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a dataset of global ocean alkaline 
phosphatase activity
Bei Su  1,2 ✉, Xianrui Song  1, Solange Duhamel  3, Claire Mahaffey4, Clare Davis4,5, 
Ingrid Ivančić6 & Jihua Liu1

Utilisation of dissolved organic phosphorus (DOP) by marine microbes as an alternative phosphorus 
(P) source when phosphate is scarce can help sustain non-Redfieldian carbon:nitrogen:phosphorus 
ratios and efficient ocean carbon export. However, global spatial patterns and rates of microbial 
DOP utilisation are poorly investigated. Alkaline phosphatase (AP) is an important enzyme group 
that facilitates the remineralisation of DOP to phosphate and thus its activity is a good proxy for 
DOP-utilisation, particularly in P-stressed regions. We present a Global Alkaline Phosphatase Activity 
Dataset (GAPAD) with 4083 measurements collected from 79 published manuscripts and one database. 
Measurements are organised into four groups based on substrate and further subdivided into seven 
size fractions based on filtration pore size. The dataset is globally distributed and covers major oceanic 
regions, with most measurements collected in the upper 20 m of low-latitude oceanic regions during 
summer since 1997. This dataset can help support future studies assessing global ocean P supply 
from DOP utilisation and provide a useful data reference for both field investigations and modelling 
activities.

Background & Summary
Phosphorus (P) is an essential element for marine life1 and the ultimate limiting nutrient of ocean productivity2.  
Dissolved inorganic phosphorus (DIP), essentially phosphate, is the preferred P source for most microor-
ganisms, but is often scarce in the surface ocean, especially in the North Atlantic Subtropical Gyre and the 
Mediterranean Sea3–5. Dissolved organic phosphorus (DOP) comprises the majority of the dissolved P pool 
in the surface open ocean, but is not readily available to many microorganisms6. Alkaline phosphatase (AP), a 
group of metalloenzymes that catalyses the hydrolysis of a broad spectrum of marine DOP compounds, enables 
remineralisation of DOP to DIP7,8 and therefore provides the potential to alleviate phosphorus limitation for 
marine organisms.

Alkaline phosphatase is often induced at extremely low phosphate concentrations, i.e., below a threshold 
phosphate concentration of ~30 nmol L−1 9, resulting in a high rate of alkaline phosphatase activity (APA) in 
P-limited oceanic regions10,11. Therefore, APA is an important indicator of P-limitation and a useful proxy to 
gauge DOP-utilisation by marine microorganisms12. Studies quantifying APA started in the 1970s13 and have 
greatly improved our understanding of the marine phosphorus cycle. To facilitate better understanding of the 
role of AP in P supply via microbial DOP-utilisation, we present a Global Alkaline Phosphatase Activity Dataset 
(GAPAD) including 4083 measurements during the last 50 years, with 4051 measurements from 79 published 
manuscripts and 32 measurements from 1 database14. Global Alkaline Phosphatase Activity Dataset is the most 
comprehensive dataset published thus far since it includes not only APA measurements from the global trop-
ical and subtropical oceans, but also their temporal and spatial information, as well as relevant environmental 
parameters including dissolved inorganic and organic phosphorus concentrations, chlorophyll a concentration, 
salinity and temperature14. The workflow of the GAPAD compilation is shown in Fig. 1.

Four substrates have been used to measure APA in GAPAD, i.e., 4-methylumbelliferyl phosphate (MUF-P), 
6, 8-difluoro-4-methylumbelliferylphosphate (DiFMUP), 3-O-methylfluorescein phosphate (MFP), and 
paranitrophenyl phosphate (pNPP) (Fig. 2). There are respectively 2919, 232, 233 and 699 measurements 
collected from 54, 10, 6 and 9 studies applying MUF-P, DiFMUP, MFP and pNPP as substrates14. Although  
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minor differences exist in their experimental methods, rates are often measured at saturating substrate concen-
trations to obtain the potential activity15, except when concentrations between 30 and 100 nmol L−1 are used to 
represent in-situ substrate concentration16–19. Furthermore, we have applied statistical methods to flag outliers 
in order to improve the quality of the dataset (Table 1). The majority of the APA measurements are within a 
latitudinal span of 50°S–50°N, with a higher density in the northern hemisphere (Fig. 2a). The sampling depths 
range from 0 to 4000 m, with most sampling depths located within 20 m of the surface (Fig. 2b). Measurements 
were performed between years 1971 and 2019 (Fig. 2c), and there are more measurements in summer months 
(400–600 per month) compared to winter months (~200 per month; Fig. 2d).

