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Abstract8

Bayesian active learning methods have emerged for structural reliability analysis and shown more attractive9

features than existing active learning methods. However, it remains a challenge to actively learn the failure10

probability by fully exploiting its posterior statistics. In this study, a novel Bayesian active learning method11

termed ‘Parallel Bayesian Probabilistic Integration’ (PBPI) is proposed for structural reliability analysis,12

especially when involving small failure probabilities. A pseudo posterior variance of the failure probability13

is first heuristically proposed for providing a pragmatic uncertainty measure over the failure probability.14

The variance amplified importance sampling is modified in a sequential manner to allow the estimations of15

posterior mean and pseudo posterior variance with a large sample population. A learning function derived16

from the pseudo posterior variance and a stopping criterion associated with the pseudo posterior coefficient17

of variance of the failure probability are then presented to enable active learning. In addition, a new adaptive18

multi-point selection method is developed to identify multiple sample points at each iteration without the19

need to predefine the number, thereby allowing parallel computing. The effectiveness of the proposed PBPI20

method is verified by investigating four numerical examples, including a turbine blade structural model21

and a transmission tower structure. Results indicate that the proposed method is capable of estimating22

small failure probabilities with superior accuracy and efficiency over several other existing active learning23

reliability methods.24
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1. Introduction27

A major task of structural reliability analysis is to compute the failure probability in the presence of28

various uncertainties, which may arise from external loads, material properties, and environmental factors,29

etc. The uncertainties are represented by a d-dimensional random vector X = [X1, X2, ..., Xd] with known30

joint probability density function (PDF) fX(x). The failure probability is generally formulated as the31

d-dimensional integral:32

Pf = Pr{g(X) < 0} =

∫
Rd

I(x)fX(x)dx (1)

where Pr{·} is the probability operation; g(X) is the performance function (a.k.a. limit state function); x33

denotes a realization of X; I(x) is the indicator function: I(x) = 1 if g(x) < 0 and I(x) = 0 otherwise.34

In the past decades, various methods have been developed to approximate the intractable integral in35

Eq. (1), which can be roughly divided into four categories. The first category is the simulation methods,36

including the Monte Carlo simulation (MCS) and its variants, e.g., importance sampling (IS) [1, 2], subset37

simulation [3], line sampling [4] and directional sampling [5], etc. The second category is the analytical38

approximation methods such as the well known first-order and second-order reliability methods (FORM and39

SORM) [6, 7]. The third category consist of the methods of moments, for instance, integer moments-based40

methods [8, 9] and fractional moments-based methods [10, 11]. The fourth category is the surrogate assisted41

methods. Some commonly used surrogate models in reliability analysis include response surface methods42

[12, 13], polynomial chaos expansion [14, 15], support vector machines [16, 17], artificial neural networks43

[18, 19], and Kriging (a.k.a. Gaussian process regression, i.e., GPR) [20, 21].44

Among the various surrogates, Kriging-based methods have received much attention due to its interpola-45

tive and probabilistic properties. The desirable features promote the development of Kriging in combination46

with the active learning strategies. The earlier proposed efficient global reliability analysis (EGRA) [22] and47

the adaptive Kriging Monte Carlo simulation (AK-MCS) [23] are two prominent examples. These active48

learning Kriging methods start from constructing an initial Design of Experiment (DoE), and then pro-49
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gressively add new sample points into the initial DoE until a predefined stopping criterion is fulfilled. An50

essential component in this respect is the so-called learning function, which provides a meaningful guid-51

ance for selecting the best points to evaluate the performance function. Various learning functions have52

been developed from different perspectives. Except for U function in AK-MCS and expected feasibility53

function (EFF) in EGRA, some other representative learning functions consist of least improvement func-54

tion (LIF) [24], reliability-based expected improvement function (REIF) [25], folded normal based expected55

improvement function (FNEIF) [26], H function [27], potential risk function (PRF) [28], reliability-based56

lower confidence bounding (RLCB) function [29], expected integrated error reduction (EIER) [30] and so57

forth. Another critical component while designing an active learning algorithm is the stopping criterion,58

which is used to terminate the learning process at an appropriate stage. Many existing researches directly59

prescribe a threshold on the learning function as the stopping criterion, e.g., min(U) > 2 in AK-MCS. Some60

other stopping criteria have also been developed by judging the accuracy of failure probability, such as the61

error-based stopping criterion (ESC) [31], and cumulative confidence level (CCL) measure [32], etc. One can62

refer to [33, 34] for a comprehensive literature review. Despite great efforts, the performance of the existing63

active learning algorithms can still be further improved in terms of accuracy, efficiency, and applicability.64

More recently, the failure probability integral (i.e., Eq. (1)) has been interpreted from a Bayesian65

probabilistic integration perspective [35–37]. In a Bayesian viewpoint, the numerical uncertainty induced66

from limited observations on performance function is regarded as a kind of epistemic uncertainty. This67

uncertainty propagates through the indicator function and in turn propagates into the failure probability. A68

probabilistic uncertainty measure over failure probability can thus be derived, which allows to develop the two69

critical components of active learning algorithm (i.e., learning function and stopping criterion). The resulting70

methodology is the so-called Bayesian active leaning method. The ability for providing the uncertainty71

measure over the failure probability makes the Bayesian active learning method more advantageous than the72

existing active learning reliability methods. In [35], a method, called active learning probabilistic integration73

(ALPI), is proposed, where an upper-bound posterior variance of the failure probability is given. Based on the74

conceptual framework of ALPI, a parallel adaptive Bayesian quadrature (PABQ) method is developed, which75
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allows to estimate small failure probabilities and support parallel computing [36]. The exact expression of76

posterior variance of failure probability is then derived in a Bayesian failure probability inference framework77

[37]. A parallel adaptive-Bayesian failure probability learning (PA-BFPL) method is developed within this78

framework [37]. These methods can provide uncertainty measure over failure probability, among which,79

the two parallel methods (i.e., PABQ and PA-BFPL) can be applied to small failure probability problems.80

However, they still possess respective limitations. In ALPI and PABQ, the strict upper-bound posterior81

variance largely overestimates the true posterior variance of failure probability, making it difficult to prescribe82

a reasonable threshold in the stopping criterion to truly reflect the uncertainty level of failure probability. As83

for PA-BFPL, the numerical computation of exact posterior variance is very time-consuming when entailing84

a large amount of samples. In addition, both PABQ and PA-BFPL identify multiple points using weighted85

k-means clustering algorithm, in which an important parameter, i.e., the number of added points at each86

iteration, needs to be empirically specified. This algorithm would decrease the number of iterations but87

sacrifice the number of performance function calls if one specifies a large k.88

In order to overcome the issues above, a new Bayesian active learning method, termed ‘Parallel Bayesian89

Probabilistic Integration’ (PBPI) is developed in this study for efficient structural reliability analysis, espe-90

cially for estimating small failure probabilities. Specifically, a pseudo posterior variance (PPV) of the failure91

probability is first heuristically proposed under a Gaussian process prior over the performance function,92

thereby providing a simple and pragmatic uncertainty measure over the failure probability. The variance93

amplified importance sampling (VAIS) developed in [37] is modified as sequential sampling to estimate the94

posterior mean and PPV of failure probability. A learning function derived from the PPV and a stopping95

criterion associated with the pseudo posterior coefficient of variation (COV) of failure probability are then96

presented to enable active learning. Moreover, a novel adaptive multi-point selection method is proposed97

based on the identification of local maxima of learning function, which allows parallel computing without98

the need to predefine the number of added points as required by k-means algorithm.99

