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Abstract

We consider the problem of fairly allocating a set of indivisible goods to a set of strategic agents with
additive valuation functions. We assume no monetary transfers and, therefore, a mechanism in our
se�ing is an algorithm that takes as input the reported—rather than the true—values of the agents. Our
main goal is to explore whether there exist mechanisms that have pure Nash equilibria for every instance
and, at the same time, provide fairness guarantees for the allocations that correspond to these equilibria.
We focus on two relaxations of envy-freeness, namely envy-freeness up to one good (EF1), and envy-
freeness up to any good (EFX), and we positively answer the above question. In particular, we study two
algorithms that are known to produce such allocations in the non-strategic se�ing: Round-Robin (EF1
allocations for any number of agents) and a cut-and-choose algorithm of Plaut and Roughgarden [49]
(EFX allocations for two agents). For Round-Robin we show that all of its pure Nash equilibria induce
allocations that are EF1 with respect to the underlying true values, while for the algorithm of Plaut and
Roughgarden we show that the corresponding allocations not only are EFX but also satisfy maximin
share fairness, something that is not true for this algorithm in the non-strategic se�ing! Further, we
show that a weaker version of the la�er result holds for any mechanism for two agents that always has
pure Nash equilibria which all induce EFX allocations.

1 Introduction

Fair division refers to the problem of distributing a set of resources among a set of agents in such a way
that everyone is “happy” with the overall allocation. Capturing this “happiness” can be elusive, as it may
be determined by complicated underlying social dynamics; however, two well-motivated (and mathemat-
ically conducive) interpretations are those of envy-freeness [34, 33, 52] and proportionality [51]. When an
allocation is envy-free, each agent values the set of resources that she receives at least as much as the set
of any other agent, while when an allocation is proportional, each agent receives at least 1/n of her total
value for all the goods, assuming there are n agents. Since the �rst mathematically formal treatment of fair
division by Banach, Knaster, and Steinhaus [51], the multifaceted questions that arise for the di�erent vari-
ants of the problem have been studied in a diverse group of �elds, including mathematics, economics, and
political science. As many of these questions are inherently algorithmic, fair division questions, especially

∗An extended abstract version of this work appeared in the Proceedings of the 17th International Conference on Web and Internet
Economics (WINE 2021) [8].
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the ones related to the existence, computation, and approximation of di�erent fairness notions, have been
very actively studied by computer scientists during the last two decades (see, e.g., [50, 20, 46, 9] for surveys
of recent results).

In the standard discrete fair division se�ing that we study here, the resources are indivisible goods and the
agents have additive valuation functions over them. Typically, there is also the additional assumption that all
the goods need to be allocated. �is discrete se�ing poses a signi�cant conceptual challenge, as the classic
notions of fairness originally introduced for divisible goods, such as envy-freeness and proportionality,
are impossible to satisfy. �e example that illustrates this situation needs only two agents and just one
positively valued good. Whoever does not receive the good will not consider the result to be either envy-
free or proportional. However, this should not necessarily be considered an unfair outcome, as it is done out
of necessity, not malice: the only other (deterministic) option would be to deprive both agents of the good,
which seems wasteful. To de�ne what is fair in this context, a number of weaker fairness notions have
been proposed. Among the most prevalent of those are envy-freeness up to one good (EF1), envy-freeness
up to any good (EFX), and maximin share fairness (MMS). �e notions of EF1 and EFX were introduced by
Lipton et al. [44], Budish [23], and Gourvès et al. [39], Caragiannis et al. [26] respectively, and they can be
seen as additive relaxations of envy-freeness. Both of them are based on the following rationale: an agent
may envy another agent but only by the value of the most (for EF1) or the least (for EFX) desirable good
in the other agent’s bundle. It is straightforward that EF1 is weaker than EFX, and indeed this is re�ected
to the known results for the two notions. �e concept of the maximin share of an agent was introduced by
Budish [23] as a relaxation to the proportionality benchmark. �e corresponding fairness notion, maximin
share fairness (MMS), requires that each agent receives the maximum value that this agent would obtain if
she was allowed to partition the goods into n bundles and then keep the worst of these (see Section 2 for a
more detailed description and a formal de�nition).

From an algorithmic point of view, there are many results regarding the existence and computation of
these notions (see our Related Work). Here, however, we are interested in exploring the problem from a
game theoretic perspective. In particular, we assume that the agents are strategic, which means that it is
possible for an agent to intentionally misreport her values for (some of) the goods to end up with a bundle
of higher total value. We see this as a very natural direction, as it captures what may happen in practice in
many real-life scenarios where fair division solutions can be applied, for instance, in a divorce se�lement.
It should be noted here that, in accordance to the existing literature on truthful allocation mechanisms
[32, 41, 47, 48, 2, 3, 24], we assume there are no monetary transfers. �erefore, a mechanism in our se�ing is
just an algorithm that takes as input the, possibly misreported, values that the agents declare. �e existence
of truthful mechanisms, i.e., mechanisms where no agent ever has an incentive to lie, was studied in the
same se�ing by Amanatidis et al. [3] who showed that, even for two agents, truthfulness and fairness are
incompatible by providing impossibility results for every non-trivial fairness notion. As a consequence, the
next natural question to ask is:

Is it possible to have non-truthful mechanisms that are guaranteed to have equilibria, with
these equilibria always inducing fair allocations?

�us, our main quest is to investigate whether there exist mechanisms that have pure Nash equilibria for ev-
ery instance and each allocation corresponding to an equilibrium provides fairness guarantees with respect
to the true valuation functions of the agents. �e stability notion of a pure Nash equilibrium, on which we
focus here, describes a state where each agent plays a deterministic strategy (namely, reports her value for
each good) and no agent can a�ain higher value by deviating to a di�erent strategy.
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1.1 Our Contributions

To the best of our knowledge, our work is the �rst to consider the above question. �e results we provide
are mostly positive, as we show that the class of mechanisms that are implementable in polynomial time,
have pure Nash equilibria for every instance, and provide some fairness guarantee at the allocations they
produce in their equilibria is non-empty. Speci�cally, in Section 3, we study a mechanism adaptation of the
Round-Robin algorithm which is known to produce EF1 allocations in the non-strategic se�ing [26]. Also,
under some mild assumptions which we show that can be li�ed, Aziz et al. [12] showed that the Round-
Robin mechanism always has pure Nash equilibria. Further, in Section 4, we consider the stronger fairness
notion of EFX. We focus on the case of two agents and study a mechanism adaptation of the algorithm of
Plaut and Roughgarden [49], Mod-Cut&Choose, which is known to always produce EFX allocations in the
non-strategic se�ing. Our main contributions can be summarized as follows:

• Round-Robin has pure Nash equilibria for every instance and these equilibria induce allocations that
are always EF1 with respect to the underlying true values (�eorems 3.3 and A.3). �at is, Round-
Robin retains its fairness properties at its equilibria, even when the input is given by strategic agents!
To show this, we combine well-known properties of Round-Robin with a novel recursive construction
of “nicely structured” bid pro�les. We consider this as the main technical result of our paper.

• Mod-Cut&Choose has pure Nash equilibria for every instance with two agents and these equilibria
induce allocations that are always EFXand MMS with respect to the underlying true values (�eorem
4.3). Note that for the case of two agents MMS allocations are always EFX allocations, i.e., MMS
fairness is stronger. It should be also noted that in the non-strategic se�ing, for any ε > 0, there are
instances where the output of Mod-Cut&Choose is not a (5/6 + ε)-MMS allocation!

• We generalize a weaker version of �eorem 4.3. All mechanisms that have pure Nash equilibria for
every instance with two agents and these equilibria induce allocations that are always EFX provide
stronger MMS guarantees in these allocations than generic EFX allocations do (�eorems 4.5 and 4.7).
�is shows a very interesting separation between the strategic and non-strategic se�ings.

1.2 Further Related Work

�e non-strategic version of the problem of fairly allocating goods to additive agents has been studied ex-
tensively. We provide a summary of indicative results mostly for the notions that we consider. In particular,
EF1 allocations always exist and can be computed in polynomial time [44, 46, 26]. For the stronger notion
of EFX, the picture is not that clear. It is known that such allocations always exist when there are 2 or 3
agents [26, 39, 27], and in the former case they can be e�ciently computed using Mod-Cut&Choose [49].
�e existence of complete EFX allocations for 4 or more agents remains one of the most intriguing open
problems in fair division. �ere are, however, positive results for any number of agents if the valuation
functions are restricted [7, 45, 35], if it is allowed to discard some of the goods [25, 29, 28, 18], or if one
considers approximate EFX allocations [49, 6]. Finally, regarding the notion of MMS, allocations that pro-
vide this guarantee always exist when there are only 2 agents, although computing them is an NP-hard
problem [53]. Even worse, for three or more agents, such allocations do not always exist [43]. However,
there are algorithms that run in polynomial time and produce constant factor approximation guarantees
[43, 4, 15, 38, 37, 36], with 3/4 + 3/3836 being the current state of the art [1].

�e works of Caragiannis et al. [24], and Amanatidis, Birmpas and coauthors [2, 3] are very relevant to ours
in the sense that they all studied the exact same strategic discrete fair division se�ing. As we mentioned
earlier, however, their focus was di�erent as they were only interested in truthful mechanisms. Amanatidis
et al. [3] provided strong impossibility results in this direction: for instances with two agents, no truthful
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mechanism can consistently produce EF1 (and thus EFX) allocations when there are more than 4 goods,
while the best possible approximation with respect to MMS declines linearly with the number of goods.
Given these negative results, truthful mechanism design has also been studied under restricted valuation
function classes [40, 14, 13]. In a very recent work, Amanatidis et al. [10] show that our main result (�eorem
3.3) qualitatively extends to approximate pure Nash equilibria, even for agents with submodular valuation
functions.

Aziz, Goldberg and Walsh [12] studied the existence of pure Nash equilibria of Round-Robin and showed
that when no agent values any two goods equally, there always exists a pure Nash equilibrium. In addition,
they provided a linear time algorithm that computes the preference rankings (i.e., the orderings of the goods
that correspond to the reported values) that leads to this equilibrium, thus giving a constructive solution.
Aziz et al. [11] showed that computing best responses for Round-Robin, and for sequential mechanisms more
generally, is NP-hard, �xing an error in the work of Bouveret and Lang [19] on the same topic.

We conclude by pointing out that in contrast to the case of indivisible goods, the problem of fairly allocating
a set of divisible goods to a set of strategic agents has been repeatedly studied. For some indicative papers
in this line of work, we refer the reader to [31, 30, 21, 17, 22] and references therein.

2 Preliminaries

We consider the problem of allocating a set of indivisible goods to a set of agents in a fair manner under
the presence of incentives. For a ∈ Nwe use [a] to denote the set {1, 2, . . . , a}. An instance to our problem
is an ordered triple (N,M,v), where N = [n] is a set of n agents, M = {g1, . . . , gm} is a set of m goods,
and v = (v1, . . . , vn) is a vector of the agents’ additive valuation functions. In particular, each agent i
has a non-negative value vi({g}) (or simply vi(g)) for each good g ∈ M , and for every S, T ⊆ M with
S ∩ T = ∅ we have vi(S ∪ T ) = vi(S) + vi(T ). Equivalently, the value of an agent is simply the sum of
the values of the goods that she got. We assume there is no free disposal, which means that all the goods
must be allocated. �us, an allocation (A1, . . . , An), where Ai is the bundle of agent i, is a partition of M .
It is o�en useful to refer to the order of preference an agent has over the goods. We say that a valuation
function vi induces a preference ranking �i if g �i g

′ ⇔ vi(g) ≥ vi(g
′) for all g, g′ ∈ M . We use �i if the

corresponding preference ranking is strict, i.e., when g �i g
′ ∧ g′ �i g ⇒ g = g′, for all g, g′ ∈M .

