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Abstract

Scene synthesis is a challenging problem with several industrial applications.
Recently, substantial efforts have been directed to synthesize the scene using
human motions, room layouts, or spatial graphs as the input. However, few studies
have addressed this problem from multiple modalities, especially combining text
prompts. In this paper, we propose a language-driven scene synthesis task, which
is a new task that integrates text prompts, human motion, and existing objects
for scene synthesis. Unlike other single-condition synthesis tasks, our problem
involves multiple conditions and requires a strategy for processing and encoding
them into a unified space. To address the challenge, we present a multi-conditional
diffusion model, which differs from the implicit unification approach of other
diffusion literature by explicitly predicting the guiding points for the original data
distribution. We demonstrate that our approach is theoretically supportive. The
intensive experiment results illustrate that our method outperforms state-of-the-art
benchmarks and enables natural scene editing applications. The source code and
dataset can be accessed at https://lang-scene-synth.github.io/.

1 Introduction

Scene synthesis has gained significant attention from the research community in the past few years (Ye
et al., 2022). This area of research has numerous applications such as virtual simulation, video
animation, and human-robot communication (Yi et al., 2023). Recently, many scene synthesis
methods have been proposed (Ye et al., 2022; Yi et al., 2023; Wang et al., 2019a). However, most
of these methods generate objects based on furniture distribution (Paschalidou et al., 2021) rather
than customized user preferences. On the contrary, arranging household appliances is a personalized
task, in which the most suitable room layout is usually the one that fits our eyes best (Chang et al.,
2017). In this work, we hypothesize that the scene can be synthesized from multiple conditions such
as human motion, object location, and customized user preferences (i.e., text prompts). We show
that the text prompt input plays an important role in generating physically realistic and semantically
meaningful scenes while enabling real-world scene editing applications.

Existing literature on scene synthesis often makes assumptions about scene representation, such as
knowing floor plan (Wang et al., 2018) or objects are represented using bounding boxes (Paschalidou
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Figure 1: We introduce Language-driven Scene Synthesis task, which involves the leverage of human-
input text prompts to generate physically plausible and semantically reasonable objects.

et al., 2021). These assumptions limit the ability to represent the object in a finer manner or edit
the scene. To address these limitations, we revisit the 3D point clouds representation (Zhao et al.,
2021), a traditional approach that can capture both the spatial position and the shape of objects (Rusu
et al., 2007). The use of 3D point clouds can represent objects that are not directly linked to human
movement, which is a constraint in the representation of contact points in (Ye et al., 2022), and lead
to a more comprehensive and meticulous representation of the scenes.

To synthesize the scene from multiple conditions, including existing objects of the scene represented
by 3D point clouds, human motion, and their textual command, we propose a new multi-conditional
diffusion model. Although several multi-conditional diffusion models have been presented re-
cently (Nichol et al., 2021), most of them focus on images/videos and employ implicit unification of
all latent spaces (Ma et al., 2023; Nguyen et al., 2023; Qin et al., 2023; Zhang and Agrawala, 2023;
Zhao et al., 2023; Ruan et al., 2022). On the other hand, we introduce the first multi-conditional
diffusion model on 3D point clouds and an explicit mechanism to combine multiple conditions.
Specifically, we introduce a concept of guiding points for scene synthesis and theoretically show that
the guiding points explicitly contribute to the denoising process. The intensive empirical evidence
confirms our findings.

Taking advantage of using the text prompt input, we introduce a new family of editing operations for
the scene synthesis task, including object replacement, shape alternation, and object displacement.
Inspired by (Tseng et al., 2022; Tevet et al., 2022; Song et al., 2020; Saharia et al., 2022), our proposed
method enables users to select an object they want to modify and specify their desired changes via
textual command. Our experimental results show that the proposed methodology yields encouraging
editing results, demonstrating the potential of our method to bridge the gap between research and
practical real-world applications. Our contribution can be summarized as:

• We present the language-driven scene synthesis task, a new challenge that generates objects
based on human motions and given objects while following user linguistic commands.

• We propose a new multi-conditional diffusion model to tackle the language-driven scene
synthesis task from multiple conditions.

• We validate our method empirically and theoretically, and introduce several scene-editing
applications. The results show remarkable improvements over state-of-the-art approaches.

2 Related Works

Scene Representation. Generating new objects in a scene requires a scene representation method.
Prior works have proposed many approaches to address this problem. Fisher et al. (2012) projects
objects onto the 2D surface and sample jittered points for each object. Similarly, 2D heatmaps are
implemented in (Qi et al., 2018). However, the major limitation of both mentioned approaches is that
boundaries of 2D projections often do not capture sufficient details of 3D objects (Yi et al., 2019).
Recent approaches, such as ATISS (Paschalidou et al., 2021) and MIME (Yi et al., 2023) represent
each object as a 3D bounding box using a quadruple of category, size, orientation, and position,
which has limitation in estimating the corresponding shape of the object. Additionally, Ye et al.
(2022) represent objects as contact points with a sequence of human movements, but this approach
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only works for objects attached to human motions and ignores detached objects. To overcome these
shortcomings, we propose a representation method based on 3D point clouds (Qi et al., 2017a) that
estimates not only the positions of room objects but also their shapes (Yi et al., 2019).

Scene Synthesis. The literature about scene synthesis can be categorized into the following groups. i)
Scene synthesis from floor plan (Paschalidou et al., 2021; Wang et al., 2019a, 2021; Ritchie et al., 2019;
Wang et al., 2018): generating objects that fit a given floor layout, which clearly lacks incorporating
human interactions with objects. ii) Scene synthesis from text (Chang et al., 2015, 2014, 2017; Savva
et al., 2017; Ma et al., 2018): completing a scene given a textual description of the room arrangement.
The majority of these works do not consider human motions in the generated scenes. The prevalent
solution, for instance, SceneSeer (Chang et al., 2017) implements a scene template capturing the
relationship between room objects. However, this method necessitates considerable manual effort,
resulting in inflexibility. iii) Scene synthesis from human motions (Yi et al., 2023; Ye et al., 2022;
Nie et al., 2022; Yi et al., 2023): generating objects aligning with a human motions sequence. The
assumption in this direction is more practical since humans are interactive, but the existing issue is
that the generated object often complies with the dataset distribution than personalized intentions.
iv) Scene synthesis from spatial graph (Jiang et al., 2018; Li et al., 2019; Dhamo et al., 2021; Wang
et al., 2019a; Qi et al., 2018): rendering scene from a spatial graph. Despite having a great potential
to describe large 3D scenes (Wald et al., 2020), spatial graphs require regular updates to account
for entities such as humans with multifaceted roles, which results in extensive computation (Gadre
et al., 2022). Since humans usually arrange objects with their personalized intentions, we propose a
task that comprises both text prompts and human motions as the input, which aims to overcome the
domain gap from scene synthesis research to real-life practice.