The remaining of this work is organized as follows. Section 2 briefly reviews two existing methods (i.e.,100

PABQ and PA-BFPL) that are closely related to our development. Section 3 presents the proposed PBPI101
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method in detail. Four numerical examples characterized by small failure probabilities are then investigated102

in Section 4 to demonstrate the performance of the proposed method. Conclusions are finally drawn in103

Section 5.104

2. Brief review of related methods105

This section briefly reviews the two adaptive Bayesian quadrature methods (i.e., PABQ and PA-BFPL),106

which are closely related to our development. Besides, some discussions about the PABQ and PA-BFPL are107

given.108

2.1. Adaptive Bayesian quadrature for failure probability estimation109

The problem of estimating the intractable failure probability integral in Eq. (1) is interpreted from110

a perspective of Bayesian quadrature (a.k.a. integration or cubature) in PA-BFPL [37] and PABQ [36].111

Specifically, the performance function g(·) is regarded as random, that is, the value g(x) at a given site x112

is uncertain before it is evaluated. The discretization error as an epistemic uncertainty arises herein since113

evaluating g(·) at every point is impractical. Following a standard Bayesian approach, both methods thus114

start at putting a prior on the performance function g(·) and combining it with a dataset D that consists115

of some observations of the g-function. The posterior mean and variance of the failure probability are then116

derived. Additional informative observations are identified using a so-called learning function to enrich the117

dataset D through successive iterations until a stopping criterion is fulfilled.118

2.1.1. Bayesian inference of failure probability119

A Gaussian process (GP) prior is first placed over the performance function g(·), which is written as:120

g0 ∼ GP (mg0(x), kg0 (x,x
′)) (2)

where g0 denotes the prior distribution of g(·) prior to seeing any observations; mg0(x) and kg0 (x,x
′) are121

the prior mean and covariance functions respectively. The mean function mg0(x) takes the constant type122
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(i.e., mg0(x) = β), and the covariance function adopts the widely used squared exponential kernel function:123

kg0 (x,x
′) = σ2 exp

(
−1

2
(x− x′)Σ−1 (x− x′)

⊤
)

(3)

where σ2 is the process variance; Σ = diag
(
l21, l

2
1, . . . , l

2
d

)
is a diagonal matrix with li > 0 being the length124

scale in the i-dimension.125

Conditioning on n observations to constitute the dataset D = {X ,Y} (X is a d × n matrix with i-th126

column being observation x(i) and Y is a n×1 vector with i-th row being g(x(i))), the d+2 hyper-parameters127

θ = [β, σ, l1, l2, . . . ld] can be estimated by minimizing the negative log marginal likelihood:128

L(θ) = − log[p(Y | X ,θ)] =
1

2
(Y − β)⊤K−1

g0 (Y − β) +
1

2
log
∣∣K−1

g0

∣∣+ n

2
log(2π) (4)

where Kg0 is the n× n covariance matrix with (i, j)-th element [Kg0 ]i,j = kg0
(
x(i),x(j)

)
.129

Then, the posterior distribution of g(·) can be obtained as:130

gn ∼ GP (mgn(x), kgn (x,x′)) (5)

where gn denotes the posterior distribution of g(·) conditional on n observations; mgn(x) and kgn (x,x′) are131

the posterior mean and covariance functions respectively, which can be analytically derived as:132

mgn(x) = mg0(x) + kg0(x,X )⊤K−1
g0 (Y −mg0(X )) (6)

133

kgn (x,x′) = kg0 (x,x
′)− kg0(x,X )⊤K−1

g0 kg0 (x
′,X ) (7)

where kg0(x,X ) and kg0(x
′,X ) are two n × 1 covariance vectors with i-th element being kg0

(
x,x(i)

)
and134

kg0
(
x′,x(i)

)
, respectively; mg0(X ) is an n× 1 mean vector with i-th element being mg0(x

(i)).135

The posterior distribution gn(x) will imply the posterior distribution of indicator function I (denoted136

as In), and then imply the posterior distribution of failure probability Pf (denoted as Pf,n). The posterior137
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mean and exact posterior variance of Pf adopted in PA-BFPL are written as [37]:138

mPf,n
=

∫
X
Φ

(
−mgn(x)

σgn(x)

)
fX(x)dx (8)

139

σ2
Pf,n

=

∫
X

∫
X
F ([0 0]; [mgn(x),mgn (x′)] ,Kgn (x,x′)) fX(x)fX (x′) dxdx′ −m2

Pf,n
(9)

where Φ(·) is the cumulative distribution function (CDF) of standard normal variable; σgn(x) =
√
kgn (x,x)140

is the posterior standard deviation of g(·); fX (x) and fX (x′) are the joint PDF of X and X ′, respectively;141

F is the joint CDF of a bivariate normal distribution; Kgn (x,x′) =

 σ2
gn(x) kgn(x,x

′)

kgn(x
′,x) σ2

gn(x
′)

 is the posterior142

covariance matrix of g(·).143

An upper-bound posterior variance (UPV) is derived in PABQ according to Cauchy-Schwarz inequality,144

which is expressed as [36]:145

σ2
Pf,n

≤ σ̄2
Pf,n

=

(∫
X

√
Φ

(
−mgn(x)

σgn(x)

)
Φ

(
mgn(x)

σgn(x)

)
fX(x)dx

)2

(10)

where σ̄Pf,n
is the upper-bound posterior standard deviation.146

Note that numerical integration techniques are necessary to estimate mPf,n
, σPf,n

and σ̄Pf,n
due to147

the analytical intractability. The VAIS method and a importance ball sampling method are respectively148

developed in PA-BFPL [37] and PABQ [36] to approximate the integrals.149

2.1.2. Multi-point selection strategy and stopping criterion150

In PA-BFPL, an expected misclassification probability contribution (EMPC) function is developed to151

identify new points and enrich the dataset D. As for PABQ, the aforementioned UPV σ̄2
Pf,n

is utilized to152

derive a learning function called upper-bound posterior variance contribution (UPVC), which is defined as:153

UPVC(x) =

√
Φ

(
−mgn(x)

σgn(x)

)
Φ

(
mgn(x)

σgn(x)

)
× fX(x) (11)

The EMPC function and UPVC function are respectively combined with k-means clustering algorithm154
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in PA-BFPL and PABQ to select multiple points at each iteration, thereby enabling parallel computing.155

Note that the number of clusters k, which corresponds the number of identified points at each iteration,156

should be predefined.157

In order to terminate the active learning process, the stopping criteria in PA-BFPL and PABQ are158

constructed by judging the exact posterior COV and upper-bound posterior COV of failure probability,159

respectively. The two stopping criteria are given as:160

PA-BFPL : COVPf,n
=

σPf,n

mPf,n

< ϵT (12)

161

PABQ : COVPf,n
=

σ̄Pf,n

mPf,n

< ϵU (13)

where ϵT and ϵU are user-specified thresholds (0.05 and 0.1 suggested in PA-BFPL and PABQ, respectively).162

