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Abstract: Binary neural networks (BNNs) are variations of artificial/deep neural network (ANN/DNN)
architectures that constrain the real values of weights to the binary set of numbers {−1,1}. By using
binary values, BNNs can convert matrix multiplications into bitwise operations, which accelerates
both training and inference and reduces hardware complexity and model sizes for implementation.
Compared to traditional deep learning architectures, BNNs are a good choice for implementation
in resource-constrained devices like FPGAs and ASICs. However, BNNs have the disadvantage of
reduced performance and accuracy because of the tradeoff due to binarization. Over the years, this
has attracted the attention of the research community to overcome the performance gap of BNNs,
and several architectures have been proposed. In this paper, we provide a comprehensive review
of BNNs for implementation in FPGA hardware. The survey covers different aspects, such as BNN
architectures and variants, design and tool flows for FPGAs, and various applications for BNNs. The
final part of the paper gives some benchmark works and design tools for implementing BNNs in
FPGAs based on established datasets used by the research community.

Keywords: field-programmable gate array (FPGA); binary neural network (BNN); latency reduction;
computational modeling

1. Introduction

In recent years, convolutional neural networks (CNNs) have showcased remarkable
performance across various domains, including image classification [1,2], object recog-
nition [3,4], speech emotion recognition [5,6] and the classification of noise from non-
stationary signals [7]. Typically, CNNs utilize 32-bit float-pointing values for training and
inference. This requires devices with high computation capability and a substantial storage
space. This requirement makes deep learning techniques dependent on devices with high
computation performance like GPUs. However, in many real-world applications, we may
need to implement deep learning neural networks in devices with limited resources. For
example, embedded systems based on field-programmable gate arrays (FPGAs) only have
a few thousands of units for vector computation, which is insufficient for dealing with
common deep learning models with millions of parameters. Therefore, many researchers
have proposed different techniques to compress the memory footprint and computation
requirements of neural networks [8].

Binary neural networks (BNNs) can be considered as extreme cases of quantization.
The idea of BNNs began with BinaryConnect [9], proposed by Courbariaux et al. They
developed a deep neural network which represents weights by the binary values {−1,1} in
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forward propagation and updates the binary weights from a gradient of real values during
training. Even though BinaryConnect applies binary weights, the activation function still
uses full-precision representation. To improve BinaryConnect, Courbariaux et al. also
proposed a modification that uses binary values to represent both the weights and the acti-
vation. It is defined as the first binary neural network [10]. Additionally, the work achieved
a 32-times compression ratio on parameters and a speed-up of approximately 7 times on
the MNIST, CIFAR10 and SVHN datasets. However, the experimental results showed that
the BNN in [10] was not suitable for big datasets (e.g., ImageNet [11]). Therefore, XNOR-
Net [12] was proposed. The authors introduced a scaling factor to reduce quantization error
and increase accuracy. They also used XNOR-bitcount to replace the convolution operation,
which significantly reduced the matrix computation cost. Finally, they reduced the memory
footprint by a factor of 32, and the system was 58 times faster at performing the convolution
operation than the full-precision version. These two pioneering works, BinaryConnect and
XNOR-Net, demonstrated the capacity of binary neural networks. However, BinaryCon-
nect must lose a lot of information because of the decreasing representation ability caused
by binarized values. Even though XNOR-Net alleviates the problem to some extent with
statistical scaling factors, this is accompanied by a high computational overhead due to the
statistical features.

The authors of DoReFa-Net [13] and Bi-Real Net [14] recognized the problem and
proposed a solution. DoReFa-Net used a static scaling factor to retain more information
while avoiding the burden of real-time computation of statistical features during inference.
And the authors of Bi-Real Net focused on minimizing error during backward propagation
by replacing the sign function with a specially designed approximation. At the same time,
Bi-Real Net also introduced a full-precision shortcut to enhance the information of the
feature maps. Then, XNOR-Net++ not only proposed a way of merging the activation and
weight scaling factor as a single learnable parameter, but also explored the influence of
scaling factors with different shapes. Except for the scaling factors, Bethge, J et al. thought
that a good network structure is the key to BNNs and summarized the design philosophy
of the BNN structure to define what kind of structure is a good structure for BNNs [15].
On the other hand, ReActNet [16], Adabin [17] and DyBNN [18] worked on improving
the performance of BNN by setting the shifting or threshold parameters of the activation
function as the learnable parameters to change the properties of the activation function. But
because the parameters are learnable, if the parameter cannot match with a suitable value
during the training process, the method will cause significant information loss instead.
IE-Net improved this problem without adding much computational burden by deploying
multiple activation functions simultaneously and sharing the convolutional layer [19].
IR-Net [20] differs from the usual BNN measure of quantization error by introducing
information entropy to measure quantization error from a novel perspective. And IR-Net
also proposed a hardware-friendly scaling factor. The Binarized Ghost Module (BGM) [21]
and RB-Net [22] enhanced the representation capacity of feature maps through reshaping
and concatenating operations.

Based on our study of the literature, there have been a number of BNN-related re-
views, ranging from conceptual summaries [8,23–25] to technical summaries related to
various domains, such as agriculture [26], medicine [27–29], large-scale image retrieval [30],
human action recognition [31,32], etc. This means significant research has been devoted
to BNNs, applying them in many areas, including object recognition [31,33–35], semantic
segmentation [36,37] and point-cloud tasks [38]. Compared to other BNN-related reviews
and earlier works, this review contributes the following:

(1) It covers a wide spectrum of AI-enabling technologies for BNNs by summarizing
more existing works published up until early 2023.

(2) BNN architectures, models and principles within the main categories of techniques
are analyzed and discussed.



Sensors 2023, 23, 9254 3 of 32

(3) It covers the mainstream tool flows for machine learning to FPGAs. It introduces
the key design and principle of each tool and also summarizes the workflow of each
tool flow.

(4) Identifying current challenges and future directions for BNNs in resource-limited de-
vices, the paper also offers some comparisons of BNN architectures and benchmarking
results to give insights into FPGA implementation.

Regarding the paper’s structure, Section 2 presents the tool flows and their key designs
for hardware, particularly FPGA implementation. The further development of BNNs is
discussed in Section 3. Section 4 gives a comparison of BNN architectures and benchmark-
ing results for FPGA implementation using established datasets. Section 5 discusses future
work and challenges for BNNs, and Section 6 gives some concluding remarks.

2. Survey of Tool Flows for Machine Learning (ML) to FPGAs

This section describes the various design tools and workflows which have been
proposed for machine learning using FPGA implementations. The following tool flows are
covered: (1) HLS4ML [39], (2) FINN [40,41], and (3) TVM/VTA [42].

2.1. Resources on Boards

Before focusing on tool flows, there are some resources (DSPs, LUTs and BRAM) on
boards which need to be introduced. A digital signal processing (DSP) block is composed
of a high-performance hardware multiplier plus some accumulators and registers, multi-
plexers and other resources. DSPs provide FPGAs with the ability to perform powerful
digital signal processing operations by combining these high-performance resources in
close proximity. However, the number of DSP blocks is typically limited in FPGAs.

A lookup table (LUT) is essentially an RAM, where the user describes a logic circuit
through schematic or HDL language; the FPGA development software (Xilinx Vivado
2018.1) will automatically calculate all the possible results of the logic circuit, listed in the
form of a truth table, and write the truth table (i.e., the output logic corresponding to the
inputs) into the RAM in advance, so that each input signal for the logic operation is the
same as inputting an address to look up the table to find out what the address corresponds
to and then output it. The table is then written into RAM, so that each signal input for the
logic operation is equivalent to inputting an address, looking up the table, finding out what
the address corresponds to and outputting it.

Block RAM (BRAM) is one of the most important storage resources in FPGAs. BRAM
is characterized by high speed, reliability and low power consumption, and is widely used
to store large amounts of data and programs. In FPGA design, we can configure BRAM
through IP, Verilog code, etc., to adapt it to different application scenarios.