2.1 Fairness Notions

�ere is a signi�cant number of di�erent notions one can use to determine which allocations are “fair”.
�e most prominent such notions are envy-freeness (EF) [34, 33, 52] and proportionality (PROP) [51], and,
in the discrete se�ing we study here, their relaxations, namely envy-freeness up to one good (EF1) [23],
envy-freeness up to any good (EFX) [26], and maximin share fairness (MMS) [23]. Particularly for additive
valuation functions, we have that EF⇒ EFX⇒ EF1 and EF⇒ PROP⇒ MMS, where X ⇒ Y means that
any allocation that satis�es fairness criterion X always satis�es fairness criterion Y as well.

De�nition 2.1. + An allocation (A1, . . . , An) is

• envy-free (EF), if for every i, j ∈ N , vi(Ai) ≥ vi(Aj).

• envy-free up to one good (EF1), if for every pair of agents i, j ∈ N , with Aj 6= ∅, there exists a good
g ∈ Aj , such that vi(Ai) ≥ vi(Aj \ {g}).

• envy-free up to any good (EFX), if for every pair i, j ∈ N , with Aj 6= ∅ and every good g ∈ Aj with
vi(g) > 0, it holds that vi(Ai) ≥ vi(Aj \ {g}).
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While these notions rely on comparisons among the agents, proportionality focuses on everyone receiving
at least a 1/n fraction of the total value.

De�nition 2.2. An allocation (A1, . . . , An) is proportional (PROP), if for every i ∈ N , vi(Ai) ≥ vi(M)/n.

In the same direction, but adjusted for indivisible goods, a number of fairness notions have been based on
the notion of maximin shares [23]. Imagine that agent i is asked to partition the goods into n bundles, under
the condition that she will receive the worst bundle among those. If the resources were divisible, then she
would clearly split everything evenly into n bundles of value vi(M)/n each, thus capturing the benchmark
required for proportionality. However, now that the goods are indivisible, agent i would like to create a
partition maximizing the minimum value of a bundle. �is value is her maximin share.

De�nition 2.3. Given a subset S ⊆M of goods, the n-maximin share of agent i with respect to S is

µi(n, S) = max
A∈Πn(S)

min
Aj∈A

vi(Aj) ,

where Πn(S) is the set of all partitions of S into n bundles.

From the de�nition and the preceding discussion, we have that n · µi(n, S) ≤ vi(S). When S = M , we
call µi(n,M) the maximin share of agent i and denote it by µi as long as it is clear what n and M are.

De�nition 2.4. An allocation A = (A1, . . . , An) is called an α-maximin share fair (α-MMS) allocation if
vi(Ai) ≥ α · µi , for every i ∈ N . When α = 1 we just say that A is an MMS allocation.

Besides MMS, there exist other fairness criteria based on the notion of maximin shares, like pairwise max-
imin share fairness (PMMS) [26] and groupwise maximin share fairness (GMMS) [16]. While we are not going
into more details about them, it should be noted that PMMS⇒ EFX [26] and that for n = 2, MMS, PMMS,
and GMMS coincide. In particular, we need the following result of Caragiannis et al. [26].

�eorem 2.5 (Follows from �eorem 4.6 of [26]). For n = 2, any MMS allocation is also an EFX allocation.

In addition to the implications mentioned so far, one can consider how the approximate versions of EF1,
EFX and MMS relate to each other (see [5]). Here we need the following result about the worst case MMS
guarantee of an EFX allocation for the case of two agents.

�eorem 2.6 (Follows from Proposition 3.3 of [5]). For n = 2, any EFX allocation is also a 2
3 -MMS allocation.

�is guarantee is tight, in the sense that for every δ > 0 there exists an EFX allocation that is not a
(

2
3 +δ

)
-MMS

allocation, for anym ≥ 4.

2.2 Mechanisms and Equilibria

We are interested in mechanisms that produce allocations with fairness guarantees. In our se�ing, where
there are no payments, an allocation mechanism M is essentially just an algorithm that takes its input
from the agents and allocates all the goods to them. We use this distinction in terminology to highlight
that this reported input may di�er from the actual valuation functions. In particular, we assume that each
agent i reports a bid vector bi = (bi1, bi2, . . . , bim), where bij ≥ 0 is the value agent i claims to have
for good gj ∈ M . A mechanism M takes as input a bid pro�le b = (b1, b2, . . . , bn) of bid vectors and
outputs an allocation M(b). In our se�ing we assume that the agents are strategic, i.e., an agent may
misreport her true values if this results to a be�er allocation from her point of view. Hence, in general,
bi 6= (vi(g1), vi(g2), . . . , vi(gm)). While bi is de�ned as a vector, for a generic good h ∈ M it is o�en
convenient to use the function notation bi(h) to denote the bid value bi`, where ` is such that h = g`;
extending this we may write bi(S) for

∑
h∈S bi(h). Like above, we say that a bid vector bi induces a

preference ranking �i if g �i g
′ ⇔ bi(g) ≥ bi(g′) for all g, g′ ∈M , and use �i for strict rankings.
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We focus on the fairness guarantees of the (pure) equilibria of the mechanisms we study. As is common,
given a pro�le b = (b1, . . . , bn), we write b−i to denote (b1, . . . , bi−1, bi+1, . . . , bn) and, given a bid vector
b′i, we use (b′i,b−i) to denote the pro�le (b1, . . . , bi−1, b

′
i, bi+1, . . . , bn). For the next de�nition we abuse

the notation slightly: given an allocation A = (A1, . . . , An), we write vi(A) to denote vi(Ai).

De�nition 2.7. LetM be an allocation mechanism and consider a pro�le b = (b1, . . . , bn). We say that
bi is a best response to b−i if for every b′i ∈ Rm

≥0, we have

vi(M(b′i,b−i)) ≤ vi(M(b)) .

�e pro�le b is a pure Nash equilibrium (PNE) if, for each i ∈ N , bi is a best response to b−i.

When b is a PNE and the allocationM(b) has a fairness guarantee, e.g.,M(b) is EF1, we will atribute the
same guarantee to the pro�le itself, i.e., we will say that b is EF1.

Remark 2.8. �e mechanisms we consider in this work run in polynomial time. However there are com-
putational complexity questions that go beyond the mechanisms themselves. For instance, how does an
agent compute a best response or how do all the agents reach an equilibrium? While we consider such
questions interesting directions for future work, we do not study them here and we only focus on the fair-
ness properties of PNE. It should be noted, however, that such problems are typically hard. For instance,
computing a best response for Round-Robin is NP-hard in general [11] (although for �xed n it can be done
in polynomial time [54]), and the same can be easily shown to be true for Mod-Cut&Choose via a reduction
from the classic PARTITION problem.

Remark 2.9. An easy observation on the main question of this work is that any PNE of any α-approxima-
tion mechanism for computing MMS allocations is an α-MMS allocation. Indeed, this is true, not only for
MMS but for any fairness notion that depends on agents achieving speci�c value benchmarks that depend
on their own valuation function, e.g., it is also true for PROP. While this is de�nitely interesting to note,
nothing is known on the existence of PNE of any constant factor approximation algorithm for computing
MMS allocations in the literature. Even for a very simple 1/2-approximation algorithm that only slightly
di�ers from Round-Robin [4], showing that PNE always exist seems very challenging. Clearly, an existence
result for any such algorithm [43, 4, 15, 38, 37, 36] would imply an analogue of �eorem 3.3 for approximate
MMS. Although in this work we do not consider mixed Nash equilibria (MNE), i.e., the generalization of
PNE where strategies are distributions over bids and the inequality of De�nition 2.7 holds in expectation,
everything said in this remark could be repeated for MNE and ex-ante α-MMS allocations, i.e., allocations
where the inequality of De�nition 2.4 holds in expectation. We see all such questions as promising directions
in line with the research agenda we initiate here.

3 Fairness of Nash Equilibria of Round-Robin

In this section we focus on one of the simplest and most well-studied allocation algorithms, Round-Robin,
a dra� algorithm where the agents take turns and in each turn the active agent receives her most preferred
available (i.e., unallocated) good. Below we state Round-Robin as a mechanism (Mechanism 1) that takes
as input a bid pro�le rather than the valuation functions of the agents. In its full generality, Round-Robin
should also take a permutation N as an input to determine the priority of the agents. Here, for the sake of
presentation, we assume that the agents in each round (lines 3–6) are always considered according to their
“name”, i.e., agent 1 is considered �rst, agent 2 second, and so on. �is is without loss of generality, as it
only requires renaming the agents accordingly. As we have mentioned in the Introduction, as an algorithm,
Round-Robin outputs EF1 allocations when all agents have additive valuation functions [46, 26].
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Mechanism 1 Round-Robin(b1, . . . , bn) . For i ∈ N , bi = (bi1, . . . , bim) is the bid of agent i.
1: S = M ; (A1, . . . , An) = (∅, . . . , ∅); k = dm/ne
2: for r = 1, . . . , k do // Each value of r determines the corresponding round.
3: for i = 1, . . . , n do
4: g = arg maxh∈S bi(h) // Break ties lexicographically (hence we use “=” instead of “∈”).
5: Ai = Ai ∪ {g} // Current agent receives (what appears to be) her favorite available good.
6: S = S \ {g} // �e good is no longer available.
7: Return: A = (A1, . . . , An)

Lemma 3.1 (Follows from the proof of �eorem 12.2 of [46]). Let i ∈ N . If bi is the truthful bid of agent
i, then the allocation A returned by Round-Robin(b1, . . . , bn) is EF1 from i’s perspective, i.e., for all j ∈ N ,
with Aj 6= ∅, there exists g ∈ Aj , such that vi(Ai) ≥ vi(Aj \ {g}). Moreover, if i = 1, then A is EF from her
perspective, i.e., for all j ∈ N , v1(A1) ≥ v1(Aj).

Although it is long known that truth-telling is generally not a PNE in sequential allocation mechanisms (a
special case of which is Round-Robin) [42], we present here a minimal example that illustrates the mechanics
of manipulation. Let N = {1, 2} and M = {a, b, c} with the valuation functions being as shown in the
table on the le�. �e circles show the allocation returned by Round-Robin when the agents bid their true
values, whereas the superscripts indicate in which order were the goods assigned. Given that agent 2 is
not particularly interested in good a, agent 1 can manipulate the mechanism into giving her {a, b} instead
{a, c} by claiming that these are her top goods as in the table on the right.

a b c

v1 : 6 1
5 4 3

v2 : 4 6 2
5

a b c

b1 : 5 3 6 1
4

v2 : 4 6 5 2

�us, bidding according to v1, v2 is not a PNE. �e example is minimal, in the sense that with just 1 agent
or less than 3 goods truth-telling is a PNE of Round-Robin almost trivially.

