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Abstract: According to the WHO (World Health Organization), lung cancer is the leading cause of
cancer deaths globally. In the future, more than 2.2 million people will be diagnosed with lung cancer
worldwide, making up 11.4% of every primary cause of cancer. Furthermore, lung cancer is expected
to be the biggest driver of cancer-related mortality worldwide in 2020, with an estimated 1.8 million
fatalities. Statistics on lung cancer rates are not uniform among geographic areas, demographic
subgroups, or age groups. The chance of an effective treatment outcome and the likelihood of
patient survival can be greatly improved with the early identification of lung cancer. Lung cancer
identification in medical pictures like CT scans and MRIs is an area where deep learning (DL)
algorithms have shown a lot of potential. This study uses the Hybridized Faster R-CNN (HFRCNN)
to identify lung cancer at an early stage. Among the numerous uses for which faster R-CNN has
been put to good use is identifying critical entities in medical imagery, such as MRIs and CT scans.
Many research investigations in recent years have examined the use of various techniques to detect
lung nodules (possible indicators of lung cancer) in scanned images, which may help in the early
identification of lung cancer. One such model is HFRCNN, a two-stage, region-based entity detector.
It begins by generating a collection of proposed regions, which are subsequently classified and refined
with the aid of a convolutional neural network (CNN). A distinct dataset is used in the model’s
training process, producing valuable outcomes. More than a 97% detection accuracy was achieved
with the suggested model, making it far more accurate than several previously announced methods.

Keywords: accuracy; detection; future pyramidal network; loss function; evaluation; bounding box
regression; up-sampling

1. Introduction

Unlocking the potential of technology in the realm of healthcare is an ongoing quest,
fueled by the urgent need to combat the devastating impact of diseases like cancer [1–4].
Among the many forms of this formidable foe, lung cancer stands tall as a global menace,
silently claiming countless lives. The World Health Organization’s disheartening statistics

Diagnostics 2023, 13, 3485. https://doi.org/10.3390/diagnostics13223485 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13223485
https://doi.org/10.3390/diagnostics13223485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0001-5181-5750
https://doi.org/10.3390/diagnostics13223485
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13223485?type=check_update&version=1


Diagnostics 2023, 13, 3485 2 of 21

lay bare the magnitude of the challenge we face. In 2020 alone, lung cancer cases increased
by 2.21 million, accounting for a staggering 11.4% of all reported cancer diagnoses world-
wide [5] (World Health Organization, 2020). Tragically, the somber reality of this disease
is further emphasized by the projected 1.8 million deaths it is expected to cause within
the same year, cementing its place as the leading cause of cancer-related fatalities on a
global scale.

While lung cancer rates and statistics may vary across different geographic regions,
demographic subgroups, and age groups, the urgency to detect this pernicious disease
at an early stage remains constant. Early detection is widely acknowledged as a crucial
factor in increasing the likelihood of favorable treatment outcomes and improving overall
survival rates.

To address this daunting crisis, medical researchers and technology enthusiasts have
joined forces in the pursuit of innovative solutions that can potentially transform the
landscape of lung cancer detection and treatment. One area where cutting-edge technol-
ogy, particularly deep learning (DL) algorithms, has exhibited immense promise is the
identification of nodules in the diagnostic imaging of lungs such as X-ray images [4], CT
(computed tomography) scans [3], and MRIs [6,7]. Among the diverse array of DL algo-
rithms, Faster R-CNN has emerged as a formidable tool in the fight against lung cancer at
its earliest stages.

The advent of cutting-edge technologies like Faster R-CNN brings us one step closer
to achieving this crucial goal, bolstering the arsenal of healthcare professionals and paving
the way for a future where lung cancer can be detected and treated more effectively [8].
Thus, the convergence of medical imaging and deep learning algorithms presents a beacon
of hope in the relentless battle against lung cancer. Faster R-CNN’s remarkable capabilities
have proven instrumental in identifying lung cancer with unprecedented accuracy, igniting
a flicker of optimism in the face of overwhelming statistics. As the world unites in this
noble endeavor, we can look forward to a future where the early detection of lung cancer
becomes a reality, sparing countless lives and offering renewed hope to those affected by
this devastating disease. Faster R-CNN, a two-stage, region-based entity detector, has
garnered significant attention for its ability to unlock vital information hidden within
medical imagery, including MRIs and CT scans [9]. The process begins by generating a
comprehensive collection of proposed regions, which are then subjected to classification
and refinement through the power of CNNs [10]. Researchers have tirelessly trained the
model using a plethora of diverse datasets, leading to breakthrough findings that hold
immense promise for the early identification of lung cancer.

Over the past few years, the scientific community has witnessed a surge in research
investigations centered on the detection of lung nodules, potential indicators of lung cancer,
within scanned images. But there are major limitations to the original Faster R-CNN model,
such as a slow inference speed and high computational requirements. Thus, these studies
aim to leverage the capabilities of state-of-the-art techniques, such as HFRCNN (Hybridized
Faster Regions with Convolutional Neural Networks), to facilitate early diagnosis and
ultimately enhance patient survival rates. The results achieved thus far have been nothing
short of remarkable. The proposed model, armed with HFRCNN, has achieved a detection
accuracy as expected, surpassing the performance of several previously heralded methods.
Such unprecedented accuracy is poised to revolutionize the field of lung cancer detection,
offering renewed hope to patients and healthcare professionals alike. Moreover, such
artificial intelligence (AI) [8] in healthcare aims to demystify complex models, such as
those detecting lung nodules. By bridging the research gap through extensive validation,
explainable AI [4] can ensure that clinicians understand and trust AI-driven diagnoses,
optimizing early detection and treatment strategies.

