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A B S T R A C T

We study equilibrium configurations in spherical droplets of nematic liquid crystal with strong radial anchoring,
within the Landau–de Gennes theory with a sixth-order bulk potential. The sixth-order potential predicts a bulk
biaxial phase for sufficiently low temperatures, which the conventional fourth-order potential cannot predict.
We prove the existence of a radial hedgehog solution, which is a uniaxial solution with a single isotropic
point defect at the droplet centre, for all temperatures and droplet sizes, and prove that there is a unique
radial hedgehog solution for moderately low temperatures, but not deep in the nematic phase. We numerically
compute critical points of the Landau–de Gennes free energy with the sixth order bulk potential, with rotational
and mirror symmetry, and find at least two competing stable critical points: the biaxial torus and split core
solutions, which have biaxial regions around the centre, for low temperatures. The size of the biaxial regions
increases with decreasing temperature. We also compare the properties of the radial hedgehog solution with
the fourth-order and sixth-order potentials respectively, in terms of the Morse indices as a function of the
temperature and droplet radius; the role of the radial hedgehog solution as a transition state in switching
processes; and compare the bifurcation plots with temperature, with the fourth- and sixth-order potentials.
Overall, the sixth-order potential has a stabilising effect on biaxial critical points and a de-stabilising effect on
uniaxial critical points and we discover an altogether novel bulk biaxial critical point of the Landau–de Gennes
energy with the sixth-order potential, for which the bulk biaxiality is driven by the sixth-order potential.
1. Introduction

Nematic liquid crystals (NLCs) are classical examples of mesogenic
materials that combine fluidity with the orientational ordering of crys-
talline solids [1, p. 1]. NLCs have distinguished material directions that
correspond to preferred directions of averaged molecular alignment,
referred to as nematic directors. Consequently, NLCs have direction-
dependent physical, optical and rheological properties i.e. they are
anisotropic materials and this anisotropy drives NLC applications in
science and technology [2].

Defects are a defining feature of confined NLC samples. Loosely
speaking, a defect is a point, line or surface wherein the NLC directors
are not uniquely or properly defined [1]. Defects have pronounced
optical signatures and NLCs are often recognised by the celebrated
Schlieren textures [1, p. 165]. Defects can be undesirable in applications,
since they can result in poor optical resolution but equally, defects can
play crucial roles in self-assembly mechanisms acting as attractors or
repellents for assembling mechanisms [2,3]. For example, there is ex-
perimental evidence that stable arrays of point defects in liquid crystals
can be exploited for novel applications in photonics and sensors [4].
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There are several open questions about a rigorous mathematical
description of NLC defects [5]. At least three different competing
continuum theories for NLCs exist in the literature: the Oseen–Frank
theory, the Ericksen theory and the Landau–de Gennes theory, ordered
in terms of increasing generality [1,6]. The Oseen–Frank and Ericksen
theories are restricted to uniaxial NLCs, or NLC phases with a single
nematic director such that all directions perpendicular to the uniaxial
director are equivalent; these descriptions are limited in their abilities
to describe higher-dimensional defects. The Landau-de Gennes theory
is the most general continuum theory, in the sense that it can account
for both uniaxiality and biaxiality, for which the NLC phase can have
a primary and secondary director, along with defects of all dimen-
sionality [7]. In this paper, we work within the celebrated Landau–de
Gennes (LdG) theory for NLCs, for which the NLC state is described
by a LdG 𝐐-tensor order parameter, whose eigenvectors model the
nematic director(s) and the eigenvalues are a measure of the degree
of the orientational order about the corresponding eigenvector [6].
The LdG theory is a variational theory, so that physically observable
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configurations are modelled by local or global minimisers of an appro-
priately defined LdG free energy, which is a nonlinear and non-convex
functional that depends on both the order parameter and its derivatives.
The LdG free energy density will typically comprise a bulk potential,
which determines the NLC phase as a function of the temperature, and
an elastic energy density which penalises spatial inhomogeneities and
can account for geometric frustration and/or boundary effects. Mathe-
matically, the energy minimisers are typically classical solutions of the
associated Euler–Lagrange equations, which are a system of nonlinear
and coupled partial differential equations, and the energy minimisers
(or indeed any critical points of the LdG free energy) are analytic [7].
This makes a rigorous mathematical definition of a NLC defect in the
LdG theory challenging, since they can naturally appear in the solution
profiles without obvious blow-up characteristics. However, whilst the
𝐐-tensor solutions of the Euler–Lagrange equations are analytic, one
can associate NLC defects with the discontinuities of the eigenvectors
or with interfaces on which the number of distinct eigenvalues changes,
or regions of normalised energy concentration [7,8].

In this paper, we focus on the canonical Radial Hedgehog (RH)
defect [9]; this defect has been studied by several authors and we do
not provide comprehensive references. The RH defect is essentially a
degree +1 vortex in superconductivity and there are analogies with
avitation in elasticity as well [10]. Simply put, the RH defect is
spherically symmetric nematic point defect, such that the nematic

irector points radially outwards everywhere away from the RH defect.
e study the RH defect on a three-dimensional spherical droplet with

omeotropic boundary conditions i.e. the director is everywhere radial
n the droplet surface or normal to the droplet surface. It is intuitively
lear from symmetry considerations that one might expect a RH so-
ution, with a single point defect at the droplet centre for which the
irector is not defined, and the director points radially outwards away
rom the centre to match the homeotropic boundary conditions. The
H solution has been studied mathematically in the Oseen–Frank and
andau–de Gennes frameworks, see for example [11] where the authors
urvey results on the existence and stability of the RH solution on
pherical droplets in the Oseen–Frank theory, as a function of material
roperties. In recent years, there has been a splurge of mathematical
ctivity on the study of NLC defects in the LdG framework. In a batch of
apers [8,9,12–16], and the list is certainly not complete, the authors
rove the existence of a RH solution as a critical point of a LdG free
nergy on spherical droplets with homeotropic boundary conditions,
tudy its stability and also study other competing critical points which
ight be energetically preferable depending on the droplet size, ma-

erial properties and the temperature. In these papers, the authors
onsider a LdG energy with a fourth-order bulk potential, that is a
uartic polynomial in the LdG 𝐐-tensor order parameter. The fourth-

order potential can only admit isotropic (disordered) or uniaxial critical
points i.e. the minimiser of the fourth-order potential is an ordered
uniaxial phase for low temperatures and more details are given in the
next section. In the LdG framework with the fourth-order potential,
the RH solution is a uniaxial critical point of the LdG free energy,
with the nematic director being the radial unit vector and the RH
point defect being an isolated isotropic point at the droplet centre. It
is known that the RH solution is globally stable for small droplets and
for relatively high temperatures (that can be quantified) and unstable
for large droplets and low temperatures. In particular, the authors
numerically observe the competing biaxial torus and split core critical
points of the LdG free energy for low temperatures, which replace
the isotropic point defect of the RH solution by biaxial structures
around the droplet centre. The isotropic point defect is energetically
expensive for low temperatures, since the fourth-order bulk potential
has an energy maximum at the isotropic phase for high temperatures,
and hence, biaxiality arises from geometric frustration and energetic
considerations for these examples.

It is natural to ask if the properties of the RH solution strongly
2

depend on the form of the LdG free energy density, in particular
the choice of the bulk potential and the elastic energy density. In
fact, there has been little work on the effect of the bulk potential
on NLC defects and LdG solution landscapes. The fourth-order LdG
bulk potential is the simplest polynomial that allows for a first-order
isotropic-nematic phase transition, but higher-order polynomials are
possible, that can allow for greater diversity in bulk NLC phases [17].
In this paper, we compare and contrast the fourth-order and a sixth-
order LdG bulk potential. Following previous work in [17], we compute
the minimisers of the sixth-order potential as a function of the temper-
ature, and the minimisers are uniaxial with positive order parameter
(so that the molecules, on average, align along the uniaxial director,
whereas a uniaxial state with negative order parameter describes a state
wherein the nematic molecules are approximately perpendicular to the
uniaxial director) for moderately low temperatures, and there are no
stable uniaxial critical points of the sixth-order potential for sufficiently
low temperatures. In fact, the bulk energy minimiser is biaxial for
sufficiently low temperatures.

We study critical points of a LdG free energy, with the sixth-
order bulk potential, on a spherical droplet with homeotropic boundary
conditions. The key difference, compared to previous work, is that
biaxiality can now be a bulk effect as opposed to a localised phe-
nomenon in the fourth-order case. We prove the existence of a RH
solution in this case, with a uniaxial radial director and an isotropic
point defect at the droplet centre. For moderately low temperatures
for which the sixth-order bulk potential favours an ordered uniaxial
phase, the qualitative properties of the RH solution are almost identical
for the fourth- and sixth-order bulk potentials i.e. there is a unique
RH solution with a monotonically increasing order parameter profile,
away from the droplet centre. For low temperatures, when the sixth-
order potential favours a bulk biaxial phase, we obtain multiple RH
solutions, including RH solutions with negative order parameters. By
contrast, the RH solution is unique with positive order parameter,
for all low temperatures, with a fourth-order potential. We compare
the stability of the RH solution as a function of the droplet size and
temperature, with the fourth- and sixth-order potentials. As expected,
the RH solution has a smaller domain of stability with the sixth-order
potential, since the sixth-order potential promotes biaxiality for low
temperatures and the RH solution is uniaxial everywhere away from
the droplet centre. We also numerically compute the biaxial torus and
split core solutions with symmetry constraints, with the sixth-order
potential, and as expected the biaxial regions are larger and these
solutions have enhanced stability with the sixth-order potential. In
fact, we demonstrate that the RH solution can act as a transition state
between the biaxial torus and split core solutions for low temperatures
i.e. if one wants to design a switching process between the biaxial
torus and split core solutions, the switching can be mediated by a RH
solution. Heuristically, the biaxial torus shrinks to an isotropic point
defect at the droplet centre for the RH solution, and then grows into
the split core biaxial defect and vice-versa during the switching process.
These numerical results are also complemented by bifurcation plots
(under symmetry assumptions) as a function of the temperature; the
bifurcation plots are qualitatively similar for the fourth- and sixth-order
potentials with shifted bifurcation points that reflect the enhanced
stability of the biaxial torus solution and reduced stability of the RH
solution, with the sixth-order potential. However, the exciting questions
pertain to the existence of altogether new LdG critical points or LdG
energy minimisers, in the presence of a sixth-order bulk potential,
which are biaxial in the bulk, and not merely near defects or in localised
regions akin to the biaxial torus and the split core solutions. The answer
is affirmative and we have not performed an exhaustive study on these
lines, but have provided an example of a stable LdG critical point,
that is biaxial in the bulk, for low temperatures and a large droplet
(to be made precise), and the bulk biaxiality is driven by the sixth-
order potential. The findings of this paper suggest that the choice
of the LdG bulk potential can impact the multiplicity of (unstable)

uniaxial solutions e.g. RH solutions; the domains of stability of uniaxial
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solutions; and importantly, give rise to new stable biaxial structures,
which are outside the remit of the fourth-order potential. However, the
experimental implications of these bulk biaxial solutions needs careful
discussion.

In Section 2, we set up our modelling framework and discuss the
sixth-order potential and its stationary points, including minimisers
in Section 3. In Section 4, we prove a batch of analytical results for
the RH solution with the sixth-order potential, drawing out on the
similarities and differences between the results with the fourth- and
sixth-order potentials, respectively. In Section 5, we present illustrative
numerical results including computations of the Morse indices of the
RH solution and bifurcation plots as a function of the temperature.
In Section 5.6, we give a numerical example of a stable bulk biaxial
LdG critical point, which is biaxial almost everywhere, away from the
droplet centre and the droplet boundary, and the bulk biaxiality is
driven by the sixth-order potential. We discuss the implications of this
numerical observation i.e. is it an artefact of the mathematical model
or can it be foundational for new experiments. We conclude with some
perspectives and open questions.

2. Preliminaries

We work with the Landau–de Gennes (LdG) theory wherein the
NLC configuration is modelled by the LdG order parameter - the Q-
ensor, which is a symmetric, traceless, 3 × 3 matrix with five degrees
f freedom [1, p. 56]. The Q-tensor can be written as [6,7]

= 𝑠
(

𝒏⊗ 𝒏 − 1
3
𝐈
)

+𝑝
(

𝒎⊗𝒎 − 1
3
𝐈
)

, (1)

here 𝒏 and 𝒎 are orthonormal eigenvectors that model the nematic
irectors, while 𝑠 and 𝑝 are scalar order parameters that measure
he degree of order about 𝒏 and 𝒎, respectively. The liquid crystal
onfiguration is biaxial if both 𝑠 and 𝑝 are nonzero and non-equal;
niaxial if only one of 𝑠 and 𝑝 is nonzero or if 𝑠 = 𝑝; and isotropic if
oth 𝑠 = 𝑝 = 0. Physically, a biaxial state has two preferred directions
f orientational ordering or two directors, whereas a uniaxial state has
uniquely defined director that corresponds to the eigenvector with

he largest positive eigenvalue. An isotropic state has no orientational
rdering, so that all directions in space are physically equivalent and
here is no notion of a director.