Diffusion Models for Scene Synthesis. Diffusion probabilistic models are a group of latent variable
models that leverage Markov chains to map the noise distribution to the original data distribution (Sohl-
Dickstein et al., 2015; Song and Ermon, 2020; Ho et al., 2020; Luo and Hu, 2021). In Dhariwal
and Nichol (2021), classifier-guided diffusion is introduced for conditional generation tasks and
has since been improved by Nichol et al. (2021); Ho et al. (2022). Subsequently, inspired by these
impressive results, numerous works based on conditional diffusion models have achieved state-
of-the-art outcomes in different generative tasks (Liu et al., 2023; Tevet et al., 2022; Tseng et al.,
2022; Le et al., 2023; Huang et al., 2023). However, in our problem settings, the condition is a
complicated system that includes not only textual commands but also the existing objects of the
scene and human motions. Therefore, a solution to address multi-conditional guidance is required.
While multi-conditional diffusion models have been actively researched, most of them focus on
images/videos and utilize implicit unification of all latent spaces (Ma et al., 2023; Ruan et al., 2022;
Zhang and Agrawala, 2023; Zhao et al., 2023). On the other hand, we propose a novel approach to
handle multi-conditional settings by predicting the guiding points as the mean of the original data
distribution. We demonstrate that the guiding points explicitly contribute to the synthesis results.

3 Methodology

3.1 Problem Formulation

We input a text prompt e and a partial of the scene S, which consists of human pose H
and a set of objects {O1, O2, . . . , OM}. Each object is represented as a point cloud: Oi =
{(xi

0, y
i
0, z

i
0), . . . , (x

i
N , yiN , ziN )}. Let y = {e,H,O1, . . . , OM} be the generative conditions. Our

goal is to generate object OM+1 consistent with the room arrangement of S, human motion H , and
semantically related to e:

maxPr (OM+1|y) . (1)

We design a guidance diffusion model to handle the task. The forward process is adapted as in (Ho
et al., 2020), and our primary focus is on developing an effective backward (denoising) process. Our
problem involves multiple conditions, so we propose fusing all conditions into a new concept called
Guiding Points, which serves as a comprehensive feature representation. We provide theoretical
evidence demonstrating that guiding points explicitly contribute to the backward process, unlike the
previous implicit unification of multi-conditional diffusion models in the literature (Sohl-Dickstein
et al., 2015; Song and Ermon, 2020; Ho et al., 2020; Luo and Hu, 2021).
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3.2 Multi-conditional Diffusion for Scene Synthesis

Forward Process. Given a point cloud x0 drawn from the interior of OM+1. We add Gaussian noise
each timestep to obtain a sequence of noisy point clouds x1,x2, . . . ,xT as follows:

q(xt+1|xt) = N (
√

1− βtxt, βtI); q(x1:T |x0) =

T−1∏
t=0

q(xt+1|xt) , (2)

where variance βt is determined by a known scheduler. Eventually when T → ∞, xT is equivalent
to an isotropic Gaussian distribution.

Backward Process. The goal of the conditional reverse noising process is to determine the backward
probability q̂(xt|xt+1,y). We begin with the following proposition:

Proposition 1.

q̂(xt|xt+1,y) =
q(xt|xt+1)q̂(y|xt)

q̂(y,xt+1)
E [q(xt+1|x0)] . (3)

Proof. See Appendix B.

Remark 1.1. The expression in Eq. (3) provides a more explicit formulation of q̂(xt|xt+1,y) in
comparison to the conditional backward process presented in (Dhariwal and Nichol, 2021). This
enables a further examination of the impact of the multi-condition y on the prediction of x0.
Remark 1.2. Sohl-Dickstein et al. (2015) indicate that generating canonical samples from Eq. (3) is
often infeasible. Assume x0 is drawn from a uniform distribution over a domain of S and q(y|x0) is
non-zero uniform over S, we discretize the expression in Eq. (3) by

q̂(xt|xt+1,y) ≈
q(xt|xt+1)q̂(y|xt)

q̂(y,xt+1)

1

|Ŝ|

∑
x0∈Ŝ

q(xt+1|x0)q(x0) , (4)

with Ŝ being the sampling set of x0. Using Bayes’ theorem, we obtain:

q(x0) =
q(x0)q(x0,y)

q(x0,y)
=

q(x0,y)

q(y|x0)
=

q(x0|y)q(y)
q(y|x0)

. (5)

As q(y) is independent with denoising process, q(x0) is uniform, and q(y|x0) is non-zero uniform
over S; we infer q(x0|y) is also uniform over S. In addition, q(x0) ̸= 0 ⇔ q(x0|y) ̸= 0; thus, Ŝ can
also be considered as a sampling set of x0|y. We can now derive Eq. (4) using Eq. (5) as follows:

q̂(xt|xt+1,y) ≈ κq(xt|xt+1)q̂(y|xt)
1

|Ŝ|

∑
x0|y∈Ŝ

q(xt+1|x0)q(x0|y) , (6)

where κ = q(y)/ (q(y|x0)q̂(y,xt+1)). Denote µ0 as the mean of the initial probability distribution
q(x0). Consequently, µ0|y can be used to approximate x0|y. We further consider S̃, the sampling
set of estimated points of µ0 as an approximation of Ŝ; therefore, Eq. (6) can be reduced to:

q̂(xt|xt+1,y) ≈ κq(xt|xt+1)q̂(y|xt)
1

|S̃|

∑
x0|y∈S̃

q(xt+1|x0)q(x0|y) . (7)

In our problem settings, x0 is drawn from the interior of an object uniformly; therefore, Remark 1.2
is applicable. Inspired by Tevet et al. (2022), we model the conditional reverse noising process in
Eq. (7) using the following reduction form:

q̂(xt|xt+1,y) ≈ f(xt+1,y, S̃) , (8)

where f is a neural network. The main difference between our proposal and related works is that we
incorporate the term guiding points S̃ into the backward probability.
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3.3 Guiding Points Network

Observation. The text-based modality is a reliable and solid source of information to synthesize
unseen objects, given partial entities of the scene (Chang et al., 2014). Indeed, while many works
contemplate floor plan as a significant input (Wang et al., 2019a; Yi et al., 2023; Paschalidou et al.,
2021), we find that the floor plan is redundant for generating the target object when the context is
known. Consider the example in Fig. 2a- 2c, which is also common in not only our problem but
also in our daily life. In this scene, a human is sitting on a chair with another nearby; suppose the
human gives a command: “Place a desk to the right of me and next to the chair.”. Regardless of the
floor plan, there is only an optimal setting location, depicted in Fig. 2b, for the desk. Therefore, the
text-based modality provides enough information to achieve our task.