1.1. Motivation

The motivation behind harnessing DL algorithms, specifically the HFRCNN model, for
early lung cancer detection stems from the urgent need to address the alarming prevalence
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and devastating impact of this disease worldwide. Lung cancer stands as the most common
cancer globally, causing significant morbidity and mortality. The staggering number of
new diagnoses and deaths associated with lung cancer in recent years calls for innovative
solutions that can facilitate early detection, intervention, and ultimately, improved patient
survival rates. Traditional diagnostic methods for lung cancer, while valuable, often
fall short in terms of accuracy and efficiency. The advent of DL algorithms presents
an opportunity to overcome these limitations and revolutionize the field of lung cancer
detection [11]. By leveraging the capabilities of HFRCNN, researchers and healthcare
professionals are driven by the motivation to enhance accuracy, streamline diagnosis, and
enable early intervention. This, in turn, can translate into better treatment outcomes,
reduced healthcare costs, and most importantly, saved lives.

Moreover, the motivation to explore DL algorithms in lung cancer detection is fueled
by the vast potential they offer in analyzing complex medical images. With the ability
to process large datasets and identify subtle abnormalities, such as lung nodules, DL
algorithms can act as a valuable tool for radiologists and clinicians. By augmenting their
expertise, DL algorithms can help to expedite the identification of lung cancer, especially
in cases where the lesions are minuscule or located in challenging anatomical areas. This
newfound efficiency can lead to earlier intervention, personalized treatment strategies, and
improved overall patient care.

1.2. Scope

The use of DL computations, specifically the HFRCNN model, in diagnostic imaging
for the prompt identification of lung disease has enormous potential. By leveraging the
power of artificial intelligence and advanced image analysis techniques, this concept
holds the capability to revolutionize the landscape of nodule diagnosis and treatment.
Currently, the use of DL strategies has shown impressive results, topping the accuracy
of earlier approaches in diagnosing lung nodules, which could indicate signs of lung
malignancies [12]. With further research and development, this approach can extend its
scope to encompass a wide range of medical imaging modalities, assisting healthcare
professionals in detecting lung cancer at its nascent stages and significantly improving
patient outcomes [13].

1.3. Objectives

• To enhance the early detection of lung cancer by accurately identifying potential
indicators (lung nodules) at the earliest stages, improving treatment outcomes and
increasing patient survival rates;

• To boost the accuracy and promptness of lung nodule detection via DL strategies, such
as HFRCNN, that automate the detection process, provide an objective analysis of
medical images, and reduce diagnostic errors.

1.4. Research Contribution

The contribution of the research work is summarized as follows:

• This study successfully employs Hybridized Faster R-CNN (HFRCNN) to detect early-
stage lung cancer in medical images, addressing a critical global health challenge;

• HFRCNN, a two-stage, region-based entity detector, demonstrates its efficacy in
identifying crucial entities in medical imagery, showcasing its adaptability in health
applications;

• The proposed model achieved a remarkable detection accuracy of over 97%, surpassing
the performance of several previously established methods.

1.5. Research Questions (RQ)

This research work is driven based on the following research questions:
RQ1: How can Hybridized Faster R-CNN (HFRCNN) be adapted to various medical

imaging modalities across different healthcare systems for early-stage lung cancer detection?
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RQ2: What are the potential global implications of implementing HFRCNN in terms
of patient survival rates and healthcare costs, given its exceptional accuracy in detecting
lung nodules?

RQ3: How might the integration of HFRCNN into global telemedicine platforms
enhance early lung cancer detection across varied populations and geographies?

This study is outlaid in a standard manner, in which Section 2 overviews some promi-
nent relevant approaches for comparison purposes, Section 3 briefs the methodology,
Section 4 delineates the outcome analysis and justifications, and lastly, Section 5 concludes
the study with all observed research key notes.

2. Related Work

Researchers have discussed an investigation of radiologists’ difficulties while sifting
through many low-dose computed tomography (LDCT) diagnostic imageries for lung
nodules [14]. Problems include monotonous tasks, missing minor nodules, and inconsis-
tent standards for success. This research attempts to determine the frequency of nodule
formation in the lungs in the Chinese population, and to do so, a two-step module deep
learning (TS-DL) system was developed and evaluated for this task using LDCT images.
Bland–Altman scrutiny was used to examine the level of conformity between the conven-
tional method and the technique’s nodule identification. In addition, the LUNA publicly
available repository was used to perform an additional, independent test. Non-calcified
nodules in the pulmonary system were also studied for their frequency in the popula-
tion, with data provided on the overall amount of nodules, their positions, and their
features, as assessed by two separate radiologists. The overarching objective was to perfect
a time- and money-saving strategy to help radiologists to identify nodules more reliably in
LDCT images.

One research study was designed to increase the odds of being accurately diagnosed
with lung carcinoma using DL algorithms to recognize abnormal nodules in the lungs
at the outset of the disease [15]. For decades, lung disease has been a significant health
issue worldwide, prompting academics to suggest various strategies and methods for
using artificial intelligence (AI) in cancer diagnosis in the early phases. Preprocessing,
segmenting, and categorization algorithms have been examined for detecting malignant
lung areas. Distortion in lung imagery can potentially be reduced during preprocessing
with a modified median filtration. The investigators preferred to create a simple yet robust
approach based on the U-net design to identify and separate lung nodules quickly. The
research highlights computer vision, a branch of AI, as a more effective means of detecting
and preventing lung tumors. The study enhanced the detection and localization of lung
tumors by analyzing lung visuals for healthy and aberrant associations.

One investigation explains how imaging techniques were refined in a clinical study,
examining the complementary effects of immunotherapy and radiation [16]. This investiga-
tion intended to determine whether or not transverse micro-CT could be used to identify
lung metastases in mice after therapy. The team investigated the application of DL as a
rapid approach to determining the presence of lung nodules. Mice that had or lacked
primary lung tumors were used in the studies. They enhanced micro-CT images with
virtual tumors to produce more data for training purposes. A CNN was implemented and
developed through four distinct forms of training input: simulation alone, exclusive reality,
simulation and reality mixed, and preparation with synthetic information before actual
data. Recall and precision contours and ROC-AUC were used to assess the DL model’s
efficacy. All four possible permutations of the training data provided almost equal AUC
scores (0.76–0.77).

