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Abstract: One of the most prevalent cancers is oral squamous cell carcinoma, and preventing mortality
from this disease primarily depends on early detection. Clinicians will greatly benefit from automated
diagnostic techniques that analyze a patient’s histopathology images to identify abnormal oral lesions.
A deep learning framework was designed with an intermediate layer between feature extraction
layers and classification layers for classifying the histopathological images into two categories,
namely, normal and oral squamous cell carcinoma. The intermediate layer is constructed using the
proposed swarm intelligence technique called the Modified Gorilla Troops Optimizer. While there
are many optimization algorithms used in the literature for feature selection, weight updating, and
optimal parameter identification in deep learning models, this work focuses on using optimization
algorithms as an intermediate layer to convert extracted features into features that are better suited for
classification. Three datasets comprising 2784 normal and 3632 oral squamous cell carcinoma subjects
are considered in this work. Three popular CNN architectures, namely, InceptionV2, MobileNetV3,
and EfficientNetB3, are investigated as feature extraction layers. Two fully connected Neural Network
layers, batch normalization, and dropout are used as classification layers. With the best accuracy of
0.89 among the examined feature extraction models, MobileNetV3 exhibits good performance. This
accuracy is increased to 0.95 when the suggested Modified Gorilla Troops Optimizer is used as an
intermediary layer.

Keywords: oral cancer; histopathologic images; CNN; deep learning framework; swarm intelligence;
Gorilla Troops Optimizer

1. Introduction

Any neighbor tissue impairment due to uncontrolled cell growth and invasion is
called cancer. Oral cancer is ranked as the sixth most prevailing cancer globally, and it
falls under the broad category of head and neck cancer. Oral cancer results in malig-
nant cell growth in the lips and various parts of the oral cavity. Worldwide, it is ranked
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as the fifteenth most common reason for death among various types of cancer. Out of
one hundred thousand people, a minimum of four people are affected by this disease across
the globe [1,2]. Approximately, seventy-seven new cases and fifty-two thousand deaths are
registered every year in India, and one-fourth of the global oral cancer occurs in India [3]. In
2018, around 355,000 oral cancer cases occurred worldwide and resulted in 177,000 deaths.
Estimates for the year 2020 include about 53,260 new cases added to the previous year’s
cases, and the estimated death toll from this cancer in 2020 was about 10,750 deaths more
than previous years [4,5].

The most common types of oral cancer include oral squamous cell carcinoma (OSCC),
verrucous carcinoma, minor salivary gland carcinomas, lymphoma, and mucosal melanoma.
Among them, OSCC is a predominant type of oral cancer which contributes around 84–97%
of oral cancer cases [6]. The major risk factors that lead to the development of OSCC include
tobacco usage, frequent chewing of betel quid, alcohol intake, oral infection, and genetic
disorders [7]. Detection of OSCC at an early stage is very crucial to avoid deaths since the
five-year survival rate of humans with early-stage OSCC is around 85%, while it is only
around 40% with advanced stage [8,9]. Hence, early detection is the key to reducing the
mortality rate and so there is a huge demand for diagnostic tools that identify OSCC at
earlier stages of malignancy.

Apart from physical examination, major diagnostic tools used for the identification of
oral cancer include techniques such as endoscope biopsy, liquid biopsy, the vital staining
technique, ultrasound imaging, Magnetic Resonance Imaging (MRI), Computed Tomog-
raphy (CT) imaging, Raman spectroscopy, gene/DNA array-based biomarker detection,
enzyme assay-based biomarker detection, and histopathological examination [6]. Among
these techniques, histopathologic examination is mainly preferred since it can be used to de-
tect both malignant and benign tumors by identifying the changes in histopathological and
molecular levels. Histological assays can be used to reveal the gradual growth of malignant
cells in the oral cavity beginning from elementary dysplasia to tumors with a highly inva-
sive nature. It helps analyze cell proliferation, growth of abnormalities, cytoplasmic-level
and cellular-level atypia, changes at the surface of the epithelium, and deep tissue-level
cytoarchitecture [10]. Usually, abnormalities at the microscopic and clinical levels arise only
after abnormalities at the molecular and genetic levels. Histopathological examination is
good at capturing these molecular-level changes and so is preferred for early detection [11].

Analysis of histopathological images with visual inspection is usually subjective
and prone to errors sometimes. Particularly, the sensitivity and specificity measures will
be very poor in the visual inspection of histopathological images when compared with
computerized diagnostic tools. Sometimes, human inspection is biased so that many
patients are identified as having OSCC even though they do not possess it, which makes
the specificity measure low. In some other cases, the clinician may be biased to not detect
a diseased person properly, which results in poor sensitivity. Computerized diagnostic
tools will be very helpful to assist clinicians in the decision-making process to reduce such
errors. Various machine learning (ML) techniques are used nowadays in a variety of fields.
Particularly in the healthcare field, the implementation of ML algorithms is increasing day
by day. Accuracy and robustness are the key concerns in such healthcare-related decision-
making tools. Fortunately, nowadays, deep learning (DL) models are available for solving
these issues. Deep learning is a sub-field in machine learning where Artificial Neural
Network (ANN) models with many numbers of hidden layers are trained with a large set
of training images and labels; labels of new unseen images are predicted using the trained
model. The main advantage of deep learning is that it does not require hand-crafted feature
engineering, which is required by traditional supervised classifiers such as Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Decision Trees (DT), etc., where domain
experts are required to identify the appropriate features and Region of Interest (RoI) [12,13].