Our domain is a spherical droplet, 𝐵(0, 𝑅) =
{

𝐱 ∈ R3 ∶ |𝐱| ≤ 𝑅
}

,
where 𝑅 is the droplet radius and we impose uniaxial homeotropic
boundary conditions i.e. the uniaxial director is normal/orthogonal to
the droplet surface, |𝐱| = 𝑅. The equilibrium configurations are critical
points of the LdG free energy, which, in the absence of surface energies
and external fields, is of the form [1]

F [𝐐] = ∫𝐵(0,𝑅)
𝐿
2
|∇𝐐|

2 + 𝑓𝐵(𝐐) 𝑑𝑉 , (2)

where 𝐿
2 |∇𝐐|

2 is the one-constant elastic energy density with material-
dependent elastic constant 𝐿 > 0, and |∇𝐐|

2 = 𝑄𝑖𝑗,𝑘𝑄𝑖𝑗,𝑘, 𝑄𝑖𝑗,𝑘 = 𝜕𝑄𝑖𝑗
𝜕𝑥𝑘

,
, 𝑗, 𝑘 = 1, 2, 3 penalises spatial inhomogeneities, noting that we use
he Einstein summation convention here and throughout this paper.
urther, 𝑓𝐵(𝐐) is the bulk potential which determines the preferred
ulk NLC phase (uniaxial/biaxial/isotropic) in spatially homogeneous
ystems as a function of temperature.

We work with two different bulk potentials throughout this paper,
fourth-order potential which only admits uniaxial or isotropic critical
oints and a sixth-order potential which allows for uniaxial, biaxial
nd isotropic critical points [17,18]. Our aim is to assess the impact
f the bulk potential on the emergence of biaxiality for equilibrium
onfigurations, whether it arises from mere geometric frustration or
hether biaxiality can arise from bulk effects too. The fourth-order bulk
otential is given by [6]:

(𝐐) = 𝐴 tr𝐐2 − 𝐵 tr𝐐3 + 𝐶 (

tr𝐐2)2, (3)
3

𝐵 2 3 4
here tr𝐐2 = 𝑄𝑖𝑗𝑄𝑖𝑗 , tr𝐐3 = 𝑄𝑖𝑗𝑄𝑗𝑘𝑄𝑘𝑖, 𝑖, 𝑗, 𝑘 = 1, 2, 3. The constant
is a material- and temperature-dependent constant and 𝐵 and 𝐶 are
aterial-dependent constants. The physical meaning of these constants

s not entirely established in the literature, but it is commonly accepted
hat 𝐵 > 0 corresponds to rod-like molecules; and 𝐵 < 0 corresponds
o discotic molecules [19]. In this manuscript, we assume 𝐵 > 0, 𝐶 >
. This is the simplest form of bulk potential which captures a first-
rder phase transition between the nematic and isotropic phases [7,15]
.e. the critical points of (3) are either uniaxial or isotropic. There are
hree characteristic values for 𝐴: 𝐴 = 𝐵2

24𝐶 , above which the isotropic
phase is the bulk global minimiser and there are no nematic critical
points; 𝐴 = 𝐵2

27𝐶 , the transition temperature at which the isotropic and
ematic critical points have equal energies; and 𝐴 = 0, below which
he isotropic phase loses stability. The bulk potential strongly favours
n ordered uniaxial nematic phase for 𝐴 < 0, and biaxiality is only
nduced by geometric frustration or the competition between 𝑓𝐵 and
he elastic energy density.

We also consider a more general and more complicated sixth-order
ulk potential in this paper, which is of the form [17]

𝐵(𝐐) = 𝐴
2
tr𝐐2 − 𝐵

3
tr𝐐3 + 𝐶

4
(

tr𝐐2)2

+ 𝐷
5
tr𝐐2 tr𝐐3 + 𝐸

6
(

tr𝐐2)3 +
(𝐹 − 𝐸)

6
(

tr𝐐3)2. (4)

The sixth-order bulk potential admits biaxial critical points in addition
to uniaxial and isotropic bulk critical points, so that biaxiality can be a
bulk effect as opposed to the fourth-order potential in (3). Again, 𝐴
is a material- and temperature-dependent constant, while 𝐵,𝐶,𝐷,𝐸,
and 𝐹 are material-dependent constants. Moreover, we require that
𝐸 ≥ 0, 𝐹 > 0 to guarantee the stability of the expansion [17]. As with
3), 𝐴 < 0 describes the low-temperature phase, and the bulk potential
4) admits biaxial minimisers for sufficiently low temperatures, as will
e demonstrated in the next section.

Throughout this paper, we work with a nondimensionalised version
f the LdG free energy (2), inspired by [20]. Let

̃ = 𝒙
𝑅
, 𝐐̃ =

√

27𝐶2

2𝐵2
𝐐.

hen the dimensionless LdG free energy with the fourth-order potential
s given by

𝑓𝑜𝑢𝑟 = F̃ [𝐐̃]

= ∫𝐵(0,1)

(

𝜀2

2
|∇𝐐̃|

2
+ 𝑡

2
tr 𝐐̃2 −

√

6 tr 𝐐̃3 + 1
2
(

tr 𝐐̃2)2
)

𝑑𝑉 , (5)

and with the sixth-order potential is given by

F𝑠𝑖𝑥 = F̃ [𝐐̃]

= ∫𝐵(0,1)

(

𝜀2

2
|∇𝐐̃|

2
+ 𝑡

2
tr 𝐐̃2 −

√

6 tr 𝐐̃3 + 1
2
(

tr 𝐐̃2)2

+ 𝑑
5
tr 𝐐̃2 tr 𝐐̃3 + 𝑒

6
(

tr 𝐐̃2)3 +
(𝑓 − 𝑒)

6
(

tr 𝐐̃3)2
)

𝑑𝑉 , (6)

where the characteristic length scale 𝜉 =
√

27𝐶𝐿
𝐵2 , 𝜀 = 𝜉

𝑅 and

𝑡 = 27𝐴𝐶
𝐵2

, 𝑑 =
2
√

6𝐵𝐷
9𝐶2

, 𝑒 = 4𝐵2𝐸
27𝐶3

, 𝑓 = 4𝐵2𝐹
27𝐶3

.

his rescaling reduces the computational domain to the unit ball in
hree dimensions, 𝐵(0, 1), and the geometrical properties are captured

by the parameter 𝜀. We refer to 𝑡 as the temperature for convenience,
lthough it is, more precisely, a function of the absolute temperature.
e drop the tildes for brevity in the remainder of this manuscript and

ll results are interpreted in terms of the dimensionless variables.
The homeotropic boundary condition is encoded by the Dirichlet

ondition [21]

= 𝐐𝑠 = 𝑠+

(

𝒓̂⊗ 𝒓̂ − 1 𝐈
)

, 𝒓 ∈ 𝜕𝐵(0, 1), (7)

+ 3
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where 𝒓̂ is the unit vector in the radial direction, 𝑠+ is the largest
minimiser of
{

𝑓𝐵(𝐐) ∶ 𝐐 = 𝑠 (𝐧⊗ 𝐧 − 𝐈∕3) ;𝐧 ∈ R3; |𝐧| = 1; 𝑠 ≥ 0,
}

and 𝑓𝐵 is given by either (3) or (4). There is an explicit expression for
𝑠+ for the fourth-order potential in (3):

𝑠+ =
√

3
2
3 +

√

9 − 8𝑡
4

,

when 𝑡 < 9
8 . For the sixth-order potential in (4), 𝑠+ is the largest positive

inimiser of the function

(𝑠) ∶= 𝑡
3
𝑠2 −

2
√

6
9

𝑠3 + 2
9
𝑠4 + 4𝑑

135
𝑠5 + 4𝑒

81
𝑠6 +

2(𝑓 − 𝑒)
243

𝑠6, (8)

and the function 𝑔 is simply the potential (4) restricted to uniaxial
𝐐-tensors.

The equilibrium configurations are (classical) solutions of the Euler–
Lagrange (EL) equations associated with the LdG free energy. In the
case of (3), the EL equations are given by:

𝜀2𝛥𝑄𝑖𝑗 = 𝑡𝑄𝑖𝑗 − 3
√

6
(

𝑄𝑖𝑘𝑄𝑘𝑗 −
1
3
𝛿𝑖𝑗 tr𝐐2

)

+2𝑄𝑖𝑗 tr𝐐2, (9)

and with the sixth-order potential (4), the EL equations are given by

𝜀2𝛥𝑄𝑖𝑗 = 𝑡𝑄𝑖𝑗 − 3
√

6
(

𝑄𝑖𝑘𝑄𝑘𝑗 −
1
3
𝛿𝑖𝑗 tr𝐐2

)

+2𝑄𝑖𝑗 tr𝐐2

+ 2𝑑
5
𝑄𝑖𝑗 tr𝐐3 + 3𝑑

5
tr𝐐2

(

𝑄𝑖𝑘𝑄𝑘𝑗 −
1
3
𝛿𝑖𝑗 tr𝐐2

)

+ 𝑒𝑄𝑖𝑗
(

tr𝐐2)2 + (𝑓 − 𝑒) tr𝐐3
(

𝑄𝑖𝑘𝑄𝑘𝑗 −
1
3
𝛿𝑖𝑗 tr𝐐3

)

. (10)

e note that

6 𝛿𝑖𝑗 tr𝐐2, and 1
3
𝛿𝑖𝑗 tr𝐐2

(

3
√

6 − 3𝑑
5

tr𝐐2 − (𝑓 − 𝑒) tr𝐐3
)

re Lagrange multipliers for the tracelessness constraint.
The admissible space for the LdG 𝐐-tensors is taken to be [8]

𝐐 ∶= {𝐐 ∈ 𝑊 1,2(𝐵(0, 1), 𝑆̄) ∶ 𝐐 = 𝐐𝑠+ on 𝜕𝐵(0, 1)}, (11)

here 𝑊 1,2(𝐵(0, 1), 𝑆̄) is the Sobolev space 𝑊 1,2(𝐵(0, 1), 𝑆̄) =
{

𝐐 ∶ 𝐵(0, 1) → 𝑆̄ ∶ ∫𝐵(0,1) |𝐐|

2 + |∇𝐐|

2 𝑑𝑉 < ∞
}

and 𝑆̄ is the space of
symmetric, traceless 3 × 3 matrices 𝑆̄ ∶= {𝐐 ∈ M3×3 ∶ 𝑄𝑖𝑗 = 𝑄𝑗𝑖, 𝑄𝑖𝑖 =
}. The existence of a global minimiser of (6) in the space (11) follows
rom the direct methods in the calculus of variations [22, Section
.2.2].

We focus on a special exact solution of the EL equations in (9) and
10) in the admissible space A𝐐; the so-called radial hedgehog (RH)
olution on spherical droplets with homeotropic anchoring conditions

∗(𝒓) = 𝑠∗(𝑟)
(

𝒓̂⊗ 𝒓̂ − 1
3
𝐈
)

. (12)

his is a uniaxial solution and the uniaxial director is the radial unit
ector, with a scalar order parameter 𝑠∗ that only depends on the radial
istance, 𝑟, from the droplet centre. The corresponding admissible space
or 𝑠∗ is [8]

𝑠 ∶=
{

𝑠 ∈ 𝑊 1,2([0, 1],R) ∶ 𝑠(1) = 𝑠+
}

. (13)

n what follows, we study the qualitative properties of the RH solution
ith the fourth- and sixth-order bulk potentials in (3) and (4), to

ompare and contrast the effects of the bulk potential on 𝑠∗, and also
n other competing critical points (uniaxial and biaxial) of the LdG
ree energy and the role of biaxiality on the corresponding solution
andscapes.
4

c

. The sixth-order potential

In what follows, we study the critical points of the sixth-order po-
ential in (4), firstly when restricted to uniaxial 𝐐-tensors and secondly,
n the whole space 𝑆̄ of symmetric, traceless 3 × 3 matrices. There are
wo key differences when compared to the fourth-order potential in (3):
i) in the restricted class of uniaxial 𝐐-tensors, (4) has two non-trivial
inimisers below 𝑡 = 0, with positive and negative order parameters,

+ and 𝑠− respectively, and for sufficiently low temperatures, 𝑠− is the
global minimiser of 𝑔(𝑠) defined in (8). In contrast, the uniaxial critical
oint with positive order parameter, 𝑠+ is always the global minimiser

of the fourth-order potential in (3) for low temperatures. (ii) Secondly,
the sixth-order potential admits biaxial critical points, while the fourth-
order potential can only admit uniaxial or isotropic critical points, and
the global minimiser of (4) is actually biaxial, deep in the nematic
phase. This is outside the scope of the fourth-order potential in (3).
We give more details in the sub-sections below.

