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Writing temporal logic formulae for properties that combine instantaneous events with overlapping
temporal phenomena of some duration is difficult in classical temporal logics. To address this issue,
in previous work we introduced a new temporal logic with intuitive temporal modalities specifically
tailored for the representation of both instantaneous and durative phenomena. We also provided an
implementation of a complex event processing system, Phenesthe, based on this logic, that has been
applied and tested on a real maritime surveillance scenario.

In this work, we extend our temporal logic with two extra modalities to increase its expressive
power for handling future formulae. We compare the expressive power of different fragments of our
logic with Linear Temporal Logic and dyadic first-order logic. Furthermore, we define correctness
criteria for stream processors that use our language. Last but not least, we evaluate empirically the
performance of Phenesthe+, our extended implementation, and show that the increased expressive
power does not affect efficiency significantly.

1 Introduction

Temporal logics are widely used in many domains as they allow the formalisation of time dependent
properties. For example in philosophy temporal logics can be used to reason about issues involving
the temporal domain [28], in computer science and specifically, in monitoring, temporal logics are used
to specify and monitor specific properties of a system [21, 6], in complex event processing or recog-
nition [12, 3, 7]—which is the focus of this work—temporal logics are used for specifying temporal
phenomena and detecting them in streams of information. Naturally, each temporal logic comes with its
own focus and limitations.

The starting point for many monitoring systems is Linear Temporal Logic (LTL) [24], where formu-
lae are interpreted over single event sequences. This makes it difficult to incorporate concurrent activities
such as, for instance, those carried out by a chef following some recipe to create a meal (see Figure 1).
They may prepare multiples dishes of the same course in parallel, however the preparation of each dish
happens on different overlapping intervals. This is difficult to formalise with logics that talk about sin-
gle traces of events. Temporal logics that allow the representation of concurrent activities directly are
those of Halpern and Shoham (HS) [16] and Allen’s Algebra [2]. Both logics are interpreted over sets of
(possibly overlapping, discrete) time intervals, and model instantaneous events via point intervals ([t,t]).

In previous work [22], we introduced a temporal logic similar to those of Halpern/Shoham and Allen,
which is interpreted over separate (sets of) time intervals and instantaneous events, which was specifi-
cally designed for a maritime application domain. It allows to easily specify concurrent activities and
related start and endpoints. Deliberately absent in our logics (and related prior ones) are explicit nega-
tions/complements of formulae that hold on overlapping intervals. We implemented an event processing
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Figure 1: Example of instantaneous and durative temporal phenomena. turnOn/Off is instantaneous and
true when the stove is turned on/off, stoveIsOn is durative and holds when the stove is on, and finally
preparingDish is also durative and holds when a dish is being prepared.

system1 and evaluated it on a real maritime monitoring scenario [23]—whereby maritime experts au-
thored maritime phenomena of interest—proving that our system is capable of producing phenomena
detections in real time.

In this work, we extend our language with two extra temporal modalities: minimal range (↬), and
interval filtering (filter). The minimal range operator allows to capture durative temporal phenomena that
start at the latest occurrence of a starting condition before the stopping condition, for example, the last
working period of machine since someone operated it until it broke down. Filtering is very important
for specifying the duration constraints of a temporal phenomenon, e.g., a steak is cooked rare if its on
a hot pan for approximately 90 seconds on each side. Both examples are impossible to formalise in the
original version of our temporal logic. It is evident that ↬ has similar semantics to the ‘until’ operator of
LTL. However, formulae that utilise ‘until’ are true on instants of time, while formulae that utilise ‘↬’
are true on intervals. While in terms of expressive power the two operators are similar, ↬, in practice,
allows efficient computations and more concise formulae. Similarly, in the case of filtering, writing
an LTL formula for filtering periods based on some fixed threshold is possible, however the formula
is not trivial and its length depends the threshold. Comparing LTL and our temporal logic, we show
that the fragment of our original language that is comparable with LTL was at most as expressive as
the pure past fragment of LTL, while the same fragment but with the addition of the ‘↬’ and ‘filter’
operators has equal expressive power to LTL. Concerning our full temporal logic, a comparison with
LTL is impossible since the structures on which their respective semantics are based, are incomparable,
however we show that our language is expressible in Dyadic First Order logic (DFO) and is strictly less
expressive. As expected, including temporal modalities that involve the future requires additional steps
for complex event processing. In order to guarantee that our extended implementation, Phenesthe+, is
correct, inspired from runtime monitoring and verification [1, 5], we define criteria for proper stream
processors of our language and discuss how Phenesthe+ conforms to them. Finally, we illustrate through
experimental evaluation that the efficiency of Phenesthe+, is not significantly compromised. Therefore
the contributions of this paper are:

• We extend the expressiveness of our language for representing “look ahead happenings”,

• We formally study the expressive power of the temporal logic introduced in [22] and its extension,

• We define criteria for proper stream processors utilising our temporal logic,

• We showcase that our stream processing engine is capable of performing real-time complex event
processing by adopting a maritime surveillance use-case.

The paper is organised as follows. First in Section 2 we describe our temporal logic. Next, in Section 3 we
illustrate through examples inspired by the maritime domain the usage of the new temporal modalities.

1https://manospits.github.io/Phenesthe/

https://manospits.github.io/Phenesthe/
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In Section 4 we study the expressive power of our temporal logic. Then, in Section 5 we describe
the requirements a stream processor should satisfy for processing formulae of our language, while in
Section 6 we empirically evaluate Phenesthe+. Finally, in Section 7 we present work related to ours,
summarise, and discuss further directions.

2 The Language of Phenesthe

The key components of our language are instantaneous events, durative disjoint states and durative,
possibly non disjoint, dynamic temporal phenomena. In what follows, ‘temporal phenomena’ includes
all of the three aforementioned categories.

Syntax. Formally, our Temporal Phenomena Definition Language (TPhL) is described by the triplet
⟨Pesd ,L,Φ⟩, where Pesd is a predicate set defined by the union of the event, state or dynamic temporal
phenomenon predicates sets (in symbols Pe/s/d resp.); L is a set defined by the union of the set of the
logical connectives {∧,∨,¬,∈}, the set of temporal operators, {↣,↬,⊔,⊓,\,filter□} where the ‘□’
symbol may be one of the following symbols {<,≥,=}, the set of temporal relations {before, meets,
overlaps, finishes, starts, equals, contains} and finally the set of the {start,end} operators; Φ is the set of
formulae defined by the union of the formulae sets Φ

•, Φ− and Φ=. We assume that the set of predicate
symbols includes those with atemporal and fixed semantics, such as arithmetic comparison operators etc.,
however for simplification reasons in what follows we omit their presentation. Formulae of Φ

• describe
instantaneous temporal phenomena, and formulae of Φ− describe durative temporal phenomena that hold
(are true) in disjoint maximal intervals, finally formulae of Φ= describe durative temporal phenomena
that may hold in non-disjoint intervals. Figure 1 shows an example of an event (turnOn/Off ), a state
(stoveIsOn) and a dynamic temporal phenomenon (preparingDish).