Convolutional Neural Networks (CNNs) are a popular deep learning technique where
convolution operation is involved in multiple ANN layers. Various CNN architectures have
been developed, and they are very efficient in different image classification tasks [14,15].
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Popular CNN architectures include ResNet, EffiecientNet, InceptionNet, MobileNet, etc.
The main advantage of these architectures is their ability to work well on a classification
task even if most of their weights are pre-trained on another classification task. This concept
is known as transfer learning and works very well for two similar and unique classification
tasks. The two main advantages of transfer learning are a reduction in training time and
competence to work well on small datasets [16,17].

To improve the accuracy of such deep learning models, various techniques are used
such as fine-tuning, feature selection, regularization, optimal parameter selection, optimiza-
tion, etc. On the other hand, various population-based swarm intelligence (SI) optimization
algorithms are widely used for optimal parameter identification, weight updating, and
feature selection in deep learning models for enhancing accuracy. SI algorithms are meta-
heuristic iterative algorithms that are usually inspired by the characteristics and nature of
the swarm of animals. These algorithms are preferred in many applications, mainly due to
their minimalism, derivation-free design, and ability to avoid local optima [18]. Some of the
popular SI algorithms include Particle Swarm Optimization (PSO), Ant Colony Optimiza-
tion, the Grey Wolf Optimizer, Dragonfly Optimization, Elephant Herding Optimization,
the Gorilla Troops Optimizer (GTO), etc.

This work primarily focuses on classifying histopathological images into two cat-
egories: Normal and OSCC. Histopathological image features are extracted using pre-
trained weights of transfer learning-based popular CNN models namely, InceptionV2,
MobileNetV3, and EfficientNetB3. Then, the Modified Gorilla Troops Optimizer (MGTO)
is used as an intermediate layer in between feature extraction and classification layers.
Two fully connected ANN layers, batch normalization, and dropout are used as classifica-
tion layers.

The key contributions of this research work are listed below:

1. The proposal of a novel deep learning framework that includes a swarm intelligence-
based optimization algorithm as an intermediate layer in the deep learning model.

2. The development of MGTO with appropriate modifications that enhance classification
accuracy.

3. A comparative analysis of popular deep learning models with and without the pro-
posed intermediate layer in terms of various classification metrics and training times.

The remainder of this paper is organized as follows: Section 2 deals with related
works, and Section 3 is related to the background of various transfer-learning models
used and the original GTO. Section 4 deals with the methodology used in this research
work, and Section 5 presents the implementation procedure for the proposed MGTO as
an intermediate layer. Results are presented and discussed in Section 6. The last section
summarizes the conclusion and future work.

2. Related Work

Various techniques based on machine learning and deep learning are proposed in
the literature to diagnose oral cancer by analyzing medical images. Early publications
related to oral cancer diagnosis mainly use feature extraction and traditional supervised
classifiers [19–22]. For example, Krishnan et al. [23] considered features based on texture
discrimination using higher order spectra, laws texture energy, and local binary pattern and
fed these features to supervised classifiers such as DT, the Gaussian Mixture Model, KNN,
the Sugeno Fuzzy Classifier, and the Radial Basis Probabilistic Neural Network. Similarly,
Thomas et al. [24] proposed textural change detection using features extracted from digital
images of oral lesions using a grey-level cooccurrence matrix and grey-level run length
matrix. They used back a propagation-based ANN for classification. Particularly for OSCC
diagnosis, Rahman et al. [25,26] proposed texture, shape, and color feature extraction from
histopathological images and classification using DT, SVM, and Logistic Regression.

The usage of deep learning models in medical image analysis is increasing rapidly,
particularly from the last decade onwards. Various deep learning models are developed
and tested for oral cancer diagnosis that involve both binary and multi-class classification.
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In [27], the authors investigated a customized AlexNet model for detecting OSCC from
histopathological images. In [28], the authors applied the DenseNet121 model to oral
biopsy images to detect OSCC and found that it performs better than regions with the
CNN (R-CNN) model. Other transfer learning models such as Inception-ResNet-V2 [29],
Xception [30], and ResNet101 [31] were also investigated for diagnosing oral cancer from
medical images. Apart from the above-mentioned works where popular CNN architectures
are investigated, some works propose their own CNN model for detecting oral cancer. For
example, Lin et al. [32] proposed the HRNet model for diagnosing malignant lesions in
oral cavities and compared it with popular ResNet50 and DenseNet169 models. In [33],
the authors developed a modified CNN model that performs well when compared with
transfer learning-based models such as Resnet-50, VGG-16, VGG-19, and Alexnet. Similarly,
Das et al. [31] proposed their own ten-layer CNN model that outperforms pre-trained
CNN models in the diagnosis of OSCC from histopathological images. Other than CNN
and its variants, capsule networks are also implemented in some works to identify oral
malignancy. In [34], the authors tested performance capsule networks to identify OSCC
from histopathological images.

Many optimization algorithms are used in many applications to enhance the clas-
sification performance and robustness of deep learning models, and some of them are
outlined below. A hybrid optimization algorithm was developed that mixes PSO and
Al-Biruni Earth Radius Optimization for optimizing the design parameters of CNNs and
Deep Belief Networks in malignant oral lesion identification [35]. The segmentation of
psoriasis skin images using Adaptive Golden Eagle Optimization was implemented for
finding the ideal weight and bias parameters of CNNs [36]. The Artificial Bee Colony
optimization algorithm was considered for finding the optimal hyper-parameters of a CNN
that worked as a classifier for identifying plant species [37]. The optimal guidance-whale
optimization algorithm was used to select features extracted from an AlexNet–ResNet50
model, and the selected features were supplied to bi-directional long short-term memory
for Land Use Land Cover classification [38]. Modified Lion Optimization was implemented
for selecting the optimal features in a transfer learning-based CNN classification model
to build a multimodal biometric system [39]. In this manner, numerous optimization
algorithms are incorporated for finding optimal hyper-parameters, training models, and
feature selection in deep learning. Comparatively, only a few works are reported regarding
the usage of optimization algorithms as a transformation technique. For example, the
Crow search optimization algorithm is used was a transformation technique for improving
the classification performance of weighted KNN in the severity classification of breast
cancer [40].