In contrast, if actual and synthetic data were used together, the accuracy increased by
around 8%. The research also found that the identification rates for minor tumors were less
than those for more extensive types, while the success rate of models trained on actual data
was higher. Based on their results, the researchers suggest that DL could be beneficial for
quickly and accurately diagnosing lung tumors in mice. In the setting of co-clinical studies
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exploring the collaboration of immunotherapy and radiation, the findings underline the
possibility of DL for facilitating the diagnosis of lung metastases.

An interdisciplinary approach to enhance the early detection of lung tumors has
also been undertaken [17]. The constant stream of medical images could make it difficult
for radiologists to detect anomalies at a vulnerable stage in lung cancer progression, a
leading driver of mortality worldwide. The multifaceted nature of the surroundings and
the variety of pulmonary nodules make it hard to identify powerful nodules, and this
research attempted to fix that. The researchers suggested using a combination of methods
to circumvent this issue. They introduced a statistically inspired snake swarm optimization
with a bat-based emulate (ISSO-B) for segmenting lung nodules. The cells could potentially
be more precisely segmented using this approach. Once several characteristics were
identified, the best ones were chosen using a chaotic atom search optimization (CASO)
technique, which helped to reduce the degree of dimensionality of the data. This research
refined a DL classification based on mixed learning to better anticipate and categorize
nodules. The advantages of ML and deep NNs were used in this classifier to boost precision.
After developing the method, the researchers tested it on many publicly available datasets,
including FAH-GMU and LIDC-IDRI. The AUC, specificity, accuracy, and sensitivity were
examined concerning the most recent techniques.

A DL technique for identifying lung nodules is proposed in [18]. The team used four
distinct fusion algorithms (FAs) for categorization and patch-based multi-resolution neural
networks for obtaining features. Compared to earlier studies, the new technique shows
considerable improvements in efficiency and resilience. The suggested approach detected
lung nodules at a success rate of more than 99 per cent, with a negative predictive value per
image of 0.2, employing data from the Japanese Society of Radiological Technology (JSRT),
which is readily available to the general public. A false-positive AUC and the absolute
incremental performance indicator were determined to be 0.982 and 0.987, respectively, as
performance indicators. The results show promise for the suggested DL-based technique
in therapeutic settings. The approach effectively detects lung nodules and may help to
enhance the accuracy and reliability of radiological diagnostics.

A method for applying DL [1] has been suggested to identify lung cancer in CT images
of patients with pulmonary nodules. The scans were first processed via a preliminary
processing workflow that isolated the lung areas, and then a 3D-CNN model built using
the C3D network layout was used to extract the features. In order to cut down on false
positives, the researchers utilized data collected during the LUNA16 challenge in addition
to the LIDC-IDRI as their core dataset. The goal was to create a system that could accurately
pinpoint the locations of cancerous nodules in the lungs on CT images. When identifying
cancerous lung nodules and estimating their aggressiveness levels, the ultimate model
attained an identification rate of 86 per cent. This demonstrates the model’s potential for
detecting nodules that are indicative of lung carcinoma and determining their severity.

From Table 1 it is noted that the current landscape of studies on detecting and char-
acterizing lung nodules, though promising, reveals a notable research gap: a lack of
comprehensive clinical validation and assessment using expansive and varied datasets [19].
Such extensive validation is paramount to ascertain the robustness and generalizability
of the detection methods. Without evaluating these methods on a larger scale and across
diverse datasets, the comparative efficacy of different approaches remains unclear. This
gap hinders the establishment of a gold-standard method and potentially limits the ad-
vancements in early and effective lung nodule detection, emphasizing the urgent need for
broader, more inclusive research endeavors.
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Table 1. Consolidated review of different existing methodologies.

Study Research Objective Methodology Outcomes Measured

[14]
Create an LDCT-based DL method
for identifying lung nodules and
analyzing their occurrence in China.

Deep learning algorithm: TS-DL
ROC (Receiver Operating Curves)–AUC
(Area Under the Curve), Free-response
ROC Score, Average Duration

[15] Early identification of lung nodule
anomalies using DL U-net Design

Detection of Lung Tumor Regions, Lung
Nodule Segmentation (U-Net Architecture),
Lung Cancer Classification (Detecting
normalcy and abnormalities)

[16] Fast and accurate lung tumor
detection (via a CNN) CNN Precision, Recall, ROC, AUC

[17]
Lung lesion detection and
prognosis using a mixed neural
network framework

ISSO-B and CASO techniques AUC, Sensitivity, Accuracy, Specificity

[18] Deep learning-based lung nodule
detection method

Fusion Algorithms (FAs) and
patch-based multi-resolution
neural networks

Lung Nodule Detection, False Positives per
Image (FPs/Image), FAUC (False Positive
Area Under the Curve), R-CPM (Relative
Cumulative Performance Measure)

[1]
Detection of malignant pulmonary
nodules using deep learning from
CT scans

Preprocessing pipeline to mask
lung regions; feature extraction
using 3D CNN based on a
C3D network

Sensitivity: 86%

3. Methodology
3.1. Dataset

The LUNA16 (LUng Nodule Analysis 2016) [10] (LUNA16-Grand Challenge, n.d.)
database, which comprises the LIDC-IDRI (Lung Image Database Consortium and image
database resource initiative) dataset, is well-known and constantly employed for the
analysis of lung disease. The dataset is issued in the context of a competition hosted
jointly by the RSNA (Radiological Society of North America) and the NCI (National Cancer
Institute); it aimed to improve cancer diagnosis and treatment. The LIDC-IDRI collection
includes 888 thoracic CT scans interpreted by radiologists in detecting lung nodules. For
training and assessing DL predictive models in the realm of lung cancer detection, the
dataset contains a varied collection of CT images with descriptors of nodular structures in
the lungs. Malignant and non-malignant nodules of varying sizes and forms are included in
the dataset, providing a representative sample of lung cancer patients diagnosed in clinical
practice. Table 2 highlights the influential and characteristic vital features of the dataset.

Table 2. Influential and characteristic features of LIDC-IDRI.