Therefore given a set of event, state and dynamic phenomena predicates Pesd the formulae of TPhL
are defined as follows:

φ := φ
• | φ

− | φ
=

φ
• := Pe(a1, ...,ak) | ¬φ

• | φ
•
[∧,∨] φ

• | start(φ−) | end(φ−) | φ
• ∈ φ

−

φ
− := Ps(a1, ...,ak) |φ •

[↣,↬] φ
• | φ

− [⊔,⊓,\] φ
−|φ−filter n (where n ∈ N∪{∞})

φ
= := Pd(a1, ...,ak) | [φ−,φ=] [meets,overlaps,equals] [φ−,φ=]

| [φ •
,φ−,φ=] [starts,finishes] [φ−,φ=]

| [φ−,φ=] contains [φ •
,φ−,φ=]

| [φ •
,φ−,φ=] before [φ •

,φ−,φ=]

where a1, ...,ak correspond to terms denoting atemporal properties.
Semantics. We assume time is discrete and represented by the natural numbers T =N ordered via the

‘<’ relation. In what follows we assume that for all models discussed in this paper time is represented by
N. For the formulae sets Φ

•,Φ− and Φ= we define the model M= ⟨T, I,<,V •,V−,V=⟩ where V • : Pe →
2T , V− :Ps → 2I , V= :Pd → 2I are valuations, and I = {[ts, te] : ts< te and ts, te∈ T}∪{[ts,∞) : ts∈ T}
is the set of time intervals of T . Intervals of the form [ts,∞) denote that a phenomenon started being true
at ts, and continues being true forever. Intervals of the form [ts, te] denote that a phenomenon started
being true at ts and stopped being true at te. In what follows, we will use the abbreviated version for
bounded quantifiers, i.e., ∀<z2

>z1x(...) denotes ∀x (x > z1 ∧ x < z2)→ (...), and ∃<z2
>z1x(...) denotes ∃x (x >

z1 ∧ x < z2)∧ (...).



36 Handling of Past and Future with Phenesthe+

Given a model M, the validity of a formula φ ∈ Φ
• at a timepoint t ∈ T (in symbols M, t |= φ ) is

determined by the rules below, starting with the boolean connectives.

• M, t |= Pe(a1, ...,an) iff t ∈ V •(Pe(a1, ...,an)).

• M, t |= ¬φ iff M, t ̸|= φ .

• M, t |= φ [∧,∨]ψ iff M, t |= φ [and, or] M, t |= ψ .

Next we define the semantics for start,end and ∈ which allow interaction between formulae of Φ
• and

Φ− via the starting, ending, and intermediate points of intervals at which Φ− formulae hold.

• M, t |= start(φ) iff ∃te. M, [t, te] |= φ or M, [t,∞) |= φ , where M, [t, te] |= φ denotes the validity
of a formula φ ∈ Φ− at an interval [t, te] as defined below.

• M, t |= end(φ) iff ∃ts.M, [ts, t] |= φ .

• M, t |= φ ∈ ψ iff M, t |= φ and ∃≤tts.∃≥tte.M, [ts, te] |= ψ .

Given a model M, the validity of a formula φ ∈ Φ− at a time interval i = [ts, te] ∈ I (in symbols
M, [ts, te] |= φ ) is defined as follows. We start with the ↬ and ↣ operators which allow specifying
minimal or maximal intervals between instants where formulae of Φ

• are true.

• M, i |= Ps(a1, ...,an) iff i ∈ V−(Ps(a1, ...,an)).

• M, [ts, te] |= φ ↬ψ iff M, ts |= φ and M, te |=ψ∧¬φ and ∀<te
>tst.

[
M, t ̸|= φ and M, t ̸|=ψ∧¬φ

]
.

Therefore, φ ↬ ψ holds for the intervals that start at the latest instant ts at which φ is true and end
at first instant te after ts where ψ ∧¬φ is true.

• M, [ts, te] |= φ ↣ ψ iff M, ts |= φ and M, te |= ψ ∧¬φ and ∀<te
>tst. M, t ̸|= ψ ∧¬φ and ∀<tsts′.

M, ts′ |= φ →∃<ts
>ts′te

′.M, te′ |= ψ ∧¬φ .
Essentially, φ ↣ ψ holds for the disjoint maximal intervals that start at the earliest instant ts where
φ is true and end at the earliest instant te where ψ is true and φ is false.

• M, [ts,∞) |= φ ↣ ψ iff M, ts |= φ and ∀>tst. M, t ̸|= ψ ∧¬φ and ∀<tsts′. M, ts′ |= φ →∃<ts
>ts′te

′.
M, te |= ψ ∧¬φ .
Therefore a formula φ ↣ ψ may hold indefinitely if there does not exist an instant after ts at which
ψ ∧¬φ is satisfied. For simplification reasons in the semantics below we omit intervals open at
the right to infinity since they can be treated in a similar manner.

We continue with the definition of semantics for ⊔,⊓ and \ which correspond to the usual set operations
but for time intervals.

• M, [ts, te] |= φ ⊔ ψ iff2

– exists a sequence of length k > 1 of intervals i1, ..., ik ∈ I where ik = [tsk, tek], ts = ts1 and
te = tek such that:

1. ∀α ∈ [1,k−1]: teα ∈ iα+1, tsα < tsα+1 and teα < teα+1 ,
2. ∀β ∈ [1,k]: M, [tsβ , teβ ] |= φ or M, [tsβ , teβ ] |= ψ , and
3. ∄iγ = [tsγ , teγ ] ∈ I −{i1, ..., ik} where M, [tsγ , teγ ] |= φ or M, [tsγ , teγ ] |= ψ and ts1 ∈ iγ

or tek ∈ iγ
– or, M, [ts, te] |= φ or M, [ts, te] |= ψ and ∄iγ = [tsγ , teγ ] ∈ I−{[ts, te]} where M, [tsγ , teγ ] |=

φ or M, [tsγ , teγ ] |= ψ and ts ∈ iγ or te ∈ iγ .

2A first order definition of the semantics of ⊔ is possible but more lengthy.
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For a sequence of intervals, conditions (1-2) ensure that intervals, at which φ or ψ are valid,
overlap or touch will coalesce, while condition (3) ensures that the resulting interval is maximal.
In the case of a single interval, the conditions ensure that at the interval [ts, te] φ or ψ is valid,
and that [ts, te] is maximal. In simple terms, the temporal union φ ⊔ ψ holds for the intervals
where at least one of φ or ψ hold. The above definition of temporal union follows the definitions
of temporal coalescing presented in [8, 14].