2.2. Discussions on PABQ and PA-BFPL163

The two adaptive Bayesian quadrature methods, PABQ and PA-BFPL, adopt the posterior mean and164

their respective posterior variance expressions (i.e., exact posterior variance and UPV) to represent the nu-165

merical uncertainty of failure probability arising from limited observations on g-function. Both methods can166

assess small failure probabilities without excessively large amount of samples and allow parallel computing167

to decrease the number of iterations. However, several drawbacks still exist in both methods, mainly lying168

in their respective posterior variance expressions and multi-point selection strategies.169

The posterior variance promotes the development of learning function and stopping criterion. However,170

the numerical estimation of exact posterior variance σ2
Pf,n

is very time-consuming in PA-BFPL, especially171

when involving large amount of samples. This is mainly due to the fact that the costly computation of172

bivariate normal CDF should be performed at each iteration. The expensive computation is also the reason173

why EMPC function is utilized in PA-BFPL instead of that directly based on the exact posterior variance174

contribution. Although the upper-bound posterior variance σ̄2
Pf,n

in PABQ can alleviate the computational175

difficulties, it still has two main drawbacks. First, the equality in Inequality (10) holds only when In(x) and176
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In(x
′) are perfectly positively correlated for any x,x′ ∈ X , which is hardly impractical. Second, the strict177

upper bound considerably overestimate the posterior variance, making it difficult to specify a reasonable178

threshold ϵU in the stopping criterion (i.e., Eq. (13)) to truly reflect the uncertainty level of posterior failure179

probability.180

When it comes to the multi-point selection strategy, the learning function weighted k-means clustering181

algorithms presented in PABQ and PA-BFPL require to specify the number of added points at each iteration.182

With such a technique, some not necessarily optimal points, which contribute little to the convergence of183

active learning, are also evaluated, leading to the increase of number of performance function calls.184

3. Parallel Bayesian probabilistic integration185

This section presents a novel method termed PBPI for small failure probability estimation. Specifically,186

a PPV of the failure probability is first heuristically proposed to approximate the true posterior variance.187

The VAIS is then introduced and modified in a sequential way to numerically approximate the posterior188

mean and PPV with a large sample population. A stopping criterion and a learning function are presented189

according to the posterior statistics of failure probability. Finally, an adaptive multi-point selection method190

is proposed by identifying local maximum points of learning function. A set of points can thus be selected191

to enable parallel distributed processing, eliminating the the necessity of predefining the number of points192

as required by the k-means algorithm in PABQ and PA-BFPL.193

The proposed PBPI method is defined in the standard normal space (U space), which can be formulated194

through an isoprobabilistic transformation u = T (x) (e.g., Nataf or Rosenblatt transformation). The195

transformed performance function is written as G(u) = g(T−1(x)).196

3.1. Proposed pseudo posterior variance197

The posterior variance of failure probability is significantly meaningful for constructing efficient learning198

function and stopping criterion. The exact posterior variance in Eq. (9), however, is very expensive to199

evaluate when involving a large number of samples. The UPV σ̄2
Pf,n

in Eq. (10), as a strict upper bound,200
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greatly overestimates the true posterior variance. Note that Φ
(
−mGn (u)

σGn (u)

)
in Eq. (10) represents the201

probability (denoted as p) of GP prediction less than zero at the point u, i.e.,202

p(u) = Φ

(
−mGn

(u)

σGn
(u)

)
= 1− Φ

(
mGn

(u)

σGn
(u)

)
≤ 1 (14)

Hence [p(u) · (1− p(u))]
1
2 ≤ 1 holds. Inspired by this aspect, a PPV is heuristically proposed by intro-203

ducing a parameter α greater than 1 into the UPV(i.e., [p(u) · (1− p(u))]
α
2 ), thereby narrowing the UPV204

and further approximating the true posterior variance. The PPV is expressed as:205

σ̂2
Pf,n

=

(∫
U
[p(u) · (1− p(u))]

α
2 fU (u)du

)2

(15)

where σ̂Pf,n
is the pseudo posterior standard deviation.206

Obviously, the PPV σ̂2
Pf,n

is smaller than or equal to UPV σ̄2
Pf,n

, which is expressed as:207

σ̂2
Pf,n

=

(∫
U
[p(u) · (1− p(u))]

α
2 fU (u)du

)2

≤ σ̄2
Pf,n

=

(∫
U
[p(u) · (1− p(u))]

1
2 fU (u)du

)2

(16)

The PPV σ̂2
Pf,n

decreases with the increase of α. If one specifies a very large value for α, the PPV208

would approach to zero and greatly underestimate the true posterior variance. In contrast, the PPV would209

degenerate to the UPV when α approaches to 1. The optimal value of α is therefore between 1 and positive210

infinity and can be calculated by setting the PPV equal to the exact posterior variance, i.e.,211

find α s.t. σ̂2
Pf,n

=

(∫
U
[p(u) · (1− p(u))]

α
2 fU (u)du

)2

= σ2
Pf,n

=

∫
U

∫
U
F ([0 0]; [mGn(u),mGn (u′)] ,KGn (u,u′)) fU (u)fU (u′) dudu′ −m2

Pf,n

(17)

However, it is quite hard to theoretically derive an optimal value for α in PPV due to the difficulty in solving212

the exact posterior variance σ2
Pf,n

that involves the expensive computation of the bivariate normal CDF.213

Compared with σ2
Pf,n

, the proposed PPV σ̂2
Pf,n

greatly simplifies the expression and computation of the exact214

posterior variance, thereby providing a simple and pragmatic uncertainty measure of failure probability. As215
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an alternative to the theoretical derivation, a parameter analysis will be conducted by specifying different216

values for α in the numerical examples, and then a reasonable value will be suggested (see Section 4 for217

details). Note that although we have not theoretically derived an optimal value for α, the proposed PPV is218

also very important for the development of Bayesian active learning method as it facilitates us to construct219

the simple and efficient learning function and stopping criterion.220

As a compromise between the exact posterior variance σ2
Pf,n

and the UPV σ̄2
Pf,n

, the proposed PPV221

σ̂2
Pf,n

with a reasonable setting of α mainly has two advantages. First, the PPV with a reasonable α allows222

to more realistically represent the true posterior variance of failure probability, as compared with the UPV.223

Second, the proposed PPV avoids the cumbersome evaluation of bivariate normal CDF in exact posterior224

variance (i.e., Eq. (9)), thereby significantly saving the computational time especially when large amount225

of samples are needed to evaluate σ2
Pf,n

.226

3.2. Sequential variance-amplified importance sampling227

In order to numerically approximate the analytically intractable integrals (i.e., posterior mean mPf,n
228

in Eq. (8) and PPV σ̂2
Pf,n

in Eq. (15)), MCS is the most straightforward method. However, most of229

the generated samples are distributed near the peak of the joint PDF fU (u). Excessively large amount of230

samples are required for accurate estimation of the integrals in some cases (e.g., small failure probability).231

With regard to importance sampling, the optimal sampling density is infeasible in practice as it involves232

the quantity to be computed. As a simple but efficient alternative, the VAIS technique developed in PA-233

