior mean 𝜇0

𝑗
(𝑥) is typically set to 𝜇0

𝑗
(𝑥) = 0 and the ker-

nel 𝑘0
𝑗
(𝑥, 𝑥 ′) allows the user to encode known properties of the

objective function 𝑓𝑗 (𝑥) such as smoothness and periodicity. We
use the popular squared exponential kernel that assumes 𝑓𝑗 (𝑥) is
a smooth function such that nearby 𝑥 have similar outputs while
widely separated points have unrelated outputs,

𝑘0𝑗 (𝑥, 𝑥
′) = 𝜎20 exp

(
| |𝑥 − 𝑥 ′ | |2

2𝑙2
𝑋

)
where 𝜎0 ≥ 0 and 𝑙𝑋 > 0 are hyper-parameters estimated from the
data 𝒟𝑛

𝑓
by maximum marginal likelihood.

4.2 Statistical Model over the Utility
We consider the approach of showing pairs of previously sampled
observations 𝑦,𝑦′ ∈ 𝑌𝑛 to the DM. Then, for each pair shown, the
DM returns a feedback,𝑞 ∈ {1,−1}, that represents which of the two
observations is preferred, e.g, a value 𝑞 = 1 means the DM prefers
observation 𝑦 over 𝑦′. Similar to Sec. 4.1, let us then denote the
dataset of𝑚 collected preference queries as𝒟𝑚

𝑆
= {([𝑦,𝑦′], 𝑞)𝑖 }𝑚

𝑖=1.
Let us assume that the DM’s utility can be described by a para-

metric utility function 𝑈 (𝑥, 𝜃 ) with parameters 𝜃 ∈ Θ. Although
different parametric families of utility functions may be assumed,
i.e., linear functions [26] to deep neural networks [5], we assume a
Tchebychev achievement scalarization function over the observa-
tions.

𝑈 (𝑥 ;𝜃 ) = max
𝑗=1,...,𝐾

(𝜃 𝑗𝑦 𝑗 (𝑥)) + 𝜌
∑︁

𝑗=1,...,𝐾
𝜃 𝑗𝑦 𝑗 (𝑥)

where 𝜌 is usually a very small number and the parameter 𝜃 ∈ Θ is
defined as, 𝜃 = {𝜃 ∈ [0, 1]𝐾 |∑𝑗 𝜃 𝑗 = 1}.

Similar to [1] and [19], we adopt a Bayesian approach to obtain
a distribution over parameters 𝜃 ∈ Θ. Commonly used likelihood
functions include probit and logit [26]. However, for simplicity we
assume fully accurate preference responses in this paper. Therefore,
if each DM preference, 𝑞𝑚 , is expressed according to the utility dif-
ference Δ = 𝑈 (𝑦;𝜃 ) −𝑈 (𝑦′;𝜃 ), then we may express the likelihood
function as

ℒ(𝑞𝑚 ;Δ) = I{𝑞𝑚=sign(Δ) } .

If we assume a flat Dirichlet prior P(𝜃 ), the posterior distribution
over 𝜃 given a dataset of collected preference information 𝒟

𝑚
𝑆

is
then given by,

P[𝜃 |𝒟𝑚
𝑆 ] =

∏
𝑚

ℒ(𝑞𝑚 ;Δ)P(𝜃 ) .

4.3 Predictive Performance
After exhausting the budget 𝐵, the algorithm must return a single
recommended solution, 𝑥𝑟 , to the user. The true utility value of any
given solution 𝑥 is𝑈 (𝑓 (𝑥), 𝜃∗), where 𝜃∗ ∈ Θ is the true underlying
parameter. However, both 𝑓 and 𝜃∗ are unknown, hence we need
to make two approximations. Firstly, approximate 𝑓 (𝑥) with the
GP prediction for each objective, 𝜇𝑛