Alkaline phosphatase activity measured with the substrate MUF-P is the most common and widely dis-
tributed in global oceans (Fig. 3a). In the North Atlantic and the Northeast Pacific oceans, APA was meas-
ured with the substrate DiFMUP, with fractions of particulate APA, phytoplankton APA, and Trichodesmium 
APA mostly measured in the North Atlantic (Fig. 3b). Average bulk APA (APA measured with unfiltered 
water) rates in the North Atlantic (2.49 ± 2.34 nmol L−1 h−1, n = 77, mean ± SD) are higher than in the east-
ern Pacific (0.84 ± 0.38 nmol L−1 h−1, n = 4; Fig. 4b). For the MFP substrate, bulk APA rates are available in 
the Mediterranean Sea and the Atlantic, while phytoplankton APA was only measured in the East China Sea 
(Fig. 3c). All APA measurements with pNPP as the substrate are from coastal waters of the Pacific, the Indian 
Ocean and the Mediterranean Sea (Fig. 3d).

We have also divided APA measured with each substrate according to different fraction types, i.e., bulk APA, 
dissolved APA, particulate APA, bacterial APA, phytoplankton APA, Trichodesmium APA, and zooplankton 
APA (Fig. 3). Since APA measured with the substrate MUF-P is the most abundant and widely distributed 
in GAPAD (Fig. 3a), with bulk APA covering a large part of the Atlantic, the Pacific, and the Mediterranean 
Sea, we further analyse their distributions and rates (Figs. 4a, 5). The bulk APA rates near the coasts (161.96 ± 
523.03 nmol L−1 h−1, n = 1528, defined as water depth less than 1000m in this study) are generally higher than 
those in the open ocean (2.60 ± 6.94 nmol L−1 h−1, n = 749,  defined as water depth>1000m). The highest APA 
rate (6583 nmol L−1 h−1) is in the northern Adriatic Sea (Fig. 4a). Dissolved APA have been measured in the 
Northwest Pacific, the Mediterranean Sea, and the North Atlantic (Fig. 5a), whereas particulate APA has been 
measured in the Northwest Pacific, the Equatorial west Atlantic and the Indian Ocean (Fig. 5b). Bacterial APA 
has been measured in the North Atlantic and the South China Sea (Fig. 5c), whereas the phytoplankton APA has 
also been measured mainly in the South China Sea, Adriatic Sea and Bay of Biscay (Fig. 5d) and Trichodesmium 
APA has been measured in the North Atlantic and near the coast of northern Australia in GAPAD (Fig. 5e).

In oligotrophic marine environments, AP may contribute a large fraction of DOP utilisation and is therefore 
important for supporting the non-Redfieldian carbon:nitrogen:phosphorus (C:N:P) ratios of marine organisms 
and marine carbon export20. Due to the important role of AP in alleviating P-limitation for diazotrophs and 
supporting N2 fixation, it may also control ecological diversity by giving them an ecological advantage when 
competing for resources with non-diazotrophs9,20–24. Global Alkaline Phosphatase Activity Dataset will provide 
a new resource for the study of the global ocean phosphorus cycling, further elucidating impacts on these critical 
processes.

Fig. 1 Work-flow of GAPAD compilation, standardization and quality-control.
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Methods
Four substrates have been used in the APA measurements, i.e., MUF-P8,9,15–19,25–72, DiFMUP10,12,73–80, MFP13,81–85  
and pNPP86–94. Since a fluorescent (or colored) product is released when a substrate is hydrolysed by AP in 
a seawater sample, APA can be measured by detecting the changes in fluorescence (or color) over time. 
Measurements were mostly carried out with unfiltered water (bulk APA) and two pre-filtrations with filter sizes 
of 0.22 µm and 3 µm (size-fractionated APA). The dissolved fraction is often identified as <0.22 µm, even though 
this might contain nanoparticles, colloidal nanogels and/or viruses95. The particulate fraction is usually identi-
fied as >0.22 µm30, except in a few studies in this compilation75,87,88, using >0.25 µm or >0.4 µm. The bacterial 
fraction, containing heterotrophic bacteria and picocyanobacteria, is often identified as 0.22–3 µm40, except 
Duhamel et al., Lim et al. and Bogé et al., who used 0.2–0.6 µm12 or 0.2–0.8 µm36, 0.2–2 µm45 and 0.25–5 µm87, 
respectively. The phytoplankton fraction is often from samples prefiltered through meshes of different pore 
sizes, e.g., 120 µm83, 200 µm41 and 1 mm81,82 to remove zooplankton. Lim et al. and Bogé et al. identify the phy-
toplankton fraction as 2–20 µm45 and 5–90 µm87, respectively. Several studies also identify a Trichodesmium 
fraction49,51,76,94,96,97 and a zooplankton fraction (>90 µm)86–88.