3.1. Uniaxial critical points of the sixth-order potential

In what follows, we work with parameters in (4) so that 𝑓𝐵(𝐐),
estricted to uniaxial 𝐐-tensors, has a single isotropic critical point for
igh temperatures and two well-defined critical points (with positive
nd negative uniaxial order parameter) for low temperatures. To this
nd, we consider the quartic polynomial 𝑔′(𝑠)∕𝑠, where 𝑔 is defined in
8).

We determine the nature of the roots of the quartic polynomial
′(𝑠)∕𝑠 by considering its discriminant [23]

= 512
59049

(5𝑒 + 𝑓 )3𝑡3 + 1024
177147

(

−512
27

(5𝑒 + 𝑓 )2 − 𝑑4

+ 32
3
(5𝑒 + 𝑓 ) +

32
√

6
9

𝑑(5𝑒 + 𝑓 )2
)

𝑡2

+ 1024
6561

(

− 64
243

𝑑2 + 512
243

(5𝑒 + 𝑓 ) + 32
9
(5𝑒 + 𝑓 )2

− 2
27

𝑑2(5𝑒 + 𝑓 ) −
√

6𝑑2 +
320

√

6
243

𝑑(5𝑒 + 𝑓 )
)

𝑡

+ 1024
2187

(

−64
81

(5𝑒 + 𝑓 ) +
4
√

6
81

𝑑3

+ 2
3
𝑑(5𝑒 + 𝑓 ) + 8

81
𝑑2 − (5𝑒 + 𝑓 )2

)

,

nd the quantity 𝑃 = 16(5𝑒 + 𝑓 ) − 3𝑑2. The signs of the discriminant,
, and the quantity 𝑃 characterise the roots as follows. For 𝑃 > 0, we
onclude that a quartic polynomial has two real roots and two complex
onjugate roots if 𝛥 < 0; two pairs of complex conjugate roots if 𝛥 > 0;
nd a real double root and two complex conjugate roots if 𝛥 = 0.

We restrict our parameters 𝑑, 𝑒, and 𝑓 to satisfy one of these three
ets of conditions for all values of 𝑡 and 𝜀. Fig. 1 demonstrates that
or the specific choice, 𝑑 = 1, 𝑒 = 0, 𝑓 = 1, 𝑃 > 0 and 𝑅 ≠ 0 and

there is some transition temperature 𝑡0 such that 𝛥 < 0 when 𝑡 < 𝑡0;
𝛥 = 0 when 𝑡 = 𝑡0; and 𝛥 > 0 when 𝑡 > 𝑡0. These results can be
translated into properties of the function 𝑔 in (8) in this parameter
regime. Namely, under these conditions, the function 𝑔 will have one
real stationary point, 𝑠 = 0, above some transition temperature 𝑡0, two
stationary points at 𝑡0, and three real stationary points at temperatures
below 𝑡0. In particular, we note that 𝑔 is a double-well potential at
lower temperatures 𝑡 < 𝑡0 for which there is at least a positive local
minimiser 𝑠 = 𝑠+ of the sixth-order polynomial 𝑔(𝑠). In the remainder of
this manuscript, we use 𝑒 = 0 and 𝑑 = 𝑓 = 1 as an illustrative example.

In Fig. 2, we plot the function 𝑔 for five different temperatures.
ne can clearly see the isotropic state is the global minimiser for

he high temperature 𝑡 = 5; 𝑠+ > 0 is the global minimiser for the
ow temperature 𝑡 = −25; and as the temperature further decreases
o 𝑡 = −100, 𝑠 = 𝑠− < 0 is the global minimiser of 𝑔. Nonzero

ritical points first appear at the transition temperature 𝑡0 ≈ 0.97,
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Fig. 1. The function 𝛥 for 𝑑 = 1, 𝑒 = 0, 𝑓 = 1 and 𝑡 from −20 to 5.

nd the minimisers 𝑠+ and 𝑠− have the same energy at the transition
emperature 𝑡∗ ≈ −48.6. This is further illustrated in Fig. 3, where we
lot the stationary points of 𝑔 as a function of 𝑡, and indicate their

stability. We observe that for 𝑡 < 0, there are two local minimisers,
𝑠 = 𝑠+ > 0 and 𝑠 = 𝑠− < 0 of 𝑔(𝑠), and 𝑠 = 𝑠+ is the global minimiser for
moderately low temperatures, and 𝑠 = 𝑠− is the global minimiser of 𝑔
for 𝑡 < −48.6.

3.2. Biaxial stationary points of the sixth-order potential

Next, we consider critical points of 𝑓𝐵 in (4) in the full class of LdG
𝐐-tensors of the form (1), i.e. we substitute (1) into (4) and compute
the stationary points in terms of the pairs (𝑠, 𝑝).

There are no biaxial stationary points of the fourth-order bulk po-
tential (see [24, Proposition 1]). In Fig. 4, we plot the stationary points
of the fourth-order bulk potential in (3). The isotropic phase is the
global minimiser above 𝑡 = 1.125, and below this temperature we have
four nonzero stationary points, two of which are global minimisers:
one minimiser has positive 𝑠 and zero 𝑝 (yellow solid line in Fig. 4);
the second minimiser has 𝑠 = 𝑝 < 0 (red solid line in Fig. 4). Both
minimisers are uniaxial 𝐐-tensors and rotations of each other. The
same relationship holds for the two unstable stationary points: both
correspond to a uniaxial configuration with negative order parameter.
Thus, Fig. 4 shows that below 𝑡 = 1.125, there is one stable uniaxial
stationary point with positive order parameter, and one unstable uniax-
ial stationary point with negative order parameter; there are no biaxial
stationary points; and the isotropic phase loses stability for 𝑡 < 0. These
facts are well-known in the literature about the fourth-order potential.

We fix 𝑑 = 1, 𝑒 = 0, 𝑓 = 1 and plot the critical points of (4) (the sixth-
order potential) in Fig. 5. There are certain similarities to Fig. 4 i.e. the
isotropic phase is the global minimiser at high temperatures; there are
four non-zero stationary points for moderate temperatures below some
transition temperature; and the isotropic phase loses stability at 𝑡 = 0.
These stationary points correspond to one uniaxial global minimiser
and one unstable uniaxial critical point for the same reasons as in
the fourth-order case, as detailed above. The two uniaxial stationary
points emerge at the approximate transition temperature 𝑡 = 𝑡0 ≈ 0.97,
with (𝑠, 𝑝) = (𝑠+, 0) being the global minimiser (red and yellow solid
lines in Fig. 5), and (𝑠, 𝑝) = (𝑠−, 0) being the unstable stationary point
(purple and red dashed lines), where 𝑠+ and 𝑠− are defined above. The
stationary point (𝑠+, 0) remains stable until biaxial stationary points
5

appear at approximately 𝑡 = −11.6, at which point (unlike with the
fourth-order potential in (3)) there are no stable uniaxial stationary
points (they exist for lower temperatures and are unstable) and there
is a unique global biaxial minimiser of (4) (three blue solid lines).

4. Analysis of the radial hedgehog solution

The RH solution has been studied extensively with the fourth-order
potential in the literature. In particular, for the LdG energy with the
fourth-order potential in (3), there are strong analytic results on the
existence of the RH solution, the corresponding order parameter 𝑠∗ is
positive away from the origin, is monotonic, bounded and there is a
unique RH solution for 𝑡 < 0 [8,15]. Furthermore, it is known that
the RH solution is stable for sufficiently small droplets, and is unstable
for large droplets and for low temperatures [8,9,16,25]. In this section,
we perform a parallel analysis of the RH solution with the sixth-order
potential (4) to understand the dependence of the RH solution on the
choice of 𝑓𝐵 and the new possibilities offered by the more general
nature of the sixth-order potential in (4).

Our first result concerns the existence of the RH solution and is
analogous to Proposition 2.1 in [8]. The proof is similar to that in [8]
and is therefore omitted.

Proposition 1.

(a) Consider the energy functional

𝐼[𝑠] = ∫

1

0

(

𝜀2
(

1
2

(

𝑑𝑠
𝑑𝑟

)2
+ 2

𝑟2
𝑠2

)

+ 𝑡
3
𝑠2 −

2
√

6
9

𝑠3

+ 2
9
𝑠4 + 4𝑑

135
𝑠5 + 4𝑒

81
𝑠6 +

2(𝑓 − 𝑒)
243

𝑠6
)

𝑟2 𝑑𝑟, (14)

defined for functions 𝑠 ∈ A𝑠. There exists a global minimiser 𝑠∗ ∈
A𝑠 for 𝐼 . The function 𝑠∗ is a solution of the ordinary differential
equation

𝜀2
(

𝑑2𝑠
𝑑𝑟2

+ 2
𝑟
𝑑𝑠
𝑑𝑟

− 6
𝑟2
𝑠

)

= 𝑡𝑠 −
√

6𝑠2 + 4
3
𝑠3 + 2𝑑

9
𝑠4 + 4𝑒

9
𝑠5 +

2(𝑓 − 𝑒)
27

𝑠5, (15)

subject to the boundary conditions

𝑠(0) = 0, 𝑠(1) = 𝑠+. (16)

The global minimiser 𝑠∗ is analytic for all 𝑟 ≥ 0.
(b) The RH solution is defined in (12), where 𝑠∗ is a global minimiser of

𝐼 in the admissible space A𝑠, and the RH solution is a critical point
of the LdG energy functional (2).

(c) The function 𝑠∗ satisfies (𝑠∗)′(0) = 0.

Next, we derive a maximum principle which yields upper bounds
or 𝑠∗ in (12). The proof is given in Appendix A.

roposition 2. A global minimiser 𝐐∗ of the LdG free energy (6), in the
lass of uniaxial Q-tensors, in the admissible space, A𝐐 in (11), satisfies the
pper bound |𝐐∗

|

2 ≤ 2
3 max

{

𝑠2+, 𝑠
2
−
}

on 𝐵(0, 1), where 𝑠+ and 𝑠− are the
two nonzero stationary points of (8).
Fig. 2. The function 𝑔 with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1 at (a) 𝑡 = 5; (b) 𝑡 = 𝑡0 ≈ 0.97; (c) 𝑡 = −25; (d) 𝑡 = 𝑡∗ ≈ −48.6; and (e) 𝑡 = −100.
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Fig. 3. The stationary points of the function 𝑔 for decreasing temperature. Bold lines
indicate a global minimum, thin solid lines indicate a local minimum and dashed lines
indicate instability (negative second derivative of 𝑔).

In the next proposition, we assume that 16(5𝑒 + 𝑓 ) > 3𝑑2 and work
within a temperature regime for which the potential (4) has a uniaxial
global minimiser with positive order parameter 𝑠+, consistent with the
imposed Dirichlet condition in (16). In this case, we can prove that
𝑠∗ is bounded, positive, monotonic and unique, by direct analogy with
the results for (3). The differences arise for low temperatures, for which
(4) has a biaxial global minimiser and no stable uniaxial critical points,
and we use heuristic arguments to show that 𝑠∗ is negative and non-
monotonic deep in the nematic phase. Recall that 𝑠+ is the largest
positive minimiser of the function 𝑔 in (8). Since 𝑔(𝑠) → +∞ as 𝑠 → +∞,
then 𝑔′(𝑠) > 0 for 𝑠 > 𝑠+. Therefore, 𝑠+ increases as |𝑡| increases for 𝑡 < 0
and bounds on 𝑠+ can be translated to bounds for 𝑡.

Proposition 3. Let 𝑠∗ be the global minimiser of 𝐼 in (14) in the
moderately low temperature regime for which (4) has a global uniaxial
minimiser, characterised by 𝑡 < 0,

𝑠2+ −
15

√

6
2𝑑

< 0, (17)

and

4(𝑓 + 5𝑒)
81

𝑠3+ + 4𝑑
27

𝑠2+ + 8
9
𝑠+ −

2
√

6
3

< 0. (18)

Then, 𝑠∗ is unique; vanishes at the origin; satisfies the bounds 0 ≤ 𝑠∗ ≤ 𝑠+;
and is positive and monotonic for 𝑟 > 0.

The proof of Proposition 3 follows from analogous arguments for
the fourth-order potential in [15], precisely because the sixth-order
potential (4) has a uniaxial global minimiser in the temperature ranges
specified by (17) and (18). Some details are given in the Appendix, and
the same arguments do not work when (4) admits a biaxial minimiser
for lower temperatures.

The next result demonstrates that the RH solution is the only LdG
critical point for droplets of sufficiently small radius with the sixth-
order potential, and is hence globally stable in this regime. This follows
from the local convexity of the LdG free energy with polynomial bulk
potentials for small domains.