𝑗
(𝑥). Then, we replace 𝜃∗ with

the posterior P[𝜃 |𝒟𝑚
𝑆
]. Thus, the best estimate of the true utility

of solution 𝑥 , 𝑈 (𝑓 (𝑥), 𝜃∗)), given the data so far 𝒟𝑛
𝑓
and 𝒟

𝑚
𝑆
, is

denoted as 𝐺 (𝑥 ;𝒟𝑚
𝑆
,𝒟𝑛

𝑓
) and given by

𝐺 (𝑥,𝒟𝑛
𝑓
,𝒟𝑚

𝑆 ) = E𝜃 [𝑈 (𝑥 ;𝜃 )] =
∫

𝑈 (𝑥 ;𝜃,𝒟𝑛
𝑓
)P[𝜃 |𝒟𝑚

𝑆 ]𝑑𝜃

where the utility𝑈 (𝑥 ;𝜃,𝒟𝑛
𝑓
) is the Tchebychev achievement scalar-

ization function and P[𝜃 |𝒟𝑚
𝑆
] is the probability of 𝜃 being the true

parameters of the DM’s utility function given the preference infor-
mation collected so far 𝒟𝑚

𝑆
.

Therefore, the recommended solution is the solution that maxi-
mizes the expected utility, 𝑥𝑟 = argmax𝑥 𝐺 (𝑥,𝒟𝑛

𝑓
,𝒟𝑚

𝑆
), with best

expected utility value,𝐺∗ (𝒟𝑚
𝑆
,𝒟𝑛

𝑓
) = 𝐺 (𝑥𝑟 ,𝒟𝑛

𝑓
,𝒟𝑚

𝑆
). To estimate

𝐺 (𝑥,𝒟𝑛
𝑓
,𝒟𝑚

𝑆
), we first compute the Gaussian process mean pre-

diction for each objective 𝜇𝑛
𝑗
, and aggregate the predictions using

the utility function𝑈 . Finally, the expectation over 𝜃 is computed
using a Monte Carlo (MC) average approximation as,

𝐺 (𝑥,𝒟𝑚
𝑆 ,𝒟

𝑛
𝑓
) ≈ 𝐺 (𝑥,𝒟𝑚

𝑆 ,𝒟
𝑛
𝑓
) = 1

𝑛𝜃

𝑛𝜃∑︁
𝑖=1

𝑈 (𝑥 ;𝜃𝑖 ,𝒟𝑛
𝑓
), (1)

where we use 𝑛𝜃 sampled parameter values, 𝜃𝑖 ∼ P[𝜃 |𝒟𝑚
𝑆
].

4.4 Value of Information for Objective Function
Data

To select the solutions at which the objective function is evaluated,
we consider the one-step look-ahead incremental increase in pre-
dicted performance of taking the solution 𝑥𝑛+1, with 𝑐 𝑓 being the
cost of evaluating the objective function,
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VoI(𝑥) = E𝑦𝑛+1

𝐺∗ (𝒟𝑚

𝑆
,𝒟𝑛+1

𝑓
) −𝐺∗ (𝒟𝑚

𝑆
,𝒟𝑛

𝑓
)

𝑐 𝑓

���𝑥𝑛+1 = 𝑥 (2)

Obtaining a closed-form expression for VoI(𝑥 ;𝒟𝑚
𝑆
,𝒟𝑛

𝑓
) is not

possible but it can still be computed efficiently via Monte Carlo
sampling. We first convert 𝜇𝑛+1

𝑗
(𝑥) to quantities that can be com-

puted in the current step 𝑛 through the reparameterization trick
[20], 𝜇𝑛+1

𝑗
(𝑥) = 𝜇𝑛

𝑗
(𝑥) + 𝜎 𝑗 (𝑥, 𝑥𝑛+1)𝑍 where 𝑍 ∼ 𝑁 (0, 1). The

deterministic function 𝜎̃𝑛
𝑗
(𝑥, 𝑥𝑛+1) represents the standard devia-

tion of 𝜇𝑛+1
𝑗
(𝑥) parameterized by 𝑥𝑛+1 and given by 𝜎̃𝑛

𝑗
(𝑥, 𝑥𝑛+1) =

𝑘𝑛
𝑗
(𝑥, 𝑥𝑛+1)/

√︃
𝑘𝑛
𝑗
(𝑥𝑛+1, 𝑥𝑛+1). Therefore, wemay construct𝑛𝑧 mod-

els for each objective, {𝜇𝑛+1
𝑗
(𝑥 ;𝑍 𝑗 )}𝑛𝑧𝑗=1. If 𝑍 𝑗 = (𝑍1, . . . , 𝑍𝐾 ) 𝑗 rep-

resents a sample of𝐾 normally distributed values for each objective,
then, the expected utility of eachmodel may be computed according
to Eqn. 1 and optimized to obtain {𝐺∗ (𝑍 𝑗 ;𝒟𝑚

𝑆
,𝒟𝑛+1

𝑓
)}𝑛𝑧
𝑗=1.

