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Abstract—For contemporary variable-speed electric drives, the 

accuracy of the machine’s mathematical model is critical for 

optimal control performance. Basically, phase variables of 

multiphase machines are preferably decomposed into multiple 

orthogonal subspaces based on vector space decomposition (VSD). 

In the available literature, identifying the correlation between 

states governed by the dynamic equations and the parameter 

estimate of different subspaces of multiphase IM remains scarce, 

especially under unbalanced conditions, where the effect of 

secondary subspaces sounds influential. Most available literature 

has relied on simple RL circuit representation to model these 

secondary subspaces. To this end, this paper presents an effective 

data-driven-based space harmonic model for n-phase IMs using 

sparsity-promoting techniques and machine learning with 

nonlinear dynamical systems to discover the IM governing 

equations. Moreover, the proposed approach is computationally 

efficient, and it precisely identifies both the electrical and 

mechanical dynamics of all subspaces of an IM using a single 

transient startup run. Additionally, the derived model can be 

reformulated into the standard canonical form of the induction 

machine model to easily extract the parameters of all subspaces 

based on online measurements. Eventually, the proposed modeling 

approach is experimentally validated using a 1.5 Hp asymmetrical 

six-phase induction machine. 

Index Terms—Multiphase machine, induction motor, machine 

learning, parameter estimation, six-phase machines. 

NOMENCLATURE 

𝑥 System state 

𝑢 System input 

C Weighted coefficients 

𝚯 Library of functions 

𝑖 Current 

𝑣 Voltage 

𝜆 Flux linkage 

𝑅 Winding resistance 

𝐿 Self or magnetizing inductances 

𝐿𝑙 Leakage inductance 

𝑝 Number of pole pairs 

𝑛 Number of stator phases 

𝑇𝑒 Developed torque 

𝜔𝑒 Electrical angular speed 

𝑇𝑑 Developed torque 

𝑇𝐿 Load torque 

Subscripts 

𝛼, 𝛽 Fundamental subspace components 

𝑥, 𝑦 Secondary subspace components 

0+, 0− Zero subspace components 

𝑠 Stator 

𝑟 Rotor 

k Subspace 

𝑝ℎ Phase 

𝑠𝑒𝑞 Sequence component 

Superscripts 

𝑠 Stator 

𝑟 Rotor 

𝑚 Mutual/Magnetizing 

I. INTRODUCTION

n modern variable-speed electric drives, small mismatches 

between the controller and machine mathematical model 

may deteriorate the controller performance. Therefore, 

numerous parameter estimation techniques have been presented 

in the literature for both three-phase and multiphase induction 

machines [1-6]. Multiphase machines have shown promise in 

high-power safety-critical applications since they offer 

improved fault-tolerance capability, lower per-phase current 

ratings, and enhanced air gap flux distribution [7, 8]. On the 

other hand, multiphase machines entail a more complex 

controller and converter. Amongst multiphase machines, those 

with multiple three-phase windings are more common than 

machines with prime phase order since commercial off-the-
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shelf three-phase power converters can simply be employed [9, 

10]. Thus, industrial sectors mainly utilize six-phase machines 

with a spatial phase shift of 300 between the two three-phase 

winding groups, commonly denoted as asymmetrical six-phase 

(A6P) machine, which offers better flux distribution and 

enhanced fundamental torque producing component [11, 12]. 

The multiphase IM modeling has extensively been 
addressed based on either vector space decomposition (VSD) 

[13] or double 𝑑-𝑞 modeling approaches [14]. Although both

approaches are mathematically  equivalent, VSD-based 

controllers are the most commonly preferred approach from the 

dynamical response perspective, where a multiphase machine 

is decomposed into multiple orthogonal subspaces [15,16]. In 

the most available literature, it is assumed that machine torque 

production is dominantly developed by the fundamental 𝛼𝛽 

subspace. Whereas the secondary and zero-sequence subspaces 
are mostly considered as non-flux/non-torque producing 

subspaces [17]. This has been mainly assumed considering that 

the flux distribution tends to be more sinusoidal as the number 

of phases increases [15], which may only be valid under healthy 

conditions. 

In literature, the multifrequency current control has been 

proposed to compensate the induced harmonic current 

components mapped to various subspaces [18]. Although the 

distortion in torque profile can be prevented/minimized by 

harmonic current compensation, novel winding layouts have 

also been proposed recently to mitigate space harmonics 

whether the current waveform is sinusoidal or distorted [19].  
On the other hand, modeling the effect of the air gap low-

order space harmonics on the multiphase induction machine 

dynamic behavior remains scarce [15, 20]. Initially, the notable 

effects of low-order harmonics were considered in the 

mathematical model of symmetrical six-phase (S6P) IM [21]. 

As a result, the steady-state six-phase currents were better 

estimated. Moreover, the influence of the induced third 

harmonic in the air gap flux has been highlighted for five-phase 

IM with single layer winding for the open-phase case in [22]. 

Furthermore, the study given in [20] introduced an improved 

parameter identification method for A6P IM taking into account 
the effect of the mutual leakage inductance and rotor induced 

currents in the zero-sequence subspace. Accordingly, the 

estimation of the input impedance of the zero-sequence 

subspace was affected by the induced third harmonic flux 

component. An improved low-order space harmonics modeling 

has recently been presented to shed light on the parasitic effects 

of these harmonics on an A6P IM under different neutral 

configurations [15]. As a result, it was concluded that the 

simple harmonic-free model can be utilized for the xy subspace 

since the effect of the fifth- and seventh-order harmonics 

mapped to this subspace is very negligible. However, the effect 

of the third harmonic mapped to the zero-sequence subspace is 

notable under unbalanced operation; therefore, the harmonic-
free model for this subspace yields a notable inaccuracy during 

transients. Besides, identifying the parameters of non-

fundamental subspaces stands as the main mathematical 

challenge to include the effect of these secondary subspaces 

[15, 20]. These parameters are either identified analytically in 

[20] or using finite element analysis (FEM) in [1].

Multi-objective parameter estimation of IMs has been 

widely used to match the estimated and manufacturer data [23]. 

Several methods for three-phase IM have been presented in the 

literature using a sparse grid optimization algorithm [24], 

particle swarm optimization (PSO) [25], and a backtracking 

search algorithm [26]. Other algorithms were used in the 
literature in order to estimate the full parameters of the three-

phase induction machine including the mechanical parameters 

using polynomial regression [27], and convex optimization [6]. 

Moreover, a new method based on PSO for multiphase IMs 

parameter identification has been elaborated in [28]. 