• M, [ts, te] |= φ \ ψ iff ∃[ts′, te′] ∈ I where M, [ts′, te′] |= φ , [ts, te]⊆ [ts′, te′] (i.e., [ts, te] subinter-
val of [ts′, te′]), ∀[tsψ , teψ ] ∈ I where M, [tsψ , teψ ] |= ψ , [ts, te]∩ [tsψ , teψ ] =∅ and finally [ts, te]
is maximal. In plain language, the temporal difference of formulae φ ,ψ holds for the maximal
subintervals of the intervals at which φ holds but ψ doesn’t hold.

• M, [ts, te] |= φ ⊓ ψ iff ∃[tsφ , teφ ], [tsψ , teψ ] ∈ I where M, [tsφ , teφ ] |= φ , M, [tsψ , teψ ] |= ψ and
∃[ts, te] ∈ I where [ts, te]⊆ [tsφ , teφ ], [ts, te]⊆ [tsψ , teψ ] and [ts, te] is maximal. In other words, the
temporal intersection of two formulae of Φ− holds for the intervals at which both formulae hold.

We finish the semantics for formulae of Φ−, with the semantics of the filter operator, which allows
specifying constraints on the length of intervals at which formulae of Φ− hold.

• M, [ts, te] |= φ filter{<,≥,=} n iff M, [ts, te] |= φ and te− ts {<,≥,=} n.

Due to space limitations and for this part only we will adopt point intervals to refer to instants. This
will allow us to define the semantics for formulae of Φ= without specifying different rules for involved
sub-formulae of Φ

•. In other words given a φ ∈ Φ
• we will denote the satisfaction relation M, t |= φ

as M, [t, t] |= φ . Given a model M, the validity of a formula φ ∈ Φ= at a time interval [ts, te] ∈ I (in
symbols M, [ts, te] |= φ ) is defined as follows:

• M, [ts, te] |= Pd(a1, ...,an) iff [ts, te] ∈V=(Pd(a1, ...,an)).

• M, [ts, te] |= φ before ψ iff ∃te′.∃>te′ts′.
[
M, [ts, te′] |= φ and M, [ts′, te] |= ψ and ∀ts′′.∀<ts′

>te′te
′′.

M, [ts′′, te′′] ̸|= φ and ∀<ts′
>te′ts

′′.∀te′′.M, [ts′′, te′′] ̸|= ψ
]
. In our approach the ‘before’ relation holds

only for intervals where the pair of instants or intervals at which the participating formulae are true
or hold, are contiguous. For example, for the intervals [1,2], [1,3] and [5,6] only [1,3] is before
[5,6]. We chose to limit the intervals satisfying the before relation, as in practice it is usually the
case that the interval directly before another one is required for specifying a dynamic phenomenon.

• M, [ts, te] |= φ meets ψ iff ∃t.M, [ts, t] |= φ and M, [t, te] |= ψ .

• M, [ts, te] |= φ overlaps ψ iff ∃<te
>tsts

′.∃<te
>ts′te

′.
[
M, [ts, te′] |= φ and M, [ts′, te] |= ψ

]
.

• M, [ts, te] |= φ finishes ψ iff ∃≤te
>tsts′.

[
M, [ts′, te] |= φ and M, [ts, te] |= ψ

]
.

• M, [ts, te] |= φ starts ψ iff ∃<te
≥tste

′.
[
M, [ts, te′] |= φ and M, [ts, te] |= ψ

]
.

• M, [ts, te] |= φ equals ψ iff M, [ts, te] |= φ and M, [ts, te] |= ψ .

• M, [ts, te] |= φ contains ψ iff M, [ts, te] |= φ and ∃>tsts′.∃<tete′.M, [ts′, te′] |= ψ .

3 Examples of maritime properties expressed in TPhL

We demonstrate the usability of TPhL and the new temporal modalities by adopting a maritime monitor-
ing scenario. When it comes to maritime surveillance there are several resources available; for example
the Automatic Identification System (AIS) allows the transmission of timestamped positional and ancil-
lary data from vessels, maritime areas in the form of polygons can be used for producing vessel-area
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relations and so on. Similar to [22], we assume the input consists of AIS messages along with spatial
events relating vessels to areas of interest e.g., port areas, fishing areas and so on. Therefore our task
here involves detecting maritime phenomena of interest i.e., the instants, time periods at which they are
true over a maritime input stream. Below we formalise some maritime temporal phenomena3 that utilise
the new temporal modalities (↬ and filter).

Fishing warning. Illegal fishing is a very important issue. Vessels engaged in illegal fishing typically
declare fake ship-types. Consider the formalisation below for detecting suspicious stops in fishing areas.

state_phenomenon fishing_warning(V,F) :

((in_fishing_area(V,F)∧¬vessel_type(V,fishing)) ⊓ stopped(V )) filter≥600.

state_phenomenon is a keyword for declaring the phenomenon type, in_fishing_area is a user defined
state that holds for the time periods a vessel V is within a fishing area F , while stopped is a state that
holds for the time periods a vessel is stopped. Finally, vessel_type(V,T ) is an atemporal predicate that
is true when vessel V has type T . Therefore, a vessel performs a fishing_warning, if it is not a fishing
vessel, and it is stopped within a fishing area for a period longer that 10 min (600 sec). Here, filtering is
used for minimising false detections occurring from AIS errors (e.g., zero speed) or normal activities.

Port waiting time. Monitoring the waiting time of vessels since they entered a port and until they
get moored is highly useful for various operational and logistical reasons (e.g., efficient planning of re-
sources). However, some vessels may enter and leave a port without mooring—due to weather conditions
for example. We formalise port waiting time below.

state_phenomenon waiting_time(V,P) :

start(in_port(V,P))↬ start(moored(V,P)).

in_port is a state that holds when a vessel is in a port, while moored is a state that holds when a vessel
is moored at a port. Note that the left and right arguments of ↬ are formulae of Φ

•, therefore if these
formulae were used in other definitions we could have defined corresponding events. Consequently, the
waiting_time state holds for the minimal periods between the time a vessel enters a port and the time the
vessel starts being moored. Here we are interested in the minimal period, as we want to detect only the
cases where a vessel entered a port and got moored.

4 Expressiveness

In this section we study the expressive power of our language. We consider three syntactic fragments
of TPhL. The first one, denoted as TPhL−

o , corresponds to the original version of the language (w/o
↬,filter) and excluding formulae of Φ= (recall that Φ= formulae hold on possibly non-disjoint intervals).
The second is TPhL−, which is the same as TPhL−

o but includes ↬ and filter, while the third, TPhL
corresponds to the complete language. Figure 2 (left) illustrates the syntactic relation between TPhL,
TPhL− and TPhL−

o . In more detail, we will show that TPhL−
o is equally expressive as pure past LTL,

TPhL− has equal expressive power to LTL, and finally TPhL is strictly less expressive than DFO. The
relations in terms of expressive power between the different language fragments are illustrated in Figure 2
(right).