(a) Input scene meshes. (b) Generated desk. (c) Auxiliary objects.

Figure 2: Motivational example. In this example, we want to generate an object aligned with the
following command: "Place a desk to the right of me and next to the chair."

In this example, what is the most crucial factor that the modal command offers? The answer is the
spatial relation implied from the linguistic meanings, which is also indicated in Chang et al. (2014).
We further argue this spatial relationship is entity-centric as it only prioritizes certain scene entities.
Indeed, if there are two round tables added to the scene as in Fig. 2c, the optimal location for the
target object remains the same. Consequently, the targeted object primarily depends on the position
of the human and the chair, i.e., a defined set of scene entities.

To align each given scene entity with the target object OM+1, we use 3D transformations ap-
proach (Besl and McKay, 1992). Specifically, for a given point cloud Oi = {oi0, oi1, . . . , oiN},
our objective is to compute a transformation matrix for each point oij given by:

Fi;j =

α
i
x βi

x γi
x tix

αi
y βi

y γi
y tiy

αi
z βi

z γi
z tiz

0 0 0 1

 . (9)

We can predict each point ôi of the target object by applying transformation matrix Fi;j to each oij :
x̂i
j

ŷij
ẑij
1

 =

α
i
x βi

x γi
x tix

αi
y βi

y γi
y tiy

αi
z βi

z γi
z tiz

0 0 0 1



xi
j

yij
zij
1

 , (10)

where oij = (xi
j , y

i
j , z

i
j) and ôij = (x̂i

j , ŷ
i
j , ẑ

i
j). We refer this concept of predicting ôij as guiding

points, which has been introduced in the main paper.

Next, as observed in Fig. 2c, we find that each object Oi contributes differently in providing clues
to locate the object OM+1. This implies that each object should possess its own attention score,
represented by a scalar wi, which resembles the famous attention technique (Vaswani et al., 2017).
We employ this attention mechanism to determine attention matrix w = [w0,w1, . . . ,wM ] of the
set of objects and utilize the 3D transformation in Eq. (10) to determine guiding points.

Guiding Points Prediction. Fig. 3 illustrates the method overview. We hypothesize that the target
object can be determined from the scene entities using 3D transformation techniques (Park et al.,
2017). Each scene entity contributes a distinct weight to the generation of the target object, which
can be inferred from the spatial context of the text prompt as discussed in our Observation. Our
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Figure 3: Methodology overview. Our main contribution is the Guiding Points Network, where we
integrate all information from the conditions y to generate guiding points S̃.

central component, the Guiding Points Network utilizes the theory in Section 3.2 to establish a
translation vector between each scene entity and the target object and then utilizes the high-level
translation to determine point-wise transformation matrices for each scene entity. Finally, guiding
points are obtained by aggregating the contributions of all scene entities, which are weighted by their
corresponding attention scores.

Initially, we extract point-level features from the input by feeding human motions H into a human
pose backbone (Hassan et al., 2021) and objects O1, O2, . . . , OM into a point cloud backbone (Qi
et al., 2017a) to obtain point-level representations: [Q0, Q1, Q2, . . . , QM ]. We encode e using a text
encoder (Radford et al., 2021) to obtain the text feature e′. Following the point-level extraction for
each scene entity, we extract spatial information from the text prompt by utilizing the off-the-shelf
multi-head attention layer (Vaswani et al., 2017), where the input key is the text embedding e′, the
input queries are the given scene entities. The attention layer computes two outputs: w, which
represents the weights that indicate the contribution of each scene entity to the generation of guiding
points, and v, which denotes the translation vectors between the scene entities and the target object.

We then utilize the weight w and translation vectors v to calculate the guiding points S̃ using 3D
transformations. From the vi of each scene entity, we predict a set of transformation matrices Fi for
each point of that scene entity. This approach, apart from applying an identical translation vector to
every point, diversifies the point set distribution, therefore, can capture the shape of the target object.
The guiding points Si derived from Qi are then calculated by applying the corresponding point-wise
transformation matrices Fi to the points of the scene entity (Fig. 3). Finally, we composite all relative
guiding points from each entity with its corresponding wi as follows: S̃ =

∑M
i=0 Siwi.

Output Procedure. Eventually, we want to sample xt given the input xt+1 and conditions y. We
compute the signal xt given by: xt = MLP(xt+1, t+ 1, S̃). More information about the model and
training procedure can be found in the Appendix C.

4 Experiment

We first compare our method for the scene synthesis task with other recent work and demonstrate its
editing applications. We then assess the effectiveness of the guiding points to the synthesis results.
All experiments are trained on an NVIDIA GeForce 3090 Ti with 1000 epochs within two days.

4.1 Language-driven Scene Synthesis

Datasets. We use the following datasets to evaluate the language-driven scene synthesis task: i) PRO-
teXt: We contribute PRO-teXt, an extension of PROXD (Hassan et al., 2019) and PROXE (Zhang et al.,
2020). There are 180/20 interactions for training/testing in our PRO-teXt dataset. ii) HUMANISE:
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We utilize 143/17 interactions of HUMANISE (Wang et al., 2022) to train/test. Details of the datasets
are specified in the Appendix D.

Baselines. We compare our approach Language-driven Scene Synthesis using Multi-conditional
Diffusion Model (LSDM) with: i) ATISS (Paschalidou et al., 2021). An autoregressive model
that outputs the next object given some objects of the scene. ii) SUMMON (Ye et al., 2022). A
transformer-based approach that predicts the human’s contact points with objects. iii) MIME (Yi
et al., 2023). An autoregressive model based on transformer techniques to handle human motions.
Since the language-driven scene synthesis is a new task and none of the baselines utilize the text
prompt, we also set up our model without using the text input for a fair comparison. iv) MIME +
text embedding. We extend MIME with a text encoder to handle the text prompts; the represented
text features are directly concatenated to the transformer layers of the original MIME’s architecture.
v) MCDM. We implement a multi-conditional diffusion model (MCDM) that directly combines all
features from the input (3D point clouds, text prompts).

Metrics. As in (Lyu et al., 2021), we employ three widely used metrics in 3D point cloud tasks,
Chamfer distance (CD), Earth Mover’s distance (EMD), and F1 score, to evaluate the degree of
correspondence between the predicted point cloud and the ground truth of the target object.