Interestingly, machine learning (ML) algorithms, a part of 

artificial intelligence (AI), have recently been used in the date-

driven modeling of dynamic systems [29]. Various ML 

algorithms have also been employed for the diagnosis of 

induction motors [30, 31]. However, to the best of the authors’ 

knowledge, the employment of ML approaches for multiphase 
IM dynamic modeling has not been conceived thus far.   

This paper introduces an ML-based technique to develop an 

efficient low-order space harmonic dynamic model for 𝑛-phase 

IMs using the so-called sparse identification of non-linear 

dynamics (SINDy) approach. This approach can efficiently 

model both the electrical and mechanical dynamics of the n- 

phase IMs including the secondary subspaces dynamics using a 

single transient run (start-up or transient change) without the 

need for any additional sensors than those already available on 

the drive itself. Also, this technique can effectively identify the 

effect of the low-order harmonics that are mapped to the non-

fundamental subspaces under unbalanced conditions, which 

represents the main merit over available models. The effect of 

neglecting the dynamics of the secondary subspaces is 

illustrated based on a comparative study in the results section. 

A comparison of the proposed modeling approach with the 

available presented models in the literature is summarized in 

Table I. In addition, the obtained model may be reformed into 

the canonical form of the induction machine in order to extract 

the machine parameters, necessitating neither a significant 

amount of time nor laborious tests. Finally, Experiments have 

been carried out using a 1.5 Hp asymmetrical six-phase IM to 

validate the proposed modeling approach. 

TABLE I 

COMPARISON OF MODELING APPROACHES OF MULTIPHASE IMS 

ref 
No. of 

phases 
𝑅𝑠

estimation 

𝑅𝑟
estimation 

𝛼𝛽 
subspace 

𝑥𝑦 
subspace 

zero 
subspace 

Technique 

[20] 6 √ × √ √ × Modified Standard test 

[2] 5 √ √ √ × × Step voltage at standstill 

[32] n √ √ √ √ × Sinusoidal excitation methods 

[17] n √ × √ √ × On-line estimation 

Proposed n √ √ √ √ √ Data-driven 
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II. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS 

(SINDY) APPROACH 

Discovering the governing equations of a dynamical system 

is, in general, a challenging process. The main objective is to 

discover the governing equations of a multiphase induction 

machine with multiple subspaces that correlates its input-output 

relation. Typically, these equations can be used for either 

model-based simulation or controller design. Although these 

equations can accurately describe the system, the derivation of 

these equations is complex and entails an expert in the loop to 

highlight the relation between each phenomenon and the 

corresponding measurement. Further, it requires performing 

certain measurements on the machine to extract its parameters 

to fully describe the general model. 

Unlike system modeling based on dynamical equations, data-

based modeling, e.g., neural network architecture, has recently 

emerged to model complex systems with high accuracy. The 

data-based modeling might result in more accuracy; however, 

it is complex, less controllable, and doesn't necessarily give any 

physical meaning to the system itself. For analyzing and 

controlling the multiphase machines, the generated models 

need to be in the form of linear or nonlinear differential 

equations. A new technique offering the merits of both 

modeling approaches has been developed, namely, sparse 

identification of nonlinear dynamics (SINDy) [33]. This 

approach provides a straightforward data-driven framework to 

model the system from data measurement and results into a 

model in the form of differential equations. 

The only assumption about the model structure is that a few 

important terms are used to govern the dynamics so that the 

equations are sparse in the space of possible functions. For 

example, the current is proportional to the voltage in the electric 

machine; therefore, the algorithm will result in a model that is 

a function of these variables.  

    By using SINDy, it is required to determine a set of 

differential equations in the form of 𝑑𝒙(𝑡)/𝑑𝑡 = 𝑓(𝒙(𝑡), 𝒖), 
where 𝒙 represents the system states and 𝒖 represents the 

system inputs. In case of induction machines, the machine states 

are currents, or fluxes, and speed, while the reference inverter 

voltages are the system inputs. So, it is necessary to collect the 

time history of the state 𝒙(𝑡) and measure the derivative �̇�(t) or 

approximate it numerically from 𝒙(t). The data are sampled at 

various intervals 𝑡1, 𝑡2, …, and 𝑡𝑚 and organized into two

matrices as in (1) and (2). 

𝐗 = [

𝒙𝑇(𝑡1)

𝒙𝑇(𝑡2)
⋮

𝒙𝑇(𝑡𝑚)

] =  [

𝑥1(𝑡1) 𝑥2(𝑡1)

𝑥1(𝑡2) 𝑥2(𝑡2)
⋮ ⋮

𝑥1(𝑡𝑚) 𝑥2(𝑡𝑚)

⋯ 𝑥𝑁(𝑡1)

… 𝑥𝑁(𝑡2)
⋱ ⋮
… 𝑥𝑁(𝑡𝑚)

] (1)

�̇� = [

�̇�𝑇(𝑡1)

�̇�𝑇(𝑡2)
⋮

�̇�𝑇(𝑡𝑚)

] =  [

𝑥1̇(𝑡1) 𝑥2̇(𝑡1)

𝑥1̇(𝑡2) 𝑥2̇(𝑡2)
⋮ ⋮

𝑥1̇(𝑡𝑚) 𝑥2̇(𝑡𝑚)

⋯ 𝑥�̇�(𝑡1)

… 𝑥�̇�(𝑡2)
⋱ ⋮
… 𝑥�̇�(𝑡𝑚)

] (2)

where 𝑁 is the number of states. A matrix 𝚯(𝐗) consisting of 

candidate non-linear functions of the columns of X and input 

vectors is then constructed. For example, 𝚯(𝐗) may consist of 

constant, polynomial, and trigonometric terms. This matrix 

represents the possible correlation between the states and the 

inputs and is described as follows: 

𝚯(𝐗) = 

[
∶ ∶
𝒖𝟏 … 𝒖𝒌
∶ ∶

⏞   
𝒌 𝒊𝒏𝒑𝒖𝒕 𝒗𝒆𝒄𝒕𝒐𝒓𝒔

 
|
∶ ∶ ∶ ∶  ∶ ∶
1 𝐗 𝐗𝑃2 𝐗𝑃3 … 𝑠𝑖𝑛(𝐗) 𝑐𝑜𝑠(𝐗) …
∶ ∶ ∶ ∶  ∶ ∶

]

(3) 

Higher polynomials are indicated as 𝐗𝑃2, 𝐗𝑃3, etc., where 𝐗𝑃2 
represents the quadratic nonlinearities in the state x and is 

described as follows, 

𝑿𝑃2 = 

[

𝑥1
2(𝑡1) 𝑥1(𝑡1)𝑥2(𝑡1) … 𝑥2

2(𝑡1) … 𝑥𝑁
2 (𝑡1)

𝑥1
2(𝑡2) 𝑥1(𝑡2)𝑥2(𝑡2) … 𝑥2

2(𝑡2) … 𝑥𝑁
2 (𝑡2)

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑥1
2(𝑡𝑚) 𝑥1(𝑡𝑚)𝑥2(𝑡𝑚) … 𝑥2

2(𝑡𝑚) … 𝑥𝑁
2 (𝑡𝑚)]

 (4) 

The SINDy objective is to find which candidate functions can 

optimally model the system. Sparse regression therefore aims 

to identify a set of vectors comprising weighted coefficients 

𝐂 = [ 𝒄1 𝒄2  ⋯ 𝒄𝑁  ]. These coefficients describe the weight of

each nonlinearity in the model and which of those are effective. 