2.2. HLS4ML

HLS4ML is an automatic tool for deploying neural networks in FPGAs with ultra-low
latency and low power [39]. HLS4ML has two important design features. One of those is
parallelism, where the core of the convolutional layer can be regarded as matrix–vector
multiplication. The team of HLS4ML introduced a factor called the reuse factor. The reuse
factor is a parameter for control of the parallel or streaming model implementation with
varying degrees of pipelining. The effect of the reuse factor is shown in Figure 1. In the
Figure 1, the different color arrows mean different datapaths with different multipliers.

Another important design feature is quantization-aware training (QAT). As discussed
above, a neural network with full precision will be difficult to implement in devices with
limited resources. The team of HLS4ML introduced QKeras [43] to quantize the model to
achieve the best performance at low precision and benefit automatically during inference,
with HLS4ML parsing of QKeras models.
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The workflow of HLS4ML can be summarized as follows and the overview is shown
as Figure 2:

(1) Training the model and then undertaking compression (pruning and quantization)
using a deep learning framework (Keras, TensorFlow or pytorch).

(2) The HLS4ML package will convert the model to an HLS project and generate an
Intellectual Property (IP) module.

(3) Each layer and activation can be implemented as a separate configurable module
which contains computational modeling of each layer. Configurations include clock
period, IO type, bitwidth, reuse factor, and so on.

(4) In Vivado, importing the IP generated by HLS4ML and then connecting to the PS
(Processing System) and analyzing the resource cost, e.g., DSP, LUT, BRAM, and so on.

(5) Synthesis and deployment in an FPGA.
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In [44], the team that developed HLS4ML proved the capability of HLS4ML in terms
of binary or ternary neural networks. In the experiment, they implemented four layers of
fully connected neural networks on LHC [45] and MNIST [46]. The results demonstrated
that the implemented binary or ternary versions of the models have similar performance to
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high-precision models, while the utilization of DSPs is nearly non-existent. Compared to
the baseline model, the model with binary values only needed half the BRAM. As HLS4ML
was refined, the researchers could apply quantization neural networks to more areas.
Gheilmetti et al. [47] quantized ENet [48] from full-precision to 8-bit and 4-bit fixed-point
data types and even binary data types. The results demonstrated that the quantized ENet
gains 4.9 ms latency per image and uses less than 30 percent of board resources in the Xilinx
ZCU102 evaluation board.

2.3. FINN

FINN [40] is another bridge between FPGAs and neural networks. The tool was
published by Xilinx, so it supports many different Xilinx FPGA boards. It specifically
targets quantized neural networks (QNNs), with emphasis on generating data-flow-style
architectures customized for each network. In addition, Xilinx also developed Brevitas, a
Pytorch-based quantization-aware training toolkit, for FINN. To achieve high flexibility,
Xilinx separated out a library called finn-hlslib, which can highly customize configurable
C++ template parameters, such as the data type of the input, the weight and output, and
the mapping of different FPGA resources, like LUTs or DSPs and LUTRAM or RAM.

Generally, there are two possible solutions for implementing a neural network in
an FPGA: (a) the traditional RTL design by VHDL and (b) the HLS design flow using
C++. The FINN team chose solution (b) to develop their tool flow because the benefits of
using HLS include design productivity, portability to several different platforms, built-in
optimization for data flow and automatic flow control. Nevertheless, these benefits come
at the cost of a degree of resource overhead. To be more specific, several experiments [41]
show that HLS implementation will increase resource overhead by 45% compared to VHDL
implementation using the method provided by Thomas B. Preußer [49].

As shown in Figure 3, the first step of FINN is training a quantized neural network in
PyTorch with Brevitas; then, the model will import into the FINN compiler. The processes
of the FINN compiler can be split into front-end and back-end processes. In the front end,
FINN converts the QNN trained by the framework to FINN intermediate representation
(IR) to obtain the structure of the network, including data type and precision.

The intermediate representation (IR) contains quantization information for the inputs,
weights and outputs of each node. This information is essential for quantization-aware
optimization and the mapping of back-end optimization for quantized computing.

The back end is a deployment package which is created using an IR diagram and
back-end-specific information. The deployment package includes parameters for the
QNN model, back-end-specific code for executing the model, the runtime environment,
executable hardware designs for targeting the data streams and the multilayer offloading
architecture, and a selection of predefined platforms.

FINN also supports two different accelerator architectures, data flow and multilayer,
for dealing with various hardware resources [41]. In the data-flow architecture, FINN
will be customized for a specific neural network topology, with different accuracy for the
activations and weights for each layer. Each layer instantiates a computational engine.
As soon as the previous engine starts producing output, the engine starts computing,
thus introducing another kind of concurrency between the layers. On the other hand, a
multilayer architecture is equivalent to taking the concatenation of computational resources
in a data-flow architecture suitable for large networks under limited resource constraints.
In conclusion, the cost of a data-flow architecture is the sum of all the implemented layers,
while the cost of a multilayer architecture is defined by the maximum value of the layer.
Obviously, the former has lower latency but a higher resource overhead. A diagram of the
two architectures is shown as Figure 4.
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After the general introduction of the FINN workflow, it is essential to understand the
actual specific workflow in practice. Figure 5 shows the specific FINN workflow, from
software to hardware runtime. The red blocks indicate the general software steps for
training a model by PyTorch using the library Brevitas, which is specialized for QNNs.
Once there is a trained QNN in ONNX format, the model can be imported into the FINN
compiler for model preparation.
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In model preparation, FINN provides plenty of functions to make a model more
readable and simplify the computational process. For example, after the Tidy process,
each layer of the model will be given a unique name according to operation, mul_0 or
maxpool_0, rather than an initialized name, layer 1, 2, 3, and so on. This process improves
readability while providing recognizable keywords for all the functions that follow, and all
functions can be automatically simplified by keywords. Except for the unique name, the
process also labels all of the information about tensor shape and data type; so, for BNNs,
FINN can transform multiplication in a convolutional layer that has binarized weights and
inputs into a XNOR-popcount operation automatically.

In streamlining, all the scaling layers in front of a quantization layer will collapse into
a linear transform. And then the linear transform can be fully merged into the quantization
by updating its threshold, which saves storage and computing overhead [50]. Next, the
FINN compiler will convert nodes to custom nodes corresponding to the FINN-hlslib
function. In other words, the compiler will map the layers to predefined HLS layers in
the library to FINN-hlslib. At the same time, data partitioning can separate out the HLS
layers and non-HLS layers in the model, where non-HLS layers are some layers that the PS
can deal with, such as pre-processing (ToTensor and normalization) and post-processing
(Top-K algorithm). Finally, folding processing aims to adjust the parameters for controlling
the parallelism of computation that are inserted in the process of conversion to HLS layers.

All the operations in the black box of Figure 6 will be completed automatically by a
hardware function provided by FINN. Users only need to specify the hardware platform or
the Xilinx FPGA part; FINN can automatically generate the corresponding Vivado project
through FPGA synthesis tools (Vitis HLS and Vivado). In the Vivado project, users can
add a customized design in the block design and also analyze the hardware resources.
Furthermore, FINN also generates PYNQ drivers for implementation.