PRO-teXt HUMANISE
Baseline CD ↓ EMD ↓ F1 ↑ CD ↓ EMD ↓ F1 ↑

ATISS (Paschalidou et al., 2021) 2.0756 1.4140 0.0663 5.3595 2.0843 0.0308
SUMMON (Ye et al., 2022) 2.1437 1.3994 0.0673 5.3260 2.0827 0.0305

MIME (Yi et al., 2023) 2.0493 1.3832 0.0990 5.4259 2.0837 0.0628
MIME + text embedding 1.8424 1.2865 0.1032 4.7035 1.8201 0.0849

MCDM 0.6301 0.7269 0.3574 0.8586 0.8757 0.2515

LSDM w.o. text (Ours) 0.9134 1.0156 0.0506 1.1740 1.1128 0.0412
LSDM (Ours) 0.5365 0.5906 0.5160 0.7379 0.7505 0.4395

Table 1: Scene synthesis results. Bold and underline are the best and second-best, respectively.

Quantitative Results. Table 1 summarises the results of our method and other approaches. In the
absence of text prompts, our method shows remarkable improvements in CD and EMD metrics,
while MIME achieves the highest F1 score. When text prompts are employed, our LSDM yields
dominant results compared to all baselines in all metrics. Notably, the F1 scores of our method are
approximately 1.45 times and 1.76 times greater than the second-best in PRO-teXt and HUMANISE,
respectively. This result confirms the importance of text prompts and our explicit strategy for the
scene synthesis task.

Qualitative Results. We utilize the object recovery algorithm (Ye et al., 2022) and 3D-FUTURE (Fu
et al., 2021) to synthesize 3D scenes. Fig. 4 demonstrates the qualitative results. It is clear that our
proposed method successfully generates more suitable objects, while other benchmark models fail to
capture the desired positions. More qualitative results can be found in our demonstration video.

User Study. We ask 40 users to evaluate the generated results of all methods from the PRO-teXt and
HUMANISE datasets. 8 output videos are generated from each method and placed side-by-side. The
participants evaluate based on three criteria: naturalness, non-collision, and intentional matching.
Fig. 5 shows that our method is preferred over the compared baselines in most cases and is the closest
to the ground truth.

4.2 Scene Editing with Text Prompts

The use of text prompts provides a natural way to edit the scene. We introduce three operations based
on users’ text prompts: i) Object Replacement: given an object OM+1, the goal is to replace OM+1

with a new object O∗
M+1 via a text prompt e∗. ii) Shape Alternation: we alter the shape of an object

OM+1 by a text prompt e∗ to obtain a new shape built upon OM+1. We follow Tevet et al. (2022) by
retaining a quarter of OM+1’s point cloud, which contains the lowest z-coordinate points (i.e., those
closest to the ground) while diffusing the remaining 75% through our pre-trained model. iii) Object
Displacement: we want to move object OM+1 to a new position using a textual command e∗.

7



Place a desk in front of me

(a) Input (b) ATISS (c) SUMMON (d) MIME (e) Ours w.o. text (f) Ours

Place a sofa under me

Figure 4: Scene visualization. We present illustrative examples generated by all baseline methods on
two test cases: generating a desk (first row) and a sofa (second row).

Figure 5: User evaluation of all baselines.

Operation CD ↓ EMD ↓ F1 ↑
Object replacement 12.8825 2.1757 0.0574

Object displacement 7.4405 2.2897 0.0032
Shape alternation 3.4249 1.3754 0.5108

Table 2: Scene editing results.

(a) Object Replacement (b) Shape Alternation (c) Object Displacement
Original Original OriginalEdited Edited Edited

Replace the sofa with a rectangle table Change the chair into an accent one Move the bed to the right of me

Figure 6: Scene editing visualization. We provide qualitative results of three introduced editing
operations. The text prompts are indicated above each example.

Qualitative Results. Fig. 6 illustrates the proposed editing operations, showcasing the promising and
semantically meaningful outcomes obtained by our method. The above settings are close to real life,
which bridges the gap between the scene synthesis literature and practical applications.

Quantitative Results. Table 2 shows the quantitative results of scene editing operations. The
experiment setups are described in our Appendix 2. Table 2 demonstrates that our approach yields
decent performance for the shape alternation operation while there is still scope for improvement
in the other operations. It is worth noting that shape alternation is relatively easier than object
replacement and displacement as inherits 25% of the target object as the input.
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4.3 Ablation Study

This section presents an in-depth study of the proposed neural architecture. We show the impact
of each modality on the overall results. We also provide a detailed analysis of the importance and
effectiveness guiding points technique.

How does each modality contribute to the performance? To understand the contributions of each
component utilized to predict guiding points as well as overall results, we conduct a comprehensive
analysis in Table 3. In the first row, our model does not predict the high-level translation vector v,
which results in the absence of guiding points. When our model does not predict F (second row),
it utilizes v to generate an identical transformation matrix for each point of an entity. In the next
two rows, only a partial representation of the scene (human/objects) is used. Table 3 shows that the
utilization of v,F, as well as the inclusion of text prompts, humans, and existing objects substantially
impact the prediction of guiding points and the final results.

Baseline Input used S̃ CD ↓ EMD ↓ F1 ↑
LSDM w.o. predicting v ∅ none 4.6172 2.1086 0.0391
LSDM w.o. predicting F text, human, objects partial 1.8933 1.1350 0.2400

LSDM predicting S̃ from only objects text, objects partial 1.5050 1.0653 0.3185
LSDM predicting S̃ from only human text, human partial 1.0119 0.8419 0.3855

LSDM (ours) text, human, objects full 0.5365 0.5906 0.5160

Table 3: Components Analysis. We assess the performance of our method under different settings.

Can guiding points represent the target object? Recall that the guiding points are estimations
of the mean µ0. To determine whether our method can reasonably predict µ0 from the conditions
y, we provide both quantitative and qualitative assessments. We first compare s2 and d20 in Table 4.
The relatively small errors suggest that our model has good generalization capability towards unseen
objects, as the forecast guiding points are in close proximity to the ground truth centroids. In addition,
we provide demonstrations of our proposed guiding points mechanism. Fig. 7 depicts guiding
points S̃ in three test scenarios. The visualization illustrates that our guiding points (red) extend
seamlessly over the centroids of the target objects (blue). This outcome fulfills our original intent
when synthesizing the new object based on the guiding points. Furthermore, referring to Table 3
and 4, we observe that as the MSE decreases, the model’s performance improves, providing empirical
confirmation of the usefulness of guiding points.

MSE=0.0329 MSE=0.0249 MSE=0.0063

Target point cloud Guiding points

Figure 7: Guiding points visualization. The
MSE is indicated above each sample.

Baseline MSE ↓
LSDM w.o. predicting F 0.5992

LSDM predicting S̃ from only objects 0.4618
LSDM predicting S̃ from only human 0.3388

LSDM (ours) 0.2091

Minimal squared distance d20 0.0914

Table 4: Guiding points evaluation. We cal-
culate the MSE between predicted S̃ and the
centroids of target objects.