The sparse regression problem is formulated as follows, 

�̇� = 𝚯(𝐗)𝐂   (5) 

Each column 𝒄𝑘 of 𝐂 is a sparse vector of coefficients

determining which terms are effective in the right-hand side for 

one of the dynamic equations �̇�𝒌(𝑡) = 𝒇(𝐱𝑘(𝑡), 𝒖) in (1). Once

𝐂 is constructed, an accurate depiction of the system dynamics 

can be obtained, which describes all possible candidate 

functions of the system. For example, the machine speed 

voltage is a nonlinear term that represents the product of linkage 
flux and angular speed. This can simply be modeled as a 

second-degree polynomial. The sparse regression problem will 

then disregard all the other possible terms except the term 𝜆𝜔𝑟.
The main advantage of SINDy in modeling electrical systems 

is that it does not require a certain structure of predetermined 

equations to describe the system model. This fact opens the 

door for modeling any non-linear behavior of the machine from 

several perspectives, such as the magnetic behavior, 

temperature, change of parameters, and so on. These effects can 

accurately be modeled as long as the correct data that contains 

enough information and transients is provided.  

III. MODELLING PROCEDURES OF IMS USING SINDY

This section introduces the procedures of the proposed 

modeling approach for multiphase IMs. First, the required 

mathematical representation of IMs is presented. After that, the 

main steps of the proposed data-driven modeling are described 

in detail. 

It is well-established in the available literature that the 

governing dynamic equations can sufficiently be represented 

using the dominant low-order space harmonics in different 

subspaces [15]. Harmonics of higher order will consequently be 

ignored in this paper. The general assumptions that will also be 

made are as follows: 

1)  The magnetic circuit is assumed linear, and the effect

of hysteresis, as well as eddy current losses, will be 
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discarded. Saturation yields the same model 

formulation, however, it affects the model parameters, 

as well be shown in the results section. 

2) The effect of slot harmonics is neglected.

3) All sources of winding asymmetries will be ignored.

Based on these assumptions, the 𝛼𝛽 subspace will be 

responsible for the fundamental torque producing flux 

component, the 𝑥𝑦 subspace will represent the effect of the 5𝑡ℎ 

and 7𝑡ℎ space harmonics, and the 0+, 0− subspace will account 

for the effect of the air gap third harmonic flux component. 

A. Space Phasor Modeling of IMs

An n-phase induction machine is commonly modelled using 

VSD modelling, where the phase variables vector, 𝒚𝑝ℎ is

decomposed into n sequence components using the orthogonal 

transformation given by (6) and detailed in [34].  

𝒚𝒔𝒆𝒒 = 𝑻𝒏𝒚𝑝ℎ (6)

where 𝑻𝒏 is the VSD transformation matrix.

The machine voltage equations in space phasor form for any 

subspace k are therefore given by (7) and (8), while the stator 

and rotor flux linkage equations are given by (9) and (10), 

respectively. 

𝑣𝑘
𝑠 = (𝑅𝑠𝑖𝑘

𝑠 +
𝑑𝜆𝑘

𝑠

𝑑𝑡
 ) (7) 

0 = 𝑅𝑘
𝑟𝑖𝑘
𝑟 +

𝑑𝜆𝑘
𝑟

𝑑𝑡
− 𝑗𝜔𝑒𝜆𝑘

𝑠 (8) 

𝜆𝑘
𝑠 = 𝐿𝑘

𝑠 𝑖𝑘
𝑠 + 𝐿𝑘

𝑚𝑖𝑘
𝑟 (9) 

𝜆𝑘
𝑟 = 𝐿𝑘

𝑟 𝑖𝑘
𝑟 + 𝐿𝑘

𝑚𝑖𝑘
𝑠 (10) 

where 𝑅𝑠 and 𝑅𝑘
𝑟 are the resistances of the stator and rotor, 

respectively. 𝐿𝑘
𝑠  and 𝐿𝑘

𝑟  are the self-inductances of the stator and

rotor, respectively, and 𝐿𝑘
𝑚 is the mutual inductance between 

stator and rotor.  

Since rotor currents are usually unmeasurable, the model is 

reformulated using stator variables only, namely, stator current 

and flux components. From (9) and (10), then, 

𝑖𝑘
𝑟 = −

𝐿𝑘
𝑠

𝐿𝑘
𝑚 𝑖𝑘

𝑠 +
1

𝐿𝑘
𝑚 𝜆𝑘

𝑠 (11) 

𝜆𝑘
𝑟 = −

𝜎𝑘𝐿𝑘
𝑠 𝐿𝑘
𝑟

𝐿𝑘
𝑚 𝑖𝑘

𝑠 +
𝐿𝑘
𝑟

𝐿𝑘
𝑚 𝜆𝑘

𝑠 (12) 

where the leakage factor 𝜎𝑘 = 1− (𝐿𝑘
𝑚)2/𝐿𝑘

𝑟 𝐿𝑘
𝑠

Substituting from (7), (11), and (12) in (8) gives the following 

state equation in space phasor form. 

𝑑

𝑑𝑡
𝑖𝑘
𝑠 = −(

𝑅𝑠𝐿𝑘
𝑟 + 𝑅𝑘

𝑟𝐿𝑘
𝑠

𝜎𝑘𝐿𝑘
𝑟 𝐿𝑘

𝑠 ) 𝑖𝑘
𝑠 +

1

𝜎𝑘𝐿𝑘
𝑠 𝑣𝑘

𝑠

+
𝑅𝑘
𝑟

𝜎𝑘𝐿𝑘
𝑟 𝐿𝑘

𝑠 𝜆𝑘
𝑠 + 𝑗𝜔𝑒𝑖𝑘

𝑠 − 𝑗
1

𝜎𝑘𝐿𝑘
𝑠 𝜔𝑒𝜆𝑘

𝑠

(13) 

The stator flux components can be estimated from the 

integration of (7). This integration, however, depends on the 

stator resistance, which can simply be obtained from the dc 

resistance test.  