Solving Eqn. 2 involves solving𝑛𝑧 nestedmaximization problems,
if all inner-optimization problems are solved sequentially. To reduce
the computational time, we jointly optimize all inner optimization
problems and the acquisition function optimizer, 𝑥𝑛+1, using a “one-
shot" formulation [2]. This consists of pairing each sampled {𝑍 𝑗 }𝑛𝑧𝑗=1
with an 𝑥∗

𝑗
and define the set of design vectors that maximize the

inner problems, 𝑋 ∗
𝑑
= {𝑥∗

𝑗
}𝑛𝑧
𝑗=1. Then, we estimate VoI(𝑥 ;𝒟𝑚

𝑆
,𝒟𝑛

𝑓
)

as follows,

VoI(𝑥 ;𝑋 ∗
𝑑
, {𝑍 𝑗 }𝑛𝑧1 ) =

1
𝑛𝑧

𝑛𝑧∑︁
𝑗=1

𝐺 (𝑥∗𝑗 , 𝑍 𝑗 ,𝒟
𝑚
𝑆 ,𝒟

𝑛+1
𝑓
)

−𝐺 (𝑥𝑟 , 𝑍 𝑗 ,𝒟𝑚
𝑆 ,𝒟

𝑛+1
𝑓
) (3)

where 𝑥𝑟 = argmax𝑥∈X𝐺 (𝑥,𝒟𝑚
𝑆
,𝒟𝑛

𝑓
). Note that the argument

within the summation is strictly non-negative.
Eqn. 3 removes the inner maximization operation by a now ex-

tended optimization space defined by 𝑥 and𝑋 ∗
𝑑
. In each BO iteration,

the random samples {𝑍 𝑗 }𝑛𝑧1 are fixed hence VoI(𝑥 ;𝑋 ∗
𝑑
, {𝑍 𝑗 }𝑛𝑧𝑗=1)) is

deterministic and, in the search for 𝑥𝑛+1, we simultaneously search
over 𝑋𝑑 and 𝑥𝑛+1 hence the acquisition function estimate improves
over the course of the search for the next candidate point 𝑥𝑛+1∗,

𝑥𝑛+1
∗

= argmax
𝑥𝑛+1

max
𝑋𝑑

VoI(𝑥𝑛+1;𝑋𝑑 , {𝑍 𝑗 }𝑛𝑧1 )) . (4)

where, for simplicity, we denote

VoI∗𝑥 = max
𝑥,𝑋𝑑

VoI(𝑥 ;𝑋𝑑 , {𝑍 𝑗 }𝑛𝑧1 )).

The optimal 𝑥𝑛+1∗ is used as the next sample and the final op-
timized 𝑋 ∗

𝑑
is discarded as a "byproduct" of Eqn. 4. This method

improves the acquisition function evaluation time but requires
solving a problem with higher dimensions.

4.5 Value of Information for Decision Maker’s
Queries

Instead of evaluating the objective function , wemay elicit data from
the DM and augment the dataset𝒟𝑚+1

𝑆
= 𝒟

𝑚
𝑆
∪ {([𝑦,𝑦′], 𝑞)𝑚+1}.

Therefore, we may quantify the benefit due to the additional query
by taking the difference in expected utility obtained given the addi-
tional query {([𝑦,𝑦′], 𝑞)𝑚+1}.

VoI( [𝑦,𝑦′]) = E𝑞𝑚+1
[
𝐺∗ (𝒟𝑚+1

𝑆
,𝒟𝑛

𝑓
)−𝐺∗ (𝒟𝑚

𝑆
,𝒟𝑛

𝑓
)

𝑐𝑠

���[𝑦,𝑦′]𝑚+1 = [𝑦,𝑦′]]
(5)

where 𝑐𝑠 is the cost of eliciting preference information from the
decision maker. As mentioned previously, this acquisition function
is optimized using pairs of previously sampled observations. This
may be further extended to optimize over a continuous output
space, however, predicted observations shown to the DM are not
guaranteed to be achievable.