From the above-related works, the following points can be summarized. Compared
with hand-crafted feature extraction and traditional supervised classifiers, deep learning
models perform well in the diagnosis of OSCC. But still, they lag in classification accuracy
and robustness. To solve these two concerns, optimization algorithms are widely used
in various applications for the improvisation of deep learning models in different ways.
Hence, this work attempts to use the MGTO optimization algorithm as an intermediate
layer between feature extraction and classification layers for enhancing the accuracy of
OSCC diagnosis.

3. Background
3.1. CNN

CNN [41]-based deep learning models are widely used to classify images in a variety
of applications, mainly due to their capability of recognizing an underlying pattern. Convo-
lution operation at multiple layers acts as the foundation for CNN and generally, a typical
CNN contains convolutional layers, pooling layers, and fully connected layers. The goal of
convolution layers is to extract the image attributes such as contours, colors, etc. Pooling
layers act as a dimensionality reduction layer, i.e., the layer that reduces the number of
features. Max and average pooling layers are very popular when compared with others.
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The last stage is usually built using a fully connected layer called DenseNet, and it is
responsible for classification [42].

3.2. InceptionV2

The inception [43] model is an altered version of a CNN in which inception blocks are
included. These inception blocks refer to the processing of the same input with different
filter sizes before combining them. InceptionV2 is an advanced variant of the original
InceptionV1. When compared with Inception V1, two 3 × 3 convolution operations are
performed in Inception V2 instead of one 5 × 5 convolution operation. In addition, the
filter size n × n is factorized into 1 × n and n × 1 convolutions in Inception V2.

3.3. MobileNetV3

MobileNet [44] is a modified version of a CNN where batch normalization and ReLU
activation functions are used instead of a single 3 × 3 convolution layer. In addition,
one convolution operation is carried out for each color channel in MobileNet, while the
flattening of color channels will happen in typical CNNs. Relatively, MobileNet architec-
tures require minimal computational power and so are mainly preferred in mobile devices
and embedded systems. Compared with MobileNetV1, bottlenecks with residuals are im-
plemented in MobileNetV2, while layer removal and swish non-linearity are incorporated
in MobileNetV3.

3.4. EfficientNetB3

Unlike typical CNNs, EfficientNet [45] uniformly scales all dimensions with a com-
pound coefficient. A fixed set of scaling coefficients is used to uniformly scale the network
depth, width, and resolution. The original EfficientNetB0 version is based on MobileNetV2
combined with squeeze and excitation blocks. EffientNetB3 is developed by scaling up the
baseline network of previous versions.

3.5. Gorilla Troops Optimization

GTO is one of the iterative meta-heuristic optimization algorithms that was proposed
in the year 2021 [46]. It is based on the social activities and characteristics of a gorilla
troop. Usually, each such troop contains one adult male gorilla, called a silverback gorilla,
a substantial number of adult female gorillas, and their children. The male gorilla leads
the troop, and it is responsible for controlling the troop activities such as identification of
sources of food, solving conflicts, and decision-making. GTO is mathematically modeled
as a five-stage algorithm where three stages are responsible for exploration, while the
remaining two stages are related to exploitation. The positions of gorillas are updated
using the following equations:

X(t + 1) =


(Ul − Ll )× r1 + Ll rand < p

(r2 − C)× Xr(t) + L× H rand ≥ 0.5

X(t)− L× (L× (X(t)− Xr(t)) + r3 × (X(t)− Xr(t))) rand < 0.5

(1)

where X is the position of the current gorilla at iteration t. r1, r2, r3, and rand are
random numbers in the range of 0 to 1. p is a parameter whose value will usually lies
between 0 and 1. Ul and Ll are the upper and lower boundaries, respectively. Xr is a
gorilla randomly chosen at each iteration. The values of C, L, and H are calculated using
Equations (2), (4) and (5), respectively.

C = F×
(

1− Iter
Maxit

)
(2)

F = cos(2× r4) + 1 (3)

L = C× l (4)
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H = Z× X(t) (5)

In Equation (2), Iter represents the current iteration and Maxit represents the max-
imum number of iterations. F in Equation (2) is calculated using Equation (3), and r4 is
a random number in the range of 0 to 1. Here, l is an integer randomly chosen in the
range of −1 to 1. In Equation (5), Z is a random number in the range −C to +C. Based
on the position of the silverback, the other gorillas change their position while searching
for food, and this behavior is represented using Equation (6). The M value mentioned in
Equation (6) is computed using Equations (7) and (8).

X(t + 1) = L×M× (X(t)− Xsilverback) + X(t) (6)

M =

(∣∣∣∣ 1
N

∣∣∣∣g ∑N
i=1 Xi(t)

) 1
g

(7)

g = 2L (8)

where Xsilverback is the position of the silverback gorilla with the best position when com-
pared with the positions of the other gorillas and N is the total number of gorillas. Gorilla
behavior in competing to choose adult females is represented using Equation (9).

X(t + 1) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A (9)

Q = 2× r5 − 1 (10)

A = β× E (11)

E =

{
N1 rand ≥ 0.5

N2 rand < 0.5
(12)

In the above equations, r5 and rand are random numbers in the range of 0 to 1, while
β is a parameter whose value is crucial in deciding the updated positions of gorillas. N1 is
a random number in the range decided by the problem dimension, while N2 is a random
number that follows a normal distribution in the range [0, 1]. Initially, Equation (1) is used to
update all the gorilla positions. Then, the silverback gorilla is found in that iteration. After
that, the other gorilla positions will be updated based on the silverback gorilla position. If
|C| ≥ 1, then the positions of the gorillas are updated using Equation (6); otherwise, they
will be updated using Equation (9).