Proposition 4. For 𝜀 sufficiently large, the radial hedgehog configuration
𝐐∗ in (12) is the unique critical point, and hence, global minimiser of the
Landau–de Gennes free energy (6).
6

Proof. First, we show that a critical point, 𝐐∗, of F in the admissible
space (11) satisfies the upper bound

|𝐐∗
| ≤ max

{

𝑀(𝑡, 𝑑, 𝑒, 𝑓 ), |𝐐𝑠+ |
}

=∶ 𝑀 ′ (19)

on 𝐵(0, 1), where 𝑀 is a constant depending only on 𝑡, 𝑑, 𝑒, and 𝑓 .
We assume that the function |𝐐∗

| ∶ 𝐵(0, 1) → R attains its maximum
at the interior point 𝒓∗ ∈ 𝐵(0, 1). Recall that 𝐐∗ is a solution of the
Euler–Lagrange Eqs. (10). We multiply both sides of (10) by 𝑄𝑖𝑗 to find

𝜀2

2
𝛥|𝐐∗

|

2 = 𝑡|𝐐∗
|

2 − 3
√

6 tr𝐐∗3 + 2|𝐐∗
|

4

+ 𝑑|𝐐∗
|

2 tr𝐐∗3 + 𝑒|𝐐∗
|

6 +
(𝑓 − 𝑒)

6
(

tr𝐐∗3)2

at 𝒓∗, since |∇𝐐∗
| + 𝑄𝑖𝑗𝛥𝑄∗

𝑖𝑗 = 1
2𝛥|𝐐

∗
|

2, and |∇𝐐∗
| = 0 at 𝒓∗. Note

that 𝛥|𝐐∗
|

2 ≤ 0 at 𝒓∗ ∈ 𝐵(0, 1) by assumption. Define ℎ(𝐐) = 𝑡|𝐐|

2 −
3
√

6 tr𝐐3 + 2|𝐐|

4 + 𝑑|𝐐|

2 tr𝐐3 + 𝑒|𝐐|

6 + (𝑓−𝑒)
6

(

tr𝐐3)2. Recalling that
− 1

√

6
|𝐐|

3 ≤ tr𝐐3 ≤ 1
√

6
|𝐐|

3, by [24, Lemma 1]. Consider the polynomial

𝐻(|𝐐|) ∶=
min{𝑓 − 𝑒, 0}

36
|𝐐|

6 + 𝑒|𝐐|

6 − 𝑑
√

6
|𝐐|

5 + 2|𝐐|

4 − 3|𝐐|

3 + 𝑡|𝐐|

2.

The function 𝐻(|𝐐|) has 𝑛 ≤ 6 real roots, {|𝐐𝑖|}𝑛𝑖=1, with |𝐐1| ≤ ⋯ ≤
|𝐐𝑛|, and 𝐻 is positive for |𝐐| > |𝐐𝑛| since 𝑒 > 0. If |𝐐∗(𝒓∗)| > |𝐐𝑛|, then
𝛥|𝐐∗

|

2 > 0 at 𝒓∗, which is a contradiction. We set 𝑀(𝑡, 𝑑, 𝑒, 𝑓 ) ∶= |𝐐𝑛|

so we may conclude that |𝐐∗
| ≤ max

{

𝑀(𝑡, 𝑑, 𝑒, 𝑓 ), |𝐐𝑠+ |
}

on 𝐵(0, 1).
Next, we demonstrate the local convexity of the LdG free energy

(6) for sufficiently large 𝜀, closely following arguments in [15,26]. Let
𝑋 =

{

𝐐 ∈ 𝑊 1,2(𝐵(0, 1), 𝑆̄) ∶ 𝐐 = 𝐐𝑠+ on 𝜕𝐵(0, 1); |𝐐| ≤ 𝑀 ′}. Then for
𝐐𝑢,𝐐𝑣 ∈ 𝑋,

F
[

1
2
(𝐐𝑢 +𝐐𝑣)

]

= ∫𝐵(0,1)

(

𝜀2

8
|∇𝐐𝑢 + ∇𝐐𝑣|

2 + 𝑓𝐵

(

1
2
(𝐐𝑢 +𝐐𝑣)

)

)

𝑑𝑉
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2
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2
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𝜀2

8
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)
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2
𝑓𝐵(𝐐𝑢) −

1
2
𝑓𝐵(𝐐𝑣)

)

𝑑𝑉

where we have used the fact that |∇𝐐𝑢 + ∇𝐐𝑣|
2 = 2|∇𝐐𝑢|

2 + 2|∇𝐐𝑣|
2 −

|∇𝐐𝑢 − ∇𝐐𝑣|
2. By the Poincaré inequality, we have that

−1
8
‖∇(𝐐𝑢 −𝐐𝑣)‖2𝐿2 ≤ −𝑐1‖𝐐𝑢 −𝐐𝑣‖

2
𝐿2 ,

for some positive constant 𝑐1. Therefore,

F
[

1
2
(𝐐𝑢 +𝐐𝑣)

]

≤ 1
2

F [𝐐𝑢] +
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2
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2
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2
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1
2
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Furthermore, we note that

𝑓𝐵

(

𝑥 + 𝑦
2

)

−1
2
𝑓𝐵(𝑥) −

1
2
𝑓𝐵(𝑦) ≤ ‖𝑓𝐵‖𝑊 2,∞({𝑧∈ 𝑆̄ ∶ |𝑧|≤𝑀 ′})|𝑥 − 𝑦|2,

for 𝑥, 𝑦 satisfying |𝑥|, |𝑦| ≤ 𝑀 ′. Hence, for some 𝑐2 = 𝑐2(𝑀 ′, 𝑓𝐵) > 0, we
may write

F
[

1
2
(𝐐𝑢 +𝐐𝑣)

]

≤ 1
2

F [𝐐𝑢] +
1
2

F [𝐐𝑣] +
(

−𝑐1𝜀2 + 𝑐2
)

‖𝐐𝑢 −𝐐𝑣‖
2
𝐿2 .

Then, if 𝜀2 > 𝑐2
𝑐1

, we find that

F
[

1
2
(𝐐𝑢 +𝐐𝑣)

]

< 1
2

F [𝐐𝑢] +
1
2

F [𝐐𝑣],

∀𝐐𝑢,𝐐𝑣 ∈ 𝑋,𝐐𝑢 ≠ 𝐐𝑣. Thus, F is strictly convex on 𝑋.
Let us assume for the remainder of the proof that we are working

with 𝜀 large enough to guarantee strict convexity of F in (6). To show
that a critical point of F is unique, let us assume that there exist two
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Fig. 4. Stationary points of the fourth-order potential, for the temperature range 𝑡 = 5 to 𝑡 = −50. (a) Both scalar order parameters, 𝑠 and 𝑝, plotted against 𝑡. (b) Scalar order
parameter 𝑠 plotted against 𝑡. (c) Scalar order parameter 𝑝 plotted against 𝑡.
Fig. 5. Stationary points of the sixth-order potential with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1, for 𝑡 = 5 to 𝑡 = −50. (a) Scalar order parameters, 𝑠 and 𝑝, plotted against 𝑡. (b) The scalar order
parameter 𝑠 plotted against 𝑡. (c) The scalar order parameter 𝑝 plotted against 𝑡. Yellow and red lines label uniaxial stationary points; and blue lines label biaxial stationary points.
distinct solutions 𝐐1 and 𝐐2 of (10) in 𝑋, as is done in the proof of [27,
Lemma 8.3]. Then, for 𝑣 ∈ [0, 1], the derivative of F [𝑣𝐐1 + (1 − 𝑣)𝐐2]
vanishes at 𝑣 = 0 and 𝑣 = 1. However, the strict convexity of F implies
that F can have only one critical point. Therefore, 𝐐1 and 𝐐2 cannot
both be solutions of the Euler–Lagrange Eqs. (10), so a critical point of
F must be unique.

Finally, Proposition 1 guarantees the existence of a RH solution for
any 𝜀 and we are also guaranteed the existence of a global LdG energy
minimiser of (6) for all 𝜀, so the RH configuration 𝐐∗ in (12) is the
unique critical point and consequently, the unique global minimiser of
the LdG free energy (6) when 𝜀 is sufficiently large. □

Next, we demonstrate that the RH solution is not globally energy
minimising for the LdG energy (6), in the low temperature regime,
by constructing a biaxial perturbation with lower energy, following
arguments as in Proposition 3.3 in [8]; details are given in Appendix A.

Proposition 5. The RH solution 𝐐∗ in (12) is not the global minimiser of
the LdG free energy (6) in the admissible space A𝐐 when 𝑡 < 0 and |𝑡| is
sufficiently large. In particular, the biaxial state

𝐐̂(𝒓) =
⎧

⎪

⎨

⎪

⎩

𝐐∗(𝒓) + 1 − 10𝑟
(𝑟2 + 12)2

(

𝒛⊗ 𝒛 − 1
3
𝐈
)

, 0 ≤ 𝑟 ≤ 0.1,

𝐐∗(𝒓), 0.1 ≤ 𝑟 ≤ 1,

where 𝒛 is the unit vector in the 𝑧-direction, has lower LdG free energy than
𝐐∗.
7

The above results make evident many parallels between the RH
solution with the fourth-order bulk potential in the literature and the
RH solution with the sixth-order bulk potential, at least for moderately
low temperatures specified by (17) and (18). Key differences are that
we do not have an explicit expression for 𝑠+ with the sixth-order
potential (4), and that there are parameter regimes for which the
RH scalar order parameter 𝑠∗ might not be unique and monotonic,
and could be negative. We explore this further using some heuristic
arguments, working in a parameter regime for which 𝑔(𝑠) in (8) has
two minimisers - a local positive minimiser 𝑠+ and a global negative
minimiser, 𝑠− i.e. deep in the nematic phase. In terms of (4), these
minima of 𝑔 do not translate to stable critical points of (4), and (4)
has a biaxial minimiser in these parameter regimes. Consider a profile,
𝑠1 ∶ [0, 1] → R, in the admissible space (13) for which 𝑠1 ≥ 0 for
𝑟 ∈ [0, 1]. Then the energy is bounded from below by:

𝐼[𝑠1] ≥ 𝑔(𝑠+),

where 𝐼 is given by (14) and we use the fact that 𝑠+ is the global
minimiser of 𝑔 for non-negative 𝑠. Consider a competitor map 𝑠2 ∶
[0, 1] → R in the admissible space (13), with 𝑠2 = 𝑠− for 𝜀 < 𝑟 < 1 − 𝜀
for 𝜀 sufficiently small. Assuming a linear transition layer near 𝑟 = 0,
where 𝑠2(0) = 0 and a linear transition layer near 𝑟 = 1 to match the
boundary condition, 𝑠2(1) = 𝑠+, 𝐼[𝑠2] is bounded from above by:

𝐼[𝑠 ] ≤ 𝑔(𝑠 )(1 − 2𝜀) + 𝐶𝜀,
2 −
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Fig. 6. RH scalar order parameter profiles from initial guess (a) 𝑠(𝑟) = 0, 𝑟 ∈ [0, 1], and
(b) 𝑠(𝑟) = 0.5𝑠− , 𝑟 ∈ [0, 1].

where the positive constant 𝐶 depends on 𝑠+, 𝑠−. Given that 𝑑, 𝑒, 𝑓 are
fixed by assumption, this implies that the constant 𝐶 only depends on
𝑡. For fixed elastic constants, 𝜀 only depends on the droplet radius 𝑅.
Comparing 𝐼[𝑠1] and 𝐼[𝑠2], we deduce that 𝐼[𝑠2] < 𝐼[𝑠1] if 𝑔(𝑠−) < 𝑔(𝑠+)
and 𝜀 is sufficiently small or if 𝑅 is sufficiently large. Since the lower
bound for 𝐼[𝑠1] is valid for all RH order parameter profiles with non-
negative order parameter, we deduce that provided 𝜀 is sufficiently
small, the global minimiser of (14) cannot be positive for all 𝑟 ∈ [0, 1],
for sufficiently low temperatures.

These heuristics can be verified numerically, using a finite element
method to numerically compute solutions of the ODE (15) for 𝑡 = −100,
in a large droplet specified by 𝜀 = 0.1. We numerically obtain at least
two solutions in Fig. 6. Fig. 6(a) follows from the initial condition
𝑠(𝑟) = 0, 𝑟 ∈ [0, 1], and the initial guess 𝑠(𝑟) = 0.5𝑠−, 𝑟 ∈ [0, 1] is used
to numerically compute Fig. 6(b), where 𝑠− is the negative minimiser
of (8) at 𝑡 = −100. The second profile in Fig. 6(b) has lower energy than
the non-negative profile in Fig. 6(a).

5. Numerical results

5.1. Problem formulation

The critical points of the LdG free energy with the fourth-order
potential have been well-studied in a batch of papers [9,12,14,28,29],
and we do not claim to have exhaustive references. With the fourth-
order potential in (3), for large droplets and low temperatures, it is
well-known that there exist at least two further critical points of the
LdG energy in the admissible space (11) - the biaxial torus and the
split core solutions, both of which have small biaxial regions near the
origin and rotational symmetry, with mirror symmetry across the plane
normal to the axis of rotational symmetry. The first question of interest
8

is: do the biaxial torus and the split core critical points survive as
critical points of the LdG energy with the sixth-order potential (4)?
If they do survive as critical points, then their existence is naturally
dictated by the symmetries of the geometry and the solution profiles,
and less so by the precise form of the bulk potential. Following previous
work in [14] in this section, we numerically compute critical points
of the LdG energy in (6) with rotational symmetry about the 𝑧-axis,
and mirror symmetry across the 𝑥𝑦-plane. In this case, our domain is
reduced to a quarter circle rotated 2𝜋 radians about the 𝑧-axis. We work
in cylindrical polar coordinates (𝑟, 𝜃, 𝑧), where 𝑟 ∈ [0, 1] and 𝑧 ∈ [0, 1],
while 𝜃 is the angle in the 𝑥𝑦-plane.