The remaining state equation is the mechanical equation, 

which is given by, 
𝑑𝜔𝑒
𝑑𝑡

= −
𝑏

𝐽
𝜔𝑒 + 𝑝

𝑇𝑑 − 𝑇𝐿
𝐽

 (14) 

𝑇𝑑 =∑
𝑛

2
𝑘𝑝 𝑟𝑒𝑎𝑙 (𝑗𝜆𝑘

𝑠 𝑖𝑘
𝑠∗)

𝑘

 (15) 

Under asymmetrical six-phase induction machine, which is 

used for experimental validation, there are three subspaces, 

namely 𝛼𝛽 (𝑘 = 1), 𝑥𝑦(𝑘 = 5) and 0+0−(𝑘 = 3), where 𝑘
also refers to the dominant harmonic order of the corresponding 

subspace. 

B. Data Preprocessing

1) Data filtration

Data filtering is crucial, since motor drives generally 

generate significant noise levels that might be coupled to the 
sensors. This noise affects the estimation accuracy, especially 

when SINDy algorithm calculates the derivatives of these 

observations.  

Another important issue is the possible DC offsets in the 

output of the current sensors and the corresponding effect on 

the flux estimation. Fig. 1 describes the discrete Fourier 

analysis for the experimental current waveform under no-load 

operation and supply frequency of 50Hz. It is evident that the 

current spectrum comprises high order component at switching 

frequency and a DC bias. 

The high frequencies are attenuated using an 8th-order band-
stop IIR filter (Butterworth) with a lower cutoff frequency of 

500 Hz and a higher cutoff frequency of 25kHz. Fig. 2(a) 

depicts the magnitude and phase responses of the band-stop 

filter, whereas Fig. 2(b) shows the current response signal 

during the starting period of the prototype machine before and 

after filtration to remove high frequency components. To get rid 

of any DC offset component, an additional high pass IIR filter 

of order 8 and a corner frequency of 5 Hz is selected. Fig . 3(a) 

shows the magnitude and phase responses of the employed high 

pass filter, whereas Fig. 3(b) depicts the current signal before 

and after applying the filter.   

    Applying these two filters distorts the frequency phase shift  
response, as shown in Figs. 2(a) and 3(a). However, by applying 

the time reversal property of the discrete Fourier transform, the 

input data 𝑥 can be processed in both the forward and backward 

directions. After filtering the input in the forward direction, the 

function reverses the sequence and filters it again in the 

backward direction. This process guarantees zero phase 

distortion or time delay in the filtered signals. This zero-phase 

digital filtering is performed using the filtfilt Matlab function. 

Fig. 1.  Discrete Fourier transform of the phase current waveform. 
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(a) 

(b) 

Fig. 2.  The characteristics of the Band-stop filter. (a) Magnitude and phase 

responses of the filter. (b) The current signal before and after filtration of 

the high frequencies. 

(a)

(b)

Fig. 3.  The characteristics of the High pass filter. (a) Magnitude and phase 

responses of the filter. (b) The current signal before and after removing the 

DC bias.

2) Stator Flux Estimation

    As a second step, it is necessary to estimate the precise stator 
flux by integrating (7). Generally, numerical differential 

equations may be classified into two types depending on the 

damping term (𝜁) in the exact solution (𝑒−𝜁𝑡): stiff and non-stiff 

differential equations, where 𝜁 is a large constant for stiff type 

and a small constant for the non-stiff type.  It is evident from 

(7) that the flux dynamics is dependent on the current dynamics.

Since the current has a relatively small damping factor (seen by 

the decline of the filtered current waveform after 0.5 seconds in 

the current response shown in Fig. 3), eq. (7) can be classified 

as a non-stiff differential equation.  

Thereby, (7) can be solved numerically using the fourth 
order Runge-Kutta method with a proper time step length using 

(16) and (17). This method gives higher accuracy compared to

the conventional integration. 

𝑑𝜆𝑘
𝑠/dt = 𝑓(𝑣𝑘

𝑠 , 𝑖𝑘
𝑠) = 𝑣𝑘

𝑠 −𝑅𝑠𝑖𝑘
𝑠

with an initial condition  (𝜆𝑘
𝑠 )
0
= 𝑓 ((𝑣𝑘

𝑠)
0
, (𝑣𝑘

𝑠)
0
)

(16) 

(𝜆𝑘
𝑠)
𝑖
= (𝜆𝑘

𝑠 )
𝑖−1
+ 0.166(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

where      𝑘1 = ∆𝑡 𝑓(𝑡
𝑖−1, (𝜆𝑘

𝑠 )
𝑖−1
)

𝑘2 = ∆𝑡𝑓(𝑡
𝑖−1 + 0.5∆𝑡, (𝜆𝑘

𝑠 )
𝑖−1
+ 0.5𝑘1)

𝑘3 = ∆𝑡𝑓(𝑡
𝑖−1 + 0.5∆𝑡, (𝜆𝑘

𝑠 )
𝑖−1
+ 0.5𝑘2)

𝑘4 = ∆𝑡𝑓(𝑡
𝑖−1 + ∆𝑡, (𝜆𝑘

𝑠 )
𝑖−1
+ 𝑘3)

(17) 

3) Data differentiation

    Before applying the regression analysis, it is necessary to 

numerically approximate the derivative of the states �̇�(t)  from 

𝒙(t). Forward difference approximation 𝑑𝑥/𝑑𝑡 = (𝑥𝑛+1 −
𝑥𝑛)/∆𝑡 and backward difference approximation 𝑑𝑥/𝑑𝑡 =
(𝑥𝑛 − 𝑥𝑛−1)/∆𝑡  are the most frequent approaches for

numerical differentiation; nonetheless, they involve a 

significant inaccuracy proportional to the step size 𝑂(∆𝑡). Since 

the model estimation is highly dependent on the accuracy of the 

differentiation, it is essential to employ an accurate approach, 

such as the central difference of second order, whose error is 

proportional to 𝑂(∆𝑡2). The centered difference 

approximations can be defined as follows:  

𝑑𝑥

𝑑𝑡
=
𝑥𝑛+1 − 𝑥𝑛−1

2∆𝑡
(18) 

There are more precise fourth-order 𝑂(∆𝑡4) differentiation 

algorithms, but at the expense of increased computing 

complexity. 

C.  Constructing SINDy Model for Multiphase IMs

In order to evaluate the model coefficients, one startup 

sequence of the machine in the open loop is required. The 

proposed model is general for any subspace of the multiphase 

induction machine. To generate this model, a time history of the 

machine states is collected. These states are the subspace 

currents after filtration, the filtered mechanical speed, and the 

estimated stator flux based on the stator currents and input 

voltage using fourth-order Runge-Kutta method. The 
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appropriate derivatives of the states X are then computed using 

the second order central difference approximation. Finally, the 

library of the non-linear functions 𝜣(𝑿) is constructed using 

only first and second order polynomials. The selection of the 

non-linear functions is done based on the prior knowledge of 

the induction machine dynamics and the existence of 2nd order 

terms (speed voltage terms) in the machine dynamic equations. 