3.6. Particle Swarm Optimization

PSO [47] is one of the popular and efficient swarm intelligence-based optimization al-
gorithms. PSO is inspired by the characteristics exhibited by flocks of birds while searching
for food. Usually, the population will be initialized randomly and updated in each iteration
based ona fitness function. The velocity of each particle is mathematically modeled and
updated using Equation (13).

vi(t + 1) = w× vi(t) + c1 × r1 × (pi(t)− xi(t)) + c2 × r2 × (gbest− xi(t)) (13)

where vi(t) stands for the velocity of the ith particle in iteration t. Three crucial parameters
in PSO are w, c1, and c2. The position of the ith particle in iteration t is represented as xi(t);
and pi(t) and gbest represent the personal best and global best particle positions, respec-
tively. r1 and r2 are random numbers in the range of 0 to 1. The position of each particle is
updated based on the old position and new velocity, as represented in Equation (14).

xi(t + 1) = xi(t) + vi(t + 1) (14)



Diagnostics 2023, 13, 3461 7 of 27

The personal best and global best are computed in each iteration using
Equations (15) and (16), respectively.

pi(t + 1) =

{
pi(t) i f f (xi(t + 1)) ≥ f (pi(t))

xi(t + 1) i f f (xi(t + 1)) < f (pi(t))
(15)

gbest ∈ {p0(t), p1(t), . . . ., pm(t) }
= min { f (p0(t)), f (p1(t)), . . . , f (pm(t)) }

(16)

where f represents the fitness function, which is crucial in deciding the performance of
PSO.

3.7. Elephant Herding Optimization

Elephant Herding Optimization (EHO) [48] is inspired by the behavior of elephants.
Like PSO and GTO, EHO also falls under the category of swarm intelligence meta-heuristic
algorithms. The position of an elephant is updated using Equation (17).

xnew
i = xold

i + α
(

xbest − xold
i

)
∗ ran (17)

where xnew
i and xold

i are the new and old positions of the ith elephant. xbest is the best
elephant position found using Equation (18). xcenter in Equation (18) is computed using
Equation (19). In addition to updating the best elephant position, the worst elephant
position xworst is also updated using Equation (20).

xbest = β× xcenter (18)

xcenter =
1
n
×∑n

i=1 xi (19)

xworst = xmin + (xmax − xmin + 1) ∗ rand (20)

where α and β are the EHO parameters; rand is a random number in the range [0, 1]; and n
is the number of elephants. xmax and xmin are the maximum and minimum boundaries for
elephant positions.

4. Materials and Methods

Three publicly available datasets comprising 2784 Normal and 3632 oral squamous
cell carcinoma subjects are considered in this work. The first dataset was obtained from
Kaggle [49], and it contains oral histopathological images at both the 100× and 400× zoom
levels. The first dataset contains a total of 5192 images, and out of them, 2494 images belong
to the Normal class and 2698 belong to OSCC class. The second and third datasets are
obtained from the online repository built by Tabassum Yesmin Rahman et al. [50]. Oral
histopathological images with zoom levels of 100× and 400× are present in the second and
third datasets, respectively. A total of 89 normal images and 439 OSCC images are available
in the second dataset, while 201 normal images and 495 OSCC images are available in the
third dataset. Some of the sample oral histopathological images belonging to normal and
OSCC classes are shown in Figure 1 and Figure 2, respectively.

The typical procedure for implementing oral cancer detection using transfer learning-
based feature extraction is shown in Figure 3. Histopathological oral images from the
three datasets are fed to the feature extraction layers discretely, and the resultant classifica-
tion performance metrics are also computed individually. Features are extracted using the
transfer learning approach, where the weights are pre-trained for another similar dataset.
Three popular CNN architectures, namely, InceptionV2, MobileNetV3, and EfficientNetB3,
are investigated in this work for feature extraction. Weights that are pre-trained for the
popular ImageNet dataset are considered in all three architectures. The extracted features
are then divided into training, validation, and test feature sets using a stratified shuffle
split approach in a 70:15:15 ratio, respectively. A validation set is used to avoid overfitting
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and to improve the performance of the model for the unseen new data. A stratified shuffle
split is considered since it randomly selects the samples according to the class ratio in the
original dataset. In other words, stratified shuffle split ensures the ratio of each class in all
three resultant sets is the same as that shown in Table 1. This approach of data splitting is
very crucial in imbalanced datasets. Then, the classification layers are trained using training
and validation feature sets, where the ideal weights of Neural Networks for classifying the
oral histopathological images are found.
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Two fully connected Neural Network layers along with batch normalization and
dropout are used as classification layers, as shown in Figure 4. Finally, the trained classifi-
cation layers with ideal weights are used to classify the test feature set as Normal or OSCC
class. In Figure 4, the functional layer depicts the transfer learning-based pre-trained model
while the remaining layers are used for classification. The specifications of the classification
layer considered in this research work are presented in Table 2. For comparison purposes,
the classification layer is unaltered for all the datasets and different feature extraction layers.
Specifications related to the number of epochs and batch size during training, optimizer,
early stopping, and a reduction in the learning rate on the plateau are also mentioned in
Table 2. Based on the transfer model used for the feature extraction layer, the number of
trainable parameters of the complete deep learning model will vary, as shown in Table 3.
The number of features extracted per input image with the three different feature extraction
layers is also shown in Table 3.
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Table 2. Specifications of the classification layers and techniques used.