3The complete set of definitions is available in our online repository https://github.com/manospits/Phenesthe/
tree/future.

https://github.com/manospits/Phenesthe/tree/future
https://github.com/manospits/Phenesthe/tree/future


M. Pitsikalis, A. Lisitsa and P. Totzke 39

TPhL
TPhL-

{filter,↬}Φ= TPhL-o
Φ.∪Φ-/{filter,↬}

TPhL−

TPhL−
o

DFO

TPhLLTL[YS]

LTL[XU,YS]

Figure 2: Syntactic relation between the fragments of TPhL (left). Expressive relations between different
fragments of TPhL, LTL and DFO (right). A fragment A is strictly more expressive from a fragment B if
they are connected via A → B. Double lined edges denote equal expressive power.

4.1 Preliminaries

Before we continue with our analysis, as a reminder we present the syntax of LTL with past, and First
Order Monadic Logic of Order (FOMLO).

LTL. The formulae of LTL[XU,YS], given a set of propositions P are defined as follows:

φ ::= ⊥ | p | ¬φ1 | φ1 ∧φ2 | Xφ1 | φ1 U φ2 | Yφ1 | φ1 S φ2;

where X, and U stand for the next and until modalities, while Y, and S stand for previous and since. The
formulae of LTL[XU,YS] are interpreted over a discrete, linear model of time, formally represented as
MT L = ⟨T,<,V T L⟩, where T is equal to N, < is the linear order and V T L : P → 2T is the interpretation
function, mapping each proposition to a set of time instants. The satisfaction relation, i.e., that a formula
φ is true at t, is defined as MT L, t |= φ . The semantics of LTL are defined as usual; more specifically in
what follows we assume the reflexive4 semantics of S and U. We denote the pure past fragment of LTL
i.e., LTL without X and U as LTL[YS].

FOMLO. Given a countable set of variables x,y,z, ..., the formulae of FOMLO over a set of unary
predicate symbols Σ are defined a follows:

atomic ::= x < y | x = y | P(x) (where P ∈ Σ)

φ ::= atomic | ¬φ1 | φ1 ∨φ2 | φ1 ∧φ2 | ∃x. φ1 | ∀x. φ1

We interpret FOMLO formulae over structures of the form MFO⟨T,<,V FO⟩, where T is equal to N, ‘<’
is the linear order while V FO : Σ → 2T is the interpretation of Σ. MFO, t1, t2, · · · , tn |= φ(x1,x2, · · · ,xn)
denotes the satisfaction of a formula φ with free variables x1,x2, · · · ,xn when they are interpreted as
elements ti of MFO. The semantics of the formulae are defined as usual (see for example [25]). We
also define the FOMLO− fragment of FOMLO. Syntactically a formula with one free variable φ(x), is
a formula of the fragment if any bounded variable in the negated normal form of φ(x) is bounded to be
≤ x. Semantically, this means that for all models a formula φ(x) of FOMLO− satisfies:

∀t MFO, t |= φ(x)↔MFO[0, t], t |= φ(x) (1)

where MFO[0, t] is a finite model starting from 0 and ending up to position t inclusive. Intuitively,
formulae of FOMLO− can talk only about the past and the present. In what follows, given a set of
propositions P = {p1, ..., pk} and a set of predicate symbols Σ = {p1(x), ..., pk(x)} a FOMLO model
MFO is faithful to MT L iff ∀≤k

≥1i.V FO(pi(x)) =V T L(pi).
DFO. Finally, on our expressiveness analysis we will also consider DFO, which in contrast to

FOMLO, uses dyadic predicate symbols e.g., p(x,y).

4As we work with discrete linear orders, this choice makes no difference.
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4.2 TPhL−
o and Pure Past LTL

In this section we will show that TPhL−
o is expressively equal to the pure past fragment of LTL, i.e.,

LTL[YS]. The TPhL−
o fragment is described by the triplet ⟨Pes,L−

o ,Φ⟩, where Pes is a set defined by the
union of event and state predicate sets (Pe/s); L−

o is a set defined by the union of the set of the logical
connectives {∧,∨,¬,∈} and the set of temporal operators {↣,⊔,⊓,\}. Formulae TPhL−

o are evaluated
over M− = ⟨T, I,<,V •,V−⟩ models which are defined in a similar manner to the models presented in
Section 2.

Given a finite set of event propositions5 Pe = {e1, ...,ek}, and a finite set of state propositions
Ps = {s1, ...,sk} we say the FOMLO− model MFO = ⟨T,<,V FO⟩ is faithful to the model M− = ⟨T, I,<
,V •,V−⟩ of TPhL−

o if it has the following properties:

• for any proposition e in Pe, V •(e) =V FO(et), and

• for any proposition s in Ps, V−(s) = ρ(V FO(s+),V FO(s∈),V FO(s−))

where et corresponds to the monadic predicate et(x) and the triplet (s+,s∈,s−) corresponds to the monadic
predicates s+(x), s∈(x), s+(x) which are true on instants corresponding to the start, intermediate, and end
of an interval respectively at which s is true. ρ : 2T ×2T ×2T → 2I is a partial mapping from three set of
points to a set of intervals of I. Given three sets S,B and E, corresponding to starting, intermediate and
ending points resp., ρ is defined as follows:

ρ(S,B,E) =

{
[ts, te] : ts < te∧ ts ∈ S∧ te ∈ E ∧∀<ts

>tst.(t ∈ B∧ t ̸∈ S∧ t ̸∈ E)
}

∪
{
[ts,∞) : ts ∈ S∧∄>tste. te ∈ E ∧∀>tst. t ∈ B

}
For all i ∈ I where a formula φ ∈ Φ− is true ρ is bijective (recall that φ ∈ Φ− formulae always hold on
disjoint intervals). For our expressiveness study, we will use the following theorem.

Theorem 1 (Gabbay et al. 1980 [15]). For every formula of FOMLO− φ(x) we can find an LTL[YS]
formula θ such that ∀t.MT L, t |= φ ↔MFO, t |= θ for all MFO and their faithful models MT L.

Proof. Dual proof of Theorem 2.2 in [15].

Theorem 2. For every formula φ of TPhL−
o , for all TPhL−

o models M− and their faithful FOMLO−

models MFO:

1. if φ ∈ Φ
•, there exists a formula φ(t) with one free variable of FOMLO− such that M−, t |= φ iff

MFO, t |= φ(t).

2. if φ ∈ Φ−, there exist formulae φ+/∈/−(t) with one free variable such that M−, [ts, te] |= φ iff

MFO, ts |= φ
+(ts)∧∀<te

>tst.MFO, t |= φ
∈(t)∧MFO, te |= φ

−(te)

and, M−, [ts,∞) |= φ iff MFO, ts |= φ+(ts)∧∀>tst.MFO, t |= φ∈(t)

Proof. The proof is straightforward by direct translations. We define the translation τ
• from formulae of

Φ
• to FOMLO− formulae as follows:

• τ
•(e,x) = e(x)

• τ
•(¬φ ,x) = ¬τ

•(φ ,x)

5In what follows, for simplicity, we will refer to atomic predicates of TPhL as propositions.
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• τ
•(φ [∧,∨]ψ,x) = τ

•(φ ,x)[∧,∨]τ •(ψ,x)

• τ
•(φ ∈ ψ,x) = τ

•(φ ,x)∧ (τ−
+ (ψ,x)∨ τ

−
∈ (ψ,x)∨ τ

−
∈ (ψ,x)) (We define τ

−
+/∈/− below.)