Moreover, SINDy seeks to minimize the number of the non-

zero terms by using an ℓ1-regularized regression [33], resulting 

into a sparse model constructed from the active terms that 

contribute to the induction machine dynamics.   

As far as the estimation of the fundamental 𝛼𝛽 subspace 
(dominant torque producing subspace) is concerned, balanced 

applied voltages can excite this specific subspace, while the 

effect of other subspaces will be nullified. In order to obtain the 

dynamical model of all subspaces, unbalanced applied voltages 

can excite all machine subspaces, which is mandatory for the 

proposed estimation algorithm.     

Fig. 4 depicts the flowchart of the proposed data-driven 

modeling of multiphase IMs based on SINDy algorithm1. While 

Table II summarizes the main steps of SINDy. In the following 

section the proposed model is verified and evaluated using a 1.5 

Hp prototype asymmetrical six-phase induction machine.  

IV EXPERIMENTAL VERIFICATION 

To verify the effectiveness of the proposed modeling 

approach, experimental results are conducted using  the test 

setup shown in Fig. 5. A 1.5 Hp induction machine is used with 

the specification given in Table III and is fed using a six-phase 

inverter operating at 5kHz switching frequency using sinusoidal 

pulse width modulation. A 300V programmable dc supply is 

used as a dc-link. A dSPACE 1202 model is used to derive the 
six-phase inverter and capture the machine variables (currents 

and speed). The prototype machine is run under open-loop 

control. Current measurements are obtained using LEM hall-

effect sensors, while an Omron Rotary Shaft Encoder E6B2-

CWZ1X is used for the speed measurement. Model validation 

is carried out under two cases: balanced and unbalanced 

operation. The former can effectively estimate the 𝛼𝛽 subspace 

model, while the latter can estimate the models of all subspaces 

concurrently. 

A. Derived Machine Models

In this subsection, the machine model under both balanced 

and unbalanced cases are derived. The healthy case can 

sufficiently be used to estimate the fundamental subspace, 

while the unbalanced case is employed to estimate the 

secondary subspaces. 

Case 1: Balanced six-phase operation 

In this case, the machine is driven when balanced six-phase 

voltages are applied. Under this case, the reference sequence 

voltages in per unit is 𝑣𝛼𝛽
𝑠 = 0.68∠00 at a constant reference

frequency of 50Hz, where these values are suggested to reduce 

the starting motor current to avoid saturating the output of the 

current measuring board. The reference inverter voltages were 

utilized as the input voltage to the proposed model, which is 

1 The Matlab m-files implementation of the scheme proposed in Fig. 4 is 

available as a supplementary material of this paper. 

more appropriate for actual drive systems in which just phase 

currents and speed are measured. Therefore, the suggested 
model would incorporate the influence of the inverter voltage 

drop in the dynamic equations. It is worth noting that the 

machine can be started at any desired frequency, which does not 

theoretically affect the machine model formulation. The effect 

of core saturation and frequency is considered in subsequent 

subsections. 

TABLE II 

Algorithm 1: Data-driven-based VSD modeling

1: Run DC test to estimate the stator resistance 𝑅𝑠 =
𝑉𝑑𝑐

𝐼𝑑𝑐
. 

2: 
Startup the machine under open loop control to while machine 

currents, and speed are measured (𝑖𝑛 , 𝜔𝑚)

3: 

Decompose the machine phase variables into its multiple 

orthogonal subspaces using the orthogonal transformation given 

by (6). 

4: 

 Only utilize the transient period since it reflects the system's 

dynamics. 𝑣𝑘 
𝑡=0:𝑡1 , 𝑖𝑘

𝑡=0:𝑡1, 𝜔𝑚
𝑡=0:𝑡1, where 𝑡1 is the end of the

transient period. 

5: 

Apply the data filtration with the proposed tuning for the 

quantities in step 4 to successfully remove both the noise and bias 

and get the filtered quantities. 

6: 
Apply fourth order Runge-Kutta method to estimate the stator 

flux 𝜆𝑘
𝑠  using (7). 

7: 
Apply the central difference approximations to find the states’ 

derivatives using (18). 

8: 

Construct the SINDy matrices, which are �̇� and  𝚯(𝐗, 𝐔)  
considering nonlinearities up to polynomial degree two. The 

states are 𝑖𝑘
𝑠 , 𝜔𝑚, 𝜆𝑘

𝑠  and the 𝑣𝑘
𝑠 is an input. 

9: 
Apply the sequentially threshold least squares (STLS_REGR) to 

find the optimal  𝐂. 

𝒍𝟏 Function STLS_REGR (�̇�, 𝚯(𝐗, 𝐔) ,ε) 

𝒍𝟐  𝐂𝟎 ← (𝚯𝐓)†�̇�             ⊳ initial guess

𝒍𝟑  while not converged do 

𝒍𝟒  𝑖 ← 𝑖 + 1

𝒍𝟓  𝑖𝑑𝑠𝑚𝑎𝑙𝑙 ← (𝐴𝑏𝑠(𝐂) < ε)    ⊳ find small entries

𝒍𝟔  𝐂𝐤(𝑖𝑑𝑠𝑚𝑎𝑙𝑙) ← 0                  ⊳ …and Threshold 

𝒍𝟕  for [𝑓 in the range = number of states] do

𝒍𝟖  𝑖𝑑𝑙𝑎𝑟𝑔𝑒 ← ~ 𝑖𝑑𝑠𝑚𝑎𝑙𝑙(: , 𝑓)  ⊳ find large entries 

𝒍𝟗     𝐂𝐤(𝑖𝑑𝑙𝑎𝑟𝑔𝑒 , 𝑓) ← (𝚯𝐓(: , 𝑖𝑑𝑙𝑎𝑟𝑔𝑒))
†

�̇�(: , 𝒇)  

𝒍𝟏𝟎  End for

𝒍𝟏𝟏  End while

𝒍𝟏𝟐  Return 𝑪𝒐𝒑𝒕𝒊𝒎𝒂𝒍

𝒍𝟏𝟑 End function

10 Validate the results from the model with the experimental results

TABLE III 

PROTOTYPE MACHINE SPECIFICATIONS 

Parameter Value Parameter Value 

RMS phase Voltage (V) 110V Frequency (Hz) 50 

Power (Hp) 1.5 No. of poles 4 

RMS phase current (A) 2.8 Speed (RPM) 1400 
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Fig. 5.   Experimental setup. 1) Six-phase motor. 2) Encoder. 3) DC 

generator. 4) Generator dc excitation. 5) Loading resistor. 6) Six-phase 

inverter. 7)  DC-link programmable supply. 8) dSPACE 1202 

MicroLabBox. 9) dSPACE  interface board. 10) Host PC (ControlDesk). 