Classification Layers and Techniques Used Specifications

Batch Normalization momentum = 0.99, epsilon = 0.001

Dense
units = 256, kernel regularizer = L2 regularizer with coeffi-

cient L = 0.016, activity regularizer = L1 regularizer with coefficient L = 0.006,
bias regularizer = L1 regularizer with coefficient L = 0.006, activation = ReLu

Dropout drop rate = 0.45

Dense units = 2, activation = SoftMax

Training epochs = 100, batch size = 128, stratified shuffle split: training—70%,
testing—15%, validation—15%

Optimizer Adamax with learning rate = 0.001, loss = sparse categorical cross-entropy,
metrics = accuracy

Early stopping patience = 5, minimum delta = 0, monitor = validation loss,
restore best weights = true, mode = minimum

Reduce learning rate on plateau monitor = validation loss, factor = 0.2, patience = 4, mode = minimum

Table 3. Specifications of the feature extraction layers.

Feature Extraction Layers Total Number of
Parameters

Number of Trainable
Parameters

The Number of
Features Extracted

Mobilenet V3 2,591,554 331,010 1280

Efficientnet B3 11,183,665 397,058 1536

InceptionV2 54,736,866 397,058 1536

The proposed approach for OSCC detection is presented in Figures 5 and 6. An
intermediate layer based on MGTO is included in the proposed method when compared
with Figures 3 and 4. Similar to the classification layer, the newly introduced intermediate
layer also needs to be trained, where it will learn the ideal values for its parameters related
to the MGTO algorithm. Hence, it is trained with the original training and validation feature
sets. Then, all three original feature sets are supplied as input to the trained MGTO layer,
where the feature sets are transformed to produce another three transformed sets, namely,
training, testing, and validation. The size of the input and output feature sets remains the
same. Then, the transformed sets are considered classification layers for detecting the class
of an oral histopathological image.
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5. Implementation of the Proposed MGTO

The equations to update the positions of gorillas are modified based on the Sine Cosine
Algorithm 1 [51] to increase the exploitation and exploration capabilities of GTO. In MGTO,
three equations that update the positions of gorillas are modified. Equations (1), (6) and (9)
of GTO are modified, as represented in Equations (21)–(23), respectively, in MGTO. All
other equations of GTO remain intact in MGTO.
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X(t + 1) =


(Ul − Ll )× r1 + Ll rand < p

(r2 − C) Xr(t) + L× H rand ≥ 0.5
X(t)− L× rad× sin(X(t)− Xr(t)) + rad× cos(X(t)− Xr(t))) rand < 0.5

(21)

X(t + 1) = L×M× rad× sin(X(t)− Xsilverback) + X(t) (22)

X(t + 1) = Xsilverback − rad× cos(Xsilverback ×Q− X(t)×Q)× A (23)

where rad in the above equations is computed using Equation (24). const in Equation (24)
is a constant, and it is considered to be three, as suggested in [48]. Crnt_ Iter represents the
current iteration number, while Max_Iter represents the maximum number of iterations.

rad = const− Crnt_Iter ×
(

const
MaxIter

)
(24)

In the original GTO, the gorilla population is initialized randomly. When using MGTO
as an intermediate layer in deep learning models, the gorilla population is initialized with
the features extracted from the previous layer. The number of gorillas is equal to the
number of features extracted. Then, the gorillas’ positions are updated in each iteration
using MGTO equations. The fitness function is very crucial in optimization algorithms,
and it is selected based on the problem to be solved. To use MGTO for transforming the
features, the fitness function based on the variance metric is considered. The fitness of each
gorilla, F(Xi) depends on its own position and four nearest-neighbor gorillas, as shown in
Equation (25).

F(Xi) = Variance(Xi−2, Xi−1, Xi, Xi+1, Xi+2) (25)

In MGTO, p and β are the parameters that mainly determine the performance along
with Max_Iter. The ideal values of these parameters are found based on the accuracy
attained during training and validation. The validation accuracy for various values of
Max_Iter is plotted in Figures 7 and 8. The ideal value is found where the validation
accuracy of 0.77 is reached. While finding the optimal value for Max_Iter, the other
two parameters, namely, p and β are kept at 0.5 (median of range [0, 1]). To find the optimal
values for p and β parameters, Max_Iter is kept at its ideal value of 11. Figure 8 depicts the
validation accuracy for various values of the p and β parameters. The highest validation
accuracy of 0.95 is attained when p = 0.3 and β = 0.7. Finding the ideal values for the
parameters of MGTO is termed training, and for this purpose, training and validation
feature sets are used. After training, an MGTO transform is implemented for all three
feature sets, namely, the training, validation, and test sets with the ideal parameter values
of Max_Iter = 11, p = 0.3, and β = 0.7. Notably, these are the ideal parameters of MGTO
for the first dataset when MobileNetV3 is used as a feature extraction layer. The ideal
parametric values may change depending on the input data given to the MGTO layer. The
ideal values for other input data will be presented in the next section. The procedure for
implementing MGTO as an intermediate feature transform layer for the test feature set is
summarized in Algorithm 1.
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Algorithm 1: Algorithm to implement the proposed MGTO as an intermediate layer in deep
learning models for feature transformation of a test feature set.