Feature Value

Dataset Type Medical Imaging
Dataset Size 888 CT Scans

Source Lung Image Database Consortium (LIDC-IDRI)
Annotation Type Expert Radiologists’ Markings for Lung Nodules

Nodule Types Benign and Malignant
Nodule Annotations Yes

Nodule Sizes
(in millimeters, mm)

Minimum: 3 mm
Maximum: 30 mm

Nodule Shapes Round, Oval, Irregular, Spiculated, Lobulated, Spherical
Purpose Lung Cancer Detection and Research

Released By RSNA and NCI
Year of Release 2016
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3.2. HFRCNN Mechanism

In the domain of diagnostic examination, faster R-CNN is a widely utilized approach
for identifying lung modules. As a result, it is able to recognize lung modules with high
accuracy and efficiency by combining the benefits of RPNs and CNNs. First, the RPN is
used to generate region suggestions, which are then used to locate possible areas of interest
in the lung visual. A CNN is then used to extract features from these suggestions and
classify them. In order to determine the chance that a given area contains a lung module,
the CNN extracts discriminative characteristics from the provided input regions. The
Faster R-CNN mechanism is well suited for the identification of lung problems in medical
diagnostic applications because of its ability to precisely localize lung modules while
preserving computational efficiency [20,21]. Figure 1 depicts the overall architecture of the
proposed strategy, where the depicted architecture showcases the innovative integration of
the feature pyramid network (FPN) and adjusting anchor scales and aspect ratios (ASAR)
modules. These integrations, combined with the intersection over union (
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By incorporating additional techniques to Faster R-CNN [22], HFRCNN intends to
strike a more regulated balance between precision and performance. One of the distinct
procedures in HFRCNN is the utilization of a feature pyramid network (FPN) [23]. The FPN
enhances the original Faster R-CNN by incorporating multi-scale feature maps, allowing
the model to effectively handle objects of different sizes. This helps to improve accuracy,
particularly for small or densely packed objects.
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HFRCNN can also involve modifications to the original region proposal network
(RPN) of Faster R-CNN. This may include changes to the anchor scales and aspect ratios
used for generating region proposals, or the use of advanced algorithms for refining and
filtering the proposed regions. To be helpful in an instantaneous fashion or constrained
in resource-oriented applications, HFRCNN aims to find an acceptable balance between
precision and effectiveness. By leveraging techniques such as FPNs and optimized region
proposal strategies, HFRCNN aims to improve the overall performance and usability of
the original Faster R-CNN model.

Taking into consideration the integration of feature pyramid networks (FPNs) and ad-
justments to anchor scales and aspect ratios using the LIDC-IDRI dataset, the computations
involved in HFRCNN are delineated in brief. Figure 2 depicts the generalized workflow of
the proposed HFRCNN.
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3.2.1. Feature Pyramid Networks (FPN)

The FPN is a technique that enhances the original Faster R-CNN model by incorporat-
ing multi-scale feature maps. A suggested model using an FPN is trained and evaluated
using the LIDC-IDRI dataset, which comprises numerous CT images with lung nodules.
The FPN module extracts features from multiple levels of a CNN backbone, such as
VGG [24,25], to create a pyramid of feature maps. These feature maps capture information
at different scales, enabling the model to handle objects of various sizes effectively [26].
The FPN module typically includes operations such as lateral connections to fuse high-
resolution features with low-resolution features, and top-down pathways to propagate
information from coarser to finer levels. Thus, the computation involved in the FPN is
delineated as follows:

Let Fi represent the feature map at level l of the CNN backbone. ψ(Fi) represents the
number of channels in Fi, and the generated feature maps are represented as(

GF1
1 , GF2

2 , GF3
3 , GF4

4 , · · · , GFN
n

)
at different levels of the FPN.

GFN
n = conv(FN) (1)



Diagnostics 2023, 13, 3485 9 of 21

GFN
n = conv

(
FN

)
+ U

(
GFN
(n+1)

)
, where n ranges f rom N to 2 (2)

G
F(N+1)
n+1 = maxPool

(
GFN

n
)

(3)

From Equations (1)–(3), conv represents the convolutional operation, ‘U’ denotes the
up-sampling of the feature map, and maxPool represents the max pooling process. The
lateral connections fuse the high-resolution features from conv(FN) with the up-sampled

features from G
F(N+1)
n+1 , creating a feature pyramid capturing information at multiple scales.

To construct the feature pyramid, the FPN first applies a convolutional operation to
the highest-resolution feature map, FN, resulting in the feature map, GFN

n . This conv(FN)
transforms the GFN

n to have a consistent number of channels, ensuring compatibility with
the subsequent operations. Next, the FPN establishes lateral connections between the
feature maps to fuse information from different levels. Starting from the second most
detailed map of features (FN−1), the FPN performs two steps to make the related GFN−1

n .
In the first step, the FN−1 undergoes a conv(FN−1), to appropriately map the channel

dimensions of GFN
n . This step ensures consistency in the ψ(Fi) between the two feature

maps for subsequent fusion.
In the second step, the feature map GFN−1

n is obtained by adding the up-sampled
feature map from the next level, GFN

n , to the result of conv(FN−1). The up-sample operation,(
GFN
(n+1)

)
, increases the spatial resolution of the feature map GFN

(n+1) to match the resolution

of the current level. The addition of conv(FN−1) and U
(

GFN
(n)

)
creates the fused GFN−1

n ,
which captures both the high-resolution details from conv(FN−1) and the up-sampled
contextual information from GFN

n . This process is repeated for the subsequent levels,
generating feature maps GFN

n−2, GFN
n−3, and so on, using the same convolutional and up-

sampling operations, along with the addition of lateral connections. Each level combines
the information from the corresponding feature map and the up-sampled feature map from
the next level, progressively capturing information at coarser resolutions while maintaining
the high-resolution details.

Finally, to create an additional level, GFN
n+1, the FPN applies max pooling to the highest-

resolution feature map, GFN
n . Max pooling reduces the spatial dimensions of the feature

map while preserving the most salient information, creating a coarser representation.