2.4. TVM/VTA

TVM [42] is an open-source, end-to-end deep learning model compilation framework
for optimizing the inference operation speed of deep learning models in arbitrary target
environments, such as CPUs, GPUs, ARMs, etc. Common applications include scenarios
that require compatibility with all mainstream models as input and the generation of
optimized deployment models for any type of target hardware; scenarios that have strict
requirements on the inference latency, throughput and other performance indicators of the
deployed models; and scenarios that require custom model operators, self-developed target
hardware and custom model optimization processes. The workflow can be summarized
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as follows: the models derived from common deep learning frameworks (Tensorflow,
Pytorch, MXNet, etc.) are used as inputs to the TVM framework, and after a series of graph
optimization operations within the framework and automatic optimization operations at
the algorithm level, they are eventually transformed into deployment models, like CPUs,
GPUs and ARMs, for the target runtime. The optimized models theoretically maximize the
utilization of the target hardware’s resources in order to minimize the model’s inference
latency. An overview of the TVM framework is shown below:

The TVM compiler is the main functional component of the TVM, which is responsible
for optimizing and compiling the deep learning model into a code that can run inference
tasks on the target device. The overall compilation process is shown in Figure 7.
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In the figure, the blue operations represent the data structures involved in the TVM
compilation process, the yellow operations represent the algorithms that process these data
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structures and the pink AutoTVM is a special algorithm that assists the Schedule function
in selecting parameters. The data structure of the entire TVM compilation stack consists of:

(1) A model from a framework: a model exported from PyTorch, MXNet, etc.
(2) The IR Module (Relay): the intermediate representation (IR) in the level of the

TVM graph.
(3) The tensor-level IR (TIR) for TVM, which contains specific scheduling details (loop

nesting, parallelism, instruction sets, etc.) for each operator corresponding to the
network layer.

(4) The Runtime Module is the lowest-level IR of the TVM compilation stack, directly
interfacing with the runtime to run on the target device.

The Versatile Tensor Accelerator (VTA) [52] is a small FPGA-based acceleration back
end developed by the TVM compilation stack. Running end-to-end computational tasks
on the VTA requires a complete software stack that maps high-level models to the VTA
programmable interface. The first step of the conversion process is computation graph-
level optimization. In this step, the TVM first receives various deep learning models, such
as PyTorch, TensorFlow, MxNet, etc., and converts them into a Relay IR. In the Relay
layer, computation graph-level optimization is performed, such as constant folding, dead-
code elimination and operator fusion. After that, computation graph wrapping is needed
because graph representation and optimization are independent of hardware platforms.
The computation graph needs to be wrapped in a hardware-platform-specific format. The
following step is the optimization of operators, which defines the algorithmic steps that
need to be performed to accomplish the operation, while scheduling specifies how the
computation is to be performed, e.g., how the data are to be loaded and stored and what
optimizations are to be used, such as loop chunking, loop unrolling, multithreading, etc.
Finally, the TVM IR, also called the TIR, is generated after the operator-level optimization,
which is hardware-dependent and in which the API provided by the VTA is embedded.
After generating the VTA instructions, a run signal is written to the Programmable Logic
(PL) of the FPGA device, and the HLS accelerator portion of the VTA starts to perform
the computation in a task-level parallel manner, which ultimately realizes the forward
inference of the entire neural network.

2.5. Optimization

These tool chains also have their own special optimizations for different types of
neural networks. Although some of these optimizations are not specific to binary neural
networks, binary neural networks can still benefit from them. This is because the goal of all
these tool chains is to achieve the lowest latency and the best possible resource utilization.
More importantly, most of the existing tool chains do not have enough generalization ability
for FPGAs. Most tool chains are well optimized for specific FPGA platforms, so whenever
we want to deploy BNNs or QNNs on different FPGA platforms in large quantities, we
need to repeat the process of platform-specific optimization, which is very cumbersome
and inefficient. However, the three tool chains we discussed above are adapted for a large
portion of FPAG platforms, and their optimization methods are very generalizable.

2.5.1. HLS4ML (Optimization for Arbitrary Precision Neural Networks)

The special design of HLS4ML is that it is optimized for both the front end and back
end. The optimizations in HLS4ML consist of three main aspects:

(1) Compression: Inspired by [53,54], L1 regularization was added as an additional
penalty term to the loss function, L, to obtain a sparse model. L1 regularization has
been proven to be a powerful way to generate a sparse weight matrix, which can, in
turn, be used for feature selection [55]. The loss function can be expressed as:

Lλ(W) = L(W) + λ||W||1 (1)
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where L(W) is the original loss function, the term after the plus sign is L1 regulariza-
tion and λ is the regularization factor. The authors’ experiments indicate that after
seven iterations, in a three-hidden-layer model, they achieved a compression rate of
nearly 70%.

(2) Quantization: Optimization in terms of quantization is not specialized for BNNs,
but it is worth mentioning. HLS4ML adopts fixed-point arithmetic to achieve lower
resource costs and latency than floating-point arithmetic.

(3) Parallelization: As described in Section 2.2, the reuse factor is a key optimization for
back-end hardware that affects the parallelism of data flow in hardware. Users can
choose the corresponding degree of parallelism based on the number of DSPs their
platform has in order to achieve the shortest latency and higher resource utilization.

2.5.2. FINN (Special Optimization for BNNs)

FINN differs from HLS4ML and TVM/VTA in that it has its own special optimizations
for binary neural networks. These include the following specific operators:

(1) XNOR and popcount replace the binary dot product and summation to avoid signed
arithmetic. According to experimental results that were implemented by Vivado HLS,
compared with signed-accumulate, popcount-accumulate only required nearly half
the number of LUTs and FFs.

(2) Converging batch normalization [56] and activation as threshold. Normally, a BNN
will insert batch normalization between convolutional or fully connected layers and
sign functions. A special threshold activation was designed that allowed the compu-
tation of activation using unsigned inputs and avoided batch normalization, which
requires the utilization of large amounts of hardware resources during inferences.
Experiments indicate that using a 16-bit dot product as input, regular batch normal-
ization with sign activation needs 2 DSPs, 55 FFs and 40 LUTs, but the threshold
activation only requires 6 LUTs.

(3) Boolean OR for max pooling. Regularly, the pooling layer will perform before batch
normalization and the activation function, which means that the pooling layer will
have to deal with non-binarized values. FINN shows that the same outputs can be
achieved by max pooling that is performed after activation functions without retrain
networks. It further optimized the utilization of hardware resources during inference
because max pooling is only performed with binarized values.

Except for the optimizations, FINN also proposed a specially designed computa-
tional core for an accelerator called the Matrix–Vector–Threshold Unit (MVTU). In FINN’s
implementation, the computation operations in the BNN are regarded as matrix–vector
operations with thresholding. The MVTU data path is shown in Figure 8. First, the MVTU
computes the dot product of the input vector and one of the rows of the weight matrix.
The result of the dot product is then compared with the thresholding value to produce a
single-bit value. The dot product consists of two parts, XNOR and popcount, corresponding
to the first optimization mentioned above.

2.5.3. TVM/VTA (An Automatic Tool Chain for Various Platforms)

In terms of optimization approach, TVM/VTA differs from traditional tool chains
in that it aims to make automatically or semi-automatically generated code as good as
handwritten code. Therefore, for TVM/VTA, its optimization is more of a selection process
rather than a design process.

For hardware optimization, TVM/VTA provides hundreds to thousands of candidate
designs automatically based on the configuration options of users, such as PLL frequency
and the degree of hardware pipelining. TVM/VTA then uses a simple FPGA resource
model to exclude infeasible solutions. The remaining solutions go through a compilation,
layout and routing process, and a few of the best feasible solutions are selected based on
the FPGA’s resources, data type and batch size. The rest are excluded due to lower peak
performance or because they have layout, routing or timing closure faults. The final set of
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designs is tuned automatically by a learning-based framework [57] to generate a workload
performance profile. Finally, users can choose one solution from the available options.
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In the front end, TVM/VTA can also explore the best schedule for deep learning
operators. TVM uses the XGBoost [58] search algorithm to automatically achieve the best
schedule that maximizes performance using an automated scheduling library based on
combinations of operators, tensor shapes and hardware parameterization.

In the optimization case, TVM/VTA achieved a tenfold reduction in latency for Resnet-
18 with W8A8 after 4000 optimization iterations.

3. Survey of BNN Architectures

This section reviews binary neural networks which represent benchmark results in
different stages of training binary networks. Table 1 summarizes all the benchmark results
of binary neural networks.