Step 1: Extract features using pre-trained transfer learning models for each oral histopathological
image.
Step 2: Consider the number of features as the size of the population in MGTO. Initialize the
position of gorillas with extracted features.
Step 3: Initialize parameters of MGTO: Ul = max

(
X1, X2, . . . ., XN), Ll = min

(
X1, X2, . . . ., XN),

MaxIter = 11, p = 0.3, and β = 0.7.
Step 4: Compute the fitness value of each gorilla using Equation (25).
Step 5: Update the position of each gorilla using Equation (21).
Step 6: Identify the silverback gorilla, i.e., the gorilla with the highest fitness.
Step 7: Update the position of each gorilla using Equation (22) if |C| ≥ 1. Otherwise, use
Equation (23).
Step 8: Repeat steps 4 to 7 until the maximum number of iterations is reached. If the maximum
number of iterations are completed, then go to step 9.
Step 9: Consider the final position of the gorillas as the output of the feature transform and give
them as input to the classification layer.
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6. Results and Discussion

Initially, the experiment is conducted without any intermediate layers in the deep
learning model. Three different transfer learning-based models, namely, InceptionV2,
MobileNetV3, and EfficientNetB3, are tested as feature extraction layers. As mentioned in
Table 2, the specifications of the classification layer remain the same for all three different
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feature extraction layers. The confusion matrix attained for these three deep learning
models without an intermediate layer on the first dataset in OSCC detection is shown
in Figure 9. In Figure 9, the label 0 represents the Normal class and label 1 represents
class OSCC class. EfficientNetB3 classifies all the input images as OSCC, and so its True
Negative (TN) = 0. This clearly indicates the poor performance of the EfficientNetB3-based
deep learning model without an intermediate layer. To detect OSCC, a high TP is required,
while to detect the Normal class properly, a high TN is required. Among the remaining
two models without an intermediate layer, the highest True Positive (TP) is attained with
MobileNetV3, while the highest TN is attained with InceptionV2.
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To improve the number of TNs and TPs, an MGTO-based intermediate layer is
proposed in this work. Figure 10 shows the confusion matrix of three different feature
extraction-based deep learning models with MGTO as the intermediate layer in OSCC
detection. When MGTO is not used as an intermediate layer in the EfficientNetB3-based
deep learning model, all the oral images are classified as OSCC, while better TN and TP
values are attained with the proposed layer. The highest TN and TP values are attained for
the proposed MobileNetV3-based feature extraction with MGTO as an intermediate layer.
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Based on the confusion matrix, four popular performance metrics, namely, accuracy,
precision, recall, and the F1-score, are used in this research work to analyze the performance
of the deep learning models. In addition to the deep learning models with and without
an MGTO-based intermediate layer, three other swarm intelligence-based optimization
algorithms, namely, PSO, EHO, and GTO, are also tested as intermediate layers, and their
results are also presented in Table 4. The implementation procedure for PSO, EHO, and
GTO as intermediate layers follows Algorithm 1 presented in the previous section. Only
the parameters and the way of updating the position of the swarm vary based on the
optimization algorithm used. The final ideal parameters of all four tested intermediate
layers after training are listed in Table 5.

The main objective of this work is to detect OSCC, so precision, recall, and the F1-score
in Table 4 are related to the correct identification of OSCC class, while the accuracy metric
is related to the correct identification of both the Normal and OSCC classes. As seen in
Table 4, the deep learning models without an intermediate layer provide less accuracy than
the proposed deep learning models with MGTO as an intermediate layer.
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Table 4. Performance metrics computed on the test set of the first dataset.

Transfer Learning Model Intermediate Layer Accuracy Precision Recall F1-Score

MobilenetV3 NO 0.89 0.87 0.92 0.89
EfficientnetB3 NO 0.52 0.52 1 0.68
InceptionV2 NO 0.88 0.89 0.88 0.88
MobilenetV3 PSO 0.79 0.78 0.82 0.8
EfficientnetB3 PSO 0.75 0.75 0.78 0.77
InceptionV2 PSO 0.82 0.85 0.8 0.82
MobilenetV3 EHO 0.77 0.77 0.8 0.79
EfficientnetB3 EHO 0.8 0.82 0.78 0.8
InceptionV2 EHO 0.83 0.85 0.82 0.83
MobilenetV3 GTO 0.87 0.87 0.88 0.88
EfficientnetB3 GTO 0.81 0.83 0.8 0.81
InceptionV2 GTO 0.86 0.86 0.88 0.87
MobilenetV3 MGTO 0.95 0.95 0.95 0.95
EfficientnetB3 MGTO 0.9 0.92 0.9 0.91
InceptionV2 MGTO 0.93 0.93 0.93 0.93

Table 5. Ideal parameters of various intermediate layers.

Feature Extraction Intermediate Layer Ideal Parameter Values

MobilenetV3

PSO Max_Iter = 10, w = 0.6, c1 = 0.7, and c2 = 0.9

EHO Max_Iter = 12, α = 0.9, and β = 0.8

GTO Max_Iter = 11, p = 0.2, and β = 0.7

MGTO Max_Iter = 11, p = 0.3, and β = 0.7

EfficientnetB3

PSO Max_Iter = 12, w = 0.4, c1 = 0.7, and c2 = 0.9

EHO Max_Iter = 12, α = 0.7, and β = 0.8

GTO Max_Iter = 8, p = 0.5, and β = 0.7

MGTO Max_Iter = 9, p = 0.3, and β = 0.8

InceptionV2

PSO Max_Iter = 12, w = 0.6, c1 = 0.8, and c2 = 0.8

EHO Max_Iter = 11, α = 0.8, and β = 0.6

GTO Max_Iter = 7, p = 0.4, and β = 0.7

MGTO Max_Iter = 9, p = 0.4, and β = 0.6

Among the models without an intermediate layer, MobileNetV3 offers the highest
accuracy of 0.89, which is followed by InceptionV2 with an accuracy of 0.88 and Efficient-
NetB3 with an accuracy of 0.52. The reason for such poor performance of EfficientNetB3 is
explained as follows: All three feature extraction models are pre-trained on the ImageNet
dataset and features are extracted based on the weights appropriate for the ImageNet
dataset. The weights and architecture of EfficientNetB3 fail to capture the significant fea-
tures from input oral images, while vital features are properly extracted using the remaining
two feature extraction models. This statement is further supported by Figure 11, where the
training and validation accuracy and loss are presented for all the three investigated deep
learning models without an intermediate layer on the first dataset.
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Since quality features are extracted with MobileNetV3 and InceptionV2, both training
and validation accuracy increase gradually during training. In addition, both training
and validation loss also decrease exponentially. But a deep learning model that uses
EfficientNetB3 fails to increase in both training and validation accuracy due to the poor
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features that are extracted from the histopathological oral images. Figure 12 presents the
training and validation accuracy and loss when MGTO is used as an intermediate layer on
the first dataset. It clearly shows an improved accuracy during both training and validation
because of the transformed appropriate features produced with MGTO. To support the
findings based on the first dataset, the other two smaller OSCC datasets are tested. The
second and third datasets are highly imbalanced since the number of OSCC class samples is
much higher than the number of normal class samples. The performance metrics attained
on those two datasets are presented in Tables 6 and 7.
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Figure 12. Training and validation accuracy and loss of deep learning models with MGTO as an
intermediate layer on the first dataset.