BFPL [37] can produce more dispersedly distributed samples than MCS and facilitate the small failure234

probability estimation. However, the original VAIS faces a problem of computer memory when involving a235

very large sample population to accurately approximate the integrals. In this paper, the VAIS is modified in236

a sequential manner, forming the sequential VAIS technique. This modification not only avoids the memory237

problem caused by one-shot GP prediction of a large sample population, but also eliminates the need to238

pre-specify the total sample size and improves the computational efficiency, as compared with original VAIS.239
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The mPf,n
in Eq. (8) and σ̂Pf,n

in Eq. (15) are first rewritten as:240

mPf,n
=

∫
U
p(u)

fU (u)

hU (u)
hU (u)du (18)

241

σ̂Pf,n
=

∫
U
[p(u) · (1− p(u))]

α
2
fU (u)

hU (u)
hU (u)du (19)

where hU (u) is the importance sampling density (ISD). The ISD hU (u) is constructed by amplifying the242

standard deviation σU (or equivalently amplifying the variance σ2
U ) of fU (u). The constructed ISD is thus243

formulated as hU (u) = fU (u;0, γ · I), where γ > 1 is the amplification coefficient of standard deviation; I244

is a d× d identity matrix.245

The estimators of mPf,n
and σ̂Pf,n

with Nvas samples generated from hU (u) are expressed as:246

m̃Pf,n
=

1

Nvas

Nvas∑
i=1

[
p(u(i))

fU
(
u(i)

)
hU

(
u(i)

)] (20)

247

˜̂σPf,n
=

1

Nvas

Nvas∑
i=1

[
p(u(i)) ·

(
1− p(u(i))

)]α
2 fU

(
u(i)

)
hU

(
u(i)

) (21)

The variances of the above estimators are given as:248

V
[
m̃Pf,n

]
=

1

Nvas − 1

 1

Nvas

Nvas∑
i=1

[
p(u(i))

fU
(
u(i)

)
hU

(
u(i)

)]2 − m̃2
Pf,n

 (22)

249

V
[
˜̂σPf,n

]
=

1

Nvas − 1

 1

Nvas

Nvas∑
i=1

[
p(u(i)) ·

(
1− p(u(i))

)]α [ fU (u(i)
)

hU

(
u(i)

)]2 − ˜̄σ2
Pf,n

 (23)

Note that in Eqs. (20)-(23) p(u(i)) = Φ
(
−mGn (u(i))

σGn (u(i))

)
are simultaneously utilized for calculating mPf,n

,250

σ̂Pf,n
and their variances, thus one only need to calculate the p(u(i)) once, avoiding the time-consuming251

recalculations of Φ(·) for Nvas samples.252

The samples are sequentially generated from the ISD hU (u) and predicted using the GP model to253

further save computational time and facilitate the GP prediction with a large sample population. First,254
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Nvas samples are generated and let j = 1. The posterior mean and pseudo posterior standard deviation are255

then estimated by Eqs. (20) and (21), denoted as m(j) and σ(j), respectively. To reserve the GP prediction256

information for calculating the variances of estimators, let s
(j)
1 and s

(j)
2 be respectively expressed as:257

s
(j)
1 =

Nvas∑
i=1

[
p(u(i))

fU
(
u(i)

)
hU

(
u(i)

)]2 (24)

258

s
(j)
2 =

Nvas∑
i=1

[
p(u(i)) ·

(
1− p(u(i))

)]α [ fU (u(i)
)

hU

(
u(i)

)]2 (25)

Additional Nvas samples are generated from hU (u) and let j = j + 1. The m(j), σ(j), s
(j)
1 and s

(j)
2 are259

calculated with the new Nvas generated samples by Eqs. (20)-(21) and Eqs. (24)-(25). The estimators of260

mPf,n
and σ̂Pf,n

and the corresponding variances in Eqs. (20)-(23) are reformulated as:261

m̃Pf,n
=

1

j

j∑
i=1

m(i) (26)

262

˜̂σPf,n
=

1

j

j∑
i=1

σ(i) (27)

263

V
[
m̃Pf,n

]
=

1

j ·Nvas − 1

(
1

j ·Nvas

j∑
i=1

s
(i)
1 − m̃2

Pf,n

)
(28)

264

V
[
˜̂σPf,n

]
=

1

j ·Nvas − 1

(
1

j ·Nvas

j∑
i=1

s
(i)
2 − ˜̄σ2

Pf,n

)
(29)

The sequential sampling process is repeated until the target COVs of the posterior mean m̃Pf,n
and pseudo265

posterior standard deviation ˜̂σPf,n
are below the corresponding specified thresholds, that is, COV(m̃Pf,n

) <266

ϵµ and COV(˜̂σPf,n
) < ϵσ̂.267

3.3. Stopping criterion and adaptive multi-point selection268

Once the posterior mean m̃Pf,n
and pseudo posterior standard deviation ˜̂σPf,n

of the failure probability269

are numerically estimated, a reasonable stopping criterion is needed to judge whether m̃Pf,n
is accurate270

enough as the finial failure probability. The stopping criterion can be naturally defined based on the271
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judgment of the pseudo posterior COV of failure probability:272

ĈOV =
˜̂σPf,n

m̃Pf,n

< ϵp (30)

where ϵp is a user-specified threshold. In order to avoid the possible fake convergence in the first few273

iterations, the active learning is terminated only when Eq. (30) is satisfied twice in succession.274

If the stopping criterion is not satisfied, additional informative observations should be identified to enrich275

the dataset D. The key to achieve this aim is to develop a suitable learning function that provides a useful276

guidance to add new points. Based on the PPV in Eq. (15), a learning function called pseudo posterior277

variance contribution (PPVC) is defined as:278

PPVC(u) =

[
Φ

(
−mGn

(u)

σGn
(u)

)
· Φ
(
mGn

(u)

σGn
(u)

)]α
2

× fU (u) (31)

where PPVC(u) measures the contribution of numerical uncertainty at point u to the PPV that equals to279

σ̂2
Pf,n

=
(∫

U PPVC(u)du
)2
.280

As the most convenient way, the best next point can be identified by maximizing the PPVC function.281

However, selecting a single point at each iteration would result in the underuse of the information provided282

by learning function and hinder the use of parallel computing facilities. In order to identify multiple points at283

each iteration, two aspects need to be considered. First, the points should be selected based on the learning284

function value, e.g., the points with large PPVC value. Second, the selected points in a certain iteration285

cannot be too clustered. Considering these aspects, some existing researches adopt learning function-based286

k-means clustering algorithm to identify a batch of points [36–40]. Nevertheless, a main limitation of the287

k-means algorithm is the need to specify the number of clusters k which corresponds to the number of288

selected points at each iteration. Although a large k can reduce the number of iterations, more performance289

function calls are required, causing the unnecessary waste of computing resource.290

The learning function PPVC is generally multi-modal during the iteration process. The local peaks of291

PPVC function correspond to the points with local maximum contribution of the numerical uncertainty to292
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the PPV of failure probability. These points possess relatively large PPVC values and are not too close,293

which simultaneously satisfy the two previously mentioned aspects. In order to identify the local maxima of294

PPVC function, a novel adaptive multi-point selection method is thus developed to enable parallel computing295

without the need to predefine the number of added points at each iteration.296

Quasi-Newton method, as an alternative to Newton method, can approximate the computationally costly297

Hessian matrix and efficiently search the local minima (or maxima) of functions. The widely used Broyden298