Since the Q-tensor order parameter has five degrees of freedom in
the most general setting, it is possible to represent the Q-tensor in
terms of five basis tensors [21]. However, in this section, following the
work in [14] and related papers, we assume that the Q-tensor always
has an eigenvector in the direction 𝒆𝜃 , normal to the 𝑟𝑧-plane. With
a fixed eigenvector, the degrees of freedom reduce from five to three
i.e. one degree of freedom associated with the free eigenvectors in the
𝑟𝑧-plane and two degrees of freedom associated with the eigenvalues
of a traceless 𝐐-tensor. Hence, the 𝐐-tensor can be expressed in terms
of just three basis tensors as shown below:

𝐐(𝑟, 𝑧) = 𝑞1(𝑟, 𝑧)𝐄1 + 𝑞2(𝑟, 𝑧)𝐄2 + 𝑞3(𝑟, 𝑧)𝐄3, (20)

where

𝐄1 =
1
√

6

⎡

⎢

⎢

⎣

−1 0 0
0 −1 0
0 0 2

⎤

⎥

⎥

⎦

, 𝐄2 =
1
√

2

⎡

⎢

⎢

⎣

1 0 0
0 −1 0
0 0 0

⎤

⎥

⎥

⎦

,

𝐄3 =
1
√

2

⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

,

where we assume that the three degrees of freedom - 𝑞1,… , 𝑞3 are in-
dependent of 𝜃, consistent with our assumptions of rotational symmetry
about the 𝑧-axis and mirror symmetry about 𝑧 = 0. We can then rewrite
the LdG energies (5) and (6) in terms of 𝑞1, 𝑞2, 𝑞3. First, the Q-tensor in
(20) is transformed to cylindrical polar coordinates via the relations:

𝐐(𝑟, 𝜃, 𝑧) = 𝐑(𝜃)𝐐(𝑟, 𝑧)𝐑(𝜃)𝑇 ,

where 𝐑(𝜃) is the rotation matrix

𝐑(𝜃) =
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

.

Then the components of the symmetric, traceless Q-tensor are given by

𝑄11 = −
𝑞1
√

6

(

cos2 𝜃 − sin2 𝜃
)

, 𝑄12 =
2𝑞2
√

2
cos 𝜃 sin 𝜃,

𝑄13 =
𝑞3
√

2
cos 𝜃, 𝑄23 =

𝑞3
√

2
sin 𝜃,

𝑄22 = −
𝑞1
√

6

(

sin2 𝜃 − cos2 𝜃
)

.

(21)

The LdG energy in (5) is then given by:

F𝑓𝑜𝑢𝑟[𝐐]

= ∫𝐵(0,1)

(

𝑡
2
(

𝑞21 + 𝑞22 + 𝑞23
)

− 𝑞31 + 3𝑞1𝑞22 −
3
2
𝑞1𝑞

2
3 −

3
√

3
2

𝑞2𝑞
2
3

+ 1
2
(

𝑞41 + 𝑞42 + 𝑞43 + 2𝑞21𝑞
2
2 + 2𝑞21𝑞

2
3 + 2𝑞22𝑞

2
3
)

+ 𝜀2
(

𝑞21,𝑟 + 𝑞22,𝑟 + 𝑞23,𝑟 + 𝑞21,𝑧 + 𝑞22,𝑧 + 𝑞23,𝑧 +
1
2

(

4𝑞22 + 𝑞23
)

)

)

𝑑𝑉 . (22)

2 𝑟
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and the LdG energy with the sixth-order potential (6) is given by:

F𝑠𝑖𝑥[𝐐]

= ∫𝐵(0,1)

(

𝜀2

2

(

𝑞21,𝑟 + 𝑞22,𝑟 + 𝑞23,𝑟 + 𝑞21,𝑧 + 𝑞22,𝑧 + 𝑞23,𝑧

+ 1
𝑟2
(

4𝑞22 + 𝑞23
)

)

+ 𝑡
2
(

𝑞21 + 𝑞22 + 𝑞23
)

− 𝑞31 + 3𝑞1𝑞22

− 3
2
𝑞1𝑞

2
3 −

3
√

3
2

𝑞2𝑞
2
3 +

1
2
(

𝑞41 + 𝑞42 + 𝑞43 + 2𝑞21𝑞
2
2

+ 2𝑞21𝑞
2
3 + 2𝑞22𝑞

2
3
)

+𝑑
5

(

√

6
6

𝑞51 −

√

6
3

𝑞31𝑞
2
2

+
5
√

6
12

𝑞31𝑞
2
3 −

√

6
2

𝑞1𝑞
4
2 −

√

6
4

𝑞1𝑞
2
2𝑞

2
3 +

√

6
4

𝑞1𝑞
4
3

+
3
√

2
4

𝑞21𝑞2𝑞
2
3 +

3
√

2
4

𝑞32𝑞
2
3 +

3
√

2
4

𝑞2𝑞
4
3

)

+ 𝑒
6
(

𝑞61 + 𝑞62 + 𝑞63 + 3𝑞41𝑞
2
2 + 3𝑞41𝑞

2
3 + 3𝑞21𝑞

4
2

+ 3𝑞21𝑞
4
3 + 3𝑞42𝑞

2
3 + 3𝑞22𝑞

4
3 + 6𝑞21𝑞

2
2𝑞

2
3
)

+
(𝑓 − 𝑒)

6

(

1
6
𝑞61 − 𝑞41𝑞

2
2 +

1
2
𝑞41𝑞

2
3

+

√

3
2

𝑞31𝑞2𝑞
2
3 +

3
2
𝑞21𝑞

4
2 −

3
2
𝑞21𝑞

2
2𝑞

2
3 −

3
√

3
2

𝑞1𝑞
3
2𝑞

2
3

+ 3
8
𝑞21𝑞

4
3 +

3
√

3
4

𝑞1𝑞2𝑞
4
3 +

9
8
𝑞22𝑞

4
3

)

)

𝑑𝑉 .

(23)

The last step is to specify the boundary conditions for 𝑞1, 𝑞2, 𝑞3 with
hese symmetry assumptions. We work with the Dirichlet boundary
ondition in (7) on 𝑟2 + 𝑧2 = 1, which can be translated into conditions
or 𝑞1, 𝑞2, 𝑞3. The unit vector 𝒓̂ can be written as 𝒓̂ = 𝑟𝒆𝑟+𝑧𝒆𝑧, 𝑟2+𝑧2 = 1,

so that (7) can be written as

𝑠+

(

𝒓̂⊗ 𝒓̂ − 1
3
𝐈
)

= 𝑠+

⎡

⎢

⎢

⎢

⎢

⎣

𝑟2 cos2 𝜃 − 1
3

𝑟2 cos 𝜃 sin 𝜃 𝑟𝑧 cos 𝜃

𝑟2 cos 𝜃 sin 𝜃 𝑟2 sin2 𝜃 − 1
3

𝑟𝑧 sin 𝜃

𝑟𝑧 cos 𝜃 𝑟𝑧 sin 𝜃 𝑧2 − 1
3

⎤

⎥

⎥

⎥

⎥

⎦

.

omparing with (21), we obtain

1 =
√

2
3

(

1 − 3𝑟2
2

)

𝑠+, 𝑞2 =
𝑟2
√

2
𝑠+, 𝑞3 =

√

2𝑟𝑧𝑠+ (24)

on 𝑟2 + 𝑧2 = 1. There are additional boundary conditions to account for
the assumed rotational and mirror symmetry:

𝑞1,𝑧 = 𝑞2,𝑧 = 𝑞3 = 0 on 𝑧 = 0 (25)

for mirror symmetry across the 𝑥𝑦-plane, and

𝑞1,𝑟 = 𝑞2 = 𝑞2,𝑟 = 𝑞3 = 0 on 𝑟 = 0 (26)

or rotational symmetry about the 𝑧-axis.

.2. Stationary points of the LdG energy

We use a finite element method to solve for stationary/critical
oints of the weak formulations associated with the LdG free energy
22) with fourth-order potential and (23) with the sixth-order poten-
ial respectively. The finite element method is implemented in the
pen-source computing package FEniCS [30] and the visualisation is
arried out in an open-source post-processing visualisation application,
araView [31].

We plot the biaxiality parameter of the numerically computed crit-
cal points, since biaxiality often labels defects and biaxiality also
istinguishes the sixth-order potential from the fourth-order potential.

= 1 − 6

(

tr𝐐3)2

(

2
)3

, (27)
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tr𝐐 s
where 0 ≤ 𝛽 ≤ 1, with 𝛽 = 0 corresponding to uniaxiality and
𝛽 = 1 corresponding to ‘maximal’ biaxiality [32]. The radial hedgehog
solution is purely uniaxial with 𝛽 = 0 everywhere, whereas the split
core and biaxial torus solutions have signature regions of biaxiality
near the origin. We also plot the leading eigenvector of the Q-tensor in
the examples below, which is the eigenvector with the largest positive
eigenvalue, regarded as the nematic director. A further good marker is
the sign of the scalar order parameter at the origin. However, since
we set 𝑞2 = 𝑞3 = 0 at the origin in (26), this reduces to the sign of
𝑞1 at the origin. The radial hedgehog solution is isotropic at the origin
i.e. 𝑞1(𝑟 = 0) = 0, while the split core is negatively ordered at the origin,
requiring 𝑞1(𝑟 = 0) < 0, and the biaxial torus is positively ordered at the
rigin, requiring 𝑞1(𝑟 = 0) > 0.

With the fourth-order potential, there are known results in the
iterature [8,14,21] that demonstrate the stability of the RH solution
or high temperatures and small droplets; and at least local stability of
he split core and biaxial torus solutions at lower temperatures and in
roplets of larger radius. In Fig. 7, we plot the biaxiality parameter,
, and the leading eigenvector of the radial hedgehog, split core, and
iaxial torus configurations obtained with the fourth-order potential.
e plot the RH configuration in Fig. 7(a) with 𝑡 = 0 and 𝜀 = 1. The
H solution has 𝛽 = 0 everywhere, with an isotropic point at 𝑟 = 0
with 𝑞1 = 0 at 𝑟 = 0) and the leading eigenvector is simply the
adial unit vector. We plot the split core and biaxial torus solutions
or 𝑡 = −10, 𝜀 = 0.5 in Figs. 7(b) and 7(c), respectively. We observe the
ignature regions of biaxiality associated with the split core and biaxial
orus solutions, labelled by the red regions, along with 𝑞1(𝑟 = 0) < 0 for
he split core solution, while 𝑞1(𝑟 = 0) > 0 for the biaxial torus solution
espectively. We compute the Morse index of each configuration in
ig. 7 (see Section 5.3), and find that each is a locally stable critical
oint of the LdG free energy with the fourth-order potential (22), for
he specified values of 𝑡 and 𝜀. Local stability of a LdG critical point
mplies that it is potentially observable in experiments and applications.

Next, we repeat the same numerical investigations with the LdG
nergy with sixth-order potential, which has not been attempted in the
iterature to date. The behaviour and trends are expected to be similar
o those observed with the fourth-order potential, at least for moder-
tely low temperatures, as suggested by the analysis in the previous
ection. In Fig. 8, we plot stationary points of (6) with 𝑑 = 1, 𝑒 = 0, 𝑓 =
, and correspond to the RH configuration at 𝑡 = 0 and 𝜀 = 1, and the
plit core and biaxial torus solutions for 𝑡 = −10 and 𝜀 = 0.5. We plot 𝛽
nd the leading eigenvector of the Q-tensor in each case. We find that
1 is approximately zero at the origin for the RH solution; negative at
he origin for the split core solution; and positive at the origin for the
iaxial torus solution. Comparing Figs. 8(b) and 8(c) obtained with a
ixth-order potential with Figs. 7(b) and 7(c), respectively, obtained at
he same values of 𝑡 and 𝜀 with the fourth-order potential, we observe
hat the regions of biaxiality of the split core and biaxial torus solutions
re larger with the sixth-order potential. We again compute the smallest
eal eigenvalue of the Hessian associated with the LdG free energy (23)
nd each numerically computed stationary point is locally stable with
he sixth-order potential as well.