Considering that disjoint intervals can be recreated by their starting points, intermediate and endpoints,
we define the τ

−
+ ,τ

−
∈ ,τ

−
− translation functions respectively, from formulae of Φ− to FOMLO− as follows.

• τ
−
{+,∈,−}(s,x) = s{+,∈,−}(x)

• τ
−
+ (φ ↣ ψ,x) = τ

•(φ ,x)∧∀<xz.
[
τ

•(φ ,z)→∃<t
>zz

′. τ
•(ψ ∧¬φ ,z′)

]
• τ

−
∈ (φ ↣ ψ,x) = ∃<xz.

[
τ
−
+ (φ ↣ ψ,z)∧∀≤x

>zz′. ¬τ
•(ψ ∧¬φ ,z′)

]
• τ

−
− (φ ↣ ψ,x) = τ

•(ψ ∧¬φ ,x)∧∃<xz.
[
τ
−
+ (φ ↣ ψ,z)∧∀≤x

>zz′. ¬τ
•(ψ ∧¬φ ,z′)

]
•

τ
−
+ (φ ⊔ψ,x) =

[
τ
−
+ (φ ,x)∧¬τ

−
+ (ψ,x)∧¬τ

−
∈ (ψ,x)∧¬τ

−
− (ψ,x)

]
∨

[
τ
−
+ (φ ,x)∧ τ

−
+ (ψ,x)

]
∨
[
τ
−
+ (ψ,x)∧¬τ

−
+ (φ ,x)∧¬τ

−
∈ (φ ,x)∧¬τ

−
− (φ ,x)

]
•

τ
−
∈ (φ ⊔ψ,x) =

[
τ
−
+ (φ ,x)∨ τ

−
∈ (ψ,x)

]
∨
[
τ
−
+ (ψ,x)∨ τ

−
∈ (φ ,x)

]
∨
[
τ
−
+ (φ ,x)∧ τ

−
− (ψ,x)

]
∨
[
τ
−
− (φ ,x)∧ τ

−
+ (ψ,x)

]
•

τ
−
− (φ ⊔ψ,x) =

[
τ
−
− (φ ,x)∧¬τ

−
+ (ψ,x)∧¬τ

−
∈ (ψ,x)∧¬τ

−
− (ψ,x)

]
∨

[
τ
−
− (φ ,x)∧ τ

−
− (ψ,x)

]
∨
[
τ
−
− (ψ,x)∧¬τ

−
+ (φ ,x)∧¬τ

−
∈ (φ ,x)∧¬τ

−
− (φ ,x)

]
The remaining translations are similar to the ones already presented and therefore omitted. It is easy to
see that the conditions for an instant to be the starting, intermediate or endpoint of a formula of TPhL−

is described by FOMLO− formulae. Consequently, given a formula φ of Φ
•, M−, t |= φ ↔ MFO, t |=

τ
•(φ , t). Given a formula φ of Φ− it holds:

M−, [ts, te] |= φ iff MFO, ts |= τ
−
+ (φ , ts)∧∀<te

>tst.MFO, t |= τ
−
∈ (φ , t)∧MFO, te |= τ

−
∈ (φ , te)

Finally, given a formula φ of Φ− it holds:

M−, [ts,∞) |= φ iff MFO, ts |= τ
−
+ (φ , ts)∧∀>tst.MFO, t |= τ

−
∈ (φ , t)

From, Theorems 1 and 2 we deduct that:
Theorem 3. For every formula φ of TPhL−

o , for all models M− and their faithful models MT L
6:

• if φ ∈ Φ
• then there exists a formula φt of LTL[YS] such that M−, t |= φ iff MT L, t |= φt .

• if φ ∈ Φ− then there exist formulae φ
+
t ,φ∈

t ,φ
−
t of LTL[YS] such that M−, [ts, te] |= φ iff:

MT L, ts |= φ
+
t ∧∀<te

>tst.MT L, t |= φ
∈
t ∧MT L, te |= φ

−
t

and, M−, [ts,∞) |= φ iff MT L, ts |= φ
+
t ∧∀>tst.MT L, t |= φ∈

t
Now we will show that LTL[YS] is expressible in TPhL−

o . We define the translation τr : Φt → Φ
•

where Φt is the set of formulae of LTL[YS] and Φ
• is a subset of TPhL−

o formulae, as follows:
• τr(p) = p

• τr(¬φ) = ¬τr(φ)

• τr(φ [∧,∨] ψ) = τr(φ) [∧,∨] τr(ψ)

• τr(Yφ) =
(
τr(φ)∨¬τr(φ)

)
∈
(
τr(φ)↣ ¬τr(φ)

)
∧¬start

(
τr(φ)↣ ¬τr(φ)

)
• τr(φ S ψ) =

(
τr(φ)∨¬τr(φ)

)
∈
(
τr(ψ)↣ ¬τr(φ)

)
Note that in the case of Y and S, τr(φ)∨¬τr(φ) is true everywhere but is restricted via the ∈ modality. It
is clear that, given a finite set of propositions P of LTL[YS], for all models MT L and their corresponding
faithful TPhL−

o models (for all p ∈ P it holds V T L(p) = V •(pe) where pe is an event proposition), and
for all LTL[YS] formulae φ it holds MT L, t |= φ iff M−, t |= τr(φ).

6We omit the definition of faithful models of TPhL and LTL as they are defined in a similar manner to TPhL and FOMLO.
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4.3 TPhL− and LTL[XU,YS]

In this section we will show that TPhL−, the extension of TPhL−
o (i.e., with filter and ↬), has equal

expressive power with LTL[XU,YS]. Our approach is similar to the previous section, however this time
we will translate formulae of TPhL− to FOMLO (instead of FOMLO−). We will use Kamp’s theorem:

Theorem 4 (Kamp [17]). Given any FOMLO formula φ(x) with one free variable, there is an LTL
formula θ , such that θ ≡ φ(x) for all models MFO and MT L.

Consequently, the only thing that remains to prove that TPhL− is expressible in LTL[XU,YS] is to
show that formulae involving the minimal range operator (↬) and filtering (filter) are expressible in
FOMLO. Similar to the proof of Theorem 2, this is straightforward by extending the translation functions
τ
−
+ ,τ

−
∈ ,τ

−
− for supporting ‘↬’ and ‘filter’. We begin with the translation of formulae that involve the

minimal range operator (↬):

τ
−
+ (φ ↬ ψ,x) = τ

•
(φ ,x)∧∃>xte.

[
τ

•
(ψ ∧¬φ , te)∧∀<te

>x t.
[
¬τ

•
(φ ,x)∧¬τ

•
(ψ ∧¬φ , t)

]]
τ
−
∈ (φ ↬ ψ,x) = ∃<xts.∃>xte.