The acquisition function is efficiently computed by considering
that the total Value of Information is given by a weighted sum of the
two possible outcomes of showing the pair to the decision maker.
The weights are chosen to be the probability of the two outcomes
given by 𝜋 .

VoI( [𝑦,𝑦′]) = 𝜋 (( [𝑦,𝑦′], 1)𝑚+1;𝒟𝑚
𝑆 ) ·𝐺

∗ (𝒟𝑚
𝑆 ∪ {([𝑦,𝑦

′], 1)𝑚+1})
+ 𝜋 (( [𝑦,𝑦′],−1)𝑚+1;𝒟𝑚

𝑆 ) ·𝐺
∗ (𝒟𝑚

𝑆 ∪ {([𝑦,𝑦
′],−1)𝑚+1})

(6)
To estimate 𝜋 (( [𝑦,𝑦′], 1);𝒟𝑚

𝑆
) we take the average overmultiple

likely responses as,

𝜋 (( [𝑦,𝑦′], 1)𝑚+1;𝒟𝑚
𝑆 ) ≈

1
𝑛𝜋

𝑛𝜋∑︁
𝑖=1

ℒ(1;𝑈 (𝑦;𝜃𝑖 ) −𝑈 (𝑦′;𝜃𝑖 )).

where each parameter is generated according to the posterior distri-
bution 𝜃𝑖 ∼ P[𝜃 |𝒟𝑚

𝑆
] and 𝜋 (( [𝑦,𝑦′],−1)𝑚+1;𝒟𝑚

𝑆
) can be com-

puted as 𝜋 (( [𝑦,𝑦′],−1)𝑚+1;𝒟𝑚
𝑆
) = 1 − 𝜋 (( [𝑦,𝑦′], 1)𝑚+1;𝒟𝑚

𝑆
).

Therefore, for each candidate pair, only two optimization problems
must be solved to estimate the value of the acquisition function.
To compare the Value of Information of both actions, black box
evaluations and query to the DM, we use the same Monte Carlo
samples to estimate 𝐺∗.

We determine the𝑚-th candidate pair [𝑦,𝑦′]∗ to show to the
DM by evaluating Eqn. 6 using non-dominated pairs of previously
sampled observations. The pair with the largest expected benefit is
then selected,

[𝑦,𝑦′]𝑚+1∗ = argmax
𝑦,𝑦′∈𝑌𝑛×𝑌𝑛

VoI( [𝑦,𝑦′])

For simplicity, we also denote

VoI∗[𝑦,𝑦′ ] = max
[𝑦,𝑦′ ]∈𝑌𝑛×𝑌𝑛

VoI( [𝑦,𝑦′])

Fig. 1 illustrates how the value of information for the DM’s
queries determines the𝑚-th candidate. Fig. 1 (a) and (b) show a sam-
pled set of observations (white dots) in a two-dimensional objective
space. Fig. 1 (a) shows non-dominated combinations of observations
that may be evaluated, when the dataset size for preference infor-
mation is zero (𝑚 = 0). Each colored edge represents the estimated
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Figure 1: Both figures show a sampled set of observations
(white dots) in a two-dimensional objective space during the
maximization when the dataset for preference information
is empty (a) and when 3 queries are collected (b). The best
pair according to Eqn. 6 (red dots) is then selected.

Value of Information according to Eqn. 6, with lighter colors repre-
senting more preferable pairs with higher VoI. The best pair (red
dots), according to its value of information, is selected and shown
to the DM. Then, the dataset is updated and a set of compatible
samples of parameters is generated. After performing 3 queries to
the DM, Fig. 1 (b) shows a highly reduced set of potential pairs that
may provide a benefit to the optimization process. In both figures,
non-connected observations present a value of information of zero.