Fletcher Goldfarb Shanno (BFGS) quasi-Newton algorithm is employed in the present study. Note that one299

of the main limitations of quasi-Newton method is its sensitivity to initial point. Thus, we first generate nq300

uniform points Uq = {u(i)}nq

1 within a d-ball as the initial points to identify multiple local peaks of PPVC301

function. Given an arbitrary point uk ∈ Uq, the BFGS quasi-Newton algorithm is executed. The fminunc302

function in Optimization Toolbox of Matlab is utilized for implementing the BFGS algorithm, with which303

we start at the point uk and attempt to find a local minima of the objective function F(u). The objective304

function F(u) is defined as the negative learning function, i.e., −PPVC(u). It should be noted that the305

learning function values in most regions are extremely small (typically, 10−3 ∼ 10−10 or smaller) and the306

corresponding gradients are very close to 0. In order to efficiently find the local maxima of PPVC function,307

the objective function F(u) is re-formulated as F(u) = −log (PPVC(u) + eps). eps is a very small value308

and introduced herein to avoid the antilogarithm being zero.309

The initial points in Uq gradually converge to the local peaks of PPVC function using BFGS quasi-310

Newton algorithm. After all initial points are converged, two additional aspects should be considered. First,311

some local maximum points with relatively low PPVC values are also identified, which contribute little to the312

convergence of active learning and are undesired to be selected. Second, some initial points would converge313

to the same local maximum point of the PPVC function. These converged points are very close but different314

in numerical values due to the recursive approximation nature of BFGS algorithm. Among the converged315

points near a true local peak, only one point is desired to be selected to enrich the dataset D and evaluate316

on performance function. For the former aspect, we first eliminate those points with extremely small PPVC317

values after all initial points are converged. For the latter one, a DBSCAN clustering algorithm [41], which318
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does not require to predefine the number of clusters, is introduced to cluster the points near one true local319

peak. A batch of points consisting of the point with the largest PPVC value in each cluster are selected as320

the final points to evaluate the G-function and update the GP model.321

The procedures for implementing the proposed adaptive multi-point selection method are summarized322

as below and schematically illustrated in Fig. 1.323

Step I: Generate uniform initial points Uq = {u(i)}nq

1 within a d-ball of radius R for searching local324

peaks. The radius R is determined as R =
√
χ−2
d (1− pf,0). The number of initial points nq = 400 and the325

parameter pf,0 = 10−8 are adopted in the present study.326

Step II: Search the local peaks of the learning function PPVC(u) with BFGS quasi-Newton algorithm.327

Step III: Obtain the maximum PPVC value Mp in all local peaks, and then eliminate the points with328

their PPVC values less than ρ ·Mp (ρ = 0.01 is adopted).329

Step IV: Divide the remaining points into qm clusters with DBSCAN algorithm, identify qm points330

which consists of the point with largest PPVC value at each cluster, enrich the dataset D with the qm331

points and their corresponding G-function evaluations.332

Note that two parameters are involved in the DBSCAN clustering algorithm, i.e., measure of distance ξ333

and minimum number of points in a cluster minPts. minPts is generally determined by adopting a rule of334

thumb. As for ξ, an adaptive scheme is developed in [42] by selecting ξ as the minimum value that minimises335

the number of outliers and does not compromise the definition of separate clusters. However, this scheme336

would increase the total computational time and are therefore not used herein. Through some numerical337

tests, ξ = 0.2
√
d and minPts = 3 are adopted for convenience in this study.338

3.4. Implementation of the proposed PBPI method339

The implementation procedure of the proposed PBPI method is summarized as follows (see Fig. 2 for340

the flowchart):341

Step 1: Generate the initial observations342

Generate N0 samples U = {u(i)}N0
i=1 within a d-ball of radius R as the initial observations. These343

observations are evaluated on the performance function G(·) to obtain the corresponding responses Y =344
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Step II

0 0

Step I Step III

Step IV

Step I: Generate initial points

Step II: Search local peaks using 

BFGS algorithm

Step III: Eliminate the points with 

low PPVC values

Step IV: Identify final points with 

DBSCAN algorithm

PPVC PPVC

PPVC(u)

uu

cluster cluster

PPVC(u)
cluster

Figure 1: A schematic illustration of the proposed adaptive multi-point selection method.

{y(i)}N0
i=1. Construct the initial dataset D = {U ,Y}. Let the number of G-function calls Ncall = N0 and345

m = 1.346

Step 2: Make Bayesian inference about the G-function347

By assigning a GP prior for the G-function, the posterior distribution of G-function is inferred based348

on dataset D. The prior mean and covariance function are assumed to be a constant type and squared349

exponential kernel, respectively (see Section 2.1 for details). In this paper, the fitrgp function in Statistics350

and Machine Learning Toolbox of Matlab is utilized for this purpose.351

Step 3: Sequential VAIS for estimating posterior mean and PPV of failure probability352

Initialize the parameter j = 1;353

Step 3.1: Generate Nvas samples from the ISD hU (u), and compute the corresponding GP predictions.354

Step 3.2: Estimate the m(j), σ(j), s
(j)
1 and s

(j)
2 based on Eqs. (20)-(21) and Eqs. (24)-(25) respectively.355

Step 3.3: Compute the COVs of posterior mean and pseudo posterior standard deviation based on Eqs.356

(26)-(29). If COV(m̃Pf,n
) < ϵµ and COV(˜̂σPf,n

) < ϵσ̂ are fulfilled, then the sequential sampling process is357

finished; else, return to Step 3.1 and let j = j + 1.358

Step 4: Check the stopping criterion359

If ĈOV =
˜̂σPf,n

m̃Pf,n
< ϵp is satisfied twice in succession, go to Step 6; else, go to Step 5.360

Step 5: Adaptively identify multiple points and enrich the dataset361

Identify qm points U+ = {u(i)
+ }qmi=1 using the proposed adaptive multi-point selection method (see Section362

3.3). Evaluate the G-function on the qm points and obtain the corresponding responses Y+ =
{
y
(i)
+

}qm

i=1
.363

17



Let D = {U ∪ U+,Y ∪Y+}, Ncall = Ncall + qm and m = m+ 1 and go to Step 2.364

Step 6: End of PBPI365

Return the estimated failure probability m̃Pf,n
in Eq. (26).366

4. Numerical examples367

In this section, four numerical examples characterized by small failure probabilities are presented to368

demonstrate the performance of the proposed method. Several different values are considered for the pa-369

rameter α in PPV to study its effects on the results. The efficiency, accuracy and robustness are compared370

with several other non-parallel methods (e.g., ALK-KDE-IS [43], AK-SDMCS [44] and AK-MCMC [45],371

etc.) and parallel methods (e.g., PABQ [36] and ALR in UQLab [46], etc.) in terms of the average number372

of iterations Niter, the average number of G-function calls Ncall, the average failure probability Pf , the373

relative error of failure probability ϵPf
and the coefficient of variation COV [Pf ]. Except for MCS and IS,374

the reported results are averaged over 20 repeated runs unless otherwise specified. It should be noted that375

the two parallel methods, PABQ and ALR in UQLab, need to predefine the number of added points at each376

iteration, i.e., k. Specifying a large k would decrease the number of iterations but increase the number of377