[
τ

•
(φ , ts)∧ τ

•
(ψ ∧¬φ , te)∧∀<te

>tst.
[
¬τ

•
(φ , t)∧¬τ

•
(ψ ∧¬φ , t)

]]
τ
−
− (φ ↬ ψ,x) = ∃<xts.

[
τ

•
(φ , ts)∧ τ

•
(ψ ∧¬φ ,x)∧∀<x

>tst.
[
¬τ

•
(φ , t)∧¬τ

•
(ψ ∧¬φ , t)

]]
Essentially, the translation of φ ↬ ψ is similar to the translation of φ ↣ ψ , however in this case it is
clear that there is a need for future FOMLO formulae. Concerning the translation of formulae involving
filtering (filter), first we define formulae Ck+(x0,φ ,ψ) as follows:

Ck+(x0,φ ,ψ) =∃>x0x1. · · ·∃>xi−1xi. · · ·∃>xk−1xk.∄<x1
>x0x0,1.∄<xi+1

>xi xi,i+1. · · ·∄<xk
>xk−1

xk−1,k.[
φ(x1)∧·· ·∧φ(xk−1)∧ψ(xk)

]
denoting that φ is true from x1 to xk−1, ψ is true at xk, and all xi are contiguous and right of x0. Similar to
Ck+ define the Ck− for the left direction from x0. Here, we will only define the translations for the filter<
case as the remaining cases can be easily defined in a similar manner.

τ
−
+ (φ filter< n,x) = τ

−
+ (φ ,x)∧

[
C1+(x,τ−

∈ (φ),τ
−
− (φ))∨·· ·∨Cn−1+(x,τ−

∈ (φ),τ
−
− (φ))

]
τ
−
∈ (φ filter< n,x) = τ

−
∈ (φ ,x)∧

[[
C1−(x,τ−

∈ (φ),τ
−
+ (φ))∧Cn−2+(x,τ−

∈ (φ),τ
−
− (φ))

]
∨
[
C2−(x,τ−

∈ (φ),τ
−
+ (φ))∧Cn−3+(x,τ−

∈ (φ),τ
−
− (φ))

]
∨·· ·

∨
[
Cn−2−(x,τ−

∈ (φ),τ
−
+ (φ))∧C1+(x,τ−

∈ (φ),τ
−
− (φ))

]]
τ
−
− (φ filter< n,x) = τ

−
− (φ ,x)∧

[
C1−(x,τ−

∈ (φ),τ
−
+ (φ))∨·· ·∨Cn−1−(x,τ−

∈ (φ),τ
−
+ (φ))

]
It can be seen that although a translation of φ filter<n exists, the size of the translated formula is linear to
n. Note that a translation with smaller size might be possible, however for our expressiveness study it is
not required to find the optimal translation.

Given all of the above, from Theorem 4, it is clear that the analog of Theorem 3 also holds for
TPhL− and LTL[XU,YS]. For the opposite direction, it suffices to show that there are τr translations from
formulae involving the remaining LTL modalities, i.e., X and U, to TPhL− formulae. For convenience we
first define c(φ) = φ ↣ ¬φ where φ ∈ Φ

•. Essentially, c(φ) holds for the maximal intervals [ts, te] or
[ts,∞) for which ∀<te

≥tst.M, t |= φ or ∀≥tst.M, t |= φ respectively. Therefore we define the corresponding
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τr translations as follows.

τ
r(Xφ) = (τr(φ) ∈ c(τr(φ)))∧¬end(c(τr(φ)))) ∨ start(¬τ

r(φ)↬ end(c(¬τ
r(φ))))

τ
r(φ U ψ) = ((τr(φ)∨¬τ

r(φ)) ∈ (start(c(τr(φ))⊓ c(¬τ
r(ψ)))↬

(end(c(τr(φ))⊓ c(¬τ
r(ψ)))∧ τ

r(ψ))))∨ τ
r(ψ)

Concerning the translation of Xφ , the left part of the disjunction holds true for all instants included in an
interval [ts, te) where c(τr(φ))) is true, while the right part is true at the start of an interval [t, t+1] where
¬τr(φ)↬ end(c(¬τr(φ))) is true. In the case of τr(φ U ψ), the translation can be divided into two parts:
the first part uses the inclusion operator between the tautology τr(φ)∨¬τr(φ) (true everywhere) and the
minimal range formula between (a) the start of a period at which both φ and ¬ψ are true for all points
(excluding the end) and (b) the end of a period [ts, te) at which both φ and ¬ψ are true and ψ holds at te,
thus capturing the cases where φ is true before ψ becomes true; the second part of the translation is the
case of τr(ψ) which captures single instances of ψ . Considering all of the above, we can now say that
the TPhL− fragment of TPhL has equal expressive power with LTL[XU,YS].

4.4 Expressiveness of TPhL

Concerning the complete language TPhL, a comparison with LTL is not possible as the structures on
which semantics is based are incomparable, even for atomic entities. This is because dynamic temporal
phenomena may hold on non-disjoint intervals which by default require the half plane of a 2-dimensional
temporal space for their representation. When compared to DFO, it can be easily seen that for all formu-
lae of TPhL there are equivalent formulae with two free variables of DFO. For example, a dynamic tem-
poral phenomenon proposition p can be represented by a dyadic predicate p(x,y) such that M, [ts, te] |=
p ↔MDFO, ts, te |= p(x,y). In a similar manner to the previous sections, we can define translations from
TPhL to DFO for the remaining formulae—this time however with two free variables corresponding to
starting and ending instants. However, the reverse direction does not hold. This can be shown with the
following example. Consider the DFO formula φ(x,y) = ¬p(x,y), since negation is not included for
formulae7 of Φ= there is no formula φt of TPhL such that M, [ts, te] |= φt ↔MDFO, ts, te |= ¬p(x,y) for
all models. Therefore TPhL is strictly less expressive than DFO.

5 Stream processing

In this section, we formally present the correctness criteria for stream processing with the TPhL language.
Given a stream, i.e., an arbitrary long sequence of time associated atomic formulae of Φ, the evaluation
at a given instant t, of formulae that refer only to the past (φ of TPhL−

o ) is an easy task, as their truth
value can be determined for all t ′ ≤ t (see Equation (1)). However, this is not the case for formulae such
as τr(Xp) and τr(p U q) that refer to the future, as their truth value at an instant t may depend on future
information (> t). Consequently, in order to guarantee correctness, monotonicity and punctuality—
we will define these shortly—, the two valued semantics of TPhL, are not sufficient for the evaluation
of formulae on constantly evolving streams. In order to treat the issue of evaluations with unknown
status—i.e., when all required information is not available at current time—, we follow an approach
similar to [6]. We extend the semantics of TPhL for stream processing, to utilise three values: true (⊤),
false (⊥) and unknown (?). Due to space limitations, we will omit the presentation of the three valued

7We chose to omit negation from formulae of Φ= as it would affect significantly the performance of our implementation.
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semantics8 in this paper, instead we will focus on formalising the notions of stream, stream processor,
and define the properties of correctness, punctuality and monotonicity for stream processors of TPhL.