.3. The morse index of the radial hedgehog solution

We characterise the stability of the LdG stationary points using the
orse index, which is the number of negative real eigenvalues of their

ssociated Hessian [33]. The Morse index is calculated using the SLEPc
igenvalue solver [34]. An index-0 critical point, with no negative
igenvalues, is at least locally stable, while all index-𝑘 critical points,
ith 𝑘 > 0, are unstable. We numerically compute the Morse index of

he RH solution, for a range of temperatures and droplet radii, to study
he effects of temperature and droplet size on the stability of the RH
olution, although our study is only restricted to the class of 𝐐-tensors
ith three degrees of freedom. We perform a parallel study of the RH
olution as a critical point of the LdG energy with the fourth-order
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Fig. 7. Biaxiality parameter, 𝛽, and leading eigenvector of LdG stationary points obtained with the fourth-order potential. (a) RH solution with 𝑡 = 0, 𝜀 = 1. (b) Split core solution
with 𝑡 = −10, 𝜀 = 0.5. (c) Biaxial torus solution with 𝑡 = −10, 𝜀 = 0.5.
Fig. 8. Biaxiality parameter, 𝛽, and leading eigenvector of LdG stationary points of (6) with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1. (a) RH solution with 𝑡 = 0, 𝜀 = 1. (b) Split core solution with
𝑡 = −10, 𝜀 = 0.5. (c) Biaxial torus solution with 𝑡 = −10, 𝜀 = 0.5.
Fig. 9. Morse index of the RH solution for the given value of 𝑡 and 𝜀, with the fourth-order potential (22).
(5) and the sixth-order (6) potentials. In Figs. 9 and 10, we tabulate
the Morse index of the RH solution with the fourth- and sixth-order
potentials respectively, with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1, for the given values of
𝑡 and 𝜀. For each entry, the RH solution is in terms of 𝑞∗ = (𝑞1, 𝑞2, 𝑞3)
where

𝑞1 =

√

6
6

(

2 − 3𝑟2

𝑟2 + 𝑧2

)

𝑠∗, 𝑞2 =

√

2𝑟2

2(𝑟2 + 𝑧2)
𝑠∗, 𝑞3 =

√

2𝑟𝑧
𝑟2 + 𝑧2

𝑠∗. (28)

The function 𝑠∗ is the solution of the RH ODE (see (15) for the sixth-
order potential, set 𝑑 = 𝑒 = 𝑓 = 0 in (15) for the fourth-order
potential).

There are some generic trends - the index of the RH solution is
lower for higher values of 𝑡 and 𝜀 in both cases. This is consistent
with the fact that the RH solution is stable closer to the isotropic-
nematic transition temperatures and for smaller droplets. Comparing
the indices with the sixth- and fourth-order potentials, the RH solution
has higher index in the sixth-order case compared to the fourth-order
case. This suggests that the sixth-order potential has a destabilising
effect on the RH solution, which could be explained on the grounds
that the sixth-order potential admits biaxial critical points, so there are
more unstable biaxial eigendirections for the RH solution, resulting in a
higher Morse index compared to the fourth-order potential which does
not admit biaxial critical points. We compute at most the ten smallest
eigenvalues. Blank spaces in the tables correspond to cases for which
all ten computed eigenvalues are negative or when the solver fails to
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compute the ten smallest eigenvalues, but the numerically computed
eigenvalues are negative.

5.4. The RH solution as an Index-1 transition state

In this section, we attempt to identify situations for which the RH
solution acts as an index-1 saddle point, because index-1 saddle points
are often referred to as transition states, relevant for switching between
two locally stable states [35]. In other words, the transition state
mediates the transition and may be observable in the non-equilibrium
dynamics.

We work with values of 𝑡 and 𝜀 for which the RH solution is an
index-1 critical point of the LdG energy (22) and (23). Our aim is to
compute the transition pathway between two index-0 LdG stationary
points, through an index-1 RH solution 𝒒∗ in (28). Using a gradient
flow method and taking small perturbations of the RH solution along
the direction of the eigenvector associated with the negative eigenvalue
of the Hessian as an initial condition, we solve the initial value problem

𝜕𝒒
𝜕𝜏

= −∇F (𝒒,∇𝒒) in 𝛺 for 𝜏 > 0,

𝒒 = 𝒒0 = 𝒒∗ ± 𝜆𝒖 in 𝛺 at 𝜏 = 0,
(29)

with boundary conditions (24)–(26), where 𝛺 is the quarter circle
domain; F is the LdG energy with the fourth- or sixth-order potential,
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Fig. 10. Morse index of the RH solution for the given value of 𝑡 and 𝜀 with the sixth-order potential (23), with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1.
given by (22) or (23), respectively; 𝑠+ is the scalar order parameter
of the global minimiser of the fourth- or sixth-order bulk potential in
the class of uniaxial Q-tensors with positive scalar order parameter;
the quantity 𝜆 is a small positive constant; and 𝒖 is the unstable
eigendirection of the RH solution. Note that (29) describes two different
initial values to compute two distinct index-0 LdG stationary points
in the class of 𝐐-tensors with mirror and rotational symmetry. We
discretise the 𝜏-dependent PDEs using an implicit Euler method.

As an example, the unstable eigendirection of the RH solution as a
stationary point of (23) with 𝑡 = −12, 𝜀 = 0.5, 𝑑 = 1, 𝑒 = 0, 𝑓 = 1 is
𝒖 = (6.11×10−2, 3.34×10−18, 1.15×10−18)𝑇 , at the origin. A perturbation
of the RH solution, 𝒒0 = 𝒒 + 𝜆𝒖, yields the biaxial torus configuration,
while a perturbation 𝒒0 = 𝒒 − 𝜆𝒖 yields the split core solution. This is
in agreement with the fact that 𝑞1 > 0 at the origin for the biaxial torus
and 𝑞1 < 0 at the origin for split core solutions.

Figs. 11(a) and 11(b) show examples of two index-0 stationary
points of the LdG free energy with the fourth–(22) and sixth-order
potentials (23) respectively, for 𝑡 = −12, 𝜀 = 0.5, with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1
in the sixth-order case, via a gradient flow method with the perturbed
index-1 RH solution as initial condition. This strongly suggests that
there are transition pathways via our index-1 RH solutions between
the index-0 biaxial torus and split core solutions at 𝑡 = −12 and
𝜀 = 0.5 in both cases. Note that the split core solution may not be
index-0 in the full class of admissible 𝐐-tensors without the symmetry
constraints. Nevertheless, we speculate that these reduced examples can
be generalised to show that the RH solution can act as a transition state
between two index-0 LdG stationary points in the admissible class (11),
without the symmetry constraints and exploiting the full five degrees
of freedom.

5.5. Bifurcation diagrams

We numerically compute bifurcation diagrams with the LdG free
energies (22) and (23), in Figs. 12(a) and 12(b) respectively. The value
of the scalar order parameter, 𝑠, of each configuration at the origin,
is plotted against temperature, noting that 𝑠(0) =

√

3
2 𝑞1(0) and all

configurations are uniaxial at the origin due to the boundary condi-
tions (25) and (26). In what follows, we only consider RH solutions with
positive order parameter profile, recalling that the global minimiser
of (14) can be negative for low temperatures. The two bifurcation
diagrams are qualitatively similar and the bifurcation points are simply
shifted: the RH solution, with 𝑠(0) = 0, is the unique stationary point
for high temperatures; the RH and biaxial torus configurations are
stable at intermediate temperatures, where we also observe an unstable
biaxial torus configuration. The RH configuration loses stability at low
temperatures, while the globally minimising biaxial torus configuration
remains stable, accompanied by the emergence of a locally stable split
core configuration. Unsurprisingly, the RH solution loses stability at a
higher critical temperature in the sixth-order case, compared to the
fourth-order case, so that the RH solution is unstable over a wider
11
Fig. 11. The transition pathways between two stable states. Split core and biaxial torus
via index-1 transition state RH with (a) the fourth-order potential (22) at 𝑡 = −12 and
𝜀 = 0.5, and (b) the sixth-order potential (23) with 𝑡 = −12, 𝜀 = 0.5, 𝑑 = 1, 𝑒 = 0, 𝑓 = 1.

temperature range with the sixth-order potential. We plot the stable and
unstable biaxial torus configurations with the fourth-order potential at
𝑡 = −6.5 in Figs. 14(a) and 14(b). We use a high-index optimisation-
based shrinking dimer (HiOSD) method [36] to compute the unstable
biaxial torus configuration in both cases, and continuation methods to
compute the bifurcation diagrams. The noticeable difference is that the
biaxial region is much closer to the origin for the unstable biaxial torus
solution. We deduce that there are only qualitative differences between
the stationary points of the LdG free energies (22) and (23), except
that uniaxial solutions are more unstable (typically have higher Morse
indices) in the sixth-order case and the biaxial stationary points have
larger regions of stability, and larger biaxial regions in the sixth-order
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Fig. 12. Bifurcation diagrams for the LdG free energies for 𝜀 = 0.5 with (a) fourth-
order potential (22) and (b) sixth-order potential (23) with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1. We
plot the scalar order parameter of each configuration. Bold solid lines indicate the
global minimiser; thin solid lines indicate local minimality; and dashed lines indicate
instability.

Fig. 13. Biaxial torus configuration at 𝑡 = −50, 𝜀 = 0.5, with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1.

case compared to the fourth-order case. A relevant remark is that the
biaxial torus solution is predominantly uniaxial away from the biaxial
torus, and hence, it would be interesting to check if it retains stability
when (4) strongly favours a bulk biaxial phase, with and without the
symmetry constraints (25) and (26).

5.6. Conclusions

In this paper, we perform some analytical and numerical studies of
a LdG free energy with a sixth-order bulk potential (4), as opposed
to the vast majority of theoretical studies which rely on the fourth-
order bulk potential (3). The potential (4) admits a biaxial minimiser
for sufficiently low temperatures, and in fact, does not admit stable
uniaxial minimisers deep in the nematic phase. By direct analogy
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with [7], one can prove that global minimisers of (2) with (4), will
converge to minimisers of (4) almost everywhere (except for defects or
boundary layers), for sufficiently large domains and are hence expected
to demonstrate bulk biaxiality. This is of course, hugely interesting
since bulk biaxiality is typically elusive and hard to detect experimen-
tally. We give an example of a biaxial torus with a large biaxial region
at the low temperature, 𝑡 = −50 in Fig. 13.

We focus on the concrete example of the RH solution, as a critical
point of (2) with (4). There are many analogies with the fourth-order
potential for moderately low temperatures, for which (4) admits a
global uniaxial minimiser with positive order parameter, and differ-
ences arise deep in the nematic phase, when the RH solution need
not be unique i.e. there are certainly multiple solutions of (15) for
sufficiently low temperatures, and the global minimiser of (14) is
negative in the interior, away from 𝑟 = 0 and 𝑟 = 1. The non-uniqueness
of solutions of (15) and negativity of the global minimiser of (14)
are outside the scope of the fourth-order potential. It is not clear if
these results have physical implications. One could argue that the LdG
model with the sixth-order potential is not necessarily valid for low
temperatures, when (4) has a global biaxial minimiser. It is interesting
that the global minimiser of (14) corresponds to a critical point of (6)
of the form

𝐐∗ = 𝑠∗
(

𝐫̂ ⊗ 𝐫̂ − 𝟏
3
𝐈
)

where 𝑠∗ is negative in the interior; this describes a uniaxial state for
which the NLC molecules prefer to be orthogonal to the normal or pre-
fer to be planar, which is consistent with cooling-induced homeotropic-
planar structural transitions observed in some experiments on nematic
shells [37]. One could speculate that (4) captures this physical effect,
which (3) cannot. Unsurprisingly, RH solutions have a smaller domain
of stability as critical points of (6), simply because (4) promotes bulk
biaxiality for sufficiently low temperatures, and RH solutions are purely
uniaxial with the exception of an isotropic point at the droplet centre.

We also numerically compute the biaxial torus and split core solu-
tions, as critical points of (23) with the additional symmetry constraints
(25) and (26). These critical points only exploit three out of the five
degrees of freedom. We do not observe any significant differences
between the fourth-order and sixth-order potential, except that the
biaxial regions are larger with (4) and these ‘‘locally’’ biaxial solutions
have larger domains of stability as critical points of (23), as opposed to
critical points of (22).