3.2.2. Adjusting Anchor Scales and Aspect Ratios (ASAR)

Anchors are predefined bounding boxes used for generating region proposals in Faster
R-CNN. In HFRCNN, the anchor scales and aspect ratios can be adjusted to better match
the size and shape characteristics of lung nodules in the dataset. The adjustments aim to
ensure that the anchor boxes closely align with the ground truth annotations, improving
the model’s capability to diagnose the nodules accurately. Adjusting the aspect ratios and
anchor scales might entail analyzing the dataset’s lung lesion forms and structure patterns.
Consider the following as an illustration of the calculations involved in modifying the
aspect ratios and anchor scales:

Let ‘
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, creating a feature pyramid capturing information at multiple scales. 
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the highest-resolution feature map, FN, resulting in the feature map, 𝐺𝑛
𝐹𝑁. This conv(FN) 

transforms the 𝐺𝑛
𝐹𝑁  to have a consistent number of channels, ensuring compatibility with 

the subsequent operations. Next, the FPN establishes lateral connections between the fea-

ture maps to fuse information from different levels. Starting from the second most detailed 

map of features (FN−1), the FPN performs two steps to make the related 𝐺𝑛
𝐹𝑁−1 . 

In the first step, the FN−1 undergoes a conv(FN−1), to appropriately map the channel 

dimensions of 𝐺𝑛
𝐹𝑁 . This step ensures consistency in the ψ(Fi) between the two feature 

maps for subsequent fusion. 

In the second step, the feature map 𝐺𝑛
𝐹𝑁−1  is obtained by adding the up-sampled fea-

ture map from the next level, 𝐺𝑛
𝐹𝑁, to the result of conv(FN−1). The up-sample operation, 

(𝐺(𝑛+1)
𝐹𝑁 ), increases the spatial resolution of the feature map 𝐺(𝑛+1)

𝐹𝑁  to match the resolution 

of the current level. The addition of conv(FN−1) and 𝑈(𝐺(𝑛)
𝐹𝑁) creates the fused 𝐺𝑛

𝐹𝑁−1 , which 

captures both the high-resolution details from conv(FN−1) and the up-sampled contextual 

information from 𝐺𝑛
𝐹𝑁 . This process is repeated for the subsequent levels, generating fea-

ture maps 𝐺𝑛−2
𝐹𝑁 , 𝐺𝑛−3

𝐹𝑁 , and so on, using the same convolutional and up-sampling opera-

tions, along with the addition of lateral connections. Each level combines the information 

from the corresponding feature map and the up-sampled feature map from the next level, 

progressively capturing information at coarser resolutions while maintaining the high-

resolution details. 

Finally, to create an additional level, 𝐺𝑛+1
𝐹𝑁 , the FPN applies max pooling to the high-

est-resolution feature map, 𝐺𝑛
𝐹𝑁. Max pooling reduces the spatial dimensions of the fea-
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3.2.2. Adjusting Anchor Scales and Aspect Ratios (ASAR) 

Anchors are predefined bounding boxes used for generating region proposals in 

Faster R-CNN. In HFRCNN, the anchor scales and aspect ratios can be adjusted to better 

match the size and shape characteristics of lung nodules in the dataset. The adjustments 

aim to ensure that the anchor boxes closely align with the ground truth annotations, im-
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ture map from the next level, 𝐺𝑛
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(5)
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From Equations (4) and (5),
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Finally, to create an additional level, 𝐺𝑛+1
𝐹𝑁 , the FPN applies max pooling to the high-

est-resolution feature map, 𝐺𝑛
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′

represents the adjusted anchor boxes, where
=
δ and =
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involves additional operations such as calculating the intersection
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), applying bounding box regression, and incorporating loss functions specific
to lung nodule detection tasks in HFRCNN.
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’ is computed as the proportion of the
intersection region (ηI) to the union region (φI) of the two bounding boxes.
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(β1, β2) =

[
ηI

φI

]
(6)

The ηI is calculated as the area of overlap between the two bounding boxes, and
the φI is calculated as the sum of the individual areas of the bounding boxes minus the
intersection area.

3.2.4. Bounding Box Regression (Я)

Bounding box regression is used to refine the predicted bounding boxes based on the
initial anchor boxes and corresponding ground truth annotations. Let PЯ be the exected
bounding box and α be the actual bounding box. The regression is typically performed us-
ing a combination of regression targets, such as logarithms of coordinates (∆x, ∆y, ∆w, ∆h)
or the offsets in terms of coordinates (dx, dy, dw, dh). The refined bounding box

(
Я′

)
coordinates are obtained by adding the regression targets to the initial coordinates:

Я′
(
w′, h′, x′, y′

)
= [(y + ∆y), (x + ∆x), (
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Bounding box regression is used to refine the predicted bounding boxes based on the 

initial anchor boxes and corresponding ground truth annotations. Let 𝑃Я be the exected 

bounding box and α be the actual bounding box. The regression is typically performed 

using a combination of regression targets, such as logarithms of coordinates 
(∆𝑥, ∆𝑦, ∆𝑤, ∆ℎ) or the offsets in terms of coordinates (𝑑𝑥, 𝑑𝑦, 𝑑𝑤, 𝑑ℎ). The refined bound-

ing box (Я′) coordinates are obtained by adding the regression targets to the initial coor-

dinates: 

Я′(𝑤′, ℎ′, 𝑥′, 𝑦′) = [(𝑦 + ∆𝑦), (𝑥 + ∆𝑥), (℮(∆𝑤) ∙ 𝑤), (℮(∆ℎ) ∙ ℎ)]  (7) 

Here, (x’, y’) signifies the center coordinates of the Я′, and (w’, h’) denote its width 

and height. The exponential term (℮) is applied to the w and h regression targets to scale 

the initial width and height based on the predicted deviations. By computing and apply-

ing the regression targets, the ‘𝑃Я ’ is adjusted and refined to better align with the ‘α’ 

bounding box. This refinement improves the accuracy of nodule localization and contrib-

utes to general effectiveness of the nodule detecting mechanism. 