How does each scene entity contribute to the generation of guiding points? Fig. 8a demonstrates
how the attention mechanism determines the most relevant objects providing information for the
generation of guiding points. In this example, in response to the text prompt "Place a one-seater sofa
under me and beside the sofa", the utilized mechanism assigns the highest attention weight to the
human and subsequently to the sofa numbered 2 referenced in the prompt. This is consistent with the
semantic meaning of the text prompt, which enables our model to correctly leverage the attention
weights from scene entities to generate guiding points.

How many guiding points are needed for the estimation process? Fig. 8b demonstrates the
influence of the number of guiding points used in the estimation process on the CD and F1 metrics.
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The result illustrates that the effectiveness of our method is directly proportional to the number of
guiding points employed. However, the performance of our approach reaches a plateau as the number
of guiding points surpasses 1024. Consequently, to optimize the results as well as computational
complexity, we set the number of guiding points to 1024.

sofa_2, w=0.28

sofa_1, w=0.06human, w=0.50

table, w=0.16

(a) Normalized attention weights of scene entities. (b) Impact of the number of guiding points.

Figure 8: Additional guiding points analysis. We present: (a) how our model attends to scene
entities to determine guiding points and (b) a study on scaling guiding points.

5 Discussion

Limitations. Although achieving satisfactory results and meaningful scene editing applications,
our LSDM approach still holds some limitations. First, our theoretical findings have an assumption
constrained to uniform data like point clouds. Second, we train the guiding point network jointly with
the denoising process; therefore, the predicted guiding points are not always aligned with the target
object. Some failure cases of guiding points are visualized in Appendix F. In addition, our scene
editing demonstrates modest results and necessitates future improvements.

Broader Impact. We believe our paper has two key applications. First, our proposed language-driven
scene synthesis task can be applied to metaverse and animation. For instance, a user enters an
empty apartment and gives different commands (e.g., "Putting a sofa in the corner," "Placing a table
next to the sofa") to arrange the room furniture (where physical contact is not mandatory). Second,
our proposed guiding points concept is a general concept and can be applied beyond the scope of
scene synthesis literature. Guiding points can be applied to visual grounding tasks such as language
driven-grasping (Vuong et al., 2023), where we can predict guiding pixels indicating possible boxes
from the conditions to guide the denoising process.

6 Conclusion

We have introduced language-driven scene synthesis, a new task that incorporates human intention into
the process of synthesizing objects. To address the challenge of multiple conditions, we have proposed
a novel solution inspired by the conditional diffusion model and guiding points to effectively generate
target objects. The intensive experimental results show that our method significantly improves over
other state-of-the-art approaches. Furthermore, we have introduced three scene editing operations
that can be useful in real-world applications. Our source code, dataset, and trained models will be
released for further study.
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A Remarks on Related Work

Human-aware Scene Synthesis. Although there are many scene synthesis works, a few of them
consider human motions. To our best knowledge, MIME (Yi et al., 2023) and Ye et al. (2022) are the
most related literature to ours. We compare our paper with other works in Table 5.

Scene Representation Text input Customized Editable

SUMMON (Ye et al., 2022) Contact points ✗ ✗ ✗
MIME (Yi et al., 2023) 3D bounding box ✗ ✗ ✗

Ours Point cloud ✓ ✓ ✓

Table 5: Our work vs. related human-aware scene synthesis findings.

We further remark on the metrics utilized in our study in comparison to other related works. In (Ye
et al., 2022), two metrics, namely reconstruction accuracy and consistency score, are employed to
evaluate the predicted contact labels against the ground truth, primarily focusing on the reconstruction
of room objects. However, since our approach directly predicts the point cloud of the target object,
metrics that specifically assess the reconstruction of 3D point clouds, such as CD, EMD, and F1, are
more suitable for addressing the original objective outlined in (Ye et al., 2022).

Yi et al. (2023) adopt three metrics: interpenetration, IoU, and FID score. Although FID is a solid
metric, we contend that the FID score is not adequate for our proposed task, as a single orthogonal
top-down view may not capture sufficient details of 3D scenes (Li et al., 2022). Lastly, the IoU metric
can be well-covered by the metrics we have employed in this study, namely CD, EMD, and F1. The
metric of interpenetration is expanded in our 3D configuration in the following manner:

3D IP =

∑M
i=1

∑
p∈ÔM+1

Ip∈Oi
+
∑

p∈ÔM+1
Ip∈H

|ÔM+1|
, (11)

where we denote ÔM+1 as the target object predicted by any baseline, and I indicates whether a
point p belonging to the predicted point cloud lies within the interior of the scene entity or not.
Supplementary results on FID and IP metrics are shown in Appendix Sec. F.

Point Cloud Estimation. PointNet (Qi et al., 2017a) stands as one of the pioneering deep learning
approaches for extracting point cloud data representations. Followed by this seminal work, a variety
of methodologies have been utilized to tackle the problem of estimating point sets (Zhou et al., 2021):
GNN-based (Wang et al., 2019b), GAN-based (Achlioptas et al., 2018; Cai et al., 2020; Li et al.,
2021), flow-based (Yang et al., 2019), transformer-based (Zhao et al., 2021), etc. Overall, prior works
have shown remarkable results on 3D deep learning tasks, such as semantic/part segmentation and
shape classification (Zhao et al., 2021). Since designing point cloud neural networks that have the
ability to create photorealistic, novel, and distinctive shapes remains a challenge (Li et al., 2021);
therefore, in this paper, we do not establish a novel point cloud network but rather use existing
baselines to evaluate the scene synthesis problem.

B Conditional Denoising Process with Guiding Points

Following the Conditional Reverse Noising Process (Dhariwal and Nichol, 2021), we use the similar
definition of the conditional noising q̂, given by:

q̂(x0)
def
= q(x0) , (12)

q̂(xt+1|xt,y)
def
= q(xt+1|xt) , (13)

q(y|x0) = Known per sample , (14)

q̂(x1:T |x0,y)
def
=

T−1∏
t=0

q̂(xt+1|xt,y) . (15)
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Proof of Proposition 1.
It follows from (Dhariwal and Nichol, 2021, pages 25-26) that

q̂(xt) = q(xt) , (16)

and

q̂(xt|xt+1,y) =
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
. (17)

By using Bayes’ Theorem and Eq. (16), we have

q̂(y|xt+1) =
q̂(y,xt+1)

q̂(xt+1)
=

q̂(y,xt+1)

q(xt+1)
. (18)

We can progressively compute q(xt+1) as follows

q(xt+1) =

∫
S

q(xt+1,x0)dx0 =

∫
S

q(xt+1|x0)q(x0)dx0 = E [q(xt+1|x0)] . (19)