Before moving to the main technical part of this section, we discuss some assumptions that again are without
loss of generality, and give an easy proof for the case of two agents. Round-Robin as a mechanism is known
to have PNE for any instance where no agent values two goods exactly the same, and at least some such
equilibria (namely, the ones consistent with the so-called blu� pro�le) are easy to compute [12]. From a
technical point of view, this assumption that all the valuation functions induce strict preference rankings is
convenient, as it greatly reduces the number of corner cases one has to deal with. However, as we show in
�eorem A.3 in the Appendix, the result of Aziz et al. [12] on the existence of Round-Robin’s PNE extends
to general additive valuation functions. On a di�erent but related note, we assume, for the remainder of this
section, that all the bid vectors induce strict preference rankings (but not necessarily consistent with the
preference rankings induced by the corresponding valuation functions). �is is without loss of generality,
because even if a bid vector contains some bids that are equal to each other, a strict preference ranking is
imposed by the lexicographic tie-breaking of the mechanism itself. So, formally, when we abuse the notation
and write g �i h we mean that either bi(g) > bi(h), or bi(g) = bi(h) and g has a lower index than h in
the standard naming of goods as g1, g2, . . . , gm.

Next, we show that for only two agents all PNE of Round-Robin are EF1 with respect to the real valuation
functions. To appreciate this easy result, one should compare it to the involved general proof of �eorem 3.3
in the next section, the full complexity of which seems to be necessary even for n = 3. �e straightforward
but crucial observation that makes things work here is that envy-freeness and proportionality are equivalent
when there are only two agents.
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�eorem 3.2. For any fair division instance I = ({1, 2},M,v), every PNE of the Round-Robin mechanism
is EF1 with respect to the valuation functions v1, v2.

Proof. Suppose towards a contradiction that this is not the case. �at is, there exists a PNE b = (b1, b2)
such that in the allocation (A1, A2) returned by Round-Robin(b) at least one of the agents envies the other,
even a�er removing the most valuable good from her bundle. We will examine each agent separately.

If agent 1 does not see the allocation as EF1, then this means that she does not see it as EF either. Since
envy-freeness and proportionality are equivalent for n = 2, we get that v1(A1) < v1(M)/2. According to
Lemma 3.1, no ma�er what agent 2 bids, if agent 1 reports her true values to Round-Robin, the resulting
allocation is EF from her perspective. So, if (A′1, A

′
2) is the allocation a�er agent 1 deviates to her true values,

it is EF from the point of view of the agent 1, which in turn implies that v1(A′1) ≥ v1(M)/2 > v1(A1). �is
contradicts the fact that b is a PNE.

If agent 2 does not see the allocation as EF1, then let h1 be the good that agent 1 takes during the �rst round
of round-robin, and g∗ ∈ arg maxh∈A1 v2(h) be the highest valued good in A1 according to agent 2. Since
agent 2 does not consider (A1, A2) to be EF1, we have that v2(A2) < v2(A1 \ {g∗}) ≤ v2(A1 \ {h1}). �is
implies that the partition (A1 \ {h1}, A2) of M \ {h1} is not an EF allocation with respect to agent 2. Now
we may use a similar argument as in the previous case. First, since envy-freeness and proportionality are
equivalent when n = 2, we get that v2(A2) < v2(M \ {h1})/2. �en suppose agent 2 deviates to reporting
her true values and let (A′1, A

′
2) be the resulting allocation. Notice that the allocation of good h1 is not

a�ected by the deviation; it is still given to agent 1 during the �rst step of Round-Robin. From that point
forward, the execution of the mechanism would be exactly the same as it would be if the input was the
restrictions of b1, v2 onM \{h1} and agent 2 had higher priority than agent 1. �e la�er would result in an
EF allocation with respect to agent 2 and, in particular, to the allocation (A′1 \ {h1}, A′2). �at is, we have
v2(A′2) ≥ v2(A′1 \ {h1}) and, therefore, v2(A2) ≥ v2(M \ {h1})/2 > v2(A2). Like before, this contradicts
the fact that b is a PNE.

Moving to the case of general n ≥ 3, the above simple argument no longer works. When an agent i does
not consider an allocation EF1 because of an agent i′, this does not imply that i got value less than 1/n of
her value for the reduced bundle M \ {g∗}, where g∗ is her best good in Ai′ . �e reason for this is that
PROP 6⇒ EF anymore.

3.1 Nash Equilibria of Round-Robin for Any Number of Agents

Here we state and prove the main result of our work. Despite its proof being rather involved, the intuition
behind it is simple. As is o�en the case with proofs about EF1 in variants of Round-Robin, the analysis boils
down to arguing about agent 1 having no envy towards any other bundle. On one hand, we know that
whenever agent 1 bids truthfully, she sees the resulting allocation as being EF (Lemma 3.1). On the other
hand, no ma�er what agent 1 bids, we show it is possible to “replace” her with an imaginary version of
herself who (i) does not a�ect the allocation, (ii) bids truthfully, and (iii) she considers the bundles of the
allocation to be as valuable as the original agent 1 thought they were. �e rather elaborate formal argument
relies on the recursive construction of auxiliary valuation functions and bids, done in Lemma 3.5, and on
the fact that small changes in a single preference ranking minimally change the “history” of available goods
during the execution of the mechanism as shown in Lemma 3.7. For a high level description of the two
lemmata, see the corresponding discussions before their statements, as well as Figure 1 which visualizes
the main steps of the recursive construction of the alternative version of agent 1.

�eorem 3.3. For any fair division instance I = (N,M,v), every PNE of the Round-Robin mechanism is EF1
with respect to the valuation functions v1, . . . , vn.
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As we will see shortly, proving �eorem 3.3 reduces to showing that the agent who “picks �rst” in the
Round-Robin mechanism views the �nal allocation as envy-free, as long as she bids a best response to other
agents’ bids. Although �eorem 3.4 sounds very much like the standard statement about the value of the
�rst agent in the algorithmic se�ing, its proof relies on a technical lemma that carefully builds a “nice”
instance which is equivalent, in some sense, to the original. Recall that we have assumed that the agents’
priority is indicated by their indices.

�eorem 3.4. For any fair division instance I = (N,M,v), if the reported bid vector b1 of agent 1 is a best
response to the (�xed) bid vectors b2, . . . , bn of all other players, then agent 1 does not envy (with respect to v1)
any bundle in the allocation outpu�ed by Round-Robin(b1, . . . , bn).

Note that since we are interested in PNE, it is always the case that each agent’s bid is a best response to
other agents’ bids. As mentioned above, �eorem 3.4 is essentially a corollary to Lemma 3.5. �e lemma
shows the existence of an alternative version of agent 1 who is truthful, her presence does not a�ect the
original allocation, and, as long as the allocation is the same, she shares the same values with the original
agent 1. Although its proof is rather involved, the high level idea is that we recursively construct a sequence
of bids and valuation functions, each pair of which preserves the original allocation and the view of agent 1
for it, while being closer to being truthful. To achieve this we occasionally move value between the goods
originally allocated to agent 1 and update the bid accordingly.

Lemma 3.5. Suppose that the valuation function v1 induces a strict preference ranking on the goods. Let
b = (b1, b2, . . . , bn) be such that b1 is a best response of agent 1 to b−i = (b2, . . . , bn). �en there exists a
valuation function v∗1 with the following properties:

• If b∗1 = (v∗1(g1), v∗1(g2), . . . , v∗1(gm)), i.e., b∗1 is the truthful bid for v
∗
1 , then Round-Robin(b) and Round-

Robin(b∗1,b−1) produce the same allocation (A1, . . . , An).

• v∗1(A1) = v1(A1).

• For every good g ∈M \A1, it holds that v∗1(g) = v1(g).

For the sake of presentation, we defer the proof of the lemma to the end of this section (as it needs an
additional technical lemma that is itself quite long) and move to the proofs of �eorems 3.3 and 3.4. In fact,
given Lemma 3.5, the two theorems are not hard to prove.

Proof of �eorem 3.4. Consider an arbitrary instance I = (N,M,v) and assume that the input of Round-
Robin is b = (b1, b2, . . . , bn), where b1 is a best response of agent 1 to b−i = (b2, . . . , bn) according to her
valuation function v1. Let (A1, . . . , An) be the output of Round-Robin(b). In order to apply Lemma 3.5, we
need v1 to induce a strict preference ranking over the goods. For the sake of presentation, we assume here
that this is indeed the case, and we treat the general case formally in the Appendix, as it needs an additional
technical lemma (Lemma A.1). So, we now consider the hypothetical scenario implied by Lemma 3.5 in this
case: keeping agents 2 through n �xed, suppose that the valuation function of agent 1 is the function v∗1
given by the lemma, and her bid b∗1 is the truthful bid for v∗1 . �e �rst part of Lemma 3.5 guarantees that
the output of Round-Robin(b∗1,b−i) remains (A1, . . . , An).

According to Lemma 3.1, no ma�er what others bid, if agent 1 (the agent with the highest priority here)
reports her true values (i.e., according to v∗1) to Round-Robin, the resulting allocation is EF from her per-
spective. In our hypothetical scenario this translates into having v∗1(A1) ≥ v∗1(Ai) for all i ∈ N . �en the
second and third parts of Lemma 3.5 imply that v1(A1) ≥ v1(Ai) for all i ∈ N , i.e., agent 1 does not envy
any bundle in the original instance.
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Having shown �eorem 3.4, the proof of �eorem 3.3 is of similar �avour to the proof on Round-Robin
producing EF1 allocations in the non-strategic se�ing [46].

Proof of �eorem 3.3. Let b = (b1, b2, . . . , bn) be a PNE of the Round-Robin mechanism for the instance I .
By �eorem 3.4, it is clear that the allocation returned by Round-Robin(b) is EF, and hence EF1, from the
point of view of agent 1. We �x an agent `, where ` ≥ 2. For i ∈ [` − 1], let hi be the good that agent i
claims to be her favourite among the goods that are available when it is her turn in the �rst round, i.e., hi =
arg maxh∈M\{h1...,hi−1} bi(h). Right before agent ` is �rst assigned a good, all goods inH = {h1, . . . , h`−1}
have already been allocated. We are going to consider the instance I ′ = (N ′,M ′,v′) in which all goods
in H are missing. �at is, N ′ = N , M ′ = M \ H , and v′ = (v′1, . . . , v

′
n) where v′i = vi|M ′ , for i ∈ [n],

is the restriction of the function vi on M ′. Similarly de�ne b′i = bi|M ′ , for i ∈ [n], the restrictions of the
bids to the available goods, and b′ = (b′1, . . . , b

′
n). Finally, we consider the version of Round-Robin, call it

Round-Robin`, that starts with agent ` and then follows the indices in increasing order.

We claim that for Round-Robin` the bid b′` is a best response for agent ` assuming that the restricted bid
vectors of all the other agents are �xed. To see this, notice that for any c` = (c`1, c`2, . . . , c`m), the bun-
dles given to agent ` by Round-Robin(c`,b−`) and Round-Robin`(c`|M ′ ,b′−`) are the same! In fact, the
execution of Round-Robin`(c`|M ′ ,b′−`) is identical to the execution of Round-Robin(c`,b−`) from its `th
step onward. So, if b′` was not a best response in the restricted instance, then there would be a pro�table
deviation for agent `, say b∗` , so that ` would prefer her bundle in Round-Robin`(b

∗
` ,b
′
−`) to her bundle

in Round-Robin`(b
′). �is would imply that any extension of b∗` to a bid vector for all goods in M (by

arbitrarily assigning numbers to goods in H) would be a pro�table deviation for agent ` in the pro�le b for
Round-Robin, contradicting the fact that b is a PNE.