4.6 The Overall Algorithm
The proposed approach is summarized in Algorithm 1. On Line 0,
the algorithm begins by fitting a Gaussian process model for each
objective to a set of initial solutions 𝒟𝑛

𝑓
using a Latin hypercube

(LHS) ‘space-filling’ experimental design. After initialization, the
algorithm continues in an optimization loop until the budget 𝐵 has
been consumed. During each iteration, we compute the VoI of col-
lecting a new solution (𝑥𝑛+1, 𝑦𝑛+1) according to VoI(𝑥) (Line 2) and
the VoI of eliciting preference information VoI( [𝑦,𝑦′]) (Line 3). The
action that gives the greatest value determines whether we collect
a sample (𝑥,𝑦)𝑛+1 or ( [𝑦,𝑦′], 𝑞)𝑚+1 (Line 4). In the first case, the
Gaussian process model is updated according to the new solution
sample (Lines 5-8) and, for the second case, the posterior distri-
bution P[𝜃 |𝒟𝑚

𝑆
] is updated according to the new ( [𝑦,𝑦′], 𝑞)𝑚+1

sample (Lines 10-13). At the end of 𝐵 samples, the design 𝑥 with the

largest predicted performance 𝐺 (𝑥) is recommended to the user
(Line 14).

Algorithm 1: Overall Algorithm.

Input: black box 𝑓 : 𝑋 → R𝐾 with cost 𝑐 𝑓 , querying cost
𝑐𝑠 , and sampling budget 𝐵

0. Collect initial data from 𝑓 , 𝒟𝑛
𝑓
, and fit a Gaussian process

for each objective, 𝜇𝑛
𝑗
(𝑥)

1.While 𝑏 < B do:
2. Compute 𝑥𝑛+1∗ = argmax

𝑥
max
𝑋𝑑

VoI(𝑥 ;𝑋𝑑 , {𝑍 𝑗 }𝑛𝑧1 )).

3. Compute [𝑦,𝑦′]𝑚+1∗ = argmax
[𝑦,𝑦′ ]∈ [Y𝑛,Y𝑛 ]

VoI( [𝑦,𝑦′])

4. If VoI∗𝑥 > VoI∗[𝑦,𝑦′ ] :

5. Evaluate black box function, 𝑦𝑛+1 = 𝑓 (𝑥𝑛+1)
6. Update 𝒟𝑛+1

𝑓
← 𝒟

𝑛
𝑓
∪ {(𝑥,𝑦)𝑛+1}

7. Fit a Gaussian process to 𝒟
𝑛+1
𝑓

8. Update budget consumed, 𝑏 ← 𝑏 + 𝑐 𝑓 , 𝑛 ← 𝑛 + 1
9. Else:
10. Query DM, 𝑞𝑚+1

11. Update 𝒟𝑚+1
𝑆
← 𝒟

𝑚
𝑆
∪ {([𝑦,𝑦′], 𝑞)𝑚+1}

12. Compute a posterior distribution P[𝜃 |𝒟𝑚+1
𝑆
]

13. Update budget consumed, 𝑏 ← 𝑏 + 𝑐𝑠 ,𝑚 ←𝑚 + 1
14. Return: Recommend 𝑥𝑟 = argmax𝑥 𝐺 (𝑥 ;𝒟𝑚

𝑆
,𝒟𝑛

𝑓
)

5 RESULTS AND DISCUSSION
We test the proposed approach on a synthetic test function with
two spherical objectives defined over 𝑋 = [0, 1]2. The center of
each spherical function is placed as shown in Fig. 2 (first row) of
each figure (red crosses). This produces the feasible regions shown
in output space, Fig. 2 (second row). The aim of this comparison
is to show that our proposed approach adapts to the characteristics
of the Pareto frontier and selects a sensible number of interactions
according to the problem. Notably, a larger distance between the
center of each spherical function implies a wider Pareto frontier, and
therefore, the required number of preference elicitations increases
to achieve better results. In all test functions we set 𝑛𝑧 = 𝑛𝜃 = 50
and all results are averaged over 200 replications.