A stream, at any instant t can be represented by the finite model Mt = ⟨Tt , It ,<,V •,V−,V=⟩ where
Tt = {0,1, · · · , t}, It = Tt ×Tt ∪{[ts,∞) : ts∈ Tt}, and V •,V−,V= are valuation functions defined in similar
manner to Section 2.

A stream processor, in symbols SP t , is defined by the triplet ⟨Λ•

t ,Λ
−
t ,Λ

=
t ⟩ where t ∈ T , Λ

•

t : Φ
•×Tt →

{⊤,⊥,?}, Λ
−
t : Φ−×(Ic

t ∪ I+T )→{⊤,⊥,?}, and Λ=
t : Φ=×(Ic

t ∪ I+t )→{⊤,⊥,?}, are formulae valuation
functions assigning truth values on formulae-instants/intervals pairs and Ic

t = Tt ×Tt and I+t = {[ts, t+] :
ts, t ∈ Tt}. Intervals of Ic

t , (e.g., [ts,te]) denote that a phenomenon started at ts and ended at te, while
intervals of I+t , (e.g., [ts, t+]) denote that a phenomenon started at ts, and continues to be true/unknown
at t but does not end at t. Intervals of I+t are useful for capturing the truth value of valuations that are true
but are still ongoing—see for example the semantics of φ ↣ ψ for intervals open to ∞. We assume that
the input phenomena are ordered and their truth value is never unknown. Now, we define the correctness,
punctuality and monotonicity properties for SP .

Correctness. A stream processor has the correctness property iff given any stream, for all t and for
any φ ∈ Φ evaluation by SP t (i.e., via Λ

•/−/=) that is true (false) at an instant ti or interval i, φ is also
true (false) (i.e., via the semantics of Section 2) at ti or i in Mt .

Monotonicity. A stream processor has the motonocity property iff given any stream, for all t and for
φ ∈ Φ evaluation by SP t that is true (false) at an instant ti or interval i, will also be evaluated to be true
(false) at ti or i by all SP t ′ with t ′ > t.

Punctuality. A stream processor has the punctuality property iff given any stream, for any φ , and for
all instants ti or intervals i if there exists minimum t ≥ ti such that φ is true (false) for all t ′ ≥ t in all M′

t
at ti or t then SP t evaluates φ to be true (false) at an instant ti or interval i.

We say that a stream processor for TPhL is proper iff it has all the three aforementioned properties. It
is easy to see that some formulae, given certain streams, can never be true but always stay unknown. For
example, consider the formula τr(Gp), where G is the ‘globally’ LTL operator, and a stream where p is
true at all instants; at any given point t in time, the stream processor is agnostic to the future, therefore in
order to maintain the monotonicity property, τr(Gp) will be evaluated by SP t for all t ′ ≤ t to be unknown.

Phenesthe+, is a proper stream processor of TPhL. While we will not present a formal proof in this
paper, we will briefly discuss its processing and its implementation. Phenesthe+ is a complex event
processing engine that given an input stream and a set of temporal phenomena definitions, will produce
an output stream of temporal phenomena detections i.e., phenomena associated with a set of instants or
intervals at which they are true. Compared to automata based methods, the phenomena are compiled via
rewriting into an internal Prolog representation which is then later used for processing. This procedure is
linear with respect to the size of the formulae involved. The phenomena definitions can be hierarchical,
and their processing, if possible, can happen in parallel. Phenesthe+ detects phenomena by performing
temporal queries over tumbling temporal windows of size equal to a user defined step (ST ) size. A
temporal window contains all the new information that has arrived since the last temporal query, as well
as information from previous windows that has a possible future use. For example, given the formula
φ ↬ ψ , if φ is true in the current window but ψ is not, then φ must be retained. Note that information
from previous windows was also retained in the previous version of Phenesthe for valuations that are true
but ongoing, or involved dynamic temporal phenomena. All information outside the temporal window
that does not have ‘future use’ is discarded. From a practical perspective it is not viable to keep everything

8The complete three valued semantics are available in https://manospits.github.io/files/Three_valued_
semantics.pdf.

https://manospits.github.io/files/Three_valued_semantics.pdf
https://manospits.github.io/files/Three_valued_semantics.pdf
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from the past that can contribute to a future detection. Therefore, we allow setting a maximum limit for
past information (retaining threshold RT ). When this threshold is active Phenesthe+ is no longer proper
with respect to the full stream, but remains proper for the part of the stream that is bounded by RT .
Similarly, the punctuality property depends on ST , if ST = 1, then Phenesthe+ is punctual, however if
ST > 1, detections will be produced at the latest ST −1 time units after their punctual time.

In terms of complexity, evaluation of formulae in Phenesthe+ happens via single-scan or in the worst
case, i.e., when overlapping intervals are involved, polynomial algorithms with respect to the size of
the structure (current temporal window). It has to be noted that while TPhL− has equal expressive
power with LTL, it can accomplish efficient processing of phenomena definitions by utilising intervals to
represent set of points. For example an interval [ts, te] produced by the evaluation of the formula φ ↣ ψ

requires only two points for the representation of all the instants included in [ts, te], therefore contributing
significantly to space and processing time economy.

6 Experimental Evaluation

We presented the theoretical basis of TPhL. Now, we will evaluate the efficiency of our extended stream
processing engine on a reproducible9 maritime monitoring scenario.

Experimental setup For our experimental evaluation we use a public dataset containing AIS vessel
data, transmitted over a period of 6 months, from October 1st, 2015 to March 31st, 2016, in the area
of Brest, France [26] along with spatio-temporal events relating vessels with areas (in total ≈ 16M
input events). We run our experiments on machine with an Intel i7-3770 CPU running Ubuntu 20.04.6
LTS. The set of maritime phenomena we detect as well as the input events are summarised in Table 1.
We compare stream processing efficiency when the set of maritime phenomena definitions includes and
does not include phenomena marked with ‡, i.e., phenomena that utilise ↬ and, or filter or depend on
phenomena that utilise them.