Besides the RH, split core, and biaxial torus solutions, which exist
as critical points of (22) and (23), we numerically compute a brand
new biaxial critical point of (6) which exploits the full five degrees of
freedom in Fig. 16. This biaxial solution is almost maximally biaxial
in the interior, except for the imposed uniaxial boundary condition
and the labelled defect rings, and does not have rotational or mirror
symmetry. Maximal biaxiality indicates a small or zero eigenvalue of
the corresponding 𝐐-tensor. Focussing on the defect rings, this biaxial
solution has a complete defect ring inside the sphere and two half
defect rings connected to the boundary (Fig. 16(a)). The two half defect
rings are located on the same plane, 𝑥1𝑥3-plane (Figs. 16(d) and 16(c)),
which is perpendicular to the 𝑥2𝑥3-plane that contains the complete
defect ring. From top to bottom in the 𝑥3 direction, we cross the upper
half-defect ring once, the complete defect ring twice, and the lower
half-defect ring once, and the defect lines are approximately uniaxial.
Hence, in the second figure of Fig. 17, there are two low-biaxiality
regions near 𝑟 = 1 and the four low-biaxiality areas inside the sphere. In
the third figure of Fig. 17, in the 𝑥2 direction, the complete defect ring
is crossed twice and hence, there are two uniaxial points at the end-
points (because of the imposed boundary condition) and two regions
of low biaxiality enclosed by the complete defect ring. The eigenvector
corresponding to the largest eigenvalue of 𝐐 is almost parallel to 𝑥1
and perpendicular to the plane of the complete defect ring, inside the
complete defect ring, and is almost radial elsewhere Fig. 16(b). This
biaxial solution exists when the temperature is low enough so that the



Physica D: Nonlinear Phenomena 459 (2024) 134019S. McLauchlan et al.
Fig. 14. (a) Stable biaxial torus configuration; and (b) unstable biaxial torus configuration for (22) with fourth-order potential, with 𝑡 = −6.5 with 𝜀 = 0.5. (c) stable biaxial torus;
and (d) unstable biaxial torus configuration for (23) with sixth-order potential, for 𝑡 = −4 and 𝜀 = 0.5, 𝑑 = 1, 𝑒 = 0, 𝑓 = 1.
Fig. 15. The eigenvalues of the global minimiser of the sixth-order bulk potential in
(6) with 𝑑 = 1, 𝑒 = 0, 𝑓 = 1 as a function of the temperature.

global minimiser of (4) is biaxial. Are there experimental implications?
Provided (6) is valid for such low temperatures (𝑡 < −50), Fig. 16(b)
suggests that the optical signature of this biaxial solution should be
completely different from the optical signatures of the RH, biaxial torus
and split core solutions which have a predominantly radial director.
This could be verified by taking optical measurements in the 𝑥2𝑥3 plane.
Of course, there are challenges related to the choices of the material
parameters in (4), about which little is known. Importantly, is this
biaxial solution a potential route for observing bulk biaxiality, since
it is almost maximally biaxial in the interior? We cannot comment on
this, since approximately biaxial configurations are described by a triad
of eigenvalues, (𝜆1, 𝜆2, 𝜆3) = (𝑙+𝜈,−𝜈−𝜇,−𝑙+𝜇) for some positive 𝑙, and
small 𝜈, 𝜇 ∈ R. Physically, this means that the molecules prefer to align
along the corresponding eigenvector 𝐞1 and orthogonal to the eigenvec-
tor 𝐞3, with disorder in the direction 𝐞2. From a theoretical perspective,
this is biaxial but experimentally, one may only detect ordering along
𝐞1 and the optical textures may resemble uniaxial textures with the
uniaxial director oriented along 𝐞1. In Fig. 15, we plot the eigenvalues
of the biaxial minimiser of (4), when it exists and it seems that there
is always one small eigenvalue. In this case, the eigenvector with the
largest positive eigenvalue may be experimentally identifiable with the
director, and one should certainly get different optical measurements
along the remaining two eigenvectors. We cannot comment on whether
this suggestion of taking experimental measurements in transverse
cross-sections can provide a reliable tool for observing biaxiality, since
these measurements can potentially be attributed to factors other than
biaxiality too. The details of the numerical method can be found in
Appendix B. Future work will include a detailed study of solution
landscapes of (10) for different model problems.

A physically relevant question is whether the sixth-order potential
better captures the liquid crystal behaviour than the fourth-order po-
tential. The key step is to identify realistic values of the parameters 𝑑, 𝑒
and 𝑓 for real liquid crystal materials. One could conduct multiscale
modelling and molecular dynamics simulations to obtain values for
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𝑑, 𝑒 and 𝑓 , for given liquid crystal materials. Once there are candidate
physically informed values of 𝑑, 𝑒, 𝑓 , we could conduct experiments on
the bulk experimentally observable phases in temperature regimes for
which the sixth-order potential favours uniaxiality, and temperature
regimes for which the sixth-order potential favours biaxiality. Given
the theoretical predictions of temperature regimes which favour bulk
biaxiality, one could conduct relevant experiments to test for bulk
biaxiality in those temperature regimes, and it is possible that the
required temperature regimes are simply not relevant or accessible.
Such a comparison to experiments would allow us to assess the relative
benefits and validity of the fourth- and sixth-order bulk potentials
respectively.
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Appendix A

We note that the proofs of Propositions 2 and 3 begin with the
general Euler–Lagrange equations corresponding to the free energy (6).
We then restrict both problems to the uniaxial case, and we use the
structure of the RH solution to reduce the proofs to arguments involving
just a scalar order parameter, 𝑠.

Proof of Proposition 2. We consider two subsets:

𝛺+ =
{

𝒓 ∈ 𝐵(0, 1) ∶ 𝑠(𝒓) ≥ 0
}

,

and 𝛺− =
{

𝒓 ∈ 𝐵(0, 1) ∶ 𝑠(𝒓) < 0
}

.

Suppose that the subset

𝛺 =

{

𝒓 ∈ 𝐵(0, 1) ∶ |𝐐∗(𝒓∗)|2 > 2
3
max

{

𝑠2+, 𝑠
2
−
}

}

,

where 𝛺 ⊂ 𝐵(0, 1)⧵𝜕𝐵(0, 1) ⊂ 𝛺+∪𝛺−, is nonempty. The subset 𝛺 does
not intersect 𝜕𝐵(0, 1) since max

{

𝑠2+, 𝑠
2
−
}

≥ 𝑠2+. Moreover, the function
|𝐐∗

| ∶ 𝐵(0, 1) → R attains a strict maximum at an interior point 𝒓∗ ∈ 𝛺.
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Fig. 16. The profile of biaxial solution with parameters 𝑡 = −50, 𝜀 = 0.2, 𝑑 = 1, 𝑒 = 0, 𝑓 = 1, 𝑤 = 1𝑒5, (𝑁,𝐿,𝑀) = (64, 64, 32). (a) The contour of 𝛽 = 0.5 inside the ball 𝐵(0, 0.9).
(b) On the plane perpendicular to 𝑥1, the box represents 𝐐-tensor with three edge lengths corresponding to 𝜆𝑖 + 𝑠+∕3, 𝑖 = 1, 2, 3 where 𝜆𝑖 are three eigenvalues of 𝐐 and three edge
directions corresponding to the three eigenvectors of 𝐐, 𝐧𝑖, 𝑖 = 1, 2, 3. (c-e) Cross-sections of the solution with normal vector 𝑥𝑖, 𝑖 = 1, 2, 3. The colour represents biaxiality 𝛽, and
the white lines represent the leading eigenvector 𝐧1.
Fig. 17. The plots of 𝑞𝑖, 𝑖 = 1,… , 5 and 𝛽 on the lines via origin along 𝐱1, 𝐱2, and 𝐱3 directions.
.

We multiply the Euler–Lagrange Eqs. (10) by 𝑄∗
𝑖𝑗 to find that

𝜀
(

1
2
𝛥|𝐐∗

|

2 − |∇𝐐∗
|

2
)

= 𝑡|𝐐∗
|

2 − 3
√

6 tr𝐐∗3 + 2|𝐐∗
|

4 + 𝑑|𝐐∗
|

2 tr𝐐∗3

+ 𝑒|𝐐∗
|

6 +
(𝑓 − 𝑒)

6
(

tr𝐐∗3)2.

since |∇𝐐∗
|

2+𝑄∗
𝑖𝑗𝛥𝑄

∗
𝑖𝑗 =

1
2𝛥|𝐐

∗
|

2. We note that 1
2𝛥|𝐐

∗(𝒓∗)|2−|∇𝐐∗(𝒓∗)|2
≤ 0 at the interior maximum.

Let us label

ℎ(𝐐) ∶= 𝑡|𝐐|

2 − 3
√

6 tr𝐐3 + 2|𝐐|

4

+ 𝑑|𝐐|

2 tr𝐐3 + 𝑒|𝐐|

6 +
(𝑓 − 𝑒)

6
(

tr𝐐3)2.

The aim is to show that ℎ is positive at 𝐐∗(𝒓∗) for a contradiction. First,
consider the case where 𝒓∗ ∈ 𝛺+. Then we may write

ℎ(𝐐∗(𝒓∗)) = 𝑡|𝐐∗(𝒓∗)|2 − 3|𝐐∗(𝒓∗)|3 + 2|𝐐∗(𝒓∗)|4

+ 𝑑
√

6
|𝐐∗(𝒓∗)|5 + 𝑒|𝐐∗(𝒓∗)|6 + (𝑓 − 𝑒)

6
|𝐐∗(𝒓∗)|6

since tr𝐐∗3 = 1
√

6
|𝐐∗

|

3. Note that ℎ(𝐐) =
√

3
2 |𝐐|𝑔′

(
√

3
2 |𝐐|

)

, and
√

3
2 |𝐐| = |𝑠|, for an arbitrary uniaxial Q-tensor of the form 𝐐𝑠 =

𝑠
(

𝒏⊗ 𝒏 − 1
3 𝐈
)

. Therefore, the sign of ℎ(𝐐) is dictated by the sign of
𝑔′(|𝑠|).

Let us write |𝐐∗(𝒓)| =
√

2
3 |𝑠

∗(𝒓)|. We have noted in Section 3 that
we are working in a parameter regime such that the function 𝑔 is a
double-welled potential with 𝑔′(𝑠−) = 𝑔′(𝑠+) = 0 below some transition
temperature 𝑡0. Moreover, we choose 𝑒 and 𝑓 so that 𝑔(𝑠) → +∞ as
|𝑠| → +∞, and since |𝑠∗(𝒓∗)| > max

{

𝑠+, |𝑠−|
}

, then we may conclude
that 𝑔′(|𝑠∗(𝒓∗)|) > 0 at the interior maximum 𝒓∗ ∈ 𝛺. Hence ℎ(𝐐∗(𝒓∗)) >
0, and there cannot be a strict interior maximum at 𝒓∗ ∈ 𝛺 .
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+

Now consider the case where 𝒓∗ ∈ 𝛺−. We may write

ℎ(𝐐∗(𝒓∗)) = 𝑡|𝐐∗(𝒓∗)|2 + 3|𝐐∗(𝒓∗)|3 + 2|𝐐∗(𝒓∗)|4

− 𝑑
√

6
|𝐐∗(𝒓∗)|5 + 𝑒|𝐐∗(𝒓∗)|6 + (𝑓 − 𝑒)

6
|𝐐∗(𝒓∗)|6,

since tr𝐐∗3 = − 1
√

6
|𝐐∗

|

3, and we note that ℎ(𝐐) = −
√

3
2 |𝐐|𝑔′

(

−
√

3
2 |𝐐|

)

Therefore, the sign of ℎ(𝐐) is dictated by the sign of −𝑔′(−|𝑠|). Then,
since 𝑔 is a double-welled potential with 𝑔′(𝑠−) = 𝑔′(𝑠+) = 0 such that
𝑔(𝑠) → +∞ as |𝑠| → +∞, and |𝑠∗(𝒓∗)| > max

{

𝑠+, |𝑠−|
}

, then we may
conclude that −𝑔′(−|𝑠∗(𝒓∗)|) > 0 at the interior maximum 𝒓∗ ∈ 𝛺.
Hence ℎ(𝐐∗(𝒓∗)) > 0, and there cannot be a strict interior maximum
at 𝒓∗ ∈ 𝛺−.

Thus, we combine the above two cases to find that the set 𝛺 must
be empty and the global minimiser 𝐐∗ in the class of uniaxial Q-tensors
must satisfy the upper bound

|𝐐∗
|

2 ≤ 2
3
max

{

𝑠2+, 𝑠
2
−
}

. □

Proof of Proposition 3. We prove uniqueness via a contradiction
argument, relying on a Pohozaev identity

𝜀2
(

1
2 ∫𝐵(0,1)

𝑄𝑖𝑗,𝓁𝑄𝑖𝑗,𝓁 𝑑𝑉

+ ∫𝜕𝐵(0,1)
𝑄𝑖𝑗,𝑘𝑥𝑘𝑄𝑖𝑗,𝓁𝑥𝓁 𝑑𝑆 − 1

2 ∫𝜕𝐵(0,1)
𝑄𝑖𝑗,𝓁𝑄𝑖𝑗,𝓁 𝑑𝑆

)

= ∫𝜕𝐵(0,1)
𝑓𝐵(𝐐) 𝑑𝑆 − 3∫𝐵(0,1)

𝑓𝐵(𝐐) 𝑑𝑉 , (A.1)

which is obtained from the Euler–Lagrange Eqs. (10) as is done in [7].
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We rewrite (A.1) as

F [𝐐] + 2∫𝐵(0,1)
𝑓𝐵(𝐐) 𝑑𝑉 = ∫𝜕𝐵(0,1)

𝑓𝐵(𝐐) 𝑑𝑆

+ 1
2 ∫𝜕𝐵(0,1)

𝑄𝑖𝑗,𝓁𝑄𝑖𝑗,𝓁 𝑑𝑆 − ∫𝜕𝐵(0,1)

(

𝑄𝑖𝑗,𝑘𝑥𝑘
)2 𝑑𝑆. (A.2)

Suppose for a contradiction that there exist 𝑠1, 𝑠2 ∈ A𝑠, 𝑠1 ≠ 𝑠2,
atisfying

[𝑠1] = 𝐼[𝑠2] = min
A𝑠

𝐼.