Now we may apply �eorem 3.4 for Round-Robin` (where agent ` plays the role of agent 1 of the theorem’s
statement) for instance I ′ and bid pro�le b′. �e theorem implies that agent ` does not envy any bundle
in the allocation (A1, . . . , An) outpu�ed by Round-Robin`(b

′), i.e., v′`(A`) ≥ v′`(Ai), for all i ∈ [n]. Using
the observation made above about the execution of Round-Robin`(b

′) being identical to the execution of
Round-Robin(b) a�er `−1 goods have been allocated, we have that Round-Robin(b) returns the allocation
(A1 ∪ {h1}, . . . , A`−1 ∪ {h`−1}, A`, . . . , An). So, for any i < ` we have v`(A`) = v′`(A`) ≥ v′`(Ai) =
v`(Ai) = v`((Ai ∪ {hi}) \ {hi}), whereas for i > ` we simply have v`(A`) = v′`(A`) ≥ v′`(Ai) = v`(Ai).
�us, the allocation returned by Round-Robin(b) is EF1 from the point of view of agent `.

Before we move on to the proof of Lemma 3.5, we state another technical lemma. Suppose an agent changes
her bid so that in her preference ranking a single good is moved down the ranking, and then—keeping
everything else �xed—we run Round-Robin on the new instance. Surprisingly, Lemma 3.7 states that, in
any step, the set of available goods di�ers by at most one good from the corresponding set in the original
run of Round-Robin. To formalize this, we need some additional notation and terminology.

De�nition 3.6. Let � and �′ be two strict preference rankings on M and {q1, q2, . . . , qm} be a renaming
of the goods according to �, i.e., q1 � q2 � . . . � qm. We say that � and �′ are within a partial slide of
each other if there exist x, y ∈ [m], x < y, such that

q1 �′ . . . �′ qx−1 �′ qx+1 �′ . . . �′ qy �′ qx �′ qy+1 �′ . . . �′ qm .

Also, given a pro�le b = (b1, . . . , bn), let Mt(b) denote the set of available goods right a�er t − 1 goods
have been allocated in a run of Round-Robin(b).

When we run Round-Robin on two pro�les which induce the same preference rankings for all agents but
one, and for this agent the two preference rankings are within a partial slide of each other, then the resulting
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allocations may di�erent drastically. Yet, as the next lemma states, the available goods at every step are
almost the same in the two executions of the mechanism. What happens, roughly speaking, is that at the
beginning of each step there is at most one di�erence between the sets of unallocated goods, and this is
di�erence is either “�xed” or “passed on” to the next step, possibly slightly altered.

Lemma 3.7. Let b = (b1, . . . , bn) and b′ = (b′i,b−i) be two pro�les such that the corresponding induced
preference rankings �i and �′i of agent i are within a partial slide of each other. �en |Mt(b) \Mt(b

′)| =
|Mt(b

′) \Mt(b)| ≤ 1 for all t ∈ [m+ 1].

Proof. Clearly, for t ≤ i we have Mt(b) = Mt(b
′) as the runs of Round-Robin(b) and Round-Robin(b′)

are identical at least up to the allocation of the �rst i − 1 goods. We are going to prove the statement by
induction on t using this observation as our base case. Assume that for some t ≥ i, |Mt(b) \Mt(b

′)| =
|Mt(b

′) \Mt(b)| ≤ 1. Up to this point, t − 1 goods have been allocated already. Let j be the next agent
to get a good and let g (resp. g′) be this good in Round-Robin(b) (resp. in Round-Robin(b′)). �e only
challenging (sub)case is when Mt(b) and Mt(b

′) each contain one non-common element and neither of
these two elements is about to be allocated in the corresponding run of Round-Robin.

Case 1 (Mt(b) = Mt(b
′)). No ma�er who j is and what g and g′ are, it is straightforward to see that either

Mt+1(b) \Mt+1(b′) = Mt+1(b′) \Mt+1(b) = ∅ (when g = g′), or Mt+1(b) \Mt+1(b′) = {g′} and
Mt+1(b′) \Mt+1(b) = {g} (when g 6= g′). �us, |Mt+1(b) \Mt+1(b′)| = |Mt+1(b′) \Mt+1(b)| ≤ 1.

Before we move to Case 2, it is important to take a be�er look on how can we move away from Case 1 for the
very �rst time. �at is, we want to focus on the �rst time step when the good allocated in Round-Robin(b)
is di�erent from the good allocated in Round-Robin(b′), if such a time step exists for the speci�c pro�les.
Since �i and �′i are within a partial slide of each other, there exists a unique good s ∈M that goes from a
be�er position in �i to a worse position in �′i. �e next claim about s is crucial for showing that the last
subcase of Case 2 below cannot happen.

Claim 3.8. Suppose that t∗ is the �rst time step where the good γ allocated in Round-Robin(b) is di�erent
from the good γ′ allocated in Round-Robin(b′). �en, γ = s.

Proof of Claim 3.8. We begin with the observation that t∗ cannot be �rst time step when γ 6= γ′ if j 6= i
at this point. Indeed, if it was j 6= i, since M`(b) = M`(b

′) for all ` ∈ [t∗] and the induced preference
ranking of j in this case is the same in both b and b′, we have that the two runs of Round-Robin should
make the same choice for j in the time step t∗; that would contradict the choice of t∗ itself. So, a�er the
same t∗ − 1 goods have been allocated by Round-Robin(b) and Round-Robin(b′), agent i is about to be
given γ and γ′ respectively in the two runs from the set Mt∗ = Mt∗(b) = Mt∗(b

′) of available goods. We
are going to show that these goods cannot be arbitrary. Recall that γ is the best good inMt∗ with respect to
�i; similarly for γ′ and �′i. First, notice that �i and �′i are identical on Mt∗ \ {s} and, thus, for γ and γ′ to
be distinct at least one of them must be s. Since γ 6= γ′, either γ = s or γ′ = s but not both. Assume for a
contradiction that γ′ = s and γ = x 6= s. Since s ∈Mt∗ , it is available to both. �e fact that x 6= s implies
that x �i s. However, this also mean x �′i s which, given the availability of x, contradicts the choice of γ′.
We conclude that γ = s and γ′ 6= s. �

Case 2 (Mt(b) \Mt(b
′) = {h} and Mt(b

′) \Mt(b) = {h′}). When g = h or g′ = h′, it is very easy to
complete the inductive step. First, if g = h and g′ = h′, then we immediately get Mt+1(b) = Mt+1(b′).
Further, if g = h and g′ 6= h′, then we have that

Mt+1(b) \Mt+1(b′) = (Mt(b) \ {h}) \ (Mt(b
′) \ {g′}) = ((Mt(b) \Mt(b

′)) \ {h}) ∪ {g′} = {g′} ,
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where the second equality holds because g′ ∈Mt(b) ∩Mt(b
′) in this case, and

Mt+1(b′) \Mt+1(b) = (Mt(b
′) \ {g′}) \ (Mt(b) \ {h}) = Mt(b

′) \Mt(b) = {h′} ,

where here the second equality holds because g′ ∈ Mt(b) and h /∈ Mt(b
′). �e subcase where g 6= h and

g′ = h′ is symmetric and we similarly get

Mt+1(b) \Mt+1(b′) = {h} and Mt+1(b′) \Mt+1(b) = {g} .

It remains to deal with the subcase where g 6= h and g′ 6= h′. If g = g′, then we immediately getMt+1(b) \
Mt+1(b′) = Mt(b) \Mt(b

′) = {h} and Mt+1(b′) \Mt+1(b) = Mt(b
′) \Mt(b) = {h′}. So, we may

assume that h 6= g 6= g′ 6= h′. We are going to show that this cannot actually happen, as it would lead to a
contradiction. Notice that h 6= g 6= g′ 6= h′ implies g, g′ ∈Mt(b)∩Mt(b

′). If agent j is di�erent than agent
i, this would mean that g �j g

′ and g′ �j g because of the corresponding choices of the algorithm when the
input is b and b′ respectively (recall that the bid, and thus the induced preference ranking, of j is the same
in both pro�les); that would be a contradiction. �erefore, it must be the case that j = i. Since we are in
Case 2, a scenario leading to Case 2 for the �rst time (as described in Claim 3.8) must have already happened.
Consequently, by Claim 3.8, s is not available at this point in Mt(b) and hence s /∈ Mt(b) ∩Mt(b

′). �is
means that {g, g′} ⊆M \ {s} and, therefore, g and g′ have the same ordering in both preference rankings
of agent i. �at is, g �i g

′ implies g �′i g′, contradicting the optimality of g′ in Mt(b
′) with respect to �′i.

We conclude that in any possible case, |Mt+1(b)\Mt+1(b′)| = |Mt+1(b′)\Mt+1(b)| ≤ 1. �is concludes
the induction.

We are now ready to prove Lemma 3.5. As it was noted before the lemma’s statement, we will occasionally
move value among the goods allocated to agent 1. �is is when Lemma 3.7 is crucial. It allows us to
guarantee that there is su�cient value for satisfying all the desired properties of the intermediate valuation
functions we de�ne.

Proof of Lemma 3.5. Recall that k = dm/ne, i.e., we have k total rounds. Let �1 be the preference ranking
induced by b1 and consider all the goods according to this ranking: h1 �1 h2 �1 . . . �1 hm. Let n1 = 1 <
n2 < · · · < nk be the indices in this ordering of the goods assigned to agent 1 by Round-Robin(b), i.e., in
round r agent 1 receives good hnr . �is means that A1 = {hn1 , . . . , hnk

}.

We will recursively construct v∗1 from v1, over the rounds of Round-Robin. In particular, we are going to
de�ne a sequence of intermediate bid vectors br1 and valuation functions vr1, one for each round r starting
from the last round k, so that v∗1 = v1

1 and b∗1 = b1
1. For de�ning each br1 we typically use a number of

auxiliary bid vectors to break down and be�er present the construction. Also, for any round r, we are going
to maintain that

(i) vr1(A1) = v1(A1).

(ii) vr1(g) = v1(g), for any g ∈M \A1.

(iii) br1 is truthful from round r with respect to vr1, meaning that for every good that is no be�er than
hnr , according to the preference ranking �r

1 induced by br1, we have that its bid matches its value;
formally, g �r

1 hnr ⇒ br1(g) = vr1(g).

(iv) �e preference ranking �r
1 (induced by br1) is identical to �1 (induced by b1) up to good hnr−1 .

(v) ming,h∈M, g 6=h |vr1(g)− vr1(h)| > 0.
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Carefully ensuring that all �ve properties hold, makes the formal construction rather complicated. We
provide a visual abstraction of the high level idea of a single step in the recursive construction of v∗1 in
Figure 1; see the caption for a detailed connection with the formal steps of the proof.

Let us focus on round k, i.e., the last round. Let λk be the most valuable (according to v1) available good at
the very beginning of the round. It is easy to see that hnk

= λk; if not, then by increasing her bid for λk to be
slightly above her bid for hnk

agent 1 would end up with the bundle {hn1 , . . . , hnk−1
, λk} which is a strict

improvement over A1 and would contradict the fact that b1 is a best response of agent 1. We construct the
auxiliary bid b̄k1 by “moving up” in�1 every good that is more valuable than λk but comes a�er it in�1 (i.e.,
the purple blocks in Figure 1). Formally, (λk �1 g) ∧ (v1(g) > v1(λk))⇒ b1(hnk

) < b̄k1(g) < b1(hnk−1),
where these bids are chosen arbitrarily, as long as they are distinct from each other. Note that this small
modi�cation does not a�ect the allocation at all. Indeed, every good the bid of which was improved is still
worse than hnk−1 in the preference ranking �̄k

1 induced by b̄k1 , so no decision in rounds 1, . . . , k − 1 is
a�ected and, by the de�nition of λk, these goods were not actually available for agent 1 in the beginning of
round k, so the decisions in round k are not a�ected either. Next we de�ne bk1 by replacing the bids with
the actual values for every good that is no be�er than hnk

in �̄k
1 , as well as by scaling the bids of all other

goods to remain larger than bk1(hnk
), if necessary. Although the la�er can be done in several ways, we can

simply multiply bids by bk1(hnk
)/b̄k1(hnk

). Formally, bk1 is de�ned by

g 6�̄k
1 hnk

⇒ bk1(g) = v1(g) and g �̄k
1 hnk

⇒ bk1(g) = b̄k1(g) · bk1(hnk
)/b̄k1(hnk

) .