Combining Eqs. (18) and (19) into Eq. (17), we can verify that

q̂(xt|xt+1,y) =
q(xt|xt+1)q̂(y|xt)

q̂(y,xt+1)
E [q(xt+1|x0)] . (20)

Thus, Proposition 1 is then proved.
Proposition 2. Let G be the convex hull of S and d0 be the minimum distance from any point
on a facet of G to the centroid µ0. By denoting G◦ as the interior of G and assuming S̃ =

{r1, r2, . . . , rL}, ri ∼ N (µ0, σ
2
0I), and s2 = 1

L

∑L
i=1 ∥ri − µ0∥2 >

Cσ2
0

L , we show that

Pr (ri ∈ G◦) ≥ 1

2

(
1 + erf

(
d0

O(s)

))
. (21)

Proof. Since any point that has the distance to µ0 less than d0 must lie within the interior of G (Boyd
and Vandenberghe, 2004). Therefore

Pr (ri ∈ G◦) ≥ Pr (∥ri − µ0∥ < d0) . (22)

It is sufficient to prove the Proposition 2 with an alternative term Pr (∥ri − µ0∥ < d0). Since ri is
drawn from N (µ0, σ

2
0I), we have that

Pr (∥ri − µ0∥ < d0) =
1

2

(
1 + erf

(
d0

σ0

√
2

))
. (23)

According to the definition of the standard deviation, the following is obtained

s2 =
1

L

L∑
i=1

∥ri − µ0∥2 . (24)

Since each ri ∼ N (µ0, σ
2
0I), we can write ri = µ0 + σ0ϵi, where ϵi ∼ N (0, I). The Eq. (24) can be

rewritten as

s2 =
σ2
0

L

L∑
i=1

∥ϵi∥2 . (25)

Eq. (25) indicates that s2L
σ2
0

follows a chi-squared distribution with L degrees of freedom. Since

s2 >
Cσ2

0

L , we infer that σ0 = O(s). Therefore, we can rewrite Eq. (23) as follows

Pr (∥ri − µ0∥ < d0) =
1

2

(
1 + erf

(
d0

O(s)

))
. (26)

From Eqs. (22) and (26), we conclude this proposition.
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The condition s2 >
Cσ2

0

L is applicable, as we have proved in the Appendix that s2L
σ2
0

follows a
chi-squared distribution with L degrees of freedom. By considering the specific value C = 1.0, we
can easily check that the probability of s2L

σ2
0

> C is greater than 1− 10−9 when L exceeds 20. We
establish the following corollary:

Corollary 2.1.
lim
s→0

Pr (ri ∈ G◦) = 1,∀ri ∈ S̃ . (27)

Verification of Corollary 2.1 is straightforward, as erf(z) in Eq. (21) is known to be monotonically
increasing to 1 when z → ∞ (DeGroot and Schervish, 2012). Furthermore, this corollary implies that
a smaller MSE (s2) between the predicted guiding points S̃ and µ0 corresponds to a more accurate
sampling set. Our experiments (In Sec. 4.3) also validate this implication.

C Implementation Details

Let N be the number of points in each scene entity. We begin with conducting point-level feature
extraction from the given scene arrangement by Q0 = HumanPoseBackbone(H0) ∈ RN×3 and
[Q1, Q2, . . . , QM ] = PointCloudBackbone ([O1, O2, . . . , OM ]) ∈ RM×N×3.

Subsequently, the input text prompt e is embedded using a text encoder via: ẽ = TextEncoder(e) ∈
RD. The dimension of the text encoder backbone, denoted as D, varies depending on the specific
architecture. In order to standardize the output of all text encoders, we apply linear layers as follows:
e′ = LinearLayers(ẽ) ∈ Rdtext .

To obtain high-level translations for each scene entity Qi, we employ a multi-head attention
layer, where the input key is e′ and the query as well as the value are extracted point features
[Q0, Q1, . . . , QM ]. We revise the calculation of this layer as follows:

Attention(query, key, value) = Softmax(
query · key⊤

√
n

)value,

MultiheadAttention(query, key, value) = [head1; . . . ; headh]WO

where headi = Attention(query ·WQ
i , key ·WK

i , value ·WV
i ) .

(28)

Upon passing through this layer, we obtain latent features denoted as zi ∈ Rdv and atten-
tion weight represented as wi ∈ [0, 1]. The high-level translation of each scene entity is
given by: [v0,v1, . . . ,vM ] = LinearLayers([e′ ∥ z0, e′ ∥ z1, . . . , e′ ∥ zM ]) ∈ R3, in which ∥
denotes as the concatenate notation. The follow-up step in LSDM involves determining the
transformation matrix for each point in the scene entities by reusing the multi-head atten-
tion: [F′

0, . . . ,F
′
M ] = MultiheadAttention ([v0, . . . ,vM ] , [Q0, . . . , QM ] , [Q0, . . . , QM ]), where

F′
i ∈ RN×dF . The output transformation matrices are computed given by: [F0, . . . ,FM ] =

LinearLayers ([F′
0, . . . ,F

′
M ]) ∈ R(M+1)×12.

Guiding points inferred from each point cloud, is calculated as Si = {Fi;jQ
⊺
i;j |j = 0;N} ∈

RN×3,∀i = 0;M . For simplicity, we represent the application of the transformation matrix to point
Qi;j as Fi;jQ

⊺
i;j , followed by the equation presented in Eq. (10). The weighted guiding points are

then obtained via a reduction using w as follows: S̃ =
∑M

i=0 Siwi ∈ RN×3.

In order to align the hidden features of the current timestep with the size of the point cloud, we
replicate them N times: t′ = Repeat(LinearLayers(t + 1)) ∈ RN×dt . Finally, the denoised point
cloud is calculated by the following process:

x′
t+1 = LinearLayers(xt+1 ∥ t′) ∈ RN×3,

x′
t = x′

t+1 + S̃ ∈ RN×3,

xt = LinearLayers(x′
t) ∈ RN×3 .

(29)
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During training, we use the loss function similar to Tevet et al. (2022):
L = ∥x0 − x̂0∥2 . (30)

Architecture Summarization. As illustrated in the main paper, our network architecture contains:
(i) a human pose backbone, (ii) a point cloud backbone, (iii) a text encoder followed by standardized
MLP layers, (iv) a multi-head attention followed by MLP layers to compute v, (v) a multi-head
attention followed by MLP layers to compute F, (vi) MLP layers for transformation operations, and
(vii) an MLP encoder-decoder pair. We summarize the neural architecture as well as hyperparameters
of LSDM as in Table 6 and 7.