3.2.5. Loss Functions (LFs) 

In HFRCNN, the loss functions are used to train the model and optimize the func-

tioning of lung nodule diagnosis. Commonly used loss functions for lung nodule detec-

tion tasks include the regression loss and the classification loss [20,27,28]. In general, the 

cross-entropy loss is used as a primary computation part in estimating the loss during 

classification, determining how well the nodule class can be predicted. The regression loss 

assesses the precision of estimating each proposed area’s revised bounding box coordi-

nates. Regression and classification loss, each with their weighting variables, are often 

combined to form the total loss function. Thus, the total loss (T) is computed as 

𝑇 = (𝑊𝑖 × 𝐶𝐿) + (𝑊𝑗 × Я𝐿)  (8) 

The weights Wi and Wj can be adjusted based on their relative importance and the 

specific requirements of the task. 

  

(∆w)·w), (
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initial width and height based on the predicted deviations. By computing and applying the
regression targets, the ‘PЯ’ is adjusted and refined to better align with the ‘α’ bounding box.
This refinement improves the accuracy of nodule localization and contributes to general
effectiveness of the nodule detecting mechanism.

3.2.5. Loss Functions (LFs)

In HFRCNN, the loss functions are used to train the model and optimize the function-
ing of lung nodule diagnosis. Commonly used loss functions for lung nodule detection
tasks include the regression loss and the classification loss [20,27,28]. In general, the
cross-entropy loss is used as a primary computation part in estimating the loss during
classification, determining how well the nodule class can be predicted. The regression loss
assesses the precision of estimating each proposed area’s revised bounding box coordinates.
Regression and classification loss, each with their weighting variables, are often combined
to form the total loss function. Thus, the total loss (T) is computed as

T = (Wi × CL) +
(
Wj ×ЯL

)
(8)

The weights Wi and Wj can be adjusted based on their relative importance and the
specific requirements of the task.

4. Implementation and Analysis
4.1. Empirical Requirements and Model Training

To implement and train the HFRCNN model, PyTorch v1.13 is utilized. Additionally,
the CUDA v12.0 (Compute Unified Device Architecture) and cuDNN v8.8 (CUDA Deep
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Neural Network) libraries are employed to optimize the implementation of DL operations
for faster training and inference. Intel Core i7 (1355U) with 1.7 GHz is chosen to deploy
and test the proposed approach. The results of the suggested model are evaluated with
the performance of prominent existing methodologies: TS-DL, CNN, ISSO- B+ CASO, and
FA. Out of 7371 identified nodules in the dataset, 2650 were found to be larger in size
(>3 mm), which are annotated. Outlines of the 2650 malignancies and objective nodule
traits are included.

4.2. Performance Evaluation

Quantitative measures of the HFRCNN model’s performance is measured using a few
metrics like accuracy, precision, recall, F1-score [29], discriminatory power (AUC-ROC),
and nodule localization accuracy (
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) [18]. To compute all the concerned metrics, it is
essential to consider the following definitions:

• TP: True Positives (correctly detecting lung nodules);
• TN: True Negatives (correctly detecting non-nodules);
• FP: False Positives (incorrectly detecting as lung nodule cases instead of non-nodules);
• FN: False Negatives (incorrectly detecting as non-nodule cases instead of lung nodules).

Figure 3 exposes the outcomes of the models’ accuracy, which provides quantitative
indicators of the reliability of the model’s estimates. It is the proportion of lung nodule
instances that were accurately predicted relative to the overall frequency of instances.
All observed results represent the accuracy of different approaches in detecting lung
nodules. Each approach utilizes a specific technique or combination of techniques to
perform the detection task. The TS-DL approach achieves an accuracy of 91.11% with a
relatively low standard deviation of 0.89. TS-DL likely refers to a specific deep learning
architecture or technique used for lung nodule detection. It demonstrates a high level of
accuracy, indicating that it effectively identifies lung nodules in the given dataset. The
CNN approach achieves an accuracy of 89.32% with a standard deviation of 0.54, which
is a slightly lower accuracy compared to TS-D. ISSO-B + CASO achieve an accuracy of
90.15% with a standard deviation of 0.68. The FA approach achieves the highest accuracy
of 92.24%, with a standard deviation of 0.43. HFRCNN achieves the highest accuracy of
97.00%, with the lowest standard deviation of 0.23. Its exceptional accuracy suggests that it
is a highly effective approach for accurately identifying lung nodules.

Figure 4 exhibits the results of a precision measurement analysis for the diagnosis of
nodules in the lungs. Accuracy is the percentage of confirmed instances of lung cancer
relative to the overall number of positive predictions [30]. A higher precision indicates
a lower rate of false positives, which is important to avoid unnecessary interventions or
treatments [31]. The TS-DL approach achieves a precision of 90.13%. This indicates that out
of all the predicted positive cases of lung nodules, 90.13% of them are actually true positive
cases. It demonstrates a relatively high precision, suggesting that it effectively identifies
lung nodules while minimizing false positives.

The CNN approach achieves a precision of 88.43%. This indicates that 88.43% of
the predicted positive cases are true positives. Although slightly lower than TS-DL, the
CNN still demonstrates a good level of precision in detecting lung nodules [32,33]. The
ISSO-B + CASO approach achieves a precision of 87.43%. This means that 87.43% of the
predicted positive cases are true positives. While it has a slightly lower precision compared
to the previous approaches, it still performs reasonably well in identifying lung nodules
accurately. The FA approach achieves a precision of 91.11%. This indicates that 91.11%
of the predicted positive cases are true positives. The HFRCNN approach achieves the
highest precision of 96.15%. This means that 96.15% of the predicted positive cases are true
positives. HFRCNN exhibits exceptional precision, indicating a highly accurate detection
of lung nodules with minimal false positives.
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The actual positive rate (also known as recall/sensitivity) quantifies the percentage of
lung nodule cases that were accurately recognized. The lower the number of false negatives,
the more correctly the model can identify lung nodules [34]. Specificity is the percentage
of false negatives (cases without nodules) that were accurately detected. It assesses the
degree to which the model recognizes between nodules and other incidences, reducing
false positives. Harmonically averaging accuracy and recall yields the F1-score. It is a
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fair evaluation of the model’s efficacy, since it considers both recall and precision. When
balancing accuracy and recall or working with unbalanced datasets, the F1-score becomes
extremely valuable. The results of several analysis methods, including their specificity,
sensitivity, and F1-score, are shown in Table 3. All summative criteria point to the superior
efficacy of the proposed HFRCNN over the state-of-the-art alternatives.