G-function calls [36, 37]. In the following four examples, the values of k in PABQ and ALR are specified378

according to the average number of added points per iteration using the proposed PBPI method, in order379

to compare the performance between different methods more fairly.380

In the proposed method, the number of initial observations is set to N0 = 10. Specially, the threshold381

ϵp in the stopping criterion is set to ϵp = 5%. The variance amplification factor and initial sample size for382

sequential VAIS are set to γ = 2.0 and Nvas = 106, respectively. The thresholds ϵµ and ϵσ̂ are set to 2%383

and 10%, respectively. For ALR in UQLab, the Kriging model is adopted as the surrogate, in which the384

Gaussian function is employed as the correlation function. The stopping criterion is also modified to be385

that the beta bounds and stability are less than the default threshold (i.e., 0.01) within three consecutive386

iterations (refer to [46] for more details).387
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Figure 2: Flowchart of the proposed PBPI method.
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4.1. Example 1: Series system with four branches388

The first example considers the reliability analysis problem of a series system with four branches [23, 47].389

The performance function is given as:390

g(X) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

a+ (X1−X2)
2

10 + (X1+X2)√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2

(32)

where X1 and X2 are two independent standard normal variables; a and b are two constant parameters391

which affect the failure probability of the series system. Two cases are considered in this example: a = 4,392

b = 7 for the first case, and a = 5.5, b = 11 for the second case.393

Case 1: a = 4 and b = 7394

Table 1 shows the detailed results given by the proposed method and several other parallel (e.g., ALR395

[46], PABQ [36], and ds-AKP [42]) and non-parallel methods (e.g., AK-MCS [23], AK-SDMCS [44], ALK-396

KDE-IS [43]). The failure probability Pf = 4.93 × 10−4 provided by MCS is considered as the reference397

result. It can be observed that the proposed method (α = 1.5, 2.0 or 2.25) and other active learning methods398

can provide accurate average failure probability estimates with the COVs less than 5% and the relative errors399

lower than 2%, except for ALR that produces biased results with relative errors greater than 6%. When400

it comes to the efficiency, the average number of iterations Niter and the average number G-function calls401

Ncall of the proposed PBPI method are comparable to those of PABQ, which are obviously less than those402

of the other parallel methods, i.e., ALR and ds-AKP. Compared with the non-parallel counterparts (i.e.,403

AK-MCS, AK-SDMCS and ALK-KDE-IS), the proposed method also exhibits computational advantages in404

terms of Niter and Ncall, though the comparable number of G-function calls as AK-SDMCS.405

Fig. 3 shows the identified points at each iteration of the proposed method (α = 2.25). It can be406

observed that the number of added points at each iteration changes during the active learning process. These407
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identified points are typically local optimal points of learning function (i.e., PPVC) and have relatively large408

contribution of uncertainty to the PPV of the failure probability. The points selected at different stages and409

the final experimental designs are shown in Fig. 4(a). The true limit state surface (black solid line) and the410

final predicted limit state surface (red solid line) are also plotted. Most of the identified points are found411

to locate in the vicinity of true limit state and distributed in the critical regions with major contributions412

to the failure probability. It can be observed that the predicted limit state surface fits well in the critical413

regions, though weakly approximating at regions with small probability densities that have negligible effects414

on failure probability. The results indicate that the proposed method can estimate the failure probability415

efficiently and accurately.416

Case 2: a = 5.5 and b = 11417

The failure probability is very small in the second case (in the order of 10−8). Table 2 presents the418

reliability analysis results by the proposed method and other compared methods. The proposed method419

and the two non-parallel methods (i.e., AK-SDMCS and ALK-KDE-IS) can produce satisfactory average420

failure probability estimates with their COVs less than 5%. Although ALR provides a close average failure421

probability to the reference result provided MCS when k = 4, the COVs of ALR are larger than 30% for422

k = 4 or 5. Meanwhile, another parallel method PABQ yields inaccurate average failure probability with423

the relative errors of 13.68% for k = 4 or 5. The biased results mainly result from the fixed sampling region424

of importance ball sampling adopted in PABQ. As for the efficiency, the proposed method requires slightly425

less iterations and G-function calls than PABQ when α is large (e.g., α = 2.5). In addition, the proposed426

method greatly outperforms the ALR and ALK-KDE-IS in terms of Niter and Ncall. This case demonstrates427

the superior performance of the proposed method compared with several other methods in terms of accuracy428

and efficiency.429

The identified points at each iteration of the proposed method (α = 2.25) are depicted in Fig. 5. It can430

be seen that the local peaks of PPVC function are almost identified and the number of identified points is431

not fixed but changes during the iteration process. Fig. 4(b) shows the selected points at different stages432

and final experimental designs. The predicted and true limit state surfaces are depicted with red and black433
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Table 1: Reliability analysis results of Example 1 (Case 1).

Method Niter Ncall Pf COV [Pf ] ϵPf

MCS - 107 4.93× 10−4 1.42% -

AK-MCS-U 63.15 74.15 4.99× 10−4 4.74% 1.01%

AK-SDMCS 33.55 44.55 4.95× 10−4 3.14% 0.41%

ALK-KDE-IS 65.35 76.35 5.02× 10−4 2.10% 1.83%

ALR in UQLab
k = 4 17.70 76.80 5.26× 10−4 3.60% 6.69%

k = 5 15.15 80.75 5.27× 10−4 4.03% 6.90%

PABQ
k = 4 8.75 41.00 4.96× 10−4 2.39% 0.61%

k = 5 7.00 40.00 4.98× 10−4 1.96% 1.01%

ds-AKP1 29.93 59.50 4.98× 10−4 4% 1.01%

Proposed method

α = 1.5 8.00 47.00 4.98× 10−4 1.54% 1.01%

α = 2.0 7.30 41.00 4.96× 10−4 1.71% 0.61%

α = 2.25 7.15 39.70 4.94× 10−4 3.19% 0.20%

α = 2.5 6.60 38.55 4.93× 10−4 6.51% 0

1 The results are taken from research [42] based on 30 independent runs.

Figure 3: The points identified at each iteration for Example 1 (Case 1).

solid lines, respectively. The identified points are found to gradually move to the critical regions on the limit434

state surface. Most of the identified points reside in the critical regions and the predicted limit state surface435

is generally consistent with the true limit state surface. The results verify that the proposed method can436

estimate the small failure probability accurately.437
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Figure 4: Selected points by the proposed method for Example 1.

Figure 5: The points identified at each iteration for Example 1 (Case 2).

4.2. Example 2: Nonlinear oscillator438

In this example, a nonlinear undamped single degree of freedom oscillator subjected to rectangular pulse439

load (Fig. 6) is investigated [23, 36]. The performance function is defined as:440

g (c1, c2,m, r, t1, F1) = 3r −
∣∣∣∣ 2F1

mω2
0

sin

(
ω0t1
2

)∣∣∣∣ (33)

where ω0 =
√
(c1 + c2)/m. The six random variables are listed in Table 3.441

Table 4 lists the numerical results of the proposed method and other compared methods. The failure442

probability Pf = 1.50× 10−8 with COV of 2.58% provided by MCS is considered as the reference result. It443
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Table 2: Reliability analysis results of Example 1 (Case 2).