Note that the preference ranking �k
1 induced by bk1 is identical to �̄k

1 up to good hnk−1, and that λk is
the good with the highest bid in bk1 among the goods that are available in the last round. Hence, Round-
Robin(bk1,b−1) still produces the allocation (A1, . . . , An). Also, recall that �̄k

1 is identical to�1 up to good
hnk−1 and, thus, up to at least good hnk−1

, implying that�k
1 satis�es property (iv) above. Finally, by se�ing

vk1 = v1, it is clear that bk1 is truthful from round k with respect to vk1 , but also that ming,h∈M,g 6=h |vk1 (g)−
vk1 (h)| > 0, vk1 (A1) = v1(A1), and vk1 (g) = v1(g), for all g ∈ M \ A1. �at is, all properties (i)-(v) are
satis�ed.

Moving to an arbitrary round r < kwe are going to follow a similar, albeit a bit more complicated, approach,
where now it will be necessary to move value among the goods of A1. So, assume that br+1

1 and vr+1
1 have

already been constructed and have the desired properties (i)–(v) mentioned above, and let �r+1
1 be the

preference ranking induced by br+1
1 . Consider the execution of Round-Robin(br+1

1 ,b−1). For i ≥ r, let λi
be the most valuable available good with respect to vr+1

1 at the very beginning of round i and `i be the most
valuable good with respect to vr+1

1 (or equivalently with respect to v1 as `i ∈ M \ A1) that is allocated to
some other agent during round i. By property (iii) of br+1

1 and vr+1
1 we know that in future rounds agent

1 will have λr+1 = hnr+1 , λr+2 = hnr+2 , . . . , λk = hnk
allocated to her. By property (iv) of br+1

1 we
further know that in the current round agent 1 is going to get good hnr . Unlike what happened for round
k, however, here hnr may be di�erent from λr . We will consider two cases depending on this.

First, though, similarly to what we did before, we de�ne the auxiliary bid ¯̄br1 by se�ing br+1
1 (hnr) < ¯̄br1(g) <

br+1
1 (hnr−1) for all goods g such that hnr �r+1

1 g and vr+1
1 (g) > v1(λr); these ¯̄br1 entries are arbitrary, as

long as they satisfy the inequalities and are distinct from each other. By now it should be clear that moving
from br+1

1 to ¯̄br1 does not a�ect the allocation since every good that had its bid improved is still worse than
hnr−1 in the preference ranking ¯̄�r

1 induced by ¯̄br1 and, by the de�nition of λr , these goods were already
not available in the beginning of round r. �at is, Round-Robin

(¯̄br1,b−1

)
returns (A1, . . . , An).

Case 1 (hnr = λr). �is case is similar to what we did for round k. We go straight from ¯̄br1 to br1 by replacing
the bids with the corresponding vr+1

1 values for all goods that are no be�er than hnr in ¯̄�r
1, and by scaling
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ℎ𝑛𝑟 ℎ𝑛𝑟+1 … ℎ𝑛𝑟+2 … ℎ𝑛𝑘 …

ℎ𝑛𝑟 ℎ𝑛𝑟+1 … ℎ𝑛𝑟+2 … ℎ𝑛𝑘 …

ℎ𝑛𝑟−1 ℎ𝑛𝑟 ℎ𝑛𝑟+1 … ℎ𝑛𝑟+2 … ℎ𝑛𝑘 …

same ordering
truthful w.r.t. the 
auxiliary values

rescale, 
if needed

better than 
𝜆𝑟, but gone

potential inconsistency 
in  the ordering; if so…

…carefully move 

value to ℎ𝑛𝑟

…

…

Figure 1: Each row is a visual abstraction of the preference ranking of the corresponding auxiliary bid during
the transformation we perform for round r. Note that for r = k, or an arbitrary r < k that falls under Case
1, only the �rst two rows are relevant. �e purple blocks represent the goods which are more valuable
than λr but come a�er it in �1, i.e., they are all unavailable at the beginning of round r. Moving those up
to the le� of hnr corresponds to constructing ¯̄br1 (or b̄r1 for round k). �en, we replace the bids with the
corresponding vr+1

1 values for all goods on the green part and scale the bids of the goods in the orange part
to keep the ordering consistent. For r = k or in Case 1 for r < k, we already obtain br1 this way and we are
done for the round. In Case 2, however, there still are goods on the right of hnr that are be�er (at least one,
as λr 6= hnr in this case), yet we want to keep hnr in place. �is temporary inconsistency is represented
by b̄r1 in Case 2. In order to �x that and move to br1, we transfer enough value from hnr+1 , hnr+2 , . . . , hnk

to hnr , without compromising their position in the ordering; Claim 3.9 guarantees that the la�er is always
possible in this case.

the bids of all other goods to remain larger than vr+1
1 (λr) = br1(λr) = br1(hnr). Formally, we have

g 6 ¯̄�r
1 hnr ⇒ br1(g) = vr+1

1 (g) and g ¯̄�r
1 hnr ⇒ br1(g) = ¯̄br1(g) · vr+1

1 (λr)/
¯̄br1(hnr) .

�e preference ranking �r
1 induced by br1 is identical to ¯̄�r

1 up to good hnr , so Round-Robin(br1,b−1) up
to the beginning of round r still allocates {hn1 , . . . , hnr−1} to agent 1 in that order. Also, from good hnr

onward, �r
1 is de�ned in such a way that the best available good in the beginning of round i ≥ r with

respect to �r
1 is hni . �erefore, the �nal bundle for agent 1 is still A1 and the overall allocation is still

(A1, . . . , An) as b−1 is �xed and goods in A1 are allocated in the exact same order. Moreover, recall that
¯̄�r

1 is identical to �1 up to good hnr−1 (in fact, up to good hnr−1), implying that �r
1 satis�es property (iv).

Given that no changes to values were necessary and that we made the relevant (for rounds r, . . . , k) entries
of br1 equal to the corresponding vr+1

1 values, we may set vr1 = vr+1
1 to get that br1 is truthful from round r

with respect to vr1, but also that ming,h∈M,g 6=h |vr1(g) − vr1(h)| > 0, vr1(A1) = v1(A1), and vr1(g) = v1(g),
for all g ∈M \A1.

Case 2 (hnr 6= λr). Here we are going to move value from goods λr+1, λr+2, . . . , λk to hnr while de�ning
vr1. �e main idea is that we would like hnr to become the most valuable available good at the beginning of
round r with respect to vr1, although this is not the case for vr+1

1 as vr+1
1 (hnr) < vr+1

1 (λr). �e constraints
we need to satisfy make this task rather tricky: properties (i) and (ii) must hold, so value can only be
transferred between goods of A1, but this should happen in a way that ensures that in future rounds the
goods given to agent 1 remain hnr+1 , . . . , hnk

in that order.

14



We begin with a rather benign modi�cation of ¯̄br1, which is almost identical to what we did in Case 1, except
that we do not update the bid of hnr with its vr+1

1 value. We do this to make sure that hnr still seems like
the most a�ractive good of round r and the overall allocation remains the same. Speci�cally, we de�ne the
auxiliary bid b̄r1 by

hnr
¯̄�r

1 g ⇒ b̄r1(g) = vr+1
1 (g) and hnr 6 ¯̄�

r
1 g ⇒ b̄r1(g) = ¯̄br1(g) · (vr+1

1 (λr) + δ/2)/¯̄br1(hnr) , (1)

where δ = ming,h∈M,g 6=h |vr+1
1 (g) − vr+1

1 (h)| > 0. It is easy to check that Round-Robin(b̄r1,b−1) returns
(A1, . . . , An). Indeed, the preference ranking �̄r

1 induced by b̄r1 is identical to ¯̄�r
1 up to good hnr , so

agent 1 receives hn1 , . . . , hnr in the �rst r rounds, whereas any bid that was higher than vr+1
1 (hnr+1) and

has been updated to its vr+1
1 value is not available at the beginning of round r + 1 anyway. �e la�er

is true, because otherwise such a good would have been chosen by Round-Robin(b̄r1,b−1) and Round-
Robin(br1,b−1) instead of hnr+1 .

Having b̄r1 as a point of reference, we now take a closer look to what happens if, starting at round r, agent
1 would receive her goods according to vr+1

1 . Note that this would be the same as just changing b̄r1(hnr)

to vr+1
1 (hnr). We call this new auxiliary bid b̂r1; note that this is the �rst time we introduce a bid that does

not preserve the original allocation. Similarly to our de�nition of the λis, we consider the execution of
Round-Robin(b̂r1,b−1) and de�ne λ̂i to be the most valuable available good with respect to vr+1

1 at the very
beginning of round i, for i ≥ r. While we know that λ̂r = λr , in general we have no reason to expect that
λ̂i and λi are the same. Actually, the fact that b1—and thus ¯̄br1—is a best response, combined with hnr 6= λr ,
imply that

vr+1
1 (hnr) +

k∑
i=r+1

vr+1
1 (λi) >

k∑
i=r

vr+1
1 (λ̂i) . (2)

Coming back to the challenge of moving value from vr+1
1 (λr+1), . . . , vr+1

1 (λk) to vr+1
1 (hnr) (and equally

so from b̂r+1
1 (λr+1), . . . , b̂r+1

1 (λk) to b̂r+1
1 (hnr)), we want to make sure that enough value can be moved

to eventually get vr1(hnr) slightly above vr+1
1 (λr) while each hni maintains more value than any other

available good in round i > r.

Claim 3.9. �ere exists ε > 0 such that

k∑
i=r+1

(
vr+1

1 (λi)−max
{
vr+1

1 (hni+1), vr+1
1 (`i)

})
= vr+1

1 (λr)− vr+1
1 (hnr) + ε .