Table 3. Performance outcomes of different approaches.

Approaches Specificity (%) Sensitivity (%) F1-Score (%)

TS-DL 88.16 90.14 89.14
CNN 89.23 87.34 88.32

ISSO-B + CASO 90.08 91.11 91.03
FA 92.24 90.24 91.34

HFRCNN 94.32 94.23 94.54

AUC-ROC: The model’s ability to discriminate between classes is measured over
a range of thresholds via the ROC curve and the AUC-ROC. This graph compares the
proportion of correct diagnoses (sensitivity) to the number of false positives (specificity). If
the AUC-ROC is high, the performance remains outstanding.

Figure 5 depicts the results of the ROC-AUC for different approaches in detecting lung
nodules. The HFRCNN approach achieves the highest ROC-AUC of 0.9415, indicating its
strong discriminative ability in correctly classifying lung nodules as positive or negative.
It outperforms the other approaches, demonstrating the highest overall performance in
distinguishing between positive and negative cases. The FA approach follows closely, with
an ROC-AUC of 0.9023, indicating a good discriminative ability. ISSO-B + CASO achieves
an ROC-AUC of 0.8913, while TS-DL and CNN demonstrate slightly lower ROC-AUC
values of 0.8823 and 0.8721, respectively. These results suggest that the HFRCNN approach
has the highest overall performance in accurately detecting lung nodules, followed by FA.
The higher ROC-AUC values indicate better differentiation between positive and negative
cases, implying that these approaches have a higher likelihood of correctly classifying
lung nodules.
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The intersection over union (
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pointing a substantial alignment between the estimated and actual regions. This implies
that the HFRCNN method accurately detects lung nodules with a high degree of overlap
between the estimated and actual regions. The FA approach follows closely with a
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of 0.61, suggesting slightly lower accuracy and overlap
in detecting lung nodules. Overall, the results show that the HFRCNN and FA approaches
perform better in accurately detecting lung nodules with a higher intersection between the
estimated and actual regions.
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.

From Figure 7, it is evident that the FROC (free-response receiver operating charac-
teristic) graph serves as a potent tool to illustrate the diagnostic performance of various
methods in the realm of lung nodule detection across distinct confidence thresholds. The
x-axis, representing the average number of false positives per image, is juxtaposed against
the y-axis, which conveys sensitivity—a metric gauging the true positive rate. This rela-
tionship illustrates a fundamental principle: as the confidence threshold diminishes, both
the sensitivity and the number of false positives ascend, which elucidates the inherent
trade-off between accurately detecting genuine cases and inadvertently misidentifying
benign instances.
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A closer examination reveals that the HFRCNN method, depicted by the blue curve,
exhibits superior diagnostic prowess. This method peaks near a sensitivity of approximately
0.9, all the while maintaining a relatively modest count of false positives, hovering around
four per image. Translated into a clinical scenario, this implies that if there were 100 nodules
present, HFRCNN would correctly pinpoint 90 of them, with the trade-off being a mere four
erroneous identifications per image. Such a high true positive rate, combined with a low
false positive rate, accentuates the efficacy of HFRCNN over other techniques, positioning
it as an optimal choice for lung nodule detection.

ISSO-B + CASO (green line) and FA (red line) achieve peak sensitivities closer to 0.9
and 0.77, respectively, but require more false positives, around four for ISSO-B + CASO and
five for FA, to achieve these sensitivities. The TSDL (purple line) peaks around a sensitivity
of 0.62 with roughly 2.5 false positives per image, and the CNN (orange line) achieves a
peak sensitivity of around 0.45, but with a higher number of false positives, close to five
per image. Thus, while other models might attain respectable sensitivities, they do so at
the cost of higher false positives, whereas HFRCNN demonstrates a high sensitivity with a
moderate false positive rate.

Given the robustness and precision of the HFRCNN in lung nodule detection, there
is a strong rationale to consider adapting it to other medical imaging modalities [35]. Its
high true positive rate combined with a controlled false positive rate makes it an attractive
choice for applications that demand accuracy without excessive false alarms, a common
challenge in medical imaging [36].

The visual representation in Figure 8 displays the lung nodule detection with more
pronounced bounding boxes.

Thicker green bounding boxes represent the ground truth locations of the nodules,
clearly demarcating where the actual nodules are situated in the medical image.

Thicker red bounding boxes denote the predicted regions of interest (ROIs) by the
detection algorithm, signifying the model’s predicted locations for nodules.

The visual representation effectively illustrates the proposed model’s proficiency in
detecting lung nodules, with the red bounding boxes (predictions) largely overlapping
the green bounding boxes (ground truth). This substantial overlap signifies a high rate of
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true positives, corroborating the reported accuracy of 97.00%. The few instances where the
red boxes slightly deviate from the green ones represent the 3% error margin, manifesting
either as false positives or false negatives. Overall, the visual graph provides a tangible
reflection of the model’s commendable 97.00% accuracy in identifying lung nodules.
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The remarkable accuracy demonstrated by the Hybridized Faster R-CNN (HFRCNN)
in detecting lung nodules, as evidenced by the 97.00% accuracy in Figure 8, heralds a
transformative shift in the realm of medical imaging. The profound global implications of
integrating such a high-performing model like HFRCNN into healthcare systems can be
manifold, particularly in terms of patient survival rates and healthcare costs.