Method Niter Ncall Pf COV [Pf ] ϵPf

MCS - 3× 1010 5.92× 10−8 2.37% -

AK-SDMCS1 35.5 46.5 5.79× 10−8 3.99% 2.20%

ALK-KDE-IS2 65.6 76.6 5.86× 10−8 2.80% 1.01%

ALR in UQLab
k = 4 21.45 91.80 5.96× 10−8 45.22% 0.68%

k = 5 19.40 104.00 6.41× 10−8 31.01% 8.28%

PABQ
k = 4 13.35 59.40 5.11× 10−8 1.87% 13.68%

k = 5 9.50 52.50 5.11× 10−8 2.58% 13.68%

Proposed method

α = 1.5 8.95 54.60 5.90× 10−8 1.60% 0.34%

α = 2.0 8.90 51.75 5.84× 10−8 2.32% 1.35%

α = 2.25 8.20 48.65 5.86× 10−8 3.17% 1.01%

α = 2.5 8.05 47.55 5.87× 10−8 2.34% 0.84%

1 The results are taken from research [44] based on 100 independent runs.
2 The results are taken from research [43].

Table 3: Details of random variables in Example 2.

Variable Distribution Mean Standard deviation

m Normal 1 0.05

c1 Normal 1 0.1

c2 Normal 0.1 0.01

r Normal 0.5 0.05

t1 Normal 1 0.2

F1 Normal 0.45 0.075

is found that the proposed method (α = 1.5, 2.0 or 2.25), AK-SDMCS, ALK-KDE-IS and AK-MCMC [45]444

can provide accurate average failure probability estimates with the COVs around 5%, while the proposed445

method greatly outperforms its counterparts in terms of Niter and Ncall. The proposed method also exhibits446

computational advantages compared with ALR. In addition, both ALR and PABQ produce biased average447

failure probability estimates with relatively large COVs in this example. In particular, the relative errors of448

PABQ are greater than 60% though it costs similar Niter and Ncall to the proposed method. Overall, the449

results demonstrate the superior accuracy, robustness and efficiency of the proposed method over several450

others active learning methods.451

4.3. Example 3: Turbine blade structural model452

The third example considers a turbine blade structural model of jet engine available in the Matlab Partial453

Differential Equation (PDE) Toolbox, which is made of nickel-base alloy (NIMONIC90). The finite element454

(FE) model of the turbine blade with the maximum element size of 0.01 is depicted in the left of Fig. 7.455
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Figure 6: Nonlinear oscillator subjected to pulse load.

Table 4: Reliability analysis results of Example 2.

Method Niter Ncall Pf COV [Pf ] ϵPf

MCS - 1011 1.50× 10−8 2.58% -

AK-SDMCS1 53.6 64.6 1.46× 10−8 5.20% 2.67%

ALK-KDE-IS 47.25 58.25 1.51× 10−8 2.77% 0.67%

AK-MCMC 171.70 182.70 1.51× 10−8 1.19% 0.67%

ALR in UQLab
k = 1 42.00 53.00 1.70× 10−8 9.26% 13.33%

k = 2 22.75 55.50 1.70× 10−8 8.96% 13.33%

PABQ
k = 1 13.45 22.45 5.97× 10−9 8.81% 60.20%

k = 2 7.90 23.80 5.67× 10−9 9.28% 62.20%

Proposed method

α = 1.5 10.90 25.35 1.49× 10−8 4.00% 0.67%

α = 2.0 9.25 22.50 1.47× 10−8 4.37% 2.00%

α = 2.25 9.15 22.00 1.51× 10−8 5.83% 0.67%

α = 2.5 8.10 20.95 1.46× 10−8 8.38% 2.67%

1 The results are taken from research [44] based on 30 independent runs.

The von Mises stress distribution of the combined structural and thermal analysis is shown in the right of456

Fig. 7. Considering the uncertainties of material properties, pressure loads and temperature condition of457

the turbine blade structural model, the maximum von Mises stress should be less than a given allowable458

threshold. The limit state function is thus defined as:459

g(X) = σth − σmax(E,CTE, λ,Kapp, p1, p2, T1, T2) (34)

where σth denotes the allowable threshold (σth = 1.5 GPa is adopted); σmax denotes the maximum von Mises460

stress under the combined thermal and pressure effects; The Young’s modulus E, coefficient of thermal461

expansion CTE, Poisson’s ration λ, thermal conductivity Kapp, pressure load on the pressure side p1,462

pressure load on the suction side p2, temperature of the interior cooling air T1, and temperature on the463

pressure and suction sides T2 are assumed to be independent random variables. The details of the eight464
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Table 5: Details of random variables in Example 3.

Variable Description Distribution Parameter 1 Parameter 2

E(GPa) Young’s modulus Normal 200 0.15

CTE(1/K) Coefficient of thermal expansion Normal 1.27× 10−5 0.1

λ Poisson’s ratio Lognormal 0.27 0.1

Kapp(W/m/K) Thermal conductivity Lognormal 11.5 0.1

p1(kPa) Pressure loads Lognormal 500 0.20

p2(kPa) Pressure loads Lognormal 450 0.20

T1(◦C) Temperature Uniform 130 170

T2(◦C) Temperature Uniform 950 1050

Note: Parameter 1 and 2 respectively denote the mean and coefficient of variation for normal and
lognormal distribution, and the lower and upper-bounds for uniform distribution.

random variables are listed in Table 5.465

Table 6 presents the numerical results provided by the proposed PBPI method and other compared466

methods. The failure probability Pf = 4.19× 10−6 estimated by IS is regarded as the reference value. The467

AK-SDMCS and ALK-KDE-IS do not converge after multiple trials, hence the results are absent. As shown468

in Table 6, the proposed method provides fairly accurate average failure probability estimates with their469

COVs around 5% when the parameter α = 1.5, 2.0 or 2.25. As for the efficiency, the proposed method470

costs significantly less iterations and G-function calls than AK-MCMC and ALR. It is noted in this example471

that AK-MCMC fail to converge after 200 iterations in all 20 independent runs. Compared to PABQ, the472

proposed method (α = 2.0, 2.25 or 2.5) also shows better efficiency in terms of Niter and Ncall. In addition,473

the COVs in PBPI are smaller than those in PABQ, indicating the better robustness of the proposed method.474

The results verify that the proposed PBPI can efficiently produce accurate and robust failure probability475

estimate for this turbine blade problem.476

4.4. Example 4: A transmission tower477

A transmission tower structure is studied in the last example to further illustrate the performance of the478

proposed method. The 19.3m-tall tower structure is modified from [37]. Four forces with random direction479

in XOZ plane are applied on this structure, as depicted in Fig. 8(a) and (b). The tower structure is modeled480

as FE model constructed in OpenSees platform. The FE model consists of 53 nodes and 172 elements.481

The bilinear stress-strain curve is used, as shown in Fig. 8(c). Twelve independent random variables are482

considered in this example. Table 7 lists the details of these random variables. The performance function is483
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Figure 7: Finite element model (left) and von Mises stress distribution of combined structural and thermal analysis (right) of
turbine blade.

Table 6: Reliability analysis results of Example 3.