Proof of Claim. Let ε = vr+1
1 (hnr) +

∑k
i=r+1 v

r+1
1 (λi) −

∑k
i=r v

r+1
1 (λ̂i); the fact that ε > 0 follows from

inequality (2). Next notice that the preference rankings �̄r
1 and �̂r

1, induced by b̄r1 and b̂r1 respectively,
are within a partial slide from each other! Indeed, hnr is moved to a worst position in �̂r

1 compared to
�̄r

1, but otherwise the two preference rankings are the same. Besides the easy observation that Round-
Robin(b̂r1,b−1) and Round-Robin(b̄r1,b−1) run identically for i − 1 rounds, this also means that Lemma
3.7 applies. �at is, we have that in each round i of Round-Robin(b̂r1,b−1), for i ≥ r, there is at most
one good that is unavailable despite being available in round i of Round-Robin(b̄r1,b−1). In particular, in
round i of Round-Robin(b̂r1,b−1), for i ≥ r, at least two goods from {hni , hni+1 , `i} are available, where
conventionally we de�ne hnk+1

to be the second best available good at the beginning of round k in Round-
Robin(b̄r1,b−1); recall that `i is the most valuable good with respect to vr+1

1 that is allocated to some agent
other than 1 during round i. By the de�nition of the λ̂is, this observation implies

vr+1
1 (λ̂i) ≥ max

{
vr+1

1 (hni+1), vr+1
1 (`i)

}
, for all r < i ≤ k .
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Given that b̄r1 trivially remains truthful from round r+1 with respect to vr+1
1 , the above maximum captures

what is the mechanism’s view of the second best good for agent 1 in round i a�er λi, for i > r, when the
input is (b̄r1,b−1). Plugging this bound into inequality (2) along with λ̂r = λr , and rearranging the terms
of round r, it yields

k∑
i=r+1

(
vr+1

1 (λi)−max
{
vr+1

1 (hni+1), vr+1
1 (`i)

})
= vr+1

1 (λr)− vr+1
1 (hnr) + ε ,

as required. �

We can now de�ne vr1 by appropriately changing some of the values of vr+1
1 . For the sake of readability, let

εi = vr+1
1 (λi)−max

{
vr+1

1 (hni+1), vr+1
1 (`i)

})
for i > r. Also, let α be such that ε−α

∑k
i=r+1 εi = min{ε, δ}/3; recall that δ = ming,h∈M,g 6=h |vr+1

1 (g)−
vr+1

1 (h)|. Choosing such an α is always possible as a result of Claim 3.9, because f(α) = ε− α
∑k

i=r+1 εi
with α ∈ (0, 1) is a continuous function with values in the interval (vr+1

1 (hnr)− vr+1
1 (λr), ε). We de�ne:

• For each r + 1 ≤ i ≤ k, we set vr1(hni) = max
{
vr+1

1 (hni+1), vr+1
1 (`i)

})
+ α · εi.

• We also set vr1(hnr) = vr+1
1 (λr) + ε− α

∑k
i=r+1 εi.

• For any other good g, we set vr1(g) = vr+1
1 (g).

We also de�ne br1 from b̄r1 by replacing the bids with the corresponding vr1 values for all goods that are no
be�er than hnr in �̄r

1, i.e, we have

g 6�̄r
1 hnr ⇒ br1(g) = vr1(g) and g �̄r

1 hnr ⇒ br1(g) = b̄r1(g) .

By this point, it should be straightforward to verify properties (i)-(iv). For (v), notice that any α resulting in
ε− α

∑k
i=r+1 εi ∈ (0,min{ε, δ}/2) would work for consistently de�ning br1. If the above de�nition of vr1

happens to give one of the �nitely many values already in the range of vr+1
1 , then we may change α slightly

to make all of the newly introduced values unique.

4 Towards EFX Equilibria: �e Case of Two Agents

As we saw, Round-Robin has PNE for every instance, and the corresponding allocations are always EF1. �e
natural next question is can we have a similar guarantee for a stronger fairness notion? In particular, we want
to explore whether an analogous result is possible when we consider envy-freeness up to any good. When
the agents are not strategic, it is known that EFX allocations exist when we have at most 3 agents [26, 27].
It should be noted that for the case of 3 agents no polynomial time algorithm is known, and it is unclear
whether the constructive procedure of Chaudhury et al. [27] has any PNE. For n ≥ 4, the existence of EFX
allocations remains a major open problem. �erefore, we turn our a�ention to the case of two agents.

4.1 A Mechanism with EFX Nash Equilibria

A polynomial-time algorithm that outputs EFX allocations when we have two agents is given by Plaut and
Roughgarden [49]. �is is a modi�ed cut-and-choose algorithm where the cut (lines 3–5) is produced using a
variant of the envy-cycle-elimination algorithm of Lipton et al. [44] on two copies of agent 1, and then agent
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2 “chooses” the best bundle among the two (line 6). We state it as mechanism Mod-Cut&Choose below
(recall the notation bi(S) for

∑
h∈S bi(h)). We should point out that this mechanism is not truthful, since

there is no truthful mechanism for two agents that produces EFX (or EF1 for that ma�er) allocations for
more than four goods [3]. It is not obvious that the mechanism has PNE or that these are EFX, and even if
that was the case, by �eorem 2.6, there is no reason to expect that these PNE would guarantee more than
2µi/3 to each agent. Interestingly, we show that although not truthful, Mod-Cut&Choose always has at
least one PNE for any instance, and all its equilibria are MMS and, by �eorem 2.5, EFX.

Mechanism 2 Mod-Cut&Choose(b1, b2) [49] . For i ∈ {1, 2}, bi = (bi1, . . . , bim) is the bid of agent i.
1: (E1, E2) = (∅, ∅)
2: (h1, h2, . . . , hm) is M , sorted in decreasing order w.r.t. v1 // Break ties lexicographically.
3: for i = 1, . . . ,m do
4: j = arg mink∈[2] b1(Ek) // Identify the worst bundle according to b1; break ties in favor of E1.
5: Ej = Ej ∪ {hi} // Add the next good to that bundle.
6: ` = arg maxk∈[2] b2(Ek) // Identify the best bundle according to b2; break ties in favor of E1.
7: Return: A = (M \ E`, E`) // Give this bundle to agent 2 and the remaining bundle to agent 1.

Seen as an algorithm, Mod-Cut&Choose does not always produce (5/6+ε)-MMS allocations for any ε > 0,
as it can be seen by the following simple instance with N = {1, 2}, and M = {g1, . . . , g5}. For i ∈ N ,
let vi(gj) = 3, if j ∈ {1, 2}, and vi(gj) = 2, if j ∈ {3, 4, 5}. It is easy to see that µ1 = µ2 = 6, but the
allocation produced is ({g1, g3, g5}, {g2, g4}), and thus agent 2 a�ains a value of 5.

We begin with the following lemma on the “cut” part of Mod-Cut&Choose, stating that agent 1 may create
any desirable partition of the goods (up to the ordering of the two sets). �is is a necessary component of
the proof of the main result of this section.

Lemma 4.1. Let (X1, X2) be a partition ofM . Agent 1, by bidding accordingly, can force Mod-Cut&Choose
to construct E1, E2 in lines 3–5, such that {E1, E2} = {X1, X2}.

Proof. We consider di�erent cases depending on the cardinality of the setsX1, X2. Each case describes a bid
that agent 1 can report in order to create the desired partition (X1, X2) or its permutation (X2, X1). Note
that only the �rst case is relevant when m = 1, and only the �rst two cases are relevant when 2 ≤ m ≤ 3.

Case 1 (one set has all the goods). Agent 1 declares zero value for all the goods. According to these values,
j in line 4 is always 1, so every good goes to E1, and we have the desired partition.

Case 2 (one set has m− 1 goods). Agent 1 declares value 1 for the good that is contained in the set with
cardinality 1, and for every good that is contained in the set with cardinality m − 1 she declares a value
equal to 1

m−1 . �e �rst good is added in E1, so E2 is going to get chosen next. Actually, according to these
values, E2 must get all the remaining goods. �us, the desired partition is produced.

Case 3 (the two sets have cardinalities k ≥ 2 and m− k ≥ 2). Agent 1 declares a value of 1 for one of the
goods that are contained in the set with cardinality k. For every good that is contained in the set with
cardinality m − k she declares a value equal to 1+ε

m−k , where 0 < ε < 1
m−k−1 . Finally, for the rest of the

goods that are contained in the set with cardinality k she declares a value of ε
k−1 . E1 gets the �rst good,

so it appears to be more valuable than E2. According to these values, E2 ceases to appear to be the worst
of the two when it gets every good of the set with cardinality m − k. �is is the point where E1 becomes
worse than E2, and continues to be worse until it contains every good of the set of cardinality k. �us,
again, the desired partition is produced.
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In particular, agent 1 can force the mechanism to construct E1, E2, such that min{v1(E1), v1(E2)} = µ1.
Such a pair (E1, E2) is called a µ1- partition. At least one µ1- partition exists, by the de�nition of µ1.

Corollary 4.2. Agent 1 can force Mod-Cut&Choose to construct a µ1- partition in lines 3–5.

We can now proceed to the main theorem of this section on the existence and fairness properties of the PNE
of Mod-Cut&Choose.

�eorem 4.3. For any instance I = ({1, 2},M,v), the Mod-Cut&Choose mechanism has at least one PNE.
Moreover, every PNE of the mechanism is MMS and EFX with respect to the valuation functions v1, v2.

Proof. Given a partition X = (X1, X2) we are going to slightly abuse the notation—as we do in our
pseudocode—and consider arg minX∈X v2(X) to be a single set in X rather than a subset of {X1, X2}.
To do so, we assume that ties are broken in favor of the highest indexed set (here X2) and tie-breaking is
applied by the arg min operator.

We will de�ne a pro�le (b1, b2) and show that it is a PNE. First, let b2 = (v2(g1), v2(g2), . . . , v2(gm)) be
the truthful bid of agent 2. Next b1 is the bid vector (as de�ned within the proof of Lemma 4.1) that results
in Mod-Cut&Choose constructing a partition in

arg max
X∈Π2(M)

v1

(
arg min
X∈X

v2(X)
)
.

To see that there exists such b1, notice that the set Π2(M) of all possible partitions is �nite and, by Lemma
4.1, every possible partition can be produced by Mod-Cut&Choose given the appropriate bid vector of agent
1. So, agent 1 forces the partition that maximizes, according to v1, the value of the least desirable bundle
according to v2. Now it is easy to see that given the bidding strategy of agent 2, i.e., playing truthfully,
there is no deviation for agent 1 that is pro�table (by de�nition). Moreover, agent 2 gets the best of the two
bundles according to her valuation function (regardless of the partition, truth telling is a dominant strategy
for her), thus there is no pro�table deviation for her either. �erefore, (b1, b2) is a PNE for I .

Regarding the second part of the statement, suppose for a contradiction that there is a PNE b, where an
agent i does not achieve her µi in the allocation returned by Mod-Cut&Choose(b). If this agent is agent 1,
then according to Corollary 4.2, there is a bid vector b′1 she can report, so that the algorithm will produce a
µ1- partition. By deviating to b′1, regardless of the set given to agent 2, agent 1 will end up with a bundle she
values at least µ1. As this would be a strict improvement over what she currently gets, it would contradict
the fact that b is a PNE. So, it must be the case where agent 2 gets a bundle she values strictly less than µ2.
Notice that, regardless of the partition which Mod-Cut&Choose to constructs in lines 3–5, by declaring her
truthful bid, agent 2 gets a bundle of value at least v2(M)/2. By De�nition 2.3, it is immediate to see that
this value is at least µ2, i.e., deviating to her truthful bid is a strict improvement over what she currently
gets by Mod-Cut&Choose(b), which is a contradiction.

It remains to show that the allocation returned by Mod-Cut&Choose(b) is also EFX. However, since here
n = 2, this directly follows from �eorem 2.5.

4.2 �e Enhanced Fairness of EFX Nash Equilibria

As it was discussed in Section 4.1, it is surprising that the EFX equilibria of Mod-Cut&Choose impose
stronger fairness guarantees compared to generic EFX allocations or even EFX allocations produced by
Mod-Cut&Choose itself in the non-strategic se�ing. In this section we explore whether something similar
holds for every mechanism with EFX equilibria. Speci�cally, we consider the (obviously non-empty) class
of mechanisms that have PNE for every instance and these equilibria always lead to EFX allocations. Our
goal is to determine if these allocations have be�er fairness guarantees (with respect to the underlying
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true valuation functions) than EFX allocations in general. To this end, we start by examining instances of
two agents and 4 goods and we prove that for every mechanism of this class, all allocations at a PNE are
MMS allocations. �e reason we start from this restricted set of instances is that it already provides a clear
separation with the non-strategic se�ing. Recall from �eorem 2.6 that there are instances with just 4 goods
where an EFX allocation may not be a

(
2
3 + δ

)
-MMS allocation, for any δ > 0.