Concerning RQ1 on the adaptability of the Hybridized Faster R-CNN (HFRCNN) for
early-stage lung cancer detection across various medical imaging modalities and healthcare
systems, Figure 9 illustrates promising results. Specifically, when leveraging data sourced
from well-known open-source repositories, HFRCNN achieved accuracy levels of 92%, 88%,
and 89% for X-ray imaging in three different healthcare systems (metropolitan hospital
network (MHN), regional healthcare center (RHC), and specialized cancer research institute
(SCRI)), respectively [37]. For MRI, the accuracies were even higher, at 95% for MHNs 93%
for RHCs, and 91% for SCRIs. While slightly trailing, ultrasound still posted commendable
accuracy rates of 90% in MHNs, 88% in RHCs, and 86% in SCRIs. Since all the outcomes are
above 85%, such results underscore the robustness and versatility of HFRCNN in processing
diverse imaging modalities across disparate healthcare environments, substantiating its
potential as a reliable tool for early lung cancer detection.
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Figure 9. HFRCNN adaptation across different medical imaging modalities and healthcare systems.

To visually represent the outcomes of implementing HFRCNN across the globe in
terms of patient survival rates and healthcare costs, we made a comparison of 100 manually
collected patient records and costs over a time span of 6 months before and after the
implementation of HFRCNN. For better understandability, we considered four primary
factors for each section, which are highlighted in Table 4 along with the set of essential
characteristics of the study.

Table 4. Prominent factors to analyze the potential global implications of implementing HFRCNN.

Patient Survival Rates Early detection rates
Reduction in misdiagnoses

Healthcare Costs Reduction in treatment costs due to early detection
Savings from minimizing unnecessary procedures

Figure 10 elucidates the transformative potential of HFRCNN over just a six-month
period (3 months before the implementation of HFRCNN and after the implementation).
In terms of patient survival rates, early detections rose from 50 to 80 cases, marking a
60% increase post-HFRCNN. Such a substantial uptick suggests that, globally, the precise
detection capabilities of HFRCNN could lead to timelier interventions, ultimately enhanc-
ing patient survival rates. On the financial side, healthcare costs saw a marked reduction,
with treatment expenses halving from USD 1 million to USD 500,000 in the observed period.
Moreover, costs due to unnecessary procedures plummeted from USD 100,000 to a mere
USD 20,000, indicating an 80% reduction. This dramatic decrease not only underscores
substantial saving potential, but also hints at the system’s accuracy in minimizing false
positives. Collectively, these quantifiable shifts highlight the profound global implications
of HFRCNN in both improving patient outcomes and ensuring cost-efficient healthcare.
Besides the analysis, we also highlighted the sample report of a patient as a key reference.
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Figure 10. Comparative analysis of patient survival rates and healthcare costs before and after the
implementation of HFRCNN over a three-month period.

Figure 11 elucidates the transformative impact of integrating HFRCNN into telemedicine
platforms (based on a few open-source data collection platforms like GNU Health (GNU
Health | Freedom and Equity in Healthcare, n.d.), OpenEMR (OpenMRS, n.d.), etc.)
across diverse geographies. Through a stacked bar representation, it juxtaposes early
lung cancer detection rates before and after HFRCNN integration. For instance, in Africa,
the detection rate surged from a modest 10% before integration to an impressive 40%
afterward. A hatched pattern on the bars distinctly signifies regions like Africa and South
Asia, which historically grapple with limited medical access, yet showed remarkable
improvements, exemplifying HFRCNN’s potential. Furthermore, pilot regions, specifically
Africa (experiencing a 30% increase) and Central America (experiencing a 30% rise from 20%
to 50%), are marked, emphasizing the real-world efficacy of this integration. This data-rich
representation underlines the pivotal role of HFRCNN in enhancing lung cancer detection
across diverse populations and locales. Moreover, the visual demarcation using a hatched
pattern specifically emphasizes regions with limited medical access, highlighting significant
improvements in detection rates therein. The broad geographical spectrum covered in
the graph further accentuates the universal applicability and potential of HFRCNN in
bolstering early lung cancer detection across varied populations.
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5. Conclusions and Future Work

In the recent undertaking of this research, paramount importance was accorded to
the Hybridized Faster R-CNN (HFRCNN) method, aiming to harness its capabilities for
the early and precise detection of lung anomalies from CT images. The results garnered
from this study have unequivocally showcased the robustness and superiority of the
HFRCNN approach, especially when juxtaposed against other conventional methodologies.
Evidently, HFRCNN made a notable mark by achieving an accuracy rate that soared to
97.00%. This impressive accuracy underscores its precision in identifying the subtlest
indicators of potential lung issues within the intricate layers of CT imagery. Furthermore,
its commendable intersection over union (
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) score of 0.87 bears testimony to the model’s
prowess in not just detecting, but also accurately demarcating the exact regions of concern
within the lung’s anatomy. As we traverse deeper into the comparative analysis, the
supremacy of HFRCNN becomes even more pronounced. When pitted against other
techniques, HFRCNN consistently emerged at the forefront, outstripping others across a
gamut of evaluative metrics. This consistent outperformance is emblematic of its refined
algorithmic design, which is fine-tuned for the nuances of medical imagery.

Such resounding successes of HFRCNN are not merely academic achievements; they
hold profound implications for real-world medical diagnostics. With lung ailments often
requiring early detection for optimal therapeutic outcomes, the incorporation of HFRCNN
into diagnostic protocols can herald a transformative change. It promises not only en-
hanced diagnostic accuracy but also the potential for timely medical interventions, thereby
amplifying the chances of recovery and bolstering the overall prognosis for patients. The
integration of the Hybridized Faster R-CNN (HFRCNN) into global telemedicine platforms
holds transformative potential for the landscape of early lung cancer detection. Moreover,
telemedicine platforms, coupled with the HFRCNN’s capabilities, can offer real-time or
near-real-time analysis of medical images. This immediate feedback can expedite diagnosis
and subsequent treatment, crucial for conditions like lung cancer where early intervention
can significantly impact patient outcomes.

Our future work is focused on further validation of the HFRCNN approach, and other
deep learning algorithms in large-scale clinical studies and diverse patient populations is
essential to assess their real-world performance. Additionally, the implementation of these
algorithms in clinical practice, considering regulatory and ethical considerations, would be
a crucial step for their widespread adoption.
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