3.1. Binarized Neural Networks (BNNs)

In early binary neural networks (BNNs), the binarization of weights and activation
functions simply quantized values from float-point to 1-bit values through a fixed bina-
rization function with down-quantization by taking the signs of weights and inputs. The
binarization function (sign function) is defined as:

sign(x) =

{
−1, i f x ≤ 0
1, i f x > 0

(2)

BinaryConnect [9], proposed by Courbariaux et al., is a pioneer in binary neural
network research. It transforms full-precision weights into 1-bit weights. The forward
propagation of BinaryConnect uses a stochastic method rather than a sign function to
quantize the weights, which reduces the quantization error:

Wb =

{
−1, with probability ρ ≤ σ(ω).
1, with probability 1− ρ.

(3)

whereWb denotes binarized weights and ρ is a hard sigmoid function:

σ(x) = clip(
x + 1

2
, 0, 1) = max(0, min(1,

x + 1
2

)) (4)
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Table 1. BNN performance comparisons for ImageNet.

Method Architecture Top-1 Accuracy (%) Top-5 Accuracy (%) BOPs (×109) FLOPs (×108) OPs (×108)

BWM [12] AlexNet 56.8 79.4 1.70 1.20 1.47
ResNet-18 [59] 60.8 83.0 - - -

GoogLeNet [60] 65.5 86.1 - - -

XNOR [12] AlexNet 44.2 69.2 - - -
ResNet-18 51.2 73.2 1.70 1.33 1.60

Bi-Real-Net [14] ResNet-18 56.4 79.5 1.68 1.39 1.63
ResNet-34 69.2 83.9 3.53 1.39 1.93

XNOR++ [61] ResNet-18 (α, β, γ) 57.1 79.9 1.695 1.33 1.60

BinaryDenseNet [15] BinaryDenseNet28 60.7 82.4 - - 2.58
BinaryDenseNet37 62.5 83.9 - - 2.71
BinaryDenseNet37-

dilated 63.7 84.7 - - 2.20

MeliusNet [62] MeliusnetC 64.1 - 5.47 1.29 2.14
Meliusnet42 69.2 - 9.69 1.74 3.25
Meliusnet59 71.0 - 18.3 2.45 5.32

ReActNet [16] ReActNet-A(based on
MobileNet-v1 [63]) 69.4 - 4.82 0.12 0.87

ReActNet-B(based on
MobileNet-v1) 70.1 - 4.69 0.44 1.63

ReActNet-C(based on
MobileNet-v1) 71.4 - 4.69 1.40 2.14

IR-Net ResNet-18 58.1 80.0 1.68 1.40 1.67
ResNet-34 62.9 84.1s 1.93

AdaBin [17] AlexNet 53.9 77.6 - - -
ResNet-18 63.1 84.3 1.69 1.410 1.67
ReActNet 66.4 86.5 - - -
ResNet-34 66.4 86.6 - - -

DyBNN [18] ResNet-18 67.4 87.4 - - -
MobileNet-v1 71.2 89.8 - - -

BGM [21] ReActNet-B(based on
MobileNet-v1) 71.4 - - - -

IE-Net ResNet-18 61.4 83.0 - 1.63 -
ResNet-34 64.6 85.2 - 1.93 -

RB-Net ResNet-18 66.8 87.1 - 0.52 -
ResNet-34 70.2 89.2 - 0.71 -

After that, Courbariaux et al. improved their work [10]. In addition to introducing
the Straight-Through Estimator (STE) to avoid the problem that the derivative of the sign
function is almost zero everywhere, they also devised XNOR-Bitcount and shift-based
batch normalization to accelerate the inference of networks. The experiments proved that
their method is very powerful in terms of acceleration and training. The results show that
their method is 7 times faster in terms of runtime and requires 32 times less memory and
memory access.

3.2. XNOR-Net

Even though BNNs save computational resources and storage requirements, binariza-
tion inevitably causes loss of information, which reduces the accuracy of the networks in
varying tasks. Reducing the quantization error is a powerful way to avoid loss of accuracy,
which has been proved in the past years. The quantization error in BWN [12] is defined as:

J(Wb, α) =||W −Wb||2 (5)

where J(·) is the loss function and α is the scaling factor, whose optimal value can be
calculated by:

α∗ =
1
n
‖W‖L1 (6)
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where n is the number of input pixels and L1 means the L1 norm.
To further minimize the quantization error, XNOR-Net [12] was also proposed by

Rastegari et al. XNOR-Net is an extended version of BWM, which also binarizes inputs
using the sign activation function with scaling factors. The quantization rule is similar to
the quantization rule for weights in BWM:

β∗ =
1
n
‖X‖L1 (7)

where X denotes the inputs of the activation function.
For a given L-layer convolutional neural network, the weights and inputs are denoted

as W ∈ Ro×c×w×h and X ∈ Rc×win×hin , where w and h are the width and height of the
kernels, c is the number of input channels, o is the number of output channels, and win
and hin represent the size (the width and height) of the inputs. The binary convolution
operation with scaling factors will become:

X ∗W ≈ (α∗sign(X)~ β∗sign(W)) = α∗β∗(sign(X)~ sign(W)) (8)

where ~ denotes the XNOR bitcount operation.
Except for the quantization method, XNOR-Net also improves training by replacing

the pooling layer after the dense layer or convolutional layer, which can avoid the inputs of
the pooling layer, which are binarized values. While the introduction of a scaling factor
reduces loss of information during the quantization process, the computation of the scaling
factor is quite demanding. It has to calculate the L1 norm in every dot product layer and
compute the L1 norms of activation inputs in real time in both training and inference, which
is quite costly in terms of computing resources.

3.3. DoReFa-Net

The shortcomings of the XNOR-Net approach to computing the gain term were pointed
out by Zhou et al. DoReFa-Net [13] does not use the L1 norm of activations and weights to
dynamically compute the gain term. Instead, the gain term is based only on the weights
of the network. Since the weights and gain terms do not change after training, efficient
inference can be achieved.

The authors of [13] also proposed a generalized quantization method which was
designed to quantize weight, actication and gradient at different bit widths. Also, since the
gradient is quantized, there is also a speed-up effect in the backpropagation process. Even
though the method proposed in DoReFa-Net is not specialized to binarize neural networks,
there are also experimental results for binary neural networks.

3.4. Bi-Real-Net

Bi-Real-Net [14] presents a series of enhancements and improvements to address the
shortcomings of XNOR-Net, specifically including the introduction of shortcut connections
in the form of one layer per block, the use of a quadratic function to fit the sign operation
of real activations, the introduction of the magnitude of real weights when updating the
real weights and the use of a clip function instead of ReLU to train the pre-trained model.

Firstly, the network structure realizes the shortcut connection in the form of one layer
per block, i.e., the real-number result output from the current 1-bit convolution or BN is
directly added to the real-number result output from the next 1-bit convolution or BN,
which increases the network’s numerical representation range (value range). The shortcut
structure is shown in Figure 9.
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Since the sign function is not differentiable (the derivative is the unit impulse re-
sponse), it is necessary to design a differentiable function to approximate the sign function.
Nevertheless, the approximation of the sign function will cause a mismatch between the
approximated gradient and the gradient of the real value in backpropagation, so XNOR-Net
uses a clip function as an approximation of the sign function, which suffers from large
errors. Zhou et al. [14] design a specialized sign function called the ApproxSign function to
get close to the sign function:

ApproxSign(x) =


−1, i f x < −1
2x + x2, i f − 1 ≤ x < 0
2x− x2, i f 0 ≤ x < 1
1, otherwise

(9)

∂ApproxSign(x)
∂x

=


2 + 2x, i f − 1 ≤ x < 0
2− 2x, i f 0 ≤ x < 1
0, otherwise

(10)

ApproxSign, as a direct approximation of the sign function, can further reduce the
gradient error and enhance model performance. In addition, the curve of the derivative
of ApproxSign is triangular in shape, which is more suitable for modeling unit impulse
signals. The sign function, the clip function, the ApproxSign function and their derivatives
are shown in Figure 10.