From Tables 4, 6 and 7, it is very clear that MGTO works very well as an intermediate
layer when compared with the other tested intermediate layers in all three datasets. The
significance of MGTO as an intermediate layer can be clearly seen in Figure 13, where the
percentage of accuracy increase attained with the usage of various intermediate layers
when compared with a deep learning model without an intermediate layer is depicted.

Table 6. Performance metrics computed on the test set of the second dataset.

Transfer Learning Model Intermediate Layer Accuracy Precision Recall F1-Score

MobilenetV3 NO 0.8 0.8 0.97 0.88
EfficientnetB3 NO 0.74 0.74 1 0.85
InceptionV2 NO 0.8 0.82 0.93 0.87
MobilenetV3 PSO 0.78 0.81 0.92 0.86
EfficientnetB3 PSO 0.75 0.79 0.9 0.84
InceptionV2 PSO 0.8 0.81 0.95 0.87
MobilenetV3 EHO 0.76 0.8 0.9 0.85
EfficientnetB3 EHO 0.75 0.81 0.86 0.84
InceptionV2 EHO 0.78 0.82 0.9 0.85
MobilenetV3 GTO 0.82 0.82 0.98 0.89
EfficientnetB3 GTO 0.78 0.81 0.92 0.86
InceptionV2 GTO 0.82 0.83 0.97 0.89
MobilenetV3 MGTO 0.88 0.88 0.97 0.92
EfficientnetB3 MGTO 0.81 0.81 0.97 0.88
InceptionV2 MGTO 0.86 0.84 1 0.91

Table 7. Performance metrics computed on the test set of the third dataset.

Transfer Learning Model Intermediate Layer Accuracy Precision Recall F1-Score

MobilenetV3 NO 0.84 0.86 0.92 0.89
EfficientnetB3 NO 0.71 0.71 1 0.83
InceptionV2 NO 0.82 0.86 0.89 0.88
MobilenetV3 PSO 0.78 0.84 0.85 0.85
EfficientnetB3 PSO 0.73 0.81 0.81 0.81
InceptionV2 PSO 0.78 0.83 0.87 0.85
MobilenetV3 EHO 0.8 0.84 0.89 0.86
EfficientnetB3 EHO 0.73 0.81 0.83 0.82
InceptionV2 EHO 0.81 0.85 0.89 0.87
MobilenetV3 GTO 0.91 0.92 0.96 0.94
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Table 7. Cont.

Transfer Learning Model Intermediate Layer Accuracy Precision Recall F1-Score

EfficientnetB3 GTO 0.75 0.83 0.83 0.83
InceptionV2 GTO 0.86 0.87 0.95 0.9
MobilenetV3 MGTO 0.94 0.97 0.85 0.96
EfficientnetB3 MGTO 0.9 0.93 0.93 0.93
InceptionV2 MGTO 0.93 0.97 0.93 0.95
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Figure 13. Percentage accuracy increase due to the usage of intermediate layers in DL models when
compared with the accuracy offered by DL models without intermediate layer.

On all three datasets, the percentage of accuracy increase is much less or even negative
when PSO, EHO, and GTO are used as intermediate layers on the features extracted from
MobileNetV3 and InceptionNetV2. Notably, already these two feature extraction models
without an intermediate layer produce an accuracy of more than 0.8 in all three datasets.
Implicitly, these intermediate layers fail to significantly improve the accuracy since they are
not able to produce more appropriate transformed features for classification. Only for the
features extracted with EfficientNetB3 from the first dataset can these intermediate layers
provide a significant accuracy increase. This is because the original features extracted with
EfficientNetB3 are very poor on the first dataset, which yields an accuracy of only 0.52. Out
of these three intermediate layers, GTO comparatively performs well on all three datasets.
Hence evidence for improving GTO further with suitable modifications was found. MGTO
is formulated with the modifications stated in the previous section, and it worked well on
all three datasets.

In the first dataset, a 73% increase in accuracy is seen using the EfficientNetB3-based
DL model due to the usage of MGTO as an intermediate layer. Nearly a 6% accuracy
increase is seen due to the usage of MGTO in the MobileNetV3 and InceptionV2-based
DL models. Notably, the highest accuracy of 0.95 is produced on the first dataset using
the MobileNetV3-MGTO-based DL model. Even on the imbalanced second and third
datasets, MGTO is capable of producing significant increases in accuracy. The reason for
this better performance is threefold. Firstly, the modification of GTO with the Sine and
Cosine algorithm increases its exploration and exploitation capability well. Exploitation
is responsible for the local search, i.e., fine-tuning and exploration are responsible for the
global search. Secondly, the selection of appropriate fitness functions. Local variance-based
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fitness functions worked well to transform the features of different classes in different
ways. Thirdly, the usage of ideal parameters in MGTO resulted in better accuracy. As
shown in Figures 7 and 8, the values of MGTO parameters have a huge impact on accuracy.
Due to the above-mentioned reasons, MGTO works soundly as an intermediate layer that
transforms the input features into more appropriate features for classification. In other
words, the introduction of the proposed intermediate layer helps the classifier to distinguish
the features of two different classes. This statement is backed by the scatter plots shown in
Figures 14–16. In the scatter plots, label 0 represents the Normal class and label 1 represents
the OSCC class. To represent the features of the first dataset in a scatter plot, two averages
are computed. Average1 is the mean of the first half of the features and Average2 is the
mean of the remaining half of the features. For example, 1280 features are extracted with
MobileNetV3, and the mean of the first 640 features is considered as Average1, and the
mean of the remaining 640 features is considered as Average2.
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In the scatter plots, the MobileNetV3 features of two the classes are slightly scattered
and overlapped, while the EfficientNetB3 features are heavily overlapped. A comparison
of the scatter plots with and without intermediate layers for all three feature extraction
models suggests the significance of MGTO. The proposed layer transforms the features in a
manner that is more suitable for classification by spreading the two different class features
apart to some extent. When these transformed features are used for training and validation,
the classification layer is trained well. Finally, better performance is achieved when the
transformed test dataset is categorized by the trained classification layer.