Component Description Input size Output size

(i) A pcd. backbone extracting features from the human pose [N, 3] [N, 3]
(ii) A pcd. backbone extracting features from M objects [M,N, 3] [M,N, 3]

(iii-a) A text encoder (CLIP or BERT) Any [D]
(iii-b) MLP layers [D] [dtext]
(iv-a) Multi-head attention to calculate translation vectors v [dtext], [M+1, N, 3] [M+1, dv]
(iv-b) MLP layers [M+1, dv] [M+1, 3]
(v-a) Multi-head attention to calculate transformation matrix F [M+1, 3], [M+1, N, 3] [M+1, N, dF]
(v-b) MLP layers [M+1, N, dF] [M+1, N, 12]
(vi) Transformation operations [M+1], [M+1, N, 12], [M+1, N, 3] [M+1, N, 3]
(vii) MLP encoder-decoder pair [dtime], [M+1, N, 3], [M+1, N, 3] [M+ 1, N, 3]

Table 6: Architecture specifications.

Hyperparameter Value

N 1024
M 8
DCLIP of (iii) 512
DBERT of (iii) 768
dtext of (iii) 128
dv of (iv) 32
dF of (v) 128
dtime of (vii) 32
Num. attention layers 12
Num. attention heads 8

Table 7: Hyperparameter details.

D Dataset Construction

PRO-teXt. While PROXD (Hassan et al., 2019) lacks semantic segmentation of the scenes,
PROXE (Zhang et al., 2020) resolves this limitation by adding semantic point clouds for room
objects. In our study, we utilize the semantic scenes provided by PROXE and integrate text prompts
into each human motion from the PROXD dataset. Since a human sequence mainly contains move-
ments and only interacts with the scene at a handful of moments; therefore, for each motion, we
extract 3-5 human poses and generate a text prompt that describes the interaction between the current
pose and the scene. Because we add text to PROXD, we reformulate the name of this dataset as PRO-
teXt. In total, we adapt the alignments of human motions across 12 scenes, spanning 43 sequences,
resulting in a total of 200 interactions.

HUMANISE. The scene meshes used in HUMANISE (Wang et al., 2022) are derived from ScanNet
V2 (Dai et al., 2017). As ScanNet V2 provides excellent instance segmentation, and HUMANISE
aligns human motions with scenes sufficiently, we directly leverage the text prompts provided by the
authors. Although these prompts are action-driven, they still contain spatial relations between target
objects and scene entities and are thus suitable for our problem. As HUMANISE is a large-scale
dataset, we limit our study to 160 interactions, as our paper does not primarily focus on human
actions, which is the original purpose of HUMANISE (Wang et al., 2022).

In summary, we present the object distribution of both datasets in Fig. 9. Our statistics reveal that
there is a diverse range of room objects in both datasets, with chairs being the most prevalent asset
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Figure 9: Object distribution of two datasets.

Figure 10: Objects counted by appearances in textual commands.

Figure 11: Compound nouns distribution of PRO-teXt.

in both cases. Fig. 10 gives information about the distribution of target objects. A major difference
between our dataset and HUMANISE is that we describe objects as compound nouns. As a result,
our text prompts comprise information about the shape of objects, which also enables scene editing
operations that are not feasible with HUMANISE. We illustrate the distribution of compound nouns
in Fig. 11, which demonstrates that PRO-teXt has a broad spectrum of object shapes.

E Scene Editing Formulation

In this section, we further elaborate on the procedure of each editing operation. We utilize a pre-
trained model that was previously trained for the scene synthesis task and evaluate its performance
on unseen editing interactions to assess its generalizability.
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Editing operation Fitness ↑ Inlier MSE ↓ Correspondent percentage (%) ↑
Object replacement 0.6815 0.0411 76.37

Shape alternation 0.6130 0.0340 60.05

Table 8: Ground truth evaluation. We assess the process of constructing ground truth in editing
operations.

Object Replacement. We first select 10 interactions out of the test set for the object replacement as
well as other operations. For every interaction, we adjust the text prompt e to include information
about the new object category. The resulting modified prompt e∗ captures this information.

In the next step, we proceed to compute the ground truth object through the editing operation by
selecting an object O∗

M+1 that matches the description of the new text prompt e∗. The alignment
of O∗

M+1 with the original object OM+1 in terms of position and rotation is performed using
the ICP algorithm, subject to the constraint of fixing the z-rotation of the objects, as presented
in (Rusinkiewicz and Levoy, 2001).

We evaluate the quality of transformation in Table 8. The metrics include: i) Fitness score: measures
the overlapping area between the inlier correspondences and the original point cloud OM+1; ii) Inlier
MSE: calculates the MSE of all inlier correspondences; and iii) Correspondent percentage: is the
ratio of the correspondence set and OM+1. Our ground truth construction for the object replacement
operation achieves significantly high scores in all metrics, in comparison to their maximum values. It
is crucial to note that due to the fundamental dissimilarities in category and shape between O∗

M+1
and OM+1, the metrics are infeasible to reach their maximum values. Based on the ground truth
assessment, the position of O∗

M+1 following transformations almost matches that of the original
object’s position, hence can serve as a reliable ground truth for our operation.

Finally, we proceed to evaluate the object replacement operation similar to the former scene synthesis
task, utilizing the established ground truths. The process involves denoising a noisy datapoint at
timestep T , conditioning on the human pose, given objects, and the new modal command e∗, until
we ultimately obtain the generated object x0. The results are presented in the main paper.

Original point cloud Fixed point set Edited point cloud

Original object Edited object

Office chair Accent chair

Figure 12: Shape alternation formulation. We fix 25% of the point that is closest to the ground
(orange) then diffuse the rest 75% (blue) to obtain a new shape (green). We keep the object and
spatial description in the text but change the adjective of the object (office → accent).

Shape Alternation. Fig. 12 demonstrates how the shape alternation operation progresses. Like the
previous operation, we first construct the data and ground truth. Since this operation aims to alter
the original object’s shape, we replace the adjective in the original text prompt e with a new shape
adjective, as illustrated in the figure. The ground truth construction occurs in the same procedure as
the object replacement. Table 8 exhibits the quality of the ground truth construction. With acceptable
metrics, we adopt the transformed objects as supervisors for this operation.
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The main difference between shape alternation and object replacement is that instead of diffusing
the entire point cloud, only three-quarters of it are diffused. To ensure consistency in terms of
the position and rotation of the edited object, we fix 25% of the point cloud with the lowest z-
coordinate, i.e., points that are closest to the floor (see Fig. 12). This fixation strategy is inspired
by the editing application in (Tevet et al., 2022). We note that not all objects will support the
shape alternation operation, however, this operation allows us to have more practical applications in
real-world scenarios.

Object Displacement. The final operation introduced in this paper is object displacement. The
formulation of this task involves modifying the spatial relation expressed in the textual input e, while
keeping the rest of the information unchanged. For the ground truth of this operation, we manually
set the correct objects semantically related to the editing text prompts.