3.5. XNOR-Net++

Bulat et al. [61] set the scaling factor as a learnable parameter inside the model instead
of calculating the statistical feature. XNOR-Net++ [61] reformulates Equation (8) as:

X *W ≈ (sign(X )~ sign(W))� Γ (11)
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where Γ denotes the learnable scaling factor. XNOR-Net++ proposes four ways to compute
and compare performance. The scaling factor with the best result is constructed as:

Γ = α⊗ β⊗ γ, α ∈ RCout, β ∈ Rhout , γ ∈ Rwout (12)

where α, β and γ are the rank-1 factor over the output channel, the output height and the
output width (C, H and W), respectively.
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3.6. BinaryDenseNet

Different from other researchers, Bethge, J et. al focus on optimal structure design
for binary neural networks [15]. Their research indicates that if binarization is performed
on layers that are not shortcut connected, then it will result in an irrecoverable loss of
information. So, for BNNs, the first convolutional layer, the last fully connected layer and
the downsampling layer should be kept at full precision to avoid further information loss.
They conducted experiments on ResNet-18 for the CIFAR-10 dataset. The results show that
accuracy improved by 0.4% to 1.1%, but the size of the network increased from 1.39 MB to
2.03 MB.

In this paper, the authors also summarized several guidelines for the design of
BNN structures:

(1) The design philosophy of the BNN structure should be based on maximizing informa-
tion retention.

(2) Compact network structures may not be suitable for BNNs because compact neural
network structures are designed to reduce redundancy, whereas BNNs aim to increase
the transfer of information.

(3) A bottleneck structure [59] should be avoided as much as possible. A bottleneck
structure first decreases the number of channels and then increases them, which may
lead to irreversible information loss in BNNs.

(4) The downsampling layer should maintain full precision.
(5) The shortcut structure preserves information and is friendly to BNNs.
(6) The order of operations to change the shortcut between blocks is Maxpool-ReLU-

1x1Conv. The structure presents as Figure 11.
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3.7. ReActNet

Actually, the quantization methods discussed previously can also be regarded as
traditional activation functions multiplied by a factor to represent more information. On
the other hand, ReActNet [16] changed the distribution of a traditional activation function
to dramatically improve accuracy. Liu et al. [16] proposed RSign and RPReLU to replace
Sign and PReLU [1]. The function is shown as Figure 12.
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where I is an indicator function. For example, for Equation (14), if i ix γ≤  is true, the 

indicator 1=I ; if not, 0=I . 

3.8. IR-Net 
In [20], the authors hold the view that the challenge in the training of high-precision 

BNNs is mainly due to severe information loss during the training process. Information 
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Figure 12. RSign and RPReLU.

Both functions are channel-wise, which means that each channel has its own parame-
ters. The method modifies the means and standard deviations of numerical distributions
by simple linear transformations. All of the parameters in RSign and RPReLU are trainable
and not hyperparameters. Certainly, the derivative of the parameters is given by:

∂h(xr
i )

∂αi
= −1 (13)

∂ f (xi)

∂β
= −I{xi≤γi} · (x− γi) (14)

∂ f (xi)

∂γi
= −I{xi≤γi} · βi − I{xi>γi} (15)

∂ f (xi)

∂ζi
= 1 (16)

where I is an indicator function. For example, for Equation (14), if xi ≤ γi is true, the
indicator I = 1; if not, I = 0.
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3.8. IR-Net

In [20], the authors hold the view that the challenge in the training of high-precision
BNNs is mainly due to severe information loss during the training process. Information
loss is caused by the approximation between the sign function in forward propagation
and the backward gradient. In order to solve the above problem, [20] proposed a new
information retention network (IR-Net), which retains the information during the training
process and achieves a high-accuracy BNN.

Previously, the vast majority of binarization methods attempted to reduce the quanti-
zation error of binarization. However, it is not enough to obtain a good BNN by minimizing
the quantization error. Therefore, Libra Parameter Binarization (Libra-PB) in forward prop-
agation was proposed. The key to the Libra-PB design is using both information entropy
and quantization error to maximize the information during BNN forward propagation.

Normally, quantization can be defined as:

Qx(x) = αBx (17)

where α denotes the scaling factor and Bx is the binarized input x of the sign function. The
optimal quantizer for minimizing the quantization error is given by:

min J(Qx(x)) =||x−Qx(x)||2 (18)

According to the definition of information entropy, in BNNs, the entropy of the binary
parameter Qx(x) can be calculated by the following formula:

H(Qx(x)) = H(Bx) = −p ln(p)− (1− p) ln(1− p) (19)

where p is the probability of BX taking the value +1. To be more specific, the formula is
given by:

f (Bx) =

{
p, i f Bx = +1
1− p, i f Bx = −1

(20)

where BX is regarded as a random variable that obeys the Bernoulli distribution. Equation (19)
is its probability mass function. Simply pursing the minimization of the quantization error
will cause the information entropy of the binarized value to be close to zero in extreme
cases. Therefore, Libra-PB takes both the quantization error between non-binarized and
binarized values and the information entropy of the binarized value as the optimization
objective, defined as:

min J(Qx(x))− λH(Qx(x)) (21)

Under the assumption of a Bernoulli distribution, the information entropy of the
quantized values takes the maximum value when p = 0.5, which means that the binarized
value should have a uniform distribution. Therefore, Libra-PB reshapes the distribution
of weight to reduce information loss and quantization error through normalization and
balancing operations:

Ŵstd =
Ŵ

σ
(
Ŵ
) , Ŵ = W − W̄ (22)

where σ() is the standard deviation. Ŵstd has two characteristics:

(1) Zero mean to maximize the information entropy of the obtained binarized weights;
(2) Unit norm, which makes the full-precision weights involved in binarization more

spread out.

Furthermore, to avoid expensive float-point computation and enhance the representa-
tion ability of binarized weights at the same time, the authors also introduced the integer
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scaling factor S instead of the float-point scaling factor α, such that the calculation of
binarization with the scaling factor can be simplified as:

Qw(Ŵstd) = BW <<>> s = sign(Ŵstd) <<>> S (23)

where <<>> denotes a left or right bit-shift operation and S is the number of bits to be
shifted. The optimal S can be calculated from the following expressions:

BW
*, S* = argmin||Ŵstd − BW <<>> S||2 s.t. S ∈ N

S* = round(log2(||Ŵstd||1/n))
(24)

Thus, finally, Libra Parameter Binarization for forward propagation can be expressed
as follows:

Qw(Ŵstd) = BW <<>> s = sign(Ŵstd) <<>> S
Qa(a) = Ba = sign(a)

Z = (Bw � Ba) <<>> S
(25)

The experiments show that the bit-shift operation causes almost no additional inference
time or storage consumption.

The authors also proposed the Error Decay Estimator (EDE) to reduce information loss
during backward propagation. Due to the discontinuity of binarization, the approximation
of the gradient is unavoidable for backward propagation, and this approximation of the
sign function brings about two kinds of information loss, including the information loss
caused by the decrease in parameter updating ability outside the truncated range and the
information loss caused by approximation error within the truncated range. The EDE can
preserve the information derived from the loss function in backward propagation through
an asymptotic two-stage approximate gradient method.

Firstly, the derivative value of the gradient estimation function is kept close to 1, and
then the truncation value is gradually reduced from a large number to 1. Using this rule,
the approximation function evolves from close to the identity function to the clip function,
which ensures update ability early in the training. Secondly, the truncation is kept at 1, and
the derivative curve is gradually evolved to the shape of a step function. Using this rule,
the approximation function evolves from a clip function to a sign function, thus ensuring
consistency between forward and backward propagation.