By applying the algorithm elaborated in Section III, the 

mathematical representation of the αβ subspace of the six-phase 

IM can be obtained as given by (19) to (20).  

𝑑

𝑑𝑡
[
𝑖𝛼
𝑠

𝑖𝛽
𝑠 ] = − [

278.7 0
0 282.2

] [
𝑖𝛼
𝑠

𝑖𝛽
𝑠 ] + [

34.3 0
0 35.9

] [
𝑣𝛼
𝑠

𝑣𝛽
𝑠] +

 [
501.3 0
0 500.41

] [
𝜆𝛼
𝑠

𝜆𝛽
𝑠 ] + [

0 −1
1 0

] [
𝜔𝑒𝑖𝛼

𝑠

𝜔𝑒𝑖𝛽
𝑠 ] +

 [
0 35.9

−35.2 0
] [
𝜔𝑒𝜆𝛼

𝑠

𝜔𝑒𝜆𝛽
𝑠 ] 

(19) 

𝑑𝜔𝑒
𝑑𝑡

= −0.16 𝜔𝑒 − [898.2 898.1] [
𝜆𝛼
𝑠 𝑖𝛽
𝑠

𝜆𝛽
𝑠 𝑖𝛼
𝑠 ] (20) 

Based on the obtained mathematical model, the machine 

parameters can easily be estimated by comparing the 

coefficients of (19) and (20) with the canonical form given by 

(13) and (14). Table IV gives the estimated equivalent six-phase

machine parameters assuming that the leakage inductances of 

both stator and rotor circuits are approximately equal. The 

machine is simulated using the obtained parameters and the 

results are compared to the experimental ones. Under this 

balanced case, the non-fundamental sequence current 

components and the corresponding torque components are 

ideally zero. Fig. 6 shows the fundamental 𝛼𝛽 subspace 

currents as well as the machine speed and developed torque. A 

notable agreement between the experimental and the derived 

model can be observed. This proves the validity of the proposed 

modeling approach. 

TABLE IV 

EQUIVALENT PARAMETERS OF FUNDAMENTAL SUBSPACE.

𝑅𝑠 (Ω) 4.18 𝐿𝑚 (H) 0.253 

𝑅𝑟  (Ω) 3.79 𝐽 0.0134 

𝐿𝑟 (H) ≈ 𝐿𝑠 (H) 0.268 𝑏 0.0022 

Fig. 4.   Flowchart of the proposed modeling approach. 
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(a) 

(b) 

(c) 

(d) 

Fig. 6.   Experimental and simulation results of healthy case. (a) 𝛼-subspace 

current. (b) 𝛽-subspace current, (c) rotor angular speed, and (d) Torque 

components. 

TABLE V 

SEQUENCE VOLTAGES UNDER UNBALANCED OPERATION

𝑣𝛼𝛽
𝑠 = 0.68∠00  𝑣𝑥𝑦

𝑠 = 0.2∠00 𝑣0+0−
𝑠 = 0.2∠00

Case 2: Unbalanced six-phase operation 

To further verify the proposed modeling approach, the 

mathematical model of a six-phase IM machine is obtained 

under unbalanced conditions and single neutral arrangement in 

which the 𝑥𝑦 and zero-sequence subspaces affect the dynamics. 

Under this case, the reference sequence voltages in per unit are 

given in Table V at a constant reference frequency of 50Hz, 
where these values are suggested to ensure that over modulation 

is avoided for all phases, while the magnitudes of the 

corresponding sequence currents are significant. This is 

important to obtain a good estimation accuracy for all 

subspaces. 

The generated mathematical model under this unbalance 

case is given by (21) to (24). In this case, the 𝑥𝑦 sequence 

current components are obtained by solving (22), while those 

of the zero-sequence subspace are obtained using (23). 

Furthermore, the mechanical dynamic in (24) shows that the 

total developed torque has two components, namely, 
fundamental torque component and the torque component 

caused by the third harmonic flux component that is mapped to 

the zero subspace. Clearly, the algorithm does not result in a 

notable torque component from the 𝑥𝑦 subspace. 

𝑑

𝑑𝑡
[
𝑖𝛼
𝑠

𝑖𝛽
𝑠 ] = − [

276.3 0
0 279.3

] [
𝑖𝛼
𝑠

𝑖𝛽
𝑠 ] + [

35.9 0
0 35.8

] [
𝑣𝛼
𝑠

𝑣𝛽
𝑠] +

 [
495.2 0
0 500.9

] [
𝜆𝛼
𝑠

𝜆𝛽
𝑠 ] + [

0 −1
1 0

] [
𝜔𝑒𝑖𝛼

𝑠

𝜔𝑒𝑖𝛽
𝑠 ] +

 [
0 35.9

−35.6 0
] [
𝜔𝑒𝑖𝛼

𝑠

𝜔𝑒𝑖𝛽
𝑠 ] 

(21) 

𝑑

𝑑𝑡
[
𝑖𝑥
𝑠

𝑖𝑦
𝑠 ] = − [

550 0
0 549

] [
𝑖𝑥
𝑠

𝑖𝑦
𝑠 ] + [

131.5 0
0 131.5

] [
𝑣𝑥
𝑠

𝑣𝑦
𝑠] (22) 

𝑑

𝑑𝑡
[
𝑖0+
𝑠

𝑖0−
𝑠 ] = − [

197.1 0
0 196.8

] [
𝑖𝛼
𝑠

𝑖𝛽
𝑠 ] +

 [
32.7 0
0 32.6

] [
𝑣0+
𝑠

𝑣0−
𝑠 ] + [

1.4000 0
0 1.4000 

] [
𝜆0+
𝑠

𝜆0−
𝑠 ] +

 [
0 −3
3 0

] [
𝜔𝑒𝑖0+

𝑠

𝜔𝑒𝑖0−
𝑠 ] + [

0 98.1
−98.1 0

] [
𝜔𝑒𝑖0+

𝑠

𝜔𝑒𝑖0−
𝑠 ] 

(23) 

𝑑𝜔𝑒
𝑑𝑡

= −0.16 𝜔𝑒

−[898.5 897.7] [
𝜆𝛼
𝑠 𝑖𝛽
𝑠

𝜆𝛽
𝑠 𝑖𝛼
𝑠 ] − [2690 2690] [

𝜆0+
𝑠 𝑖0−

𝑠

𝜆0−
𝑠 𝑖0+

𝑠 ] 
(24) 

Table VI shows the equivalent unbalanced six-phase machine 
parameters. The experimental and simulation results are 

compared in Figs. 7 and 8. Fig. 7(a) firstly shows the simulated 

average torque components under acceleration from zero, 

where a notable torque dip is presented around a speed of 500 

rpm (one-third rated synchronous speed), which represents the 

effect of the 3rd harmonic component induced in the zero 

subspace. This is highlighted by the orange shaded ellipse in the 

same figure. Moreover, the corresponding speed profiles are 

given in Fig. 7(b), which confirms a complete consistency 

between the experimental data and simulations based on the 

developed models. 
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(a) (b) 
Fig. 7.   Dynamic characteristics of the unbalanced six-phase machine. (a) Torque components and (b) Rotor angular speed. 