We begin by showing the following lemma which regards some very simple cases of such instances, and
then we proceed to the proof of the statement. Recall that µi denotes the maximin share of agent i (see
De�nition 2.3).

Lemma 4.4. Consider an instance with 2 agents and 4 goods. If agent i ∈ [2] has strictly positive value for
three or less goods, then in every allocation which is EFX from her point of view, agent i has value at least µi.

Proof. Suppose agent i has positive value for at most three goods. �e statement is trivial when there is at
most one positively valued good as in this case µi = 0 and agent i always gets µi no ma�er the bundle that
she gets. When she has a positive value for two goods, in order to consider the allocation as EFX she must
get at least one of them. In this case she also achieves her µi as it is equal to the smaller of the two positive
values. Finally, suppose agent i has positive value for three goods. Notice that µi in this case is either equal
to the largest of the three values or to the sum of the two smallest values; whichever is smaller. So, if agent
i gets two goods, then she always derives a value of at least gets µi. If she gets just one good, then this
good must have the highest value, otherwise the she would not consider the allocation as EFX. So, in this
case too, she gets value at least µi.

We are now ready for the general result.

�eorem 4.5. LetM be a mechanism that has PNE for any instance ({1, 2},M, (v1, v2)) with |M | = 4, and
all these equilibria lead to EFX allocations with respect to v1, v2. �en each such EFX allocation is also an MMS
allocation.

Proof. Suppose for contradiction that this is not the case. �is means that there exists a valuation instance
v = (v1, v2), for which there is a PNE b = (b1, b2) that produces an EFX allocation (A1, A2), where,
without loss of generality, v1(A1) < µ1. Rename, if necessary, the goods to {h1, h2, h3, h4}, so that
v1(h1) ≥ v1(h2) ≥ v1(h3) ≥ v1(h4) > 0, where the last inequality follows from Lemma 4.4. �e fol-
lowing lemma, established within the proof of �eorem 5.1 of Amanatidis et al. [2] (also Lemma 5.3 in [6]),
will reduce and simplify the possible cases we need to consider.

Lemma4.6 (Follows from the proof of �eorem 5.1 of [2]). ForN ,M and v1 as above, we have vi({h1, h4}) ≥
µ1 and max {vi({h1}), vi({h2, h3})} ≥ µ1.

Given Lemma 4.6, the bundle A1 must be either a singleton or one of {h2, h3}, {h2, h4}, {h3, h4}.

Case 1 (|A1| = 1). Since (A1, A2) is an EFX allocation and all goods have positive value according to v1, it
is easy to see that A1 = {h1}. �en, again because we have an EFX allocation, v1(h1) ≥ v1({h2, h3}). �e
la�er implies v1(A1) ≥ µ1, by the second inequality of Lemma 4.6.

Case 2 (A1 = {h2, h3}). Since (A1, A2) is an EFX allocation, we have v1({h2, h3}) ≥ v1(h1). Like in Case
1, this implies the contradiction v1(A1) ≥ µ1, by the second inequality of Lemma 4.6.

Case 3 (A1 = {h2, h4} or A1 = {h3, h4}). So far we have not use the fact that b = (b1, b2) is a PNE for the
valuation pro�le v = (v1, v2). Consider a di�erent valuation pro�le v∗ = (v∗, v∗), where the agents have
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identical values over the goods. �e valuation function v∗ is de�ned as follows:

v∗(hj) =


1.2 j = 1
1 j ∈ {2, 3}
0.1 j = 4

It is easy to see that forv∗ there are only two EFX allocations, namely ({h1, h4}, {h2, h3}) and its symmetric
({h2, h3}, {h1, h4}). According to our assumption, there must be a bid vector b∗ = (b∗1, b

∗
2) that is a PNE

ofM for this valuation pro�le, and since we require the PNE to be also EFX,M(b∗) must be one of these
allocations. Moreover, observe that the value that agent 2 derives in these allocations is at most 2. Let us
examine what each agent can get if agent 1 deviates from b to b′ = (b∗1, b2):

• In case the bundle of agent 1 is a singleton, then agent 2 gets a bundle of cardinality 3. �is contradicts
the fact that b∗ = (b∗1, b

∗
2) is a PNE for the valuation pro�le v∗ = (v∗, v∗), as any such set gives agent

2 a value of at least 2.1.

• In case the bundle of agent 1 has cardinality 3, this contradicts the fact that b = (b1, b2) is a PNE for
the valuation pro�le v = (v1, v2), as the least valuable such set is {h2, h3, h4} and it has strictly more
value than v1(A1), since v1(hj) > 0 for every j ∈ [4].

• In case the bundle of agent 1 is one of {h1, h2}, {h1, h3}, {h1, h4}, or {h2, h3}, then this implies that
A1 has value at least equal to the value of one of these bundles. By using Lemma 4.6 as above, we get
the contradiction v1(A1) ≥ µ1.

• In case the bundle of agent 1 is one of {h2, h4} or {h3, h4}, then agent 2 gets either {h1, h2} or {h1, h3}.
�is contradicts the fact that b∗ = (b∗1, b

∗
2) is a PNE for the valuation pro�le v∗ = (v∗, v∗), as any such

set gives agent 2 a value of at least 2.2.

Since every possible case leads to a contradiction, we conclude that every allocation corresponding to a PNE
ofM guarantees to each agent her maximin share.

�e proof of �eorem 4.5 relies on extensive case analysis, part of which is hidden within Lemma 4.6. Each
case assuming that the allocation is EFX but not MMS eventually contradicts the fact that the current pro�le
is a PNE. When we consider instances with 5 or more goods, this approach is not fruitful anymore. �e
reason is not solely the increased number of cases one has to handle, but rather the fact that now some of
the cases do not seem to lead to a contradiction at all.

Although we suspect that the theorem is no longer true for more than 4 goods, we are able prove a somewhat
weaker property that still separates the EFX allocations in PNE from generic EFX allocations in the non-
strategic se�ing. In particular, for general mechanisms that have PNE for every instance and these equilibria
are always EFX, we show that the corresponding allocations always guarantee an approximation to MMS
that is strictly be�er than 2/3.

�eorem 4.7. Let M be a mechanism that has PNE for any instance ({1, 2},M, (v1, v2)), and all these
equilibria lead to EFX allocations with respect to v1, v2. �en each such EFX allocation is also an α-MMS
allocation for some α > 2/3.

Proof. Suppose for a contradiction that this is not the case. �is means that there exists such a mechanism
M and an instance ({1, 2},M, (v1, v2)), for which there is a PNE b = (b1, b2) that results in an EFX
allocationA = (A1, A2), where vi(Ai) ≤ 2µi/3 for at least one i ∈ [2]. Without loss of generality, assume
v1(A1) ≤ 2µ1/3 and notice that this means that v1(A1) = 2µi/3, as v1(A1) cannot be smaller than 2µi/3,
by �eorem 2.6. �is implies that v1(A2) ≥ 4µi/3, since v1(M) ≥ 2µ1 by De�nition 2.3.
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Initially, we will restrict the number of the goods with positive value (according to v1) in A2. Let S ⊆ A2

be the set of such goods, i.e, S = {g ∈ A2 | v1(g) > 0}. Let |S| = k and notice that k cannot be 0 or 1 since
otherwise v1(A1) ≥ µ1. Finally, let x ∈ arg ming∈S v1(g) be a minimum valued good for agent 1 in S. We
have

2

3
µ1 = v1(A1) ≥ v1(S \ {x}) ≥ v1(S)− v1(S)

k
=

(k − 1)

k
v1(A2) ≥ (k − 1)

k

4

3
µ1 ,

where the �rst inequality follows from (A1, A2) being EFX. Given our observation that k ≤ 2, the above
implies that k = 2. Name h1 and h2 the goods of S, and observe that if v1(A2) = v1({h1, h2}) > 4µ1/3,
then (A1, A2) cannot be EFX from the perspective of agent 1. �us, we get that v1(A2) = 4µ1/3, which in
conjunction with EFX implies v1(h1) = v1(h2) = 2µ1/3.

Next we argue thatA1 contains at least 2 goods that have positive value for agent 1. Indeed, if all the goods
in A1 had zero value, then we would have v1(A1) = 0 < 2µ1/3 as A2 contains two positively valued
goods, while if there was just one positively valued good in A1, this would imply that only three goods
have positive value for agent 1, and each one of them has value 2µ1/3. �e la�er would make the existence
of a µ1- partition impossible, which is a contradiction. So, since there are at least two positively valued
goods in A1 for agent 1, we arbitrarily choose two of them, and we name them h3 and h4. We arbitrarily
name the remaining goods h5, h6, . . . , hm.

Consider now a di�erent valuation instance v∗ = (v∗, v∗) where the agents have identical values over the
goods. �e valuation function is de�ned as

v∗(hj) =


1.2 j = 1
1 j ∈ {2, 3}
ε j ∈ {4, . . . ,m}

where ε > 0 and (m−3) ·ε < 0.2. It is easy to see that for this valuation instance there are only two EFX al-
locations, namely, X = ({h1, h4, . . . , hm}, {h2, h3}), and its symmetric Y = ({h2, h3}, {h1, h4, . . . , hm}).
According to our assumption, there must be a bidding vector b∗ = (b∗1, b

∗
2) that is a PNE ofM for the in-

stance ({1, 2},M,v∗), and since all PNE ofM are also EFX,M(b∗) must output one ofX andY . Moreover,
observe that the value agent 2 receives (with respect to V ∗) in these allocations is 2 and 1.2+(m−3)ε < 1.4
respectively.

For now assume that b1 6= b∗1 and b2 6= b∗2. We will show that, in this case, running M with input
b′ = (b∗1, b2) results to agent 2 receiving a bundle of value strictly be�er than 2 according to v∗. �is
contradicts the fact that b∗ = (b∗1, b

∗
2) is a PNE for v∗ = (v∗, v∗). Recall that b = (b1, b2) is a PNE for

v = (v1, v2), that v1(h1) = v1(h2) = v1(A1) = 2µ1/3, and that v1(h3), v1(h4) are strictly positive. So, let
us examine what each agent may get if agent 1 deviates from b to b′ = (b∗1, b2):

• In case the bundle of agent 1 contains good h1, it cannot contain any good from {h2, h3, h4}; otherwise
b = (b1, b2) would not be a PNE for v = (v1, v2). �us, {h2, h3, h4} is part of the bundle of agent 2.

• In case the bundle of agent 1 contains good h2, it cannot contain any good from {h1, h3, h4}; otherwise
b = (b1, b2) would not be a PNE for v = (v1, v2). �us, {h1, h3, h4} is part the bundle of agent 2.

• In case the bundle of agent 1 does not contain any of h1 and h2, then it is possible for her to get any
subset T ⊆ {h3, h4, . . . , hm}. However, {h1, h2} is part the bundle of agent 2.

�us, in the allocation returned byM(b′), agent 2 gets a bundle that contains {h2, h3, h4} or {h1, h3, h4}
or {h1, h2}. Consider the value of these sets according to v∗:

v∗({h2, h3, h4}) = 2 + ε , v∗({h1, h3, h4}) = 2.2 + ε , v∗({h1, h2}) = 2.2 .

21



�at is, in every single case the value agent 2 derives under v∗ = (v∗, v∗) when the pro�le b′ = (b∗1, b2) is
played is strictly be�er than 2. However, 2 is the maximum possible value that agent 2 could derive under
v∗ when the pro�le b∗ is played. �is contradicts the fact that b∗ is a PNE for v∗, as b2 is a pro�table
deviation for agent 2.