3.9. AdaBin

AdaBin [17] uses a simple but effective method to adaptively obtain the best binary
set—b1, b2(b1, b2 ∈ R)—of weights and inputs for each layer, instead of using a fixed set like
{−1,+1}. This leads to a better fit to different distributions and improves the representation
of binarized inputs. Specifically, the authors define a new binary quantization function
using the center position and distance of 1-bit numbers. For the weights, the paper proposes
an equilibrium approach that aligns the center of the distribution of the binary values with
the real-value distribution and then minimizes the KL dispersion. Meanwhile, this paper
introduces a gradient-based optimization method to obtain these two parameters for feature
binary values and train them in an end-to-end manner.

The AdaBin quantizer can adaptively adjust the center position and distance between
two clusters, which matches the distributions of binary values and real values well:

B(x) =

{
b1 = β− α, x < β

b2 = β + α, x ≥ β′
(26)

where α is the half distance of the binary values b1 and b2, and β is the center of the set. B(·)
can constrain the binarized values to the set b1, b2. The set can be rewritten as β− α, β + α.
Thus, it is clear that by adjusting α and β, an arbitrary binarized set can be achieved. As
shown in Figure 13, given a floating-point distribution of any shape at any position, the
position and distance of the binary set will change along with it. The quantization flow is
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shown as Figure 13. The green part is a set of real numbers that will be quantized as b2,
while the red part will be quantized as b1.
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3.10. DyBNN

The work of DyBNN [18] is based on ReActNet. ReActNet adopts the static channel-
wise thresholds (RSign) on inputs. Rsign is defined as:

RSign(xi) =

{
+1, xi > αi,
−1, xi ≤ αi

(27)

DyBNN proposed the dynamic Learning Sign Function (DySign) to modify the input
feature map. The authors changed α to a dynamic learnable parameter for each input
channel which is fitted by two fully connected layers:

α = f (X) = f2( f1(
1

HW ∑
H,W

X)) (28)

where f1 and f2 denote two fully connected layers, f1 ∈ RC× C
16 and f2 ∈ R C

16 × C. C, H
and W are the inputs of channel, height and width, respectively. Finally, DySign can be
expressed by:

DySign(xi) =

{
+1, xi > αi,
−1, xi ≤ αi

αi ∈ α1:C (29)

where αi is the threshold value for the i-th channel, which is the i-th output vector of f (X).
In experiments, the authors adopted SEblock [63] to learn channel-wise threshold values,
αi, from the inputs.

3.11. Binarized Ghost Module (BGM)

Ruimin Sun et al. also improved the binary version of ReActNet in three different
aspects, namely, network structure, loss function and normalization [21]. First of all,
in terms of structure, inspired by GhostNet [64], the authors proposed the Binarized
Ghost Module (BGM) for saving more information of feature maps with low-complexity
computation. As illustrated in Figure 14, different from GhostNet, the BGM does not enrich
the information of feature maps by concatenating with feature maps computed by linear
operations, but instead boosts the information by the 3 × 3 depth-wise convolutional layer
in MobileNet [65]. In Figure 14, φ means linear operation.
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In detail, the authors still adopted the activation function of ReActNet, called ReAct-
Sign, which means that the quantization method in the structure they proposed is the same
as the quantization method of ReActNet. The detailed BGM structure is shown in Figure 15.
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The authors also found that, in previous works, the last full connection (FC) layer
played the role of the classifier and the higher similarity of the distribution of feature maps
in the same class could help the classifier to achieve better classification, so they proposed
the Label-Aware Loss Function (LLF) to improve performance by enhancing the statistical
characteristics of the input of the last FC layer through the L2 norm operation. The LLF can
be expressed as:

Llabel =
1
N

N

∑
i=1

1
N(i)

N(i)

∑
j=1

∣∣∣∣∣∣Yj
2 −mean

∣∣∣|22 (30)

mean =
1

N(i)

N(i)

∑
i=1

Yi (31)

Ltotal+ = λ ∗ Llabel (32)

where Y denotes the feature map of the inputs of the last FC layer, N is the number of
categories of the dataset and N(i) indicates the number of feature maps that belong to the
i-th category.

They also introduced normalization-based attention [66] to avoid gradient disappear-
ance and accelerate the training process.

3.12. IE-Net

Also based on ReActNet, Rui Ding et al. enhanced the information of feature maps by a
shared convolutional layer. They designed an information-enhancing module, Information-
Enhanced Binary Convolution (IE-BC).

ReActSign can be regarded as a method to adaptively change the distribution of
activation for each channel. Figure 15 indicates the output of the binarized activation
function with different channel-wise shifting parameters, and it clearly shows that the
ReActSign function may not find an appropriate value which maximizes information
retention. Thus, considering the influence of the distribution of the activation function,
they adopted multiple ReActSign functions with different shifting parameters. Figure 16
indicates the influence of activation with different distributions.
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Therefore, on the basis of the phenomenon, the authors proposed Information-Enhanced
Binary Convolution (IE-BC), which implements multiple paths with activation functions
with various channel-wise learnable shifting parameters. The activation function can be
formulated as:

bx
i,k = hk(xi) =

{
+1 i f xi ≥ βi,k

−1 i f xi < βi,k (33)

where the hk is the k-th Rsign function and xi is the i-th channel of the inputs. For each
binarized input, bx

i,k, there is a learnable shifting parameter, βi,k, for each channel of input.
Normally, if K is large, this means that a large number of convolutional layers is needed.
At the same time, the memory and computational resource requirements will increase
linearly. So, to save memory and computational resources, they decided to use a shared
convolutional layer to handle these binarized inputs generated by the multipath RSign
function. The expression is given by:

γk = (BW ⊗ Bxk ) α (34)

where γk is the k-th output and BW and Bxk are the binarized convolutional weights and
the binarized k-th channel inputs. However, there is only one group of filters contained in a
single convolutional layer, which is harmful for the diversity of feature maps. Considering
the diversity of feature maps, channel-wise scaling factors, λk, were introduced after the
convolutional layers to enhance the information of feature maps and compensate for
diversity loss. The final output of the convolutional layer can be expressed as follows:

γ = γ1 + ∑K
K=2 γkλk (35)

where K is the total number of paths with different parameters. And, for a better under-
standing, Figure 17 indicates the structure of IE-BC.
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To reduce quantization error, taking a cue from IR-Net, the authors also focused on
altering the distribution of weight before binarization to maximize the retention of the
original information. Distinguished from existing estimators, such as STE [67], the piece-
wise polynomial function [14] and EDE [20], they proposed a new adaptive estimator, the
Information-Enhanced Estimator (IEE), for training processes. The formula of the IEE is
given by:

F(x) =

{
r(−Sign(x) 3q2x2

4 +
√

3qx) i f |x| < 2
√

3
3q

rSign(x) otherwise
q = 10Tmin+

e
E (Tmax−Tmin), r = max( 1

q , 1)

(36)

where Tmin = −2, Tmax = 1, and e and E are the current training epoch and the total
number of epochs, respectively. In backward propagation, the gradient of the IEE in terms
of the input, x, can be calculated by:

F′(x) =


r(
√

3q + 3q2x
2 ) i f − 2

√
3

3q ≤ x < 0

r(
√

3q− 3q2x
2 ) i f 0 ≤ x < 2

√
3

3q

0 otherwise

(37)

And the gradient of the loss function concerning the weights is given by:

δL
δW

=
δL

δBW
F′(x) (38)

3.13. RB-Net

Chunlei Liu et al. further reduced the computational overhead of BNNs with their
Reshaped Point-Wise Convolution (RPC) module, which is shown in Figure 18 [22]. Each
colour represents a different segmented part. In this case, the input image is segmented
into four parts with the same size. And * denotes convolution operation.
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The purpose of the module is to replace the large kernel convolutional layer and
accelerate computation without loss of information. The speed-up factor is given by:

NW = s× s
NI = win × hin

P = c×NW×NI
k×c×NI

= NW
k = s2

k

(39)

where s is the kernel size of the convolutional layer, win and hin denote the width and
height of the inputs, c represents the number of channels, and k is the factor for reshaping.
For example, in Figure 18, k is equal to 4. Finally, the number of channels of convolution
after reshaping is k× c. Their experimental results indicate that, for Resnet-18, on ImageNet
datasets, their method is nearly 35 times faster compared to the baseline (full precision).
And for ResNet-34, there is a 51.55-times speed-up.