(a) (b) 

(c) (d)

(e) (f) 
Fig. 8.  Comparison between simulation and experimental results of the sequence current components under unbalanced startup. (a and b) 𝛼𝛽 current 

components. (c and d) 𝑥𝑦 current components. (e and f) 0+0− current components.
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TABLE VI 

UNBALANCED SIX-PHASE MACHINE PARAMETERS

Parameter Value Parameter Value 

𝑅𝑠(Ω) 4.18 𝑅𝑟3/𝐿𝑟3 43.56 

𝑅𝑟1(Ω) 3.57 𝐿𝑠3(H) 0.042 

1/𝜎1𝐿𝑠1 35.82 𝐿𝑟3 ≈ 𝐿𝑠3(H) 0.042 

𝑅𝑟1/𝐿𝑟1 13.90 𝐿𝑚3(H) 0.022 

𝐿𝑠1(H) 0.257 𝐿𝑙𝑟3 ≈ 𝐿𝑙𝑠3(H) 0.02 

𝐿𝑟1 ≈ 𝐿𝑠1(H) 0.257 𝑅𝑟3(𝑜ℎ𝑚) 1.84 

𝐿𝑚1(H) 0.243 𝐿𝑠5(H) 0.0076 

𝐿𝑙𝑠1 = 𝐿𝑙𝑟1(H) 0.014 𝑅𝑠5(𝑜ℎ𝑚) 4.18 

1/𝜎3𝐿𝑠3 32.71 

Fig. 8 shows the comparison between the simulated and 

experimental sequence current components for the three 

subspaces. On the one hand, the 𝛼𝛽 subspace currents are high 
at the starting point and show a decaying response while the 

machine is accelerating. On the other hand, the xy subspace 

currents almost have  a constant magnitude over the whole 

starting period, which supports the well-established assumption 

in the available literature to model this subspace as a simple RL 

circuit. Finally, the speed voltage term caused by the third order 

harmonic component of the zero subspace yields this notable 

change in the current magnitude of the zero sequence 

components around one-third the rated synchronous speed. 

The perfect matching between the experimental observations 

and the estimated model is due to setting the halting conditions 

for the recursive least squares regression to yield the minimum 
feasible error. In addition, the suggested technique incorporates 

several degrees of freedom and state combinations (up to 

second-degree polynomials) in order to attain the lowest error 

possible. Moreover, one of the salient features of the IM model 

is that the coefficients of different terms of the dynamic 

equations in both orthogonal directions should ideally be equal 

in both stationary and rotating frames due to the presumed 

symmetry in the machine air gap. Hence, the deviations 

between these coefficients during the training phase provide a 

general clue on the estimation inaccuracy. In the case of 

significant inaccuracy, the absolute and relative tolerances of 
the Runge-Kutta method are further increased to enhance the 

estimation accuracy of the flux and the governing dynamic 

equation at the cost of extra computational burden.  

B. Computational Burden

The computational effort is an important figure of merit to 

assess any data-driven-based model. In the proposed model, 
execution time includes the time to read the data, filter it, 

remove DC-bias without phase distortion, estimate stator flux 

using the fourth order Runge-Kutta method, and estimate the 

model using SIDNy. It is found that the execution time is 

dominated by flux estimation using the fourth order Runge-

Kutta method. Therefore, the execution time is recorded for 

different relative error tolerance for the Runge-Kutta method 

and is expressed in seconds, as shown in Fig. 9. Clearly, as the 

relative error tolerance decreases, the execution time increases. 

The relative tolerances of 1e-6 and 1e-7 are either 

recommended since they provide an accurate estimate in the 
shortest time possible, whereas lower values greatly increase 

computational time with no noticeable improvement in 

accuracy. 

Fig. 9: Computational time for data-driven-based model of a multiphase 

induction machine. 

C. Model Validation Under Different Operating

Conditions 

In this case, the estimated model has been tested using three 

different operating conditions, namely; 

- Period I: Balanced startup condition (from 0s to 5.48s, the

input voltage is 0.4 p.u. with frequency of 20 Hz at no load) 

- Period II: Step speed condition (from 5.48s to 11.56s, the

input voltage is 1 p.u. with frequency of 50 Hz at no load) 

- Period III: Step loading condition (from 11.56s to 17s and

the machine is fully loaded)  

During period I, the sparse regression is utilized to estimate the 

machine model. Fig. 10 demonstrates that the experimental data 

and estimated response match adequately. In order to estimate 
the response during Periods II and III, the model developed in 

Period I is applied to the input conditions of Periods II and III. 

Fig. 10 shows also the dynamic characteristics of the balanced 

six-phase machine over the whole period. Fig. 10(a) shows the 

rotor speed where experimental results closely match the 

estimated response. Moreover, Fig. 10(b) shows the α current 

component of the stator current and the simulation results 

perfectly match the experimental results. The small mismatch 

during the transient periods is due to parameters detuning due 

to frequency change, as will be shown in following subsections. 

D. Effect of Core Saturation

As a matter of fact, core saturation dramatically affects the 

parameters of the fundamental αβ subspace, which is 

responsible for the fundamental flux/torque production. This 

effect, however, is much similar to three-phase machines and 

same conclusions will expectedly be obtained. In order to 

investigate this effect, the sparse regression is utilized to 

estimate the machine model for different 𝑣/𝑓 ratios, namely, 

0.8 pu, 1 pu, and 1.2 pu, and Table VII displays the estimated 

parameters. Clearly, as the 𝑣/𝑓 ratio increases, the core is 

saturated and, hence, the rotor resistance, stator and mutual 

inductions are decreased. Since the proposed data-driven model 

can be updated regularly using online measurements, the effect 

of parameters detuning can easily be compensated for.  
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(a) 

(b) 

Fig. 10:  Rotor angular speed of the six-phase machine during two 

different operating conditions. 

TABLE VII 

Parameters estimation under different v/f ratios.