We compare our proposed method (Algorithm 1) against the
following benchmarks,
• Benchmark 1: The preference elicitation is performed at
regular intervals. Therefore, we collect objective function
data for a fixed amount of iterations before collecting infor-
mation from the DM. Each non-dominated pair is randomly
selected from the set of sampled observations.
• Benchmark 2: A two stage algorithm following the a poste-
riori preference elicitation paradigm. Thus, the first stage is
dedicated to only sample from the objective function, while
in the second stage only preference information is elicited
from the DM. Each pair is selected using randomly non-
dominated observations.
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• Benchmark 3: We use the same interaction pattern for
Benchmark 1, however, each pair is optimized according to
the proposed acquisition function for pair selection (Eqn. 6).

For each Benchmark algorithm, the preference information is used
to inform the posterior distribution P[𝜃 |𝒟𝑚

𝑆
] to guide the search

and pick a final recommended solution. The number of preference
elicitations from the overall budget, 𝐵, for the Benchmark algo-
rithms is chosen "a priori" and we show results for different budget
allocations. For simplicity and without loss of generality, in all
figures, we consider the same acquisition cost, 𝑐𝑠 = 𝑐 𝑓 = 1. As
presented in Algorithm 1, our proposed approach determines the
budget allocation dynamically.

Results are shown in semi-log scale in each figure. The horizontal
axis represents the number of pairs shown to the DM, whereas the
vertical axis shows the confidence interval of the OC after the
budget has been completely allocated. For the proposed approach,
we also show a horizontal confidence interval representing the
range of sample sizes chosen.

Fig. 2 (third row) indicates the performance of the different al-
gorithms depending on the amount of preference queries executed.
For the first column, the spherical functions are highly overlapping,
and the Pareto front is therefore very narrow. Therefore, only a
small number of pairs is required to achieve the best result (around
4). However, when the Pareto front widens, the number of pref-
erence elicitations required increases. This makes sense, as the
solutions one would pick depending on DM preferences differ more
significantly, making the result more depending on a good knowl-
edge of the DM preferences. Clearly this trade-off depends on the
problem and it would not be possible to know the ideal number
of preference elicitations in advance. In all cases, our proposed
approach (yellow results) balances the sampling allocation, finding
equivalent or better results than even taking the optimal number
of pairs for the other methods (for the third test problem with the
widest Pareto front, Benchmark 3 might benefit from an even higher
number of DM interactions). Furthermore, it is clear that selecting
each pair according to VoI[𝑦,𝑦′ ] (Algorithm 1 and Benchmark 3)
yields superior performance compared to selecting each pair ran-
domly (Benchmark 1 and 2), which confirms the usefulness of the
criterion.

Intuitively, spreading the interaction through the optimization
allows to take advantage of the preference information early in the
optimization which we would expect to be beneficial. Comparing
Benchmarks 1 and 2 which implement different interaction pat-
terns, but both select pairs randomly, shows that asking the DM
at regular intervals (Benchmark 1) provides only a minor improve-
ment in performance compared to asking the DM towards the end
of the optimization (Benchmark 2). Our approach presents similar
results compared to Benchmark 3 even when the best number of
pairs is selected. Note, however, that the best number of pairs in
Benchmark 3 has to be pre-determined by the user and may be
problem dependent, so comparing with the optimal setting gives
the Benchmark 3 algorithm an unrealistic advantage.

6 CONCLUSIONS
We demonstrate how to dynamically determine which of the two
actions (evaluating a solution or eliciting DM preferences) is more

beneficial. In each iteration, our proposed approach estimates the
value of each action and selects the action considered more valuable.
A comparison with the standard EMO a posteriori paradigm which
would first only optimize then elicit preference information from
the DM to identify the most preferred solution, demonstrated that
the allocation mechanism of the proposed approach is able to auto-
matically identify a sensible balance between preference learning
and objective function optimization, and outperforms even the best
budget allocation from the comparison algorithms.

Future directions of research may include the evaluation on a
wider range of test problems with different cost configurations
and examining the scalability of the proposed approach in higher
dimensions, where it should be most beneficial.
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Figure 2: (first row) shows the Spherical test functions and the center of each spherical objective function in solution space
such that only the distance between the each center varies. (second row) shows the resulting feasible region in objective space
given by the test function above. (third row) Mean and 95% CI of OC. Each CI is generated using 200 replications and 𝐵 = 30.
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