In terms of binarization, the authors improved both the scaling factor and the dis-
tribution, and they were inspired by Real-to-Binary Net [68] and ReActNet, respectively.
In Real-to-Binary Net, the scaling factor is calculated in the Squeeze and Excitation (SE)
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module. Meanwhile, ReActNet improved the performance by altering the distribution
of activation. The authors combined these two prior works and proposed the Balanced
Activation (BA) module. Figure 19 shows the computation manner of the binary convolu-
tional layer:
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4. Applications of BNN and FPGA Implementation

The various advantages brought about by BNNs, such as low memory usage, low
power consumption and computing acceleration, have garnered significant attention. This
section gives some representative works for applications of BNN and FPGA implementa-
tion.

In [31], the authors apply binary neural networks (BNNs) to the field of object detection,
especially human detection in infrared images. The results show that the performance of
their binary neural network is comparable to that of a 32-bit floating-point network while
greatly saving computational resources, reducing memory consumption and boosting
computational speed by four times. In the field of image super-resolution (ISR), which
aims at enhancing the resolution of images in computer vision, BNNs also find utility.
Xin et al. [69] proposed a novel model binarization technique called the Bit-Accumulation
Mechanism (BAM) to approximate full-precision convolutions. This approach simplifies the
heavy computations involved in most ISR systems and improves overall system accuracy.

BiPointNet [38] aims to alleviate the resource constraints of real-time point-cloud
applications running on edge devices. The authors of BiPointNet introduced the techniques
of Entropy-Maximizing Aggregation (EMA) and Layer-Wise Scale Recovery (LSR) to en-
hance the performance of binary neural networks (BNNs). Their experiments showed that
BiPointNet outperforms other binarization methods significantly, achieving a 14.7-times
speed improvement and an 18.9-times saving in terms of storage.

Hirtzlin et al. [70] designed an innovative ultra-low-power neural network hardware
circuit system by combining the characteristics of BNNs and resistive memory technologies.
They also applied this system to electrocardiogram (ECG) signal tasks. In medical image
segmentation, Brahma et al. [71] binarized the network using the distributions of weights
and activations. They further improved network accuracy with a non-parametric encoder
and decoder. While saving on memory consumption and computational operations, they
kept the performance degradation within 3% compared to the full-precision model.
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The authors of [72] recognized the significant potential of BNNs in fault diagnosis
for edge intelligent power electronics devices. By binarizing a network, they were able
to eliminate nearly all floating-point operations, and the model occupied only 7.48 kB of
memory without a significant accuracy drop.

Researchers have also explored harnessing the benefits of FPGAs in different ap-
plications. Taking into account the power constraints of small IoT devices, the authors
of [35] proposed a customized binary precision YOLOv2 model and deployed it on a field-
programmable gate array system on chip (FPGA-SoC). The implementation results indicate
that their system can achieve low power consumption without sacrificing processing speed.
Their system can attain 15.15 frames per second (FPS) and 1.45 W power consumption.

On the other hand, Cladera et al. [73] proposed a hardware-efficient architecture for
pedestrian detection with neuromorphic dynamic vision sensors (DVSs) called PPF-BNN,
achieved by combining a novel point-process filter (PPF) with a BNN. When deployed on
an FPGA and compared to the full-precision architecture (PPF-CNN), PPF-BNN achieved
a reduction in latency of approximately 86%. The authors of [74] provided a comparison
of the performance of neural networks with different precisions deployed in an FPGA for
object-detection applications. This comparison included a full-precision CNN, a quantized
convolutional neural network (QCNN) and a BNN.

Frickenstein et al. [37] proposed a binary drivable area detection network (Binary
DAD-Net) to reduce model size and accelerate inference. Their model achieved a 14.3-times
reduction in computational complexity in an FPGA while requiring only 0.9 MB of memory
resources. The authors of [75] proposed a hardware-friendly human activity recognition
(HAR) system. This system employs a hardware-friendly pre-processing algorithm and
a BNN to classify data from a single three-axis accelerometer. They also validated its
low-power characteristics in an FPGA. Huang et al. [26] applied a BNN in the field of
agriculture. They utilized the BNN for detecting pest and disease severity in crops and
deployed it in their FPGA experimental platform. Their results showed that their system
consumed less than 17% of the resources of the FPGA.

5. Comparison of BNN Architectures for FPGA Implementation

This section provides comparisons of BNN architectures and two tools for FPGA
implementation on established datasets. We used the FINN and HLS4ML tool flow for the
hardware implementation.

In our experiments, we used the sign function for the binarization of weights and
activations, and STE to train the network in the FINN tool flow, since FINN still only
supports the simplest BNNs and does not support any kind of scaling factor. HLS4ML can
support two types of quantization methods, the statistical scaling factor of [12] and the
shift integer scaling factor of [20].

The implementation of BNNs is based on two boards: Z7P and PYNQ-Z2. Z7P is
a development board that uses the same family of Xilinx parts (xczu7ev-ffvc1156-2-i) as
ZCU104. The Xilinx part of PYNQ-Z2 is XC7Z020CLG400-1. The hardware resources are
listed below.

It is clear from Table 2 that Z7P has more on-chip resources than PYNQ-Z2, which
means it can afford networks with deeper structures and more parameters.

5.1. MNIST

MNIST is a dataset of handwritten digits from the National Institute of Standards and
Technology (NIST) [24]. The training set consists of handwritten digits from 250 different
people, 50% of whom are high school students and 50% of whom are staff members of
the Census Bureau. Similarly, the test set also comprises the same percentage of handwrit-
ten digits.
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Table 2. On-chip resources.

PYNQ-Z2 Z7P

(XC7Z020CLG400-1) (XCZU7EV-2FFVC1156-MPSoC)

System Logic Units 13.3 K 504 K
DSPs 220 1728
LUTs 5.3 K 230.4 K

LUTRAM 1.74 K 101.76 K
FF 10.64 K 460.8 K

Block RAM (BRAM) 140 312

CNV-4 is a convolutional model consisting of two convolutional layers and two fully
connected layers, with each convolutional layer paired with batch normalization, a sign
activation function and a max-pooling layer. MLP-4 is formed by four fully connected
layers with batch normalization and the sign activation function. Normally, when the
bit-width of the two values is relatively small (e.g., less than 10 bits), we can use a flip-
flop (FF) in the FPGA to calculate the multiplication. Based on the above discussion,
if the weights and activations in the model have been binarized to 1 and −1, the FF is
capable of undertaking multiplication operations on them. Meanwhile, as we discussed in
Section 2.5.2, FINN converts the batch normalization (BN) and the activation function into
a single threshold operation and proposes MTVU to optimize and accelerate the matrix
and vector multiplication. Therefore, there is no DSP usage in the resource consumption
of all the BNN models in our experimental results. The FINN experimental results on the
MNIST dataset are shown in Table 3.

Table 3. BNN performances and hardware costs using FINN on MNIST.

Model Board Quantization
Method Accuracy LUTs

(Utilization) LUTRAM FF BRAM On-Chip
Power (W)

MLP-4 Z7P BNN
(non-scaling) 88% ± 1% 14,222 (6%) 1707 (1.6%) 22,853 (5%) 13.5 (4%) 3.556

MLP-4 PYNQ-Z2 BNN
(non-scaling) 88% ± 1% 11,579 (22%) 1197 (6%) 17,981 (16%) 14.5 (10%) 1.598

CNV-4 Z7P BNN
(non-scaling) 92% ± 1% 21,417 (9%) 3734 (4%) 29,899 (7%) 14 (5%) 3.721

CNV-4 PYNQ-Z2 BNN
(non-scaling) 92% ± 1% 18,773 (35%) 2198 (12%) 24,925 (23%) 42(30%) 1.808

For the baseline model, all operations are still floating point, which inevitably results
in ultra-high utilization of DSPs and even makes deployment in FPGAs impossible. DSP
usage is highly dependent on precision. This is the reason why the utilization of DSPs will
change abruptly between the baseline and three BNNs. From Table 4, we can see that the
three quantization methods improve the accuracy to a certain extent and do not result in
excessive costs in terms of computational resources.