e apply (A.2) to 𝐐𝑠1 and 𝐐𝑠2 , simplify the resulting equations to
btain two equations involving 𝑠1 and 𝑠2, and subtract the second from
he first to obtain the relation

∫

1

0
𝑟2
(

𝑔(𝑠1) − 𝑔(𝑠2)
)

𝑑𝑟 =
(

𝑠′2(1)
)2 −

(

𝑠′1(1)
)2, (A.3)

recalling that 𝑠1(1) = 𝑠2(1) = 𝑠+.
The two functions 𝑠1 and 𝑠2 are distinct solutions of the Euler–

Lagrange Eq. (15) corresponding to the minimisation of 𝐼 . Hence
Lemma 2 in [15] ensures they cannot coincide on a neighbourhood of
zero. Suppose, without loss of generality, that 𝑠1 < 𝑠2 on (0, 𝜀). To show
that we must in fact have 𝑠1 < 𝑠2 on (0, 1), suppose for a contradiction
that there exists an 𝑟0 ∈ (0, 1) such that 𝑠1(𝑟0) = 𝑠2(𝑟0). We define the
function 𝑠̃ by

𝑠̃(𝑟) =

{

𝑠2(𝑟), 𝑟 ∈ (0, 𝑟0],
𝑠1(𝑟), 𝑟 ∈ (𝑟0, 1),

and we show that 𝑠̃ is a minimiser of 𝐼 . Denoting by ℎ[𝑠] the energy
density (𝐼[𝑠] = ∫ 1

0 ℎ[𝑠] 𝑑𝑟), and setting

𝑠̄(𝑟) =

{

𝑠1(𝑟), 𝑟 ∈ (0, 𝑟0],
𝑠2(𝑟), 𝑟 ∈ (𝑟0, 1),

we find that

𝐼[𝑠2] ≤ 𝐼[𝑠̄] = ∫

𝑟0

0
ℎ[𝑠1] 𝑑𝑟 + ∫

1

𝑟0
ℎ[𝑠2] 𝑑𝑟,

since 𝑠2 is a minimiser and 𝑠̄ lies in the admissible space. Therefore, it
holds that ∫ 𝑟0

0 ℎ[𝑠2] 𝑑𝑟 ≤ ∫ 𝑟0
0 ℎ[𝑠1] 𝑑𝑟, since

𝐼[𝑠2] = ∫

𝑟0

0
ℎ[𝑠2] 𝑑𝑟 + ∫

1

𝑟0
ℎ[𝑠2] 𝑑𝑟 ≤ ∫

𝑟0

0
ℎ[𝑠1] 𝑑𝑟 + ∫

1

𝑟0
ℎ[𝑠2] 𝑑𝑟.

Adding ∫ 1
𝑟0
ℎ[𝑠1] 𝑑𝑟 to both sides of the inequality yields 𝐼[𝑠̃] ≤ 𝐼[𝑠1], so

we may conclude that 𝑠̃ is a minimiser. Since 𝑠̃ is a minimiser, it must
be analytic by Proposition 1. Therefore, at 𝑟0 all of its right derivatives
are equal to those of 𝑠1. This tells us that 𝑠̃ = 𝑠1 on a neighbourhood
of 𝑟0, which implies that 𝑠1 = 𝑠2. This contradicts the assumption that
𝑠1 < 𝑠2 on (0, 𝜀). Therefore, we find that 𝑠1 < 𝑠2 on (0, 1). This implies,
together with 𝑠1(1) = 𝑠2(1), that

𝑠′1(1) ≥ 𝑠′2(1),

so the right-hand side of (A.3) is non-positive.
On the other hand, since 𝑡 < 0, we can show that 𝑔′(𝑢) < 0 for

𝑢 ∈ (0, 𝑠+), where 𝑔 is defined in (8) which is the same as

4(𝑓 + 5𝑒)
81

𝑠3+ + 4𝑑
27

𝑠2+ + 8
9
𝑠+ −

2
√

6
3

< 0,

provided 𝑑 > 0. Hence the energy density 𝑔 is decreasing on [0, 𝑠+].
Then since 𝑠1 < 𝑠2, we find that

∫

1

0

(

𝑔(𝑠1) − 𝑔(𝑠2)
)

𝑑𝑟 > 0.

Therefore the left-hand side of (A.3) is positive, and we have reached
our contradiction.

We prove nonnegativity via a contradiction with the assumption
that there exists an interior measurable subset

𝛤 =
{

𝑟 ∈ (0, 1) ∶ 𝑠∗(𝑟) < 0
}

⊂ [0, 1],
15
with 𝑠∗(𝑟) = 0 on 𝜕𝛤 . We define the perturbation

̄∗ =

{

𝑠∗(𝑟), 𝑟 ∈ [0, 1] ⧵ 𝛤 ,
−𝑠∗(𝑟), 𝑟 ∈ 𝛤 .

Then

𝐼[𝑠̄∗] − 𝐼[𝑠∗] = ∫𝛤

(

4
√

6
9

𝑠∗3 − 8𝑑
135

𝑠∗5
)

𝑟2 𝑑𝑟 < 0,

where 𝐼 is defined in (14), if 𝑠∗2 < 15
√

6
2𝑑 for 𝑑 > 0 since 𝑠∗(𝑟) < 0 on 𝛤

by assumption. Also, since 𝑠∗2 ≤ 𝑠2+ by Proposition 2, we can guarantee
hat 𝐼[𝑠∗]−𝐼[𝑠∗] < 0 if 𝑠2+ < 15

√

6
2𝑑 . However, this contradicts the energy

minimality of 𝑠∗. It follows that 𝑠∗(𝑟) ≥ 0 for 𝑟 ∈ [0, 1] if 𝑠2+ < 15
√

6
2𝑑 .

To show that 𝑠∗(𝑟) > 0 for 𝑟 > 0 assume for a contradiction that
there exists some 𝑟0 ∈ (0, 1] such that 𝑠∗(𝑟0) = 0. Since we have already
shown that 𝑠∗(𝑟) ≥ 0 on [0, 1], the function 𝑠∗ must therefore have a
minimum at 𝑟0. Then

𝑑𝑠∗

𝑑𝑟
|

|

|𝑟=𝑟0
= 0 and 𝑑2𝑠∗

𝑑𝑟2
|

|

|𝑟=𝑟0
≥ 0.

However, if we substitute 𝑠∗(𝑟0) into (15), we find that 𝑑2𝑠∗

𝑑𝑟2
|

|

|𝑟=𝑟0
= 0. We

can repeat this process to find that, in fact, 𝑑𝑛𝑠∗

𝑑𝑟𝑛
|

|

|𝑟=𝑟0
= 0 for all 𝑛 ∈ N.

owever, this cannot be true because we know from Proposition 1 that
∗ is analytic and we have the boundary condition 𝑠∗(1) = 𝑠+. Therefore,
e have reached a contradiction, so 𝑠∗(𝑟) > 0 on (0, 1].

We prove monotonicity using an argument analogous to [15, Propo-
ition 3]. □

roof of Proposition 5. We consider a general biaxial perturbation

̂ (𝒓) =
⎧

⎪

⎨

⎪

⎩

𝐐∗(𝒓) + 𝑝̃(𝑟)
(

𝒛⊗ 𝒛 − 1
3
𝐈
)

, 0 ≤ 𝑟 ≤ 0.1,

𝐐∗(𝒓), 0.1 ≤ 𝑟 ≤ 1,

here 𝑝̃ ∶ [0, 1] → R is nonzero for 0 < 𝑟 < 0.1, and 𝑝̃(𝑟) = 0 for
.1 ≤ 𝑟 ≤ 1, and 𝐐∗ is the RH solution. We find that
1
4𝜋

(

F [𝐐̂] − F [𝐐∗]
)

≤ ∫

0.1

0

(

𝜀2

3

(

𝑑𝑝̃
𝑑𝑟

)2
+ 𝑡

3
𝑝̃2 −

2
√

6
9

𝑝̃3 + 28
45

𝑠∗2𝑝̃2 + 2
9
𝑝̃4

+ 𝑑
5

(

4
27

𝑠∗3𝑝̃2 + 52
135

𝑠∗2𝑝̃3 + 4
27

𝑝̃5
)

+ 𝑒
6

(

8
5
𝑠4+𝑝̃

2 + 128
945

𝑠∗3𝑝̃3 + 8
5
𝑠∗2𝑝̃4

+ 16
9
𝑠∗𝑝̃5 + 8

27
𝑝̃6

)

+
(𝑓 − 𝑒)

6

(

4
45

𝑠4+𝑝̃
2

+ 112
405

𝑠∗3𝑝̃3 + 4
45

𝑠∗2𝑝̃4 + 4
81

𝑝̃6
)

)

𝑟2 𝑑𝑟.

For large negative 𝑡, we can approximate 𝑠+ by 𝑠+ ≈

(

−27𝑡
2(𝑓 + 5𝑒)

)1∕4

.

Suppose we are working with large negative 𝑡. Then substituting

𝑝̃(𝑟) = 1 − 10𝑟
(𝑟2 + 12)2

(A.4)

into the above, we find that 1
4𝜋

(

F [𝐐̂] − F [𝐐∗]
)

< 0 if

𝑡 ≲
500𝜀2(77184𝑒 + 16437𝑓 )

428440𝑒 − 32975𝑓
.

Therefore we may conclude that the biaxial perturbation 5 with 𝑝̃ as
in (A.4) has lower free energy than the RH in the low temperature
regime. □
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Appendix B

Numerical method for finding the biaxial state

Instead of using a Dirichlet boundary condition, the homeotropic
anchoring is imposed on the surface of the sphere, 𝜕𝐵(0, 1) by the
following surface energy:

𝐹𝑠 = ∫𝜕𝐵(0,1)
𝑤
2
(𝐐̃ −𝐐𝑠+ )

2𝑑𝑆, (B.1)

here 𝐐𝑠+ is defined in (7), 𝑤 = 27𝐶𝑊
𝐵2𝑅

is the nondimensionalised
anchoring strength, and 𝑊 is the anchoring strength. We set 𝑤 = 1𝑒5 in
our numerical calculation, which is extremely strong anchoring which
plays almost the same role as the Dirichlet boundary conditions in (7).

Assuming the order parameter is given by

𝐐 =
⎡

⎢

⎢

⎣

𝑞1 𝑞2 𝑞3
𝑞2 𝑞4 𝑞5
𝑞3 𝑞5 −𝑞1 − 𝑞4

⎤

⎥

⎥

⎦

,

we can expand the component of 𝐐-tensor in terms of Zernike polyno-
mials,

𝑞𝑖(𝑟, 𝜃, 𝜙) =
𝑀−1
∑

𝑚=1−𝑀

𝐿−1
∑

𝑙=|𝑚|

𝑁−1
∑

𝑛=𝑙
𝐴(𝑖)
𝑛𝑙𝑚𝑍𝑛𝑙𝑚(𝑟, 𝜃, 𝜙), (B.2)

where 𝑁 ≥ 𝐿 ≥ 𝑀 ≥ 0 specify the truncation limits of the expanded
series, with

𝑍𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑅(𝑙)
𝑛 (𝑟)𝑃 |𝑚|

𝑙 (cos 𝜃)𝑋𝑚(𝜙),

𝑅(𝑙)
𝑛 (𝑟) =

{

∑(𝑛−𝑙)∕2
𝑠=0 𝑁𝑛𝑙𝑠𝑟𝑛−2𝑠, if 𝑛−𝑙

2 ≥ 0, 𝑛−𝑙
2 ∈ Z,

0, otherwise,

𝑁𝑛𝑙𝑠 = (−1)𝑠
√

2𝑛 + 3
𝑛−𝑙
∏

𝑖=1
(𝑛 + 𝑙 − 2𝑠 + 1 + 𝑖)

𝑙
∏

𝑖=1
( 𝑛 − 𝑙

2
− 𝑠 + 𝑖) 2𝑙−𝑛

𝑠!(𝑛 − 𝑠)!
.

where

𝑋𝑚(𝜙) =

{

cos𝑚𝜙, if 𝑚 ≥ 0,
sin |𝑚|𝜙, if 𝑚 < 0.

nd 𝑃𝑚
𝑙 (𝑥) (𝑚 ≥ 0) are the normalised associated Legendre polynomials.

Substituting (B.2) into the sum of the energy functional in (6) and
the surface energy in (B.1), we obtain a free energy as a function of
these unknown coefficients 𝐴(𝑖)

𝑛𝑙𝑚. We minimise the energy function by
sing a standard optimisation method, L-BFGS [38] with a random
nitial condition 𝐴(𝑖)

𝑛𝑙𝑚 = 0.2(2𝑟𝑎𝑛𝑑()∕𝑅𝐴𝑁𝐷𝑀𝐴𝑋 − 1), where 𝑟𝑎𝑛𝑑()
eturns a pseudo-random number in the range of [0, 𝑅𝐴𝑁𝐷𝑀𝐴𝑋 ) in
++, 𝑖 = 1,… , 5.
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