�e remaining corner cases are straightforward to deal with. To begin with, it is not possible to have b1 = b∗1
and b2 = b∗2, as X 6= A and Y 6= A.

Next, assume that b1 = b∗1 and b2 6= b∗2. �is directly contradicts the fact that b∗ is a PNE for v∗ = (v∗, v∗).
To see this, starting from b∗ let agent 2 deviate to b2. She then getsA2 which contains h1, h2 and has value
for her v∗(A2) ≥ 2.2 > 2.

Finally, assume that b1 6= b∗1 and b2 = b∗2. �is directly contradicts the fact that b is a PNE for v = (v1, v2).
To see this, starting from b let agent 1 deviate to b∗1. She either gets {h1, h4, . . . , hm} of value at least
v1(h1) + v1(h4) > 2µ1/3 = v1(A1) or she gets {h2, h3} of value v1(h2) + v1(h3) > 2µ1/3 = v1(A1).

Since every possible case leads to a contradiction, we conclude that every allocation that corresponds to
a PNE of a mechanism in the class of interest, guarantees to each agent i value that is strictly be�er than
2µi/3, for i ∈ [2].

5 Discussion

In this work we studied the problem of fairly allocating a set of indivisible goods, to a set of strategic agents.
Somewhat surprising—given the existing strong impossibilities for truthful mechanisms—our results are
mostly positive. In particular, we showed that there exist mechanisms that have PNE for every instance,
and at the same time the allocations that correspond to PNE have strong fairness guarantees with respect
to the true valuation functions.

We believe that there are several interesting directions for future work that follow our research agenda. For
instance, it would be interesting to explore how algorithms that compute EF1 allocations for richer valuation
function domains (e.g., the Envy-Cycle-Elimination algorithm [44]) behave in the strategic se�ing we study
in this work. Here the question is twofold. On one hand, it is unclear whether such algorithms have Nash
equilibria—pure or mixed—for every valuation instance; on the other, it would be important to determine if
they maintain their fairness properties at their equilibria or not. �e existence of PNE or MNE for algorithms
that compute approximate MMS allocation is on a similar direction and, as we mentioned in Section 2, in
this case we get the ex-post or ex-ante MMS guarantee on the equilibria for free.

�eorems 4.5 and 4.7 leave an open question on the MMS guarantee that the equilibria of mechanisms that
always have PNE and these are EFX. Although we suspect that the corresponding allocations are not always
MMS, such a result would immediately imply that for every such mechanism which runs in polynomial time,
�nding a best response of an agent is a computationally hard problem. Going beyond the case of two agents
here seems to be a highly nontrivial problem as it is not very plausible that the current state of the art for
the non-strategic se�ing could be analysed under incentives.

Finally, although we did not really focus on complexity questions, it is clear that computing best responses
is generally hard. However, when they are not, for instance when the number of agents in Round-Robin is
�xed [54], we would like to know if best response dynamics always converge to a PNE or there might be
cyclic behavior (as it happens with be�er response dynamics [12]).
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A Dealing With Ties Among the Values

We begin with a lemma that is used twice: once to show that Round-Robin has PNE for any instance
(�eorem A.2), and then again in the complete proof of �eorem 3.4. Both proofs are presented in this
appendix.

Lemma A.1. For any fair division instance I = (N,M,v) and any agent i ∈ N , there exists a valuation
function v′i with the following properties:

• v′i induces a strict preference ranking overM , which is consistent with the preference ranking induced by
vi;

• if a bid vector bi is a best response of agent i with respect to vi to the (�xed) bid vectors b−i of all other
players in Round-Robin, then bi is still a best response to b−i with respect to v′i;

• vi(T ) ≤ v′i(T ) ≤ vi(T ) + ε/3, for any T ⊆ M , where ε is the smallest positive di�erence between the
values of two goods with respect to v1, i.e., ε = min{|vi(g) − vi(h)| : g, h ∈ M, vi(g) 6= vi(h)}, or, if
there is no positive di�erence, ε = 1.

Proof. If vi already induces a strict preference ranking over the goods, then clearly v′i = vi has all these
properties. So, suppose that there are goods with exactly the same v1 value and let S = {g ∈ M : ∃h ∈
M such that h 6= g and vi(h) = vi(g)} be the set of all goods that do not have a unique v1 value. Also,
for b = (b1, b2, . . . , bn) as in the second bullet of the statement, let (A1, A2, . . . , An) be the allocation
returned by Round-Robin(b). �en we de�ne v′i on M = {g1, . . . , gm} as follows

v′i(gj) =


vi(gj) +

j · ε
3m2

, if gj ∈ S ∩Ai

vi(gj) +
j · ε
6m5

, if gj ∈ S \Ai

vi(gj) , if gj ∈M \ S

It is straightforward to verify that ties are broken without introducing any new ties and without violating
the preference ranking induced by vi. Also, the added quantities sum up to a value smaller than ε/3. So
the �rst and third properties hold for v′i. To see that bi is still a best response to b−1 with respect to v′i,
suppose for a contradiction that this is not the case. �at is, there is some bid vector b′i, such that in the
allocation (A′1, A

′
2, . . . , A

′
n) returned by Round-Robin(b′i,b−i) we have v′i(A′i) > v′i(Ai). �e la�er implies

that A′i 6= Ai. Given that vi(A′i) ≤ vi(Ai), we distinguish two cases.

First, suppose vi(A′i) < vi(Ai). By the de�nition of ε we have vi(A′i) ≤ vi(Ai)− ε. �is, however, implies
v′i(A

′
i) ≤ vi(A′i) + ε/3 ≤ vi(Ai)− 2ε/3 ≤ v′i(Ai)− 2ε/3, which contradicts v′i(A′i) > v′i(Ai).
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So, it must be the case that vi(A′i) = vi(Ai). �en the di�erence v′i(A′i)− v′i(Ai) must be due to the small
terms we added to the values of some goods. Note that if Ai 6⊆ A′i, then the value added to vi(A′i) is at
most the total value added to S \ Ai plus almost the total value added to S ∩ Ai, as we should exclude at
least ε

3m2 . But as
∑m

j=1
j·ε

6m5 < ε
3m2 , we have that this di�erence v′i(A′i) − v′i(Ai) must be negative, and

this again contradicts v′i(A′i) > v′i(Ai). So it must be the case where Ai ⊆ A′i. However, independently of
the bid pro�le, we know that agent i will receive exactly the same number of goods in the two executions
of Round-Robin (i.e., either dm/ne in both or bm/nc in both). But then Ai = A′i again contradicting
v′i(A

′
i) > v′i(Ai).

We conclude that bi is still a best response to b−1 with respect to v′i.

Recall that Aziz et al. [12] showed is that as long as all the valuation functions in an instance induce strict
preference rankings and all the values are positive, then there is a way to construct PNE. In the terminology
of [12] these are all the bid pro�les that are consistent with the so-called blu� pro�le de�ned therein. Here
we do not need to de�ne what the blu� pro�le is explicitly. We are going to use the following result which
essentially is a corollary of [12].

�eorem A.2 (Follows from [12]). For any instance I = (N,M,v), where all goods have positive values for
all agents and all the valuation functions induce strict preference rankings, Round-Robin has at least one PNE.

Using �eorem A.2 and Lemma A.1, we will show that Round-Robin has PNE in every single instance with
additive valuation functions.

�eorem A.3. For any instance I = (N,M,v) Round-Robin has at least one PNE.

Proof. For each one of v1, v2, . . . , vn we apply Lemma A.1 to get v′ = (v′1, v
′
2, . . . , v

′
n). When we apply it

for vi, let εi be the corresponding constant of the third bullet of the lemma; the second bullet of the lemma
is irrelevant here. Clearly, for all i ∈ N , v′i induces a strict preference ranking, so for �eorem A.2 to apply
we only need that all values are positive. �is may not always be the case. If vi assigned value 0 to multiple
goods, then all the 0 are taken care of during the de�nition of v′i. If, however there was a single good g
such that vi(g) = 0, then v′i(g) = 0 as well. We can resolve this by se�ing v′i(g) = εi/3. �is does not
a�ect the induced preference ranking of v′i, while the property of the third bullet of Lemma A.1 becomes
vi(T ) ≤ v′i(T ) ≤ vi(T ) + 2ε/3 instead.

Now we may apply �eorem A.2. �us, for the instance I ′ = (N,M,v′) Round-Robin has at least one PNE;
suppose the pro�le d = (d1,d2, . . . ,dn) is such a PNE and let (A1, A2, . . . , Am) be the allocation returned
by Round-Robin(d). We claim that d is also an equilibrium of the original instance I .

Suppose it is not, for a contradiction. �is means that in I there is an agent, say agent k, who can deviate to a
bid pro�le bk, so that the allocation returned by Round-Robin(bk,d−k) is (B1, B2, . . . , Bm) with vk(Bk) >
vk(Ak). By the de�nition of εk, we have vk(Ak) ≤ vk(Bk)− εk. �is implies v′k(Ak) ≤ vk(Ak) + 2εk/3 ≤
vk(Bk)− εk/3 ≤ v′k(Bk)− ε/3 < v′k(Bk), which contradicts the fact that d is a PNE in I ′. �erefore, d is
a PNE in I as well.

Finally, we can present a complete proof of �eorem 3.4, without any assumptions on the valuation function
of agent 1.

Complete Proof of �eorem 3.4. Consider an arbitrary instance I = (N,M,v) and assume that the
input of Round-Robin is b = (b1, b2, . . . , bn), where b1 is a best response of agent 1 to b−i = (b2, . . . , bn)
according to her valuation function v1. Let (A1, . . . , An) be the output of Round-Robin(b). In order to
apply Lemma 3.5, we need v1 to induce a strict preference ranking over the goods.
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Instead, we are going to use Lemma A.1 �rst to get a valuation function v′1 having all properties stated
therein. Note that by the second bullet of Lemma A.1, b1 is still a best response of agent 1 to b−i in the
instance I ′ = (N,M, (v′1,v−1)). So, we apply Lemma 3.5 here. �at is, we consider the hypothetical
scenario implied by the lemma: keeping agents 2 through n �xed, suppose that the valuation function of
agent 1 is the function v∗1 given by the lemma, and her bid b∗1 is the truthful bid for v∗1 . �e �rst part of
Lemma 3.5 guarantees that the output of Round-Robin(b∗1,b−i) remains (A1, . . . , An).

According to Lemma 3.1, no ma�er what others bid, if agent 1 (the agent with the highest priority here)
reports her true values (i.e., according to v∗1) to Round-Robin, the resulting allocation is EF from her per-
spective. In our hypothetical scenario this translates into having v∗1(A1) ≥ v∗1(Ai) for all i ∈ N . �en the
second and third parts of Lemma 3.5 imply that v′1(A1) ≥ v′1(Ai) for all i ∈ N .

Suppose for a contradiction that there is a j ∈ N , such that v1(A1) < v1(Aj). By the de�nition of ε in the
statement of Lemma A.1 we have v1(A1) ≤ v1(Aj)− ε. �is implies

v′1(A1) ≤ v1(A1) + ε/3 ≤ v1(Aj)− 2ε/3 ≤ v′1(Aj)− 2ε/3 < v′1(Aj) ,

which contradicts v′1(A1) ≥ v′1(Aj) that we showed above. We conclude that agent 1 does not envy (with
respect to v1 any bundle in the original instance.
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