Unlike FINN, HLS4ML focuses on a more efficient and flexible way of controlling
DSPs to handle matrix or vector multiplication operations with different levels of precision.
As discussed in Section 2.2, the reuse factor is an important parameter for parallelism which
determines whether a BNN architecture saves resource consumption by reusing the same
set of DSPs or uses multiple DSPs to compute multiplication operations in parallel. In other
words, the reuse factor indicates the number of times each group of DSPs will be reused.
And, as our results show, as the reuse factor increases, the usage of DSPs must decrease.
However, the price is a degradation in parallelism, which is also directly reflected in latency.
Latency means how long it takes the platform to complete the computation in the network.
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Table 4. BNN performances and hardware costs using HLS4ML.

Model Board Quantization
Method Accuracy BRAM-18K

(Utilization) DSP48E FF LUT Reuse
Factor

Latency (ms)
[min, max]

CNV-4 Z7P Baseline
(non-binarized) 98% ± 1% 83 (13%) 3734

(216%)
57,520
(12%)

178,939
(77%) 128 -

CNV-4 Z7P BNN
(non-scaling)

76% ± 1% 103 (16%) 81 (4%) 41,158 (8%) 61,108
(26%)

64 [0.217, 0.219]

CNV-4 Z7P XNOR-Net 82% ± 1% 103 (16%) 81 (4%) 41,047 (8%) 61,172
(26%) 64 [0.217, 0.219]

CNV-4 Z7P XNOR-Net
(integer shifting
scaling factor)

83% ± 1% 296(16%) 502 (4%) 58,587 (8%) 83,152
(26%)

8 [0.164, 0.166]

CNV-4 Z7P XNOR-Net
(integer shifting
scaling factor)

83% ± 1% 181 (29%) 251 (14%) 46,028 (9%) 72,021
(31%)

16 [0.170, 0.172]

CNV-4 Z7P XNOR-Net
(integer shifting
scaling factor)

83% ± 1% 139 (22%) 161 (9%) 43,170 (9%) 64,916
(28%)

32 [0.186, 0.188]

CNV-4 Z7P XNOR-Net
(integer shifting
scaling factor)

83% ± 1% 103 (16%) 81 (4%) 41,045 (8%) 61,048
(26%)

64 [0.217, 0.219]

5.2. CIFAR10

The CIFAR10 [76] dataset consists of 60,000 three-channel images in 10 categories,
including 6 different animal categories and 4 different vehicle categories. Each category
contains 6000 images, and each image has 32 × 32 pixels. The 60,000 images are separated
into a 50,000-image training set and a 10,000-image test set.

The architecture of CNV-8 is based on VGG-small, consisting of five convolutional
layers with 128, 128, 256, 256, and 512 channels, respectively, and two fully connected
layers. Due to the size of the BRAM, the implementation of CNV-8 on Z7P and PYNQ-Z2
differs in the number of channels for each convolutional layer. PYNQ-Z2 can only afford
CNV-8 with half the number of channels due to BRAM limitations. As shown in Table 5,
reducing the number of channels significantly decreases BRAM utilization because fewer
weights need to be stored. The inference time for CNV-8 with half the number of channels
for one picture is over two times faster than for CNV-8.

Table 5. BNN performances and hardware costs using FINN on Cifar10.

Model Board
(Tool)

Quantization
Method Accuracy LUTs (Uti-

lization)
LUT
RAM FF BRAM On-Chip

Power (W)
Time

(s/Picture)

CNV-8
VGG-small Z7P BNN 78% ± 2% 41,713

(21%) 3755 (4%) 53,280
(12%) 194 (62%) 4.473 0.35

CNV-8
VGG-small

(half the
number of
channels)

Z7P BNN 75% ± 2% 27,179
(12%)

2653
(3%)

32,359
(7%)

77
(25%) 3.901 0.16

CNV-8
VGG-small

(half the
number of
channels)

PYNQ-Z2 BNN 75% ± 2% 25,318
(48%) 2285 (13%) 31,608

(29%) 90 (64%) 1.955 0.05

Furthermore, PYNQ-Z2 is the officially supported board for FINN, so it benefits from
special resource optimizations, including memory and protocol control. Therefore, in this
experiment, PYNQ-Z2 outperformed Z7P in terms of inference speed for the same BNN
structure. However, theoretically, Z7P is a more powerful board than PYNQ-Z2, given
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its more extensive hardware resources, as evident in Table 2. The advantages of having
more extensive hardware resources were also demonstrated in this experiment, particularly
with respect to Z7P’s ability to support a larger network (CNV-8, without changing the
number of channels) without high resource utilization, making it feasible for running large
networks on the Z7P and enabling exploratory possibilities.

However, this enhanced capability is a double-edged sword, as seen in all the exper-
imental results. Z7P’s energy consumption is twice or more than that of the PYNQ-Z2,
which may be unfavorable for certain applications that require devices to operate with
ultra-low energy consumption.

6. Challenges and Future Directions

This section summarizes the current challenges and potential future research directions
for BNNs from prior works. According to the challenges, the directions can be separated
into: (1) online training, (2) various applications and (3) generalizability.

6.1. Online Training

Most of the studies on BNNs are based on offline training, and training will take a
long time. Online training will be an efficient way of training a model rapidly. In [77],
the authors proposed a solution for online training on a macrochip with limited resources.
They used the binary value for inferences and less than 8-bit values for training. The results
showed that the accuracy on MNIST was close to 97% in a CMOS process with 16 Mb
RRAM. The work demonstrates the potential of online training. In a newer work [78],
the authors proposed a new continual learning solution and conducted experiments and
analyzed the effectiveness and feasibility of a BNN in on-chip training.

6.2. Various Applications

Binary neural networks represent parameters and activations using {1,−1} or bipolar
values, which result in lower computational and storage requirements. However, they also
suffer from performance degradation. To minimize the error between the full-precision
model and the binary model, our survey has summarized various techniques. While most
studies still focus on image classification, there are only a few applications in other areas.
Several application domains, such as security and point-cloud tasks, aim to achieve low
latency and efficient resource utilization through the properties of BNNs.

6.3. Generalizability

One of the important factors to consider is which architecture is the best choice
for binarization. It remains unclear what kind of architecture can effectively preserve
information during binarization. Despite the existence of various architectures proposed
in prior works that have demonstrated impressive results, these architectures are often
tailored to specific tasks. The lack of a general network topology is an issue that needs to
be urgently addressed.

7. Conclusions

This paper has provided a comprehensive review of BNNs for implementation in
FPGA hardware. The survey covered different aspects, such as BNN architectures and
variants, design and tool flows for FPGAs, and various applications for BNNs. In the current
times, even though BNNs significantly compress models and speed up inference compared
to traditional DNNs, they cannot achieve the same level of accuracy as their full-precision
counterparts. However, some improvements have been made to narrow this accuracy gap.
By adding gain terms, incorporating learnable gain terms, modifying activation functions
and enhancing network architecture, among other techniques, BNNs have managed to
achieve relatively high accuracy while still maintaining high-speed execution and small
model size. Several challenges remain to be resolved, such as online training for BNNs,
the customizability of BNNs for targeted applications to avoid performance degradation
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and the generalization of network topologies for BNNs. With further research into BNN
implementation in FPGAs and ASICs, several tool flows, such as FINN and HLS4ML, have
emerged, simplifying the process of implementing BNNs and QNNs and making them
more accessible for designers.
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