Method Niter Ncall Pf COV [Pf ] ϵPf

IS1 - 4101 4.19× 10−6 3.89% -

AK-MCMC 200.00 211.00 4.49× 10−6 6.41% 7.16%

AK-SDMCS - - - - -

ALK-KDE-IS - - - - -

ALR in UQLab
k = 2 147.35 308.70 4.96× 10−6 5.17% 18.38%

k = 3 93.65 293.95 4.93× 10−6 6.11% 17.66%

PABQ
k = 2 36.65 81.30 3.87× 10−6 12.99% 7.64%

k = 3 19.95 66.85 3.97× 10−6 10.70% 5.25%

Proposed method

α = 1.5 28.30 79.60 4.20× 10−6 3.55% 0.24%

α = 2.0 17.90 52.35 4.12× 10−6 5.29% 1.67%

α = 2.25 15.40 44.35 4.08× 10−6 5.73% 2.63%

α = 2.5 14.15 38.00 4.11× 10−6 8.77% 1.91%

1 The results of IS are calculated using UQLab [46].

defined as follows:484

g(X) = δth −D(P1, P2, P3, P4, θ1, θ2, θ3, θ4, A, Fy, E0, b) (35)

where δth denotes the specified threshold and δth = 15 cm is adopted in this example; D(·) denotes the485

horizontal displacement of the topmost node.486

The results provided by different methods are summarized in Table 8. The failure probability Pf =487

6.06 × 10−7 with the COV of 1.32% estimated by IS is adopted as the reference value. The results of488

AK-SDMCS and ALK-KDE-IS are not listed as they fail to converge after multiple trials. It is observed489

that the proposed method and AK-MCMC can provide fairly accurate average failure probability estimates490
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Table 7: Details of random variables in Example 4.

Variable Description Distribution Parameter 1 Parameter 2

P1, P2(kN) Load Lognormal 60 0.2

P3, P4(kN) Load Lognormal 50 0.2

θ1, θ2(◦) Angle Uniform 0 10

θ3, θ4(◦) Angle Uniform 0 20

A(mm2) Cross-sectional area Normal 5000 0.10

Fy(MPa) Yield strength Normal 400 0.15

E0(GPa) Young’s modulus Normal 200 0.10

b Strain-hardening ratio Normal 0.02 0.05

Note: Parameter 1 and 2 respectively denote the mean and coefficient of variation for
normal and lognormal distribution, and the lower and upper-bounds for uniform distri-
bution.

Table 8: Reliability analysis results of Example 4.

Method Niter Ncall Pf COV [Pf ] ϵPf

IS1 - 50120 6.06× 10−7 1.32% -

AK-MCMC 200.00 211.00 5.86× 10−7 5.63% 3.30%

AK-SDMCS - - - - -

ALK-KDE-IS - - - - -

ALR in UQLab k = 2 147.45 316.90 6.71× 10−7 6.73% 10.73%

PABQ k = 2 44.50 97.00 2.55× 10−7 30.25% 57.92%

Proposed method

α = 2.0 40.45 89.15 6.16× 10−7 5.49% 1.65%

α = 2.25 28.65 69.00 6.05× 10−7 6.03% 0.17%

α = 2.5 24.65 60.00 5.89× 10−7 6.24% 2.81%

1 The results of IS are calculated using UQLab [46].

with their COVs around 5% though AK-MCMC can not converge after 200 iterations in all 20 independent491

runs. ALR and PABQ yield biased results, especially for PABQ that the relative error is larger than 57%.492

As for the computational efficiency, the proposed method costs obviously less iterations and G-function calls493

than AK-MCMC, ALR and PABQ, especially when α is large (e.g., α = 2.5). In addition, the COVs in the494

proposed method (5.49% to 6.24%) are greatly less than that in PABQ (30.25%). These results demonstrates495

that the proposed method outperforms several other existing methods in terms of accuracy, robustness and496

efficiency.497

4.5. Discussions on the parameter α498

A parameter α is introduced in the proposed PPV (i.e., Eq. (15)) to approximate the true posterior499

variance. Parametric analysis is conducted in the four numerical examples to investigate its effect on the500

performance of the proposed method. It is observed that the average number of iterations Niter and the501

average number of G-function calls Ncall generally decrease with the increase of the parameter α. Meanwhile,502
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the COVs of failure probability estimate increase with α. The results are mainly due to the fact that the503

increase of α would decrease the PPV value and the corresponding pseudo posterior COV in Eq. (30),504

accelerating the convergence of active learning though sacrificing the robustness of the algorithm.505

The setting of parameter α involves a trade-off between accuracy and efficiency. According to the four506

investigated examples, a parameter α = 2.25 is suggested in PPV to construct the learning function and507

stopping criterion. Results show that the accuracy and efficiency can be guaranteed simultaneously under508

this setting. Specifically, the COVs of the failure probability estimates are around 5% and the relative509

errors are within 3% in the four investigated examples. Note that the threshold ϵp in the stopping criterion,510

constructed based on the judgment of the pseudo posterior COV, is specified as exactly 5%. In addition,511

the proposed method with α = 2.25 typically shows better efficiency in terms of Niter and Ncall than several512

other existing active learning reliability methods. It is worth mentioning that the PPV with α = 2.25 may513

not be able to accurately approximate the true posterior variance. However, as a compromise between the514

UPV and the true posterior variance, it can provide a simple but pragmatic uncertainty measure of failure515

probability, which contributes the development of Bayesian active learning methods.516

5. Conclusions517

This paper presents a novel Bayesian active learning method termed ‘Parallel Bayesian Probabilistic518

Integration’ (PBPI) for efficiently estimating small failure probabilities. Specifically, a pseudo posterior519

variance (PPV) of failure probability is first heuristically proposed for providing a pragmatic uncertainty520

measure over failure probability. The PPV with a reasonable setting of α can not only alleviate the ex-521

pensive computational cost of exact posterior variance in PA-BFPL, but also more realistically reflect the522

true posterior variance compared with the upper-bound posterior variance in PABQ. Besides, the variance523

amplified importance sampling is modified in a sequential manner to allow the estimations of posterior524

mean and PPV of failure probability with large sample population. According to the posterior statistics of525

failure probability, a learning function and a stopping criterion are then presented to enable active learning.526

Finally, a novel adaptive multi-point selection method is developed to identify multiple points without the527
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need to predefine the number of points added at each iteration, thereby supporting parallel computing more528

intelligently.529

The effectiveness of the proposed PBPI method is demonstrated by investigating four numerical examples,530

including a turbine blade model and a transmission tower structure. According to the investigated numerical531

examples, a parameter α = 2.25 is suggested in the proposed PPV of failure probability. Numerical results532

indicate that the proposed method is capable of providing accurate failure probability estimates with the533

COVs around 5% and the relative error less than 3% under this setting. In addition, the proposed method534

generally requires less performance function evaluations and iterations compared to several other state-of-535

the-art active learning methods. Overall, the proposed PBPI method can assess small failure probabilities536

(e.g., in the order of 10−4 ∼ 10−8) with satisfactory accuracy, efficiency and robustness.537

The proposed PBPI method is expected to perform well for linear, weakly nonlinear and moderately538

nonlinear problems in low to moderate dimensions. The performance of the proposed method may degrade539

for high dimensional and/or strong nonlinearity problems due to the limitations of the DBSCAN clustering540

algorithm and GP model. Additional research efforts are still needed to address the limitations.541
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