For samples collected on filters with different pore sizes, samples are usually re-suspended in sterile 
phosphate-free artificial seawater10 or autoclaved pre-filtered seawater47 for several minutes before the start of 
the experiment. Standard fluorescent products, e.g., MUF (methylumbelliferone), with concentrations typically 

Fig. 2 APA measurement distributions in the ocean. (a) Latitudinal, (b) Vertical, (c) Yearly, and (d) Monthly 
distributions of APA measurements with each substrate colored. Blue, orange, yellow and purple bars represent 
measurements with the substrates MUF-P, DiFMUP, MFP and pNPP, respectively.

APA Number of measurements

Number of 
identified 
outliers

xlog  before/after  
outlier identification  
(nmol L−1 h−1)

slog before/after outlier 
identification  
(nmol L−1 h−1)

Bulk 2266 0 0.89/0.89 1.19/1.19

Dissolved 292 0 0.49/0.49 1.21/1.21

Particulate 116 2 0.0045/−0.047 0.97/0.89

Bacterial 92 0 1.31/1.31 0.77/0.77

Phytoplankton 93 0 1.78/1.78 0.76/0.76

Trichodesmium 30 0 0.37/0.37 1.67/1.67

Table 1. Results of the outlier identification method applying to the substrate MUF-P. Definitions of the 
different fractions of APA in this table are described in the Methods section. xlog: log10-transformed mean 
values. slog : log10-transformed standard deviation values.
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ranging from 0 to 2000 nM are used to produce the standard curve for converting the rate of change in fluores-
cence to a substrate hydrolysis rate32. Fluorescence is measured using a fluorometer immediately after substrate 
addition and at regular intervals (e.g., 30 min). The rate of APA is derived from the changes of fluorescence 

Fig. 3 Global distribution of APA measurements in GAPAD for the different four substrates. (a) MUF-P,  
(b) DiFMUP, (c) MFP and (d) pNPP. Each marker represents a fraction, with red plus, green pentagram, blue 
cross, yellow square, magenta diamond, cyan upward-pointing triangle and black right-pointing triangle 
representing bulk APA, dissolved APA, particulate APA, bacterial APA, phytoplankton APA, Trichodesmium 
APA, and zooplankton APA respectively. Definitions of the different fractions of APA in this figure are 
described in the Methods section.

Fig. 4 Global distribution of Log10-transformed full-depth-averaged bulk APA measurements in GAPAD for 
the four different substrates. (a) MUF-P, (b) DiFMUP, (c) MFP and (d) pNPP.
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over time and converted to hydrolysis rate using the calibration curve. To improve the accuracy of the calcu-
lation, seawater blanks, boiled samples or ultrapure water are used to correct fluorescence measurements and 
account for abiotic substrate hydrolysis or degradation12,32,35. Enzyme-kinetic parameters (Michaelis-Menten 
parameters including the maximum hydrolysis rate (Vmax), and the half-saturation constant (Km)) are also 
determined in some studies using data from incubations of different substrate concentrations in unfiltered 
seawater35.

The APA data have been collected by searching published manuscripts with key words ‘alkaline phosphatase; 
alkaline phosphatase activity; AP; APA; ocean; coast’ in multiple academic service platforms, i.e., the Web of 
Science (https://www.webofscience.com/), the China National Knowledge Infrastructure (CNKI, https://www.
cnki.net/), and the Wanfang Data Knowledge Service Platform (https://www.wanfangdata.com.cn/), as well as 
available databases, i.e., the Biological & Chemical Oceanography Data Management Office (BCO-DMO) and 
the British Oceanographic Data Centre (BODC). We reported APA measurements in environmental samples 
and combined all available measurements to create the most comprehensive global coverage of in-situ APA 
with the procedures described in Fig. 1. Most data have been obtained directly from the figures and tables in 
the published manuscripts. Data that could not be obtained directly have been digitized from figures using the 
Engauge Digitizer 12.1 software or provided by the authors on request25,28,33,37–41,46,47,54,55,82,98,99. Some authors 
provided unpublished data from their dissertations100–102, which are then included in GAPAD. Data presented 
in appendices of published manuscripts are also included in this compilation11.