Apart from accuracy, other performance metrics are also relevantly important. Preci-
sion gives the percentage of correct OSCC predictions among the total number of OSCCs
predicted. Recall is related to the percentage of actual OSCC that was identified correctly
as OSCC. The F1-score is the harmonic mean of precision and recall. These metrics are
depicted for all three datasets in Figure 17. Considering these three metrics, DL models
with MGTO as an intermediate layer outperform all other investigated intermediate layers.
In the first dataset, the highest performance is offered by the proposed MobileNetV3-
MGTO-based DL model, which achieves precision = 0.95, recall = 0.95, and F1-score = 0.95.
Even on the second and third datasets, the highest F1-score is archived with the proposed
DL model. Though the highest F1-score and accuracy are attained with the proposed DL
model on all three datasets, it fails to attain balanced precision and recall in imbalanced
datasets. For example, recall is much higher than precision for the proposed DL model on
the second dataset, while precision is much higher than recall for the proposed DL model
on the third dataset. But it attains almost equal precision and recall on the first dataset,
which is a balanced dataset. Hence, wherever higher values of both precision and recall are
required on imbalanced datasets, the proposed DL model underperforms the other models.
This could be considered as the first limitation of the proposed model.

The training time for all the investigated DL models on the first dataset is presented in
Table 8. DL models without an intermediate layer are trained comparatively quickly, while
the presence of an intermediate layer may take more training time [52]. MobileNetV3 has a
shorter training time since the number of features extracted is 1280, while the number of
features extracted with EfficientNetB3 and InceptionNetV2 is 1536. A pie chart is presented
in Figure 18 that depicts the percentage of training time required by a DL model when
compared with the total training time required by all the DL models. PSO and EHO take
relatively less training time than other intermediate layers due to their simple structure.
When compared with GTO, the proposed MGTO intermediate layer takes more training
time due to the inclusion of Sine and Cosine argument calculations. Only 2% of the total
training time is taken by the MobileNetV3 DL model without an intermediate layer, while
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7% of the total training time is taken by the proposed DL model. This could be considered
as second limitation.
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Table 8. Time taken to train various DL models.

DL Model Training Time (hh:mm:ss) DL Model Training Time (hh:mm:ss)

MN 00:05:33 IN-EHO 00:18:22

EN 00:15:42 MN-GTO 00:15:15

IN 00:14:37 EN-GTO 00:19:17

MN-PSO 00:09:23 IN-GTO 00:21:39

EN-PSO 00:17:52 MN-MGTO 00:15:52

IN-PSO 00:17:01 EN-MGTO 00:20:12

MN-EHO 00:12:47 IN-MGTO 00:22:21

EN-EHO 00:18:46
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An accuracy comparison of some related works for oral cancer detection is presented
in Table 9. Supervised classifiers such as K-Nearest Neighbor, and Support Vector machine
attain comparatively lower accuracy than the deep learning models. The proposed deep
learning model with MGTO as the intermediate layer offers the highest accuracy of 95%,
which shows the importance of the proposed DL model.

Table 9. Comparison of the accuracy attained in related works.

Related Work Year Classification Framework Accuracy (%) Attained

Rahman A.U. et al. [27] 2022 AlexNet 90.06%

Aberville M. [52] 2017 Convolutional Neural Network 88.3%

Alkhadar H. [53] 2021 KNN, Logistic Regression, Decision Tree, Random Forest 76%

Alhazmi A. [54] 2021 Artificial Neural Network 78.95%

Chu C.S. [55] 2020 SVM, KNN 70.59%

Welikala R.A. [56] 2020 ResNet101 78.30%

Shavlokhova V. [57] 2021 CNN 77.89%

Proposed 2023 Pre-trained MobileNetV3 for feature extraction and
MGTO as an intermediate layer 95%

7. Conclusions

This research work focuses on developing an enhanced deep-learning model to diag-
nose OSCC disease. The proposed DL model with MGTO as the intermediate layer and
MobileNetV3 as the feature extraction layer could classify 95% of the histopathological
oral images correctly. Three oral histopathological image datasets were tested and on all
three datasets, and the inclusion of MGTO as an intermediate layer enhanced the accuracy
of the DL model. Features were transformed using MGTO to produce more appropriate
features for classification. MGTO outperformed other investigated SI algorithms as an
intermediate layer when compared with PSO, EHO, and GTO, primarily due to the mod-
ifications made to the GTO equations and their fitness function. The limitations of the
proposed DL model are a relatively higher training time and loss of either precision or
recall scores on an imbalanced dataset. Ouruture work will investigate other SI algorithms
as intermediate layers in DL models. In addition, the proposed model needs to be tested
for other medical image classification problems.
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