Experimental results The results of our evaluation are illustrated in Figure 3. We perform complex
event processing with ST = 3h, and RT = {2,4,8,16} days. Figure 3 (left) shows the average processing
time for each experiment. The results show that the addition of ‡ phenomena does not affect processing
efficiency significantly, but also that Phenesthe+ is capable of producing detections in less than 2 sec-
onds (multithreaded) when the data retaining threshold is set to 16 days. Note that the performance gain
by running the multithreaded version of Phenesthe+ depends on the dependecies between phenomena
and the computation of the processing order. For example, fishing_warning and waiting_time can be
processed in parallel while fishing_warning and suspicious_trip cannot. In [22] we describe the compu-
tation of the processing order. With the addition of the new temporal phenomena, we limited the number
of phenomena that can be processed in parallel. The results of Figure 3 (left) confirm this. We also
perform complex event processing with ST = 24h, and set RT = ∞ (i.e., keep non-redundant informa-
tion forever)—recall that our dataset involves a 6 month period. Similar to the previous experiments
we compare performance when Phenesthe+ is executed in parallel or serial manner, and with or without
temporal phenomena marked with ‡ (see Table 1). Figure 3 (middle) shows the average processing time
while Figure 3 (right) shows the average number of input entities plus retained instants/ intervals for each
case. The results show, that in terms of processing time, performance is not significantly affected when
including ‡ phenomena in both serial and parallel processing even when Phenesthe+ retains all informa-
tion. In more detail, apart from the input events (on average 90K per temporal query) when we include ‡
phenomena the number of retained instants/intervals increases on average by 20K, therefore bringing the

9https://github.com/manospits/Phenesthe/tree/future

https://github.com/manospits/Phenesthe/tree/future
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Table 1: Input and output phenomena description. ‘IE’, ‘UE’, ‘US’ and ‘UD’ stand for Input/User
Event/State/Dynamic temporal phenomenon. Phenomena with † have future dependencies while phe-
nomena with ‡ utilise the new temporal modalities or depend on phenomena that utilise them. The last
column lists approximately the number of input or output instants/intervals.

Type Phenomenon Description Number

IE
ais(V,S,C,H) AIS transmitted information (vessel ID, speed, course, heading) 15.8M
enters/leaves{Port,Fishing}(V,A) Vessel enters/leaves port/fishing area. 160K

UE stop_start/end(V ) Start/end of a stop. 800K

US

in_{port,fishing}_area(V,A) In fishing/port area. 70K
stopped(V ) Stopped vessel. 300K
underway(V ) Vessel underway. 132K
moored(V ) Moored vessel. 323K
†‡fishing_warning(V,F) Warning: Non fishing vessel possibly engaged in fishing. 7K
†‡waiting_time(V,P) Port waiting time. 42K
†‡long_waiting_time(V, P) Warning: waiting time longer than a threshold. 28K
unusual_stop(V ) Warning: vessel performs a stop in an unexpected area. 27K
†‡possible_malfunction(V ) Warning: Vessel might have a malfunction. 3K

UD

†trip(V,PA,PB) Vessel trip from PA to PB. 39K
†‡suspicious_trip(V,PA,PB) Trip from PA to PB contained warnings. 3K
†fishing_trip(V,PA,FA,PB) Fishing trip from PA to PB contained fishing in FA. 6K

total number of input+retained entities up to 120K. Even in this setting Phenesthe+, produces detections
in approximately 2 and 4 seconds (serial and parallel respectively).

7 Related work & Discussion

There are several very expressive temporal logics. The HS logic [16] is a very powerful logic for rep-
resenting both instantaneous and durative temporal phenomena. When time is linear and the intervals
homogeneous (therefore non overlapping) the HS logic is equally expressive with LTL but is exponen-
tially more succinct [9]. In its original version, the HS logic does not make any assumptions on the
nature of intervals. In this paper, we showed the TPhL− has equal expressive power to LTL, therefore
concerning the linear HS variant studied in [9], TPhL− is equally expressive. It is well known, that the
chop operator of Venema’s CDT logic [27] is inexpressible in the HS logic [20, 10]. TPhL supports the
chop operator in the form of meets. While a formal expressiveness comparison of TPhL with the HS or
CDT would be desirable, the omission of negation from Φ= formulae makes this a challenging task.

Concerning our criteria for proper stream processors of TPhL, as mentioned earlier, their concepts are
not entirely new. For example “correctness” has a similar notion with “soundness” in run-time verifica-
tion [5] (i.e., the output should be correct with respect to the specification). Likewise, the “monotonicity”
property as we have defined it, in run-time monitoring appears as the irrevocability property respectively
for monitors [1]—a monitor that has the “irrevocability” property is unable to revoke the acceptance or
the rejection of a trace. Finally, the “punctuality” property can be related to the “tightness” property of
monitors [1], under which monitors are restricted to make a choice as soon as there is sufficient informa-
tion available. In this work, we utilise the similar notions from run-time monitoring and verification for
the task of complex event processing.
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Figure 3: Experimental results. Average processing time per query with ST = 3h and RT = {2,4,8,16}
days or ST = 24h and RT = ∞ (left) and (middle) respectively. Average number of input plus retained
instants/ intervals per query when ST = 24h and RT = ∞ (right).

From a complex event processing perspective, LARS is a logic based framework for reasoning over
streams [7]. While the language of LARS is expressible in LTL, the reverse direction does not hold, since
LARS does not support ‘until’. A well known runtime monitoring system with point-based semantics is
LOLA [13]. While LOLA does not allow durative phenomena, we saw in section 4 that formulae that
hold on disjoint intervals can be expressed using point based modalities. It is not possible, however,
to model formulae that hold on overlapping intervals. Furthermore, in the worst case LOLA requires
memory equal to the size of the trace so far, which is not practical for large industrial applications
such as maritime monitoring. In Phenesthe+ we allow the user to choose the retaining threshold. A
complex event recognition framework is RTEC [4]. RTEC is a logic based formalism whereby events
and fluents are expressed with a variant of the Event Calculus [18]. While there isn’t a formal study of
the expressive power of the language of RTEC, its semantics suggest that it has at most equal expressive
power with pure past LTL. Bauer et. al. [6], propose three valued semantics for monitoring LTL formulae.
In our work, we also use three valued semantics, however for a more general case, as our language
allows the representation of temporal phenomena that hold on overlapping intervals, which cannot be
modeled in LTL. Team semantics for LTL [19] or HyperLTL [11] offer a promising direction towards
the representation of concurrent temporal phenomena, however they are limited to a finite number of
concurrent traces. In TPhL a dynamic temporal phenomenon may hold on possibly infinite overlapping
intervals.

Closing, in this paper we presented TPhL and studied the expressive power of its different fragments.
Specifically, we showed that TPhL−

o has equal expressive power with pure past LTL while its extension,
TPhL−, has equal expressive power with LTL. Concerning the complete logic TPhL, we showed that it
is strictly less expressive than dyadic first-order logic. Moreover, we defined criteria for proper stream
processors that use our language, and evaluated Phenesthe+, our stream processing implementation on
real maritime data. Our results, show that Phenesthe+ is suitable for the task of maritime monitoring as
it produces results in real-time. While the application of our experiment involved the maritime domain,
Phenesthe+ is generic, and can be applied in other areas.

Regarding future work, we aim to study the expressive power of a theoretical variant of TPhL that
includes negation on formulae of Φ= in comparison with two-dimensional modal logics. Furthermore, as
one of the main motivations for the creation of TPhL was facilitating writing temporal formulae, we plan
to compare succinctness of TPhL− formulae with LTL formulae. Finally, we aim to apply Phenesthe+
for human activity monitoring in smart homes.
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