The units of APA are often reported as volumetric rates, e.g., nmol L−1 h−1, µmol L−1 h−1, or nmol L−1 min−1. 
However, some APA measurements are normalized to other parameters, e.g., chlorophyll a concentration (pmol µg 
Chl−1 min−1)81,82, cell abundance (nmol cell−1 h−1)12 or Trichodesmium colony abundance (nmol colony−1 h−1)51.  
We unified the units to the volumetric rates by multiplying them by the in-situ concentrations of the respective 
parameters. Finally, we transformed all units to nmol L−1 h−1.

Fig. 5 Global distribution of Log10-transformed full-depth-averaged APA measurement of MUF-P in GAPAD 
for the five different fractions. (a) dissolved APA, (b) particulate APA, (c) bacterial APA, (d) phytoplankton 
APA and (e) Trichodesmium APA.
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Data Records
Global Alkaline Phosphatase Activity Dataset is included in 4 sheets of a dataset file according to substrate type, 
i.e., MUF-P, DiFMUP, MFP, and pNPP. Each sheet includes the following fields for each record:

Source of data
Latitude (−90° to 90°)
Longitude (−180° to 180°)
Sampling depth (m)
Cruise
Site/Station
Year
Month
APA (nmol L−1 h−1)

Bulk
Dissolved
Particulate
Bacteria
Phytoplankton
Trichodesmium
Zooplankton

Dissolved Inorganic Nitrogen (nmol L−1)
Dissolved Inorganic Phosphorus (nmol L−1)
Dissolved Organic Phosphorus (nmol L−1)
Chlorophyll a (µg L−1)
Colony abundance (colony L−1)
Cell abundance (cell L−1)
Salinity (psu)
Temperature (°C)
Alkaline phosphatase activity measurements are subdivided into seven fractions according to their filtration 

sizes as outlined in the Methods section described above. In addition, environmental parameters reported to poten-
tially impact rates of APA are also included whenever they are available in published articles or databases, and a 
summary of detailed sources of APA data is on sheet 5 of the dataset file. The dataset file in Excel Workbook (xlsx) 
format can be accessed on Figshare using the link (https://doi.org/10.6084/m9.figshare.c.6340244.v1)14. ‘– 999’  
denotes missing data. The dataset will be updated by the authors when new data are available.

technical Validation
Alkaline phosphatase activity in the ocean ranges from below the detection limit (denoted by 0, e.g. <=0.002 nmol  
L−1 h−1 in Yamaguichi et al.68) to very high rates as much as 6583 nmol L−1 h−1 for MUF-P, which is largely 
controlled by ambient DIP concentration and DOP availability9,36,44. Therefore, APA rates are not normally 
distributed and show a positively skewed distribution with long tails of high values. However, the collected APA 
rates are approximately log-normally distributed after excluding the data points of zero.

In order to control the quality of GAPAD, we applied the Chauvenet’s criterion to identify suspicious outliers 
whose probability of deviation from the mean is less than 1/(2n)103, where n is the number of measurements. 
Since the APA rates are approximately log-normal distributed, the method is only applied to the log-transformed 
non-zero data. We use the MATLAB norminv function to calculate the critical value (xlog*) with the mean xlog , 
the standard deviation slog, and the evaluated probability values in p, where p is calculated from 1-1/(4n) instead 
of 1/(2n), because the Chauvenet’s criterion is a two-tailed test and only data at the tail with high values will be 
identified. Then data points with values larger than the critical value xlog* will be flagged. In this study, we apply 
the method only once in each of the seven fractions of the four groups categorized by substrate respectively, 
except when it has less than 20 measurements.

We accept all the data which are not flagged by the Chauvenet’s criterion. For the flagged suspicious outliers, 
we determine whether to exclude them from GAPAD or not after carefully assessing their values to validate that 
they are very skewed from the approximate log-normal distribution. The results of the quality control applied 
following this approach are shown in Table 1.

Usage Note
Global alkaline phosphatase activity dataset can serve as a reference to field investigators for assessing their 
results, and to biogeochemical modelling scientists for model validation. With our APA dataset, the role of envi-
ronmental factors affecting APA can also be examined to understand the role of global ocean phosphate supply 
from AP-catalysed DOP utilisation in response to future climate change.

Code availability
The source codes for identifying outliers used in this paper are available at https://github.com/BGM-USD2020/
GAPAD_codes.git.
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