𝑣/𝑓 = 0.8  𝑝𝑢 𝑣/𝑓 = 1 𝑝𝑢 𝑣/𝑓 = 1.2  𝑝𝑢 

𝑅𝑠 (Ω) 4.18 4.18 4.18 

𝑅𝑟1 (Ω) 3.97 3.51 3.30 

1/𝜎1𝐿𝑠1 33.64 36.60 45.16 

𝑅𝑟1/𝐿𝑟1 14.77 15.53 21.36 

𝐿𝑠1 (H) 0.27 0.23 0.15 

𝐿𝑟1 ≈ 𝐿𝑠1 (H) 0.27 0.23 0.15 

𝐿𝑚1 (H) 0.25 0.21 0.1 

𝐿𝑙𝑠1 = 𝐿𝑙𝑟1 (H) 0.015 0.014 0.012 

E. Effect of Operating Frequency

In this subsection, different operating conditions are 

investigated in order to estimate the machine parameters, 

namely, calculating the parameters while the machine is cooled 

at 50 Hz (starting from the ambient temperature with no prior 

operation warms the machine) and hot (the machine is heated 

from a prior operation, then it is stopped and restarted) at 50 Hz, 

as well as evaluating the parameters while operating at lower 

frequencies of 40 Hz and 30 Hz. The results are displayed in 
Table VIII. The table also depicts the Pearson correlation 

coefficient (𝑟), which is a measure of linear correlation between 

sets of data and is calculated using,  

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)
2∑(𝑦𝑖 − �̅�)

2
(25) 

where 𝑥𝑖, 𝑦𝑖 are the values of the x-variable and y-variable in a

sample, respectively.  �̅�, �̅� are the mean values of the x-variable 

and y-variable, respectively. The 𝑟 value measures the strength 

of the relationship between the machine parameters and the 

frequency change. Table IX reveals that the αβ subspace 

parameters are highly affected with frequency. In conclusion, 

as the frequency drops, the values of 𝑅𝑟1, 𝐿𝑠1, and 𝐿𝑚1 decrease

as well. The values of 𝑅𝑟1, 𝐿𝑠1, and 𝐿𝑚1 decrease by 15%, 17%,

and 18%, respectively, when the frequency is decreased from 

50 Hz to 40 Hz, while they are reduced by 23.8%, 20.4%, and 

25.5% when the frequency is decreased from 50 Hz to 30 Hz. 

As clarified before, online measurements can regularly be used 

to improve the machine model and get better accuracy. 

TABLE VIII 

Parameters estimation under different operating conditions.

Frequency 
50 

(cooled) 

50 

 (hot) 
40 30  r 

𝑅𝑠 (Ω) 4.18 4.18 4.18 4.18 ---- 

𝑅𝑟1 (Ω) 3.58 4.07 3.46 3.24 0.9635 

1/𝜎1𝐿𝑠1 35.8 35.71 35.09 34.90 --- 

𝑅𝑟1/𝐿𝑟1 13.91 16.40 16.77 17.14 --- 

𝐿𝑠1 (H) 0.257 0.248 0.206 0.189 0.9715 

𝐿𝑟1 ≈ 𝐿𝑠1 (H) 0.257 0.248 0.206 0.189 0.9715 

𝐿𝑚1 (H) 0.243 0.234 0.192 0.174 0.9713 

𝐿𝑙𝑠1 = 𝐿𝑙𝑟1 (H) 0.0144 0.0144 0.0148 0.0149 -0.9449 

1/𝜎3𝐿𝑠3 32.71 30.16 34.35 33.47 --- 

𝑅𝑟3/𝐿𝑟3 43.57 39.68 47.48 47.90 --- 

𝐿𝑠3 (H) 0.042 0.047 0.046 0.042 0.9256 

𝐿𝑟3 ≈ 𝐿𝑠3 (H) 0.042 0.049 0.041 0.040 0.9256 

𝐿𝑚3 (H) 0.022 0.0274 0.022 0.020 0.9503 

𝐿𝑙𝑠3 = 𝐿𝑙𝑟3 (H) 0.020 0.021 0.019 0.02 0.5877 

𝑅𝑟3 (Ω) 1.84 1.93 1.93 1.91 0.8927 

𝐿𝑠5(H) 0.0076 0.0075 0.0064 0.0061 0.9497 

𝑅s5 (Ω) 4.18 4.25 4.24 4.22 0.9558 

F. Comparison with Harmonic-free Models.

As clarified in the introduction section, the proposed data-
driven model is able to accurately model the effect of space 

harmonics mapped to the secondary as well as zero subspaces, 

which causes notable effects during transient conditions. In this 

subsection, the proposed model is compared with the harmonic 

free model, which is commonly employed in most available 

literature. In this latter model, the xy as well as zero subspaces 

are modelled using simple RL circuit. Fig. 11(a) shows the 

average torque components under acceleration from zero. The 

torque is estimated from the experimental currents based on 

(15). Clearly, there is notable torque dip occurring around 500 

rpm (one-third of the rated synchronous speed), which 

represents the effect of the third harmonic component induced 
in the zero subspace. However, the basic RL representation on 

this subspace fails to represent this torque component. In 

addition, the corresponding current for the positive zero 

sequence components is shown in Fig. 11(b), which confirms a 

complete consistency between the experimental data and 

simulations based on the proposed model. However, the 

conventional model deviates from the actual response during 

the period between 0.1 and 0.2 seconds where the torque dip 

occurs. 

V. CONCLUSION

This paper proposes a powerful sparsity-promoting 

technique to identify the nonlinear dynamics of multiphase 

induction machines (IMs) from observed states. The 

effectiveness of the proposed technique is demonstrated against 

measured noise, sensors bias, and unavailability of data 
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derivatives. Using only one transient run of the machine, this 

technique can effectively determine the full dynamical model 

of the multiphase machine. Another advantage of the proposed 

technique is that it can precisely retrieve machine parameters of 

all subspaces from the obtained model. This latter advantage 

represents a silent novelty over available literature, where the 

parameters of secondary subspaces were commonly estimated 

either using analytical or finite element-based analysis. 

Although estimated parameters generally change during 

operation due to several factors, the suggested technique gives 

an accurate dynamic model for the IM under specified 

conditions in which the signals are captured. Hence, online 

measurements can regularly be used to improve the model 

accuracy, which opens the door for applying the digital twin 

concept in electrical drive systems. Experimental validation 

shows a complete matching between the experimental results 

with the simulated machine model.   

In future study, more effort will be put to provide a more 

computationally efficient approach to provide an adaptive 

online modelling using the same approach. 

(a)

(b)

Fig. 11.   Dynamic characteristics of the unbalanced six-phase machine. (a) 

Torque components and (b) the positive components of the zero-subspace 

current. 
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