F Extra Experiments

Baselines. We provide more information about the implementation of other baselines:

1) ATISS (Paschalidou et al., 2021). As stated in (Yi et al., 2023), ATISS does not take humans
into account, therefore, we extend humans as an exceptional object. Furthermore, ATISS represents
objects as bounding boxes defined by quadruple: position, size, angle, and category; consequently,
we convert both the input and the output to bounding box representation by utilizing an algorithm
from Open3D (Zhou et al., 2018). We even upscale the target object to its bounding box as ground
truth so that redundant points within boxes predicted by ATISS are still counted. We utilize the same
implementation of ATISS as in the original paper.

2) SUMMON (Ye et al., 2022). We use the pre-trained model provided by the authors for predicting
contact points and freeze the model during training sessions. Next, we create a bounding box from
the forecast contact points as a supplementary object and proceed similarly to ATISS.

3) MIME (Yi et al., 2023). We re-implement the neural architecture as presented in (Yi et al., 2023).
MIME considers human motions as a bounding box with contact labels and iteratively generates the
next object base on the quadruple representations of existing scene meshes (including human poses).
Note that, by the time of our paper submission, both the code and dataset of MIME have not yet been
made publicly available.

Backbone Variation. We measure the impact of different point cloud and human pose backbones in
Table 9. For the point cloud backbones, we utilize PointNet++ (Qi et al., 2017b) and DGCNN (Wang
et al., 2019b), two off-the-self approaches. We leverage state-of-the-art POSA (Hassan et al., 2021)
and P2R-Net (Nie et al., 2022) to encode human pose. In case of representing human pose as SMPL
parameters, we resolve this problem by employing a SMPL-X (Pavlakos et al., 2019) model to
extract vertices from human body. Our method uses CLIP embedding (Radford et al., 2021) and
BERT (Devlin et al., 2018) to encode text prompts.

Text encoder Human backbone Point cloud backbone CD ↓ EMD ↓ F1 ↑
CLIP POSA PointNet++ 0.5365 0.5906 0.3686
CLIP POSA DGCNN 0.3499 0.6811 0.3375
CLIP P2R PointNet++ 0.6255 0.9392 0.1288
CLIP P2R DGCNN 0.5131 0.6793 0.3496

BERT POSA PointNet++ 0.7050 0.9971 0.1148
BERT POSA DGCNN 0.9276 0.9621 0.2431
BERT P2R PointNet++ 1.7615 1.2433 0.0320
BERT P2R DGCNN 0.9136 1.0472 0.0534

Table 9: Backbone variation. Experiments were conducted on PRO-teXt.

Our findings indicate that CLIP is more effective when combined with both human backbone and
PCD backbone in comparison to BERT. Each configuration of human backbone and PCD backbone,
when integrated with CLIP, yields more comprehensive performance compared to the integration
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with BERT. For instance, the combination of CLIP, P2R, and DGCNN achieves an F1 score nearly
seven times higher than the combination of BERT, P2R, and DGCNN.

Moreover, it can be observed that POSA exhibits better evaluation metrics compared to P2R when
paired with other components. This distinction is particularly observable when utilizing CLIP as the
text encoder and PointNet++ as the PCD backbone. In this scenario, the F1 score achieved by POSA
is nearly three times higher than that of P2R.

The effectiveness of PointNet++ and DGCNN is found to be comparable, with no noticeable differ-
ences observed upon replacing PointNet++ with DGCNN. Among all the possible combinations of
components, the most comprehensive configuration involving CLIP, POSA, and PointNet++ achieves
the the best EMD and F1 metrics, while also outputting a decent CD metric (only 0.1866 units worse
than the best CD metric observed). Follow by this fact, we also select this combination as the default
setting for LSDM.

PRO-teXt HUMANISE
Baseline 3D IP ↓ FID ↓ 3D IP ↓ FID ↓

ATISS (Paschalidou et al., 2021) 0.0652 319.24 0.0672 196.83
SUMMON (Ye et al., 2022) 0.0559 163.98 0.0719 127.12

MIME (Yi et al., 2023) 0.0620 257.82 0.0626 373.02

LSDM w.o text (Ours) 0.0161 167.97 0.0768 94.16
LSDM (Ours) 0.0402 161.05 0.0851 83.96

Table 10: Supplementary results on the scene synthesis task.

Supplementary Results. We provide results on auxiliary metrics from all baselines in Table 10.
All baselines yield statistically insignificant values in terms of 3D IP, indicating that the generated
objects generated by all methods exhibit limited collision with other scene entities. However, on the
FID metrics, our method remarkably improves other baselines. This improvement is particularly
considerable in the HUMANISE dataset, where our method outperforms other state-of-the-art
benchmarks by at least 35%.

Impact of Number of Frames. We remark that our model can take either single-frame human pose or
multi-frame human pose. We have also included a study regarding the impact of the number of frames
on scene synthesis results in Fig. 13a. The experimental results indicate that the performance of our
LSDM varies little when taking different number of human pose frames as the input. Consequently,
using one frame is enough for our network.

(a) Impact of the number of human pose frames.

(a) Case 1 (a) Case 2 (a) Case 3

Target point cloud Guiding points

(b) Failure cases of guiding points.

Figure 13: Additional experiments.

Failure Cases of Guiding Point Network. We visualize failure cases of predicting S̃ of our LSDM
method in Fig. 13b. Although our guiding points fail to predict the object’s position, they still span
over the correct object’s shape.
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G User Study Details

This section presents the implementation of our user study in detail. We conduct a user study with
the participation of 40 people with a variety of ages, and professions. The male/female ratio is 50/50.
For each questionnaire, we provide 15 questions about preferences, corresponding to five baselines
(ground truth, LSDM, ATISS, SUMMON, and MIME). For each baseline, we anonymize the name
and ask participants to evaluate three categories:

1) Naturalness. Naturalness of the scene is the level of familiarity that the interviewers experience
when viewing the pictures in comparison to actual real-life room arrangements.

2) Non-collision. This metric is assessed by measuring the degree to which participants perceive
objects overlapping within the scene. A lower score is assigned to the scene when participants report
a greater sense of overlap among objects within it.

3) Intentional Matching. The final criterion we use in this study assesses the extent to which the
arrangement of objects within the scene aligns with the personalized intention outlined in the text
prompt.

Overall, we visualize 8 scenarios from both PRO-teXt and HUMANISE datasets for each baseline.
All images and videos were collated into a single question, and interviewees were asked to score the
performance of each baseline based on the visual cues presented in the 8 demonstrations. The use
of 8 distinct visualizations for each baseline ensured that the study is conducted with minimal bias.
Each question is rated on a scale of 1 to 5. The results are presented in the main paper.
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